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Preface

The International Conference on Computer-Aided Verification (CAV) is dedi-
cated to the advancement of the theory and practice of computer-aided formal
analysis methods for hardware and software systems. Its scope ranges from theo-
retical results to concrete applications, with an emphasis on practical verification
tools and the underlying algorithms and techniques. This volume contains the
proceedings of the 23rd edition of this conference held in Snowbird, Utah, USA,
during July 14–20, 2011. The conference included two workshop days, a tutorial
day, and four days for the main program.

At CAV 2009, Bob Kurshan approached us with the idea of holding CAV
2011 in Salt Lake City. Encouraged by the enthusiastic support from late Amir
Pnueli, we had little hesitation in agreeing to Bob’s proposal. While the initial
proposal was to organize the conference on the campus of the University of Utah,
we eventually decided to hold it at the Snowbird resort near Salt Lake City. Our
decision was motivated by the dual desire to showcase the abundant natural
beauty of Utah and to provide a collegial atmosphere similar to a Dagstuhl
workshop.

We are happy to report that CAV is thriving, as evidenced by the large
number of submissions. We received 161 submissions and selected 35 regular
and 20 tool papers. We appreciate the diligence of our Program Committee and
our external reviewers due to which all (except two) papers received at least four
reviews. A big thank you to all our reviewers!

The conference was preceded by the eight affiliated workshops:

– The 4th International Workshop on Numerical Software Verification (NSV
2011), Thursday, 7/14

– 10th International Workshop on Parallel and Distributed Methods in Verifi-
cations (PDMC 2011), Thursday, 7/14

– The 4th International Workshop on Exploiting Concurrency Efficiently and
Correctly (EC2 2011), 7/14-7/15

– Frontiers in Analog Circuit Synthesis and Verification (FAC 2011), 7/14-7/15
– International Workshop on Satisfiability Modulo Theories, including SMT-

COMP (SMT 2011), 7/14-7/15
– 18th International SPIN Workshop on Model Checking of Software (SPIN

2011), 7/14-7/15
– Formal Methods for Robotics and Automation (FM-R 2011), 7/15
– Practical Synthesis for Concurrent Systems (PSY 2011), 7/15

In addition to the presentations for the accepted papers, the conference also
featured four invited talks and four invited tutorials.

– Invited talks:
• Andy Chou (Coverity Inc.): “Static Analysis Tools in Industry: Notes

from the Front Line”
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• Vigyan Singhal and Prashant Aggarwal (Oski Technology): “Using Cov-
erage to Deploy Formal Verification in a Simulation World”
• Vikram Adve (University of Illinois at Urbana-Champaign): “Parallel

Programming Should Be and Can Be Deterministic-by-default”
• Rolf Ernst (TU Braunschweig): “Formal Performance Analysis in Auto-

motive Systems Design: A Rocky Ride to New Grounds”
– Invited tutorials:
• Shuvendu Lahiri (Microsoft Research): “SMT-Based Modular Analysis

of Sequential Systems Code”
• Vijay Ganesh (Massachussetts Institute of Technology): “HAMPI: A

String Solver for Testing, Analysis and Vulnerability Detection”
• Ranjit Jhala (University of California at San Diego): “Using Types for

Software Verification”
• Andre Platzer (Carnegie Mellon University): “Logic and Compositional

Verification of Hybrid Systems”

A big thank you to all our invited speakers!
We thank the members of the CAV Steering Committee —Michael Gordon,

Orna Grumberg, Bob Kurshan, and Ken McMillan— for their timely advice on
various organizational matters. Neha Rungta, our Workshop Chair, smoothly
handled the organization of the workshops. Eric Mercer, our Local Arrangements
Chair, set up the registration portal at Brigham Young University. Sandip Ray,
our Publicity Chair, helped publicize CAV 2011. We thank Aarti Gupta, past
CAV Chair, for her help and advice in running the conference and maintaining
its budget.

We thank Geof Sawaya for maintaining the CAV 2011 website. We are grate-
ful to Wendy Adamson for arranging the beautiful Cliff Lodge facility at an
affordable price and really making the budget work in our favor. We thank Al-
fred Hofmann of Springer for publishing the paper and USB proceedings for CAV
2011. We thank Andrei Voronkov and his team for offering us EasyChair which
has proven invaluable at every juncture in conducting the work of CAV. We
thank the office staff of the School of Computing, University of Utah, especially
Karen Feinauer and Chris Coleman, for allowing us to use the school resources
for managing CAV activities.

We are especially grateful to our corporate sponsors —Microsoft Research,
Coverity, Google, NEC Research, Jasper, IBM, Intel, Fujitsu, and Nvidia— for
their donations. We are also grateful to Judith Bishop and Wolfram Schulte of
Microsoft Research for their substantial financial backing of CAV. We also thank
Lenore Zuck, Nina Amla, and Sol Greenspan who helped with obtaining an NSF
travel award.

CAV 2012 will be held in Berkeley, California.

April 2011 Ganesh Gopalakrishnan
Shaz Qadeer
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Abstract. Many automatic testing, analysis, and verification techniques for pro-
grams can effectively be reduced to a constraint-generation phase followed by a
constraint-solving phase. This separation of concerns often leads to more effec-
tive and maintainable software reliability tools. The increasing efficiency of off-
the-shelf constraint solvers makes this approach even more compelling. However,
there are few effective and sufficiently expressive off-the-shelf solvers for string
constraints generated by analysis of string-manipulating programs, and hence re-
searchers end up implementing their own ad-hoc solvers. Thus, there is a clear
need for an effective and expressive string-constraint solver that can be easily
integrated into a variety of applications.

To fulfill this need, we designed and implemented Hampi, an efficient and
easy-to-use string solver. Users of the Hampi string solver specify constraints us-
ing membership predicate over regular expressions, context-free grammars, and
equality/dis-equality between string terms. These terms are constructed out of
string constants, bounded string variables, and typical string operations such as
concatenation and substring extraction. Hampi takes such a constraint as input and
decides whether it is satisfiable or not. If an input constraint is satisfiable, Hampi
generates a satsfying assignment for the string variables that occur in it.

We demonstrate Hampi’s expressiveness and efficiency by applying it to pro-
gram analysis and automated testing: We used Hampi in static and dynamic anal-
yses for finding SQL injection vulnerabilities in Web applications with hundreds
of thousands of lines of code. We also used Hampi in the context of automated bug
finding in C programs using dynamic systematic testing (also known as concolic
testing). Hampi’s source code, documentation, and experimental data are available
at http://people.csail.mit.edu/akiezun/hampi.

1 Introduction

Many automatic testing [4, 9], analysis [12], and verification [14] techniques for pro-
grams can be effectively reduced to a constraint-generation phase followed by a con-
straint solving phase. This separation of concerns often leads to more effective and
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maintainable tools. Such an approach to analyzing programs is becoming more effec-
tive as off-the-shelf constraint solvers for Boolean SAT [20] and other theories [5, 8]
continue to become more efficient. Most of these solvers are aimed at propositional
logic, linear arithmetic, theories of functions, arrays or bit-vectors [5].

Many programs (e.g., Web applications) take string values as input, manipulate them,
and then use them in sensitive operations such as database queries. Analyses of such
string-manipulating programs in techniques for automatic testing [6, 9, 2], verifying
correctness of program output [21], and finding security faults [25] produce string con-
straints, which are then solved by custom string solvers written by the authors of these
analyses. Writing a custom solver for every application is time-consuming and error-
prone, and the lack of separation of concerns may lead to systems that are difficult to
maintain. Thus, there is a clear need for an effective and sufficiently expressive off-the-
shelf string-constraint solver that can be easily integrated into a variety of applications.

To fulfill this need, we designed and implemented Hampi1, a solver for constraints
over bounded string variables. Hampi constraints express membership in bounded reg-
ular and context-free languages, substring relation, and equalities/dis-equalities over
string terms.

String terms in the Hampi language are constructed out of string constants, bounded
string variables, concatenation, and sub-string extraction operations. Regular expres-
sions and context-free grammar terms are constructed out of standard regular expres-
sion operations and grammar productions, respectively. Atomic formulas in the Hampi
language are equality over string terms, the membership predicate for regular expres-
sions and context-free grammars, and the substring predicate that takes two string terms
and asserts that one is a substring of the other. Given a set of constraints, Hampi outputs
a string that satisfies all the constraints, or reports that the constraints are unsatisfiable.

Hampi is designed to be used as a component in testing, analysis, and verification
applications. Hampi can also be used to solve the intersection, containment, and equiv-
alence problems for bounded regular and context-free languages.

A key feature of Hampi is bounding of regular and context-free languages. Bound-
ing makes Hampi different from custom string-constraint solvers commonly used in
testing and analysis tools [6]. As we demonstrate in our experiments, for many prac-
tical applications, bounding the input languages is not a handicap. In fact, it allows
for a more expressive input language that enables operations on context-free languages
that would be undecidable without bounding. Furthermore, bounding makes the satis-
fiability problem solved by Hampi more tractable. This difference is analogous to that
between model-checking and bounded model-checking [1].

As one example application, Hampi’s input language can encode constraints on SQL
queries to find possible injection attacks, such as:

Find a string v of at most 12 characters, such that the SQL query “SELECT msg
FROM messages WHERE topicid=v” is a syntactically valid SQL statement,
and that the query contains the substring “OR 1=1”.

1 This paper is an extended version of the HAMPI paper accepted at the International Sympo-
sium on Software Testing and Analysis (ISSTA) 2009 conference. A journal version is under
submission.
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Note that “OR 1=1” is a common tautology that can lead to SQL injection attacks.
Hampi either finds a string value that satisfies these constraints or answers that no satis-
fying value exists. For the above example, the string “1 OR 1=1” is a valid solution.

HAMPI Overview: Hampi takes four steps to solve input string constraints.

1. Normalize the input constraints to a core form, which consists of expressions of
the form v ∈ R or v � R, where v is a bounded string variable, and R is a regular
expression.

2. Translate core form string constraints into a quantifier-free logic of bit-vectors. A
bit-vector is a bounded, ordered list of bits. The fragment of bit-vector logic that
Hampi uses allows standard Boolean operations, bit comparisons, and extracting
sub-vectors.

3. Invoke the STP bit-vector solver [8] on the bit-vector constraints.
4. If STP reports that the constraints are unsatisfiable, then Hampi reports the same.

Otherwise, STP will generate a satisfying assignment in its bit-vector language, so
Hampi decodes this to output an ASCII string solution.

Experimental Results Summary: We ran four experiments to evaluate Hampi. Our
results show that Hampi is efficient and that its input language can express string con-
straints that arise from real-world program analysis and automated testing tools.

1. SQL Injection Vulnerability Detection (static analysis): We used Hampi in a static
analysis tool [23] for identifying SQL injection vulnerabilities. We applied the anal-
ysis tool to 6 PHP Web applications (total lines of code: 339,750). Hampi solved all
constraints generated by the analysis, and solved 99.7% of those constraints in less
than 1 second per constraint. All solutions found by Hampi for these constraints
were less than 5 characters long. These experiments bolster our claim that bound-
ing the string constraints is not a handicap.

2. SQL Injection Attack Generation (dynamic analysis): We used Hampi in Ardilla, a
dynamic analysis tool for creating SQL injection attacks [17]. We applied Ardilla
to 5 PHP Web applications (total lines of code: 14,941). Hampi successfully re-
placed a custom-made attack generator and constructed all 23 attacks on those ap-
plications that Ardilla originally constructed.

3. Input Generation for Systematic Testing: We used Hampi in Klee [3], a systematic-
testing tool for C programs. We applied Klee to 3 programs with structured input
formats (total executable lines of code: 4,100). We used Hampi to generate con-
straints that specify legal inputs to these programs. Hampi’s constraints eliminated
all illegal inputs, improved the line-coverage by up to 2× overall (and up to 5× in
parsing code), and discovered 3 new error-revealing inputs.

1.1 Paper Organization

We first introduce Hampi’s capabilities with an example (§2), then present Hampi’s input
format and solving algorithm (§3), and present experimental evaluation (§4). We briefly
touch upon related work in (§5).
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1 $my_topicid = $_GET[’topicid’];
2

3 $sqlstmt = "SELECT msg FROM messages WHERE topicid=’$my_topicid’";
4 $result = mysql_query($sqlstmt);
5

6 //display messages
7 while($row = mysql_fetch_assoc($result)){
8 echo "Message " . $row[’msg’];
9 }

Fig. 1. Fragment of a PHP program that displays messages stored in a MySQL database. This
program is vulnerable to an SQL injection attack. Section 2 discusses the vulnerability.

1 //string variable representing ’$my topicid’ from Figure 1
2 var v:6..12; // size is between 6 and 12 characters
3

4 //simple SQL context-free grammar
5 cfg SqlSmall := "SELECT " (Letter)+ " FROM " (Letter)+ " WHERE " Cond;
6 cfg Cond := Val "=" Val | Cond " OR " Cond";
7 cfg Val := (Letter)+ | "’" (LetterOrDigit)* "’" | (Digit)+;
8 cfg LetterOrDigit := Letter | Digit;
9 cfg Letter := [’a’-’z’] ;

10 cfg Digit := [’0’-’9’] ;
11

12 //the SQL query $sqlstmt from line 3 of Figure 1
13 val q := concat("SELECT msg FROM messages WHERE topicid=’", v, "’");
14

15 //constraint conjuncts
16 assert q in SqlSmall;
17 assert q contains "OR ’1’=’1’";

Fig. 2. Hampi input that, when solved, produces an SQL injection attack vector for the vulnera-
bility from Figure 1

2 Example: SQL Injection

SQL injections are a prevalent class of Web-application vulnerabilities. This section
illustrates how an automated tool [17, 25] could use Hampi to detect SQL injection
vulnerabilities and to produce attack inputs.

Figure 1 shows a fragment of a PHP program that implements a simple Web appli-
cation: a message board that allows users to read and post messages stored in a MySQL
database. Users of the message board fill in an HTML form (not shown here) that com-
municates the inputs to the server via a specially formatted URL, e.g., http://www.
mysite.com/?topicid=1. Input parameters passed inside the URL are available in the
$ GET associative array. In the above example URL, the input has one key-value pair:
topicid=1. The program fragment in Figure 1 retrieves and displays messages for the
given topic.

This program is vulnerable to an SQL injection attack. An attacker can read all mes-
sages in the database (including ones intended to be private) by crafting a malicious
URL like:

http://www.mysite.com/?topicid=1’ OR ’1’=’1

Upon being invoked with that URL, the program reads the string

1’ OR ’1’=’1

http://www.mysite.com/?topicid=1
http://www.mysite.com/?topicid=1
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as the value of the $my topicid variable, constructs an SQL query by concatenating it
to a constant string, and submits the following query to the database in line 4:

SELECT msg FROM messages WHERE topicid=’1’ OR ’1’=’1’

The WHERE condition is always true because it contains the tautology ’1’=’1’. Thus,
the query retrieves all messages, possibly leaking private information.

A programmer or an automated tool might ask, “Can an attacker exploit the topicid
parameter and introduce a OR ’1’=’1’ tautology into a syntactically-correct SQL query
at line 4 in the code of Figure 1?” The Hampi solver answers such questions and creates
strings that can be used as exploits.

The Hampi constraints in Figure 2 formalize the question in our example. Automated
vulnerability-scanning tools [17, 25] can create Hampi constraints via either static or
dynamic program analysis (we demonstrate both static and dynamic techniques in our
evaluation in Sections 4.1 and 4.2, respectively). Specifically, a tool could create the
Hampi input shown in Figure 2 by analyzing the code of Figure 1.

We now discuss various features of the Hampi input language that Figure 2 illustrates.
(Section 3.1 describes the input language in more detail.)

– Keyword var (line 2) introduces a string variable v. The variable has a size in the
range of 6 to 12 characters. The goal of the Hampi solver is to find a string that,
when assigned to the string variable, satisfies all the constraints. In this example,
Hampi will search for solutions of sizes between 6 and 12.

– Keyword cfg (lines 5–10) introduces a context-free grammar, for a fragment of the
SQL grammar of SELECT statements.

– Keyword val (line 13) introduces a temporary variable q, declared as a concatena-
tion of constant strings and the string variable v. This variable represents an SQL
query corresponding to the PHP $sqlstmt variable from line 3 in Figure 1.

– Keyword assert defines a constraint. The top-level Hampi constraint is a conjunc-
tion of assert statements. Line 16 specifies that the query string qmust be a mem-
ber of the context-free language SqlSmall (syntactically-correct SQL). Line 17
specifies that the variable vmust contain a specific substring (e.g., the OR ’1’=’1’
tautology that can lead to an SQL injection attack).

Hampi can solve the constraints specified in Figure 2 and find a value for v such as

1’ OR ’1’=’1

which is a value for $ GET[’topicid’] that can lead to an SQL injection attack.

3 The Hampi String Constraint Solver

Hampi finds a string that satisfies constraints specified in the input, or decides that no
satisfying string exists. Hampi works in four steps, as illustrated in Figure 3:

1. Normalize the input constraints to a core form (§3.2).
2. Encode core form constraints in bit-vector logic (§3.3).
3. Invoke the STP solver [8] on the bit-vector constraints (§3.3).
4. Decode the results obtained from STP (§3.3).

Users can invoke Hampi with a text-based command-line front-end (using the input
grammar in Figure 4) or with a Java API to directly construct the Hampi constraints.



6 V. Ganesh et al.

STP Solver

Encoder

Normalizer

Decoder

Solution
Bit−vector 

Core String Constraints

Bit−vector Constraints

String Solution

HAMPI

No Solution Exists

String Constraints

Fig. 3. Schematic view of the Hampi string constraint solver. Input enters at the top, and output
exits at the bottom. Section 3 describes the Hampi solver.

3.1 Hampi Input Language for String Constraints

We now discuss the salient features of Hampi’s input language (Figure 4) and illustrate
them on examples. The language is expressive enough to encode string constraints gen-
erated by typical program analysis, testing, and security applications. Hampi’s language
supports declaration of bounded string variables and constants, concatenation and ex-
traction operation over string terms, equality over string terms, regular-language oper-
ations, membership predicate, and declaration of context-free and regular languages,
temporaries and constraints.

Declaration of String Variable (var keyword). A Hampi input must declare a single
string variable and specify its size range as lower and upper bounds on the number
of characters. If the input constraints are satisfiable, then Hampi finds a value for the
variable that satisfies all constraints. For example, the following line declares a string
variable named v with a size between 5 and 20 characters:

var v:5..20;

Extraction Operation. Hampi supports extraction of substrings from string terms (as
shown in Figure 4). An example of extraction operation is as follows:

var longv:20;
val v1 := longv[0:9];

where 0 is the offset (or starting character of the extraction operation), and 9 is the
length of the resultant string, in terms of the number of characters of longv.
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Input � Var Stmt∗ Hampi input (with a single string variable)

Var � var Id : Int..Int string variable (length lower..upper bound)

Stmt � Cfg | Reg | Val | Assert statement

Cfg � cfg Id := CfgProdRHS context-free language
CfgProdRHS� CFG declaration in EBNF Extended Backus-Naur Form (EBNF)

Reg � reg Id := RegElem regular-language
RegElem � StrConst string constant

| Id variable reference
| fixsize( Id , Int) CFG fixed-sizing
| or( RegElem ∗ ) union
| concat( RegElem ∗ ) concatenation
| star( RegElem ) Kleene star

Val � val Id :=ValElem temporary variable
ValElem � Id

| StrConst
| concat( ValElem ∗ ) concatenation
| ValElem[offset : length] extraction(ValElem, offset, length)

Assert � assert Id [not]? in Reg regular-language membership
| assert Id [not]? in Cfg context-free language membership
| assert Id [not]? contains StrConst substring
| assert Id [not]? = Id word equation (equality/dis-equality)

Id � String identifier
StrConst � “String literal constant”
Int � Non-negative integer

Fig. 4. Summary of Hampi’s input language. Terminals are bold-faced, nonterminals are itali-
cized. A Hampi input (Input) is a variable declaration, followed by a list of these statements:
context-free-grammar declarations, regular-language declarations, temporary variables, and as-
sertions.

Declaration of Multiple Variables. The user can simulate having multiple variables by
declaring a single long string variable and using the extract operation: Disjoint extrac-
tions of the single long variable can act as multiple variables. For example, to declare
two string variables of length 10 named v1 and v2, use:

var longv:20;
val v1 := longv[0:9];
val v2 := longv[10:9];

The val keyword declares a temporary (derived) variable and will be described later in
this section.

Declarations of Context-free Languages (cfg keyword). Hampi input can declare
context-free languages using grammars in the standard notation: Extended Backus-Naur
Form (EBNF). Terminals are enclosed in double quotes (e.g., "SELECT"), and produc-
tions are separated by the vertical bar symbol (|). Grammars may contain special sym-
bols for repetition (+ and *) and character ranges (e.g., [a-z]). For example, lines 5–10
in Figure 2 show the declaration of a context-free grammar for a subset of SQL.
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Hampi’s format for context-free grammars is as expressive as that of widely-used
tools such as Yacc/Lex; in fact, we have written a simple syntax-driven script that trans-
forms a Yacc specification to Hampi format (available on the Hampi website). Hampi can
only solve constraints over bounded context-free grammars. However, the user does not
have to manually specify bounds, since Hampi automatically derives a bound by ana-
lyzing the bound on the input string variable and the longest possible string that can be
constructed out of concatenation and extraction operations.

Declarations of Regular Languages (reg keyword). Hampi input can declare regular
languages using the following regular expressions: (i) a singleton set with a string con-
stant, (ii) a concatenation/union of regular languages, (iii) a repetition (Kleene star) of
a regular language, (iv) bounding of a context-free language, which Hampi does auto-
matically. Every regular language can be expressed using the first three of those opera-
tions [22].

For example, (b*ab*ab*)* is a regular expression that describes the language of
strings over the alphabet {a,b}, with an even number of a symbols. In Hampi syntax
this is:

reg Bstar := star("b"); // ’helper’ expression
reg EvenA := star(concat(Bstar, "a", Bstar, "a", Bstar));

The Hampi website contains a script to convert Perl Compatible Regular Expressions
(PCRE) into Hampi syntax. Also note that context-free grammars in Hampi are implicitly
bounded, and hence are regular expressions.

Temporary Declarations (val keyword). Temporary variables are shortcuts for ex-
pressing constraints on expressions that are concatenations of the string variable and
constants or extractions. For example, line 13 in Figure 2 declares a temporary variable
named q by concatenating two constant strings to the variable v:

val q := concat("SELECT msg FROM messages WHERE topicid=’", v, "’");

Constraints (assert keyword). Hampi constraints specify membership of variables
in regular and context-free languages, substrings, and word equations. Hampi solves for
the conjunction of all constraints listed in the input.

– Membership Predicate (in): Assert that a variable is in a context-free or regular
language. For example, line 16 in Figure 2 declares that the string value of the
temporary variable q is in the context-free language SqlSmall:

assert q in SqlSmall;

– Substring Relation (contains): Assert that a variable contains the given string
constant. For example, line 17 in Figure 2 declares that the string value of the
temporary variable q contains an SQL tautology:

assert q contains "OR ’1’=’1’";

– String Equalities (=): Asserts that two string terms are equal (also known as word
equations). In Hampi, both sides of the equality must ultimately originate from the
same single string variable. For example, the extract operator can assert that two
portions of a string must be equal:
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S � Constraint
| S ∧ Constraint conjunction

Constraint � StrExp ∈ RegExp membership
| StrExp � RegExp non-membership

Constraint � StrExp = StrExp equality
| StrExp � StrExp dis-equality

StrExp � Var input variable
| StrConst string constant
| StrExp StrExp concatenation
| StrExp[offset : length] extraction

RegExp � StrConst constant
| RegExp + RegExp union
| RegExp RegExp concatenation
| RegExp� star

Fig. 5. The grammar of core form string constraints. Var, StrConst, and Int are defined in Figure 4.

var v:20;
val v1 := v[0:9];
val v2 := v[10:9];
assert v1 = 2v;

All of these constraints may be negated by preceding them with a not keyword.

3.2 Core Form of String Constraints

After parsing and checking the input, Hampi normalizes the string constraints to a core
form. The core form (grammar shown in Figure 5) is an internal intermediate repre-
sentation that is easier than raw Hampi input to encode in bit-vector logic. A core
form string constraint specifies membership (or its negation) in a regular language:
StrExp ∈ RegExp or StrExp � RegExp, where StrExp is an expression composed of con-
catenations of string constants, extractions, and occurrences of the (sole) string variable,
and RegExp is a regular expression.

Hampi normalizes its input into core form in 3 steps:

1. Expand all temporary variables, i.e., replace each reference to a temporary variable
with the variable’s definition (Hampi forbids recursive definitions of temporaries).

2. Calculate maximum size and bound all context-free grammar expressions into reg-
ular expressions (see below for the algorithm).

3. Expand all regular-language declarations, i.e., replace each reference to a regular-
language variable with the variable’s definition.

Bounding of Context-free Grammars: Hampi uses the following algorithm to create
regular expressions that specify the set of strings of a fixed length that are derivable
from a context-free grammar:

1. Expand all special symbols in the grammar (e.g., repetition, option, character range).
2. Remove ε productions [22].
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3. Construct the regular expression that encodes all bounded strings of the grammar
as follows: First, pre-compute the length of the shortest and longest (if exists) string
that can be generated from each nonterminal (i.e., lower and upper bounds). Sec-
ond, given a size n and a nonterminal N, examine all productions for N. For each
production N � S 1 . . . S k, where each S i may be a terminal or a nonterminal, enu-
merate all possible partitions of n characters to k grammar symbols (Hampi takes
the pre-computed lower and upper bounds to make the enumeration more efficient).
Then, create the sub-expressions recursively and combine the subexpressions with
a concatenation operator. Memoization of intermediate results makes this (worst-
case exponential in k) process scalable.

Here is an example of grammar fixed-sizing: Consider the following grammar of well-
balanced parentheses and the problem of finding the regular language that consists of
all strings of length 6 that can be generated from the nonterminal E.
cfg E := "()" | E E | "(" E ")" ;

The grammar does not contain special symbols or ε productions, so first two steps of
the algorithm do nothing. Then, Hampi determines that the shortest string E can generate
is of length 2. There are three productions for the nonterminal E, so the final regular ex-
pression is a union of three parts. The first production, E := "()", generates no strings
of size 6 (and only one string of size 2). The second production, E := E E, generates
strings of size 6 in two ways: either the first occurrence of E generates 2 characters
and the second occurrence generates 4 characters, or the first occurrence generates 4
characters and the second occurrence generates 2 characters. From the pre-processing
step, Hampi knows that the only other possible partition of 6 characters is 3–3, which
Hampi tries and fails (because E cannot generate 3-character strings). The third produc-
tion, E := "(" E ")", generates strings of size 6 in only one way: the nonterminal E
must generate 4 characters. In each case, Hampi creates the sub-expressions recursively.
The resulting regular expression for this example is (plus signs denote union and square
brackets group sub-expressions):

()[()() + (())] + [()() + (())]() + ([()() + (())])

3.3 Bit-Vector Encoding and Solving

Hampi encodes the core form string constraints as formulas in the logic of fixed-size
bit-vectors. A bit-vector is a fixed-size, ordered list of bits. The fragment of bit-vector
logic that Hampi uses contains standard Boolean operations, extracting sub-vectors, and
comparing bit-vectors (We refer the reader to [8] for a detailed description of the bit-
vector logic used by Hampi) Hampi asks the STP bit-vector solver [8] for a satisfying
assignment to the resulting bit-vector formula. If STP finds an assignment, Hampi de-
codes it, and produces a string solution for the input constraints. If STP cannot find a
solution, Hampi terminates and declares the input constraints unsatisfiable.

Every core form string constraint is encoded separately, as a conjunct in a bit-vector
logic formula. Hampi encodes the core form string constraint StrExp ∈ RegExp recur-
sively, by case analysis of the regular expression RegExp, as follows:

– Hampi encodes constants by enforcing constant values in the relevant elements of
the bit-vector variable (Hampi encodes characters using 8-bit ASCII codes).
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– Hampi encodes the union operator (+) as a disjunction in the bit-vector logic.
– Hampi encodes the concatenation operator by enumerating all possible distributions

of the characters to the sub-expressions, encoding the sub-expressions recursively,
and combining the sub-formulas in a conjunction.

– Hampi encodes the � similarly to concatenation — a star is a concatenation with
variable number of occurrences. To encode the star, Hampi finds the upper bound
on the number of occurrences (the number of characters in the string is always a
sound upper bound).

After STP finds a solution to the bit-vector formula (if one exists), Hampi decodes the
solution by reading 8-bit sub-vectors as consecutive ASCII characters.

3.4 Example of Hampi Constraint Solving

We now illustrate the entire constraint solving process end-to-end on a simple example.
Given the following input:

var v:2..2; // fixed-size string of length 2

cfg E := "()" | E E | "(" E ")";

reg Efixed := fixsize(E, 6);

val q := concat( "((" , v , "))" );

assert q in Efixed; // turns into constraint c1
assert q contains "())"; // turns into constraint c2

Hampi tries to find a satisfying assignment for variable v by following the four-step
algorithm2 in Figure 3:

Step 1. Normalize constraints to core form, using the algorithm in Section 3.2:

c1 [assert q in Efixed]: (( v )) ∈ ()[()() + (())] +
[()() + (())]() +
([()() + (())])

c2 [assert q contains "())"]: (( v )) ∈ [( + )]� ()) [( + )]�

Step 2. Encode the core-form constraints in bit-vector logic. We show how Hampi en-
codes constraint c1; the process for c2 is similar. Hampi creates a bit-vector variable bv
of length 6*8=48 bits, to represent the left-hand side of c1 (since Efixed is 6 bytes).
Characters are encoded using ASCII codes: ’(’ is 40 in ASCII, and ’)’ is 41. Hampi
encodes the left-hand-side expression of c1, (( v )), as formula L1, by specifying the
constant values:

L1 : (bv[0] = 40) ∧ (bv[1] = 40) ∧ (bv[4] = 41) ∧ (bv[5] = 41)

Bytes bv[2] and bv[3] are reserved for v, a 2-byte variable. The top-level regular
expression in the right-hand side of c1 is a 3-way union, so the result of the encod-
ing is a 3-way disjunction. For the first disjunct ()[()() + (())], Hampi creates the
following formula D1a:

2 The alphabet of the regular expression or context-free grammar in a Hampi input is implicitly
restricted to the terminals specified.
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bv[0] = 40 ∧ bv[1] = 41∧
((bv[2] = 40 ∧ bv[3] = 41 ∧ bv[4] = 40 ∧ bv[5] = 41)∨
(bv[2] = 40 ∧ bv[3] = 40 ∧ bv[4] = 41 ∧ bv[5] = 41))

Formulas D1b and D1c for the remaining conjuncts are similar. The bit-vector formula
that encodes c1 is

C1 = L1 ∧ (D1a ∨ D1b ∨ D1c)
Similarly, a formula C2 (not shown here) encodes c2. The formula that Hampi sends to

the STP solver is
(C1 ∧C2)

Step 3. STP finds a solution that satisfies the formula:

bv[0] = 40, bv[1] = 40, bv[2] = 41, bv[3] = 40, bv[4] = 41, bv[5] = 41

In decoded ASCII, the solution is “(()())” (quote marks not part of solution string).

Step 4. Hampi reads the assignment for variable v off of the STP solution, by decoding
the elements of bv that correspond to v, i.e., elements 2 and 3. Hampi reports the solution
for v as “)(”. String “()” is another legal solution for v, but STP only finds one solution.

4 Evaluation

We experimentally tested Hampi’s applicability to practical problems involving string
constraints and compared Hampi’s performance and scalability to another string-
constraint solver. We ran the following four experiments:

1. We used Hampi in a static-analysis tool [23] that identifies possible SQL injection
vulnerabilities (Section 4.1).

2. We used Hampi in Ardilla [17], a dynamic-analysis tool that creates SQL injection
attacks (Section 4.2).

3. We used Hampi in Klee, a systematic testing tool for C programs (Section 4.3).

Unless otherwise noted, we ran all experiments on a 2.2GHz Pentium 4 PC with 1 GB
of RAM running Debian Linux, executing Hampi on Sun Java Client VM 1.6.0-b105
with 700MB of heap space. We ran Hampi with all optimizations on, but flushed the
whole internal state after solving each input to ensure fairness in timing measurements,
i.e., preventing artificially low runtimes when solving a series of structurally-similar
inputs. The results of our experiments demonstrate that Hampi is expressive in encod-
ing real constraint problems that arise in security analysis and automated testing, that
it can be integrated into existing testing tools, and that it can efficiently solve large
constraints obtained from real programs. Hampi’s source code and documentation, ex-
perimental data, and additional results are available at http://people.csail.mit.
edu/akiezun/hampi.

4.1 Identifying SQL Injection Vulnerabilities Using Static Analysis

We evaluated Hampi’s applicability to finding SQL injection vulnerabilities in the con-
text of a static analysis. We used the tool from Wassermann and Su [23] that, given

http://people.csail.mit.edu/akiezun/hampi
http://people.csail.mit.edu/akiezun/hampi


HAMPI: A String Solver for Testing, Analysis and Vulnerability Detection 13

source code of a PHP Web application, identifies potential SQL injection vulnerabili-
ties. The tool computes a context-free grammar G that conservatively approximates all
string values that can flow into each program variable. Then, for each variable that rep-
resents a database query, the tool checks whether L(G) ∩ L(R) is empty, where L(R) is
a regular language that describes undesirable strings or attack vectors (strings that can
exploit a security vulnerability). If the intersection is empty, then Wassermann and Su’s
tool reports the program to be safe. Otherwise, the program may be vulnerable to SQL
injection attacks.

An example L(R) that Wassermann and Su use — the language of strings that contain
an odd number of unescaped single quotes — is given by the regular expression (we
used this R in our experiments):

R = (([ˆ’]|\’)*[ˆ\])?’
((([ˆ’]|\’)*[ˆ\])?’
(([ˆ’]|\’)*[ˆ\])?’([ˆ’]|\’)*

Using Hampi in such an analysis offers two important advantages. First, it elimi-
nates a time-consuming and error-prone reimplementation of a critical component: the
string-constraint solver. To compute the language intersection, Wassermann and Su im-
plemented a custom solver based on the algorithm by Minamide [19]. Second, Hampi
creates concrete example strings from the language intersection, which is important for
generating attack vectors; Wassermann and Su’s custom solver only checks for empti-
ness of the intersection, and does not create example strings.

Using a fixed-size string-constraint solver, such as Hampi, has its limitations. An
advantage of using an unbounded-length string-constraint solver is that if the solver
determines that the input constraints have no solution, then there is indeed no solution.
In the case of Hampi, however, we can only conclude that there is no solution of the
given size.

Experiment: We performed the experiment on 6 PHP applications. Of these, 5 were
applications used by Wassermann and Su to evaluate their tool [23]. We added 1 large
application (claroline, a builder for online education courses, with 169 kLOC) from
another paper by the same authors [24]. Each of the applications has known SQL injec-
tion vulnerabilities. The total size of the applications was 339,750 lines of code.

Wassermann and Su’s tool found 1,367 opportunities to compute language intersec-
tion, each time with a different grammar G (built from the static analysis) but with the
same regular expression R describing undesirable strings. For each input (i.e., pair of
G and R), we used both Hampi and Wassermann and Su’s custom solver to compute
whether the intersection L(G) ∩ L(R) was empty.

When the intersection is not empty, Wassermann and Su’s tool cannot produce an
example string for those inputs, but Hampi can. To do so, we varied the size N of the
string variable between 1 and 15, and for each N, we measured the total Hampi solving
time, and whether the result was UNSAT or a satisfying assignment.

Results: We found empirically that when a solution exists, it can be very short. In 306
of the 1,367 inputs, the intersection was not empty (both solvers produced identical
results). Out of the 306 inputs with non-empty intersections, we measured the percent-
age for which Hampi found a solution (for increasing values of N): 2% for N = 1,
70% for N = 2, 88% for N = 3, and 100% for N = 4. That is, in this large dataset,
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all non-empty intersections contain strings with no longer than 4 characters. Due to
false positives inherent in Wassermann and Su’s static analysis, the strings generated
from the intersection do not necessarily constitute real attack vectors. However, this is
a limitation of the static analysis, not of Hampi.

We measured how Hampi’s solving time depends on the size of the grammar. We
measured the size of the grammar as the sum of lengths of all productions (we counted
ε-productions as of length 1). Among the 1,367 grammars in the dataset, the mean size
was 5490.5, standard deviation 4313.3, minimum 44, maximum 37955. We ran Hampi
for N = 4, i.e., the length at which all satisfying assignments were found. Hampi solves
most of these queries quickly (99.7% in less than 1 second, and only 1 query took 10
seconds).

4.2 Creating SQL Injection Attacks Using Dynamic Analysis

We evaluated Hampi’s ability to automatically find SQL injection attack strings using
constraints produced by running a dynamic-analysis tool on PHP Web applications.
For this experiment, we used Ardilla [17], a tool that constructs SQL injection and
Cross-site Scripting (XSS) attacks by combining automated input generation, dynamic
tainting, and generation and evaluation of candidate attack strings.

One component of Ardilla, the attack generator, creates candidate attack strings from
a pre-defined list of attack patterns. Though its pattern list is extensible, Ardilla’s attack
generator is neither targeted nor exhaustive: The generator does not attempt to cre-
ate valid SQL statements but rather simply assigns pre-defined values from the attack
patterns list one-by-one to variables identified as vulnerable by the dynamic tainting
component; it does so until an attack is found or until there are no more patterns to try.

For this experiment, we replaced the attack generator with the Hampi string solver.
This reduces the problem of finding SQL injection attacks to one of string constraint
generation followed by string constraint solving. This replacement makes attack cre-
ation targeted and exhaustive — Hampi constraints encode the SQL grammar and, if
there is an attack of a given length, Hampi is sure to find it.

To use Hampi with Ardilla, we also replaced Ardilla’s dynamic tainting component
with a concolic execution [10] component. This required code changes were quite ex-
tensive but fairly standard. Concolic execution creates and maintains symbolic expres-
sions for each concrete runtime value derived from the input. For example, if a value is
derived as a concatenation of user-provided parameter p and a constant string "abc",
then its symbolic expression is concat(p, "abc"). This component is required to
generate the constraints for input to Hampi.

The Hampi input includes a partial SQL grammar (similar to that in Figure 2). We
wrote a grammar that covers a subset of SQL queries commonly observed in Web appli-
cations, which includes SELECT, INSERT, UPDATE, and DELETE, all with WHERE clauses.
The grammar has size is 74, according to the metric of Section 4.1. Each terminal is rep-
resented by a single unique character.

We ran our modified Ardilla on 5 PHP applications (the same set as the original
Ardilla study [17], totaling 14,941 lines of PHP code). The original study identified 23
SQL injection vulnerabilities in these applications. Ardilla generated 216 Hampi inputs,
each of which is a string constraint built from the execution of a particular path through
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an application. For each constraint, we used Hampi to find an attack string of size N ≤ 6
— a solution corresponds to the value of a vulnerable PHP input parameter. Follow-
ing previous work [7, 13], the generated constraint defined an attack as a syntactically
valid (according to the grammar) SQL statement with a tautology in the WHERE clause,
e.g., OR 1=1. We used 4 tautology patterns, distilled from several security lists3. We
separately measured solving time for each tautology and each choice of N. A security-
testing tool like Ardilla might search for the shortest attack string for any of the specified
tautologies.

4.3 Systematic Testing of C Programs

We combined Hampi with a state-of-the-art systematic testing tool, Klee [3], to improve
Klee’s ability to create valid test cases for programs that accept highly structured string
inputs. Automatic test-case generation tools that use combined concrete and symbolic
execution, also known as concolic execution [4, 11, 15] have trouble creating test cases
that achieve high coverage for programs that expect structured inputs, such as those
that require input strings from a context-free grammar [18, 9]. The parser components
of programs that accept structured inputs (especially those auto-generated by tools such
as Yacc) often contain complex control-flow with many error paths; the vast majority of
paths that automatic testers explore terminate in parse errors, thus creating inputs that
do not lead the program past the initial parsing stage.

Testing tools based on concolic execution mark the target program’s input string as
totally unconstrained (i.e., symbolic) and then build up constraints on the input based
on the conditions of branches taken during execution. If there were a way to constrain
the symbolic input string so that it conforms to a target program’s specification (e.g.,
a context-free grammar), then the testing tool would only explore non-error paths in
the program’s parsing stage, thus resulting in generated inputs that reach the program’s
core functionality.

To demonstrate the feasibility of this technique, we used Hampi to create grammar-
based input constraints and then fed those into Klee [3] to generate test cases for C
programs. We compared the coverage achieved and numbers of legal (and rejected)
inputs generated by running Klee with and without the Hampi constraints.

Similar experiments have been performed by others [18,9], and we do not claim nov-
elty for the experimental design. However, previous studies used custom-made string
solvers, while we applied Hampi as an “off-the-shelf” solver without modifying Klee.
Klee provides an API for target programs to mark inputs as symbolic and to place con-
straints on them. The code snippet below uses klee assert to impose the constraint
that all elements of buf must be numeric before the target program runs:

char buf[10]; // program input
klee_make_symbolic(buf, 10); // make all 10 bytes symbolic

// constrain buf to contain only decimal digits
for (int i = 0; i < 10; i++)
klee_assert((’0’ <= buf[i]) && (buf[i] <= ’9’));

run_target_program(buf); // run target program with buf as input

3 http://www.justinshattuck.com/2007/01/18/mysql-injection-cheat-sheets

http://ferruh.mavituna.com/sql-injection-cheatsheet-oku

http://pentestmonkey.net/blog/mysql-sql-injection-cheat-sheet

http://www.justinshattuck.com/2007/01/18/mysql-injection-cheat-sheets
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku
http://pentestmonkey.net/blog/mysql-sql-injection-cheat-sheet
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Table 1. The result of using Hampi grammars to improve coverage of test cases generated by the
Klee systematic testing tool. ELOC lists Executable Lines of Code, as counted by gcov over all
.c files in program (whole-project line counts are several times larger, but much of that code
does not directly execute). Each trial was run for 1 hour. To create minimal test suites, Klee only
generates a new input when it covers new lines that previous inputs have not yet covered; the
total number of explored paths is usually 2 orders of magnitude greater than the number of gener-
ated inputs. Column symbolic shows results for runs of Klee without a Hampi grammar. Column
symbolic + grammar shows results for runs of Klee with a Hampi grammar. Column combined
shows accumulated results for both kinds of runs. Section 4.3 describes the experiment.

cueconvert (939 ELOC, 28-byte input) symbolic symbolic + grammar combined
% total line coverage: 32.2% 51.4% 56.2%
% parser file line coverage (48 lines): 20.8% 77.1% 79.2%
# legal inputs / # generated inputs (%): 0 / 14 (0%) 146 / 146 (100%) 146 / 160 (91%)

logictree (1,492 ELOC, 7-byte input) symbolic symbolic + grammar combined
% total line coverage: 31.2% 63.3% 66.8%
% parser file line coverage (17 lines): 11.8% 64.7% 64.7%
# legal inputs / # generated inputs (%): 70 / 110 (64%) 98 / 98 (100%) 188 / 208 (81%)

bc (1,669 ELOC, 6-byte input) symbolic symbolic + grammar combined
% total line coverage: 27.1% 43.0% 47.0%
% parser file line coverage (332 lines): 11.8% 39.5% 43.1%
# legal inputs / # generated inputs (%): 2 / 27 (5%) 198 / 198 (100%) 200 / 225 (89%)

Hampi simplifies writing input-format constraints. Simple constraints, such as those
above, can be written by hand, but it is infeasible to manually write more complex
constraints for specifying, for example, that buf must belong to a particular context-
free language. We use Hampi to automatically compile such constraints from a grammar
down to C code, which can then be fed into Klee.

We chose 3 open-source programs that specify expected inputs using context-
free grammars in Yacc format (a subset of those used by Majumdar and Xu [18]).
cueconvert converts music playlists from .cue format to .toc format. logictree
is a solver for propositional logic formulas. bc is a command-line calculator and sim-
ple programming language. All programs take input from stdin; Klee allows the user
to create a fixed-size symbolic buffer to simulate stdin, so we did not need to modify
these programs. For each target program, we ran the following experiment on a 3.2 GHz
Pentium 4 PC with 1 GB of RAM running Fedora Linux:

1. Automatically convert its Yacc specification into Hampi’s input format (described
in Section 3.1), using a script we wrote. To simplify lexical analysis, we used either
a single letter or numeric digit to represent certain tokens, depending on its Lex
specification (this should not reduce coverage in the parser).

2. Add a fixed-size restriction to limit the input to N bytes. Klee (similarly to, for
example, SAGE [11]) actually requires a fixed-size input, which matches well with
Hampi’s fixed-size input language. We empirically picked N as the largest input
size for which Klee does not run out of memory. We augmented the Hampi input to
allow for strings with arbitrary numbers of trailing spaces, so that we can generate
program inputs up to size N.
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3. Run Hampi to compile the input grammar file into STP bit-vector constraints (de-
scribed in Section 3.3).

4. Automatically convert the STP constraints into C code that expresses the equivalent
constraints using C variables and calls to klee assert(), with a script we wrote
(the script performs only simple syntactic transformations since STP operators map
directly to C operators).

5. Run Klee on the target program using an N-byte input buffer, first marking that
buffer as symbolic, then executing the C code that imposes the input constraints,
and finally executing the program itself.

6. After a 1-hour time-limit expires, collect all generated inputs and run them through
the original program (compiled using gcov) to measure coverage and legality of
each input.

7. As a control, run Klee for 1 hour using an N-byte symbolic input buffer (with no
initial constraints), collect test cases, and run them through the original program to
measure coverage and legality of each input.

Table 1 summarizes our experimental setup and results. We made 3 sets of measure-
ments: total line coverage, line coverage in the Yacc parser file that specifies the gram-
mar rules alongside C code snippets denoting parsing actions, and numbers of inputs
(test cases) generated, as well as how many of those inputs were legal (i.e., not rejected
by the program as a parse error).

The run times for converting each Yacc grammar into Hampi format, fixed-sizing to
N bytes, running Hampi on the fixed-size grammar, and converting the resulting STP
constraints into C code are negligible; together, they took less than 1 second for each
of the 3 programs. Using Hampi in Klee improved coverage. Constraining the inputs
using a Hampi grammar resulted in up to 2× improvement in total line coverage and up
to 5× improvement in line coverage within the Yacc parser file. Also, as expected, it
eliminated all illegal inputs.

Using both sets of inputs (combined column) improved upon the coverage achieved
using the grammar by up to 9%. Upon manual inspection of the extra lines covered,
we found that it was due to the fact that the runs with and without the grammar cov-
ered non-overlapping sets of lines: The inputs generated by runs without the grammar
(symbolic column) covered lines dealing with processing parse errors, whereas the in-
puts generated with the grammar (symbolic + grammar column) never had parse errors
and covered core program logic. Thus, combining test suites is useful for testing both
error and regular execution paths.

With Hampi’s help, Klee uncovered more errors. Using the grammar, Klee gener-
ated 3 distinct inputs for logictree that uncovered (previously unknown) errors where
the program entered an infinite loop. We do not know how many distinct errors these
inputs identify. Without the grammar, Klee was not able to generate those same inputs
within the 1-hour time limit; given the structured nature of those inputs (e.g., one is “@x
$y z”), it is unlikely that Klee would be able to generate them within any reasonable
time bound without a grammar.

We manually inspected lines of code that were not covered by any strategy. We dis-
covered two main hindrances to achieving higher coverage: First, the input sizes were
still too small to generate longer productions that exercised more code, especially prob-
lematic for the playlist files for cueconvert; this is a limitation of Klee running out of
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memory and not of Hampi. Second, while grammars eliminated all parse errors, many
generated inputs still contained semantic errors, such as malformed bc expressions and
function definitions (again, unrelated to Hampi).

5 Related Work

Decision procedures have received widespread attention within the context of pro-
gram analysis, testing, and verification. Decision procedures exist for theories such as
Boolean satisfiability [20] and bit-vectors [8]. In contrast, until recently there has been
relatively little work on practical and expressive solvers that reason about strings or sets
of strings directly. Since this is a tutorial paper we do not discuss related work in de-
tail. Instead we point the reader to our ISSTA 2009 paper [16] for a detailed overview of
previous work on decision procedures for theories of strings and practical string solvers.
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Traditional software verification algorithms work by using a combination of
Floyd-Hoare Logics, Model Checking and Abstract Interpretation, to infer (and
check) suitable program invariants. However, these techniques are problematic in
the presence of complex (but ubiquitous) constructs like generic data structures,
first-class functions.

We demonstrate that modern type systems are capable of the kind of analysis
needed to analyze the above constructs, and we use this observation to develop
Liquid Types, a new static verification technique which combines the comple-
mentary strengths of Floyd-Hoare logics, Model Checking, and Types.

We start in a high-level functional setting (Ocaml), and show how liquid types
can be used to statically verify properties ranging from memory safety to data
structure “correctness”. We will then show how, by carefully reasoning about
pointer arithmetic and aliasing, we can profitably use Liquid Types to verify
low-level imperative (C) programs.

This presentation is based on joint work with Patrick Rondon and Ming
Kawaguchi.
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SMT-Based Modular Analysis of Sequential Systems
Code
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Abstract. In this paper, we describe a few challenges that accompany SMT-
based precise verification of systems code (device drivers, file systems) written
in low-level languages such as C/C++. First, the presence of pointer arithmetic
and untrusted casts make type checking difficult; we show how to formalize C
type safety checking and exploit the types for disambiguation of addresses in the
heap. Second, the prevalence of explicit manipulation of pointers in data struc-
tures using dereference and address arithmetic precludes abstract reasoning about
data structures. We provide an expressive and efficient theory for reasoning about
linked lists, which comprise most data structures in systems code. We discuss
extensions to standard SMT solvers to tackle these issues in the context of the
HAVOC verifier.

1 Introduction

A majority of systems software (device drivers, file systems etc.) continue to be writ-
ten in low-level languages such as C and C++. These languages offer developers the
potential to obtain raw performance by low-level control over object layout and ob-
ject management. However, the gains come at the expense of lack of type and memory
safety, lack of modularity and large bloated monolithic components with several hun-
dred thousands of lines. These factors impose additional challenges for the analysis of
systems code, in addition to those posed by higher level languages such as Java and C#.

In this work, we discuss our experience with applying satisfiability modulo theories
(SMT) solvers [7] for predictable analysis of systems software, namely in the context of
the HAVOC verifier [4]. Predictable analysis constitutes precise and efficient checking
of assertions across loop-free and call-free program fragments.

– By precision, we denote an assertion logic (for writing pre/post conditions, loop
invariants) expressive enough to be closed under weakest liberal preconditions [3]
across a bounded code fragment.

– By efficient, we imply the complexity of the decision problem for the assertion
logic. Since many efficiently solvable SMT logics (Boolean satisfiability (SAT),
integer linear arithmetic, theory of arrays) have NP-complete decision problems,
we consider logics with NP-complete decision problems to be efficiently decided
in practice.

The use of such predictable verifiers can be extended to whole programs by combining
them with user-supplied or automatically inferred procedure contracts, and loop invari-
ants. We do not focus on the issue of inferring such annotations in this work.

We focus on two main aspects of analysis of systems software in this paper:

G. Gopalakrishnan and S. Qadeer (Eds.): CAV 2011, LNCS 6806, pp. 21–27, 2011.
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1. Lack of type-safety: We discuss the challenges in checking type-safety of these low-
level programs and the implications for modular property checking. We show how
to formalize the type-safety of C programs as state assertions, and augmenting SMT
solvers with a theory of low-level C types. Details of this work can be found in an
earlier paper [2].

2. Low-level lists: Linked lists form a majority of linked data structures in systems
code; we show the difficulty of employing abstractions on top of such lists given
explicit manipulation of addresses and links. We present an SMT theory of lists that
allows stating many interesting invariants for code manipulating such lists. Details
of this work can be found in the following works [4,6].

In the next few sections, we briefly summarize the issues and the solutions in a semi-
formal fashion to enable quick reading. Interested readers are encouraged to refer to the
detailed works for more elaborate treatment on each topic.

2 Basic Memory Model

For the sake of illustration in this paper, we will assume a simplified subset of C pro-
grams where the only primitive type consists of integers int. Addresses and integer
values are treated as integers. We ignore the issue of sub-word access, where an integer
may be split up into 4 characters, or 2 shorts. The state of the heap is modeled using an
mutable array Mem : int→ int that maps an address to a value or another address.

Variables whose addresses are taken (using &) and structures are allocated on the
heap. Read from a pointer ∗e is modeled as Mem[||e||], a lookup into the array Mem at
the location corresponding to the value of the C expression e (denoted by ||.||). Similarly
a write ∗e = x is modeled as Mem[||e||] := ||x||, an update to Mem. Field accesses
e → f are compiled as pointer accesses with a field offset, ∗(e + Offset(f)), where
Offset(f) is the (static) offset of the field f in the structure pointed to by e. The different
operations (arithmetic, relational) are translated as appropriate operations on integers.

3 Types

Consider the method init record in Figure 1. The parameter p is a pointer to a list
structure. In most systems program, it is common to use a structure similar to list
to define a generic doubly-linked list. This structure can be embedded in any struc-
ture (such as record) as a field to create a list of such structures. The programming
paradigm is uniformly used as the list manipulation routines (insertion, deletion, test
for emptiness) are defined once on the list structure. A structure can have multiple
fields of type list if the same structure can be part of multiple lists.

However, this also poses several challenges for type-safety as can be seen from
the example. First, the type of the enclosing structure is not evident from the signa-
ture of the parameter of init record. Second, programs need to use a macro like
CONTAINING RECORD that obtains the pointer to the enclosing structure from the ad-
dress of an internal field. This involves non-trivial pointer arithmetic and type casts, the
safety of which is not easy to justify.
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struct list { list *next; list *prev; }
struct record { int data1; list node; int data2; }

#define CONTAINING_RECORD(x, T, f) ((T *)((int)(x) - (int)(&((T *)0)->f)))

void init_record(list *p) {
record *r = CONTAINING_RECORD(p, record, node);
r->data2 = 42;

}

void init_all_records(list *p) {
while (p != NULL) {
init_record(p);
p = p->next;

}
}

Fig. 1. Example C code. The diagram shows two record structures in a linked list, with the
embedded list shown in gray.

To create a sound analysis, one can completely disregard the types and field names
in the program. However, this poses two main issues:

– The presence of types and checking for well-typed programs may guarantee the
absence of some class of runtime memory safety errors (accesses to invalid regions
in memory).

– Types also provide for disambiguation between different parts of the heap, where a
read/write to pointers of one type cannot affect the values in other types/fields. For
instance, any reasonable program analysis will need to establish that the value in
data1 field in any structure is not affected by init record.

3.1 Formalizing Types

We address these problems by formalizing types as predicates over the program state
along with an explicit type-safety invariant [2]. We introduce a map Type : int →
type that maps each allocated heap location to a type, and two predicates Match and
HasType. The Match predicate lifts Type to types that span multiple addresses. For-
mally, for address a and type t, Match(a, t) holds if and only if the Type map starting
at address a matches the type t. The HasType predicate gives the meaning of a type.
For a word-sized value v and a word-sized type t, HasType(v, t) holds if and only if the
value v has type t.

The definitions of Match and HasType are given in Figure 2. For Match, the def-
initions are straightforward: if a given type is a word-sized type (int or Ptr(t) where
Ptr is a pointer type constructor), we check Type at the appropriate address, and for
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Definitions for Int

Match(a, Int) � Type[a] = Int (A)

HasType(v, Int) � true (B)

Definitions for Ptr(t)

Match(a, Ptr(t)) � Type[a] = Ptr(t) (C)

HasType(v, Ptr(t)) � v = 0 ∨ (v > 0 ∧Match(v, t)) (D)

Definitions for type t = {f1 : σ1; . . . ; fn : σn}
Match(a, T) �

∧
i Match(a + Offset(fi), T (σi)) (E)

Fig. 2. Definition of HasType and Match for a, v of sort int and t of sort type

structure types, we apply Match inductively to each field. For HasType, we only need
definitions for word-sized types. For integers, we allow all values to be of integer type,
and for pointers, we allow either zero (the null pointer) or a positive address such that
the allocation state (as given by Match) matches the pointer’s base type. HasType is the
core of our technique, since it explicitly defines the correspondence between values and
types.

Now that we have defined HasType, we can state our type safety invariant for the
heap:

∀a : int.HasType(Mem[a], Type[a])

In other words, for all addresses a in the heap, the value at Mem[a] must corre-
spond to the type at Type[a] according to the HasType axioms. Our translation enforces
this invariant at all program points, including preconditions and postconditions of each
procedure. We have thus reduced the problem of type safety checking to checking as-
sertions in a program.

The presence of the Type also allows us to distinguish between pointers of different
types. In fact, we provide a refinement of the scheme described here to allow names of
word-sized fields in the range of Type. This allows to establish that writes to the data2
field in init record does not affect the data1 field of any other objects.

3.2 SMT Theory for Types

By using standard verification condition generation [1], the checking of the type safety
assertions in a program reduces to checking a ground formula. The formula involves
the application of Mem, Type, Match and HasType predicates, in addition to arith-
metic symbols. The main challenge is to find an assignment that respects the definition
of Match and HasType from Figure 2 and satisfies the type safety assertion; all of these
can be expressed as quantified background axioms. We show that it suffices to instan-
tiate these quantifiers at a small number of terms (with at most quadratic blowup) to
produce an equisatisfiable ground formula, where the predicates Match and HasType
are completely uninterpreted. This ensures that the type safety can be checked for
low-level C programs in logics with NP-complete decision problem.
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4 Low-Level Data Structures

Consider the procedure init record in Figure 1. To ensure type safety, we need the
following precondition for this procedure:

HasType(p− 1, Ptr(Record))

to indicate that p − 1 is a pointer to a record structure. However, to prove this pre-
condition at the call site in init all records, we need a loop invariant that asserts
that for any pointer x ∈ {p, ∗(p + 0), ∗(∗(p + 0) + 0), . . .}, x − 1 �= null and
HasType(x − 1, Ptr(Record)) holds. This set represents the set of pointers reachable
from p using the next field. Similarly, the set of pointers obtained by following the
prev field is {p, ∗(p + 1), ∗(∗(p + 1) + 1), . . .}, because the prev field is at an offset
of 1 inside the list structure.

Unlike most high level languages, where the internal details of a list are hidden from
the clients, most systems program explicitly use the fields next and prev to iterate over
lists. The lists are not well encapsulated and clients can have multiple pointers inside
a list. In addition, the presence of pointer arithmetic (as described above) to obtain
enclosing objects make it difficult to reason about such lists abstractly.

4.1 Reachability Predicate

We define a logic that can describe properties of a set of pointers in a list [4]. The
main idea is to introduce a set constructor Btwn : (int → int) × int × int → 2int

that takes a map, and two integer addresses such that Btwn(f, x, y) returns the pointers
{x, f [x], f [f [x]], . . . , y} (between x and y) when x reaches y by dereferencing f , or {}
otherwise. The salient points of the assertion logic are:

1. The logic can model singly and doubly linked lists, including cyclic lists.
2. Formulas in this logic are closed under the weakest liberal precondition trans-

former with respect to the statements in a language with updates to the maps
(corresponding to updating fields such as next or prev). In other words, the for-
mula Btwn(f [a := b], x, y)(z) can be expressed in terms of Btwn(f, w1, w2)(w3),
where wi ∈ {a, b, x, y}. This allows for precise reasoning for a loop-free and call-
free fragment of code annotated with assertions in this logic.

3. The logic provides for expressing quantified facts about all elements in a list such
as

∀x : int ∈ Btwn(f, a, b) :: φ(x)

as long as φ(x) maintains a sort restriction [4]. Although the logic can express a va-
riety of useful invariants for lists (initialization, sortedness, uniqueness), it restricts
the use of terms such as f [x] inside φ(x). Intuitively, this may result in generat-
ing an unbounded set of terms of a list x, f [x], f [f [x]], . . . when instantiating the
quantified assertions.

4. The decision problem for the resulting logic (when combined with other SMT log-
ics such as arrays, arithmetic, equality) still remains NP-complete. We encode the
decision procedure as a set of rewrite rules using triggers supported for quantifier
reasoning in SMT solvers.
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4.2 Modeling Low-Level Lists

As described earlier, elements in most lists in systems programs are obtained by first
incrementing pointers by a constant offset before dereferencing the heap. For example,
the list of pointers reachable through the prev fields are

{p, Mem[p + 1], Mem[Mem[p + 1] + 1], . . . , null}
In HAVOC, we model this list as Btwn(shift1(Mem), p, null), where shift c : (int

→ int)→ (int→ int) satisfies the following properties:

∀x : int :: shift c(f)[x] = f [x + c]
∀x : int, v : int :: shift c(f [x + c := v]) = shift c(f)[x := v]

The first axiom states that the content of shift c(f) is shifted by c with respect to the
contents of f . The second axiom eliminates updates f [x + c := v] nested inside shift .
These axioms are carefully guarded by triggers such that they fire only for updates to
the appropriate linking field such as next or prev. These extensions prevent us from
guaranteeing a decision procedure for assertions about lists in C programs. However,
we have observed very few unpredictable behavior in practice, even when reasoning
about lists in programs several thousand lines large [6].

5 Other Challenges

In this paper, we have highlighted two issues that make precise verification difficult for
systems programs. There are several other issues that pose interesting challenges. A few
of them are:

– Since systems program rely on the user to perform object management, the prob-
lem of double free can lead to variety of undesired behaviors. When freeing objects
over an unbounded data structures, we need to capture that pointers have unique
references to them. These facts can often be captured as part of a module invari-
ant, but may be broken temporarily inside the module. We describe intra-module
inference to address similar issues in the context of large code bases [6].

– Since all the lists in a program share the next and prev fields, a modification
to the field in one list may potential affect a completely disjoint list. It becomes
more challenging when the procedure modifying the next field of a list does not
have the other lists in scope. We discuss this imprecision in the context of call
invariants [5] that offers a mechanism to leverage intraprocedural analysis to deal
with interprocedural reasoning precisely.
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Abstract. Hybrid systems are models for complex physical systems and
have become a widely used concept for understanding their behavior.
Many applications are safety-critical, including car, railway, and air traf-
fic control, robotics, physical-chemical process control, and biomedical
devices. Hybrid systems analysis studies how we can build computerised
controllers for physical systems which are guaranteed to meet their de-
sign goals. The continuous dynamics of hybrid systems can be modeled
by differential equations, the discrete dynamics by a combination of dis-
crete state-transitions and conditional execution. The discrete and con-
tinuous dynamics interact to form hybrid systems, which makes them
quite challenging for verification.

In this tutorial, we survey state-of-the-art verification techniques for
hybrid systems. In particular, we focus on a coherent logical approach
for systematic hybrid systems analysis. We survey theory, practice, and
applications, and show how hybrid systems can be verified in the hybrid
systems verification tool KeYmaera. KeYmaera has been used success-
fully to verify safety, reactivity, controllability, and liveness properties,
including collision freedom in air traffic, car, and railway control systems.
It has also been used to verify properties of electrical circuits.

1 Introduction

Hybrid systems are a common model for systems where both discrete and con-
tinuous behavior are important [2, 8, 10, 20]. Hybrid systems arise, for instance,
when a computer controls a physical process. Then the computer will cause dis-
crete transitions and digital switching at various discrete points in time, while
the physical process keeps evolving continuously.

As a common mathematical model for such complex physical systems, hybrid
systems are dynamical systems [28] where the system state evolves over time
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according to interacting laws of discrete and continuous dynamics [1, 9, 10, 16,
20, 43].

One canonical example is a train driving on a railway track. The train moves
continuously on the track while its behavior is controlled by several computer
control systems supporting the train conductor even up to full automation. One
of the most crucial safety-critical correctness properties of a train is that we
want to ensure that the train controller prevents all train collisions. A study of
the correctness of the train cannot be split into an isolated study of the software
and an isolated study of the mechanical parts. They work together and need
to be verified together. We cannot determine whether a software controller for
a part of a train is correct unless we understand enough of the physics of the
train that it controls. We cannot fully understand how a train moves physically
without understanding how its digital controllers, control programs, sensors, and
actuators affect its behavior. We need to look at both, i.e., the hybrid system
dynamics, to find out.

Hybrid systems are equally important in the automotive, aviation, railway, and
robotics industry for instance. They occur in factory automation problems and
biological, chemical, and physical process control. Most of these applications are
safety-critical, because badly controlled processes can have a huge impact on the
system environment, especially when the processes operate close to humans. Hy-
brid systems verification is a very challenging but important problem for which a
range of techniques have been developed [10, 12–14, 16, 17, 20–22, 24–26, 41, 42].

In this tutorial, we survey a number of state-of-the-art verification techniques
for hybrid systems, especially a logical approach for hybrid systems analysis [30–
32]. This approach forms the basis for the differential invariants as fixed points
procedure [37] that computes the invariants and differential invariants required
for verification in a fixed point loop. This logic-based verification approach has
been implemented in the verification tool KeYmaera1 for hybrid systems [39].
KeYmaera has been used successfully to verify several safety-critical properties,
including collision freedom, of the cooperation protocol of the European Train
Control System [40] and of aircraft roundabout maneuvers [31] and the flyable
aircraft roundabout maneuver [38]. More details about the hybrid systems ver-
ification techniques surveyed in this tutorial can be found in the book Logical
Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics2 [32].

The approach presented in this tutorial and the verification tool KeYmaera is
also very instructive for teaching hybrid systems verification and the use of logic
and formal methods for complex physical systems. The sophisticated graphical
user interface of KeYmaera makes it easier to work with the system and learn
how hybrid systems verification works. It also makes it easier to understand
proofs that KeYmaera found automatically. KeYmaera’s interaction capabilities,
which are based on those of KeY [4], also help solving very complex verification
questions and system design questions interactively that are still beyond the ca-
pabilities of today’s automation techniques. The author has taught two graduate

1 http://symbolaris.com/info/KeYmaera.html
2 http://symbolaris.com/lahs/

http://symbolaris.com/info/KeYmaera.html
http://symbolaris.com/lahs/
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courses on hybrid systems verification using the approach presented here. Course
material is available at the web page2 of the book [32].

Even though we do not focus on these extensions in this tutorial, the ap-
proach taken in this tutorial can be extended to logic and verification techniques
for distributed hybrid systems [33, 34], i.e., systems that are both distributed
systems and hybrid systems. These distributed hybrid systems include multi-
agent hybrid systems, reconfigurable hybrid systems, and hybrid systems with
an evolving and unbounded number of agents. The approach also extends to
logic and verification techniques for stochastic hybrid systems [35].

2 Hybrid Systems

There is a range of models for hybrid systems [2, 5–7, 10, 15, 20, 27, 30, 31, 43].
We focus on hybrid programs [30, 32], and the related model of hybrid automata
[2, 20].

Hybrid system models allow the user to specify the continuous dynamics by
differential equations. Continuous dynamics results, e.g., from the continuous
movement of a train along the track (train position z evolves with velocity v
along the differential equation z′ = v where z′ is the time-derivative of z) or
from the continuous variation of its velocity over time (v′ = a with accelera-
tion a). Other behavior can be modelled more naturally by discrete dynamics,
for example, the instantaneous change of control variables like the acceleration
(e.g., the changing of a by setting a :=−b with braking force b > 0) or change of
status information in discrete controllers. Both kinds of dynamics interact, e.g.,
when measurements of the continuous state affect decisions of discrete controllers
(the train switches to braking mode when velocity v is too high). Likewise, they
interact when the resulting control choices take effect by changing the control
variables of the continuous dynamics (e.g., changing the acceleration control
variable a in z′′ = a). The combination of continuous dynamics with analog or
discrete control causes complex system behavior, which can neither be verified
by purely continuous reasoning (because of the discontinuities caused by dis-
crete transitions) nor by considering discrete change in isolation (because safety
depends on continuous states).

2.1 Undecidability of Numerical Image Computation

Verification of hybrid systems is a very challenging problem. The verification
problem is the problem to decide whether a given hybrid system satisfies a
given correctness property (e.g., safety, liveness, and so on). Unfortunately, this
problem is undecidable even for very simple hybrid systems [11, 20].

Even for absurdly limited models of hybrid systems, the verification problem
is neither semidecidable nor co-semidecidable numerically, even for a bounded
number of transitions and when tolerating arbitrarily large error bounds in the
decision [36]. The numerical image computation problem plays a role that is
almost as central as that of the halting problem for Turing machines. We refer
to the literature [36] for a formal statement and proof. The basic intuition behind
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the undecidability result for the numerical image computation problem is shown
in Fig. 1. Suppose an algorithm could decide safety of a system numerically by

x1 x2 x3

B

�

g

Fig. 1. Indistinguishable

evaluating the value of the system flow ϕ at points.
If the algorithm is a decision algorithm, it would
have to terminate in finite time, hence, after eval-
uating a finite number of points, say x1, x2, x3 in
Fig. 1. But from the information that the algorithm
has gathered at a finite number of points, it cannot
distinguish the good behavior ϕ (solid flow safely
outside B) from the bad behavior g (dashed flow
reaching bad region B). The same undecidability
result still holds even when restricting the flow ϕ to very special classes of func-
tions and when assuming that its derivatives could be evaluated and even when
tolerating arbitrarily large error bounds in the decision [36]. There is a series
of extra assumptions and bounds that make the problem (approximately) de-
cidable again by imposing extra constraints on the system; see [36]. Yet, by the
general undecidability result, these extra bounds (and several other bounds that
have been proposed in related work) cannot be computed numerically. Because
of this strong numerical undecidability result, it is surprisingly difficult but not
impossible to get hybrid systems verification techniques sound [17, 41].

Consequently, sound verification of hybrid systems needs some symbolic part.
In the remainder of this tutorial, we focus on a purely symbolic and logical
approach that is formally sound, i.e., the verification result is always correct.

2.2 Hybrid Programs

Hybrid programs are program models for hybrid systems and are formed using
the statements and operations in Table 1.

Discrete jump sets. Discrete transitions are represented as instantaneous as-
signments of values to state variables. They can express resets like a :=−b or
adjustments of control variables like a := A. To handle simultaneous changes
of multiple variables, discrete jumps can be combined to sets of jumps with
simultaneous effect. For instance, the discrete jump set a := a + 5, A := 2a2

expresses that a is increased by 5 and, simultaneously, variable A is set
to 2a2, which is evaluated before a receives its new value a + 5.

Table 1. Statements and effects of hybrid programs (HPs)

HP Notation Operation Effect

x1 := θ1, . . . , xn := θn discrete jump simultaneously assign θi to variables xi

x′
1 = θ1, x

′
2 = θ2, . . . continuous evo. differential equations for xi within

. . . , x′
n = θn &H evolution domain H (first-order formula)

?H state test test first-order formula H at current state
α; β seq. composition HP β starts after HP α finishes
α ∪ β nondet. choice choice between alternatives HP α or HP β
α∗ nondet. repetition repeats HP α n-times for any n ∈ N



32 A. Platzer

Differential equation systems. Continuous evolution in the system dynam-
ics is represented using differential equation systems as evolution constraints.
For example the (second-order) differential equation z′′ = −b describes de-
celeration with braking force b and z′ = v, v′ = −b& v ≥ 0 expresses that the
evolution only applies as long as the speed is v ≥ 0. This is an evolution along
the differential equation system z′ = v, v′ = −b that is restricted (written &)
to remain within the evolution domain region v ≥ 0, i.e., to stop braking be-
fore v < 0. Such an evolution can stop at any time within v ≥ 0, it could
even continue with transient grazing along the border v = 0, but it is never
allowed to enter v < 0. The second-order differential equation z′′ = −b itself
is equivalent to the first-order differential equation system z′ = v, v′ = −b ,
in which the velocity v is explicit.

Control structure. Discrete and continuous transitions—represented as jump
sets or differential equations, respectively—can be combined to form a hybrid
program with interacting hybrid dynamics using regular expression opera-
tors (∪, ∗, ;) of regular programs [19] as control structure. For example, the
hybrid program q := accel ∪ z′′ = −b describes a train controller that can
choose to either switch to acceleration mode (q := accel) or brake by the
differential equation z′′ = −b, by a nondeterministic choice (∪). The non-
deterministic choice q := accel ∪ z′′ = −b expresses that either q := accel or
z′′ = −b happens, nondeterministically. The system can choose one of the
two options. The sequential composition a :=−b ; z′′ = a, instead, expresses
that first, the acceleration a is updated by a :=−b, and then the system fol-
lows the differential equation z′′ = a with the updated acceleration (hence
brakes). In conjunction with other regular combinations, control constraints
can be expressed using tests like ?z ≥ SB as guards for the system state.
This test will succeed if, indeed, the current state of the system satisfies
z ≥ SB; otherwise the test will fail and execution cannot proceed. In that
respect, a test is like an assert statement in conventional programs and cuts
the system run if the test is not successful.

Other control structures can easily be defined from the basic operations in
Table 1. See Table 2 for a list of common additional statements that can be
defined [32] from those in Table 1. For instance,

if H then α else β ≡ (?H ; α) ∪ (?¬H ; β)

Example 1 (Natural hybrid program for simple train). As a much simplified ex-
ample of a train controller, consider the following hybrid program:(

((?z < SB; a := A) ∪ (a :=−b)); z′ = v, v′ = a & v ≥ 0
)∗ (1)

First, the discrete controller executes and then, after the sequential composi-
tion (;), the train follows the differential equation system z′ = v, v′ = a that is
restricted to (written &) the evolution domain v ≥ 0. The discrete controller
consists of a nondeterministic choice (∪) between two options. The left option
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Table 2. Additional statements and control structures definable as abbreviations

HP Notation Operation Effect

x := ∗ nondet. assign. assigns any real value to x
if H then α else β if-then-else executes HP α if H holds, otherwise HP β
if H then α if-then executes HP α if H holds, otherwise no effect
while H do α while loop repeats α if H holds, stops if ¬H holds at end
repeat α until H repeat until repeats α (at least once) until H holds at end
skip do nothing no effect and does not change the state space
abort aborts run blocks current run and allows no transition

performs a test (?z < SB) to check whether the current position is left of the
start braking point SB and then, after the left-most sequential composition (;),
assigns the positive acceleration A to a by a := A. The right option does not
perform a test, but just assigns the braking force −b to the acceleration a by
a :=−b. In particular, the first control option (acceleration) is only available
when the train has not yet passed the start braking point SB, while the sec-
ond control option (braking) is always available. The train would choose between
both options nondeterministically when both are possible. Otherwise, it can only
choose the options that successfully pass their respective tests (the right option
in (1) is always available because it has not tests). Finally, the repetition opera-
tor (∗) at the end of hybrid program (1) expresses that the controller-plant-loop
can repeat indefinitely. This pattern (ctrl; plant)∗ is a very common use case for
hybrid programs, but by far not the only useful form of a system model.

The effect of the discrete jump set x1 := θ1, . . . , xn := θn is to simultaneously
change the interpretations of the xi to the respective θi by a discrete jump in
the state space. The new values θi are evaluated before changing the value of
any variable xj . The effect of x′

1 = θ1, . . . , x
′
n = θn & H is an ongoing continuous

evolution respecting the differential equation system x′
1 = θ1, . . . , x

′
n = θn that

is restricted to remain within the evolution domain region H . The evolution
is allowed to stop at any point in H . It is, however, required to stop before it
leaves H . For unconstrained evolutions, we write x′ = θ in place of x′ = θ & true.

The test action or state check ?H is used to define conditions. Its semantics is
that of a no-op if the formula H is true in the current state; otherwise, like abort,
it allows no transitions. That is, if the test succeeds because formula H holds
in the current state, then the state does not change, and the system execution
continues normally. If the test fails because formula H does not hold in the
current state, then the system execution cannot even continue. Thus, the effect
of a test action is similar to an assert statement in Java.

The nondeterministic choice α ∪ β, sequential composition α; β, and nondeter-
ministic repetition α∗ of programs are as in regular expressions but generalised to
a semantics in hybrid systems. Choices α ∪ β are used to express behavioral alter-
natives between the transitions of α and β. That is, the hybrid program α ∪ β can
choose nondeterministically to follow the transitions of the hybrid program α,
or, instead, to follow the transitions of the hybrid program β. The sequential
composition α; β says that the hybrid program β starts executing after α has
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finished (β never starts if α does not terminate). In α; β, the transitions of α take
effect first, until α terminates (if it does), and then β continues. Repetition α∗

is used to express that the hybrid process α repeats any number of times, in-
cluding zero times. When following α∗, the transitions of hybrid program α can
be repeated over and over again, any nondeterministic number of times (≥0).
Hybrid programs form a regular-expression-style Kleene algebra with tests [23].

The formal transition semantics of hybrid programs is defined in [30, 32].

2.3 Hybrid Automata

Hybrid automata are an automaton representation of hybrid systems [2, 20]. The
basic idea is to have one differential equation per mode of continuous evolution
of the system with an automaton structure on top that defines how and under
which condition the system switches between the various modes.

A hybrid automaton is a finite directed graph with a set of nodes V and a set
of edges E, where

– x1, . . . , xn are the continuous state variables and n is the (fixed) dimension
of the continuous state space.

– Each node v ∈ V is labeled with a differential equation x′
1 = θ1, .., x

′
n = θn

and an evolution domain constraint H , which is a quantifier-free formula of
real arithmetic. The differential equation specifies how the variables x1, . . . , xn

evolve while the system is in node v and the evolution domain constraint H
has to be true all the time while in mode v.

– Each edge e ∈ E is labeled with a guard H , which is a quantifier-free formula
of real arithmetic, and a discrete jump set x1 := θ1, . . . , xn := θn. The guard
H determines when edge e can be taken. The discrete jump set (called reset)
x1 := θ1, . . . , xn := θn determines how the variables are reassigned when the
system follows edge e.

Each of the transitions of a hybrid automaton is either a discrete or a continuous
transition. A continuous transition within one node is a continuous evolution
along the differential equation of that node without leaving the evolution domain
constraint. A discrete transition along an edge is possible if the guard H is
satisfied in the current state and then the state will be reset according to the
discrete jump set x1 := θ1, . . . , xn := θn when following the edge. The hybrid
automaton itself repeats discrete and continuous transitions indefinitely. See,
e.g., [20, 32], for a formal definition of the transitions of a hybrid automaton.

We examine the relationship between hybrid programs and hybrid automata
in the following example where we consider hybrid automaton and hybrid pro-
gram side by side.

Example 2 (Hybrid automata versus hybrid programs). With the operations in
Table 1, hybrid systems can be represented naturally as hybrid programs. For ex-
ample, the right of Fig. 2 depicts a hybrid program of an (overly) simplified train
control. The hybrid automaton on the left of Fig. 2 shows a corresponding hybrid
automaton. Line 1 represents that, in the beginning, the current node q of the
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accel
z′ = v
v′ = a

brake
z′ = v
v′ = a
v ≥ 0

z ≥ SB

a :=−b

z < SB

a :=A

q := accel; /* initial mode is node accel */(
(?q = accel; z′ = v, v′ = a)

∪ (?q = accel ∧ z ≥ SB; a :=−b; q := brake; ?v ≥ 0)
∪ (?q = brake; z′ = v, v′ = a& v ≥ 0)

∪ (?q = brake ∧ z < SB; a :=A; q := accel)
)∗

Fig. 2. Hybrid automaton and hybrid program for a much simplified train control

system is the initial node accel. We represent each discrete and continuous transi-
tion of the automaton as a sequence of statements with a nondeterministic choice
(∪) between these transitions. Line 4 represents a continuous transition of the
automaton. It tests if the current node q is brake, and then (i.e., if the test was
successful) follows the differential equation system z′ = v, v′ = a restricted to the
evolution domain v ≥ 0. Line 3 characterises a discrete transition of the automa-
ton. It tests the guard z ≥ SB when in node accel, and, if successful, resets a :=−b
and then switches q to node brake. By the semantics of hybrid automata [1, 20],
an automaton in node accel is only allowed to make a transition to node brake if
the evolution domain restriction of brake is true when entering the node, which is
expressed by the additional test ?v ≥ 0 at the end of line 3. Observe that this test
of the evolution domain region generally needs to be checked as the last operation
after the guard and reset, because a reset like v := v − 1 could affect the outcome
of the evolution domain region test. In order to obtain a fully compositional model,
hybrid programs make all these implicit side conditions explicit. Line 2 represents
the continuous transition when staying in node accel and following the differen-
tial equation system z′ = v, v′ = a. Line 5 represents the discrete transition from
node brake of the automaton to node accel.

Lines 2–5 cannot be executed unless their tests succeed. In particular, at
any state, the nondeterministic choice (∪) among lines 2–5 reduces de facto
to a nondeterministic choice between either lines 2–3 or between lines 4–5. At
any state, q can have value either accel or brake (assuming these are different
constants), not both. Consequently, when q = brake, a nondeterministic choice
of lines 2–3 would immediately fail the tests in the beginning and not execute any
further. The only remaining choices that have a chance to succeed are lines 4–
5 then. In fact, only the single successful choice of line 4 would remain if the
second conjunct z < SB of the test in line 5 does not hold for the current state.
Note that, still, all four choices in lines 2–5 are available, but at least two of
these nondeterministic choices will always be unsuccessful. Finally, the repetition
operator (∗) at the end of Fig. 2 expresses that the transitions of a hybrid
automaton, as represented by lines 2–5, can repeat indefinitely, possibly taking
different nondeterministic choices between lines 2–5 at every repetition.

The hybrid program on the right of Fig. 2 directly corresponds to the hybrid
automaton on the left of Fig. 2. This translation is simple and systematic. The
same translation principle works for all hybrid automata and can represent them
faithfully as hybrid programs [32], just like finite automata can be implemented
in a conventional while-programming language. This direct translation, however,
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blows up the representation. A much more natural hybrid program can usually
be found when directly representing the hybrid system as a hybrid program
right away. More natural representations also have computational advantages
for verification. This is the preferred way for designing systems.

Example 3 (Natural hybrid program corresponding to Fig. 2). The natural hy-
brid program corresponding to the system in Fig. 2 is the following hybrid
program: (

(if(z ≥ SB) a :=−b elsea := A); z′ = v, v′ = a& v ≥ 0
)∗ (2)

This hybrid program is almost identical to that in (1), except that it has an
extra test specifying that the braking option can only be chosen if the position z
is after the start braking point SB. Contrast the natural hybrid program in (2)
with the hybrid program on the right of Fig. 2 that has been constructed from
a hybrid automaton. The natural hybrid program has the same behavior as the
hybrid automaton and its corresponding hybrid program, but the natural hybrid
program in (2) is significantly easier to understand and also simplifies verifica-
tion. Finally, the natural hybrid program in (2) is the same as the following
hybrid program when resolving abbreviations according to Table 2.(

((?z ≥ SB; a :=−b) ∪ (?z < SB; a := A)); z′ = v, v′ = a & v ≥ 0
)∗

This representational flexibility gives hybrid programs an edge over hybrid
automata. The same system can be represented in many ways and a represen-
tation that is most natural to a problem often makes the verification easier. It
should be noted that there is more than one hybrid automaton describing the
same hybrid system, too. Nevertheless, the representation of hybrid systems as
hybrid programs is more flexible, because discrete, continuous, and switching
dynamics are not restricted to a specific pattern, but can be combined freely
using regular expression style operators.

3 Logic for Hybrid Systems

Hybrid programs are a flexible behavioral model for hybrid systems. As a spec-
ification and verification language for hybrid systems, we have introduced the
differential dynamic logic dL [29, 30, 32]. In dL, operational models of hybrid sys-
tems are internalized as first-class citizens, so that correctness statements about
the transition behavior of hybrid systems can be expressed as formulas. That
is, correctness statements about systems can be combined into bigger formu-
las with arbitrary propositional operators or quantifiers, and even into nestings
of formulas. As a basis, dL includes (nonlinear) real arithmetic for describing
concepts like safe regions of the state space. Further, dL supports real-valued
quantifiers for quantifying over the possible values of system parameters or du-
rations of continuous evolutions. For talking about the transition behavior of
hybrid systems, dL provides modal operators such as [α] or 〈α〉 that refer to the
states reachable by following the transitions of hybrid program α. The logical
operators of dL are summarized in Table 3.
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Table 3. Operators of differential dynamic logic for hybrid systems (dL)

Notation Operator Meaning

θ1 = θ2 equality value of θ1 is equal to that of θ2

θ1 ≥ θ2 comparison value of θ1 is greater or equal that of θ2

θ1 > θ2 comparison value of θ1 is greater than that of θ2

θ1 ≤ θ2 comparison value of θ1 is less or equal that of θ2

θ1 < θ2 comparison value of θ1 is less than that of θ2

¬φ negation/not true if φ is false
φ ∧ ψ conjunction/and true if both φ and ψ are true
φ ∨ ψ disjunction/or true if φ is true or if ψ is true
φ→ ψ implication true if φ is false or ψ is true
φ↔ ψ equivalence true if φ and ψ are both true or both false
∀x φ for all quantifier true if φ is true for all values of variable x
∃x φ exists quantifier true if φ is true for some values of variable x
[α]φ [·] modality true if φ true after all runs of HP α
〈α〉φ 〈·〉 modality true if φ true after at least one run of HP α

Within a single specification and verification language, dL combines opera-
tional system models with means to talk about the states that are reachable
by system transitions. The logic dL provides parametrized modal operators [α]
and 〈α〉 that refer to the states reachable by hybrid program α and can be placed
in front of any formula. The formula [α]φ expresses that all states reachable by
hybrid program α satisfy formula φ. Likewise, 〈α〉φ expresses that there is at
least one state reachable by α for which φ holds. These modalities can be used
to express necessary or possible properties of the transition behavior of α in
a natural way. They can be nested or combined propositionally. The dL logic
supports quantifiers like ∃p [α]〈β〉φ which says that there is a choice of parame-
ter p (expressed by ∃p) such that for all possible behaviors of hybrid program α
(expressed by [α]) there is a reaction of hybrid program β (i.e., 〈β〉) that en-
sures φ. Likewise, ∃p ([α]φ ∧ [β]ψ) says that there is a choice of parameter p that
makes both [α]φ and [β]ψ true, simultaneously, i.e., that makes the conjunction
[α]φ ∧ [β]ψ true, saying that formula φ holds for all states reachable by α exe-
cutions and, independently, ψ holds after all β executions. This gives a flexible
logic for specifying and verifying even sophisticated properties of hybrid systems,
including the ability to refer to multiple hybrid systems at once.

The semantics of differential dynamic logic and more details about it can be
found in [30, 32].

Example 4 (Safety in train control). Let train denote the hybrid program for the
simple train control dynamics in (2). Consider the following dL formula

v ≥ 0 ∧ z < m → [train]z < m (3)

It expresses that, when the system starts in an initial state where v ≥ 0 ∧ z < m
is true, i.e., with nonnegative velocity and with a train position z within the
movement authority limits m, then, when following the dynamics of the hybrid
program train, then the system will always be a in a state where z < m is true.
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It turns out that formula (3) is a bit naive and needs additional assumptions
on the parameters to be valid. For instance, the train will not remain safe, even
if it starts safely within z < m if its initial velocity is so high that it cannot
brake in time before leaving z < m. Similarly, the start braking point parameter
SB in (2) needs to be chosen carefully to ensure that (3) is valid. But under
corresponding additional constraints, the following dL formula can be proven to
be valid, i.e., true under all interpretations for all the variables and parameters:

v2 < 2b(m− z) ∧ b > 0 ∧A ≥ 0 →[(
SB := m− v2

2b
− (

A

b
+ 1)(

A

2
ε2 + εv); if(z ≥ SB) a :=−b elsea := A;

t := 0; z′ = v, v′ = a, t′ = 1& v ≥ 0 ∧ t ≤ ε
)∗] (z < m) (4)

Variable t is a clock that evolves by t′ = 1. The bound t ≤ ε gives an upper
bound on the time of the continuous evolution until the discrete controllers have
a chance to react to situation changes again. See [32, 40] for details.

4 Compositional Deductive Verification

The verification problem for hybrid systems is a very challenging problem. It is
not even semidecidable numerically [36]. In the fully symbolic domain of differ-
ential dynamic logic, however, we can do better. There is a sound compositional
proof system that works fully symbolically [30, 32]. It can be used to prove inter-
esting properties of hybrid programs including safety, reactivity, controllability,
and liveness. The fact that this proof system is compositional is also important
for scalability purposes. Because it proves properties of complex hybrid systems
by reducing them to properties about simpler systems, this compositional veri-
fication approach can scale to complex systems.

Furthermore, the proof system is a complete axiomatization of hybrid systems
relative to differential equations [30]. That is, every true statement about a
hybrid system can be proven from elementary properties of differential equations.

Theorem 1 (Relative completeness [30]). Hybrid systems can be axioma-
tized completely relative to differential equations.

The proof of this theorem is a tricky 15page proof, but the theorem has im-
portant consequences. It proves that all true properties of hybrid systems can
be decomposed successfully into properties of their parts. This theorem also ex-
plains the practical verification successes with this approach in air traffic [38]
and railway control [40] and shows that other systems can be verified with the
approach. The reason is that the decomposition of the entire verification prob-
lem into elementary properties of the dynamical aspects makes the verification
problem tractable.

Theorem 1 has another important consequence. It gives a formal reason
why the handling of differential equations is at the heart of hybrid systems
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verification. Moreover, the proof calculus in [30, 32] completely lifts every verifi-
cation technique for differential equations to a verification technique for hybrid
systems. In general, it may not always be clear how verification techniques for
continuous systems generalize to hybrid systems. But Theorem 1 gives a formal
proof showing that and how to generalize any verification technique for differ-
ential equations to full hybrid systems completely.

A prime example of such advanced and powerful verification techniques are
differential invariants for differential equations [31]. Differential invariants have
been instrumental in enabling the verification of complex hybrid systems, includ-
ing air traffic control [38], train control with disturbances in the dynamics [40],

F
¬F

Fig. 3. Differen-
tial invariant F

and electrical circuits [32]. Differential invariants turn the
following intuition into a formally sound proof procedure.
If the vector field of the differential equation always points
into a direction where the differential invariant F , which is a
logical formula, is becoming “more true” (see Fig. 3), then
the system will always stay save if it initially starts save. This
principle can be understood in a simple but formally sound
way using the logic dL [31, 32]. Differential invariants have
been introduced in [31] and later refined to a procedure that
computes differential invariants in a fixed-point loop [37].

5 Verification Tool KeYmaera

The approach surveyed in this tutorial is implemented in KeYmaera3, which is
a hybrid verification tool for hybrid systems. KeYmaera has a very powerful
graphical user interface for conducting proofs and for looking at the proofs that
KeYmaera found automatically; see Fig. 4.

This user interface is based on that of the prover KeY [4], from which
KeYmaera also inherits its name4. KeYmaera has powerful automatic proof pro-
cedures that have been used to prove a number of interesting collision avoidance
properties in systems including air traffic control and railway control fully auto-
matically [37]. These automation procedures and fixedpoint loops for generating
invariants and differential invariants are described in detail in [32, 37].

Nevertheless, the possibility of interacting with KeYmaera can be extremely
powerful for verifying complex systems that cannot be handled automatically
by any verification tool yet. A good practice for complex physical systems is to
combine automatic proof search in KeYmaera with selective user guidance af-
ter inspecting the intermediate stage of a partial proof that KeYmaera found
in its graphical user interface. KeYmaera also supports annotations such as
@invariant(F) and @candidate(F,G) to annotate problems with possible proof
hints about invariant and/or differential invariant formulas F,G that could help
KeYmaera in finding computationally difficult proofs.

3 http://symbolaris.com/info/KeYmaera.html
4 KeYmaera is pronounced similar to the hybrid Chimaera from Greek mythology.

http://symbolaris.com/info/KeYmaera.html
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Fig. 4. KeYmaera verification tool for hybrid systems

\problem {
\ [ R ep , b ,A, SB, a , v , z , t , m; \ ] (

vˆ2 < 2∗b∗(m−z ) & b > 0 & A>=0
−>
\ [ (
SB := m − ( v ˆ2)/(2∗b) − ( (A/b) + 1) ∗ ( (A/2)∗ epˆ2 + ep∗v ) ;
i f ( z >= SB) then

a := −b
else

a := A
f i ;
t :=0; {z ’=v , v’=a , t ’=1 , ( v >= 0 & t <= ep )}
)∗@invar iant (2∗b∗(m−z)−vˆ2>0) // loop @annotation op t i ona l
\ ] ( z < m)

)
}

Fig. 5. KeYmaera problem description for simple train control

The KeYmaera notation for the dL formula (4) is shown in Fig. 5. The second
line declares the variables ep,b,A, SB, a, v, z, t , m of type real. The annota-
tion @invariant(2∗b∗(m−z)−vˆ2>0) gives a proof hint that KeYmaera should
use 2b(m− z)− v2 > 0 as a loop invariant. This proof hint is unnecessary, be-
cause KeYmaera will automatically discover an invariant that proves the formula
in Fig. 5 anyhow.
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Using Coverage to Deploy Formal Verification in

a Simulation World
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Abstract. Formal verification technology has today advanced to the
stage that it can complement or replace simulation effort for selected
hardware designs. Yet the completion of a formal verification effort is
rarely a requirement for hardware tapeout. Simulation remains the pri-
mary verification methodology, and means of deciding when verification
is complete. In this paper we discuss how formal verification can be de-
ployed using simulation-based coverage in a simulation-based verification
schedule.

1 Introduction

Application-Specific Integrated Circuits (ASICs) enable faster, better, lower-
power products, both for consumer as well as enterprise markets. Competition is
fierce. Product lifetimes are shrinking. Meeting project schedule and delivering
first-pass silicon, is more important than ever before. Design verification con-
sumes the largest slice of overall design effort in terms of human resources, as
much as 60-70 percent [1]. Simulation remains the primary method of pre-silicon
verification.

Since its introduction about 20 years ago, formal verification has become in-
creasingly more relevant to a diverse array of applications, widening from custom
processor designs to general-purpose ASICs. As with any other new technology,
the true test of adoption happens with integration, in this case when formal
verification becomes a signoff for chip tapeouts. We are not quite there yet, but
that level of adoption is beginning to happen. For formal to become a signoff
requirement for tapeout, we should be able to (a) plan for formal verification [2];
and (b) quantitatively measure the results of formal verification, and integrate
those with simulation-based measurements. While multiple formal verification
methodologies are in practice in the ASIC industry today (e.g., model check-
ing, theorem proving, C-vs-RTL sequential checking), model checking accounts
for practically most of the usage, with greater numbers of commercial tools,
verification users, as well as licenses in use. Furthermore, major EDA vendors
(Cadence, Mentor and Synopsys), as well as a few startups (Jasper, OneSpin
and Real Intent) offer competitive solutions. So in this paper, we will focus on
the usage of model checking as a formal verification methodology.

The question of when simulation is complete, is often answered using cover-
age metrics [3,4]. The adoption of formal verification in an ASIC design schedule
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requires formal verification coverage results, using the same metrics as simula-
tion. Several creditable efforts have defined notions of coverage for formal [5,6].
Simulation-based metrics have also been adopted by formal [7]. The key dif-
ference in the methodology described in this paper, is that it is based on the
practical impossibility of fully and formally verifying all blocks, within typical
schedule and resource constraints. Yet, it is imperative that formal verification
efforts yield metrics that are integrated with simulation metrics. We will describe
a coverage-based methodology that achieves this in practice.

2 ASIC Verification Process

Verification is an essential part of the ASIC design cycle. Undetected bugs in any
design cause loss of revenue due to delay in time-to-market, and increased non-
recurring engineering cost due to additional re-spins. Well-crafted planning is key
for faster verification closure. The selection of the correct verification methods
and coverage metrics helps in achieving verification closure faster, and better.
The design specification is an input to the RTL implementation (in an HDL), as
well as a verification plan (Fig. 1). The verification plan includes choices for the
right verification approaches (e.g., formal and simulation), and is based on the
scope, required schedule and available resources for each approach. Verification
engineers implement their verification setup based on this plan. The verification
setup is executed and data is collected for simulation and formal verification
runs. The data helps quantify whether planned goals are met or not.

The ASIC management team uses this quantitative data, often in the form of
a dynamic verification dashboard (Fig. 2), to track the progress of verification,

Fig. 1. ASIC verification flow
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Fig. 2. A verification dashboard

and take timely corrective action. Coverage metrics form an integral part of this
progress management.

3 Coverage Metrics in Simulation

A simulation testbench setup consists of the following components [8]:

– Bus Functional Models (BFMs), that contain methods used to drive inputs
– Checkers, that monitor inputs, outputs and internals of a design, and flag

errors (these checkers could be in-line assertions in the RTL code, external
monitors, scoreboard, or even C reference models)

– Tests, including biases, that control the inputs driven by the BFMs

Coverage is the primary tool used to determine when simulation is complete.
The most common coverage metric is code coverage, and line coverage is the
most widely used code coverage metric. Line coverage (similar to statement
coverage for software testing [9]) computes what percentage of RTL statements
were exercised by a given set of tests. For example, consider:

1: always @(posedge clk) begin
2: if ((a && b) || c)
3: e <= d1;
4: else
5: e <= d2;
6: end

This example results in two line coverage targets, corresponding to lines 3 and
5. If a test causes c to be 1, the line 3 will be marked as covered. If no test in a
test suite covers line 5, line coverage for the suite will be reported at 50%. Other
variants of code coverage, like expression, branch, toggle, and FSM coverage, are
also in use, but are less popular.
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Unlike software testing, 100% judged line coverage (given, say 99% automated
coverage) is frequently a requirement for an ASIC tapeout – each line that is
not automatically reported as covered in simulation, must be manually judged
to either redundant or legacy code, or symmetric to another tested line. Tape-
out would be delayed until more tests are written to cover the remaining lines.
This is typically a higher bar compared to what typical software product re-
leases are exposed to. In spite of the 100% line coverage requirement, hardware
designs are taped out and shipped with bugs, some known and some unknown.
Often, meeting the schedule is more important than implementing all the prod-
uct features that were originally planned. And beating the competition can be
even more important. One known limitation of line coverage is that it ignores
the observability, or measures the quality of the checkers; we will revisit this in
Section 5.

Besides code coverage, functional coverage is also beginning to gain acceptance
in the ASIC world [8]. Due to space limitations, we limit this discussion to code
coverage.

4 Measuring Coverage with Formal Verification

A formal verification (model checking) environment consists of the following:

– a set of constraints
– a set of checkers (or assertions)
– an optional set of manual abstractions, used to reduce the complexity of

formal verification (examples of abstraction methods are data independence
abstraction [10] or counter abstraction [11])

The same coverage metrics used in simulation can be applied to answer the
question of whether the planned formal verification tasks are complete, or how
much the formal verification tasks complement the simulation effort.

Before addressing this topic, we must counter a prevalent myth in formal
literature: whether or not bugs are missed in a model checking effort depends
solely on how complete the set of checkers is. In practice, this does not hold
true – there are other important sources of missed bugs. The most useful model
checking efforts end up using bounded model checking (BMC). Furthermore,
for reasons of schedule or complexity, the use of (over-)constraints is also very
common [2]. So bugs may also be missed because the BMC runs did not go
far enough; or, because a constraint was an intentional or unintentional over-
constraint. BMC is so popular in practice partly because formal verification
technology is today able to solve end-to-end verification for complex blocks,
especially with the use of manual abstractions.

Given this reality, the simulation-based line coverage metric can be used to
mean exactly the same in formal – provided that the constraints used and the
bounds reached in BMC (say, n cycles), report what percentage of line targets are
reachable in n cycles. For the example in Section 3, if ((a && b) || c), in line
2, is reachable in n cycles, this line would be reported as covered, and otherwise,
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not. Thus, line coverage numbers would mean the same in simulation – whether
a certain coverage target is exercised or not. And for formal, this would measure
the quality of constraints, as well as the proof bounds reached, perhaps with
abstractions. Commercial formal tools are beginning to compute this notion of
coverage.

Since we are using the same coverage metrics, we can even merge coverage
results. It is often the case that one block is verified end-to-end with formal, and
a larger block containing this block is verified with simulation. Even if the line
coverage with formal is not 100% for the block, as long as the unified simula-
tion and formal line coverage is 100%, verification is considered complete from
the perspective of line coverage goals. This of course relies on an important
assumption – that the set of formal checkers is as complete as the set of sim-
ulation checkers. In the next section, we will visit the issue of quantifying the
completeness of checkers, both for simulation and formal.

The methodology for integrating formal code coverage results with simulation,
can be easily extended to other types of code coverage.

5 Mutation Coverage

(Strong) mutation testing applies a set of mutation operators to a design, one
at a time, and determines what fraction of mutated designs (called mutants) are
exposed by the verification process [12]. Mutation testing can result in a code
coverage metric (e.g., line coverage), by defining a different mutant for every line
of the design, resulting from changing that line. The assignment in every line
can, for example, be replaced by an X-assignment, followed by an application of
the standard X-propagation-based simulation methodology [13]. For the example
in Section 3, the mutant for line 3 may look like this:

1: always @(posedge clk) begin
2: if ((a && b) || c)
3: e <= 1’bX;
4: else
5: e <= d2;
6: end

Mutation line coverage is defined as the percent of lines whose mutants will cause
some verification test to fail. For example, if the mutant for line 3 is exposed by
verification, but the mutant for line 5 is not, we would claim 50% mutation line
coverage.

Clearly, by adding the notion of observability, mutation line coverage becomes
strictly more useful than (weak) line coverage described in previous sections. It
is accepted in the ASIC verification industry that the latter does not measure
the completeness of the checkers, and is a known verification hole. However,
mutation coverage is also more expensive to compute.

Along the same lines, model checking tools should be able to implement a
feature that measures mutant code coverage, to assess the completeness of the
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formal checkers. For the example code shown above, the line mutant will be
achieved by replacing the assignment to e in line 3, by an assignment to new
primary input. Of course this will not be an easy metric to compute, given the
lines of code in a design. We leave this an important problem that needs to be
solved in the future.

In simulation, mutant coverage is often approximated by giving the mutant
testing tool a fixed amount of computation resources, and reporting a lower
bound on the coverage. The same approach can be adopted for formal. Once we
have metrics for both formal and simulation, the results could be combined, and
incorporated into the verification dashboard (Fig. 2).

6 Conclusion

An optimal verification flow deploys both simulation and formal verification ap-
proaches. The choice of common coverage metrics for formal and simulation en-
ables ASIC management teams to integrate formal to complete a comprehensive,
planned verification effort.
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Abstract. Concurrent programs running on weak memory models exhibit re-
laxed behaviours, making them hard to understand and to debug. To use stan-
dard verification techniques on such programs, we can force them to behave as
if running on a Sequentially Consistent (SC) model. Thus, we examine how to
constrain the behaviour of such programs via synchronisation to ensure what we
call their stability, i.e. that they behave as if they were running on a stronger
model than the actual one, e.g. SC. First, we define sufficient conditions ensur-
ing stability to a program, and show that Power’s locks and read-modify-write
primitives meet them. Second, we minimise the amount of required synchronisa-
tion by characterising which parts of a given execution should be synchronised.
Third, we characterise the programs stable from a weak architecture to SC. Fi-
nally, we present our offence tool which places either lock-based or lock-free
synchronisation in a x86 or Power program to ensure its stability.

Concurrent programs running on modern multiprocessors exhibit subtle behaviours,
making them hard to understand and to debug: modern architectures (e.g. x86 or Power)
provide weak memory models, allowing optimisations such as instruction reordering,
store buffering or write atomicity relaxation [2]. Thus an execution of a program may
not be an interleaving of its instructions, as it would be on a Sequentially Consistent
(SC) architecture [18]. Hence standard analyses for concurrent programs might be un-
sound, as noted by M. Rinard in [25]. Memory model aware verification tools exist,
e.g. [24,11,15,30], but they often focus on one model at a time, or cannot handle the
write atomicity relaxation exhibited e.g. by Power: generality remains a challenge.

Fortunately, we can force a program running on a weak architecture to behave as if
it were running on a stronger one (e.g. SC) by using synchronisation primitives; this
underlies the data race free guarantee (DRF guarantee) of S. Adve and M. Hill [3].

Hence, as observed e.g. by S. Burckhart and M. Musuvathi in [12], “we can sensibly
verify the relaxed executions [. . . ] by solving the following two verification problems
separately: 1. Use standard verification methodology for concurrent programs to show
that the [SC] executions [. . . ] are correct. 2. Use specialized methodology for memory
model safety verification”. Here, memory model safety means checking that the execu-
tions of a program, although running on a weak architecture, are actually SC. To apply
standard verification techniques to concurrent programs running on weak memory mod-
els, we thus first need to ensure that our programs have a SC behaviour. S. Burckhart and
M. Musuvathi focus in [12] on the Total Store Order (TSO) [28] memory model. We
generalise their idea to a wider class of models (defined in [5], and recalled in Sec. 1):
we examine how to force a program running on a weak architecture A1 to behave as if
running on a stronger one A2, a property that we call stability from A1 to A2.
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To ensure stability to a program, we examine the problem of placing lock-based or
lock-free synchronisation primitives in a program. We call synchronisation mapping an
insertion of synchronisation primitives (either barriers (or fences), read-modify-writes,
or locks) in a program. We study whether a given synchronisation mapping ensures
stability to a program running on a weak memory model, e.g. that we placed enough
primitives in the code to ensure that it only has SC executions. D. Shasha and M. Snir
proposed in [27] the delay set analysis to insert barriers in a program, but their work
does not provide any semantics for weak memory models. Hence questions remain
w .r .t . the adequacy of their method in the context of such models.

On the contrary, locks allow the programmer to ignore the details of the memory
model, but are costly from a compilation point of view. As noted by S. Adve and H.-J.
Boehm in [4], “on hardware that relaxes write atomicity [e.g. Power], it is often un-
clear that more efficient mappings (than the use of locks) are possible; even the fully
fenced implementation may not be sequentially consistent.” Hence not only do we need
to examine the soundness of our synchronisation mappings (i .e. that they ensure sta-
bility to a program), but also their cost. Thus, we present several new contributions:

1. We define in Sec. 2 sufficient conditions on synchronisation to ensure stability to a
program. As an illustration, we provide in Sec. 3 semantics to the locks and read-
modify-writes (rmw) of the Power architecture [1] (i .e. to the lwarx and stwcx.
instructions) and show in Coq that they meet these conditions.

2. We propose along the way several synchronisation mappings, which we prove in
Coq to enforce a SC behaviour to an x86 or Power program.

3. We optimise these mappings by generalising in Sec. 4 the approach of [27] to weak
memory models and both lock-based and lock-free synchronisation, and charac-
terise in Coq the executions stable from a weak architecture to SC.

4. We describe in Sec. 5 our new offence tool, which places either lock-based or lock-
free synchronisation in a x86 or Power assembly program to ensure its stability,
following the aforementioned characterisation. We detail how we used offence to
test and measure the cost of our synchronisation mappings.

We formalised our results in Coq; we omit the proofs for brevity. A long version with
proofs, the Coq development, the documentation and sources of offence and the exper-
imental details can be found at http://offence.inria.fr.

1 Context

We give here the background on which we build our results. This section summarises
our previous generic model [5], which embraces SC [18], Sun TSO, PSO and RMO [28],
Alpha [7] and a fragment of Power [1]. Fig. 1 shows a table of our relations. The iriw
test [10] (independent reads of independent writes), in Fig. 2, is our running example.

Executions. An event e is a read or a write, composed of a direction R (read) or
W (write), a location loc(e), the instruction from which it comes ins(e), a value val(e),
a processor proc(e), and a unique identifier. We represent each instruction by the events
it issues. In Fig. 2, we associate the store (e) x ← 1 on P2 with the event (e)Wx1. We
write E for the set of events, and W (resp. R) for the subset of write (resp. read) events.
We write w (resp. r) for a write (resp. read), and m or e when the direction is irrelevant.

http://offence.inria.fr
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Name Notation Comment

program order m1
po→ m2 per-processor total order

preserved program order m1
ppo→ m2 pairs maintained in program order;

ppo→ ⊆ po→
read-from map w

rf→ r links a write to a read reading its value

write serialisation w1
ws→ w2 total order on writes to the same location

from-read map r
fr→ w r reads from a write preceding w in

ws→
barriers m1

ab→ m2 ordering induced by barriers

Fig. 1. Table of relations

iriw
P0 P1 P2 P3

(a)r1← x (c)r3← y (e)x← 1 (f)y← 2
(b)r2← y (d)r4← x

Observed? r1=1; r2=0; r3=2; r4=0;

(a) Rx1(b) Ry0

(f) Wy2

(c) Ry2 (d) Rx0

(e) Wx1

po:0

fr

po:1

fr

rf

rf

Fig. 2. The iriw test and a non-SC execution

We associate a program with an event structure E � (E,
po→), composed of its

events E and the program order
po→, a per-processor total order over E. In Fig. 2, the

read (a) from x on P0 is in program order with the read (b) from y on P0, i .e. (a)Rx1
po→ (b)Ry0. The

dp→ relation (included in
po→, the source being a read) models the depen-

dencies between instructions, e.g. when we compute the address of a load or store from
the value of a preceding load.

Given an event structure E, we represent an execution X � (ws→,
rf→) of the corre-

sponding program by two relations over E. The write serialisation
ws→ is a per-location

total order on writes modeling the memory coherence assumed by modern architectures
[13], linking a write w to any write w′ to the same location hitting the memory af-

ter w. The read-from map
rf→ links a write w to a read r from the same location that

reads from w. We derive the from-read map
fr→ from

ws→ and
rf→. A read r is in

fr→
with a write w when the write w′ from which r reads hit the memory before w did:

r
fr→ w � ∃w′, w′ rf→ r ∧ w′ ws→ w.
In Fig. 2, the specified outcome corresponds to the execution on the right, if each

location and register initially holds 0. If r1=1 in the end, the read (a) read its value

from the write (e) on P2, hence (e) rf→ (a). If r2=0, the read (b) read its value from

the initial state, thus before the write (f) on P3, hence (b) fr→ (f). Similarly, we have

(f) rf→ (c) from r3=2, and (d) fr→ (e) from r4=0.

Architectures. In a shared-memory multiprocessor, a write may be committed first into
a store buffer, then into a cache, and finally into memory. Hence, while a write transits
in store buffers and caches, a processor may read a past value.
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Code Comment Doc
mfence WR non-cumulative barrier [16, p. 291]

cmp;bne;isync this sequence forms a RW, RR non-cumulative barrier [1, p. 661]
lwsync RW, RR, WW non-, A- and B-cumulative barrier [1, p. 700]
sync RW, RR, WW, WR non-, A- and B-cumulative barrier [1, p. 700]

Fig. 3. Table of x86 and Power barriers

We model this by some subrelation of
rf→ being non-global: they can be ignored by

some processors. We write
rfi→ (resp.

rfe→) for the internal (resp. external) read-from map,
i .e. a read-from map between two events from the same (resp. distinct) processor(s).
Hence we model a read r by a processor P0 reading from a write w in P0’s store buffer

by w
rfi→ r being non-global. When r reads from a write w by a distinct processor P1

into a cache shared by P0 and P1 only (a case of write atomicity relaxation [2]), w
rfe→ r

is non-global, and w is said to be non-atomic. TSO authorises e.g. store buffering (i .e.
rfi→ is non-global) but considers stores to be atomic (i .e.

rfe→ is global). We write
grf→ for

the global subrelation of
rf→. We consider

ws→ and
fr→ global, since

ws→ is the order in
which the writes to a certain location hit the memory.

Moreover, some pairs of events in the program order may be reordered. Thus only
a subset of the pairs of events in

po→, gathered in a subrelation
ppo→ (preserved program

order), is guaranteed to occur in this order. TSO for example authorises write-read pairs
to be reordered, but nothing else:

ppo→ =
po→ \ (W× R).

Finally, architectures provide barrier instructions to order certain pairs of events;
Fig. 3 gives the x86 and Power ones that we use. We gather the orderings induced by

barriers in the global relation
ab→. Following [5], the relation

fence→ ⊆ po→ induced by a
barrier fence is non-cumulative when it orders certain pairs of events surrounding the

barrier: NC(fence→ ) � (fence→ ⊆ ab→). For example, the x86 mfence barrier is a non-

cumulative barrier ordering write-read pairs only: (w mfence→ r) ⇒ (w ab→ r). If there is a
dataflow dependency, e.g. via a comparison cmp, from a read to a conditional branch
(e.g. bne), Power isync forms a non-cumulative barrier when placed in

po→ after the

cmp;bne sequence, for read-read and read-write pairs : (r cmp;bne;isync→ m) ⇒ (r ab→ m).
The relation

fence→ is cumulative w .r .t . another relation
s→ ⊆ rf→ when it makes the

writes of
s→ atomic (e.g. by flushing the store buffers and caches). Formally, we define

an A-cumulative (resp. B-cumulative) barrier as AC(fence→ ,
s→) � ( s→; fence→ ) ⊆ ab→ (resp.

BC(fence→ ,
s→) � (fence→ ; s→) ⊆ ab→). For example, Power sync barrier is non- (resp. A-

and B-) cumulative for all pairs: we have (m1
sync→ m2) (resp. (m1

rf→ w
sync→ m2) and

(m1
sync→ w

rf→ m2)) implies (m1
ab→ m2). Power lwsync is non- (resp. A- and B-)

cumulative for all pairs except write-read ones; we have (m1
lwsync→ m2) (resp. (m1

rf→
r

lwsync→ m2) and (m1
lwsync→ w

rf→ m2)) implies (m1
ab→ m2) if (m1, m2) �∈ (W× R).

An architecture A � (ppo, grf, ab) specifies the function ppo (resp. grf, ab) re-

turning the relation
ppo→ (resp.

grf→,
ab→) when given an execution.
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Validity The uniproc(E, X) � acyclic(ws→ ∪ fr→ ∪ rf→ ∪ po-loc→ ) condition (where
po-loc→

is the program order restricted to events with the same location) forces a processor in
a multiprocessor context to respect the memory coherence [13]. The thin(E, X) �
acyclic( rf→ ∪ dp→) condition prevents executions where values seem to come out of thin
air [21]. We define the global happens-before relation A.ghb(E, X) of an execution
(E, X) on an architecture A as the union of the relations global on A:

A.ghb(E, X) � ws→ ∪ fr→ ∪ ppo→ ∪ grf→ ∪ ab→
An execution (E, X) is valid on an architecture A, written A.valid(E, X), when

the relation A.ghb(E, X) is acyclic (together with the two checks above):

A.valid(E, X) � uniproc(E, X) ∧ thin(E, X) ∧ acyclic(A.ghb(E, X))

Finally, we consider an architecture A1 to be weaker than an architecture A2, written
A1 ≤ A2, when A1 authorises at least all the executions valid on A2. TSO is weaker
than SC, hence all the SC executions of a program are valid on TSO. In the following,
we consider A2 to be without barriers, i .e.

ab2→= ∅.

2 Covering Relations

We examine now how to force the executions of a program running on a weak architec-
ture A1 to be valid on a stronger one A2, which we call stability from A1 to A2, i .e. we
examine when the following property holds for all (E, X):

stableA1,A2(E, X) � A1.valid(E, X) ⇒ A2.valid(E, X)

The execution of iriw in Fig. 2 is not stable from Power to SC, for it is valid on Power
yet not on SC. We can stabilise it using synchronisation idioms, e.g. barriers or locks.
Synchronisation idioms arbitrate conflicts between accesses, i .e. ensure that one out of
two conflicting accesses occurs before the other. We formalise this with an irreflexive
conflict relation

c→ over E, such that ∀xy, x
c→ y ⇒ ¬(y

po→ x) and a synchronisation
relation

s→ over E. An execution (E, X) is covered when
s→ arbitrates

c→:

coveredc,s(E, X) � ∀xy, x
c→ y ⇒ x

s→ y ∨ y
s→ x

We consider a relation
s→ to be covering when ordering by

s→ the conflicting accesses
of an execution (E, X) valid on A1 guarantees its validity on A2, i .e. the synchronisa-
tion

s→ arbitrates enough conflicts to enforce a strong behaviour:

covering( c→,
s→) � ∀EX, (A1.valid(E, X) ∧ coveredc,s(E, X))⇒A2.valid(E, X)

Lock-based synchronisation. For example, the DRF guarantee [3] ensures that if the
competing accesses (defined below) of an execution are ordered by locks, then this
execution is SC, i .e. locks are covering w .r .t . the competing accesses. Two events are
competing if they are from distinct processors, to the same location, and at least one of
them is a write (e.g. in Fig. 2, the read (a) from x on P0 and the write (e) to x on P2):

m1
cmp↔ m2 � proc(m1) �= proc(m2) ∧ loc(m1) = loc(m2) ∧ (m1 ∈ W ∨m2 ∈ W)
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We describe the ordering induced by locks by a relation
lock→ (instantiated in Sec. 3.1)

over E, such that acyclic(lock→ ∪ ws→ ∪ fr→ ∪ rf→), corresponding in Fig. 2 to placing
locks to a variable �1 on the accesses (a), (d) and (e) relative to x, and locks to a
different variable �2 on the accesses (b), (c) and (f) relative to y. Thus we have a cycle

in
lock→ ∪ po→: (a)

po→ (b) lock→ (f) lock→ (c)
po→ (d) lock→ (e) lock→ (a). If

lock→ ∪ po→ is acyclic,
then the execution of Fig. 2 is forbidden. Formally, we have:

Lem. 1. acyclic(lock→ ∪ po→) ⇒ covering(cmp↔ , (lock→ ∪ po→)
+
)

This lemma leads to a mapping which we call L (for locks), which simply places a lock
by the same lock variable on each side of a given conflict edge. By Lem. 1, it ensures
stability to a program for any pair (A1, A2).

Lock-free synchronisation. We give here an example of a covering lock-free synchroni-
sation relation. A program can distinguish between two architectures A1 ≤ A2 for one
of two reasons. First, if the program involves a pair (x, y) maintained in program order

on A2 (i .e. x
ppo2→ y) but not on A1 (i .e. ¬(x ppo1→ y)). In Fig. 2, we have (a)

po→ (b).
Hence on a strong architecture A2 such as SC where

ppo2→=
po→, we have (a) ppo2→ (b). On

a weak architecture A1 such as Power, where the read-read pairs in program order are
not maintained, we have ¬((a) ppo1→ (b)).

Second, if the program reads from a write atomic on A2 but not on A1. In Fig. 2, we

have (e) rfe→ (a). On a strong architecture A2 such as SC where the writes are atomic,

i .e.
grf→= rf→, we have (e)

grf→ (a). On a weak architecture A1 such as Power, which

relaxes write atomicity, we have ¬((e)
grf→ (a)). We call such reads fragile reads and

define them as (
r2\1→ � r2→ \ r1→ being the set difference):

fragile(r) � ∃w, w
grf2\1→ r

We consider such differences between architectures as conflicts, and formalise this
notion as follows. We consider that two events form a fragile pair (written

frag→) if they
are maintained in the program order on A2, and either they are not maintained in the
program order on A1, or the first event is a fragile read:

m1
frag→ m2 � m1

ppo2→ m2 ∧
(¬(m1

ppo1→ m2) ∨ fragile(m1)
)

An execution is covered if the relation
ab1→ arbitrates the fragile pairs. In Fig. 2, this

corresponds to placing a barrier between (c) and (d) on P1, i .e. (c) ab1→ (d), and another

barrier between (a) and (b) on P0, i .e. (a) ab1→ (b). Hence we have a cycle in
ab1→ ∪ rf→:

(d) rfe→ (a) ab1→ (b) rfe→ (c) ab1→ (d). If
ab1→ is A-cumulative w .r .t . grf2\1→ , we create a cycle

in
ghb1→ , which forbids the execution: (d) ghb1→ (b) ghb1→ (d). Formally, we have:

Lem. 2. AC(ab1→,
grf2\1→ ) ⇒ covering(frag→,

ab1→)

This lemma leads to a mapping which we call F (for fences), given in Fig. 4. This
mapping places a barrier between each fragile pair of a program. Following Lem. 2, it
enforces stability to a program for any pair (A1, A2). Recall that we give the semantics
of the barriers that we use in the mapping F in Sec. 1, § Architectures, on p. 4 and Fig. 3.

In x86, stores are atomic, and only the write-read pairs in program order are not
preserved, i .e. the fragile pairs are the pairs w

po→ r. We do not need cumulativity in
x86, i .e. we only need a non-cumulative write-read barrier: w

mfence→ r.
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Arch. Fragile pair Barriers (mapping F)

Power r
po→ r r

sync→ r (need A-cumulativity)

r
po→ w r

lwsync→ w (A-cumulativity OK)

w
po→ w w

lwsync→ w (no need for A-cumulativity)

w
po→ r w

sync→ r (need for write-read non-cumulativity)

x86 w
po→ r w

mfence→ r (need for write-read non-cumulativity)

Fig. 4. Mapping F: barriers

Name Code Comment Doc [1]

load reserve lwarx r1,0,r2 loads from the address in r2 into r1 and reserves the address in r2 p. 718

store conditional stwcx. r1,0,r2 checks if the address in r2 is reserved; if so, stores from r1 into
this address and writes 1 into register cr; if not, writes 0 into cr

p. 721

branch not equal bne L checks if register cr holds 0, if not branches to L p. 63

compare cmpw r4, r6 compares values in r4 and r6 p. 102

Fig. 5. Table of Power assembly instructions, excluding barriers

In Power, no pair is preserved in program order except the read-read and read-write
pairs with a dependency between the accesses [5]. But since stores are not atomic, even
the dependent read-read and read-write pairs are fragile. For a read-read pair r1

po→ r2,
since r1 can read from a non-atomic write w, we need a cumulative barrier between r1

and r2. But lwsync does not order write to read chains, i .e. lwsync between r1 and
r2 will not order w and r2. Therefore we need a sync: r1

sync→ r2. For a read-write pair
r

po→ w, we need a cumulative barrier as well, but lwsync is sufficient here, for it will
order the write from which r may read, and w. In the write-write and write-read cases,
there is no need for cumulativity. In the write-write case, a lwsync is enough, for it
orders write-write pairs; but in the write-read case, we need a sync.

The mapping F agrees with D. Lea’s JSR-133 Cookbook for Compiler Writers [19]
for write-write and write-read pairs. Our mapping is much more conservative than D.
Lea’s for read-read and read-write pairs: it is unclear whether D. Lea’s mapping (meant
to implement Java’s volatiles) intends to restore SC like ours, or rather a weaker memory
model. The mapping F on write-write and write-read pairs corresponds to the optimised
version of P. McKenney and R. Silvera’s Example Power Implementation for C/C++
Memory Model [22] for ”Store Seq Cst”. Their ”Load Seq Cst” is implemented by
sync;ld;cmp;bc; isync. The use of sync before a load access corresponds to
our mapping on read-read and read-write pairs. The sequence cmp;bc;isync after
the same load access ensures that the Load Seq Cst has, in addition to an SC semantics,
a load acquire semantics.

3 Synchronisation Idioms

To illustrate Sec. 2, we now study the semantics of Power’s locks and rmw [1]. As noted
by S. Adve and H.-J. Boehm in [4] “on hardware that relaxes write atomicity [such
as Power] even the fully fenced implementation may not be sequentially consistent.”
Thus it is unclear whether the synchronisation primitives provided by the architecture
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Initially r3 = �, r4 = 0 and r5 = 1

loop:
(a1) lwarx r1,0,r5

[...]
(a2) stwcx. r2,0,r5
(b) bne loop

loop:
(a1) lwarx r6,0,r3
(b) cmpw r4,r6
(c) bne loop

(a2) stwcx. r5,0,r3
(d) bne loop
(e) isync

[...]

[...]
(f) lwsync
(g) stw r4,0,r3

(a) rmw (b) Lock (c) Unlock

Fig. 6. Read-modify-write, lock and unlock in Power

actually restore SC: it could perfectly be the architect’s intent (e.g. lwsync is not
strong enough to restore SC, but is faster than sync, as we show in Sec. 5), or a bug in
the implementation [5]. Hence we need to define the semantics of the synchronisation
primitives given in the documentation, and study whether they allow us to restore SC,
i .e. that we can use them to build covering relations, as defined in Sec. 2.

We first define atomic pairs, which are the stepping stone to build locks, studied in
Sec. 3.1 and rmw, studied in Sec. 3.2. We show how to use these primitives to build
covering relations. Second, because cumulativity might be too costly in practice, or its
implementation challenging, we propose in Sec. 3.2 two lock-free mappings restoring
a strong architecture from Power without using cumulativity, as an alternative to the
mapping F (see Sec. 2) which uses cumulativity.

Atomicity. Fig. 6(a) gives a generic Power rmw (see Fig. 5 for the instructions we use).
The lwarx (a1) loads from its source address in register r5 and reserves it. Any subse-
quent store to the reserved address from another processor and any subsequent lwarx
from the same processor invalidates the reservation. The stwcx. (a2) checks if the
reservation is valid; if so, it is successful: it stores into the reserved address and the
code exits the loop. Otherwise, stwcx. does not store and the code loops. Thus these
instructions ensure atomicity to the code they surround (if this code does not contain
any lwarx nor stwcx.), as no other processor can write to the reserved location be-
tween the lwarx and the successful stwcx..

We distinguish the reads and writes issued by such instructions from the plain ones:
we write R

∗ (resp. W∗) for the subset of R (resp. W) issued by a lwarx (resp. a success-
ful stwcx.), and define two events r and w to form an atomic pair w .r .t . a location �
if (a) w was issued by a successful stwcx. to �, (b) r was issued by the last lwarx

from � before (in
po→) the stwcx. that issued w, and (c) no other processor wrote to �

between r and w:

atom(r, w, �) � r ∈ R
∗ ∧ w ∈ W

∗ ∧ loc(r) = loc(w) = � ∧ (a)
r = maxpo→({m | m ∈ (R∗ ∪W

∗) ∧m
po→ w}) ∧ (b)

¬(∃w′ ∈ W, proc(w′) �= proc(r) ∧ loc(w′) = � ∧ r
fr→ w′ ws→ w) (c)
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ghb1

ghb1

ghb1

po:0 po:1

po:1

po:1

rf

Unlock2(l)(g) Wl0

Unlock1(l)

Lock1(l) Lock2(l)

(a1) R*l0

(a2) W*l1m1

m2

Fig. 7. Opening lock and unlock

3.1 Locks

Atomic pairs are used e.g. in lock and unlock primitives [1, App. B]. The idiomatic
Power lock (resp. unlock) is shown in Fig. 6(b) (resp. Fig. 6(c)).

Critical sections. A lock reads the lock variable � to see if it is free; an unlock writes to
� to free it. The instructions between a lock and an unlock form a critical section. Thus,
a critical section consists of a lock Lock(�, r) and an unlock Unlock(�, r, w) (we define
these two predicates in the next paragraph) with the same variable �, and the events in
po→ between the lock’s read and the unlock’s write:

cs(E , �, r, w) � Lock(�, r) ∧ E = {e | r po→ e
po→ w} ∧Unlock(�, r, w)

We write loc(cs) for the location of a critical section cs. Two critical sections cs1 and
cs2 with the same location � are serialised if cs2 reads from cs1, as in Fig. 7: on the left
is cs1, composed of a lock Lock1(�), an event m1 and an unlock Unlock1(�), which
writes into � via the write (g). The second critical section cs2 is on the right: the read
(a1) of its lock Lock2(�) reads from (g). Thus, cs1 and cs2 are serialised if cs2 Lock’s
read (written R(cs2)) reads from cs1 Unlock’s write (written W(cs1)):

cs1
css�→ cs2 � loc(cs1) = loc(cs2) = � ∧W(cs1)

rf→ R(cs2)
Given a location �, two events m1 and m2 are in

lock�→ if they are in two serialised
critical sections (as in Fig. 7), or m1 is in

lock�→ with an event itself in
lock�→ with m2

(m ∈ cs ensures m is between cs import and export barriers in
po→):

m1
lock�→ m2 � (∃cs1 css�→ cs2, m1 ∈ cs1 ∧m2 ∈ cs2) ∨ (∃m, m1

lock�→ m
lock�→ m2)

Finally, two events m1 and m2 are in
lock→ if there exists � such that m1

lock�→ m2.

Lock and unlock In the Power lock of Fig. 6(b), the lines (a1) to (a2) form an atomic
pair, as in Fig. 6(a); this sequence loops until it acquires the lock. Here, acquiring the
lock means that the lwarx read the lock variable �, and that � was later written to by a
successful stwcx.. Thus, the read r of the lwarx takes a lock � if it forms an atomic
pair with the write w from the successful stwcx.:

taken(�, r) � ∃w, atom(r, w, �)

The acquisition is followed by a sequence bne;isync (lines (d) and (e)), forming
an import barrier [1, p. 721]. An import barrier prevents any event to float above a read
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issued by a lwarx: in Fig. 7, the event m2 in cs2 is in
ghb1→ with the read (a1) from its

Lock’s lwarx. Hence the read r of a lock’s lwarx satisfies the import predicate when
no access m after r can be speculated before r:

import(r) � ∀rm, (r ∈ R
∗ ∧ r

po→ m) ⇒ (r ab1→ m)

Fig. 6(c) shows Power’s unlock, starting (line (f)) with an export barrier [1, p. 722],
here a lwsync. The export barrier forces the accesses before the write w of the unlock
to be committed to memory before the next lock primitive takes the lock: in Fig. 7, the
event m1 in cs1 is in

ghb1→ with the read (a1) of cs2’s Lock. Thus we define an export
barrier as B-cumulative, but only w .r .t . reads issued by the lwarx of an atomic pair:

export(w) � ∀rm, (r ∈ R
∗ ∧ (m

po→ w
rf→ r)) ⇒ (m ab1→ r)

Then a store to the lock variable (line (g)), or more precisely the next write event
to � in program order after a lock acquisition, frees the lock:

free(�, r, w) � w ∈ W ∧ loc(w) = � ∧ r
po→ w ∧ taken(�, r)∧

¬(∃w′ ∈ W, loc(w′) = � ∧ r
po→ w′ po→ w)

A lock primitive thus consists of a taken operation (see Fig. 6(b), lines (a1) to (a2))
followed by an import barrier. An unlock consists of an export barrier (line (f)) fol-
lowed by a write freeing the lock (line (g)):

Lock(�, r) � taken(�, r) ∧ import(r)

Unlock(�, r, w) � free(�, r, w) ∧ export(w)

We show that this semantics ensures the acyclicity of
lock→ ∪ po→, i .e. following Lem. 1,

(lock→ ∪ po→)
+

is covering for the competing accesses. Hence locks on the competing
accesses ensures a SC behaviour to Power programs:

Lem. 3. ∀EX, A1.valid(E, X) ⇒ acyclic(lock→ ∪ po→)

Our import barrier allows events to be delayed so that they are performed inside the crit-
ical section. Our export barrier allows the events after the unlock to be speculated before
the lock is released. Such relaxed semantics already exist for high-level lock and un-
lock primitives [8,26]. In the documentation [1, p. 721], the import barrier is a sequence
bne;isync (i .e. a read-read, read-write non-cumulative barrier) or a lwsync, i .e.
cumulative [1, p.721]. Lem. 3 shows that the first one is enough, for our import bar-
rier does not need cumulativity. The export barrier is a sync (i .e. cumulative for all
pairs) or a lwsync [1, p. 722]. Lem. 3 shows that we only need a B-cumulative barrier
towards reads issued by a lwarx, i .e. a sync is unnecessarily costly. Moreover, al-
though a lwsync is not B-cumulative towards plain reads, its implementations appear
experimentally to treat the reads issued by the lwarx of an atomic pair specially. We
tested and confirmed this semantics of lwsync with our diy tool [5], by running our
automatically generated tests up to 1010 times each (see the logs online).

3.2 Read-Modify-Write Primitives

By Lem. 2, we can restore SC in the iriw test of Fig. 2 using A-cumulative barriers
between the fragile pairs (a) and (b) on P0, and (c) and (d) on P1. Yet, cumulativity
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(a) fno[x]=1(b) Ry0

(f) Wy2

(c) fno[y]=2 (d) Rx0

(e) Wx1

po:0

fr

po:1

fr

rf/ws

rf/ws

(a) fno[x]=1

(a1) R*x1

(a2) W*x1

(b) Ry0

(e) Wx1

(f ) Wy2

fr

po:0

rf

ws

fr

Fig. 8. (a) iriw after mapping P (b) Opening fno on P0

may be challenging to implement or too costly in practice [5]. We propose a mapping of
certain reads to rmw (as in Fig. 6(a)), and show that this restores a strong architecture
from a weaker one without using cumulativity.

In Fig. 8(a), we replaced the fragile reads (a) and (c) of iriw by rmw: we say these
fragile reads are protected (a notion defined below). In the example we use fetch and
no-op (fno) primitives [1, p.719] to implement atomic reads. Yet, our results hold for
any kind of rmw. We show that when the fragile reads are protected, we do not need
cumulative barriers, but just non-cumulative ones. If a read is protected by a rmw, then
the rmw compensates the need for cumulativity by enforcing enough order to the write
from which the protected read reads.

Protecting the fragile reads. We consider that two events r and w form a rmw w .r .t . a
location � if they form an atomic pair w .r .t . � (i .e. the code in Fig. 6(a) does not loop),
or there is a read r′ after r in the program order forming an atomic pair w .r .t . � with
w, such that r′ is the last read issued by the loop before the stwcx. succeeds (i .e. the
code in Fig. 6(a) loops). We do not consider the case where the loop never terminates:

rmw(r, w, �) � atom(r, w, �) ∨ (∃r′, r po→ r′ ∧ loc(r) = loc(r′) ∧ atom(r′, w, �))
In Fig. 8(b), we open up the fno box protecting the read (a) from x on P0. We

suppose that the fno is immediately successful, i .e. the code in Fig. 6(a) does not loop.
Hence we expand the fno event (a) on P0 to the r∗ (a1) (from the lwarx) in program
order with the w∗ (a2) (from the successful stwcx.).

We define a read to be protected when it is issued by the lwarx of a rmw immedi-
ately followed in program order by a non-cumulative barrier; an execution (E, X) is
protected when its fragile reads are:

protected(r) � ∃w, rmw(r, w, loc(r)) ∧ (∀m, w
po→ m ⇒ w

ab1→ m)
protected(E, X) � ∀r, fragile(r) ⇒ protected(r)

In Fig. 8(b), the write (e) from which (a1) reads hits the memory before (a2), i .e.

(e) ws→ (a2). Hence there are two paths from (e) to (b): (e) rf→ (a1)
po→ (b) and (e) ws→
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Arch. Fragile pair rmw (mapping A) rmw (mapping P)

Power r
po→ r fno

po→ fno fno sync→ r

r
po→ w fno

po→ sta fno lwsync→ w

w
po→ w sta

po→ sta w
lwsync→ w

w
po→ r sta

po→ fno w
sync→ r

x86 w
po→ r xchg

po→ r na

Fig. 9. Mappings A and P: rmw

(a2)
po→ (b). Thus we can trade the fragile pair (a1, b) for (a2, b) and compensate the

lack of write atomicity of (e) (i .e. (e) rfe→ (a) not global) with the write serialisation
between (e) and (a2) (thanks to the rmw) instead of cumulativity before. Formally, we
prove that a sequence w

grf2\1→ r
ppo2→ m with r protected is globally ordered on A1:

Lem. 4. ∀wrm, (protected(r) ∧w
grf2\1→ r

ppo2→ m) ⇒ w
ws→; ghb1→ m

Thus, if we protect the fragile reads, the only remaining fragile pairs are the ones in
ppo2\1→ . In Fig. 8(a), we have (e) ws→ (a2)

po→ (b) fr→ (f) and (f) ws→ (c2)
po→ (d) fr→ (e),

hence a cycle in
ws→ ∪ fr→ ∪ po→. Since

ws→ and
fr→ are global, to invalidate this cycle,

we need to order globally (e.g. by a barrier) the accesses (a2) and (b) on P0 and (c2)
and (d) on P1. Indeed, if an execution is protected, non-cumulative barriers placed
between the remaining fragile pairs in

ppo2\1→ ensure stability:

Lem. 5. A1.valid(E, X) ∧ protected(E, X) ∧ (ppo2\1→ ⊆ ab1→) ⇒ A2.valid(E, X)

This lemma leads to a mapping which we call P (for protected reads), given in Fig. 9.
This mapping places a fno on the first read of the fragile pairs, and a barrier between
this fno and the second access of the fragile pairs. If the first access of the fragile pair is
a write, it remains unchanged and we only place a barrier between the two accesses, fol-
lowing the mapping F. For the read-read (resp. read-write) case, since replacing a read
by a fno amounts to replacing the read by a sequence of events ending with a write, we
choose a barrier ordering write-read (resp. write-write) pairs, i .e. Power sync (resp.
lwsync). Following Lem. 5, it enforces stability to a program for any pair (A1, A2).

H.-J. Boehm and S. Adve propose in [10] a mapping of all stores into rmw (i .e.
xchg) on x86 (which has no fragile reads), to provide a SC semantics to C++ atomics.
We call this mapping A-x86 (for atomics), and give it in Fig. 9. For models with fragile
reads, e.g. Power, they question in [4] the existence of “more efficient mappings (than
the use of locks)”. The mapping P could be more efficient, since it removes the need
for cumulativity. Yet, mapping reads to rmw introduces additional stores (issued by
stwcx.), which may impair the performance. Moreover, we have to use cumulative
barriers in the mapping P, for Power does not provide non-cumulative barriers. Yet, we
show in Sec. 5 that the mapping P is more efficient than locks on Power machines.

We propose another mapping, given in Fig. 9, which we call A-Power. All reads
and writes are mapped into rmw (using fno for reads and fetch-and-store (sta) [1, p.
719] for writes). The documentation stipulates indeed that “a processor has at most one
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reservation at any time” [1, p. 663]. Hence two rmw on the same processor in program
order may be preserved in this order, because the writes issued by their stwcx., though
to different locations, would be ordered by a dependency over the reservation. Although
the documentation does not state if this dependency exists, we show in Sec. 5 that the
mapping A-Power restores SC experimentally and is more efficient than locks as well.

4 Stability from a Weak Architecture to SC

We now want to minimise the synchronisation that we use, i .e. we would like to syn-
chronise only the conflicting accesses (either competing accesses or fragile pairs) that
are actually necessary. For example, if in the iriw test of Fig. 2, we add a write (g) to a
fresh variable z after (in program order) the write (e) to x on P2, (e) and (g) may not
be preserved in program order, i .e. (e) and (g) may form a fragile pair. Yet, there is no
need to maintain them, since they do not contribute to the cycle we want to forbid.

D. Shasha and M. Snir provide in [27] an analysis to place barriers in a program,
in order to enforce a SC behaviour. They examine in [27, Thm. 3.9 p. 297] the critical
cycles of an execution, and show that placing a barrier along each program order arrow
of such a cycle (each delay arrow) is enough to restore SC. Yet, this work does not
provide any semantics of weak memory models. We show in Coq that their technique
applies to the models embraced by our framework, e.g. models with store buffering,
like TSO or relaxing store atomicity, like Power.

Given an architecture A and event structure E, a cycle
σ→ ⊆ (cmp↔ ∪ po→)

+
(where

cmp↔
is the competing relation of Sec. 2) is critical on A, written criticalA(E,

σ→), when it is
not a cycle in (cmp↔ ∪ ppoA→ )+ and satisfies the two following properties. (i) Per processor,
there are at most two memory accesses (x, y) on this processor and loc(x) �= loc(y).
(ii) For a given memory location x, there are at most three accesses relative to x, and
these accesses are from distinct processors (w

cmp↔ w, w
cmp↔ r, r

cmp↔ w or r
cmp↔ w

cmp↔ r).
In Fig. 2, the execution of iriw has a critical cycle on Power.

In our framework, we show that the execution witnesses X of an event structure E
are stable from A to SC if and only if E contains no critical cycle on A, i .e. that an
execution valid on A is SC if and only if E contains no critical cycle on A:

Thm. 1. ∀E, (∀X, stableA,SC(E, X)) ⇔ ¬(∃ σ→, criticalA(E,
σ→))

This theorem means that we do not have to synchronise all the conflicts to ensure sta-
bility from a weak architecture to SC, but only those occurring in critical cycles. Hence
to restore SC, we should arbitrate (with a covering relation) the conflicting accesses
(competing accesses or fragile pairs) occurring in the critical cycles.

5 offence: A Synchronisation Tool

We implemented our study in our new offence tool, illustrating techniques that can
be included in a compiler. Given a program in x86 or Power assembly, offence places
either lock-based or lock-free synchronisation along the critical cycles of its input, fol-
lowing the mapping A, P, L or F, to enforce a SC behaviour.
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5.1 Control Flow Graphs and Critical Cycles

offence builds one control flow graph (cfg) per thread of the input program, containing
static events (i .e. nodes representing memory accesses), and control flow instructions.
A static memory event f has a direction, a location, originating instruction and proces-
sor, as events do, but no value component.

Given an event structure and two events e1
po→ e2, mapping to static events f1 and f2,

we compute the static program order
pos→ such that e1

po→ e2 entails f1
pos→ f2 using a

standard forward data flow analysis. If memory locations accessed by a given instruc-
tion are constant, we have loc(e1) = loc(f1) and loc(e2) = loc(f2). Hence static
conflicts computed from the cfg, written

cmps↔ , abstract the conflicts of the event struc-
tures. When locations are not constant, we would need alias analysis to compute an
over-approximation of the locations of each static event, considering for example that
all pairs of memory accesses by distinct processors conflict, if one of them is a write.

With F the set of static events, we call the triple (F,
pos→,

cmps↔ ) static event structure.
Following Sec. 4, we enumerate the cycles of F that have properties (i) and (ii), i .e. we
build an over-approximation of the runtime critical cycles.

5.2 Placing Synchronisation Primitives

We then collect the fragile pairs (i.e. the write-read pairs in x86 and all pairs in Power)
occurring in the critical cycles of F . By Thm. 1 it is necessary and sufficient to maintain
these fragile pairs to reach stability, i .e. to restore SC.

Barriers. Then, offence follows the mapping F on these fragile pairs. Given a pair
(f1, f2), offence issues the barrier request (i1, i2, b) where i1 = ins(f1), i2 = ins(f2)
and b is the required barrier. Every path from i1 to i2 in the cfg should pass through a
barrier instruction b. We use the global barrier placement of [20], which maximises the
number of pairs maintained by a given barrier.

Alternative to barriers. offence can also follow the mappings A and P. For A-x86, the
xchg instruction has an implicit write-read barrier semantics [10]. Thus, we use the
global barrier placement of [20] for xchg. For locks, offence follows the mapping L
on the conflict edges of the cfg. Sec. 3.1 describes the lock and unlock idioms that we
use for Power. For x86, lock uses the xchg instruction to build a compare-and-swap
loop, while unlock uses a single store instruction.

5.3 Experiments

Generating tests. We generated two kinds of tests to exercise offence, using our pre-
vious diy tool [5], which computes tests in x86 or Power assembly from a cycle of
relations. First, we generate tests from critical cycles, e.g. iriw in Fig. 2. Second, using
a new tool, we mix such tests: given two tests built from critical cycles, we randomly
permute processors of one of the given tests, turn its memory locations and registers to
fresh ones, and interleave the codes of the programs. We produced two series of tests,
written X, each series consisting of 209 tests for Power and 58 tests for x86.
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Experimental soundness. We run these tests against hardware using our litmus tool [6].
We observed that all tests from the initial X series exhibit violations of SC and that the
tests transformed by offence (following the mappings F, A, P and L) do not exhibit
violations of SC, running each test at least 109 times. Thus we confirmed experimen-
tally that our mappings enforce SC, which we established formally for the mappings F
(Lem. 2), P (Lem. 5) and L (Lem. 1 and 3).

Cost measures. Fig. 10 shows the productivity, i .e. the number of outcomes per second,
for the initial series of tests X, and for the tests transformed by offence following the
mappings F, A, P and L. We ran our tests on three Power machines: power7 (Power7,
8 cores 4-ways SMT), abducens (Power6, 4 cores 2-ways SMT) andvargas (Power6,
32 cores 2-ways SMT); and on two AMD64 machines: chianti (Intel Xeon, 8 cores,
2-ways HT) and saumur (Intel Xeon, 4 cores, 2-ways HT). Our mappings F, P and A
outperform the L one, i .e. provide “more efficient mappings (than the use of locks)”,
answering the question of [4].

To compare the barriers and rmw more precisely, we consider 8 specific tests from 1
to 8 threads, where we add with offence only one synchronisation primitive per thread,
and insert the code for each thread inside a tight loop. We then measure running times
on our two 8 core machines, power7 and chianti, substract the time of the original
test from the time of synchronised tests and divide the result by loop size. We give the
results in Fig. 11. While fences and rmw are fast in isolation (10–20 ns on one thread),
their cost raises to hundreds of ns when communication by shared memory occurs.
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6 Related Work and Conclusion

Related work. The DRF guarantee [3,10,23], the semantics of synchronisation idioms
[9,8], and the insertion of barriers [27,14,11,17] have been extensively studied, but most
of these works focus on one kind of synchronisation at a time, and none of them ad-
dresses Power traits such as cumulativity or the lack of write atomicity.

S. Burckhardt and M. Musuvathi examine in [12] whether we can simulate a program
running on TSO by enumerating only its SC executions. They distinguish a class of
such executions, the TSO-safe ones. We believe these executions to be an instance of
our stable ones, i .e. the stable executions from TSO to SC. Yet, our characterisation of
stability in the general case is a novel contribution.

J. Lee and D. Padua examine in [20] how to restore SC at compiler level: we used
their global fence placement algorithm. Our work improves on [20] w .r .t . semantical
fundations: as a result, we use Power lwsync when possible and we do not use x86
lfence and sfence barriers, irrelevant in user-level code. Our mappings could be
included in their Java compiler [29], i .e. using lwsync for Power, and xchg for x86.

Conclusion. Our formal study of stability in weak memory models allows us to define
several mappings of Power or x86 assembly code, which, as we prove in Coq, give a
SC behaviour to a program. Along the way, we give a semantics to Power’s lwarx
and stwcx. instructions and show how to use the lightweight Power barrier lwsync,
which are novel contributions. In addition, we characterise the executions stable from
a weak architecture to SC, hence generalise the result of [27] to weak memory mod-
els. Finally, we implement our study in our offence tool, to measure the cost of these
mappings: our lock-free mappings outperform locks on our test set. Our work could for
example benefit to compiler writers and semanticists interested in standardisation and
implementability (e.g. of Java volatiles or C++ atomics on Power platforms).

Acknowledgements. We thank Susmit Sarkar, Peter Sewell, Michael Tautschnig, Jules
Villard and Boris Yakobowski for comments on a draft.
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Abstract. Formal verification of complex algorithms is challenging. Verifying
their implementations goes beyond the state of the art of current verification tools
and proving their correctness usually involves non-trivial mathematical theorems.
Certifying algorithms compute in addition to each output a witness certifying that
the output is correct. A checker for such a witness is usually much simpler than
the original algorithm – yet it is all the user has to trust. Verification of checkers
is feasible with current tools and leads to computations that can be completely
trusted. In this paper we develop a framework to seamlessly verify certifying
computations. The automatic verifier VCC is used for checking code correctness,
and the interactive theorem prover Isabelle/HOL targets high-level mathematical
properties of algorithms. We demonstrate the effectiveness of our approach by
presenting the verification of a typical example of the algorithmic library LEDA.

1 Introduction

One of the most prominent and costly problems in software engineering is correctness
of software. In this paper, we are concerned with software for difficult algorithmic prob-
lems, e.g., matchings in graphs. The algorithms for such problems are complex; formal
verification of the resulting programs is beyond the state of the art. We show how to
obtain formal instance correctness, i.e., formal proofs that outputs for particular inputs
are correct. We do so by combining the concept of certifying algorithms with methods
for code verification and theorem proving.

A certifying algorithm [3,18,13] produces with each output a certificate or witness
that the particular output is correct. By inspecting the witness, the user can convince
himself that the output is correct, or reject the output as buggy. Figure 1 contrasts a
standard algorithm with a certifying algorithm for computing a function f .

A user of a certifying algorithm inputs x and receives the output y and the witness
w. He then checks that w proves that y is a correct output for input x. The process of
checking w can be automated with a checker, which is an algorithm for verifying that w
proves that y is a correct output for x. Having checked the witness, the user may proceed
with complete confidence that output yhas not been compromised. Certifying algorithms
are the design principle of the algorithmic library LEDA [14]: Checkers are an integral
part of the library and may (optionally) be invoked after every execution of a LEDA
algorithm. Adoption of the principle greatly improved the reliability of the library.

We take the principle a step further and develop a methodology for formal proofs
of instance correctness. We demonstrate it on one of the more complex algorithms in

G. Gopalakrishnan and S. Qadeer (Eds.): CAV 2011, LNCS 6806, pp. 67–82, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Program for f
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program for f
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Fig. 1. The top figure shows the I/O behavior of a conventional program for computing a function
f . The user feeds an input x to the program and the program returns an output y. A certifying
algorithm for f computes y and a witness w. The checker C accepts the triple (x, y,w) if and
only if w is a valid witness for the equality y = f(x).

LEDA, maximum cardinality matching in graphs. The description of the algorithm and
its implementation in [14] comprises 15 pages. In contrast, the checker is less than a
page. Our formalization revealed that the checker program in LEDA is incomplete.

We outline our approach in Section 2 and give a detailed case study in Section 4.
See also http://www4.in.tum.de/∼boehmes/certifying algorithms.html
for related files. In Section 3 we survey the verfication tools VCC and Isabelle/HOL.
Section 5 discusses related work and Section 6 offers conclusions.

2 Outline of Approach

We consider algorithms taking an input from a set X and producing an output in a set
Y and a witness in a set W . The input x ∈ X is supposed to satisfy a precondition
ϕ(x) and the input together with the output y ∈ Y is supposed to satisfy a postcon-
dition ψ(x, y). For simplicity, we only consider algorithms with trivial preconditions
in this paper, i.e., ϕ(x) for all x ∈ X . A witness predicate for a specification with
postcondition ψ is a predicate W ⊆ X × Y ×W with the following witness property

W(x, y, w) =⇒ ψ(x, y) (1)

In contrast to algorithms which work on abstract sets X , Y , and W , programs as their
implementations operate on concrete representations of abstract objects. We use X , Y ,
and W for the set of representations of objects in X , Y , and W , respectively and assume
mappings iX : X → X , iY : Y → Y , and iW : W → W . We also have a concrete
versionW ⊆ X×Y ×W of the witness predicate and a program C that checks it. The
concrete version ψ of the postcondition is defined as

ψ(x, y) ≡ ψ(iX(x), iY (y)). (2)

We have the following proof obligations:
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theorem witness property:
“W(x, y, w) −→ ψ(x, y)”

definition W where “W(x, y, w) = . . . ”

spec(void lemma abs(x, y, w)
requires(W bar(x, y, w))
ensures(W(ix(x), iy(y), iw(w)))

{ ... })

bool Checker(x, y, w)
ensures(W bar(x, y, w))

{ ...; assert(...); ... }

bool Checker(x, y, w)
{ ... }

Fig. 2. Verification Framework

Checker Correctness: A formal proof that C checks W(x, y, w), i.e., the checker C
accepts (x, y, w) if and only if W(x, y, w) holds.

Abstraction Correctness: A formal proof of

W(x, y, w) =⇒ W (iX(x), iY (y), iW (w)). (3)

Witness Property: A formal proof for the implication (1).

Theorem 1. Assume that the proof obligations are fulfilled and C accepts a triple
(x, y, w). Then ψ(x, y) by a formal proof.

Proof. Since C accepts (x, y, w) and we have a formal proof for the correctness of C,
we have a formal proof for W(x, y, w). By implication (3), we have a formal proof
for W(iX(x), iY (y), iW (w)) and then by (1) a formal proof for ψ(iX(x), iY (y)). The
latter is equivalent to ψ(x, y) by definition (2). ��
We next discuss how we fulfill the various proof obligations in a comprehensive and
efficient framework, see Fig. 2. Comprehensive means that the final proof formally
combines (as much as possible at syntactic level) the correctness arguments for all lev-
els (implementation, abstraction and mathematical theory). Efficient means to use the
right tool for the right target. For example, applying a general theorem prover to ver-
ify imperative code would involve a lot of language-specific overhead and lead to less
automatization; similarly, a specialized code verifier is often not powerful enough to
cover non-trivial mathematical properties. The aims comprehensiveness and efficiency
seem to be conflicting, as different tools usually come with different languages, ax-
iomatization sets, etc. Our solution is to use second-order logic as a common interface
language.
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LEDA is written in C++ [14]. Our aim is to verify code which is as near as possi-
ble to the original implementation; by this we demonstrate the feasibility of verifying
already established libraries written in imperative languages such as C. Thus we verify
code with VCC [6], an automatic code verifier for full C. Our choice is motivated by
the maturity of the tool and the provision of a assertion language which is rich enough
for our requirements. In the Verisoft XT project [20] VCC was successfully used to
verify tens of thousands of non-trivial C code. VCC offers a second-order logic asser-
tion language with ghost code and types such as maps and unbounded integers. This
gives us enough expressiveness to quantify over graphs, labellings, etc. and simplifies
the translation to other proof systems. For verifying the mathematical part, we resort
to Isabelle/HOL, a higher-order-logic interactive theorem prover [17], due to the large
set of already formalized mathematics, its descriptive proof format and its various auto-
matic proof methods and tools. In Section 3 we overview both systems. Figure 2 shows
the work-flow for verifying checkers.

Checker Verfication: Starting point is the checker code written in C. Using VCC we
annotate the functions and data structures, such that the witness predicate W can
be established as postcondition of the checker function.

Abstraction Correctness: The witness predicate W is defined over C data-structures,
e.g. pointers, arrays, unions and bounded numbers. A one-to-one translation to Is-
abelle/HOL would have to unveil the complete type and memory axiomatization of
C and VCC and would thus generate an extremely large proof context. We avoid
this overhead by first abstracting all involved data structures and properties to pure
mathematical objects and definitions (using VCC ghost types) by defining map-
pings iX , iY and iW . As a result we obtain a second-order logic formula in VCC
for the witness property W . We justify this abstraction by proving correspondence
lemmas between abstract and concrete properties in VCC.

Export to Isabelle/HOL: Next—based on the abstract postcondition of the checker—
we formulate the overall correctness theorem in VCC, i.e., implication (1)1. Estab-
lishing such a theorem may involve non-trivial mathematical reasoning. Therefore
we translate it to Isabelle/HOL. Due to the level of abstraction this translation is
purely syntactical and does not involve any VCC specifics.

Witness Property: We prove the final theorem using Isabelle/HOL.

We stress that the overall correctness theorem is formulated in VCC; this is important
for usability. A user of a verified checker only has to look at its VCC specification;
the fact that we outsource the proof of the witness property to Isabelle/HOL is of no
concern to him.

3 Tool Overview: VCC and Isabelle/HOL

VCC [6,7,15] is an assertional, first-order deductive code verifier for full C code. To
overcome the restrictions of first-order reasoning, ghost state and code are used, e.g.,

1 Mathematical theorems can be formulated in VCC using pure ghost functions, i.e., functions
that do not alter the state.



Verification of Certifying Computations 71

to maintain inductively defined information. Specifications in the form of function con-
tracts or data invariants are added directly into the C source code. During regular build,
these annotations are ignored. From the annotated program, VCC generates verification
conditions for (partial) correctness, which it then tries to discharge using the Boogie
verifier [2] and the automatic theorem prover Z3 [16].

Verification in VCC makes heavy use of ghost data and code (indicated by key-
word spec()) used for reasoning about the program but omitted from the concrete im-
plementation. VCC provides ghost objects, ghost fields of structured data types, local
ghost variables, ghost function parameters, and ghost code. Ghosts can not only use
C data types but also additional mathematical data types, e.g., mathematical integers
(mathint), records and maps. VCC ensures that information does not flow from ghost
state to non-ghost state, and that all ghost code terminates; these checks guarantee that
program execution when projected to non-ghost code is not affected by ghost code.

Isabelle/HOL [17,12] is an interactive theorem prover for classical higher-order logic
based on Church’s simply-typed lambda calculus. Internally, the system is built on top
of an inference kernel which provides only a small number of rules to construct theo-
rems; complex deductions (especially by automatic proof methods) ultimately rely on
these rules only. This approach, called LCF due to its pioneering system [11], guaran-
tees correctness as long as the inference kernel is trusted. Isabelle/HOL comes with a
rich set of already formalized theories, among which are natural numbers and integers
as well as sets and finite sets. New types can also be introduced. Proofs in Isabelle/HOL
are written in a style close to that of mathematical textbooks. The user structures the
proof and the system fills in the gaps by its automatic proof methods.

4 Case Study: Maximum Cardinality Matching in Graphs

We present a case study: maximum cardinality matchings in graphs. We obtain formal
instance correctness. Our starting point is the certifying algorithm and the correspond-
ing checker in LEDA. We give a formal proof for the correctness of the checker, for the
witness property, and the connection between them2.

A matching in a graph G is a subset M of the edges of G such that no two share an
endpoint. A matching has maximum cardinality if its cardinality is at least as large as
that of any other matching. Figure 3 shows a graph, a maximum cardinality matching,
and a witness of this fact. An odd-set cover OSC of a graph G is a labeling of the nodes
of G with integers such that every edge of G is either incident to a node labeled 1 or
connects two nodes labeled with the same number i ≥ 2.

Theorem 2 (Edmonds [9]). Let M be a matching in a graph G and let OSC be an
odd-set cover of G. For any i ≥ 0, let ni be the number of nodes labeled i. If

|M | = n1 +
∑
i≥2

�ni/2� (4)

then M is a maximum cardinality matching.

2 All files related to our formalization can be obtained from the following URL:
http://www4.in.tum.de/∼boehmes/certifying algorithms.html
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Fig. 3. The node labels certify that the indicated matching is of maximum cardinality: All edges of
the graph have either both endpoints labelled as 2 or at least one endpoint labelled as 1. Therefore,
any matching can use at most one edge with both endpoints labelled 2 and at most four edges that
have an endpoint labelled 1. Therefore, no matching has more than five edges. The matching
shown consists of five edges.

Proof. Let N be any matching in G. For i ≥ 2, let Ni be the edges in N that connect
two nodes labeled i and let N1 be the remaining edges in N . Then, by the definition
of odd-set cover, every edge in N1 is incident to a vertex labeled 1. Since edges in a
matching do not share endpoints, we have

|N1| ≤ n1 and |Ni| ≤ �ni/2� for i ≥ 2.

Thus |N | ≤ n1 +
∑

i≥2�ni/2� = |M |. ��
It can be shown (but this is non-trivial) that for any maximum cardinality matching
M there is an odd-set cover OSC satisfying equality (4). The cover uses non-negative
node labels in the range 0 to |V | − 1 and all ni’s with i ≥ 2 are odd. The certifying
algorithm for maximum cardinality matching in LEDA returns a matching M and an
odd-set cover OSC such that (4) holds. The relationship to Section 2 is as follows:

X, Y = the set of all finite undirected graphs without self-loops

ψ(G, M) = M is a maximum cardinality matching in G

W = odd-set covers

W(G, M, osc) = M is a matching in G, osc is an odd-set cover for G, and (4) holds.

Theorem 2 is the witness property. We give a formal proof for it in Section 4.2.
Writing a correct program which checks whether a set of edges is a matching and a
node labeling is an odd-set cover which together satisfy Eq. (4) is easy. In Section 4.1
we describe the verification of such a checker. In Section 4.3, we link both results.

4.1 Checker

First, we define the specification W of the checker and consider its verification against
the code. Next, we abstract the postcondition to W and define the witness property
W(x, y, w) =⇒ ψ(x, y) which is then translated to Isabelle/HOL. Except for the wit-
ness property, which is proven in Isabelle/HOL, all presented abstractions and functions
have been formally verified using VCC.
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struct edge {unsigned s; unsigned t;};

typedef struct graph {
unsigned m; unsigned n; // m edges and n nodes
struct edge∗ es; // array of edges

// data−type invariants
invariant(∀(unsigned e; e < m =⇒ es[e].s < n ∧ es[e].t < n ∧ es[e].s 
= es[e].t))
// further technical invariants are omitted here

} graph;

Listing 1. Data structures and invariants

Specification. First, we specify well-defined graphs as a property over the implementa-
tion data-type (see Listing 1). In the implementation, nodes are identified by unsigned
integers, edges are represented as C structs with two components, the source and the tar-
get node, and graphs are encoded by structs with three components, numbers of nodes
and edges and an edges array. In VCC we can specify data-type invariants, which are
guaranteed to hold whenever an object of that data-type is wrapped3. The graph in-
variant (see Listing 1) excludes self-loops and requires that endpoints of edges are in
range. To establish memory safety, a set of additional invariants specifying ownership
relations between different graph components are required. For convenience we have
omitted them here.

Next, we specify the postcondition W of the checker function. Its arguments are
the original graph G, the alleged maximum matching M and two witnesses; an odd
set cover osc and a graph embedding id, which are both mappings from unsigned to
unsigned. We specify the matching as a graph M plus an embedding id that maps edges
of M to edges of G. Alternatively, we could have specified it as a list of edges of G.
The postcondition states that the checker outputs true if and only if the following four
properties hold, three of which can be expressed straightforwardly as first-oder logic
formulae.

Matching: Let the ghost predicate eadj denote adjacent edges. Then M is a matching
precisely if the following condition holds:

spec(ispure bool is matching(graph∗M)
ensures(result ⇐⇒ ∀(unsigned e1, e2; e1 < M→m ∧ e2 < M→m ∧ e1 �= e2 =⇒
¬eadj(M→es[e1], M→es[e2])));)

where ensures(...) defines a postcondition of a function and spec() and ispure()
mark a function as ghost and free of side-effects.

Subgraph: Checking that M is a subgraph of G is made efficient by an embedding
function id, which maps edge identifiers in M to those in G. This check is missing
in the LEDA checker. Let the ghost predicate eeq denote equality of edges. Then
subgraph is specified by:

spec(ispure bool is subgraph(graph∗ G, graph∗M, unsigned∗ id)
returns(∀(unsigned e; e < M→m =⇒ id[e] < G→m ∧ eeq(M→es[e],

G→es[id[e]])));)

where returns(x) abbreviates ensures(result ≡ x).
3 As long as an object is wrapped, its data may not be modified. Whenever the state of an object

is changed to wrapped its corresponding data-type invariants are checked.
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Odd-set cover: The mapping osc is an odd-set cover for a graph G if and only if:

spec(ispure bool is odd set cover(graph∗M, unsigned∗ osc)
returns( ∀(unsigned k; k < G→n =⇒ osc[k] < G→n) ∧

∀(unsigned e; e < G→m =⇒
osc[G→es[e].s] ≡ 1 ∨ osc[G→es[e].t] ≡ 1 ∨
(osc[G→es[e].t] ≡ osc[G→es[e].s] ∧ osc[G→es[e].t] > 1)));)

Equation (4): It states the equality of M →m and a sum. Specifying sums without
using recursive functions is, however, a bit intricate4. Given a sum

∑
i<N expr(i),

the usual trick is to define a (finite) sequence S[i] of partial sums where S[i + 1] =
S[i] + expr(i) for i > 0 and 0 otherwise. The last element S[n] of the sequence
then defines the desired sum.
In VCC we specify the sequences of partial sums by ghost maps. Our checker has
to compute (i) the sums ni, denoting the number of nodes with label i and (ii) the
overall sum. The VCC map defining ni is specified by the equation N[k + 1][i]
≡ N[k][i] + (i ≡ osc[k] ? 1 : 0) with the base case N[0][i] ≡ 0. The map for the
overall sum is defined by the equation SU[i + 1] ≡ SU[i] + N[G→n][i]/2 with the
base case SU[2] ≡ N[G→n][1] and SU[0] ≡ 0 ∧ SU[1] ≡ 0 for trivial graphs. The
following predicate encapsulates these conditions:

spec(ispure bool consistent sums(graph∗ G, unsigned∗ osc,
mathint N[mathint][mathint], mathint SU[mathint])

returns(
∀(mathint i; 0 ≤ i ∧ i < G→n =⇒ N[0][i] ≡ 0) ∧
∀(mathint i, k; 0 ≤ i ∧ i < G→n ∧ 0 ≤ k ∧ k < G→n =⇒

N[k + 1][i] ≡ N[k][i] + (i ≡ osc[k] ? 1 : 0)) ∧
SU[0] ≡ 0 ∧ SU[1] ≡ 0 ∧ SU[2] ≡ N[G→n][1] ∧
∀(mathint i; 1 < i ∧ i < G→n =⇒ SU[i + 1] ≡ SU[i] + N[G→n][i]/2));)

Map types are declared analogously to array types, e.g., mathint map[mathint]
denotes a map from unbounded integers to unbounded integers.
Based upon these definitions, Eq. (4) is formulated as M→m ≡ SU[G→n].

The complete postcondition of the checker is defined by the specification function
W bar holds given in Listing 2. Note that the partial sums N and SU are passed as ghost
parameters to the predicate5.

Implementation and Verification. The checker function is written in plain C. Its data
structures have already been introduced in Listing 1. The implementation is straightfor-
ward and consists of seven loops.

We verify the checker code by proving that its postcondition is equivalent to the
witness predicate W6. As precondition we require that the graph and the matching
are well-defined (by requiring that they are wrapped, i.e., that their data-type invariant

4 We do not use recursive specifications because VCC does not yet support termination proofs.
5 Note, that the maps SU and N could be hidden by existential quantification. We have not

choosen this solution due to technical problems with existential quantifiers in VCC (presum-
ably solved soon).

6 For soundness, implication would suffice. However, then a trivial checker returning always
false would also satisfy the postcondition.



Verification of Certifying Computations 75

spec(ispure bool W bar holds(bool checker out, graph∗ G, graph∗ M, unsigned∗ osc, unsigned∗ id,
mathint N[mathint][mathint], mathint SU[mathint])

ensures(
consistent sums(G, osc, N, SU) ∧ // sum correctly computed
checker out ⇐⇒

is matching(M) ∧ is subgraph(G, M, id) ∧ is odd set cover(G, osc) ∧
SU[G→n] ≡ M→m // sum equals cardinality of M

));)

bool max card match checker(graph∗ G, graph∗ M, unsigned∗ osc, unsigned∗ id
spec(out mathint N[mathint][mathint]) spec(out mathint SU[mathint])) // ghost output

requires(wrapped(G)) // wrapped implies that the datatype invariants hold
requires(wrapped(M))
requires(∀(unsigned k; k < G→n =⇒ osc[k] < G→n))
ensures(W bar holds(result, G, M, osc, id, N, SU))

Listing 2. Implementation correctness. The VCC keywords requires() and ensures() denote pre-
and postconditions of functions. The code enclosed in spec() is ghost code and only taken into
account during verification. With spec(out ..) we specify ghost output variables to functions.

holds), and that the odd-set cover is in range. The contract of the checker program is
given in Listing 2. Note, that the partial sums N and SU are computed in ghost code and
returned as ghost output values.

Most of the work in proving the postcondition lies in finding the right loop invariants.
In Listing 3 we give an excerpt from the verification of the matching property. The
presented code allocates memory for a local array deg in M (note, that we assume that
allocation will never fail, i.e., that enough memory is available), which is used to count
the number of edges adjacent to any node. We have a matching if the degree of every
node is smaller than two. The proof of this fact is non-trivial and requires the use of
ghost maps w and b. As we iterate over the edges of M, we build for each node k its
adjacency list in w[k] and record for each edge f incident to k its position b[k][f] in
the adjaceny list. The loop invariants guarantee that all edges adjacent to node k are
stored in the sequence w[0],...,w[deg in M[k]] and that no two edges in this sequence
are equal. Thus, in case deg in M[k] > 1 we have found two adjacent edges: w[k][0]
and w[k][1]. In case deg in M[k] ≤ 1 we conclude that all edges adjacent to k are equal
to w[k][0], thus establishing that no two edges share the same node k. If deg in M[k]
≤ 1 holds for all nodes k, we easily can conclude that no two edges are adjacent, i.e.,
that M is a matching.

Abstraction. As preparation for the translation to Isabelle/HOL we define the checker
predicate without referring to concrete C data structures. We do so by defining pure
ghost data types (e.g., graphs) and corresponding abstraction functions iX , iY and iW .
Moreover we prove that our abstraction is sound and complete.

In a naive approach one would put the coupling relation between abstraction and im-
plementation into the data structure invariant. This, however, would make it necessary
to discharge the correctness of abstraction during code verification.

Instead we chose to separate the verification of the code and the correctness of
abstraction. Listing 4 presents the abstract ghost types, the abstraction functions and
the lemmas establishing soundness and completeness of our abstraction. The predicate
W holds is derived from W bar holds by substituting arrays by maps and unsigned
numbers by unbounded integers. This gives us the witness predicate W . Using the
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spec(unsigned w[unsigned][unsigned];) // w[k] ghost list of edges adjacent to k
spec(unsigned b[unsigned][unsigned];) // b[k][f] position in w of edge f adjacent to node k

unsigned∗ deg in M = malloc(M→n ∗ sizeof (unsigned));
assume(deg in M 
= NULL); // enough memory available
// zeroing
for (k = 0; k < M→n; k++)

invariant(∀(mathint l; 0 ≤ l ∧ l < k =⇒ deg in M[l] ≡ 0))
deg in M[k] = 0;

for(e=0; e < M→m; e++)
invariant(M→m 
= 0 =⇒ ∀(unsigned k, i; w[k][i] < M→m))
invariant(∀(unsigned k, i; k < M→n ∧ i < deg in M[k] =⇒ w[k][i] < e))
invariant(∀(unsigned k, i, j; k < M→n ∧ j < deg in M[k] ∧ i < j =⇒ w[k][i] < w[k][j]))
invariant(∀(unsigned k; k < M→n =⇒ deg in M[k] ≤ e))
invariant(∀(unsigned k, n; k < M→n ∧ i < deg in M[k] =⇒ adj(M→es[w[k][i]], k)))
invariant(∀(unsigned k, f; k < M→n ∧ f < e =⇒

(adj(M→es[f], k) ⇐⇒ w[k][b[k][f]] ≡ f ∧ b[k][f] < deg in M[k])))
// further technical invariants are omitted here

{
spec(w[M→es[e].s][deg in M[M→es[e].s]] = e;)
spec(w[M→es[e].t][deg in M[M→es[e].t]] = e;)

spec(b[M→es[e].t][e] = deg in M[M→es[e].t];)
spec(b[M→es[e].s][e] = deg in M[M→es[e].s];)

deg in M[M→es[e].s]++;
deg in M[M→es[e].t]++;

};

// if deg in M[k]>1 then we found two adjacent edges
assert(∀(unsigned k; k < M→n ∧ deg in M[k] > 1 =⇒ w[k][0] 
= w[k][1] ∧ eadj(M→es[w[k][0]],

M→es[w[k][1]])));

// if deg in M[k]<2 then all edges adjacent to k are equal to w[k][0]
assert(∀(unsigned k; k < M→n ∧ deg in M[k] < 2 =⇒ ∀(unsigned f; f < M→m ∧ adj(M→es[f],k) =⇒ f ≡

w[k][0])));

Listing 3. Extract from code verification. The keyword assert() denotes an assertion which guides
the prover. Assumptions are denoted by assume().

abstract types we can finally state the overall correctness theorem (where the predicate
spec invariants specifies well-defined graphs):

spec(ispure bool final theorem(spec graph G, spec graph M, funType osc, funType id)
ensures(∀(mathint N[mathint][mathint]; ∀(mathint SU[mathint];

W holds(true, G, M, osc, id, N, SU) =⇒
∀(struct spec graph M2; ∀(funType id2; spec invariants(M2) ∧

is subgraph(G,M2,id2) ∧ is matching(M2) =⇒ M2.m ≤ M.m)))));)

It states that whenever the checker returns true, the given matching is maximal. Since
this theorem is not referencing any C types, it can easily be translated to Isabelle/HOL.

4.2 Formal Proof of Witness Property

We explain the Isabelle proof for the witness property, i.e., Theorem 2. See Figures 4, 5,
and 6 for excerpts from it. The formal proof follows the scheme of the informal proof
and is split into two main parts.

For i ≥ 2, let Mi be the edges in M that connect two nodes labeled i and let M1

be the remaining edges in M . We use the definition of odd-set cover to prove that
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spec(
// ghost record types instead of C structs
struct vcc(record) spec edge { mathint s; mathint t; };
struct vcc(record) spec graph { mathint m; mathint n; spec edge es[mathint]; };

typedef mathint funType[mathint];

// abstraction functions (only declarations)
ispure spec graph abs g(graph∗ G)
ispure funType abs fun(unsigned∗ id, unsigned s)

// abstract postcondition (only declaration)
ispure bool W holds(bool checker output, spec graph G, spec graph M, funType osc, funType id,

mathint N[mathint][mathint], mathint SU[mathint])

// soundness of abstraction
ispure void lemma sound checker(graph∗ G, graph∗ M, unsigned∗ osc, unsigned∗ id,

mathint N[mathint][mathint], mathint SU[mathint])
requires(wrapped(G) ∧ wrapped(M))
requires(W bar holds(true, G, M, osc, id, N, SU))
ensures(W holds(true, abs g(G), abs g(M), abs fun(osc, G→n), abs fun(id, M→m), N, SU)) {};

// completeness of abstraction
ispure void lemma complete checker(graph∗ G, graph∗ M, unsigned∗ osc, unsigned∗ id,

mathint N[mathint][mathint], funType SU)
requires(wrapped(G) ∧ wrapped(M))
requires(W holds(true, abs g(G), abs g(M), abs fun(osc, G→n), abs fun(id, M→m), N, SU))
ensures(W bar holds(true, G, M, osc, id, N, SU)) {};

)

Listing 4. Abstraction of postcondition. A ghost VCC record is declared with the keyword
vcc(record).

M ⊆ ⋃
i≥1 Mi and thus |M | ≤∑

i |Mi|. Let Vi be the nodes labeled i and let ni = |Vi|.
We formally prove: |M1| ≤ n1 and |Mi| ≤ �ni/2�.

In order to prove |M1| ≤ n1, we exhibit an injective function from M1 to V1. We
first prove, using the definition of odd-set cover, that every edge e ∈ M1 has at least one
endpoint in V1. This gives rise to a function endpointV1

: M1 �→ V1. We then use the
fact that edges in a matching do not share endpoints, i.e., are disjoint when interpreted
as sets, to conclude that endpointV1

is injective. This establishes |M1| ≤ |Vi|.
For i ≥ 2 the proof of the inequality |Mi| ≤ �ni/2� is similar, but more involved.

Mi is a set of edges. If we represent edges as sets (each has cardinality equals two),
then Mi is a collection of sets. We define the set of vertices V ′

i to be
⋃

Mi and use
the definition of odd-set cover to prove V ′

i ⊆ Vi. Then, we use the fact that the edges
in a matching are pairwise disjoint to prove |V ′

i | = 2 ∗ |Mi|. Note also that |V ′
i | must

be even since |Mi| is a natural number. Thus we can prove that |Mi| ≤ �|V ′
i | /2� and

hence |Mi| ≤ �|V ′
i | /2� ≤ �|Vi| /2� = �ni/2�.

4.3 Linking VCC and Isabelle

We have extended VCC to export purely mathematical specifications as Isabelle theo-
ries, essentially a syntactic rewriting. More precisely, VCC ghost records are translated
into Isabelle records, and pure VCC ghost functions are translated into Isabelle function
definitions. The former is sound and complete because the semantics of records is the
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types vertex = nat types label = nat types edge = (vertex × vertex)
definition finite-graph :: vertex set => edge set ⇒ bool where
finite-graph V E ≡ finite V ∧ finite E ∧ (∀ e ∈ E. fst e ∈ V ∧ snd e ∈ V ∧ fst e 
= snd e)

definition edge-as-set :: edge ⇒ vertex set where edge-as-set e ≡ { fst e , snd e }
definition N :: vertex set ⇒ (vertex ⇒ label) ⇒ nat ⇒ nat where ni

N V L i ≡ card {v ∈ V. L v = i}
definition weight:: label set ⇒ (vertex ⇒ nat) ⇒ nat where weight LV f ≡ f 1 + (

∑
i∈LV. (f i) div 2)

definition OSC :: (vertex ⇒ label) ⇒ edge set ⇒ bool where
OSC L E ≡ ∀ e ∈ E. L (fst e) = 1 ∨ L (snd e) = 1 ∨ L (fst e) = L (snd e) ∧ L (fst e) > 1

definition disjoint-edges :: edge ⇒ edge ⇒ bool where
disjoint-edges e1 e2 ≡ fst e1 
= fst e2 ∧ fst e1 
= snd e2 ∧ snd e1 
= fst e2 ∧ snd e1 
= snd e2

definition matching :: vertex set ⇒ edge set ⇒ edge set ⇒ bool where M
matching V E M ≡ M ⊆ E ∧ finite-graph V E ∧ (∀ e1 ∈ M. ∀ e2 ∈ M. e1 
= e2 −→ disjoint-edges e1 e2)

definition matching-i :: nat ⇒ vertex set ⇒ edge set ⇒ edge set ⇒ (vertex ⇒ label) ⇒ edge set where Mi

matching-i i V E M L ≡ {e ∈ M. i=1 ∧ (L (fst e) = i ∨ L (snd e) = i) ∨ i>1 ∧ L (fst e) = i ∧ L (snd e) = i}
definition V-i:: nat ⇒ vertex set ⇒ edge set ⇒ edge set ⇒ (vertex ⇒ label) ⇒ vertex set where V ′

i
V-i i V E M L ≡ ⋃

edge-as-set ‘ matching-i i V E M L
definition endpoint-inV :: vertex set ⇒ edge ⇒ vertex where
endpoint-inV V e ≡ if fst e ∈ V then fst e else snd e

Fig. 4. Excerpt from the Isabelle proof: Definitions

same in both systems; the latter is sound and complete as we embed VCC’s second-
order logic into the stronger higher-order logic of Isabelle/HOL. Thereby, VCC’s spec-
ification types (bool, mathint, and map types) are mapped to equivalent Isabelle types
(bool, int, and function types). Expressions of VCC comprising logical connectives,
quantifiers, integer arithmetic operations, and specification functions are mapped to
equivalent Isabelle terms.

Bridging the gap between the rather low-level definitions stemming from VCC and
the high-level definitions from the formalization is straightforward and in large parts au-
tomatic, except for a number of cumbersome issues: (1) The VCC specification enforces
a fixed numbering scheme of vertices and edges, whereas the Isabelle formalization has
no such restriction – vertices are arbitrary natural numbers and edges are modelled as
sets of vertices. (2) Edges of a graph and a matching in VCC do not necessarily need
to be indexed by the same number, whereas in Isabelle/HOL we model a matching as a
subset of a graph (which is simply a set of edges). (3) In the VCC specification, edges
of a matching are not required to have the same representation as edges in the corre-
sponding graph, i.e., sink and target vertices may be swapped. This cannot be the case in
the Isabelle formalization due to the subset relationship between matchings and graphs.
(4) Moreover, we require two inductive arguments for relating the VCC ghost functions
N and SU with the definition of weight in Isabelle.

4.4 Evaluation

The checker in LEDA does not verify that M is a subgraph of G. This was revealed by
the formalization.

The matching algorithm for general graphs and its efficient implementation is an
advanced topic in graph algorithms. It is a highly non-trivial algorithm which is not
covered in the standard textbooks on algorithms. The following page numbers illustrate
the complexity gap between the original algorithm and the checker: In the LEDA book,
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lemma card-M1-le-NVL1:
assumes matching V E M
assumes OSC L E
shows card (matching-i 1 V E M L) ≤ ( N V L 1) |M1| ≤ n1

lemma card-Mi-twice-card-Vi:
assumes OSC L E ∧ matching V E M ∧ i > 1
shows 2 ∗ card (matching-i i V E M L) = card (V-i i V E M L) 2 ∗ |Mi| =

∣∣V ′
i

∣∣
lemma card-Mi-le-floor-div-2-Vi:
assumes OSC L E ∧ matching V E M ∧ i > 1
shows card (matching-i i V E M L) ≤ (card (V-i i V E M L)) div 2 |Mi| ≤ �∣∣V ′

i

∣∣ /2�
lemma card-Vi-le-NVLi:
assumes i>1 ∧ matching V E M
shows card (V-i i V E M L) ≤ N V L i

∣∣V ′
i

∣∣ ≤ ni

lemma card-Mi-le-floor-div-2-NVLi:
assumes OSC L E ∧ matching V E M ∧ i > 1
shows card (matching-i i V E M L) ≤ (N V L i) div 2 |Mi| ≤ �ni/2�

lemma card-M-le-sum-card-Mi:
assumes matching V E M and OSC L E
shows card M ≤ (

∑
i ∈ L‘V. card (matching-i i V E M L)) |M| ≤ ∑

i∈LV |Mi|
theorem card-M-le-weight-NVLi:
assumes matching V E M and OSC L E
shows card M ≤ weight {i ∈ L ‘ V. i > 1} (N V L) |M| ≤ n1 +

∑
i≥2�ni/2�

theorem maximum-cardinality-matching:
assumes matching V E M and OSC L E
and card M = weight {i ∈ L ‘ V. i > 1} (N V L)
shows matching V E M ′−→ card M ′≤ card M Witness Property (Theorem 2)

Fig. 5. Excerpt from the Isabelle proof: Lemmas and Theorems

the description of the algorithm for computing the maximum cardinality matching and
the proof of its correctness takes ca. 15 pages, compared to a one page description of
the checker implementation and a few corresponding proof lines.

All described theorems and lemmas have been formally verified, using either VCC or
Isabelle/HOL. The C code of the checker, without annotations, spans 102 lines, includ-
ing empty lines and sparse comments. The specification and verification adds another
318 lines for code and 245 lines for abstraction correctness. This results in a ratio of
ca. 2.4 for the annotation overhead due to code verification. Overall proof time is less
than 1 minute on one core of a 2.66 GHz Intel Core Duo machine.

The Isabelle theories bring in additional 632 lines of declarations and proofs for 28
lemmas and theorems. More than half of the Isabelle theories are concerned with the
witness theorem (Theorem 2) and the rest links this theorem with the abstract specifi-
cation exported from VCC.

It took several months to develop the framework and to do the first example. Follow-
up verifications will benefit from this framework.

5 Related Work

The notion of a certifying algorithm is ancient. Already al-Khawarizmi in his book
on algebra described how to (partially) check the correctness of a multiplication. The
extended Euclidean algorithm for greatest common divisors is also certifying; it goes
back to the 17th century. Yet, formal verification of a checker for certificates has not
seen many instances so far.
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lemma injectivity:
assumes is-osc: OSC L E
assumes is-m: matching V E M
assumes e1-in-M1: e1 ∈ matching-i 1 V E M L

and e2-in-M1: e2 ∈ matching-i 1 V E M L
assumes diff: (e1 
= e2)
shows endpoint-inV {v ∈ V. L v = 1} e1 
= endpoint-inV {v ∈ V. L v = 1} e2

proof −
from e1-in-M1 have e1 ∈ M by (auto simp add: matching-i-def)
moreover
from e2-in-M1 have e2 ∈ M by (auto simp add: matching-i-def)
ultimately
have disjoint-edge-sets: edge-as-set e1 ∩ edge-as-set e2 = {}
using diff is-m matching-disjointness by fast

then show ?thesis by (auto simp add: edge-as-set-def endpoint-inV-def)
qed

Fig. 6. Excerpt from the Isabelle proof: Proof of an injectivity lemma

Bulwahn et al [5] describe a verified SAT checker, i.e., a checker for certificates of
unsatisfiability produced by a SAT solver. They develop and prove correct the checker
within Isabelle/HOL. Similar proof checkers have been formalized in the Coq proof
assistant [8,1]. CeTA [19], a tool for certified termination analysis, is also based on for-
mally verified checkers, done in Isabelle/HOL. As opposed to our approach, all men-
tioned checkers are entirely developed and verified within the language of a theorem
prover. This is acceptable when extending the capabilities of a theorem prover, but it
is unsuitable for verifying checkers of algorithm implementations in C or similar lan-
guages.

Integrating powerful interactive theorem provers as backends to code verification
systems has been exercised for VCC and Boogie with Isabelle/HOL as backend [4] as
well as for Why with a Coq backend [10]. Both systems have a C verifier frontend. Usu-
ally, such approaches for connecting code verifiers and proof assistants give the latter
the same information that is made available to the first-order engine, overwhelming the
users of the proof assistants with a mass of detail. Instead we allow only clean chunks
of mathematics to move between the verifier and the proof assistant. This hides from
the proof assistant details of the underlying programming language, thus, requiring the
user only to discharge interesting proof obligations.

6 Conclusion and Future Work

We described a framework for verification of certifying computations and applied it to
a non-trivial combinatorial problem: maximum cardinality matchings in graphs. Our
work lifts the reliability of LEDA’s maximum matching algorithm to a new level. For
each instance of the maximum matching problem, we can now give a formal proof of
the correctness of the result. Thus, the user has neither to trust the implementation of
the original algorithm or the checker, nor does he have to understand why the witness
property holds. We stress that we did not prove the correctness of the program, but only
verify the result of the computation.

Our approach applies to any problem for which a certifying algorithm is known;
see [13] for a survey. Most algorithms in LEDA [14] are certifying and, in future work,



Verification of Certifying Computations 81

we plan to verify all of them. The checkers and the proof of the witness properties for
all other graph algorithms in LEDA are simpler than the presented one and hence will
proceed analogously.

Our framework is not only applicable to verifying certifying computations. The inte-
gration of VCC and Isabelle/HOL should be useful whenever verification of a program
requires non-trivial mathematical reasoning.

Acknowledgment. We thank Ernie Cohen for his advice on VCC idioms and Norbert
Schirmer for his initial Isabelle support.
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Abstract. We propose a numerical technique for parameter inference in Markov
models of biological processes. Based on time-series data of a process we es-
timate the kinetic rate constants by maximizing the likelihood of the data. The
computation of the likelihood relies on a dynamic abstraction of the discrete
state space of the Markov model which successfully mitigates the problem of
state space largeness. We compare two variants of our method to state-of-the-art,
recently published methods and demonstrate their usefulness and efficiency on
several case studies from systems biology.

1 Introduction

A widely-used strategy in systems biology research is to refine mathematical models
of biological processes based on both computer simulations and wet-lab experiments.
Therefore, in this area parameter estimation methods for quantitative models play a
major role. In other domains, such as probabilistic model checking, similar problems
of parameter synthesis occur [8] but aim at finding parameters for which certain tem-
poral properties are satisfied. In systems biology, time series data is analyzed to learn
the structure of a biochemical reaction network and to calibrate the reaction rate pa-
rameters. Direct measurement of parameters through wet-lab experiments is often diffi-
cult or even impracticable. There are extensive research efforts to estimate the reaction
rate parameters of ordinary differential equations (ODEs) that describe the evolution
of the chemical concentrations over time (see, for instance, [1, 4, 5] and the references
therein). The problem of finding parameters that minimize the difference between ob-
served and predicted data is usually multimodal due to non-linear constraints and thus
requires global optimization techniques.

The assumption that chemical concentrations change deterministically and continu-
ously in time is not always appropriate for biological processes. In particular, if certain
substances in the cell are present in small concentrations the resulting stochastic effects
cannot be adequately described by deterministic models. In that case, discrete-state
stochastic models are advantageous because they take into account the discrete ran-
dom nature of chemical reactions. The theory of stochastic chemical kinetics provides
a rigorously justified framework for the description of chemical reactions where the ef-
fects of molecular noise are taken into account [6]. It is based on discrete-state Markov
processes that explicitly represent the reactions as state-transitions between population
vectors. When the molecule numbers are large, the solution of the ODE description of
a reaction network and the mean of the corresponding stochastic model agree up to
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a small approximation error. If, however, small populations are involved, then only a
stochastic description can provide probabilities of events of interest such as probabil-
ities of switching between different expression states in gene regulatory networks or
the distribution of gene expression products. Moreover, even the mean behavior of the
stochastic model can largely deviate from the behavior of the deterministic model [13].
In such cases the parameters of the stochastic model rather then the parameters of the
deterministic model have to be estimated [16, 18, 20].

Here, we consider noisy time series measurements of the system state as they are
available from wet-lab experiments. Recent experimental imaging techniques such as
high-resolution fluorescence microscopy can measure small molecule counts with mea-
surement errors of less than one molecule [7]. We assume that the structure of the un-
derlying reaction network is known but the rate parameters of the network are unknown.
Then we identify those parameters that maximize the likelihood of the time series data.

Our main contribution consists in devising an efficient algorithm for the numerical
approximation of the likelihood and its derivatives w.r.t. the reaction rate constants. Pre-
vious techniques are based on Monte-Carlo sampling [18, 20] because the discrete state
space of the underlying model is typically infinite in several dimensions and a priori
a reasonable truncation of the state space is not availabe. Our method is not based on
sampling but directly calculates the likelihood using a dynamic truncation of the state
space. More precisely, we first show that the computation of the likelihood is equiv-
alent to the evaluation of a product of vectors and matrices. This product includes the
transition probability matrix of the associated continuous-time Markov process, i.e., the
solution of the Kolmogorov differential equations (KDEs). Since solving the KDEs is
infeasible, we propose two iterative approximation algorithms during which the state
space is truncated in an on-the-fly fashion, that is, during a certain time interval we
consider only those states that significantly contribute to the likelihood. One approach
exploits equidistant observation intervals while the other approach is particularly well
suited for observation intervals that are not equidistant. Both approaches take into ac-
count measurement noise during the observations.

After introducing the stochastic model in Section 2, we discuss dynamic state space
truncations for the transient probability distribution and its derivatives in Section 3. We
introduce the maximum likelihood method in Section 4 and present the approximation
methods in Section 5. Finally, we report on experimental results for two reaction net-
works (Section 6) and discuss related work in Section 7.

2 Discrete-State Stochastic Model

According to Gillespie’s theory of stochastic chemical kinetics, a well-stirred mixture
of n molecular species in a volume with fixed size and fixed temperature can be rep-
resented as a continuous-time Markov chain {X(t), t ≥ 0} [6]. The random vector
X(t) = (X1(t), . . . , Xn(t)) describes the chemical populations at time t, i.e., Xi(t)
is the number of molecules of type i ∈ {1, . . . , n} at time t. Thus, the state space of X
is Z

n
+ = {0, 1, . . .}n. The state changes of X are triggered by the occurrences of chem-

ical reactions, which are of m different types. For j ∈ {1, . . . , m} let vj ∈ Z
n be the

nonzero change vector of the j-th reaction type, that is, vj = v−
j + v+

j where v−
j con-

tains only non-positive entries, which specify how many molecules of each species are
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consumed (reactants) if an instance of the reaction occurs. The vector v+
j contains only

non-negative entries, which specify how many molecules of each species are produced
(products). Thus, if X(t) = x for some x ∈ Z

n
+ with x + v−

j being non-negative, then
X(t + dt) = x + vj is the state of the system after the occurrence of the j-th reaction
within the infinitesimal time interval [t, t + dt).

Each reaction type has an associated propensity function, denoted by α1, . . . , αm,
which is such that αj(x) ·dt is the probability that, given X(t) = x, one instance of the
j-th reaction occurs within [t, t+ dt). The value αj(x) is proportional to the number of
distinct reactant combinations in state x. More precisely, if x = (x1, . . . , xn) is a state
for which x + v−

j is nonnegative then, for reactions with at most two reactants,

αj(x) =

⎧⎪⎪⎨⎪⎪⎩
cj if v−

j = (0, . . . , 0),
cj · xi if v−

j = −ei,

cj · xi · x� if v−
j = −ei − e�,

cj ·
(
xi

2

)
= cj · xi·(xi−1)

2 if v−
j = −2 · ei,

(1)

where i �= �, cj > 0, and ei is the vector with the i-th entry 1 and all other entries 0.

Example 1. We consider the simple gene expression model described in [16] that
involves three chemical species, namely DNAON, DNAOFF, and mRNA, which are rep-
resented by the random variables X1(t), X2(t), and X3(t), respectively. The three pos-
sible reactions are DNAON →DNAOFF, DNAOFF →DNAON, and DNAON →DNAON+
mRNA. Thus, v−

1 = (−1, 0, 0), v+
1 = (0, 1, 0), v−

2 = (0,−1, 0), v+
2 = (1, 0, 0),

v−
3 = (−1, 0, 0) and v+

3 = (1, 0, 1). For a state x = (x1, x2, x3), the propensity func-
tions are α1(x) = c1 · x1, α2(x) = c2 · x2, and α3(x) = c3 · x1. Note that given the
initial state x = (1, 0, 0), at any time, either the DNA is active or not, i.e. x1 = 0 and
x2 = 1, or x1 = 1 and x2 = 0. Moreover, the state space of the model is infinite in
the third dimension. For a fixed time instant t > 0, no upper bound on the number of
mRNA is known a priori. All states x with x3 ∈ Z+ have positive probability if t > 0
but these probabilities will tend to zero as x3 →∞.

In general, the reaction rate constants cj refer to the probability that a randomly selected
pair of reactants collides and undergoes the j-th chemical reaction. It depends on the
volume and the temperature of the system as well as on the microphysical properties of
the reactant species. Since reactions of higher order (requiring more than two reactants)
are usually the result of several successive lower order reactions, we do not consider the
case of more than two reactants.

The Chemical Master Equation. For x ∈ Z
n
+ and t ≥ 0, let p(x, t) denote the proba-

bility Pr(X(t) = x) and let p(t) be the row vector with entries p(x, t).
Given v−

1 , . . . ,v−
m, v+

1 , . . . ,v+
m, α1, . . . , αm, and some initial distribution p(0), the

Markov chain X is uniquely specified and its evolution is given by the chemical master
equation (CME)

d
dtp(t) = p(t)Q, (2)

where Q is the infinitesimal generator matrix of X with Q(x,y) = αj(x) if y = x+vj

and x + v−
j ≥ 0. Note that, in order to simplify our presentation, we assume here that

all vectors vj are distinct. All remaining entries of Q are zero except for the diagonal
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entries which are equal to the negative row sum. The ordinary first-order differential
equation in (2) is a direct consequence of the Kolmogorov forward equation. Since X
is a regular Markov process, (2) has the general solution p(t) = p(0) · eQt, where eA is
the matrix exponential of a matrix A. If the state space of X is infinite, then we can only
compute approximations of p(t). But even if Q is finite, its size is often large because it
grows exponentially with the number of state variables. Therefore standard numerical
solution techniques for systems of first-order linear equations of the form of (2) are
infeasible. The reason is that the number of nonzero entries in Q often exceeds the
available memory capacity for systems of realistic size. If the populations of all species
remain small (at most a few hundreds) then the CME can be efficiently approximated
using projection methods [3, 10, 15] or fast uniformization methods [14, 17]. The idea
of these methods is to avoid an exhaustive state space exploration and, depending on a
certain time interval, restrict the analysis of the system to a subset of states.

Here, we are interested in the partial derivatives of p(t) w.r.t. the reaction rate con-
stants c = (c1, . . . , cm). In order to explicitly indicate the dependence of p(t) on the
vector c we write p(c, t) instead of p(t) and p(x, c, t) instead of p(x, t) if necessary.
We define the row vectors sj(c, t) as the derivative of p(c, t) w.r.t. cj , i.e.,

sj(c, t) = ∂p(c,t)
∂cj

= limΔc→0
p(c+Δcj ,t)−p(c,t)

Δc ,

where the vector Δcj is zero everywhere except for the j-th position that is equal to
Δc. We denote the entry in sj(c, t) that corresponds to state x by sj(x, c, t). Using (2),
we find that sj(c, t) is the unique solution of the system of ODEs

d
dtsj(c, t) = sj(c, t)Q + p(c, t) ∂

∂cj
Q, (3)

where j ∈ {1, . . . , m}. The initial condition is sj(x, c, 0) = 0 for all x and c since
p(x, c, 0) is independent of cj .

3 Dynamic State Space Truncation

The parameter estimation method that we propose in Section 5.1 builds on the approx-
imation of the transient distribution p(t) and the derivatives sj(c, t) for all j at a fixed
time instant t > 0. Therefore we now discuss how to solve (2) and (3) simultaneously
using an explicit fourth-order Runge-Kutta method and a dynamically truncated state
space. This truncation is necessary because models of chemical reaction networks typ-
ically have a very large or infinite number of states x with nonzero values for p(x, t)
and sj(x, c, t). For instance, the system in Example 1 is infinite in one dimension. In
order to keep the number of states, that are considered in a certain step of the numerical
integration, manageable we suggest a dynamic truncation of the state space that, for a
given time interval, neglects those states being not relevant during that time, that is, we
neglect states that have a probability that is smaller than a certain threshold.

First, we remark that the equation that corresponds to state x in (2) is given by

d
dtp(x, t) =

∑
j:x−v−

j ≥0 αj(x− vj)p(x − vj , t)− αj(x)p(x, t). (4)
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and it describes the change of the probability of state x as the difference between inflow
of probability at rate αj(x−vj) from direct predecessors x−vj and outflow of proba-
bility at rate αj(x). Assume now that an initial distribution p(0) is given. We choose a
small positive constant δ and define the set of significant states S = {x | p(x, 0) > δ}.
We then only integrate equations in (2) and (3) that belong to states in S. If h is the
time step of the numerical integration, then for the interval [t, t + h) we use the follow-
ing strategy to modify S according to the probability flow. We check for all successors
x + vj �∈ S of a state x ∈ S whether p(x + vj , t + h) becomes greater than δ at
time t + h as they receive “inflow” from their direct predecessors (see Eq. (4)). If the
probability that x + vj receives is greater δ, then we add x + vj to S. Note that since
we use a fourth-order method, states reachable within at most four transitions from a
state in S can be added during one step of the integration. On the other hand, whenever
p(x, t) becomes less or equal to δ for a state x ∈ S then we remove x from S. We
approximate the probabilities and derivatives of all states that are not considered during
[t, t + h) with zero. In this way the computational costs of the numerical integration is
drastically reduced, since typically the number of states with probabilities less than δ
is large and the main part of the probability mass is concentrated on a small number of
significant states. Due to the regular structure of X, the probability of a state decreases
exponentially with its distance to the “high probability” locations. If δ is small (e.g.
10−15) and the initial distribution is such that the main part of the probability mass (e.g.
99.99%) distributes on a manageable number of states, then even for long time horizons
the approximation of the transient distribution is accurate. For arbitrary Markov models,
the approximation error of the derivatives could, in principle, be large. For biochemical
reaction networks, however, the underlying Markov process is well-structured and the
sensitivity of the transient distribution w.r.t. the rate constants is comparatively small,
i.e., small changes of the rate constants result in a transient distribution that differs only
slightly from the original distribution. Therefore, the derivatives of insignificant states
are small and, in order to calibrate parameters, it is sufficient to consider the derivatives
of probabilities of significant states. It is impossible to explore the whole state space
and those parts containing most of the probability mass are most informative w.r.t. per-
tubations of the rate constants.

Example 2. We consider a simple enzyme reaction with three reactions that involve
four different species, namely enzymes (E), substrates (S), complex molecules (C), and
proteins (P). The reactions are complex formation (E+S→ C), dissociation of the com-
plex (C→E+S), and protein production (C→E+P). The corresponding rate functions are
α1(x) = c1 · x1 · x2, α2(x) = c2 · x3, and α3(x) = c3 · x3 where x = (x1, x2, x3, x4).
The change vectors are given by v−

1 = (−1,−1, 0, 0), v+
1 = (0, 0, 1, 0), v−

2 =
(0, 0,−1, 0), v+

2 = (1, 1, 0, 0), v−
3 = (0, 0,−1, 0), and v+

3 = (1, 0, 0, 1). We start ini-
tially with probability one in state x = (1000, 200, 0, 0) and compute p(t) and sj(c, t)
for t = 10, c = (1, 1, 0.1), and j ∈ {1, 2, 3}. In Table 1 we list the results of the ap-
proximation of p(t) and sj(c, t). We chose this model because it has a finite state space
and we can compare our approximation with the values obtained for δ = 0. The column
“Time” lists the running times of the computation. Obviously, the smaller δ the more
time consuming is the computation. The remaining columns refer to the maximum ab-
solute error of all entries in the vectors p(t) and sj(c, t) where we use as exact values
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Table 1. Approximated transient distribution and derivatives of the enzyme reaction network

δ Time
Maximum absolute error

p(t) s1(c, t) s2(c, t) s3(c, t)

0 10 h 0 0 0 0
10−20 47 sec 1 ·10−11 1 ·10−12 1 ·10−12 4 ·10−9

10−15 25 sec 1 ·10−11 8 ·10−11 9 ·10−11 2 ·10−8

10−10 10 sec 7 ·10−7 3 ·10−6 4 ·10−6 2 ·10−4

those obtained by setting δ = 0. Clearly, even if δ = 0 we have an approximation error
due to the numerical integration of (2) and (3), which is, however, very small compared
to the error that originates from the truncation of the state space.

A similar truncation effect can be obtained by sorting the entries of p(t) and succes-
sively removing the smallest entries until a fixed amount ε of probability mass is lost.
If ε is chosen proportional to the time step, then it is possible to bound the total ap-
proximation error of the probabilities, i.e., ε = ε̃h/t where ε̃ is the total approximation
error for a time horizon of length t. If memory requirements and running time are more
pressing then accuracy, then we can adjust the computational costs of the approximation
by keeping only the k most probable states in each step for some integer k.

4 Parameter Inference

Following the notation in [16], we assume that observations of a biochemical network
are made at time instances t1, . . . , tR ∈ R≥0 where t1 < . . . < tR. Moreover, we
assume that Oi(t�) is the observed number of species i at time t� for i ∈ {1, . . . , n}
and � ∈ {1, . . . , R}. Let O(t�) = (O1(t�), . . . , On(t�)) be the corresponding vector
of observations. Since these observations are typically subject to measurement errors,
we assume that Oi(t�) = Xi(t�) + εi(t�) where the error terms εi(t�) are independent
and identically normally distributed with mean zero and standard deviation σ. Note that
Xi(t�) is the true population of the i-th species at time t�. Clearly, this implies that, con-
ditional on Xi(t�), the random variable Oi(t�) is independent of all other observations
as well as independent of the history of X before time t�.

We assume further that for the unobserved process X we do not know the values of
the rate constants c1, . . . , cm and our aim is to estimate these constants. Similarly, the
exact standard deviation σ of the error terms is unknown and must be estimated1. Let f
denote the joint density of O(t1), . . . ,O(tR). Then the likelihood of the observations
is [12]

L = f (O(t1), . . . ,O(tR))

=
∑

x1
. . .

∑
xR

f (O(t1), . . . ,O(tR) | X(t1) = x1, . . . ,X(tR) = xR)

Pr (X(t1) = x1, . . . ,X(tR) = xR) ,

(5)

1 We remark that it is straightforward to extend the estimation framework that we present in the
sequel such that a covariance matrix for a multivariate normal distribution of the error terms is
estimated. In this way, different measurement errors of the species can be taken into account
as well as dependencies between error terms.
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that is, L is the probability to observe O(t1), . . . ,O(tR). Note that L depends on the
chosen rate parameters c since the probability measure Pr(·) does. Furthermore, L
depends on σ since the density f does. When necessary, we will make this dependence
explicit by writing L(c, σ) instead of L. We now seek constants c∗ and a standard
deviation σ∗ such that

L(c∗, σ∗) = max
σ,c

L(c, σ) (6)

where the maximum is taken over all σ > 0 and vectors c with all components strictly
positive. This optimization problem is known as the maximum likelihood problem [12].
Note that c∗ and σ∗ are random variables because they depend on the (random) obser-
vations O(t1), . . . ,O(tR).

If more than one sequence of observations is made, then the corresponding likelihood
is the product of the likelihoods of all individual sequences. More precisely, if Ok(tl)
is the k-th observation that has been observed at time instant tl where k ∈ {1, . . . , K},
then we define Lk(c, σ) as the probability to observe Ok(t1), . . . ,Ok(tR) and maxi-
mize ∏K

k=1 Lk(c, σ). (7)

In the sequel, we concentrate on expressions for Lk(c, σ) and ∂
∂cj
Lk(c, σ). We first

assume K = 1 and drop index k. We consider the case K > 1 later. In (5) we sum over
all state sequences x1, . . . ,xR such that Pr(X(t�) = x�, 1 ≤ � ≤ R) > 0. Since X has
a large or even infinite state space, it is computationally infeasible to explore all possible
sequences. In Section 5 we propose an algorithm to approximate the likelihoods and
their derivatives. We truncate the state space in a similar way as in Section 3 and use the
fact that (5) can be written as a product of vectors and matrices. Let φσ be the density
of the normal distribution with mean zero and standard deviation σ. Then

f (O(t1), . . . ,O(tR) | X(t1) = x1, . . . ,X(tR) = xR)

=
∏R

�=1

∏n
i=1 f (Oi(t�) | Xi(t�) = xi�)

=
∏R

�=1

∏n
i=1 φσ(Oi(t�)− xi�),

where x� = (x1�, . . . , xn�). If we write w(x�) for
∏n

i=1 φσ(Oi(t�) − xi�), then the
sequence x1, . . . ,xR has weight

∏R
�=1 w(x�) and, thus,

L =
∑
x1

. . .
∑
xR

Pr(X(t1) = x1, . . . ,X(tR) = xR)
R∏

�=1

w(x�). (8)

Moreover, for the probability of the sequence x1, . . . ,xR we have

Pr (X(t1) = x1, . . . ,X(tR) = xR) = p(x1, t1)P2(x1,x2) · · ·PR(xR−1,xR)

where P�(x,y) = Pr(X(t�) = y | X(t�−1) = x). Hence, (8) can be written as

L =
∑
x1

p(x1, t1)w(x1)
∑
x2

P2(x1,x2)w(x2) . . .
∑
xR

PR(xR−1,xR)w(xR). (9)
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Let P� be the matrix with entries P�(x,y) for all states x,y. Note that P� is the tran-
sition probability matrix of X for time step t� − t�−1 and thus the general solution
eQ(t�−t�−1) of the Kolmogorov forward and backward differential equations

d
dtP� = QP�,

d
dtP� = P�Q.

Using p(t1) = p(t0)P1 with t0 = 0, we can write (9) in matrix-vector form as

L = p(t0)P1W1P2W2 · · ·PRWRe. (10)

Here, e is the vector with all entries equal to one and W� is a diagonal matrix whose di-
agonal entries are all equal to w(x�) with � ∈ {1, . . . , R}, where W� is of the same size
as P�. Since it is in general not possible to analytically obtain parameters that maximize
L, we use optimization techniques to find c∗ and σ∗. Typically, such techniques iterate
over values of c and σ and increase the likelihood L(c, σ) by following the gradient.
Therefore, we need to calculate the derivatives ∂

∂cj
L and ∂

∂σL. For ∂
∂cj
L we obtain

∂
∂cj
L = ∂

∂cj
(p(t0)P1W1P2W2 · · ·PRWRe)

= p(t0)
(∑R

�=1

(
∂

∂cj
P�

)
W�

∏
�′ 
=� P�′W�′

)
e.

(11)

The derivative of L w.r.t. the standard deviation σ is derived analogously. The only
difference is that P1, . . . , PR are independent of σ but W1, . . . , WR depend on σ. It is
also important to note that expressions for partial derivatives of second order can be
derived in a similar way. These derivatives can then be used for an efficient gradient-
based local optimization.

For K > 1 observation sequences we can maximize the log-likelihood

log
∏K

k=1 Lk =
∑K

k=1 logLk, (12)

instead of the likelihood in (7), where we abbreviate Lk(c, σ) by Lk. Note that the
derivatives are then given by

∂
∂λ

∑K
k=1 logLk =

∑K
k=1

∂
∂λLk

Lk
, (13)

where λ is either cj or σ. It is also important to note that only the weights w(x�) depend
on k, that is, on the observed sequence Ok(t1), . . . ,Ok(tR). Thus, when we compute
Lk based on (10) we use for all k the same transition matrices P1, . . . , PR and the same
initial conditions p(t0), but possibly different matrices W1, . . . , WR.

5 Numerical Approximation Algorithm

In this section, we focus on the numerical approximation of the likelihood and the
corresponding derivatives w.r.t. the rate constants c1, . . . , cm. We propose two approx-
imation algorithms for the likelihood and its derivatives, a state-based likelihood ap-
proximation (SLA) and a path-based likelihood approximation (PLA). Both are based
on a dynamic truncation of the state space as suggested in Section 3. They differ in that
the PLA method exploits equidistant time series, that is, it is particularly efficient if
h = t�+1− t� for all � and if σ is not too large. The SLA algorithm works for arbitrarily
spaced time series and is efficient even if σ is large.
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5.1 State-Based Likelihood Approximation

The SLA algorithm calculates an approximation of the likelihood based on (10) by
traversing the matrix-vector product from the left to the right. The main idea behind
the algorithm is that instead of explicitly computing the matrices P�, we express the
vector-matrix product u(t�−1)P� as a system of ODEs similar to the CME (cf. Eq. (2)).
Here, u(t0), . . . ,u(tR) are row vectors obtained during the iteration over time points
t0, . . . , tR, that is, we define L recursively as L = u(tR)e with u(t0) = p(t0) and

u(t�) = u(t�−1)P�W� for all 1 ≤ � ≤ R,

where t0 = 0. Instead of computing P� explicitly, we solve R systems of ODEs
d
dt ũ(t) = ũ(t)Q (14)

with initial condition ũ(t�−1) = u(t�−1) for the time interval [t�−1, t�) where � ∈
{1, . . . , R}. After solving the �-th system of ODEs we set u(t�) = ũ(t�)W� and finally
compute L = u(tR)e. Since this is the same as solving the CME for different initial
conditions, we can use the dynamic truncation of the state space proposed in Section 3.
Since the vectors ũ(t�) do not sum up to one, we scale all entries by multiplication
with 1/(ũ(t�)e). This simplifies the truncation of the state space using the significance
threshold δ since after scaling it can be interpreted as a probability. In order to obtain
the correct (unscaled) likelihood, we compute L as L =

∏R
�=1(ũ(t�)e). We handle

the derivatives of L in a similar way. To shorten our presentation, we only consider
the derivative ∂

∂cj
L in the sequel. An iterative scheme for ∂

∂σL is derived analogously.

From (11) we obtain ∂
∂cj
L = uj(tR)e with uj(t0) = 0 and

uj(t�) = (uj(t�−1)P� + u(t�−1) ∂
∂cj

P�)W� for all 1 ≤ � ≤ R,

where 0 is the vector with all entries zero. Thus, during the solution of the �-th ODE in
(14) we simultaneously solve

d
dt ũj(t) = ũj(t)Q + ũ(t) ∂

∂cj
Q (15)

with initial condition ũj(t�−1) = uj(t�−1) for the time interval [t�−1, t�). As above,
we set uj(t�) = ũj(t�)W� and obtain ∂

∂cj
L as uj(tR)e.

Solving (14) and (15) simultaneously is equivalent to the computation of the partial
derivatives in (3) with different initial conditions. Thus, we can use the approximation
algorithm proposed in Section 3 to approximate uj(t�). Experimental results of the
finite enzyme reaction network (see Example 2) show that the approximation errors of
the likelihood and its derivatives are of the same order of magnitude as those of the
transient probabilities and their derivatives (not shown). Note, however, that, if σ is
small only few states contribute significantly to the likelihood. In this case, truncation
strategies based on sorting of vectors are more efficient without considerable accuracy
losses since the main part of the likelihood concentrates on very few entries (namely
those that correspond to states that are close to the observed populations).

In the case of K observation sequences we repeat the above algorithm in order to
sequentially compute Lk for k ∈ {1, . . . , K}. We exploit (12) and (13) to compute
the total log-likelihood and its derivatives as a sum of individual terms. Obviously, it is
possible to parallelize the SLA algorithm by computing Lk in parallel for all k.
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5.2 Path-Based Likelihood Approximation

If Δt = t�− t�−1 for all � then the matrices P1, . . . , PR in (10) are equal to the Δt-step
transition matrix T (Δt) with entries Pr(X(t + Δt) = y | X(t) = x). Note that since
we consider a time-homogeneous Markov process X, the matrix T (Δt) is independent
of t. The main idea of the PLA method is to iteratively compute those parts of T (Δt)
that correspond to state sequences (paths) x1, . . . ,xR that contribute significantly to L.
The algorithm can be summarized as follows, where we omit the argument Δt of T to
improve the readability and refer to the entries of T as T (x,y):

1. We compute the transient distribution p(t1) and its derivatives (w.r.t. c and σ) as
outlined in Section 3 using a significance threshold δ.

2. For each state x1 with significant probability p(x1, t1) we approximate the rows of
T and ∂

∂cj
T that correspond to x1 based on a transient analysis for Δt time units.

More precisely, if ex1 is the vector with all entries zero except for the entry that
corresponds to state x1 which is one, then we solve (2) with initial condition ex1

for Δt time units in order to approximate T (x1,x2) and ∂
∂cj

T (x1,x2) for all x2.
During this transient analysis we again apply the dynamic truncation of the state
space proposed in Section 3 with threshold δ.

3. We then store for each pair (x1,x2) the (partial) likelihood a(x1,x2) and its deriva-
tives:

a(x1,x2) = p(x1, t1) · w(x1) · T (x1,x2) · w(x2)
∂

∂cj
a(x1,x2) = ∂

∂cj
p(x1, t1) · w(x1) · T (x1,x2) · w(x2)

+p(x1, t1) · w(x1) · ∂
∂cj

T (x1,x2) · w(x2).

4. We reduce the number of considered pairs by sorting a(x1,x2) for all pairs (x1,x2)
calculated in the previous step and keep the most probable pairs (see also Section 3).

5. Next, we repeat steps 2-4, where in step 2 we start the analysis from all states
x2 that are the last element of a pair kept in the previous step. In step 3 we store
triples of states, say, (x1,x2,x3) and recursively compute their likelihood and the
corresponding derivatives by multiplication with T (x2,x3) and w(x3), i.e., for the
likelihood we compute

a(x1,x2,x3) = a(x1,x2) · T (x2,x3) · w(x3)
∂

∂cj
a(x1,x2,x3) = ∂

∂cj
a(x1,x2) · T (x2,x3) · w(x3)

+a(x1,x2) · ∂
∂cj

T (x2,x3) · w(x3).

Note that we may reuse some of the entries of T since they already have been calcu-
lated in a previous step. In step 4 we again reduce the number of triples (x1,x2,x3)
by sorting them according to their likelihood. We then keep the most probable
triples, and so on. Note that in step 4 we cannot use a fixed truncation threshold
δ to reduce the number of state sequences (or paths) since their probabilities may
become very small as the sequences become longer.

6. We stop the prolongation of paths x1, . . . ,x� when the time instance tR = Δt · R
is reached and compute an approximation of L and its derivatives by summing up
the corresponding values of all paths (cf. Eq. (8)).
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If we have more than one observation sequence, i.e., K > 1, then we repeat the pro-
cedure to compute Lk for all k and use (12) to calculate the total log-likelihood. Note
that the contribution of each path x1, . . . ,xR to Lk may be different for each k. It is,
however, likely that the entries of T can be reused not only during the computation
of each single Lk but also for different values of k. If many entries of T are reused
during the computation, the algorithm performs fast compared to other approaches. For
our experimental results in Section 6, we keep the ten most probable paths in step 4.
Even though this enforces a coarse approximation, the likelihood is approximated very
accurately if σ is small, since in this case only few paths contribute significantly to Lk.
On the other hand, if σ is large, then the approximation may become inaccurate de-
pending on the chosen truncation strategy. Another disadvantage of the PLA method is
that for non-equidistant time series, the performance is slow since we have to compute
(parts of) different transition matrices and, during the computation of Lk, the transition
probabilities cannot be reused.

6 Experimental Results

In this section we present experimental results of the SLA and PLA method. For equidis-
tant time series, we compare our approach to the approximate maximum likelihood
(AML) and the singular value decomposition (SVDL) method described by Reinker
et al. [16] (compare also Section 7). Since an implementation of the AML and SVDL
method was not available to us, we chose the same examples and experimental condi-
tions for the time series as Reinker et al. and compared our results to those listed in
the results section in [16]. We also consider non-equidistant time series. To the best of
our knowledge there exists no direct numerical approach for non-equidistant time series
with measurement error that is based on the maximum likelihood method.

We generated time series data for two different examples from systems biology us-
ing Monte-Carlo simulation [6] and added error terms εi(t�) to the population of the
i-th species at time t�. Besides the simple network described in Example 1 we con-
sider a more complex network with eight reactions and five species for the transcription
regulation of a repressor protein [16]:

1: mRNA → mRNA + M 5: DNA + D → DNA.D
2: M → ∅ 6: DNA.D → DNA+D
3: DNA.D → mRNA + DNA.D 7: M + M → D
4: mRNA → ∅ 8: D → M + M

The initial molecular populations are (2, 4, 2, 0, 0) for M, D, DNA, mRNA, and DNA.D.
The reachable state space of the model is infinite in three dimensions since the popula-
tions of mRNA, M, and D are unbounded. The rate constants are c = (0.043, 0.0007,
0.0715, 0.00395, 0.02, 0.4791, 0.083, 0.5). For the network in Example 1 we chose the
same parameters as Reinker et al., namely c = (0.0270, 0.1667, 0.40).

For the generation of time series data we fix the (true) constants c and the standard
deviation σ of the error terms. We use the SLA and PLA method to estimate c and σ
such that the likelihood of the time series becomes maximal under these parameters.
Since in practice only few observation sequences are available, we estimate the param-
eters based on K = 5 observation sequences. As suggested by Reinker et al., we repeat
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the generation of batches of five observation sequences and the estimation of parameters
100 times to approximate the mean and the standard deviation of the estimators.

Our algorithms for the approximation of the likelihood are implemented in C++
and we run them on an Intel Core i7 at 2.8 Ghz with 8 GB main memory. They are
linked to MATLAB’s optimization toolbox which we use to minimize the negative log-
likelihood. Since we use a global optimization method (MATLAB’s global search), the
running time of our method depends on the tightness of the intervals that we use as
constraints for the unknown parameters as well as on the number of starting points of
the global search procedure. We chose intervals that correspond to the order of magni-
tude of the parameters, i.e., if cj ∈ O(10n) for some n ∈ Z then we use the interval
[10n−1, 10n+1] as constraint for cj . E.g. if cj = 0.1 then n = −1 and we use the in-
terval [10−2, 100]. Moreover, for global search we used 20 starting points for the gene
expression example and 5 for the transcription regulation example. Note that this is the
only difference of our experimental conditions compared to Reinker et al. who use a
local optimization method and start the optimization with the true parameters.

In both algorithms we choose a significance threshold of δ = 10−15. Since the
PLA method becomes slow if the number of paths that are considered is large, in step 4
of the algorithm we reduce the number of paths that we consider by keeping only the 10
most probable paths. In this way, the computational effort of the PLA method remains
tractable even in the case of the transcription regulation network.

Table 2. Estimates for the simple gene expression model using equidistant time series

Δt (R) σ Method Time Average (standard deviation) of parameter estimates
c1 = 0.027 c2 = 0.1667 c3 = 0.4 σ

1.0 (300) 0.1 AML – 0.0268(0.0061) 0.1523(0.0424) 0.3741(0.0557) 0.1012(0.0031)
SVDL – 0.0229(0.0041) 0.1573(0.0691) 0.4594(0.1923) –
SLA 29.4 0.0297(0.0051) 0.1777(0.0361) 0.3974(0.0502) 0.1028(0.0612)
PLA 2.2 0.0300(0.0124) 0.1629(0.0867) 0.3892(0.0972) 0.1010(0.0792)

1.0 AML – 0.0257(0.0054) 0.1409(0.0402) 0.3461(0.0630) 1.0025(0.0504)
SVDL – 0.0295(0.0102) 0.1321(0.0787) 0.3842(0.2140) –
SLA 8.3 0.0278(0.0047) 0.1868(0.0339) 0.3946(0.0419) 0.9976(0.0476)
PLA 1.8 0.0278(0.0041) 0.1810(0.0294) 0.3938(0.0315) 0.9938(0.0465)

3.0 AML – 0.0250(0.0065) 0.1140(0.0337) 0.3160(0.0674) 3.0292(0.1393)
SVDL – – – – –
SLA 11.1 0.0285(0.0043) 0.1755(0.0346) 0.3938(0.0508) 2.9913(0.0733)
PLA 1.7 0.0275(0.0086) 0.1972(0.0902) 0.3894(0.0722) 3.0779(0.0887)

10.0 (30) 0.1 AML – – – – –
SVDL – – – – –
SLA 40.9 0.0273(0.0069) 0.1788(0.04786) 0.3931(0.0599) 0.1086(0.0630)
PLA 5.2 0.0277(0.0080) 0.1782(0.0517) 0.4057(0.0678) 0.1234(0.0523)

1.0 AML – – – – –
SVDL – – – – –
SLA 10.2 0.0283(0.0070) 0.1787(0.0523) 0.4018(0.0681) 0.9898(0.0829)
PLA 3.5 0.0243(0.0057) 0.1665(0.0400) 0.4031(0.0638) 1.0329(0.0859)

3.0 AML – – – – –
SVDL – – – – –
SLA 12.3 0.0300(0.0110) 0.1960(0.0788) 0.4025(0.0689) 2.9402(0.1304)
PLA 4.2 0.0210(0.0054) 0.1511(0.0534) 0.4042(0.0616) 3.0629(0.2249)
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Table 3. Estimates for the transcription regulation model using equidistant time series

Δt (R) Method Average (standard deviation) of parameter estimates
c1 = 0.043 c2 = 0.0007 c3 = 0.0715 c4 = 0.00395

1.0 (500) SVDL 0.0477(0.0155 ) 0.0006(0.0004) 0.0645(0.0190) 0.0110(0.0195)
PLA/SLA 0.0447(0.0036) 0.0007(0.0001) 0.0677(0.0115) 0.0034(0.0014)

10.0 (50) PLA/SLA 0.0417(0.0069) 0.0005(0.0002) 0.0680(0.0075) 0.0038(0.0026)

Δt (R) Method Average (standard deviation) of parameter estimates
c5 = 0.02 c6 = 0.4791 c7 = 0.083 c8 = 0.5

1.0 (500) SVDL 0.0159(0.0107) 0.2646(0.0761) 0.0149(0.0143) 0.0615(0.0332)
PLA/SLA 0.0193(0.0008) 0.4592(0.0169) 0.0848(0.0024) 0.5140(0.0166)

10.0 (50) PLA/SLA 0.0188(0.0039) 0.4359(0.0822) 0.0836(0.0016) 0.4892(0.0164)

6.1 Equidistant Time Series

In the equidistant case, the length of the observation intervals is Δt = t� − t�−1 for all
� ∈ {1, . . . , R}. In Table 2 and 3 we list the results given in [16] as well as the results
of our methods. Reinker et al. do not evaluate the AML method for larger intervals than
Δt = 1 because, as we will discuss in Section 7, the approximation error of the AML
method becomes huge in that case. Also, the SVDL method performs poor if σ is large
since it does not include measurement errors in the likelihood. Therefore, no results for
σ > 1.0 are provided in [16] for SVDL. In the first three columns we list Δt, the number
R of observation points and the true standard deviation σ of the error terms. In column
“Time” we compare the average running time (in seconds) of one parameter estimation
(out of 100) for SLA and PLA, i.e., the average running time of the maximization of
the likelihood based on K = 5 observation sequences. It is not meaningful to compare
the running times with those in [16] since different optimization methods are used and
experiments were run on different machines. Finally, we list estimation results for all
four methods (if available). We give the true parameters in the column headings and list
the average of 100 estimations and the standard deviation of the estimates (in brackets).

For the simple gene expression (Table 2) and Δt = 1.0, we find that SLA and PLA
have a similar accuracy for the estimation of σ but are consistently more accurate than
AML and SVDL for estimating the rate constants. If σ = 0.1, then the total absolute
error for the estimation of c is 0.041, 0.073, 0.016, 0.018 for AML, SVDL, SLA, PLA,
respectively. For σ = 1.0 we have total absolute errors of 0.081, 0.053, 0.026, 0.021 for
AML, SVDL, SLA, PLA. Finally, for σ = 3.0, AML has a total error of 0.139 while
the error for SLA and PLA is 0.017 and 0.041. For Δt = 10, the results of the SLA and
PLA method are accurate even though only 30 observation points are given. Since PLA
gives a much coarser approximation, its running time is always shorter (about three to
ten times shorter). If σ is large, SLA gives more accurate results than PLA.

In Table 3 we compare results of the transcription regulation for σ = 0. Note that, for
this example, Reinker et al. only give results for the SVDL method with Δt ≤ 1.0 and
σ = 0. Here, we compare results for Δt = 1.0 since in this case the SVDL method per-
forms best compared to smaller values of Δt. The SLA and PLA method consistently
perform better than the SVDL method since they approximate the likelihood more ac-
curately. If σ = 0, then the accuracy of SLA and PLA is the same (up to the fifth digit).



96 A. Andreychenko et al.

Therefore the results of SLA and PLA are combined in Table 3. The running time of
SLA is, however, much slower since it does not reuse the entries of the transition prob-
ability matrix T . For Δt = 1.0, one parameter estimation based on K = 5 observations
takes about 30 minutes for SLA and only about 2.4 minutes for PLA. For Δt = 10.0 we
have running times about 5 hours(SLA) and 27 minutes (PLA). As for the gene expres-
sion example, we expect for larger values of σ the results of SLA to be more accurate
than those of PLA.

6.2 Non-equidistant Time Series

Finally, we consider non-equidistant time series, which can only be handled by the SLA
method. During the Monte-Carlo simulation, we generate non-equidistant time series
by iteratively choosing t�+1 = t� + U(0, 5), where U(0, 5) is a random number that
is uniformly distributed on (0, 5) and t0 = 0. Note that the intervals are not only dif-
ferent within an observation sequence but also for different k, i.e., the times t1, . . . , tR
depend on the number k of the corresponding sequence. We consider the transcription
regulation model with σ = 1.0 and K = 5 as this is our most complex example. Note
that, since the accuracy of the estimation decreases as σ increases, we cannot expect
a similar accuracy as in Table 3. For a time horizon of t = 500 the average number
of observation points per sequence is R = 500/2.5 = 200. The estimates computed
by SLA are c∗1 = 0.0384(0.0343), c∗2 = 0.0010(0.0001), c∗3 = 0.0642(0.0249), c∗4 =
0.0044(0.0047), c∗5 = 0.0273(0.0073), c∗6 = 0.5498(0.1992), c∗7 = 0.0890(0.0154),
c∗8 = 0.5586(0.0716), and σ∗ = 0.9510(0.0211), where we averaged over 100 repeated
estimations and give the standard deviation in brackets. Recall that the true constants
are c1 = 0.043, c2 = 0.0007, c3 = 0.0715, c4 = 0.00395, c5 = 0.02, c6 = 0.4791,
c7 = 0.083, and c8 = 0.5. The average running time of one estimation was 19 minutes.

7 Related Work

In the context of stochastic chemical kinetics, parameter inference methods are either
based on Bayesian inference [2, 19, 21] or maximum likelihood estimation [16, 18, 20].
The advantage of the latter method is that the corresponding estimators are, in a sense,
the most informative estimates of unknown parameters [11] and have desirable math-
ematical properties such as unbiasedness, efficiency, and normality [12]. On the other
hand, the computational complexity of maximum likelihood estimation is high. If an
analytic solution of (6) is not possible, then, as a part of the nonlinear optimization
problem, the likelihood and its derivatives have to be calculated. Monte-Carlo simu-
lation has been used to estimate the likelihood [18, 20]. During the repeated random
sampling it is difficult to explore those parts of the state space that are unlikely un-
der the current rate parameters. Thus, especially if the rates are very different from the
true parameters, many simulation runs are necessary to calculate an accurate approxi-
mation of the likelihood. To the best of our knowledge, Reinker et al. provide the first
maximum likelihood estimation that is not based on Monte-Carlo simulation but calcu-
lates the likelihood numerically [16]. They propose the AML method during which the
matrices P� are approximated. In order to keep the computational effort low, they allow
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at most two jumps of the Markov process during [t�, t�+1). Moreover, they ignore all
states for which |Oi(t�) − xi�| is greater than 3σ. This has the disadvantage that L is
zero (and its derivative) if the values for the rate constants are far off the true values. If
L is zero, then the derivatives provide no information about how the rate constants have
to be altered in order to increase the likelihood. Thus, initially very good estimates for
the rate constants must be known to apply this kind of truncation. On the other hand,
the method that we propose neglects only insignificant terms of the likelihood. For this
reason the likelihood and its derivatives do not become zero during the computation
and it is always possible to follow the gradient in order to obtain higher likelihoods.
Another disadvantage of the AML method is that, if the observation intervals are longer,
the likelihood may not be approximated accurately since the assumption that only two
reactions occur within an observation interval is not valid. Extending the AML approach
to more than two steps would result in huge space requirements and perform slow since
the state space is explored in a breath-first search manner and too many states would
be considered even though their contribution to the likelihood is very small. In our
approach we allow an arbitrary number of reactions during [t�, t�+1)2. Therefore, our
method is not restricted to reaction networks where the speed of all reactions is at most
of the same time scale as the observation intervals. The second approach proposed by
Reinker et al., called SVDL method, is based on the assumption that the propensities αj

stay constant during [t�, t�+1). Again, this assumption only applies to small observation
intervals. Moreover, the SVDL method does not take into account measurement errors
and is thus only appropriate if σ is very small. Further differences between the approach
of Reinker et al. and our approach are that we use a global optimization technique
(MATLAB’s global search) while Reinker et al. use a local solver, namely the quasi-
Newton method. Finally, the approach in [16] requires observations at equidistant time
instances, which is not necessary for the SLA method.

8 Conclusion

Parameter inference for stochastic models of cellular processes demands huge com-
putational resources. We proposed two numerical methods, called SLA and PLA, that
approximate maximum likelihood estimators for a given set of observations. Both meth-
ods do not make any assumptions about the number of reactions that occur within an
observation interval. The SLA method allows for an estimation based on arbitrarily
spaced intervals while the PLA method requires equidistant intervals.

Many reaction networks involve both small populations and large populations. In this
case stochastic hybrid models are most appropriate since they combine the advantages
of deterministic and stochastic representations. We plan to extend our algorithms to the
stochastic hybrid setting proposed in [9] to allow inference for more complex networks.
Further future work also includes more rigorous truncations for the SLA method and
the parallelization of the algorithm.

2 During one step of our numerical integration, we assume that only four reactions are possible.
The time step h of the numerical integration does, however, not depend on the [t�, t�+1) but is
dynamically chosen in such a way that performing more than four steps is very unlikely.
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Abstract. We propose an approach for reducing the TSO reachability analysis
of concurrent programs to their SC reachability analysis, under some conditions
on the explored behaviors. First, we propose a linear code-to-code translation
that takes as input a concurrent program P and produces a concurrent program P′
such that, running P′ under SC yields the same set of reachable (shared) states
as running P under TSO with at most k context-switches for each thread, for a
fixed k. Basically, we show that it is possible to use only O(k) additional copies
of the shared variables of P as local variables to simulate the store buffers, even if
they are unbounded. Furthermore, we show that our translation can be extended
so that an unbounded number of context-switches is possible, under the condition
that each write operation sent to the store buffer stays there for at most k context-
switches of the thread. Experimental results show that bugs due to TSO can be
detected with small bounds, using off-the-shelf SC analysis tools.

1 Introduction

The classical memory model for concurrent programs with shared memory is the
sequential consistency (SC) model, where the behaviors of the different threads are
interleaved while the order between actions of each single thread is maintained. For
performance reasons, modern multi-processors as well as compilers may reorder some
memory access operations. This leads to the adoption of weak (or relaxed) memory
models such as TSO (Total Store Ordering). In this model, store operations are not im-
mediately visible to all threads (as in SC). Each thread is supposed to have a store buffer
where store operations are kept in order to be executed later. While the order of the store
operations issued by a same thread are executed (i.e., written in the main memory) in the
same order (i.e., the store buffers are FIFO), load operations by this thread can overtake
pending stores in the buffer if they concern different variables, and read values from the
main memory. Loads from a variable for which there is a store operation in the buffer
gets the value of the last of such operation. The TSO model is in some sense the kernel
of many common weak memory models [15,19].

Verifying programs by taking into account the effect of the weak memory models
such as TSO is a nontrivial problem, both from the theoretical and the practical point of
views. Although store buffers are necessarily finite in actual machines and implemen-
tations, we should not assume any fixed bound on their size in order to reason about the
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correctness of general algorithms. For safety properties, the general question to address
is whether there is a size of the buffers for which the program can reach some bad con-
figuration, which is equivalent to check the reachability of bad configurations by con-
sidering unbounded buffers. This leads to the adoption of formal models (based on state
machines with queues) for which the decidability of problems such as checking state
reachability is not straightforward. It has been shown in [1] that the state reachability
problem for TSO is actually decidable (for finite-data programs), but highly complex
(nonprimitive recursive). This leaves open the problem of defining efficient verifica-
tion techniques for TSO. Necessarily, such verification techniques should be based on
upper/under-approximate analysis.

Roughly speaking, the source of complexity in TSO verification is that store buffers
can encode lossy channels, and vice-versa. Then, the issue we address in this paper is
how to define a verification approach for TSO that allows an efficient encoding of the
store buffers, i.e., in a way that does not depend on their size. More precisely, we in-
vestigate an approach for reducing, with a limited overhead (i.e., a polynomial increase
in the size of the program) the reachability problem under TSO (with unbounded store
buffers) to the same problem under SC.

Our first idea is to consider the concept of context-bounded analysis in the case of
TSO. Context-bounding has been shown (experimentally) to be a suitable notion of
behavior coverage for effective bug detection in concurrent programs running under the
SC model [14]. Moreover, this approach provides a decidable analysis (under SC) in
the case of programs with recursive procedure calls [17]. In this paper, we extend this
concept to TSO as follows. We consider that a context in this case is a computation
segment where only one thread is active, and where all updates of the main memory use
store operations taken from the store buffer of that thread. Then, we prove that for every
fixed bound k, and for every concurrent program P, it is possible to construct, using a
code-to-code translation, another concurrent program P′ such that running P′ under SC
yields the same set of reachable (shared) states as running P under TSO with at most
k context-switches for each thread. Our translation preserves the class of the original
program in the sense that P and P′ have the same features (e.g., recursive procedure
calls, dynamic creation of threads, data manipulation). Basically, we show that encoding
store buffers can be done using O(k) additional copies of the shared variables as local
variables. The obtained program has the same type of data structures and variables and
the same control features (recursion, dynamic thread creation) as the original one. As a
consequence, we obtain for instance that for finite-data programs, even when recursion
is allowed, the context-bounded analysis of TSO programs is decidable (whereas the
unrestricted reachability problem in this case is undecidable as in SC).

The translation we provide from TSO to SC, regardless of the decidability issue,
does not depend fundamentally from the fact that we have a finite number of context
switches for each thread. The key property we use is the fact that each store operation
produced by some thread cannot stay in its store buffer for more than a bounded number
of context switches of that thread. (This of course does not exclude that each thread
may have an unbounded number of context switches.) Therefore, we define a notion for
restricting the set of analyzed behaviors of TSO programs which consists in bounding
the age of each store operation in the buffers. The age of a store operation, produced
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by a thread T , is the number of context switches made by T since its production. We
show that as before, for any bound on the age of all stores, it is possible to translate
the reachability problem from TSO to SC. For the case of programs with recursion this
translation does not provide a decision procedure. (The targeted class of programs is
concurrent programs with an unbounded number of context switches.) However, in the
case of finite-data programs without recursive procedures, this translation provides a
decision procedure for the TSO reachability problem under store-age bounding (since
obviously SC reachability for finite-state concurrent programs is decidable).

Our code-to-code translations allow to smoothly transfer present and future decid-
ability and complexity results from the SC to the TSO case for the same class of pro-
grams. More importantly, our translations allow to use existing analysis and verification
tools designed for SC in order to perform the same kind of analysis and verification for
TSO. To show its practicability, we have applied our approach in checking that standard
mutual exclusion protocols for SC are incorrect under TSO, using the tools POIROT [10]
and ESBMC [4]. In our experiments, bugs appear for small bounds (≤ 2).

Related work. Context-bounded analysis has been developed in a series of paper in
the recent year [17,3,14,11,8,9]. So far, it has been considered only for the SC mem-
ory model. As far as we know, the only works addressing the verification problem for
TSO programs with unbounded store buffers are [1,13]. In [1], the decidability and the
complexity of the state reachability problem under TSO (and other memory models) is
considered for a finite number of finite-state threads. The decision procedure for TSO
given in that paper is based on a reduction to the reachability problem in lossy chan-
nel systems, through a nontrivial and complex encoding. In [13], an approach based on
Regular Model Checking is adopted. The paper proposes techniques for computing the
set of reachable configurations in TSO programs. If the algorithm terminates, it provides
the precise set of reachable configurations, however termination is not guaranteed.

2 Concurrent Programs

We define in this section the class of programs we consider. Basically, we consider
concurrent programs with procedure calls and dynamic thread creation. We give the
syntax of these programs and describe their semantics according to both SC (Sequential
Consistency) and TSO (Total Store Order) memory models.

2.1 Syntax

The syntax of concurrent programs is given by the grammar in Fig. 1. A program has a
finite set of processes defining the code executed by parallel threads that can be created
dynamically by the spawn statement. The program has a distinguished process main
that is initially executed to start running the program. We assume that there is a finite
number of variables Svar that are shared by all the threads. They are used for the com-
munication between threads at context switch points. We also assume that there is a
finite number of variables Gvar that are global to all procedures. During its execution,
each thread has its own copy of these global variables (that are not shared with the other
threads) which can be used for value passing at procedure calls and returns. We consider
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〈pgm〉 ::= Svar s̄ Gvar ḡ 〈main〉〈process〉∗〈procedure〉∗
〈main〉 ::= main p begin 〈lstmt〉+ end

〈process〉 ::= process p begin 〈lstmt〉+ end
〈procedure〉 ::= procedure f begin 〈lstmt〉+ end

〈lstmt〉 ::= loc : 〈stmt〉;
〈stmt〉 ::= 〈simp stmt〉 | 〈comp stmt〉 | 〈sync stmt〉

〈simp stmt〉 ::= skip | assume(〈pred〉) | assert(〈pred〉) | ḡ := 〈expr〉 | call f | return
〈comp stmt〉 ::= if(〈pred〉) then 〈lstmt〉+ else 〈lstmt〉+ fi | while (〈pred〉) do 〈lstmt〉+ od
〈sync stmt〉 ::= atomic begin | atomic end | spawn p | fence | g := s | s := g

Fig. 1. The grammar for concurrent programs

that variables range over some (potentially infinite) data domain D. We assume that we
dispose of a language of expressions 〈expr〉 interpreted over D, and of a language of
predicates 〈pred〉 on global variables ranging over D. The program has a finite num-
ber of control locations Loc. Its code is a nonempty sequence of labelled statements
loc : 〈stmt〉 where loc is a control location, and 〈stmt〉 belongs to a simple language
of C-like statements.

2.2 SC Semantics

We describe the semantics informally and progressively. Let us first consider the case of
sequential programs where statements are restricted to simple statements 〈simp stmt〉
and composed statements 〈comp stmt〉. Then, the program has a single thread that can
make procedure calls and manipulate only global variables. In that case, shared vari-
ables are omitted, and a configuration can be represented by a triple 〈globals,loc,stack〉
where globals is a valuation of the global variables, loc is a control location, and stack
is a content of the call stack. The elements of this stack are the control locations of
the pending procedure calls. A transition relation between these configurations can be
defined as usual. At a procedure call, the current location of the caller is pushed in the
stack, and the control moves to the initial location of the callee. At a procedure return,
the first control location in the stack is popped, and the control moves to that location.

Now, for the general case, a concurrent program has several parallel threads T1, . . . ,Tn

that have been created using the spawn statement. As mentioned above, each thread has
its own copy of the global variables Gvar that is used throughout its procedure calls
and returns, and all the threads share the variables in Svar. Then, a SC-configuration
is a tuple of the form 〈shared, thread1, . . . , threadn〉 for some n ≥ 1, where shared is a
valuation of the shared variables, and for each i ∈ {1, . . . ,n}, threadi is the local config-
uration of thread Ti. Such local configuration is defined as for a sequential program by
a triple 〈globalsi,loci,stacki〉, plus an additional flag criticali that indicates if the cur-
rent thread is executing a critical section of the code that has to be executed atomically
(without interference of other threads). When the thread executes an atomic begin
statement, this flag is set to 1, and it is set to 0 at the next atomic end. The spawn
statement creates a new thread, making the configuration of the program grow by the
addition of the local configuration of the new thread (i.e., the number n of threads
can get arbitrarily large, in general). Actions of different threads are interleaved in a
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nondeterministic way, under the restriction that if a thread T has opened a critical sec-
tion, no other thread can execute an action until T closes its section. In the SC model,
write operations to shared variables are immediately visible to all threads. Then, a tran-
sition relation between global configurations is defined, where at each step one single

thread is active. We denote this relation
i=⇒SC where i ∈ {1, . . . ,n} is the index of the

thread Ti that has performed the corresponding step.

2.3 TSO Semantics

In the TSO memory model, the SC semantics is relaxed by allowing that read opera-
tions can overtake write operations by the same thread on different shared variables.
This corresponds to the use of FIFO buffers where write operations to shared vari-
ables can be stored and executed in a delayed way, allowing read operations from the
main memory (but on different variables) to overtake them. We define hereafter an op-
erational semantics corresponding to this memory model, in the spirit of the formal
model defined in [1]. A store buffer is associated with each thread. Then, a global TSO-
configuration of the program is defined as in the SC case, except that a local configura-
tion of a thread includes also the content of its store buffer, i.e., it is a tuple of the form
〈globalsi,loci,stacki,criticali,bufferi〉. Then, the semantics is defined as for SC, except
for assignment operations involving shared variables, and for the synchronization ac-
tions atomic begin and atomic end. Let us consider each of these cases, and assume
that the active thread is Ti: For an assignment of the form s := g that writes some value
d (the one stored in g) to the shared variable s, a pair (s,d) is sent to the store buffer,
that is, the buffer of Ti is updated to buffer′i = (s,d)bufferi. For an assignment of the
form g := s that loads a value from the shared variable s to the variable g, two cases
can occur. First, if a pair (s,d) is still pending in bufferi, then the load returns the value
d corresponding to the last of such pair in the buffer. Otherwise, the returned value is
the one stored for s in the main memory. As for atomic begin and atomic end, they
have the same semantics as in the SC cases, except that it is required that their execution
can only occur when bufferi is empty. Notice that these statements allow in particular
to encode fences, i.e., actions that cannot be reordered w.r.t. any other actions. Indeed,
a fence can be encoded as atomic begin;atomic end.

In addition to transitions due to the different threads, memory updates can occur at
any time. A memory update consists in getting some (s,d) from some store buffer (of
any thread) and updating the value of s in the main memory to d, i.e., if for some j ∈
{1, . . . ,n}, buffer j = buffer′j(s,d), then d is stored in the main memory as a new value
for s, and the buffer of Tj is updated to buffer′j. Then, we can define a transition relation

between global configurations
α=⇒TSO, where α is equal to the index j ∈ {1, . . . ,n} if

the transition corresponds to a memory update using buffer j, or otherwise, to the index
j of the thread Tj that has performed the transition step.

2.4 Reachability Problems

Let � ∈ {SC,TSO}. We define =⇒� to be the union of the relations
i=⇒� for all i ∈

{1, . . . ,n}, and we denote by
∗=⇒� the reflexive-transitive closure of =⇒�.
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Then, the �-reachability problem is, given a �-configuration γ and a valuation of the
shared variables shared, to determine if there is a �-configuration γ′ such that: (1) the
valuation of the shared variables in γ′ is precisely shared, and (2) γ ∗=⇒� γ′. In such a
case, we say that γ′ and shared are �-reachable from γ.

Let us consider a computation ρ = γ0
α0=⇒� γ1

α1=⇒� γ2 · · · αm−1=⇒� γm. A context-switch
point in ρ is a configuration γ j, for some j ≥ 1, such that α j−1 �= α j . A computation
round of a thread Ti in ρ is a computation segment (1) occurring between two consec-
utive points in ρ that are either context-switch or extremal points, and (2) where all
transitions are labeled by the same index i, i.e., all transitions are either made by Ti,
or are memory updates using the store buffer of Ti (in the case of TSO). Clearly, every
computation can be seen as a sequence of computation rounds of different threads. In
general, the number of rounds that a thread can have along a computation is unbounded.

Given a bound k ∈N, the k-round �-reachability problem is, given a �-configurations
γ and a valuation of the shared variables shared, to determine if there is a �-configuration
γ′ such that: (1) the valuation of the shared variables in γ′ is precisely shared, and (2) γ′
is reachable from γ by a computation where every thread Ti has at most k computation
rounds. In that case, we say that γ′ and shared are k-round �-reachable from γ.

3 Bounded-Round Reachability: From TSO to SC

In this section we provide a code-to-code translation that, given a concurrent program P
and a fixed bound k ∈ N, builds another concurrent program P′ which simulates P with
the property that for any shared state shared, shared is k-round TSO-reachable in P iff
shared is k-round SC-reachable in P′. The interesting feature of our translation is that
the size of the constructed program P′ is linear in the size of P. Furthermore, P′ is in the
same class of programs as P in the sense that it uses the same kind of control primitives
(procedure calls and thread creation) and the same kind of data-structures and variables;
the encoding of the unbounded store buffers requires only adding, as global variables,
(k + 1) copies of the shared variables and k Boolean variables per process.

In the following, we assume that the number of rounds that a thread of P can have
along any computation is bounded by (k+1), and these rounds are indexed from 0 to k.

3.1 Simulating Store Buffers: Case k = 1

Before giving the details of the translation, let us present the main ideas behind it and
justify its correctness. Assume (for the moment) that k = 1. Then, let us focus on the
behavior of one particular thread, say T , and consider its computation rounds and its
interactions with its environment (i.e., the set of all the other threads) at context switch
points. For that, let us project computations on what is visible to T , i.e., the configura-
tions are projected on the shared variables and the local configuration of T , and we only
consider the two computation rounds of T which are of the form:

〈shared0,(globals0,loc0,stack0,critical0,buffer0)〉 ∗=⇒T SO

〈shared′0,(globals1,loc1,stack1,critical1,buffer1)〉 (1)

〈shared1,(globals1,loc1,stack1,critical1,buffer1)〉 ∗=⇒T SO

〈shared′1,(globals2,loc2,stack2,critical2,buffer2)〉 (2)
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Notice that the local configurations of T at the end of round 0 and at the beginning of
the round 1 are the same.

Encoding the store buffers. In the following, we show that we can use a finite number
of global variables to encode the (unbounded) store buffers. This can be done based
on two main observations. First, in order to execute correctly a load operation of T on
some shared variable x, we need to know whether a store operation on x is still pending
in its store buffer, and in this case, we need the last value of such operation, or otherwise
we need the value of x in the main memory. Since in each round, only T is active and
only operations in its store buffer can be used to modify the main memory, the number
of information needed to execute correctly loads is finite and corresponds to the last
values written by T to each of the variables composed with the initial content of the
main memory (at the beginning of the round). For this purpose, we introduce a vector
of data named View which is indexed with the shared variables of P. More precisely,
View[x] contains the valuation for the load of the variable x.

On the other hand, the order in which store operations of T (sent to the store buffer)
on different variables have been consumed (written into the main memory) is not impor-
tant. In fact, only the last consumed store operation to each variable is relevant. Again,
this is true because only T is active during a round, and only its own store buffer can
be used to update the main memory. Therefore, given a round j we also define (1) a
Boolean vector Mask j such that Mask j[x] holds if there is a store operation on x in the
buffer of T that is used to update the main memory at round j, and (2) a vector of data
Queuej such that, if Mask j[x] holds then Queuej[x] contains the last value that will be
written in the shared memory corresponding to x at round j (otherwise it is undefined).

Let us consider the concurrent program P′ running under SC built from the con-
current program P by adding to each process of P the following global variables:
(1) a vector of data named View, (2) two Boolean vectors Mask0 and Mask1, and
(3) two vectors of data Queue0 and Queue1. Then, for any local TSO configuration
〈shared,(globals,loc,stack,critical,buffer)〉 of P, we can associate the following local SC
configuration 〈shared,((globals,View,Mask0,Mask1,Queue0,Queue1),loc,stack,critical)〉 of
P′ such that the following conditions are satisfied: (i) the value of View[x] corresponds
to the value of the last store operation to x still pending in the store buffer buffer if such
operation exists, otherwise the value View[x] is the value of the variable x in the main
memory, and (ii) for every j ∈ {0,1}, Mask j[x] holds true iff at least one store operation
on x pending in the store buffer buffer will update the shared memory in round j, and
Queuej[x] contains the last pending value written into x and consumed at round j.

Simulation of P by P′. In the following, we construct for any two computation rounds
of a thread of P, a two computation rounds of a thread of P′ such that the invariants
between the configurations of P and P′ are preserved along the simulation.

For the issue of updating the main memory and of passing the store buffer from a
round to the next one. We assume w.l.o.g. that the store buffer of any thread of P is
empty at the end of the considered computation.

Let us consider first the special case where all store operations produced (sent to the
store buffer) in round j are also consumed (written to the main memory) in the same
round. It is actually possible to consider that all stores are immediately written to the
main memory without store buffering, i.e., as in the SC model.
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Consider now the case where not all stores produced in round 0 are consumed in
round 0. So for instance, at the end of the execution of round 0 given by (1), we must
ensure that the main memory contains shared′0, and we must pass buffer1 to the sec-
ond round. The computation in round 0 can be seen as the concatenation of two sub-
computations, ρ0

0 where all produced stores are consumed in round 0, followed by ρ0
1

where all stores are consumed in round 1. (Notice that, since the store buffer is a FIFO
queue, store operations that are consumed in round 0 are necessarily performed (i.e.,
sent to the buffer) by T before those that will remain for round 1.) Then, it is clear that
shared′0 is the result of executing ρ0

0, and buffer1 contains all stores produced in ρ0
1.

During the simulation of round 0 by P′, the point p separating ρ0
0 and ρ0

1 is nondeter-
ministically guessed. The stores produced along the segment ρ0

0 are written immediately
to the main memory as soon as they are produced. So, when the point p is reached, the
content of the main memory is precisely shared′0. During the simulation of ρ0

1, two
operations are performed by P′: (1) maintaining the view of T in round 0 by updating
View, and (2) keeping in Mask1 and Queue1 the information about the last values sent
to each variable in ρ0

1. So, at the end of round 0, the pair Mask1 and Queue1 represent
the summary of buffer1.

The simulation of round 1 by P′ starts from the new state of the shared memory
shared1 (which may be different from shared′0 as other threads could have changed it).
Then, the main memory is immediately updated by P′ using the content of Mask1 and
Queue1. Intuitively, since all stores in buffer1 are supposed to be consumed in round
1, and again since T is the only active thread, we execute all these store operations at
the beginning of round 1. The vector View is now updated as follows. Starting from
the view obtained at the end of the previous round, we only change the valuation of all
those variables x for which no store operations are pending in the store buffer for it. For
all such variables x we update its valuation with the one of x contained in the shared
memory (View[x] := x). Now, the simulation of round 1 can proceed. Since all stores
produced in this last round are supposed to be consumed by the end of this round, they
are immediately written into the shared memory.

3.2 Simulating Store Buffers: General Case

The generalization to bounds k greater than 1 requires some care. The additional dif-
ficulty comes from the fact that stores produced at some round will not necessarily be
consumed in the next one (as in the previous case), but may stay in the buffer for several
rounds. We start by defining the set of shared and global variables of P′, denoted S′ and
G′ respectively, and describe the role they play in P′:

Shared variables: the set of shared variables of P and P′ are the same, that is, S′ = S,
with domP(x) = domP′(x) for every x ∈ S.

Global variables: The set of global variables P′ is defined as

G′ = G∪
(⋃k

j=0(Queuej ∪Mask j)
)
∪View∪{r TSO,r SC,sim}, where

– for each j ∈ {0, . . . ,k}, Queuej = {queue j x | x ∈ S}, and
domP′(queue j x) = domP(x) for every x ∈ S;

– for each j ∈ {0, . . . ,k}, Mask j = {mask j x | x∈ S}, and domP′(queue j x) =
{true,false} for every x ∈ S;
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– View = {view x | x ∈ S}, with domP′(view x) = domP(x) for every x ∈ S;
– r TSO and r SC are two fresh variables whose domain is the set of round in-

dices, that is, {0, . . . ,k};
– sim is a new variable whose domain is {true,false}.

For sake of simplicity, we denote a variable named queue j x also as Queuej[x], for
every j and x ∈ S. Similarly, for the set Mask j and View.

Next, we associate a “meaning” to each variable of P′ which represents also the
invariant we maintain during the simulation of P by P′.

Invariants for variables. The shared variables of S′ keep the same valuation of the
ones of P at context-switch points along the simulation. The variables in View is de-
fined as in Sec. 3.1. The variables Queuej and Mask j, with j ∈ {0, . . . ,k}, maintain the
invariant that at the beginning of the simulation of round j, Mask j[x] holds true iff at
least one write operation on x produced in the previous rounds will update the shared
memory in round j, and Queuej[x] contains the last value written into x. Variable r SC
keeps track of the round under simulation, and r TSO maintains the round number in
which next write operation will be applied to the shared-memory. The global variable
sim holds true iff the thread is simulating a round (which is mainly used to detect when
a new round starts), and the global variables in G are used in the same way they were
used in P. The program P′ we are going to define maintains the invariants defined above
along all its executions.

Simulation of P by P′. Here we first describe how P′ simulates P for k = 2, and then
generalize it for arbitrary values of k. For round 0, there is of course the case where
all stores are consumed in the same round, or in round 0 and in round 1. Those cases
are similar to what we have seen for k = 1. The interesting case is when there are
stores that are consumed in round 2. Let us consider that the computation in round 0 is
the concatenation of three sub-computations ρ0

0, ρ0
1, and ρ0

2 such that ρ0
i represent the

segment where all stores are consumed in round i.
The simulation of ρ0

0 and ρ0
1 is as before. (Stores produced in ρ0

0 are written immedi-
ately to the main memory, and stores produced in ρ0

1 are summarized using Mask1 and
Queue1.) Then, during the simulation of ρ0

2, the sequence of stores is summarized using
a new pair of vectors Mask2 and Queue2. (Notice that stores produced in ρ0

1 and ρ0
2 are

also used in updating View in order to maintain a consistent view of the store buffer
during round 0.)

Then, at the beginning of round 1 (i.e., after the modification of the main memory
due to the context switch), the needed information about the store buffer can be obtained
by composing the contents of Mask2 and Queue2 with Mask1 and Queue1 which allow
us to compute the new valuation of View. (Indeed, the store buffer at this point contains
all stores produced in round 0 that will be consumed in rounds 1 and 2.) Moreover,
for the same reason we have already explained before, it is actually possible at this
point to write immediately to the memory all stores that are supposed to be executed
in round 1. After this update of the main memory, the simulation of round 1 can start,
and since there are stores in the buffer that will be consumed in round 2, this means
that all forthcoming stores are also going to be consumed in round 2. Therefore, during
this simulation, the vectors Mask2 and Queue2 must be updated. At the end of round 1,
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these vectors contain the summary of all the stores that have been produced in rounds 0
and 1 and that will consumed in round 2.

After the change of the main memory due to the context switch, the memory content
can be updated using Mask2 and Queue2 (all stores in the buffer can be flushed), and
the simulation of round 2 can be done (by writing immediately stores to the memory).

The extension to any k should now be clear. In general, we maintain the invariant that
at the beginning of every round j, for every �∈ { j, . . . ,k}, the vectors Mask� and Queue�

represent the summary of all stores produced in rounds i < j that will be consumed at
round �. Moreover, we also know what is the round r ≥ j in which the next produced
store will be consumed. The simulation starts of round j by updating the main memory
using the content of Mask j and Queuej, and then, when r = j, the simulation is done
by writing stores to the memory, and when r is incremented (nondeterministically), the
stores are used to update Maskr and Queuer.

From what we have seen above, it is possible to simulate store buffers using addi-
tional copies of the shared variables, and therefore, it is possible to simulate the TSO
behaviors of a concurrent program P under a bounded number of rounds by SC behav-
iors of a concurrent program P′. Notice that the latter is supposed to be executed under
the SC semantics without any restriction on its behaviors. In order to capture the fact
that P′ will perform only execution corresponding to rounds in P, we must enforce in
the code of P′ that the simulation of each round of P must be done in an atomic way.

3.3 Code-to-Code Translation

In this section we provide our code-to-code translation from P to P′. The translation
from P to P′ that we provide is quite straightforward except for particular points in the
simulation: (1) at the beginning of the simulation of each thread, (2) at the beginning of
the simulation of each round j, with j > 0, (3) at the end of the simulation of each round,
(4) during the execution of a statement x := g, where x is a shared variables, and (5) the
execution of a fence statement. Let us assume that P has S = {x 1,x 2, . . . ,x n} as a set
of shared variables and G as a set of global variables. Next, we describe the procedures
for these cases, which are used as building blocks for the general translation.

Init of each thread. Before starting the simulation of a thread, we set both r TSO
and r SC to 0. Then, we initialize the view-variables to the evaluation of the shared
variables, as the store-buffer is initially empty and the valuation of the view coincides
with that of the shared variables. Finally, we set to false the variables of all masks.
Procedure init thread() is shown in Fig. 2.

procedure init_thread()
begin
atomic_begin; sim := true; r_TSO := r_SC := 0;

// set the view to the shared valuation
for(i=1,i<=n,i++) do view_x_i := x_i; od

// initialize the masks
for(j=0,j<=k,j++) do mask_j_x_1:=mask_j_x_2:=...:=mask_j_x_n:= false; od
end

Fig. 2. Procedure init thread()
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procedure init_round()
begin
[*] if(r_SC == k) then atomic_end; assume(false);//last round simulated
[*] else
[*] if(r_TSO == r_SC) then r_TSO:=r_TSO+1; fi //update r_TSO if needed
[*] r_SC := r_SC+1; // increment of the round number
[*] fi

for(j=0,j<=k,j++) do
if (r_SC == j) then
for(i=1,i<=n,i++) do

// updating the shared memory
if (mask_j_x_i) then x_i :=queue_j_x_i; mask_j_x_i:=false; fi
// rebuild the view

[+] if (!mask_j_x_i & ... & !mask_k_x_i) then view_x_i := x_i; fi
od fi od

end

Fig. 3. Procedure init round()

Starting a new round. When a new round is “detected” we accomplish the following
operations. If the last round has been simulated we close the atomic section and block
the execution of the thread. Otherwise, we increment r SC, as well as r TSO in case it
becomes smaller than r SC (next write operation can only modify the shared memory
starting from the current round). Then we dump the part of the store-buffer that was
supposed to change the shared memory during the execution of round r SC. Let r SC=
j. The way we simulate such an operation is by using Mask j and Queuej: for every
shared variable x, we assign to x the value Queuej[x] provided Mask j[x] holds true. The
last step is that of updating the view for the current round. A variable View[x] changes
its valuation if no write operation is pending for x in the store-buffer, and its new value
is that variable x in the shared memory (View[x] := x). Procedure init round of Fig. 3
encodes the phases described above.

Finally, procedure is init round() of Fig. 4 detects that a new round has started
checking that sim holds f alse. In such a case, we open an atomic section and set sim
to true, and then call procedure init round to initialize the round.

Terminating a round. We terminate non-deterministically a round by setting the vari-
able sim to false and then closing the atomic section. (Next time the current thread
will be scheduled it detects that a new round is started by checking the valuation of
sim.) Procedure is end round() of Fig. 4 encoperates such operations.

Write into a shared variable. Consider a statement x := g where x and g are a shared
and global variable of P, respectively. In the simulation of such assignment, we first
update the view for x to g. The next step consists in incrementing non-deterministically
the value of the auxiliary variable r TSO which represent the round where the current
write operation will occur in the memory. Now, let r TSO = i. In case r SC is equal to
i, we update x in the shared-memory. Instead, if r SC < r TSO, we update Maski[x] to
true and Queuei[x] to g which captures that the write operation x := g will modify
the shared memory exactly at round i and it is the last operation for x. Notice that if
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procedure is_init_round()
begin
if ( !sim ) then
atomic_begin;
sim := true;
init_round();

fi
end

procedure is_end_round()
begin
if (*) then

sim := false;
atomic_end;

fi
end

procedure fence()
begin
if(r_TSO!=r_SC)
then

atomic_end;
assume(F);

fi
end

Fig. 4. Procedures is init round(), is end round(), and fence()

procedure memory_update_x(g)
begin

view_x:=g; // updating the view
// non-deterministically increase r_TSO

[*] while (*) do if (r_TSO < k) then r_TSO:=r_TSO + 1; fi od
if (r_SC==r_TSO) then x:=g; // shared memory update
else // updating the mask and the queue

for(i=0,i<=k,i++) do
if (r_TSO==i) then mask_i_x:=true; queue_i_x:=g; fi od

fi
end

Fig. 5. Procedure memory update x, for each shared variable x

another write operation will be performed for x, when r TSO contains the value i, then
the value of Queuei[x] will contain only the latest operation, and the previous value will
be overwritten thus reestablishing the invariant. The procedure memory update x(g)
in Fig. 5 subsumes the operations described in Sec. 3.2.

Fences. The statement fence is simply translated into a procedure, called fence(),
that checks whether r TSO is equal to r SC and in case they are different blocks the
execution. However, before blocking it, it first executes the statement atomic end so
that other threads can continue their evolution. Fig. 4 illustrates procedure fence().

General translation. We are now ready to give the general translation by defining a
map [[ · ]]tr in which P′ = [[P]]tr. The definition of the translation is given in Fig. 6. The
new program P′ first declares the variables as described in Sec. 3.2.

– mask is the list of the variables mask i x, for all i ∈ {0, . . . ,k} and x ∈ S;
– queue is the list of the variables queue i x for all i ∈ {0, . . . ,k} and x ∈ S;
– view is the list of the variables view i x for all i ∈ {0, . . . ,k} and x ∈ S.

Each process procedure starts with a call to procedure init thread() that initial-
izes the auxiliary variables used for the simulation. Then, the translation consists of
an in-place replacement of each statement. Each statement stmt of P is translated by
the sequence of statements is init round(); [[stmt;]]tr is end round();. The call to
is init round() checks whether a new round has just started and hence appropriately
initialize the variables for the simulation of the new round; the call is end round();
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[[Svar s̄ Gvar ḡ 〈main〉〈process〉∗〈procedure〉∗ ]]tr
def= Svar s̄ Gvar ḡ,mask,queue,view,r TSO,r SC,sim

[[〈main〉]]tr [[〈process〉]]∗tr[[〈procedure〉]]∗tr

[[main p begin 〈lstmt〉+ end]]tr
def= main p begin init thread(); [[〈lstmt〉]]+tr end

[[process p begin 〈lstmt〉+ end]]tr
def= process p begin init thread(); [[〈lstmt〉]]+tr end

[[procedure p begin 〈lstmt〉+ end]]tr
def= procedure p begin [[〈lstmt〉]]+tr end

[[loc : 〈stmt〉;]]tr
def= is init round(); loc : [[〈stmt〉]]tr; is end round()

[[skip]]tr
def= skip

[[if (〈pred〉) then 〈lstmt〉+ else 〈lstmt〉+ fi]]tr
def= if (〈pred〉) then [[〈lstmt〉]]+tr else [[〈lstmt〉]]+tr fi

[[while (〈pred〉) do 〈lstmt〉+ od]]tr
def= while (〈pred〉) do [[〈lstmt〉]]+tr od

[[assume (〈pred〉)]]tr def= assume (〈pred〉)
[[assert (〈pred〉)]]tr def= assert (〈pred〉)

[[ḡ := 〈expr〉]]tr def= ḡ := 〈expr〉
[[call f ]]tr

def= call f

[[return]]tr
def= return

[[atomic begin]]tr
def= atomic begin; fence()

[[atomic end]]tr
def= fence(); atomic end

[[spawn p]]tr
def= spawn p

[[fence]]tr
def= fence()

[[g := s]]tr
def= g := view s

[[s := g]]tr
def= memory update s(g)

Fig. 6. Translation map [[ · ]]tr

allows to non-deterministically terminate a round at any point in the simulation. The
remaining part of the translation concerns the translation of each single statement stmt:

– g := x is translated into g := Viewx;
– x := g is replaced with the procedure call memory update s(g);
– fence is translated as the call to the procedure fence();
– atomic begin (resp. atomic end;) is translated into the sequence atomic begin;
fence() (resp. fence(); atomic end);

– All remaining kind of statements remain unchanged in the translation.

From the construction given above, and the reasoning followed in Sec. 3.2 we can prove
the following theorem:

Theorem 1. Let k be a fixed positive integer. A shared state shared is k-round T SO-
reachable in P if and only if shared is SC-reachable in P′. Furthermore, if shared is SC-
reachable in P′ then shared is k′-round T SO-reachable in P for some k′ ≤ k. Moreover,
the size of P′ is linear in the size of P.

4 Bounded Store-Age Reachability

In this section, we introduce a new notion for restricting the set of behaviors of concur-
rent programs to be analyzed under TSO. We impose that each store operation produced
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by a thread T can not stay in the store-buffer more than k consecutive rounds. (Notice
that this notion does not restrict the number of rounds that the thread T may have.) We
show that, under this restriction, it is still possible to define a code-to-code translation
(similar to that of Sec. 3) that associates with each concurrent program P another con-
current program P′ such that running P′ under SC captures precisely the set of behaviors
of P under TSO. More precisely, we associate to each store operation an age. The age is
initialized at 0 when this store operation is produced by T and sent in the store-buffer.
Now, this age is incremented at each context-switch of thread T .

Let k ∈ N be a fixed bound. The k-store-age TSO-reachability problem is, given a
TSO-configurations γ and a valuation of the shared variables shared, to determine if
there is a TSO-configuration γ′ such that: (1) the valuation of the shared variables in γ′
is precisely shared, and (2) γ′ is reachable from γ by a computation where at each step
all the pending store operations have an age equal or less than k.

Let us consider a concurrent program P defined as in Sec. 3. In the following, we
construct another concurrent program P′ such that the k-store-age TSO-reachability
problem for P can be reduced to the SC-reachability problem for P′. The provided
code-to-code translation is very similar to the one given in Sec. 3. In fact, if we use the
previous translation to simulate a thread T of P, we need to use an unbounded number
of vectors of type Mask and Queue. The key observations (to overcome this difficulty)
are that : (1) in order to simulate a round j of a thread T , we only use vectors Maski

and Queuei with i≥ j, and (2) at each moment of the simulation of a round j, we need
only the vectors Maskl and Queuel with l ≤ j + k (since the age of any store operation
is bounded by k). Therefore, we can define our translation using only k vectors of type
Mask and Queue in a circular manner (modulo k). For instance, if the current simulated
round of the thread T is 1, the variables Mask0 and Queue0 can be used in the simulation
of the round k + 1. Technically, we introduce only two modifications in the translation
given in Sec. 3:
In Fig. 3, the piece of code marked with [*] is replaced with the following one:

[*] // update r_TSO if needed
[*] if (r_TSO == r_SC) then r_TSO := (r_TSO+1 mod k+1); fi
[*] // resetting the boolean vector mask_i
[*] if (r_SC == i) then mask_i_x_1 :=...:= mask_i_x_n := false; fi
[*] r_SC := (r_SC+1 mod k+1); // increment of the round number

In Fig. 3 the line of code marked with [+] is replaced with the following one:

[+] if (!mask_1_x_i & ... & !mask_k_x_i) then view_x_i := x_i; fi

In Fig. 5 we replace the line of code marked with [*] with the following:

[*] if ( (r_SC - r_TSO) mod k+1 != 1) then r_TSO:=(r_TSO+1 mod k+1); fi

Finally, the relation between the given concurrent program P and the constructed
program P′ = [[P]]tr is given by the following theorem:

Theorem 2. A shared state shared is k-store-age T SO-reachable in P if and only if
SC-reachable in P′. Moreover, the size of P′ is linear in the size of P.
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Table 1. Experimental results for 4 mutual exclusion protocols by using POIROT and ESBMC

Mutual exclusion Protocols Poirot ESBMC
(L = 2) Time (s) Time (s)

Version with no fences Version with fences Version with no fences Version with fences
(Buggy for TSO) (Correct for TSO) (Buggy for TSO) (Correct for TSO)

(D = 1) (D = 1) (D = 2) (L = 2,C = 3) (L = 3,C = 4)

DEKKER 7 6 72 - 6

LAMPORT 26 110 1608 1 7

PETERSON 5 6 47 1 1

SZYMANSKI 8 6 978 1 6

5 Experiments

To show the practicability of our approach, we have experimented its application in
detecting bugs due to the TSO semantics. For that, we have considered four well-
known mutual exclusion protocols designed for the SC semantics: Dekker’s [5], Lam-
port’s [12], Peterson’s [16], and Szymanski’s [18]. All of these protocols are incorrect
under TSO. Through our translations, we have analyzed the behaviors of these pro-
tocols under TSO using two SMT-based bounded model-checkers for SC concurrent
programs. Our experimental results show that errors due to TSO appear within few
rounds, and that off-the-shelf analysis tools designed for the SC semantics can be used
for their detection.

In more details, we consider the four protocols mentioned above instantiated for two
threads. We consider for each protocol two versions, one without fences (the original
version of the protocol) that is buggy, and one with fences (neutralizing TSO) which is
known to be correct. We have encoded each of these protocols (with and without fences)
as C programs and manually translated by using the k-store-age translation with k = 2.
We have instrumented the obtained C programs for both POIROT [10] and ESBMC [4]
– two SMT-based bounded model-checkers for SC concurrent programs.

Table 1 illustrates the results of the analysis for the four mutual exclusion protocols
we carried with both POIROT and ESBMC. The parameters L in the table indicate the
number of loop unrolling. POIROT considers all runs by bounding L and the number of
delays (we refer to [6] for the definition of delay). In our experiments with POIROT, we
consider L = 2, and a bound D = 1 or D = 2 (= to the number of delays + 1). Turning
to ESBMC, it analyzes all executions by bounding the number of loop unrolling and
the number of context-switches. In the experiments with ESBMC, we consider a bound
L = 2 or L = 3 on the number of loop unrolling, and a bound C = 3 or C = 4 on the
number of context-switches. Both of tools are able to answer correctly, i.e., by finding
the bugs for the buggy versions, except that ESBMC does not answer correctly for the
buggy version of Dekker.)

6 Conclusion

We have presented a code-to-code translation from concurrent to concurrent programs
such that the reachable shared states of the obtained program running under SC is ex-
actly the same set of reachable shared states of the original program running under the
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TSO semantics. The main characteristic of our translations is that it does not intro-
duce any other auxiliary storage to model store buffers but only requires few copies of
the shared variables that are local to threads in the resulted translated program (this is
important for compositional analyses which track at each moment only one copy of
the locals). Furthermore, our translations produce programs of linear size with respect
the original ones, provided a constant value of k. Such characteristics allows, and this is
the main interest of our approach, the use for relaxed memory models of mature tools
designed for the SC semantics (such as BDD-based model-checkers [7], SMT/SAT-
based model-checkers [10,4]) as well as tools for sequential analysis based on compo-
sitional sequentialization techniques for SC concurrent programs [11,8,6].

Moreover, our translations allow to transfer decidability and complexity results from
the SC to the TSO case. In the following we discuss on the decidability/undecidability
of the k bounded-round and k-store-age TSO-reachability for concurrent programs with
variables ranging over finite domains. We consider first the case in which all processes
are non-recursive. When a finite number of threads are involved in the computation,
the problem is decidable by using the classical reachability algorithm for finite state
concurrent programs. The same problem remains decidable if we add dynamic thread
creation, by a reduction to the coverability problem for Petri nets [2]. On the other hand,
if we have at least two recursive threads involved in the computation, the k-store-age
TSO-reachability becomes undecidable for any k: For every concurrent program P we
can construct a concurrent program P′ (obtained from P by inserting a fence statement
at each control location of P) such that the SC-reachability problem for P (which is
an undecidable problem in general) can be reduced to the k-store-age TSO-reachability
problem for P′. However, by retaining recursion and using context-bounded analysis
for concurrent programs and our translation we can claim the decidability of a variety
of restrictions of the k-store-age (and k bounded-round) TSO-reachability. For instance,
TSO bounded context-switch reachability is decidable for finite number of threads [17],
as well as for bounded round-robin reachability for the parametrized case [9]. Moreover,
decidability results concerning the analysis of programs with dynamic thread creation
for k context-switches per thread [2] can also be transferred to the TSO case.

Acknowledgments. We would like to thank Akash Lal and Lucas Cordeiro for their
help with POIROT and ESBMC.
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Abstract. The underground malware-based economy is flourishing and it is ev-
ident that the classical ad-hoc signature detection methods are becoming insuffi-
cient. Malware authors seem to share some source code and malware samples
often feature similar behaviors, but such commonalities are difficult to detect
with signature-based methods because of an increasing use of numerous freely-
available randomized obfuscation tools. To address this problem, the security
community is actively researching behavioral detection methods that commonly
attempt to understand and differentiate how malware behaves, as opposed to just
detecting syntactic patterns. We continue that line of research in this paper and
explore how formal methods and tools of the verification trade could be used for
malware detection and analysis. We propose a new approach to learning and gen-
eralizing from observed malware behaviors based on tree automata inference. In
particular, we develop an algorithm for inferring k-testable tree automata from
system call dataflow dependency graphs and discuss the use of inferred automata
in malware recognition and classification.

1 Introduction

Over the last several decades, the IT industry advanced almost every aspect of our
lives (including health care, banking, traveling,. . . ) and industrial manufacturing. The
tools and techniques developed in the computer-aided verification community played
an important role in that advance, changing the way we design systems and improving
the reliability of industrial hardware, software, and protocols.

In parallel, another community made a lot of progress exploiting software flaws for
various nefarious purposes, especially for illegal financial gain. Their inventions are
often ingenious botnets, worms, and viruses, commonly known as malware. Malware
source code is rarely available and malware is regularly designed so as to thwart static
analysis through the use of obfuscation, packing, and encryption [34].
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For the above mentioned reasons, detection, analysis, and classification of mal-
ware are difficult to formalize, explaining why the verification community has mostly
avoided, with some notable exceptions (e.g., [8,18]), the problem. However, the area is
in a dire need of new approaches based on strong formal underpinnings, as less princi-
pled techniques, like signature-based detection, are becoming insufficient. Recently, we
have been experiencing a flood of malware [31], while the recent example of Stuxnet
(e.g., [27]) shows that industrial systems are as vulnerable as our every-day computers.

In this paper, we show how formal methods, more precisely tree automata inference,
can be used for capturing the essence of malicious behaviors, and how such automata
can be used to detect behaviors similar to those observed during the training phase.
First, we execute malware in a controlled environment to extract dataflow dependen-
cies among executed system calls (syscalls) using dynamic taint analysis [5,29]. The
main way for programs to interact with their environment is through syscalls, which
are broadly used in the security community as a high-level abstraction of software be-
havior [13,23,32]. The dataflow dependencies among syscalls can be represented by an
acyclic graph, in which nodes represent executed syscalls, and there is an edge between
two nodes, say s1 and s2, when the result computed by s1 (or a value derived from it) is
used as a parameter of s2. Second, we use tree automata inference to learn an automaton
recognizing a set of graphs. The entire process is completely automated.

The inferred automaton captures the essence of different malicious behaviors. We
show that we can adjust the level of generalization with a single tunable factor and how
the inferred automaton can be used to detect likely malicious behaviors, as well as for
malware classification. We summarize the contributions of our paper as follows:

– Expansion of dependency graphs into trees causes exponential blowup in the size of
the graph, similarly as eager inlining of functions during static analysis. We found
that a class of tree languages, namely k-testable tree languages [35] can be inferred
directly from dependency graphs, avoiding the expansion to trees.

– We improve upon the prior work on inference of k-testable tree languages by pro-
viding an O (kN) algorithm, where k is the size of the pattern and N is the size of
the graph used for inference.

– We show how inferred automata can be used for detecting likely malicious behav-
iors and for malware classification. To our knowledge, this is the first work applying
the theory of tree automata inference to malware analysis. We provide experimental
evidence that our approach is both feasible and useful in practice.

– While previous work (e.g., [7,13]) often approximated dependencies by syntactic
matching of syscall parameters, we implemented a tool for tracking dependencies
via taint analysis [5,29] and we made the generated dependency graphs, as well as
the tree automata inference engine, publicly available to encourage further research.

2 Related Work

Tree Automata Inference. Gold [17] showed that no super-finite (contains all finite
languages and at least one infinite) is identifiable in the limit from positive examples1

1 Positive examples are examples belonging to the language to be inferred, while negative ex-
amples are those not in the language.
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only. For instance, regular and regular tree languages [9] are super-finite languages. We
have two options to circumvent this negative result; either use both positive and negative
examples, or focus on less expressive languages that are identifiable in the limit from
positive examples only. Inference of minimal finite state automata from both positive
and negative examples is known to be NP-complete [17]. The security community is
discovering millions of new malware samples each year and inferring a single minimal
classifier for all the samples might be infeasible. Inferring a non-minimal classifier is
feasible, but the classifier could be too large to be useful in practice. Thus, we focus on
a set of languages identifiable in the limit from positive examples in this paper.

A subclass of regular tree languages — k-testable tree languages [35] — is identifi-
able in the limit from positive examples only. These languages are defined in terms of a
finite set of k-level-deep tree patterns. The k factor effectively determines the level of ab-
straction, which can be used as a knob to regulate the ratio of false positives (goodware
detected as malware) and false negatives (undetected malware). The patterns partition
dependency graphs into a finite number of equivalence classes, inducing a state-minimal
automaton. The automata inferred from positive (malware) examples could be further
refined using negative (goodware) examples. Such a refinement is conceptually simple,
and does not increase the inference complexity, because of the properties of k-testable
tree languages. We leave such a refinement for future work.

A number of papers focused on k-testable tree automata inference. Garcia and Vidal
[15] proposed an O (kPN) inference algorithm, where k is the size of the pattern, P the
total number of possible patterns, and N the size of the input used for inference. Many
patterns might not be present among the training samples, so rather than enumerating all
patterns, [14] and [22] propose very similar algorithms that use only the patterns present
in the training set. Their algorithms are somewhat complex to implement as they require
computation of three different sets (called roots, forks, and leaves). Their algorithms
are O

(
MkN log(N)

)
, where M is the maximal arity of any alphabet symbol in the tree

language. We derive a simpler algorithm, so that computing forks and leaves becomes
unnecessary. The complexity of our algorithm is O (kN), thanks to an indexing trick
that after performing k iterations over the training sample builds an index for finding
patterns in the training set. Patterns in the test set can be located in the index table in
amortized time linear in the size of the pattern. In our application — malware analysis
— the k factor tends to be small (≤ 5), so our algorithm can be considered linear-time.

Malware Analysis. From the security perspective, several types of malware analysis
are interesting: malware detection (i.e., distinguishing malware from goodware), classi-
fication (i.e., determining the family of malware to which a particular sample belongs),
and phylogeny (i.e., forensic analysis of evolution of malware and common/distinctive
features among samples). All three types of analyses are needed in practice: detection
for preventing further infections and damage to the infected computers, and the other
two analyses are crucial in development of new forms of protection, forensics, and at-
tribution. In this paper, we focus on detection and classification.

The origins of the idea to use syscalls to analyze software can be traced to For-
rest et al. [12], who used fixed-length sequences of syscalls for intrusion detection.
Christodorescu et al. [7] note that malware authors could easily reorder data-flow-
independent syscalls, circumventing sequence-detection schemes, but if we analyze
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data-flow dependencies among syscalls and use such dependency graphs for detec-
tion, circumvention becomes harder. Data-flow-dependent syscalls cannot be (easily)
reordered without changing the semantics of the program. They compute a difference
between malware and goodware dependency graphs, and show how resulting graphs
can be used to detect malicious behaviors. Such graph matching can detect only the
exact behavioral patterns already seen in some sample, but does not automatically gen-
eralize from training samples, i.e., does not attempt to overapproximate the training set
in order to detect similar, but not exactly the same behaviors.

Fredrikson et al. [13] propose an approach that focuses on distinguishing features,
rather than similarities among dependency graphs. First, they compute dependency
graphs at runtime, declaring two syscalls, say s1 and s2, dependent, if the type and
value of the value returned by s1 are equal to the type and value of some parameter of
s2 and s2 was executed after s1. They extract significant behaviors from such graphs
using structural leap mining, and then choose behaviors that can be combined together
using concept analysis. In spite of a very coarse unsound approximation of the depen-
dency graph and lack of automatic generalization, they report 86% detection rate on
around 500 malware samples used in their experiments. We see their approach as com-
plementary to ours: the tree-automata we infer from real dependency graphs obtained
through taint analysis could be combined with leap mining and concept analysis, to
improve their classification power.

Bonfante et al. [3] propose to unroll control-flow graphs obtained through dynamic
analysis of binaries into trees. The obtained trees are more fine-grained than the syscall
dependency graphs. The finer level of granularity could, in practice, be less susceptible
to mimicry attacks (e.g., [33]), but is also easier to defeat through control-flow graph
manipulations. The computed trees are then declared to be tree automata and the recog-
nizer is built by a union of such trees. Unlike inference, the union does not generalize
from the training samples. The reported experiments include a large set of malware
samples (over 10,000), but the entire set was used for training, and authors report only
false positives on a set of goodware (2653 samples). Thus, it is difficult to estimate how
well their approach would work for malware detection and classification.

Taint Analysis. Dynamic taint analysis (DTA) [29] is a technique used to follow data
flows in programs or whole systems at runtime. DTA can be seen as a single-path sym-
bolic execution [21] over a very simple domain (set of taints). Its premises are simple:
taint is a variable annotation introduced through taint sources, it is propagated through
program execution according to some propagation rules until it reaches a taint sink. In
our case, for instance, taint sources are the syscalls’ output parameters, and taint sinks
are the input parameters.

As will be discussed in detail later, our implementation is based on the binary rewrit-
ing framework Pin [25] and uses the taint propagation rules from Newsome and Song
[29]. Since DTA must operate at the instruction-level granularity, it poses a signifi-
cant runtime overhead. Our DTA implementation executes applications several thou-
sand times slower than the native execution. Our position is that the speed of the taint
analysis is less important than the speed of inference and recognition. The taint analysis
can be run independently for each sample in parallel, the dependency graph extraction
is linear with the length of each execution trace, and hardware-based information flow
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tracking has been proposed (e.g., [30,11]) as a potential solution for improving per-
formance. In contrast, inference techniques have to process all the samples in order to
construct a single (or a small number of) recognizer(s). An average anti-virus vendor
receives millions of new samples annually and the number of captured samples has been
steadily growing over the recent years. Thus, we believe that scalability of inference is
a more critical issue than the performance of the taint analysis.

3 Notation and Terminology

In this section, we introduce the notation and terminology used throughout the paper.
First, we build up the basic formal machinery that allows us to define tree automata.
Second, we introduce some notions that will help us define k-roots that can be intu-
itively seen as the top k levels of a tree. Later, we will show how k-roots induce an
equivalence relation used in our inference algorithm. Towards the end of this section,
we introduce k-testable languages, less expressive than regular tree languages, but suit-
able for designing fast inference algorithms.

Let N be the set of natural numbers and N
∗ the free monoid generated by N with

concatenation (·) as the operation and the empty string ε as the identity. The prefix
order ≤ is defined as: u ≤ v for u,v ∈ N

∗ iff there exists w ∈ N
∗ such that v = u ·w.

For u ∈ N
∗,n ∈ N, the length |u| is defined inductively: |ε| = 0, |u · n| = |u|+ 1. We

say that a set S is prefix-closed if u ≤ v∧ v ∈ S ⇒ u ∈ S. A tree domain is a finite
non-empty prefix-closed set D ⊂ N

∗ satisfying the following property: if u ·n ∈ D then
∀1≤ j ≤ n . u · j ∈D.

A ranked alphabet is a finite set F associated with a finite ranking relation arity ⊆
F ×N. Define Fn as a set { f ∈F |( f ,n) ∈ arity}. The set T (F ) of terms over the
ranked alphabet F is the smallest set defined by:

1. F0 ⊆ T (F )
2. if n≥ 1, f ∈Fn, t1, . . . ,tn ∈ T (F ) then f (t1, . . . ,tn) ∈ T (F )

Each term can be represented as a finite ordered tree t : D→F , which is a mapping
from a tree domain into the ranked alphabet such that ∀u ∈ D:

1. if t (u) ∈Fn, n≥ 1 then { j | u · j ∈ D}= {1, . . . ,n}
2. if t (u) ∈F0 then { j | p · j ∈D}= /0

a b

f

g a h

b

1

11 12 13

111 112 131

Fig. 1. An Example of a Tree t
and its Tree Domain. dom (t) =
{1,11,111,112,12,13,131} ,
F = { f ,g,h,a,b}, ‖ t ‖= 3, t(1) = f ,
t/131 = b.

As usual in the tree automata literature (e.g.,
[9]), we use the letter t (possibly with various in-
dices) both to represent a tree as a mathematical
object and to name a relation that maps an ele-
ment of a tree domain to the corresponding alpha-
bet symbol. An example of a tree with its tree do-
main is given in Figure 1.

The set of all positions in a particular tree
t, i.e., its domain, will be denoted dom(t). A
subtree of t rooted at position u, denoted t/u
is defined as (t/u)(v) = t(u · v) and dom(t/u)
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= {v | u · v∈ dom(t)}. We generalize the dom operator to sets as usual: dom(S) =
{dom(u) | u ∈ S}. The height of a tree t, denoted ‖ t ‖, is defined as:

‖ t ‖= max({|u| such that u ∈ dom(t)})

Let Ξ =
{

ξ f | f ∈⋃
i>0 Fi

}
be a set of new nullary symbols such that Ξ ∩F = /0.

The Ξ set will be used as a set of placeholders, such that ξ f can be substituted only
with a tree t whose position one (i.e., the head) is labelled with f , i.e., t(1) = f . Let
T (Ξ ∪F ) denote the set of trees over the ranked alphabet and placeholders. For t, t ′ ∈
T (Ξ ∪F ), we define the link operation t�t ′ by:

(t�t ′)(n) =
{

t(n) if t(n) �∈ Ξ ∨ (t(n) = ξ f ∧ f �= t ′(1))
t ′(z) if n = y · z, t(y) = ξt′(1), y ∈ dom(t) , z ∈ dom(t ′)

For any two trees, t,t ′ ∈ T (F ), the tree quotient t−1t ′ is defined by:

t−1t ′ =
{

t ′′ ∈ T (Ξ ∪F ) | t ′ = t ′′�t
}

The tree quotient operation can be extended to sets, as usual: t−1S =
{

t−1t ′ | t ′ ∈ S
}

.
For any k ≥ 0, define k-root of a tree t as:

rootk (t) =

⎧⎨⎩
t if t(1) ∈F0

ξ f if f = t(1), f ∈⋃
i>0 Fi, k = 0

f (rootk−1 (t1) , . . . ,rootk−1 (tn)) if t = f (t1, . . . ,tn), ‖ t ‖> k > 0

A finite deterministic bottom-up tree automaton (FDTA) is defined as a tuple
(Q,F ,δ ,F), where Q is a finite set of states, F is a ranked alphabet, F ⊆Q is the set of
final states, and δ =

⋃
i δi is a set of transition relations defined as follows: δ0 : F0 →Q

and for n > 0, δn : (Fn×Qn)→ Q.
The k-testable in the strict sense (k-TSS) languages [22] are intuitively defined by

a set of tree patterns allowed to appear as the elements of the language. The following
theorem is due to López et al. [24]:

Theorem 1. Let L ⊆ T (F ). L is a k-TSS iff for any trees t1, t2 ∈ T (F ) such that
rootk (t1) = rootk (t2), when t−1

1 L �= /0∧ t−1
2 L �= /0 then it follows that t−1

1 L = t−1
2 L .

We choose López et al.’s theorem as a definition of k-TSS languages. Other definitions
in the literature [14,22] define k-TSS languages in terms of three sets; leaves, roots, and
forks. Forks are roots that have at least one placeholder as a leaf. Theorem 1 shows
that such more complex definitions are unnecessary. Intuitively, the theorem says that
within the language, any two subtrees that agree on the top k levels are interchangeable,
meaning that a bottom-up tree automaton has to remember only a finite amount of
history. In the next section, we show that we can define an equivalence relation inducing
an automaton accepting a k-TSS language using only our definition of the k-root, as
expected from Theorem 1.
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4 k-Testable Tree Automata Inference

4.1 Congruence Relation

We begin with our definition of the equivalence relation that is used to induce a state-
minimal automaton from a set of trees. The equivalence relation, intuitively, compares
trees up to k levels deep, i.e., compares k-roots.

Definition 1 (Root Equivalence Relation∼k). For some k≥ 0, two trees t1, t2 ∈ T (F )
are root-equivalent with degree k, denoted t1 ∼k t2, if rootk (t1) = rootk (t2).

Lemma 1. The ∼k relation is a congruence (monotonic equivalence) relation of finite
index.

Proof (Sketch). It is obvious that ∼k is an equivalence relation (reflexive, symmetric,
and transitive). Monotonicity can be proven by a simple induction on the height of the
two trees being compared and the rootk definition.

The size of a k-root is bounded by Mk, where M = max({n | Fn ∈ F,Fn �= /0}). Each
position u in the k-root’s domain can be labelled with at most |Farity(t(u))| symbols.
Thus, rootk generates a finite number of equivalence classes, i.e., is of finite index.

As a consequence of Lemma 1, inference algorithms based on the root equivalence
relation need not propagate congruences using union-find [10] algorithms, as the root
equivalence relation is a congruence itself.

Definition 2 (∼k-induced Automaton). Let T ′ ⊆ T (F ) be a finite set of finite trees.
The A∼k(T ′) = (Q,F ,δ ,F) automaton induced by the root equivalence relation ∼k is
defined as:

Q = {rootk (t ′) | ∃t ∈ T ′ . ∃u ∈ dom(T ′) . t ′ = t/u}
F = {rootk (t) | t ∈ T ′}

δ0( f ) = f for f ∈F0

δn( f ,rootk (t1) , . . . ,rootk (tn)) = rootk ( f (t1, . . . ,tn)) for n≥ 1, f ∈Fn

Corollary 1 (Containment). From the definition it follows that ∀k ≥ 0 . T ′ ⊆
L (A∼k(T ′)). In other words, the ∼k-induced automaton abstracts the set of trees T ′.

Theorem 2. L (A∼k) is a k-TSS language.

Proof. We need to prove that ∀t1, t2 ∈ T (F ), k ≥ 0 . rootk (t1) = rootk (t2) ∧
t−1
1 L (A∼k) �= /0∧ t−1

2 L (A∼k) �= /0 ⇒ t−1
1 L (A∼k) = t−1

2 L (A∼k). Suppose the an-
tecedent is true, but the consequent is false, i.e., t−1

1 L (A∼k) �= t−1
2 L (A∼k). Then there

must exist t such that t�t1 ∈L (A∼k) and t�t2 �∈L (A∼k). Let u be the position of ξt2(1),
i.e., (t�t2)/u = t2. Without loss of generality, let t be the tree with minimal |u|. Neces-
sarily, |u| > 1, as otherwise t−1

1 L (A∼k) = /0. Let u = w · i, i ∈ N. We prove that t�t2
must be in L (A∼k), contradicting the initial assumption, by induction on the length
of w.

Base case (|w| = 1): Let (t(w))(1) = f , f ∈ Fn. There are two subcases: n =
1 and n > 1. For n = 1, the contradiction immediately follows, as δ ( f ,rootk (t1))
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= δ ( f ,rootk (t2)). For the n > 1 case, observe that for all positions w · j such that
1 ≤ j ≤ n and j �= i, (t�t1)/w · j = (t�t2)/w · j = t/w · j. From that observation and
rootk (t1) = rootk (t j), it follows that

δ
(
(t�t1/w)(1),rootk (t�t1/w ·1), . . . ,rootk (t�t1/w ·n)

)
= δ

(
(t�t2/w)(1),rootk (t�t2/w ·1), . . . ,rootk (t�t2/w ·n)

)
Induction step (|w|> 1): Let w = w′ ·m, m ∈ N. From the induction hypothesis, we

know that for all m, rootk (t�t1/w) = rootk (t�t2/w), thus it follows:

δ
(
(t�t1/w′)(1),rootk (t�t1/w′ ·1) , . . . ,rootk (t�t1/w′ ·n)

)
= δ

(
(t�t2/w′)(1),rootk (t�t2/w′ ·1) , . . . ,rootk (t�t2/w′ ·n)

)
Theorem 3 (Minimality). A∼k is state-minimal.

Proof. Follows from Myhill-Nerode Theorem [20, pg. 72] and Lemma 1.

Minimality is not absolutely crucial for malware analysis in a laboratory setting, but it is
important in practice, where antivirus tools can’t impose a significant system overhead
and have to react promptly to infections.

Theorem 4 (Garcia [14]). L (A∼k+1)⊆L (A∼k)

An important consequence of Garcia’s theorem is that the k factor can be used as an
abstraction knob — the smaller the k factor, the more abstract the inferred automaton.
This tunability is particularly important in malware detection. One can’t hope to design
a classifier capable of perfect malware and goodware distinction. Thus, tunability of the
false positive (goodware detected as malware) and false negative (undetected malware)
ratios is crucial. More abstract automata will result in more false positives and fewer
false negatives.

4.2 Inference Algorithm
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Fig. 2. Folding a Tree into a
Maximally-Shared Graph

In this section, we present our inference algo-
rithm, but before proceeding with the algorithm,
we discuss some practical aspects of inference
from data-flow dependency graphs. As discussed
in Section 2, we use taint analysis to compute
data-flow dependencies among executed syscalls
at runtime. The result of that computation is not
a tree, but an acyclic directed graph, i.e., a partial
order of syscalls ordered by the data-flow depen-
dency relation, and expansion of such a graph into
a tree could cause exponential blowup. Thus, it would be more convenient to have an
inference algorithm that operates directly on graphs, without expanding them into trees.

Fortunately, such an algorithm is only slightly more complicated than the one that
operates on trees. In the first step, our implementation performs common subexpression
elimination [1] on the dependency graph to eliminate syntactic redundancies. The result
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is a maximally-shared graph [2], i.e., an acyclic directed graph with shared common
subgraphs. Figure 2 illustrates how a tree can be folded into a maximally-shared graph.
In the second step, we compute a hash for each k-root in the training set. The hash
is later used as a hash table key. Collisions are handled via chaining [10], as usual,
but chaining is not described in the provided algorithms. The last step of the inference
algorithm traverses the graph and folds it into a tree automaton, using the key computed
in the second phase to identify equivalent k-roots, which are mapped to the same state.

To simplify the exposition, we shall use the formal machinery developed in Section
3 and present indexing and inference algorithms that work on trees. The extension to
maximally-shared graphs is trivial and explained briefly later.

input : Tree t, factor k
result : Key computed for every subtree of t

tmp← hash(t(1))
foreach 1≤ i≤ arity(t(1)) do

ts← t/i
tmp← tmp⊕ hash(ts.key)
ComputeKey(ts,k)

t.key← tmp

Algorithm 1. ComputeKey — Computing k-Root Keys (Hashes). The ⊕ operator can be any
operator used to combine hashes, like bitwise exclusive OR. The hash : F → N function can
be implemented as a string hash, returning an integral hash of the alphabet symbols.

Algorithm 1 traverses tree t in postorder (children before the parent). Every subtree
has a field key associated with its head, and the field is assumed to be initially zero.
If the algorithm is called once, for tree t, the key of the head of each subtree ts will
consist only of the hash of the alphabet symbol labeling ts, i.e., hash(ts(1)). If the
algorithm is called twice (on the same tree), the key of the head of each subtree will
include the hash of its own label and the labels of its children, and so on. Thus, after
k calls to ComputeKey, the key of each node will be equal to its k-root key. Note that
the temporary key, stored in the tmp variable, has to be combined with the children’s
(k−1)-root key. The algorithm can be easily extended to operate on maximally-shared
graphs, but has to track visited nodes and visit each node only once in postorder. The
complexity of the algorithm is O (k ·N), where N is the size of the tree (or maximally-
shared graph). For multi-rooted graphs (or when processing multiple trees), all roots
can be connected by creating a synthetic super-root of all roots, and the algorithm is
then called k times with the super-root as the first operand.

Algorithm 2 constructs the A∼k automaton. The tree (alternatively maximally-shared
graph) used for training is traversed in postorder, and k-root of each subtree is used to
retrieve the representative for each ∼k-induced equivalence class. Multi-rooted graphs
can be handled by introducing super-roots (as described before). Amortized complexity
is O (kN), where N is the size of the tree (or maximally-shared graph).
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input : Tree t, factor k, alphabet F

output: A∼k = (Q,F ,δ ,F)

foreach subtree ts in {t/u | u ∈ dom(t)} traversed in postorder do
if rep[ts.key] = /0 then

q← rootk (ts)
rep[ts.key] = q
Q←Q∪q

n← arity(ts(1))

δ ←
((

ts(1),rep[(ts/1).key], . . . ,rep[(ts/n).key]
)
,rep[ts.key]

)
F = F ∪ rep[t.key]
return (Q,F ,δ ,F)

Algorithm 2. k-Testable Tree Automaton Inference. The rep : hash (rootk (T (F ))) →
rootk (T (F )) hash map contains representatives of equivalence classes induced by ∼k. Col-
lisions are handled via chaining (not shown).

5 Experimental Results

5.1 Benchmarks

For the experiments, we use two sets of benchmarks: the malware and the goodware set.
The malware set comprises 2631 samples pre-classified into 48 families. Each family
contains 5–317 samples. We rely upon the classification of Christodorescu et al. [6]
and Fredrikson et al. [13].2 The classification was based on the reports from antivirus
tools. For a small subset of samples, we confirmed the quality of classification using
virustotal.com, a free malware classification service. However, without knowing the
internals of those antivirus tools and their classification heuristics, we cannot evaluate
the quality of the classification provided to us. Our classification experiments indicate
that the classification antivirus tools do might be somewhat ad-hoc. Table 1 shows the
statistics for every family.

The goodware set comprises 33 commonly used applications: AdobeReader, Apple
SW Update, Autoruns, Battle for Wesnoth, Chrome, Chrome Setup, Firefox, Freecell,
Freeciv, Freeciv server, GIMP, Google Earth, Internet Explorer, iTunes, Minesweeper,
MSN Messenger, Netcat port listen and scan, NetHack, Notepad, OpenOffice Writer,
Outlook Express, Ping, 7-zip archive, Skype, Solitaire, Sys info, Task manager, Tux
Racer, uTorrent, VLC, Win. Media Player, and WordPad. We deemed these applications
to be representative of software commonly found on the average user’s computer, from
a number of different vendors and with a diverse set of behaviors. Also, we used two
micro benchmarks: a HelloWorld program written in C and a file copy program. Micro-
benchmarks produce few small dependency graphs and therefore might be potentially
more susceptible to be misidentified for malware.

2 The full set of malware contains 3136 samples, but we eliminated samples that were not exe-
cutable, executable but not analyzable with Pin (i.e., MS-DOS executables), broken executa-
bles, and those that were incompatible with the version of Windows (XP) that we used for
experiments.
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Table 1. Malware Statistics per Family. All dependency graphs were obtained by running each
sample for 120sec in a controlled environment. The identifier that will be used in later graphs is
given in the first column. The third column shows the number of samples per family. The Avg.
column shows the average height of the dependency graphs across all the samples in the family.
The Nodes column shows the total number of nodes in the dependency graph (after CSE). The
Trees column shows the total number of different trees (i.e., roots of the dependency graph) across
all the samples. The Max column gives the maximal height of any tree in the family.

ID Family Name Samples Avg. Nodes Trees Max.
1 ABU.Banload 16 7.71 544 303 21
2 Agent 42 8.86 965 593 27
3 Agent.Small 15 8.88 950 588 27
4 Allaple.RAHack 201 8.78 1225 761 44
5 Ardamax 25 6.21 144 69 16
6 Bactera.VB 28 7.09 333 177 28
7 Banbra.Banker 52 13.97 1218 686 37
8 Bancos.Banker 46 14.05 742 417 45
9 Banker 317 17.70 2952 1705 43

10 Banker.Delf 20 14.78 939 521 50
11 Banload.Banker 138 19.38 2370 1332 152
12 BDH.Small 5 5.82 348 199 21
13 BGM.Delf 17 7.04 339 199 25
14 Bifrose.CEP 35 11.17 1190 698 50
15 Bobax.Bobic 15 8.98 859 526 30
16 DKI.PoisonIvy 15 9.22 413 227 40
17 DNSChanger 22 12.62 874 483 36
18 Downloader.Agent 13 12.89 1104 613 49
19 Downloader.Delf 22 10.76 1486 906 32
20 Downloader.VB 17 10.80 516 266 29
21 Gaobot.Agobot 20 17.54 1812 1052 45
22 Gobot.Gbot 58 7.01 249 134 22
23 Horst.CMQ 48 16.86 1030 541 42
24 Hupigon.ARR 33 23.58 2388 1244 55

ID Family Name Samples Avg. Nodes Trees Max.
25 Hupigon.AWQ 219 24.63 7225 3758 62
26 IRCBot.Sdbot 66 16.51 3358 1852 47
27 LdPinch 16 16.88 1765 1012 66
28 Lmir.LegMir 23 9.00 1112 667 28
29 Mydoom 15 5.78 484 305 20
30 Nilage.Lineage 24 9.64 1288 657 83
31 Games.Delf 11 8.44 971 632 22
32 Games.LegMir 76 17.18 11892 8184 59
33 Games.Mmorpg 19 7.00 654 478 25
34 OnLineGames 23 7.30 718 687 16
35 Parite.Pate 71 14.31 1420 816 36
36 Plemood.Pupil 32 6.29 330 189 24
37 PolyCrypt.Swizzor 43 10.32 415 213 30
38 Prorat.AVW 40 23.47 1031 572 58
39 Rbot.Sdbot 302 14.23 4484 2442 47
40 SdBot 75 14.13 2361 1319 40
41 Small.Downloader 29 11.93 2192 1216 34
42 Stration.Warezov 19 9.76 1682 1058 34
43 Swizzor.Obfuscated 27 21.75 1405 770 49
44 Viking.HLLP 32 7.84 512 315 24
45 Virut 115 11.76 3149 1953 40
46 VS.INService 17 11.42 307 178 37
47 Zhelatin.ASH 53 12.14 1919 1146 39
48 Zlob.Puper 64 15.16 2788 1647 90

In behavioral malware detection, there is always a contention between the amount of
time the behavior is observed and the precision of the analysis. For malware samples,
which are regularly small pieces of software, we set the timeout to 120sec of running
in our environment. For goodware, we wanted to study the impact of the runtime on
the height and complexity of generated dependency graphs, and the impact of these
differences on the false positive rates. Thus, we ran goodware samples for both 120 and
800sec. To give some intuition of how that corresponds to the actual native runtime, it
takes approximately 800s in our DTA analysis environment for Acrobat Reader to open
a document and display a window.

We noticed a general tendency that detection and classification tend to correlate pos-
itively with the average height of trees in samples used for training and testing. We
provide the average heights in Table 1.

5.2 Malware and Goodware Recognition

For our malware recognition experiments, we chose at random 50% of the entire mal-
ware set for training, and used the rest and the entire goodware set as test sets. Train-
ing with k = 4 took around 10sec for the entire set of 1315 training samples, and the
time required for analyzing each test sample was less than the timing jitter (sub-second
range). All the experiments were performed in Ubuntu 10.04, running in a VMware



Malware Analysis with Tree Automata Inference 127

7.1.3 workstation, running on Win XP Pro and dual-core 2.5GHz Intel machine with
4GB of RAM. In Figure 3a (resp. 3b), we show the results, using the goodware depen-
dency graphs produced with an 800sec (resp. 120sec) timeout.

The detection works as follows. We run all the trees (i.e., roots of the dependency
graph) in each test sample against the inferred automaton. First, we sort the trees by
height, and then compute how many trees for each height are accepted by the automa-
ton. Second, we score the sample according to the following function:

score =
∑i

acceptedi
totali

∗ i

∑i i
(1)

where i ranges from 1 to the maximal height of any tree in the test sample (the last
column of Table 1), acceptedi is the number of trees with height i accepted by the
automaton, and totali is the total number of trees with height i. The test samples that
produce no syscall dependency graphs are assumed to have score zero.

The score can range from 0 to 1. Higher score signifies a higher likelihood the sample
is malicious. The ratio in the nominator of Eq. 1 is multiplied by the depth of the tree
to filter out the noise from shallow trees, often generated by standard library functions,
that have very low classification power.

The results turned out to be slightly better with an 800sec timeout than with the
120sec timeout, as the average height of dependency graphs was slightly larger. As
expected, we found that with the rising k factor (and therefore decreasing level of ab-
straction), the capability of inferred tree automaton to detect malware decreases, which
obviously indicates the value of generalization achieved through tree automata infer-
ence. On the other hand, with the rising k factor, the detection becomes more precise
and therefore the false positive rate drops down. Thus, it is important to find the right
level of abstraction. In our experiments, we determined that k = 4 was the optimal ab-
straction level. The desired ratio between false positives and negatives can be adjusted
by selecting the score threshold. All samples scoring above (resp. below) the threshold
are declared malware (resp. goodware). For example, for k = 4, timeout of 800sec, and
score 0.6, our approach reports two false positives (5%) — Chrome setup and NetHack,
and 270 false negatives (20%), which corresponds to an 80% detection rate. For k = 4,
timeout of 800sec, and score 0.6, our approach reports one additional false positive
(System info), and the same number of false negatives, although a few malware samples
are somewhat closer to the threshold. Obviously, the longer the behavior is observed,
the better the classification.

It is interesting to notice that increasing the value of k above 4 does not make a sig-
nificant difference in (mis)detection rates. We ran the experiments with k up to 10, but
do not show the results as they are essentially the same as for k = 4. From our prelim-
inary analysis, it seems that generalization is effective when a sequence of dependent
syscalls are executed within a loop. If two samples execute the same loop body a dif-
ferent number of times, our approach will be able to detect that. Changing k effectively
changes the window with which such loop bodies are detected. During the inference, it
seems like one size (of k) does not fit all cases. We believe that by analyzing the repet-
itiveness of patterns in dependency graphs, we could detect the sizes of loop bodies
much more accurately, and adjust the k factor according to the size of the body, which
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Fig. 3. Malware and Goodware Recognition. Timeouts for generating the dependency graphs
were 120sec for malware test and training sets and 800sec (resp. 120sec) for the goodware test
set in the figure on the left (resp. right). The training set consists of 50% of the entire malware set,
chosen at random. The test set consists of the remaining malware samples (curves rising from left
to right), and the goodware set (curves falling from left to right). The rising curves represent the
percentage of malware samples for which the computed score was less than the corresponding
value on the x axis. The falling curves represent the percentage of goodware samples for which
the score was greater than the corresponding value on the x axis. The figure shows curves for
four different values of k, there is essentially no difference between the cases when k = 4 and
k = 5. For the rising curves, the lowest curve is for k = 2, the next higher one for k = 3, and the
two highest ones for the remaining cases. For the falling curves, the ordering is reversed. The
optimal score for distinguishing malware from goodware is the lowest intersection of the rising
and falling curves for the same k.

should in turn improve the generalization capabilities of the inference algorithm. Many
other improvements of our work are possible, as discussed later.

5.3 Malware Classification

We were wondering what is the classification power of inferred automata, so we did the
following experiment. We divided at random each family into training and test sets of
equal size. For each training set, we inferred a family-specific tree automaton. For each
test set, we read the dependency graphs for all the samples in the set, and compute a
single dependency graph, which is then analyzed with the inferred tree automaton. The
scores are computed according to Equation 1, with k = 3. The only difference from the
experiment done in the previous section is that the score is computed for the entire test
set, not individual samples in the set. Results are shown in Figure 4.

The pronounced diagonal in Figure 4 shows that our inferred automata clearly have
a significant classification power and could be used to classify malware into families.
There is some noise as well. The noise could be attributed to many factors: over-
generalization, over- and under-tainting of our DTA [5,19], insufficiently large depen-
dency graphs, frequently used dynamic libraries that are shared by many applications
and malware, and a somewhat ad-hoc pre-classification by the antivirus tools.
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6 Limitations
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Fig. 4. Malware Classification Results. The x (y) axis represents the train-
ing (test) sets. The size of the shaded circle corresponds to the score
computed by Eq. 1.

There are several
inherent limi-
tations of our
approach. An
attacker could try
to mask syscall
dependencies so
as to be similar (or
the same) as those
of benign applica-
tions. This class of
attacks are known
as mimicry attacks
[33]. All intrusion
and behavioral
malware detection
approaches are
susceptible to
mimicry attacks.
One way to make this harder for the attacker, is to make the analysis more precise, as
will be discussed in the following section.

Triggering interesting malware behavior is another challenge. Some behaviors could
be triggered only under certain conditions (date, web site visited, choice of the default
language, users’ actions,. . . ). Moser et al. [28,4] proposed DART [16] as a plausible
approach for detecting rarely exhibited behaviors.

As discussed earlier, our DTA environment slows the execution several thousand
times, which is obviously too expensive for real-time detection. A lot of work on mal-
ware analysis is done in the lab setting, where this is not a significant constraint, but ef-
ficiency obviously has to be improved if taint-analysis based approaches are ever to be
broadly used for malware detection. Hardware taint-analysis accelerators are a viable
option [30,11], but we also expect we could probably achieve an order of magnitude
speedup of our DTA environment with a very careful optimization.

7 Conclusions and Future Work

In this paper, we presented a novel approach to detecting likely malicious behaviors and
malware classification based on tree automata inference. We showed that inference, un-
like simple matching of dependency graphs, does generalize from the learned patterns
and therefore improves detection of yet unseen polymorphic malware samples. We pro-
posed an improved k-testable tree automata inference algorithm and showed how the
k factor can be used as a knob to tune the abstraction level. In our experiments, our
approach detects 80% of the previously unseen polymorphic malware samples, with a
5% false positive rate, measured on a diverse set of benign applications.
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There are many directions for further improvements. The classification power of
our approach could be improved by a more precise analysis of syscall parameters (e.g.,
using their actual values in the analysis), by dynamically detecting the best value of the k
factor in order to match the size of loop bodies that produce patterns in the dependency
graphs, by using goodware dependency graphs as negative examples during training,
and by combining our approach with the leap mining approach [13].

Another interesting direction is inference of more expressive tree languages. Infer-
ence of more expressive languages might handle repeated patterns more precisely, gen-
eralizing only as much as needed to fold a repeatable pattern into a loop in the tree
automaton. Further development of similar methods could have a broad impact in secu-
rity, forensics, detection of code theft, and perhaps even testing and verification, as the
inferred automata can be seen as high-level abstractions of program’s behavior.
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Abstract. In modeling a concurrent system, fairness constraints are
usually considered at a specific granularity level of the system, leading
to many different variants of fairness: transition fairness, object/process
fairness, actor fairness, etc. These different notions of fairness can be uni-
fied by making explicit their parametrization over the relevant entities in
the system as universal quantification. We propose a state/event-based
framework as well as an on-the-fly model checking algorithm to verify
LTL properties under universally quantified parametric fairness assump-
tions, specified by generalized strong/weak fairness formulas. It enables
verification of temporal properties under fairness conditions associated
to dynamic entities such as new process creations. We have implemented
our algorithm within the Maude system.

Keywords: Model checking, Parameterized Fairness, State/Event LTL.

1 Introduction

Fairness assumptions are often necessary to verify a liveness property of a con-
current system. Without fairness, unrealistic counterexamples can be produced,
such as a process that is never executed even though the process is continuously
enabled. A usual way to model check an LTL property under fairness assump-
tions is to re-formulate the property such that fairness requirements become a
conjunction of premises implying the original property [6]. Since this method is
impractical for model checking properties under complex fairness assumptions,
several specialized algorithms have been proposed, e.g., [11,14,16,19].

In practice, however, descriptions of fairness are dependent on specific models
or languages. There are many different variants of the fairness concepts, such
as transition fairness, object/process fairness, actor fairness, etc [1,13]. In gen-
eral, such variants do not coincide, even though their temporal behaviors like
strong/weak fairness are all similar. It becomes difficult to represent fairness
notions which are not directly supported by a specific modeling language.

Such different variants of fairness can be unified by making explicit the
parametrization of fairness formulas over the relevant spatial entities in a sys-
tem [20]. Fairness is then expressed by a universally quantified temporal formula,
where variables in the formula range over the relevant system entities. We use a
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state/event-based LTL (SE-LTL) because fairness notions usually involve both
states and events. For example, weak process fairness can be expressed by the
universally quantified formula: ∀x ∈ Process . ♦�enabled(x) → �♦execute(x),
where enabled(x) is a state predicate and execute(x) is an event predicate.

We present a framework to verify SE-LTL properties under parameterized
fairness constraints, given by generalized strong (resp., weak) fairness formulas
of the form ∀x �♦Φ→ �♦Ψ (resp., ∀x ♦�Φ→ �♦Ψ) in SE-LTL. For parameter-
ized fairness, the number of entities in the system over which the parametrization
ranges can be unbounded1 and may change during execution. Instead, previous
approaches require that the number of fairness conditions is already determined.
For example, in process fairness with dynamic process creation, fairness is para-
metric over a number of processes unknown a priori. Our framework is based on
the notion of parameter abstraction to make explicit the fact that, even though
the domain of entities or parameters is infinite, only a finite number of param-
eters are meaningful in a single state for fairness purposes. In process algebra,
meaningful parameters are the processes in the state, and strong/weak fairness
is vacuously satisfied for the processes not existing in a system.2

We have developed an on-the-fly SE-LTL model checking algorithm (available
at [2]) using a parameter abstraction that can directly handle universally quanti-
fied fairness formulas; its complexity is linear in the number of fairness instances
(see Sec. 4). We have implemented our algorithm within the Maude system [7],
which is a verification framework for concurrent systems where many concurrent
systems, including object-based systems and process algebras, can be naturally
described. This model checking algorithm can verify liveness properties of com-
plex examples with dynamic entities having an unpredictable number of fairness
assumptions (see Sec. 5). To the best of our knowledge, such dynamic parametric
fairness assumptions cannot be easily handled by other existing model checkers.

Related Work. Parameterization has long been considered as a way to describe
fairness of concurrent systems. The theorem proving of liveness properties com-
monly involves parameterized fairness properties. Fairness notions supported by
usual modeling languages are parameterized, e.g., process fairness [13] is param-
eterized by processes. However, such fairness notions are parameterized only by
specific entities, depending on the system modeling language. Localized fairness
[20] was introduced as a unified notion to express different variants of fairness,
depending on the chosen system granularity level. Localized fairness can be pa-
rameterized by any entity in a system, but generalized versions of strong/weak
fairness were not discussed in [20]. Our work extends localized fairness to in-
corporate generalized fairness, and answers the question of how to model check
LTL properties under such generalized fairness conditions.

To verify a property ϕ under parameterized fairness assumptions, the usual
method is to construct the conjunction of corresponding instances of fairness,
1 For finite-state systems the number is finite, but it may be impossible to determine

such a number from the initial state without exploring the entire state space.
2 E.g., enabled(p) is false for all states if a process p does not exist in the system, and

therefore, ♦�enabled(p)→ �♦execute(p) is vacuously satisfied.
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and to apply either: (i) a standard LTL model checking algorithm for the refor-
mulated property fair → ϕ, or (ii) a specialized model checking algorithm which
handles fairness, based on either explicit graph search [11,14,19], or a symbolic
algorithm [16]. Approach (i) is inadequate for fairness, since the time complexity
is exponential in the number of strong fairness conditions, while the latter is lin-
ear. Furthermore, compiling such a formula, expressing a conjunction of fairness
conditions, into Büchi automata is usually not feasible in reasonable time [24].
There are several tools to support the specialized algorithms such as PAT [22]
and Maria [19]. Our algorithm is related to the second approach to deal with
fairness, but it does not require pre-translation of parameterized fairness, and
can handle dynamic generalized fairness instances. There are also other meth-
ods to support parameterized fairness not based on standard model checking
methods, such as regular model checking [4] and compositional reasoning [8].

This paper is organized as follows. Section 2 presents the necessary back-
ground about fairness and SE-LTL. Section 3 introduces a logical framework for
parameterized fairness, and Section 4 presents the automata-based model check-
ing algorithm under parameterized fairness. Section 5 illustrates case studies,
Section 6 shows experimental results, and Section 7 presents some conclusions.

2 Fairness Expressed in a State/Event-Based Logic

Fairness generally means that, if a certain kind of choice is sufficiently often
provided, then it is sufficiently often taken. For example, strong fairness means
that, if a given choice is available infinitely often, then it is taken infinitely often.
Similarly, weak fairness means that, if the choice is continuously available beyond
a certain point, then it is taken infinitely often.

In order to express fairness using only logic formulas, we need a logic to
specify properties involving both states and events. Neither state-based logics
such as LTL nor event-based logics are usually sufficient to express fairness as
logic formulas on the original system, although system transformations can be
used to “encode” events in the state, typically at the price of a bigger state space.
Many modeling languages using state-based logics incorporate specific kinds of
fairness properties to avoid such problems, but the expressiveness of fairness is
then limited to the given kind of fairness thus supported.

State/event linear temporal logic (SE-LTL) [5] is a simple state/event ex-
tension of linear temporal logic. The only syntactic difference between LTL
and SE-LTL is that the latter can have both state propositions and event
propositions. Given a set of state propositions AP and a set of event propo-
sitions ACT , the syntax of SE-LTL formulas over AP and ACT is defined by
ϕ ::= p | δ | ¬ϕ | ϕ ∧ ϕ′ | ©ϕ | ϕUϕ′, where p ∈ AP and δ ∈ ACT . Other
operators can be defined by equivalences, e.g., ♦ϕ ≡ trueUϕ and �ϕ ≡ ¬♦¬ϕ.

The semantics of SE-LTL is defined on a labeled Kripke structure (LKS),
which is a natural extension of a Kripke structure with transition labels. The
model checking problem of SE-LTL formulas can be characterized by automata-
theoretic techniques on LKS similar to the LTL case [3,5], which use the Büchi
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automaton B¬ϕ with size O(2|ϕ|) associated to the negated formula ¬ϕ, where
the alphabet of B¬ϕ is a set of subsets of the disjoint union AP � ACT .

Definition 1. A labeled Kripke structure is a 6-tuple (S, S0,AP ,L,ACT , T )
with S a set of states, S0 ⊆ S a set of initial states, AP a set of atomic state
propositions, L : S → P(AP) a state-labeling function, ACT a set of atomic
events, and T ⊆ S × P(ACT )× S a labeled transition relation.

Note that each transition of an LKS is labeled by a set A of atomic events, which
enables us to describe a pattern of an event. A labeled transition (s,A, s′) ∈ T
is often denoted by s A−→ s′. A path (π, α) of an LKS is an infinite sequence
〈π(0), α(0), π(1), α(1), . . .〉 such that π(i) ∈ S, α(i) ⊆ ACT , and π(i) α(i)−−→ π(i+
1) for each i ≥ 0. (π, α)i denotes the suffix of (π, α) beginning at position i ∈ N.
A SE-LTL formula ϕ is satisfied on an LKS K, denoted by K |= ϕ, if and only
if for each path (π, α) of K starting from an initial state, the path satisfaction
relation K, (π, α) |= ϕ holds, which is defined inductively as follows:

– K, (π, α) |= p iff p ∈ L(π(0))
– K, (π, α) |= δ iff δ ∈ α(0)
– K, (π, α) |= ¬ϕ iff K, (π, α) |= ϕ
– K, (π, α) |= ϕ ∧ ϕ′ iff K, (π, α) |= ϕ and K, (π, α) |= ϕ′

– K, (π, α) |= ©ϕ iff K, (π, α)1 |= ϕ
– K, (π, α) |= ϕUϕ′ iff ∃k ≥ 0. K, (π, α)k |= ϕ′, ∀0 ≤ i < k. K, (π, α)i |= ϕ

We can define fairness properties of an LKS as SE-LTL formulas. A strong
fairness (resp. weak fairness) condition with respect to an event proposition α is
expressed by the SE-LTL formula �♦enabled .α→ �♦α (resp., ♦�enabled .α→
�♦α). A special state proposition enabled .α is defined for each state s of K such
that enabled .α ∈ L(s) iff there exists a transition s A−→ s′ ∈ T with α ∈ A. Gen-
eralized strong (resp., weak) fairness conditions are defined by SE-LTL formulas
of the form �♦Φ→ �♦Ψ (resp, ♦�Φ→ �♦Ψ), where Φ and Ψ are Boolean for-
mulas that do not contain any temporal operators. Many fairness notions, that
arise in real examples, can be expressed by generalized strong/weak fairness for-
mulas [18]. For example, the minimal progress of a set of events {α1, . . . , αk}
can be expressed by ♦�(enabled .α1 ∨ · · · ∨ enabled .αk) → �♦(α1 ∨ · · · ∨ αk).
However, imposing such fairness conditions for each relevant entity, e.g., for each
process, may require a large or even infinite set of such formulas.

3 Parameterized Fairness as Quantified SE-LTL

Besides a temporal perspective regarding frequency of a choice, fairness also
has a spatial perspective depending on the relation between the choice and the
system structure. The variants of fairness from such system structures can be
unified by making explicit their parametrization over the chosen spatial entities
[20]. To specify parameterized fairness conditions, we use first-order SE-LTL over
parameterized propositions. Fairness is then expressed by a universally quantified
SE-LTL formula, where variables range over the relevant entities in the system.
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3.1 Quantification of Parametric SE-LTL Formulas

In order to define parametric SE-LTL formulas, we should make the state and
event propositions parametric on the relevant entities. Such entities need not be
states: they could be process names, messages, or other data structures. There-
fore, we allow parametric state propositions p ∈ Π (resp., event propositions
δ ∈ Ω) of the form p(x1, . . . , xn) (resp., δ(x1, . . . , xm)).

Definition 2. A parameterized labeled Kripke structure over a set of parame-
ters C is a tuple K = (S, S0, Π,L, Ω, T ) such that KC = (S, S0,APC ,L,ACT C , T )
is an ordinary LKS with state propositions APC = {p(a) | a ∈ Cn, p ∈ Π,n ∈ N}
and event propositions ACT C = {δ(b) | b ∈ Cm, δ ∈ Ω,m ∈ N}.
We can now define the set of universally quantified SE-LTL formulas with re-
spect to Π , Ω, and C as the set of formulas of the form ∀x ϕ, where ϕ is a
propositional SE-LTL formula over APC∪V = {p(a) | a ∈ (C ∪V)n, p ∈ Π,n ∈ N}
and ACT C∪V = {δ(b) | b ∈ (C ∪ V)m, δ ∈ Ω,m ∈ N}, with V an infinite set
of variables disjoint from C, and x = vars(ϕ) the set of variables occurring in
ϕ. The satisfaction of such formulas in a path (π, α) of a parameterized LKS
K = (S, S0, Π,L, Ω, T ) is now defined in the obvious way:

K, (π, α) |= ∀x ϕ ⇔ ∀(θ : x→ C). KC , (π, α) |= θϕ

where θϕ is the propositional SE-LTL formula obtained by applying the si-
multaneous substitution θ to the variables x in ϕ. Note that K |= ∀x ϕ iff
K, (π, α) |= ∀x ϕ for each path (π, α) starting from an initial state.

A parameterized strong (resp., weak) fairness formula from Φ to Ψ is a uni-
versally quantified SE-LTL formula ∀x �♦Φ → �♦Ψ (resp, ∀x ♦�Φ → �♦Ψ),
where Φ and Ψ are Boolean formulas. Consider sets of strong (resp., weak) pa-
rameterized fairness formulas F = {∀xi �♦Φi → �♦Ψi | i ∈ I} (resp., J =
{∀xj ♦�Φj → �♦Ψj | j ∈ J}), where I and J are index sets. A path (π, α) of K
is fair under parameterized fairness F ∪ J iff K, (π, α) |= ∀xi �♦Φi → �♦Ψi

and K, (π, α) |= ∀xj ♦�Φj → �♦Ψj for each i ∈ I, j ∈ J . A SE-LTL formula ϕ
is fairly satisfied on K under F ∪J , denoted by K |=F∪J ϕ, iff K, (π, α) |= ϕ
for each fair path (π, α) under F ∪J starting from any initial state of K.

3.2 Finite Instantiation Property and Parameter Abstraction

Although the parameter set C is not a subset of the set S of states, there is
however an implicit relation between C and S derived from an underlying LKS K,
in terms of a definable set. If [x�C] denotes the set of all substitutions θ : x→ C,
given a transition s A−→ s′ of K, the proposition-definable sets Ds,A(p(x)) and
Ds,A(δ(x)) are the sets of substitutions that make the propositions satisfied:

Ds,A(p(x))={θ ∈ [x�C] | θp(x) ∈ L(s)} Ds,A(δ(x))={θ ∈ [x�C] | θδ(x) ∈ A}
In practice, the number of parameters c ∈ C that occur in a state is finite.

For that reason, assuming that L(s), L(s′), and A are finite for each transition
s A−→ s′, the proposition-definable sets for all state and event propositions are
finite. This is captured by the following finite instantiation property.
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Definition 3. A parameterized LKS K = (S, S0, Π,L, Ω, T ) over parameters C
satisfies finite instantiation property (FIP) with respect to Π ′ ⊆ Π and Ω′ ⊆ Ω
if for each transition s A−→ s′ of K, the sets Ds,A(p(x)) for each p ∈ Π ′ and
Ds,A(δ(x)) for each δ ∈ Ω′ are finite.

For an LKS K satisfying FIP with respect to Π ′ and Ω′ over a parameter set C
we can define abstraction of substitutions θ : x→ C with respect to proposition-
definable sets of Π ′ and Ω′. The key idea is to collapse the cofinite3 complement
of each proposition-definable set into the abstracted substitution ⊥x : x→ {⊥}
with a fresh new constant ⊥, which denotes a parameter that does never appear
in the finite definable set. For example, for a state proposition p(x), each substi-
tution θ /∈ Ds,A(p(x)) is abstracted to ⊥x : x → {⊥}. The extended parameter
set C⊥ = C ∪ {⊥} involves the LKS KC⊥ = (S, S0,APC⊥ ,L,ACT C⊥ , T ) naturally
extending KC = (S, S0,APC ,L,ACT C , T ) to C⊥. In this case, the negated satis-
faction relation KC⊥ , (π, α) |= ⊥x p(x) holds, as ⊥x p(x) ∈ L(π(0)) is impossible.

This abstraction relation can be extended to any SE-LTL formula using a
natural ordering in the abstracted domain [x� C⊥]. A partial order relation �
between substitutions θ1, θ2 ∈ [x�C⊥] is defined by:

θ1 � θ2 ⇔ for each x ∈ x, θ1(x) = ⊥ or θ1(x) = θ2(x)

Given a pair θ1, θ2 of substitutions that have a common upper bound, i.e., θ1 � θ
and θ2 � θ for some θ, there is the least upper bound defined by:

θ1 ∨ θ2 = (θ1 ∨ θ2)(x) = θ1(x) ∨ θ2(x) for each x ∈ x

where c ∨ ⊥ = ⊥ ∨ c = c ∨ c = c for each c ∈ C. For substitutions θ1, θ2 with
possibly different domains, we can define the combined substitution θ1 ⊕ θ2:

θ1 ⊕ θ2(x) =

⎧⎨⎩
θ1(x) if x ∈ dom(θ1) � dom(θ2)
θ2(x) if x ∈ dom(θ2) � dom(θ1)
θ1(x) ∨ θ2(x) otherwise

The abstraction function �(π,α),ϕ : [vars(ϕ) � C⊥] → [vars(ϕ) � C⊥] is then
inductively defined for a SE-LTL formula ϕ and a path (π, α) as follows:

– �(π,α),p(x)(θ) = if θ ∈ Dπ(0),α(0)(p(x)) then θ else ⊥x fi
– �(π,α),δ(x)(θ) = if θ ∈ Dπ(0),α(0)(δ(x)) then θ else ⊥x fi
– �(π,α),¬ϕ(θ) = �(π,α),ϕ(θ)
– �(π,α),ϕ1∧ϕ2(θ) = �(π,α),ϕ1(θ�vars(ϕ1))⊕ �(π,α),ϕ2(θ�vars(ϕ2))
– �(π,α),©ϕ(θ) = �(π,α)1,ϕ(θ)
– �(π,α),ϕ1Uϕ2(θ) =

∨
i≥0 �(π,α)i,ϕ1(θ�vars(ϕ1)) ⊕ ∨

j≥0 �(π,α)j ,ϕ2(θ�vars(ϕ2))

Note that �(π,α),ϕ1∧ϕ2(θ) and �(π,α),ϕ1Uϕ2(θ) are well-defined since �(π,α),ϕ(θ) �
θ is satisfied by induction. The satisfaction relation of ϕ on (π, α) for an ab-
stracted substitution ϑ = �(π,α),ϕ(θ) is naturally defined by KC⊥ , (π, α) |= ϑϕ.
The following lemma asserts that the satisfaction of a formula on an LKS satis-
fying FIP is preserved by the abstraction function �(π,α),ϕ of substitutions.

3 A set is cofinite iff the complement of the set is finite.
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Lemma 1. Given an LKS K satisfying FIP over a parameter set C, a quantified
SE-LTL formula ∀x ϕ, and a substitution θ ∈ [x � C], for each path (π, α),
KC , (π, α) |= θϕ iff KC⊥ , (π, α) |= �(π,α),ϕ(θ)ϕ.

Proof. We show the following generalized version of the lemma by structural
induction on ϕ: KC , (π, α) |= θϕ iff KC⊥ , (π, α) |= ϑϕ for any substitution
ϑ ∈ [x � C⊥] such that �(π,α),ϕ(θ) � ϑ � θ. For a state proposition p(x),
KC , (π, α) |= θp(x) iff θ /∈ Dπ(0),α(0)(p(x)) iff �(π,α),p(x)(θ) = ⊥x, and for each
substitution ⊥x � ϑ ≺ θ, KC⊥ , (π, α) |= ϑϕ. To prove the ϕ1Uϕ2 case, we need
the following ordering properties of �(π,α),ϕ, which are easy consequences from
the definition: (i) �(π,α)i,ϕ1(θ) � �(π,α),ϕ1Uϕ2(θ)�dom(θ1)

, and (ii) �(π,α)i,ϕ2(θ) �
�(π,α),ϕ1Uϕ2(θ)�dom(θ2)

, for each i ≥ 0. Thus, for each �(π,α),ϕ1Uϕ2(θ) � ϑ � θ,
if y = vars(ϕ1) and z = vars(ϕ2), we have �(π,α)i,ϕ1(θ � y) � ϑ � y � θ � y

and �(π,α)i,ϕ2(θ � z) � ϑ � z � θ � z, i ≥ 0. Hence, by induction hypothesis,
we have KC , (π, α)i |= θϕ1 iff KC⊥ , (π, α)i |= ϑϕ1, and KC , (π, α)j |= θϕ2 iff
KC⊥ , (π, α)j |= ϑϕ2 for each i, j ≥ 0. Therefore, KC , (π, α) |= θ(ϕ1Uϕ2) iff
KC⊥ , (π, α) |= ϑ(ϕ1Uϕ2). The other cases are similar. ��
On the other hand, as a dual of �(π,α),ϕ, the concretization function I(π,α),ϕ :
[vars(ϕ) → C⊥] → P([vars(ϕ) → C]) can be defined for a SE-LTL formula ϕ
as follows, where [x � C]�ϑ denotes the set {θ ∈ [x � C] | ϑ � θ} and the
“glueing” I1 � I2 of two sets I1 and I2 of concrete substitutions is defined by
I1 � I2 = {θ | θ�dom(I1) ∈ I1, θ�dom(I2)

∈ I2}:
– I(π,α),p(x)(ϑ) = if ϑ ∈ D then ϑ else [x�C]�ϑ �D fi, D = Dπ(0),α(0)(p(x))
– I(π,α),δ(x)(ϑ) = if ϑ ∈ D then ϑ else [x�C]�ϑ �D fi, D = Dπ(0),α(0)(δ(x))
– I(π,α),¬ϕ(ϑ) = I(π,α),ϕ(ϑ)
– I(π,α),ϕ1∧ϕ2(ϑ) = I(π,α),ϕ1(ϑ�vars(ϕ1))� I(π,α),ϕ2(ϑ�vars(ϕ2))
– I(π,α),©ϕ(ϑ) = I(π,α)1,ϕ(ϑ)
– I(π,α),ϕ1Uϕ2(ϑ) =

⋂
i≥0 I(π,α)i,ϕ1(ϑ) � ⋂

j≥0 I(π,α)j ,ϕ2(ϑ)

It is easy to check that for each θ ∈ I(π,α),ϕ(ϑ), ϑ � θ and �(π,α),ϕ(ϑ) =
�(π,α),ϕ(θ). The abstraction of a concrete substitution does always exist, but
there may be no concretization for some abstracted substitution. For instance,
given a path (π, α) such that Dπ(i),α(i)(p(x)) = {i} for each i ≥ 0, if C = N, then
�(π,α),♦p(x)(θ) = θ for any θ ∈ [{x}�N], and I(π,α),♦p(x)(⊥x) = ∅. However, for
a finite LKS that has only a finite set of states and a finite set of transitions,
each abstracted substitution has a corresponding concrete substitution.

Lemma 2. Given a finite LKS K satisfying FIP over parameters C, a quantified
SE-LTL formula ∀x ϕ, and ϑ ∈ [x�C⊥], for each path (π, α), I(π,α),ϕ(ϑ) = ∅.

Proof. It suffices to show, by structural induction on ϕ, that for each x ∈ vars(θ),
I(π,α),φ(ϑ)�{x} is cofinite if ϑ(x) = ⊥, and the singleton {ϑ(x)} otherwise. The
ϕ1 ∧ ϕ2 case comes from the fact that the intersection of two cofinite sets is
cofinite. For ϕ1Uϕ2, it is enough to mention that: (i) the set of suffixes {(π, α)i |
i ≥ 0} is finite when K is finite, and (ii) a finite intersection of cofinite sets is
cofinite. The other cases are clear by definition and the induction hypothesis. ��
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3.3 Path-Realized Parameters for an LKS Satisfying FIP

For a finite LKS K satisfying FIP, we can determine the satisfaction of ∀x ϕ by
considering a (possibly small) finite set of substitutions. Consider a set R ⊆ [x�
C⊥] of substitutions with �(π,α),ϕ([x� C]) ⊆ R. By definition, K, (π, α) |= ∀x ϕ
iff KC , (π, α) |= θϕ for each θ ∈ [x� C], and by Lemma 1, iff KC⊥ , (π, α) |= ϑϕ
for each ϑ ∈ �(π,α),ϕ([x� C]). If ϑ ∈ [x� C⊥] � �(π,α),ϕ([x� C]), by Lemma 2,
there is a concrete substitution θ ∈ [x� C] such that �(π,α),ϕ(ϑ) = �(π,α),ϕ(θ),
which implies KC⊥ , (π, α) |= ϑϕ iff KC , (π, α) |= θϕ. Consequently, we have:

Theorem 1. Given a finite LKS K satisfying FIP over parameters C, a quanti-
fied SE-LTL formula ∀x ϕ, and a path (π, α), if �(π,α),ϕ([x�C]) ⊆ R ⊆ [x�C⊥],
then K, (π, α) |= ∀x ϕ iff for each ϑ ∈ R, KC⊥ , (π, α) |= ϑϕ.

If the operator ⊕ is extended to sets of substitutions by I1⊕ I2 = {θ1⊕ θ2 | θ1 ∈
I1, θ2 ∈ I2}, given a SE-LTL formula ϕ and a path (π, α), the path-realized set
R(π,α),ϕ ⊆ [vars(ϕ)�C⊥] of substitutions is defined as follows:

– R(π,α),p(x) = Dπ(0),α(0)(p(x)) ∪ {⊥x}
– R(π,α),δ(x) = Dπ(0),α(0)(δ(x)) ∪ {⊥x}
– R(π,α),¬ϕ = R(π,α),ϕ

– R(π,α),ϕ1∧ϕ2 = R(π,α),ϕ1 ⊕R(π,α),ϕ2

– R(π,α),©ϕ = R(π,α)1,ϕ

– R(π,α),ϕ1Uϕ2 =
⋃

i≥0 R(π,α)i,ϕ1 ⊕ ⋃
j≥0 R(π,α)j,ϕ2

Since R(π,α),ϕ is the aggregation of all possible values of �(π,α),ϕ, from Theo-
rem 1, we have the following localization lemma:

Lemma 3. Given a finite LKS K satisfying FIP over parameters C, a quantified
SE-LTL formula ∀x ϕ, and a path (π, α), for each substitution θ ∈ [x�C], there
exists ϑ ∈ R(π,α),ϕ such that KC , (π, α) |= θϕ iff KC⊥ , (π, α) |= ϑϕ.

If we consider a parameterized fairness formula ∀x ψ ,we can further reduce
the set of substitutions necessary to determine the satisfaction of the formula.
Since the satisfaction of a parameterized fairness formula ψ does not vary if we
skip finitely many steps of a path, from the above lemma, we can consider only
the set Rinf

(π,α),ψ of infinitely often path-realized substitutions, whose elements

belong to R(π,α)i,ψ for infinitely many i ∈ N. Note that Rinf
(π,α),ψ is actually equal

to R(π,α)N ,ψ for a sufficiently large N ≥ 0 in which all substitutions with finite
occurrences are skipped. Accordingly, by Theorem 1, we then have:

Theorem 2. Given a finite LKS K satisfying FIP over parameters C, a param-
eterized fairness formula ∀x ψ, and a path (π, α), K, (π, α) |= ∀x ψ iff for each
ϑ ∈ Rinf

(π,α),ψ, KC⊥ , (π, α) |= ϑψ.

Note that if Rinf
ψ ⊆ [x�C⊥] is the union of Rinf

(π,α),ψ for each (π, α) from a initial

state of K, by the above theorem, K |= ∀x ψ iff for each ϑ ∈ Rinf
ψ , KC⊥ |= ϑψ.
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4 Automata-Based Model Checking Algorithm

Given a finite LKS K satisfying FIP over parameters C, the satisfiability of a
quantified SE-LTL formula ∀x ϕ is now reduced to the satisfiability of ϑϕ on KC⊥
for each path-realized substitution ϑ. This reduction gives a simple algorithm to
verify ∀x ϕ using the existing SE-LTL model checking algorithm as follows:

1. Traverse the state space of K to compute a path-realized set R(π,α),ϕ for
each infinite path (π, α), witnessed by a cycle in the search graph.

2. For each substitution ϑ evaluated at Step 1, model check KC⊥ |= ϑϕ using
the existing algorithm. If all satisfied, then K |= ∀x ϕ. Otherwise, K |= ∀x ϕ.

This algorithm is not on-the-fly, since we have to traverse the entire state space
first. However, for a parameterized fairness formulas, thanks to the fact that only
infinitely often path-realized substitutions are necessary, we can give an on-the-
fly model checking algorithm below based on a strongly connected component
(SCC) analysis, seeing that each cycle is identified by a SCC.

4.1 Automata-Based Characterization

Given a set of parameterized strong/weak fairness formulas F ∪J for a finite
LKS K satisfying FIP over parameters C, by Theorem 2, we can construct an
equivalent set G = F̂ ∪Ĵ of propositional generalized strong/weak fairness for-
mulas by instantiating each parameterized formula ∀x ψ with the substitutions
in Rinf

ψ . Since generalized weak fairness formula ♦�Φ→ �♦Ψ can be expressed
by �♦� → �♦(¬Φ∨Ψ), we can regard G as a set of strong fairness formulas. Such
strong fairness conditions can be incorporated into the acceptance conditions of
a transition-based Streett automaton.

Definition 4. A Streett automaton (Q,Q0, P,Δ,F) is a 5-tuple with Q a set
of states, Q0 ⊆ Q a set of initial states, P an alphabet of transition labels,
Δ ⊆ Q×P×Q a transition relation, and F ⊆ P(Δ×Δ) an acceptance condition.

A run of a Streett automaton S is an infinite sequence q0 l0−→ q1 l1−→ q2 l2−→ · · ·
of transitions starting from q0 ∈ Q0. A run σ is accepted by S iff for each pair
(G,H) ∈ F , whenever σ has transitions in G infinitely often, σ has transitions
in H infinitely often. Given two Streett automata S1 and S2, their synchronous
product S1 ×S2 is defined such that |S1 ×S2| = O(|S1| · |S2|) and L(S1 ×S2) =
L(S1) ∩ L(S2) [11]. Note that a Büchi automaton B = (Q,Q0, P,Δ, F ) can be
translated into an equivalent Streett automaton S(B) = (Q,Q0, P,Δ, {(Δ,F )}).

Given an LKS K = (S, S0,AP ,L,ACT , T ) and a set of generalized strong
fairness formulas G = {�♦Φi → �♦Ψi | i ∈ I}, we can define a fair Streett
automaton SG(K) = (S, S0,P(AP �ACT ), Δ,FG) such that:4

Δ = {s L(s)�A−−−−−→ s′ | s A−→ s′ ∈ T }
FG = {(ΔΦi , ΔΨi) | i ∈ I}, where ΔΦ = {s B−→ s′ ∈ Δ | B |= Φ}

4 B |= Φ is defined inductively as follows: B |= p iff p ∈ B, B |= δ iff δ ∈ B, B |= ¬Φ
iff B �|= Φ, and B |= Φ1 ∧ Φ2 iff B |= Φ1 and B |= Φ2, where p ∈ AP and δ ∈ ACT .
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Each path (π, α) of an LKS K is in one-to-one correspondence with a run
π(0) L(π(0))�α(0)−−−−−−−−→ π(1) L(π(1))�α(1)−−−−−−−−→ · · · of the Streett automaton SG(K). Fur-
thermore, (π, α) satisfies all fairness conditions of G iff the corresponding run
of (π, α) is accepted by SG(K). Therefore, we can use a Streett automaton
SG
¬ϕ(K) = SG(K) × S(B¬ϕ) to model check a SE-LTL formula in K under gen-

eralized strong/weak fairness conditions as follows:

Theorem 3. Given an LKS K, a SE-LTL formula ϕ, and a set of propositional
generalized strong fairness formulas G, there is a Streett automaton SG

¬ϕ(K) with
size O(|K| · 2|ϕ|) such that L(SG

¬ϕ(K)) = ∅ iff K |=G ϕ.

Consequently, the model checking problem of SE-LTL formulas on a finite LKS
K satisfying FIP under parameterized strong/weak fairness conditions F ∪J is
reduced to the emptiness checking problem of the Streett automaton whose ac-
ceptance condition is defined by the generalized strong/weak fairness conditions
F̂ ∪ Ĵ obtained by instantiating F and J for each ϑ ∈ ⋃

(∀xk ψ)∈F∪J Rinf
ψ .

It is worth noting that a naive selection of such substitutions without param-
eter abstraction does not guarantee the equivalence between the parameterized
fairness formula and the set of instantiated formulas. For example, in process
algebra, the fairness formula ∀x �♦¬enabled(x) → �♦execute(x) is always false,
since for a process k not existing in a system, ¬enabled(k) is true but execute(k)
is false. But all instantiated formulas only using the existing processes can be
true if such processes are always enabled.

4.2 On-The-Fly Model Checking Algorithm

We present an on-the-fly automata-based algorithm for parameterized fairness,
based on the emptiness checking algorithm for Streett automaton associated to
the strong fairness conditions [11,19]. To check emptiness of a finite Streett au-
tomaton (Q,Q0, P,Δ,F), the basic idea is to find a reachable SCC that satisfies
all Streett acceptance conditions in F [12]. An acceptance condition (gi, hi) ∈ F
is satisfied in a SCC S iff whenever S contains a transition s1 B−→ s2 such that
B |= gi, there exists some transition s′1 B′−→ s′2 ∈ S such that B′ |= hi. If some
(gi, hi) is not satisfied in S, then the bad transitions of S are identified, satisfy
gi ∧ ¬hi and therefore prevent the satisfaction of (gi, hi).

The emptiness checking algorithm specified in Fig. 1 is to find a SCC with no
bad transitions. The computeNextSCC(Q, q, Δ) function in Line 3 identifies each
SCC S in the graph (Q, Δ) containing q, which can be implemented by any
on-the-fly algorithm to find a SCC; typically Tarjan’s algorithm, or Couvreur’s
algorithm [9] for early finding of SCC. If S satisfies all acceptance conditions
(Line 4), then we can generate a counterexample given by a fair cycle from S
using breadth-first search [19]. Otherwise, if S is a maximal strongly connected
component (MSCC)5 and contains bad transitions, then the whole S is traversed
again except for the bad transitions (Line 11), which leads to dividing S into
multiple smaller subcomponent with no such bad transitions.
5 A MSCC is a SCC such that there is no other SCCs containing it.
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findFairSCC(Q, Q0, Δ)

2 while there is a reachable state q ∈ Q from Q0 that has not been visited do
3 S := computeNextSCC(Q, q, Δ);
4 if fairnessSatisfied(S) then
5 return S

6 else if S is maximal and contains bad transitions then

7 QS := the set of states in S;

8 ΛS := the set of bad transitions for unsatisfied acceptance conditions in S;

9 QS
0 := the set of states that occur in ΛS ;

10 mark each state in QS as unvisited;

11 return findFairSCC(QS , {q} ∪QS
0 , Δ � ΛS ) unless ⊥

12 end if
13 end while;
14 return ⊥;

Fig. 1. Streett Emptiness Checking Algorithm for S = (Q,Q0, P, Δ,F)

Given a Streett Automaton S = (Q,Q0, P,Δ,F), if there exists a nonempty
SCC T ∈ (Q,Δ) satisfying F reachable from Q0, then T is a subcomponent
of a MSCC S = (QS, ΔS) given by computeNextSCC(Q, q, Δ) with q reachable
from Q0. Further, since T does not contain any bad transitions ΛS of S, we
have T ⊆ (QS, ΔS

� ΛS). Hence, whenever we meet findFairSCC(QS , {q} ∪QS
0

, Δ � ΛS) in Line 11, T is contained in (QS, ΔS
� ΛS) and is reachable from

{q} ∪QS
0 . This yields the correctness of this algorithm as follows:

Theorem 4. Assuming the correctness of an underlying SCC finding algorithm,
given a Streett Automaton S = (Q,Q0, P,Δ,F), the findFairSCC(Q, Q0, Δ) finds
a nonempty SCC satisfying F reachable from Q0 if it exists.

To make this algorithm on-the-fly under parameterized fairness conditions, we
have to check fairnessSatisfied(S) in Line 4 using only states and transitions in
S. Given parameterized fairness formulas ∀xi ψi, 1 ≤ i ≤ n, with ψi either
�♦Φi → �♦Ψi, or ♦�Φi → �♦Ψi, since Φi and Ψi have no temporal operators,
when ζ(y) ranges over both state and event propositions, we have R(π,α)k,Φi

=⊕
ζ(y)∈Φi

(Dπ(k),α(k)(ζ(y)) ∪ {⊥y}), k ≥ 0, and R(π,α)k,Ψi
similar. Thus, for any

infinite path (π, α) whose infinite suffixes are included in S, the infinitely often
path-realized set Rinf

(π,α),ψi
is a subset of the following set RS,ψi :

RS,ψi =
⋃

s A−→ s′∈S

( ⊕
ζ(y)∈Φi

(Ds,A(ζ(y)) ∪ {⊥y}) ⊕
⊕

ζ(z)∈Ψi

(Ds,A(ζ(z)) ∪ {⊥z})
)

Thanks to the localization lemma, we only need to check fairness instances of
ψi from RS,ψi to determine the satisfaction of ∀xi ψi on such paths. That
is, to decide whether acceptance conditions {(ΔθΦi , ΔθΨi) | θ ∈ [x � C]} from
∀xi ψi are all satisfied on S, it is enough to consider acceptance conditions
{(ΔϑΦi , ΔϑΨi) | ϑ ∈ RS,ψi}, so that all parameterized acceptance conditions are
localized to S and fairnessSatisfied(S) can be computed on-the-fly.
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A Streett automaton emptiness check can be determined in time O(|F|·(|Q|+
|Δ|)) [11]. Thus, the time complexity of model checking a SE-LTL formula ϕ on
K with parameterized fairness conditions is O(f ·r · |K| ·2|ϕ|), where f and r are,
respectively, the numbers of parameterized fairness conditions and of infinitely
often path-realized parameters in K. That is, f = |F ∪J |, and r = |R|, where
R =

⋃
(∀xk ψ)∈F∪J Rinf

ψ . Note that the space complexity is also exponential on
|ϕ|, since in the worst case the whole state space can be a single SCC maintained
by the underlying Streett emptiness checking algorithm.

5 Parameterized Fairness Case Studies

This section illustrates how our framework for parameterized fairness can be
applied to a wide range of modeling applications, especially including nontrivial
parameterized fairness assumptions such as (i) object fairness with dynamic
object creation, and (ii) the fairness for the sliding window protocol, parametric
not only on processes, but also on data in channels.

5.1 Evolving Dining Philosophers Problem

We illustrate dynamic parameterized fairness by means of the Evolving Dining
Philosophers problem [17]. This problem is similar to the famous Dining Philoso-
phers problem: there are N philosophers sitting at a circular table who are either
thinking, waiting, or eating. A chopstick is placed in between each pair of ad-
jacent philosophers. The thinking philosophers wake up to eat something. The
waiting philosophers can grab a chopstick on their left or right, and eat when
they have both. After eating, a philosopher places the chopsticks back on the ta-
ble and thinks. However, in the evolving version, a philosopher can join or leave
the table, so that the number of philosophers can be dynamically changed. In
this problem we cannot decide the total fairness conditions at the outset, since
they apply to each philosopher.

Although there is no limit to the number of philosophers in the original prob-
lem, we give an unpredictable bound using the Collatz problem [10]. There is a
global counter that symbolizes a philosophical problem, and philosophers keep
thinking the problem by changing the number n to: (i) 3n+ 1 for n odd, or (ii)
n/2 for n even. New philosophers can join the group if the global number is a
multiple of the current number of philosophers. Only the last philosopher can
leave the group. To keep consistency, whenever a philosopher joins or leaves the
table, the related chopsticks should not be held by another philosopher.

Each philosopher is identified by a natural number k ∈ N. The states of
philosopher k are expressed by the parameterized state propositions thinking(k),
waiting(k), and eating(k). Similarly, the actions of the philosopher k are repre-
sented by the parameterized event propositions wake(k), grab(k), and think(k).
Initially, there are two philosophers 1 and 2 thinking. The corresponding pa-
rameterized LKS over parameters N can be generated from the initial state, for
example, {thinking(1), thinking(2)} wake(1)−−−−−→ {waiting(1), thinking(2)}.
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sendP : { aP ≤ i < sP + lP }
begin enqueue IP [i] to FQ end

lossP : { [i, w] ∈ FP }
begin remove [i, w] from FP end

recvP : { [i, w] := dequeue(FP ) }
begin

if OP [i]=⊥ then OP [i] := w;
sP := min{j | OP [j] = ⊥};
aP := max(aP , i−lQ+1) fi end

Fig. 2. The Balanced Sliding-Window Protocol (For P )

In order to prove, e.g., the liveness property ♦eating(1), we need the weak
fairness condition of wake(k) and the strong fairness condition of grab(k) for
each philosopher k, given by the following parameterized fairness formulas:

∀x ♦�enabled .wake(x) → �♦wake(x) ∀x �♦enabled .grab(x) → �♦grab(x)

The parameterized LKS generated over a set of parameters N is finite due to the
Collatz bound, and satisfies FIP since the propositions in the fairness formulas
can be true only for the existing philosophers. Hence, we can directly model check
♦eating(1) under the above parameterized fairness conditions in our framework.

5.2 Balanced Sliding Window Protocol

In this example we show how a liveness property of a nontrivial system with an
unbounded number of fairness assumptions can be verified under parameterized
fairness. The balanced sliding window protocol is a symmetric protocol that
allows information to be sent reliably in both directions. The verification task
for this protocol is not simple, since the specification involves unbounded queue
and dynamic fairness conditions.

The balanced sliding window protocol description is as follows [23]: there are
two entirely symmetric processes P and Q connected to each other through
a lossy channel. Packets exchanged by the processes are pairs [i, w] with i an
index number and w a data word. The acknowledgement is implicitly provided
by sending and receiving messages. Process P contains an array IP of packets
to be sent, another array OP of items to be received, and a FIFO queue FP of
packets in transit to be received. Process P also has three variables to describe a
state of the process as follows: sP the lowest index of packet not yet received from
the other process, aP the lowest index of packet sent but not yet acknowledged,
and lP a fixed bound allowing sending packets before being acknowledged.

Process P can send any packet [i, w] in IP to Q if no acknowledgement for it
has been yet received but within bound, i.e., aP ≤ i < sP + lP . When receiving
a packet, an already received packet is ignored. Otherwise, the packet is added
to OP , sP is set to the smallest index that has not been received, and aP is set
to max (aP , i− lQ + 1) to ignore messages in the future whose index is less then
or equal to i − lQ. Finally, the loss of a packet can happen at any time. The
behavior of this protocol is summarized as the pseudo code in Fig. 2.

The liveness property we are interest in is that all messages are eventually
delivered, given by the LTL formula ♦success such that the state proposition
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success holds if IP = OQ and IQ = OP . Let the actions of a process p with
packet [i, w] be expressed by the parameterized event propositions send(p, i, w)
and recv(p, i, w). The verification of ♦success requires the weak fairness condition
of send(p, i, w) and the strong fairness condition of recv(p, i, w) for each process
p and packet [i, w], specified by the following parameterized fairness formulas:

∀(p, i, w) ♦�enabled .send(p, i, w) → �♦send(p, i, w)
∀(p, i, w) �♦enabled .recv(p, i, w) → �♦recv(p, i, w)

Since the state space of the original system is infinite due to the unbounded
queue, we apply equational-abstraction [21] to collapse the set of states to a
finite number by identifying repeated packets. At the level of the abstracted
system all these fairness requirements are captured by the following generalized
parameterized fairness conditions that only use state propositions, where the
parameterized state proposition inQueue(p, i, w) (resp., inOutput(p, i, w)) holds
when the packet [i, w] is in the queue Fp (resp., the output array Op):

∀(i, w) ♦�enabled .send(P, i, w) → �♦inQueue(Q, i, w)
∀(i, w) ♦�enabled .send(Q, i, w) → �♦inQueue(P, i, w)

∀(p, i, w) �♦inQueue(p, i, w) → �♦inOutput(p, i, w)

Again, in the finite abstracted system, we can apply our framework to model
check ♦success under the above parameterized fairness conditions, since the
system satisfies FIP, owing to the fact that each proposition in the fairness
formula can be true only for the existing entities in the system.

6 Experimental Results

We have implemented our algorithm in the Maude system by extending the ex-
isting SE-LTL model checker [3]. Our tool accepts models with both unparame-
terized and parameterized fairness conditions. We have compared it with other
explicit-state model checkers, such as Pat [22] and Spin [15], and then tested
our algorithm on complex examples involving dynamic fairness conditions. Since
Spin and Pat only support unparameterized fairness, the comparison with those
tools uses a model with unparameterized fairness assumptions. The experiments
in this section were conducted on an Intel Core 2 Duo 2.66 GhZ with 8GB RAM
running Mac OS X 10.6. We set a timeout of 30 minutes for the experiments.

To evaluate our algorithm comparing it with other tools, we use the classical
Dining Philosophers problem which requires both strong and weak fairness con-
ditions to verify the liveness property �¬deadlock → ♦eating(1), where deadlock
is considered as an event proposition.6 Table 1 shows the verification results for
each tool, where “N” is the number of philosophers, and “Time” is the run-
time in seconds. We can observe that in the weak-fairness case, our algorithm
is comparable to Spin, and for the strong/weak fairness case, it shows similar
performance with Pat. For Spin, we had to encode strong fairness conditions
into the LTL formula since Spin only supports weak fairness.
6 For the cases of Pat and Spin, we use a modified deadlock-free version.
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Table 1. Dining Philosophers for the property �¬deadlock → ♦eating(1)

Fairness N
Maude Pat Spin

States Time States Time States Time

Weak Only
(Counter Example)

6 913 < 0.1 1596 1.0 672 < 0.1
7 2418 0.1 5718 5.1 2765 0.2
8 11092 0.9 21148 33.5 9404 0.8

Strong/Weak
(Valid)

6 5777 1.8 18101 3.9
> 30 minutes7 24475 11.5 69426 16.1

8 103681 77.6 260998 79.0

Table 2. Results for models with dynamic parameterized fairness

(a) Evolving Dining Philosophers

C. Nr. States Time #Fairness

6 10532 3.6 10
18 86563 44.5 12
30 86387 47.5 12
42 13258 47.3 10
48 61751 31.1 12
54 697835 385.9 12

(b) Bounded Sliding Window Protocol

Size Bound States Time #Fairness

3 1 420 0.2
123 2 1596 1.7

3 3 4095 5.7

5 1 6900 5.5
205 2 32256 42.6

5 3 123888 223.8

Most interesting cases respecting parameterized fairness are models with dy-
namic fairness which cannot be easily predicted from the initial state, e.g.,
the examples in Sec. 5. Table 2a presents the model checking results for the
evolving Dining Philosophers problem from the several initial Collatz numbers,
where“#Fairness” is the total number of fairness instances generated during
model checking. The results for the bounded sliding window protocol are pro-
vided in Table 2b, with different input array sizes and window bounds. In both
cases, considerably large numbers of fairness constraints are automatically con-
structed, and verified within reasonable times.

7 Conclusions

We have presented a logical framework for parameterized fairness, which makes
much easier expressing a wide range of fairness constraints that can be specified
by universally quantified SE-LTL fairness formulas. We have also presented an
on-the-fly algorithm for model checking SE-LTL properties under parameterized
fairness, and have shown that it has reasonable performance when compared to
other existing model checkers that support fairness. Furthermore, it answers the
question of how to verify strong/weak fairness conditions for dynamic systems,
in which the number of relevant parameter entities cannot be predicted. We
have shown two case studies that require a dynamic, and unpredictable number
of fairness conditions, which would be hard to handle by other tools.
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Abstract. Quantified Boolean formulae (QBF) allow compact encod-
ing of many decision problems. Their importance motivated the devel-
opment of fast QBF solvers. Certifying the results of a QBF solver not
only ensures correctness, but also enables certain synthesis and verifica-
tion tasks particularly when the certificate is given as a set of Skolem
functions. To date the certificate of a true formula can be in the form of
either a (cube) resolution proof or a Skolem-function model whereas that
of a false formula is in the form of a (clause) resolution proof. The res-
olution proof and Skolem-function model are somewhat unrelated. This
paper strengthens their connection by showing that, given a true QBF,
its Skolem-function model is derivable from its cube-resolution proof of
satisfiability as well as from its clause-resolution proof of unsatisfiabil-
ity under formula negation. Consequently Skolem-function derivation can
be decoupled from Skolemization-based solvers and computed from stan-
dard search-based ones. Fundamentally different from prior methods, our
derivation in essence constructs Skolem functions following the variable
quantification order. It permits constructing a subset of Skolem functions
of interests rather than the whole, and is particularly desirable in many
applications. Experimental results show the robust scalability and strong
benefits of the new method.

1 Introduction

Quantified Boolean formulae (QBF) allow compact encoding of many decision
problems, for example, hardware model checking [6], design rectification [17],
program synthesis [18], two-player game solving [13], planning [15], and so on.
QBF evaluation has been an important subject in both theoretical and practical
computer sciences. Its broad applications have driven intensive efforts pursu-
ing effective QBF solvers, despite the intractable PSPACE-complete complexity.
Approaches to QBF evaluation may vary in formula representations, solving
mechanisms, data structures, preprocessing techniques, etc. As a matter of fact,
the advances of DPLL-style satisfiability (SAT) solving make search-based QBF
evaluation [5] on prenex conjunctive normal form (PCNF) formulae the most
popular approach.

G. Gopalakrishnan and S. Qadeer (Eds.): CAV 2011, LNCS 6806, pp. 149–164, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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As QBF evaluation procedures are much more complicated than their SAT
solving counterparts, validating the results of a QBF solver is more critical than
that of a SAT solver. The commonly accepted certificate formats to date are
mainly resolution proofs and Skolem-function models. More precisely, for a true
QBF, a certificate can be in the syntactic form of a cube-resolution proof (e.g.,
available in solvers QuBE-cert [12] and yQuaffle [20]) or in the semantic
form of a model consisting of a set of Skolem functions (e.g., available in sKizzo
[1,2], squolem [9], and Ebddres [9]); for a false QBF, it can be in the syntactic
form of a clause-resolution proof (e.g., available in all the above solvers except
for sKizzo). Despite some attempts towards a unified QBF proof checker [9],
resolution proofs and Skolem-function models remain weakly related. Moreover,
the asymmetry between the available certificate formats in the true and false
QBF may seem puzzling.

From the application viewpoint, Skolem functions are more directly useful
than resolution proofs. The Skolem-function model in solving a true QBF may
correspond to, for example, a correct replacement in design rectification, a code
fragment in program synthesis, a winning strategy in two-player game solving,
a feasible plan in robotic planning, etc. Unfortunately, Skolem-function models
are currently only derivable with Skolemization-based solvers, such as sKizzo,
squolem, and Ebddres. Moreover, the derivation can be expensive as evi-
denced by empirical experience that Skolemization-based solvers usually take
much longer time on solving true instances than false ones. In contrast, search-
based solvers, such as QuBE-cert, can be more efficient and perform more
symmetrically in terms of runtime on true and false instances.

This paper takes one step closer to a unified approach to QBF validation by
showing that, for a true QBF, its Skolem-function model can be derived from
its cube-resolution proof of satisfiability and also from its clause-resolution proof
of unsatisfiability under formula negation, both in time linear with respect to
proof sizes. Consequently, the aforementioned issues are addressed. Firstly, the
connection between resolution proofs and Skolem functions is strongly estab-
lished. Secondly, it practically conceives Skolem-function countermodels for false
QBF, and thus yielding a symmetric view between satisfiability and unsatisfia-
bility certifications. Finally, Skolem-function derivation can be decoupled from
Skolemization-based solvers and achieved from the more popular search-based
solvers, provided that resolution proofs are maintained. A key characteristic of
the new derivation is that Skolem functions are generated for variables quantified
from outside in, in contrast to the inside-out computation of Skolemization-based
solvers. This feature gives the flexibility of computing some Skolem functions of
interests, rather than all as in Skolemization-based solvers.

Experimental results show that search-based QBF solver QuBE-cert certifies
more QBFEVAL instances1 than Skolemization-based solvers sKizzo and
squolem. Almost all of the Skolem-function models (respectively countermodels)

1 Since negating the QBFEVAL formulae using Tseitin’s conversion [19] may suffer from
variable blow up, the Skolem functions are only derived with respect to the original
formulae.



Resolution Proofs and Skolem Functions 151

are computable, under resource limits, from the cube-resolution proofs of the true
cases (respectively clause-resolution proofs of the false cases). On the other hand,
for the relation determinization instances (all satisfiable), whose negations are
concise by Tseitin’s conversion from the circuit structures, their Skolem functions
are obtained both from the cube-resolution proof of the original formulae and
also from the clause-resolution proof of the negated formulae to compare. The
latter tends to be much more robust and shows the unique value of the proposed
method.

2 Preliminaries

A literal in a Boolean formula is either a variable (i.e., positive-phase literal)
or the negation of the variable (i.e., negative-phase literal). In the sequel, the
corresponding variable of a literal l is denoted var (l). A clause is a Boolean
formula consisting of a disjunction of a set of literals; a cube is a Boolean formula
consisting of a conjunction of a set of literals. In the sequel, we may alternatively
specify a clause or cube by a set of literals. A formula in conjunctive normal form
(CNF) is a conjunction of a set of clauses whereas a disjunctive normal form
(DNF) formula is a disjunction of a set of cubes. A (quantifier-free) formula φ
over variables X subject to some truth assignment α : X ′ → {0, 1} on variables
X ′ ⊆ X is denoted as φ|α.

2.1 Quantified Boolean Formulae

A quantified Boolean formula (QBF) Φ over variables X = {x1, . . . , xk} in the
prenex conjunctive normal form (PCNF) is of the form

Q1x1, . . . , Qkxk.φ, (1)

where Q1x1, . . . , Qkxk, with Qi ∈ {∃, ∀} and variables xi = xj for i = j, is
called the prefix, denoted Φprefix , and φ, a quantifier-free CNF formula in terms
of variables X , is called the matrix, denoted Φmatrix . We shall assume that a
QBF is in PCNF and is totally quantified, i.e., with no free variables. So the
set X of variables of Φ can be partitioned into existential variables X∃ = {xi ∈
X | Qi = ∃} and universal variables X∀ = {xi ∈ X | Qi = ∀}. A literal l is
called an existential literal and a universal literal if var (l) is in X∃ and X∀,
respectively.

Given a QBF, the quantification level � : X → N of variable xi ∈ X is defined
to be the number of quantifier alternations between ∃ and ∀ from left (i.e.,
outer) to right (i.e., inner) plus 1. For example, the formula ∃x1, ∃x2, ∀x3, ∃x4.φ
has �(x1) = �(x2) = 1, �(x3) = 2, and �(x4) = 3. For convenience, we extend the
definition of � to literals, with �(l) for some literal l meaning �(var (l)).

A clause C with literals {l1, . . . , lj} in a QBF Φ over variables X is called
minimal if

max
li∈C,var(li)∈X∀

{�(li)} < max
li∈C

{�(li)}.
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Otherwise, it is non-minimal. A non-minimal clause C can be minimized to a
minimal clause C′ by removing the literals

{l ∈ C | var(l) ∈ X∀ and �(l) = max
li∈C

{�(li)}}

from C. This process is called ∀-reduction. For a clause C of a QBF, we denote
its ∀-reduced minimal clause as MIN(C). Replacing C with MIN(C) in a QBF
does not change the formula satisfiability.

2.2 Q-Resolution

A clause is tautological if it contains both literals x and ¬x of some variable x.
Two non-tautological clauses C1 and C2 are of distance k if there are k variables
{x1, . . . , xk} appearing in both clauses but with opposite phases. The ordinary
resolution is defined on two clauses C1 and C2 of distance 1. If C1 = C′

1 ∨ x
and C2 = C′

2 ∨ ¬x, then resolving C1 and C2 on the pivot variable x yields the
resolvent C′

1 ∨C′
2.

Q-resolution [11] extends the ordinary resolution on CNF to PCNF formulae
with two rules: First, only existential variables can be the pivot variables for res-
olution. Second, ∀-reduction is applied whenever possible. Unless otherwise said,
“Q-resolution” is shortened to “resolution” in the sequel. In fact (Q-)resolution
is a sound and complete approach to QBF evaluation.

Theorem 1 ([11]). A QBF is false (unsatisfiable) if and only if there exists a
clause resolution sequence leading to an empty clause.

By duality, cube resolution can be similarly defined, and is also sound and com-
plete for QBF evaluation.

Theorem 2 ([8]). A QBF is true (satisfiable) if and only if there exists a cube
resolution sequence leading to an empty cube.

Modern search-based QBF solvers are equipped with conflict-driven learning,
which performs resolution in essence. A tautological clause containing both pos-
itive and negative literals of a (universal) variable may result from resolution
[21]. Since the clause is resolved from two clauses with distance greater than
1, it is referred to as long-distance resolution. Unlike the case in propositional
satisfiability, such a clause is not totally redundant as it facilitates implication
in QBF evaluation. Nevertheless, long-distance resolution is not essential, and
can always be replaced by distance-1 resolution [8].

2.3 Skolemization and Skolem Functions

Any QBF Φ can be converted into the well-known Skolem normal form in math-
ematical logic, which consists of only two quantification levels, first existential
and second universal. In the conversion, every existential variable xi of Φ is re-
placed in Φmatrix by its respective fresh function symbol, denoted F [xi], which
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refers only to the universal variables xj of Φ with �(xj) < �(xi). These function
symbols, corresponding to the so-called Skolem functions [16], are then exis-
tentially quantified in the first quantification level before the second level of
universal quantification over the original universal variables. This conversion,
called Skolemization, is satisfiability preserving. Essentially a QBF is true if and
only if the Skolem functions of its Skolem normal form exist. (Skolemization was
exploited in [1] for QBF evaluation.)

In the sequel, we shall extend the notion of Skolem functions in their dual form,
also known as the Herbrand functions. That is, the Skolem normal form (in the
dual) contains two quantification levels, first universal and second existential. For
a QBF Φ, in the new notion the Skolem function F [xi] of a universal variable xi

of Φ refers only to the existential variables xj of Φ with �(xj) < �(xi). Essentially
a QBF is false if and only if the Skolem functions of its Skolem normal form (in
the dual) exist.

2.4 QBF Certificates

To validate the results of a QBF solver, resolution proofs and Skolem functions
are commonly accepted certificates [12]. For a true QBF, either a cube-resolution
proof or a collection of Skolem functions can certify the satisfiability. For a
false QBF, a clause-resolution proof can certify the unsatisfiability. In theory,
a false QBF can be negated to a true QBF, whose Skolem functions can then
be used as a countermodel to the original false QBF. In practice, however, such
a countermodel is hardly derivable because negation may result in substantial
increase in the formula size or variable count [9]. In contrast, we show that a
countermodel can be obtained without formula negation, and thus practical for
certifying a false QBF.

3 Model/Countermodel Construction from Resolution
Proofs

This section shows a sound and complete approach to construct Skolem func-
tions for existential (respectively universal) variables as the model (respectively
countermodel) of a true (respectively false) QBF in time linear with respect to
a cube (respectively clause) resolution proof. Since cube and clause resolutions
both obey similar deduction rules, we keep attention on the latter only and omit
the former.

We consider (Q-)resolution proofs of QBF unsatisfiability that involve no long-
distance resolution. As long-distance resolution can always be avoided and re-
placed by distance-1 resolution [8], our discussion is applicable in general.

Before delving into the main construction, we first define the following formula
structure.

Definition 1. A Right-First-And-Or (RFAO) formula ϕ is recursively defined
by

ϕ ::= clause | cube | clause ∧ ϕ | cube ∨ ϕ, (2)
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where the symbol “::=” is read as “can be” and symbol “|” as “or”.

Note that the formula is constructed in order from left to right. Due to the
particular building rule of an RFAO formula with priority going to the right, we
save on parentheses to enhance readability. For example, formula

ϕ = clause1 ∧ clause2 ∧ cube3 ∨ clause4 ∧ cube5 ∨ cube6
= (clause1 ∧ (clause2 ∧ (cube3 ∨ (clause4 ∧ (cube5 ∨ cube6))))).

We sometimes omit expressing the conjunction symbol “∧” and interchangeably
use “+” for “∨” in a formula.

In our discussion we shall call a clause/cube in an RFAO formula a node
of the formula, and omit a node’s subsequent operator, which can be uniquely
determined. Note that the ambiguity between a single-literal clause and a single-
literal cube does not occur in an RFAO formula as the clause-cube attributes
are well specified in our construction.

The RFAO formula has two important properties (which will be crucial in
proving Theorem 3):

1. If nodei under some (partial) assignment of variables becomes a validated
clause (denoted 1-clause) or falsified cube (denoted 0-cube), then we can
effectively remove nodei (if it is not the last) from the formula without
further valuating it.

2. If nodei becomes a falsified clause (denoted 0-clause) or validated cube (de-
noted 1-cube), then we need not further valuate (namely, can remove) all
other nodes with index greater than i.

Below we elaborate how to construct the countermodel expressed by the RFAO
formula from a clause-resolution proof Π of a false QBF Φ. We treat the proof
Π as a directed acyclic graph (DAG) GΠ(VΠ , EΠ), where a vertex v ∈ VΠ

corresponds to a clause v.clause obtained in the resolution steps of Π and a
directed edge (u, v) ∈ EΠ ⊆ VΠ × VΠ from the parent u to the child v indicates
that v.clause results from u.clause through either resolution or ∀-reduction. The
clauses of Π can be partitioned into three subsets: those in Φmatrix , those re-
sulting from resolution, and those from ∀-reduction. Let VM , VS , and VD denote
their respective corresponding vertex sets. So VΠ = VM ∪ VS ∪ VD. Note that in
GΠ a vertex in VM has no incoming edges and is a source vertex; a vertex in
VS has two incoming edges from its two parent vertices; a vertex in VD has one
incoming edge from its parent vertex. On the other hand, there can be one or
many sink vertices, which have no outgoing edges. Since the final clause of Π is
an empty clause, the graph GΠ must have the corresponding sink vertex.

The intuition behind our construction stems from the following observations.
Firstly, if VD = ∅, then the quantifier-free formula Φmatrix is unsatisfiable by
itself, and so is Φ. Since there exists an ordinary resolution proof, which involves
no ∀-reduction, any functional interpretation on the universal variables forms a
countermodel to Φ.

Secondly, if VS = ∅, then Φmatrix must contain a clause consisting of only
universal variables. With only ∀-reduction, Φ can be falsified. Without loss of
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generality, assume this clause is (l1 ∨ · · · ∨ lk). Then letting the Skolem function
of var (li) be

F [var(li)] =
{

0 if li = var(li), and
1 if li = ¬var (li),

for i = 1, . . . , k, forms a countermodel of Φ. (The Skolem functions of the uni-
versal variables not in the clause are unconstrained.)

Finally, we discuss the general case where VD and VS are non-empty. Every
clause w.clause of Π with w ∈ VS is implied by the conjunction u.clause ∧
v.clause with (u,w), (v, w) ∈ EΠ . (That is, the clause resulting from resolution
is unconditionally implied by the conjunction of its parent clauses.) Even if the
pivot variable of the corresponding resolution were universally quantified, the
implication would still hold. So the implication is regardless of Φprefix . On the
other hand, a clause v.clause of Π with v ∈ VD is not directly implied by u.clause
with (u, v) ∈ EΠ . (That is, the clause resulting from ∀-reduction is conditionally
implied by its parent clause.) Nevertheless Φmatrix and Φmatrix ∧ v.clause are
equisatisfiable under Φprefix .

To characterize the conditions for an implication (especially between the two
clauses involved in a ∀-reduction step) to hold, we give the following definition.

Definition 2. Let α : X → {0, 1} be a full assignment on variables X. Given
two (quantifier-free) formulae φ1 and φ2 over variables X, if the implication
φ1 → φ2 holds under α, then we say that φ2 is α-implied by φ1.

For a resolution proof of a false QBF Φ, when we say a clause is α-implied,
we shall mean it is α-implied by its parent clause or by the conjunction of
its parent clauses depending on whether the clause results from ∀-reduction or
resolution. A clause resulting from resolution is surely α-implied for any α, but
a clause resulting from ∀-reduction may not be α-implied for some α. We further
say that a clause C is α-inherited if all of its ancestor clauses (except for the
clauses of the source vertices, which have no parent clauses and are undefined
under α-implication) and itself are α-implied. Clearly, if C is α-inherited, then
Φmatrix |α = (Φmatrix ∧C)|α.

For a false QBF Φ over variables X = X∃ ∪X∀, let the assignment α : X →
{0, 1} be divided into α∃ : X∃ → {0, 1} and α∀ : X∀ → {0, 1}. To construct the
Skolem-function countermodel, our goal is to determine α∀ for every α∃ such
that the empty clause of the resolution proof is α-inherited, or there exists an
α-inherited clause C with C|α = 0. Therefore, for every assignment α∃, Φ implies
false. That is, such α∀ provides a countermodel to Φ.

Figure 1 sketches the countermodel construction algorithm, where the Skolem
functions for universal variables are computed in RFAO formulae, each of which
is stored as an (ordered) array of nodes. Before proving the correctness of the
algorithm, we take the following example to illustrate the computation.
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Countermodel_construct
input: a false QBF Φ and its clause-resolution DAG GΠ(VΠ , EΠ)
output: a countermodel in RFAO formulae
begin
01 foreach universal variable x of Φ
02 RFAO_node_array[x] := ∅;
03 foreach vertex v of GΠ in topological order
04 if v.clause resulting from ∀-reduction on u.clause , i.e., (u, v) ∈ EΠ

05 v.cube := ¬(v.clause);
06 foreach universal variable x reduced from u.clause to get v.clause
07 if x appears as positive literal in u.clause
08 push v.clause to RFAO_node_array[x];
09 else if x appears as negative literal in u.clause
10 push v.cube to RFAO_node_array[x];
11 if v.clause is the empty clause
12 foreach universal variable x of Φ
13 simplify RFAO_node_array[x];
14 return RFAO_node_array’s;
end

Fig. 1. Algorithm: Countermodel Construction

Example 1. Let Φ be a false QBF and Π be its resolution proof of unsatisfiability
as below.

Φprefix = ∃a∀x∃b∀y∃c
Φmatrix = (a ∨ b ∨ y ∨ c)(a ∨ x ∨ b ∨ y ∨ ¬c)(x ∨ ¬b)(¬y ∨ c)(¬a ∨ ¬x ∨ b ∨ ¬c)

(¬x ∨ ¬b)(a ∨ ¬b ∨ ¬y)

Π =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1. clause8 = resolve(clause1, clause2)
2. clause9 = resolve(clause3, clause8)
3. clause10 = resolve(clause4, clause5)
4. clause11 = resolve(clause10, clause6)
5. clauseempty = resolve(clause11, clause9)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Note that the ∀-reduction steps are omitted in Π , which however can be eas-
ily filled in as shown in Figure 2, where the clauses are indexed by subscript
numbers, and the ∀-reduction steps are indexed by the parenthesized numbers
indicating the relative order.

By following the steps of the Countermodel_construct algorithm in Figure 1,
the RFAO node-array contents after each ∀-reduction step in the proof of Fig-
ure 2 are listed in order of appearance in Figure 3. The resultant Skolem functions
for universal variables x and y are

F [x] = (a) ∧ (a) = a, and
F [y] = (¬ab) ∨ ((a ∨ x ∨ b) ∧ (ax¬b)),
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Fig. 2. DAG of resolution proof Π

respectively. Note that the computed F [y] depends on variable x, which can
always be eliminated by substituting F [x] for x in F [y]. In fact, keeping such
dependency may be beneficial as the countermodel can be represented in a multi-
level circuit format with shared logic structures. Moreover, observe that clause
7, namely (a ∨ ¬b ∨ ¬y), is not involved in the resolution steps leading to the
empty clause. Its existence is optional in constructing the countermodel, and can
be treated as don’t cares for countermodel simplification. It can be verified that,
for any assignment to variables a, b, and c, formula Φmatrix with variables x and
y substituted with F [x] and F [y], respectively, is false.

The correctness of the Countermodel_construct algorithm of Figure 1 is as-
serted below.

Theorem 3. Given a false QBF Φ and a DAG GΠ corresponding to its resolu-
tion proof Π of unsatisfiability, the algorithm Countermodel_construct(Φ,GΠ)
produces a correct countermodel for the universal variables of Φ.

Proof. We show that, under every assignment α∃ to existential variables of Φ,
our constructed countermodel always induces some α∀ such that Φmatrix |α = 0.
There are two possible cases under every such α.

First, assume every clause v.clause with v ∈ VD is α-implied. Then the empty
clause must be α-inherited because other clauses resulting from resolution are
always α-implied. Thus Φmatrix |α = 0.

Second, assume not every clause v.clause with v ∈ VD is α-implied. Let
Cα_violate be the set of all such clauses violating α-implication. Suppose
v.clause ∈ Cα_violate is obtained by ∀-reduction from u.clause with (u, v) ∈ EΠ

on some universal variables. Let Cu\v denote the subclause of u.clause consist-
ing of exactly the reduced literals in the ∀-reduction leading to v.clause. Then
v.clause must satisfy the criteria.
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0. x :
[ ]

y :
[ ]

1. x :
[ ]

y :
[
cube(¬ab)

]
2. x :

[ ]
y :

[
cube(¬ab),
clause(a ∨ x ∨ b)

]

3. x :
[
clause(a)

]
y :

[
cube(¬ab),
clause(a ∨ x ∨ b)

]

4. x :
[
clause(a)

]
y :

⎡⎣ cube(¬ab),
clause(a ∨ x ∨ b),
cube(ax¬b)

⎤⎦

5. x :

[
clause(a),
cube(a)

]
y :

⎡⎣ cube(¬ab),
clause(a ∨ x ∨ b),
cube(ax¬b)

⎤⎦

Fig. 3. Contents of RFAO node arrays

1. v.clause|α = 0 (otherwise v.clause would be α-implied), and
2. Cu\v|α∀ = 1 (otherwise v.clause would have the same value as u.clause and

thus be α-implied).

It remains to show that, even if Cα_violate is non-empty, there still exists some
α-inherited clause C with C|α = 0, i.e., an induced empty clause under α.

Notice that algorithm Countermodel_construct processes GΠ in a topological
order, meaning that a clause in the resolution proof is processed only after all
of its ancestor clauses are processed. Now we consider all clauses v.clause with
v ∈ VD in the topological order under the assignment α. Let v′.clause be the
first clause encountered with v′.clause|α = 0. (If there is no such v′.clause under
α, then it corresponds to the situation analyzed in the first case.) For every uni-
versal variable x being reduced from the parent clause u′.clause of v′.clause, i.e.,
(u′, v′) ∈ EΠ , we examine its corresponding RFAO_node_array[x]. Suppose v′
is the ith enumerated vertex that results from ∀-reduction involving the reduc-
tion of variable x. By the aforementioned two properties of the RFAO formula
and by the way how RFAO_node_array[x] is constructed, we know that the
Skolem function value of F [x] under α is not determined by the first i−1 nodes,
but by the ith node of RFAO_node_array[x]. In addition, the function value
F [x] makes the literal of variable x in clause Cu′\v′ valuate to false. Because
every literal in Cu′\v′ is valuated to false, we have u′.clause|α = 0 and thus
v′.clause is α-implied. Moreover, since v′.clause is the first clause encountered
with v′.clause|α = 0, all its ancestor clauses must be α-implied. So v′.clause is
α-inherited, and thus Φmatrix |α = 0.
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Because every assignment α∃ together with the corresponding induced as-
signment α∀ makes Φmatrix |α = 0, the Skolem functions computed by algorithm
Countermodel_construct form a correct countermodel to Φ.

Proposition 1. Given a false QBF Φ and its resolution proof of unsatisfiability,
let F [x] be the Skolem function computed by algorithm Countermodel_construct
for the universal variable x in Φ. Then F [x] refers to some variable y in Φ only
if �(y) < �(x).

Note that, by the above strict inequality, Proposition 1 asserts that no cyclic
dependency arises among the computed Skolem functions.

In fact algorithm Countermodel_construct of Figure 1 can be easily modified
to compute the Skolem functions for some (not all) of the universal variables of a
given QBF. Let k be the maximal quantification level among the universal vari-
ables whose Skolem functions are of interests. Then, by Proposition 1, algorithm
Countermodel_construct only needs to maintain RFAO node arrays for univer-
sal variables with quantification level no greater than k. For Skolemization-based
solvers, this partial derivation is not possible because Skolem functions (for ex-
istential variables) are constructed on-the-fly during QBF solving, whereas our
construction is performed after the entire proof is done.

Proposition 2. Given a false QBF and its resolution proof of unsatisfiability,
algorithm Countermodel_construct computes the countermodel in time linear
with respect to the proof size.

Proposition 3. The RFAO formula size (in terms of nodes) for each universal
variable computed by algorithm Countermodel_construct is upper bounded by
the number of ∀-reduction steps in the resolution proof.

The resolution proofs provided by search-based QBF solvers often contain (re-
dundant) resolution steps unrelated to yielding the final empty clause. Algorithm
Countermodel_construct works for resolution proofs with and without redun-
dant steps. Since a highly redundant proof may degrade the performance of the
algorithm, it may be desirable to trim away redundant parts before counter-
model construction. On the other hand, as illustrated in Example 1, it may be
possible to exploit the redundancy for countermodel simplification.

The above discussion, concerned about countermodel construction, can be
straightforwardly extended under the duality principle to model construction
of a true QBF from its cube-resolution proof of satisfiability. We omit similar
exposition.

4 Applications to Boolean Relation Determinization

We relate Skolem functions to the problem of Boolean relation determiniza-
tion, which is useful in logic and property synthesis [9,10]. A Boolean rela-
tion over input variables X and output variables Y is a characteristic function
R : {0, 1}|X|+|Y | → {0, 1} such that assignments a ∈ {0, 1}|X| and b ∈ {0, 1}|Y |

make R(a, b) = 1 if and only if (a, b) is in the relation. Relations can be exploited
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to specify the permissible (non-deterministic) behavior of a system, by restrict-
ing its allowed input X and output Y combinations. To be implemented with
circuits, a relation has to be determinized in the sense that each output variable
yi ∈ Y can be expressed by some function fi : {0, 1}|X| → {0, 1}. Formally
it can be written as a QBF ∀X, ∃Y.R(X,Y ), and the determinization problem
corresponds to finding the Skolem functions of variables Y .

Often the formula R(X,Y ) is not in CNF, but rather in some circuit struc-
ture. By Tseitin’s transformation, it can be rewritten in CNF φR(X,Y, Z) with
the cost of introducing some new intermediate variables Z. Therefore the QBF
is rewritten as ∀X, ∃Y, ∃Z.φR(X,Y, Z). By our model construction, the Skolem
functions can be computed from its cube-resolution proof of satisfiability. Al-
ternatively, we may compute the Skolem functions by finding the countermodel
of ∃X, ∀Y.¬R(X,Y ), which can be again by Tseitin’s transformation translated
into PCNF ∃X, ∀Y, ∃Z ′.φ¬R(X,Y, Z ′) with Z ′ being the newly introduced inter-
mediate variables in the circuit of ¬R(X,Y ). Note that after the negation, the
number of quantification levels increases from two to three; on the other hand,
φR and φ¬R can be simplified to have the same number of clauses and |Z| = |Z ′|.
The above two approaches are to be studied in the experiments.

It is interesting to note that, since the quantification order of a QBF affects
the support variables of a Skolem functions, QBF prefix reordering may be ex-
ploited to synthesize Skolem functions with some desired variable dependencies.
Moreover, in addition to the relation determinization application, the duality be-
tween model and countermodel construction may be useful in other applications
whose original formulae are in circuit representation.

5 Experimental Results
The proposed method, named ResQu, was implemented in the C++ language.
The experiments were conducted on a Linux machine with a Xeon 2.53 GHz
CPU and 48 GB RAM for two sets of test cases: the QBF evaluation benchmarks
downloaded from [14] and relation determinization ones modified from [3].

We compared various Skolem-function derivation scenarios using QBF solvers
with certification capability, including sKizzo [1], squolem [9], and QuBE-
cert.2 For true QBF instances, sKizzo and squolem were applied to obtain
Skolem-function models whereas the cube-resolution proofs produced by QuBE-
cert were converted to Skolem-function models by ResQu. For false QBF in-
stances, sKizzo was applied on the negated formulae to obtain Skolem-function
countermodels whereas the clause-resolution proofs produced by squolem and
QuBE-cert were converted to Skolem-function countermodels by ResQu.

Table 1 summarizes the results of our first experiment on the QBFEVAL’05
and QBFEVAL’06 test sets, which contain 211 and 216 instances, respectively. In
the experiment, all the QBF solvers, including sKizzo, squolem, and QuBE-
cert, are given a 600-second time limit and a 1-GB memory limit for solving
2 We did not experiment with Ebddres [9] and yQuaffle [20] as the former tends

to generate larger certificates for false QBF compared to squolem, and the latter
has characteristics similar to QuBE-cert.



Resolution Proofs and Skolem Functions 161

Table 1. Summary for QBFEVAL Benchmarks

overall sKizzo squolem+ResQu QuBE-cert+ResQu

#sv #sv time
(sv) #sv time

(sv) #md time
(md) #sv/#pg time

(sv) #md time
(md)

true
’05 84 69 1707.27 50 1490.84 — — 19/19 414.65 19 54.73
’06 48 29 295.24 25 199.79 — — 44/44 859.64 44 152.22

total 132 98 2002.51 75 1690.63 — — 63/63 1274.29 63 206.95

false
’05 77 0 0 42 1467.45 42 12.60 46/25 2369.91 25 12.99
’06 29 0 0 9 85.96 9 0.80 28/22 916.57 22 2.34

total 106 0 0 51 1553.41 51 13.40 74/47 3286.48 47 15.33

#sv: number of instances solved; #pg: number of proofs involving no long-distance resolution;
#md: number of (counter)models generated by ResQu; time (sv/md): CPU time in seconds for
QBF evaluation/(counter)model generation; —: data not available due to inapplicability of ResQu

each instance. Under the given resource limits, all solvers, together, solved 132
true and 106 false instances. All the (counter)models produced by ResQu were
verified using MiniSat [7] while the models produced by sKizzo and squolem
were assumed correct without verification.

It should be mentioned that the resolution proofs produced by QuBE-cert
were not simplified, that is, including resolution steps unrelated to producing
the final empty clause (or empty cube). The unrelated resolution steps were
first removed (with runtime omitted) before the (counter)model construction of
ResQu. Moreover, approximately 20% of all the proofs involved long-distance
resolution, and ResQu did not construct their (counter)models. On the other
hand, the clause-resolution proofs produced by squolem were simplified already
and involved no long-distance resolution. Hence ResQu had no problems con-
structing their countermodels.

We compared the numbers of instances whose (counter)models generated by
ResQu and by other tools. When models are concerned, ResQu (via the proofs
from QuBE-cert) covered 63 (19 in QBFEVAL’05 and 44 in QBFEVAL’06),
whereas sKizzo and squolem in combination covered 105 (75 in QBFEVAL’05
and 30 in QBFEVAL’06). When countermodels are concerned, ResQu (via the
proofs from squolem and QuBE-cert) covered 83 (60 in QBFEVAL’05 and 23
in QBFEVAL’06), whereas sKizzo covered 0.3 Notably, ResQu circumvents the
DNF-to-CNF conversion problem and is unique in generating countermodels.

While all the (counter)models can be constructed efficiently (for proofs with-
out long-distance resolution), some of them can be hard to verify. In fact, about
84% of the 161 (counter)models constructed by ResQu were verified within 1
second using MiniSAT; there are 5 models of the true instances in QBFEVAL’06
that remained unverifiable within 1000 seconds.

Table 2 shows the results of our second experiment on 22 relation determiniza-
tion benchmarks. All the original 22 instances are true (satisfiable). We compared
3 In addition to sKizzo, in theory squolem can also compute Skolem-function coun-

termodels of false QBF instances by formula negation. We only experimented with
sKizzo, which can read in DNF formulae and thus requires no external DNF-to-CNF
conversion, arising due to formula negation. Although squolem is not experimented
in direct countermodel generation by formula negation, prior experience [9] suggested
that it might be unlikely to cover much more cases than sKizzo.
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Table 2. Results for Relation Determinization Benchmarks

(#in, #out, #e, #C) sKizzo squolem+ResQu QuBE-cert+ResQu
time
(sv) size time

(sv/md/vf) size time
(sv/md/vf) size

true

1 (7, 3, 55, 322) 0.09 377 (0.06 , —, —) 134 (0.03, 0.01, 0.01) 28
2 (20, 10, 963, 5772) 0.86 1311 (0.79, —, —) 1378 (0.12, 0.03, 0.02) 118
3 (21, 9, 1280, 7672) NA (NA, —, —) (5.28, 1.74, 1.23) 148883
4 (24, 12, 1886, 11300) NA (1.23, —, —) 179 (0.94, 0.11, 0.03) 1947
5 (28, 14, 1833, 10992) NA (NA, —, —) (0.35, 0.05, 0.02) 61
6 (32, 16, 3377, 20250) NA (NA, —, —) (1.21, 0.18, 0.04) 1193
7 (36, 18, 5894, 35354) NA (NA, —, —) (0.23, 0.15, 0.03) 91
8 (42, 20, 6954, 41718) NA (NA, —, —) (0.27, 0.12, 0.03) 3
9 (39, 19, 9823, 58932) NA (NA, —, —) (3.08, 0.50, 0.01) 307
10 (46, 22, 10550, 63294) NA (NA, —, —) (1.89, 0.25, 0.01) 58
11 (49, 19, 11399, 68384) NA (NA, —, —) (NA, NA, NA)
12 (32, 18, 13477, 80856) NA (NA, —, —) (NA, NA, NA)
13 (50, 24, 14805, 88822) NA (NA, —, —) (3.14, 0.77, 0.05) 3458
14 (53, 25, 16037, 96216) NA (NA, —, —) (3.41, 0.35, 0.02) 283
15 (56, 26, 19700, 118194) NA (NA, —, —) (8.10, 1.10, 0.05) 905
16 (59, 27, 26117, 156696) NA (NA, —, —) (3.85, 0.59, 0.03) 187
17 (65, 29, 29038, 174222) NA (NA, —, —) (7.16, 0.88, 0.05) 232
18 (62, 28, 30294, 181756) NA (NA, —, —) (9.29, 1.32, 0.05) 731
19 (72, 32, 35806, 214828) NA (NA, —, —) (NA, NA, NA)
20 (68, 30, 50513, 303070) NA (NA, —, —) (2.97, 0.62, 0.05) 11
21 (95, 35, 57717, 346294) NA (NA, —, —) (NA, NA, NA)
22 (41, 23, 89624, 537738) NA (NA, —, —) (NA, NA, NA)

false

1 (7, 3, 55, 322) NA (0.03, 0.01, 0.01) 6 (0.05, NA, NA)
2 (20, 10, 963, 5772) NA (1.14, 0.02, 0.01) 53 (0.13, NA, NA)
3 (21, 9, 1280, 7672) NA (0.20, 0.02, 0.01) 4 (1.19, NA, NA)
4 (24, 12, 1886, 11300) NA (0.31, 0.02, 0.03) 0 (0.30, NA, NA)
5 (28, 14, 1833, 10992) NA (0.29, 0.02, 0.01) 3 (1.02, NA, NA)
6 (32, 16, 3377, 20250) NA (1.95, 0.04, 0.03) 3 (0.95, NA, NA)
7 (36, 18, 5894, 35354) NA (3.08, 0.06, 0.05) 3 (4.22, NA, NA)
8 (42, 20, 6954, 41718) NA (3.23, 0.07, 0.06) 3 (9.15, NA, NA)
9 (39, 19, 9823, 58932) NA (9.41, 0.11, 0.08) 5 (10.01, NA, NA)
10 (46, 22, 10550, 63294) NA (9.87, 0.15, 0.07) 3 (3.62, NA, NA)
11 (49, 19, 11399, 68384) NA (8.33, 0.20, 0.08) 3 (14.09, NA, NA)
12 (32, 18, 13477, 80856) NA (10.42, 0.23, 0.10) 3 (10.41, NA, NA)
13 (50, 24, 14805, 88822) NA (15.82, 0.25, 0.10) 4 (509.84, NA, NA)
14 (53, 25, 16037, 96216) NA (23.65, 0.27, 0.11) 5 (7.19, NA, NA)
15 (56, 26, 19700, 118194) NA (30.18, 0.35, 0.14) 3 (25.33, NA, NA)
16 (59, 27, 26117, 156696) NA (74.19, 0.43, 0.14) 3 (202.80, NA, NA)
17 (65, 29, 29038, 174222) NA (46.90, 0.42, 0.21) 0 (24.45, NA, NA)
18 (62, 28, 30294, 181756) NA (84.48, 0.46, 0.25) 4 (94.93, NA, NA)
19 (72, 32, 35806, 214828) NA (129.84, 0.41, 0.22) 3 (80.12, NA, NA)
20 (68, 30, 50513, 303070) NA (363.12, 0.70, 7.31) 3 (26.14, NA, NA)
21 (95, 35, 57717, 346294) NA (359.40, 0.96, 8.15) 2 (86.10, NA, NA)
22 (41, 23, 89624, 537738) NA (NA, NA, NA) (142.24, NA, NA)

#in: number of input variables in the relation; #out: number of output variables in the relation; #e:
number of innermost existential variables added due to circuit-to-CNF conversion; #C: number of
clauses in final CNF; size: number of AIG nodes after performing ABC command dc2 with negligible
runtime not shown; time (sv/md/vf): CPU time in seconds for QBF evaluation/(counter)model
generation/verification; NA: data not available due to computation out of resource limit; —: data
not available due to inapplicability of ResQu

their models obtained in two ways: by direct model construction from the satis-
fiability proofs of the original formulae and by indirect model construction from
the unsatisfiability proofs of their negations. Unlike the QBFEVAL cases, negat-
ing these formulae by Tseitin’s transformation does not result in variable- and
clause-increase, as discussed in Section 4. The experiment was conducted un-
der the resource limit same as before. For the original instances, ResQu could
have generated Skolem functions only for the existential variables of interests
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Table 3. Summary for Relation Determinization Benchmarks

overall sKizzo squolem+ResQu QuBE-cert+ResQu

#sv #sv time
(sv) #sv time

(sv) #md time
(md) #sv/#pg time

(sv) #md time
(md)

true 17 2 0.95 3 2.08 — — 17/17 51.32 17 8.77
false 22 0 0 21 1175.84 21 5.20 22/0 1254.28 0 0

(Legend same as in Table 1)

(namely, the output variables of a Boolean relation rather than the intermediate
variables), but it generated all for the verification purpose.

As summarized in Table 3, for the true cases, sKizzo and squolem in com-
bination can construct models for only 3 instances, whereas from the 17 proofs
of QuBE-cert, ResQu can generate (and verify) all models. For the negated
cases, all the proofs provided by QuBE-cert involved long-distance resolution,
so ResQu did not construct their countermodels. Nevertheless, squolem solved
21 out of 22 instances, and ResQu can generate (and verify) all their counter-
models (i.e., models for the original QBF). It is interesting to see that, in the
relation determinization application, countermodel generation for the negated
formulae can be much easier than model generation for the original formulae. It
reveals the essential value of ResQu.

6 Conclusions and Future Work
A new approach has been proposed to compute Skolem functions in the con-
text of QBF evaluation. As a result, Skolem-function derivation is decoupled
from Skolemization-based solvers, and is available from standard search-based
solvers, provided that proper resolution proofs are given. The approach gives a
balanced and unified view on certifying both true and false QBF using models
and countermodels. Moreover, its practical value has been strongly supported by
experiments. As Skolem functions can be important in various areas, we hope
our results may encourage and enable QBF applications. Our on-going work
is to extract Skolem functions from proofs with the presence of long-distance
resolution.

Acknowledgments
The authors are grateful to Roderick Bloem and Georg Hofferek for providing
the relation determinization benchmarks. This work was supported in part by
the National Science Council under grants NSC 99-2221-E-002-214-MY3 and
NSC 99-2923-E-002-005-MY3.

References

1. Benedetti, M.: Evaluating qBFs via symbolic skolemization. In: Baader, F.,
Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 285–300. Springer,
Heidelberg (2005)

2. Benedetti, M.: Extracting Certificates from Quantified Boolean Formulas. In: Proc.
Int.Joint Conf. on Artificial Intelligence (IJCAI) (2005)



164 V. Balabanov and J.-H.R. Jiang

3. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Automatic Hardware Synthesis from Specifications: A Case Study. In: Proc. Design
Automation and Test in Europe (2007)

4. Berkeley Logic Synthesis and Verification Group. ABC: A System for Sequential
Synthesis and Verification, http://www.eecs.berkeley.edu/~alanmi/abc/

5. Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An Algorithm to Eval-
uate Quantified Boolean Formulae and Its Experimental Evaluation. Journal of
Automated Reasoning 28(2), 101–142 (2002)

6. Dershowitz, N., Hanna, Z., Katz, J.: Bounded model checking with QBF. In:
Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 408–414. Springer,
Heidelberg (2005)

7. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

8. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause-Term Resolution and Learn-
ing in Quantified Boolean Logic Satisfiability. Artificial Intelligence Research 26,
371–416 (2006)

9. Jussila, T., Biere, A., Sinz, C., Kröning, D., Wintersteiger, C.M.: A first step
towards a unified proof checker for QBF. In: Marques-Silva, J., Sakallah, K.A.
(eds.) SAT 2007. LNCS, vol. 4501, pp. 201–214. Springer, Heidelberg (2007)

10. Jiang, J.-H.R., Lin, H.-P., Hung, W.-L.: Interpolating Functions from Large
Boolean Relations. In: Proc. Int.Conf. on Computer-Aided Design (ICCAD), pp.
779–784 (2009)

11. Kleine-Büning, H., Karpinski, M., Flögel, A.: Resolution for Quantified Boolean
Formulas. Information and Computation 117(1), 12–18 (1995)

12. Narizzano, M., Peschiera, C., Pulina, L., Tacchella, A.: Evaluating and Certifying
QBFs: A Comparison of State-of-the-Art Tools. AI Communications (2009)

13. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
14. QBF Solver Evaluation Protal, http://www.qbflib.org/qbfeval/
15. Rintanen, J.: Constructing Conditional Plans by a Theorem-Prover. Journal of

Artificial Intelligence Research 10, 323–352 (1999)
16. Skolem, T.: Über die Mathematische Logik. Norsk. Mat. Tidsk. In: van Heijenoor,

J. (ed.) Translation in From Frege to Gödel, A Source Book in Mathematical Logic,
vol. 10, pp. 125–142. Harvard Univ. Press, Cambridge (1928)

17. Staber, S., Bloem, R.: Fault localization and correction with QBF. In: Marques-
Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 355–368. Springer,
Heidelberg (2007)

18. Solar-Lezama, A., Tancau, L., Bodík, R., Seshia, S., Saraswat, V.: Combinatorial
Sketching for Finite Programs. In: Int.Conf. on Architectural Support for Program-
ming Languages and Operating Systems(ASPLOS), pp. 404–415 (2006)

19. Tseitin, G.: On the Complexity of Derivation in Propositional Calculus. Studies in
Constructive Mathematics and Mathematical Logic, 466–483 (1970)

20. Yu, Y., Malik, S.: Validating the Result of a Quantified Boolean Formula (QBF)
Solvers: Theory and Practice. In: Proc. Asia and South Pacific Design Automation
Conference (2005)

21. Zhang, L., Malik, S.: Conflict Driven Learning in a Quantified Boolean Satisfiability
Solver. In:Proc. Int’lConf. onComputer-AidedDesign (ICCAD), pp. 442–449 (2002)

http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.qbflib.org/qbfeval/


The BINCOA Framework for Binary Code Analysis�
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Abstract. This paper presents the BINCOA framework, whose goal is to ease
the development of binary code analysers by providing an open formal model
for low-level programs (typically: executable files), an XML format for easy ex-
change of models and some basic tool support. The BINCOA framework already
comes with three different analysers, including simulation, test generation and
Control-Flow Graph reconstruction.

1 Introduction

Automatic analysis of programs from their executable files is a recent and promising
field of research, opening the way to new applications of software verification (mobile
code, off the shelf components, legacy code, malware) and more accurate and reliable
analyses (taking into account the compilation step). In the last years, a few teams have
been involved in this emerging research field and a few techniques and tools have been
developed [1,3,5,6,7,8,9,10,13,14], mostly based on static analysis and symbolic exe-
cution.

The problem. Besides specific theoretical challenges, binary code analysis suffers from
two major practical issues. First, implementing a binary code analyser requires lots of
programming efforts. There exist many different instruction set architectures (ISA), and
each ISA counts several dozens of instructions. Hence adding support for a new ISA
is a time-consuming, tedious and error-prone activity. Moreover, it follows that each
analyser supports only very few ISAs, making different technologies and tools difficult
to compare. Second, each analyser comes with its own formal model of binary code.
Since the exact semantics is seldom available, modelling hypotheses are often unclear
and may differ from one tool to the other, making results and models difficult to reuse.

The BINCOA framework. We describe in this paper the BINary COde Analysis (BIN-
COA) framework, whose aim is to ease the development of binary code analysers.

1- The framework is constructed around Dynamic Bitvector Automata (DBA), a
generic and concise formal model for low-level programs. The main design ideas be-
hind DBA are the following: (a) a small set of instructions; (b) a concise and natural
modelling for common architectures; (c) self-contained models which do not require a
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separate description of the memory model or of the architecture; and (d) a sufficiently
low-level formalism, so that DBA can serve as a reference semantics of the executable
file to analyse. Most features of low-level programs are taken into account by this for-
malism, including dynamic jumps, modification of the call stack, instruction overlap-
ping and endianness. The two main limitations are the following: the formalism cannot
capture self-modifying code and it is untimed.

2- We intend to gather an ecosystem of binary code analysers around DBA, all tools
being able to share their front-ends and exchange their results. To this end, we have
defined an XML DTD to communicate DBA and we provide open-source code for
basic DBA manipulation, including XML input/output and DBA simplifications.

3- DBA are already used by three different analysers: Osmose [3,4] for test gen-
eration, TraceAnalyzer for safe Control-Flow Graph (CFG) reconstruction (based on
[6]) and Insight, a platform providing front-end, simulation and some value analysis
mechanism. Altogether, these three tools prove that DBA can encode a few different
architectures and ISAs (including PowerPC and x86).

Why using DBA and the BINCOA framework? The BINCOA framework eases the
development of binary code analysers: (semantics) all analysers built upon DBA can
be fairly compared and their results can be safely reused from one tool to the other;
(engineering) the BINCOA framework provides open-source basic facilities for DBA
manipulations. In the future we also plan to provide an open-source platform allowing
to share front-ends and ISA support.

Moreover, we think that DBA are a good trade-off between conciseness and ease of
use: there are only about two dozen of operators (to be compared with any ISA) and
modelling common ISAs with DBA is straightforward. DBA have already been used to
encode four different ISA, including x86 and PowerPC.

Outline. The remaining part of the paper is structured as follows: the DBA model is
described in Section 2, its practical usage is discussed in Section 3, tool support for
DBA and different analysers based on DBA are presented in Section 4, finally Section 5
describes related work and Section 6 provides a conclusion and some future work.

2 DBA in a Nutshell

The syntax and semantics of DBA is sketched hereafter. A detailed description can be
found in the technical report [2].

DBA are automata extended with a finite set of variables ranging over fixed-width
bit-vectors and a finite set of (disjoint) fixed-size arrays of bytes (bit-vectors of size
8). Some of the nodes of the automaton are labelled with addresses ranging over N.
Transitions are decorated with basic instructions: assignments (Assign lhs := rhs), no-
operation (Skip), guards (Guard cond), jumps to a non-statically known address (Jump
expr), and an instruction to handle absent code such as API calls (External ϕ). The
first three kind of instructions are standard. The External instruction, followed by a
first-order formula over bit-vectors and arrays, allows to introduce a non-deterministic
computation step defined in a pre/post-condition style. The Jump instruction is de-
scribed hereafter. The operational semantics is given by a transition system in a standard
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manner. Expressions and conditions are built upon a small set of standard fixed-width
bit-vector operators, including (signed / unsigned) arithmetic operators, reified (signed
/ unsigned) arithmetic relational operators, logical bitwise operators, size extensions,
shifts, concatenation and restriction. Contrary to real processor instructions, these oper-
ators are side-effect free. Every expression evaluates to a bit-vector of statically known
size (this is not a restriction considering current ISAs).

Original features. DBA provide a few original mechanisms dedicated to low-level lan-
guages. (1) Dynamic jumps (Jump transitions) are dangling, i.e. they do not have a pre-
defined target node. When the transition is fired, the jump expression is evaluated and
turned into an integer a, and the control-flow goes to the node labelled by a. Dynamic
jumps are necessary for modelling indirect branching. (2) Bit manipulations can be ex-
pressed easily thanks to the restriction operator, available both in lhs and rhs operands.
(3) Multiple-byte read and write operations (and incidentally endianness) can be ex-
pressed easily thanks to a dedicated array-access operator of the form: array[expr; k#],
where k ∈ N and # ∈ {←,→}, denoting the k consecutive indices starting at index
expr and accessed in big-endian (→) or little-endian (←). (4) Memory zone proper-
ties define specific behaviours for segments of arrays; currently available properties are
write-is-ignored, write-aborts, read-aborts and volatile (with their intuitive meanings).

A few remarks. (1) The set of operators in DBAs is not minimal, however we think
that it is a nice trade-off between conciseness and ease of use. (2) Realistic programs
have typically only a few dynamic jumps, hence “realistic” DBAs will behave mostly as
standard extended automata. This motivates the choice of an automata-based formalism
for DBA. (3) DBAs do not have native support for procedure calls and returns: they are
encoded as jumps, as it is the only correct semantic for call/return instructions found
in ISAs. However, since this extra information may be useful if treated with care, the
XML format for DBA (see Section 4) allows to annotate jumps with call/return tags.

3 Modelling Low Level Programs with DBA

Basics. Most architectures and ISAs can be modelled accurately using the following
rules. Each register in the processor is modelled by a variable in the automaton, addi-
tional variables (“local” variables) may be introduced to encode ISA instructions need-
ing intermediate results, e.g. for side-effects. An ISA instruction at address a is trans-
lated in at least one node labelled by a and one transition. Additional (“local”) nodes
and transitions may be needed for intermediate computations. The additional nodes are
not labelled. A single array is usually sufficient for memory. Additional arrays may al-
low for example to distinguish an I/O bus from a memory bus. Memory zone properties
can be used for ROM (write-is-ignored), code section of the program (write-aborts,
allowing to detect self-modifying code) or memory controlled by an external device
(volatile). Instructions with side effects (e.g. flag updating) are split into several DBA
instructions by adding local nodes and transitions.

Figure 1 presents a few examples of ISA instruction modelling through DBA. We
suppose that each ISA instruction is encoded on four bytes. The ISA instruction is on the
left column, and the corresponding DBA is on the right. ISA instructions are supposed
to be located at address Ox5003 in the executable file. For the second example (an
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Fig. 1. DBA encoding of a few typical instructions

addition instruction), we suppose that the instruction updates a carry flag Fc (the carry-
flag is set to 0 iff the unsigned addition is correct).

Open programs and interruptions. DBA provides various ways to model programs
interacting with an external environment, either hardware (sensor/actuator) or software
(OS). A sequential interaction may be simulated either by a stub or by a logical speci-
fication (External). A concurrent interaction may be simulated in the general case by a
product of DBA, and in simple cases by declaring a volatile memory zone.

Limitations. The two strongest limitations of DBA are that they are untimed and that
they cannot encompass self-modifying code. There are also a few “weaker” limitations,
i.e. mechanisms with no native support, which can still be modelled in DBA but at a
possibly high cost. These limitations are mainly dynamic memory (de-)allocation, run-
time modification of endianness and asynchronous interruptions. Finally, DBA do not
provide any operator for floating-point arithmetic. It is straightforward to add them to
the model, but taking them into account in the analysers is much more demanding.

4 The BINCOA Framework

Tool support for DBA manipulation. We provide open-source OCaml code for basic
DBA manipulation1. The module contains a datatype for DBA, import / export func-
tions from / to the XML format defined in the technical report [2], as well as type
checking (based on bit-vector sizes) and simplification functions for a few typical inef-
ficient patterns observed in automatic DBA generation (typically, removing useless flag
computations). These simplifications are inspired by standard code optimisation tech-
niques (peephole, dead code elimination, etc.), and are adapted to be sound on partial
DBAs, in case where the DBA is recovered incrementally from an executable file. We
observed a reduction from 10% to 55% of the number of DBA instructions with these
simplifications. The XML parser is based on xml-light 2 and the library counts about
3 kloc. The code is under GPL license.

Insight: decoding, simulation and analysis platform.3 Insight is a platform developed
mostly in C++ and offers the ability to load executable files supported by the GNU BFD

1 https://bincoa.labri.fr/
2 http://tech.motion-twin.com/xmllight
3 http://insight.labri.fr/
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library and disassemble them with a homebrew disassembler. Its internal representation
is very close to DBA and import/export of DBA in XML is possible. It offers a general
setting for concrete and symbolic execution of the model, as well as a generic annotation
facility which allows to prove assertions using weakest precondition computation. The
platform currently has three satellite tools allowing to disassemble a program, to execute
it concretely or symbolically (intervals, sets of values, probability distributions), and to
apply control flow graph reconstruction to polymorphic virus analysis.

Osmose: test data generation. Osmose [3,4] is a test data generation tool for binary
code, based on dynamic symbolic execution and bit-vector constraint solving. The tool
also offers test suite replay via a simulation engine, test suite completion, (unsafe) test
suite coverage estimation, (under-approximated) CFG recovery and a graphical user
interface. Front-ends are available for PowerPC, Intel 8051 and Motorola 6800. The
tool can export / import DBA given in XML. The program contains 75 kloc of OCaml.
A few industrial case-studies have been successfully carried out.

TraceAnalyzer: safe and precise CFG recovery. TraceAnalyzer performs safe and
precise CFG reconstruction from an executable file. The core technology is a refinement-
based static analysis [6]. The program is about 29 kloc of C++. A front-end for Pow-
erPC is available, as well as import / export facilities from / to DBA.

A concrete example of cooperation between tools. TraceAnalyzer and Osmose are
able to communicate in two ways. First, Osmose can receive from TraceAnalyzer an
upper approximation of every set of jump targets and take advantage of it to provide
a safe coverage measure, which is crucial for example in critical system certification.
Second, TraceAnalyzer can receive from Osmose a set of observed jump targets, and
take advantage of it to efficiently bootstrap its refinement-based static analysis.

5 Related Work

Many binary code analysers have been developed recently, for example to name a few:
CodeSurfer/x86 [1], Sage [8], Bitscope [5], Osmose [3], Jakstab [9] and McVeto [14].
However most of them are based on a “private” formal model, with no available spec-
ification. We are aware of two other generic low-level models suitable for executable
analysis, but none of them is open. DBA can be seen as the successor of the Generic
Assembly Language (GAL) of Osmose [4], which is similar to DBA in both goals and
shape. However DBA are more concise, easier to manipulate and more expressive than
GAL. Actually, GAL shows a few shortcomings that have been addressed in DBA: no
loops in intermediate nodes, no native support for endianness, unduly complex opera-
tors with multiple return-values. Osmose is being redesigned to work on DBAs instead
of GAL. TSL [12], developed by Lim and Reps to re-implement CodeSurfer/x86 [1], is
based on semantic reinterpretation: each instruction of the ISA is given a concrete se-
mantic written in a ML-like language (with only a limited set of basic operators); adding
a new analysis is mainly done by overloading every basic operator. This is rather similar
to the idea behind BINCOA, the ML description serving as the reference model. TSL
and DBA should have more or less the same modelling power, however comparison is
difficult since TSL is not publicly available.
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LLVM [11] is a generic low-level language designed for compilation rather than
verification. Hence LLVM abstraction level is in between binary code and C: it provides
many low-level operations, as well as higher level features based on the knowledge of
the initial source code (types, native array manipulation).

6 Conclusion and Perspectives

This paper presents the BINCOA framework for binary code analysis. BINCOA aims
at easing the development of binary code analysers by providing an open formal model
(DBA) for low-level programs, an XML format to allow easy exchange of both models
and benchmarks and some basic tool support. Future work comprises providing more
open-source support (visualisation tools, x86 and ARM front-ends) as well as extending
DBA with native support for memory allocation and facilities for self-modifying code.
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Abstract. CVC4 is the latest version of the Cooperating Validity Check-
er. A joint project of NYU and U Iowa, CVC4 aims to support the use-
ful feature set of CVC3 and SMT-LIBv2 while optimizing the design
of the core system architecture and decision procedures to take advan-
tage of recent engineering and algorithmic advances. CVC4 represents
a completely new code base; it is a from-scratch rewrite of CVC3, and
many subsystems have been completely redesigned. Additional decision
procedures for CVC4 are currently under development, but for what it
currently achieves, it is a lighter-weight and higher-performing tool than
CVC3. We describe the system architecture, subsystems of note, and
discuss some applications and continuing work.

1 Introduction

The Cooperating Validity Checker series has a long history. The Stanford Valid-
ity Checker (SVC) [3] came first, incorporating theories and its own SAT solver.
Its successor, the Cooperating Validity Checker (CVC) [16], had a more opti-
mized internal design, produced proofs, used the Chaff [13] SAT solver, and fea-
tured a number of usability enhancements. Its name comes from the cooperative
nature of decision procedures in Nelson-Oppen theory combination [14], which
share amongst each other equalities between shared terms. CVC Lite [1], first
made available in 2003, was a rewrite of CVC that attempted to make CVC more
flexible (hence the “lite”) while extending the feature set: CVC Lite supported
quantifiers where its predecessors did not. CVC3 [4] was a major overhaul of por-
tions of CVC Lite: it added better decision procedure implementations, added
support for using MiniSat [11] in the core, and had generally better performance.

CVC4 is the new version, the fifth generation of this validity checker line that
is now celebrating fifteen years of heritage. It represents a complete re-evaluation
of the core architecture to be both performant and to serve as a cutting-edge re-
search vehicle for the next several years. Rather than taking CVC3 and redesign-
ing problem parts, we’ve taken a clean-room approach, starting from scratch.
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SRC 2008–TJ–1850, and MIT Lincoln Laboratory.

G. Gopalakrishnan and S. Qadeer (Eds.): CAV 2011, LNCS 6806, pp. 171–177, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



172 C. Barrett et al.

Before using any designs from CVC3, we have thoroughly scrutinized, vetted,
and updated them. Many parts of CVC4 bear only a superficial resemblance, if
any, to their correspondent in CVC3. However, CVC4 is fundamentally similar
to CVC3 and many other modern SMT solvers: it is a DPLL(T ) solver [12], with
a SAT solver at its core and a delegation path to different decision procedure
implementations, each in charge of solving formulas in some background the-
ory. The re-evaluation and ground-up rewrite was necessitated, we felt, by the
performance characteristics of CVC3. CVC3 has many useful features, but some
core aspects of the design led to high memory use, and the use of heavyweight
computation (where more nimble engineering approaches could suffice) makes
CVC3 a much slower prover than other tools. As these designs are central to
CVC3, a new version was preferable to a selective re-engineering, which would
have ballooned in short order. Some specific deficiencies of CVC3 are mentioned
in this article.

2 Design of CVC4

CVC4 is organized around a central core of engines:

– The SMT Engine serves as the main outside interface point to the solver.
Known in previous versions of CVC as the ValidityChecker, the SMT Engine
has public functions to push and pop solving contexts, manipulate a set of
currently active assumptions, and check the validity of a formula, as well as
functions to request proofs and generate models. This engine is responsible
for setting up and maintaining all user-related state.

– The Prop Engine manages the propositional solver at the core of CVC4.
This, in principle, allows different SAT solvers to be plugged into CVC4. (At
present, only MiniSat is supported, due to the fact that a SAT solver must
be modified to dispatch properly to SMT routines.)

– The Theory Engine serves as an “owner” of all decision procedure imple-
mentations. As is common in the research field, these implementations are
referred to as theories and all are derived from the base class Theory.

CVC3 used what was in effect a domain-specific language for proof rules, which
formed the trusted code base of the system. No fact could be registered by the
system without first constructing a Theorem object, and no Theorem object
could be constructed except through the trusted proof rules.

CVC4’s design takes a different approach. Much time and memory was spent
in CVC3’s Theorem-computation. When not producing proofs, CVC4 uses a
more lightweight approach, with Theory objects similar to those suggested by
modern DPLL(T ) literature [12] and used in other solvers. CVC4’s Theory class
is responsible for checking consistency of the current set of assertions, and prop-
agating new facts based on the current set of assertions. Theorem objects are
not produced up front for theory-propagated facts, but rather can be computed
lazily (or not at all, when the DPLL core doesn’t require them).

CVC4 incorporates numerous managers in charge of managing subsystems:
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– The Node Manager is one of the busiest parts of CVC4, in charge of the cre-
ation and deletion of all expressions (“nodes”) in the prover. Node objects
are immutable and subject to certain simplifying constraints.1 Further, Node
objects are unique; the creation of an already-extant Node results in a ref-
erence to the original. Node data is reference-counted (the Node class itself
is just a reference-counted smart pointer to node data) and subject to recla-
mation by the Node Manager when no longer referenced; for performance
reasons, this is done lazily (see below for performance justification).

– The Shared Term Manager is in charge of all shared terms in the system.
Shared terms are detected by the Theory Engine and registered with this
manager, and this manager broadcasts new equalities between shared terms.

– The Context Memory Manager is in charge of maintaining a coherent, back-
trackable data context for the prover. At its core, it is simply a region memory
manager, from which new memory regions can be requested (“pushed”) and
destroyed (“popped”) in LIFO order. These regions contain saved state for a
number of heap-allocated objects, and when a pop is requested, these heap
objects are “restored” from their backups in the region. This leads to a nice,
general mechanism to do backtracking without lots of ad hoc implementa-
tions in each theory; this is highly useful for rapid prototyping. However, as
a general mechanism, it must be used sparingly; it is often beneficial to per-
form backtracking manually within a theory using a lighter-weight method,
to timestamp to indicate when a previously-computed result is stale, or to
develop approaches requiring little or no backtracking at all (e.g., tableaux
in Simplex).

2.1 Expressions (“nodes”)

Expressions are represented by class Node and are considerably more efficient
than CVC3’s expression representation. In the latest version of CVC3, expres-
sions maintain 14 word-sized data members (plus pointers to child expressions).
In CVC4, nodes take 64 bits plus child pointers, a considerable space savings. (In
part, this savings results from clever bit-packing. Part is in storing node-related
data outside of Node objects when appropriate.)

The expression subsystem of CVC4 has been carefully designed, and we have
analyzed runtime profiling data to ensure its performance is reasonable. On
stress tests, it beats CVC3’s expression subsystem considerably. We performed
a handful of targeted experiments to demonstrate this (all results are speedups
observed over a large number of iterations of the same test within the same
process):

Set-up/tear-down. First, we wanted to measure raw set-up and tear-down time
for the CVC4 expression subsystem with respect to CVC3. For CVC3, this
1 For example, PLUS nodes, representing arithmetic addition, must have two or more

children. This is specified by the theory of arithmetic and enforced by the Node
Manager ; this arity can then be assumed by code that manipulates arithmetic-
kinded nodes. If an input language permits unary PLUS, that language’s parser
must convert that input expression into a valid CVC4 Node.
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involves the creation and destruction of a ValidityChecker object. For CVC4,
this involves the creation and destruction of an Expression Manager. CVC4 per-
forms this task almost 10× faster than CVC3.

Same-exprs. CVC4 keeps a unique copy of expression information for each dis-
tinct expression. When the client requests an expression node, a lookup in an
internal node table is performed to determine whether it already exists; if it does,
a pointer to the existing expression data is returned (if not, a pointer to a new,
freshly-constructed expression data object is returned). CVC3’s behavior is sim-
ilar. For this stress test, we created a simple expression, then pointed away from
it, causing its reference count to drop to 0. CVC4 is 3.5× faster than CVC3 at
this simple task. This is largely because CVC3 does garbage-collection eagerly;
it thus does collection work when the reference count on the expression data
drops to 0, and must construct the expression anew each time it is requested.
CVC4’s lazy garbage-collection strategy never collects the expression data (as it
is dead only a short time) and therefore must never re-construct it anew.

Same-exprs-with-saving. Because the reference count on node data falls to 0 in
the previous test, we performed a similar test where the reference count never
drops to 0. This removes the advantage of the lazy collection strategy and mea-
sures the relative performance CVC4’s lookup in its internal node table. Because
the same expression is requested each time, the lookup is always successful (after
the first time). CVC4’s advantage in this test drops to 1.5× speedup over CVC3,
less of an advantage but still considerably faster.

Separate-exprs. Finally, the performance of raw expression construction is mea-
sured by producing a stream of new expressions. These will each result in a
failed lookup in the internal node table and the construction of a new expression
structure. Here, CVC4 is again roughly 3.5× faster than CVC3.

As mentioned above, all of the above stress tests were run for a high number
of iterations (at least ten million) to get stable performance data on which to
base the comparisons. In the separate-exprs test, expressions were built over
fresh variables, ensuring their distinctness.

We conclude that CVC4’s expression subsystem has better performance in
setting up and tearing down, in creating already-existing expressions, and in
creating not-yet-existing expressions. We further demonstrated one case justify-
ing the use of a lazy garbage collector implemented in CVC4 over the eager one
in CVC3.

We performed similar experiments on typical linear arithmetic workloads
(drawn from QF LRA benchmarks in the SMT-LIB library). The time for the ex-
pression subsystem operations (not involving any solver machinery) was roughly
1.4× faster in CVC4 than in CVC3, and CVC4 allocated only a quarter of the
memory that CVC3 did.

2.2 Theories

CVC4 incorporates newly-designed and implemented decision procedures for
its theory of uninterpreted functions, its theory of arithmetic, of arrays, of
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bitvectors, and of inductive datatypes, based on modern approaches described
in the literature. Performance generally is far better than CVC3’s (see the note
in the conclusion).

In a radical departure from CVC3, CVC4 implements a version of the Sim-
plex method in its implementation of arithmetic [10], whereas CVC3 (and earlier
provers in the CVC line) had used an approach based on Fourier-Motzkin vari-
able elimination.

2.3 Proofs

CVC4’s proof system is designed to support LFSC proofs [15], and is also de-
signed to have absolutely zero footprint in memory and time when proofs are
turned off at compile-time.

2.4 Library API

As CVC4 is meant to be used via a library API, there’s a clear division be-
tween the public, outward-facing interface, and the private, inward-facing one.
This is a distinction that wasn’t as clear in the previous version; installations of
CVC3 required the installation of all CVC3 header files, because public headers
depended on private ones to function properly. Not so in CVC4, where only a
subset of headers declaring public interfaces are installed on a user’s machine.

Further, we have decided “to take our own medicine.” Our own tools, including
CVC4’s parser and main command-line tool, link against the CVC4 library in
the same way that any end-user application would. This helps us ensure that
the library API is complete—since if it is not, the command-line CVC4 tool is
missing functionality, too, an omission we catch quickly. This is a considerable
difference in design from CVC3, where it has often been the case that the API
for one or another target language was missing key functionality.

2.5 Theory Modularity

Theory objects are designed in CVC4 to be highly modular: they do not employ
global state, nor do they make any other assumptions that would inhibit their
functioning as a client to another decision procedure. In this way, one Theory
can instantiate and send subqueries to a completely subservient client Theory
without interfering with the main solver flow.

2.6 Support for Concurrency

CVC4’s infrastructure has been designed to make the transition to multiproces-
sor and multicore hardware easy, and we currently have an experimental lemma-
sharing portfolio version of CVC4. We intend CVC4 to be a good vehicle for other
research ideas in this area as well. In part, the modularity of theories (above)
is geared toward this—the absence of global state and the immutability of ex-
pression objects clearly makes it easier to parallelize operations. Similarly, the
Theory API specifically includes the notion of interruptibility, so that an expen-
sive operation (e.g., theory propagation) can be interrupted if work in another
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thread makes it irrelevant. Current work being performed at NYU and U Iowa
is investigating different ways to parallelize SMT; the CVC4 architecture pro-
vides a good experimental platform for this research, as it does not need to be
completely re-engineered to test different concurrent solving strategies.

3 Conclusion

SMT solvers are currently an area of considerable research interest. Barcel-
ogic [5], CVC3 [4], MathSat [6] OpenSMT [7], Yices [9], and Z3 [8] are examples
of modern, currently-maintained, popular SMT solvers. OpenSMT and CVC3
are open-source, and CVC3, Yices, and Z3 are the only ones to support all of
the defined SMT-LIB logics, including quantifiers.

CVC4 aims to follow in CVC3’s footsteps as an open-source theorem prover
supporting this wide array of background theories. CVC3 supports all of the
background theories defined by the SMT-LIB initiative, and provides proofs and
counterexamples upon request; CVC4 aims for full compliance with the new
SMT-LIB version 2 command language and backward compatibility with the
CVC presentation language.

In this way, CVC4 will be a drop-in replacement for CVC3, with a cleaner
and more consistent library API, a more modular, flexible core, a far smaller
memory footprint, and better performance characteristics.

The increased performance of CVC4’s (over CVC3’s) expression subsystem
was demonstrated in section 2; CVC4’s solving apparatus also performs better
than CVC3’s. In SMT-COMP 2010 [2], both solvers competed in the QF LRA
division. CVC4 solved more than twice the benchmarks CVC3 did, and for the
benchmarks they both solved, CVC4 was almost always faster.

Our goal in CVC4 has been to provide a better-performing implementation
of CVC3’s feature set, while focusing on flexibility so that it can function as a
research vehicle for years to come. Our first goal has been realized for the fea-
tures that CVC4 currently supports, and we believe this success will continue
as we complete support for CVC3’s rich set of features. We have been successful
in our second as well: a number of internal, complicated, non-intuitive assump-
tions on which CVC3 rests have been removed in the CVC4 redesign. We have
been able to simplify greatly the component interactions and the data structures
used in CVC4, making it far easier to document the internals, incorporate new
developers, and add support for new features.

References

1. Barrett, C., Berezin, S.: CVC Lite: A New Implementation of the Cooperating
Validity Checker Category. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS,
vol. 3114, pp. 515–518. Springer, Heidelberg (2004)

2. Barrett, C., Deters, M., Oliveras, A., Stump, A.: SMT-COMP 2010: the 2010
edition of the satisfiability modulo theories competition,
http://www.smtcomp.org/2010/

http://www.smtcomp.org/2010/


CVC4 177

3. Barrett, C., Dill, D., Levitt, J.: Validity checking for combinations of theories with
equality, pp. 187–201. Springer, Heidelberg (1996)

4. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

5. Bofill, M., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: The
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Abstract. SLAyer is a program analysis tool designed to automati-
cally prove memory safety of industrial systems code. In this paper we
describe SLAyer’s implementation, and its application to Windows de-
vice drivers. This paper accompanies the first release of SLAyer.

1 Introduction

This paper describes SLAyer, a program analysis tool designed to prove the
absence of memory safety errors such as dangling pointer dereferences, double
frees, and memory leaks. Towards this goal, SLAyer searches for invariants that
form proofs in Separation Logic [8]. The algorithms implemented in SLAyer are
aimed at verifying moderately sized (e.g. 10K-30K LOC) systems level code bases
written in C. SLAyer is fully automatic and does not require annotations or
hints from the user.

2 Example
The majority of Windows faults are caused by third-party device drivers [1].
Because device drivers spend much of their time maintaining queues of requests,
many of these errors are related to maintaining memory safety while operating
over mutable linked data structures. Consider the code excerpt from the FireWire
device driver distributed in the Windows Driver Kit (WDK) v7600 shown in
Figure 1. The code is part of the cleanup routine in which allocated “isoch”
resources are deleted from the IsochResourceData list. The while loop (line 596)
and if test (line 600) traverse the list.

The suspicious code is on line 604 where the element is removed from the
wrong list. The code then assumes, on line 606, that listEntry is pointing into
the middle of an ISOCH_RESOURCE_DATA , whereas it is actually pointing into
a CROM_DATA . The assignment to IsochResourceData on this line now sets it
to a parent object of the wrong type. SLAyer complains that it cannot verify
that the later accesses to IsochResourceData are to valid memory. This is a real
bug, now fixed in the Windows 8 codebase.

3 Applying SLAyer to Device Drivers
Although the current public release of SLAyer is as a standalone tool running
on vanilla C code, we have also integrated it with Static Driver Verifier (SDV) [1].
In this integration, SLAyer is called instead of the model checker SLAM. The
SDV OS model used is an extension to SDV’s original OS model: it is developed
to be faithful both to various I/O protocols as well as to the heap.
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Fig. 1. FireWire cleanup routine

The top-level user interaction is to provide the C source code of a Windows
Driver Framework (WDF) device driver, and get the result at the end of the
run. The result is one of: Safe (a proof the target memory safety property was
found); Possibly Unsafe (a failed proof in the form of an abstract counterexample
providing a path to a memory safety violation); or, Exhausted (Time/Memory
constraints exceeded). Figure 2 gives the overall tool flow picture.

Fig. 2. SLAyer Flow

A device driver consists of a set of dis-
patch routines. The OS model provides a
main function that simulates the lifetime of
a driver (calls the driver’s dispatch routines)
under the most general assumptions; it also
provides behavioral specifications of the ker-
nel functions that the driver calls. The Mi-
crosoft Visual C compiler based frontend
links the driver with the OS model to form
a complete, closed, sequential system that is
the input to the SLAyer analyzer.

The OS model can be viewed as the assumption under which the memory
safety property is proven for the source code. Additionally, the OS model imposes
the obligation that the driver maintain data structure integrity for objects passed
over the Driver–OS model interface. In this sense, underlying kernel and even
hardware properties can be seen to leak into the driver code.

4 SLAyer Program Analysis

SLAyer implements an analysis that attempts to prove the absence of memory
safety errors. Such an error occurs whenever dereferencing a pointer to an object
outside the object’s dynamic lifetime. Proving this property subsumes those such
as double-frees, and null or dangling pointer dereferences.
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If SLAyer finds a proof, then the input program under our semantics is mem-
ory safe. There are C programs (that overrun an array or access misaligned data,
for example) that are safe in our idealized semantics, but have undefined mean-
ing according to the C standard. This situation is characteristic of automatic
“sound” tools.

To elaborate, the main idealization in our semantics is the model of memory:
SLAyer takes a “logical”, as opposed to a “physical”, view of heap memory.
Memory is modeled as a collection of disjoint structured objects. The structure
of each object is determined by the source-level struct definition, omitting aspects
such as alignment, padding, and byte widths of scalar values. The memory model
is not even close to byte-accurate, so legitimate pointer traversals that use char*
as a universal type are not provable.

The focus of SLAyer is reasoning about the shape of mutable linked data
structures. To this end, validity of memory is treated at a per-object granularity.
In particular, arrays and structs are treated as unbounded objects where access-
ing any member from a valid object is valid, and any index of a valid array is
valid. This is deliberately in contrast to tools aimed at catching buffer overflows
such as ESP [4].

4.1 Prover
Assertion Language. The particular fragment of Separation Logic used is,
like other tools such as SpaceInvader [10] and Thor [9], an extension of that
introduced in Smallfoot [3].

The assertion logic does not distinguish between the various C scalar types
such as pointers, integers and floats. It does distinguish offsets, which are not
first-class in C and represent differences between pointers to members of struc-
tured objects, and so are expressions that can be added to pointers via field
access “.”, or subtracted from them via CONTAINING_RECORD. Structured val-
ues are represented using a form of records mapping offsets to scalar values
similar to a first-order theory of arrays (variables, select, store), but where the
domain is given by an associated C struct definition.

The pure, heap-independent, part of the logic is essentially passed through
to the Z3 SMT solver [5], thereby inheriting the same generality. Atomic pure
formulas in particular include (principally linear) arithmetic (<, ≤), and equal-
ity over address expressions (p = q, p.CromData = p.IsochResourceData). Pure
formulas are kept in negation-normal form.

Apart from Separation Logic’s emp, which describes an empty part of the
heap, atomic spatial formulas are of two forms: points-to or list-segment. A
points-to l �→ r describes a single heap cell at location l that contains an object
described by a record r. A list-segment ls(Λ, k,p,f , b,n) describes a possibly-
empty, possibly-cyclic, segment of a doubly-linked list, where the heap structure
of each item of the list is given by the formula Λ. This second-order inductive
predicate is used to support complex composite data structures [2].

Formulas are closed under separating conjunction P ∗Q and disjunction P ∨Q,
and may have a prefix of existential quantifiers ∃x.Q. Unlike related tools,
formulas are not restricted to disjunctive-normal form, and arbitrary nesting of
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∗ and ∨ is supported. While this generalization of representation does not add ex-
pressivity in principle, and is a substantial complication for the implementation,
there are several motivations. One is the ability to compactly represent assertions
that otherwise may blow up when expressed in DNF: for example it is common for
different code branches to produce formulas whose heap structures differ in only
a small region. Another is added flexibility in the design of theorem proving algo-
rithms, where small proofs generally require (intermediate) formulas not in DNF.

Subtraction. All manipulation of formulas performed by the program analysis
operations in SLAyer are, at the core, defined in terms of a judgment form
called subtraction (a generalization of “frame inference” introduced in [3]), and
implemented using a prover for these judgments. A subtraction judgment M  
∃x. S � R holds if and only if the entailment M  ∃x. (S∗R) is universally valid.
This is a production form, where a valid remainder R is computed as a function
of the minuend M , existentials x, and subtrahend S. Informally, a subtraction
query M  ∃x. S � asks the prover to re-express M , possibly weakening it,
into the form S ∗ R, thereby ensuring that heaps satisfying M have subheaps
satisfying S, and yielding a formula R that describes the rest of each M heap.

Proof search is performed using a sequent calculus that includes deduction
rules specific to the fragment’s atomic formulas. A particular collection of ax-
ioms involving �→ and ls are built into the calculus. These axioms generally
require induction to prove, and by adding them to the prover it is able to prove
inductive properties without searching for induction hypotheses. Additionally,
these axioms, and knowledge of the semantics of the atomic forms, are used to
direct aggressive use of Cut where subformulas of S are used to choose small but
not atomic or quantifier-free intermediate proof goals. Searching for proofs with
Cut enables localizing case analysis, resulting in much smaller proofs and search
spaces, as well as more compactly represented remainders.

Reasoning about pure formulas is done using Z3, given an axiomatization of
the pure fragment of the assertion logic. To enable incremental solving, during
proof search SLAyer maintains a first-order approximation of the hypotheses in
Z3. Leaves of proof trees are discharged by Z3, as they are implications between
pure formulas. Z3 is also used to reason about equality between pointers in order
to guide application of proof rules that manipulate spatial formulas. Addition-
ally, some case splits in the sequent calculus are directed by unsatisfiable cores
extracted by Z3. Overall this results in many small queries, involving the theories
of arrays, data types, integer linear arithmetic, uninterpreted functions, as well
as quantifier elimination for each.

The prover implemented in SLAyer is not complete, due (in part) to limited
treatment of quantifiers and not attempting to find proofs using induction over
the second-order list segments.

4.2 Symbolic Execution and Abstraction

Interprocedural Analysis. SLAyer uses a version of the Reps-Horowitz-
Sagiv algorithm with localization [7] to perform a whole-program interprocedu-
ral analysis. The procedure specifications computed as summaries take the form
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∀g. {P}f(x){Q}. The ghost variables g allow values on procedure entry to be
compactly related to those on exit. Application of such specifications relies on
subtraction’s ability to reason adequately about quantified formulas. This pa-
rameterization is useful, for instance, to treat so-called heap cutpoints, as well
as to express pure pre/post relations, to for instance reestablish properties of
shadowed stack variables when returning from recursive procedures.

Transformers. Individual instructions, including specification statements, are
symbolically executed following Smallfoot [3]. Given the generalization of sub-
traction to arbitrary disjunction and existential quantification, no separate “re-
arrangement” operation is needed in SLAyer.

Abstraction. The abstraction operation that generalizes formulas to loop in-
variants takes the form of a rewrite system that progressively weakens formulas,
similar to SpaceInvader [6]. Instead of syntactic variable occurrence conditions,
SLAyer uses rewrite rules guarded by properties involving a form of reacha-
bility through formulas modulo provable equality. Syntactic conditions proved
too fragile when using a more general assertion logic. Another difference is that
subtraction is used to perform the actual manipulation of the formulas, which
means that the algorithms which determine how and if to rewrite do not need
to know the full logical meaning of formulas.

Abstraction has also been extended to arbitrarily nested disjunction. When
considering whether to apply a particular weakening of the formula, all the
deeper disjuncts are considered, and distinctions where both alternatives appear
are not preserved. This enables abstracting and hoisting common facts out of
disjunctions, transforming formulas closer to conjunctive-normal form. So unlike
the join operation of [10] which merges disjuncts of DNF formulas, the support
of nested disjunction allows merging parts of formulas even when they cannot
be fully merged.

5 Experimental Results and Availability

Table 1 presents some experimental results. The fw programs are extracted from
the Windows FireWire driver, and are representative of device driver type code: a
lot of control structures, traversal through linked lists, pointer arithmetic
(the cleanup_isochresourcedata tests are the FireWire bug testcases). The sll

Table 1. Benchmarks

fw/attach_buffer_insert_head_list.c Safe 1.8 sll/append.c Safe 14.2
fw/callback_remove_entry_list.c Safe 99.8 sll/copy.c Safe 3.8
fw/cleanup_isochresourcedata.c Safe 28.0 sll/copy_unsafe.c Unsafe 0.3
fw/cleanup_isochresourcedata_unsafe.c Unsafe 1.8 sll/create.c Safe 0.1
fw/cromdata_add_remove.c Safe 31.5 sll/create_kernel.c Safe 3.8
fw/is_on_list_flat.c Safe 18.2 sll/destroy.c Safe 0.4
fw/is_on_list_via_devext.c Safe 53.1 sll/filter.c Safe 10.5

sll/find.c Safe 3.5
sll/reverse.c Safe 1.2
sll/traverse.c Safe 0.7
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programs are similar but avoid using CONTAINING_RECORD to factor out pointer
arithmetic. We are very conscious of the differences and prototype status of tools
in this field; we present these results only as a strawman benchmark. The table
gives the time, usr+sys in seconds, for SLAyer to prove each test Safe or Possi-
bly Unsafe. The machine used was an Intel E5630 running Windows 7 64-bit.

SLAyer is available from http://research.microsoft.com/slayer. The down-
load includes these benchmarks, and other C programs that stress memory safety.
We plan to make a set of releases that revise the core components (analyzer per-
formance, OS model fidelity), and to make our integration with SDV available.
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Abstract. Configurable software verification is a recent concept for ex-
pressing different program analysis and model checking approaches in
one single formalism. This paper presents CPAchecker, a tool and
framework that aims at easy integration of new verification components.
Every abstract domain, together with the corresponding operations, im-
plements the interface of configurable program analysis (CPA). The main
algorithm is configurable to perform a reachability analysis on arbitrary
combinations of existing CPAs. In software verification, it takes a con-
siderable amount of effort to convert a verification idea into actual ex-
perimental results — we aim at accelerating this process. We hope that
researchers find it convenient and productive to implement new verifica-
tion ideas and algorithms using this flexible and easy-to-extend platform,
and that it advances the field by making it easier to perform practical
experiments. The tool is implemented in Java and runs as command-line
tool or as Eclipse plug-in. CPAchecker implements CPAs for several
abstract domains. We evaluate the efficiency of the current version of our
tool on software-verification benchmarks from the literature, and com-
pare it with other state-of-the-art model checkers. CPAchecker is an
open-source toolkit and publicly available.

1 Overview

The field of software verification is a fast growing area, and researchers contribute
new ideas and approaches with enormous pace. The more new approaches are
discovered, the more difficult it is to understand the essential insight or the fun-
damental difference that makes a new approach good and better. Experimental
evaluation is often a deciding factor for whether or not a new approach is con-
sidered an advancement of the field. But it requires a considerable engineering
effort to actually build the software infrastructure for evaluating verification al-
gorithms. Adapting a suitable parser front-end and transforming the abstract
syntax tree into a format that is convenient for verification algorithms is one
example. The interaction with a theorem prover is yet another issue that needs
to be considered. There are successful approaches in program analysis as well as
in model checking, but these techniques are rarely combined; the reason is that
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it is indeed extremely difficult to combine them. Most published approaches are
not even comparable, because the choice of the parser front-end, the choice of
the theorem prover, and the choice of the pointer-alias analysis algorithm in the
corresponding tool implementation, considerably influence the performance and
precision of the new verification algorithm. When evaluating a performance com-
parison of two approaches, it is often difficult to identify what the new approach
contributes and what is due to the different environment. In practice, it was so
far extremely difficult to perform an experimental performance evaluation of one
component while keeping all other components constant.

Configurable program analysis (CPA) provides a conceptual basis for express-
ing different verification approaches in the same formal setting. The CPA formal-
ism provides an interface for the definition of program analyses, which includes
the abstract domain, the post operator, the merge operator, and the stop op-
erator [4]. Consequently, the corresponding tool implementation CPAchecker

provides an implementation framework that allows the seamless integration of
program analyses that are expressed in the CPA framework. The comparison
of different approaches in the same experimental setting becomes easy and the
experimental results will be more meaningful.

Availability. The source code and all benchmark programs for CPAchecker are
available online at http://cpachecker.sosy-lab.org. The tool is free software,
released under the Apache 2.0 license.

Related Tools. In many respects, CPAchecker is similar to Blast [3]. Our
predicate analysis is also based on lazy abstraction and interpolation-based re-
finement. The novelty of CPAchecker is that it is easy to configure. For ex-
ample, the tool can run a predicate analysis using single-block encoding (SBE),
like Blast [3] and Slam [1], but also using large-block encoding (LBE) [2] or
even adjustable-block encoding (ABE) [5]. The advantage of the new tool over
tools that implement a separated abstract-check-refine loop, like Slam [1] and
SATabs [8], is that the on-the-fly approach allows the design of more flexible, and
more efficient, algorithms (like ABE [5]). We have integrated the bounded model
checker CBMC [7] into CPAchecker for a bit-precise path-feasibility check.

2 Architecture and Implementation

Figure 1 shows an overview of the CPAchecker architecture. The central data
structure is a set of control-flow automata (CFA), which consist of control-flow
locations and control-flow edges. A location represents a program-counter value,
and an edge represents a program operation, which is either an assume operation,
an assignment block, a function call, or a function return (we do not consider
more complex operations due to a well-known reduction called C intermediate
language 1). Before a program analysis starts, the input program is transformed
into a syntax tree, and further into CFAs. The current version of CPAchecker

uses the parser from the CDT, a fully functional C and C++ plug-in for the

1 Available at http://www.cs.berkeley.edu/∼necula/cil

http://cpachecker.sosy-lab.org/
http://www.cs.berkeley.edu/~necula/cil/
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Fig. 1. CPAchecker — Architecture overview

Eclipse platform. Our framework provides interfaces to SMT solvers and inter-
polation procedures, such that the CPA operators can be written in a concise and
convenient way. Currently we use MathSAT as an SMT solver, and CSIsat and
MathSAT as interpolation procedures. We use CBMC as a bit-precise checker
for the feasibility of error paths, JavaBDD as a BDD package, and provide an
interface to an Octagon representation as well.2

The CPA algorithm is the core of CPAchecker: it performs the reachability
analysis, and operates on an object of the abstract data type CPA, i.e., the
algorithm applies operations from the CPA interface without knowing which
concrete CPA it is analyzing [4]. For most configurations, the concrete CPA will
be a composite CPA, which implements the combination of different CPAs. In or-
der to extend CPAchecker by integrating an additional CPA for a new abstract
domain, only two steps are necessary. First, an entry in the global properties
file is necessary in order to announce the new CPA for composition. Second,
the new CPA needs to implement the interface CPA, and implementations of all
CPA operation interfaces need to be provided. Figure 2 shows the interaction:
The CPA algorithm (shown at the top in the figure) takes as input a set of
control-flow automata (CFA) representing the program, and a CPA, which is in
most cases a Composite CPA. The interfaces correspond one-to-one to the formal
framework [4]. The elements in the gray box (top right) in Fig. 2 represent the
abstract interfaces of the CPA and the CPA operations. The two gray boxes at
the bottom of the figure show two implementations of the interface CPA, one is a
CompositeCPA that can combine several other CPAs, and the other is a LeafCPA
(cf. the Composite design pattern). For example, suppose we want to implement
a CPA for shape analysis. We would provide an implementation for CPA, possi-
bly called ShapeCPA, and implementations for the operation interfaces that are
presented in the top-right box. If we want to experiment with several different
merge operators, we would provide several different implementations of Merge

2 Tools available at http://mathsat4.disi.unitn.it, http://www.sosy-lab.org/∼dbeyer/CSIsat,
http://www.cprover.org/cbmc, http://javabdd.sourceforge.net, http://www.di.ens.fr/∼mine/oct

http://mathsat4.disi.unitn.it/
http://www.sosy-lab.org/~dbeyer/CSIsat/
http://www.cprover.org/cbmc/
http://javabdd.sourceforge.net/
http://www.di.ens.fr/~mine/oct/
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Fig. 2. CPAchecker — Design for extension

Operator Interface that can be freely configured for use in various experiments.
Note that a user-defined CPA can be either a CompositeCPA (composing other
CPAs) or a LeafCPA (used stand alone or as part of a CompositeCPA).

3 Experimental Evaluation

In this section, we compare CPAchecker with several existing tools. Our goal is
to show that our CPA-based tool not only contributes a great flexibility by its
configuration possibilities, but also that it can significantly improve the perfor-
mance due to the possibility of constructing interesting analysis configurations.

Benchmarks. We experimented with three sets of benchmark verification prob-
lems. The first set consists of simplified, partial Windows device drivers; the
second set consists of simplified versions of the state machine that handles the
communication in the SSH suite. Different numbers in a program name indicate
different simplifications that were applied to the source code. Both sets of bench-
marks were taken from the Blast repository 3. The third set consists of SystemC
programs from the supplementary web page of SyCMC [6] 4. The string BUG in
the program name indicates that the program contains a defect. All benchmarks
and tools are available online at http://www.sosy-lab.org/∼dbeyer/cpa-tool.

Reporting. Table 1 shows the verification results for four tools. All experiments
were performed on a machine with a 3.2GHz Quad Core CPU and 16GB of
RAM. The operating system was Ubuntu 10.10 (64 bit), using Linux 2.6.35 as
kernel and OpenJDK 1.6 as Java virtual machine. The first column reports the

3 http://www.sosy-lab.org/∼dbeyer/Blast
4 https://es.fbk.eu/people/roveri/tests/fmcad2010

http://www.sosy-lab.org/~dbeyer/cpa-tool/
http://www.sosy-lab.org/~dbeyer/Blast/
https://es.fbk.eu/people/roveri/tests/fmcad2010/
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Table 1. Performance experiments

Program Result CBMC SATabs Blast CPAchecker

(expected) Predicate Explicit
cdaudio_simpl1 Safe 2.5 ✓ − to 120 ✓ 25 ✓ 5.0 ✓
diskperf_simpl1 Safe − er − to 78 ✓ 21 ✓ − to

floppy_simpl3 Safe .27 ✓ 720 ✓ 68 ✓ 12 ✓ 4.0 ✓
floppy_simpl4 Safe .56 ✓ − to 95 ✓ 19 ✓ 4.2 ✓
kbfiltr_simpl1 Safe .09 ✓ 20 ✓ 8.3 ✓ 4.8 ✓ 2.8 ✓
kbfiltr_simpl2 Safe .18 ✓ 46 ✓ 12 ✓ 7.3 ✓ 3.4 ✓
cdaudio_simpl1_BUG Bug 2.3 ✓ − to 57 ✓ 16 ✓ 3.7 ✓
floppy_simpl3_BUG Bug .28 ✓ 210 ✓ 3.2 ✓ 8.9 ✓ 3.1 ✓
floppy_simpl4_BUG Bug .63 ✓ 650 ✓ 3.2 ✓ 15 ✓ 3.3 ✓
kbfiltr_simpl2_BUG Bug .20 ✓ 100 ✓ 6.4 ✓ 5.4 ✓ 2.9 ✓

s3_clnt_1 Safe − er 49 ✓ 180 ✓ 6.9 ✓ 21 ✓
s3_clnt_2 Safe − er 610 ✓ 240 ✓ 9.0 ✓ 19 ✓
s3_clnt_3 Safe − er 630 ✓ − er 11 ✓ 19 ✓
s3_clnt_4 Safe − er 330 ✓ 150 ✓ 11 ✓ 21 ✓
s3_srvr_1 Safe − er 130 ✓ − er 28 ✓ − to

s3_srvr_2 Safe − er 170 ✓ − er 15 ✓ − to

s3_srvr_3 Safe − er 120 ✓ − er 14 ✓ − to

s3_srvr_4 Safe − er 210 ✓ − er 13 ✓ − to

s3_srvr_6 Safe − er − to 200 ✓ 77 ✓ − to

s3_srvr_7 Safe − er − to − er 25 ✓ − to

s3_srvr_8 Safe − er − to 85 ✓ 310 ✓ − to

s3_clnt_1_BUG Bug 7.4 ✓ 15 ✓ 9.3 ✓ 4.9 ✓ 3.2 ✓
s3_clnt_2_BUG Bug 7.7 ✓ 18 ✓ 10 ✓ 5.0 ✓ 2.6 ✓
s3_clnt_3_BUG Bug 8.9 ✓ 20 ✓ 10 ✓ 4.7 ✓ 2.7 ✓
s3_clnt_4_BUG Bug 7.9 ✓ 18 ✓ 9.1 ✓ 4.7 ✓ 2.7 ✓
s3_srvr_1_BUG Bug 12 ✓ 15 ✓ − er 4.4 ✓ 12 ✓
s3_srvr_2_BUG Bug 10 ✓ 13 ✓ 130 ✓ 4.2 ✓ 12 ✓

bist_cell Safe − er 21 ✓ 430 ✓ 280 ✓ − er

kundu Safe − er 51 ✓ − to 800 ✓ − mo

mem_slave_tlm.1 Safe − to 46 ✓ − er 650 ✓ − er

mem_slave_tlm.2 Safe − to 110 ✓ − er − to − er

mem_slave_tlm.3 Safe − to 230 ✓ − er − to − er

mem_slave_tlm.4 Safe − to 480 ✓ − er − to − er

mem_slave_tlm.5 Safe − to − to − er − to − er

pc_sfifo_1 Safe − er 3.0 ✓ 14 ✓ 7.7 ✓ − to

pc_sfifo_2 Safe − er 2.9 ✓ 55 ✓ 14 ✓ − to

token_ring.1 Safe − er 4.2 ✓ 36 ✓ 14 ✓ − er

token_ring.2 Safe − er 18 ✓ − er 420 ✓ − er

token_ring.3 Safe − er 34 ✓ − er − to − er

token_ring.4 Safe − to 76 ✓ − to − to − er

token_ring.5 Safe − to 200 ✓ − to − to − er

token_ring.6 Safe − to 420 ✓ − to − to − er

token_ring.7 Safe − to − to − to − to − er

token_ring.8 Safe − to − to − to − to − er

toy Safe − er 10 ✓ − to − to − er

kundu1_BUG Bug 70 ✓ 20 ✓ 88 ✓ 11 ✓ 2.6 ✓
kundu2_BUG Bug 350 ✓ 49 ✓ 230 ✓ 57 ✓ 3.0 ✓
toy1_BUG Bug 380 ✓ 12 ✓ − to 560 ✓ 3.0 ✓
toy2_BUG Bug 330 ✓ 8.9 ✓ − to 270 ✓ 2.9 ✓
transmitter_BUG.1 Bug 14 ✓ 3.2 ✓ 11 ✓ 3.7 ✓ 2.4 ✓
transmitter_BUG.2 Bug 55 ✓ 11 ✓ 86 ✓ 8.4 ✓ 2.6 ✓
transmitter_BUG.3 Bug 190 ✓ 20 ✓ 330 ✓ 40 ✓ 2.8 ✓
transmitter_BUG.4 Bug 510 ✓ 62 ✓ 670 ✓ − to 2.9 ✓
transmitter_BUG.5 Bug − to 140 ✓ − to − to 3.3 ✓
transmitter_BUG.6 Bug − to 340 ✓ − to − to 3.3 ✓
transmitter_BUG.7 Bug − to − to − to − to 3.4 ✓
transmitter_BUG.8 Bug − to − to − to − to 3.6 ✓
transmitter_BUG.9 Bug − to − to − to − to 3.8 ✓
transmitter_BUG.10 Bug − to − to − to − to 4.1 ✓
transmitter_BUG.11 Bug − to − to − to − to 4.4 ✓
transmitter_BUG.12 Bug − to − to − to − to 4.5 ✓
transmitter_BUG.13 Bug − to − to − to − to 5.1 ✓
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program name and the second column indicates the expected verification result.
The entries in the table use the following conventions: run times are given in
seconds of CPU time; to and mo indicate that the run was terminated after
900 s of run time or 12GB of memory were consumed, respectively; ✓ indicates
that the expected verification result was correctly computed; er indicates that
the checker failed to return a verification result, i.e., it gave up for some reason,
or it crashed.

Tools. Column CBMC reports the results obtained using the bounded model
checker CBMC 3.9. The bound was set to 10 loop iterations (--32 --error-label

"ERROR" --unwind 10), which detects many of the bugs and proves safety for five
drivers (by computing the loop bound); in general, nothing can be said
about safe programs. If CBMC reports a violated loop assertion, we add
--no-unwinding-assertions to the options and re-run the analysis, trying to identify
more bugs. Column SATabs is based on SATabs 2.6 with the standard configu-
ration (--32 --error-label "ERROR"); an explicit CEGAR loop is performed. Column
Blast reports the results using Blast 2.5 (with MathSAT

2 as solver [2]), config-
ured to employ lazy, interpolation-based refinement, the DFS algorithm for the
state-space exploration, and the recommended predicate-search heuristic (-craig
2 -dfs -predH 7 -nosimplemem -alias ""). Column CPAchecker was obtained using Re-
vision 3330 of CPAchecker, with two configuration options: on the left, we used
predicate analysis where the adjustable-block encoding was configured for large
blocks (-config symbpredabsCPA-lbe.properties) [5]; on the right, we used an explicit-
value analysis that tracks explicit values for each variable, where CBMC is used
to certify that an error path corresponds to a true bug by encoding the error
path into a C program that is given to CBMC (-config explicitAnalysis.properties).

Summary. The general outcome of the evaluation is that CPAchecker’s pred-
icate analysis outperforms Blast in all but four cases. CPAchecker (predicate)
outperforms SATabs on all driver and ssh programs; for the SystemC programs,
SATabs is better than CPAchecker (predicate). However, for the programs with
a bug, CPAchecker can be started with an explicit-value analysis and compute
the result within seconds (this is especially impressive for the SystemC programs
with a bug). CBMC was most successful on the driver programs. There was no
false-alarm, and no tool reported a violating program as safe.

Acknowledgments. We thank G. Endler, A. Griggio, T. Henzinger, A. Holzer,
S. Löwe, A. v. Rhein, M. Tautschnig, G. Théoduloz, P. Wendler, and the Blast

developers for their direct and indirect contributions to the CPAchecker project.
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Abstract. This paper presents an elegant algorithm for existential quan-
tifier elimination using incremental SAT solving. This approach contrasts
with existing techniques in that it is based solely on manipulating the
SAT instance rather than requiring any reengineering of the SAT solver
or needing an auxiliary data-structure such as a BDD. The algorithm
combines model enumeration with the generation of shortest prime im-
plicants so as to converge onto a quantifier-free formula presented in CNF.
We apply the technique to a number of hardware circuits and transfer
functions to demonstrate the effectiveness of the method.

1 Introduction

Elegant ideas and careful engineering have advanced DPLL-based SAT solvers
to the point they can rapidly decide the satisfiability of structured problems
that involve thousands of variables. SAT has thus been applied to the problem
of existential quantifier elimination, yet existing algorithms are considered “in-
elegant” [9, slide 24]. This paper is concerned with computing a quantifier-free
formula ∃X : ϕ in CNF where X is a set of propositional variables and ϕ is it-
self presented in CNF. The quadratic nature of resolution renders it impractical
when X is large compared to vars(ϕ) and SAT-based techniques are favoured
when the set of variables Y = (vars(ϕ)\X) is small compared to vars(ϕ). These
techniques apply a SAT solver to find a cube c1 = (

∧
Y1) ∧ ¬(

∨
Y2) for which

ϕ ∧ c1 is satisfiable and Y1 and Y2 partition Y . The clause ¬c1 is then added
to ϕ and the process is repeated to enumerate all such cubes C = {c1, . . . , c�}.
During enumeration, these cubes are typically stored in a BDD which converges
onto

∨
C. A CNF representation of

∨
C can then be extracted from the BDD,

for example, by following all paths (cubes) c which lead to 0 and then negating
to obtain a clause ¬c. McMillan [29] critiqued this approach pointing out that:

“CNF and SAT-based quantifier elimination can be exponentially more
efficient than [..] BDDs in cases where the resulting fixed points have
compact representations in CNF, but not as BDDs.”

BDDs have been used to store the cubes as it is believed that they offer a
space-efficient way of storing the image (quantifier-free formula). However, this
does not preclude computing CNF directly, especially if the size of the CNF
is smaller than that extracted from the BDD. This paper can be considered a
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response to the agenda set by McMillan and presents an efficient, and we believe
elegant, method for computing the image as a compact CNF formula that does
not require modification to a solver.

The quest for elegance is more than an exercise in aesthetics since existen-
tial quantifier elimination finds application in: unbounded model checking [29],
dependency analysis [2], information flow analysis [20], transfer function synthe-
sis [5] and the synthesis of ranking functions [14]. It also occurs in predicate
abstraction [21] from which we take an example [9] that we develop in what
follows. In predicate abstraction, a finite set of predicates is used to express
properties of and relationships between program variables at different points in
the program. State can then be described by a cube over the predicate symbols,
and a set of states as a Boolean function. Quantifier elimination arises when
computing successor states. Adapting an example from [9], suppose the predi-
cates X = {x1, . . . , x6} and Y = {y1, . . . , y6} express state at two consecutive
program points, and the transition relation between these states is expressed as
a Boolean function:

μ = ¬(x2 ∧ y2) ∧ ¬(y2 ∧ y1) ∧ ((x4 ∧ x6) ⇒ y1) ∧
(x3 ⇔ y4) ∧ (x4 ⇔ y3) ∧ (x5 ⇔ y6) ∧ (x6 ⇔ y5)

If ξ = (x1∧¬x2∧x3∧¬x4∧x5∧¬x6)∨(x1∧¬x2∧¬x3∧x4∧¬x5∧x6) describes
the state at one point, then the state at the next is given by ∃X : (ξ ∧ μ).

To summarise our work, the paper contributes an algorithm for existential
quantifier elimination based solely on SAT solving. The elimination problem is
reduced to that of discovering a cube of size k which entails the formula; a prob-
lem that can be completely encoded as a SAT instance. This formulation finesses
the need for a complicated DPLL-like algorithm based on internal implication
graphs and the application of heuristics [29, Sect. 2]. Furthermore, with a BDD-
based approach, the size of resulting CNF formula is very sensitive to the variable
ordering (even when dynamic reordering is applied), whereas the algorithm pro-
posed herein actually produces a compact CNF representation, challenging the
belief that BDDs are necessary for elimination.

2 Worked Example

Let ϕ denote a quantifier-free propositional formula and X denote a set of propo-
sitional variables. The key idea behind our approach is to converge onto the set
of solutions of the formula ∃X : ϕ from above by adding clauses formed from
a sub-class of prime implicants of ¬ϕ; namely those prime implicants that con-
tain no positive or negative occurrence of any variable of X . This approach
contrasts with existing techniques in that it is based solely on manipulating the
formula ϕ, rather than requiring any reengineering of the solver itself [29] or
needing an auxiliary data-structure such as a BDD [22]. Furthermore the tech-
nique possesses the “everyone a winner”[33] enumeration property, which means
that, rather than enumerating and filtering potential clauses of ∃X : ϕ, a new
clause of ∃X : ϕ is found on (virtually) each application of a SAT solver. This
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property is highly desirable, because it couples the computational effort required
to compute the quantifier-free version of ϕ with its size. We build towards this
technique using ϕ = (ξ ∧μ) from the introduction and demonstrate how to elim-
inate quantifiers from ∃X : ϕ. We henceforth refer to this problem as that of
projecting ϕ onto Y , where Y = (vars(ϕ) \ X) = {y1, . . . , yk}. Intuitively this
problem is that of removing all information in ϕ pertaining to variables other
than Y .

2.1 Enumerating Implicants

The first step of our method is to enumerate the implicants of ϕ in the projection
space. To do so, we first convert ϕ into CNF, for which we introduce a set of
Tseitin variables T [31] which are existentially quantified. The resulting formula
in CNF, which is equisatisfiable to ϕ, is denoted by ∃T : ψ. We then derive a so-
called dual-rail encoding [8] by applying a transformation inspired by [28]. This
amounts to introducing two disjoint sets of fresh variables Y + = {y+

1 , . . . , y
+
k }

and Y − = {y−1 , . . . , y−k } and replacing each occurrence of the literal yi in ϕ with
y+

i , and likewise each occurrence of the literal ¬yi with y−i . To ensure that y+
i

and y−i cannot hold simultaneously, the transformed formula is augmented with
the clauses

∧k
i=1(¬y+

i ∨ ¬y−i ). Let τ(ψ) denote this syntactic transformation,
which yields a formula in CNF, defined over the variables V = X ∪Y +∪Y −∪T .
Passing τ(ψ) to a SAT solver yields a model m1 : V → B, such as for example:

m1 =

⎧⎨⎩
x1 �→ 1, x2 �→ 0, x3 �→ 1, x4 �→ 0, x5 �→ 1, x6 �→ 0
y+
1 �→ 0, y+

2 �→ 0, y+
3 �→ 0, y+

4 �→ 1, y+
5 �→ 0, y+

6 �→ 1
y−1 �→ 1, y−2 �→ 1, y−3 �→ 1, y−4 �→ 0, y−5 �→ 1, y−6 �→ 0

⎫⎬⎭
(Note that the Tseitin variables T have been omitted for the purpose of pre-
sentation.) The same model m1 can be represented as a subset of V , namely,
{v ∈ V | m1(v) = 1} and, henceforth, we shall use this representation interchange-
ably with m1. The variables in m1 ∩ (Y + ∪ Y −) then define a conjunction of
literals, a cube, ξ(m1) over the variables in Y , which is given as:

ξ(m1) =
(∧{yi | y+

i ∈ (m1 ∩ Y +)}) ∧ (∧{¬yi | y−i ∈ (m1 ∩ Y −)})
Therefore, we have ξ(m1) = (¬y1 ∧ ¬y2 ∧ ¬y3 ∧ y4 ∧ ¬y5 ∧ y6). Furthermore,

the cube ξ(m1) is a so-called implicant of ∃X : ϕ since ξ(m1) |= ∃X : ϕ. It con-
stitutes an under-approximation of ∃X : ϕ since the set of all models of ξ(m1) is
a subset of the set of all models of ∃X : ϕ. To find another under-approximation,
and specifically one that is not itself entailed by ξ(m1), we augment τ(ψ) with
the blocking clause

β(m1) =
(∨{y−i | y+

i ∈ (m1 ∩ Y +)}) ∨ (∨{y+
i | y−i ∈ (m1 ∩ Y −)})

which gives β(m1) = (y+
1 ∨ y+

2 ∨ y+
3 ∨ y−4 ∨ y+

5 ∨ y−6 ). Of course enumerating
implicants in this way dovetails with the advances in incremental SAT.
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Applying a solver to the augmented formula τ(ψ)′ = τ(ψ) ∧ β(m1) gives
another model m2 as follows:

m2 =

⎧⎨⎩
x1 �→ 1, x2 �→ 0, x3 �→ 1, x4 �→ 0, x5 �→ 1, x6 �→ 0
y+
1 �→ 0, y+

2 �→ 1, y+
3 �→ 0, y+

4 �→ 1, y+
5 �→ 0, y+

6 �→ 1
y−1 �→ 1, y−2 �→ 0, y−3 �→ 1, y−4 �→ 0, y−5 �→ 1, y−6 �→ 0

⎫⎬⎭
The model m2 defines another implicant ξ(m2) = (¬y1∧y2∧¬y3∧y4∧¬y5∧y6)
of ∃X : ϕ, hence ξ(m1) ∨ ξ(m2) |= ∃X : ϕ. Repeating this strategy to derive
implicants yields an unsatisfiable formula after the fourth step, and thus

∨4
i=1 ξ(mi) =

⎧⎪⎪⎨⎪⎪⎩
(¬y1 ∧ ¬y2 ∧ ¬y3 ∧ y4 ∧ ¬y5 ∧ y6) ∨
(¬y1 ∧ y2 ∧ ¬y3 ∧ y4 ∧ ¬y5 ∧ y6) ∨
(y1 ∧ ¬y2 ∧ ¬y3 ∧ y4 ∧ ¬y5 ∧ y6) ∨
(y1 ∧ ¬y2 ∧ y3 ∧ ¬y4 ∧ y5 ∧ ¬y6)

satisfies
∨4

i=1 ξ(mi) = ∃X : ϕ. However, observe that
∨4

i=1 ξ(mi) is in DNF and
also contains redundancies, e.g. ξ(m1)∨ξ(m2) = (¬y1∧¬y3∧y4∧¬y5∧y6). In the
following section, we will demonstrate the use of cardinality constraints based
on sorting networks to avoid such redundancies during model enumeration.

2.2 Enumerating Shortest Implicants

Observe that the aforementioned redundancy would not have occured, had the
SAT solver first found the following model:

m′
1 =

⎧⎨⎩
x1 �→ 1, x2 �→ 0, x3 �→ 1, x4 �→ 0, x5 �→ 1, x6 �→ 0
y+
1 �→ 0, y+

2 �→ 0, y+
3 �→ 0, y+

4 �→ 1, y+
5 �→ 0, y+

6 �→ 1
y−1 �→ 1, y−2 �→ 0, y−3 �→ 1, y−4 �→ 0, y−5 �→ 1, y−6 �→ 0

⎫⎬⎭
The model m′

1 defines an implicant ξ(m′
1) = (¬y1 ∧ ¬y3 ∧ y4 ∧ ¬y5 ∧ y6), which

is entailed by both ξ(m1) and ξ(m2) (since, given two models m1 and m2,
ξ(m2) |= ξ(m1) if m1 ∩ (Y + ∪ Y −) ⊆ m2 ∩ (Y + ∪ Y −)). This suggests the
possibility of searching for shortest implicants. To derive shortest implicants ξ(m)
of ∃X : ϕ, we turn to sorting networks [25], which are used to force the number of
literals in ξ(m) (i.e. its length) to be � for increasing � ∈ {1, . . . , k}. The value of
a sorting network is that it can be applied to express the sum of k propositional
variables [18] in no more than 12k("log2(k)#+1) ternary clauses where the sum is
represented in unary fashion. By instantiating the outputs of a sorting network,
a cardinality constraint can be obtained. For example, constraining the outputs
of a 6-bit sorter to 110000 ensures that exactly two input bits are set. Such
cardinality constraints can be imposed in conjunction with the formula τ(ψ)
in order to force the discovery of the shortest (i.e. strongest) implicants first
and thereby prevent the discovery of redundant implicants. The construction
proceeds by introducing a set Y ± = {y±1 , . . . , y±k } of fresh variables, which serve
as inputs to a sorting network. Each variable y±i indicates whether y+

i or y−i
appears in the implicant, and we thus we constrain

∧k
i=1(y

±
i ⇔ (y+

i ∨ y−i )) by
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introducing k clauses of the form ci = (¬y±i ∨y+
i ∨y−i )∧(y±i ∨¬y+

i )∧(y±i ∨¬y−i ).
Given a k-bit sorter σ with output variables {o1, . . . , ok}, a formula whose models
describe implicants of ∃X : ϕ of length � is obtained by augmenting τ(ψ) as
follows:

τ�(ψ) = τ(ψ) ∧ σ ∧
(∧k

i=1 ci

)
∧
(∧�

i=1 oi

)
∧
(∧k

i=�+1 ¬oi

)
Since τ�(ψ) is unsatisfiable for l ∈ {1, . . . , 4}, ∃X : ϕ does not possess implicants
shorter than 5. Testing τ5(ψ) for satisfiability yields the model m′

1 as above.
Then, adding β(m′

1) to τ5(ψ) to derive other implicants of length 5 yields an
unsatisfiable formula. We thus proceed with τ6(ψ)∧β(m′

1) to give two implicants:

ξ(m′
2) = (y1 ∧ ¬y2 ∧ ¬y3 ∧ y4 ∧ ¬y5 ∧ y6)

ξ(m′
3) = (y1 ∧ ¬y2 ∧ y3 ∧ ¬y4 ∧ y5 ∧ ¬y6)

Since τ6(ψ)∧∧3
i=1(β(m′

i)) is unsatisfiable, we have
∨3

i=1 ξ(m
′
i) = ∃X : ϕ, and we

have represented the projection in just 3 cubes. Note that although the clauses
(
∧�

i=1 oi)∧(
∧k

i=�+1 ¬oi) must be rescinded once all the implicants of length � have
been found, this sub-formula is itself a cube. The force of this is that SAT solvers
support assumptions which are cubes. The assumption is added to the instance,
thereby binding some variables, but these bindings are discarded once a model is
found, in readiness for the next call to the solver. Conveniently, this lightweight
version of incremental SAT is sufficient to support the above algorithm.

2.3 Over-Approximation by Dualisation

Recall that we are interested in obtaining CNF, whereas the construction we have
presented so far yields formulae in DNF. Direct conversion of a formula in DNF
to an equivalent one in CNF may increase the size of the formula exponentially.
However, observe that since ∃X : ϕ =

∨3
i=1 ξ(m

′
i), ¬∃X : ϕ = ¬∨3

i=1 ξ(m
′
i) =∧3

i=1 ¬ξ(m′
i); latter formula can be converted into CNF straightforwardly by

pushing negations inward. We can thus reapply the above construction to infer
implicants of ¬∃X : ϕ. Given a cube ν such that ν |= ¬∃X : ϕ, the contrapositive
holds, giving ∃X : ϕ |= ¬ν. Therefore ¬ν over-approximates ∃X : ϕ, i.e. each
model of ∃X : ϕ is also a model of ¬ν. In order to apply the above method on
the dual of

∨3
i=1 ξ(m

′
i), we start by negating the formula to give:

¬∃X : ϕ =
{

(y1 ∨ y3 ∨ ¬y4 ∨ y5 ∨ ¬y6) ∧ (¬y1 ∨ y2 ∨ y3 ∨ ¬y4 ∨ y5 ∨ ¬y6)∧
(¬y1 ∨ y2 ∨ ¬y3 ∨ y4 ∨ ¬y5 ∨ y6)

Denote this formula by ω and apply τ to ω to give:

τ(ω) =
{

(y−1 ∨ y−3 ∨ y+
4 ∨ y+

5 ∨ y+
6 ) ∧ (y+

1 ∨ y−2 ∨ y−3 ∨ y+
4 ∨ y−5 ∨ y+

6 ) ∧
(y+

1 ∨ y−2 ∨ y+
3 ∨ y−4 ∨ y+

5 ∨ y−6 ) ∧ (
∧6

i=1 ¬(y+
i ∧ y−i ))

We then solve τ1(ω), which is unsatisfiable: ¬∨3
i=1 ξ(m

′
i) does not posses impli-

cants of length 1. Passing τ2(ω) to a SAT solver yields a model m′′
1 as follows:

m′′
1 =

{
y+
1 �→ 0, y+

2 �→ 1, y+
3 �→ 0, y+

4 �→ 0, y+
5 �→ 0, y+

6 �→ 0
y−1 �→ 0, y−2 �→ 0, y−3 �→ 0, y−4 �→ 0, y−5 �→ 0, y−6 �→ 1

}
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We then extract a cube ξ(m′′
1 ) = (y2 ∧ ¬y6) from m′′

1 . From ξ(m′′
1) |= ¬∃X : ϕ,

we deduce ∃X : ϕ |= ¬ξ(m′′
1 ) and ¬ξ(m′′

1 ) is a clause. We add a blocking clause
to suppress the cube as before and retrieve a model m′′

2 for τ2(ω) ∧ β(m′′
1 ),

which induces a cube ξ(m′′
2) = (y3 ∧ y6). Then ∃X : ϕ |= ¬ξ(m′′

1) ∧ ¬ξ(m′′
2 ) and

τ2(ω) ∧ β(m′′
1) ∧ β(m′′

2) is unsatisfiable. We proceed with cubes of length 3 and
solve τ3(ω)∧β(m′′

1 )∧β(m′′
2), which gives rise to a cube ξ(m′′

3 ) = (¬y2∧¬y5∧¬y6).
By adding blocking clauses and enumerating all cubes ξ(m′′

i ) for i ∈ {1, . . . ,m},
we could derive a CNF formula

∧m
i=1 ¬ξ(m′′

i ) equivalent to ∃X : ϕ.
However, we can improve on this and produce a denser CNF representation

by searching for a sub-cube of ξ(m′′
3 ) which is itself an implicant of ω. To do this,

let N = (Y +∪Y −)\m′′
3 = {y+

1 , y
−
1 , y

+
2 , y

+
3 , y

−
3 , y

−
4 , y

+
5 , y

+
6 }. We then solve τ2(ω)

in conjunction with the cube
∧{¬y+

i | y+
i ∈ N ∩ Y +} ∧∧{¬y−i | y−i ∈ N ∩ Y −}

which we pass the solver as an assumption. The solver produces a model m′′
4

which defines ξ(m′′
4) = (¬y5 ∧ ¬y6); thus ¬ξ(m′′

4 ) = (y5 ∨ y6) |= ∃X : ϕ. Since
m′′

4 ∩(Y +∪Y −) ⊂ m′′
3 ∩(Y +∪Y −), we have m′′

3 |= m′′
4 and ξ(m′′

3) |= ξ(m′′
4 ). We

thus discard ξ(m′′
3 ) and proceed with τ4(ω)∧β(m′′

1)∧β(m′′
2 )∧β(m′′

4). Whenever
a fresh cube is discovered, we apply the same strategy to weaken it to the most
general one that still entails ω. It is interesting to note that an implicant of
length � can be generalised using at most "log2(�)# calls a solver by applying
dichotomic search (though we do not apply this technique because � is typically
small).

Repeatedly applying this generalise scheme we derive the following minimal
(though not unique) CNF representation of ∃X : ϕ in five more iterations:

∃X : ϕ =
{

(¬y2 ∨ y6) ∧ (¬y3 ∨ ¬y6) ∧ (y5 ∨ y6) ∧ (y3 ∨ ¬y5) ∧
(y4 ∨ ¬y6) ∧ (y1 ∨ y6) ∧ (¬y1 ∨ ¬y2) ∧ (¬y4 ∨ y6)

Since the search is exhaustive, this is no longer an over-approximation of the
projection, but equivalent to it. Our implementation of this algorithm using
MiniSat takes 0.0012s and 0.0009s for the first and second stages of the algo-
rithm (corresponding to Sections 2.2 and 2.3 respectively) thus taking 0.0021s
overall.

2.4 Reprise and Reflection

One may wonder why not to enumerate prime implicants of ¬ϕ directly as previ-
ously proposed [6]. To find an over-approximation¬ν of ∃X : ϕ, put ¬ϕ into CNF
using a formula κ such that ∃T : κ ≡ ¬ϕ. Further, observe that ν |= ∀X : ∃T : κ
iff ¬∀X : ∃T : κ |= ¬ν iff ∃X : ¬∃T : κ |= ¬ν iff ∃X : ϕ |= ¬ν. Hence, to find
an over-approximation of ∃X : ϕ, it suffices to find an implicant of ∀X : ∃T : κ.
Since ∀X : ∃T : κ |= ∃X : ∃T : κ, each implicant of ∀X : ∃T : κ is also an impli-
cant of ∃X : ∃T : κ. This suggests enumerating each implicant ν of ∃X : ∃T : κ
and discarding those ν which are not implicants of ∀X : ∃T : κ, that is, those
that fail the entailment check ϕ |= ¬ν. However, this is hardly an “everyone a
winner” strategy as this method produces very large numbers of spurious impli-
cants that fail the entailment check. By combining model enumeration with the
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generation of prime implicants on the dual formula, our new method does not
generate any spurious candidates, which explains performance improvements of
several orders of magnitude (see Sect. 4).

3 Formal Correctness

Let BoolV denote the class of propositional Boolean formulae over the set of
variables V , which is partitioned into two disjoint subsets X and Y , i.e. V =
X ∪Y and X ∩Y = ∅. We shall consider the problem of computing an implicant
of ∃X : ϕ, where the formula ϕ ∈ BoolV is in CNF. The transformation is
formalised as a map τ on the set of literals LitV = {v,¬v | v ∈ V } over V . This
map is, in turn, defined in terms of propositional variables Y + = {y+ | y ∈ Y }
and Y − = {y− | y ∈ Y } where Y + ∩ Y − = ∅ and (Y + ∪ Y −) ∩ V = ∅.
Definition 1. The literal transformation map τ : LitV → LitX∪Y +∪Y − and its
inverse τ−1 : LitX∪Y +∪Y − → LitV are defined as follows:

τ(l) =

⎧⎨⎩y
+ if l = y and y ∈ Y
y− if l = ¬y and y ∈ Y
l otherwise

τ−1(l) =

⎧⎨⎩y if l = y+

¬y if l = y−

l otherwise

To lift τ to clauses, a clause is considered to be merely a set of literals. Then
τ(C) = {τ(l) | l ∈ C} for a clause C ⊆ LitV . The literal transformation map τ is
lifted to cubes and implicants (which is a particular type of cube) by likewise con-
sidering these to be sets of conjoined literals. The transformation relates cubes
with literals drawn from LitV to cubes with literals drawn from LitX∪Y +∪Y − . We
then define non-trivial cubes (which do not contain opposing literals) as below:

Definition 2

CubeV =
{
C ⊆ LitV

∣∣∀v ∈ V : {v,¬v} ⊆ C
}

CubeX,Y =
{
C ∪ C′ ∣∣C ∈ CubeX ∧ C′ ⊆ Y + ∪ Y − ∧ ∀y ∈ Y : {y+, y−} ⊆ C′ }

Note that a formula ϕ represented in CNF can be considered to be a set of
implicitly conjoined clauses F . This is used to state the following equivalence
result which asserts that implicants are preserved by the transformation τ :

Proposition 1 (Equivalence). Let ϕ =
∧{∨C | C ∈ F} where F ⊆ 2LitV

and put ϕ′ =
∧{∨ τ(C) | C ∈ F}. Then

– If D ∈ CubeV and (
∧
D) |= ϕ then (

∧
τ(D)) |= ϕ′.

– If D′ ∈ CubeX,Y and (
∧
D′) |= ϕ′ then (

∧
τ−1(D′)) |= ϕ.

The following corollary of the above relates implicants with literals drawn from
LitY to the satisfiability of the transformed clause set:
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Corollary 1. Suppose ϕ and ϕ′ are defined as above. Then

– If D ∈ CubeY and
∧
D |= ∃X : ϕ then (

∧
τ(D)) ∧ ϕ′ is satisfiable.

– If D′ ∈ CubeY,∅ and (
∧
D′) ∧ ϕ′ is satisfiable then (

∧
τ−1(D′)) |= ∃X : ϕ.

To state how to compute an image by enumerating implicants, the unusual notion
of a blocking clause introduced in Sect. 2 is now formalised:

Definition 3. The mapping β : CubeY,∅ → CubeY,∅ is defined:

β(D′) = {y−i | y+
i ∈ D′} ∪ {y+

i | y−i ∈ D′}

Theorem 1 (correctness). Suppose ϕ and ϕ′ are defined as above.
Let D′

1, . . . , D
′
� ∈ CubeY,∅ be a sequence such that:

– (
∧

l∈D′
k
l) ∧ ϕ′ ∧ (

∧k−1
i=1 (

∨
l∈β(D′

i)
l)) is satisfiable for all k ∈ {1, . . . , �} and

– ϕ′ ∧ (
∧�

i=1(
∨

l∈β(D′
i)
l)) is unsatisfiable.

Then
∨�

i=1 ∧τ−1(D′
i) = ∃X : ϕ.

The following proposition dovetails with the theorem to show how a CNF repre-
sentation of the projection can be derived in a two phase process. The corollary
that follows is immediate and states that the computation of implicants, in the
second phase at least, can be aborted prematurely without sacrificing correct-
ness.

Proposition 2 (dualisation). Let ψ =
∨�

i=1(
∧

d∈Di
d) where D1, . . . , D� ∈

CubeY . Further, let ∃X : ϕ =
∨m

i=1(
∧

e∈Ei
e) where E1, . . . , Em ∈ CubeY and

ϕ =
∧�

i=1(
∨

l∈Di
¬l). Then ψ =

∧m
i=1(

∨
l∈Ei

¬l).

Corollary 2 (anytime). Let ψ =
∨�

i=1(
∧

d∈Di
d) where D1, . . . , D� ∈ CubeY .

Let
∧m

i=1 Ei |= ∃X : ϕ where E1, . . . , Em ∈ CubeY and ϕ =
∧�

i=1(
∨

l∈Di
¬l).

Then ψ |= ∧m
i=1(

∨
l∈Ei

¬l).

The above results are presented in terms of any implicants, rather than prime
implicants only. This is because, while the latter govern the rate of convergence,
they do not affect correctness. Nevertheless, a prime implicant of an existentially
quantified formula can be formulated as two satisfability conditions. To state the
corollary, let �ϕ� ⊆ 2V denote the set of models of the Boolean function ϕ. For
example, if V = {x, y} then �x ∨ y� = {{x}, {y}, {x, y}}.

Corollary 3. Suppose ϕ, ϕ′ and F ⊆ 2LitV are defined as above and put ψ =
ϕ′∧(

∧
y∈Y (¬y+∨¬y−)). Then D ∈ CubeY is a prime implicant of ∃X : ϕ iff D =

τ−1(M�∩(Y +∪Y −)) where M� ∈ �ψ� and |M�∩(Y +∪Y −)| ≤ |M∩(Y +∪Y −)|
for all M ∈ �ψ� .
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Note that ψ does not include any cardinality constraint on the set M� ∩ (Y + ∪
Y −), hence the need to define a prime implicant in terms of an implicant no
longer than any other. The above result can straightforwardly be adapted to
specify how an implicant of a given size can be defined as a SAT instance.

To conclude the elaborations on correctness, we observe that the greedy gen-
eration of prime implicants does not necessarily yield a minimal CNF formula.
To see this, suppose ϕ = (¬w∧x∧y)∨(¬x∧¬y∧¬z) and consider ∃X : ϕ where
X = {x}. Clearly ∃X : ϕ = D1 ∨D2 where D1 = (¬w ∧ y) and D2 = (¬y ∧ ¬z).
But also ∃X : ϕ = E1 ∨E2 ∨ E3 where E1 = (¬w ∧ ¬z), E2 = (¬w ∧ y ∧ z) and
E3 = (w ∧ ¬y ∧ ¬z). Observe |D1| ≤ |D2| and likewise |E1| ≤ |E2| ≤ |E3|, and
indeed either CNF formulae can be generated, though the latter is sub-optimal.

4 Experiments

We have implemented the techniques described in this paper in C++ using
MiniSat with the express aim of answering the following questions:

– What is the overhead of using primes compared to standard enumeration?
– How are the primes distributed in terms of size within the two phases of the

algorithm, i.e. for DNF generation and CNF conversion?
– How does the method compare against BDD-based projection scheme, both

in terms of the size of CNF formulae and the time required to produce them?

To answer these questions, we compared our technique against a hybrid
SAT/BDD approach. We implemented our method on top of MiniSat v2.2.
Cudd v2.4.2 was used for the BDD package since it offers direct support for
enumerating the prime implicants of a BDD. We chose bitonic sorting for the
sorting network, though smaller (albeit less regular) networks exist [25]. All ex-
periments were performed on a 2.6 GHz MacBook Pro equipped with 4 GB of
RAM.

4.1 Benchmarks

As benchmarks, we selected several circuits from the 74X and ISCAS-89 bench-
mark series as well as projection problems arising from range analysis of mi-
crocontroller code [3,5]. The 74X circuits include an ALU (74181), a carry-look-
ahead generator (74182), an adder (74283) and a magnitude comparator (74L85).
The ALU is the hardest to analyse since it implements 16 different functions, de-
pending on 4 control bits. The ISCAS-89 benchmarks consist of a traffic light
controller (s298), two implementations of a 4× 4 add-shift multiplier (s344 and
s349), and a combinatorial circuit with randomly inserted flip-flops (s1196). All
circuits were projected onto their input and output variables so as to express
their semantics without reference to any intermediate variables.

The microcontroller code was exported from [mc]square [36] for the pur-
pose of synthesising transfer functions [5] for propagating ranges across blocks of
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Table 1. Information regarding the benchmark set; column ϕ contains the name of
the formula as referred to later on, followed by information about the origin of the
respective formula and its size; the benchmarks at the bottom are generated from
blocks of ATmega16 binary code; for these benchmarks, column info contains the
number of instructions and whether they were generated for set abstraction (set) or
transfer function synthesis (tf ).

ϕ info |V | |ϕ|
74181 74x series 1001 2368
74182 74x series 227 526
74283 74x series 267 646
74L85 74x series 413 1084

add 3 (set) 74 119
increment 3 (set) 66 119
parity mit 15 (set) 2066 6725

parity swap 21 (set) 275 745
randerson 13 (set) 18658 61696

triple swap 9 (set) 89 192

ϕ info |V | |ϕ|
s298 ISCAS-89 1327 3164
s344 ISCAS-89 1665 3880
s349 ISCAS-89 1678 3914

s1196 ISCAS-89 5422 12870

adc 4 (tf) 19 290
admdswpcmp 11 (tf) 66 154

adsb2shad 8 (tf) 114 322
ilsh 5 (tf) 66 170
irsh 5 (tf) 66 170

iswp 8 (tf) 130 386

Atmel ATmega16 code. Transfer function synthesis is essentially an existential
quantifier problem We also considered projection problems that arise when over-
approximating the set of values that a register can take in a block (when a block
is considered in isolation to those blocks that flow into it [3]). Table 1 presents
the key statistics for each of these projection problems.

4.2 Projecting Using Prime Implicants

Table 2 presents the results for DNF generation (resp. CNF conversion) using
prime implicants, giving the number of implicants (resp. clauses) in the resulting
formulae and the time required to compute them. Analogous figures are given for
the hybrid approach. It is interesting to see that for the circuits s344 and s349,
only 512 implicants in DNF are generated, but exhaustive model enumeration
yields 65792 disjuncts. This is because 256 out of 512 implicants are of length 12,
and thus already cover a large number of models in the projection space. This
suggests that our method can make model enumeration tractable where the
classical approach fails. For other cases, as exemplified by the 74181 and s1196
circuits, our approach offers no clear advantage. However, it is important to see
that transformation never seriously degrades performance; this is noteworthy
because one cannot know the distribution of the primes up front.

The percental distribution of the lengths of clauses that arise in CNF conver-
sion are depicted in Fig. 1. For reasons of space, graphs are given only for the
74X series (though these distributions are typical). For DNF generation the dis-
tributions are less interesting for these benchmarks, often consisting of a single
spike, but sometimes consist of two spikes, as for s344 and s349 at lengths 12 and
20. It is in these latter cases that primes improve over classic model enumeration.
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Table 2. Experimental results for projection using prime implicant enumeration and
comparison to BDD-based method; the best results are emphasized

ϕ |Y |
Primes model Hybrid

DNF CNF total enum BDD total
size time size time time size time size time time

74181 22 16384 1.477 686 7.096 8.574 16384 1.421 476 1.320 2.798
74182 13 320 0.025 26 0.009 0.035 320 0.009 23 0.014 0.039
74283 14 512 0.022 98 0.147 0.169 512 0.023 270 0.077 0.099
74L85 14 2048 0.108 144 0.107 0.215 2048 0.092 145 0.053 0.162

s298 9 4 0.001 7 0.003 0.004 4 0.004 7 0.006 0.007
s344 20 512 0.068 16 0.018 0.087 65792 12.811 16 0.030 0.098
s349 20 512 0.070 16 0.017 0.088 65792 12.001 16 0.029 0.099

s1196 28 16384 11.182 570 5.465 16.653 16384 11.374 822 5.810 16.993

adder
16 256 0.007 16 0.012 0.020 1024 0.025 16 0.024 0.031
24 1024 0.030 31 0.054 0.086 4096 0.117 29 0.090 0.120

increment
8 4 0.001 10 0.001 0.003 4 0.001 10 0.006 0.007

16 256 0.004 14 0.007 0.012 256 0.003 14 0.010 0.014
24 256 0.008 32 0.024 0.033 256 0.004 34 0.027 0.035

parity mit
8 100 0.033 4 0.001 0.036 200 0.005 4 0.006 0.039

16 12800 2.363 16 1.361 3.727 25600 5.227 10 0.284 2.647
24 40960 8.543 40 6.316 14.875 51200 11.348 41 1.155 9.698

parity swap
8 16 0.002 4 0.001 0.004 16 0.001 4 0.007 0.009

16 256 0.008 12 0.008 0.017 256 0.010 12 0.011 0.019
24 256 0.013 37 0.038 0.051 256 0.011 40 0.101 0.114

randerson
8 64 0.102 2 0.001 0.104 64 0.051 2 0.006 0.108

16 256 0.136 14 0.010 0.147 256 0.089 14 0.013 0.149
24 256 0.140 27 0.023 0.164 256 0.092 30 0.058 0.198

triple swap
8 16 0.002 12 0.001 0.004 64 0.005 12 0.007 0.009

16 512 0.013 20 0.029 0.042 512 0.009 22 0.015 0.028

adc
8 128 0.004 7 0.002 0.006 512 0.010 7 0.006 0.010

16 128 0.005 47 0.018 0.023 512 0.012 52 0.036 0.041
24 128 0.006 80 0.047 0.054 512 0.012 92 0.116 0.122

admdswpcmp
8 191 0.003 7 0.003 0.006 191 0.002 7 0.008 0.011

16 191 0.007 54 0.021 0.029 191 0.005 60 0.049 0.057
24 191 0.009 56 0.025 0.035 191 0.006 66 0.071 0.080

adsb2shad
16 154 0.008 67 0.026 0.034 512 0.012 71 0.089 0.097
24 310 0.013 124 0.045 0.058 1024 0.021 129 0.095 0.108

ilsh
8 32 0.002 3 0.001 0.003 32 0.002 3 0.008 0.010

16 256 0.008 13 0.009 0.017 256 0.005 13 0.011 0.019
24 256 0.009 44 0.023 0.032 256 0.006 46 0.035 0.046

irsh
8 16 0.001 4 0.001 0.001 64 0.003 4 0.007 0.008

16 16 0.002 22 0.004 0.006 64 0.003 21 0.009 0.011
24 16 0.003 45 0.012 0.016 64 0.003 45 0.017 0.020

iswp
16 4096 0.103 16 0.235 0.339 4096 0.061 16 0.075 0.179
24 4096 0.126 27 0.251 0.379 4096 0.073 27 0.140 0.266
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74181 74182

74283 74L85

Fig. 1. Distribution of implicants by length for the 74X benchmarks

4.3 Projecting Using BDDs

In the hybrid SAT/BDD based approach, DNF to CNF conversion is realised
with a BDD. To support this, Cudd provides a dedicated operation that com-
putes prime implicants of a given BDD by finding a shortest path from the root
to 1 leaves (though the lengths of the implicants and their number depend on the
variable ordering). In terms of size of the resulting CNF formula, it is interesting
to see that BDDs do not necessarily give the smallest representation; far from
it.

In terms of running times, there is no clear winner: for the largest problem,
s1196, the SAT-based approach is faster for CNF conversion whereas the BDD-
based method is superior for 74181. However, we suspect that the balance may
well shift towards SAT if solvers continue to advance in performance. Further-
more, the implementation of the SAT-based scheme required less than 100 lines
of code which itself makes it attractive.

4.4 Generalising Implicants

During the development of the method described in this paper, we found that
generalisation (as described in Sect. 2.3) had to be applied in tandem with
search for a shortest implicant for the formula that is accompanied with the
blocking clauses (as described in Sect. 2.2). Enumerating implicants without
generalisation yields a much larger number of clauses; for the 74283 benchmark,
932 instead of 98. Strangely the runtimes are almost equal, which is the typical
pattern. We conclude that generalisation is advisable since, though it does not
improve the runtime, it does improve the density of the resulting CNF formula.
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5 Related Work

The complexity of the shortest implicant problem for DNF formulae has been
studied by Umans [38] who showed that it is GC (log2(n), coNP)-complete. Even
though this result is not directly transferable to CNF, it suggests the parallel
problem in CNF may be similarly difficult and thereby supports the application
of SAT solvers to the derivation of shortest implicants.

5.1 Consensus Method and Resolution

The consensus method has been proposed [4,32,35] as a way of enumerating all
the prime implicants of a propositional function in DNF. If f is in CNF, then it
is straightforward to derive a DNF representation of ¬f , to which the consensus
procedure can be applied to find its prime implicants. One might think that this
provides a way to compute projection, but the key step of the consensus method
combines two elementary conjunctions of ¬f , say, x ∧ C and (¬x) ∧D, to form
C∧D, which is isomorphic to resolution. Hence the consensus method shares the
inefficiency problems associated with applying resolution to a formula in CNF.

5.2 Hybrid Methods and McMillan’s Method

SAT has been used before to compute projections [26,29] as have BDDs [10,26,39].
Hybrid approaches that combine SAT solving and BDDs typically represent
state sets as BDDs and express the transition relation in CNF [22,37], though
some approaches combine BDDs and SAT solving in different ways. For example,
Damiano and Kukula [16] substitute clauses with BDDs in a DPLL solver, Jin
and Somenzi [23] combine BDDs and SAT solving using CNF to avoid explosion
in the sizes of the resulting BDDs, whereas Aloul et al. [1] study the connection
between CNF formulae and BDDs for good variable orderings. The approach of
Cavada et al. [11] recursively computes quantifications for subtrees, which are
then combined; SMT solving ensures consistency of the transformations.

McMillan [29] has shown how to perform universal projection for CTL modal-
ities such as AXϕ using DPLL-like enumeration and also explained how to
represent an arbitrary Boolean encoding of ϕ in CNF without existential quantifi-
cation. The key idea of his toCNF(ϕ) procedure [29, Sect. 3] is to deduce a clause
from a satisfying assignment of ϕ whose complement rules out some cases that
violate ϕ. His approach requires a modified DPLL-engine and resolution coupled
with several heuristics — which literals to analyse, which variables to resolve
on and suchlike — which strongly affect the performance of the approach [29,
Sect. 2]. Our approach, in comparison, builds on top of an existing SAT library
and is therefore both straightforward to implement and will immediately benefit
from any improvement to the library itself. Nevertheless, we consider the SAT-
based algorithm of McMillan to be an important work that has indeed found
application in the predicate abstraction of hardware circuits [13] and post-image
computation [12]. A variation on the McMillan algorithm is given by Sheng and
Hsiao [37] who apply a success-driven rather than a conflict-driven search for
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models (recall that DPLL-style algorithms use a conflict-driven search). How-
ever, Sheng and Hsiao store their results in a BDD rather than generating a
CNF formula.

5.3 Methods Based on Integer Linear Programming

Integer linear programming has been used to find shortest implications, as have
SAT engines which have been modified to support inequalities [28]. In this work
a transformation is described which is similar to τ . However, the work is not
concerned with quantifier elimination, hence 0-1 variables are introduced for
each variable in the formula rather than merely those in the projection space.

5.4 Methods Based on Primes and Cubes

Prime implicants have been directly applied to widening Boolean functions repre-
sented as ROBDDs [24]. By applying a recursive meta-product construction [15],
collections of short primes can be used to derive an ROBDD that is an over-
approximation of the input. Our work on applying SAT to projection was moti-
vated by the empirical finding that collections of short primes often yield good
approximations of Boolean formulae [24, Sect. 5.1].

Lahiri et al. [26] have described how to enumerate cubes in the projection
space using SAT so as to perform image computation for predicate abstraction.
Blocking clauses are chosen heuristically, though details of the heuristics are not
given, and the approach does not guarantee to infer cubes of minimal size. This
work was further developed by Lahiri et al. [27] who used DPLL(T)-based SMT
solving to enumerate models. Each model is then stored in a BDD from which the
results are extracted as disjunctions of prime implicants. They search for cubes
c1,k, . . . , cn,k of increasing length k such that ϕ |= ∨n

i=1 ci,k, which chimes with
our approach. In contrast, however, we apply prime implicants in two different
ways, that is, for enumerating cubes as well as clauses, so that our final quantifier-
free formula is presented in CNF. To illustrate the conceptual difference between
the methods, consider the benchmarks s344 and s349 from Sect. 4, for which
DNF enumeration yields 256 cubes of lengths 12 and 22. The method of Lahiri
et al. enumerates all intermediate cubes of lengths 13, . . . , 21 to converge onto
∃X : ϕ, whereas our approach leapfrogs these intermediate cubes by specifying
the requirement of a cube of size k within the SAT instance itself. The MathSat

SMT solver [7] uses an algorithm that also relies on a formula transformation
similar to τ . However, rather than adding cardinality constraints to the SAT
instance, they modified the solver so that it takes 0 decisions during SAT solving.
Earlier approaches [17,19,34] to predicate abstraction invoke a solver for each
cube c to discover if ϕ ∧ c is satisfiable. To reduce the number of calls to the
decision procedure, they start with small cubes, and only if ϕ ∧ c is satisfiable,
they proceed with cubes of the form ϕ∧c∧d and ϕ∧c∧¬d. This approach is based
on a large number of SAT/SMT calls, typically requires many unsatisfiability
proofs (which are often more difficult for SAT solvers to provide than find a
model), and does not fit as well with incremental SAT [27, Sect. 3.2]. More
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recently, Monniaux [30] described a method for quantifier elimination called
lazy model enumeration. The key idea of his algorithm is to derive a cube that
implies a given formula, which is then generalised towards a weaker implicant.
By way of comparison, our algorithm starts with implicants as short as possible;
weakening is required by the encoding. Although similar in spirit, his algorithm
proceeds diametrically opposed to ours, and moreover generates DNF.

6 Concluding Discussion

This paper advocates using SAT to eliminate existential quantifiers from formu-
lae presented in CNF. The method is based on a two-phase approach: first, SAT
solving is applied to enumerate the prime implicants of a quantified formula;
second, cubes are translated into clauses to derive a CNF representation of the
projection. The second phase is anytime in that it can be stopped early without
compromising soundness. This can be considered a pragmatic response to the
complexity of DNF to CNF conversion. As well as exploiting advances in incre-
mental SAT and finessing the need to modify a solver, it provides an efficient
way of storing projections without BDDs, whilst avoiding the blow-up in the
number of intermediate clauses that comes with applying resolution.
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Abstract. We show that a subclass of infinite-state probabilistic programs that
can be modeled by probabilistic one-counter automata (pOC) admits an eÆcient
quantitative analysis. In particular, we show that the expected termination time
can be approximated up to an arbitrarily small relative error with polynomially
many arithmetic operations, and the same holds for the probability of all runs that
satisfy a given �-regular property. Further, our results establish a powerful link
between pOC and martingale theory, which leads to fundamental observations
about quantitative properties of runs in pOC. In particular, we provide a “diver-
gence gap theorem”, which bounds a positive non-termination probability in pOC
away from zero.

1 Introduction

In this paper we aim at designing eÆcient algorithms for analyzing basic properties
of probabilistic programs operating on unbounded data domains that can be abstracted
into a non-negative integer counter. Consider, e.g., the following recursive program
TreeEval which evaluates a given AND-OR tree, i.e., a tree whose root is an AND
node, all descendants of AND nodes are either leaves or OR nodes, and all descendants
of OR nodes are either leaves or AND nodes.

procedure ���������

if ���� �� � ����

then return ��������
�

else
for each �
������� � �� ���� do

if ����� � � then return �

end for
return  

end if

procedure ��������

if ���� �� � ����

then return ��������
�

else
for each �
������� � �� ���� do

if ������ �  then return  

end for
return �

end if
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Note that the program TreeEval evaluates a subtree only when necessary. In general, we
cannot say anything about its expected termination time. If the input tree is infinite, the
program may not even terminate, i.e., it may fail to evaluate the root node. Now assume
that we do have some knowledge about the actual input domain of the program, which
might have been gathered empirically:

– an AND node has about a descendants on average;
– an OR node has about o descendants on average;
– the length of a branch is b on average;
– the probability that a leaf evaluates to 1 is z.

Further, let us assume that the actual number of descendants and the actual length of
a branch are geometrically distributed (which is a reasonably good approximation in
many cases). Hence, the probability that an AND node has exactly n descendants is
(1 � xa)n�1xa with xa �

1
a . Under these assumption, the behaviour of TreeEval is well-

defined in the probabilistic sense, and we may ask the following questions:

1) Does the program terminate with probability one? If not, what is the termination
probability?

2) If we restrict ourselves to terminating runs, what is the expected termination time?

These questions are not trivial, and at first glance it is not clear how to approach them.
Apart of the expected termination time, which is a fundamental characteristic of termi-
nating runs, we are also interested in the properties on non-terminating runs, specified
by linear-time logics or automata on infinite words. Here, we ask for the probability of
all runs satisfying a given linear-time property. Using the results of this paper, answers
to such questions can be computed eÆciently for a large class of programs, including
the program TreeEval. More precisely, the first question about the probability of termi-
nation can be answered using the existing results [14]; the original contributions of this
paper are eÆcient algorithms for computing answers to the remaining questions.

The abstract class of probabilistic programs considered in this paper corresponds to
probabilistic one-counter automata (pOC). Informally, a pOC has finitely many control
states p� q� � � � that can store global data, and a single non-negative counter that can be in-
cremented, decremented, and tested for zero. The dynamics of a given pOC is described
by finite sets of positive and zero rules of the form p

x�c
���0 q and p

x�c
���0 q, respectively,

where p� q are control states, x is the probability of the rule, and c � ��1� 0� 1� is the
counter change which must be non-negative in zero rules. A configuration p(i) is given
by the current control state p and the current counter value i. If i is positive�zero, then
positive�zero rules can be applied to p(i) in the natural way. Thus, every pOC determines
an infinite-state Markov chain where states are the configurations and transitions are de-
termined by the rules. As an example, consider a pOC model of the program TreeEval.
We use the counter to abstract the stack of activation records. Since the procedures
AND and OR alternate regularly in the stack, we keep just the current stack height in
the counter, and maintain the “type” of the current procedure in the finite control (when
we increase or decrease the counter, the “type” is swapped). The return values of the
two procedures are also stored in the finite control. Thus, we obtain the following pOC
model with 6 control states and 12 positive rules (zero rules are irrelevant and hence
not shown).
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�* if we have a leaf, return 0 or 1 *�

(and,init)
y z��1
����� (or,return,1),

(and,init)
y(1�z)��1
�������� (or,return,0)

�* otherwise, call OR *�

(and,init)
(1�y)�1
������ (or, init)

�* if OR returns 1, call another OR? *�

(and,return,1)
(1�xa)� 1
������� (or,init)

(and,return,1)
xa ��1
����� (or,return,1)

�* if OR returns 0, return 0 immediately *�

(and,return,0)
1��1
���� (or,return,0)

�* if we have a leaf, return 0 or 1 *�

(or,init)
y z��1
����� (and,return,1),

(or,init)
y(1�z)��1
�������� (and,return,0)

�* otherwise, call AND *�

(or,init)
(1�y)�1
������ (and,init)

�* if AND returns 0, call another AND? *�

(or,return,0)
(1�xo)� 1
������� (and, init)

(or,return,0)
xo ��1
����� (and,return,0)

�* if AND returns 1, return 1 immediately *�

(or,return,1)
1��1
���� (and,return,1)

The initial configuration is (and,init)(1), and the pOC terminates either in
(or,return,0)(0) or (or,return,1)(0), which corresponds to evaluating the input tree to
0 and 1, respectively. We set xa :� 1�a, xo :� 1�o and y :� 1�b in order to obtain the
average numbers a� o� b from the beginning.

As we already indicated, pOC can model recursive programs operating on un-
bounded data structures such as trees, queues, or lists, assuming that the structure can
be faithfully abstracted into a counter. Let us note that modeling general recursive pro-
grams requires more powerful formalisms such as probabilistic pushdown automata
(pPDA) [12] or recursive Markov chains (RMC) [17]. However, as it is mentioned
below, pPDA and RMC do not admit eÆcient quantitative analysis for fundamental
reasons. Hence, we must inevitably sacrifice a part of pPDA modeling power to gain
eÆciency in algorithmic analysis, and pOC seem to be a good candidate.

The relevance of pOC is not limited just to recursive programs. As observed in [14],
pOC are equivalent, in a well-defined sense, to discrete-time Quasi-Birth-Death pro-
cesses (QBDs), a well-established stochastic model that has been deeply studied since
late 60s. Thus, the applicability of pOC extends to queuing theory, performance eval-
uation, etc., where QBDs are considered as a fundamental formalism. Very recently,
games over (probabilistic) one-counter automata, also called “energy games”, were con-
sidered in several independent works [9,10,4,3]. The study is motivated by optimizing
the use of resources (such as energy) in modern computational devices.

Previous Work. In [12,17], it has been shown that the vector of termination probabil-
ities in pPDA and RMC is the least solution of an e�ectively constructible system of
quadratic equations. The termination probabilities may take irrational values, but can
be e�ectively approximated up to an arbitrarily small absolute error � � 0 in polyno-
mial space by employing the decision procedure for the existential fragment of Tarski
algebra (i.e., first order theory of the reals) [8]. Due to the results of [17], it is possi-
ble to approximate termination probabilities in pPDA and RMC “iteratively” by using
the decomposed Newton’s method. However, this approach may need exponentially
many iterations of the method before it starts to produce one bit of precision per iter-
ation [19]. Further, any non-trivial approximation of the non-termination probabilities
is at least as hard as the S�����R���S�� problem [17], whose exact complexity is a
long-standing open question in exact numerical computations (the best known upper
bound for S�����R���S�� is PSPACE). Computing termination probabilities in pPDA
and RMC up to a given relative error � � 0, which is more relevant from the point of
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view of this paper, is provably infeasible because the termination probabilities can be
doubly-exponentially small in the size of a given pPDA or RMC [17].

The expected termination time and the expected reward per transition in pPDA and
RMC has been studied in [13]. In particular, it has been shown that the tuple of ex-
pected termination times is the least solution of an e�ectively constructible system of
linear equations, where the (products of) termination probabilities are used as coeÆ-
cients. Hence, the equational system can be represented only symbolically, and the cor-
responding approximation algorithm again employs the decision procedure for Tarski
algebra. There also other results for pPDA and RMC, which concern model-checking
problems for linear-time [15,16] and branching-time [7] logics, long-run average prop-
erties [5], discounted properties of runs [2], etc.

Our Contribution. In this paper, we build on the previously established results for
pPDA and RMC, and on the recent results of [14] where is shown that the decom-
posed Newton method of [19] can be used to compute termination probabilities in pOC
up to a given relative error � � 0 in time which is polynomial in the size of pOC
and log(1��), assuming the unit-cost rational arithmetic RAM (i.e., Blum-Shub-Smale)
model of computation. Adopting the same model, we show the following:

1. The expected termination time in a pOC A is computable up to an arbitrarily small
relative error � � 0 in time polynomial in �A � and log(1��). Actually, we can even
compute the expected termination time up to an arbitrarily small absolute error,
which is a better estimate because the expected termination time is always at least 1.

2. The probability of all runs in a pOC A satisfying an �-regular property encoded by
a deterministic Rabin automaton � is computable up to an arbitrarily small relative
error � � 0 in time polynomial in �A �, ���, and log(1��).

The crucial step towards obtaining these results is the construction of a suitable martin-
gale for a given pOC, which allows to apply powerful results of martingale theory (such
as the optional stopping theorem or Azuma’s inequality, see, e.g., [20,21]) to the quan-
titative analysis of pOC. In particular, we use this martingale to establish the crucial
divergence gap theorem in Section 4, which bounds a positive divergence probability in
pOC away from 0. The divergence gap theorem is indispensable in analysing properties
of non-terminating runs, and together with the constructed martingale provide generic
tools for designing eÆcient approximation algorithms for other interesting quantitative
properties of pOC.

Although our algorithms have polynomial worst-case complexity, the obtained
bounds look complicated and it is not immediately clear whether the algorithms are
practically usable. Therefore, we created a simple experimental implementation which
computes the expected termination time for pOC, and used this tool to analyse the pOC
model of the program TreeEval. The details are given in Section 5.

Due to space limits, we could not include most of the proofs into the main body of
the paper. These can be found in a full version of this paper [6].

2 Definitions

We use �, �, �0, �, and � to denote the set of all integers, positive integers, non-
negative integers, rational numbers, and real numbers, respectively. Let Æ � 0, x � �,
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and y � �. We say that x approximates y up to a relative error Æ, if either y � 0 and
�x � y���y� � Æ, or x � y � 0. Further, we say that x approximates y up to an abso-
lute error Æ if �x � y� � Æ. We use standard notation for intervals, e.g., (0� 1] denotes
�x � � � 0 � x � 1�.

Given a finite set Q, we regard elements of �Q as vectors over Q. We use boldface
symbols like u� v for vectors. In particular we write 1 for the vector whose entries are
all 1. Similarly, elements of �Q�Q are regarded as square matrices.

Let 	 � (V� � ), where V is a non-empty set of vertices and � 
 V � V a total
relation (i.e., for every v � V there is some u � V such that v� u). The reflexive and
transitive closure of � is denoted by � �. A finite path in 	 of length k � 0 is a finite
sequence of vertices v0� � � � � vk, where vi � vi�1 for all 0 � i � k. The length of a finite
path w is denoted by length(w). A run in 	 is an infinite sequence w of vertices such
that every finite prefix of w is a finite path in	. The individual vertices of w are denoted
by w(0)�w(1)� � � � The sets of all finite paths and all runs in 	 are denoted by FPath�
and Run�, respectively. The sets of all finite paths and all runs in 	 that start with a
given finite path w are denoted by FPath�(w) and Run�(w), respectively. Let U 
 V .
We say that U is strongly connected if v� �u for all v� u � U (here v� �u if there is a
path of length greater than 1 from v to u). Further, we say that U is a strongly connected
component (SCC) if U �  is a maximal strongly connected subset of V , and U is a
bottom SCC (BSCC) if for every u � U and every u� v we have that v � U.

We assume familiarity with basic notions of probability theory, e.g., probability
space, random variable, or the expected value. As usual, a probability distribution over
a finite or countably infinite set X is a function f : X � [0� 1] such that

�
x�X f (x) � 1.

We call f positive if f (x) � 0 for every x � X, and rational if f (x) � � for every x � X.

Definition 1. A Markov chain is a triple � � (S � � �Prob) where S is a finite or
countably infinite set of states, � 
 S � S is a total transition relation, and Prob
is a function that assigns to each state s � S a positive probability distribution over the
outgoing transitions of s. As usual, we write s x

� t when s� t and x is the probability
of s� t.

A Markov chain � can be also represented by its transition matrix M � [0� 1]S�S ,
where Ms�t � 0 if s � t, and Ms�t � x if s x

� t.
To every s � S we associate the probability space (Run�(s)�� ��) of runs starting

at s, where � is the �-field generated by all basic cylinders, Run�(w), where w is a
finite path starting at s, and � : � � [0� 1] is the unique probability measure such
that �(Run�(w)) �

�length(w)
i�1 xi where w(i�1) xi�w(i) for every 1 � i � length(w). If

length(w) � 0, we put �(Run�(w)) � 1.

Definition 2. A probabilistic one-counter automaton (pOC) is a tuple, A �

(Q� Æ�0� Æ�0� P�0� P�0), where

– Q is a finite set of states,
– Æ�0 
 Q � ��1� 0� 1� � Q and Æ�0 
 Q � �0� 1� � Q are the sets of positive and zero

rules such that each p � Q has an outgoing positive rule and an outgoing zero rule;
– P�0 and P�0 are probability assignments, assigning to each p � Q a positive ratio-

nal probability distribution over the outgoing rules in Æ�0 and Æ�0, resp., of p.
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In the following, we often write p
x�c
���0 q to denote that (p� c� q) � Æ�0 and P�0(p� c� q) �

x, and similarly p
x�c
���0 q to denote that (p� c� q) � Æ�0 and P�0(p� c� q) � x. The size of

A , denoted by �A �, is the length of the string which represents A , where the probabili-
ties of rules are written in binary. A configuration of A is an element of Q��0, written
as p(i). To A we associate an infinite-state Markov chain �A whose states are the
configurations of A , and for all p� q � Q, i � �, and c � �0 we have that p(0) x

� q(c)
i� p

x�c
���0 q, and p(i) x

� q(c) i� p
x�c�i
���0 q. For all p� q � Q, let

– RunA (p�q) be the set of all runs in �A initiated in p(1) that visit q(0) and the
counter stays positive in all configurations preceding this visit;

– RunA (p�) be the set of all runs in �A initiated in p(1) where the counter never
reaches zero.

We omit the “A ” in RunA (p�q) and RunA (p�) when it is clear from the context, and
we use [p�q] and [p�] to denote the probability of Run(p�q) and Run(p�), respectively.
Observe that [p�] � 1 �

�
q�Q[p�q] for every p � Q.

At various places in this paper we rely on the following proposition proven in [14]
(recall that we adopt the unit-cost rational arithmetic RAM model of computation):

Proposition 3. Let A � (Q� Æ�0� Æ�0� P�0� P�0) be a pOC, and p� q � Q.

– The problem whether [p�q] � 0 is decidable in polynomial time.
– If [p�q] � 0, then [p�q] � x�Q�

3

min, where xmin is the least (positive) probability used
in the rules of A .

– The probability [p�q] can be approximated up to an arbitrarily small relative error
� � 0 in a time polynomial in �A � and log(1��).

Due to Proposition 3, the set T�0 of all pairs (p� q) � Q � Q satisfying [p�q] � 0 is
computable in polynomial time.

3 Expected Termination Time

In this section we give an eÆcient algorithm which approximates the expected termi-
nation time in pOC up to an arbitrarily small relative (or even absolute) error � � 0.

For the rest of this section, we fix a pOC A � (Q� Æ�0� Æ�0� P�0� P�0). For all p� q � Q,
let Rp	q : Run(p(1)) � �0 be a random variable which to a given run w assigns either
the least k such that w(k) � q(0), or 0 if there is no such k. If (p� q) � T�0, we use
E(p�q) to denote the conditional expectation �[Rp	q � Run(p�q)]. Note that E(p�q) can
be finite even if [p�q] � 1.

The first problem we have to deal with is that the expectation E(p�q) can be infinite,
as illustrated by the following example.

Example 4. Consider a simple pOC with only one control state p and two positive rules
(p��1� p) and (p� 1� p) that are both assigned the probability 1�2. Then [p�p] � 1,
and due to results of [13], E(p�p) is the least solution (in �� � ���) of the equation
x � 1�2 � 1�2(1 � 2x), which is �.

We proceed as follows. First, we show that the problem whether E(p�q) � � is
decidable in polynomial time (Section 3.1). Then, we eliminate all infinite expectations,
and show how to approximate the finite values of the remaining E(p�q) up to a given
absolute (and hence also relative) error � � 0 eÆciently (Section 3.2).
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3.1 Finiteness of The Expected Termination Time

In this subsection we exhibit conditions that, given (p� q) � T�0, allow to decide in
polynomial time whether E(p�q) is finite. To state these conditions, we need some
notions. Define sets Pre�(q(0)) and Post�(p(1)), where

– Pre�(q(0)) consists of all r(k) that can reach q(0) along a run w in �A such that
the counter stays positive in all configurations preceding the visit to q(0);

– Post�(p(1)) consists of all r(k) that can be reached from p(1) along a run w in �A

where the counter stays positive in all configurations preceding the visit to r(k).

Note that q(0) � Pre�(q(0)) and p(1) � Post�(p(1)). Further, define a finite-state
Markov chain � with Q as set of states, and transition matrix A � [0� 1]Q�Q given
by Ap�q �

�
(p�c�q)�Æ�0 P�0(p� c� q)� Given a BSCC B of �, let � � (0� 1]B be the in-

variant distribution of B, i.e., the unique (row) vector satisfying �A � � and �1 � 1
(see, e.g., [18, Theorem 5.1.2]). Further, we define the (column) vector s � �B of ex-
pected counter changes by sp �

�
(p�c�q)�Æ�0 P�0(p� c� q) � c and the trend t � � of B by

t � �s. Intuitively, the trend is the average counter increase per step. Note that t is easily
computable in polynomial time. Now we can state the following theorem:

Theorem 5. Let (p� q) � T�0. Let xmin denote the smallest nonzero probability in A.
Then we have:

(A) if q is not in a BSCC of �, then E(p�q) � 5�Q� � x�Q���Q�
3

min ;
(B) if q is in a BSCC B of �, then:

(a) if Pre�(q(0))�Post�(p(1))�B�� is a finite set, then E(p�q) � 20�Q�3�x4�Q�3

min ;
(b) if Pre�(q(0)) � Post�(p(1)) �B � � is an infinite set, then:

(1) if B has trend t � 0, then E(p�q) � 85000�Q�6�(x5�Q���Q�3

min � t4);
(2) if B has trend t � 0, then E(p�q) is infinite.

One can check in polynomial time which case of Theorem 5 applies. In particular, due
to [11], there are finite-state automata constructible in polynomial time recognizing
the sets Pre�(q(0)) and Post�(p(1)). Hence, we can eÆciently compute a finite-state
automaton � recognizing the set Pre�(q(0)) � Post�(p(1)) �B �� and check whether
the language accepted by � is finite. Thus we have the following corollary:

Corollary 6. Let (p� q) � T�0. The problem whether E(p�q) is finite is decidable in
polynomial time.

In the rest of this subsection we sketch a qualitative proof for Theorem 5; i.e., we sketch
why E(p�q) is infinite only in case (B.b.2). First assume case (A), i.e., q is not in a
BSCC of �. Then for all s(	) � Post�(p(1)), where 	 � �Q�, we have that s(	) can
reach a configuration outside Pre�(q(0)) in at most �Q� transitions. It follows that the
probability of performing a path from p(1) to q(0) of length i decays exponentially in i,
and hence E(p�q) is finite.

Next assume case (B.a), i.e., B is a BSCC and C :� Pre�(q(0))�Post�(p(1))�B��

is a finite set. It is easy to show that the expected time for a run in Run(p�q) to reach B
is finite. Once the run has reached B it basically moves within a Markov chain on C.
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By assumption, C is finite (which implies, by a pumping argument, that �C� � 3�Q�3).
Consequently, after the run has reached B, it reaches q(0) in finite expected time.

Case (B.b) requires new non-trivial techniques. For the sake of simplicity, from now
on we assume that Q � B (the general case requires only slight modifications of the ar-
guments presented below). We employ a generic observation which connects the study
of pOC to martingale theory. Recall that a stochastic process m(0)�m(1)� � � � is a martin-
gale if, for all i � �, �(�m(i)�) � �, and �(m(i�1) � m(1)� � � � �m(i)) � m(i) almost surely. Let
us fix an initial configuration r(c) � Q � �. Our aim is to construct a suitable martingale
over Run(r(c)). Let p(i) and c(i) be random variables which to every run w � Run(r(c))
assign the control state and the counter value of the configuration w(i), respectively.
Note that if the vector s of expected counter changes is constant, i.e., s � 1 � t where t
is the trend of �, then we can define a martingale m(0)�m(1)� � � � simply by

m(i)
�

�������
c(i) � i � t if c( j) � 1 for all 0 � j � i;

m(i�1) otherwise.

Since s is generally not constant, we might try to “compensate” the di�erence among
the individual control states by a suitable vector v � �Q. The next proposition shows
that this is indeed possible.

Proposition 7. There is a vector v � �Q such that the stochastic process m(0)�m(1)� � � �

defined by

m(i) �

�������
c(i) � vp(i) � i � t if c( j) � 1 for all 0 � j � i;

m(i�1) otherwise

is a martingale, where t is the trend of �.
Moreover, the vector v satisfies vmax � vmin � 2�Q��x�Q�min, where xmin is the smallest

positive transition probability in �, and vmax and vmin are the maximal and the minimal
components of v, respectively.

Due to Proposition 7, powerful results of martingale theory become applicable to pOC.
In this paper, we use the constructed martingale to establish statements (iii) and (iv) of
Theorem 5, by employing Azuma’s inequality and the optional stopping theorem (see
[20,21]). We also use the martingale to prove the crucial divergence gap theorem in
Section 4. The range of possible applications of Proposition 7 is of course wider.

Assume now case (B.b.1), i.e., t � 0. For every i � �, let Run(p�q� i) be the set
of all w � Run(p�q) that visit q(0) in i transitions, and let [p�q� i] be the probability
of Run(p�q� i). We first show that there are 0 � a � 1 and h � � such that for all
i � h we have that [p�q� i] � ai. Consider the martingale m(0)�m(1)� � � � over Run(p(1))
as defined in Proposition 7. A relatively straightforward computation reveals that for
suÆciently large h � � and all i � h we have the following: If t � 0, then [p�q� i] �
�
�
m(i) � m(0) � (i�2) � (�t)

�
, and if t � 0, then [p�q� i] � �

�
m(0) � m(i) � (i�2) � t

�
. In

each step, the martingale value changes by at most vmax � vmin � t � 1, where v is
from Proposition 7. Hence, by applying Azuma’s inequality (see [21]) we obtain the
following (for all t � 0 and i � h):

[p�q� i] � exp

	
�

(i�2)2t2

2i(vmax � vmin � t � 1)2



� ai
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Here a � exp
�
�t2 � 8(vmax � vmin � t � 1)2

�
. It follows that

E(p�q) �


�
i�1

i �
[p�q� i]
[p�q]

�
1

[p�q]

��
h�1�
i�1

i � [p�q� i] �

�

i�h

i � ai

�������� � � �

Finally assume case (B.b.2), i.e., t � 0. We need to show that E(p�q) � �. Let us
introduce some notation. For every k � �0, let Q(k) be the set of all configurations where
the counter value equals k. Let p� q � Q and 	� k � �0, where 	 � k. An honest path from
p(	) to q(k) is a finite path w from p(	) to q(k) such that the counter stays above k in all
configurations of w except for the last one. We use hpath(p(	)� Q(k)) to denote the set of
all honest paths from p(	) to some q(k) � Q(k). For a given P 
 hpath(p(	)� Q(k)), the
expected length of an honest path in P is defined as

�
w�P �(Run(w)) � length(w). Using

the martingale from Proposition 7 we show the following:

Proposition 8. If Pre�(q(0)) is infinite, then almost all runs initiated in an arbitrary
configuration reach Q(0). Moreover, there is k1 � � such that, for all 	 � k1, the
expected length of an honest path from r(	) to Q(0) is infinite.

Proof (Sketch). Assume that Pre�(q(0)) is infinite. The fact that almost all runs initiated
in an arbitrary configuration reach Q(0) follows from results of [4].

Consider an initial configuration r(	) with 	 � vr � vmax. We will show that the
expected length of an honest path from r(	) to Q(0) is infinite; i.e., we can take k1 :�
�vmax � vmin � 1�. Consider the martingale m(0)�m(1)� � � � defined in Proposition 7 over
Run(r(	)). Note that as t � 0, the term i � t vanishes from the definition of the martingale.

Now let us fix k � � such that 	 � vr � vmax � k and define a stopping time 


(see e.g. [21]) which returns the first point in time in which either m(�) � vmax � k, or
m(�) � vmax. A routine application of optional stopping theorem gives us the following

�(m(�) � vmax � k) �
	 � vr � vmax

k � M
� (1)

Denote by T the number of steps to hit Q(0). Note that m(�) � vmax � k implies c(�) �

m(�) � vp(�) � vmax � k � vp(�) � k� and thus also T � k, as at least k steps are required to
decrease the counter value from k to 0. It follows that �(m(�) � vmax � k) � �(T � k).
By putting this inequality together with the inequality (1) we obtain

�[T ] �
�
k��

�(T � k) �


�
k���1

�(T � k) �


�
k���1

	 � vr � vmax

k � M
� � � ��

Further, we need the following observation about the structure of �A , which holds
also for non-probabilistic one-counter automata:

Proposition 9. There is k2 � � such that for every configuration r(	) � Pre�(q(0)),
where 	 � k2, we have that if r(	)� r�(	�), then r�(	�) � Pre�(q(0)).

To show that E(p�q) � �, it suÆces to identify a subset W 
 R(p�q) such that
�(W) � 0 and �[Rp	q � W] � �. Now observe that if Pre�(q(0)) � Post�(p(1)) is in-
finite, there is a configuration r(	) � Pre�(q(0)) reachable from p(1) along a finite path
u such that 	 � k1 � k2, where k1 and k2 are the constants of Propositions 8 and 9.
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Due to Proposition 8, the expected length of an honest path from r(	 � k2) to Q(0)
is infinite. However, then also the expected length of an honest path from r(	) to Q(k2)
is infinite. This means that there is a state s � Q such that the expected length of an
honest path from r(	) to s(k2) in infinite. Further, it follows directly from Proposition 9
that s(k2) � Pre�(q(0)) because there is an honest path from r(	) to s(k2).

Now consider the set W of all runs w initiated in p(1) that start with the finite path u,
then follow an honest path from r(	) to s(k2), and then follow an honest path from s(k2)
to q(0). Obviously, �(W) � 0, and �[Rp	q � W] � � because the expected length of the
middle subpath is infinite. Hence, E(p�q) � � as needed.

3.2 EÆcient Approximation of Finite Expected Termination Time

Let us denote by T�0
�
 the set of all pairs (p� q) � T�0 satisfying E(p�q) � �. Our aim

is to prove the following:

Theorem 10. For all (p� q) � T�0
�
, the value of E(p�q) can be approximated up to an

arbitrarily small absolute error � � 0 in time polynomial in �A � and log(1��).

Note that if y approximates E(p�q) up to an absolute error 1 � � � 0, then y approxi-
mates E(p�q) also up to the relative error � because E(p�q) � 1.

The proof of Theorem 10 is based on the fact that the vector of all E(p�q), where
(p� q) � T�0

�
, is the unique solution of a system of linear equations whose coeÆcients
can be eÆciently approximated (see below). Hence, it suÆces to approximate the coeÆ-
cients, solve the approximated equations, and then bound the error of the approximation
using standard arguments from numerical analysis.

Let us start by setting up the system of linear equations for E(p�q). For all p� q � T�0,
we fix a fresh variable V(p�q), and construct the following system of linear equations,
�, where the termination probabilities are treated as constants:

V(p�q) �
�

(p��1�q)�Æ�0

P�0(p��1� q)
[p�q]

�
�

(p�0�t)�Æ�0

P�0(p� 0� t) � [t�q]
[p�q]

�

�
1 � V(t�q)

�

�
�

(p�1�t)�Æ�0

�
r�Q

P�0(p� 1� t) � [t�r] � [r�q]
[p�q]

�

�
1 � V(t�r) � V(r�q)

�

It has been shown in [13] that the tuple of all E(p�q), where (p� q) � T�0, is the least
solution of � in �� � ��� with respect to component-wise ordering (where � is treated
according to the standard conventions). Due to Corollary 6, we can further simplify the
system � by erasing the defining equations for all V(p�q) such that E(p�q) � � (note
that if E(p�q) � �, then the defining equation for V(p�q) in � cannot contain any
variable V(r�t) such that E(r�t) � �).

Thus, we obtain the system ��. It is straightforward to show that the vector of all
finite E(p�q) is the unique solution of the system �� (see, e.g., Lemma 6.2.3 and
Lemma 6.2.4 in [1]). If we rewrite �� into a standard matrix form, we obtain a system
V � H �V� b, where H is a nonsingular nonnegative matrix, V is the vector of variables
in ��, and b is a vector. Further, we have that b � 1, i.e., the constant coeÆcients are
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all 1. This follows from the following equality (see [12,17]):

[p�q] �
�

(p��1�q)�Æ�0

P�0(p��1� q) �
�

(p�0�t)�Æ�0

P�0(p� 0� t) � [t�q]

�
�

(p�1�t)�Æ�0

�
r�Q

P�0(p� 1� t) � [t�r] � [r�q]
(2)

Hence, �� takes the form V � H � V � 1. Unfortunately, the entries of H can take
irrational values and cannot be computed precisely in general. However, they can be
approximated up to an arbitrarily small relative error using Proposition 3. Denote by
G an approximated version of H. We aim at bounding the error of the solution of the
“perturbed” system V � G � V � 1 in terms of the error of G. To measure these errors,
we use the l
 norm of vectors and matrices, defined as follows: For a vector V we
have that �V� � maxi �Vi�, and for a matrix M we have �M� � maxi

�
j �Mi j�. Hence,

�M� � �M � 1� if M is nonnegative. We show the following:

Proposition 11. Let b � max
�
E(p�q) � (p� q) � T�0

�


�
. Then for each �, where

0 � � � 1, let Æ � � �(12 � b2). If �G � H� � Æ, then the perturbed system V � G � V � 1
has a unique solution F, and in addition, we have that

�E(p�q) � Fpq� � � for all (p� q) � T�0
�
.

Here Fpq is the component of F corresponding to the variable V(p�q).

The proof of Proposition 11 is based on estimating the size of the condition number
� � �1 � H� � �(1 � H)�1� and applying standard results of numerical analysis.

The value of b in Proposition 11 can be estimated as follows: By Theorem 5, we
have

E(p�q) � 85000 � �Q�6�
�
x6�Q�3

min � t4
min

�
for all (p� q) � T�0

�
,

where tmin � min��t� � 0 � t is the trend in a BSCC of ��. Although b appears large, it
is really the value of log(1�b) which matters, and it is still reasonable. Theorem 10 now
follows by combining Propositions 11 and 3, because the approximated matrix G can
be computed using a number of arithmetical operations which is polynomial in �A � and
log(1��).

4 Quantitative Model-Checking of �-Regular Properties

In this section, we show that for every �-regular property encoded by a deterministic
Rabin automaton, the probability of all runs in a given pOC that satisfy the property
can be approximated up to an arbitrarily small relative error � � 0 in polynomial time.
This is achieved by designing and analyzing a new quantitative model-checking algo-
rithm for pOC and �-regular properties, which is not based on techniques developed
for pPDA and RMC in [12,15,16].

Recall that a deterministic Rabin automaton (DRA) over a finite alphabet � is a de-
terministic finite-state automaton � with total transition function and Rabin acceptance
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condition (E1� F1)� � � � � (Ek� Fk), where k � �, and all Ei, Fi are subsets of control states
of �. For a given infinite word w over �, let inf(w) be the set of all control states visited
infinitely often along the unique run of � on w. The word w is accepted by � if there is
i � k such that inf(w) � Ei �  and inf(w) � Fi � .

Let � be a finite alphabet, � a DRA over �, and A � (Q� Æ�0� Æ�0� P�0� P�0) a pOC.
A valuation is a function  which to every configuration p(i) of A assigns a unique
letter of �. For simplicity, we assume that (p(i)) depends only on the control state p
(note that a “bounded” information about the current counter value can be encoded
and maintained in the finite control of A ). Intuitively, the letters of � correspond to
collections of predicates that are valid in a given configuration of A . Thus, every run
w � RunA (p(i)) determines a unique infinite word (w) over � which is either accepted
by � or not. The main result of this section is the following theorem:

Theorem 12. For every p � Q, the probability of all w � RunA (p(0)) such that (w) is
accepted by � can be approximated up to an arbitrarily small relative error � � 0 in
time polynomial in �A �, ���, and log(1��).

Our proof of Theorem 12 consists of three steps:

1. We show that the problem of our interest is equivalent to the problem of computing
the probability of all accepting runs in pOC with Rabin acceptance condition.

2. We introduce a finite-state Markov chain� (with possibly irrational transition prob-
abilities) such that the probability of all accepting runs in �A is equal to the prob-
ability of reaching a “good” BSCC in �.

3. We show how to compute the probability of reaching a “good” BSCC in � with
relative error at most � in time polynomial in �A � and log(1��).

Let us note that Steps 1 and 2 are relatively simple, but Step 3 requires several insights.
In particular, we cannot solve Step 3 without bounding a positive non-termination prob-
ability in pOC (i.e., a positive probability of the form [p�]) away from zero. This is
achieved in our “divergence gap theorem” (i.e., Theorem 18), which is based on apply-
ing Azuma’s inequality to the martingale constructed in Section 3.

Step 1. Let A � (Q� Æ�0� Æ�0� P�0� P�0) be a pOC. A Rabin acceptance condition for

A is finite sequence (�1��1)� � � � � (�k��k), where �i��i 
 Q for all 1 � i � k. For every
run w � RunA , let Q-inf(w) be the set of all p � Q visited infinitely often along w. We
use RunA (p(0)� acc) to denote the set of all accepting runs w � RunA (p(0)) such that
Q-inf(w) � �i �  and Q-inf(w) � �i �  for some i � k. Sometimes we also write
RunA (p(0)� rej) to denote the set RunA (p(0))�RunA (p(0)� acc) of rejecting runs. Our
next proposition says that the problem of computing�approximating the probability of
all runs w in a given pOC that are accepted by a given DRA is eÆciently reducible to
the problem of computing�approximating the probability of all accepting runs in a given
pOC with Rabin acceptance condition. The proof is simple (we just “synchronize” a
given pOC with a given DRA).

Proposition 13. Let � be a finite alphabet, A a pOC,  a valuation, � a DRA over
�, and p(0) a configuration of A . Then there is a pOC A � with Rabin acceptance
condition and a configuration p�(0) of A � constructible in polynomial time such that
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the probability of all w � RunA (p(0)) where (w) is accepted by � is equal to the
probability of all accepting w � RunA �(p�(0)).

For the rest of this section, we fix a pOC A � (Q� Æ�0� Æ�0� P�0� P�0) and a Rabin
acceptance condition (�1��1)� � � � � (�k��k) for A . We show how to approximate the
probability of RunA (p(0)� acc).

Step 2. Let � be a finite-state Markov chain, where Q � �0� 1� � �acc� rej� is the set of

states (the elements of Q��0� 1� are written as q(i), where i � �0� 1�), and the transitions
of � are defined as follows:

– r(0) x
� q( j) is a transition of � i� r(0) x

� q( j) is a transition of �A ;
– r(1) x

� q(0) i� x � [r�q] � 0;
– r(1) x

� acc i� x � �(RunA (r(1)� acc) � RunA (r�)) � 0;
– r(1) x

� rej i� x � �(RunA (r(1)� rej) � RunA (r�)) � 0;
– acc 1

� acc, rej 1
� rej;

– there are no other transitions.

Note that almost every w � RunA (p(0)) has its “twin” w� � Run�(p(0)), which is
obtained from w as follows: each honest subpath in w of the form r(1)� � � � � q(0) is
replaced with a single transition r(1)� q(0) in w�; and if the counter is decreased to
zero only finitely many times along w, then the last transition of the form r(0)�q(1)
in w is replaced either with r(0)� acc or r(0)� rej in w�, depending on whether w is
accepting or rejecting (the rest of w is then replaced with loops on acc or rej).

A BSCC B of � is good if either B � �acc�, or there is i � k such that �i � Q(B) � 

and �i � Q(B) � , where Q(B) consists of all r � Q such that either r( j) � B for
some j � �0� 1�, or there are t(1)� q(0) � B such that t(1)� q(0) is a transition in � and
r( j) � Pre�(q(0)) � Post�(t(1)) for some j � �0. For every p � Q, let Run�(p(0)� good)
be the set of all w � Run�(p(0)) that visit a good BSCC of �. The next proposition is
obtained by a careful case analysis of accepting runs in �A .

Proposition 14. For every p � Q we have�(RunA (p(0)� acc)) � �(Run�(p(0)� good)).

Step 3. Due to Proposition 14, the problem of our interest reduces to the problem of ap-
proximating the probability of visiting a good BSCC in the finite-state Markov chain �.
Since the termination probabilities in A can be approximated eÆciently (see Proposi-
tion 3), the only problem with � is approximating the probabilities x and y in transitions
of the form p(1) x

� acc and p(1) y
� rej. Recall that x and y are the probabilities of all

w � RunA (p�) that are accepting and rejecting, respectively. A crucial observation is
that almost all w � RunA (p�) still behave accordingly with the underlying finite-state
Markov chain � of A (see Section 3). More precisely, we have the following:

Proposition 15. Let p � Q. For almost all w � RunA (p�) we have that w visits a BSCC
B of � after finitely many transitions, and then it visits all states of B infinitely often.

A BSCC B of � is consistent with the considered Rabin acceptance condition if there
is i � k such that B� �i �  and B��i � . If B is not consistent, it is inconsistent. An
immediate corollary to Proposition 15 is the following:
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Corollary 16. Let RunA (p(1)� cons) and RunA (p(1)� inco) be the sets of all w �

RunA (p(1)) such that w visit a control state of some consistent and inconsistent BSCC
of �, respectively. Then

– �(RunA (p(1)� acc) � RunA (p�)) � �(RunA (p(1)� cons) � RunA (p�))
– �(RunA (p(1)� rej) � Run(p�)) � �(RunA (p(1)� inco) � RunA (p�))

Due to Corollary 16, we can reduce the problem of computing the probabilities of tran-
sitions of the form p(1) x

� acc and p(1) y
� rej to the problem of computing the diver-

gence probability in pOC. More precisely, we construct pOC’s Acons and Ainco which
are the same as A , except that for each control state q of an inconsistent (or consistent,
resp.) BSCC of �, all positive outgoing rules of q are replaced with q

1��1
���0 q. Then

x � �(RunAcons (p�)) and y � �(RunAinco (p�)).
Due to [4], the problem whether a given divergence probability is positive (in a given

pOC) is decidable in polynomial time. This means that the underlying graph of � is
computable in polynomial time, and hence the sets G0 and G1 consisting of all states s
of � such that �(Run�(s� good)) is equal to 0 and 1, respectively, are constructible in
polynomial time. Let G be the set of all states of � that are not contained in G0 � G1,
and let X� be the stochastic matrix of �. For every s � G we fix a fresh variable Vs and
the equation

Vs �
�
s��G

X�(s� s�) � Vs� �
�
s��G1

X�(s� s�)

Thus, we obtain a system of linear equations V � AV � b whose unique solution V�

in � is the vector of probabilities of reaching a good BSCC from the states of G. This
system can also be written as (I�A)V � b. Since the elements of A and b correspond to
(sums of) transition probabilities in �, it suÆces to compute the transition probabilities
of � with a suÆciently small relative error so that the approximate A and b produce
an approximate solution where the relative error of each component is bounded by
the �. By combining standard results for finite-state Markov chains with techniques of
numerical analysis, we show the following:

Proposition 17. Let c � 2�Q�. For every s � G, let Rs be the probability of visiting
a BSCC of � from s in at most c transitions, and let R � min�Rs � s � G�. Then
R � 0 and if all transition probabilities in � are computed with relative error at most
�R3�8(c � 1)2, then the resulting system (I � A�)V � b� has a unique solution U� such
that �V�

s � U�
s ��V�

s � � for every s � G.

Note that the constant R of Proposition 17 can be bounded from below by x�Q��1
t � xn,

where

– xt � min�X�(s� s�) � s� s� � G�, i.e., xt is the minimal probability that is either
explicitly used in A , or equal to some positive termination probability in A ;

– xn � min�X�(s� s�) � s � G� s� � G1�, i.e., xn is the minimal probability that is either
a positive termination probability in A , or a positive non-termination probability
in the pOC’s Acons and Ainco constructed above.

Now we need to employ the promised divergence gap theorem, which bounds a positive
non-termination probability in pOC away from zero (for all p� q � Q, we use [p� q] to
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denote the probability of all runs w initiated in p(1) that visit a configuration q(k), where
k � 1 and the counter stays positive in all configurations preceding this visit).

Theorem 18. Let A � (Q� Æ�0� Æ�0� P�0� P�0) be a pOC and � the underlying finite-
state Markov chain of A . Let p � Q such that [p�] � 0. Then there are two possibilities:

1. There is q � Q such that [p� q] � 0 and [q�] � 1. Hence, [p�] � [p� q].
2. There is a BSCC B of � and a state q of B such that [p� q] � 0, t � 0,

and vq � vmax (here t is the trend, v is the vector of Proposition 7, and vmax is
the maximal component of v; all of these are considered in B). Further, [p�] �
[p� q]t3�12(2(vmax � vmin) � 4)3 �

Hence, denoting the relative precision �R3�8(c � 1)2 of Proposition 17 by Æ, we obtain
that log(1�Æ) is bounded by a polynomial in �A � and log(1��). Further, the transition
probabilities of � can be approximated up to the relative error Æ in time polynomial
in �A � and log(1��) by approximating the termination probabilities of A (see Proposi-
tion 3). This proves Theorem 12.

5 Experimental Results, Future Work

We have implemented a prototype tool in the form of a Maple worksheet1, which allows
to compute the termination probabilities of pOC and the conditional expected termina-
tion times. Our tool employs Newton’s method to approximate the termination proba-
bilities within a suÆcient accuracy so that the expected termination time is computed
with absolute error (at most) one by solving the linear equation system from Section 3.2.

We applied our tool to the pOC model of the program TreeEval (see Section 1) for
various values of the parameters. The following table shows the results. We also show
the associated termination probabilities, rounded to three digits. We write [a�0] etc. to
abbreviate [(and,init)�(or,return,0)] etc., and [a�] for [a�0] � [a�1].

[a�] [a�0] [a�1] E[a�0] E[a�1]
z � 0�5� y � 0�4� xa � 0�2� xo � 0�2 0.800 0.500 0.300 11.000 7.667
z � 0�5� y � 0�4� xa � 0�2� xo � 0�4 0.967 0.667 0.300 104.750 38.917
z � 0�5� y � 0�4� xa � 0�2� xo � 0�6 1.000 0.720 0.280 20.368 5.489
z � 0�5� y � 0�4� xa � 0�2� xo � 0�8 1.000 0.732 0.268 10.778 2.758
z � 0�5� y � 0�5� xa � 0�1� xo � 0�1 0.861 0.556 0.306 11.400 5.509
z � 0�5� y � 0�5� xa � 0�2� xo � 0�1 0.931 0.556 0.375 23.133 20.644
z � 0�5� y � 0�5� xa � 0�3� xo � 0�1 1.000 0.546 0.454 83.199 111.801
z � 0�5� y � 0�5� xa � 0�4� xo � 0�1 1.000 0.507 0.493 12.959 21.555
z � 0�2� y � 0�4� xa � 0�2� xo � 0�2 0.810 0.696 0.115 7.827 6.266
z � 0�3� y � 0�4� xa � 0�2� xo � 0�2 0.811 0.636 0.175 8.928 6.783
z � 0�4� y � 0�4� xa � 0�2� xo � 0�2 0.808 0.571 0.236 10.005 7.258
z � 0�5� y � 0�4� xa � 0�2� xo � 0�2 0.800 0.500 0.300 11.000 7.667

1 Available at ������������	
���	����������	����������������������
��

http://www.comlab.ox.ac.uk/people/stefan.kiefer/pOC.mws
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We believe that other interesting quantities and numerical characteristics of pOC,
related to both finite paths and infinite runs, can also be eÆciently approximated us-
ing the methods developed in this paper. An eÆcient implementation of the associated
algorithms would result in a verification tool capable of analyzing an interesting class
of infinite-state stochastic programs, which is beyond the scope of currently available
tools limited to finite-state systems only.
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Abstract. Continuous Stochastic Logic (CSL) can be interpreted over continuous-
time Markov decision processes (CTMDPs) to specify quantitative properties of
stochastic systems that allow some external control. Model checking CSL formu-
lae over CTMDPs requires then the computation of optimal control strategies to
prove or disprove a formula. The paper presents a conservative extension of CSL
over CTMDPs—with rewards—and exploits established results for CTMDPs for
model checking CSL. A new numerical approach based on uniformization is de-
vised to compute time bounded reachability results for time dependent control
strategies. Experimental evidence is given showing the efficiency of the approach.

1 Introduction

Model checking of continuous-time Markov chains (CTMCs) is a well established ap-
proach to prove or disprove quantitative properties for a wide variety of systems [1, 2].
If the system can be controlled by some external entity, then continuous-time Markov
decision processes (CTMDPs) [3, 4] rather than CTMCs are the natural extension to be
used for modeling, possibly enriched with rewards.

In this paper we formulate the model checking problem of the logic CSL—with
reward extensions—in terms of decision problems in CTMDPs. The most challenging
model checking subproblem for this logic is to compute the minimum/maximum reward
with which a CSL formula holds. The problem contains as a specific case the problem
of computing the time or time-interval bounded reachability probability in CTMDPs, a
problem that has received considerable attention recently [5–10].

We introduce a numerical algorithm based on uniformization to compute, and ap-
proximate, the minimum/maximum gain vector per state (can be interpreted as rewards
and/or costs) for a finite interval [0, T ] that is the key for model checking CSL formulae.
The method we present is an adaption and extension of a recent algorithm [11] to com-
pute the accumulated reward in a CTMDP over a finite interval. It works in a backward
manner by starting with some initial gain vector gT at time t = T , then it determines
the optimal decision at t, and then assumes that the optimal decision is deterministic for
a small interval (t′, t]. The gain vector can then be computed for the whole interval. Af-
terwards, the optimal action at t′ is determined, and the procedure is repeated until we
arrive at t = 0. The correctness follows from the celebrated result by Miller [12] show-
ing that an optimal policy exists, and only a finite number of switches of the actions
is needed for describing it. It returns a control strategy that maximizes or minimizes a
reward measure over a finite or an infinite time horizon.

G. Gopalakrishnan and S. Qadeer (Eds.): CAV 2011, LNCS 6806, pp. 225–242, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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If reward values are zero, and we have the appropriate initial value for the gain vector
gT , the problem can be exploited to arrive at an uniformization based approach for the
computation of time bounded reachability probabilities within time T . It can easily be
generalized to the maximal reachability for a finite interval [t0, T ], which is the key
element of checking the probabilistic operator in CSL. Moreover, by computing the
gain vector between [t0, T ] with t0 > 0, and followed by a probabilistic reachability
analysis for the interval [0, t0], we are able to compute the minimum/maximum gain
vector for [t0, T ]: this gives us then a complete CSL model checking algorithm for
CTMDPs.

Contribution. This paper provides a full CSL model checking algorithm for CT-
MDPs with rewards. We show that the problem, for both probabilistic operator and
various reward properties, can be reduced to the computation of accumulated rewards
within time T , which allows us to exploit a deep insight by Miller [12]. This then pro-
vides both theoretical and practical insights: (i) on the theoretical side, we have that
all maximal (or minimal) values arising in model checking can be obtained by finite
memory policies, (ii) on the practical side, we exploit recent algorithmic advances [11]
to arrive at an efficient approximation algorithm—providing upper and lower bounds—
based on the well known notion of uniformization. We also provide experimental evi-
dence showing the efficiency of the new numerical approach. The improvements over
the state-of-the-art are dramatic, and resemble the milestones in approximate CTMC
model checking research, which was initially resorting to discretization [13], but got
effective—and mainstream technology—only through the use of uniformization [2].

Organization of the paper. Section 2 provides the basic definitions. Section 3 intro-
duces the logic CSL and shows how CSL formulae can be interpreted in terms of min-
imal/maximal rewards gained in CTMDPs. Afterwards, in Section 4, the basic model
checking approach is presented. The key step of model checking is the computation of
an appropriate gain vector. Section 5 introduces a new algorithm based on uniformiza-
tion to compute the gain vector. Then the performance of the new model checking
algorithm is evaluated by means of some examples in Section 6. Section 7 discusses
related work, and the paper is concluded in Section 8.

2 Basic Definitions

In this section we define CTMDPs as our basic model class and formulate the general
problem of computing maximal/minimal instantaneous and accumulated rewards. The
following notations are mainly taken from [12] and are used similarly in [11].

Definition 1 (CTMDP). A continuous-time Markov decision process (CTMDP) is a
tuple C = (S,D,Qd) where

– S = {1, . . . , n} is a finite set of states,
– D =×n

s=1
Ds where Ds is a finite set of decisions that can be taken in state s ∈ S,

– Qd is an n × n generator matrix of a continuous-time Markov chain for each
decision vector d of length n with d(s) ∈ Ds.

A CTMDP with reward is a pair (C, r) where C is a CTMDP and r is a nonnegative
(column) reward vector of length n.



Model Checking Algorithms for CTMDPs 227

Sometimes we additionally define the initial distribution p0 of a CTMDP, which is a
row vector of length n that defines a probability distribution over the set of states S.

We consider a time interval [0, T ] with T > 0. Let Ω denote the set of all (right
continuous) step functions on [0, T ] into S, and let F denote the σ-algebra [12] of the
sets in the space Ω generated by the sets {ω ∈ Ω | ω(t) = s} for all t ≤ T and s ∈ S.

The notation d ∈ D, or the variant with an index, is used for decision vectors. A
policy π (also known as scheduler or adversary) is a mapping from [0, T ] into D, and
dt is the corresponding decision vector at time t ∈ [0, T ], i.e., dt(s) is the decision
taken if the system is in state s at time t. We require that π is a measurable function
where measurable means Lebesgue measurable [12, 14]. For a measurable policy π, the
CTMDP with initial distribution p0 induces the probability space (Ω,F , P π

p0
). If we

have an initial state s (i.e. p0(s) = 1), we write P π
s instead of P π

p0
.

LetM be the set of all measurable policies on [0, T ]. A policy π is piecewise constant
if there exist some m <∞ and 0 = t0 < t1 < t2 < . . . < tm−1 < tm = T <∞ such
that dt = dt′ for t, t′ ∈ (tk, tk+1] (0 ≤ k < m). The policy is stationary if m = 1.

For a given policy π ∈ M, define a matrix Vπ
t,u with 0 ≤ t ≤ u ≤ T by the

following differential equations:

d
du

Vπ
t,u = Vπ

t,uQ
du (1)

with the initial condition Vπ
t,t = I. Element (i, j) of this matrix contains the probability

that the CTMDP under policy π is in state j at time u when it has been in state i at time
t [12]. We use the notation Vπ

t for Vπ
0,t. Knowing the initial distribution p0 at time 0,

the distribution at time t equals pπ
t = p0Vπ

t with 0 ≤ t ≤ T .
Let (C, r) be a CTMDP with reward, and G ⊆ S a set of states of our interests.

Define as r|G the vector which results from assigning zero rewards to non-G states,
namely r|G(s) = r(s) if s ∈ G and 0 otherwise. For t ≤ T , let gπ

t,T |G be a column
vector of length n defined by:

gπ
t,T |G = Vπ

t,TgT +
∫ T

t

Vπ
τ,T r|G dτ (2)

where gT is the initial gain vector at time T , independent of the policies. The second
part is the accumulated gain vector through G-states between [t, T ]. Intuitively, it con-
tains in position s ∈ S the expected reward accumulated until time T , if the CTMDP is
at time t in state s and policy π is chosen. In most of the cases, T is fixed and clear from
the context, then we skip it and write gπ

t |G instead. Moreover, |G will also be skipped in
case G = S. As we will see later, gT will be initialized differently for different model
checking problems but is independent of π. For a given initial vector p0 the expected
reward under policy π equals p0gπ

0 .

3 Continuous Stochastic Logic

To specify quantitative properties we use a conservative extension of the logic Contin-
uous Stochastic Logic (CSL) introduced in [1, 2], here interpreted over CTMDPs. We
relate the model checking of CSL formulae to the computation of minimal/maximal
gain vectors in CTMDPs.
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3.1 CSL

Let I, J be non-empty closed intervals on R≥0 with rational bounds. The syntax of the
CSL formulae is defined as follows:

Φ := a | ¬Φ | Φ ∧ Φ | PJ(Φ UIΦ) | SJ(Φ) | I
t
J(Φ) | C

I
J(Φ)

where a ∈ AP , and t ≥ 0. We use Φ, Ψ for CSL formulae, and use the abbreviations
true = a ∨ ¬a, ♦I(Φ) = true UIΦ, and C

≤t
J (Φ) for C

[0,t]
J (Φ). We refer to Φ UIΨ as a

(CSL) path formula.
Except for the rightmost two operators, this logic agrees with CSL on CTMCs [2].

It should however be noted that SJ(Φ) refers to the long-run average reward gained in
Φ-states, which coincides with the CTMC interpretation of CSL for a reward structure
of constant 1. The rightmost two operators are inspired by the discussion in [15]. I

t
J(Φ)

specifies that the instantaneous reward at time t in Φ-states is in the interval J. C
I
J(Φ) in

turn accumulates (that is, integrates) the instantaneous reward gained over the interval
I and specifies it to be in J.1

The semantics of CSL formulae are interpreted over the states of the given reward
CTMDP (C, r). Formally, the pair (s, Φ) belongs to the relation |=(C,r), denoted by
s |=(C,r) Φ, if and only if Φ is true at s. The index is omitted whenever clear from the
context. We need to introduce some additional notation. For state s, let αs be the Dirac
distribution with αs(s) = 1 and 0 otherwise. For a formula Φ, let Sat(Φ) denote the set
of states satisfying Φ, moreover, we let r|Φ denote r|Sat(Φ). The relation |= is defined
as follows:

– Probabilistic Operator: s |= PJ(Φ UIΨ) iff for all policies π, it holds:

P π
s ({ω ∈ Ω | ω |= Φ UIΨ}) ∈ J

where ω |= Φ UIΨ iff ∃t ∈ I. ω(t) |= Ψ ∧ ∀0 ≤ t′ < t. ω(t′) |= Φ.
– Instantaneous reward: s |= I

t
J(Φ) iff it holds that pπ

t · r|Φ ∈ J for all policies π,
where pπ

t = αsVπ
t is the distribution at time t under π, starting with state s.

– Cumulative reward: s |= C
[t,T ]
J (Φ) iff it holds that (αsVπ

t ) · gπ
t,T |Sat(Φ) ∈ J for all

policies π, where gπ
t,T |Sat(Φ) is the gain vector under π as defined in Eqn. (2), with

terminal condition gT = 0.
– Long-run average reward: s |= SJ(Φ) iff it holds that limT→∞ 1

T ·(αs ·gπ
0,T |Φ) ∈ J

for all policies π. This is the average reward gained in an interval with a length
going to infinity. In case r(s) = 1 for all s ∈ S, we refer to S also as the steady
state probability operator.

The reward CTMDP satisfies a formula if the initial state does. A few remarks are in
order. To simplify the presentation we have skipped the probabilistic next state oper-
ator PJ(X

I Φ). Recently, the policy classes depending on the whole history, including
the complete sequence of visited states, action, sojourn time, has been considered for
CTMDPs. This seemingly more powerful class of policies is known to be as powerful
as the piecewise constant policies considered in this paper, as shown in [8, 9].

1 For readers familiar with the PRISM tool notation, RJ[C≤t] corresponds to C
≤t
J (true), RJ[I=t]

to I
t
J(true), and RJ[S] to SJ(true), respectively, for CTMCs with rewards.
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3.2 Optimal Values and Policies

Our semantics is based on resolving the nondeterministic choices by policies. Obvi-
ously, checking probabilistic and reward properties amounts to computing, or approx-
imating, the corresponding optimal values. For the probabilistic operator PJ(Φ UIΨ),
we define

Pmax
s (Φ UIΨ) := sup

π∈M
P π

s (Φ UIΨ), Pmin
s (Φ UIΨ) := inf

π∈M
P π

s (Φ UIΨ)

as the maximal (and minimal) probability of reaching a Ψ -state along Φ-states. Then,
s |= PJ(Φ UIΨ) iff Pmax

s (Φ UIΨ) ≤ sup J and Pmin
s (Φ UIΨ) ≥ inf J. In case the

condition is true, i.e., Φ = true, we refer to it simply as reachability probability.
The defined extreme probabilitiesPmax

s and Pmin
s are also referred to as the optimal

values. A policy π is called optimal, with respect to PJ(Φ UIΨ), if it achieves the
optimal values, i.e., if P π

s (Φ UIΨ) = Pmax
s (Φ UIΨ) or P π

s (Φ UIΨ) = Pmin
s (Φ UIΨ).

The optimal values and policies are also defined for reward properties in a similar
way. Briefly, we define:

– Rmax
s (It Φ) = supπ∈M(pπ

t · r|Φ) for instantaneous reward,
– Rmax

s (C[t,T ] Φ) = supπ∈M((αsVπ
t ) · gπ

t,T |Sat(Φ)) for cumulative reward, and
– Rmax

s (SΦ) = supπ∈M
(
limT→∞ 1

T

(
αs · gπ

0,T |Sat(Φ)

))
for long-run average re-

ward.

For the long-run average reward the optimal policy is stationary, which can be computed
using a dynamic programming algorithm for average rewards as for example presented
in [4]. The optimal policies achieving the supremum (or infimum) for instantaneous and
cumulative rewards are piecewise constant, which will become clear in the next section.

4 Model Checking Algorithm

Given a CTMDP (C, r) with reward, a state s, and a CSL formula Φ, the model check-
ing problem asks whether s |= Φ holds. In this section we present a model checking
approach where the basic step consists in characterizing the gain vector for the compu-
tation of Rmax

s (CI Φ), Pmax
s (ΦUIΨ), and Rmax

s (It Φ) (Of course, the same holds for
the minimal gain vector, which is skipped). The corresponding numerical algorithms
shall be presented in the next section.

4.1 Optimal Gain Vector for Rmax
s (CI true)

Our goal is to obtain the vector g∗
0 that corresponds to the maximal gain that can be

achieved by choosing an optimal policy in [0, T ]. Stated differently, for a given p0, we
aim to find a policy π∗ which maximizes the gain vector in the interval [0, T ] in all
elements. It can be shown [12] that this policy is independent of the initial probability
vector and we need to find π∗ such that

π∗ = arg max
π∈M

(
Vπ

TgT +
∫ T

0

Vπ
t rdt in all elements

)
. (3)
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Moreover, the maximal gain vector is denoted by g∗
0 := gπ∗

0 , with |G omitted asG = S.
The problem of maximizing the accumulated reward of a finite CTMDP in a finite

interval [0, T ] has been analyzed for a long time. The basic result can be found in [12]
and is more than 40 years old. Further results and extensions can be found in [14]. The
paper of Miller [12] introduces the computation of a policy π∗ which maximizes the
accumulated reward in [0, T ]. The following theorem summarizes the main results of
[12], adapted to our setting with a non-zero terminal gain vector gT :

Theorem 1 (Theorem 1 and 6 of [12]). Let (C, r) be a CTMDP with reward, T >
0, and let gT be the terminal condition of the gain vector. A policy is optimal if it
maximizes for almost all t ∈ [0, T ]

max
π∈M

(
Qdtgπ

t + r
)

where − d
dt

gπ
t = Qdtgπ

t + r . (4)

There exists a piecewise constant policy π ∈M that maximizes the equations.

In [12], the terminal condition gT is fixed to the zero vector which is sufficient for the
problem considered there. The corresponding proofs can be adapted in a straightforward
way for the non-zero gT . We will see later that a non-zero terminal condition allows
us to treat various reachability probabilities as they occur in model checking problems.
Recall the vector gπ

t describes the gain at time t, i.e., gπ
t (s) equals the expected reward

gained at time T if the CTMDP is in state s at time t and policy π is applied in the
interval [t, T ]. Miller presents a constructive proof of Theorem 1 which defines the
following sets for some measurable policy π ∈M with gain vector gπ

t at time t.

F1(gπ
t ) =

{
d ∈ D | d maximizes q(1)

d

}
,

F2(gπ
t ) =

{
d ∈ F1(gt) | d maximizes − q(2)

d

}
,

. . .

Fj(gπ
t ) =

{
d ∈ Fj−1(gt) | d maximizes (−1)j−1q(j)

d

}
where

q(1)
d = Qdgπ

t + r , q(j)
d = Qdq(j−1) and

q(j−1) = q(j−1)
d for any d ∈ Fj−1(j = 2, 3, . . .)

The following theorem results from [12, Lemma 3 and 4].

Theorem 2. If d ∈ Fn+1(gπ
t ) then d ∈ Fn+k(gπ

t ) for all k > 1.
Let π be a measurable policy in (t′, T ] and assume that d ∈ Fn+1(gπ

t ) for t′ < t <
T , then exists some ε (0 < ε ≤ t− t′) such that d ∈ Fn+1(gπ

t′′) for all t′′ ∈ [t− ε, t].

We define a selection procedure that selects the lexicographically largest vector d from
Fn+1 which implies that we define some lexicographical ordering on the vectors d.
Then, the algorithm can be defined to get the optimal value with respect to cumulative
reward (see [12]), which is presented in Algorithm 1. Let g∗

t0 denote the gain vector at
t = t0 ≥ 0 and π∗ the piecewise constant policy resulting from OPTIMAL(C, r, t0, T,0)
of the above algorithm. For the case t0 = 0, the optimal gain for a given initial state s
equals then αsg∗

0. According to the Bellman equations [4] the restriction of the policy
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Algorithm 1. OPTIMAL(C, r, t0, T,gT ): Deciding optimal value and policy

1. Set t′ = T ;
2. Select dt′ using gt′ from Fn+1(gt′) as described ;
3. Obtain gt for 0 ≤ t ≤ t′ by solving

− d
dt

gt = r + Qdt′gt

with terminal condition gt′ ;
4. Set t′′ = inf{t : dt satisfies the selection procedure in (t′′, t′]} ;
5. If t′′ > t0 go to 2.with t′ = t′′. Otherwise, terminate and return the gain vector g∗

t0
at t = t0 and the resulting piecewise constant policy π∗ ;

π∗ to the interval (t, T ] (0 < t < T ) results in an optimal policy with gain vector
g∗

t . Observe that Algorithm 1 is not implementable as it is described here, since step 4.
cannot be effectively computed. We shall present algorithms to approximate or compute
bounds for the optimal gain vector in Section 5.

4.2 Cumulative Reward Rmax
s (C≤t Φ)

For computing Rmax
s (C≤t Φ), we have the terminal gain vector gT = 0. Let g∗

0 de-
note the gain vector at t = 0 and π∗ the piecewise constant policy resulting from
OPTIMAL(C, r|Φ, 0, T,0) of the above algorithm. The optimal cumulative reward for a
given initial state s equals then Rmax

s (C≤t Φ) = αsg∗
0.

4.3 Probabilistic Operator P max
s (Φ UIΨ)

Let (C,0) be a CTMDP with zero rewards, T > 0. We consider the computation of
Pmax

s (Φ UIΨ), which will be discussed below.

Intervals of the Form I = [0, T ]. In this case, as for CTMCs [2], once a state
satisfying¬Φ∨Ψ has been reached, the future behaviors becomes irrelevant. Thus, these
states can be made absorbing by removing all outgoing transitions, without altering
the reachability probability. Let Sat(Φ) denote the set of states satisfying Φ. Applying
Theorem 1 for zero-rewards r = 0, with a terminal gain vector gT , we get directly:

Corollary 1. Let ΦU[0,T ]Ψ be a CSL path formula with T > 0. Let (C,0) be a CTMDP
with zero rewards such that Sat(¬Φ∨ Ψ) states are absorbing. Moreover, let gT be the
terminal gain vector with gT (s) = 1 if s ∈ Sat(Ψ) and 0 otherwise. A policy is optimal
(w.r.t. Pmax

s (Φ U[0,T ]Ψ)) if it maximizes for almost all t ∈ [0, T ],

max
π∈M

(
Qdtgπ

t

)
where − d

dt
gπ

t = Qdtgπ
t . (5)

There exists a piecewise constant policy π ∈M that maximizes the equations.
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The following lemma shows that the optimal gain vector obtained by the above corollary
can be used directly to obtain the maximal reachability probability:

Lemma 1. Let gT be the terminal gain vector with gT (s) = 1 if s ∈ Sat(Ψ) and 0
otherwise. Assume the procedure OPTIMAL(C,0, 0, T,gT ) returns the optimal policy
π∗ and the corresponding optimal gain vector g∗

0 . Then, it holds Pmax
s (Φ U[0,T ]Ψ) =

αsg∗
0 .

Proof. Since r = 0, Eqn. (3) reduces to π∗ = arg maxπ∈M (Vπ
T gπ

T in all elements).
By definition, it is g∗

0 = Vπ∗
T gT , which is maximal in all elements. Moreover, since

Sat(¬Φ ∨ Ψ)-states are absorbing, the maximal transient probability is the same as the
maximal time bounded reachability. Thus, g∗

0(s) is the maximal probability of reaching
Sat(Ψ) within T , along Sat(Φ)-states from s, as g∗

0 is maximal in all elements. Thus,
Pmax

s (Φ UIΨ) = αsg∗
0. ��

Intervals of the form I = [t0, T ] with t0 > 0 and T ≥ t0. Let us review the
problem of computing an optimal gain vector of a finite CTMDP in a finite interval
[0, T ] from a new angle. Assume that an optimal policy is known for [t0, T ] and a[t0,T ]

is the optimal gain vector at t0, then the problem is reduced to finding an extension of
the policy in [0, t0) which means to solve the following maximization problem:

g∗
0 = max

π∈M
(
Vπ

t0a[t0,T ]

)
. (6)

The problem can be easily transferred in the problem of computing the reachability
probability for some interval [t0, T ], after a modification of the CTMDP. Essentially,
a two step approach has to be taken. As we have seen in Algorithm 1, the optimal
policy to maximize the reward is computed in a backwards manner. First the opti-
mal policy is computed for the interval [t0, T ] with respect to the maximal probability
Pmax

s (Φ U[0,T−t0]Ψ), using the CTMDP where states from Sat(¬Φ ∨ Ψ) are made
absorbing. This policy defines the vector a[t0,T ] = gt0 : this is adapted appropriately—
by setting the element to 0 for states satisfying ¬Φ—which is then used as terminal
condition to extend the optimal policy to [0, t0) on the original CTMDP.

Let C[Φ] denote the CTMDP with states in Sat(Φ) made absorbing, and let Q[Φ] de-
note the corresponding modified Q-matrix in C[Φ]. The following corollary summarizes
Theorem 1 when it is adopted to the interval bounded reachability probability.

Corollary 2. Let (C,0) be a CTMDP with zero rewards r = 0, t0 > 0 and T ≥ t0.
Let Φ U[t0,T ]Ψ be a path formula, and gT be the terminal gain vector with gT (s) = 1
if s ∈ Sat(Ψ) and 0 otherwise. A policy is optimal (w.r.t. Pmax

s (Φ U[t0,T ]Ψ)) if it

– maximizes for almost all t ∈ [t0, T ]

max
π∈M

(
Qdt

1 gπ
t

)
where − d

dt
gπ

t = Qdt
1 gπ

t . (7)

with Q1 := Q[¬Φ∨Ψ ] and initial condition at T given by gT . Note that the vector
g∗

t0 is uniquely determined by the above equation.
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– maximizes for almost all t ∈ [0, t0]:

max
π∈M

(
Qdt

2 gπ
t

)
where − d

dt
gπ

t = Qdt
2 gπ

t

with Q2 := Q[¬Φ], and initial condition at t0 given by g′ defined by: g′(s) =
g∗

t0(s) if s |= Φ, and 0 otherwise.

There exists a piecewise constant policy π ∈M that maximizes the equations.

Notice that the corollary holds for the special case Φ = true and t0 = T , what we
get is also called the maximal transient probability of being at Sat(Ψ) at exact time
T , namely Vπ

T with terminal condition gT . Now we can achieve the maximal interval
bounded reachability probability:

Lemma 2. Let gT be as defined in Corollary 2. Assume the procedure OPTIMAL(C[¬
Φ∨Ψ ],0, t0, T,gT ) returns the optimal policy π∗

t0 and the corresponding optimal gain
vector g∗

t0 . Let g′ be defined by g′(s) = g∗
t0(s) if s |= Φ, and 0 otherwise.

Assume the procedure OPTIMAL(C[¬Φ],0, 0, t0,g′) returns the optimal policy π∗

(extending the policy π∗
t0 ) and the corresponding optimal gain vector g∗

0. Then, it holds

Pmax
s (Φ U[t0,T ]Ψ) = αsg∗

0.

Proof. The optimal gain at time t0 is obtained by g∗
t0 , by Lemma 1. For all t ≤ t0,

Φ must be satisfied by the semantics for the path formula, thus g∗
t0 is replaced with

g′ as initial vector for the following computation. Thus, g∗
0 = Vπ∗

t0 g′ is maximal in
all elements, and g∗

0(s) is the maximal probability of reaching Sat(Ψ) from s within
[t0, T ], along Sat(Φ) states. Thus, Pmax

s (Φ U[t0,T ]Ψ) = αsg∗
0. ��

4.4 Interval Cumulative Reward Rmax
s (CI Φ)

The maximal interval cumulative reward Rmax
s (CI Φ) can now be handled by combin-

ing the cumulative rewards and reachability property. Assume that I = [t0, T ] with
t0 > 0 and T ≥ t0. As before, we can first compute the cumulative reward between
[t0, T ] by a[t0,T ] := OPTIMAL(C, r|Φ, t0, T,0) (see (6)). So a[t0,T ] is the maximal
cumulative reward between [t0, T ], and the problem now is reduced to finding an exten-
sion of the policy in [0, t0) such that g∗

0 = maxπ∈M
(
Vπ

t0a[t0,T ]

)
, which can be seen

as reachability probability with terminal condition a[t0,T ]. This value can be computed
by OPTIMAL(C,0, 0, t0,a[t0,T ]).

4.5 Instantaneous Reward Rmax
s (It Φ)

Interestingly, the maximal instantaneous reward supπ(pπ
t · r|Φ) can be obtained di-

rectly by OPTIMAL(C,0, 0, t, r|Φ). Intuitively, we have a terminal condition given by
the reward vector r, and afterwards, it behaves very similar to the same as probabilistic
reachability for intervals of the form [t, t].

We have shown that the CSL model checking problem reduces to the procedure
OPTIMAL(C, r, t0, T,gT ). By Theorem 1, an optimal policy existis. Thus, the estab-
lished connection to the paper by Miller gives another very important implication:
namely the existence of finite memory schedulers (each for a nested state subformula)
for the CSL formula.
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5 Computational Approaches

We now present an improved approach for approximating OPTIMAL such that the error
of the final result can be adaptively controlled. It is based on uniformization [16] for
CTMCs and its recent extension to CTMDPs with rewards [11], which, in our notation,
treats the approximation of Rmax

s (C[0,T ] true).
The optimal policy gt and vector are approximated from T backwards to 0 or t0,

starting with some vector gT which is known exactly or for which bounds g
T
≤ gT ≤

gT are known. Observe that for a fixed d in (t− δ, t] we can compute gt−δ from gt as

gd
t−δ = eδQd

gt +
∫ δ

τ=0

eτQd

rdτ =
∞∑

k=0

(
Qdδ

)k

k!
gt +

∫ δ

τ=0

∞∑
k=0

(
Qdτ

)k

k!
rdτ. (8)

We now solve (8) via uniformization [16] and show afterwards how upper and lower
bounds for the optimal gain vector can be computed. Let αd = maxi∈S

(|Qd(i, i)|)
and α = maxd∈D (αd). Then we can define the following two stochastic matrices for
every decision vector d:

Pd = Qd/αd + I and P̄d = Qd/α+ I. (9)

Define the following function to determine the Poisson probabilities in the uniformiza-
tion approach.

β(αδ, k) = e−αδ (αδ)k

k!
and ζ(αδ,K) =

(
1−

K∑
l=0

β(αδ, l)

)
. (10)

Eqns. (9) and (10), combined with the uniformization approach (8), can be used to
derive (see [11]) the following sequences of vectors:

gd
t−δ =

∞∑
k=0

(
Pd

)k
(
β(αdδ, k)gt +

ζ(αdδ, k)
αd

r
)
. (11)

Assume that bounds g
t
≤ g∗

t ≤ gt are known and define

v(k) = Pdtv(k−1), w(k) = Pdtw(k−1) and

v(k) = maxd∈D
(
P̄dv(k−1)

)
, w(k) = maxd∈D

(
P̄dw(k−1)

)
with v(0) = g

t
, v(0) = gt, w(0) = w(0) = r.

(12)

If not stated otherwise, we compute vk,w(k) with Pdt where dt is the lexicographi-
cally smallest vector from Fn+1(gt

). Observe that v(k),w(k) correspond to a concrete

policy that uses decision vector dt in the interval (t− δ, t]. Vectors v(k),w(k) describe
some strategy where the decisions depend on the number of transitions which is an ideal
case that cannot be improved by any realizable policy. Notice that for zero rewards for
probabilistic reachability, we have w(0) = w(0) = r = 0. From the known bounds for
g∗

t , new bounds for g∗
t−δ can then be computed as follows (see [11, Theorem 3]):



Model Checking Algorithms for CTMDPs 235

gK
t−δ

=
K∑

k=0

(
β(αdδ, k)v(k) + ζ(αdδ,k)

αd
w(k)

)
+ ζ(αdδ,K)mins∈S

(
v(K)(s)

)
I1 +(

δζ(αdδ,K)− K+1
αd

ζ(αdδ,K + 1)
)

mins∈S
(
w(K)(s)

)
I1 ≤

g∗
t−δ ≤

K∑
k=0

(
β(αδ, k)v(k) + ζ(αδ,k)

α w(k)
)

+ ζ(αδ,K)maxs∈S
(
v(K)(s)

)
+(

δζ(αδ,K)− K+1
α ζ(αδ,K + 1)

)
maxs∈S

(
w(K)(s)

)
I1 = gK

t−δ.

(13)
where I1 is a column vector of ones with length n. Before we formulate an algorithm
based on the above equation, we analyze the spread of the bounds. If g

t
and gt are

upper and lower bounding vectors used for the computation of gK
t−δ

and gK
t−δ, then

‖gt−g
t
‖ ≤ ‖gK

t−δ −gK
t−δ

‖ and the additional spread results from the truncation of the
Poisson probabilities

εtrunc(t, δ,K) = ζ(αδ,K)max
i∈S

(
v(K)(i)

)
− ζ(αdδ,K)min

i∈S

(
v(K)(i)

)
+
(
δζ(αδ,K)− (K + 1)ζ(αδ,K + 1)

α

)
max
s∈S

(
w(K)(s)

)
(14)

−
(
δζ(αdδ,K)− (K + 1)ζ(αdδ,K + 1)

αd

)
min
s∈S

(
w(K)(s)

)
and the difference due to the different decisions, denoted by εsucc(t, δ,K) =: ε∗, is,

ε∗ =

∥∥∥∥∥
K∑

k=0

(
β(αδ, k)v(k) +

ζ(αδ, t)
α

w(k) − β(αdδ, k)v(k) − ζ(αdδ, t)
αd

w(k)

)∥∥∥∥∥ (15)

where d is the decision vector chosen by the selection procedure using g
t
. As shown

in [11] the local error of a step of length δ is in O(δ2) such that theoretically the
global error goes to 0 for δ → 0. Observe that εtrunc(t, δ,K) ≤ εtrunc(t, δ,K + 1),
εsucc(t, δ,K) ≥ εsucc(t, δ,K + 1) and

ε(t, δ,K) = εtrunc(t, δ,K) + εsucc(t, δ,K) ≤
ε(t, δ,K + 1) = εtrunc(t, δ,K + 1) + εsucc(t, δ,K + 1).

With these ingredients we can define an adaptive algorithm that computes g
t0

, gt0 (t0 ≤
T ) and a policy π to reach a gain vector of at least g

t0
such that g

t0
≤ g∗

t0 ≤ gt0 and

‖gt0 − g
t0
‖∞ ≤ ε for the given accuracy ε > 0.

Algorithm 2 computes bounds for the gain vector with a spread of less than ε, if
the time steps become not too small (< δmin). Parameter ω determines the fraction
of the error resulting from truncation of the Poisson probabilities and Kmax defines
the number of intermediate vectors that are stored. The decision vector for the interval
(ti, ti−1] is stored in ci. Observe that ti < ti−1 since the computations in the algorithm
start at T and end at t0. The policy defined by the time point ti and vectors ci guarantees
a gain vector which is elementwise larger or equal to g∗

t0
. Parameter δmin is used as a

lower bound for the time step to avoid numerical underflows. If the Poisson probabilities
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Algorithm 2. UNIFORM(C, r, t0, T,gT
,gT , ω,Kmax, ε): Bounding vectors for g∗

t0

1. initialize i = 0 and t = T ;
2. set stop = false , K = 1 and v(0) = g

t
,v(0) = gt,w

(0) = w(0) = r ;
3. select dt from Fn+1(gt) as described and if i = 0 let c0 = dt ;
4. repeat
5. compute v(K),v(K),w(K),w(K) using (12);

6. find δ = max
(
arg maxδ′∈[0,t]

(
εtrunc(t, δ′,K) ≤ ωδ′

T−t0
ε
)
,min (δmin, t− t0)

)
;

7. compute εtrunc(t, δ,K) and εsucc(t, δ,K) using (14,15) ;
8. if εtrunc(t, δ,K) + εsucc(t, δ,K) > T−t+δ

T−t0
ε then

9. reduce δ until
εtrunc(t, δ,K) + εsucc(t, δ,K) ≤ T−t+δ

T−t0
ε

or δ = min (δmin, t− t0) and set stop = true ;
10. else
11. K = K + 1;
12. until stop or K = Kmax + 1 ;
13. compute g

t−δ
from v(k),w(k) and gt−δ from v(k),w(k) (k = 0, . . . ,K) using

(13);
14. if dt = ci then ci+1 = dt, ti = t− δ and i = i+ 1 ;
15. if t− t0 = δ then terminate else go to 2. with t = t− δ ;

are computed with the algorithm from [17], then all computations are numerically stable
and use only positive values. A non-adaptive version of the algorithm can be realized
by fixing the number of iterations used in the loop between 4. and 12.

To verify a property that requires a reward to be smaller than some threshold value,
the computed upper bound has to be smaller than the threshold. If the lower bound
is larger than the required value, then the property is disproved, if the threshold lies
between lower and upper bound, no decision about the property is possible.

6 Case Studies

We implemented our model checking algorithm in an extension of the probabilistic
model checker MRMC [18]. In addition, we implemented a method to compute long-
run average state probabilities [3]. The implementation is written in C, using sparse
matrices. Parallelism is not exploited. All experiments are performed on an Intel Core
2 Duo P9600 with 2.66 GHz and 4 GB of RAM running on Linux.

6.1 Introductory Example

We consider a simple example taken from [19], which is shown in Figure 1. We consider
a single atomic proposition s4 which holds only in state s4.
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Fig. 1. A CTMDP

First we analyze the property P<x(♦[0,T ]s4) for state s1. In
this case, state s4 is made absorbing by removing the transition
from s4 to s1 (shown as a dashed line in the figure), as dis-
cussed in Subs. 4.3. Table 1 contains the results and efforts to
compute the maximal reachability probabilities for T = 4 and
7 with the adaptive and non-adaptive variant of the uniformiza-
tion approach. The time usage is given in seconds. It can be seen
that the adaptive version is much more efficient and should be
the method of choice in this example. The value of ε that is
required to prove P<x(♦[0,T ]s4) depends on x. E.g., if T = 4
and x = 0.672, then ε = 10−4 is sufficient whereas ε = 10−3

would not allow one to prove or disprove the property.

Table 1. Bounds for the probability of reaching s4 in [0, T ], i.e., Pmax
s1 (♦[0,T ]s4)

UniformizationK = 5 Uniformization Kmax = 20, ω = 0.1
T ε lower upper steps iter time lower upper steps iter time

4.0 10−4 0.671701 0.671801 720 3600 0.03 0.671772 0.671803 211 774 0.02
4.0 10−5 0.671771 0.671781 5921 29605 0.10 0.671778 0.671781 2002 5038 0.09
4.0 10−6 0.671778 0.671779 56361 281805 0.87 0.671778 0.671779 19473 40131 0.63
7.0 10−4 0.982746 0.982846 1283 6415 0.04 0.982836 0.982846 364 1333 0.04
7.0 10−5 0.982835 0.982845 10350 51750 0.22 0.982844 0.982845 3463 8098 0.19
7.0 10−6 0.982844 0.982845 97268 486340 1.64 0.982845 0.982845 33747 68876 1.50

Table 2. Bounds for reaching s4 in [3, 7], i.e., Pmax
s1 (♦[t0,T ]s4)

ε = 1.0e− 3 ε = 6.0e− 4
ε1 time bounded prob. iter1 iter2 time bounded prob. iter1 iter2

9.0e− 4 0.97170 0.97186 207 90 – – – –
5.0e− 4 0.97172 0.97186 270 89 0.97176 0.97185 270 93
1.0e− 4 0.97175 0.97185 774 88 0.97178 0.97185 774 91
1.0e− 5 0.97175 0.97185 5038 88 0.97179 0.97185 5038 91

To compute the result for P<x(♦[t0,T ]s4), the two step approach is used. We consider
the interval [3, 7]. Thus, in a first step the vector a[3,7] is computed from the CTMDP
where s4 is made absorbing. Then the resulting vectors g

3
and g3 are used as terminal

conditions to compute g
0

and g0 from the original process including the transition
between s4 and s1. Apart from the final error bound ε for the spread between g

0
and g0,

an additional error bound ε1 (< ε) has to be defined which defines the spread between
g

3
and g3. Table 2 includes some results for different values of ε and ε1. The column

headed with iter i (i = 1, 2) contains the number of iterations of the i-th phase. It can
be seen that for this example, the first phase requires more effort such that ε1 should be
chosen only slightly smaller than ε to reduce the overall number of iterations.
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Here, it is important to take time-dependent policies to arrive at truly maximal reach-
ability probabilities. The maximal value obtainable for time-abstract policies (using a
recent algorithm for CTMDPs [6, 18]) are 0.584284 (versus 0.6717787) for a time
bound of 4.0, and 0.9784889 (versus 0.9828449) for a time bound of 7.0.

6.2 Work Station Cluster

As a more complex example, we consider a fault-tolerant workstation cluster (FTWC),
in the form considered in [18]. Time bounded reachability analysis for this model was
thus far restricted to time-abstract policies [18], using a dediated algorithm for uniform
CTMDPs [5]. In a uniform CTMDP (including the one studied here) rate sums are

N

...

2

1

left

switch

backbone

right

switch

N

...

2

1

Fig. 2. FTWC structure

identical across states and nondeterministic choices, and
this can be exploited in the algorithm. The general de-
sign of the workstation cluster is shown in Fig. 2. It
consists of two sub-clusters which are connected via a
backbone. There are N workstations in each sub-cluster
which are connected together in a star-topology with a
switch as central node. The switches provide addition-

ally the interface to the backbone. Each of the components in the fault-tolerant work-
station cluster can break down (fail) with a given rate and then needs to be repaired
before becoming available again. There is a single repair unit for the entire cluster, not
depicted in the figure, which is only capable of repairing one failed component at a
time, with a rate depending on the component. When multiple components are down,
there is a non-deterministic decision to be taken which of the failed components is to
be repaired next.

We say that our system provides premium service whenever at least N workstations
are operational. These workstations have to be connected to each other via operational
switches. When the number of operational workstations in one sub-cluster is below N ,
premium quality can be ensured by an operational backbone under the condition that
there are at least N operational workstations in total. We consider these properties:

P1: Probability to reach non-premium service within time T : P<x(♦[0,T ]¬premium),
P2: Steady-state probability of having non-premium service: S<x(¬premium),
P3: Steady-state probability of being in a state where the probability to reach non-

premium service within time T is above 1
2 : S<x(¬P< 1

2
(♦[0,T ]¬premium)).

Results and statistics are reported in Table 3. For P1, we also give numbers for time-
abstract policy-based computation exploiting model uniformity [5]. We chose ε = 10−6

and Kmax = 70. As we see, for P1 the probabilities obtained using time-abstract and
general policies agree up to ε, thus time-abstract policies seem sufficient to obtain
maximal reachability probabilities for this model and property, opposed to the previ-
ous example. Our runtime requirements are higher than what is needed for the time-
abstract policy class, if exploiting uniformity [5]. Without uniformity exploitation [6],
the time-abstract computation times are worse by a factor of 100 to 100,000 compared
to our analysis (yielding the same probability result, not shown in the table). However,
even for the largest models and time bounds considered, we were able to obtain precise
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Table 3. Statistics for the FTWC analysis. For N = 16, N = 64 and N = 128, the state space
cardinality is 10130, 151058 and 597010, respectively.

P1 P1 time-abstract P2 P3
↓N T→ 500h 5000h 500h 5000h 500h 5000h

16 time 1s 9s 0s 1s 0s 1s 9s
prob. 0.0381333 0.3243483 0.0381323 0.3243474 0.0003483 0.0003483 0.0003526

64 time 21s 3m 28s 3s 7s 14s 33s 3m 31s
prob. 0.1228243 0.7324406 0.1228233 0.7324401 0.0012808 0.0018187 1.0

128 time 2m 46s 34m 5s 13s 40s 1m 30s 4m 8s 35m 9s
prob. 0.1837946 0.8698472 0.1837937 0.8698468 0.0020517 0.0037645 1.0

results within reasonable time, which shows the practical applicability of the method.
Long-run properties P2 and nested variation P3 can be handled in a similar amount of
time, compared to P1.

6.3 Further Empirical Evaluation

Further empirical evaluations can be found at

http://depend.cs.uni-saarland.de/tools/ctmdp.

The results are generally consistent with the above experiments. As an example, Table 4
lists some runtimes for the European Train Control System (ETCS) case [20]. Details for
the model can be found on the website. The property considered is P<x(♦[0,T ] unsafe),
corresponding to the maximal probability that a train must break within T hours of

Table 4. ETCS Runtimes

time-dep. time-abs.
#tr. #ph. #states 10h 180h 10h 180h
3 5 21722 5s 1m 22s 2s 22s
3 10 56452 14s 3m 41s 4s 1m 1s
4 5 15477 4s 59s 1s 16s
4 10 59452 15s 4m 2s 5s 1m 8s

operation. The model consists of “#tr.” trains,
that are affected by failures. Failure delay dis-
tributions are given by Erlang distributions
with “#ph.” phases. As can be seen, the algo-
rithm for time dependent scheduler analysis is
slower than the simpler time-independent anal-
ysis, but scales rather smoothly.

7 Related Work

Our paper builds on the seminal paper of Miller [12]: the problem studied there can
be considered as the reward operator C

[0,T ]
[0,x] (true). Time-bounded reachability for CT-

MDPs in the context of model checking has been studied, restricted to uniform CT-
MDPs and for a restricted, time-abstract, class of policies [5]. These results have later
been extended to non-uniform stochastic games [6]. Time-abstract policies are strictly
less powerful than time-dependent ones [5], considered here and in [7].

Our logic is rooted in [15]. Restricting to CTMCs with or without rewards, the se-
mantics coincides with the standard CSL semantics, as in [15]. However, it is interest-
ing to note that our semantics is defined without refering to timed paths, in contrast to

http://depend.cs.uni-saarland.de/tools/ctmdp
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established work (e.g. [2]). This twist enables a drastically simplified presentation. The
logic in [15] has a more general probabilistic operator of the form PJ(Φ UI

KΨ) which
allows one to constrain the reward accumulated prior to satisfying Ψ to lie in the interval
K. Our framework can not be applied directly to those properties, which we consider as
interesting future work.

So far, the common approach to obtain the optimal gain vector proceeds via an ap-
proximate discretization using a fixed interval of length h, instead of computing t′′ as
in Algorithm 1. As shown in [12] and also for a slightly different problem in [21], this
approach converges towards the optimal solution for h → 0. Let λ be the maximal
exit rate in matrix Qd for some decision vector d. For probabilistic reachability with
interval [0, T ], namely P

max
s (♦[0,T ]Φ), the number of steps is shown to be bounded by

O((λT )2/ε) in [9], to guarantee global accuracy ε. Recently, this bound was further
improved to O(λT/ε) [10].

The approach presented here is much more efficient than the discretization technique
in [9, 10]. As an example we reconsider our introductory example. Discretization re-
quires iter ≈ λT/ε iterations to reach a global accuracy of ε. For λ = 10, T = 4 and
ε = 0.001, uniformization requires 201 iterations whereas the discretization approach
would need about 40, 000 iterations. For T = 7 and for ε = 10−6, uniformization needs
68, 876 iterations, whereas discretization requires about 70, 000, 000 iterations to arrive
at comparable accuracy, thus the difference is a factor of 1000.

8 Conclusions

The paper presents a new approach to model checking CSL formulae over CTMDPs.
A computational approach based on uniformization enables the computation of time
bounded reachability probabilities and rewards accumulated during some finite inter-
val. It is shown how these values can be used to prove or disprove CSL formulae. The
proposed uniformization technique allows one to compute results with a predefined ac-
curacy that can be chosen with respect to the CSL formula that has to be proved. The im-
provements resemble the milestones in approximate CTMC model checking research,
which was initially resorting to discretization [13], but got effective only through the
use of uniformization [2].

The uniformization algorithm approximates, apart from the bounds for the gain vec-
tor, also a policy that reaches the lower bound gain vector. This policy is not needed for
model checking a CSL formula but it is, of course, of practical interest since it describes
a control strategy which enables a system to obtain the required gain—up to ε.

Finally, we note that the current contribution of our paper can be combined with
three-value CSL model checking by Katoen et al [22], to attenuate the well-known ro-
bustness problem of nested formulae in stochastic model checking. For the inner prob-
abilistic state formulae, our algorithm will compute the corresponding probability—up
to ε. Using the method in [22] we obtain a three-valued answer, either yes/no, or ”don’t-
know”. Then, if we come to the outermost probabilistic operator, we will compute an
upper and lower bound of the probabilities. We get a three-valued answer again. In case
of a don’t-know answer for a state we want to check, we can reduce ε to decrease the
number of don’t-know states for the inner probabilistic formulae.
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Abstract. We present an algorithmic method for the quantitative,
performance-aware synthesis of concurrent programs. The input consists
of a nondeterministic partial program and of a parametric performance
model. The nondeterminism allows the programmer to omit which (if
any) synchronization construct is used at a particular program location.
The performance model, specified as a weighted automaton, can cap-
ture system architectures by assigning different costs to actions such as
locking, context switching, and memory and cache accesses. The quanti-
tative synthesis problem is to automatically resolve the nondeterminism
of the partial program so that both correctness is guaranteed and per-
formance is optimal. As is standard for shared memory concurrency, cor-
rectness is formalized “specification free”, in particular as race freedom
or deadlock freedom. For worst-case (average-case) performance, we show
that the problem can be reduced to 2-player graph games (with proba-
bilistic transitions) with quantitative objectives. While we show, using
game-theoretic methods, that the synthesis problem is Nexp-complete,
we present an algorithmic method and an implementation that works
efficiently for concurrent programs and performance models of prac-
tical interest. We have implemented a prototype tool and used it to
synthesize finite-state concurrent programs that exhibit different pro-
gramming patterns, for several performance models representing different
architectures.

1 Introduction

A promising approach to the development of correct concurrent programs is
partial program synthesis. The goal of the approach is to allow the programmer to
specify a part of her intent declaratively, by specifying which conditions, such as
linearizability or deadlock freedom, need to be maintained. The synthesizer then
constructs a program that satisfies the specification (see, for example, [17,16,19]).
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frameworks for partial synthesis. In particular, there has been no possibility for
a programmer to ask the synthesizer for a program that is not only correct,
but also efficient with respect to a specific performance model. We show that
providing a quantitative performance model that represents the architecture of
the system on which the program is to be run can considerably improve the
quality and, therefore, potential usability of synthesis.

Motivating Examples. Example 1. Consider a producer-consumer program,
where k producer and k consumer threads access a buffer of n cells. The pro-
grammer writes a partial program implementing the procedures that access the
buffer as if writing the sequential version, and specifies that at each control lo-
cation a global lock or a cell-local lock can be taken. It is easy to see that there
are at least two different ways of implementing correct synchronization. The
first is to use a global lock, which locks the whole buffer. The second is to use
cell-local locks, with each thread locking only the cell it currently accesses. The
second program allows more concurrent behavior and is better in many settings.
However, if the cost of locks is high (relative to the other operations), the global-
locking approach is more efficient. In our experiments on a desktop machine, the
global-locking implementation out-performed the cell-locking implementation by
a factor of 3 in certain settings.

Example 2. Consider the program in Figure 1. It
1: while(true) {
2: lver=gver; ldata=gdata;
3: n = choice(1..10);
4: i = 0;
5: while (i < n) {
6: work(ldata); i++;
7: }
8: if (trylock(lock)) {
9 if (gver==lver) {
10: gdata = ldata;
11: gver = lver+1;
12: unlock(lock);
13: } else {unlock(lock)}
14:} }

Fig. 1. Example 2

uses classic conflict resolution mechanism used for
optimistic concurrency. The shared variables are
gdata, on which some operation (given by the func-
tion work()) is performed repeatedly, and gver,
the version number. Each thread has local vari-
ables ldata and lver that store local copies of the
shared variables. The data is read (line 2) and oper-
ated on (line 6) without acquiring any locks. When
the data is written back, the shared data is locked
(line 8), and it is checked (using the version num-
ber, line 9) that no other thread has changed the
data since it has been read. If the global version

number has not changed, the new value is written to the shared memory (line
10), and the global version number is increased (line 11). If the global version
number has changed, the whole procedure is retried. The number of operations
(calls to work) performed optimistically without writing back to shared memory
can influence the performance significantly. For approaches that perform many
operations before writing back, there can be many retries and the performance
can drop. On the other hand, if only a few operations are performed optimisti-
cally, the data has to be written back often, which also can lead to a performance
drop. Thus, the programmer would like to leave the task of finding the optimal
number of operations to be performed optimistically to the synthesizer. This is
done via the choice statement (line 4).
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The Partial Program Resolution Problem. Our aim is to synthesize concur-
rent programs that are both correct and optimal with respect to a performance
model. The input for partial program synthesis consists of (1) a finite-state par-
tial program, (2) a performance model, (3) a model of the scheduler, and (4)
a correctness condition. A partial program is a finite-state concurrent program
that includes nondeterministic choices which the synthesizer has to resolve. A
program is allowed by a partial program if it can be obtained by resolving the
nondeterministic choices. The second input is a parametric performance model,
given by a weighted automaton. The automaton assigns different costs to ac-
tions such as locking, context switching, and memory and cache access. It is
a flexible model that allows the assignment of costs based on past sequences
of actions. For instance, if a context switch happens soon after the preceding
one, then its cost might be lower due to cache effects. Similarly, we can use
the automaton to specify complex cost models for memory and cache accesses.
The performance model can be fixed for a particular architecture and, hence,
need not be constructed separately for every partial program. The third input
is the scheduler. Our schedulers are state-based, possibly probabilistic, models
which support flexible scheduling schemes (e.g., a thread waiting for a long time
may be scheduled with higher probability). In performance analysis, average-
case analysis is as natural as worst-case analysis. For the average-case analysis,
probabilistic schedulers are needed. The fourth input, the correctness condition,
is a safety condition. We use “specification-free” conditions such as data-race
freedom or deadlock-freedom. The output of synthesis is a program that is (a)
allowed by the partial program, (b) correct with respect to the safety condition,
and (c) has the best performance of all the programs satisfying (a) and (b) with
respect to the performance and scheduling models.

Quantitative Games. We show that the partial program resolution problem
can be reduced to solving imperfect information (stochastic) graph games with
quantitative (limit-average or mean-payoff) objectives. Traditionally, imperfect
information graph games have been studied to answer the question of existence
of general, history-dependent optimal strategies, in which case the problem is
undecidable for quantitative objectives [8]. We show that the partial program
resolution problem gives rise to the question (not studied before) whether there
exist memoryless optimal strategies (i.e. strategies that are independent of the
history) in imperfect information games. We establish that the memoryless prob-
lem for imperfect information games (as well as imperfect information stochastic
games) is Np-complete, and prove that the partial program resolution problem
is Nexp-complete for both average-case and worst-case performance based syn-
thesis. We present several techniques that overcome the theoretical difficulty
of Nexp-hardness in cases of programs of practical interest: (1) First, we use
a lightweight static analysis technique for efficiently eliminating parts of the
strategy tree. This reduces the number of strategies to be examined signifi-
cantly. We then examine each strategy separately and, for each strategy, obtain
a (perfect information) Markov decision process (EDP). For MDPs, efficient
strategy improvement algorithms exist, and require solving Markov chains. (2)
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Second, Markov chains obtained from concurrent programs typically satisfy cer-
tain progress conditions, which we exploit using a forward propagation technique
together with Gaussian elimination to solve Markov chains efficiently. (3) Our
third technique is to use an abstraction that preserves the value of the quantita-
tive (limit-average) objective. An example of such an abstraction is the classical
data abstraction.

Experimental Results. In order to evaluate our synthesis algorithm, we im-
plemented a prototype tool and applied it to four finite-state examples that
illustrate basic patterns in concurrent programming. In each case, the tool au-
tomatically synthesized the optimal correct program for various performance
models that represent different architectures. For the producer-consumer exam-
ple, we synthesized a program where two producer and two consumer threads
access a buffer with four cells. The most important parameters of the perfor-
mance model are the cost l of locking/unlocking and the cost c of copying data
from/to shared memory. If the cost c is higher than l (by a factor 100:1), then
the fine-grained locking approach is better (by 19 percent). If the cost l is equal
to c, then the coarse-grained locking is found to perform better (by 25 percent).
Referring back to the code in Figure 1, for the optimistic concurrency exam-
ple and a particular performance model, the analysis found that increasing n
improves the performance initially, but after a small number of increments the
performance started to decrease. We measured the running time of the program
on a desktop machine and observed the same phenomenon.

Related Work. Synthesis from specifications is a classical problem [6,7,15].
More recently, sketching, a technique where a partial implementation of a pro-
gram is given and a correct program is generated automatically, was intro-
duced [17] and applied to concurrent programs [16]. However, none of the above
approaches consider performance-aware algorithms for sketching; they focus on
qualitative synthesis without any performance measure. We know of two works
where quantitative synthesis was considered. In [2,3] the authors study the syn-
thesis of sequential systems from temporal-logic specifications. In [19,5] fixed
optimization criteria (such as preferring short atomic sections or fine-grained
locks) are considered. Optimizing these measures may not lead to optimal per-
formance on all architectures. None of the cited approaches use the framework
of imperfect information games, nor parametric performance models.

2 The Quantitative Synthesis Problem

2.1 Partial Programs

In this section we define threads, partial programs, programs and their semantics.
We start with the definitions of guards and operations.
Guards and operations. Let L, G, and I be finite sets of variables (represent-
ing local, global (shared), and input variables, respectively) ranging over fi-
nite domains. A term t is either a variable in L, G, or I, or t1 op t2, where
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t1 and t2 are terms and op is an operator. Formulas are defined by the fol-
lowing grammar, where t1 and t2 are terms and rel is a relational operator:
e := t1 rel t2 | e ∧ e | ¬e. Guards are formulae over L, G, and I. Opera-
tions are simultaneous assignments to variables in L∪G, where each variable is
assigned a term over L, G, and I.

Threads. A thread is a tuple 〈Q,L,G, I, δ, ρ0, q0〉, with: (a) a finite set of control
locations Q and an initial location q0; (b) L, G and I are as before; (c) an initial
valuation of the variables ρ0; and (d) a set δ of transition tuples of the form
(q, g, a, q′), where q and q′ are locations from Q, and g and a are guards and
operations over variables in L, G and I.

The set of locations Sk(c) of a thread c = 〈Q,L,G, I, δ, ρ0, q0〉 is the subset of
Q containing exactly the locations where δ is non-deterministic, i.e., locations
where there exists a valuation of variables in L, G and I, for which there are
multiple transitions whose guards evaluate to true.

Partial programs and programs. A partial program M is a set of threads that
have the same set of global variables G and whose initial valuation of variables
in G is the same. Informally, the semantics of a partial program is a parallel
composition of threads. The set G represents the shared memory. A program is a
partial program, in which the set Sk(c) of each thread c is empty. A program P
is allowed by a partial programM if it can be obtained by removing the outgoing
transitions from sketch locations of all the threads of M , so that the transition
function of each thread becomes deterministic.

The guarded operations allow us to model basic concurrency constructs such
as locks (for example, as variables in G and locking/unlocking is done using
guarded operations) and compare-and-set. As partial program defined as a col-
lection of fixed threads, thread creation is not supported.

Semantics. A transition system is a tuple 〈S,A,Δ, s0〉 where S is a finite set of
states, A is a finite set of actions, Δ ⊆ S × A × S is a set of transitions and
s0 is the initial state. The semantics of a partial program M is given in terms
of a transition system (denoted as Tr(M)). Given a partial program M with n
threads, let C = {1, . . . , n} represent the set of threads of M .
– State space. Each state s ∈ S of Tr(M) contains input and local variable

valuations and locations for each thread in C, and a valuation of the global
variables. In addition, it contains a value σ ∈ C∪{∗}, indicating which (if any)
thread is currently scheduled. The initial state contains the initial locations
of all threads and the initial valuations ρ0, and the value ∗ indicating that
no thread is currently scheduled.

– Transition. The transition function Δ defines interleaving semantics for par-
tial programs. There are two types of transitions: thread transitions, that
model one step of a scheduled thread, and environment transitions, that
model input from the environment and the scheduler. For every c ∈ C, there
exists a thread transition labeled c from a state s to a state s′ if and only if
there exists a transition (q, g, a, q′) of c such that (i) σ = c in s (indicating
that c is scheduled) and σ = ∗ in s′, (ii) the location of c is q in s and
q′ in s′, (iii) the guard g evaluates to true in s, and (iv) the valuation of
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local variables of c and global variables in s is obtained from the valuation
of variables in s′ by performing the operation a. There is an environment
transition labeled c from state s to state s′ in Tr(M) if and only if (i) the
value σ in s is ∗ and the value σ in s′ is c and (ii) the valuations of variables
in s and s′ differ only in input variables of the thread c.

2.2 The Performance Model

We define a flexible and expressive performance model via a weighted automaton
that specifies costs of actions. A performance automaton W is a tuple W =
(QW , Σ, δ, q0, γ), whereQW is a set of states,Σ is a finite alphabet, δ : QW×Σ →
QW is a transition relation, q0 is an initial location and γ is a cost function
γ : QW ×Σ×QW → Q. The labels in Σ represent (concurrency related) actions
that incur costs, while the values of the function γ specify these costs. The
symbols in Σ are matched with the actions performed by the system to which
the performance measures are applied. A special symbol ot ∈ Σ denotes that
none of the tracked actions occurred. The costs that can be specified in this way
include for example the cost of locking, the access to the (shared) main memory
or the cost of context switches.

q0(l, 3) (cs, 2)

(m, 5), (ot, 1)

Fig. 2. Perf. aut

An example specification that uses the costs mentioned
above is the automaton W in Figure 2. The automaton
describes the costs for locking (l), context switching (cs),
and main memory access (m). Specifying the costs via a
weighted automaton is more general than only specifying
a list of costs. For example, automaton based specification
enables us to model a cache, and the cost of reading from
a cache versus reading from the main memory, as shown
in Figure 5 in Section 5. Note that the performance model can be fixed for
a particular architecture. This eliminates the need to construct a performance
model for the synthesis of each partial program.

2.3 The Partial Program Resolution Problem

Weighted probabilistic transition system (WPTS). A probabilistic transition sys-
tem (PTS) is a generalization of a transition system with a probabilistic tran-
sition function. Formally, let D(S) denote the set of probability distributions
over S. A PTS consists of a tuple 〈S,A,Δ, s0〉 where S, A, s0 are defined as
for transition systems, and Δ : S × A → D(S) is probabilistic, i.e., given a
state and an action, it returns a probability distribution over successor states. A
WPTS consists of a PTS and a weight function γ : S × A× S → Q ∪ {∞} that
assigns costs to transitions. An execution of a weighted probabilistic transition
system is an infinite sequence of the form (s0a0s1a2 . . .) where si ∈ S, ai ∈ A,
and Δ(si, ai)(si+1) > 0, for all i ≥ 0. We now define boolean and quantitative
objectives for WPTS.



Quantitative Synthesis for Concurrent Programs 249

Safety objectives. A safety objective SafetyB is defined by a set B of “bad” states
and requires that states in B are never present in an execution. An execution
e = (s0a0s1a2 . . .) is safe (denoted by e ∈ SafetyB) if si ∈ B, for all i ≥ 0.
Limit-average and limit-average safety objectives. The limit-average objec-
tive assigns a real-valued quantity to every infinite execution e. We have
LimAvgγ(s0a0s1a1s2 . . .) = lim supn→∞

1
n

∑n
i=0 γ((si, a, si+1)) if there are no

infinite cost transitions, and ∞ otherwise. The limit-average safety objective
(defined by γ and B) is a lexicographic combination of a safety and a limit-
average objective: LimAvgB

γ (e) = LimAvgγ(e), if e ∈ SafetyB, and ∞ otherwise.
Limit-average safety objectives can be reduced to limit-average objectives by
making states in B absorbing (states with only self-loop transitions) and assign-
ing the self-loop transitions the weight ∞.
Value of WPTS. Given a WPTS T with weight function γ, a policy pf :
(S × A)∗ × S → A is a function that given a sequence of states and actions
chooses an action. A policy pf defines a unique probability measure on the ex-
ecutions and let Epf (·) be the associated expectation measure. Given a WPTS
T with weight function γ, and a policy pf , the value Val(T, γ, SafetyB, pf ) is
the expected value Epf (LimAvgB

γ ) of the limit-average safety objective. The
value of the WPTS is the supremum value over all policy functions, i.e.,
Val(T, γ, SafetyB) = suppf Val(T, γ, SafetyB, pf ).
Schedulers. A scheduler has a finite set of internal memory states QSch. At each
step, it considers all the active threads and chooses one either (i) nondeterministi-
cally (nondeterministic schedulers) or (ii) according to a probability distribution
(probabilistic schedulers), which depends on the current internal memory state.
Composing a program with a scheduler and a performance model. In order to
evaluate the performance of a program, we need to take into account the sched-
uler and the performance model. Given a program P , a scheduler Sch, and a
performance model W , we construct a WPTS, denoted Tr(P, Sch,W ), with a
weight function γ as follows. A state s of Tr(P, Sch,W ) is composed of a state of
the transition system of P (Tr(P )), a state of the scheduler Sch and a state of the
performance model W . The transition function matches environment transitions
of Tr(P ) with the scheduler transitions (which allows the scheduler to schedule
threads) and it matches thread transitions with the performance model tran-
sitions. The weight function γ assigns costs to edges as given by the weighted
automaton W . Furthermore, as the limit average objective is defined only for in-
finite executions, for terminating safe executions of the program we add an edge
back to the initial state. The value of the limit average objective function of the
infinite execution is the same as the average over the original finite execution.
Note that the performance model can specify a locking cost, while the program
model does not specifically mention locking. We thus need to specifically desig-
nate which shared memory variables are used for locking.
Correctness. We restrict our attention to safety conditions for correctness. We
illustrate how various correctness conditions for concurrent programs can be
modelled as Safety objectives: (a) Data-race freedom. Data-races occur when two
or more threads access the same shared memory location and one of the accesses
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is a write access. We can check for absence of data-races by denoting as unsafe
states those in which there exist two enabled transitions (with at least one being a
write) accessing a particular shared variable, from different threads. (b) Deadlock
freedom. One of the major problems of synchronizing programs using blocking
primitives such as locks is that deadlocks may arise. A deadlock occurs when two
(or more) threads are waiting for each other to finish an operation. Deadlock-
freedom is a safety property. The unsafe states are those where there exists two
or more threads with each one waiting for a resource held by the next one.
Value of a program and of a partial program. For P , Sch, W as before and SafetyB

is a safety objective, we define the value of the program using the composition of
P , Sch and W as: ValProg(P, Sch,W, SafetyB) = Val(Tr(P, Sch,W ), γ, SafetyB).
For be a partial program M , let P be the set of all allowed programs. The value
of M , ValParProg(M, Sch,W, SafetyB) = minP∈P ValProg(P, Sch,W, SafetyB).
Partial Program resolution problem. The central technical questions we address
are as follows: (1) The partial program resolution optimization problem consists
of a partial program M , a scheduler Sch, a performance model W and a safety
condition SafetyB, and asks for a program P allowed by the partial program
M such that the value ValProg(P, Sch,W, SafetyB) is minimized. Informally, we
have: (i) if the value ValParProg(M, Sch,W, SafetyB) is ∞, then no safe program
exists; (ii) if it is finite, then the answer is the optimal safe program, i.e., a
correct program that is optimal with respect to the performance model. The
partial program resolution decision problem consists of the above inputs and a
rational threshold λ, and asks whether ValParProg(M, Sch,W, SafetyB) ≤ λ.

3 Quantitative Games on Graphs

Games for synthesis of controllers and sequential systems from specifications
have been well studied in literature. We show how the partial program resolution
problems can be reduced to quantitative imperfect information games on graphs.
We also show that the arising technical questions on game graphs is different
from the classical problems on quantitative graph games.

3.1 Imperfect Information Games for Partial Program Resolution

An imperfect information stochastic game graph is a tuple G =
〈S,A,En, Δ, (S1, S2), O, η, s0〉, where S is a finite set of states, A is a finite set of
actions, En : S → 2A \ ∅ is a function that maps every state s to the non-empty
set of actions enabled at s, and s0 is an initial state. The transition function
Δ : S × A → D(S) is a probabilistic function which maps a state s and an en-
abled action a to the probability distribution Δ(s, a) over the successor states.
The sets (S1, S2) define a partition of S into Player-1 and Player-2 states, re-
spectively; and the function η : S → O maps every state to an observation from
the finite observation set O. We refer to these as ImpIn 2 1

2 -player game graphs:
ImpIn for imperfect information, 2 for the two players and 1

2 for the probabilistic
transitions.
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Special cases. We also consider ImpIn 2-player games (no randomness), perfect
information games (no partial information), MDPs (only one enabled action for
Player 1 states) and Markov chains (only one enabled action for all states) as
special cases of ImpIn 2 1

2 -player games. For full definitions, see [4].
The informal semantics for an imperfect information game is as follows: the

game starts with a token being placed on the initial state. In each step, Player 2
can observe the exact state s in which the token is placed whereas, Player 1
can observe only η(s). If the token is in S1 (resp. S2), Player 1 (resp. Player 2)
chooses an action a enabled in s. The token is then moved to a successor of s
based on the distribution Δ(s, a).

A strategy for Player 1 (Player 2) is a “recipe” that chooses an action for her
based on the history of observations (states). Memoryless Player 1 (Player 2)
strategies are those which choose an action based only on the current observation
(state). We denote the set of Player 1 and Player 2 strategies by Σ and Γ ,
respectively, and the set of Player 1 and Player 2 memoryless strategies by ΣM

and ΓM , respectively.
Probability space and objectives Given a pair of Player 1 and Player 2 strategies
(σ, τ), it is possible to define a unique probability measure Prσ,τ (·) over the set
of paths of the game graph. For details, refer to any standard work on 2 1

2 -player
stochastic games (for example, [18]).

In a graph game, the goal of Player 1, i.e., the objective is given as a boolean
or quantitative function from paths in the game graph to either {0, 1}, or R.
We consider only the LimAvg-Safety objectives defined in Section 2. Player 1
tries to maximize the expected value of the objective. The value of a Player 1
strategy σ is defined as ValGame(f,G, σ) = supτ∈Γ E

σ,τ [f ] and the value of the
game is defined as ValGame(f,G) = infσ∈Σ ValGame(f,G, σ).

For a more detailed exposition on ImpIn 2 1
2 -player graph games and the formal

definition of strategies, objectives, and values, see [4].
Decision problems. Given a game graph G, an objective f and a rational thresh-
old q ∈ Q, the general decision problem (resp. memoryless decision prob-
lem) asks if there is a Player 1 strategy (resp. memoryless strategy) σ with
ValGame(f,G, σ) ≤ q. Similarly, the value problem (memoryless value problem)
is to compute infσ∈Σ ValGame(f,G, σ) (minσ∈ΣM ValGame(f,G, σ) resp.). Tra-
ditional game theory study always considers the general decision problem which
is undecidable for limit-average objectives [8] in imperfect information games.

Theorem 1. [8] The decision problems for LimAvg and LimAvg-Safety objec-
tives are undecidable for ImpIn 2 1

2 - and ImpIn 2-player game graphs.

However, we show here that the partial program resolution problems reduce to
the memoryless decision problem for imperfect information games.

Theorem 2. Given a partial program M , a scheduler Sch, a performance model
W , and a correctness condition φ, we construct an exponential-size ImpIn 2 1

2 -
player game graph Gp

M with a LimAvg-Safety objective such that the memoryless
value of Gp

M is equal to ValParProg(M, Sch,W, Safety).
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The proof relies on a construction of a game graph similar to the product of
a program, a scheduler and a performance model. Player 2 chooses the thread
to be scheduled and Player 1 resolves the nondeterminism when the scheduled
thread c is in a location in Sk(c). The crucial detail is that Player 1 can observe
only the location of the thread and not the valuations of the variables. This
partial information gives us a one-one correspondence between the memoryless
strategies of Player 1 and programs allowed by the partial program.

3.2 Complexity of ImpIn Games and Partial-Program Resolution

We establish complexity bounds for the relevant memoryless decision problems
and use them to establish upper bounds for the partial program resolution prob-
lem. We also show a matching lower bound. First, we state a theorem on com-
plexity of MDPs.

Theorem 3. [9] The memoryless decision problem for LimAvg-Safety objec-
tives can be solved in polynomial time for MDPs.

Theorem 4. The memoryless decision problems for Safety, LimAvg, and
LimAvg-Safety objectives are Np-complete for ImpIn 2 1

2 - and ImpIn 2-player
game graphs.

For the lower bound we show a reduction from 3SAT problem and for the upper
bound we use memoryless strategies as polynomial witness and Theorem 3 for
polynomial time verification procedure.

Remark 1. The Np-completeness of the memoryless decision problems rules out
the existence of the classical strategy improvement algorithms as their exis-
tence implies existence of randomized sub-exponential time algorithms (using
the techniques of [1]), and hence a strategy improvement algorithm would imply
a randomized sub-exponential algorithm for an Np-complete problem.

Theorem 5. The partial-program resolution decision problem is Nexp-complete
for both nondeterministic and probabilistic schedulers.

Proof. (a) The Nexp upper bound follows by an exponential reduction to the
ImpIn games’ memoryless decision problem (Theorem 2), and by Theorem 4.

(b) We reduce the Nexp-hard problem succinct 3-SAT (see [14]) to the partial
program resolution problem to show Nexp-hardness. The idea is to construct a
two thread partial program (shown in Figure 3) where Thread 1 chooses a clause
from the formula and Thread 2 will determine the literals in the clause and then,
enters an error state if the clause is not satisfied.

Given an instance of succinct 3-SAT over variables v1, . . . vM , i.e., a circuit
Q which takes pairs (i, j) and returns the jth literal in the ith clause. Thread 1
just changes the global variable i, looping through all clause indices.
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GLOBALS: var i;

THREAD 1:
while (true)

i = (i + 1) mod N;

THREAD 2:
choice: {

val[v1] = true;
val[v1] = false;

}
...

while (true)
l1 = compute_Q(i,1);
l2 = compute_Q(i,2);
l3 = compute_Q(i,3);
if(not (val[l1] ∨

val[l2] ∨
val[l3]))

assert(false);

Fig. 3. The reduction of
succinct 3-SAT to partial
program resolution

Thread 2 will first non-deterministically choose a
valuation V for all literals. It then does the following
repeatedly: (a) Read global i, (b) Compute the ith

clause by solving the circuit value problem for Q with
(i, 1), (i, 2) and (i, 3) as inputs. This can be done in
polynomial time. (c) If the ith clause is not satisfied
with the valuation V , it goes to an error state.

To show the validity of the reduction: (i) Given
a satisfying valuation for Q, choosing that valuation
in the first steps of Thread 2 will obviously gener-
ate a safe program. (ii) Otherwise, for every valua-
tion V chosen in the partial program, there exists a
clause (say k) which is not satisfied. We let Thread 1
run till i becomes equal to k and then let Thread 2
run. The program will obviously enter the error state.
Note that the result is independent of schedulers
(non-deterministic or probabilistic), and performance
models (as it uses only safety objectives). ��

4 Practical Solutions for Partial-Program Resolution

Algorithm 1. Strategy Elimination
Input: M : partial program;

W : performance model;
Sch: scheduler;
Safety: safety condition

Output: Candidates : Strategies
StrategySet ← CompleteTree(M)
{A complete strategy tree}
Candidates ← ∅
while StrategySet �= ∅ do

Choose Tree from StrategySet
σ ←Root(Tree)
if PartialCheck(σ, Safety) then

StrategySet =
StrategySet ∪ children(Tree)

if Tree is singleton then
Candidates = Candidates ∪{σ}

return Candidates

We present practical solutions for the
computationally hard (Nexp-complete)
partial-program resolution problem.
Strategy elimination. We present the
general strategy enumeration scheme for
partial program resolution. We first intro-
duce the notions of a partial strategy and
strategy tree.
Partial strategy and strategy trees. A par-
tial memoryless strategy for Player 1 is a
partial function from observations to ac-
tions. A strategy tree is a finite branch-
ing tree labelled with partial memoryless
strategies of Player 1 such that: (a) Ev-
ery leaf node is labelled with a complete
strategy; (b) Every node is labelled with
a unique partial strategy; and (c) For any
parent-child node pair, the label of the
child (σ2) is a proper extension of the la-

bel of parent (σ1), i.e., σ1(o) = σ2(o) when both are defined and the domain of
σ2 a proper superset of σ1. A complete strategy tree is one where all Player 1
memoryless strategies are present as labels.

In the strategy enumeration scheme, we maintain a set of candidate strategy
trees and check each one for partial correctness. If the root label of the tree fails
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the partial correctness check, then remove the whole tree from the set. Otherwise,
we replace it with the children of the root node. The initial set is a single complete
strategy tree. In practice, the choice of this tree can be instrumental in the
efficiency of partial correctness checks. Trees which first fix the choices that help
the partial correctness check to identify an incorrect partial strategy are more
useful. The partial program resolution scheme is shown in Algorithm 1, and the
details are presented in the full version.

The PartialCheck function checks for the partial correctness of partial strate-
gies, and returns “Incorrect” if it is able to prove that all strategies compatible
with the input are unsafe, or it returns “Don’t know”. In practice, for the partial
correctness checks the following steps can be used: (a) checking of lock discipline
to prevent deadlocks; and (b) simulation of the partial program on small inputs;
The result of the scheme is a set of candidate strategies for which we evaluate
full correctness and compute the value.

Evaluation of a memoryless strategy. Fixing a memoryless Player 1 strategy
in a ImpIn 2 1

2 -player game for partial program resolution gives us (i) a non-
deterministic transition system in the case of a non-deterministic scheduler, or
(ii) an MDP in case of probabilistic schedulers. These are perfect-information
games and hence, can be solved efficiently. In case (i), we use a standard min-
mean cycle algorithm (for example, [12]) to find the value of the strategy . In case
(ii), we focus on solving Markov chains with limit-average objectives efficiently.
Markov chains arise from MDPs due to two reasons: (1) In many cases, program
input can be abstracted away using data abstraction and the problem is reduced
to solving a LimAvg Markov Chain. (2) The most efficient algorithm for LimAvg
MDPs is the strategy improvement algorithm [9], and each step of the algorithm
involves solving a Markov chain (for standard techniques, see [9]).

In practice, a large fraction of concurrent programs are designed to ensure
progress condition called lock-freedom [10]. Lock-freedom ensures that some
thread always makes progress in a finite number of steps. This leads to Markov
chains with a directed-acyclic tree like structure with only few cycles intro-
duced to eliminate finite executions as mentioned in Section 2. We present a for-
ward propagation technique to compute stationary probabilities for these Markov
chains. Computing the stationary distribution for a Markov chain involves solv-
ing a set of linear equalities using Gaussian elimination. For Markov chains that
satisfy the special structure, we speed up the process by eliminating variables
in the tree by forward propagating the root variable. Using this technique, we
were able to handle the special Markov chains of up to 100,000 states in a few
seconds in the experiments.

Quantitative probabilistic abstraction. To improve the performance of the
synthesis, we use standard abstraction techniques. However, for the partial pro-
gram resolution problem we require abstraction that also preserves quantitative
objectives such as LimAvg and LimAvg-Safety. We show that an extension of
probabilistic bisimilarity [13] with a condition for weight function preserves the
quantitative objectives.
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Quantitative probabilistic bisimilarity. A binary equivalence relation ≡ on the
states of a MDP is a quantitative probabilistic bisimilarity relation if (a) s ≡ s′

iff s and s′ are both safe or both unsafe; (b) ∀s ≡ s′, a ∈ A :
∑

t∈C Δ(s, a)(t) =∑
t∈C Δ(s′, a)(t) where C is an equivalence class of ≡; and (c) s ≡ s′∧t ≡ t′ =⇒

γ(s, a, s′) = γ(t, a, t′). The states s and s′ are quantitative probabilistic bisimilar
if s ≡ s′.

A quotient of an MDP G under quantitative probabilistic bisimilarity relation
≡ is an MDP (G/≡) where the states are the equivalence classes of ≡ and:
(i) γ(C, a, C′) = γ(s, a, s′) where s ∈ C and s′ ∈ C′, and (ii) Δ(C, a)(C′) =∑

t′∈C′ Δ′(s, a)(t) where s ∈ C.

Theorem 6. Given an MDP G, a quantitative probabilistic bisimilarity relation
≡, and a limit-average safety objective f , the values in G and G/≡ coincide.

Consider a standard abstraction technique, data abstraction, which erases the
value of given variables. We show that under certain syntactic restrictions
(namely, that the abstracted variables do not appear in any guard statements),
the equivalence relation given by the abstraction is a quantitative probabilistic
bisimilarity relation and thus is a sound abstraction with respect to any limit-
average safety objective. We also consider a less coarse abstraction, equality and
order abstraction, which preserves equality and order relations among given vari-
ables. This abstraction defines a quantitative probabilistic bisimilarity relation
under the syntactic condition that the guards test only for these relations, and
no arithmetic is used on the abstracted variables.

5 Experiments

We describe the results obtained by applying our prototype implementation of
techniques described above on four examples. In the examples, obtaining a cor-
rect program is not difficult and we focus on the synthesis of optimal programs.

The partial programs were manually abstracted (using the data and order ab-
stractions) and translated into PROMELA, the input language of the SPIN
model checker [11]. The abstraction step was straightforward and could be
automated. The transition graphs were generated using SPIN. Then, our tool
constructed the game graph by taking the product with the scheduler and perfor-
mance model. The resulting game was solved for the LimAvg-Safety objectives
using techniques from Section 4. The examples we considered were small (each
thread running a procedure with 15 to 20 lines of code). The synthesis time was
under a minute for all but one case (Example 2 with larger values of n), where it
was under five minutes. The experiments were run on a dual-core 2.5Ghz machine
with 2GB of RAM. For all examples, the tool reports normalized performance
metrics where higher values indicate better performance.

Example 1. We consider the producer-consumer example described in Section 1,
with two consumer and two producer threads. The partial program models a four
slot concurrent buffer which is operated on by producers and consumers. Here, we
try to synthesize lock granularity. The synthesis results are presented in Table 1.
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Table 1. Performance of shared
buffers under various locking
strategies: LC and CC are the
locking cost and data copying cost

LC: CC Granularity Performance

1:100
Coarse 1
Medium 1.15

Fine 1.19

1:20
Coarse 1
Medium 1.14

Fine 1.15

1:10
Coarse 1
Medium 1.12

Fine 1.12

1:2
Coarse 1
Medium 1.03

Fine 0.92

1:1
Coarse 1
Medium 0.96

Fine 0.80

The most important parameters in the perfor-
mance model are the cost of locking/unlocking
l and the cost c of copying data from/to shared
memory. If c was higher than l (by 100:1), then
the fine-grained locking approach is better (by
19 percent), and is the result of synthesis. If
the cost l is equal to c, then the coarse-grained
locking approach was found to perform better
(by 25 percent), and thus the coarse-grained
program is the result of the synthesis.

Example 2. We consider the optimistic con-
currency example described in detail in Sec-
tion 1. In the code (Figure 1), the number
of operations performed optimistically is con-
trolled by the variable n. We synthesized the
optimal n for various performance models and
the results are summarized in Table 2. We
were able to find correspondence between our
models and the program behavior on a desk-
top machine: (a) We observed that the graph

of performance-vs-n has a local maximum when we tested the partial pro-
gram on the desktop. In our experiments, we were able to find parameters for
the performance model which have similar performance-vs-n curves. (b) Fur-
thermore, by changing the cost of locking operations on a desktop, by in-
troducing small delays during locks, we were able to observe performance
results similar to those produced by other performance model parameters.

Table 2. Optimistic performance: WC, CC,
and LWO are the work cost, lock cost, and
the length of the work operation

WC : LC LWO
Performance for n

1 2 3 4 5

20:1 1 1.0 1.049 1.052 1.048 1.043
20:1 2 1.0 0.999 0.990 0.982 0.976
10:1 1 1.0 1.134 1.172 1.187 1.193
10:1 2 1.0 1.046 1.054 1.054 1.052

Example 3. We synthesize the op-
timal number of threads for work
sharing (pseudocode in the full ver-
sion). For independent operations,
multiple threads utilize multiple
processors more efficiently. How-
ever, for small number of opera-
tions, thread initialization cost will
possibly overcome any performance
gain. The experimental results are
summarized in Figure 4. The x- and
y- axes measure the initialization cost and performance, respectively. Each plot
in the graph is for a different number of threads. The two graphs (a) and (b) are
for a different amounts of work to be shared (the length of the array to be op-
erated was varied between 16, and 32). Further graphs are in the full version.
As it can be seen from the figure, for smaller amounts of work, spawning fewer
threads is usually better. However, for larger amounts of work, greater number
of threads outperforms smaller number of threads, even in the presence of higher
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Fig. 4. Work sharing for initialization costs and thread counts: More work is shared in
case (b) than case (a)

initialization costs. The code was run on a desktop (with scaled parameters) and
similar results were observed.

in cache ∧ dirty

in cache ∧ !dirty

!in cache ∧ !dirty

?WRITE /

!EVICT (0)

?FLUSH /

!EVICT (MEM WRITE)

?EVICT /

⊥ (0)

?READ /

!FLUSH

(MEM READ)

?FLUSH / ⊥ (0)

?READ / ⊥ (CACHE READ)

?WRITE / ⊥ (CACHE READ)

?READ / ⊥ (CACHE READ)

Fig. 5. Perf. aut. for Example 4

Example 4. We study the effects of
processor caches on performance using
a simple performance model for caches.
A cache line is modeled as in Figure 5. It
assigns differing costs to read and write
actions if the line is cached or not. The
performance model is the synchronous
product of one such automata per mem-
ory line. The only actions in the per-
formance model after the synchronous
product (caches synchronize on evict
and flush) are READ and WRITE ac-
tions. These actions are matched with
the transitions of the partial program.

The partial program is a pessimistic
variant of Figure 1 (pseudocode in full
version). Increasing n, i.e., the number of operations performed under locks,
increases the temporal locality of memory accesses and hence, increase in per-
formance is expected. We observed the expected results in our experiments. For
instance, increasing n from 1 to 5 increases the performance by a factor of 2.32
and increasing n from to 10 gives an additional boost of about 20%. The result
of the synthesis is the program with n = 10.

6 Conclusion

Summary. Our main contributions are: (1) we developed a technique for syn-
thesizing concurrent programs that are both correct and optimal; (2) we in-
troduced a parametric performance model providing a flexible framework for
specifying performance characteristics of architectures; (3) we showed how to
apply imperfect-information games to the synthesis of concurrent programs and
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established the complexity for the game problems that arise in this context (4)
we developed and implemented practical techniques to efficiently solve partial-
program synthesis, and we applied the resulting prototype tool to several exam-
ples that illustrate common patterns in concurrent programming.

Future work. Our approach examines every correct strategy. There is thus the
question whether there exists a practical algorithm that overcomes this limi-
tation. Also, we did not consider the question which solution(s) to present to
the programmer in case there is a number of correct strategies with the same
performance. Furthermore, one could perhaps incorporate some information on
the expected workload to the performance model. There are several other future
research directions: one is to consider the synthesis of programs that access con-
current data structures; another is to create benchmarks from which performance
automata can be obtained automatically.
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Abstract. We consider Markov decision processes (MDPs) with ω-regular spec-
ifications given as parity objectives. We consider the problem of computing the
set of almost-sure winning states from where the objective can be ensured with
probability 1. The algorithms for the computation of the almost-sure winning set
for parity objectives iteratively use the solutions for the almost-sure winning set
for Büchi objectives (a special case of parity objectives). Our contributions are
as follows: First, we present the first subquadratic symbolic algorithm to com-
pute the almost-sure winning set for MDPs with Büchi objectives; our algorithm
takes O(n · √m) symbolic steps as compared to the previous known algorithm
that takes O(n2) symbolic steps, where n is the number of states and m is the
number of edges of the MDP. In practice MDPs often have constant out-degree,
and then our symbolic algorithm takes O(n · √n) symbolic steps, as compared
to the previous known O(n2) symbolic steps algorithm. Second, we present a
new algorithm, namely win-lose algorithm, with the following two properties: (a)
the algorithm iteratively computes subsets of the almost-sure winning set and its
complement, as compared to all previous algorithms that discover the almost-sure
winning set upon termination; and (b) requires O(n ·√K) symbolic steps, where
K is the maximal number of edges of strongly connected components (scc’s) of
the MDP. The win-lose algorithm requires symbolic computation of scc’s. Third,
we improve the algorithm for symbolic scc computation; the previous known
algorithm takes linear symbolic steps, and our new algorithm improves the con-
stants associated with the linear number of steps. In the worst case the previous
known algorithm takes 5·n symbolic steps, whereas our new algorithm takes 4·n
symbolic steps.

1 Introduction

Markov decision processes. The model of systems in verification of probabilistic
systems are Markov decision processes (MDPs) that exhibit both probabilistic and non-
deterministic behavior [12]. MDPs have been used to model and solve control prob-
lems for stochastic systems [10]: there, nondeterminism represents the freedom of the
controller to choose a control action, while the probabilistic component of the behav-
ior describes the system response to control actions. MDPs have also been adopted
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as models for concurrent probabilistic systems [6], probabilistic systems operating in
open environments [18], and under-specified probabilistic systems [1]. A specification
describes the set of desired behaviors of the system, which in the verification and con-
trol of stochastic systems is typically an ω-regular set of paths. The class of ω-regular
languages extends classical regular languages to infinite strings, and provides a robust
specification language to express all commonly used specifications, such as safety, live-
ness, fairness, etc [21]. Parity objectives are a canonical way to define such ω-regular
specifications. Thus MDPs with parity objectives provide the theoretical framework to
study problems such as the verification and control of stochastic systems.

Qualitative and quantitative analysis. The analysis of MDPs with parity objectives
can be classified into qualitative and quantitative analysis. Given an MDP with parity
objective, the qualitative analysis asks for the computation of the set of states from
where the parity objective can be ensured with probability 1 (almost-sure winning). The
more general quantitative analysis asks for the computation of the maximal probability
at each state with which the controller can satisfy the parity objective.

Importance of qualitative analysis. The qualitative analysis of MDPs is an important
problem in verification that is of interest irrespective of the quantitative analysis prob-
lem. There are many applications where we need to know whether the correct behavior
arises with probability 1. For instance, when analyzing a randomized embedded sched-
uler, we are interested in whether every thread progresses with probability 1 [8]. Even
in settings where it suffices to satisfy certain specifications with probability p < 1,
the correct choice of p is a challenging problem, due to the simplifications introduced
during modeling. For example, in the analysis of randomized distributed algorithms it
is quite common to require correctness with probability 1 (see, e.g., [16,15,20]). Fur-
thermore, in contrast to quantitative analysis, qualitative analysis is robust to numerical
perturbations and modeling errors in the transition probabilities, and consequently the
algorithms for qualitative analysis are combinatorial. Finally, for MDPs with parity ob-
jectives, the best known algorithms and all algorithms used in practice first perform
the qualitative analysis, and then performs a quantitative analysis on the result of the
qualitative analysis [6,7,5]. Thus qualitative analysis for MDPs with parity objectives is
one of the most fundamental and core problems in verification of probabilistic systems.
One of the key challenges in probabilistic verification is to obtain efficient and sym-
bolic algorithms for qualitative analysis of MDPs with parity objectives, as symbolic
algorithms allow to handle MDPs with a large state space.

Previous results. The qualitative analysis for MDPs with parity objectives is achieved
by iteratively applying solutions of the qualitative analysis of MDPs with Büchi objec-
tives [6,7,5]. The qualitative analysis of an MDP with a parity objective with d priorities
can be achieved by O(d) calls to an algorithm for qualitative analysis of MDPs with
Büchi objectives, and hence we focus on the qualitative analysis of MDPs with Büchi
objectives. The classical algorithm for qualitative analysis for MDPs with Büchi objec-
tives works in O(n · m) time, where n is the number of states, and m is the number
of edges of the MDP [6,7]. The classical algorithm can be implemented symbolically,
and it takes at most O(n2) symbolic steps. An improved algorithm for the problem was
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given in [4] that works in O(m · √m) time. The algorithm of [4] crucially depends on
maintaining the same number of edges in certain forward searches. Thus the algorithm
needs to explore edges of the graph explicitly and is inherently non-symbolic. In the
literature, there is no symbolic subquadratic algorithm for qualitative analysis of MDPs
with Büchi objectives.

Our contribution. In this work our main contributions are as follows.

1. We present a new and simpler subquadratic algorithm for qualitative analysis of
MDPs with Büchi objectives that runs in O(m · √m) time, and show that the al-
gorithm can be implemented symbolically. The symbolic algorithm takes at most
O(n · √m) symbolic steps, and thus we obtain the first symbolic subquadratic al-
gorithm. In practice, MDPs often have constant out-degree: for example, see [9]
for MDPs with large state space but constant number of actions, or [10,17] for ex-
amples from inventory management where MDPs have constant number of actions
(the number of actions correspond to the out-degree of MDPs). For MDPs with
constant out-degree our new symbolic algorithm takes O(n · √n) symbolic steps,
as compared to O(n2) symbolic steps of the previous best known algorithm.

2. All previous algorithms for the qualitative analysis of MDPs with Büchi objectives
iteratively discover states that are guaranteed to be not almost-sure winning, and
only when the algorithm terminates the almost-sure winning set is discovered. We
present a new algorithm (namely win-lose algorithm) that iteratively discovers both
states in the almost-sure winning set and its complement. Thus if the problem is to
decide whether a given state s is almost-sure winning, and the state s is almost-sure
winning, then the win-lose algorithm can stop at an intermediate iteration unlike all
the previous algorithms. Our algorithm works in timeO(

√
KE ·m) time, whereKE

is the maximal number of edges of any scc of the MDP (in this paper we write scc
for maximal scc). We also show that the win-lose algorithm can be implemented
symbolically, and it takes at most O(

√
KE · n) symbolic steps.

3. Our win-lose algorithm requires to compute the scc decomposition of a graph in
O(n) symbolic steps. The scc decomposition problem is one of the most fundamen-
tal problem in the algorithmic study of graph problems. The symbolic scc decompo-
sition problem has many other applications in verification: for example, checking
emptiness of ω-automata, and bad-cycle detection problems in model checking,
see [2] for other applications. An O(n · log n) symbolic step algorithm for scc de-
composition was presented in [2], and the algorithm was improved in [11]. The
algorithm of [11] is a linear symbolic step scc decomposition algorithm that re-
quires at most min{ 5 · n, 5 ·D ·N +N } symbolic steps, where D is the diameter
of the graph, and N is the number of scc’s of the graph. We present an improved
version of the symbolic scc decomposition algorithm. Our algorithm improves the
constants of the number of the linear symbolic steps. Our algorithm requires at most
min{ 3 ·n+N, 5 ·D∗ +N } symbolic steps, where D∗ is the sum of the diameters
of the scc’s of the graph. Thus, in the worst case, the algorithm of [11] requires 5 ·n
symbolic steps, whereas our algorithm requires 4 ·n symbolic steps. Moreover, the
number of symbolic steps of our algorithm is always bounded by the number of
symbolic steps of the algorithm of [11] (i.e. our algorithm is never worse).
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Our experimental results show that our new algorithms perform better than the previous
known algorithms both for qualitative analysis of MDPs with Büchi objectives and
symbolic scc computation.

2 Definitions

Markov decision processes (MDPs). A Markov decision process (MDP) G =
((S,E), (S1, SP ), δ) consists of a directed graph (S,E), a partition (S1,SP ) of the fi-
nite set S of states, and a probabilistic transition function δ: SP → D(S), where D(S)
denotes the set of probability distributions over the state space S. The states in S1 are
the player-1 states, where player 1 decides the successor state, and the states in SP are
the probabilistic (or random) states, where the successor state is chosen according to
the probabilistic transition function δ. We assume that for s ∈ SP and t ∈ S, we have
(s, t) ∈ E iff δ(s)(t) > 0, and we often write δ(s, t) for δ(s)(t). For a state s ∈ S, we
write E(s) to denote the set { t ∈ S | (s, t) ∈ E } of possible successors. For technical
convenience we assume that every state in the graph (S,E) has at least one outgoing
edge, i.e., E(s) = ∅ for all s ∈ S.

Plays and strategies. An infinite path, or a play, of the game graph G is an infinite
sequence ω = 〈s0, s1, s2, . . .〉 of states such that (sk, sk+1) ∈ E for all k ∈ N. We
write Ω for the set of all plays, and for a state s ∈ S, we write Ωs ⊆ Ω for the set of
plays that start from the state s. A strategy for player 1 is a function σ: S∗ ·S1 → D(S)
that chooses the probability distribution over the successor states for all finite sequences
w ∈ S∗ · S1 of states ending in a player-1 state (the sequence represents a prefix of
a play). A strategy must respect the edge relation: for all w ∈ S∗ and s ∈ S1, if
σ(w · s)(t) > 0, then t ∈ E(s). A strategy is deterministic (pure) if it chooses a
unique successor for all histories (rather than a probability distribution), otherwise it
is randomized. Player 1 follows the strategy σ if in each player-1 move, given that the
current history of the game is w ∈ S∗ · S1, she chooses the next state according to
σ(w). We denote by Σ the set of all strategies for player 1. A memoryless player-1
strategy does not depend on the history of the play but only on the current state; i.e., for
all w,w′ ∈ S∗ and for all s ∈ S1 we have σ(w ·s) = σ(w′ ·s). A memoryless strategy
can be represented as a function σ: S1 → D(S), and a pure memoryless strategy can
be represented as σ : S1 → S.

Once a starting state s ∈ S and a strategy σ ∈ Σ is fixed, the outcome of the MDP
is a random walk ωσ

s for which the probabilities of events are uniquely defined, where
an event A ⊆ Ω is a measurable set of plays. For a state s ∈ S and an event A ⊆ Ω,
we write Prσ

s (A) for the probability that a play belongs to A if the game starts from the
state s and player 1 follows the strategy σ.

Objectives. We specify objectives for the player 1 by providing a set of winning plays
Φ ⊆ Ω. We say that a play ω satisfies the objective Φ if ω ∈ Φ. We consider ω-
regular objectives [21], specified as parity conditions. We also consider the special case
of Büchi objectives.

– Büchi objectives. Let T be a set of target states. For a play ω = 〈s0, s1, . . .〉 ∈ Ω,
we define Inf(ω) = { s ∈ S | sk = s for infinitely many k } to be the set of states
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that occur infinitely often in ω. The Büchi objective requires that some state of T
be visited infinitely often, and defines the set of winning plays Büchi(T ) = { ω ∈
Ω | Inf(ω) ∩ T = ∅ }.

– Parity objectives. For c, d ∈ N, we write [c..d] = { c, c + 1, . . . , d }. Let p:
S → [0..d] be a function that assigns a priority p(s) to every state s ∈ S,
where d ∈ N. The parity objective is defined as Parity(p) = { ω ∈ Ω |
min

(
p(Inf(ω))

)
is even }. In other words, the parity objective requires that the

minimum priority visited infinitely often is even. In the sequel we will use Φ to
denote parity objectives.

Qualitative analysis: almost-sure winning. Given a player-1 objective Φ, a strategy
σ ∈ Σ is almost-sure winning for player 1 from the state s if Prσ

s (Φ) = 1. The almost-
sure winning set 〈〈1〉〉almost (Φ) for player 1 is the set of states from which player 1 has
an almost-sure winning strategy. The qualitative analysis of MDPs correspond to the
computation of the almost-sure winning set for a given objective Φ. It follows from the
results of [6,7] that for all MDPs and all reachability and parity objectives, if there is an
almost-sure winning strategy, then there is a memoryless almost-sure winning strategy.
The qualitative analysis of MDPs with parity objectives is achieved by iteratively ap-
plying the solutions of qualitative analysis for MDPs with Büchi objectives [7,5], and
hence in this work we will focus on qualitative analysis for Büchi objectives.

Theorem 1 ([6,7]). For all MDPs G and all parity objectives Φ, there exists a pure
memoryless strategy σ∗ such that for all s ∈ 〈〈1〉〉almost (Φ) we have Prσ∗

s (Φ) = 1.

Scc and bottom scc. Given a graph G = (S,E), a set C of states is an scc if for all
s, t ∈ C there is a path from s to t going through states in C. In sequel we write scc for
maximal scc. An scc C is a bottom scc if for all s ∈ C all out-going edges are in C,
i.e., E(s) ⊆ C.

Markov chains, closed recurrent sets. A Markov chain is a special case of MDP
with S1 = ∅, and hence for simplicity a Markov chain is a tuple ((S,E), δ) with a
probabilistic transition function δ : S → D(S), and (s, t) ∈ E iff δ(s, t) > 0. A
closed recurrent set C of a Markov chain is a bottom scc in the graph (S,E). Let
C =

⋃
C is closed recurrent C. It follows from the results on Markov chains [14] that for all

s ∈ S, the set C is reached with probability 1 in finite time, and for all C such that C is
closed recurrent, for all s ∈ C and for all t ∈ C, if the starting state is s, then the state
t is visited infinitely often with probability 1.

Markov chain from a MDP and memoryless strategy. Given a MDP G =
((S,E), (S1, SP ), δ) and a memoryless strategy σ∗ : S1 → D(S) we obtain a Markov
chain G′ = ((S,E′), δ′) as follows:E′ = E ∩ (SP ×S)∪{ (s, t) | s ∈ S1, σ∗(s)(t) >
0 }; and δ′(s, t) = δ(s, t) for s ∈ SP , and δ′(s, t) = σ(s)(t) for s ∈ S1 and t ∈ E(s).
We will denote by Gσ∗ the Markov chain obtained from an MDP G by fixing a memo-
ryless strategy σ∗ in the MDP.

Symbolic encoding of an MDP. All algorithms of the paper will only depend on
the graph (S,E) of the MDP and the partition (S1, SP ), and not on the probabilistic
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transition function δ. Thus the symbolic encoding of an MDP is obtained as the standard
encoding of a transition system (with an OBDD [19]), with one additional bit, and the
bit denotes whether a state belongs to S1 or SP .

3 Symbolic Algorithms for Büchi Objectives

In this section we will present a new improved algorithm for the qualitative analysis
of MDPs with Büchi objectives, and then present a symbolic implementation of the
algorithm. Thus we obtain the first symbolic subquadratic algorithm for the problem.
We start with the notion of attractors that is crucial for our algorithm.

Random and player 1 attractor. Given an MDPG, letU ⊆ S be a subset of states. The
random attractor AttrR(U) is defined inductively as follows: X0 = U , and for i ≥ 0,
let Xi+1 = Xi∪{s ∈ SP | E(s)∩Xi = ∅}∪{s ∈ S1 | E(s) ⊆ Xi }. In other words,
Xi+1 consists of (a) states in Xi, (b) player-1 states whose all successors are in Xi and
(c) random states that have at least one edge to Xi. Then AttrR(U) =

⋃
i≥0 Xi. The

definition of player-1 attractor Attr1(U) is analogous and is obtained by exchanging
the role of random states and player 1 states in the above definition.

Property of attractors. Given an MDP G, and set U of states, let A = AttrR(U).
Then fromA player 1 cannot force to avoid U , in other words, for all states in A and for
all player 1 strategies, the set U is reached with positive probability. For A = Attr1(U)
there is a player 1 memoryless strategy to ensure that the set U is reached with certainty.
The computation of random and player 1 attractor is the computation of alternating
reachability and can be achieved in O(m) time [13], and can be achieved in O(n)
symbolic steps.

3.1 A New Subquadratic Algorithm

The classical algorithm for computing the almost-sure winning set in MDPs with Büchi
objectives has O(n · m) running time, and the symbolic implementation of the algo-
rithm takes at most O(n2) symbolic steps. A subquadratic algorithm, with O(m · √m)
running time, for the problem was presented in [4]. The algorithm of [4] uses a mix of
backward exploration and forward exploration. Every forward exploration step consists
of executing a set of DFSs (depth first searches) simultaneously for a specified number
of edges, and must maintain the exploration of the same number of edges in each of
the DFSs. The algorithm thus depends crucially on maintaining the number of edges
traversed explicitly, and hence the algorithm has no symbolic implementation. In this
section we present a new subquadratic algorithm to compute 〈〈1〉〉almost (Büchi(T )).
The algorithm is simpler as compared to the algorithm of [4] and we will show that our
new algorithm can be implemented symbolically. Our new algorithm has some similar
ideas as the algorithm of [4] in mixing backward and forward exploration, but the key
difference is that the new algorithm never stops the forward exploration after a certain
number of edges, and hence need not maintain the traversed edges explicitly. Thus the
new algorithm is simpler, and our correctness and running time analysis proofs are dif-
ferent. We show that our new algorithm works in O(m ·√m) time, and requires at most
O(n · √m) symbolic steps.
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Improved algorithm for almost-sure Büchi. Our algorithm iteratively removes states
from the graph, until the almost-sure winning set is computed. At iteration i, we denote
the remaining subgraph as (Si, Ei), where Si is the set of remaining states, Ei is the
set of remaining edges, and the set of remaining target states as Ti (i.e., Ti = Si ∩ T ).
The set of states removed will be denoted by Zi, i.e., Si = S \ Zi. The algorithm will
ensure that (a) Zi ⊆ S \ 〈〈1〉〉almost (Büchi(T )); and (b) for all s ∈ Si ∩ SP we have
E(s) ∩ Zi = ∅. In every iteration the algorithm identifies a set Qi of states such that
there is no path fromQi to the set Ti. Hence clearlyQi ⊆ S\〈〈1〉〉almost(Büchi(T )). By
the random attractor property from AttrR(Qi) the set Qi is reached with positive prob-
ability against any strategy for player 1. The algorithm maintains the set Li+1 of states
that were removed from the graph since (and including) the last iteration of Case 1,
and the set Ji+1 of states that lost an edge to states removed from the graph since the
last iteration of Case 1. Initially L0 := J0 := ∅, Z0 := ∅, and let i := 0 and we de-
scribe the iteration i of our algorithm, and we call our algorithm IMPRALGO (Improved
Algorithm) and the formal pseudocode is in [3].
1. Case 1. If ((|Ji| ≥ √

m) or i = 0), then
(a) Let Yi be the set of states that can reach the current target set Ti (this can be

computed in O(m) time by a graph reachability algorithm).
(b) Let Qi := Si \ Yi, i.e., there is no path from Qi to Ti.
(c) Zi+1 := Zi ∪ AttrR(Qi). The set AttrR(Qi) is removed from the graph.
(d) The set Li+1 is the set of states removed from the graph in this iteration (i.e.,

Li+1 := AttrR(Qi)) and Ji+1 be the set of states in the remaining graph with
an edge to Li+1.

(e) If Qi is empty, the algorithm stops, otherwise i := i + 1 and go to the next
iteration.

2. Case 2. Else (|Ji| ≤ √
m), then

(a) We do a lock-step search from every state s in Ji as follows: we do a DFS from
s and (a) if the DFS tree reaches a state in Ti, then we stop the DFS search from
s; and (b) if the DFS is completed without reaching a state in Ti, then we stop
the entire lock-step search, and all states in the DFS tree are identified as Qi.
The set AttrR(Qi) is removed from the graph and Zi+1 := Zi∪AttrR(Qi). If
DFS searches from all states s in Ji reach the set Ti, then the algorithm stops.

(b) The set Li+1 is the set of states removed from the graph since the last iter-
ation of Case 1 (i.e., Li+1 := Li ∪ AttrR(Qi), where Qi is the DFS tree
that stopped without reaching Ti in the previous step of this iteration) and
Ji+1 be the set of states in the remaining graph with an edge to Li+1, i.e.,
Ji+1 := (Ji \AttrR(Qi)) ∪Xi, where Xi is the subset of states of Si with an
edge to AttrR(Qi).

(c) i := i+ 1 and go to the next iteration.
The proof of Lemma 1 is available in [3]. We then present the running time analysis.

Lemma 1. Algorithm IMPRALGO correctly computes the set 〈〈1〉〉almost (Büchi(T )).

Lemma 2. Given an MDP G with m edges, Algorithm IMPRALGO takes O(m · √m)
time.
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Proof. The total work of the algorithm, when Case 1 is executed, over all iterations is
at most O(

√
m ·m): this follows because between two iterations of Case 1 at least

√
m

edges must have been removed from the graph (since |Ji| ≥ √
m everytime Case 1 is

executed other than the case when i = 0), and hence Case 1 can be executed at most
m/

√
m =

√
m times. Since each iteration can be achieved in O(m) time, the O(m ·√

m) bound for Case 1 follows. We now show that the total work of the algorithm, when
Case 2 is executed, over all iterations is at mostO(

√
m·m). The argument is as follows:

consider an iteration i such that Case 2 is executed. Then we have |Ji| ≤ √
m. Let Qi

be the DFS tree in iteration i while executing Case 2, and let E(Qi) = ∪s∈QiE(s).
The lock-step search ensures that the number of edges explored in this iteration is at
most |Ji| · |E(Qi)| ≤ √

m × |E(Qi)|. Since Qi is removed from the graph we charge
the work of

√
m · |E(Qi)| to edges in E(Qi), charging work

√
m to each edge. Since

there are at most m edges, the total charge of the work over all iterations when Case 2
is executed is at most O(m · √m). Note that if instead of

√
m we would have used a

bound k in distinguishing Case 1 and Case 2, we would have achieved a running time
bound of O(m2/k +m · k), which is optimized by k =

√
m.

Theorem 2. Given an MDP G and a set T of target states, the algorithm IMPRALGO

correctly computes the set 〈〈1〉〉almost (Büchi(T )) in time O(m · √m).

3.2 Symbolic Implementation of IMPRALGO

In this subsection we will a present symbolic implementation of each of the steps of
algorithm IMPRALGO. The symbolic algorithm depends on the following symbolic op-
erations that can be easily achieved with an OBDD implementation. For a set X ⊆ S of
states, let

Pre(X) = { s ∈ S | E(s) ∩X = ∅ }; Post(X) = { t ∈ S | t ∈ ⋃
s∈X E(s) };

CPre(X) = { s ∈ SP | E(s) ∩X = ∅ } ∪ { s ∈ S1 | E(s) ⊆ X }.
In other words, Pre(X) is the predecessors of states in X ; Post(X) is the successors of
states in X ; and CPre(X) is the set of states Y such that for every random state in Y
there is a successor in X , and for every player 1 state in Y all successors are in Y .

We now present a symbolic version of IMPRALGO. For the symbolic version the
basic steps are as follows: (i) Case 1 of the algorithm is same as Case 1 of IMPRALGO,
and (ii) Case 2 is similar to Case 2 of IMPRALGO, and the only change in Case 2
is instead of lock-step search exploring the same number of edges, we have lock-step
search that executes the same number of symbolic steps. The details of the symbolic
implementation are as follows, and we will refer to the algorithm as SYMBIMPRALGO.
1. Case 1. In Case 1(a) we need to compute reachability to a target set T . The symbolic

implementation is standard and done as follows: X0 = T and Xi+1 := Xi ∪
Pre(Xi) untilXi+1 = Xi. The computation of the random attractor is also standard
and is achieved as above replacing Pre by CPre. It follows that every iteration of
Case 1 can be achieved in O(n) symbolic steps.

2. Case 2. For analysis of Case 2 we present a symbolic implementation of the lock-
step forward search. The lock-step ensures that each search executes the same num-
ber of symbolic steps. The implementation of the forward search from a state s in
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iteration i is achieved as follows: P0 := { s } and Pj+1 := Pj ∪ Post(Pj) unless
Pj+1 = Pj or Pj ∩Ti = ∅. If Pj ∩Ti = ∅, then the forward search is stopped from
s. If Pj+1 = Pj and Pj ∩Ti = ∅, then we have identified that there is no path from
states in Pj to Ti.

3. Symbolic computation of cardinality of sets. The other key operation required by
the algorithm is determining whether the size of set Ji is at least

√
m or not. The

details of this symbolic operation is in [3].

Correctness and runtime analysis. The correctness of SYMBIMPRALGO is estab-
lished following the correctness arguments for algorithm IMPRALGO. We now analyze
the worst case number of symbolic steps. The total number of symbolic steps executed
by Case 1 over all iterations is O(n · √m) since between two executions of Case 1 at
least

√
m edges are removed, and every execution is achieved in O(n) symbolic steps.

The work done for the symbolic cardinality computation is charged to the edges already
removed from the graph, and hence the total number of symbolic steps over all itera-
tions for the size computations isO(m). We now show that the total number of symbolic
steps executed over all iterations of Case 2 is O(n · √m). The analysis is achieved as
follows. Consider an iteration i of Case 2, and let the number of states removed in the
iteration be ni. Then the number of symbolic steps executed in this iteration for each
of the forward search is at most ni, and since |Ji| ≤ √

m, it follows that the number of
symbolic steps executed is at most ni ·√m. Since we remove ni states, we charge each
state removed from the graph with

√
m symbolic steps for the total ni · √m symbolic

steps. Since there are at most n states, the total charge of symbolic steps over all itera-
tions is O(n · √m). Thus it follows that we have a symbolic algorithm to compute the
almost-sure winning set for MDPs with Büchi objectives in O(n · √m) symbolic steps.

Theorem 3. Given an MDP G and a set T of target states, the symbolic algorithm
SYMBIMPRALGO correctly computes 〈〈1〉〉almost (Büchi(T )) in O(n · √m) symbolic
steps.

Remark 1. In many practical cases, MDPs have constant out-degree and hence we ob-
tain a symbolic algorithm that works in O(n · √n) symbolic steps, as compared to the
previous known (symbolic implementation of the classical) algorithm that takes O(n2)
symbolic steps.

4 The Win-Lose Algorithm

All the algorithms known for computing the almost-sure winning set (including the
algorithms presented in the previous section) iteratively compute the set of states from
where it is guaranteed that there is no almost-sure winning strategy for the player. The
almost-sure winning set is discovered only when the algorithm stops. In this section,
first we will present an algorithm that iteratively computes two sets W1 and W2, where
W1 is a subset of the almost-sure winning set, and W2 is a subset of the complement
of the almost-sure winning set. The algorithm has O(K ·m) running time, where K is
the size of the maximal strongly connected component (scc) of the graph of the MDP.
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We then present an improved version of the algorithm, using the techniques to obtain
IMPRALGO from the classical algorithm, and finally present the symbolic implementa-
tion of the new algorithm.

4.1 The Basic Win-Lose Algorithm

The basic steps of the new algorithm are as follows. The algorithm maintains W1 and
W2, that are guaranteed to be subsets of the almost-sure winning set and its complement
respectively. Initially W1 = ∅ and W2 = ∅. We also maintain that W1 = Attr1(W1)
and W2 = AttrR(W2). We denote by W the union of W1 and W2. We describe an
iteration of the algorithm and we will refer to the algorithm as the WINLOSE algorithm
(formal pseudocode in [3]).
1. Step 1. Compute the scc decomposition of the remaining graph of the MDP, i.e.,

scc decomposition of the MDP graph induced by S \W .
2. Step 2. For every bottom scc C in the remaining graph: if C ∩ Pre(W1) = ∅ or

C ∩T = ∅, then W1 = Attr1(W1∪C); else W2 = AttrR(W2 ∪C), and the states
in W1 and W2 are removed from the graph.

The stopping criterion is as follows: the algorithm stops when W = S. Observe that in
each iteration, a set C of states is included in either W1 or W2, and hence W grows in
each iteration.

Correctness of the algorithm. Note that in Step 2 we ensure that Attr1(W1) = W1

and AttrR(W2) = W2, and hence in the remaining graph there is no state of player 1
with an edge toW1 and no random state with an edge to W2. We show by induction that
after every iterationW1 ⊆ 〈〈1〉〉almost (Büchi(T )) andW2 ⊆ S \〈〈1〉〉almost(Büchi(T )).
The base case (with W1 = W2 = ∅) follows trivially. We prove the inductive case
considering the following two cases.
1. Consider a bottom scc C in the remaining graph such that C ∩ Pre(W1) = ∅ or

C∩T = ∅. Consider the randomized memoryless strategy σ for the player that plays
all edges in C uniformly at random, i.e., for s ∈ C we have σ(s)(t) = 1

|E(s)∩C| for
t ∈ E(s)∩C. IfC∩Pre(W1) = ∅, then the strategy ensures thatW1 is reached with
probability 1, since W1 ⊆ 〈〈1〉〉almost (Büchi(T )) by inductive hypothesis it follows
C ⊆ 〈〈1〉〉almost (Büchi(T )). Hence Attr1(W1 ∪ C) ⊆ 〈〈1〉〉almost (Büchi(T )). If
C ∩ T = ∅, then since there is no edge from random states to W2, it follows that
under the randomized memoryless strategy σ, the set C is a closed recurrent set
of the resulting Markov chain, and hence every state is visited infinitely often with
probability 1. Since C ∩ T = ∅, it follows that C ⊆ 〈〈1〉〉almost (Büchi(T )), and
hence Attr1(W1 ∪C) ⊆ 〈〈1〉〉almost (Büchi(T )).

2. Consider a bottom scc C in the remaining graph such that C ∩ Pre(W1) = ∅
and C ∩ T = ∅. Then consider any strategy for player 1: (a) If a play starting
from a state in C stays in the remaining graph, then since C is a bottom scc, it
follows that the play stays in C with probability 1. Since C ∩ T = ∅ it follows
that T is never visited. (b) If a play leaves C (note that C is a bottom scc of
the remaining graph and not the original graph, and hence a play may leave C),
then sinceC∩Pre(W1) = ∅, it follows that the play reachesW2, and by hypothesis
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W2 ⊆ S \ 〈〈1〉〉almost (Büchi(T )). In either case it follows that C ⊆ S \
〈〈1〉〉almost (Büchi(T )). It follows that AttrR(W2∪C) ⊆ S\〈〈1〉〉almost (Büchi(T )).

The correctness of the algorithm follows as when the algorithm stops we have W1 ∪
W2 = S and running time analysis is given in [3].

Theorem 4. Given an MDP with a Büchi objective, the WINLOSE algorithm iteratively
computes the subsets of the almost-sure winning set and its complement, and in the
end correctly computes the set 〈〈1〉〉almost (Büchi(T )) and the algorithm runs in time
O(KS ·m), where KS is the maximum number of states in an scc of the graph of the
MDP.

4.2 Improved WINLOSE Algorithm and Symbolic Implementation

Improved WINLOSE algorithm. The improved version of the WINLOSE algorithm
performs a forward exploration to obtain a bottom scc like Case 2 of IMPRALGO. At
iteration i, we denote the remaining subgraph as (Si, Ei), where Si is the set of re-
maining states, and Ei is the set of remaining edges. The set of states removed will be
denoted by Zi, i.e., Si = S \ Zi, and Zi is the union of W1 and W2. In every iteration
the algorithm identifies a set Ci of states such that Ci is a bottom scc in the remain-
ing graph, and then it follows the steps of the WINLOSE algorithm. We will consider
two cases. The algorithm maintains the set Li+1 of states that were removed from the
graph since (and including) the last iteration of Case 1, and the set Ji+1 of states that
lost an edge to states removed from the graph since the last iteration of Case 1. Initially
J0 := L0 := Z0 := W1 := W2 := ∅, and let i := 0 and we describe the iteration i of
our algorithm. We call our algorithm IMPRWINLOSE (formal pseudocode in [3]).
1. Case 1. If ((|Ji| ≥ √

m) or i = 0), then
(a) Compute the scc decomposition of the remaining graph.
(b) For each bottom scc Ci, if Ci ∩ T = ∅ or Ci ∩ Pre(W1) = ∅, then W1 :=

Attr1(W1 ∪ Ci), else W2 := AttrR(W2 ∪ Ci).
(c) Zi+1 := W1 ∪W2. The set Zi+1 \ Zi is removed from the graph.
(d) The set Li+1 is the set of states removed from the graph in this iteration and

Ji+1 be the set of states in the remaining graph with an edge to Li+1.
(e) If Zi is S, the algorithm stops, otherwise i := i+1 and go to the next iteration.

2. Case 2. Else (|Ji| ≤ √
m), then

(a) Consider the set Ji to be the set of vertices in the graph that lost an edge to the
states removed since the last iteration that executed Case 1.

(b) We do a lock-step search from every state s in Ji as follows: we do a DFS from
s, until the DFS stops. Once the DFS stops we have identified a bottom scc Ci.

(c) If Ci ∩ T = ∅ or Ci ∩ Pre(W1) = ∅, then W1 := Attr1(W1 ∪ Ci), else
W2 := AttrR(W2 ∪ Ci).

(d) Zi+1 := W1 ∪W2. The set Zi+1 \ Zi is removed from the graph.
(e) The set Li+1 is the set of states removed from the graph since the last iteration

of Case 1 and Ji+1 be the set of states in the remaining graph with an edge to
Li+1.

(f) If Zi = S, the algorithm stops, otherwise i := i+1 and go to the next iteration.
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Correctness and running time. The correctness of the algorithm follows from the
correctness of the WINLOSE algorithm. The running time analysis of the algorithm
is similar to IMPRALGO algorithm, and this shows the algorithm runs in O(m · √m)
time. Applying the IMPRWINLOSE algorithm bottom up on the scc decomposition of
the MDP gives us a running time of O(m · √KE), where KE is the maximum number
of edges of an scc of the MDP.

Theorem 5. Given an MDP with a Büchi objective, the IMPRWINLOSE algorithm it-
eratively computes the subsets of the almost-sure winning set and its complement, and
in the end correctly computes the set 〈〈1〉〉almost (Büchi(T )) and the algorithm runs in
time O(

√
KE ·m), where KE is the maximum number of edges in an scc of the graph

of the MDP.

Symbolic implementation. The symbolic implementation of IMPRWINLOSE algo-
rithm is obtained in a similar fashion as SYMBIMPRALGO was obtained from IM-
PRALGO. The only additional step required is the symbolic scc computation. It follows
from the results of [11] that scc decomposition can be computed in O(n) symbolic
steps. In the following section we will present an improved symbolic scc computation
algorithm.

Corollary 1. Given an MDP with a Büchi objective, the symbolic IMPRWINLOSE

algorithm (SYMBIMPRWINLOSE) iteratively computes the subsets of the almost-
sure winning set and its complement, and in the end correctly computes the set
〈〈1〉〉almost (Büchi(T )) and the algorithm runs in O(

√
KE · n) symbolic steps, where

KE is the maximum number of edges in an scc of the graph of the MDP.

Remark 2. It is clear from the complexity of the WINLOSE and IMPRWINLOSE algo-
rithms that they would perform better for MDPs where the graph has many small scc’s,
rather than few large ones.

5 Improved Symbolic SCC Algorithm

A symbolic algorithm to compute the scc decomposition of a graph in O(n · logn)
symbolic steps was presented in [2]. The algorithm of [2] was based on forward and
backward searches. The algorithm of [11] improved the algorithm of [2] to obtain an
algorithm for scc decomposition that takes at most linear amount of symbolic steps. In
this section we present an improved version of the algorithm of [11] that improves the
constants of the number of linear symbolic steps required. We first describe the main
ideas of the algorithm of [11] and then present our improved algorithm. The algorithm
of [11] improves the algorithm of [2] by maintaining the right order for forward sets.
The notion of spine-sets and skeleton of a forward set was designed for this purpose.

Spine-sets and skeleton of a forward set. Let G = (S,E) be a directed graph. Con-
sider a finite path τ = (s0, s1, . . . , s�), such that for all 0 ≤ i ≤ � − 1 we have
(si, si+1) ∈ E. The path is chordless if for all 0 ≤ i < j ≤ � such that j − i > 1, there
is no edge from si to sj . Let U ⊆ S. The pair (U, s) is a spine-set of G iff G contains
a chordless path whose set of states is U that ends in s. For a state s, let FW(s) denote
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the set of states that is reachable from s (i.e., reachable by a forward search from s).
The set (U, t) is a skeleton of FW(s) iff t is a state in FW(s) whose distance from s is
maximum and U is the set of states on a shortest path from s to t. The following lemma
was shown in [11] establishing relation of skeleton of forward set and spine-set.

Lemma 3 ([11]). Let G = (S,E) be a directed graph, and let FW(s) be the forward
set of s ∈ S. The following assertions hold: (1) If (U, t) is a skeleton of a forward-set
FW(s), then U ⊆ FW(s). (2) If (U, t) is a skeleton of FW(s), then (U, t) is a spine-set
in G.

The intuitive idea of the algorithm. The algorithm of [11] is a recursive algorithm, and
in every recursive call the scc of a state s is determined by computing FW(s), and then
identifying the set of states in FW(s) having a path to s. The choice of the state to be
processed next is guided by the implicit inverse order associated with a possible spine-
set. This is achieved as follows: whenever a forward-set FW(s) is computed, a skeleton
of such a forward set is also computed. The order induced by the skeleton is then used
for the subsequent computations. Thus the symbolic steps performed to compute FW(s)
is distributed over the scc computation of the states belonging to a skeleton of FW(s).
The key to establish the linear complexity of symbolic steps is the amortized analysis.
We now present the main procedure SCCFIND and the main sub-procedure SKELFWD

of the algorithm from [11].

Procedures SCCFIND and SKELFWD. The main procedure of the algorithm is SC-
CFIND that calls SKELFWD as a sub-procedure. The input to SCCFIND is a graph
(S,E) and (A,B), where either (A,B) = (∅, ∅) or (A,B) = (U, { s }), where (U, s)
is a spine-set. If S is ∅, then the algorithm stops. Else, (a) if (A,B) is (∅, ∅), then the
procedure picks an arbitrary s from S and proceeds; (b) otherwise, the sub-procedure
SKELFWD is invoked to compute the forward set of s together with the skeleton (U ′, s′)
of such a forward set. The SCCFIND procedure has the following local variables:
FWSet,NewSet,NewState and SCC. The variable FWSet that maintains the forward
set, whereas NewSet and NewState maintain U ′ and { s′ }, respectively. The variable
SCC is initialized to s, and then augmented with the scc containing s. The partition of
the scc’s is updated and finally the procedure is recursively called over:
1. the subgraph of (S,E) is induced by S\FWSet and the spine-set of such a subgraph

is obtained from (U, { t }) by subtracting SCC;
2. the subgraph of (S,E) induced by FWSet \ SCC and the spine-set of such a sub-

graph obtained from (NewSet,NewState) by subtracting SCC.
The SKELFWD procedure takes as input a graph (S,E) and a state s, first it computes
the forward set FW(s), and second it computes the skeleton of the forward set. The
forward set is computed by symbolic breadth first search, and the skeleton is computed
with a stack. The detailed pseudocodes are in [3]. We will refer to this algorithm of [11]
as SYMBOLICSCC. The following result was established in [11]: for the proof of the
constant 5, refer to the appendix of [11] and the last sentence explicitly claims that
every state is charged at most 5 symbolic steps.

Theorem 6 ([11]). LetG = (S,E) be a directed graph. The algorithm SYMBOLICSCC

correctly computes the scc decomposition ofG in min{5·|S|, 5·D(G)·N(G)+N(G)}
symbolic steps, whereD(G) is the diameter ofG, andN(G) is the number of scc’s inG.
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Improved symbolic algorithm. We now present our improved symbolic scc algorithm
and refer to the algorithm as IMPROVEDSYMBOLICSCC. Our algorithm mainly modi-
fies the sub-procedure SKELFWD. The improved version of SKELFWD procedure takes
an additional input argumentQ, and returns an additional output argument that is stored
as a set P by the calling SCCFIND procedure. The calling function passes the set U as
Q. The way the output P is computed is as follows: at the end of the forward search we
have the following assignment: P := FWSet ∩Q. After the forward search, the skele-
ton of the forward set is computed with the help of a stack. The elements of the stacks
are sets of states stored in the forward search. The spine set computation is similar to
SKELFWD, the difference is that when elements are popped of the stack, we check if
there is a non-empty intersection with P , if so, we break the loop and return. Moreover,
for the backward searches in SCCFIND we initialize SCC by P rather than s. We refer
to the new sub-procedure as IMPROVEDSKELFWD (detailed pseudocode in [3]).

Correctness. Since s is the last element of the spine set U , and P is the intersection
of a forward search from s with U , it means that all elements of P are both reachable
from s (since P is a subset of FW(s)) and can reach s (since P is a subset of U ). It
follows that P is a subset of the scc containing s. Hence not computing the spine-set
beyond P does not change the future function calls, i.e., the value of U ′, since the
omitted parts of NewSet are in the scc containing s. The modification of starting the
backward search from P does not change the result, since P will anyway be included
in the backward search. So the IMPROVEDSYMBOLICSCC algorithm gives the same
result as SYMBOLICSCC, and the correctness follows from Theorem 6.

Symbolic steps analysis. We present two upper bounds on the number of symbolic
steps of the algorithm. Intuitively following are the symbolic operations that need to
be accounted for: (1) when a state is included in a spine set for the first time in IM-
PROVEDSKELFWD sub-procedure which has two parts: the first part is the forward
search and the second part is computing the skeleton of the forward set; (2) when a
state is already in a spine set and is found in forward search of IMPROVEDSKELFWD

and (3) the backward search for determining the scc. We now present the number of
symbolic steps analysis for IMPROVEDSYMBOLICSCC.
1. There are two parts of IMPROVEDSKELFWD, (i) a forward search and (ii) a back-

ward search for skeleton computation of the forward set. For the backward search,
we show that the number of steps performed equals the size of NewSet computed.
One key idea of the analysis is the proof where we show that a state becomes part
of spine-set at most once, as compared to the algorithm of [11] where a state can
be part of spine-set at most twice. Because, when it is already part of a spine-set, it
will be included in P and we stop the computation of spine-set when an element of
P gets included. We now split the analysis in two cases: (a) states that are included
in spine-set, and (b) states that are not included in spine-set.
(a) We charge one symbolic step for the backward search of IMPROVEDSKELFWD

(spine-set computation) to each element when it first gets inserted in a spine-
set. For the forward search, we see that the number of steps performed is the
size of spine-set that would have been computed if we did not stop the skeleton
computation. But by stopping it, we are only omitting states that are part of
the scc. Hence we charge one symbolic step to each state getting inserted into
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spine-set for the first time and each state of the scc. Thus, a state getting inserted
in a spine-set is charged two symbolic steps (for forward and backward search)
of IMPROVEDSKELFWD the first time it is inserted.

(b) A state not inserted in any spine-set is charged one symbolic step for backward
search which determines the scc.

Along with the above symbolic steps, one step is charged to each state for the
forward search in IMPROVEDSKELFWD at the time its scc is being detected.
Hence each state gets charged at most three symbolic steps. Besides, for computing
NewState, one symbolic step is required per scc found. Thus the total number of
symbolic steps is bounded by 3 · |S|+N(G), where N(G) is the number of scc’s
of G.

2. Let D∗ be the sum of diameters of the scc’s in a G. Consider a scc with diameter
d. In any scc the spine-set is a shortest path, and hence the size of the spine-set
is bounded by d. Thus the three symbolic steps charged to states in spine-set con-
tribute to at most 3 ·d symbolic steps for the scc. Moreover, the number of iterations
of forward search of IMPROVEDSKELFWD charged to states belonging to the scc
being computed are at most d. And the number of iterations of the backward search
to compute the scc is also at most d. Hence, the two symbolic steps charged to
states not in any spine-set also contribute at most 2 · d symbolic steps for the scc.
Finally, computation of NewSet takes one symbolic step per scc. Hence we have
5 · d + 1 symbolic steps for a scc with diameter d. We thus obtain an upper bound
of 5D∗ +N(G) symbolic steps.

It is straightforward to argue that the number of symbolic steps of IMPROVEDSCCFIND

is at most the number of symbolic steps of SCCFIND. The detailed pseudocode and
running time analysis is presented in [3].

Theorem 7. Let G = (S,E) be a directed graph. The algorithm IMPROVEDSYMBOL-
ICSCC correctly computes the scc decomposition of G in min{ 3 · |S| + ·N(G), 5 ·
D∗(G) +N(G) } symbolic steps, where D∗(G) is the sum of diameters of the scc’s of
G, and N(G) is the number of scc’s in G.

Remark 3. Observe that in the worst case SCCFIND takes 5 ·n symbolic steps, whereas
IMPROVEDSCCFIND takes at most 4 · n symbolic steps. Thus our algorithm improves
the constant of the number of linear symbolic steps required for symbolic scc decom-
position.

6 Experimental Results

In this section we present our experimental results. We first present the results for sym-
bolic algorithms for MDPs with Büchi objectives and then for symbolic scc decom-
position. We present the results for symbolic steps comparison and the running time
comparison is similar (see [3]).

Symbolic algorithm for MDPs with Büchi objectives. We implemented all the sym-
bolic algorithms (including the classical one) and ran the algorithms on randomly gener-
ated graphs. If we consider arbitrarily randomly generated graphs, then in most cases it
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Table 1. The symbolic steps required by symbolic algorithms for MDPs with Büchi objectives

Number of states Classical SYMBIMPRALGO SYMBIMPRWINLOSE

5000 16508 3382 4007
10000 57438 6807 7146
20000 121376 11110 12519

Table 2. The symbolic steps required for scc computation

Number of states Algorithm from [11] Our Algorithm Percentage Improvement
10000 1045 877 16.06
25000 2642 2262 14.38
50000 6298 5398 14.27

gives rise to trivial MDPs. Hence we generated large number of MDP graphs randomly,
first chose the ones where all the algorithms required the most number of symbolic
steps, and then considered random graphs obtained by small uniform perturbations of
them. Our results of average symbolic steps required are shown in Table 1 and show
that the new algorithms perform significantly better than the classical algorithm.

Symbolic scc computation. We implemented the symbolic scc decomposition algo-
rithm from [11] and our new symbolic algorithm. We ran the algorithms on randomly
generated graphs. Again arbitrarily randomly generated graphs in many cases gives rise
to graphs that are mostly disconnected or completely connected. Hence we generated
random graphs by first constructing a topologically sorted order of the scc’s and then
adding edges randomly respecting the topologically sorted order. Our results of average
symbolic steps are shown in Table 2 and shows that our new algorithm performs better
(around 15% improvement).
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http://arxiv.org/abs/1104.3348
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Smoothing a Program Soundly and Robustly�
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Abstract. We study the foundations of smooth interpretation, a recently-
proposed program approximation scheme that facilitates the use of local
numerical search techniques (e.g., gradient descent) in program analy-
sis and synthesis. While the popular techniques for local optimization
works well only on relatively smooth functions, functions encoded by
real-world programs are infested with discontinuities and local irregular
features. Smooth interpretation attenuates such features by taking the
convolution of the program with a Gaussian function, effectively replac-
ing discontinuous switches in the program by continuous transitions. In
doing so, it extends to programs the notion of Gaussian smoothing, a
popular signal-processing technique used to filter noise and discontinu-
ities from signals.

Exact Gaussian smoothing of programs is undecidable, so algorith-
mic implementations of smooth interpretation must necessarily be ap-
proximate. In this paper, we characterize the approximations carried
out by such algorithms. First, we identify three correctness properties—
soundness, robustness, and β-robustness—that an approximate smooth
interpreter should satisfy. In particular, a smooth interpreter is sound
if it computes an abstraction of a program’s “smoothed” semantics, and
robust if it has arbitrary-order derivatives in the input variables at ev-
ery point in its input space. Second, we describe the design of an ap-
proximate smooth interpreter that provably satisfies these properties.
The interpreter combines program abstraction using a new domain with
symbolic calculation of convolution.

1 Introduction

Smooth interpretation [4] is a recently-proposed program transformation permit-
ting more effective use of numerical optimization in automated reasoning about
programs. Many problems in program analysis and synthesis can be framed as
optimization questions—examples include finding program parameters so that
the resultant program behavior is as close as possible to a specification [4], or
the generation of tests that maximize the number of times a certain operation is
executed [1]. But rarely are such problems solvable using off-the-shelf numerical
optimization engines. This is because search spaces arising in real-world pro-
grams are rife with discontinuities—on such spaces, local search algorithms like
gradient descent or Newton iteration find themselves unable to converge on a
good solution. It is this predicament that smooth interpretation tries to resolve.
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To aid numerical search over the input space of a program P , smooth inter-
pretation transforms P into a smooth mathematical function. For example, if
the semantics of P (viewed as a function P (x1, x2) of inputs x1 and x2) is the
discontinuous map in Fig. 1-(a), the “smoothed” version of P will typically have
semantics as in Fig. 1-(b). More precisely, smooth interpretation extends to pro-
grams the notion of Gaussian smoothing [12], an elementary signal-processing
technique for filtering out noise and discontinuities from ill-behaved real-world
signals. To perform Gaussian smoothing of a signal, one takes the convolution
of the signal with a Gaussian function. Likewise, to smooth a program, we take
the convolution of the denotational semantics of P with a Gaussian function.

The smoothing transformation is parameterized by a

(b) 

x1

x2

z

(a) 

x1

x2

P (x1, x2)

P (x1, x2)

Fig. 1. (a) A discon-
tinuous program. (b)
After smoothing.

value β which controls the degree of smoothing. Numer-
ical search algorithms will converge faster and find bet-
ter local minima when β is high and the function is very
smooth, but a bigger β also introduces imprecision, as the
minima that is found when using a big β may be far from
the real minima. The numerical optimization algorithm
from [4] addresses this by starting with a high value of
β then reducing it every time a minima is found. When
β is reduced, the location of the last minima is used as a
starting point for a new round of numerical search.

In our previous work, we showed the effectiveness of
this approach for the problem of embedded controller syn-
thesis. Specifically, we showed that the algorithm defined
above could find optimal parameters for interesting con-
trollers where simple numerical search would fail. But the
benefits of the technique are not limited to parameter syn-
thesis; smooth interpretation constitutes a wholly new form of program approx-
imation, and is likely to have broad impact by opening the door to a wide array
of applications of numerical optimization in program analysis.

Smooth interpretation exhibits many parallels with program abstraction, but
it also introduces some new and important concerns. The goal of this paper is
to understand these concerns by analyzing the foundations of smooth interpre-
tation. In particular, we seek to characterize the approximations that must be
made by algorithmic implementations of program smoothing given that comput-
ing the exact Gaussian convolution of an arbitrary program is undecidable.

Our concrete contributions are the following:

1. We identify three correctness properties that an algorithmic (and therefore
approximate) implementation of smooth interpretation should ideally satisfy:
soundness, robustness, and β-robustness.

While the notion of soundness here is related to the corresponding notion
in program abstraction, the two notions are semantically quite different: a
sound smooth interpreter computes an abstraction of a “smoothed” seman-
tics of programs. As for robustness, this property states that the function
computed by an approximate smooth interpreter has a linearly bounded
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derivative at every point in its input space—i.e., that even at the points in
the input space where P is discontinuous or non-differentiable, the smoothed
version of P is only as “steep” as a quadratic function. This property al-
lows gradient-based optimization techniques to be applied to the program—
indeed, many widely used algorithms for gradient-based nonlinear optimiza-
tion [10,7] are known to perform best under such a guarantee.

As for β-robustness, this property demands that the output of the smooth
interpreter has a small partial derivative in β. The property is important to
the success of the iterative algorithm described above, which relies on re-
peated numerical search with progressively smaller values of β. Without
β-robustness, it would be possible for the approximation to change dramat-
ically with small changes to β, making the algorithm impractical.

2. We give a concrete design for an approximate smooth interpreter (called
SmoothP (x, β)) that satisfies the above properties. The framework combines
symbolic computation of convolution with abstract interpretation: when
asked to smooth a program P , SmoothP (x, β) uses an abstract interpreter
to approximate P by a pair of simpler programs Pinf and Psup , then per-
forms a symbolic computation on these approximations. The result of this
computation is taken as the semantics of the smoothed version of P .

The soundness of our method relies on the insight that Gaussian convo-
lution is a monotone map on the pointwise partial order of vector functions.
We establish robustness and β-robustness under a weak assumption about
β, by bounding the derivative of a convolution. Thus, the techniques used
to prove our analysis correct are very different from those in traditional pro-
gram analysis. Also, so far as we know, the abstract domain used in our
construction is new to the program analysis literature.

The paper is structured as follows. In Sec. 2, we recapitulate the elements of
smooth interpretation and set up the programming language machinery needed
for our subsequent development. In Sec. 3, we introduce our correctness require-
ments for smoothing; in Sec. 4, we present our framework for smooth interpre-
tation. Sec. 5 studies the properties of interpreters derived from this framework.
Our discussion of related work, as well as our conclusions, appear in Sec. 6.

2 Smooth Interpretation

We begin by fixing, for the rest of the paper, a simple language of programs.
Our programs are written in a flow-graph syntax [8], and maintain their state
in k real-valued variables named x1 through xk.

Formally, let Re denote the set of linear arithmetic expressions over x1, . . . , xk,
encoding linear transformations of the type R

k → R
k. Also, let Be the set of

boolean expressions of the form Q > 0 or Q ≥ 0, where Q ∈ R
k → R. A program

P in our language is a directed graph. Nodes of this graph can be of five types:

– An entry node has one outgoing edge and no incoming edge, and an exit
node has one incoming edge and no outgoing edge. A program has a single
entry node and a single exit node.
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– An assignment node has a single incoming edge and single outgoing edge.
Each assignment node u is labeled with an expression E ∈ Re. Intuitively,
this expression is the r-value of the assignment.

– A test node u has one incoming edge and two outgoing edges (known as the
true and false-edges), and is labeled by a boolean expression Test(u) ∈ Be.
Intuitively, u is a conditional branch.

– A junction node has a single outgoing edge and two incoming edges.

For example, Fig. 2 depicts a simple program over a single variable.
Semantics. The intuitive op-

test: x > 0

x := x + 3

x := 2 * x

exit 

entry 

test: x < 10

x := x + 1

:===== 2 * x

{true ⇒ x+ 2}

{true ⇒ x}

{x+ 2 > 0 ⇒
x+ 2}

{x+ 2 ≤ 0 ⇒
x+ 2}

{x+ 2 ≤ 0
⇒ x+ 5}

{(x+ 2 ≤ 0) ∧ (x+ 5 < 10)
⇒ x+ 5}

{ (x+ 2 ≤ 0) ∧ (x+ 5 < 10)
⇒ x+ 6,

x+ 2 > 0 ⇒ 2x+ 4 }

x := x + 2

Fig. 2. A program and its collecting semantics

erational semantics of P is that
it starts executing at its entry
node, taking transitions along
the edges, and terminates at
the exit node. For our subse-
quent development, however, a
denotational semantics as well
as an abstract-interpretation-
style collecting semantics are
more appropriate than an op-
erational one. Now we define
these semantics.

Let a state of P be a vector
x = 〈x1, . . . , xk〉 ∈ R

k, where
each xi captures the value of
the variable xi. For each
arithmetic expression E ∈ Re,
the denotational semantics
[[E]](x) : R

k → R
k produces

the value of E at the state x.
For each B ∈ Be, the denotation function [[B]] produces [[B]](x) = 0 if B is false
at the state x, and 1 otherwise.

To define the semantics of P , we need some more machinery. Let a guarded
linear expression be an expression of the form

if B then F else 0,

where B is a conjunction of linear inequalities over the variables x1, . . . , xk, and
F is a linear arithmetic expression. We abbreviate the above expression by the
notation (B ⇒ F ), and lift the semantic function [[◦]] to such expressions:

[[B ⇒ F ]](x) = if [[B]](x) then [[F ]](x) else 0 = [[B]](x) · [[F ]](x).

The collecting semantics of P is given by a map ΨP that associates with each
node u of P a set ΨP (u) of guarded linear expressions. Intuitively, each such
expression captures the computation carried out along a path in P ending at u.
As the program P can have “loops,” ΨP (u) is potentially infinite.
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In more detail, we define the sets ΨP (u) so that they form the least fixpoint of
a monotone map. For each node u of P , ΨP (u) is the least set of guarded linear
expressions satisfying the following conditions:

– If u is the entry node and its out-edge goes to v, then {(true ⇒ x)} ⊆ ΨP (v).
– Suppose u is an assignment node labeled by E and its outgoing edge leads

to v. Let ◦ be the usual composition operator over expressions. Then for all
(B ⇒ F ) ∈ ΨP (u), the expression B ⇒ (E ◦ F ) is in ΨP (v).

– Suppose u is a branch node, and let vt and vf respectively be the targets
of the true- and false-edges out of it. Let Qt = Test(u) ◦ F and Qf =
(¬Test(u)) ◦ F ; then, for all (B ⇒ F ) ∈ ΨP (u), we have

(B ∧Qt) ⇒ F ∈ ΨP (vt) (B ∧Qf) ⇒ F ∈ ΨP (vf ).

– If u is a junction node and its outgoing edge leads to v, then ΨP (u) ⊆ ΨP (v).

For example, consider the program in Fig. 2. Most nodes u of this program are
labeled with ΨP (u). We note that one of the three control flow paths to the exit
node ex is infeasible; as a result ΨP (ex ) has two formulas rather than three.

The denotational semantics [[P ]] of P is now defined using the above collecting
semantics. Let ex be the exit node of P . We define:

[[P ]](x) =
∑

(B⇒F )∈ΨP (ex)

[[B]](x) · [[F ]](x).

Intuitively, for any x ∈ R
k, [[P ]](x) is the output of P on input x.

Smoothed semantics. Now we recall the definition [4] of the smoothed se-
mantics of programs, which is the semantics that smooth interpretation seeks to
compute. To avoid confusion, the previously defined semantics is from now on
known as the crisp semantics.

Let β > 0 be a real-valued smoothing parameter, and let N (x, β) be the
joint density function of k independent normal variables, each with mean 0 and
standard deviation β. In more detail, letting x = 〈x1, . . . , xk〉 as before, N (x, β)

is given by N (x, β) = 1
(2πβ2)k/2 e

−
∑k

i=1 x2
i

2β2 =
∏

i=0..k N (xi).

The smoothed semantics [[P ]]β : R
k → R

k of a program P with respect to β is
obtained by taking the convolution of N and the crisp semantics of P as shown
be the following equation.

[[P ]]β(x) =
∫
r∈Rk [[P ]](r) N (x− r, β) dr

=
∑

(B⇒F )∈ΨP (ex)

∫
r∈Rk [[B ⇒ F ]](r) N (x− r, β) dr.

(1)

As before, ex refers to the exit node of P . Note that because convolution is a
commutative operator, we have the property

[[P ]]β(x) =
∫
r∈Rk

[[P ]](x− r) N (r, β) dr.
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When β is clear from context, we denote [[P ]]β by [[P ]], and N (x, β) by N (x).
One of the properties of smoothing is that even if [[P ]] is highly discontinuous,

[[P ]] is a smooth mathematical function that has all its derivatives defined at
every point in R

k. The smoothing parameter β can be used to control the extent
to which [[P ]] is smoothed by the above operation—the higher the value of β, the
greater the extent of smoothing.

Example 1. Consider a program P over one variable x such that [[P ]](x) = if x >
a then 1 else 0, where a ∈ R. Let erf be the Gauss error function. We have

[[P ]](x) =
∫∞
−∞[[P ]](y)N (x − y) dy = 0 +

∫∞
a N (x − y) dy

=
∫∞
0

1√
2πβ

e−(y−x+a)2/2β2
dy =

1+erf( x−a√
2β

)

2 .

Figure 3-(a) plots the crisp semantics [[P ]] of P with a = 2, as well as [[P ]]
for β = 0.5 and β = 3. While [[P ]] has a discontinuous “step,” [[P ]] is a smooth
S-shaped curve, or a sigmoid. Note that as we decrease the “tuning knob” β, the
sigmoid [[P ]] becomes steeper and steeper, and at the limit, approaches [[P ]].

Now consider the program P ′ such that [[P ′]](x) = if a < x < c then 1 else 0,
where a, c ∈ R and a < c. The “bump-shaped” functions obtained by smoothing
P ′ are plotted in Figure 3-(b) (here a = −5, c = 5, and β has two values 0.5 and
2). Note how the discontinuities are smoothed.

Now we consider an even more interesting program, one that is key to the main
results of this paper. Consider [[P ′′]](x) = [[B ⇒ F ]](x), where B is the boolean
expression a < x < b for constants a, b, and F (x) = α · x+ γ for constants α, γ.
In this case, the smoothed semantics of P ′′ can be evaluated symbolically as
follows:

[[P ′′]](x) =
∫ b

a

(αy + γ) N (x− y) dy = α

∫ b

a

y N (x − y) dy + γ

∫ b

a

N (x − y) dy

=
(α x+ γ) · (erf( b−x√

2β
)− erf(a−x√

2β
))

2
+
β α (e−(a−x)2/2β2 − e−(b−x)2/2β2

)√
2π

.

Smooth interpretation. We

Fig. 3. (a) A sigmoid (b) A bump

use the phrase “smooth inter-
preter of a program P ” to re-
fer to an algorithm that can
execute P according to the
smoothed semantics [[◦]]β . The
primary application of smooth
interpretation is to enable the

use of numerical search for parameter optimization problems. For example, sup-
pose our goal is to compute an input x for which [[P ]](x) is minimal. For a vast
number of real-world programs, discontinuities in [[P ]] would preclude the use
of local numerical methods in this minimization problem. By eliminating such
discontinuities, smooth interpretation can make numerical search practical.
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In a way, smooth interpretation is to numerical optimization what abstraction
is to model checking: a mechanism to approximate challenging local transitions
in a program-derived search space. But the smoothed semantics that we use
is very different from the collecting semantics used in abstraction. Rather, the
smoothed semantics of P can be seen to be the expectation of a probabilistic
semantics of P .

Consider an input x ∈ R
k of P , and suppose that, before executing P ,

we randomly perturb x following a k-D normal distribution with independent
components and standard deviation β. Thus, the input of P is now a ran-
dom variable X following a normal distribution N with mean x and similar
shape as the one used in the perturbation. Now let us execute P on X with
crisp semantics. Consider the expectation of the output [[P ]](X): Exp [[[P ]](X)] =∫∞
−∞[[P ]](r) N (x− r) dr = [[P ]](x). Here [[P ]] is computed using the Gaussian N .

In other words, the smoothed semantics of P is the expected crisp semantics of
P under normally distributed perturbations to the program inputs.

Now that we have defined how a smooth interpreter must behave, consider
the question of how to algorithmically implement such an interpreter. On any
input x, an idealized smooth interpreter for P must compute [[P ]]β(x)—in other
words, integrate the semantics of P over a real space. This problem is of course
undecidable in general; therefore, any algorithmic implementation of a smooth
interpreter must necessarily be approximate. But when do we judge such an
approximation to be “correct”? Now we proceed to answer this question.

3 Approximate Smooth Interpreters and their
Correctness

In this section, we define three correctness properties for algorithmic implemen-
tations of smooth interpretation: soundness, robustness, and β-robustness. While
an algorithm for smooth interpretation of a program must necessarily be approx-
imate, these desiderata impose limits on the approximations that it makes.

Formally, we let an approximate smooth interpreter SmoothP (x, β) for P be
an algorithm with two inputs: an input x ∈ R

k and a smoothing parameter
β ∈ R

+. Given these, SmoothP returns a symbolic representation of a set Y ⊆
R

k. To avoid notation-heavy analytic machinery, we restrict the sets returned by
SmoothP to be intervals in R

k. Recall that such an interval is a Cartesian product
〈[l1, u1], . . . , [lk, uk]〉 of intervals over R; the interval can also be represented
more conveniently as a pair of vectors [〈l1, . . . , lk〉, 〈u1, . . . , uk〉]; from now on,
we denote the set of all such intervals by I.

Soundness. Just as a traditional static analysis of P is sound if it computes
an abstraction of the crisp semantics of P , an approximate smooth interpreter
is sound if it abstracts the smoothed semantics of P . In other words, the in-
terval returned by SmoothP on any input x bounds the output of the idealized
smoothed version of P on x. We define:

Definition 1 (Soundness). An approximate smooth interpreter SmoothP :
R

k × R
+ → I is sound iff for all x ∈ R

k, [[P ]]β(x) ∈ SmoothP (x, β).
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Robustness. A second requirement, critical for smooth interpreters but less
relevant in abstract interpretation, is robustness. This property asserts that for all
x and β, SmoothP (x, β) has derivatives of all orders, and that further, its partial
derivative with respect to the component scalars of x is small—i.e., bounded by
a function linear in x and β.

The first of the two requirements above simply asserts that SmoothP (x, β)
computes a smooth function, in spite of all the approximations carried out for
computability. The rationale behind the second requirement is apparent when
we consider smooth interpretation in the broader context of local numerical
optimization of programs. A large number of numerical search routines work by
sampling the input space under the expectation that the derivative around each
sample point is well defined. Our requirement guarantees this.

In fact, by putting a linear bound on the derivative of SmoothP , we give
a stronger guarantee: the absence of regions of extremely steep descent that
can lead to numerical instability. Indeed, robustness implies that even at the
points in the input space where P is discontinuous, the gradient of SmoothP is
Lipschitz-continuous—i.e., SmoothP is only as “steep” as a quadratic function.
Many algorithms for nonlinear optimization [10,7] demand a guarantee of this
sort for best performance. As we will see later, we can implement a smooth
interpreter that is robust (under a weak additional assumption) even in our
strong sense. Let us now define:

Definition 2 (Robustness). SmoothP (x, β) is robust if ∂
∂ xi

SmoothP (x, β) ex-
ists at all x = 〈x1, . . . , xk〉 and for all i, and there exists a linear function K(x, β)
in x that satisfies ‖ ∂

∂ xi
SmoothP (x, β)‖ ≤ K(x, β) for all x, i, β.

The definition above abuses notation somewhat because, as you may recall,
SmoothP (x, β) actually produces a Cartesian product of intervals, as opposed to
a real number; so the derivative ∂

∂ xi
SmoothP (x, β) is actually a pair of vectors

[〈 ∂
∂ xi

l1, . . . ,
∂

∂ xi
lk〉, 〈 ∂

∂ xi
u1, . . . ,

∂
∂ xi

uk〉]. The measure for such a pair of vectors
is a simple Euclidian measure that adds the squares of each of the components.

β-robustness. Another correctness property for an approximate smooth inter-
preter is that it produces functions that have small partial derivatives with re-
spect to the smoothing parameter β. In more detail, the derivative ∂SmoothP (x,β)

∂β
must be bounded by a function linear in x and β. We consider this property im-
portant because of the way our numerical search algorithm from [4] uses smooth-
ing: starting with a large β and progressively reducing it, improving the quality
of the approximation in a way akin to the abstraction-refinement loop in pro-
gram verification. The property of β-robustness guarantees that the functions
optimized in two successive iterations of this process are not wildly different. In
other words, the optima of one iteration of the process do not become entirely
suboptimal in the next iteration.

Formally, we define the property of β-robustness as follows:

Definition 3 (Robustness in β). SmoothP (x, β) is robust in β if the partial
derivative ∂

∂ β SmoothP (x, β) exists for all β > 0, and there is a linear function
K(x, β) such that for all x and β, ‖ ∂

∂ β SmoothP (x, β)‖ ≤ K(x, β).
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4 Designing a Smooth Interpreter

Now we present a framework for approximate smooth interpretation that satisfies
the correctness properties defined in the previous section. We exploit the fact that
under certain restrictions on a program P , it is possible to build an exact smooth
interpreter for P—i.e., an algorithm that computes the smoothed semantics [[P ]]
exactly. The idea behind our construction is to approximate P by programs for
which exact smooth interpreters can be constructed.

Let us consider guarded linear expressions (defined in Sec. 2); recall that
for nodes u of P , ΨP (u) is a possibly-infinite set of guarded linear expressions
(B ⇒ F ). By Eqn. (1), computing the exact smoothed semantics of P amounts
to computing a sum of Gaussian convolutions of guarded linear expressions.

Unfortunately, the convolution integral of a general guarded linear expression
does not have a clean symbolic solution. We overcome this problem by abstract-
ing each such expression using an interval-guarded linear expression Bint ⇒ F ,
where Bint is an interval in R

k obtained through a Cartesian abstraction of B.
From an argument as in Example 1, if an expression is interval-guarded and
linear, then its exact smoothed semantics can be computed in closed-form.

The above strategy alone is not enough to achieve convergence, given that
ΨP (u) can be infinite. Hence we use pairs of interval-guarded linear expressions
of the form 〈(Bint ⇒ Fsup), (Bint ⇒ Finf )〉 to abstract unbounded sets of linear
expressions guarded by subintervals of Bint . Such a tuple is known as an interval-
guarded bounding expression, and abbreviated by the notation 〈Bint , Fsup , Finf 〉.

To see what such an abstraction means, let us define the pointwise ordering
relation � among functions of type R

k → R
k as follows: F1 � F2 iff for all x ∈ R

k,
we have F1(x) ≤ F2(x). We lift this function to arithmetic expressions E, letting
E1 � E2 iff [[E1]] � [[E2]]. We guarantee that if 〈Bint , Fsup , Finf 〉 abstracts a set
S of interval-guarded linear expressions, then for all (B ⇒ F ) ∈ S, we have

(Bint ⇒ Finf ) � (B ⇒ F ) � (Bint ⇒ Fsup).

In fact, rather than tracking just a single interval-guarded bounding expres-
sion, an abstract state in our framework tracks bounded sets of such expressions.
Using this abstraction, it is possible to approximate the semantics [[P ]] of P by
two programs Psup and Pinf , whose semantics can be represented as a sum of a

1. Given a program P for which an approximate smooth interpreter is to be con-
structed, use abstract interpretation to obtain programs Psup and Pinf such that:
– Psup and Pinf are interval-guarded linear programs.
– [[Pinf ]] � [[P ]] � [[Psup ]] (here � is the pointwise ordering over functions).

2. Construct symbolic representations of [[Psup ]]β and [[Pinf ]]β .
3. Let the approximate smooth interpreter for P be a function that on any x and β,

returns the Cartesian interval [[[Pinf ]]β(x), [[Psup ]]β(x)].

Fig. 4. The approximate smooth interpretation algorithm
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bounded number of terms, each term being an interval-guarded linear expression.
(We call such programs interval-guarded linear programs.)

The smoothed semantics of Psup and Pinf can be computed in closed form,
leading to an approximate smooth interpreter that is sketched in Fig. 4. In the
rest of this section, we complete the above algorithm by describing the abstract
interpreter in Step (1) and the analytic calculation in Step (2).

Step 1: Abstraction Using Interval-Guarded Bounding Expressions

Abstract domain. An abstract state σ in our semantics is either a bounded-
sized set of interval-guarded bounding expressions (we let N be a bound on the
number of elements in such a set), or the special symbol �. The set of all abstract
states is denoted by A.

As usual, we define a partial order over the domain A. Before defining this
order, let us define a partial order � over the universe IGB that consists of all
interval-guarded bounding expressions, as well as �. For all σ, we have σ � �.
We also have:

〈B,Fsup , Finf 〉 � 〈B′, F ′
sup , F

′
inf 〉 iff B ⇒ B′ and

(B′ ∧B) ⇒ (Fsup � F ′
sup) ∧ (F ′

inf � Finf ) and
(B′ ∧ ¬B) ⇒ (0 � F ′

sup) ∧ (F ′
inf � 0).

Intuitively, in the above,B is a subinterval ofB′, and the expressions (B′ ⇒ F ′
inf )

and (B′ ⇒ F ′
sup) define more relaxed bounds than (B ⇒ Finf ) and (B ⇒ Fsup).

Note that � is not a lattice relation—e.g., the interval-guarded expressions
(1 < x < 2) ⇒ 1 and (3 < x < 4) ⇒ 5 do not have a unique least upper bound.
However, it is easy to give an algorithm �IGB that, given H1, H2 ∈ IGB , returns
a minimal, albeit nondeterministic, upper bound H of H1 and H2 (i.e., H1 � H ,
H2 � H , and there is no H ′ = H such that H ′ � H , H1 � H ′, and H2 � H ′).

Now can we define the partial order * over A that we use for abstract inter-
pretation. For σ1, σ2 ∈ A, we have σ1 * σ2 iff either σ2 = �, or if for all H ∈ σ1,
there exists H ′ ∈ σ2 such that H � H ′.

Once again, we can construct an algorithm �A that, given σ1, σ2 ∈ A, returns
a minimal upper bound σ for σ1 and σ2. If σ1 or σ2 equals �, the algorithm
simply returns �. Otherwise, it executes the following program:

1. Let σ′ := σ1 ∪ σ2.
2. While |σ′| > N , repeatedly: (a) Nondeterministically select two elements

H1, H2 ∈ σ′; (b) assign σ′ := σ′ \ {H1, H2} ∪ (H1 �IGB H2);
3. Return σ′.

Abstraction. The abstract semantics of the program P is given by a map
Ψ#

P that associates an abstract state Ψ#
P (u) with each node u of P . To de-

fine this semantics, we need some more machinery. First, we need a way to
capture the effect of an assignment node labeled by an expression E, on an
abstract state σ. To this end, we define a notation (E ◦ σ) that denotes the
composition of E and σ. We have E ◦ � = � for all E. If σ = �, then we
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have (E ◦ σ) = {〈B, (E ◦ Fsup), (E ◦ Finf )〉 : 〈B,Fsup , Finf 〉 ∈ σ}. Applied to the
abstract state σ, the assignment produces the abstract state (E ◦ σ).

Second, we must be able to propagate an abstract state σ through a test node
labeled by the boolean expression C. To achieve this, we define, for each abstract
state σ and boolean expression C, the composition (C ◦ σ) of C and σ. In fact,
we begin by defining the composition of (C ◦H), where H = 〈B,Fsup , Finf 〉 is
an interval-guarded boolean expression.

The idea here is that if a test node is labeled by

Fsup(x)

Finf (x)

C

Fig. 5. Propagation through
test C

C and H reaches the node, then (C ◦H) is prop-
agated along the true-branch. For simplicity, let
us start with the case B = true. Clearly, (C ◦H)
should be of the form 〈B′, Fsup , Finf 〉 for some
B′. To see what B′ should be, consider the sce-
nario in Fig. 5, which shows the points Fsup(x)
and Finf (x) for a fixed x ∈ R

2. For all F such
that Finf � F � Fsup , the point F (x) must lie
within the dashed box. So long as an “extreme
point” of this box satisfies the constraint C (the region to the left of the inclined
line), x should satisfy B′.

We need some more notation. For each function F : R
k → R

k, let us define a
collection of “components” F 1, . . . , F k such that for all i, F i(x) = (F (x))(i). A
collection of component functions F1, . . . , Fk : R

k → R can be “combined” into a
function F = 〈F1, . . . , Fk〉 : R

k → R
k, where for all x, F (x) = 〈F1(x), . . . , Fk(x)〉.

The extreme points of our dashed box can now be seen to be obtained by tak-
ing all possible combinations of components from Fsup and Finf and combining
those functions. Then the property that some extreme point of the dashed box
of Fig. 5 satisfies C is captured by the formula

(C ◦ 〈F 1
sup , F

2
sup〉) ∨ (C ◦ 〈F 1

sup , F
2
inf 〉) ∨ (C ◦ 〈F 1

inf , F
2
sup〉) ∨ (C ◦ 〈F 1

inf , F
2
inf 〉).

The above can now be generalized to k-dimensions and the case B = true. The
composition of C with an interval-guarded boolean expression 〈B,Fsup , Finf 〉 is
defined to be C ◦ 〈B,Fsup , Finf 〉 = 〈B′, Fsup , Finf 〉, where

B′ = B ∧
⎛⎝ ∨

Gi∈{F i
sup ,F i

inf }
(C ◦ 〈G1, . . . , Gk〉)

⎞⎠ .

Let us now lift this composition operator to abstract states. We define C ◦
� = � for all C. For all σ = �, we have (C ◦ σ) = {C ◦ 〈B,Fsup , Finf 〉 :
〈B,Fsup , Finf 〉 ∈ σ}. Finally, for any boolean expression C, let us define C# to
be an interval that overapproximates C.

The abstract semantics Ψ#
P of P is now defined using the algorithm in

Figure 6. We note that Ψ#
P can have different values depending on the sequence

of nondeterministic choices made by our upper-bound operators. However, ev-
ery resolution of such choices leads to an abstract semantics that can support a
sound and robust approximate smooth interpreter. Consequently, from now on,
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1. If u is the entry node of P and its outgoing edge leads to v, then assign Ψ#
P (v) :=

{〈true ,x,x〉}. Assign Ψ#
P (v′) = ∅ for every other node v′.

2. Until fixpoint, repeat:
(a) If u is an assignment node labeled by E and its outgoing edge leads to v, then

assign Ψ#
P (v) := Ψ#

P (v) � (E ◦ Ψ#
P (u)).

(b) Suppose u is a branch node; then let vt and vf respectively be the targets of
the true- and false-edges out of it, and let Qt = Test(u) and Qf = ¬Test(u)

Ψ#
P (vt) := Ψ#

P (vt) � {Qt ◦ 〈B,Fsup , Finf 〉 : 〈B, Fsup , Finf 〉 ∈ Ψ#
P (u)}

Ψ#
P (vf ) := Ψ#

P (vf ) � {Qf ◦ 〈B, Fsup , Finf 〉 : 〈B,Fsup , Finf 〉 ∈ Ψ#
P (u)}

(c) If u is a junction node with an out-edge to v, then Ψ#
P (v) := Ψ#

P (u) � Ψ#
P (v).

Fig. 6. Algorithm to compute Ψ#
P

we will ignore the fact that Ψ#
P actually represents a family of maps, and instead

view it as a function of P .

Widening. As our abstract domain is infinite, our fixpoint computation does not
guarantee termination. For termination of abstract interpretation, our domain
needs a widening operator [8]. For example, one such operator + can be defined
as follows.

First we define + on interval-guarded bounding expressions. Let us suppose
〈Bw, F

′′
sup , F

′′
inf 〉 = 〈B,Fsup , Finf 〉 + 〈B′, F ′

sup, F
′
inf 〉. Then we have:

– Bw = B +int B
′, where +int is the standard widening operator for the

interval domain [8].
– F ′′

sup is a minimal function in the pointwise order � such that for all x ∈ Bw,
we have F ′′

sup(x) ≥ (B ⇒ Fsup)(x) and F ′′
sup(x) ≥ (B′ ⇒ F ′

sup)(x).
– F ′′

inf is a maximal function such that for all x ∈ Bw, we have F ′′
sup(x) ≤

(B ⇒ Finf )(x) and F ′′
inf (x) ≤ (B′ ⇒ F ′

inf )(x).

This operator is now lifted to abstract states in the natural way.

Computing Psup and Pinf . Now we can compute the interval-guarded linear
programs Psup and Pinf that bound P . Let ex be the exit node of P , and let
Ψ#

P (ex ) = {〈B1, F 1
sup , F

1
inf 〉, . . . , 〈Bn, Fn

sup , F
n
inf 〉} for some n ≤ N . Then, the

symbolic representation of the semantics [[Psup ]] and [[Pinf ]] of Psup and Pinf is
as follows:

[[Psup ]] =
∑N

i [[Bi ⇒ F i
sup ]] [[Pinf ]] =

∑N
i [[Bi ⇒ F i

inf ]].

Step 2: Symbolic Convolution of Interval-Guarded Linear Programs

Now we give a closed-form expression for the smoothed semantics of Psup (the
case of [[Pinf ]] is symmetric). We have:

[[Psup ]](x) =
∫
r∈Rk

[[Psup ]](r) N (x−r) dr =
∑

i

∫
r∈Rk

[[Bi ⇒ F i
sup ]](r) N (x−r) dr.
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To solve this integral, we first observe that by our assumptions, N is the
joint distribution of k univariate independent Gaussians with the same standard
deviation β. Therefore, we can split N into a product of univariate Gaussians
N1, . . . ,Nk, where the Gaussian Nj-th ranges over xj . Letting rj be the j-th
component of r, we have:∫

r∈Rk [[Bi ⇒ F i
sup ]](r) N (x − r) dr =∫∞

−∞ . . . (
∫∞
−∞[[Bi ⇒ F i

sup ]](r) N1(x1 − r1) dr1) . . . Nk(xk − rk)drk.

Thus, due to independence of the xj ’s, it is possible to reduce the vector integral
involved in convolution to a sequence of integrals over one variable. Each of these
integrals will be of the form

∫∞
−∞[[Bi ⇒ F i

sup ]](r) Nj(xj − rj) drj . Projecting the
interval Bi over the axis for xj leaves us with an integral like the one we solved
analytically in Example 1. This allows us to represent the result of smooth
interpretation as a finite sum of closed form expressions.

5 Properties of the Interpreter

Now we prove that the algorithm as defined above actually satisfies the properties
claimed in Sec. 3. We first establish that the approximate smooth interpreter
presented in this paper is sound. Next we show that under a weak assumption
about β, it is robust and β-robust as well.

Theorem 1. The approximate smooth interpreter of Figure 4 is sound.

Proof: In order to prove soundness, we need to prove that [[P ]]β(x) ∈ SmoothP

(x, β). This follows directly from the soundness of abstract interpretation thanks
to a property of Gaussian convolution: that it is a monotone map on the pointwise
partial order � of functions between R

k.
First, we have seen how to use abstract interpretation to produce two pro-

grams Pinf and Psup such that [[Pinf ]] � [[P ]] � [[Psup ]].
Now, we defined SmoothP (x, β) as the interval [[[Pinf ]](x), [[Psup ]](x)]; there-

fore, all we have to do to prove soundness is to show that [[Pinf ]] � [[P ]]β � [[Psup ]].
In other words, we need to show that Gaussian smoothing preserves the ordering
among functions.

This follows directly from a property of convolution. Let F � G for functions
F,G : R

k → R
k, and H : R

k → R
k be any function satisfying H(x) > 0 for

all x (note that the Gaussian function satisfies this property). Also, let FH and
GH be respectively the convolutions of F and H , and G and H . Then we have
F ′ � H ′.

Theorem 2. For every constant ε > 0, the approximate smooth interpreter of
Figure 4 is robust in the region β > ε.
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Proof: To prove robustness of SmoothP , it suffices to show that both [[Pinf ]]
and [[Psup ]] satisfy the robustness condition. We focus on proving [[Psup ]] robust,
since the proof for [[Pinf ]] is symmetric. Now, we know that [[Psup ]] has the form
[[Psup ]](x) =

∑N
i=0Bi(x)Fi(x), where Bi(x) is an interval in R

k and Fi(x) is a
linear function. Hence we have:

[[Psup ]](x) =
∫
r∈Rk

(
N∑

i=0

Bi(r) · Fi(r)) · N (r− x, β) dr.

where N is the joint density function of k independent 1-D Gaussians. It is easy
to see that this function is differentiable arbitrarily many times in xj . We have:

∂[[Psup ]](x)
∂xj

=
∫
r∈Rk

(
N∑

i=0

Bi(r) · Fi(r)) · (∂N (r− x, β)
∂xj

) dr

Now note that ∂N (r−x,β)
∂xj

= (rj−xj)
β2 · N (r− x, β). Hence,

∂[[Psup ]](x)
∂xj

=
∫
r∈Rk

(
1
β2

N∑
i=0

Bi(r) · Fi(r) · (rj − xj)) · N (r − x, β) dr

= (
1
β2

N∑
i=0

∫
r∈Bi

Fi(r) · (rj − xj) · N (r− x, β) dr (2)

Each Fi is a linear function of type R
k → R

k, so for each n < k, we have
(Fi(r))(n) = (

∑k−1
l=0 αi,l,n · rl)+γi,n for constants αi,j,n and γi,n. Substituting in

Eqn. 2, we find that the n-th coordinate of the vector-valued expression ∂[[Psup ]](x)
∂xj

can be expanded into a linear sum of terms as below:

1
β2

∫ b

rj=a

N (rj − xj , β) drj (3)

1
β2

∫ b

rj=a

(rj − xj) · N (rj − xj , β) drj (4)

1
β2

∫ b

rj=a

rj · N (rj − xj , β) drj (5)

1
β2

∫ b

rj=a

rj · (rj − xj) · N (rj − xj , β) drj (6)

In order to show that
∣∣∣∂[[Psup ]](x)

∂xj

∣∣∣ is bounded by a linear function, we first observe

that for all β > ε, the multiplier 1
β2 is bounded by a constant. Now we show

that the each integrals in the above is bounded by a function that is linear in
xj , even when a = −∞ or b = ∞.

It is easy to see that of these integrals, the first two are bounded in value for
any value of xj ; this follows from the fact that N decays exponentially as its first
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argument goes to infinity. The last integral will also be bounded as a function
of xj , while the second to last function can grow linearly with xj . It follows that∣∣∣∂[[Psup ]](x)

∂xj

∣∣∣ can grow only linearly with x and β. Hence [[Psup ]] is robust.

Theorem 3. For every constant ε > 0, the approximate smooth interpreter from
Figure 4 is β-robust in the region β > ε.

Proof: As in the proof of Theorem 2, it suffices to only consider the derivative
of Psup (w.r.t. β this time)—the case for Pinf is symmetric. From the definition
of smoothing, we have:

∂[[Psup ]](x)
∂β

=
∫
r∈Rk

(
N∑

i=0

Bi(r) · Fi(r)) · ∂N (r− x, β)
∂β

dr

=
∫
r∈Rk

(
N∑

i=0

Bi(r) · Fi(r)) · (‖r− x‖2

β3
− k

β
)) · N (r− x, β) dr

=
N∑

i=0

∫
r∈Bi

Fi(r) · (‖r− x‖2

β3
− k

β
) · N (r− x, β) dr. (7)

Just like in the proof of robustness, we can decompose the integral into a
linear sum of terms of one of the following forms:

1
β3

∫ b

rj=a

(rj − xj)2 · N (rj − xj , β) drj (8)

1
β3

∫ b

rj=a

rj · (rj − xj)2 · N (rj − xj , β) drj (9)

1
β

∫ b

rj=a

rj · N (rj − xj , β) drj (10)

1
β

∫ b

rj=a

N (rj − xj , β) drj (11)

The first and last terms are clearly bounded by constants. The third term
is similar to the term we saw in the proof of robustness, and is bounded by a
linear function; in fact, when a and b go to infinity, the term corresponds to
the mean of a Gaussian centered at x. As for the second term, it is bounded
when a and b are bounded, but will grow as O(xj) when a or b are −∞ or ∞
respectively. Putting the facts together, we note that

∣∣∣∂[[Psup ]](x)
∂β

∣∣∣ is bounded by
a linear function of x and β, which completes the proof of β-robustness.

6 Related Work and Conclusion

In a recent paper [4], we introduced smooth interpretation as a program approxi-
mation that facilitates more effective use of numerical optimization in reasoning
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about programs. While the paper showed the effectiveness of the method, it
left open a lot of theoretical questions. For example, while we implemented and
empirically evaluated a smooth interpreter, could we also formally characterize
smooth interpretation? How did program smoothing relate to program abstrac-
tion? In the present paper, we have answered the above questions.

Regarding related work, Gaussian smoothing is ubiquitous in signal and im-
age processing [12]. Also, the idea of using smooth, robust approximations to
enable optimization of non-smooth functions has been previously studied in the
optimization community [11]. However, these approaches are technically very
different from ours, and we were the first to propose and find an application for
Gaussian smoothing of programs written in a general-purpose programming lan-
guage. As for work in the software engineering community, aside from a cursory
note by DeMillo and Lipton [9], there does not seem to be any prior proposal
here for the use of “smooth” models of programs (although some recent work in
program verification studies continuity properties [2,3] of programs).

The abstract interpretation used in our smoothing framework is closely related
to a large body of prior work on static analysis, in particular analysis using
intervals [8], interval equalities [6], and interval polyhedra [5]. However, so far as
we know, there is no existing abstract domain that can conditionally bound the
denotational semantics of a program from above and below.
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Abstract. Separation logic-based abstraction mechanisms, enhanced with user-
defined inductive predicates, represent a powerful, expressive means of specify-
ing heap-based data structures with strong invariant properties. However,
expressive power comes at a cost: the manipulation of such logics typically re-
quires the unfolding of disjunctive predicates which may lead to expensive proof
search. We address this problem by proposing a predicate specialization tech-
nique that allows efficient symbolic pruning of infeasible disjuncts inside each
predicate instance. Our technique is presented as a calculus whose derivations
preserve the satisfiability of formulas, while reducing the subsequent cost of their
manipulation. Initial experimental results have confirmed significant speed gains
from the deployment of predicate specialization. While specialization is a famil-
iar technique for code optimization, its use in program verification is new.

1 Introduction

Abstraction mechanisms are important for modelling and analyzing programs. Recent
developments allow richer classes of properties to be expressed via user-defined pred-
icates for capturing commonly occurring patterns of program properties. Separation
logic-based abstraction mechanisms represent one such development. As an example,
the following predicate captures an abstraction of a sorted doubly-linked list.

data node { int val; node prev; node next; }
dll(root, p, n, S) ≡ root=null ∧ n=0 ∧ S={}
∨ ∃v, q, S1 · root�→node(v, p, q) ∗ dll(q, root, n−1, S1)
∧S = S1∪{v}∧∀a∈S1 · v≤a inv n≥0;

In this definition root denotes a pointer into the list, n the length of the list, S repre-
sents its set of values, whereas p denotes a backward pointer from the first node of the
doubly-linked list. The invariant n≥0 must hold for all instances of this predicate.

We clarify the following points. Firstly, spatial conjunction, denoted by the symbol ∗,
provides a concise way of describing disjoint heap spaces. Secondly, this abstraction
mechanism is inherently infinite, due to recursion in predicate definition. Thirdly, a
predicate definition is capable of capturing multiple features of the data structure it
models, such as its size and set of values. While this richer set of features can enhance
the precision of a program analysis, it inevitably leads to larger disjunctive formulas.

G. Gopalakrishnan and S. Qadeer (Eds.): CAV 2011, LNCS 6806, pp. 293–309, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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This paper is concerned with a novel way of handling disjunctive formulas, in con-
junction with abstraction via user-defined predicates. While disjunctive forms are nat-
ural and expressive, they are major sources of redundancy and inefficiency. The goal
of this paper is to ensure that disjunctive predicates can be efficiently supported in a
program analysis setting, in general, and program verification setting, in particular.

To achieve this, we propose a specialization calculus for disjunctive predicates that
supports symbolic pruning of infeasible states within each predicate instance. This al-
lows for the implementation of both incremental pruning and memoization techniques.
As a methodology, predicate specialization is not a new concept, since general spe-
cialization techniques have been extensively used in the optimization of logic programs
[18,17,11]. The novelty of our approach stems from applying specialization to a new do-
main, namely program verification, with its focus on pruning infeasible disjuncts, rather
than a traditional focus on propagating static information into callee sites. This new use
of specialization yields a fresh approach towards optimising program verification. This
approach has not been previously explored, since pervasive use of user-defined predi-
cates in analysis and verification has only become popular recently (e.g. [14]). Our key
contributions are:

– We propose a new specialization calculus that leads to more effective program ver-
ification. Our calculus specializes proof obligations produced in the program veri-
fication process, and can be used as a preprocessing step before the obligations are
fed into third party theorem provers or decision procedures.

– We adapt memoization and incremental pruning techniques to obtain an optimized
version of the specialization calculus.

– We present a prototype implementation of our specialization calculus, integrated
into an existing program verification system. The use of our specializer yields sig-
nificant reductions in verification times, especially for larger problems.

Section 2 illustrates the technique of specializing disjunctive predicates. Section 3 in-
troduces the necessary terminology. Section 4 presents our calculus for specializing
disjunctive predicates and outlines its formal properties. Section 5 presents inference
mechanisms for predicate definitions to support our specialization calculus. Section 6
presents experimental results which show multi-fold improvement to verification times
for larger problems. Section 7 discusses related work, prior to a short conclusion.

2 Motivating Example

Program states that are built from predicate abstractions are more concise, but may re-
quire properties that are hidden inside predicates. As an example, consider :

dll(x, p1, n, S1) ∗ dll(y, p2, n, S2) ∧ x �=null

This formula expresses the property that the two doubly-linked lists pointed to by x

and y have the same length. Ideally, we should augment our formula with the property:
y�=null, n>0, S1 �={} and S2 �={}, currently hidden inside the two predicate instances but
may be needed by the program verification tasks at hand.

A naive approach would be to unfold the two predicate instances, but this would
blow up the number of disjuncts to four, as shown:
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x=null ∧ y=null ∧ n=0 ∧ S1={} ∧ S2={} ∧ x �=null
∨ y �→node(v2, p2, q2) ∗ dll(q2, y, n−1, S4) ∧ x=null
∧ S1={} ∧ n=0 ∧ S2={v2} ∪ S4 ∧ n−1≥0 ∧ x �=null
∨ x �→node(v1, p1, q1) ∗ dll(q1, x, n−1, S3) ∧ y=null ∧ n=0
∧ S1={v1} ∪ S3 ∧ S2={} ∧ n−1≥0 ∧ x �=null
∨ x �→node(v1, p1, q1) ∗ y �→node(v2, p2, q2) ∗ dll(q1, x, n−1, S3)
∗ dll(q2, y, n−1, S4) ∧ S1={v1} ∪ S3∧ S2={v2} ∪ S4 ∧ n−1≥0 ∧ x �=null

As contradictions occur in the first three disjuncts, we can simplify our formula to:
x �→node(v1, p1, q1) ∗ y �→node(v2, p2, q2) ∗ dll(q1, x, n−1, S3)
∗ dll(q2, y, n−1, S4) ∧ S1={v1} ∪ S3 ∧ S2={v2} ∪ S4 ∧ n−1≥0 ∧ x �=null

After removing infeasible disjuncts, the propagated properties are exposed in the above
more specialized formula. However, this naive approach has the shortcoming that un-
folding leads to an increase in the number of disjuncts handled, and its associated costs.

A better approach would be to avoid predicate unfolding, but instead apply predicate
specialization to prune infeasible disjuncts and propagate hidden properties. Given
a predicate pred(· · ·) that is defined by k disjuncts, we shall denote each of its spe-
cialized instances by pred(· · ·)@L, where L denotes a subset of the disjuncts, namely
L ⊆ {1. . . k}, that have not been pruned. Initially, we can convert each predicate in-
stance pred(· · ·) to its most general form pred(· · ·)@{1. . . k}, while adding the basic
invariant of the predicate to its context. As an illustration, we may view the definition
of dll as a predicate with two disjuncts, labelled informally by 1: and 2: prior to each
of its disjuncts, as follows:
dll(root, p, n, S) ≡ 1:(root=null ∧ n=0 ∧ S={})
∨ 2:(root�→node(v, p, q) ∗ dll(q, root, n−1, S1) ∧ S = S1∪{v} ∧ ∀a∈S1 · v≤a)

We may convert each dll predicate by adding its invariant n≥0, as follows:

dll(x, p, n, S) =⇒ dll(x, p, n, S)@{1, 2} ∧ n≥0
With our running example, this would lead to the following initial formula after the
same invariant n≥0 (from the two predicate instances) is added.

dll(x, p1, n, S1)@{1, 2} ∗ dll(y, p2, n, S2)@{1, 2}∧ x �=null ∧ n≥0
This predicate may be further specialized with the help of its context by pruning away
disjuncts that are found to be infeasible. Each such pruning would allow more states to
be propagated by the specialized predicate. By using the context, x�=null, we can spe-
cialize the first predicate instance to dll(x, p1, n, S1)@{2} since this context contradicts
the first disjunct of the dll predicate. With this specialization, we may strengthen the
context with a propagated state, namely n>0 ∧ S1 �={}, that is implied by its specialized
instance, as follows:

dll(x, p1, n, S1)@{2} ∗ dll(y, p2, n, S2)@{1, 2} ∧ x �=null ∧ n>0 ∧ S1 �={}
Note that n≥0 is removed when a stronger constraint n>0 is added. The new constraint
n>0 now triggers a pruning of the second predicate instance, since its first disjunct can
be shown to be infeasible. This leads to a specialization of the second predicate, with
more propagation of atomic formulas, as follows:
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pred ::= p(v∗) ≡ Φ [inv π]
Φ ::=

∨
(∃w∗·σ)∗ σ ::= κ∧π

κ ::= emp | v �→c(v∗) | p(v∗) | κ1 ∗ κ2

π ::= α | π1∧π2

α ::= β | ¬β
β ::= v1=v2 | v=null | a≤0 | a=0
a ::= k | k×v | a1 + a2 | max(a1,a2) | min(a1,a2)
where p is a predicate name; v, w are variable names;

c is a data type name; k is an integer constant;
κ represents heap formulas; π represents pure formulas;
β represents atomic interpreted predicates

Fig. 1. The Unannotated Specification Language

dll(x, p1, n, S1)@{2} ∗ dll(y, p2, n, S2)@{2}
∧ x �=null ∧ n>0 ∧ S1 �={} ∧ y �=null ∧ S2 �={}

In a nutshell, the goal of our approach is to apply aggressive specialization to our
predicate instances, without the need to resort to predicate unfolding, in the hope that
infeasible disjuncts are pruned, where possible. In the process, our specialization tech-
nique is expected to propagate states that are consequences of each of the specialized
predicate instances. We expect this proposal to support more efficient manipulation of
program states, whilst keeping the original abstractions intact where possible.

3 Formal Preliminaries

Our underlying computation model is a state machine with a countable set of variables
and a heap, which is a partial mapping from addresses to values.

Fig. 1 defines the syntax of our (unannotated) specification language. We denote
sequences of variables v1, . . . , vn by the notation v∗, and by β atomic interpreted pred-
icates such as equality and disequality of program variables and arithmetic expressions.
Conjunctions of (possibly negated) atomic predicates form pure formulas, which we
denote by the symbol π. Heap formulas, denoted by κ, model the configuration of the
heap. They rely on two important components: data constructors c(v∗), which model
simple data records (e.g. the node of a tree), and inductively defined predicates, which
are generated by the non-terminal pred in Fig. 1.

Definition 1 (Heap Formula and Predicate Definition). A heap formula κ is either
the symbol emp, denoting the empty heap, or a formula of the form v �→c(v∗), denoting
a singleton heap, or a predicate p(v∗), or finally, a formula of the form κ1 ∗ κ2, where
κ1 and κ2 are heap formulas, and ∗ is the separating conjunction connective. Predi-
cates are defined inductively as the equivalence between a predicate symbol p(v∗), and
disjunctions of formulas of the form ∃w∗ · (κ∧π), where variables v∗ may appear free.
Predicate definitions may be augmented with invariants specified by the inv keyword.
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spred ::= p(v∗) ≡ Φ̂; I;R
Φ̂ ::=

∨
(∃w∗·σ̂ | C)∗ σ̂ ::= κ̂ ∧ π

κ̂ ::= emp | v �→c(v∗) | p(v∗)@L#R | κ̂1 ∗ κ̂2

where p, v, w, c, π denote the same as in Fig. 1;
I is a family of invariants;
R is a set of pruning conditions.
C is a pure formula denoting a context computed in the specialization process.

Fig. 2. The Annotated Specification Language

Unannotated formulas become annotated in the specialization process. Fig. 2 defines
the syntax of the annotated specification language. Annotated predicate definitions are
generated by the nonterminal spred.

Definition 2 (Annotated Predicates and Formulas). Given a predicate definition
p(v∗)≡ ∨

(∃w∗·κ∧π)∗, the corresponding annotated predicate definition has the form
p(v∗) ≡ ∨

(∃w∗·κ̂ ∧ π | C)∗; I;R, where I is a family of invariants, andR is a set of
pruning conditions. Each disjunct ∃w∗·κ̂ ∧ π |C now contains the annotated counterpart
κ̂ of κ, and is augmented with a context C, which is a pure formula for which C → π
always holds. Intuitively, C captures also the consequences of the specialized states of κ̂.
An annotated formula is a formula where all the predicate instances are annotated. An
annotated predicate instance is of the form p(v∗)@L#R, where L⊆{1, .., n} is a set of
labels denoting the unpruned disjuncts, and where R ⊆ R is a set of remaining pruning
conditions. The set of invariants I is of the form {(L→πL) | ∅⊂L⊆{1, .., n}}. For each set
of labels L, πL represents the invariant for the specialized predicate instance p(v∗)@L.
For a given annotated predicate instance p(v∗)@L#R, it is possible for L = ∅. When
this occurs, it denotes that none of the predicate’s disjuncts are satisfiable. Moreover,
we have π∅=false which will contribute towards a false state (or contradiction) for its
given context.

Definition 3 (Pruning Condition). A pruning condition is a pair between an atomic
predicate instance α and a set of labels L, written α←L. Its intuitive meaning is that
the disjuncts in L should be kept if α is satisfiable in the current context. The symbol R
denotes a finite set of such pruning conditions.

Given a predicate definition p(v∗) ≡ ∨n
i=1(∃w∗·σ̂i |Ci); I; R, we call Di =df (∃w∗·σ̂i

|Ci) the ith disjunct of p ; i will be called the label of its disjunct. We shall use Di

freely as the ith disjunct of the predicate at hand whenever there is no risk of confusion.
We employ a notion of closure for a given conjunctive formula. Consider a formula
π(w∗) = ∃v∗·α1∧· · ·∧αm, where αi are atomic predicates, and variables w∗ appear
free. We denote by S = closure(π(w∗)) a set of atomic predicates (over the free vari-
ables w∗) such that each element α ∈ S is entailed by π(w∗). Some of the variables w∗

may appear free in α but not v∗. To ensure this closure set be finite, we also impose a
requirement that weaker atomic constraints are never present in the same set, as follows:
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∀αi ∈ S · ¬(∃αj ∈ S · i �=j ∧ αi =⇒ αj). Ideally, closure(π(w∗)) contains all stronger
atomic formulas entailed by π(w∗), though depending on the abstract domain used, this
set may not be computable. A larger closure set leads to more aggressive pruning.

Our specialization calculus (Sec 4) is based on the annotated specification language.
We have an initialization and inference process (Sec 5) to automatically generate all
annotations (including I,R) that are required by specialization. For simplicity of pre-
sentation, we only include normalized linear arithmetic constraints in our language. Our
system currently supports both arbitrary linear arithmetic constraints, as well as set con-
straints. This is made possible by integrating the Omega [19] and MONA solvers [9]
into the system. In principle, the system may support arbitrary constraint domains, pro-
vided that a suitable solver is available for the domain of interest. Such a solver should
be capable of handling conjunctions efficiently, as well as computing approximations
of constraints that convert disjunctions into conjunctions (e.g. hulling).

4 A Specialization Calculus

Our specialization framework detects infeasible disjuncts in predicate definitions with-
out explicitly unfolding them, and computes a corresponding strengthening of the pure
part while preserving satisfiability. We present this as a calculus consisting of special-
ization rules that can be applied exhaustively to convert a non-specialized annotated
formula1 into a fully specialized one, with stronger pure parts, that can be subsequently
extracted and passed on to a theorem prover for satisfiability/entailment checking. Apart
from being syntactically correct, annotated formulas must satisfy the following well-
formedness conditions.

Definition 4 (Well-formedness). For each annotated predicate p(v∗)@L#R in the for-
mula at hand, assuming the definition p(v∗)≡∨n

i=1 Di; I;R, we have that (a) L ⊆
{1, . . . , n} ; (b) R ⊆ R ; and (c) forall α←L0 ∈ R we have L ∩ L0 �= ∅.
Definition 5 (Specialization Step). A specialization step has the form
Φ̂1 | C1 −sf→ Φ̂2 | C2, and denotes the relation allows the annotated formula Φ̂1 with
context C1 to be transformed into a more specialized formula Φ̂2 with context C2.

Our calculus produces specialization steps, which are applied in sequence, exhaustively,
to produce fully specialized formulas (a formal definition of such formulas will be given
below). Relation −sf→ depends on relation −sp→, which produces predicate special-
ization steps defined by the following:

Definition 6 (Predicate Specialization Step). A predicate specialization step has form

(1) p(v∗)@L1#R1 | C1 −sp→ p(v∗)@L2#R2 | C2.

and signifies that annotated predicate p(v∗)@L1#R1 | C1 can be specialized into
p(v∗)@L2#R2 | C2, where L2 ⊆ L1, R2 ⊂ R1, and C2 is stronger than C1.

Here, the sets L1 and L2 denote sets of disjuncts of p(v∗) that have not been detected
to be infeasible. Each specialization step aims at detecting new infeasible disjuncts and
removing them during the transformation. Thus L2 is expected to be a subset of L1.

1 The conversion of non-annotated formulas into annotated ones shall be presented in Sec. 5.
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[SP−[FILTER]]

Rf = {(α←L0) | (α←L0)∈R, (L∩L0=∅)∨(C =⇒ α)}
C, L � R −filter→ (R− Rf )

[SP−[PRUNE]]

C∧α =⇒ false (α←L0) ∈ R L ∩ L0 �= ∅ L2 = L− L0

C1 = Inv(p(v∗), L2) C ∧ C1, L2 � R −filter→ R1

p(v∗)@L#R | C −sp→ p(v∗)@L2#R1 | C ∧ C1

[SP−[FINISH]]

C, L � R −filter→ ∅ R �= ∅
p(v∗)@L#R | C −sp→ p(v∗)@L#∅ | C

Fig. 3. Single-step Predicate Specialization

The sets of pruning conditions R1 and R2 may be redundant, but are instrumental
in making specialization efficient. They record incremental changes to the state of the
specializer, and represent information that would be expensive to re-compute at every
step. Essentially, a pruning condition α←L0 states that whenever ¬α is entailed by the
current context, the disjuncts whose labels are in L0 can be pruned. The initial set of
pruning conditions is derived when converting formulas into annotated formulas, and is
formally discussed in Section 5.

In a nutshell, each specialization step of the form (1) detects (if possible) a prun-
ing condition α←L0 ∈ R such that if ¬α is entailed by the current context, then the
disjuncts whose labels occur in L0 are infeasible and can be pruned. Given the nota-
tions in (1), this is achieved by setting L2 = L1 − L0 . Subsequently, the current set of
pruning conditions is reduced to contain only elements of the form α′←L′

0 such that
L′

0 ∩ L2 �= ∅. Thus, the well-formedness of the annotated formula is preserved
A key aspect of specialization is that context strengthening helps reveal and prune

mutually infeasible disjuncts in groups of predicates, which leads to a more aggressive
optimization as compared to the case where predicates are specialized in isolation.

Definition 7 (Fully Specialized Formula; Complete Specialization). An annotated
formula is fully specialized w.r.t a context when all its annotated predicates have empty
pruning condition sets. If the initial pruning condition sets are computed using a notion
of strongest closure, then for each predicate in the fully specialized formula, all the
remaining labels in the predicate’s label set denote feasible disjuncts with respect to
the current context, and in that sense, the specialization is complete.

This procedure is formalized in the calculus rules given in Figures 3 and 4. Figure 3 de-
fines the predicate specialization relation−sp→. This relation has two main components:
the one represented by the rule [SP−[FILTER]], which restores the well-formedness of
an annotated predicate, and the one represented by the rule [SP−[PRUNE]], which de-
tects infeasible disjuncts and removes the corresponding labels from the annotation. A
third rule, [SP−[FINISH]] produces the fully specialized predicate.
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[SF−[PRUNE]]

p(v∗)@L#R | C −sp→ p(v∗)@L2#R2 | C2

p(v∗)@L#R ∗ κ̂ | C −sf→ p(v∗)@L2#R2 ∗ κ̂ | C2

[SF−[CASE−SPLIT]]

� C =⇒ α1∨α2 � α1∧α2 =⇒ false

∀i ∈ {1, 2} · κ̂ | C∧αi −sf→ κ̂i | Ci

κ̂ |C −sf→ (κ̂1 |C1) ∨ (κ̂2 |C2)

[SF−[OR]]

κ̂1 | C1 −sf→ κ̂3 | C3

(κ̂1 |C1) ∨ (κ̂2 |C2) −sf→ (κ̂3 |C3) ∨ (κ̂2 |C2)

Fig. 4. Single-step Formula Specialization

The predicate specialization relation can be weaved into the formula specialization
relation given in Fig. 4. The first rule, [SF−[PRUNE]], defines the part of the −sf→ re-
lation which picks a predicate in a formula and transforms it using the −sp→ relation,
leaving the rest of the predicates unchanged. However, the transformation of the pred-
icate’s context is incorporated into the transformation of the formula’s context. This
rule realizes the potential for cross-specialization of predicates, eliminating disjuncts of
different predicates that are mutually unsatisfiable.

The rule [SF−[CASE−SPLIT]] allows further specialization via case analysis. It de-
fines the part of the −sf→ relation that produces two instances of the same formula,
joined in a disjunction, each of the new formulas having a stronger context. Each
stronger context is produced by conjunction with an atom αi, i ∈ {1, 2}, with the re-
quirement that the two atoms be disjoint and their disjunction cover the original context
C. This rule is instrumental in guaranteeing that all predicates reach a fully specialized
status. Indeed, whenever an annotated predicate has a pruning condition α←L0, such
that α is not entailed by the context C, yet α ∧ C is satisfiable, the only way to further
specialize the predicate is by case analysis with the atoms α and ¬α. Finally, the rule
[SF−[OR]] handles formulas with multiple disjunctions.

In the remainder of this section, we formalize the notion that our calculus produces
terminating derivations, and is sound and complete.

Property 1. Relations −sp→ and −sf→ preserve well-formedness. Thus, given two an-
notated predicate instances p(v∗)@L1#R1 and p(v∗)@L2#R2, if

p(v∗)@L1#R1 | C1 −sp→ p(v∗)@L2#R2 | C2

can be derived from the calculus, and p(v∗)@L1#R1 is well-formed, then p(v∗)@L2#R2

is well-formed as well. Moreover, for all annotated formulas Φ̂1 and Φ̂2, if

Φ̂1 | C1 −sf→ Φ̂2 | C2

can be derived from the calculus, and Φ̂1 is well-formed, then Φ̂2 is well formed as well.
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A predicate specialization sequence is a sequence of annotated predicates such that
each pair of consecutive predicates is in the relation −sp→. A formula specialization se-
quence is a sequence of annotated formulas such that each pair of consecutive formulas
is in the −sf→ relation.

Definition 8 (Canonical Specialization Sequence). A canonical specialization
sequence is a formula specialization sequence where (a) the first element is well-formed;
(b) specialization rules are applied exhaustively ; (c) the [SF−[CASE−SPLIT]] relation
is only applied as a last resort (i.e. when no other relation is applicable); and (d) the
case analysis atoms for the [SF−[CASE−SPLIT]] relation must be of the form α, ¬α,
where α←L0 is a pruning condition occurring in an annotated predicate p(v∗)@L#R
of the formula, such that L ∩ L0 �= ∅.

Property 2 (Termination). All canonical specialization sequences are finite and pro-
duce either fully specialized formulas, or formulas whose context is unsatisfiable.

Property 3 (Soundness). The −sp→ and −sf→ relations preserve satisfiability. Thus,
if p(v0..n)@L1#R1 | C1 −sp→ p(v0..n)@L2#R2 | C2 can be derived from the calculus,
then for all heaps h and stacks s, s, h |= p(v∗)@L1#R1 | C1 iff s, h |=
p(v∗)@L2#R2 |C2. Moreover, if Φ̂1 | C1 −sf→ Φ̂2 | C2 can be derived from the calculus,
then s, h |= Φ̂1|C1 iff s, h |= Φ̂2|C2.

We note here that the set R does not play a role in the way an annotated predicate is
interpreted. Mishandling R (as long as no elements are added) may result in lack of
termination or incompleteness, but does not affect soundness.

Finally, we address the issue of completeness. This property, however, is dependent
on how “complete” the conversion of a predicate into its annotated form is. Thus, we
shall first give an ideal characterization of such a conversion, after which we shall en-
deavour to prove the completeness property. Realistic implementations of this conver-
sion shall be discussed in Section 5.

Definition 9 (Strongest Closure). The strongest closure of unannotated formula Φ,
denoted sclosure(Φ), is the largest set of atoms α with the following properties: (a) for
all stacks s, s |= α whenever there exists h such that s, h |= Φ, and (b) there exists no
atom α′ strictly stronger than α – that is, it is not the case that for all s, s |= α whenever
s |= α′. For practical and termination reasons, we shall assume only closures which
return finite sets in our formulation.

In our conversion of an unannotated predicate definition for p(v∗) into the annotated def-
inition p(v∗)≡∨n

i=1 Di; I;R, we compute the following sets: Gi = sclosure(Di∧π), for
i = 1, .., n, HL = {α | forall i ∈ L, exists α′ ∈ Gi s.t. forall s, s |= α′ whenever s |= α}
and I = {L→π | L⊆{1...n}, π =

∧
α∈HL

α}, and R = {α←L | L is the largest set
s.t. α∈⋂i∈L Gi}. Moreover, we introduce the notation Inv(p(v∗), L) = πL, where
(L→πL)∈I. This notation is necessary in applying the rule [SP−[PRUNE]].

In practice, either the assumption holds, or the closure procedure computes a close
enough approximation to the strongest closure so that very few, if any, infeasible dis-
juncts are left in the specialized formula.
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Property 4 (Completeness). Let p(v∗)@L#∅ ∗ σ̂|C be a fully specialized formula that
resulted from a specialization process that started with an annotated formula. Denote
by πi, 1 ≤ i ≤ n the pure parts of the disjuncts in the definition of p(v∗), and assume
that C is satisfiable. Then, for all i ∈ L, πi ∧ C is satisfiable.

Proofs of the above properties, as well as a more detailed discussion of our calculus
rules, can be found in [3].

5 Inferring Specializable Predicates

We present inference techniques that must be applied to each predicate definition so that
they can support the specialization process. We refer to this process as inference for spe-
cializable predicates. A predicate is said to be specializable if it has multiple disjuncts
and it has a non-empty set of pruning conditions. These two conditions would allow a
predicate instance to be specializable from one form to another specialized form. Our
predicates are processed in a bottoms-up order with the following key steps:

– Transform each predicate definition to its specialized form.
– Compute an invariant (in conjunctive form) for each predicate.
– Compute a family of invariants to support all specialized instances of the predicate.
– Compute a set of pruning conditions for the predicate.
– Specialize recursive invocations of the predicate, if possible.

As a running example for this inference process, let us consider the following predi-
cate which could be used to denote a list segment of singly-linked nodes:

data snode { int val; snode next; }
lseg(x, p, n) ≡ x=p ∧ n=0 ∨ ∃q, m · x �→snode( , q) ∗ lseg(q, p, m) ∧ m=n−1

Our inference technique derives the following specializable predicate definition:

lseg(x, p, n) ≡ x=p ∧ n=0 | x=p∧n=0 ∨
∃q, m · x �→snode( , q)∗lseg(q, p, m)∧m=n−1 | x �=null∧n>0;
I = {{1}→x=p∧n=0, {2}→x �=null∧n>0, {1, 2}→n≥0};
R = {x=p←{1}, n=0←{1}, x �=null←{2}, n>0←{2}}

Note that we have a family of invariants, named I, to cater to each of the specialized
states. The most general invariant for the predicate is Inv(lseg(x, p, n), {1, 2}) = n≥0.
This is computed by a fix-point analysis [4] on the body of the predicate. If we de-
termine that a particular predicate instance can be specialized to lseg(x, p, n)@{2}, we
may use a stronger invariant Inv(lseg(x, p, n), {2}) = x�=null ∧ n>0 to propagate this
constraint from the specialized instance. Such a family of invariants allows us to enrich
the context of the predicate instances that are being progressively specialized.

Furthermore, we must process the predicate definitions in a bottom-up order, so that
predicates lower in the definition hierarchy are inferred before predicates higher in the
hierarchy. This is needed since we intend to specialize the body of each predicate def-
inition with the help of specialized definitions that were inferred earlier. In the case
of a set of mutually-recursive predicate definitions, we shall process this set of pred-
icates simultaneously. Initially, we shall assume that the set of pruning conditions for
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[INIT−[MUTLI−SPEC]]

κ∧π −if→ κ̂∧π |C1 κ̂ | C1 −sf→∗ κ̂1 | C2

κ∧π −msf→ κ̂1∧π | C2

[ISP−[SPEC−BODY]]

spredold = (p(v∗) ≡ ∨n
i=1(∃u∗

i · σi)) ∀i∈{1, .., n} · σi −msf→ σ̂i | Ci

sprednew = (p(v∗) ≡ ∨n
i=1(∃u∗

i · σ̂i |Ci))

spredold −isp→ sprednew

[ISP−[BUILD−INV−FAMILY]]

spredold = (p(v∗) ≡ ∨n
i=1(∃u∗

i · σ̂i |Ci)) ρ = [invp(v
∗) �→fix(

∨n
i=1 ∃u∗

i · Ci)]

I = {(L→hull(
∨

i∈L ∃u∗
i · ρCi) | ∅⊂L⊂{1..n}} ∪ {{1..n}→ρ(invp(v∗))}

sprednew = (p(v∗) ≡ ∨n
i=1(∃u∗

i · σ̂i | ρCi); I)

spredold −isp→ sprednew

[ISP−[BUILD−PRUNE−COND]]

spredold = (p(v∗) ≡ ∨n
i=1(∃u∗

i · σ̂i |Ci); I) G =
⋃n

i=1 closure(I({i}))
R =

⋃
α∈G{α←{i | 1≤i≤n ∧ I({i}) =⇒ α}} ∀i∈{1, .., n} · σ̂i | Ci −sf→∗ σ̂i,2 | Ci,2

sprednew = (p(v∗) ≡ ∨n
i=1(∃u∗

i · σ̂i,2 |Ci,2); I; R)

spredold −isp→ sprednew

where −sf→∗ is the transitive closure of −sf→; and I({i}) = πi, given ({i}→πi) ∈ I.

Fig. 5. Inference Rules for Specializable Predicates

each recursive predicate is empty, which makes its recursive instances unspecializable.
However, once its set of pruning conditions has been determined, we can apply further
specialization so that the recursive invocations of the predicate are specialized as well.

The formal rules for inferring each specializable predicate are given in Fig. 5. The
rule [INIT−[MULTI−SPEC]] converts an unannotated formula into its corresponding spe-
cialized form. It achieves this by an initialization step via the −if→ relation given in
Fig. 6, followed by a multi-step specialization using −sf→∗, without resorting to case
specialization (that would otherwise result in an outer disjunctive formula). This essen-
tially applies a transitive closure of −sf→ until no further reduction is possible.

The rule [ISP−[SPEC−BODY]] converts the body of each predicate definition into its
specialized form. For each recursive invocation, it will initially assume a symbolic in-
variant, named invp(v∗), without providing any pruning conditions. This immediately
puts each recursive predicate instance in the fully-specialized form.

After the body of the predicate definition has been specialized, we can proceed to
build a constraint abstraction for its predicate’s invariant, denoted by invp(v∗), in the
[ISP−[BUILD−INV−FAMILY]] rule. For example, we may denote the invariant of predi-
cate lseg(x, p, n) symbolically using invlseg(x, p, n), before building the following recur-
sive constraint abstraction:

invlseg(x, p, n) ≡ x=p∧n=0 ∨ ∃q, m · x �=null∧n=m+1∧invlseg(q, p, m)
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[INIT−[EMP]]

emp −ih→ emp | true
[INIT−[CELL]]

x �→p(v∗) −ih→ x �→p(v∗) | x �=null

[INIT−[PRED]]

p(v∗) ≡ (
∨n

i=1(∃u∗
i ·σ̂i |Ci)); I;R

C = Inv(p(v∗), {1..n})
p(v∗) −ih→ p(v∗)@{1..n}#R | C

[INV−DEF]

p(v∗) ≡ (
∨n

i=1(∃u∗
i ·σ̂i |Ci)); I;R

(L→C) ∈ I
Inv(p(v∗), L) = C

[INIT−[HEAP]]

∀i∈{1, 2}·κi −ih→ κ̂i | Ci

κ1∗κ2 −ih→ κ̂1∗κ̂2 | C1∧C2

[INIT−[FORMULA]]

κ −ih→ κ̂ | C

κ∧π −if→ κ̂∧π |C∧π

Fig. 6. Initialization for Specialization

If we apply a classical fix-point analysis to the above abstraction, we would obtain a
closed-form formula as the invariant of the lseg predicate, that is invlseg(x, p, n) = n≥0.
With this predicate invariant, we can now build a family of invariants for each proper
subset L of disjuncts, namely 0⊂L⊂{1..n}. This is done with the help of the convex hull
approximation. The size of this family of invariants is exponential to the number of
disjuncts. While this is not a problem for predicates with a small number of disjuncts,
it could pose a problem for unusual predicates with a large number of disjuncts. To
circumvent this problem, we could employ either a lazy construction technique or a
more aggressive approximation to cut down on the number of invariants generated. For
simplicity, this aspect is not considered in the present paper.

Our last step is to build a set of pruning conditions for the disjunctive predicates
using the [ISP−[BUILD−PRUNE−COND]] rule. This is currently achieved by applying a
closure operation over the invariant I({i}) for each of the disjuncts. To obtain a more
complete set of pruning conditions, we are expected to generate a set of strong atomic
constraints for each of the closure operations. For example, if we currently have a for-
mula a>b ∧ b>c, a strong closure operation over this formula may yield the following
set of atomic constraints {a>b, b>c, a>c+1} as pruning conditions and omit weaker
atomic constraints, such as a>c.

Definition 10 (Sound invariant and sound pruning condition). Given a predicate
definition p(v∗)≡∨n

i=1 Di; · · · :
(1) an invariant L→π is said to be sound w.r.t. the predicate p if (1.a) ∅ ⊂ L ⊆ {1, .., n},

and (1.b) p(v∗)@L# |= π.
(2) a family of invariants I is sound if every invariant from I is sound and the domain

of I is the set of all non-empty subsets of {1, .., n};
(3) a pruning condition (α←L) is sound w.r.t. the predicate p if (3.a) ∅ ⊂ L ⊆ {1, .., n},

(3.b) vars(α) ⊆ {v∗}, and (3.c) ∀i∈L·Di |= α.
(4) a set of pruning conditions R is sound if every pruning condition in R is sound w.r.t.

the predicate p.
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Property 5. For each predicate p(v∗), the family of invariants and the set of pruning
conditions derived for p by our inference process are sound, assuming the fixpoint anal-
ysis and the hulling operation used by the inference are sound.

A proof of this property can be found in [3].

6 Experiments

We have built a prototype system for our specialization calculus inside an existing pro-
gram verification system for separation logic, called HIP [14]. Our implementation
benefits greatly from two optimizations: memoization and incremental pruning. The
key here is to support the early elimination of infeasible states, by attempting a proof
of each atomic constraint α being in contradiction with a given context C. In this way,
the context C is allowed to evolve to a monotonically stronger context C1, such that
C1 =⇒ C. Hence, if indeed C =⇒ ¬α is established, we can be assured that C1 =⇒ ¬α

will also hold. This monotonic context change is the basis of the memoization optimiza-
tion that leads to reuse of previous outcomes of implications and contradictions.

More specifically, we maintain a memoization set, I, for each context C. This denotes
a set of atomic constraints that are implied by the context C; that is ∀α∈I ·C =⇒ α. Con-
tradictions of the form (C∧α) = false are also memoized in the same way, since we can
model it as an implication check C =⇒ ¬α. These memoization recalls are only sound
approximations of the corresponding implication checks. In case both membership tests
fail for a given pruning condition α, we could turn to automated provers (as a last re-
sort) to help determine C =⇒ ¬α. Memoization would, in general, help minimize on
the number of invocations to the more costly provers.

The early elimination of infeasible states has an additional advantage. We can easily
slice out relevant constraints from a (satisfiable) context C that is needed to prove an
atomic constraint α. This is possible because we detect infeasible branches by prov-
ing only one atomic pruning constraint at a time. For example, consider a context
x�=null ∧ n>0 ∧ S�={}. If we need to prove its contradiction with n=0, a naive solu-
tion is to use (x�=null ∧ n>0 ∧ S�={}) =⇒ ¬(n=0). A better solution is to slice out just
the constraint n>0, and then proceed to prove the contradiction using n>0 =⇒ ¬(n=0),
leading to an incremental pruning approach that uses smaller proof obligations. To im-
plement this optimization, we partition each context into sets of connected constraints.
Two atomic constraints in a context C are said to be connected if they satisfy the fol-
lowing relation.

connected(α1, α2) :- (vars(α1)∩vars(α2)) �= {}
connected(α1, α2) :- ∃α∈C · connected(α1 , α)∧connected(α2 , α)

Using this relation, we can easily slice out a set of constraints (from the context) that
are connected to each pruning condition.

Fig 7 summarizes a suite of programs tested which included the 17 small programs
(comprised of various methods on singly, doubly, sorted and circular linked lists,
selection-sort, insertion-sort and methods for handling heaps, and perfect trees). Due
to similar outcomes, we present the average of the performances for these 17 programs.
We also experimented with a set of medium-sized programs that included complex
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Programs (specified props) LOC HIP HIP+Spec HIP HIP+Spec
Time(s) Time(s) Count Disj Size Count Disj Size

17 small progs (size) 87 0.86 0.80 229 1.63 12.39 612 1.13 2.97
Bubble sort (size,sets) 80 2.20 2.23 296 2.13 18.18 876 1.09 2.79
Quick sort (size,sets) 115 2.43 2.13 255 3.29 17.97 771 1.27 3.08
Merge sort (size,sets) 128 3.10 2.15 286 2.04 16.74 1079 1.07 2.99

Complete (size,minheight) 137 5.01 2.94 463 3.52 43.75 2134 1.11 10.10
AVL (height, size,bal) 160 64.1 16.4 764 2.90 85.02 6451 1.07 9.66

Heap Trees (size, maxelem) 208 14.9 4.62 649 2.10 56.46 2392 1.02 8.68
AVL (height, size) 340 27.5 13.1 704 2.98 70.65 7078 1.09 10.74

AVL (height, size, sets) 500 657 60.7 1758 8.00 86.79 14662 1.91 10.11
Red Black (size, height) 630 25.2 15.6 2225 3.84 80.91 7697 1.01 3.79
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shapes and invariants, to support full functional correctness. We measured the verifi-
cation times taken for the original HIP system, and also the enhanced system, called
HIP+Spec, with predicate specialization. For the suite of simple programs, the veri-
fier with specializer runs about 7% faster. For programs with more complex properties
(with the exception of bubble sort), predicate specialization manages to reduce verifi-
cation times by between 12% and 90%. These improvements were largely due to the
presence of smaller formulae with fewer disjuncts, as captured in Fig 8. This graph
compares the characteristics (e.g. average disjuncts, sizes and timings) of formula en-
countered by HIP+Spec, as a percentage relative to the same properties of the original
HIP system. For example, the average number of disjuncts per proof encountered went
down from 3.2 to 1.1; while the size of each proof (based on as the number of atomic
formulae) also decreased from an average of 48.0 to 6.5. This speed-up was achieved
despite a six fold increase in the proof counts per program from 763 to 4375 used by
the specialization and verification processes. We managed to achieve this improve-
ment despite the overheads of a memoization mechanism and the time taken to infer
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annotations for specializable predicates. We believe this is due to smaller and simpler
proof obligations generated with the help our specialization process.

We also investigated the effects of various optimizations on the specialization mecha-
nism. Memoizing implications and contradictions saves 3.47%, while memoizing each
context for state change saves 22.3%. For incremental pruning, we have utilized the
slicing mechanism which saves 48% on average. We have not yet exploited the incre-
mental proving capability based on strengthening of contexts since our current solvers,
Omega and MONA, do not support such a feature. These optimizations were measured
separately, with no attempt made to study their correlation. For an extended version of
the present paper, including further experimental details, cf. [3].

7 Related Work and Conclusion

Traditionally, specialization techniques [8,17,11] have been used for code optimization
by exploiting information about the context in which the program is executed. Classical
examples are the partial evaluators based on binding-time analysers that divide a pro-
gram into static parts to be specialized and dynamic parts to be residualized. However,
our work focusses on a different usage domain, proposing a predicate specialization for
program verification to prune infeasible disjuncts from abstract program states. In con-
trast, partial evaluators [8] use unfolding and specialised methods to propagate static
information. More advanced partial evaluation techniques which integrate abstract in-
terpretation have been proposed in the context of logic and constraint logic program-
ming [18,17,11]. They can control the unfolding of predicates by enhancing the abstract
domains with information obtained from other unfolding operations. Our work differs
in its focus on minimizing the number of infeasible states, rather than on code optimiza-
tion. This difference allows us to use techniques, such as memoization and incremental
pruning, that were not previously exploited for specialization.

SAT solvers usually use a conflict analysis [22] that records the causes of conflicts so
as to recognize and preempt the occurrences of similar conflicts later on in the search.
Modern SMT solvers (e.g. [15,6]) use analogous analyses to reduce the number of calls
to underlying theory solvers. Compared to our pruning approach, conflict analysis [22]
is a backtracking search technique that discovers contexts leading to conflicts and uses
them to prune the search space. These techniques are mostly complementary since they
did not consider predicate specialization, which is important for expressive logics.

The primary goal of our work is to provide a more effective way to handle disjunctive
predicates for separation logic [14,13]. The proper treatment of disjunction (to achieve a
trade-off between precision and efficiency) is a key concern of existing shape analyses
based on separation logic [5,10]. One research direction is to design parameterized
heap materialization mechanisms (also known as focus operation) adapted to specific
program statements and to specific verification tasks [21,12,20,1,16]. Another direction
is to design partially disjunctive abstract domains with join operators that enable the
analysis to abstract away information considered to be irrelevant for proving a certain
property [7,23,2]. Techniques proposed in these directions are currently orthogonal to
the contribution of our paper and it would be interesting to investigate if they could
benefit from predicate specialization, and vice-versa.
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Conclusion. We have proposed in this paper a specialization calculus for disjunctive
predicates in a separation logic-based abstract domain. Our specialization calculus is
proven sound and is terminating. It supports symbolic pruning of infeasible states within
each predicate instance, under monotonic changes to the program context. We have
designed inference techniques that can automatically derive all annotations required for
each specializable predicate. Initial experiments have confirmed speed gains from the
deployment of our specialization mechanism to handle separation logic specifications
in program verification. Nevertheless, our calculus is more general, and is useful for
program reasoning over any abstract domain that supports disjunctive predicates. This
modular approach to verification is being enabled by predicate specialization.
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Abstract. The growing popularity of SystemC has attracted research aimed at
the formal verification of SystemC designs. In this paper we present KRATOS, a
software model checker for SystemC. KRATOS verifies safety properties, in the
form of program assertions, by allowing users to explore two directions in the
verification. First, by relying on the translation from SystemC designs to sequen-
tial C programs, KRATOS is capable of model checking the resulting C programs
using the symbolic lazy predicate abstraction technique. Second, KRATOS imple-
ments a novel algorithm, called ESST, that combines Explicit state techniques
to deal with the SystemC Scheduler, with Symbolic techniques to deal with the
Threads. KRATOS is built on top of NUSMV and MATHSAT, and uses state-of-
the-art SMT-based techniques for program abstractions and refinements.

1 Introduction

Formal verification of SystemC has recently gained significant interests [20, 14, 19, 24,
17,23,10]. Despite its importance, verification of SystemC designs is hard and challeng-
ing. A SystemC design is a complex entity comprising a multi-threaded program where
scheduling is cooperative, according to a specific set of rules [22], and the execution of
threads is mutually exclusive.

In this paper we present KRATOS, a new software model checker for SystemC.
KRATOS provides two different analyses for verifying safety properties (in the form
of program assertions) of SystemC designs. First, KRATOS implements a sequential
analysis based on lazy predicate abstraction [16] for verifying sequential C programs.
To verify SystemC designs using this analysis, we rely on the translation from SystemC
to a sequential C program, such that the resulting C program contains both the mapping
of SystemC threads in the form of C functions and the encoding of the SystemC sched-
uler. Second, KRATOS implements a novel concurrent analysis, called ESST [10], that
combines Explicit state techniques to deal with the SystemC Scheduler, with Symbolic
techniques, based on lazy predicate abstraction, to deal with the Threads.

In this paper we describe the verification flow of KRATOS, its architecture, and the
novel functionalities that it features. Due to space limit, the results of an experimen-
tal evaluation that compares KRATOS with other model checkers on various bench-
marks can be found in [9]. KRATOS is available for download at https://es.fbk.
eu/tools/kratos
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2 Verification Flow

The flow of SystemC verification using KRATOS consists of two directions, as shown
in Figure 1. The first direction relies on the translation of a SystemC design into a
sequential C program, such that the C program contains a function modeling each of
the SystemC threads and the encoding of the SystemC scheduler.

T1 T2 T3

Scheduler

Sequential C program

T1 T2 T3

Threaded C program

Sequential analysis

Lazy abstraction

Kratos

Concurrent analysis

T1
ART

T2
ART
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Abstract Reachability
Forest (ARF)

Scheduler (Explicit)

SystemC design

Thread T3

Thread T2

Thread T1

ESST

Abstract Reachability
Tree (ART)

Pinapa

SystemC2C

Fig. 1. The SystemC verification flow

KRATOS implements a sequential analysis that
model checks sequential C programs. This se-
quential analysis is essentially lazy predicate ab-
straction [16], which is based on the construction
of an abstract reachability tree (ART) by unwind-
ing the control-flow automaton (CFA) of the C
program. The ART itself represents the reachable
abstract state space. The sequential analysis that
KRATOS implements is not restricted to the re-
sults of SystemC translations, but it can also han-
dle general sequential C programs.

The second direction uses the concurrent anal-
ysis, which is the ESST algorithm, to model
check SystemC designs. Similar to the first direc-
tion, in the second direction the SystemC design
is translated into a so-called threaded C program
that contains a function for modeling each Sys-
temC thread. But, unlike the sequential C program
above, the encoding of the SystemC scheduler is
no longer part of the threaded C program. The
SystemC scheduler itself is now part of the ESST algorithm and its states are tracked
explicitly. ESST is based on the construction of an abstract reachability forest (ARF)
where each tree in the forest is an ART of the running thread. The ESST algorithm is
described in detail in [10].

Translations from SystemC designs into sequential and threaded C programs are
performed by SYSTEMC2C, a new back-end of PINAPA [21].

3 Architecture

The architecture of KRATOS is shown in Figure 2. It consists of a front-end that includes
a parser for C programs, a type checker, a CFA encoder, and static data-flow analyses
and optimization phases.

The parser translates a textual C program into its abstract syntax tree (AST) represen-
tation. The AST is then traversed by the type checker to build a symbol table. The CFA
encoder builds a CFA or a set of CFAs from the AST. Currently, the CFA encoder pro-
vides three encodings: small-block encoding (SBE), basic-block encoding (BBE), and
large-block encoding (LBE). In SBE each block consists only of at most one statement.
In BBE each block is a sequence of statements that is always entered at the beginning
and exited at the end. In LBE, as described in [1], each block is the largest directed
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Fig. 2. The architecture of KRATOS

acyclic fragment of the CFA. LBE improves performances by reducing the number of
abstract post image computation [1].

Static analyses and optimizations implemented by KRATOS include a simple cone-
of-influence reduction that removes nodes of CFAs that do not lead to the error nodes,
dead-code elimination, and constant propagation.

The sequential analysis is a reimplementation of the same analysis performed by ex-
isting software model checkers based on the lazy predicate abstraction, like BLAST [2]
and CPACHECKER [3]. The analysis consists of an abstraction structure, a precision, and
a node expander. The abstraction structure contains the representation of abstract states
that label ART nodes. A state typically consists of a location (or node) in CFA, a for-
mula denoting the abstract data state, and a stack that keeps track of the trace of function
calls. The structure also implements the coverage criteria that stop the expansion of ART
nodes. The precision encodes the mapping from locations in CFA to sets of predicates
that have been discovered so far. These predicates are relevant predicates used to com-
pute the abstract post images. The node expander expands an ART node by (1) unwinding
each of the outgoing edges of the CFA node in the state labelling the ART node, and (2)
computing the abstract post image of the state with respect to the statement labelling
the outgoing edge. The node expander currently implements depth-first search (DFS),
breadth-first search (BFS), and topological ordering strategies for expanding nodes.

For the concurrent analysis, we extract the threads and events from the input threaded
C program to create the initial state of scheduler. In this analysis, the node expander is
also equipped with a scheduler and a primitive executor. The scheduler explores all
possible schedules given a scheduler state as an input. The primitive executor executes
calls to functions that modify the state of scheduler. The executor only assumes that the
actual arguments of the calls are known statically.
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We remark that, the architecture of the concurrent analysis does not assume that the
scheduler is a SystemC scheduler. In fact any implementation of a cooperative scheduler
with one exclusively running thread in each schedule can be plugged into the analysis.

The sequential and concurrent analyses construct, respectively, the ART and the
ARF by following the standard counterexample-guided abstraction refinement (CE-
GAR) loop [13]. When the analyses cannot reach any error location, then the analyzed
program is safe (no assertion violation can occur). When the analyses reach an error
location, then the counterexample builder builds a counterexample by constructing the
path from the node labelled with the error location to the root of the ART, or to the
root of the first ART in the ARF. If the counterexample is non-spurious, in the sense
that the formula representing it is satisfiable, then the analyzed program is unsafe. If
the counterexample is spurious, then it is passed to the refiner. The refiner tries to refine
the precision by discovering new predicates that need to be kept track of by using the
unsatisfiable core or interpolation based techniques as described in [15].

KRATOS is built on top of an extended version of NUSMV [7], which is tightly inte-
grated with the MATHSAT SMT solver [5]. KRATOS relies on NUSMV and MATHSAT
for abstraction computation, for representing the abstract state within each ART, for
the coverage check, for checking the satisfiability of expressions representing counter
examples, and for extracting the unsatisfiable core and for generating sequence of in-
terpolants from counterexample paths.

4 Novel Functionalities

KRATOS offers the following novel functionalities.

ESST algorithm. The translation from SystemC designs to sequential C programs
enables the verification of SystemC using the “off-the-shelf” software model check-
ing techniques. However, such a verification is inefficient because the abstraction of
SystemC scheduler is often too aggressive, and thus requires many refinements to re-
introduce the abstracted details. The ESST algorithm attacks such an inefficiency by
modeling the scheduler precisely, and, as shown in [10], outperforms the SystemC ver-
ification through sequentialization.

Partial-order reduction. Despite its relative effectiveness, ESST still has to explore a
large number of thread interleavings, many of which are redundant. Such an exploration
degrades the run time performance and yields high memory consumptions. Partial-order
reduction (POR) is a well-known technique for tackling the state explosion problem by
exploring only a representative subset of all possible interleavings. Recently a POR
technique has been incorporated in the ESST algorithm [12]. KRATOS currently imple-
ments a POR technique based on persistent set, sleep set, and a combination of both.

Advanced abstraction techniques. KRATOS implements Cartesian and Boolean ab-
straction techniques that are implemented in BLAST and CPACHECKER. In addition,
KRATOS also implements hybrid predicate abstraction that integrates BDDs and SMT
solvers, as described in [11], and structural abstraction, as described in [8].
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Translators. KRATOS is capable of translating the sequential and threaded C to the
input languages of other verification engines. For example, KRATOS can translate se-
quential a C program into an SMV model. By such a translation, one can then use the
model checking algorithms implemented by, for example, NUSMV [7] to verify the C
program. In particular one can experiment with the bounded model checking (BMC) [4]
technique of NUSMV that does not exist in KRATOS.

Under-approximation. KRATOS is also able to generate under-approximations for quick
bug hunting. To this extent, KRATOS has recently featured a translation from threaded
C programs into PROMELA models [6]. Such a translation enables the verification by
under-approximations using the SPIN model checker [18].

Transition encoding. Each block in the CFA is translated into a transition expressed
by a NUSMV expression. We have observed that different encodings for transitions
can affect the performance of KRATOS. In particular, the encoding for the transitions
affect the performance of MATHSAT in terms of abstraction computations and also lead
MATHSAT to yielding different interpolants, and thus different discovered predicates.
KRATOS provides several different encodings for transitions. They differs in the number
of variables needed to encode the transition of each block of the CFA, from the fact that
intermediate expressions are folded or not, or whether NUSMV if-then-else expressions
are used to compactly represent intermediate expressions. Details about these encodings
can be found in the user manual downloadable from the KRATOS’ website. Depending
on the nature of the problem, the availability of several encodings allows users to choose
the most effective one for tackling the problem.

5 Conclusion and Future Work

We have presented KRATOS, a software model checker for SystemC. KRATOS pro-
vides two different analyses for verifying SystemC designs: sequential and concurrent
analyses. The sequential analysis, based on the lazy predicate abstraction, verifies the
C program resulting from the sequentialization of the SystemC design. The concur-
rent analysis, based on the novel ESST algorithm, combines explicit state techniques
with lazy predicate abstraction to verify threaded C program that models a SystemC
design. The results of an experimental evaluation, reported in [9], shows that ESST
algorithm, for the verification of the considered SystemC benchmarks, outperforms all
the other approaches based on sequential analysis. On the considered pure sequential
benchmarks, the sequential analysis shows better performance than other state-of-the-
art approaches for the majority of the benchmarks.

For future work, we will extend KRATOS to handle a larger subset of C constructs
like data structures, arrays and pointers (which are currently treated as uninterpreted
functions) and to be able to take into account the bit-precise semantics of operations. We
will investigate how to extend the ESST approach to deal with symbolic primitive func-
tions to generalize the scheduler exploration. We would also like to combine the over-
approximation analysis, based on the lazy abstraction, with an under-approximation
analysis, based on PROMELA translation or BMC. Finally, we will consider to extend
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the ESST techniques to the verification of concurrent C programs from other applica-
tion domains (e.g. robotics, railways), where different scheduling policies have to be
taken into account
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Abstract. Hybrid Automata (HAs) are a clean modeling framework for systems
with discrete and continuous dynamics. Many systems are structured into com-
ponents, and can be modeled as networks of communicating HAs. Message Se-
quence Charts (MSCs) are a consolidated language to describe desired behaviors
of a network of interacting components and have been extended in numerous
ways. The construction of traces witnessing such behaviors for a given system
is an important part of the validation. However, specialized tools to solve this
problem are missing. The standard approach encodes the constraints in a tempo-
ral logic formula or in additional automata, and then use an off the shelf model
checker to find witnesses. However, these approaches are too generic and often
turn out to be inefficient.

In this paper, we propose a specialized algorithm to find the behaviors of a
given network of HAs that satisfies a given scenario. The approach is based on
SMT-based bounded model checking. On one side, we construct an encoding
which exploits the events of the scenario and enables the incremental use of the
SMT solver. On the other side we simplify the encoding with invariants discov-
ered applying discrete model checking on an abstraction of the HAs. The experi-
mental results demonstrate the potential of the approach.

1 Introduction

Complex embedded systems (e.g. control systems for railways, avionics, and space)
are made of several interacting components, and feature both discrete and continuous
variables. Networks of communicating hybrid automata [16] (HAs) are increasingly
used as a formal framework to model and analyze the behavior of such systems: local
activities of each component amount to transitions local to each HA; communications
and other events that are shared between/visible for various components are modeled
as synchronizing transitions of the automata in the network; time elapse is modeled as
implicit shared timed transitions.

A fundamental step in the design of these networks is the validation of the models
performed by checking if they accept some desired interactions among the components.
The language of Message Sequence Charts (MSCs) and its extensions are often used
to express scenarios of such interactions. MSCs are especially useful for the end users
because of their clarity and graphical content.

The ability to construct traces of a network of HAs that satisfy a given MSC is an
important feature to support user validation. However, there has been little research to
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address the specific problem, and the typical approach reduces the problem to “off-the-
shelf” model checking solutions: the MSC is translated into an equivalent automaton
and the required trace is found by reachability in the cross-product of the automaton
with the network. This can turn out to be ineffective, exacerbating the difficulty of the
reachability problem, which is already very complex in the case of HAs.

In this paper, we tackle the problem of efficiently finding the traces of a network
of HAs that satisfy an MSC. We work in the framework of Bounded Model Check-
ing (BMC), which uses at its core an incremental encoding into Satisfiability-Modulo-
Theory (SMT).

We first investigate different automata constructions, exploiting optimizations such
as locality and partial-order reduction. Second, we propose a specialized, direct algo-
rithm, where the search is structured around the events in the MSC, which are used as
intermediate “islands”. The idea is to pre-simplify fragments of the encoding based on
the events attached to the islands and to incrementally increase the local paths between
two consecutive islands. Further simplifications are achieved by means of invariants
that are discovered by applying discrete model checking on an abstraction of the HAs.
The generated invariants are either over-approximations of the states that are visited
between two subsequent events, just before or just after an event of the scenario.

A key enabler for our work is the use of an alternative, “local time” semantics [6] for
HAs, which exploits the fact that automata can be “shallowly synchronized” [7]. The
intuition is that each automaton can proceed based on its individual “local time scale”,
unless they perform a synchronizing transition, in which case they must realign their
absolute time. This results in a more concise semantics, where traces of the network
are obtained by composing traces of local automata, each with local time elapse, by
superimposing structure based on shared communication.

We implement the various approaches in the sub-case of linear hybrid automata, and
we use an incremental SMT solver to check the satisfiability of the formulas encod-
ing the reachability problem. We compare the proposed solutions over a wide set of
networks and benchmark MSCs. The results show that the direct algorithm is able to
construct witnesses for very wide networks, with very long traces, significantly outper-
forming the other approaches based on the automata construction, and that the use of
invariants can be helpful in further reducing computation time.

The paper is structured as follows. In Section 2 we present some background on net-
works of HAs, and the SMT-based methods for their reachability analysis. In Section 3
we present the language for describing scenarios, and the methods based on automata
construction. In 4 we discuss the proposed direct approach to MSC checking. In Sec-
tion 5 we discuss related work. In Section 6 we experimentally evaluate our approach.
In Section 7 we draw some conclusions.

2 Networks of Hybrid Automata

2.1 Networks of Transition Systems

We first define Labelled Transition Systems (LTSs), which are then used to define the
semantics of Hybrid Automata. An LTS is a tuple 〈Q, A, Q0, R〉 where:
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– Q is the set of states,
– A is the set of actions/events (also called alphabet),
– Q0 ⊆ Q is the set of initial states,
– R ⊆ Q×A×Q is the set of labeled transitions.

A trace is a sequence of events w = a1, . . . , ak ∈ A∗. Given A′ ⊆ A, the projection
w|A′ of w on A′ is the sub-trace of w obtained by removing all events in w that are not

in A′. A path π of S over the trace w = a1, . . . , ak ∈ A∗ is a sequence q0
a1→ q1

a2→
. . .

ak→ qk such that q0 ∈ Q0 and, 〈qi−1, ai, qi〉 ∈ R for all i such that 1 ≤ i ≤ k. We
say that π accepts w. The language L(S) of an LTS S is the set of traces accepted by
some path of S. Given a state q ∈ Q, the language Lq(S) of an LTS S is the set of
traces accepted by some path q0

a1→ q1
a2→ . . .

ak→ qk of S with qk = q.
The parallel composition S1||S2 of two LTSs S1 = 〈Q1, A1, Q01, R1〉 and S2 =

〈Q2, A2, Q02, R2〉 is the LTS 〈Q, A, Q0, R〉 where:

– Q = Q1 ×Q2,
– A = A1 ∪A2,
– Q0 = Q01 ×Q02,
– R := {〈〈q1, q2〉, a, 〈q′1, q′2〉〉 | 〈q1, a, q′1〉 ∈ R1, 〈q2, a, q′2〉 ∈ R2}
∪{〈〈q1, q2〉, a, 〈q′1, q2〉〉 | 〈q1, a, q′1〉 ∈ R1, a �∈ A2}
∪{〈〈q1, q2〉, a, 〈q1, q

′
2〉〉 | 〈q2, a, q′2〉 ∈ R2, a �∈ A1}.

The parallel composition of two or more LTSs S1|| . . . ||Sn is also called a network. If an
event is shared by two or more components, we say that the event is a synchronization
event; otherwise, we say that the event is local. We denote with τi the set of local events
of the i-th component, i.e., τi = Ai \

⋃
j 
=i Aj .

Given a network, the language emptiness problem is the problem of checking if the
language of a network is empty. Given a networkN and a predicate q ∈ Q1× . . .×Qn,
the reachability problem is the problem of checking if the language Lq(N ) is empty.

2.2 Hybrid Automata

A Hybrid Automaton (HA) [16] is a tuple 〈Q, A, Q0, R, X, μ, ι, ξ, θ〉 where:

– Q is the set of states,
– A is the set of events,
– Q0 ⊆ Q is the set of initial states,
– R ⊆ Q×A×Q is the set of discrete transitions,
– X is the set of continuous variables,
– μ : Q→ P (X, Ẋ) is the flow condition,
– ι : Q→ P (X) is the initial condition,
– ξ : Q→ P (X) is the invariant condition,
– θ : R→ P (X, X ′) is the jump condition,

where P represents the set of predicates over the specified variables.
A Linear HA (LHA) is an HA where all the conditions are Boolean combinations of

linear inequalities and the flow conditions contain variables in Ẋ only. We assume also
that the invariant conditions of a LHA is a conjunction of inequalities.
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A network H of HAs is the parallel composition of two or more HAs. We consider
two semantics for networks of HAs: the global-time semantics, where all components
synchronize on timed events, and the local-time (or time-stamps) semantics, where the
timed events are local and components must synchronize the time on shared events.

In the following, we consider a network H = H1|| . . . ||Hn of HAs with Hi =
〈Qi, Ai, Q0i, Ri, Xi, μi, ιi, ξi, θi〉 such that for all 1 ≤ i < j ≤ n Xi ∩ Xj = ∅ (i.e.
the set of continuous variables of the hybrid automata are disjoint).

The global-time semantics (or time-action semantics) [16] of H is the network of
LTSs NGLTIME (H) = S1|| . . . ||Sn with Si = 〈Q′

i, A
′
i, Q

′
0i, R

′
i〉 where

– Q′
i = {〈q, x〉 | q ∈ Qi, x ∈ R

|Xi|},
– A′

i = Ai ∪ {〈TIME, δ〉 | δ ∈ R≥0},
– Q′

0i = {〈q, x〉 | q ∈ Q0i, x ∈ ιi(q)},
– R′

i = {〈〈q, x〉, a, 〈q′, x′〉〉 | 〈q, a, q′〉 ∈ Ri, 〈x, x′〉 ∈ θi(q, a, q′), x ∈ ξi(q), x′ ∈
ξi(q′)} ∪ {〈〈q, x〉, 〈TIME, δ〉, 〈q, x′〉〉 | there exists f satisfying μi(q) s.t. f(0) =
x, f(δ) = x′, f(ε) ∈ ξ(q), ε ∈ [0, δ]}.

The local-time semantics (or time-stamps semantics) [6] of H is the network of LTSs
NLOCTIME (H) = S1|| . . . ||Sn with Si = 〈Q′

i, A
′
i, Q

′
0i, R

′
i〉 where

– Q′
i = {〈q, x, t〉 | q ∈ Qi, x ∈ R

|Xi|, t ∈ R≥0},
– A′

i = {〈a, t〉 | a ∈ Ai, t ∈ R≥0} ∪ {TIMEi},
– Q′

0i = {〈q, x, 0〉 | q ∈ Q0i, x ∈ ιi(q)},
– R′

i = {〈〈q, x, t〉, 〈a, t〉, 〈q′, x′, t〉〉 | 〈q, a, q′〉 ∈ Ri, 〈x, x′〉 ∈ θi(q, a, q′), x ∈
ξi(q), x′ ∈ ξi(q′)} ∪ {〈〈q, x, t〉, TIMEi, 〈q, x′, t′〉〉 | there exists f satisfying μi(q)
s.t. f(t) = x, f(t′) = x′, f(ε) ∈ ξi(q), ε ∈ [t, t′], t ≤ t′}.

The definition of the local-time semantics is such that the set of actions of each LTSs
contains a local timed event TIMEi and couples containing a discrete action and a time
stamp (i.e. the amount of time elapsed in the automaton). Thus, each automaton per-
forms the time transition locally, changing its local time stamp. When two automata
synchronize on 〈a, t〉 they agree on the action a and on the time stamp t. Instead, in the
global-time semantics, all the automata are forced to synchronize on the time transition
〈TIME, δ〉, agreeing on the time elapsed during the transition (δ variable).

If q = 〈〈q1, x1, t1〉, . . . , 〈qn, xn, tn〉〉 is a state of NLOCTIME , we say that q is syn-
chronized iff ti = tj for 1 ≤ i < j ≤ n, i.e., the local times are equal.

Theorem 1 ([6]). 〈〈q1, x1〉, . . . , 〈qn, xn〉〉, is reachable in NGLTIME (H) iff there exists
a synchronized state 〈〈q1, x1, t〉, . . . , 〈qn, xn, t〉〉 reachable in NLOCTIME (H).

In an extended version of this paper, available at http://es.fbk.eu/people/mover/
hybrid_scenario/, we prove a stronger version of the theorem, which shows that
also a time-abstract version of the traces is preserved.

2.3 SMT Encoding of Hybrid Automata

As described in [16], LHAs can be analyzed with symbolic techniques. Let us con-
sider a network H = H1|| . . . ||Hn of LHAs whose semantics (either global or local

http://es.fbk.eu/people/mover/hybrid_scenario/
http://es.fbk.eu/people/mover/hybrid_scenario/
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time) is given by the network of LTSs S1|| . . . ||Sn where Si = 〈Qi, Ai, Qi0, Ri〉. The
states Qi can be represented by a set Vi of symbolic variables such that there exists a
mapping χ from the assignments of Vi to the states of the Si. The events of Ai can be
represented by a set of symbolic variables Wi such that χ maps every assignment of
variables in Wi to an event in Ai. Sets of states are represented with formulas over Vi,
while sets of transitions are represented with formulas over Vi, Wi, and V ′

i , which are
the next values of Vi. In particular, it is possible to define a formula Ii(Vi) such that
μ(Vi) |= Ii iff χ(μ) ∈ Qi0, and a formula Ti such that μ(Vi), ν(Wi), μ′(V ′

i ) |= Ti iff
(χ(μ), χ(ν), χ(μ′)) ∈ Ri, where μ(Vi), ν(Wi) and μ(V ′

i ) are assignments to the set of
variables Vi, Wi and V ′

i .
The details of the encoding we use can be found in [7]. Here, we just notice that we

use a scalar input variable ε to represent the events of Hi adding two distinguished
values, namely T and S, to represent a timed transition and stuttering, respectively.
When stuttering, the system does not change any variable. Moreover, when encoding
the global-time semantics a further real input variable δi represents the time elapsed in
a timed transition. Instead, when using the local-time semantics, the variable ti repre-
sents the local time of Hi and is also used as time-stamp of the events (thus, to ensure
that shared events happen at the same time).

As standard in Bounded Model Checking, given an integer k, we can build a formula
whose models correspond to all paths of length k of the represented LTS S. The formula
introduces k + 1 copies of every variable in the encoding of the automata. Given a
formula φ, we denote with φi the result of substituting the current and next variables
of φ with their i-th and (i + 1)-th copy, respectively. The paths of S of length k can be
encoded into the formula path(k) := I0 ∧∧0≤i<k T i.

Theorem 2. There exists a mapping χ from the models of path(k) to the paths of S of
length k.

Most of modern solvers, both for SAT and SMT, have an incremental interface such
that, if a problem is fed to the solver incrementally, the solver can first tackle smaller
parts of the problem and then pass to large parts managing to reuse the lemmas discov-
ered during the previous searches. Suppose the problem is parametrized by a certain k,
i.e. PB = ∃k.PB(k). In order to exploit the incremental interface of the solver, the
problem PB(k) is formulated into two parts PB(k) = α(k)∧β(k), as in [9], such that
α(0) = γ(0) and α(k +1) = α(k)∧γ(k +1). This way, the solver faces sub-problems
of incremental difficulties and can reuse previous results:
γ(0) ∧ β(0)
γ(0) ∧ γ(1) ∧ β(1)
γ(0) ∧ γ(1) ∧ γ(2) ∧ β(2)
...

If we want to solve the reachability problem, we look for a k for which the problem
PB(k) = path(k) ∧ targetk is satisfiable. The problem is usually presented to the
solver in the following form: γ(0) := I0, γ(k) := T k−1, β(k) := targetk, for k > 0.

The non-monotonicity of the encoding is handled with a standard stack-based inter-
face of the SMT solver (PUSH, ASSERT, SOLVE, POP primitives). This allows, after
asserting γ(k), to set a backtrack point (PUSH), assert β(k) (ASSERT), check the sat-
isfiability of the conjunction of the asserted formulas (SOLVE), and to restore the state
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of the solver (i.e. asserted formulas and learned clauses) at the backtrack point (POP).
This way, the k+1-th problem is solved keeping all the learned clauses related to γ(k).

3 Message Sequence Charts

3.1 MSCs for Networks of Hybrid Automata

GateControllerTrain

Exit

Raise

Lower

Approach

Fig. 1. An MSC for the Train-Gate-Controller
model [16]

A Message Sequence Chart (MSC) [23]
defines a possible interaction of compo-
nents in a network N . An MSC m is as-
sociated with a set of events Am ⊆ AN ,
subset of the events of the network. The
MSC defines a sequence of events for ev-
ery component S of the network, called
instance of S.

The typical implicit assumption is that
the set Am contains all the synchroniza-
tion events of the network. However, if
N is a network of hybrid automata, even
if we consider the global-time semantics
in which the timed event is shared, the timed event is not part of Am and, thus, is not
present in the sequence of events specified by the MSC. Therefore, we assume that in-
dependently from the semantics, if N is a network of the hybrid automata H1, . . . , Hn

with alphabet respectively A1, . . . An, then Am =
⋃

1≤i<j≤n Ai ∩ Aj and thus the
(global or local) timed event is not part of Am

1.
An instance σ for the LTS S is a sequence a1; . . . ; ah ∈ (Am ∩ AS)∗ of events of

S. S accepts the instance (S |= σ) iff there exists a trace w accepted by S (w ∈ L(S))
such that the sub-sequence of events in Am is equal to σ (w|Am

= σ). In other words,
S accepts the instance iff there exists a path π of S over a trace compatible with the
instance σ. In such cases, we say that π |= σ.

An MSC is the parallel composition σ1|| . . . ||σn of σ1, . . . , σn where σi is an in-
stance of Si. The network N of LTSs accepts the MSC m (N |= m) iff there exists a
trace w accepted byN (w ∈ L(N )) such that, for every Si, the sub-sequence of events
in Am ∩ ASi is equal to σ (w|(Am∩ASi

) = σ). In other words, N accepts the instance
iff there exists a path of N over a trace compatible with every instance of the MSC. If
H is a network of HAs, then we say thatH |= m iffNGLTIME (H) |= m.

The model checking problem for an MSC m is the problem of checking if a network
satisfies an MSC. If we define the language L(m) of an MSC m as the traces compatible
with the instances of m, the model checking problem can be seen as the problem of
checking if L(N ) ∩ L(m) �= ∅.

An MSC σ1|| . . . ||σn is consistent iff for every pair of instances σi and σj the pro-
jection on the common alphabet is the same, i.e., if A = Ai∩Aj , σi|A = σj|A. In other
words, the MSC m is consistent iff L(m) �= ∅. Henceforth, we assume that the MSCs

1 The techniques presented in this paper can be adapted to consider also the case where a syn-
chronization is not in Am.
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are consistent. The check of consistency is trivial and can be done syntactically on the
graphical representation of the MSC.

Example 1. Figure 1 shows an MSC for the railroad model from [16]. There is an in-
stance for each automaton in the network, Train, Controller and Gate. The MSC repre-
sents a scenario where the Train communicates with the controller when approaching
the Gate and the controller synchronizes with the Gate to close it. When the Train is
far, it synchronizes with the Controller, which opens the Gate.

3.2 Standard Global Automata Construction

The classic construction of an automaton which monitors the satisfaction of an MSC
m proceeds by building one state for combination of locations. Every instance has one
location before each event and a final location after the last event. A cut through m is
a set of locations, one for each instance (we do not require the cuts to be downward
closed with regard to the events because we guarantee that the reachable cuts respect
the events). It is called “cut” because it cuts the graphical representation of the MSC
into two parts, the one already visited and the one to be monitored.

Formally, if the instance σi = ai
1; . . . ; ai

hi
, we represent a location with indexes from

0 to hi. A cut is therefore a tuple of indexes. Given a cut c = 〈c1, . . . , cn〉, an event a
is said enabled in c iff there exists a set of indexes J ⊆ [1, n] such that for all j ∈ J ,
a ∈ Aj , the event after the location cj is a (i.e., ai

cj+1 = a), and, for all j �∈ J , a �∈ Aj .
Note that for a given event a, the set J is unique and we denote it with Jc

a.
The LTS Sm corresponding to an MSC m = σ1|| . . . ||σn, with σi = ai

1; . . . ; ai
hi

, is
defined as follows:

– Q = [0, h1]× . . .× [0, hn],
– A = Am,
– Q0 = 〈0, . . . , 0〉,
– R = {(c, a, c′) | a is enabled in c and, for all j ∈ Jc

a, i′j = ij + 1, and, for all
j �∈ Jc

a, i′j = ij}.
Theorem 3. L(m) = L(Sm).

3.3 Exploiting Independent Events

Reduced Global Automata. In the case of synchronizations on discrete events as for
hybrid automata (thus without shared variables), two transitions on different compo-
nents with different events are independent. This means that the order of the transitions
does not affect the state after their application. If the order is irrelevant for the search
problem, we can fix an arbitrary interleaving. As noted in [6], this reduction can be am-
plified if we adopt the local-time semantics, since timed transitions become local and
independent from the timed transitions of other components.

In the case of model checking MSC, since we are interested in finding one trace
compatible with the MSC, if we use the local-time semantics, we can fix an arbitrary
interleaving of parallel events in an MSC, and produce an automaton which is linear in
the number of events.
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If J and J ′ are subsets of [1, n], we say that J < J ′ if J contains an integer lower
than any integer in J ′. If a1 and a2 are enabled in c, we say that a1 < a2 iff Jc

a1
< Jc

a2
.

Clearly, given a cut c, there exists a minimum enabled event.
We can build a reduced LTS Sm corresponding to an MSC m as follows:

– Q = [0, h1]× . . .× [0, hn],
– A = Am × R≥0,
– Q0 = 〈0, . . . , 0〉,
– R = {〈c, 〈a, t〉, c′〉 | c ∈ Q, t ∈ R≥0 and a is the minimum enabled event in c and,

for all j ∈ Jc
a, i′j = ij + 1, and, for all j �∈ Jc

a, i′j = ij}.
Theorem 4. IfNLOCTIME (H) = S1|| . . . ||Sn, H |= m iff L(S1|| . . . ||Sn||Sm) �= ∅.

Distributed Automata. Another way to exploit the independence of the parallel events
in a MSC is to build a distributed version of the LTS Sm, with one component for
every component of the network. We then apply the step-semantics encoding [14] to
parallelize the encoding of independent transitions. Let us define the Si

m as follows:

– Q = [0, hi],
– A = Am × R≥0,
– Q0 = 0,
– R = {〈u, 〈a, t〉, u′〉 | u ∈ Q, a = ai

u+1 and u′ = u + 1}.
Theorem 5. IfNLOCTIME (H)= S1|| . . . ||Sn,H |= m iff L(S1||S1

m|| . . . ||Sn||S1
m) �= ∅.

A similar result can be obtained for the global-time semantics, as proposed in [19].

4 Scenario-Driven Encoding

4.1 Encoding Tailored to MSCs

The drawbacks of the traditional SMT-based encoding is that it cannot exploit the se-
quence of messages prescribed by the MSC in order to simplify the search because
of the uncertainty on the number of local steps between two events. We encode the
path of each automaton independently, exploiting the local time semantics, and then
we add constraints that force shared events to happen at the same time, as in shallow
synchronization [7]. Moreover, we fix the steps corresponding to the shared events and
we parametrize the encoding of the local steps with a maximum number of transitions.

Let us consider a network H = H1|| . . . ||Hn of LHAs and the encoding 〈Vi, Wi,
Ii, Ti〉 representing the LHA Hi, for 1 ≤ i ≤ n, in the local-time semantics. We denote
with Ti|φ the transition condition restricted to the condition φ, i.e., Ti|φ = Ti ∧ φ. We
abbreviate Ti|ε=a with Ti|a and Ti|ε∈τi∪{S} with Ti|τ (notice that τi, the set of local
actions, contains also the timed event T).

Let us fix a maximum number k of local events between two shared events. We
encode the path of the i-th component along the instance σi = a1; . . . ; ahi of an MSC
into the following formula:
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enc(σi, k) := I0
i ∧

∧
1≤j≤k

T j−1
i|τ ∧

∧
1≤u≤hi

(T (u∗k)+u−1
i|au

∧
∧

1≤j≤k

T
(u∗k)+u+j−1
i|τ ) (1)

Intuitively, enc(σi, k) encodes the alternation of sequences of at most k local steps
with the events in the instance σi. Note that the u-th event is encoded at the ((u ∗ k) +
u−1)-th step because it is preceded by u∗k many local events and u−1 shared events.

The run of a network along a consistent MSC m =σ1|| . . . ||σn can be encoded into:

enc(m, k) :=
∧

1≤j≤n

enc(σj , k) ∧
∧

1≤j<i≤n

sync(σj , σi) ∧ (tlastj

j = tlasti

i ) (2)

where lasti = (k + 1) ∗ hi + k is the index of the last state of the encoding and
sync(σj , σi) says that the h-th occurrence of a shared event must occur at the same
time in σj and σi. More, specifically, if A = Ai ∩Aj and σj|A = σi|A = a1; . . . al and
fi, fj : N→ N are such that az = σi(fi(z)) = σj(fj(z)), for 1 ≤ z ≤ l, then:

sync(σj , σi) :=
∧

1≤z≤l

t
(fi(z)∗k)+fi(z)−1
i = t

(fj(z)∗k)+fj(z)−1
j (3)

The function fi(z) maps the z-th event az in σi|A to the index of az in σi. Thus, the
index (fi(z) ∗ k) + fi(z) − 1 is the same index used in the encoding of enc(σi, k) to
encode the transition labeled with the shared event az .

Note that the encoding allows to express very complex constraints on the MSC. In
fact, it is possible to formulate constraints on the states of the network along events just
referring to the symbolic variables that represent them.

Example 2. We show the encoding of the MSC of Example 1 for the Train automaton
with 2 local steps and the synchronization constraints with the Controller automaton.
ITrain and TTrain are the initial condition and the transition relation Train.

enc(σtrain, 2) := I0
Train ∧ T 0

Train|τ ∧ T 1
Train|τ ∧

T 2
Train|Approach ∧ T 3

Train|τ ∧ T 4
Train|τ ∧

T 5
Train|Approach ∧ T 6

Train|τ ∧ T 7
Train|τ ∧

sync(σTrain, σController) := t2Train = t2Controller ∧ t5Train = t11Controller

Theorem 6.2 Given a consistent MSC m for the network H, if enc(m, k) is satisfiable
thenH |= m. Vice versa, ifH |= m, then there exists an integer k such that enc(m, k)
is satisfiable.

4.2 Incrementality

The encoding is conceived in order to maximize the incrementality of the solver, as
described in Section 2.3, along the increase of k, the length of a sequence of local steps.

2 The proof of the theorem is available at http://es.fbk.eu/people/mover/hybrid_scenario/.

http://es.fbk.eu/people/mover/hybrid_scenario/
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The idea is that we keep encodings of the sequences of local transitions separated and
we unroll them incrementally, while we add and remove accordingly the constraints
which glue such sequences.

Let us fix a maximum K as a bound for the number k of local transitions between
two shared events. We use K for distancing enough the (fixed) positions of events. With
regard to the formulas introduced in Section 2.3, we define the partial encoding for an
instance σi as follows:

γenc(σi)(0) := I0
i ∧

∧
1≤u≤hi

T
(u∗K)+u−1
i|au

γenc(σi)(k) :=
∧

0≤u≤hi

T
(u∗K)+u+k−1
i|τ

βenc(σi)(k) :=
∧

0≤u≤h−1

V (u∗K)+u+k = V (u∗K)+u+K

For each instance σi we encode the initial condition and all the hi events in γenc(σi)(0).
We incrementally increase the length of the local step in γenc(σi)(k) and in βenc(σi)(k),
which glues the last state of a sequence of local steps with the first state that performs
the next shared event.

The incremental encoding considering the whole MSC m is defined as follows:

γ(0) :=
∧

1≤i≤n

γenc(σi)(0) ∧
∧

1≤i<j≤n

sync(σi, σj)

γ(k) :=
∧

1≤i≤n

γenc(σi)(k)

β(k) :=
∧

1≤i≤n

βenc(σi)(k) ∧
∧

1≤j<n

t
lastj

j = t
lastj+1
j+1

Theorem 7. There exists a renaming of variables ι such that enc(m, k) and∧
0≤j≤k γ(j) ∧ β(k) are the syntactical equal modulo the renaming.

4.3 Scenario-Driven Invariants Generation

In order to strengthen the scenario-driven encoding of Section 4.1, and thus speed up the
search, we generate invariants from abstractions of the hybrid automata in the network.

Each instance σ of the MSC restricts the behavior of the automaton S. We abstract
S to a finite state system Ŝ and we use standard techniques, in our case BDDs, to
generate invariants which holds in different sections of σ. In particular, we find the
reachable states of Ŝ between two events, just before an event, and just after an event.
The invariants are then conjoined to the scenario encoding.

Consider the instance σ = a1; . . . ; ah of an MSC m. If S |= σ, by definition, there
exists a path π of S over trace w such that w|Am

= σ. In order to satisfy σ, π alternates
sequences of consecutive local events with shared events. More, specifically, if π |= σ,
π must be in the form q0

τ→ . . .
τ→ qj1

a1→ qj1+1
τ→ . . .

τ→ qjh

ah→ qjh+1
τ→ . . .

τ→
qjh+1 , where qi ∈ Q and τ are local events of S. We split the path π into a set Υ of
sub-sequences such that Υ ={πprei , πposti | i ∈ 1, . . . , h}∪{παi |i ∈ 0, . . . , h}, where:
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– πprei = {qji}, it is the source state of the transition labeled with ai in π.
– πposti = {qji+1}, it is the destination state of the transition labeled with ai in π.
– παi = {qji+1, . . . , qji+1} where we denoted 0 with j0 + 1.

Given an MSC instance σ = a1; . . . ; ah for the system S, we find the constraints
prei, posti, 1 ≤ i ≤ h and αi, 0 ≤ i ≤ h, such that, for every π such that π |= σ:

– for all u, 0 ≤ u ≤ h, for all q ∈ παu , q |= αu;
– for all u, 1 ≤ u ≤ h, for all q ∈ πpreu , q |= preu;
– for all u, 1 ≤ u ≤ h, for all q ∈ πpostu , q |= postu.

Thus, the constraints are necessary conditions for the paths to satisfy the instance. We
can safely strengthen the encoding of the scenario with such constraints in order to
speed up the search.

We perform the invariant generation process for S and σ in three different steps: we
compute the abstraction Ŝ, we perform a forward reachability computing a first set of
invariants and finally we refine the invariants with a backward reachability analysis. We
compute the Boolean Abstraction Ŝ of S, replacing each predicate of S with a fresh
Boolean variable, and we represent Ŝ with Binary Decision Diagrams (BDDs). Then,
we perform a forward reachability analysis on Ŝ computing an over-approximation
of posti and αi. We start the reachability analysis from the initial states of Ŝ, and
we compute α0 with a fixed-point of the image restricted to the local events τ . Then,
starting from α0, we compute post1 with a single image computation restricted to a1.
We alternate these two steps for all ai of σ. Finally, we perform a backward reachability
analysis on Ŝ to compute prei and to refine posti and αi. We start from posth and
we compute the precise preh as the intersection of αh−1 and the pre-image of posth
restricted to the event ah. Then, we refine αh−1, intersecting it with the fixed-point
of the pre-image which starts from preh and is restricted to τ . At this point we refine
posth−i, intersecting it with αh−1. We iterate these steps following σ in reverse order.

5 Related Work

There have been a lot of extensions to MSC: High-Level Message Sequence Charts [20],
UML’s sequence diagrams and Live Sequence Charts [10]. While several works aim to
increase the expressiveness of these languages, MSCs are a basic building blocks, used
to describe the parallel composition of sequences of shared events among components.
In this paper, we consider the basic version of MSCs, which describe the parallel com-
position of sequences of events and, as in [18], we consider the semantics of MSCs
in terms of traces, i.e., they constrain the sequence of observable/shared events.Our
approach can be extended to manage more expressive languages, such as High-Level
Message Sequence Chart, which adds the alternative, sequential and parallel compo-
sition of MSCs, using the scenario-based encoding as a building block. We can easily
manage time constraints in the MSC as introduced in [2, 5].

MSC and its extensions have been used in [3, 22] to describe an entire system. In [3]
they solve the model checking problem for a system expressed with MSCs translating
then into automata, while in [22] the authors check the consistency of UML Message
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Sequence Charts using linear programming. Both approaches differ from ours, since
MSCs are used as a modeling language and not as a specification language.

Many works present different translations of MSCs into temporal logics or automata
used for model checking a design. Most of these works focus on covering different
aspects of the extensions proposed by LSCs. In [11], the authors study the expressive
power of LSCs compared to CTL*. In [17], the authors consider charts with universal
semantics concentrating on (discrete-time) timing constraints and synchronous events;
they translate the charts into Timed Büchi Automata which are then translated into tem-
poral logic to be checked with the model checker STATEMATE. The work is extended
in [19] to handle more expressive timing constraints, translating an LSC either into a
global timed automaton or into a network of timed automata; moreover, the translation
is integrated with the UPPAAL model checker. In these works, the model checking tech-
niques are used off-the-shelf, but the verification engine is not optimized to deal with
the scenario specification. Surprisingly, there are not many works that optimize the al-
gorithms in order to scale up the analysis exploiting the structure of the scenarios. The
key difference with such works is in that here we focus on efficiency, rather than on
covering all the features provided by MSC extensions. We note that our approach can
be easily extended to deal with several features of extended MSCs.

Bounded model checking for hybrid systems using SMT solvers has been investi-
gated in [1, 4, 7, 12, 13]. These techniques can be used to verify a scenario by translating
the scenario into an automaton. Still, such techniques are not tailored to the verification
of a scenario, and they result in a loss of efficiency since the structure of the problem
under analysis is not taken into account. Existing optimizations to the BMC encoding
[1] are orthogonal to the scenario-based encoding and can be applied when encoding se-
quence of local events. Our specific encoding guided by the scenario is inspired by [7],
where the authors present a different semantics of the BMC problem for hybrid systems,
obtained by composing traces of the local automata, and superimposing compatibility
constraints resulting from the synchronizations. In fact, in our approach, the encodings
of the automata are local, and a synchronization between two or more automata can
happen at different times in the encoding.

6 Experimental Evaluation

The techniques discussed in previous sections were implemented on top of the model
checker NUSMV3, that features a bounded model checking approach to the reacha-
bility in networks of HAs., and uses at its core the MATHSAT SMT solver. We im-
plemented the approach based on the automata constructions, for which we perform a
reachability analysis using the incremental BMC search of NUSMV3 on the composi-
tion of the network and the scenario automaton. The reachability target is given by the
final states of the automaton. The scenario-driven encodings were implemented in the
same framework; for the invariant computation we use the BDD-based model checking
of NUSMV3 applied on a Boolean abstraction of the HAs. Also the scenario-driven
encoding search was implemented exploiting the incrementality of the SMT solver. In
the following, we call SCENARIO the scenario-driven encoding and SCENARIOINVAR

its variant simplified with invariants. As for the translations of the MSC into automata,
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GLOBAL is the reduced global automata which uses the local time semantics, DISTRIB

is the distributed automata with global time semantics, and DISTRIBLOCAL is the dis-
tributed automata with local time semantics.

In the experimental evaluation, we used the following benchmarks taken from the
literature and formalized using the HYDI language [8]. Star-shape Fischer is a hybrid
version of the Fischer mutual exclusion protocol, that uses a shared variable to control
the access to a critical session. Ring-shape Fischer is hybrid variant where processes
are in a ring, and each process shares a lock variable with its neighbors. Nuclear Reac-
tor [25] model the control of a nuclear reactor with n rods. Distributed Controller [15]
models the interactions of n sensors with a preemptive scheduler and a controller. Elec-
tronic Height Control System (EHC) [21] is an industrial case study of a system which
controls the height of a chassis by pneumatic suspension. The original non-linear model
is linearized using linear-phase portrait partitioning, as proposed in [21]. For each
benchmark, we defined meaningful MCSs that describe the interaction of all the au-
tomata in the benchmarks, possibly containing parallel event synchronizations. All the
MSCs used in the experimental evaluation are satisfiable.

We evaluated the scalability of the proposed approaches with respect to the number
of components in the network and with respect to the length of the MSCs. We increase
the number of the components for all the benchmarks, except for the EHC which has a
fixed number of processes. We increase the length of the MSCs repeating the sequence
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Fig. 2. (a)-(c) Scatter plots of run times (sec.). (d) the reduction due to invariants on search time.
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of messages of the scenario for an arbitrary number of times. All the experiment were
run on a Linux machine equipped with an Intel i7 CPU at 2.93 GHz, setting the timeout
and the memory out for a single benchmark to 300 seconds and to 2 GB of RAM. All
the results, the test cases and the executable used in the experimental evaluation are
available at http://es.fbk.eu/people/mover/tests/CAV11/.

The main findings of the experimental evaluation regard the effectiveness of the
scenario-based encoding, which outperforms the approaches based on the optimized
automata construction. In Figure 2 we compare the run times (in logarithmic scale) for
all the tested instances of benchmarks and scenarios of the scenario-driven encoding
and the automata approaches. The scenario-driven encoding demonstrates its efficiency
outperforming the automata approaches in nearly all the benchmarks, sometimes by
orders of magnitude, terminating the execution on benchmarks where the automata ap-
proach reaches the time-out.

The plots in Figure 3 show the scalability with respect to the number of the automata
in the network for all the benchmarks, except the EHC, for MSC of fixed structure.
Each plot from Figure 3 shows the run time (in seconds) of the different methods on the
y axes and the number of automata on the x axes. A point in one of these plots is the
run time of a specific method for a specific number of automata. These plots show that
the scenario-based encoding scales much better than the automata-based approaches.

Figure 4 (a)-(e) shows the effect of increasing the size of the scenario, fixing the
number of automata in the network. In general, again, the scenario-driven encoding is
more efficient and scales better than the automata-based approaches.

The simplification brought by the invariants computed from the abstraction is not
always useful, although they rarely are detrimental (see Figure 3 and 4). When the
system under analysis has a small discrete state space the invariants do not bring a
speed up to the search. The impact of invariants is very strong when the complexity
of the automata increases, as in the case of the Distributed Controller benchmark. The
effect of the invariants on the search is highlighted in Figure 2(d), where we plot the
search times, excluding the time taken to generate the invariants.

7 Conclusions

In this paper we have addressed the problem of finding traces satisfying MSCs. The
problem is highly relevant to verification, in that MSCs are very useful to allow end
users to validate both requirements and designs. We investigated the use of a specialized
algorithm that uses the segments of the MSC to guide the search, based on the use of
a local time semantics. The experiments show that the proposed method significantly
outperforms optimized techniques based on automata construction.

In the future, we will extend the language support for MSCs and we apply techniques
such as k-induction and abstraction [24] to prove that a network does not satisfy an MSC.
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Abstract. We describe a reduction from temporal property verification
to a program analysis problem. We produce an encoding which, with
the use of recursion and nondeterminism, enables off-the-shelf program
analysis tools to naturally perform the reasoning necessary for proving
temporal properties (e.g. backtracking, eventuality checking, tree coun-
terexamples for branching-time properties, abstraction refinement, etc.).
Using examples drawn from the PostgreSQL database server, Apache
web server, and Windows OS kernel, we demonstrate the practical via-
bility of our work.

1 Introduction

We describe a method of proving temporal properties of (possibly infinite-state)
transition systems. We observe that, with subtle use of recursion and nondeter-
minism, temporal reasoning can be encoded as a program analysis problem. All
of the tasks necessary for reasoning about temporal properties (e.g. abstraction
search, backtracking, eventuality checking, tree counterexamples for branching-
time, etc.) are then naturally performed by off-the-shelf program analysis tools.
Using known safety analysis tools (e.g. [2,5,8,24,32]) together with techniques
for discovering termination arguments (e.g. [3,6,17]), we can implement tem-
poral logic provers whose power is effectively limited only by the power of the
underlying tools.

Based on our method, we have developed a prototype tool for proving tem-
poral properties of C programs and applied it to problems from the PostgreSQL
database server, the Apache web server, and the Windows OS kernel. Our tech-
nique leads to speedups by orders of magnitude for the universal fragment of
CTL (∀CTL). Similar performance improvements result when proving LTL with
our technique in combination with a recently described iterative symbolic deter-
minization procedure [15].

Limitations. While in principle our technique works for all classes of transi-
tion systems, our approach is currently geared to support only sequential non-
recursive infinite-state programs as its input. Furthermore, we currently only
support the universal fragments of temporal logics (i.e. ∀CTL rather than CTL).
Existential reasoning would also be possible, but care is required to ensure that

G. Gopalakrishnan and S. Qadeer (Eds.): CAV 2011, LNCS 6806, pp. 333–348, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



334 B. Cook, E. Koskinen, and M. Vardi

the underlying program analysis tools appropriately use universal abstractions
(“may” transitions) as well as existential abstractions (“must” transitions). Fi-
nally, our method works best when properties do not involve deep and complex
nesting of temporal operators. In order to better support these more complex
properties our implementation would need to mix the construction of the pro-
gram analysis problem with the analysis itself in the spirit of Impact [27], as
invariants proved during a lazy unrolling could be used to prune away much of
the work. As presented here, our approach instead creates a single encoding up
front before performing program analysis.

2 From Temporal Logic to Program Analysis

In this section we introduce a reduction which, when given a transition system
M and an ∀CTL temporal logic property ϕ, generates a program that encodes
the search for the proof that ϕ holds of M . Existing program analysis tools can
then be used to reason about the validity of the property. We begin with some
definitions and terminology.

2.1 Preliminaries

Transition systems. A transition system M = (S, R, I) is a set of states S, a
transition relation R ⊆ S × S, and a set of initial states I ⊆ S. A trace of
a transition system is a sequence of states (s0, s1, ...) such that s0 ∈ I and
∀i ≥ 0. (si, si+1) ∈ R. For convenience, we do not allow finite traces. The
transition relation must be such that every state has at least one successor state:
∀s ∈ S. ∃s′. R(s, s′). This is without a loss of generality, as final states can be
encoded as states that loop back to themselves.

Ranking functions. For a state space S, a ranking function f is a total map
from S to a well ordered set with ordering relation ≺. A relation R ⊆ S × S is
well-founded if and only if there exists a ranking function f such that ∀(s, s′) ∈
R. f(s′) ≺ f(s). We denote a finite set of ranking functions (or measures) as
M. Note that the existence of a finite set of ranking functions for a relation
R is equivalent to containment of R within a finite union of well-founded rela-
tions [30]. That is to say that a set of ranking functions {f1, ..., fn} can denote the
disjunctively well-founded relation {(s, s′) | f1(s′) ≺ f1(s)∨ ...∨fn(s′) ≺ fn(s)}.

Temporal logic. We are concerned with verifying temporal properties that may
be written either as trace-based properties in LTL or as state-based properties
in the universal fragment of computation tree logic (∀CTL). The encoding we
describe in this section is state-based in nature and, as such, is readily suitable
to ∀CTL properties. To prove LTL properties we use a recently described itera-
tive symbolic determinization technique [15] with the ∀CTL proving technique
described here.

The syntax of a ∀CTL formula is ϕ ::= α | ϕ∧ϕ | ϕ∨ϕ | AGϕ | AFϕ | A[ϕWϕ].
The standard semantics of ∀CTL are given in Fig. 1. α is an atomic proposi-
tion. ∀CTL’s temporal operators are state-based in structure. The operator AGϕ
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specifies that ϕ globally holds in all reachable future states. The operator AFϕ
specifies that, across all computation sequences from the current state, a state
in which ϕ holds must be reached. Finally, the A[ϕ1Wϕ2] operator specifies that
ϕ1 holds in every state where ϕ2 does not yet hold.

α(s)

R, s � α

R, s � ϕ1 R, s � ϕ2

R, s � ϕ1 ∧ ϕ2

R, s � ϕ1 ∨ R, s � ϕ2

R, s � ϕ1 ∨ ϕ2

∀(s0, s1, ...). s0 = s ⇒ ∃i ≥ 0. R, si � ϕ

R, s � AFϕ

∀(s0, s1, ...). s0 = s ⇒ ∀i ≥ 0. R, si � ϕ

R, s � AGϕ

∀(s0, s1, ...). s = s0 ⇒ (∀i ≥ 0. R, si � ϕ1)∨
(∃j ≥ 0. R, sj � ϕ2 ∧ ∀i ∈ [0, j). R, si � ϕ1)

R, s � A[ϕ1Wϕ2]

Fig. 1. Semantics of ∀CTL: �

We use AF, AG, AW as
our base operators (as op-
posed to the more stan-
dard U and R), as each
corresponds to a distinct
form of proof: AF to ter-
mination, AG to safety, and
AW to sequencing. We omit
the next state operator AX.
Formulae with U and R
can be expressed in ∀CTL.
We assume that formulae
are written in negation nor-
mal form, in which negation
only occurs next to atomic propositions (we also assume that the domain of
atomic propositions is closed under negation). A formula that is not in nega-
tion normal form can be easily normalized. sub(ϕ) is defined to be the set of all
subformulae of ϕ.

let rec E(〈s,ψ〉,M, R) : bool =
match(ψ) with
| α → return α(s)
| ψ′∧ψ′′ →

if (*) return E(〈s,ψ′〉,M, R)
else return E(〈s,ψ′′〉,M, R);

| ψ′∨ψ′′ →
if (E(〈s,ψ′〉,M, R)) return true;
else return E(〈s,ψ′′〉,M, R);

| AGψ′ →
while (true) {

if (¬ E(〈s,ψ′〉,M, R))
return false;

if (*) return true;
s := choose({s′ | R(s, s′)});

}

| AFψ′ → local dup := false; local ′s ;
while (true) {

if (E(〈s,ψ′〉,M, R)) return true;
if (dup ∧ ¬(∃f ∈M. f(s) ≺ f(′s)))

return false;
if (¬ dup ∧ *) { dup := true; ′s := s; }
if (*) return true;
s := choose({s′ | R(s, s′)});

}
| A[ψ′Wψ′′] →

while(true) {
if (¬E(〈s,ψ′〉,M, R))

return E(〈s,ψ′′〉,M, R);
if (*) return true;
s := choose({s′ | R(s, s′)});

}

Fig. 2. The encoding E which takes a state s, a property ψ, a finite set of ranking
functions M, and a transition relation R, and constructs a recursive program which
can be used to prove ψ if M is sufficient. choose() nondeterministically selects an
element from the set given by its argument. * ≡ choose({true, false})
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2.2 Encoding

We now show that the problem of ∀CTL verification can be reduced to a program
analysis task. Our encoding E is given in Fig. 2. When given a transition relation
system M = (S, R, I) and an ∀CTL property ϕ, the program E encodes the
search for the proof that ϕ holds of M . The arguments (〈s, ψ〉,M, R) passed
to E are a pair consisting of the state s, a ϕ-subformula ψ of interest, a finite
set of ranking functions M and the transition relation R. Executions of the
procedure E explore the S × sub(ϕ) state space from an initial state s0 ∈ I
in a depth-first manner. At each recursive call, E is attempting to determine
whether ψ holds of s. Rather than explicitly tracking this information, however,
E returns false (recursively) whenever ψ does not hold of s. Consequently, if E
can be proved to never return false, it must be the case that the overall property
ϕ holds of the initial state s (we discuss the termination of E below). When
a program analysis is applied to E it is implementing what is needed to prove
branching-time behaviors of the original transition system (e.g. backtracking,
eventuality checking, tree counterexamples, abstraction, abstraction-refinement,
etc). Formally the relationship between E and � is: for a transition system M =
(S, R, I) and ∀CTL property ϕ,

[∃ finite M. ∀s ∈ I. E(〈s, ϕ〉,M, R) cannot return false] ⇒ ∀s ∈ I. R, s � ϕ

where M is, as described earlier, a finite set of ranking functions. We formally
define “cannot return false” by giving E as a guarded transition system in our
technical report [16], but informally it means there is no execution of E where
false is returned.

Completeness (i.e. ⇐) holds when equality over S can be determined in finite
time and the ranking functions are enumerable (e.g. represented as a possibly
infinite list of state/rank pairs). These results can be found in Section 3.

What remains is to understand how E determines whether a subformula ψ
holds of a state s. By passing the state on the stack, we can consider multiple
branching scenarios. When a particular ψ is a ∧ or AG subformula, then E ensures
that all possibilities are considered by establishing feasible paths to all of them.
When a particular ψ is a ∨ or AF subformula, E enables executions to consider
all of the possible cases that might cause ψ to hold of s. As soon as one is found,
true is returned. Otherwise, false will be returned if none are found. This is the
intuition behind the first invariant maintained by E :

INV1 : ∀s, ψ,M, R. if R, s �� ϕ then E(〈s, ϕ〉,M, R) can return false

Consider this case from the definition of E :
| ψ ∨ ψ′ → if (E(〈s, ψ〉,M, R)) return true;

return E(〈s, ψ′〉,M, R);

Imagine that ψ ≡ x �= 1, and ψ′ ≡ AG(x = 0). In this case we want to know that
one of the subformulae (i.e. x �= 1 or AG(x = 0)) holds. A recursive call is made
with the current state s to explore whether x �= 1 as well as a separate recursive
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call with the same current state s to explore AG(x = 0). During a symbolic
execution of this program, all executions will be considered in a search for a way
to cause the program to fail. If it is possible for both recursive calls to return
false (i.e. they abide INV1), then there will be an execution in which the current
call can return false (also abiding INV1). A standard program analysis tool (e.g.
SLAM [2]) will find this case. By maintaining this invariant recursively, a proof
that the outermost level of E cannot return false implies that the outermost
property holds of the original system.

Because we want to consider every state that is reachable from a finite prefix
of an infinite path, it must be possible for the recursive calls to return from
every state. If it were possible for the checking of a subformula like AG(x = 0) to
diverge (thus never returning false) then the above code fragment would never
return false, and thus the top-level call to E would never return false. To this
end, E maintains a second invariant:

INV2 : ∀s, ψ,M, R. E(〈s, ψ〉,M, R) can return true

It is this requirement that necessitates the additional nondeterministic “if (*)
return true” commands found within each loop in E . One can think of “if (*) return
true” as a form of backtracking. In our encoding, a nondeterministic return of
true is not declaring that the property holds (we must always return true to
do that). Instead, a nondeterministic return of true in the encoding means that
a program analysis can freely backtrack and switch to other possible scenarios
during its search for a proof.

In the AF case, our encoding must allow a program analysis to demonstrate
that all paths must eventually reach a state where the subformula holds. While
exploring the reachable states in R the encoding may, at any point, nondeter-
ministically decide to capture the current state (setting dup to true and saving
s as ′s). When each subsequent state s is considered, a check is performed that
there is some rank function that witnesses the well-foundedness of this partic-
ular subset of the transitive closure of the transition system (we will precisely
say which subset in Section 3). This is an adaptation of a known technique [17].
However, rather than using assert to check that one of the ranking functions in
M holds, our encoding instead returns false, allowing other possibilities to be
considered (if any exist) in outer disjunctive or AF formulae.

Partial evaluation. In practice, if the input transition system is implemented as
a program, then we can perform a number of static optimizations from abstract
interpretation and partial evaluation that facilitates the application of current
program analysis tools. Our procedure PEval implements this mixture. For lack
of space, we only briefly describe these transformations. Some additional details
about PEval’s optimizations are provided in our technical report [16].

PEval uses the following facts: (a) the input ∀CTL formula ϕ is always finite
(b) the structure of E is unchanged and (c) the program and initial state are fixed.
Thus we can partially evaluate E on ϕ and the input program and obtain a first-
order program for which modern program analysis techniques can be effective.
For example, consider the näıve implementation of AG given in Fig. 2 which,
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in essence, is interpreting the cross product of R together with the following
program:

while true do
if (¬ E((s, ψ′),M, R)) return false;
if (∗) return true;

done

Since we are considering programs as our input systems, we can build an en-
coding where the following fragment is instrumented in each line of a procedure
based on the original input program:

if (¬ E((s, ψ′),M, R)) return false;
if (∗) return true;

We will see an example of this in Section 4.
Because the program state is passed on the stack, recursive calls to E will not

modify variables in the outer scope, and thus can be treated as skip statements
when analyzing the iterations of R. Invariants within a given subprocedure can
be vital to the pruning, simplification, and partial evaluation required to prepare
the output of E for program analysis.

2.3 Looking for M
let prove(P,ϕ) =
let Eϕ = PEval(E , ϕ, P ) in
M := ∅
while (Eϕ(M) can return false) do

let χ be a counterexample in
if ∃ lasso path fragment χ′ from χ then
if ∃ witness f showing χ′ w.f. then
M :=M ∪ {f}

else
return χ

else
return χ

done
return Success

Fig. 3. Rank function refinement procedure where the
input transition system P is assumed to be a program

Finally, recall that we
must ultimately find a fi-
nite set of ranking func-
tions M such that a pro-
gram analysis can prove
for every s ∈ I that
E(〈s, ϕ〉,M, R) does not
return false. Our top-
level procedure adapts a
known method [17] in or-
der to iteratively find a
sufficient M. See Fig. 3.
This procedure first con-
structs an Eϕ, which is a
version of E that has been
specialized on P and ϕ.
Then, in our implemen-
tation, new ranking func-
tions are automatically synthesized by examining counterexamples. A counterex-
ample in ∀CTL is tree-like as follows:

χ ::= CEXα of s | CEX∧ of χ | CEX∨ of χ× χ

| CEXAG of π × χ | CEXAF of π × π × χ | CEXW of π × χ× χ



Temporal Property Verification as a Program Analysis Task 339

where π is a trace through the transformed program E . Note that often tools
will not report a concrete trace but rather a path, i.e. a sequence of program
counter values corresponding to a class of traces (in rare instances paths may
be reported that are spurious). The counterexample structure for an atomic
proposition CEXα is simply a state in which α does not hold. Counterexamples
for conjunction and disjunction are as expected. A counterexample to an AG
property is a path to a place where there is a counterexample to the sub-property.
A counterexample to an AF property is a “lasso”—a stem path to a particular
program location, then a cycle which returns to the same program location,
and a sub-counterexample along that cycle in which the sub-property does not
hold. Finally, an AW counterexample is a path to a place where there is a sub-
counterexample to the first property as well as a sub-counterexample to the
second property.

In our encoding we obtain these tree-shaped counterexamples effectively for
free with program analysis tools like SLAM that report stack-based traces for
assertion failures. Information about the stack depth available in the counterex-
amples allows us to re-construct the tree counterexamples. That is, by walking
backward over the stack trace, we can determine the tree-shape of the coun-
terexample. Consider, for example, the case of AF. The counterexample found
by the underlying tool will visit commands through the encoding of E , including
points where dup is set to true. The commands from the input program can be
used to populate an instance of χ.

When a counterexample is reported that contains an instance of CEXAF (i.e.
a “lasso fragment”) it is possible that the property still holds, but that we have
simply not found a sufficient ranking function to witness the termination of
the lasso. In this case our procedure finds the lasso fragments and attempts to
enlarge the set of ranking functions M. One source of incompleteness of our
implementation comes from our reliance on lassos: some non-terminating pro-
grams have only well-founded lassos, meaning that in these cases our refinement
algorithm will fail to find useful refinements. The same problem occurs in [17].
In industrial examples these programs rarely occur.

3 Correctness

Theorem 1 (Soundness and completeness). For a transition system M =
(S, R, I) and ∀CTL property ϕ,

[∃ finite M. ∀s ∈ I. E(〈s, ϕ〉,M, R) cannot return false] ⇒ ∀s ∈ I. R, s � ϕ

where M is a finite set of ranking functions. Completeness (i.e. ⇐) holds when
equality over S can be determined in finite time and the ranking functions are
enumerable (e.g. represented as a possibly infinite list of state/rank pairs).

Using the Coq theorem prover we have proved the above theorem. Details can be
found in the Coq proof script listed in our technical report [16]. In this section
we discuss the structure of the proof and state some of the key lemmas.
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I ⊆ {s | α(s)}
〈R, I〉 � α

〈R, I〉 � ϕ1 〈R, I〉 � ϕ2

〈R, I〉 � ϕ1 ∧ ϕ2

∃I1, I2. I = I1 ∪ I2 ∧ 〈R, I1〉 � ϕ1 ∧ 〈R, I2〉 � ϕ2

〈R, I〉 � ϕ1 ∨ ϕ2

〈R, {s′ | ∃s ∈ I.reach (s, s′)}〉 � ϕ

〈R, I〉 � AGϕ

∃F .walkF
I is w.f. ∧ 〈R,F〉 � ϕ

〈R, I〉 � AFϕ

∃F .∀(s, s′) ∈ walkF
I .〈R, {s}〉 � ψ ∧ 〈R,F〉 � ϕ

〈R, I〉 � A[ψWϕ]

reach0 (s, s)

reachn (s, s′) ∧R(s′, s′′)

reachn+1 (s, s′′)

R(s, s′) ∧ s /∈ F ∧ s ∈ I

walkF
I (s, s′)

R(s′, s′′) ∧ s′ /∈ F ∧ walkF
I (s, s′)

walkF
I (s′, s′′)

We write reach (s, s′)
to mean ∃n ≥ 0.reachn (s, s′).

Fig. 4. Relational formulation of ∀CTL: �

For convenience, in the proof we introduce an alternative relational formula-
tion of ∀CTL, �. This formulation more closely matches our definition of E in
that it is given over sets of states, AG is defined in terms of reachability, and AF
is defined in terms of well-foundedness. In effect the encoding E is characterizing
these sets with nondeterminism and by returning true or false. Our proof starts
by showing that � is equivalent to � and then showing that

[∃ finite M. ∀s ∈ I. E(〈s, ϕ〉,M, R) cannot return false] ⇒ 〈R, I〉 � ϕ

from which point soundness directly follows.

Relational formulation of ∀CTL semantics. Our relational formulation of ∀CTL
is displayed in Fig. 4. Unlike the standard formulation, ours is more amenable
to reasoning about infinite-state systems because proof trees are based on par-
titioning the state space rather than enumerating the state space. We use the
notation 〈R, I〉 � ϕ to denote that a property ϕ is valid for a transition system.
This entailment relation is then defined inductively.

An atomic proposition α involves a simple check to see if I is contained within
the set of states in which α holds. The conjunction rule requires that both ϕ1

and ϕ2 hold of all states in I and the disjunction rule splits the states into two
sets, one in which ϕ1 holds and one in which ϕ2 holds. The semantics of the
property AGϕ says that for every reachable state s′, that s′ entails ϕ.

Frontiers. The property AFϕ depends on the existence of a set of states which
we will call a frontier F . Intuitively, the frontier F of a set of initial states I, is
a set of states through which every trace originating at a state in I must pass.

We use frontiers in our formulation of AFϕ to characterize the places where ϕ
holds, requiring that all paths from I eventually reach a frontier. We formalize
this idea by defining the inductive relation walkFI given on the right in Fig. 4.
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walkFI is a subset of R that includes every possible transition along every trace
from I up to F . In our characterization of AF we require that walkFI be well-
founded. In this way, we recast the ∀CTL semantics of AF in terms of the well-
foundedness of a relation, rather than the existence of an i-th state in every
trace. This formulation allows us to more efficiently prove AF properties because
we can discover well-founded relations that are over-approximations of walkFI
rather than searching for per-trace ranking functions. The final rule in the left
of Fig. 4 is for the AW operator, which also uses a frontier and the relation walkFI
representing the arcs along the way to the frontier F . To prove A[ϕ1Wϕ2], all
states along the path to the frontier must satisfy ϕ1 and states at the frontier—
should one ever get there—all must satisfy ϕ2.

The following lemma shows that if a property holds in our relational semantics,
then it also holds in the standard semantics of ∀CTL.

Lemma 1. For every ϕ, I, R, 〈R, I〉 � ϕ ⇐⇒ ∀s ∈ I. R, s � ϕ.

In our technical report [16] we formalize E as a guarded transition system. Since
ϕ is finite, we can partially evaluate E with respect to ϕ, and represent E as a
finite graph. The stack and return values are encoded in the configurations of
the graph. Executions and the notion “cannot return false” are then defined in
the natural way.

Lemma 2. For a transition system M = (S, R, I) and ∀CTL property ϕ,

[∃M. ∀s ∈ I. E(〈s, ϕ〉,M, R) cannot return false] ⇒ 〈R, I〉 � ϕ.

Completeness (i.e. ⇐) holds when equality over S can be determined in finite
time and each of the ranking functions are enumerable (e.g. represented as a
possibly infinite list of state/rank pairs).

Proof. By induction on ϕ.

From these lemmas we can prove Theorem 1.

4 Example

Consider the example in Fig. 5. After applying E and PEval we obtain the
program given in Fig. 6. The intermediate output without partial evaluation is
given in the technical report [16]. The encoding has been partially evaluated
with respect to ϕ, and with respect to the program counter. For every ψ ∈
sub(ϕ) and pc valuation, there is a corresponding method E“ψ” pc. Since we
are working with a linear arithmetic program where ranking functions can be
given as linear inequalities, integer < is a sufficient ordering for ≺. The main
procedure in the encoding initializes the program state (i.e. x,n) and then asserts
that E“AG((x 
=1)∨AF(x=0))” 0 cannot return false.
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1 while(*) {
2 x := 1;
3 n := *;
4 while(n>0) {
5 n := n - 1;
6 }
7 x := 0;
8 }
9 while(1) {}

Fig. 5. Example where ϕ =
AG[(x = 1)⇒ AF(x = 0)] and
initially x = 0

An execution of this program consists of a cas-
cade of calls down the hierarchy of sub-procedures.
Each procedure for a subformula maintains invari-
ants INV1 and INV2. This encoding allows us to
ask questions of the form “starting now (i.e. from
this state) does there exist an execution that vio-
lates my property,” and answer them using stan-
dard analysis tools.

For example, procedure E“AG((x 
=1)∨AF(x=0))”

corresponds to the property AG((x �= 1) ∨ AF(x =
0)) and returns false if there is a reachable state
where ((x �= 1) ∨ AF(x = 0)) does not hold. It
accomplishes this by calling E“((x 
=1)∨AF(x=0))” on
each line and passing the current state.

If ((x �= 1) ∨ AF(x = 0)) does not hold from the
current state, then there will be a way for E“((x 
=1)∨AF(x=0))” to return false, in
which case E“AG((x 
=1)∨AF(x=0))” immediately returns false (leading to an assertion
failure in main). The procedures for disjunction (E“((x 
=1)∨AF(x=0))”) and atomic
propositions (E“x 
=1” and E“x=0”) are straight-forward following Fig. 2, and also
maintain INV1.

The procedure E“AF(x=0)” is, in some sense, the complement of AG. It is de-
signed to return true whenever there is a path to a state where x = 0 holds, and
will return false if there is an infinite execution that never reaches such a state.
This is accomplished by checking at each state (i.e. on each line of the program)
whether E“x=0” returns true, and returning false if a location is reached multiple
times and there is no ranking function inM that is decreasing.

With the transformation in hand, we can now apply the algorithm in Fig. 3.
What remains is the task of finding a finiteM such that in E“AF(x=0)” the check
that ∃f ∈M. f(x5, n5) > f(x,n) always holds. Initially we letM≡ ∅. Running
a refinement-based safety prover will yield a counterexample pertaining to line
lab 5 of E“AF(x=0)”, where we denote a state as

[
x
n
pc

]
and we denote transition

relations as
[[

’x=x
’n=n′pc=pc.

]]
:

(CEXAG

([
0
n
1

]
::
[
1
n
2

]
::
[
1
n
3

]
::
[
1
n
4

]
::
[
1
n
5

])
,

(CEX∨ (CEXα

[
1
n
5

]
)

(CEXAF

[
1
n
5

]
,

[[ x5=x
n5=n+1
pc5=pc

]]
, (CEXα

[
1
n
5

]
))))

In our implementation we then use a rank function synthesis tool on this coun-
terexample (as described by Cook et al. [17]), find that ranking can be done on n,
and obtain a newM≡ {λs. s(n)}. With this newM in place, E“AG((x 
=1)∨AF(x=0))”

always returns true, and consequently, by Theorem 1, ϕ holds of the original pro-
gram.
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void main {
bool x; nat n;
x := 0; n := *;
assert(E“AG((x �=1)∨AF(x=0))” 0(x,n) �= false);

}

bool E“AG((x �=1)∨AF(x=0))” 0(bool x, nat n) {
while(*) {

x := 1;

if (¬ E“(x �=1)∨AF(x=0)” 3(x,n))
{ return false; }
if (*) return true;

n := *;
while(n>0) {

if (*) return true;

n--;
}
x := 0;

}
while(1) { if (*) return true; }

}

bool E“(x �=1)∨AF(x=0)” 3(bool x, nat n) {
if (x �= 1) return true;
return E“AF(x=0)” 3(x,n);

}

bool E“AF(x=0)” 3(bool x, nat n) {
dup2 := dup5 := dup9 := false;
goto lab 3;

while(*) {

if(x==0) return true;
if(dup2 && �f ∈ M.f(x2, n2) > f(x,n))
{ return false; }
if(¬dup2∧*){dup2:=1;x2:=x;n2:= n;}
if(*) return true;

x := 1;
lab 3:

if (x==0) return true;

n := *;
while(n>0) {
lab 5:

if(x==0) return true;
if(dup5 && �f ∈ M.f(x5, n5) > f(x,n))
{ return false; }
if(¬dup5∧*){dup5:=1;x5:=x;n5:= n;}
if(*) return true;

n--;
}
x := 0;
if (x==0) return true;

}
while(1) {

if(x==0) return true;
if(dup9 && �f ∈ M.f(x9, n9) > f(x,n))
{ return false; }
if(¬dup9∧*){dup9:=1;x9:=x;n9:= n;}
if(*) return true;

}
}

Fig. 6. The encoding E of property AG[(x = 1) ⇒ AF(x = 0)] and the program given
in Fig. 5 after PEval has been applied

5 Related work

There is a relationship between temporal logic verification and the problem of
finding winning strategies in games or game-like structures such as alternating
automata [4,25,34]. These previous results do not directly apply because they
are geared toward finite state spaces. However, the technique presented in this
paper can be viewed as a generalization of prior work to games over infinite state
spaces. We explore this generalization in our technical report [16]. Specifically,
we first show that the existence of solutions to infinite-state games (such as
those used to represent the ∀CTL model checking problem) is equivalent to the
existence of a solution to a mix of safety and liveness games, when those games
have a certain structure. We then show that our encoding described here can be
generalized to games that meet this constraint.

Other previous tools and techniques are known for proving temporal proper-
ties of finite-state systems (e.g. [7,11,25]) or classes of infinite-state systems with
specific structure (e.g. pushdown systems [36,37] or parameterized systems [19]).
Our proposal works for arbitrary transition systems, including programs.

A previous tool proves only trace-based (i.e. linear-time) properties of
programs [14] using an adaptation of the traditional automata-theoretic
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approach [35]. In contrast, our reduction to program analysis promotes a state-
based (e.g. branching-time) approach. Trace-based properties can be proved
with our tool using a recently described iterative symbolic determinization tech-
nique [15]. In most cases our new approach is faster for LTL verification than
[14] by several orders of magnitude.

When applying traditional bottom-up based methods for state-based logics
(e.g. [12,18,20]) to infinite-state transition systems, one important challenge is
to track reachability when considering relevant subformulae from the property.
In contrast to the standard method of directly tracking the valuations of sub-
formulae in the property with additional variables, we instead use recursion to
encode the checking of subformulae as a program analysis problem. As an inter-
procedural analysis computes procedure summaries it is in effect symbolically
tracking the valuations of these subformulae depending on the context of the
encoded system’s state. Thus, in contrast to bottom-up techniques, ours only
considers reachable states (via the underlying program analysis).

Chaki et al. [9] attempt to address the same problem of subformulae and
reachability for infinite-state transition systems by first computing a finite ab-
straction of the system a priori that is never refined again. Then standard finite-
state techniques are applied. In our approach we reverse the order: rather than
applying abstraction first, we let the underlying program analysis tools perform
abstraction after we have encoded the search for a proof as a new program. The
approach due to Schmidt and Steffen [33] is similar.

The tool Yasm [23] takes an alternative approach: it implements a refinement
mechanism that examines paths which represent abstractions of tree counterex-
amples (using multi-valued logic). This abstraction loses information that limits
the properties that Yasm can prove (e.g. the tool will usually fail to prove
AFAGp). With our encoding the underlying tools are performing abstraction-
refinement over tree counterexamples. Moreover, Yasm is primarily designed to
work for unnested existential properties [22] (e.g. EFp or EGp), whereas our focus
is on precise support for arbitrary (possibly nested) universal properties.

Our encoding shares some similarities with the finite-state model checking
procedure CEX from Figure 6 in Clarke et al. [13]. The difference is that a
symbolic model checking tool is used as a sub-procedure within CEX, making
CEX a recursively defined model checking procedure. The finiteness of the state-
space is crucial to CEX, as in the infinite-state case it would be difficult to find a
finite partitioning a priori from which to make a finite number of model checking
calls when treating temporal operators such as AG and AF.

6 Experiments

In this section we report on experiments with a prototype tool that implements
E from Fig. 2 as well as the refinement procedure from Fig. 3. In our tool we
have implemented E as a source-to-source translation using the CIL compiler
infrastructure. We use SLAM [2] as our implementation of the safety prover,
and RankFinder [29] as the rank function synthesis tool.
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We have drawn out a set of both ∀CTL and LTL liveness property challenge
problems from industrial code bases. Examples were taken from the I/O subsys-
tem of the Windows OS kernel, the back-end infrastructure of the PostgreSQL
database server, and the Apache web server. In order to make these examples
self-contained we have, by hand, abstracted away the unnecessary functions and
struct definitions. We also include a few toy examples, as well as the example
from Fig. 8 in [14]. Sources of examples can be found in our technical report [16].
Heap commands from the original sources have been abstracted away using the
approach due to Magill et al. [26]. This abstraction introduces new arithmetic
variables that track the sizes of recursive predicates found as a byproduct of a
successful memory safety analysis using an abstract domain based on separation
logic [28]. Support for variables that range over the natural numbers is crucial
for this abstraction.

As previous mentioned in Section 5, there are several available tools for verify-
ing state-based properties of general purpose (infinite-state) programs. Neither
the authors of this paper, nor the developer of Yasm [23] were able to apply
Yasm to the challenge problems in a meaningful way, due to bugs in the tool.
Note that we expect Yasm would have failed in many cases [22], as it is primarily
designed to work for unnested existential properties (e.g. EGp or EFp). We have
also implemented the approach due to Chaki et al. [9]. The difficulty with ap-
plying this approach to the challenge problems is that the programs must first be
abstracted to finite-state before branching-time proof methods are applied. Be-
cause the challenge problems focus on liveness, we have used transition predicate
abstraction [31] as the abstraction method. However, because abstraction must
happen first, predicates must be chosen ahead of time either by hand or using
heuristics. In practice we found that our heuristics for choosing an abstraction
a priori could not be easily tuned to lead to useful results.

Because the examples are infinite-state systems, popular CTL-proving tools
such as Cadence SMV [1] or NuSMV [10] are not directly applicable. When
applied to finite instantiations of the programs these tools run out of memory.

The tool described in Cook et al. [14] can be used to prove LTL properties if
used in combination with an LTL to Büchi automata conversion tool (e.g. [21]).
To compare our approach to this tool we have used two sets of experiments:
Fig. 7 displays the results on challenge problems in ∀CTL verification; Fig. 8
contains results on LTL verification. Experiments were run using Windows Vista
and an Intel 2.66GHz processor.

In both figures, the code example is given in the first column, and a note as to
whether it contains a bug. We also give a count of the lines of code and the shape
of the temporal property where p and q are atomic propositions specific to the
program. For both the tools we report the total time (in seconds) and the result
for each of the benchmarks. A 	 indicates that a tool proved the property, and χ
is used to denote cases where bugs were found (and a counterexample returned).
In the case that a tool exceeded the timeout threshold of 4 hours, “>14400.00”
is used to represent the time, and the result is listed as “???”.
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Prev. tool [14] Our tool (Sec. 2)
Program LOC Property Time Result Time Result

Acq/rel 14 AG(a ⇒ AFb) 103.48 � 14.18 �

Ex from Fig. 8 of [14] 34 AG(p ⇒ AFq) 209.64 � 27.94 �

Toy linear arith. 1 13 p ⇒ AFq 126.86 � 34.51 �

Toy linear arith. 2 13 p ⇒ AFq >14400.00 ??? 6.74 �

PostgreSQL smsrv 259 AG(p ⇒ AFAGq) >14400.00 ??? 9.56 �

PostgreSQL smsrv+bug 259 AG(p ⇒ AFAGq) 87.31 χ 47.16 χ

PostgreSQL pgarch 61 AFAGp 31.50 � 15.20 �

Apache progress 314 AG(p⇒(AF∨AF)) 685.34 � 684.24 �

Windows OS 1 180 AG(p ⇒ AFq) 901.81 � 539.00 �

Windows OS 4 327 AG(p ⇒ AFq) >14400.00 ??? 1,114.18 �

Windows OS 4 327 (AFa) ∨ (AFb) 1,223.96 � 100.68 �

Windows OS 5 648 AG(p ⇒ AFq) >14400.00 ??? >14400.00 ???

Windows OS 7 13 AGAFp >14400.00 ??? 55.77 �

Fig. 7. Comparison between our tool and Cook et al. [14] on ∀CTL verification bench-
marks. All of the above ∀CTL properties have equivalent corresponding LTL properties
so they are suitable for direct comparison with the LTL tool [14].

Prev. tool [14] Our tool (Sec. 2)
Program LOC Property Time Result Time # Result

Ex. from [15] 5 FGp 2.32 	 1.98 2 	
PostgreSQL dropbuf 152 G(p ⇒ Fq) 53.99 	 27.54 3 	
Apache accept liveness 314 Gp ⇒ GFq >14400.00 ??? 197.41 3 	
Windows OS 2 158 FGp 16.47 	 52.10 4 	
Windows OS 2+bug 158 FGp 26.15 χ 30.37 1 χ

Windows OS 3 14 FGp 4.21 	 15.75 2 	
Windows OS 6 13 FGp 149.41 	 59.56 1 	
Windows OS 6+bug 13 FGp 6.06 χ 22.12 1 χ

Windows OS 8 181 FGp >14400.00 ??? 5.24 1 	

Fig. 8. Comparison between our tool and Cook et al. [14] on LTL benchmarks. For
our tool, we use a recently described iterative symbolic determinization strategy [15]
to prove LTL properties by using Fig. 3 as the underlying ∀CTL proof technique. The
number of iterations is reported in the # column.

When comparing approaches on ∀CTL properties (Fig. 7) we have chosen
properties that are equivalent in ∀CTL and LTL and then directly compared
our procedure from Fig. 3 to the tool in Cook et al. [14]. When comparing
approaches on LTL verification problems (Fig. 8) we have used an iterative
symbolic determinization strategy [15] which calls our procedure in Fig. 3 on
successively refined ∀CTL verification problems. The number of such iterations is
given as column “#.” in Fig. 8. For example, in the case of benchmark Windows
OS 3, our procedure was called twice while attempting to prove a property of
the form FGp.

Our technique was able to prove or disprove all but one example, usually in a
fraction of a minute. The competing tool fails on over 25% of the benchmarks.



Temporal Property Verification as a Program Analysis Task 347

7 Conclusions

We have introduced a novel temporal reasoning technique for (potentially
infinite-state) transition systems, with an implementation designed for systems
described as programs. Our approach shifts the task of temporal reasoning to a
program analysis problem. When an analysis is performed on the output of our
encoding, it is effectively reasoning about the temporal and possibly branching
behaviors of the original system. Consequently, we can use the wide variety of
efficient program analysis tools to prove properties of programs. We have demon-
strated the practical viability of the approach using industrial code fragments
drawn from the PostgreSQL database server, the Apache web server, and the
Windows OS kernel.
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Abstract. We propose the first tool for solving complex (some unde-
cidable) problems of timed systems by using Statistical Model Checking
(SMC). The tool monitors several runs of the system, and then relies on
statistical algorithms to get an estimate of the correctness of the entire
design. Contrary to other existing toolsets, ours relies on i) a natural
stochastic semantics for networks of timed systems, ii) an engine capable
to solve problems that are beyond the scope of classical model checkers,
and iii) a friendly user interface.

1 Context

Timed model checking (TMC) is a technique used to prove the absence of bugs
in systems whose behaviors depend on real or discrete time constraints. The
approach has been implemented in several tools [4,2,5] capable of handling case
studies of industrial size. Unfortunately, many applications are still out of scope
of TMC. This is due to the complexity of the timed behaviors, which can even
make the problem undecidable.
In a recent work [8], we presented Constant Slope Timed Automata (CSTA),

that are timed systems in that clocks may have different rates (even potentially
negative) in different locations. Such automata are as expressive as linear hybrid
automata or priced timed automata, but the addition of features such as input
and output modalities allows us to specify complex problems in an elegant man-
ner. Unfortunately most of such problems are either undecidable or too complex
to be solved with classical model checking approaches. In [8], we proposed to es-
timate undecidable problems by using Statistical Model Checking (SMC) [13,9].
SMC consists of monitoring some runs of the system and then uses a statistical
algorithm to obtain an estimate for the system. Such simulation-based tech-
niques were applied in other contexts where they outperformed classical model
checking techniques with an order of magnitude [13,14,1].
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To apply SMC on CSTA, we had to define a stochastic semantics on their
behaviors. This was done in a very natural manner by adding distributions on
the delay before a transition is taken. Those distributions are uniform if the
delays are bounded, and exponential otherwise. The semantics then establishes
a race between the components and selects the smallest delay. One of its major
advantages is that the composition of several timed systems remains a pure
stochastic system, not a Markov Decision Process. The latter is needed to apply
SMC1.
In this paper, we report on an implementation of our work within the Uppaal

toolset [2]. One of the major differences with classical Uppaal is the introduc-
tion of a new user interface that allows to specify CSTAs with respect to a
stochastic semantics — such semantics is naturally needed to apply SMC. An-
other contribution is the implementation of several versions of the sequential
hypothesis testing algorithm of Wald [12]. Contrary to other implementations of
SMC [13,10,7], we also consider those tests that can compare two probabilities
without computing them. Finally, contrary to other SMC-based tools, our tool
comes with a wide range of functionalities that allow the user to visualize the
results in the form of, e.g., probability distributions, evolution of the number of
runs with time bounds, or computation of expected values.

Related work. Related work includes the very rich framework of stochastic timed
systems of MoDeST [3]. Here, however, general hybrid variables are not consid-
ered and parallel composition do not yield fully stochastic models. For the notion
of probabilistic hybrid systems considered in [11] the choice of time is resolved
non-deterministically rather than stochastically as in our case and as required
by SMC.

2 The Toolset

Fig. 1. Branching
edges (from firewire
case-study)

User Interface. Our extension supports the rich modeling
constructs of Uppaal with additions specific to CTSA.
We add a rational expression attached to locations to
define the exponential rates for choosing (unbounded)
delays stochastically. We add branching edges and asso-
ciated weights for the probabilistic extension as shown
in Fig. 1. We also generalize rates on clocks to be ex-
pressions that take value over integers (even negative)
compared to just 0 and 1 for Uppaal.
The verifier shows the estimated intervals of probabil-

ities and provides a plot composer to visualize and com-
pare different results. Figure 2 shows a screenshot with
the verifier (above) and the plot composer (below). The
verifier provides additional results in a form of plotted data which are accessible
1 One could try to use classical heuristics for removing non determinism, but they are
generally not easily applicable to timed systems.
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via a popup-menu by right-clicking over the property. Any plot can be exported
to a number of graphical formats and data saved in a textual format.
In addition, a custom plot can be created in plot composer accessible via

Tools menu. On the left side of the plot composer, the data sets are grouped
and displayed in a tree structure. Any data set can be selected for the composite
plot by double clicking on its node and the same way de-selected. The details of
the plot can be customized on the right side above the plot.

Fig. 2. The verifier shows the results of the different probabilistic queries and the plot
composer shows probability distributions

Simulation-based Engine. Any SMC implementation is divided into three parts.
First, one needs an algorithm capable of generating random runs, in our case
according to our stochastic semantics. Second, those runs have to be monitored
with respect to some property. Finally one needs a statistic algorithm to get
a general confidence on the results. We implement a new engine to generate
such runs that works on states with discrete clock valuations, which makes the
computations cheaper compared to equivalent symbolic operations. The runs
are bounded by either time, cost, or a number of discrete steps. The engine
monitors the generated run with respect to a set of properties that are being
checked. Currently the tool is capable of monitoring some properties written in
cost-constrained temporal logic (“can I reach a from b with a cost less than
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5?”), but in the future the monitoring procedure could be generalized. Runs are
stopped when such properties hold. To do this, the algorithm is able to compute
the relative upper bound of an invariant from a given state or compute the delay
needed to satisfy a guard or more generally predicates in our properties.
Properties are evaluated on bounded runs by time. In fact time may be

replaced by steps or by a clock, or by a cost constraint. The bound is a constant
value. The expressions expr are state predicates. Our tool can answer of the three
following questions:

– A qualititive check: Pr[time<=bound](<> expr) >= p.
– A quantitative check: Pr[time<=bound](<> expr) ?.
– A comparison check
Pr[time1<=bound1](<> expr1) >= Pr[time2<=bound2](<> expr2).

The first formula is to check if the probability of satisfying some property is at
least p. The second one estimates this probability within an interval. The last
one compares two probabilities without evaluating them and gives the result
for all bounds up to bound1 if both bounds are the same. All these checks rely
on some statistic algorithm to estimate the correctness by observing runs of
the system. The qualitative check is an extension of the sequential hypothesis
testing of Wald, the quantitative checks estimates the probability with a Monte-
Carlo based approach, finally the comparison check is an extension of sequential
hypothesis testing that allows to compare probabilities without computing them.
The algorithms are precise up to a certain value that can be chosen by the user.

3 Case Studies

We present two case-studies to highlight the features of our tool. More can be
found in http://www.cs.aau.dk/˜adavid/smc/, where we handle jobshop schedul-
ing problem and show that our tool performs better than Prism.

3.1 Firewire Protocol

We consider the IEEE 1394 High Performance Serial Bus (“FireWire” for short)
that is used to transport video and audio signals on a network of multimedia

fast
slow
comparison

time

pr
ob

ab
ili

ty

0

0.14

0.28

0.42

0.56

0.70

0.84

0.98

0 300 600 900 1200 1500

Probability comparison

Fig. 3. Probability Comparison

devices. The protocol has two modes, one
fast and one slow mode for the nodes.
The model defines weights to enter these
modes as shown in Fig. 1.
This is a leader election protocol that

we model with two nodes. We compute
the probability for node 1 to become
the root (or leader) within different time
bounds. We use variable s to denote the
state of a node. At initialization, every
node is in the contention state s = 0. Af-
ter a sequence of steps, a node will enter
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the root state s = 7 and the other node will enter the child state s = 8. The
query formula is Pr[time <= 1500] (<> node1.s==7 && node2.s==8) ?.
We are also interested in checking whether there is a difference between the prob-
ability that a fast node becomes the root or the child and the probability that
a slow node does. We use a probability comparison property for this purpose.
The results in the plot composer of Fig. 2 show that the probability to elect

node 1 as the root increases with the time bound. This probability density dia-
gram shows that in most cases, node 1 may become the root after around 200ms.
Uppaal confirms that the fastest possible to reach this state is 164ms. The re-
sult in Fig. 3 shows that at the beginning the probabilities are indistinguishable,
then the fast node has higher probability to become a root or a child, and at the
end the probabilities become very close again.

3.2 Bluetooth Protocol

Bluetooth is a wireless telecommunication protocol using frequency-hopping to
cope with interference between the devices in the network. A device can be in
a scan state where it replies to a request after two time slots (a slot is 0.3125
ms) and goes to a reply state where it waits for a random amount of time before
coming back to the scan state. When a device stays in the scan state, it can
also enter the sleeping state (2012 time slots) to save energy. We model energy
consumption with a clock (called energy) for which we change the rate depending
on these states.
We check the following properties:

– We evaluate the probability of replying within 70000 time units:
Pr[time<=70000](<> receiver1.Reply) ?
The result is between [0.866977, 0.966977].
– We evaluate the probability of letting time pass 70000 time units with a
limited energy budget:
Pr[energy<=4000] (<> time>=70000) ?
The result is between [0.949153, 1].
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In both cases the tool is able to compute a distribution of the probability over
the bound given in argument. Fig. 4(a) shows the cumulative probability of
successfully communicating with time. Fig. 4(b) shows that it costs at least
2, 400 energy units. The plot shows how bluetooth consumes energy.

4 Conclusion

We presented an extension of Uppaal for CSTA. Our tool handles problems
that are out of scope of existing tools for SMC and timed stochastic systems.
We are currently implementing a Bayesian extension of our work following the
theory in [6]. We are also working on an extension that allows to handle nested
probabilistic operators and unbounded cost constraints formulas.
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Abstract. Predicate abstraction is a key enabling technology for applying finite-
state model checkers to programs written in mainstream languages. It has been
used very successfully for debugging sequential system-level C code. Although
model checking was originally designed for analyzing concurrent systems, there
is little evidence of fruitful applications of predicate abstraction to shared-variable
concurrent software. The goal of this paper is to close this gap. We have de-
veloped a symmetry-aware predicate abstraction strategy: it takes into account
the replicated structure of C programs that consist of many threads executing
the same procedure, and generates a Boolean program template whose multi-
threaded execution soundly overapproximates the concurrent C program. State
explosion during model checking parallel instantiations of this template can now
be absorbed by exploiting symmetry. We have implemented our method in the
SATABS predicate abstraction framework, and demonstrate its superior perfor-
mance over alternative approaches on a large range of synchronization programs.

1 Introduction

Concurrent software model checking is one of the most challenging problems facing
the verification community today. Not only does software generally suffer from data
state explosion. Concurrent software in particular is susceptible to state explosion due
to the need to track arbitrary thread interleavings, whose number grows exponentially
with the number of executing threads.

Predicate abstraction [12] was introduced as a way of dealing with data state ex-
plosion: the program state is approximated via the values of a finite number of pred-
icates over the program variables. Predicate abstraction turns C programs into finite-
state Boolean programs [4], which can be model checked. Since insufficiently many
predicates can cause spurious verification results, predicate abstraction is typically em-
bedded into a counterexample-guided abstraction refinement (CEGAR) framework [9].
The feasibility of the overall approach was convincingly demonstrated for sequential
software by the success of the SLAM project at Microsoft, which was able to discover
numerous control-dominated errors in low-level operating system code [5].

The majority of concurrent software is written using mainstream APIs such as POSIX
threads (pthreads) in C/C++, or using a combination of language and library support,
such as the Thread class, Runnable interface and synchronized construct in Java.
Typically, multiple threads are spawned — up front or dynamically, in response to
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varying system load levels — to execute a given procedure in parallel, communicating
via shared global variables. For such shared-variable concurrent programs, predicate
abstraction success stories similar to that of SLAM are few and far between. The bot-
tleneck is the exponential dependence of the generated state space on the number of
running threads, which, if not addressed, permits exhaustive exploration of such pro-
grams only for trivial thread counts.

The key to obtaining scalability is to exploit the symmetry naturally exhibited by
these programs, namely their invariance under permutations of the involved threads.
Fortunately, much progress has recently been made on analyzing emphreplicated non-
recursive Boolean programs executed concurrently by many threads [6]. In this paper,
we present an approach to predicate-abstracting concurrent programs that leverages this
recent progress. More precisely, our goal is a scheme that

– translates a non-recursive C program � with global-scope and procedure-scope
variables into a Boolean program � such that the n-thread Boolean program, de-
noted�n, soundly overapproximates the n-thread C program, denoted�n. We call
such an abstraction method symmetry-aware.

– permits predicates over arbitrary C program variables, local or global.

In the remainder of the Introduction, we illustrate why approaching this goal naı̈vely
can render the abstraction unsound, creating the danger of missing bugs. In the main
part of this paper, we present a sound abstraction method satisfying both of the above
objectives. We go on to show how our approach can be implemented for C-like lan-
guages, complete with pointers and aliasing, and discuss the issues of spurious error
detection and predicate refinement.

In the sequel, we present “programs” as code fragments that declare shared and local
variables. Such code is to be understood as a procedure to be executed by any number
of threads. The code can declare shared variables, assumed to be declared at the global
scope of a (complete) program that contains this procedure. Code can also declare local
variables, assumed to be declared locally within the procedure. We refer to such code
fragments with shared and local variables as “programs”. In program listings, we use ==
for the comparison operator, while = denotes assignment (as in C). Concurrent threads
are assumed to interleave with statement-level granularity; see the discussion in the
Conclusion on this subject.

1.1 Predicate Abstraction Using Mixed Predicates

The Boolean program � to be built from the C program � will consist of Boolean
variables, one per predicate as usual. Since � is to be executed by parallel threads,
its variables have to be partitioned into “shared” and “local”. As these variables track
the values of various predicates over C program variables, the “shared” and “local”
attributes clearly depend on the attributes of the C variables a predicate is formulated
over. We therefore classify predicates as follows.

Definition 1. A local predicate refers solely to local C program variables. A shared
predicate refers solely to shared variables. A mixed predicate is neither local nor
shared.
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We reasonably assume that each predicate refers to at least one program variable.
A mixed predicate thus refers to both local and shared variables.

Given this classification, consider a local predicate φ, which can change only as a
result of a thread changing one of its local C variables; a change that is not visible to
any other thread. This locality is inherited by the Boolean program if predicate φ is
tracked by a local Boolean variable. Similarly, shared predicates are naturally tracked
by shared Boolean variables.

For a mixed predicate, the decision whether it should be tracked in the shared or local
space of the Boolean program is non-obvious. Consider first the following program �

and the corresponding generated Boolean program�, which tracks the mixed predicate
s != l in a local Boolean variable b:

�:

0: shared int s = 0;
local int l = 1;

1: assert s != l;
2: ++s;

�:

0: local bool b = 1;

1: assert b;
2: b = b ? � : 1;

Consider the program�2, a two-thread instantiation of�. It is easy to see that execution
of �2 can lead to an assertion violation, while the corresponding concurrent Boolean
program �

2 is correct. (In fact, �n is correct for any n > 0.) As a result, �2 is an
unsound abstraction for �2. Consider now the following program �

′ and its abstrac-
tion �′, which tracks the mixed predicate s == l in a shared Boolean variable b:

�
′:

0: shared int s = 0;
shared bool t = 0;
local int l = 0;

1: if � then
2: if t then
3: assert s != l;
4: l = s + 1;
5: t = 1;

�
′:

0: shared bool b = 1;
shared bool t = 0;

1: if � then
2: if t then
3: assert !b;
4: b = 0;
5: t = 1;

Execution of (�′)2 leads to an assertion violation if the first thread passes the first
conditional, the second thread does not and sets t to 1, then the first thread passes the
guard t. At this point, s is still 0, as is the first thread’s local variable l. On the other hand,
(�′)2 is correct. We conclude that (�′)2 is unsound for (�′)2. The unsoundness can be
eliminated by making b local in �′; an analogous reasoning removes the unsoundness
in � as an abstraction for �. It is clear from these examples, however, that in general a
predicate of the form s == l that genuinely depends on s and l cannot be tracked by a
shared or a local variable without further amendments to the abstraction process.

At this point it may be useful to consider whether, instead of designing solutions that
deal with mixed predicates, we may not be better off by banning them, relying solely
on shared and local predicates. Such restrictions on the choice of predicates render
very simple bug-free programs unverifiable using predicate abstraction, including the
following program �

′′:
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�
′′:

0: shared int r = 0;
shared int s = 0;
local int l = 0;

1: ++r;
2: if (r == 1) then
3: f();

f():
4: ++s, ++l;
5: assert s == l;
6: goto 4;

The assertion in �′′ cannot be violated, no matter how many threads execute �, since
no thread but the first will manage to execute f . It is easy to prove that, over a set of
non-mixed predicates (i.e. no predicate refers to both l and one of {s, r}), no invariant
is computable that is strong enough to prove s == l. We have included such a proof in
the full version of this paper [11].

A technically simple solution to all these problems is to instantiate the template �
n times, once for each thread, into programs {�1, . . . ,�n}, in which indices 1, . . . , n
are attached to the local variables of the template, indicating the variable’s owner. Every
predicate that refers to local variables is similarly instantiated n times. The new program
has two features: (i) all its variables, having unambiguous names, can be declared at the
global scope and are thus shared, including the original global program variables, and
(ii) it is multi-threaded, but the threads no longer execute the same code. Feature (i)
allows the new program to be predicate-abstracted in the conventional fashion: each
predicate is stored in a shared Boolean variable. Feature (ii), however, entails that the
new program is no longer symmetric. Model checking it will therefore have to bear the
brunt of concurrency state explosion. Such an approach, which we refer to as symmetry-
oblivious, will not scale beyond a very small number of threads.

To summarize our findings: Mixed predicates are necessary to prove properties for
even very simple programs. They can, however, not be tracked using standard thread-
local or shared variables. Disambiguating local variables avoids mixed predicates, but
destroys symmetry. The goal of this paper is a solution without compromises.

2 Symmetry-Aware Predicate Abstraction

In order to illustrate our method, let � be a program defined over a set of variables V
that is partitioned in the form V = VS ∪VL into shared and local variables. The parallel
execution of � by n threads is a program defined over the shared variables and n copies
of the local variables, one copy for each thread. A thread is nondeterministically chosen
to be active, i.e. to execute a statement of �, potentially modifying the shared variables,
and its own local variables, but nothing else. In this section, we ignore the specific
syntax of statements, and we do not consider language features that introduce aliasing,
such as pointers (these are the subject of Section 3). Therefore, an assignment to a
variable v cannot modify a variable other than v, and an expression φ depends only on
the variables occurring in it, which we refer to as Loc(φ) = {v : v occurs in φ}.

2.1 Mixed Predicates and Notify-All Updates

Our goal is to translate the program � into a Boolean program � such that, for any n,
a suitably defined parallel execution of � by n threads overapproximates the parallel
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execution of � by n threads. Let E = {φ1, . . . , φm} be a set of predicates over�, i.e. a
set of Boolean expressions over variables in V . We say φi is

shared if Loc(φi) ⊆ VS ,
local if Loc(φi) ⊆ VL , and

mixed otherwise, i.e. Loc(φi) ∩ VL �= ∅ and Loc(φi) ∩ VS �= ∅.

We declare, in �, Boolean variables {b1, . . . , bm}; the intention is that bi tracks the
value of φi during abstract execution of �. We partition these Boolean variables into
shared and local by stipulating that bi is shared if φi is shared; otherwise bi is local.
In particular, mixed predicates are tracked in local variables. Intuitively, the value
of a mixed predicate φi depends on the thread it is evaluated over. Declaring bi shared
would thus necessarily lose information. Declaring it local does not lose information,
but, as the example in the Introduction has shown, is insufficient to guarantee a sound
abstraction. We will see shortly how to solve this problem.

Each statement in � is now translated into a corresponding statement in �. State-
ments related to flow of control are handled using techniques from standard predicate
abstraction [4]; the distinction between shared, mixed and local predicates does not
matter here. Consider an assignment to a variable v in � and a Boolean variable b
of � with associated predicate φ. We first check whether variable v affects φ, written
affects(v, φ). Given that in this section we assume no aliasing, this is the case exactly
if v ∈ Loc(φ). If affects(v, φ) evaluates to false , b does not change. Otherwise, code
needs to be generated to update b. This code needs to take into account the “flavors” of
v and φ, which give rise to three different flavors of updates of b:

shared update: Suppose v and φ are both shared. An assignment to v is visible to all
threads, so the truth of φ is modified for all threads. This is reflected in �: by our
stipulation above, the shared predicate φ is tracked by the shared variable b. Thus,
we simply generate code to update b according to standard sequential predicate
abstraction rules; the new value of b is shared among all threads.

local update: Suppose v is local and φ is local or mixed. An assignment to v is visible
only by the active (executing) thread, so the truth of φ is modified only for the
active thread. This also is reflected in �: by our stipulation above, the local or
mixed predicate φ is tracked by the local variable b. Again, sequential predicate
abstraction rules suffice; the value of b changes only for the active thread.

notify-all update: Suppose v is shared and φ is mixed. An assignment to v is visible to
all threads, so the truth of φ is modified for all threads. This is not reflected in�: by
our stipulation above, the mixed predicateφ is tracked by the local variable b, which
will be updated only by the active thread. We solve this problem by (i) generating
code to update b locally according to standard sequential predicate abstraction rules,
and (ii) notifying all passive (non-active) threads of the modification of the shared
variable v, so as to allow them to update their local copy of b.

We write must notify(v, φ) if the shared variable v affects the mixed predicate φ:

must notify(v, φ) = affects(v, φ) ∧ v ∈ VS ∧ (Loc(φ) ∩ VL �= ∅) .
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This formula evaluates to true exactly when it is necessary to notify passive threads of
an update to v. What remains to be discussed in the rest of this section is how notifica-
tions are implemented in �.

2.2 Implementing Notify-All Updates

We pause to recap some terminology and notation from sequential predicate abstrac-
tion [4]. We present our approach in terms of the Cartesian abstraction as used in [4],
but our method in general is independent of the abstraction used. Given a set E =
{φ1, . . . , φm} of predicates tracked by variables {b1, . . . , bm}, an assignment statement
st is translated into the following code, in parallel for each i ∈ {1, . . . ,m}:

if F(WP( φi, st)) then bi = 1
else if F(WP(¬φi, st)) then bi = 0
else bi = � .

(1)

Here, � is the nondeterministic choice expression, WP the weakest precondition op-
erator, and F the operator that strengthens an arbitrary predicate to a disjunction of
cubes over the bi. For example, with predicate φ :: (l < 10) tracked by variable b,
E = {φ} and statement st :: ++l, we obtain F(WP(φ, st)) = F(l < 9) = false and
F(WP(¬φ, st)) = F(l >= 9) = (l >= 10) = ¬φ, so that (1) reduces to

b = ( b ? � : 0 ).

In general, (1) is often abbreviated using the assignment

bi = choose(F(WP(φi, st)),F(WP(¬φi, st))) ,

where choose(x, y) returns 1 if x evaluates to true, 0 if (¬x) ∧ y evaluates to true,
and � otherwise. Abstraction of control flow guards uses the G operator, which is dual
to F : G(φ) = ¬F(¬(φ)).

Returning to symmetry-aware predicate abstraction, if must notify(v, φ) evaluates to
true for φ and v, predicate φ is mixed and thus tracked in � by some local Boolean
variable, say b. Predicate-abstracting an assignment of the form v = χ requires updat-
ing the active thread’s copy of b, as well as broadcasting an instruction to all passive
threads to update their copy of b, in view of the new value of v. This is implemented us-
ing two assignments, which are executed in parallel. The first assignment is as follows:

b=choose(F(WP(φ, v = χ)),F(WP (¬φ, v = χ))) . (2)

This assignment has standard predicate abstraction semantics. Note that, since expres-
sion χ involves only local variables of the active thread and shared variables, only pred-
icates over those variables are involved in the defining expression for b.

The second assignment looks similar, but introduces a new symbol:

[b]=choose(F(WP([φ], v = χ)),F(WP (¬[φ], v = χ))) . (3)
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The notation [b] stands for the copy of local variable b owned by some passive thread.
Similarly, [φ] stands for the expression defining predicate φ, but with every local vari-
able occurring in the expression replaced by the copy owned by the passive thread; this
is the predicate φ in the context of the passive thread. Weakest precondition compu-
tation is with respect to [φ], while the assignment v = χ, as an argument to WP , is
unchanged: v is shared, and local variables appearing in the defining expression χmust
be interpreted as local variables of the active thread. Assignment (3) has the effect of
updating variable b in every passive thread. We refer to Boolean programs involving
assignments of the form [b]=... as Boolean broadcast programs; a formal syntax and
semantics for such programs is given in [11].

Let us illustrate the above technique using a canonical example: consider the as-
signment s = l, for shared and local variables s and l, and define the mixed predicate
φ :: (s == l). The first part of the above parallel assignment simplifies to b = true.
For the second part, we obtain:

[b] = choose(F(WP(s==[l], s=l)),F(WP(¬(s==[l]), s=l))) .

Computing weakest preconditions, this reduces to:

[b] = choose(F(l==[l]),F(¬(l==[l]))) .

Precision of the Abstraction. To evaluate this expression further, we have to decide on
the set of predicates available to the F operator to express the preconditions. If this set
includes only predicates over the shared variables and the local variables of the passive
thread that owns [b], the predicate l == [l] is not expressible and must be strength-
ened to false . The above assignment then simplifies to [b] = choose(false, false),
i.e. [b] = �. The mixed predicates owned by passive threads are essentially invalidated
when the active thread modifies a shared variable occurring in such predicates, resulting
in a very imprecise abstraction.

We can exploit information stored in predicates local to other threads, to increase the
precision of the abstraction. For maximum precision one could make all other threads’
predicates available to the strengthening operator F . This happens in the symmetry-
oblivious approach sketched in the Introduction, where local and mixed predicates are
physically replicated and declared at the global scope and can thus be made available
to F . Not surprisingly, in practice, replicating predicates in this way renders the ab-
straction prohibitively expensive. We analyze this experimentally in Section 5.

A compromise which we have found to work well in practice (again, demonstrated
in Section 5) is to equip operator F with all shared predicates, all predicates of the
passive thread owning [b], and also predicates of the active thread. This arrangement is
intuitive since the update of a passive thread’s local variable [b] is due to an assignment
performed by some active thread. Applying this compromise to our canonical example:
if both s == [l] and s == l evaluate to true before the assignment s=l, we can con-
clude that [l] == l before the assignment, and hence s == [l] after the assignment.
Using ⊕ to denote exclusive-or, the assignment to [b] becomes:

[b] = choose([b] ∧ b, [b] ⊕ b) .
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Algorithm 1. Predicate abstraction
Input: Program template �, set of predicates {φ1, . . . , φm}
Output: Boolean program � over variables b1, . . . , bm

1: for each statement d: stmt of � do
2: if stmt is goto d1, . . . , dm then
3: output “d: goto d1, . . . , dm”
4: else if stmt is assume φ then
5: output “d: assume G(φ)”
6: else if stmt is v = χ then
7: {i1, . . . , if} ← {i | 1 ≤ i ≤ m ∧ affects(v, φi)}
8: {j1, . . . , jg} ← {j | 1 ≤ j ≤ m ∧must notify(v, φj)}

9: output “d:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

bi1 , choose(F(WP( φi1 , v=χ)),F(WP(¬ φi1 , v=χ))),
...

...
bif , choose(F(WP( φif , v=χ)),F(WP(¬ φif , v=χ))),
[bj1 ],

=
choose(F(WP([φj1 ], v=χ)),F(WP(¬[φj1 ], v=χ))),

...
...

[bjg ] choose(F(WP([φjg ], v=χ)),F(WP(¬[φjg ], v=χ)))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
”

2.3 The Predicate Abstraction Algorithm

We now show how our technique for soundly handling mixed predicates is used in an al-
gorithm for predicate abstracting C-like programs. To present the algorithm compactly,
we assume a language with three types of statement: assignments, nondeterministic go-
tos, and assumptions. Control-flow can be modelled via a combination of gotos and
assumes, in the standard way.

Algorithm 1 processes an input program template of this form and outputs a corre-
sponding Boolean broadcast program template. Statements goto and assume are han-
dled as in standard predicate abstraction: the former are left unchanged, while the latter
are translated directly except that the guard of an assume statement is expressed over
Boolean program variables using the G operator (see Section 2.2).

The interesting part of the algorithm for us is the translation of assignment state-
ments. For each assignment, a corresponding parallel assignment to Boolean program
variables is generated. The affects and must notify predicates are used to decide for
which Boolean variables regular and broadcast assignments are required, respectively.

3 Symmetry-Aware Predicate Abstraction with Aliasing

So far, we have ignored complications introduced by pointers and aliasing. We now
explain how symmetry-aware predicate abstraction is realized in practice, for C pro-
grams that manipulate pointers. We impose one restriction: we do not consider pro-
grams where a shared pointer variable, or a pointer variable local to thread i, can point
to a variable local to thread j (with j �= i). This arises only when a thread copies the ad-
dress of a stack or thread-local variable to the shared state. This unusual programming
style allows thread i to directly modify the local state of thread j at the C program level,
breaking the asynchronous model of computation assumed by our method.
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For ease of presentation we consider the scenario where program variables either
have a base type (e.g. int or float), or pointer type (e.g. int* or float**). Our method
can be extended to handle records, arrays and heap-allocated memory. As in [4], we
assume that input programs have been processed so that l-values involve at most one
pointer dereference.

Alias information is important in deciding, once and for all, whether predicates
should be classed as local, mixed or shared. For example, let p be a local variable of type
int*, and consider predicate φ :: (*p == 1). Clearly φ is not shared since it depends
on local variable p. Whether φ should be regarded as a local or mixed predicate depends
on whether p may point to the shared state: we regard φ as local if p can never point to
a shared variable, otherwise φ is classed as mixed. Alias information also lets us deter-
mine whether a variable update may affect the truth of a given predicate, and whether
it is necessary to notify other threads of this update. We now show how these intuitions
can be formally integrated with our predicate abstraction technique. This involves suit-
ably refining the notions of local, shared and mixed predicates, and the definitions of
affects and must notify introduced in Section 2.

3.1 Aliasing, Locations of Expressions, and Targets of L-Values

We assume the existence of a sound pointer alias analysis for concurrent programs,
e.g. [21], which we treat as a black box. This procedure conservatively tells us whether
a shared variable with pointer type may point to a local variable. As discussed at the
start of Section 3, we reject programs where this is the case.1 Otherwise, for a program
template � over variables V , alias analysis yields a relation 
→d ⊆ V × V for each
program location d. For v, w ∈ V , if v �
→d w then v provably does not point to w at d.

For an expression φ and program point d, we write loc(φ, d) for the set of variables
that it may be necessary to access in order to evaluate φ at d, during an arbitrary program
run. We have loc(z, d) = ∅ for a constant value z, loc(v, d) = {v}, and loc(&v, d) = ∅
for v ∈ V : evaluating an “address-of” expression requires no variable access, as ad-
dresses of variables are fixed at compile time. Finally, for any k > 0:

loc(* . . .*︸ ︷︷ ︸
k

v, d) = {v} ∪
⋃

w∈V

{loc(* . . .*︸ ︷︷ ︸
k−1

w, d) | v 
→d w} .

Evaluating a pointer dereference *v involves reading both v and the variable to which v
points. For other compound expressions, loc(φ, d) is defined recursively in the obvious
way. The precision of loc(φ, d) is directly related to the precision of alias analysis.

For an expressionφ, we define Loc(φ) = ∪1≤d≤kloc(φ, d) as the set of variables that
may need to be accessed to evaluate φ at an arbitrary program point during an arbitrary
program run. Note how this definition of Loc generalizes that used in Section 2.

We finally write targets(x, d) for the set of variables that may be modified by
writing to l-value x at program point d. Formally, we have targets(v, d) = {v} and
targets(*v, d) = {w ∈ V | v 
→d w}. Note that targets(*v, d) �= loc(*v, d): Writing

1 This also eliminates the possibility of thread i pointing to variables in thread j �= i: the address
of a variable in thread j would have to be communicated to thread i via a shared variable.
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through *v modifies only the variable to which v points, while reading the value of *v
involves reading the value of v, to determine which variable w is pointed to by v, and
then reading the value of w.

3.2 Shared, Local and Mixed Predicates in the Presence of Aliasing

In the presence of pointers, we define the notion of a predicate φ being shared, local,
or mixed exactly as in Section 2.1, but with the generalization of Loc presented in
Section 3.1. In Section 2.1, without pointers, we could classify φ purely syntactically,
based on whether any shared variables appear in φ. In the presence of pointers, we must
classify φ with respect to alias information; our definition of Loc takes care of this.

Recall from Section 2.1 that we defined affects(v, φ) = (v ∈ Loc(φ)) to indicate
that updating variable v may affect the truth of predicate φ. In the presence of pointers,
this definition no longer suffices. The truth of φ may be affected by assigning to l-value
x if xmay alias some variable on which φ depends. Whether this is the case depends on
the program point at which the update occurs. Our definitions of loc and targets allow
us to express this:

affects(x, φ, d) = (targets(x, d) ∩ loc(φ, d) �= ∅).
We also need to determine whether an update affects the truth of a predicate only

for the thread executing the update, or for all threads. The definition of must notify
presented in Section 2.1 needs to be adapted to take aliasing into account. At first sight,
it seems that we must simply parameterise affects according to program location, and
replace the conjunct v ∈ VS with the condition that x may target some shared variable:

must notify(x, φ, d) = affects(x, φ, d) ∧ (Loc(φ) ∩ VL �= ∅)
∧ (targets(x, d) ∩ VS �= ∅) .

However, this is unnecessarily strict. We can refine the above definition to minimise the
extent to which notifications are required, as follows:

must notify(x, φ, d) = (targets(x, d) ∩ Loc(φ) ∩ VS �= ∅) ∧ (Loc(φ) ∩ VL �= ∅) .
The refined definition avoids the need for thread notification in the following sce-

nario. Suppose we have shared variables s and t, local variable l, local pointer vari-
able p, and predicate φ :: (s > l). Consider an assignment to *p at program point d.
Suppose that alias analysis tells us exactly p 
→d t and p 
→d l. The only shared variable
that can be modified by assigning through *p at program point d is t, and the truth of
φ does not depend on t. Thus the assignment does not require a “notify-all” with re-
spect to φ. Working through the definitions, we find that our refinement of must notify
correctly determines this, while the naı̈ve extension of must notify from Section 2.1
would lead to an unnecessary “notify-all”.

The predicate abstraction algorithm (Alg. 1) can now be adapted to handle point-
ers: parameter d is simply added to the uses of affects and must notify . Handling of
pointers in weakest preconditions works as in standard predicate abstraction [4], using
Morris’s general axiom of assignment [19].
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4 Closing the CEGAR Loop

We have integrated our novel technique for predicate-abstracting symmetric concurrent
programs with the SATABS CEGAR-based verifier [10], using the Cartesian abstrac-
tion method and the maximum cube length approximation [4]. We now sketch how we
have adapted the other phases of the CEGAR loop: model checking, simulation and
refinement, to accurately handle concurrency.

Model checking Boolean broadcast programs. Our predicate abstraction technique
generates a concurrent Boolean broadcast program. The extended syntax and seman-
tics for broadcasts mean that we cannot simply use existing concurrent Boolean pro-
gram model checkers such as BOOM [6] for the model checking phase of the CEGAR
loop. We have implemented a prototype extension of BOOM, which we call B-BOOM.
B-BOOM extends the counter abstraction-based symmetry reduction capabilities of
BOOM to support broadcast operations. Symbolic image computation for broadcast as-
signments is significantly more expensive than image computation for standard assign-
ments. In the context of BOOM it involves 1) converting states from counter representa-
tion to a form where the individual local states of threads are stored using distinct BDD
variables, 2) computing the intersection of n− 1 successor states, one for each passive
thread paired with the active thread, and 3) transforming the resulting state representa-
tion back to counter form using Shannon expansion. The expense of image computation
for broadcasts motivates the careful analysis we have presented in Sections 2 and 3 for
determining tight conditions under which broadcasts are required.

Simulation. To determine the authenticity of abstract error traces reported by B-BOOM

we have extended the SATABS simulator. The existing simulator extracts the control
flow from the trace. This is mapped back to the original C program and translated into
a propositional formula (using standard techniques such as single static assignment
conversion and bitvector interpretation of variables). The error is spurious exactly if
this formula is unsatisfiable. In the concurrent case, the control flow information of an
abstract trace includes which thread executes actively in each step. We have extended
the simulator so that each local variable involved in a step is replaced by a fresh indexed
version, indicating the executing thread that owns the variable. The result is a trace over
the replicated C program �

n, which can be directly checked using a SAT/SMT solver.

Refinement. Our implementation performs refinement by extracting new predicates
from counterexamples via weakest precondition calculations. This standard method re-
quires a small modification in our context: weakest precondition calculations generate
predicates over shared variables, and local variables of specific threads. For example, if
thread 1 branches according to a condition such as l < s, where l and s are local and
shared, respectively, weakest precondition calculations generate the predicate l1 < s,
where l1 is thread 1’s copy of l. Because our predicate abstraction technique works at
the template program level, we cannot add this predicate directly. Instead, we generalize
such predicates by removing thread indices. Hence in the above example, we add the
mixed predicate l < s, for all threads.

An alternative approach is to refine the abstract transition relation associated with
the Cartesian abstraction based on infeasible steps in the abstract counterexample [3].
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We do not currently perform such refinement, as correctly refining abstract transitions
involving broadcast assignments is challenging and requires further research.

5 Experimental Results

We evaluate the SATABS-based implementation of our techniques using a set of 14
concurrent C programs. We consider benchmarks where threads synchronize via locks
(lock-based), or in a lock-free manner via atomic compare-and-swap (cas) or test-and-
set (tas) instructions. The benchmarks are as follows:2

Increment, Inc./Dec. (lock-based and cas-based): a counter, concurrently incremen-
ted, or incremented and decremented, by multiple threads [20]

Prng (lock-based and cas-based) concurrent pseudorandom number generator [20]
Stack (lock-based and cas-based) thread-safe stack implementation, supporting con-

current pushes and pops, adapted from an Open Source IBM implementation3 of
an algorithm described in [20]

Tas Lock, Ticket Lock (tas-based) concurrent lock implementations [18]
FindMax, FindMaxOpt (lock-based and cas-based) implementations of parallel

reduction operation [2] to find maximum element in array. FindMax is a basic
implementation, and FindMaxOpt an optimized version where threads reduce
communication by computing a partial maximum value locally.

Mixed predicates were required for verification to succeed in all but two benchmarks:
lock-based Prng, and lock-based Stack. For each benchmark, we consider verification
of a safety property, specified via an assertion. We have also prepared a buggy version
of each benchmark, where an error is injected into the source code to make it possible
for this assertion to fail. We refer to correct and buggy versions of our benchmarks as
safe and unsafe, respectively.

All experiments are performed on a 3GHz Intel Xeon machine with 40 GB RAM,
running 64-bit Linux, with separate timeouts of 1h for the abstraction and model check-
ing phases of the CEGAR loop. Predicate abstraction uses a maximum cube length of 3
for all examples, and MiniSat 2 (compiled with full optimizations) is used for predicate
abstraction and counterexample simulation.

Symmetry-aware vs. symmetry-oblivious method. We evaluate the scalability of our
symmetry-aware predicate abstraction technique (SAPA) by comparing it against the
symmetry-oblivious predicate abstraction (SOPA) approach sketched near the end of
Section 1, for verification of correct versions of our benchmarks. Recall that in SOPA,
an n-thread symmetric concurrent program is expanded so that variables for all threads
are explicitly duplicated, and n copies of all non-shared predicate are generated. The
expanded program is then abstracted over the expanded set of predicates, using stan-
dard predicate abstraction. This yields a Boolean program for each thread; the parallel
composition of these n Boolean programs is explored by a model checker. Because
symmetry is not exploited, and no broadcasts are required, any Boolean program model

2 All benchmarks and tools are available online: http://www.cprover.org/SAPA
3 http://amino-cbbs.sourceforge.net
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Table 1. Comparison of symmetry-aware and symmetry-oblivious predicate abstraction over our
benchmarks. For each configuration, the fastest abstraction and model checking times are in bold.

Pred. SOPA SAPA Pred. SOPA SAPA
Benchmark n S L M Abs MC #Its Abs MC Benchmark n S L M Abs MC #Its Abs MC

Increment 6 2 1 1 13 5 2 1 <1 Prng 1 1 5 0 <1 <1 2 <1 <1
(lock-based) 8 29 152 1 (lock-based) 6 1 12 0 69 21 5 26 <1

9 40 789 1 7 83 191 1
10 56 T.O. 2 8 96 T.O. 2
12 7 16 142
14 24 26 3023
16 100 Prng 1 1 5 0 <1 <1 2 <1 <1
18 559 (cas-based) 3 1 14 2 29 <1 5 48 1
20 2882 4 40 12 48 38

Increment 4 2 4 2 50 12 3 6 1 5 57 1049 48 1832
(cas-based) 5 94 358 13 FindMax 6 0 0 1 5 30 1 <1 <1

6 159 T.O. 116 (lock-based) 7 9 244 1
7 997 8 14 T.O. 1

Inc./Dec. 4 6 3 2 71 6 3 11 2 16 125
(lock-based) 5 132 656 50 25 3005

6 231 T.O. 1422 FindMax 3 0 5 1 4 7 3 1 2
Inc./Dec. 2 6 10 4 125 <1 5 78 <1 (cas-based) 4 8 407 368
(cas-based) 3 372 6 3 FindMaxOpt 4 0 1 1 3 40 1 <1 3

4 872 4043 252 (lock-based) 5 6 1356 33
Tas Lock 3 4 2 2 3 2 3 1 <1 6 11 T.O. 269
(tas-based) 4 9 114 4 7 1773

5 14 T.O. 72 FindMaxOpt 3 0 6 1 9 11 3 3 2
6 725 (cas-based) 4 15 1097 61

Ticket Lock 2 12 3 4 554 1 2 251 1 5 22 T.O. 1240
(tas-based) 3 1319 3 1 Stack 3 1 4 0 <1 14 2 <1 8

4 T.O. – 2 (lock-based) 4 <1 945 374
6 62 Stack 3 1 4 1 2 29 2 <1 14
8 2839 (cas-based) 4 8 3408 813

checker can be used. We have tried both standard BOOM [6] (without symmetry reduc-
tion) and Cadence SMV [17] to model check expanded Boolean programs. In all cases,
we found BOOM to be faster than SMV, thus we present results only for BOOM.

Table 1 presents the results of the comparison. For each benchmark and each ap-
proach we show, for interesting thread counts (including the largest thread count that
could be verified with each approach), the number of local, mixed, and shared pred-
icates (L, M , S) over the template program that were needed to prove the program
safe (which varies slightly with n), and the elapsed time for predicate abstraction and
model checking. For each configuration, the fastest abstraction and model checking
times are shown in bold. Model checking uses standard BOOM, without symmetry re-
duction (SOPA) and B-BOOM, our extension to BOOM discussed in Section 4 (SAPA),
respectively. T.O. indicates a timeout; succeeding cells are then marked ‘–’.

The results show that in the vast majority of cases our novel SAPA technique sig-
nificantly outperforms SOPA, both in terms of abstraction and model checking time.
The former can be attributed to the fact that, with SOPA, the number of predicates
grows according to the number of threads considered, while with SAPA, this is thread
count-independent. The latter is due to the exploitation of template-level symmetry by
B-BOOM. The exception to this is the cas-based Prng benchmark, for which SAPA
yields slower verification. Profiling with respect to this benchmark shows that the
inferior performance of the model checker with SAPA comes from the expense of
performing broadcast operations. Note, however, that the ratio between model checking
times for SOPA and SAPA on this benchmark decreases as the thread counts go up.
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Table 2. Comparison of sound and unsound approaches; incorrect results in bold

Symmetry-Aware Mixed as local Mixed as shared
Benchmark Safe n Unsafe n Safe n Unsafe n Safe n Unsafe n

Increment (lock-based) safe >10 unsafe 2 safe >10 error 2 safe 10 error 2
Incr. (cas-based) safe 7 unsafe 2 safe 8 safe 5 error 2 error 2
Incr./Dec. (lock-based) safe 6 unsafe 3 safe >10 safe >10 safe >10 unsafe 3
Incr./Dec. (cas-based) safe 4 unsafe 3 safe 6 safe 8 error 2 error 3
Tas Lock (tas-based) safe 7 unsafe 2 safe 8 error 2 error 2 error 2
Ticket Lock (tas-based) safe 8 unsafe 3 safe >10 unsafe 3 safe 5 unsafe 3
Prng (lock-based) safe >10 unsafe 2 safe >10 unsafe 2 safe >10 unsafe 2
Prng (cas-based) safe 5 unsafe 3 safe 7 unsafe 3 safe 6 unsafe 3
FindMax (lock-based) safe >10 unsafe 2 safe >10 safe >10 safe 2 error 2
FindMax (cas-based) safe 4 unsafe 2 safe 5 safe 4 safe 2 safe 1
FindMaxOpt (lock-based) safe 7 unsafe 2 safe 7 safe 6 error 2 error 2
FindMaxOpt (cas-based) safe 5 unsafe 1 safe 5 unsafe 1 error 2 unsafe 1
Stack (lock-based) safe 4 unsafe 4 safe 4 unsafe 4 safe 4 unsafe 4
Stack (cas) safe 4 unsafe 2 safe 4 safe 6 safe 4 error 2

Comparison with Unsound Methods. In Section 1, we described two naı̈ve solutions
to the mixed predicate problem: uniformly using local or shared Boolean variables to
represent mixed predicates, and then performing standard predicate abstraction. We
denote these approaches mixed as local and mixed as shared, respectively. Although
we demonstrated theoretically in Section 1 that both methods are unsound, it is in-
teresting to see how they perform in practice. Table 2 shows the results of applying
CEGAR-based model checking to safe and unsafe versions of our benchmarks, using
our sound technique, and the unsound mixed as local and mixed as shared approaches.
In all cases, B-BOOM is used for model checking. For the sound technique, we show
the largest thread count for which we could prove correctness of each safe benchmark,
and the smallest thread count for which a bug was revealed in each unsafe benchmark.
The other columns illustrate how the unsound techniques differ from this, where “er-
ror” indicates a refinement failure: it was not possible to extract further predicates from
spurious counterexamples. Bold entries indicate cases where the unsound approaches
produce incorrect, or inconclusive results.4 The number of cases where the unsound ap-
proaches produce false negatives, or lead to refinement failure, suggest that little confi-
dence can be placed in these techniques, even for purposes of falsification. This justifies
the more sophisticated and, crucially, sound techniques developed in this paper.

6 Related Work and Conclusion

There exists a large body of work on the different stages of CEGAR-based program
analysis. We focus here on the abstraction stage, which is at the heart of this paper.

Predicate abstraction goes back to the foundational work by Graf and Saı̈di [12].
It was first presented for sequential programs in a mainstream language (C) by Ball,

4 We never expect the unsound techniques to report conclusively that a safe benchmark is un-
safe: this would require demonstrating a concrete error trace in the original, safe, program.
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Majumdar, Millstein, Rajamani [4] and implemented as part of the SLAM project. We
have found many of the optimizations suggested by [4] to be useful in our implementa-
tion as well. Although SLAM has had great success in finding real bugs in system-level
code, we are not aware of any extensions of it to concurrent programs (although this
option is mentioned by the authors of [4]). We attribute this to a large part to the infea-
sibility, at the time, to handle realistic multi-threaded Boolean programs. We believe our
own work on BOOM [6] has made progress in this direction that has made it attractive
again to address concurrent predicate abstraction.

We are not aware of other work that presents precise solutions to the problem of
“mixed predicates”. Some approaches avoid it by syntactically disallowing such pred-
icates, e.g. [22], whose authors don’t discuss, however, the reasons for (or, indeed,
the consequences of) doing so. Another approach havocks (assigns nondeterministi-
cally) global variables that may be affected by an operation [8], thus taking away the
mixed flavor from certain predicates. In yet other work, “algorithmic circumstances”
may make the treatment of such predicates unnecessary. The authors of [15], for ex-
ample, use predicate abstraction to finitely represent the environment of a thread in
multi-threaded programs. The “environment” consists of assumptions on how threads
may manipulate the shared state of the program, irrespective of their local state. Our
case of replicated threads, in which mixed predicates would constitute a problem, is
only briefly mentioned in [15]. In [7], an approach is presented that handles recursive
concurrent C programs. The abstract transition system of a thread (a pushdown system)
is formed over predicates that are projected to the global or the local program variables
and thus cannot compare “global against local” directly. As we have discussed, some
reachability problems cannot be solved using such restricted predicates. We conjecture
this problem is one of the potential causes of non-termination in the algorithm of [7].

Other model checkers with some support for concurrency include BLAST, which
does not allow general assertion checking [14], and MAGIC [7], which does not support
shared variable communication, making a comparison to our work little meaningful.

In conclusion, we mention that building a CEGAR-based verification strategy is a
tremendous effort, and our work so far can only be the beginning of such effort. We have
assumed a very strict (and unrealistic) memory model that guarantees atomicity at the
statement level. One can work soundly with the former assumption by pre-processing
input programs so that the shared state is accessed only via word-length reads and
writes, ensuring that all computation is performed using local variables. Extending our
approach to weaker memory models, building on existing work in this area [16,1], is
future work. Our plans also include a more sophisticated refinement strategy, drawing
upon recent results on abstraction refinement for concurrent programs [13], and a more
detailed comparison with existing approaches that circumvent the mixed-predicates
problem using other means.

Acknowledgments. We are grateful to Gérard Basler for assistance with BOOM, and
Michael Tautschnig for his insightful comments on an earlier draft of this work.
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http://moscova.inria.fr/˜alglave/these

http://moscova.inria.fr/~alglave/these


Symmetry-Aware Predicate Abstraction for Shared-Variable Concurrent Programs 371

2. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures. Morgan
Kaufmann, San Francisco (2002)

3. Ball, T., Cook, B., Das, S., Rajamani, S.K.: Refining approximations in software predicate
abstraction. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 388–403.
Springer, Heidelberg (2004)

4. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate abstraction of
C programs. In: Programming Language Design and Implementation (PLDI), pp. 203–213
(2001)

5. Ball, T., Rajamani, S.: The SLAM project: debugging system software via static analysis. In:
Principles of Programming Languages (POPL), pp. 1–3 (2002)

6. Basler, G., Mazzucchi, M., Wahl, T., Kroening, D.: Context-aware counter abstraction. In:
Formal Methods in System Design (FMSD), vol. 36(3), pp. 223–245 (2010)

7. Chaki, S., Clarke, E., Kidd, N., Reps, T., Touili, T.: Verifying concurrent message-passing C
programs with recursive calls. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp.
334–349. Springer, Heidelberg (2006)

8. Cimatti, A., Micheli, A., Narasamdya, I., Roveri, M.: Verifying SystemC: a software model
checking approach. In: Formal Methods in Computer-Aided Design, FMCAD (2010)

9. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction re-
finement for symbolic model checking. Journal of the ACM, JACM (2003)

10. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of ANSI-C pro-
grams using SAT. In: Formal Methods in System Design (FMSD), pp. 105–127 (2004)

11. Donaldson, A.F., Kaiser, A., Kroening, D., Wahl, T.: Symmetry-aware predicate abstraction
for shared-variable concurrent programs (extended technical report). In: CoRR, pp. 1102–
2330 (2011)

12. Graf, S., Saı̈di, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.)
CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

13. Gupta, A., Popeea, C., Rybalchenko, A.: Predicate abstraction and refinement for verifying
multi-threaded programs. In: POPL, pp. 331–344. ACM Press, New York (2011)

14. Henzinger, T., Jhala, R., Majumdar, R.: Race checking by context inference. In: Program-
ming Language Design and Implementation (PLDI), pp. 1–13 (2004)

15. Henzinger, T., Jhala, R., Majumdar, R., Qadeer, S.: Thread-modular abstraction refinement.
In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 262–274. Springer,
Heidelberg (2003)

16. Lee, J., Padua, D.: Hiding relaxed memory consistency with a compiler. IEEE Transactions
on Computers 50, 824–833 (2001)

17. McMillan, K.: Symbolic Model Checking: An Approach to the State Explosion Problem.
Kluwer Academic Publishers, Boston (1993)

18. Mellor-Crummey, J., Scott, M.: Algorithms for scalable synchronization on shared-memory
multiprocessors. Transactions on Computer Systems (TOCS) 9(1), 21–65 (1991)

19. Morris, J.: A general axiom of assignment. In: Theoretical Foundations of Programming
Methodology. Lecture Notes of an International Summer School, pp. 25–34. D. Reidel
Publishing Company (1982)

20. Peierls, T., Goetz, B., Bloch, J., Bowbeer, J., Lea, D., Holmes, D.: Java Concurrency in
Practice. Addison-Wesley Professional, Reading (2005)

21. Rugina, R., Rinard, M.C.: Pointer analysis for multithreaded programs. In: PLDI, pp. 77–90
(1999)

22. Timm, N., Wehrheim, H.: On symmetries and spotlights – verifying parameterised sys-
tems. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 534–548. Springer,
Heidelberg (2010)



Predator: A Practical Tool for Checking Manipulation
of Dynamic Data Structures Using Separation Logic�

Kamil Dudka, Petr Peringer, and Tomáš Vojnar
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Abstract. Predator is a new open source tool for verification of sequential C
programs with dynamic linked data structures. The tool is based on separation
logic with inductive predicates although it uses a graph description of heaps.
Predator currently handles various forms of lists, including singly-linked as well
as doubly-linked lists that may be circular, hierarchically nested and that may
have various additional pointer links. Predator is implemented as a gcc plug-in
and it is capable of handling lists in the form they appear in real system code,
especially the Linux kernel, including a limited support of pointer arithmetic.
Collaboration on further development of Predator is welcome.

1 Introduction

In this paper, we present a new tool called Predator for fully automatic verification of
sequential C programs with dynamic linked data structures. In particular, Predator can
currently handle various complex kinds of singly-linked as well as doubly-linked lists
that may be circular, shared, hierarchically nested, and that can have various additional
pointers (head/tail pointers, data pointers, etc.). Predator implicitly checks for absence
of generic errors, such as null dereferences, double deletion, memory leakage, etc. It can
also print out a symbolic representation of the shapes of the memory structures arising in
a program. Finally, users can, of course, use Predator to check custom properties about
the data structures being used in their code by writing (directly in C) tester programs
exercising these structures.

Predator is based on separation logic with higher-order inductive predicates. It is
inspired by the works [2,9,10] and the very influential tool called Space Invader1 (or
simply Invader). However, compared to Invader, the heap representation in Predator is
not based on lists of separation logic formulae, but rather a graph representation of these
formulae. The algorithms handling the symbolic heap representation (in particular, the
abstraction and join operators based on detecting occurrences of heap structures that
can be described by inductive predicates) have been newly designed.

Compared to Invader that contains a partial support of doubly-linked lists only,
Predator supports them equally well as singly-linked lists. Predator also contains a spe-
cial support for list segments of length 0 or 1 that are common in practice [9] and that
may cause problems to Invader (as we illustrate further on).

� This work was supported by the Czech Science Foundation (project P103/10/0306), the Czech
Ministry of Education (projects COST OC10009 and MSM 0021630528), and the BUT FIT
project FIT-S-11-1. An extended version of the paper is available as the technical report [6].

1 http://www.eastlondonmassive.org/East London Massive/Invader Home.html

G. Gopalakrishnan and S. Qadeer (Eds.): CAV 2011, LNCS 6806, pp. 372–378, 2011.
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The long term goal of Predator is handling real system code, in particular, the Linux
kernel. In such code, for efficiency reasons, special forms of lists are used. In order to
be able to handle them, Predator comes with a limited support of pointer arithmetic,
which, however, covers most practical needs. Therefore, in a heap representation, the
points-to links are associated with an offset w.r.t. the object they point to. Despite such
an extension is not mentioned in [2,10], the Invader tool seems to partially support it,
but it fails in many practical cases that Predator can handle well.

Predator is written in C++. It is built as a gcc plug-in, hence its front end is the
same compiler that is used in practice for compiling the code that Predator is intended to
analyse. Predator is completely open source2 in order to allow for an open collaboration
on its further development, which is very welcome.

There of course exist many other works on verification of programs with dynamic
linked data structures than those using separation logic, including works based on other
logics [7], automata [3], upward-closed sets [1], etc. These approaches offer different
degrees of generality, automation, or scalability. A proper discussion of such works is,
however, beyond the scope of this tool paper. Throughout the paper, we instead concen-
trate on a comparison with Invader as the closest tool to Predator. A similar tool is also
jStar [5] which, however, concentrates on Java-specific problems. In [4], a bi-abductive
analysis based on separation logic was proposed and implemented in a version of In-
vader, called Abductor3. This analysis, which is more scalable but less precise than
the classical analysis used in Invader and Predator, is not yet implemented in Preda-
tor (whose core can, however, be used to implement it in the future). Unlike Invader,
Predator cannot currently handle entire modules of Linux (such as drivers4) due to a so
far very weak support of non-pointer data, which is one of the planned future works on
Predator (together with a support of tree data structures, bi-abduction, etc.).

Below, we first say a bit more on the Linux lists supported by Predator, then we
briefly mention some implementation details of Predator, and we proceed to interesting
cases studies that illustrate the power of our tool. For some of the case studies, we are
not aware of any other fully automatic, freely available tool, capable of handling them.

2 Lists Used in The Linux Kernel

As there is no standard implementation of linked lists in the C language, the Linux
kernel has to implement lists on its own. The list implementation in Linux is well-
known for its efficiency, portability, readability, and scalability—for instance, it allows
to create list nodes which are owned by many distinct lists at a time. The downside is
that it operates at a low level, hence it is easy to misuse the routines, and cause a disaster
within the kernel. Later on, we will mention some common mistakes in manipulating
Linux lists, which Predator is able to detect.

2 http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/
3 Abductor is publicly available, but we have not managed to make it run. There is also a com-

mercial implementation (www.monoidics.com), which is, however, not freely available.
4 Although Invader has already shown some interesting results on pre-processed source code of

selected Linux drivers, it is not ready for analysing drivers using the native Linux lists.



374 K. Dudka, P. Peringer, and T. Vojnar

Fig. 1. A list of lists as implemented in the Linux kernel

The whole implementation of Linux lists is available in a single header file and con-
sists of about 500 lines of code. It defines only one5 type, which does all the job. The
type contains a pair of pointers (next and prev), but no data. Such a structure is called
a head and can be used in two ways—either as a starting point of a list (a standalone
head), cf. the leftmost node in Fig. 1, or as part of list nodes (an embedded head).

Basic list operations (like addition, removal, reconnection of nodes) work only with
heads and do not care about any associated data. In particular, the routines themselves
do not distinguish between embedded and standalone heads.

The embedded head can be placed at an arbitrary offset in the surrounding structure.
Moreover, it is possible to put many embedded heads into one structure such that one
node is part of many lists. The standalone head can be placed on stack, but it can also
be surrounded by another type. This way one can construct hierarchical list structures
as shown in Fig. 1. Note that the beginning of the data nodes (depicted in gray in Fig. 1)
needs not to be directly accessible by any pointer and can hence be mistakenly consid-
ered garbage if pointer arithmetic is not taken into account.

Linux lists are doubly-linked and circular, which significantly simplifies the design
and boosts performance. That is, each routine for reconnection of a node (insertion,
deletion, etc.) fits into a single basic block, which would not have been possible in case
of regular NULL-terminated doubly-linked lists. It also implies that there is no need to
have an explicit starting point (a standalone head) for each list. The Linux list library
provides macros to define a standalone head and initialise it as an empty list. In case of
Linux lists, an empty list means that next and prev fields point to the head itself.

The basic list traversal macro (list for each) provides a pointer to a head in
each iteration and works without any type-awareness of the data nodes being traversed.
The macro list entry then allows to translate a pointer to a head into a pointer to the
corresponding data node. As the offset of each embedded head in the structure is known
at compile-time, the macro can easily use pointer arithmetic to compute the required
address. There is also an extended macro for list traversal (list for each entry)
that efficiently wraps list entry and this way gives us a pointer to the data node in
each iteration, instead of the pointer to the embedded head. Note, however, that it may
happen that some pointer variable points to the unallocated space around a standalone
head and yet may be correctly used (by being subsequently moved forward by pointer
arithmetic). On the other hand, dereferencing such a pointer is an error, which can, e.g.,
lead to stack smashing (and is detectable by Predator).

5 Starting with Linux-2.5.64, there is also an optimised variant of lists for constructing hash
tables. We are not yet able to analyse the code that uses these optimised lists.
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A nice introduction into how Linux lists work can be found in [8]. We use the code
from there as one of the case studies distributed as test-cases with Predator.

3 A Note on the Implementation of Predator

Predator implements a symbolic analysis based on separation logic with higher-order
inductive predicates, inspired by the works [2,10] implemented in Space Invader. Preda-
tor uses a graph representation of separation logic formulae, a little bit similar to the
graph representation introduced in [2] for description of the predicate discovery algo-
rithm. Our representation is, however, more complex and used all the time.

In our graph-based symbolic representation of heaps, we use two kinds of nodes: ob-
jects (statically and automatically allocated program variables, dynamically allocated
storage, etc.) and values of the objects (e.g., addresses of objects and the special un-
defined, deleted, and null values in the case of pointers and function pointers). Objects
can be nested in order to represent the composition of C language structures. The ap-
propriate nodes are linked by oriented graph edges hasValue (going from objects to
values) and pointsTo (going from values to target objects). In order to allow for efficient
equality testing, equal objects are simply linked to the same value node. To encode
non-equality relations, value nodes may be linked by undirected neq edges. Further,
when pointer arithmetic produces a value that does not point to a valid target, we use
so-called offset edges between value nodes. Such values can later be used for a valid
memory operation—they can either be translated by another use of pointer arithmetic
to a valid address, or directly used for accessing an existing subobject of a non-existent
surrounding object (which is common, e.g., when working with Linux lists).

We represent inductive predicates as special abstract objects. Currently, we support
only singly- and doubly-linked list segments that may be shared, nested, and with var-
ious additional (head, tail, data, and the like) pointers. A doubly-linked list segment
(DLS) has two endpoints, both of which may be pointed to. Therefore, since each object
has exactly one address, we in fact represent DLS as pairs of abstract objects. To cope
with pointer arithmetic, we equip abstract objects with offsets specifying the relative
placement of the core linking pointers (next/prev for lists). Moreover, to cope with
Linux lists, we also record the head offset that is a relative placement of the list pointer’s
target. For Linux lists, it corresponds to the offset of the embedded head, whereas for
regular lists, it is simply zero. We do not treat the minimal segment length as an explicit
property of a list segment as in [9]. Instead, our list segments are implicitly possibly
empty (i.e., of length 0+). We use the generic mechanism of neq edges between nodes
before and after a segment to construct non-empty segments (length 1+). For DLS, we
use two neq edges for length 1+ (one edge for each direction) and three neq edges for
length 2+ (the additional neq edge is in between the ends of the DLS). Such an ap-
proach leads to a simpler and more readable implementation. Apart from that, we then
have special abstract objects for list segments of length 0 or 1.

Predator maintains a set of symbolic heaps for each basic block entry. The set is not
yet implemented as an ordered or hashed container, but it utilises a join operator similar
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to the join operator introduced in [10], helping to significantly decrease the number of
symbolic heaps to be maintained. Moreover, Predator uses a slightly modified version
of the join algorithm to merge pairs of objects during a list segment abstraction, in
particular to join nested predicates, shared (head, tail or other) pointers, and other data.
The modified join algorithm operates on two parts of a single heap given by the pair of
objects being merged, and constructs a joint description of both parts. The algorithm can
also run in a read-only mode to decide whether the join operation is possible. The read-
only mode can be safely used during predicate discovery. Thanks to this, the algorithms
for abstraction and predicate discovery are implemented as a very thin purpose-specific
layer on top of the generic join algorithm.

For inter-procedural analysis, Predator uses function summaries in a way similar to
[10], including a support of indirect function calls and recursive calls of fixed depth.

Predator is tightly integrated with gcc (version 4.5.0 and newer) as a plug-in.
Therefore, there is no need to manually pre-process the sources, neither to change the
way they are built, whenever dealing with software natively compiled by gcc. Usage
of Predator is as easy as adding a new compiler flag into CFLAGS while building
a project. Code defects encountered during analysis are reported in the gcc format.
Hence it is easy to reuse existing development tools, IDE, etc. In order to give users
a clue about detected errors, Predator provides a backtrace for each error. Predator
attempts to report as many errors and warnings as possible per run. For instance, if
a memory leak is detected, a warning is issued, and Predator keeps searching for
further errors (due to a garbage collector that gets the symbolic heap back to its con-
sistent shape). Predator supports error recovery for most of the program errors which
it is able to detect.

4 Experiments with Predator

Along with Predator, we distribute a comprehensive set of programs (over a hundred test
cases) that can be handled by our tool, including various textbook implementations of
lists (singly-linked, doubly-linked, circular, hierarchically nested, etc.) as well as exam-
ples using Linux lists6. These case studies are mid-size (up to 300 lines), however, they
contain almost only pointer manipulations unlike larger programs whose big portions
are often not relevant for pointer analyses like ours. Apart from basic list manipula-
tion (creation of random lists, reversal, destruction, etc.), we provide also examples of
various sorting algorithms: Merge-Sort, Insert-Sort, and Bubble-Sort7. The Merge-Sort
case study operates on hierarchical singly-linked lists. The other two sorts use the native
implementation of Linux lists. Predator is not proving that the resulting list is sorted,
but it verifies memory safety of the code. Invader, as a freely available tool closest to
Predator, is not able to analyse any of our sorting case studies.

Some of our test cases show common mistakes in using Linux lists such as mixing
pointers to a head with pointers to data or treating a standalone head as if it was an
embedded head. Only programmers know the purpose of each head, and if they use the

6 https://github.com/kdudka/predator/tree/61d5df3/sl/data
7 See [6] for file names under which the case studies can be found in the distribution of Predator.
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head in a wrong way, it is likely to be noticed at run-time only (and often not imme-
diately). For example, starting from a standalone head, the list for each entry
macro provides a valid pointer to data in each iteration. However, if one starts to traverse
the list from the middle, it ends up by misinterpreting the standalone head’s neighbour-
hood as list node’s data. Predator is capable of detecting such mistakes. We, for instance,
provide an example where a wrong head is used for a Linux list traversal. Despite even
the dynamic analysis tool valgrind, often used by developers, claims there is an in-
valid write, Invader says the code is safe. On the contrary, Predator detects the flaw in
0.01s, which is even faster than valgrind.

Our test suite further contains various programs intended to stress test the discov-
ery of inductive predicates. These case studies include, e.g., conversion of a singly-
linked list into a doubly-linked and then back to singly-linked list, or construction of
two independent lists starting from the same node, which other tools may inaccurately
over-approximate as a hierarchically nested list or a binary tree.

Another case study considers a call of free() on an embedded head that appears
in real code if the head is placed at zero offset within the data node. Tools that ignore
address aliasing of fields placed at the same offset, like Invader, mistakenly report such
an operation as an error in the analysed program. Since Predator uses the offset-based
description of list segments, it can easily cope with address aliasing.

We also provide a few case studies of lists where each node optionally owns some
nested objects. Those may be incorrectly abstracted as nested lists if only usual list
segments are considered, and in case the program does not really treat such objects as
lists, it leads to spurious memory leaks or even non-termination of the analysis. Predator
covers these cases by special abstract objects of length 0 or 1, which allows a more
precise analysis and solves the problems with spurious errors and non-termination.

Across all our case studies, Predator acts fully automatically. There is no need to
tell Predator what kind of data structures to look for. Given a C program, it simply
returns the corresponding list of errors and warnings. In all but one of the mentioned
tests, the time consumption was under 1.0s on Intel Core i5 3.33GHz. Moreover, for
a vast majority of the tests, it was under 0.1s. The only exception was the Merge-Sort
example, which took 7.8s to analyse. We are, however, not aware of any comparable
tool that is able to analyse the same example faster.

5 Conclusion

We have presented Predator, a new separation logic based tool for analysing programs
with dynamic linked data structures. Despite the tool is only at the beginning of its
development, we have argued that it already offers many interesting features. In the
future, the tool should be, e.g., enriched with some (preferably light-weight) support
of non-pointer data (integers, arrays), extended to handle further classes of dynamic
data structures, extended to handle C++ code (which the gcc-based front-end can
easily handle), and so on. Since Predator is open source, GPL-licensed, and written
such that its code is readable, collaboration on its further development is very well
possible.
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Abstract. We present a scalable reachability algorithm for hybrid sys-
tems with piecewise affine, non-deterministic dynamics. It combines poly-
hedra and support function representations of continuous sets to compute
an over-approximation of the reachable states. The algorithm improves
over previous work by using variable time steps to guarantee a given
local error bound. In addition, we propose an improved approximation
model, which drastically improves the accuracy of the algorithm. The al-
gorithm is implemented as part of SpaceEx, a new verification platform
for hybrid systems, available at spaceex.imag.fr. Experimental results
of full fixed-point computations with hybrid systems with more than 100
variables illustrate the scalability of the approach.

1 Introduction

Hybrid systems are a class of mathematical models of dynamical systems admit-
ting both discrete-event (logical) and continuous (numerical) dynamics. They
consist of a transition system, augmented with real-valued state variables that
evolve according to a particular differential equation in every discrete state
(mode). Conditions on the values of these variables may trigger discrete tran-
sitions (mode switching). Naturally, the verification of hybrid systems requires
ingredients taken from the classical verification of transition systems, augmented
with new special techniques for doing verification-like operations (successor com-
putation) on the continuous dynamics. Early tools [11,1] focused on relatively
simple continuous dynamics in each discrete state, where the derivative of the
continuous variables does not depend on their values. For such “linear” hybrid
automata, the computation of successors in the continuous domain can be real-
ized by linear algebra. Nevertheless, it turned out that switching between such
simple continuous modes one can easily construct undecidability gadgets and
hence the exact verification of hybrid systems turned out to be a dead end.

The second wave of hybrid verification tools [6,3,12] indeed abandoned exact
computations and focused more on computing approximations of the reachable
states for systems admitting less trivial continuous dynamics. Such techniques
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and tools could handle hybrid systems with continuous dynamics defined by lin-
ear differential equations with inputs. However, the size of systems that could
be handled was modest, typically very few continuous state variables. Another
thread in hybrid verification focuses on systems with a very large discrete state-
space with very few continuous variables. Typically such models are aimed to
verify the code of computerized control systems, with a very modest modeling
of the external environment. The major preoccupation in these efforts is in com-
bining the continuous part with techniques, such as BDD or SAT, for handling
large discrete state-spaces [7,16].

In the last couple of years, an important breakthrough has been achieved in
the reachability computation of the continuous part. A new algorithm based
on a “lazy” representation of the reachable sets, first developed for the spe-
cial case where reachable states are represented by Zonotopes [10] and then
extended and crystalized using the more general representation via support func-
tions [14,13,15], has dramatically increased the scope of linear systems that can
be verified to several hundreds of state variables. Similar scale improvements
have been reported recently on complementary approaches for handling linear
systems [4]. Moreover, significant advances have been made on applying these
linear techniques to nonlinear systems via “hybridization” (approximating a non-
linear system by a piecewise-affine one) [2], which have led to the verification of
non-trivial nonlinear systems with about a dozen of state variables [8].

This paper is concerned with the transfer of such research achievements, typ-
ically obtained as theoretical results accompanied by a thesis-related prototype,
into a robust and user-friendly toolset. It describes SpaceEx, a new extensi-
ble verification platform for hybrid systems, developed with systematic software
engineering [9], implementing many of the above-mentioned developments, and
featuring a web-based graphical user interface. As the reader will see, this trans-
fer is not only about software engineering, modularity and user interface: it
consists in improving and fine-tuning the algorithms to make them applicable
to real-world problems. SpaceEx consists of three components:

– The analysis core is a command line program that takes a model file, a con-
figuration file that specifies the initial states, the scenario and other options,
and then analyzes the system and produces a series of output files.

– The web interface, shown in Fig. 1(a), is a graphical user interface with which
one can comfortably specify initial states and other analysis parameters, run
the analysis core, and visualize the output graphically. The web interface is
browser-based, and accesses the analysis core via a web server, which may
be running remotely or locally on a virtual machine.

– The model editor, shown in Fig. 1(b), is a graphical editor for creating models
of complex hybrid systems out of nested components.

In this paper, we describe an efficient and scalable reachability algorithm,
which builds on the one in [15], adapted specifically for maximum scalability.
We present its extension to variable time steps, and propose an improved ap-
proximation model, which drastically improves the accuracy of the algorithm.
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(a) Web interface (b) Model editor

Fig. 1. Graphical user interfaces of the SpaceEx platform

Experimental results demonstrate the scalability of the algorithm and the per-
formance of the tool. Unlike in classical verification there are no established
benchmarks and reference tools for comparing high-dimensional hybrid reach-
ability. We know of no tool that has been reported to treat systems of the
dimensions in this paper. The examples used in this paper as well as the tool
itself are available at http://spaceex.imag.fr.

The paper is structured as follows. Section 2 recalls hybrid automata, the
basic reachability algorithm and data structures used in SpaceEx. Section 3
describes the variable time step algorithm and the new approximation model
used to compute time elapse successor states. The computation of successor
states of discrete transitions is presented in Sect. 4. Experimental results based
on our implementation in SpaceEx are provided in Sect. 5, followed by some
conclusions in Sect. 6. The proofs for this paper are available as an appendix at
http://www-verimag.imag.fr/~frehse/cav2011_appendix.pdf.

2 Reachability of Hybrid Systems

2.1 Hybrid Automata

We model the interaction of discrete events and continuous, time-driven dynam-
ics with a hybrid automaton [1]. A hybrid automaton H = (Loc,Var ,Lab, Inv ,
Flow ,Trans , Init) consists of a labeled graph that encodes the nondeterministic
evolution of a finite set of continuous variables Var over time. In this paper, we
associate each of the n variables with a dimension in R

n. A vertex l ∈ Loc of
the graph is called a location. A state is a pair (l, x) ∈ Loc × R

n. In every state
(l, x), the time-driven evolution of the continuous variables is given by the set
of derivatives Flow (l, x) ⊆ R

n. The edges of the graph are called discrete tran-
sitions. A transition (l, α,Guard ,Asgn, l′) ∈ Trans , with label α ∈ Lab allows
the system to jump from location l to location l′, instantaneously modifying
the values of the variables. A state (l, x) can jump to (l′, x′) according to the

http://spaceex.imag.fr
http://www-verimag.imag.fr/~frehse/cav2011_appendix.pdf
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guard Guard ⊆ R
n and the assignment Asgn(x) ⊆ R

n, i.e., if x ∈ Guard and
x′ ∈ Asgn(x). The system may only remain in a location l as long as the state is
inside the invariant Inv(l) ⊆ R

n. All behaviors originate from the initial states
Init ⊆ Loc×R

n. In this paper, we consider Flow (l) to be a continuous dynamics
of the form

ẋ(t) = Ax(t) + u(t), u(t) ∈ U , (1)

where x(t) ∈ R
n, A is a real-valued n × n matrix and U ⊆ R

n is a closed and
bounded convex set. Transition assignments Asgn are of the form

x′ = Rx+ w, w ∈ W , (2)

where R is a real-valued n × n matrix, and W ⊆ R
n is a closed and bounded

convex set of non-deterministic inputs.
An execution of the automaton is a sequence of discrete jumps and pieces of

continuous trajectories according to its dynamics, and originates in one of the
initial states. A state is reachable if an execution leads to it. We are concerned
with computing the set of states that are reachable.

2.2 High-Level Reachability Algorithm

Our reachability algorithm is a classical fixed-point computation that operates
on symbolic states. A symbolic state is a pair (l, Ω), where l is a location and Ω
is a convex continuous set. For a set of symbolic states R, let the discrete post-
operator postd(R) be the set of states reachable by a discrete transition from R,
and the continuous post-operator postc(R) be the set of states reachable from
R by letting an arbitrary amount of time elapse. The set of reachable states is
the fixed-point of the sequence R0 = postc(Init),

Rk+1 := Rk ∪ postc(postd(Rk)). (3)

In the following section we present how we represent convex continuous sets
such that the post operators can be computed efficiently. The post operators
themselves are presented in Sect. 3 and Sect. 4.

2.3 Support Functions and Template Polyhedra

Computing the image of the reachability post-operators for continuous sets is
hard, in particular for the time elapse operator postc. In [15], an efficient algo-
rithm was proposed that uses support functions to represent convex continuous
sets. The support function [5] of a closed and bounded continuous set S ⊆ R

n

assigns to any direction vector � ∈ R
n the value

ρ(�,S) = max
x∈S

� · x.

The support function of a convex set S is an exact representation of the set,
which is illustrated by the fact that S =

⋂
�∈Rn{x | � ·x ≤ ρ(�,S)}. Representing

a convex set by its support function has the benefit that the majority of the set
operations used in our algorithm can be implemented very efficiently:
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– linear map: For a map M ∈ R
n × R

n, ρ(�,MS) = ρ(M��,S).
– Minkowski sum: For sets S1, S2, ρ(�,S1 ⊕ S2) = ρ(�,S1) + ρ(�,S2).
– convex hull : For sets S1, S2, ρ(�,CH(S1,S2)) = max(ρ(�,S1), ρ(�,S2)).

However, our algorithm requires two more operations, for which support func-
tions are not efficient: intersection and deciding containment. For these opera-
tions, we use another set representation, template polyhedra, which are polyhedra
with facets whose normal vectors are given a priori. Given a setD = {�1, . . . , �m}
of vectors in R

n called template directions, a template polyhedron PD ⊆ R
n is

a polyhedron for which there exist coefficients b1, . . . , bm ∈ R such that

PD =
{
x ∈ R

n |
∧

�i∈D

�i · x ≤ bi
}
.

A template polyhedron can be represented by its coefficients bi, which is partic-
ularly useful when working with sets of template polyhedra. In order to go from
a support function representation of a set S to a template polyhedron, we use its
template hull THD(S), which is the template polyhedron defined by coefficients
bi = ρ(�i,S). The support function of a polyhedron can be computed efficiently
for a given direction � using linear programming. In this paper, we consider:

– 2n box directions: xi = ±1, xk = 0 for k �= i;
– 2n2 octagonal directions: xi = ±1, xj = ±1, xk = 0 for k �= i and k �= j;
– m uniform directions (as evenly as possible distributed over the unit sphere).

However, the algorithm supports a more general choice of directions, which re-
mains to be investigated.

The use of both support functions and template hulls is justified by the fact
that they are efficient for different operations, and both set representations are
present in our implementation. Support functions are an exact and complete
representation of convex sets – implemented as function objects, they can com-
pute values for any direction. With template hulls, the directions D are fixed
once and for all at the time of construction, and information for other directions
is lost. By switching representations only when necessary (data-dependently) we
remain as precise as possible.

3 Variable Time-Step Flowpipe Computation

We consider the affine continuous dynamics in (1), ẋ(t) = Ax(t) + u(t), u(t) ∈
U , where x(0) ∈ X0, and U ⊆ R

n is a set of nondeterministic inputs. Let
Reacht1,t2(X ) denote the reachable states starting from the set X with input
set U in the time interval [t1, t2],

Reacht1,t2(X ) = {x(τ) | t1 ≤ τ ≤ t2, x(0) ∈ X , x(t) satisfies (1)}. (4)

We compute a flowpipe, a sequence of continuous sets Ω0, . . . , ΩN−1 that covers
the reachable states up to time T (N depends on the chosen time steps).
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Before we present the actual algorithm, we discuss how we take into account
the invariant of the corresponding location of the hybrid automaton. In our
implementation, we test at the k-th step whether Ωk is entirely outside of the
invariant, and stop the sequence once this is the case. Then we intersect the
invariant with the computed Ωk (see Sect. 4 for a discussion of the intersection
operation). Note that this procedure may produce an over-approximation, as
the invariant may block some of the trajectories starting in X0 without blocking
them all. We include the invariant facet normals automatically in the template
directions, so the result is usually of satisfactory precision. A variation of this
algorithm with proper handling of invariants is presented in [14].

We now describe the variable time step algorithm. Given arbitrary time steps
δ0, δ1, . . ., we construct the sequence Ωk that covers the set of reachable states.
As we will show, each set Ωk covers the reachable states in the time interval
[tk, tk+1], where tk =

∑k−1
i=0 δi. The algorithm is based on two functions Ω[0,δ] and

Ψδ, called approximation models. They over-approximate the reachable states
over a time interval [0, δ] as a function of δ,X0, and U :

Reach0,δ(X0) ⊆ Ω[0,δ](X0,U), Reachδ,δ({0}) ⊆ Ψδ(U). (5)

Each Ωk is constructed by computing Ω[0,δk], which covers Reach0,δk
(X0), and

then shifting this set forward in time so that it covers Reachtk,tk+δk
(X0). This

is possible due to the following well-known property:

Lemma 1. Reachtk,tk+δk
(X ) = eAtkReach0,δk

(X ) ⊕ Reachtk,tk
({0}).

It therefore suffices to apply the linear map eAtk (a constant matrix) to Ω[0,δk],
and then to add Reachtk,tk

({0}), which captures the influence of the inputs U
up to time tk. We over-approximate this summand with a sequence Ψk defined
below:

Reachtk,tk
({0}) ⊆ Ψk.

Given approximation models Ω[0,δ] and Ψδ, we compute the sequence Ωk as
follows, with Ψ0 = {0}:

Ψk+1 = Ψk ⊕ eAtkΨδk
(U),

Ωk = eAtkΩ[0,δk](X0,U) ⊕ Ψk
(6)

Now we formally state the main result of this section: Given the approximation
models, which we will define in the next section, the sequence Ωk covers the
reachable set.

Proposition 1. Given a sequence of time steps δ0, . . . , δN−1 with
∑N−1

i=0 δi = T ,
the sequence Ωk defined by (6) satisfies

Reach0,T (X0) ⊆
N−1⋃
k=0

Ωk. (7)

Representing the sets Ψk and Ωk by their support function, the operators used in
(6) – linear map and Minkowski sum – can be computed efficiently as discussed
in Sect. 2.3.
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Fig. 2. Different approximation models for a segment of a circular trajectory, computed
by SpaceEx: (a) using a first-order approximation of the ODE [15], (b) using a first-
order approximation of the error of the linear interpolation between the states at time
t = 0 and at t = δ [13], (c) the new model, which intersects a first-order approximation
of the interpolation error going forward in time from t = 0 with one that goes backward
from t = δ.

In the next section, we present the new approximation model which we use
to compute Ωk as in (6). In Sect 3.2, we provide direction-wise error bounds on
this computation, and discuss how to adapt the time steps in order to guarantee
given error bounds.

3.1 Approximation Model

The approximation quality of the sequence Ωk evidently hinges on the quality
of the approximation model. In [15], an approximation model was proposed that
uses the norms of A, X0 and U to bound the error of a first-order approximation
of the solution of the state equations, see Fig. 2 for an illustration. If this allows
one to establish an asymptotically optimal error over a given time interval, it
is sometimes overly conservative in practice. In this section, we propose a new
model, which is a strict improvement over the method in [15] if the norm used
is the infinity norm. For other norms, it is possible to find cases for which the
resulting sets are incomparable, but we have yet to find a pratical case where
our approximation is worse. Similar to a model proposed in [13], it is based on
a first-order approximation of the interpolation error between the reachable set
at time 0 and at time δ. On top of that, it combines an approximation that goes
forward in time with one that goes backward in time in order to further improve
the accuracy.

Before presenting the model, we introduce the following notations. The sym-
metric interval hull of a set S, denoted �(S), is �(S) = [−|x1|; |x1|] × . . . ×
[−|xd|; |xd|] where for all i, |xi| = sup{|xi| | x ∈ S}. LetM = (mi,j) be a matrix,
and v = (vi) a vector. We define as |M | and |v| the absolute values of M and v
respectively, i.e., |M | = (|mi,j |) and |v| = (|vi|). These absolute values allow us
to bound matrix-vector operations (component wise) without taking their norm.
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The approximation model uses the following transformation matrices:

Φ1(A, δ) =
∞∑

i=0

δi+1

(i+ 1)!
Ai, Φ2(A, δ) =

∞∑
i=0

δi+2

(i+ 2)!
Ai. (8)

If A is invertible, Φ1 and Φ2 can be computed as Φ1(A, δ) = A−1
(
eδA − I),

Φ2(A, δ) = A−2
(
eδA − I − δA). Otherwise, they can be computed as submatri-

ces of the block matrix⎛⎝eAδ Φ1(A, δ) Φ2(A, δ)
0 I Iδ
0 0 I

⎞⎠ = exp

⎛⎝Aδ Iδ 0
0 0 Iδ
0 0 0

⎞⎠.
We can now use these operators to obtain a precise over-approximation of
Reach0,δ(X0) and Reachδ,δ({0}). We start with a first-order approximation of
the latter :

Lemma 2. Let Ψδ(U) be the set defined by

Ψδ(U) = δU ⊕ EΨ (U , δ), (9)
EΨ (U , δ) = �

(
Φ2(|A|, δ) � (AU)

)
. (10)

Then, Reachδ,δ(0) ⊆ Ψδ(U).

We now have discretized the differential equation, but we still have to over-
approximate Reach0,δ(X0) with a function Ω[0,δ](X0,U). Our starting point is a
linear interpolation between Reach0,0 and Reachδ,δ using a parameter λ = t/δ
representing normalized time. For each point in time t, Reacht,t = Reachλδ,λδ

is a convex set, for which we construct an over-approximation Ωλ. Our over-
approximation for the time interval [0, δ] is then the convex hull of all Ωλ over
λ ∈ [0, 1]. Using a forward, respectively backward, interpolation leads to an error
term proportional to λ, respectively 1−λ. Intersecting both approximations gives
the following result:

Lemma 3. Let λ ∈ [0, 1], and let Ωλ(X0,U , δ) be the convex set defined by:

Ωλ(X0,U , δ) = (1 − λ)X0 ⊕ λeδAX0 ⊕ λδU
⊕ (
λE+

Ω (X0, δ) ∩ (1 − λ)E−
Ω (X0, δ)

)⊕ λ2EΨ (U , δ), with

E+
Ω (X0, δ) = �

(
Φ2(|A|, δ) �

(
A2X0

))
,

E−
Ω (X0, δ) = �

(
Φ2(|A|, δ) �

(
A2eδAX0

))
,

EΨ (U , δ) = � (Φ2(|A|, δ) � (AU)) .

Then Reachλδ,λδ(X0) ⊆ Ωλ(X0,U , δ). If we define Ω[0,δ](X0,U) as:

Ω[0,δ](X0,U) = CH
( ⋃
λ∈[0,1]

Ωλ(X0,U , δ)
)
, (11)

then Reach0,δ(X0) ⊆ Ω[0,δ](X0,U).
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Ω[0,δ](X0,U), as defined above, might seem hard to represent. In fact, its support
function is not much harder to compute than the one of X0 and U . Let

ω(X0,U , δ, λ) = (1 − λ)ρ(�,X0) + λρ((eδA)��,X0) + λδρ(�,U)

+ ρ
(
�, λE+

Ω ∩ (1 − λ)E−
Ω

)
+ λ2ρ(�, EΨ ). (12)

Since the signs of λ, (1 − λ), and λ2 do not change on [0, 1], we have:

ρ(�,Ω[0,δ](X0,U)) = max
λ∈[0,1]

ω(X0,U , δ, λ). (13)

The support function of λE+
Ω ∩ (1− λ)E−

Ω can easily be expressed as a piecewise
linear function of λ. For any λ, this set is a centrally symmetric box and its
support function is:

ρ(�, λE+
Ω ∩ (1 − λ)E−

Ω ) =
d∑

i=1

min(λe+i , (1 − λ)e−i )|li|,

where e+ and e− are such that ρ(�, E+
Ω ) = e+ · |l| and ρ(�, E−

Ω ) = e− · |l|. Thus
we only have to maximize a piecewise quadratic function in one variable on [0, 1]
after the evaluation of the support function of the sets involved.

3.2 Time Step Adaptation with Error Bounds

Time steps are generally hard to choose, and their value is rarely chosen in
itself, but according to an expected precision. In order to efficiently choose our
variable time step, we must be able to evaluate the error introduced by time
discretization. In our error calculation, we do not bound the error introduced
at each step, but the overall error introduced since the beginning of the current
continuous evolution. We must take into account the accumulation of errors,
not done carefully we might exhaust our error tolerance before the end of the
computation and become unable to advance in time without exceeding it.

Our choice of error bound ε(�) is the difference between the computed support
function and the support function of the reachable set at time t. For each set
Ωk we define

εΩk
(�) = ρ (�,Ωk) − ρ (�,Reachtk,tk+1(X0)

)
(14)

The total approximation error is then

ε(�) = max
k∈0,...,N−1

εΩk
(�).

Note that Reachtk,tk+1(X0) is generally not a convex set, and by over-
approximating it with the convex set Ωk we incur an additional error that is
not captured by εΩk

(�). The bound ε(�) allows us to decide whether or not the
reachable set satisfies a linear constraint �·x ≤ b (e.g., whether the states surpass
a certain threshold) with an uncertainty margin of ε(�).



388 G. Frehse et al.

To compute εΩk
(�), we must take into account the error for Ψδ(U) defined as

in Lemma 2 and Ω[0,δ](X0,U) defined as in Lemma 3. Let

εΨδ(U)(�) = ρ (�, Ψδ(U)) − ρ (�,Reachδ,δ({0})) , (15)
εΩ[0,δ](X0,U)(�) = ρ(l, Ω[0,δ](X0,U)) − ρ(l,Reach0,δ(X0)). (16)

Lemma 4. For any � in R
n:

εΨδ(U)(�) ≤ ρ(�, EΨ (U , δ)) + ρ (�,−AΦ2(A, δ)U) (17)

εΩ[0,δ](X0,U)(�) ≤ max
λ∈[0,1]

{
ρ
(
l,
(
λE+

Ω (X0, δ) ∩ (1 − λ)E−
Ω (X0, δ)

))
+λ2ρ(l, EΨ (U , δ)) + λρ (�,−AΦ2(A, δ)U)

}
. (18)

Computing the support function of Ωk as defined by (6) and applying the
above lemmas as well as Lemma 1, we obtain εΩk

(�) as follows.

εΨk+1(�) = εΨk
(�) + εΨδk

(U)(eAtk
�
�),

εΩk
(�) = εΩ[0,δk](X0,U)(eAtk

�
�) + εΨk

(�).
(19)

Given the above error bounds, one can adapt the time steps during the com-
putation of the sequence such that ε(�) is kept arbitrarily small. The problem
lies in the error εΨk

(�), which accumulates with k, so that an a-posteriori re-
finement would require the whole squence to be recomputed. We therefore use
the following simple heuristic to compute the sequence of ρ(�,Ωk) for a given
template direction � such that ε(�) ≤ ε̂ for a given error bound ε̂ ∈ R

>0. Instead
of computing ρ(�,Ωk) directly, we first compute the whole sequence ρ(�, Ψk),
then the sequence ρ(eAtk

�
�,Ω[0,δk](X0,U)), and only then combine them to get

the sequence ρ(�,Ωk). This separation allows us to choose a separate time step
for each sequence, adapting the error as necessary. Additionally, by computing
the sequences one after another, the last one can pick up the slack in the error
bound of the first sequence.

In the following we suppose that ε̂ is distributed a-priori on both sequences,
so that we have ε̂Ω and ε̂Ψ in R

>0 with ε̂ = ε̂Ω + ε̂Ψ . This distribution can be
established, e.g., by a prior coarse-grained run with a large error bound, or by a
run with large fixed time steps. Because the error of Ψk accumulates with k, it is
chosen (somewhat arbitrarily) to remain below a linearly increasing bound. The
error of eAtkΩ[0,δk](X0,U) does not depend on previous computation steps, so it
can be adapted on the fly to meet the required bound. We proceed as follows:

1. Compute ρ(�, Ψk(U)) such that εΨk
(�) ≤ tΨ

k

T ε̂Ψ . At each step k, we must find
a δΨk , ideally the biggest, such that:

εΨk
(�) + εΨ

δΨ
k

(U)(eAtΨ
k
�
�) ≤ tΨk + δΨk

T
ε̂Ψ
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Finding δΨk is possible because εΨδ(U)(eAt��) = O(δ2). First, we fix an initial
time step δΨ−1. Then, at each step k, we start a dichotomic search from δΨk−1

along the δ for which sets and matrices involved in the computation of Ψδ(U)
have already been evaluated, trying new values only when necessary.

2. Compute ρ(eAtΩ
k
�
�,Ω[0,δΩ

k
](X0,U)) such that

εΩ[0,δΩ
k

](X0,U)(eAtΩ
k
�
�) + εΨi(k)(�) = εΩk

(�) ≤ ε̂

where i(k) is such that tΨi(k)−1 < t
Ω
k ≤ tΨi(k). This can be done with a di-

chotomic search over the sequence of tΨk already computed for ρ(�, Ψk(U)).
If there is a k such that δΨi(k) must be further refined, then for the newly
introduced indices kj , we have i(kj) = i(k).

To combine the above two sequences into ρ(�,Ωk), we use the sequence of time
steps δΩk . If this introduces new times tΩk in the sequence of tΨk , we can compute
the missing values for ρ(�, Ψk(U)) by starting from tΨi(k)−1. This does not trigger
the recomputation of ρ(�, Ψk(U)) for other time points since the sequence εΨk

(�)
is increasing.

4 Computing Transition Successors

Each flow-pipe that is created by the time elapse step is passed to the compu-
tation of transition successors. States that take the transition must satisfy the
guard, are then mapped according to the assignment and the result must satisfy
the invariant of the target location. Consider a transition T with guard G, assign-
ment Asgn, and whose target location has the invariant I+. Let PostAsgn(X )
be the set of states that result from mapping a continuous set X according to
Asgn. Then for a set of states X , the set of successor states is given by

postd(T,X ) = PostAsgn(X ∩ G) ∩ I+.

We now discuss how the operations for this image computation, intersection and
assignment, can be carried out efficiently. Then we present a method to decrease
the number of convex sets produced by the successor computation so that an
exponential blowup in the number of sets can be avoided.

Intersection. Since intersection with support functions is hard, we compute in-
tersection on the template hull, say PD = THD(X ). If X is a set of convex sets,
the intersection is performed separately on each convex set. If G is a polyhe-
dron in constraint form whose constraint normals are template directions, then
this operation can be carried out very efficiently by taking the minimum of the
template coefficients:

PD ∩ G =
{
x ∈ R

n |
∧

�i∈D

�i · x ≤ min(bXi , b
G
i )
}
.



390 G. Frehse et al.

Assignment. Recall that according to (2) transition assignments are of the form
x′ = Rx+w,w ∈ W , where W ⊆ R

n is a convex set of non-deterministic inputs.
In the general case, the assignment operator is therefore

PostAsgn(X ) = RX ⊕W ,
and can be computed efficiently using support functions. If the assignment is
invertible and deterministic, i.e., R is invertible and W = {w0} for some constant
vector w0, the exact image can be computed efficiently on the polyhedron.

Clustering. Each flow-pipe consists of a possibly large number of convex sets
that cover the actual trajectories. When we compute the successor states for a
transition, each of these convex sets spawns its own flow-pipe in the next time
elapse computation. This may multiply the number of sets with each iteration,
leading to an explosion in the number of sets and slowing the analysis down
to a stall. To avoid this effect and speed up the analysis, we apply what we
call clustering. Given a hull operator, clustering reduces the number of sets by
replacing groups of these sets with a single convex set, their hull. We use the
following clustering algorithm for a given hull operator HULL. Let the width of
P1, . . . ,Pz with respect to a direction � ∈ D be

δP1,...,Pz(�) = max
i=1..z

ρ(�,Pi) − min
i=1..z

ρ(�,Pi). (20)

Given P1, . . . ,Pz and a clustering factor of 0 ≤ c ≤ 1, the clustering algorithm
produces a set of polyhedra Q1, . . . , Qr, r ≤ z, as follows:

1. Let i = 1, r = 1, Qr := Pi.
2. While i ≤ z and ∀� ∈ D : δQr ,Pi(�) ≤ cδP1,...,Pz(�),
Qr := HULL(Qr,Pi), i := i+ 1.

3. If i ≤ z, let r := r + 1, Qr := Pi. Otherwise, stop.

We consider two hull operators: template hull, which is fast but very over-
approximative, and convex hull, which is precise but slower. It can be advata-
geous to combine both, as illustrated by the following example:

Example 1. Consider the 8-variable filtered oscillator presented in Sect. 5.1. At
the first discrete state change alone, 57 convex sets can take the transition.
Without clustering, the computation is not feasible, as these sets would spawn
57 new flowpipes, and similarly for their successors. Template hull clustering
with cTH = 0.3 produces three sets and results in a total runtime of 11.5s.
With cTH = 1 it produces a single set and takes 3.36s, but with a large over-
approximation. Convex hull clustering by itself with cCH = 1 is very precise but
takes 8.19s. Combining both with cTH = 0.3, cCH = 1 takes 3.64s without a
noticeable loss in accuracy.

5 Experimental Results

To demonstrate the scalability of our algorithm and the performance of the
tool SpaceEx, we present the following experiments. The first system is a simple
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Table 1. Performance results for the filtered oscillator benchmark, varying the number
of variables in the system. The time step is δ = 0.05, applying template hull clustering
with cTH = 0.3 followed by convex hull clustering with cCH = 1. Indicated are the
runtime, memory and iterations required to compute a fixed-point, and the largest
error for any of the directions in any of the time steps

Variables Time [s] Mem. [MB] Iter. Error

18 2,0 9,3 9 0,010
34 9,1 20,2 13 0,010
66 77,3 50,3 23 0,013

130 1185,6 194,3 39 0,030
198 7822,5 511,0 57 0,074

Box constraints

Variables Time [s] Mem. [MB] Iter. Error

2 0,7 11,8 6 0.009
4 1,4 11,8 6 0.025
6 4,7 13,3 6 0.025

10 33,0 23,0 7 0.025
18 538,4 67,9 10 0.025

Octagonal constraints

parameterized system which we use to empirically measure the complexity of our
algorithm. The second system is a multivariable continuous control system with
complex, tightly coupled dynamics. It illustrates the faithfulness and accuracy
of the continuous part of the algorithm. For lack of space we do not present the
model equations, but instead refer the reader to the SpaceEx model files, which
are available at http://spaceex.imag.fr.

5.1 Filtered Oscillator Benchmark

To measure the performance of our approach, we use a simple parameterized
switched oscillator system whose complexity is increased by adding a series of
first-order filters to the output x of the oscillator. The filters smooth x, pro-
ducing a signal z whose amplitude diminishes as the number of filters increases.
Note that the dynamics are rather simple, as the filter variables are only weakly
coupled with one another. The oscillator is an affine system with variables x, y
that switches between two equilibria in order to maintain a stable oscillation,
which together with k filters yields a parameterized system with k+2 continuous
variables and two locations. One location has the invariant x ≥ −1.4y, the other
x ≤ −1.4y, and the guards consist of the boundaries of the invariants.

To empirically measure how the complexity depends on the n variables of the
system and the m template directions, we run experiments varying just n, just
m, and both. Fixed n: The average time for a successor computation (discrete
followed by continuous) for the 6-variable system over m uniform directions,
m = 8, . . . , 256, shows a root mean square (RMS) tendency of O(m1.7). Fixed
m: The average time for a successor computation with 200 uniform directions
with n = 6, . . . , 16 shows an RMS tendency of O(n). Table 1 shows the complete
runtime of a fixed-point computation for box and uniform directions for the
system with up to 198 variables. The RMS tendency is O(n2.7) for box directions
and O(n4.7) for octagonal directions, which confirms the results for fixed n and
fixed m.

http://spaceex.imag.fr
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(a) δt = 0.05 for both (b) forw: δt = 0.005, interpfb: δt = 0.05

Fig. 3. The reachable states of the 28-variable controlled helicopter system in the
plane (x2, x3) (corresponding to roll attitude and roll rate), computed with octagonal
constraints. We compare the new error scheme (interfb), shown in dark blue, with that
of [13] (a) and of [15] (b), shown in bright red.

Table 2. Error models comparison with fixed step. The error model introduced
in this paper (interpfb) clearly outperforms that proposed in [15] (forward) and the
one proposed in [13] (interp). Memory is indicated in MBs.

forward interp interpfb

δt Mem. Time [s] Error Mem. Time [s] Error Mem. Time [s] Error

0.05 9.44 1.48 9.67e+22 9.61 1.60 16.1 9.59 1.65 2.95
0.01 10.5 7.09 3.85e+5 10.5 7.60 0.191 10.5 8.16 0.178
5e-3 10.3 14.1 2.47e+3 10.2 15.2 4.37e-2 12.6 15.8 2.82e-2
1e-3 23.1 71.1 12.4 18.4 76.7 1.59e-3 18.5 78.7 1.07e-3
5e-4 27.9 142 2.56 27.9 155 3.89e-4 28.2 157 2.66e-4

5.2 Helicopter Controller

To measure the performance of our algorithm for complex dynamics, we an-
alyze the helicopter controller from [17]. We analyze the controlled plant, a
28-dimensional continuous linear time-invariant (LTI) system. The plant is a
small disturbance model of a helicopter, given as an 8-dimensional LTI system.
The controller we examine is an H∞ mixed-sensitivity design for rejecting at-
mospheric turbulence, given as a 20-dimensional LTI system. Figure 3 shows the
increased accuracy of our new approximation model with respect to previous
models. Tables 2 and 3 show the performance results with fixed time steps and
with variable time steps, each for the different error models.

In [17], two different controllers are designed for the helicopter, one of which
is specifically tuned for disturbance rejection. Letting the rotor collective be a
nondeterministic input in the interval [−1, 1], we compute the reachable states
in 5s for one controller and in 14s for the other, as shown in Fig. 4.
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(a) Comparison of roll stabilization (b) Comparison of pitch stabilization

Fig. 4. Comparison of two disturbance rejection models. Reachable sets with
nondeterministic inputs for the helicopter example for the two disturbance rejection
models compared in [17] (T = 20, method interfb and error tolerance of 0.1 for both).
This confirms that the better disturbance rejection model proposed (in blue) actually
stabilizes the system faster. However, in [17], this analysis was based only on several
simulations.

Table 3. Variable step performance. The variable step implementation outper-
forms a fixed step scheme even in the ideal case, i.e., with the best error model and
assuming we know in advance the optimal time step δt to satisfy the error bound. This
is always true for the number of steps taken and the slightly higher computational time
for some case is explained by frequent changes in choice of the time step.

Ideal fixed step (interpfb) var step (interp) var step (interpfb)

Err. req. nb steps δt used Time [s] nb steps Time [s] nb steps time

1 1500 0.02 11.68 1475 12.0 974 8.359
0.1 3418 8.78e-3 26.6 4334 33.9 2943 31.2

0.01 11539 2.6e-3 90.3 14070 108 9785 77.9
1e-3 44978 6.67e-4 351 39152 301 27855 234
1e-4 101352 2.96e-4 902 85953 688 64315 811

6 Conclusions

The reachability of hybrid systems is recognized as be a hard problem, and re-
search efforts to find a scalable approach have been going on for more than two
decades. In this paper, we presented a variable time-step extension of a scalable
time-elapse algorithm and proposed an improved, highly accurate approxima-
tion model for it. Together with techniques to efficiently compute transition
successors that avoid the well-known problem of an explosion in the number of
sets that the algorithm needs to propagate, we have implemented the algorithm
in a new tool called SpaceEx. In our experiments, SpaceEx can handle hybrid
systems with affine dynamics and nondeterministic inputs with more than 100
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variables. Further research is needed to automatically find suitable template di-
rections to increase the accuracy of the approach. SpaceEx and the examples
from this paper are available at http://spaceex.imag.fr.
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Abstract. A fundamental question in the treatment of cardiac disor-
ders, such as tachycardia and fibrillation, is under what circumstances
does such a disorder arise? To answer to this question, we develop a
multiaffine hybrid automaton (MHA) cardiac-cell model, and restate the
original question as one of identification of the parameter ranges under
which the MHA model accurately reproduces the disorder. The MHA
model is obtained from the minimal cardiac model of one of the authors
(Fenton) by first bringing it into the form of a canonical, genetic regula-
tory network, and then linearizing its sigmoidal switches, in an optimal
way. By leveraging the Rovergene tool for genetic regulatory networks,
we are then able to successfully identify the parameter ranges of interest.

1 Introduction

A fundamental question in the treatment of cardiac abnormalities, such as ven-
tricular tachycardia and fibrillation (see Fig. 1(a) and [7]), is under what con-
ditions does such a disorder arise? To answer this question, experimentation
performed in vitro or in vivo is nowadays complemented with the mathematical
modeling, analysis and simulation of (networks of) cardiac cells [6]. Among the
myriad of existing mathematical models, differential-equation models of reaction-
diffusion type (DEMs) are arguably the most popular.

The past two decades have witnessed the development of increasingly so-
phisticated DEMs [9], which unravel in great detail the underlying cellular
processes [17,22,24,14]. Such models are essential in the understanding of the
intrinsic ionic mechanisms, and in the development of novel treatment strate-
gies. However, they also have two significant drawbacks: 1) They often contain
too many parameters to be reliably and robustly identified from experimental
data. 2) They are often too complex to render their formal analysis or even
simulation tractable. We refer to such models as detailed ionic models (DIMs).

Approximation is a well-established technique in science and engineering for
dealing with complexity. In DEMs, where reaction is typically much faster than
diffusion, one may use time-scale approximation techniques, to systematically
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Fig. 1. (a) Emergent behavior in cardiac-cell networks. Top: Electrocardiogram. Middle
and bottom: Simulation and experimental mappings of spiral waves of electrical activity
occurring in the heart during tachycardia and fibrillation. (b) Overview of our approach.

eliminate fast transient regimes and compensate for their elimination [4]. For
example, in enzymatic reactions, a substrate reacts very quickly with an enzyme
to produce a compound, which subsequently, and much more slowly, breaks down
into a product of the reaction and the enzyme itself. In this case, one may use
the so-called quasi-steady-state assumption to eliminate the fast reaction and
derive a sigmoidal dependence of the product concentration rate on the log of
the substrate concentration, called the Michaelis-Menten equation [19,23].

Similar to the step (or Heaviside) switches used in digital-computer models,
sigmoidal switches (dependencies) occur everywhere in biological models: from
molecular to cellular models, and from organ to population models [25,15]. In
most cases, they are the result of a time-scale approximation, applied to the
associated DEMs. Unlike in digital-computer models, however, the switching
speed of sigmoids plays an important role. Biology is more sophisticated!

DEMs with state variables whose rate of change is controlled with sigmoidal
switches are still intractable from an analysis point of view. Research of quali-
tative properties in genetic regulatory networks overcomes this problem by ap-
proximating sigmoids with either steps or with ramps [12,18,3,8]. This leads to
a piecewise-affine, or piecewise-multiaffine model, respectively. In such models,
the dynamics within a hyper-rectangular region is completely determined by the
dynamics of its corners, enabling model analysis through the use of powerful
discrete abstraction techniques coupled with model-checking techniques [3].

In prior work, one of the authors (Fenton) co-developed an extremely ver-
satile electrical model for cardiac cells involving just 4 state variables and 26
parameters [5]. For reasons to be made clear, we refer to this model as the
minimal resistor model (MRM). After its parameters are identified from either
experimental data or from DIM-based simulation results, the MRM is then able
to accurately reproduce the desired behavior [5]. In fact, the MRM identified
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from experimental data reproduces the experimentally mesoescopic behavior
with greater accuracy than any of the DIMs. Moreover, its simulation speed
is orders of magnitude faster than that any of the DIM simulations [5].

The success of the MRM relies on a time-scale-like approximation: the large
variety of currents traversing the cell membrane are lumped together into three
currents: the fast input current, the slow input current, and the slow output
current. These currents are regulated by three gate variables, which together
with the voltage, define the MRM’s state variables [5]. The lumping process is
akin to removing and compensating for fast components [23,4].

In the MRM context, one may restate the cardiac-disorder question as fol-
lows: what are the parameter ranges for which the MRM accurately reproduces
cardiac abnormalities? Once these ranges are identified, one may exploit the
correspondence between the MRM and DIM models to infer the corresponding
parameter ranges in DIMs, and the molecular relevance of the DIMs to target
treatment strategies to the components responsible for the disorder.

Despite its simplicity compared to DIM, the MRM is still intractable from an
analysis point of view. Its electrical formulation not only uses sigmoidal switches
to control the gating variables, but also uses them to model gated resistors. As
such, sigmoids occur both as numerators and denominators in the state equa-
tions. As part of our effort to simplify the MRM, we prove that sigmoids are
closed under the reciprocal operation. This allows us to bring the MRM to a
canonical form, which we call the minimal conductance model (MCM). Intrigu-
ingly, the MCM is of the form of a genetic regulatory network model (GRM).
Hence, this transformation not only exposes the unity of DEMs, but also allows
us to leverage tools developed for GRMs for the analysis of cardiac models.

In GRMs, as well as in MCMs, slow (or shallow) sigmoidal switches can-
not be approximated with steps or ramps without considerably distorting the
original behavior. We therefore approximate such sigmoids with a succession of
ramps, the number of which depends on the desired accuracy. For analysis pur-
poses, it is critical to minimize the number of ramps used and to avoid arbitrary
choices. We therefore adapt and extend a dynamic programming technique [21],
originally intended for the optimal approximation of digital curves, to find the
optimal number of segments (typically of different length) that minimizes, for
all sigmoids simultaneously, a sigmoidal-linearization error. This results in a
hybrid-automaton model with multiaffine behavior in each mode (MHA).

By recasting the intractable parameter-range identification problem for MCMs
in terms of MHAs, we now have a tractable problem. Moreover, certain MHA
parameter-range identification problems can be seen as GRM parameter-range
identification problems: find the parameter ranges that lead to a robust behavior
satisfying a given temporal logic property [3]. Hence, for these disorders, we can
leverage tools already developed for GRMs to address the MHA problem.

The particular cardiac-disorder question addressed in this paper is under what
circumstances may cardiac-cell excitability be lost? A region of unexcitable cells
can be responsible for ventricular tachycardia or fibrillation: the region becomes
an obstacle to a propagating electrical wave, triggering a spiral rotation of the
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Fig. 2. (a) Threshold-based switching functions. (b) Action potential duration (APD),
diastolic interval (DI), and restitution at 10% of the maximum value of the AP.

wave (tachycardia); the spiral may then break up into a disordered collection of
spirals (fibrillation). Studying the parameter ranges for which cardiac cells loose
excitability, and identifying the responsible ionic processes, is thus an important
question in the treatment of cardiac disorders. We formulate loss of excitability
as an LTL formula. The Rovergene tool [3], co-developed by co-author Batt, is
then able to automatically infer nontrivial ranges for the MHA parameters, such
that the MHA satisfies this formula. To the best of our knowledge, this is the
first automated parameter-range estimation result for cardiac cells.

Our approach is summarized in Fig. 1(b), and the rest of the paper is or-
ganized accordingly. Section 2 introduces biological switches and their formal
description. Section 3 reviews the MRM. In Section 4, we transform the MRM
to an MCM, which is linearized in Section 5. Section 6 considers the parameter-
range-identification problem. Section 7 concludes and discusses future work.

2 Biological Switching

As discussed in Section 1, biological switching is sigmoidal. We are interested
in a particular class of on (+) and off (-) sigmoidal switches, namely the lo-
gistic functions. The sigmoidal on-switch is shown in Fig. 2(a). Equivalently,
S+(u,k,θ)= (1 + tanh(k(u− θ)))/2. The off-switch is the quantitative comple-
ment of the on-switch, and is defined as S−(u,k,θ)= 1−S+(u,k,θ).

We typically scale S so that it varies between a minimum value a and maxi-
mum value b, both positive:

S+(u,k,θ,a,b) = a+(b− a)S+(u,k,θ), S−(u,k,θ,a,b) = S+(u,k,θ,b,a)

If an on-sigmoid is very steep, then it can be approximated with a Heaviside
(or step) switch, as shown in Fig. 2(a). The off-step is given by H−(u,θ) =
1−H+(u,θ). As with sigmoids, step-switches can be scaled between a and b.

If an on-sigmoid is steep but not too steep, it can be approximated with a
ramp, as shown in Fig. 2(a). The off-ramp is defined as R−(u,θ1,θ2) = 1−R+(u,
θ1, θ2). Ramps can also be scaled between a and b. If the sigmoid is shallow,
then, as shown in Section 5, it can be approximated with a sequence of ramps.
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3 The Minimal Resistor Model

Based on previously published data [20], Fenton co-developed a minimal (re-
sistor) model (MRM) of the action potential produced by human ventricular
myocytes [5]. An action potential (AP) is a change in the cell’s transmembrane
potential u, as a response to an external stimulus (current) e. If the stimulus is
delivered from neighboring cells, then its value is ∇(D∇u), where D is the diffu-
sion coefficient and ∇ is the gradient operator. The shape of an AP, its duration
(APD), the diastolic interval (DI), and the AP restitution curve (dependence of
the APD on the DI) are depicted in Fig. 2(b). Intuitively, the membrane acts
like a capacitor, requiring time to recharge after it discharges. The more time it
has to recharge, the greater (and longer) the AP. Note that the AP value u is
scaled between 0 and 1.5 in the MRM model.

The detailed ionic models (DIMs) typically contain 40-80 state variables and
100-600 parameters, chosen to represent physiologically-relevant cellular enti-
ties, such as ion channels and currents and intracellular concentrations. Their
associated ranges are bounded by experimental values.

The MRM instead, only considers the sum of these currents, partitioned into
three main categories: fast inward Jfi (Na-like), slow inward Jsi (Ca-like), and
slow outward Jso (K-like). The flow of these total currents is controlled by a
fast channel gate v and two slow gates w and s. Together, they retain enough
structure such that, with parameters fitted from either experimental data or from
DIM simulations, the MRM accurately reproduces the behavior in question.

Among fitted parameters are the voltage-controlled resistances τv, τw, and τs,
and the equilibrium values v∞ and w∞. The differential equations for the state
variables are as follows:

u̇ = e− (Jfi(u, v) + Jsi(u,w, s) + Jso(u))
v̇ =H−(u, θv) (v∞(u) − v)/τ−v (u) −H+(u, θv)v/τ+v
ẇ=H−(u, θw)(w∞(u) − w)/τ−w (u) −H+(u, θw)w/τ+w
ṡ = (S+(u, ks, us) − s)/τs(u)

where the three currents are given by the following equations:

Jfi(u, v) =−H+(u, θv)v(u− θv)(uu − u)/τfi
Jsi(u,w, s)=−H+(u, θw)ws/τsi
Jso(u) =+H−(u, θw)u/τo(u) +H+(u, θw)/τso(u)

The voltage-controlled resistances are defined as follows:

τ−
v (u) =H+(u, θo, τ

−
v1 , τ−

v2), τo(u) = H−(u, θo, τo2 , τo1), τs(u)= H+(u, θw, τs1 , τs2)

τ−w (u)=S−(u, k−w , u
−
w , τ

−
w2
, τ−w1

), τso(u)=S−(u, kso, uso, τso2 , τso1)

Finally, the steady state values for gates v and w are:

v∞(u)=H−(u, θo), w∞(u)=H−(u, θo)(1 − u/τv∞) +H+(u, θ−v )w∗
∞

The values of the parameters for the epicardial (surface) myocytes, as fitted
in [5], are given in Fig. 3(a).



From Cardiac Cells to Genetic Regulatory Networks 401

Fig. 3. (a) Parameter values for the MRM and MCM. (b) Evolution of the MCM HA
state variables u, v, w and s in time and as a response to a superthreshold stimulus.

4 The Minimal Conductance Model

While much simpler than DIMs, the MRM model is still intractable from an
analysis perspective. Its electrical formulation not only uses sigmoidal (and step)
switches to control the state variables, but also uses them to control the value of
the resistances. Consequently, sigmoids occur both as numerators and denomi-
nators in the state equations.

In order to simplify the MRM model, we prove that scaled sigmoids (or steps)
are closed under division; that is, the reciprocal of a scaled sigmoid is also a
sigmoid. This result allows us to bring the MRM model to a canonical form,
which we call the minimal conductance model (MCM).

Theorem 1 (Sigmoid closure). For a, b>0, scaled sigmoids are closed under
multiplicative inverses (division):

S+(u, k, θ, a, b)−1 = S−(u, k, θ+ ln(a/b)/2k, b−1, a−1)

Proof. The proof proceeds by successively transforming the inverse of a scaled
sigmoid to a scaled sigmoid. S+(u,k,θ,a,b)−1 =

1
a+ b− a

1+ e−2k(u − θ)

=
1 + e−2k(u− θ)

b+ ae−2k(u− θ)
=

1
a
× a− b+ b+ ae

−2k(u− θ)

b+ ae−2k(u− θ)
=

1
a
−

1
a − 1

b

1 + a
b e

−2k(u− θ)
=

1
a
−

1
a − 1

b

1 + e−2k(u− (θ + ln a−ln b
2k ))

= S−(u,k,θ+
ln a

b

2k
,
1
b
,
1
a
)

Obviously, H+(u, θ, a, b)−1 =H−(u, θ, b−1, a−1). Revising the MRM model by
replacing each factor 1/τi with gi, and each MRM threshold ui with the associ-
ated MCM threshold u′i, results in the differential equations for the MCM model.
Its parameters are given in Fig. 3(a). Note that sigmoids and steps appear only
in the numerator. An interesting feature of the MCM is that it has the canonical
form of a genetic regulatory network (GRN) model (GRM).
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Fig. 4. (a) Hybrid automaton for the MCM model. (b) The multiaffine automaton.

Definition 1 (GRM). The sigmoidal form of a GRM consists of a set of dif-
ferential equations in which the i-th equation has the following form [25,15]:

u̇i =
mi∑
j=1

aij

nj∏
k=1

S±(uk, kk, θk) −
m′

i∑
j=1

bij

n′
j∏

k=1

S±(uk, kk, θk)

where S± are either on- or off-sigmoidal switches, and aij and bij are the ex-
pression and inhibition coefficients, respectively.

The second summand is often a simple decay term. Approximating sigmoids
with steps (or sequences of ramps) in the GRM and MCM results in a set of
piecewise-affine [12,18] (or piecewise-multiaffine [3]) differential equations.

The steps in the differential equations of the MCM indicate that the MCM
specifies a mixed discrete-continuous behavior. In fact, the MCM is equivalent
to the MCM hybrid automaton (HA) shown in Fig. 4(a). Consider the partition
of the u-axis by the thresholds occurring in step-switches. Each mode of the
HA corresponds to the u-interval defined by two successive thresholds, and each
transition corresponds to the discrete jump of one of the step-switches. Nonlinear
terms are shown in red and exponential degradation terms in blue. The currents
have been expanded and partitioned according to the modes.

The behavior of the MCM HA state variables in time and as a response to an
super-threshold stimulus is shown in Fig. 3(b). Voltage intervals are highlighted
with same color as the one used for corresponding modes in the HA.

Mode [0, θo) (orange) is a recovering resting mode. In this mode, gates v
and w open to their maximum value, and gate s remains closed. Slow sig-
moids S+(u, ks, us) and g−w (u) have essentially their minimum value. The only
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transmembrane current is the slow output current Jso(u), whose overall behav-
ior mimics the ionic (potassium) K-current. This current causes an exponential
decay of u. Conductances g−v1

and g−w1
control the recovery speed of v and w.

Hence, their values are important in properly reproducing AP restitution.
Mode [θv, uu) (green) is a successful AP initiation mode to a superthreshold

stimulus. Factor (u− θv)(uu −u) in the fast-input current Jfi mimics the fast
opening of the (sodium) Na channel. This leads to a dramatic membrane depo-
larization, during which u reaches its peak value uu. With a slight delay, gate v,
which mimics the closing of the Na channel, closes, thus blocking the Jfi current.
The closing-time of v is solely controlled by the rate constant g+v and the initial
value of v. The slow-input (calcium) Ca-like current, Jsi, is still flowing, which
prolongs the duration of the AP. This gives the cardiac muscle time to contract.
The value of Jsi is essentially controlled by gate s, which mimics, through its slow
sigmoid, the behavior of the Ca-channel opening-gates. Gate w, which mimics
the Ca-channel closing-gate, eventually blocks Jsi, at rate g+w . The slow-output,
K-like current, Jso, reaches its peak value when the slow sigmoid gso switches
on towards its maximum value gso2 (u>u′so).

In mode [θo, θw) (blue), gate v starts closing at rate g−v2
, while gate w is still

opening. The closing/opening of these gates does not affect the value of u, as
this still decays at rate go2 . It does, however, affect the initial values of v and w
for the next AP, which in turn affects the length of this AP. It also affects the
AP propagation speed, the so-called AP conduction velocity (CV).

In mode [θw, θv) (pink), gate v closes at the same rate as before, but now gate
w is also closing, at rate g+w . Current Jso changes from an exponential decay to
a sigmoid, and the slow-input current starts flowing proportional to ws. Gate s
adjusts the “expression” coefficient of its slow sigmoid to gs2 .

5 The Piecewise-Multiaffine Model

Although the MCM is simpler than the MRM and considerably simpler than the
DIMs, its analysis is still intractable due to the presence of sigmoidal switches.
Qualitative GRMs overcome this problem by assuming that every sigmoid is
steep enough to be accurately approximated with one step or one ramp. This
assumption is generally not appropriate for quantitative GRMs, and therefore
not appropriate for the MCM as well: its sigmoids are too shallow to be approx-
imated by either a single step or a single ramp without seriously distorting the
original MCM behavior.

A shallow sigmoid can be accurately approximated with a sequence of ramps.
This, however, raises a new question: how can one choose as few ramps as pos-
sible, while still maintaining a desired approximation error? Additionally, since
each ramp introduces a new mode in the HA, how can the ramp-thresholds across
sigmoids be chosen such that the number of modes is minimized?

In the following, we show that all of these goals are achievable; i.e., there is
an optimal solution to the shallow-sigmoid approximation problem, which min-
imizes a given approximation error in a global way (i.e. simultaneously over a
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×

Fig. 5. The optimal linear approximation algorithm. Its main function optimalLinear-
Approximation uses dynamic programming to compute the optimal segmentation. For
each segment, it calls function segmentError to compute the associated error. Function
ExtractAnswer is called to extract the answer from the dynamic programming tables.

number of sigmoids). Our approach is based on and extends a dynamic program-
ming algorithm developed in the computer graphics community for approximat-
ing digitized polygonal curves [21] with minimal error. The pseudo MATLAB-
code for the main function, optimalLinearApproximation, is shown in Fig. 5, where,
for readability, comments are displayed in green.1

The function’s input is a set of curves (digitized with the same number of
points), and a number S of segments to be used by the polylines optimally
interpolating the curves. The curves are given as a vector x of P x-coordinates,
and a matrix y of C rows, each consisting of P y-coordinates.

The function’s output consists of matrices e, a, b and of vector xb. Each en-
try e(c,s,i), a(c,s,i) and b(c,s,i) gives the error, slope, and y-intercept, respectively,

1 All MATLAB code and experimental results presented in this paper are available at
http://cmacs4heart.pbworks.com/w/page/35180610/CAV2011

http://cmacs4heart.pbworks.com/w/page/35180610/CAV2011
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Fig. 6. Linearization of the MCM HA modes with the optimal approximation algo-
rithm. Vertical dashed lines separate the global approximation segments. Each segment
corresponds to a mode of the multiaffine hybrid automaton (MHA).

of the i-th segment, in the optimal interpolation polyline of curve c, using s

segments. Each entry xb(s,i) is the x-coordinate of breaking point i of the optimal
interpolation polylines, using s segments.

The function first determines the number of points P in each curve, and the
number of curves C. It then initializes the dynamic programming storage tables
cost(P,S) and father(P,S). Each entry cost(p,s) stores the cost from point 1 to
point p of the optimal interpolation polyline consisting of s segments. Each entry
father(p,s) stores the predecessor of point p on the optimal-cost polyline consisting
of s segments. To speed up the search, we use an error matrix err(P,P), such that
each entry err(p,q) caches the maximum error of the segment (p,q) with respect to
all of the given curves. Then, in a classic dynamic programming fashion, optimal-
LinearApproximation fills its solution tables bottom up. First, for all points in the
curve it computes the cost and father of the 1-segment polyline starting from
point 1. Then, knowing the optimal cost of all s-segment polylines from point 1
to any point i that is less than or equal to p, it computes the optimal cost of
an s+1-segment polyline from point 1 to point p+1, by choosing the s-segment
polyline, whose cost is minimal when increased with err(i,p+1).

The value stored in err(p,q) is computed with the (nested) function segmentEr-

ror. Its input consists of vectors x and y, defining a curve segment. Its output
consists of error e, and coefficients a and b of the line y(x)= ax+ b passing
through the first and the last points of the curve segment. Error e is computed
by summing up, for each point p on the curve, the square of the perpendicu-
lar distance from (x(p),y(p)) to y. Once the solution tables are completely filled,
optimalLinearApproximation calls nested function extractAnswer to traverse table fa-

ther in reverse order, and produce matrices e, a, b, and xb. These matrices have
the same format as the output of the caller function, optimalLinearApproximation.

Our implementation of segmentError also allows the use of linear regression
instead of linear interpolation. This leads to an optimal approximation that, for
the same error, has fewer segments. However, linear regression also introduces
discontinuities at the breaking points of the optimal polylines, as the line segment
resulting from regression does not typically start and end on the curve. When
approximating a single curve, one can use instead the points where the polyline
segments intersect. Unfortunately, it is not clear how to generalize this approach
to a set of curves, without introducing unnecessary breaking points.
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Fig. 7. (a) Comparison of the action potential (AP) shape (the inset figure) and the
restitution (dependence of the AP duration (APD) on the diastolic interval (DI)), for
the original MRM and the 26 segment MHA, in a cable. (b) Simulation results for
the MEM with the values of the conductances go1 , go2 , gsi and gso taken from the
parameter ranges where the MEM robustly satisfies the LTL formula G (u <θv).

As in GRMs, we assume that the thresholds and slopes of switches (steps and
sigmoids) are known and fixed. We can thus linearize the MCM HA one mode
at a time. The result is a multiaffine hybrid automaton (MHA).

Fig. 6 presents our linearization of the MCM modes. Mode [0, θo) (orange)
has three nonlinear functions: sigmoids g−w (u) and S+(u, us, ks), and product
(1−ugw∞)g−w . The last is treated separately, as the linearization of g−w (u) mul-
tiplied by (1−ugw∞) results in a u2 term. A two-segment linearization (two
modes in the MHA) results in a very small error.

Mode [θo , θw) (blue) has two nonlinear functions: sigmoids S+(u, us, ks) and
g−w (u). In this case, we needed a six-segment linearization (six modes in the
MHA) to achieve a small approximation error. Note that the sensitivity of the
MCM behavior to the linearization error is also very important.

Mode [θw , θv) (pink) has two nonlinear functions: sigmoids S+(u, us, ks) and
gso(u). A four-segment linearization (four modes in the MHA) achieves a small
enough approximation error and good overall behavior.

Finally, mode [θv, uu) (green) has three nonlinear functions: sigmoids gso(u)
and S+(u, us, ks) and the parabolic term (u− θv)(uu −u)gfi. This is the most
sophisticated mode. Although gate v closes very rapidly, nullifying the parabolic
term in Jfi , voltage u traverses in the meantime the entire interval [θv, uu). Hence,
one needs to linearize the parabolic term over this entire interval. This leads to
a costly, but inevitable, linearization via 14 segments (modes in the MHA). In
our experiments, fewer segments have lead to an unacceptable approximation.

To asses the accuracy of the MHA, we performed extensive 1D and 2D simu-
lations in a cable of 100 cells and a grid of 800×800 cells, respectively. Although
the 1D simulation was used to determine the behavior of a single cell only—for
example, cell number 50—the use of a cable is necessary, as it is known that cells
behave differently when interacting with neighboring cells. Many cardiac mod-
els, for example [17], accurately reproduce the AP when simulated in isolation,
but fail to reproduce the desired behavior in a cable.
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Original MRM Multi Affine (26 ramps) (a) (b) 

Fig. 8. Snapshot from the simulation of a spiral wave on an 800× 800 grid, with
isotropic diffusion. (a) The result of the original MRM simulation. (b) The result of
the 26-segment MAM simulation. In each figure, we also show the movement over time
of the tip of the spiral: dark line for the MAM, and dashed dark line for the MRM.

Fig. 7(a) shows the restitution curves of the MRM and MHA models. Each
point APD(d) on these curves was obtained by first pacing the MRM and the
MHA models at the largest DI value, and then abruptly changing the pacing to
DI d. For each value of d, we also compared the AP shapes AP(d). Two such
comparison are given as an inset in Fig. 7(a). In both cases (restitution and AP
shape), the MHA approximated the MCM with sufficient accuracy.

In Fig. 8, we compare the behavior of the MRM and MHA models on a 2D
grid of 800×800 cells. The comparison uses a well-established protocol for the
initiation of a spiral wave in cardiac ventricular tissue. We have also tracked the
movement of the tip of the spiral over time, which is shown as a dark-blue curve.
The 2D simulation confirms the very good accuracy of the MHA model.

Simulations were implemented using CUDA, NVIDIA’s parallel computing ar-
chitecture for GPUs (graphics processing units), and were conducted on an Intel
Core i7 workstation with 12 Gb RAM, and an NVIDIA Tesla C1060 processor
with a 240 GPU processor core and 4GB GDDR3. In this setting, we observed
a 1.43 speedup in MHA simulation time compared to MCM simulation time.
Note that it is possible to table sigmoid and parabola values to speedup MCM
simulation time [10]. This strategy, however, considerably increases the memory
demand for the same accuracy and speed, and renders analysis intractable. Our
linearization approach can be viewed as an optimal tabling.

6 Cardiac Disorder Parameter-Range Identification

We show how the MCM HA model can be put into a form suitable for analysis by
the Rovergene tool for GRNs [3], thereby allowing us to automatically identify
the parameter ranges for a significant cardiac disorder. The linearization algo-
rithm presented in Section 5 returns, for each mode [θ1, θ2), parameter sequences
ai and bi, and threshold sequence xi, where subscript i ranges over the segments
chosen in order to fulfil a desired approximation error e. For each i, the returned
values define a line segment y(x)= ax+b within the interval [xi, xi+1).
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For the first segment, x1 = θ1, and for the last segment, xn = θ2. Now consider
segment [xi, xi+1). The minimum value of y(x) is yi =aixi + bi and the maximum
value of y(x) is yi+1 = aixi+1 +bi. Together with the threshold values, they define
the scaled ramp R±(x, xi, xi+1, yi, yi+1). This is an on (+) ramp, if yi ≤ yi+1 and
an off (-) ramp if yi ≥ yi+1.

Since the ramps must be summed up, for each i > 1, we must adjust the
y-coordinate by subtracting the maximum value of the previous ramp. Hence,
these ramps become R±(x, xi, xi+1, yi − yi−1, yi+1 − yi−1).

Once the scaled ramps are computed and summed up, for each mode of the
MCM HA, one obtains a multiaffine hybrid automaton (MHA), as shown in
Fig. 4(b). The remaining parameters of the MHA are now highlighted in red.
The MHA modes have become super-modes, each consisting of as many sub-
modes as there are distinct indices in the sums.

The MHA is not a suitable Rovergene-GRN-analysis-tool input for two rea-
sons: 1) Rovergene expressions must be scaled ramps; 2) Rovergene does not
support steps. The first problem is overcome by replacing variables with ramps.
For example, variable v occurring on the right-hand side of u̇ in the green mode,
is replaced with ramp R+(v, 0, 1). The second problem is overcome by replacing
steps with very steep ramps. This amounts to introducing, for each threshold
θi, separating modes [θi−1, θi) and [θi, θi+1), a just-before θi threshold θ−i . The
equations in mode [θi−1, θi) are now multiplied with R−(u, θ−i , θi) and the ones
in mode [θi , θi+1) are now multiplied with R+(u, θ−i , θi). The MHA becomes:

u̇ = e−R−(u, θ−
o , θo)R

+(u,0,θ−
o ,0,θ−

o ) go1

−R+(u,θ−
o ,θo)R

−(u,θ−
w ,θw)R+(u,θo,θ

−
w ,θo,θ

−
w ) go2

+R+(u,θ−
w ,θw)R+(s,0,1)R+(w,0,1) gsi

−R+(u,θ−
w ,θw)

∑25
i=8 R(u,θi,θi+1,usoi ,usoi+1)

+R+(u,θo,θv)R+(v, 0, 1)
∑25

i=12 R(u,θi,θi+1,ufii ,ufii+1) gfi

v̇ =R−(u,θ−
o ,θo)R

−(v,0,1) g−
v1

−R+(u, θ−
o ,θo)R

−(u,θo,θv)R+(v,0,1) g−
v2

−R+(u,θo,θv)
∑25

i=12 R+(v,0,1) g+
v

ẇ =R−(u,θ−
o ,θo)

∑1
i=0(R(u,θi,θi+1,u

+
wi

,u+
wi+1)−R(w,0,1)R(u,θi,θi+1,u

−
wi

,u−
wi+1))gwa

+R+(u,θ−
o ,θo)R

−(u,θ−
w ,θw)(w∗

∞−R(w,0,1))
∑7

i=2 R(u,θi,θi+1,u
+
wi

,u+
wi+1) gwb

−R+(u,θ−
w ,θw)R(w,0,1) g+

w

ṡ =(R−(u,θ−
w ,θw)gs1+R+(u,θ−

w ,θw)gs2)
∑25

i=0(R
+(u,θi,θi+1,usi ,usi+1)−R+(s,0,1))

where the thresholds (except for the new just-before thresholds θ−i ), voltages,
and conductances match the ones in the MHA. We call this system a piecewise-
multiaffine differential equations model (MEM).

As discussed in Section 1, a biologically relevant question that we want to an-
swer is, under what circumstances may a cell lose excitability? At the molecular
level, this is due to an improper functioning of the cardiac-cell ionic channels.
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To identify the ionic mechanisms responsible for this disorder, we first re-
formulate the question as one of parameter-range identification: What are the
parameter ranges for which the MEM fails to generate an AP?

This property may be specified in linear temporal logic (LTL) as G (u<θv),
where G is the LTL globally (always) temporal operator. The property states
that in all executions of the MEM and in all moments of time along a single
execution, the voltage value is below θv. (Note that in an LTL formula, there
is an implicit quantification over all executions.) We would like this property to
hold for all stimulus durations. In terms of the MHA of Fig. 4(b), this property
is true due to the interplay of the ranges of conductances go1 , go2 , gsi and gso.

To identify these ranges in an automated fashion, we use Rovergene with input
the above MEM and LTL formula, and with the following initial region:

u∈ [0, θ1], v ∈ [0.95, 1], w∈ [0.95, 1], s∈ [0, 0.01]

The u-thresholds and the initial region impose the following partition on the
ranges of state variables (for u we have added the just-before thresholds):

u : [0,. . .,θ29], v, w : [0, 0.95, 1], s : [0, 0.01, 1]

Parameter ranges with biological significance for the conductances were taken
as below. They include known values for normal and abnormal cell behavior.

go1 ∈ [1, 180], go2 ∈ [0, 10], gsi ∈ [0.1, 100], gso ∈ [0.9, 50]

The behavior of the MEM in each hypercube of the state-space partition
is completely determined by its corners, so the existence of transitions from
one hypercube to its neighbors can be computed by evaluating the MEM in
the corners. In each corner, the MEM becomes an affine system in the MEM
parameters. Solving these systems, one obtains the separating hyperplanes of
positive and negative sign of the derivatives in the MEM. Finally, taking into
account the desired LTL property, one obtains the parameter ranges for which
the property is satisfied. In our case the ranges returned are:

166.9494≤go1 ≤ 180, 7.6982≤go2 ≤ 10

−0.24784 gsi + 0.9688 gso ≤ 26.0888

They have the following meaning. If go1 ≥ 166.9494, then, regardless of the du-
ration of the magnitude-1 stimulus applied, the voltage u never leaves the orange
interval (mode) [0, θo]. If, on the other hand, go1 < 166.9494, then u reaches the
blue interval (mode) [θo, θw). Since we are considering stimuli of any width (time
is abstracted away by Rovergene), once u enters the blue range, its behavior is
completely determined by this mode. If go2 ≥ 7.6982, then u can never leave the
mode. If go2 < 7.6982, then u will enter the pink interval (mode) [θw, θv). In this
mode, the behavior of u is determined by the interplay between gso and gsi. If
the above linear combination is satisfied, one can never leave this mode.

The corresponding simulation, for a sample of values in the above parameter
ranges, is shown in Fig. 7(b). To ensure that we run the same model as Rovergene,
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we also developed a Rovergene simulation tool that, given a Rovergene model as
input, simulates its dynamic behavior in MATLAB. This tool proved to be an
invaluable debugging tool during model encoding in Rovergene.

7 Conclusions and Future Work

Although formal techniques were used before to analyze cardiac-cell properties
(see e.g. our work in [26,13]), this paper presents, to the best of our knowl-
edge, the first approach for automatically identifying parameter ranges of a
biologically-relevant cardiac model, guaranteeing that the model accurately re-
produces a particular cardiac disorder.

Our approach takes the nonlinear cardiac model of [5], brings it first into a
genetic regulatory network sigmoidal form, and then linearizes and transforms
it into a piecewise-multiaffine set of differential equations. It then leverages the
Rovergene tool, previously developed for automatic parameter-range identifica-
tion in genetic regulatory networks [3], to automatically and robustly check a
cardiac disorder expressed as a linear temporal logic (LTL) formula.

The particular property we considered in this paper is lack of cardiac-cell ex-
citability. Our Rovergene-based predictions hold in the nonlinear cardiac model
of [5], which matches and is actually based on real biological data. Confirming
these results directly on experimental data could be done for a tissue that loses
its excitability, as in the case of ischemia (low oxygen). This is work in progress,
which we believe is out of the scope of the current paper.

Many abnormalities responsible for cardiac disorders are time- or rate-depen-
dent properties that cannot be checked with the Rovergene tool, due to its under-
lying finite-automata abstraction. Action potential duration and spiral breakup
(fibrillation) are examples of such properties. We therefore plan to investigate
new parameter-range identification approaches that, in contrast, use abstractions
based on timed-automata[2,16] or even hybrid linear-automata[1,11].
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Abstract. We present a tool that implements Owicki-Gries and rely-
guarantee methods for the compositional verification of multi-threaded
programs. Our tool computes the requisite auxiliary assertions automat-
ically using an abstraction and refinement procedure. Our procedure is
based on a Horn clause encoding of refinement queries and facilitates the
discovery of thread-modular proofs when such proofs exist. We present
the tool and its evaluation on a collection of benchmarks, including a
direct comparison of the effectiveness of the proof rules.

1 Introduction

Software running on our computers is becoming increasingly concurrent, i.e.,
it consists of several execution threads that process several tasks in parallel
and interact with each other during the operation. Increasing concurrency is
supported by the state-of-the-art in computer hardware, where modern CPUs
have several computing cores and can execute several threads at the same time.
However, it is extremely difficult to develop correct concurrent programs that
are free of bugs, as evidenced by recent studies [5, 10].

In this paper we present Threader, a tool that automates verification of
multi-threaded programs. The algorithms implemented in Threader are rooted
in compositional proof rules [9, 13]. Following [6, 7], Threader uses abstraction
and abstraction refinement to find adequate auxiliary assertions for verification.
In this paper, we investigate the effectiveness of the compositional rules on a
collection of benchmarks.

2 Threader Overview

Threader consists of three main modules that interact as shown in Figure 1.
First, a C-frontend translates the input C program and its assert statements into
a transition system that is represented using constraints over program variables.
Next, the program safety is verified by iteratively applying abstract reachability
computation and abstraction refinement steps. If no error state is unreachable
then Threader reports that the program is safe. Otherwise, i.e., if an error state
is discovered by the abstract reachability computation, Threader encodes the
error state reachability using a set of recursion free Horn clauses and invokes a
Horn solver. If the Horn clauses are not satisfiable then Threader returns a
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C file and
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system

Abstract
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safe
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new predicates

Fig. 1. The main modules of Threader. The abstract reachability module solves
recursive equations (1), (2), or (3). The abstraction refinement module discovers (tran-
sition) predicates by solving Horn clauses.

counterexample. Otherwise, a solution of the Horn clauses yields predicate that
are needed to refine the abstraction. We describe the modules of Threader

below.

C-frontend. Threader’s frontend is based on the CIL framework [12]. The
frontend takes as input a C file containing N functions that represent N threads
to be executed in parallel. We assume that the threads interact using shared
variables. Threader does not support recursive functions and relies on inlining
to deal with function calls. After inlining, each of the N functions is translated to
a constraint-based representation. The frontend outputs a transition system P =
(V, ϕinit , ϕerr , ρ1, . . . , ρN) with variables V , initial states ϕinit , error states ϕerr ,
and thread transitions ρ1, . . . , ρN . The program variables V = (VG, V1, . . . , VN)
are partitioned into global variables shared by all threads, and local variables of
each thread. The set of initial program states ϕinit is obtained by initializing the
global variables. The set of error states ϕerr is derived from the assert statements
in the input C program. Finally, each transition relation ρi can only change the
values of global variables and local variables of thread i. We use ρ=i = (Vi = V ′

i )
to make this requirement explicit, i.e., for each i �= j ∈ 1..N we require the
validity of ρi → ρ=j . We assume that each implication assertion in this paper
is implicitly universally quantified over its free variables. The transition relation
of the entire program is ρ1 ∨ · · · ∨ ρN .

Abstract reachability (and environment transitions). Given an abstrac-
tion function, the abstract reachability module computes an over-approximation
of the states reachable during any execution of a multi-threaded program and
corresponding environment transitions, as described by the proof rules in
Figure 2.

The rule (1) relies on a single, global auxiliary assertion R over program
variables V . If R satisfies all three conditions of the proof rule then the program
is safe. The first condition ensures that R over-approximates the initial states of
the program ϕinit . The second condition ensures that R is invariant under the
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Find an assertion R over V such that:

α̇(ϕinit ) → R

α̇(post(ρ1 ∨ · · · ∨ ρN, R))→ R

R ∧ ϕerr → false

(1)

Find assertions R1, . . . , RN over V such that

α̇i(ϕinit ) → Ri for i ∈ 1..N

α̇i(post(ρi, Ri)) → Ri for i ∈ 1..N

α̇i(post(ρj , Ri ∧Rj))→ Ri for i �= j ∈ 1..N

R1 ∧ · · · ∧RN ∧ ϕerr → false

(2)

Find assertions R1, . . . , RN over V and E1, . . . , EN over V and V ′ such that

α̇i(ϕinit ) → Ri for i ∈ 1..N

α̇i(post(ρi ∨ (Ei ∧ ρ=
i ), Ri))→ Ri for i ∈ 1..N

α̈j�i(Rj ∧ ρj) → Ei for i �= j ∈ 1..N

R1 ∧ · · · ∧ RN ∧ ϕerr → false

(3)

Fig. 2. Proof rules for safety of a program (V, ϕinit , ϕerr , ρ1, . . . , ρN) . Given abstraction
functions, Threader computes the strongest solution for the auxiliary assertions using
either (1) “Monolithic”, (2) “Owicki-Gries”, or (3) “Rely-Guarantee” proof rule.

application of the thread transitions ρ1, . . . , ρN. The last condition requires that
R does not intersect the error states ϕerr .

The rule (2) is a formulation of the “Owicki-Gries” proof rule [13]. The reason-
ing about reachable states is localized by replacing a global auxiliary assertion R
with N thread-reachability assertions R1, . . . , RN . Each thread-reachability as-
sertion Ri needs to over-approximate the initial states and needs to be invariant
under the transition relation of thread i . In addition, Ri also needs to account
for interference from the transition relation of thread j when it is applied to
reachable states in Rj . The last condition requires that the intersection of the
thread-reachability assertions and ϕerr is empty.

The rule (3) reasons about the threads individually by relying on environment
assertions. Each assertion Ei denotes a binary relation over V and V ′ that cap-
tures how all threads other than i can change the program states. As above, the
thread-reachability assertion Ri is required to over-approximate the initial states
and be invariant under the transition relation of thread i . Threader accounts
for the interference from threads other than i by the environment transition
Ei ∧ ρ=i , which does not modify the values of variables local to thread i .

Threader effectively computes the strongest candidate for the auxiliary as-
sertions wrt. a given abstraction. See [7] for a corresponding algorithm for the
proof rule (3) (other rules are similar).
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In practice, it is crucial to maintain for each thread i an abstraction function
α̇i that approximates the thread-reachability Ri . Environment transitions are
approximated using different abstraction functions for different pairs of threads.
For an abstraction function α̈i�j the double dot indicates that the function α̈i�j

abstracts binary relations over states (not sets of states) and the index i � j
indicates that this function is used to abstract the effect of the thread i on the
reachability of thread j .

Threader uses predicate and transition predicate abstraction functions that
are defined using sets of predicates Ṗi and transition predicates P̈i�j as follows.

α̇i(S) =
∧

{ṗ ∈ Ṗi | S → ṗ} α̈i�j(T ) =
∧

{p̈ ∈ P̈i�j | T → p̈}

Threader discovers the sets of (transition) predicates automatically. Initially,
the empty sets are used to compute a coarse approximation of the reachable
state space and environment transitions. If, for given abstraction functions, the
reachability assertions intersect the set of error states, then the discovered er-
ror evidence needs to be checked for spuriousness. The reachability assertions
computed so far are used to formulate a query to the abstraction refinement
module.

Termination properties. Threader can prove termination properties based
on a “Rely-Guarantee” proof rule and automated construction of transition ab-
straction functions. More details are reported in [8].

3 Experiments

In this section, we present our experience with applying Threader on
15 multi-threaded C programs. See Table 1. The name of the benchmark
and the number of lines of C code are shown in the first two columns.
Columns 3, 4 and 5 present verification results obtained from our imple-
mentation of the proof rules (1), (2), and (3), respectively. The source
code for the examples together with additional data can be found at
http://www.model.in.tum.de/˜popeea/research/threader.html.

The programs shown in Table 1 are small but intricate. We are not aware of
any automatic tool that can deal with these examples.

The first example from the table illustrates a program used as running example
in the paper introducing thread-modular model checking [4]. The program safety
can be proven using each of the proof rules. Due to the low complexity of this
safety proof, this program illustrates that monolithic verification may conclude
faster than localized reasoning.

The second part of the table reports on various algorithms to establish mutual
exclusion between a number of threads. For all these examples, we instrumented
a safety assertion to check mutual exclusion. Dekker, Peterson, and Szyman-
ski are classical algorithms. Readers-writer-lock and Time-varying-mutex are
tests for the Calvin model checker [3]. QRCU [11] is a variant of the read-copy-
update algorithm that is used in the Linux kernel, and is the most complex of
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Table 1. Applying different proof rules implemented in Threader. All programs are
safe. Time is measured in seconds. “T/O” stands for time out after 15 minutes.

Benchmark programs LOC “Monolithic” “Owicki-Gries” “Rely-Guarantee”

Spin2003 18 0.02s 0.02s 0.1s

Dekker 39 T/O 0.3s 1.1s
Peterson 26 T/O 0.7s 2.3s
Szymanski 43 T/O 1.8s 12.2s
Readers-writer-lock 22 0.03s 0.03s 0.1s
Time-varying mutex 29 0.3s 0.73s 7.5s
NäıveBakery 22 T/O 0.3s 2.4s
Bakery 37 T/O 1.4s 97s
Lamport 62 T/O 11.4s 57s
QRCU-2processes 120 T/O 1.8s 11.3s
QRCU-3processes 148 T/O 89s T/O
QRCU-4processes 182 T/O T/O T/O

Mozilla-fixed-vulnerab 168 T/O 0.8s 0.8s
See-Saw 98 T/O T/O 7.8s
Scull 451 T/O T/O 41.2s

the presented mutual exclusion algorithms. We test its simple variant with two
processes (one reader and one updater), as well as variants with two and three
readers. For all benchmarks, we observed that the monolithic verification can-
not cope with the transition relation of the entire program. Furthermore, the
“Owicki-Gries” proof rule captures concisely the interference between threads,
as the state space is overly constrained by values of the variables establishing
the mutual exclusion invariant. Finally, the “Rely-Guarantee” proof rule requires
representing intricate environment transitions and therefore it needs to discover
supporting transition predicates. We include the example QRCU-4processes that
times-out for both “Owicki-Gries” and “Rely-Guarantee” abstraction refinement
methods. We note that for the moment Threader does not implement algo-
rithms for symmetry reduction that would be beneficial for the efficiency of a
compositional verification approach, as demonstrated in [1].

In the third part of the table, Mozilla-fixed-vulnerab is a fix from the Mozilla
CVS repository for a vulnerability described in a study of concurrency bugs [10].
See-Saw is a multi-threaded version of the program reported in [14] where we
instrumented the invariants obtained by the StInG prover as assertions in the C
program. Scull [2] is a Linux character driver that implements access to a global
memory area. Different invocations of the open, read, write, and release functions
implemented by the device driver access common variables and these accesses
should be performed in a critical section. For these programs, we observed that
“Rely-Guarantee” reasoning allows a natural encoding of environment transi-
tions as binary relations. In contrast, the “Owicki-Gries” proof rule is not able
to capture the thread interference since the thread-reachability assertions are in
this case expressed over sets of states.

To conclude, we note some of the significant advantages of the algorithms
implemented in Threader.
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– They are applicable to arbitrary (or ad-hoc) synchronization patterns, not
only nested locking patterns or datarace free code.

– Threader does not restrict the analysis to a bounded number of context-
switches, but instead analyzes (implicitly) an unbounded number of context
switches.

– The proofs constructed by Threader are not restricted to thread-modular
proofs. In addition, the search for new (transition) predicates can be re-
stricted to thread-modular solutions that favor compositional reasoning, as
described in [7].

– Threader allows an experimental comparison of the two state-of-the-art
proof rules for compositional verification of multi-threaded programs in a
uniform setting.
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Abstract. We describe a tool that applies theorem proving technol-
ogy to synthesize code fragments that use given library functions. To
determine candidate code fragments, our approach takes into account
polymorphic type constraints as well as test cases. Our tool interactively
displays a ranked list of suggested code fragments that are appropriate
for the current program point. We have found our system to be useful
for synthesizing code fragments for common programming tasks, and we
believe it is a good platform for exploring software synthesis techniques.

1 Introduction

Algorithmic software synthesis from specifications is a difficult problem. Yet soft-
ware developers perform a form of synthesis on a daily basis, by transforming
their intentions into concrete programming language expressions. The goal of
our tool, InSynth, is to explore the relationship and synergy between algorithmic
synthesis and developers’ activities by deploying synthesis for code fragments
in interactive settings. To make the problem more tractable, InSynth aims to
synthesize small fragments, as opposed to entire algorithms. InSynth builds code
fragments containing functions drawn from large and complex libraries. It aims
to save the developers the effort of searching for appropriate methods and their
compositions. InSynth is deployed within an integrated development environ-
ment. When invoked, it suggests multiple meaningful expressions at a given
program point, using type information and test cases.

InSynth primarily relies on type information to perform its synthesis task.
When the developer needs a piece of code that computes a value of a given
type, they declare the type of this value, using the usual syntax of the Scala
programming language [OSV08]. They then invoke InSynth to find suggested
code fragments of this type. To find the building blocks for the code fragments,
InSynth examines the scope of the given declaration. It uses Ensime [Can11],
an incremental Scala compiler integrated into the editor, to gather the available
values, fields, and functions. The use of type information is inspired by Prospec-
tor [MXBK05], but InSynth has an important additional dimension: it handles
generic (parametric) types [DM82]. Generic types are a mainstream mechanism
to write safe and reusable code in, e.g., Java, ML, and Scala. They are particu-
larly frequent in libraries.
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The support for generic types is a fundamental generalization compared to
previous tools, which handled only ground types. With generic types, a finite set
of declarations will generate an infinite set of possible values, and the synthesis
of a value of a given type becomes undecidable. InSynth therefore encodes the
synthesis problem in first-order logic. This encoding has the property that a value
of the desired type can be built from functions of given types iff there exists a
proof for the corresponding theorem in first-order logic. It is therefore related
to known connections between proof theory and type theory. In type-theoretic
terms, InSynth attempts to check whether there exists a term of a given type in
a given polymorphic type environment. If such terms exist, the goal of InSynth
is to produce a finite subset of them, ranked according to some criterion.

InSynth implements a custom resolution-based algorithm to find multiple
proofs representing candidate code fragments. The use of resolution is related to
the traditional deductive program synthesis [MW80], but our approach attempts
to derive code fragments by using type information instead of the code itself.
As a post-processing step, InSynth filters out the candidate code fragments that
crash the program, or that violate assertions or postconditions. This functional-
ity incorporates input/output behavior [JGST10], but uses it mostly to improve
the precision of the primary mechanism, the type-driven synthesis.

We believe that an important aspect of the software development process is
that an accurate specification is often not available. A synthesis tool should be
equipped to deal with under-specified problems, and be prepared to generate
multiple alternative solutions when asked to do so. Our algorithm fulfills this
requirement: it generates multiple solutions and ranks them using a system of
weights. The current weight computation takes into account the proximity of
values to the point in which the values are used, as well as user-specified hints,
if any. A database of code samples, if available, could be used to derive weights,
providing effects similar to some of the previous systems [SC06, MXBK05]. Given
a weight function, InSynth directs its search using a technique related to ordered
resolution [BG01].

Contributions. InSynth is an interactively deployed synthesis tool based on pa-
rameterized types, test cases, and weights indicating preferences. Its algorithmic
base is a variation of ordered resolution. We have found InSynth to be fast enough
for interactive use and helpful in synthesizing meaningful code fragments.

2 Examples

Consider the problem of retrieving data stored in a file. Suppose that we have
the following definitions:

def fopen(name:String):File = { ... }
def fread(f:File, p:Int):Data = { ... }
var currentPos : Int = 0
var fname : String = ””
def getData():Data = �
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The developer is about to define, at the position marked by �, the body of the
function getData that computes a value of type Data. When the developer invokes
InSynth, the result is a list of valid expressions (snippets) for the given program
point, composed from the values in the scope. Assuming that among the defi-
nitions we have functions fopen and fread, with the types shown above, InSynth
will return as one of the suggestions fread(fopen(fname), currentPos), which is
a simple way to retrieve data from the file given the available operations. In
our experience, InSynth often returns snippets in a matter of milliseconds. Such
snippets may be difficult to find manually for complex and unknown APIs, so
InSynth can also be thought as a sophisticated extension of a search and code
completion functionality.

Parametric Polymorphism. We next illustrate the support of parametric
polymorphism in InSynth. Consider the standard higher-order function map that
applies a given function to each element of the list. Assume that the map function
is in the scope. Further assume that we wish to define a method that takes as
arguments a function from integers to strings and a list of strings, and returns
a list of strings.

def map[A,B](f:A ⇒ B, l:List[A]):List[B] = { ... }
def stringConcat(lst:List[String]):String = { ... }
def printInts(intList:List[Int], prn:Int ⇒ String):String = �

InSynth returns stringConcat(map[Int, String](prn, intList)) as a result, instantiat-
ing polymorphic definition of map and composing it with stringConcat. InSynth
efficiently handles polymorphic types through resolution and unification.

Using code behavior. The next example shows how InSynth applies testing
to discard those snippets that would make code inconsistent. Define the class
FileManager containing methods for opening files either for reading or for writing.

class Mode(mode:String)
class File(name:String, val state:Mode)
object FileManager {

private final val WRITE:Mode = new Mode(”write”)
private final val READ:Mode = new Mode(”read”)
def openForReading(name:String):File = �

ensuring { result => result.state == READ}
}
object Tests { FileManager.openForReading(”book.txt”) }
If it were based only on types, InSynth would return both new File(name,WRITE)
and new File(name,READ). However, InSynth also checks run-time method con-
tracts (pre- and post-conditions) and verifies whether each of the returned snip-
pets passes the test cases with them. Because of postconditions requiring that
the file is open for reading, InSynth discards the snippet new File(name,WRITE)
and returns only new File(name,READ).

Applying User Preferences. The last example demonstrates one way in which
a developer can influence the ranking of the returned solutions. We consider the
following functionality for managing calendar events.
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private val events:List[Event] = List.empty[Event]
def reserve(user:User, date:Date):Event = { ... }
def getEvent(user:User, date:Date):Event = { ... }
def remove(user:User, date:Date):Event = �

Assume that a user wishes to obtain a code snippet for remove. In general,
InSynth ranks the results based on the weight function. We have found that the
default computation of the weight is often adequate. Running the above example
returns reserve(user, date) and getEvent(user, date), in this order. If this order is
not the preferred one, the developer can modify it using elements of text search.
To do so, the developer supplies a list of suggested strings indicating the names
of some of the methods expected to appear in the code snippet. For example, if
the developer invokes InSynth with “getEvent” as a suggestion, the ranking of
returned snippets changes, and getEvent(user, date) appears first in the list.

3 Foundations and Algorithm

Our main algorithm is based on first-order resolution. We therefore formalize
type constrains in first-order logic. We introduce a predicate hasType(v, T ) to
indicate that a value v is of a type T . We use a function symbol arrow to indicate
the function type constructor (→). First-order logic makes it possible to encode
polymorphism using universally quantified variables.

The ranking of the snippets and the entire algorithm strongly rely on a system
of weights. The system considers snippets of a smaller weight as preferable to
those of a larger weight. The weights of terms extend to the weights of clauses,
as in the multiset ordering of clauses in first-order resolution [BG01].

To begin with, we define an ordering on the symbols and assign a weight
to each symbol. The user-preferred symbols have the smallest weight (highest
preference). They are followed by the local symbols occurring in the current
method. The remaining symbols of the corresponding class have a larger weight
than the local symbols. Finally, the symbols outside the current class have the
largest weight. This includes symbols from the imported libraries and APIs.

Once the ordering and the weights of the symbols are fixed, we compute the
weight of a term similarly as in the Knuth-Bendix ordering. The only difference
is that we additionally recalculate the weight of every term containing a user-
preferred symbol. We do this so that they do not “vanish” when combined with
symbols of a larger weight.

Snippet Synthesis Algorithm. Figure 1 describes the basic version of our
algorithm. It takes as an input a partial Scala program and a program point
where the user asks for a code snippet. Additionally, it also takes as an argument
a resource bound, the maximum number of resolution steps.

The first step of the algorithm is to traverse the program syntax tree, create
the clauses, and assign the weights to the symbols and clauses. We pick a
minimal-weight clause and resolve it with all other clauses of a larger weight.
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If we derive a contradiction (empty clause), we extract its proof tree. To generate
multiple solutions, we use the proof tree to derive a blocking clause that prevents
the same derivation of the empty clause in the future. We add this blocking
clause to the clause set. We repeat this procedure until either the clause set
becomes saturated, or the given threshold on the resolution steps is exceeded.
We then reconstruct terms from the collected proof trees, and create the code
snippets. We test the generated snippets by invoking any user-defined test cases
and discarding the snippet for which the code crashes.

Backward Reasoning. The implementation of InSynth combines the algorithm
described in Figure 1 with backward reasoning. With ? T we denote the query
asking for a value of the type T . The main rule we use is

hasType(x, Arrow(T1, T2)) ? T2

? T1

By applying backward reasoning we were able to accelerate search for solutions
compared to using purely forward reasoning.

INPUT: partial Scala program, program point, maximal number of steps
OUTPUT: list of code snippets

def basicSynthesizeSnippet(p : PartialScalaProgram, maxSteps : Int) : List[Snippet] = {
var weightedClauses = extractClauses(p)
var saturated = false
var solutions = emptySet
var step = 0
while (step < maxSteps && !saturated) {
val c : Clause = pickMinWeight(weightedClauses)
saturated = true
for (c’ ← weightedClauses if weight(c) ≤ weight(c’) && c != c’)) {
val newC = resolution(c,c’)
if !(newC in weightedClauses) {
saturated = false
if (newC.isEmptyClause) {
val s = extractSolution(newC)
solutions = solutions ∪ { s }
val cBlock = createClausePreventingThisProof(s)
weightedClauses = weightedClauses union { cBlock }

}
}

}
step++

}
return (solutions.map(proofToSnippet)).filter(passesTest(p))

}

Fig. 1. Basic algorithm for synthesizing code snippets
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Program # Loaded Declarations # Methods in Synthesized Snippets Time [s]

FileReader 6 4 < 0.001

Map 4 4 < 0.001

FileManager 3 3 < 0.001

Calendar 7 3 < 0.001

FileWriter 320 6 0.093

SwingBorder 161 2 0.016

TcpService 89 2 < 0.001

Fig. 2. Basic algorithm for synthesizing code snippets

4 InSynth Implementation and Evaluation

InSynth is implemented in Scala and built on top of the Ensime plugin [Can11].
It can therefore directly use program information computed by the Scala com-
piler, including abstract syntax trees and the inferred types. Furthermore, it can
generate an appropriate pop-up window with suggested synthesized snippets and
allow the user to interactively select the desired fragment.

Figure 2 gives an idea of the performance of the system. We ran all examples
on Intel(R) Core(TM) i7 CPU 2.67 GHz with 4 GB RAM. The running times
to find the first solution are usually bellow two milliseconds. Our experience
suggests that the algorithm scales well. As an illustration, we were able to syn-
thesize a snippet containing six methods in 0.093 seconds from the set of 320
declarations. Times to encode declarations into FOL formulas range from 0.015
(Calendar) to 0.046 (FileWriter) seconds. If the synthesized snippets need to use
more methods from imported libraries, the synthesis typically takes longer, but
is typically fast enough to be useful. The above examples and the system InSynth
are available on the following web site: http://lara.epfl.ch/w/insynth.
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Abstract. We consider verification of programs manipulating dynamic linked
data structures such as various forms of singly and doubly-linked lists or trees.
We consider important properties for this kind of systems like no null-pointer
dereferences, absence of garbage, shape properties, etc. We develop a verifica-
tion method based on a novel use of tree automata to represent heap configura-
tions. A heap is split into several “separated” parts such that each of them can be
represented by a tree automaton. The automata can refer to each other allowing
the different parts of the heaps to mutually refer to their boundaries. Moreover,
we allow for a hierarchical representation of heaps by allowing alphabets of the
tree automata to contain other, nested tree automata. Program instructions can
be easily encoded as operations on our representation structure. This allows ver-
ification of programs based on a symbolic state-space exploration together with
refinable abstraction within the so-called abstract regular tree model checking.
A motivation for the approach is to combine advantages of automata-based ap-
proaches (higher generality and flexibility of the abstraction) with some advan-
tages of separation-logic-based approaches (efficiency). We have implemented
our approach and tested it successfully on multiple non-trivial case studies.

1 Introduction

We address verification of sequential programs with complex dynamic linked data
structures such as various forms of singly- and doubly-linked lists (SLL/DLL), possi-
bly cyclic, shared, hierarchical, and/or having different additional (head, tail, data, and
the like) pointers, as well as various forms of trees. We in particular consider C pointer
manipulation, but our approach can easily be applied to any other similar language.
We concentrate on safety properties of the considered programs which includes generic
properties like absence of null dereferences, double free operations, dealing with dan-
gling pointers, or memory leakage. Furthermore, to check various shape properties of
the involved data structures one can use testers, i.e., parts of code which, in case some
desired property is broken, lead the control flow to a designated error location.
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For the above purpose, we propose a novel approach of representing sets of heaps via
tree automata (TA). In our representation, a heap is split in a canonical way into several
tree components whose roots are the so-called cut-points. Cut-points are nodes pointed
to by program variables or having several incoming edges. The tree components can re-
fer to the roots of each other, and hence they are “separated” much like heaps described
by formulae joined by the separating conjunction in separation logic [15]. Using this
decomposition, sets of heaps with a bounded number of cut-points are then represented
by the so called forest automata (FA) that are basically tuples of TA accepting tuples of
trees whose leaves can refer back to the roots of the trees. Moreover, we allow alpha-
bets of FA to contain nested FA, leading to a hierarchical encoding of heaps, allowing
us to represent even sets of heaps with an unbounded number of cut-points (e.g., sets
of DLL). Intuitively, a nested FA can describe a part of a heap with a bounded number
of cut-points (e.g., a DLL segment), and by using such an automaton as an alphabet
symbol an unbounded number of times, heaps with an unbounded number of cut-points
are described. Finally, since FA are not closed under union, we work with sets of forest
automata, which are an analogy of disjunctive separation logic formulae.

As a nice theoretical feature of our representation, we show that inclusion of sets
of heaps represented by finite sets of non-nested FA (i.e., having a bounded number of
cut-points) is decidable. This covers sets of complex structures like SLL with head/tail
pointers. Moreover, we show how inclusion can be safely approximated for the case
of nested FA. Further, C program statements manipulating pointers can be easily en-
coded as operations modifying FA. Consequently, the symbolic verification framework
of abstract regular tree model checking [6,7], which comes with automatically refinable
abstractions, can be applied.

The proposed approach brings the principle of local heap manipulation (i.e., dealing
with separated parts of heaps) from separation logic into the world of automata. The
motivation is to combine some advantages of using automata and separation logic. Au-
tomata provide higher generality and flexibility of the abstraction (see also below) and
allow us to leverage the recent advances of efficient use of non-deterministic automata
[2,3]. As further discussed below, the use of separation allows for a further increase in
efficiency compared to a monolithic automata-based encoding proposed in [7].

We have implemented our approach in a prototype tool called Forester as a gcc plug-
in. In our current implementation, if nested FA are used, they are provided manually
(similar to the use of pre-defined inductive predicates common in works on separation
logic). However, we show that Forester can already successfully handle multiple inter-
esting case studies, proving the proposed approach to be very promising.

Related work. The area of verifying programs with dynamic linked data structures has
been a subject of intense research for quite some time. Many different approaches based
on logics, e.g., [13,16,15,4,10,14,19,18,8,12], automata [7,5,9], upward closed sets [1],
and other formalisms have been proposed. These approaches differ in their generality,
efficiency, and degree of automation. Due to space restrictions, we cannot discuss all
of them here. Therefore, we concentrate on a comparison with the two closest lines of
work, namely, the use of automata as described in [7] and the use of separation logic in
the works [4,18] linked with the Space Invader tool. In fact, as is clear from the above,
the approach we propose combines some features from these two lines of research.
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Compared to [4,18], our approach is more general in that it allows one to deal with
tree-like structures, too. We note that there are other works on separation logic, e.g.,
[14], that consider tree manipulation, but these are usually semi-automated only. An
exception is [10] which automatically handles even tree structures, but its mechanism
of synthesising inductive predicates seems quite dependent on the fact that the dynamic
linked data structures are built in a “nice” way conforming to the structure of the predi-
cate to be learnt (meaning, e.g., that lists are built by adding elements at the end only1).

Further, compared to [4,18], our approach comes with a more flexible abstraction.
We are not building on just using some inductive predicates, but we combine a use of
our nested FA with an automatically refinable abstraction on the TA that appear in our
representation. Thus our analysis can more easily adjust to various cases arising in the
programs being verified. An example is dealing with lists of lists where the sublists are
of length 0 or 1, which is a quite practical situation [17]. In such cases, the abstrac-
tion used in [4,18] can fail, leading to an infinite computation (e.g., when, by chance,
a list of regularly interleaved lists of length 0 or 1 appears) or generate false alarms
(when modified to abstract even pointer links of length 1 to a list segment). For us, such
a situation is easy to handle without any need to fine-tune the abstraction manually.

On the other hand, compared with the approach of [7], our newly proposed approach
is a bit less general (we cannot, e.g., handle structures such as trees with linked leaves2),
but on the other hand more scalable. The latter comes from the fact that the represen-
tation in [7] is monolithic, i.e., the whole heap is represented by one tree-like structure
whereas our new representation is not monolithic anymore. Therefore, the different
operations on the heap, e.g., corresponding to a symbolic execution of the verified pro-
gram, influence only small parts of the encoding (unlike in [7], where the transducers
used for this purpose are always operating on the entire automata). Also, the mono-
lithic encoding of [7], based on a fixed tree skeleton over which additional pointer links
were expressed using the so-called routing expressions, had problems with deletion of
elements inside data structures and with detection of memory leakage (which was in
theory possible, but it was so complex that it was never implemented).

2 From Heaps to Forests

In this section, we outline how sets of heaps can be represented by hierarchical forest
automata. These automata are tuples of tree automata which accept trees that may refer
to each other through the alphabet symbols. Furthermore their alphabet can contain
strictly hierarchically nested forest automata. For the purpose of the explanation, heaps
may be viewed as oriented graphs whose nodes correspond to allocated memory cells
and edges to pointer links between these cells. The nodes may be labelled by non-
pointer data stored in them (assumed to be from a finite data domain) and by program
variables pointing to the nodes. Edges may be labelled by the corresponding selectors.

In what follows, we are representing sets of garbage free heaps only, i.e., all mem-
ory cells are reachable from pointer variables by following pointer links. However,

1 We did not find an available implementation of [10], and so we could not try it out ourselves.
2 Unless a generalisation to FA nested not just strictly hierarchically, but in an arbitrary, possibly

cyclic way is considered, which is an interesting subject for future research.
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Fig. 1. (a) A heap graph with cut-points highlighted in red, (b) the canonical tree decomposition
of the heap with x ordered before y, (c) a part of a DLL, (d) a hierarchical encoding of the DLL

practically this is not a restriction since the emergence of garbage can be checked for
each program statement to be fired and if garbage arises, an error message can be issued
and the computation stopped or the garbage removed and the computation continued.

Now, note that each heap graph may be canonically decomposed into a tuple of
trees as follows. We first identify the cut-points, i.e. nodes that are either pointed to by
a program variable or that have several incoming edges. Then, we totally order program
variables and selectors. Next, cut-points are canonically numbered using a depth-first
traversal of the heap graph starting from nodes pointed to by program variables, taking
them in accordance with their order, and exploring the graph according to the order
of selectors. Finally, we split the heap graph into tree components rooted at particular
cut-points. These components contain all the nodes reachable from their root while not
passing through any cut-point, plus a copy of each reachable cut-point, labelled by its
number. The tree components are then canonically ordered according to the numbers of
their root cut-points. For an illustration of the decomposition, see Figure 1 (a) and (b).

Now, tuples of tree automata (TA), called forest automata (FA), accepting tuples of
trees whose leaves may refer to the root of any tree out of a given tuple, may be viewed
as representing a set of heaps as follows. We simply take a tree from the language of
each of the TA and obtain a heap by gluing the tree roots corresponding to cut-points
with the leaves referring to them.

Further, we consider in particular canonicity respecting forest automata (CFA). CFA
encode sets of heaps decomposed in a canonical way, i.e., such that if we take any tuple
of trees accepted by the given CFA, construct a heap from them, and then canonically
decompose it, we get the tuple of trees we started with. This means that in the chosen
tuple there is no tree with a root that does not correspond to a cut-point and that the trees
are ordered according to the depth-first traversal as described above. The canonicity re-
specting form allows us to test inclusion on the sets of heaps represented by CFA by
component-wise testing inclusion on the languages of the TA constituting the given CFA.

Note, however, that FA are not closed under union. Clearly, even if we consider FA
having the same number of components, uniting the TA component-wise may yield an
FA overapproximating the union of the sets of heaps represented by the original FA (cf.
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Section 3). Hence, we will have to represent unions of FA explicitly as sets of FA (SFA),
which is similar to dealing with disjunctions of separation logic formulae. However, as
we shall see, inclusion on the sets of heaps represented by SFA is still easily decidable.

The described encoding allows one to represent sets of heaps with a bounded num-
ber of cut-points. However, to handle many common dynamic data structures one needs
to represent sets of heaps with an unbounded number of cut-points. Indeed, in doubly-
linked lists (DLLs) for instance, every node is a cut-point. We solve this problem by
representing heaps in a hierarchical way. In particular, we collect sets of repeated sub-
graphs (called components) in the so-called boxes. Every occurrence of such compo-
nents can then be replaced by a single hyperedge labelled by the appropriate box3.
In this way, a set of heap graphs with an unbounded number of cut-points can be
transformed into a set of hierarchical heap hypergraphs with a bounded number of
cut-points at each level of the hierarchy. Figures 1 (c) and (d) illustrate how this ap-
proach can reduce DLLs into singly-linked lists (with a DLL segment used as a kind
of meta-selector). Sets of heap hypergraphs corresponding either to the top level of the
representation or to boxes of different levels can then be decomposed into (hyper)tree
components and represented using FA whose alphabet can contain nested FA.4 Intu-
itively, FA that appear in the alphabet of some superior FA play a role similar (but not
equal) to that of inductive predicates in separation logic.5

The question of deciding inclusion on sets of heaps represented by hierarchical FA
remains open. However, we propose a canonical decomposition of hierarchical hyper-
graphs allowing inclusion to be decided for sets of heap hypergraphs represented by
FA in the case when the nested FA labelling hyperedges are taken as atomic alphabet
symbols. Note that this decomposition is by far not the same as for non-hierarchical
heap graphs due to a need to deal with nodes that are not reachable on the top level,
but are reachable through edges hidden in some boxes. This result allows one to safely
approximate inclusion checking on hierarchically represented heaps, which appears to
work quite well in practice.

3 Hypergraphs and Their Representation

We now formalise the notion of hypergraphs and forest automata.

3.1 Hypergraphs

Given a set A and n ∈ N, let An denote the nth-Cartesian power of A and let A≤n =⋃
0≤i≤n Ai. For an n-tuple a = (a1, . . . ,an) ∈ An, n ≥ 1, we let a.i = ai for any 1 ≤ i ≤ n.

3 We may obtain hyperedges here since we allow components to have a single designated input
node, but possibly several output nodes.

4 Since graphs are a special case of hypergraphs, in the following, we will work with hyper-
graphs only. Moreover, to simplify the definitions, we will work with hyperedge-labelled hy-
pergraphs only. Node labels mentioned above will be put at specially introduced nullary hy-
peredges leaving from the nodes whose label is to be represented.

5 For instance, we use a nested FA encoding a DLL segment of length 1, not of length 1 or
more as in separation logic: the repetition of the segment is encoded in the structure of the
top-level FA.
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We call a set A ranked if there is a function # : A → N. The value #(a) is called the rank
of a ∈ A. We call #(A) = max({#(a) | a ∈ A}) the maximum rank of an element in the
given set. For any n ≥ 0, we denote by An the set of all elements of rank n from A.

Given a finite ranked set Γ called a hyperedge alphabet, a Γ-labelled oriented hy-
pergraph with designated input and output ports—denoted simply as a hypergraph if
no confusion may arise—is a tuple G = (V,E, I,O) where V is a finite set of vertices,
E ⊆ V × Γ ×V≤#(Γ) is a set of hyperedges such that ∀(v,a,v) ∈ E : v ∈ V #(a), and
I,O ⊆V are sets of input and output ports, respectively6. We assume that there is a total
ordering �p⊆ P×P on the set P = I ∪O of all ports of G. The sets I, O of input/output
ports may be empty in which case we may drop them from the hypergraph. For symbols
a ∈ Γ with #(a) = 0, we write (v,a) ∈ E to denote that (v,a,()) ∈ E .

Given a hyperedge e = (v,a,(v1, . . . ,vn)) ∈ E of a hypergraph G = (V,E, I,O), v is
the source of e and v1, . . . ,vn are a-successors of v in G. An (oriented) path in G is
a sequence 〈v0,a1, v1, . . . ,an,vn〉, n ≥ 0, where for all 1 ≤ i ≤ n, vi is an ai-successor
of vi−1 in G. G is called deterministic iff ∀(v,a,v),(v,a′,v′) ∈ E: a = a′ =⇒ v = v′.
A hypergraph G is well-connected if each node v ∈ V is reachable through some path
from some input port of G. Figure 1 (a) shows a (hyper)graph with two input ports
corresponding to the two variables. Edges are labelled by selectors data and next.

3.2 A Forest Representation of Hypergraphs

A Γ-labelled hypergraph T = (V,E) without input and output ports is an unordered,
oriented Γ-labelled tree (denoted simply as a tree below) iff (1) it has a single node with
no incoming hyperedge (called the root of T , denoted root(T )), (2) all other nodes of T
are reachable from root(T ) via some path, and (3) each node has at most one incoming
hyperedge. Nodes with no successors are called leaves.

Given a finite ranked hyperedge alphabet Γ such that Γ∩N = /0, we call a tuple F =
(T1, . . . ,Tn, I,O), n ≥ 1, an ordered Γ-labelled forest with designated input and output
ports (or just a forest) iff (1) for every i ∈ {1, . . . ,n}, Ti = (Vi,Ei) is a Γ∪{1, . . . ,n}-
labelled tree where ∀i ∈ {1, . . . ,n}, #(i) = 0 and a vertex v with (v, i) ∈ E is not a source
of any other edge (hence it is a leaf), (2) ∀1 ≤ i1 < i2 ≤ n : Vi1 ∩Vi2 = /0, and (3) I,O ⊆
{1, . . . ,n} denote the input and output ports, respectively.

We call the sources of edges labelled by {1, . . . ,n} root references and denote by
rr(Ti) the set of all root references in Ti, i.e., rr(Ti) = {v ∈Vi | (v,k)∈ Ei,k ∈ {1, . . . ,n}}
for each i ∈ {1, . . . ,n}. A forest F = (T1, . . . ,Tn, IF ,OF), n ≥ 1, represents the hyper-
graph ⊗F that is obtained by first uniting the trees T1, . . . ,Tn and then removing every
root reference v ∈ Vi, 1 ≤ i ≤ n, and redirecting the hyperedges leading to v to the root
of Tk where (v,k) ∈ Ei. Formally, ⊗F = (V,E, I,O) where:

– V =
⋃n

i=1 Vi \ rr(Ti), E =
⋃n

i=1{(v,a,v′) | a ∈ Γ ∧∃(v,a,v) ∈ Ei ∀1 ≤ j ≤ #(a) :
if ∃(v. j,k) ∈ Ei with k ∈ {1, . . . ,n}, then v′. j = root(Tk), else v′. j = v. j},

– I = {root(Ti) | i ∈ IF}, O = {root(Ti) | i ∈ OF},
– the ordering of the set of ports P = I∪O is defined by : ∀i, j ∈ (IF ∪OF) : root(Ti)�p

root(Tj) ⇐⇒ i ≤ j.

6 Intuitively, in hypergraphs representing heaps, input ports correspond to nodes pointed to by
program variables or to input nodes of components, and output ports correspond to output
nodes of components.
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Figure 1 (b) shows a forest decomposition of the graph of Figure 1 (a). It is decom-
posed into four trees which have designated roots which are referred to in the trees. The
decomposition respects the ordering of the two ports corresponding to the variables.

3.3 Minimal and Canonical Forests

We call a forest F = (T1, . . . ,Tn, IF ,OF) representing the well-connected hypergraph
G = (V,E, I,O) = ⊗F minimal iff the roots of the trees T1, . . . ,Tn correspond to the
cut-points of G which are those nodes that are either ports or that have more than one
incoming hyperedge in G. A minimal forest representation of a hypergraph is unique up
to permutations of T1, . . . ,Tn. In order to get a canonical forest representation of a well-
connected deterministic hypergraph G = (V,E, I,O), we need to canonically order the
trees in its minimal forest representation. We do this as follows: First, we assume the
set of hyperedge labels Γ to be totally ordered via some ordering �Γ. Then, a depth-first
traversal (DFT) on G is performed starting with the DFT stack containing the set I ∪O
in the given order �p, the smallest node being on top of the stack. We now call a forest
representation F = (T1, . . . ,Tn, IF ,OF) of G canonical iff it is minimal and the trees
T1, . . . ,Tn appear in F in the following order: First, the trees whose roots correspond
to ports appear in the order given by �p, and then the rest of the trees appears in the
same order in which their roots are visited in the described DFT of G. A canonical
representation is obtained this way since we consider G to be deterministic. Clearly the
forest of Figure 1 (b) is a canonical representation of the graph of Figure 1 (a).

3.4 Forest Automata

We now define forest automata as tuples of tree automata encoding sets of forests and
hence sets of hypergraphs. To be able to use classical tree automata, we will need to
work with trees that are ordered, node-labelled, with the node labels being ranked.

Ordered Trees. Let ε denote the empty sequence. An ordered tree t over a ranked al-
phabet Σ is a partial mapping t : N

∗ → Σ satisfying the following conditions: (1) dom(t)
is a finite, prefix-closed subset of N

∗, and (2) for each p ∈ dom(t), if #(t(p)) = n ≥ 0,
then {i | pi ∈ dom(t)}= {1, . . . ,n}. Each sequence p ∈ dom(t) is called a node of t. For
a node p, the ith child of p is the node pi, and the ith subtree of p is the tree t ′ such that
t ′(p′) = t(pip′) for all p′ ∈ N

∗. A leaf of t is a node p with no children, i.e., there is no
i ∈ N with pi ∈ dom(t). Let T(Σ) be the set of all ordered trees over Σ.

For an �Γ-ordered hyperedge alphabet Γ, it is easy to convert Γ-labelled trees into
node-labelled ordered trees and back (up to isomorphism). We label a node of an or-
dered tree by the set of labels of the hyperedges leading from the corresponding node
in the original tree, and we order the successors of the node w.r.t. the hyperedge labels
through which they are reachable (while always keeping tuples of nodes reachable via
the same hyperedge together). The rank of the new node label is then given by the sum
of the original hyperedge labels embedded into it. Below, we use the notion ΣΓ to denote
the ranked node alphabet obtained from Γ as described above (w.r.t. a total ordering �Γ
that we will from now on assume to be always associated with Γ) and ot(T ) to denote
the ordered tree obtained from a Γ-labelled tree T . For a formal description, see [11].
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Tree Automata. A (finite, non-deterministic, bottom-up) tree automaton (abbreviated
as TA in the following) is a quadruple A = (Q,Σ,Δ,F) where Q is a finite set of states,
F ⊆ Q is a set of final states, Σ is a ranked alphabet, and Δ is a set of transition rules.
Each transition rule is a triple of the form ((q1, . . . ,qn), f ,q) where n ≥ 0, q1, . . . ,qn,q ∈
Q, f ∈ Σ, and #( f ) = n. We use (q1, . . . ,qn)

f−→ q to denote that ((q1, . . . ,qn), f ,q) ∈ Δ.
In the special case where n = 0, we speak about the so called leaf rules, which we

sometimes abbreviate as
f−→ q.

A run of A over a tree t ∈ T(Σ) is a mapping π : dom(t)→ Q such that, for each node

p ∈ dom(t) where q = π(p), if qi = π(pi) for 1 ≤ i ≤ n, then Δ has a rule (q1, . . . ,qn)
t(p)−→

q. We write t
π=⇒ q to denote that π is a run of A over t such that π(ε) = q. We use

t =⇒ q to denote that t
π=⇒ q for some run π. The language of a state q is defined by

L(q) = {t | t =⇒ q}, and the language of A is defined by L(A) =
⋃

q∈F L(q).

Forest Automata. Let Γ be a ranked hyperedge alphabet ordered by �Γ. We call an
n-tuple F = (A1, . . . ,An, I,O), n ≥ 1, a forest automaton with designated input/output
ports (called also FA) over Γ iff for all 1 ≤ i ≤ n, Ai = (Qi,Σ,Δi,Fi) is a TA with Σ =
ΣΓ∪{1,...,n} where ∀1 ≤ i≤ n : #(i) = 0. The sets I,O ⊆{1, . . . ,n} are sets of input/output
ports, respectively. F defines the forest language LF(F ) = {(T1, . . . ,Tn, I,O) | (∀1 ≤
i ≤ n : ot(Ti) ∈ L(Ai)) ∧ (∀1 ≤ i< j ≤ n : Ti = (Vi,Ei) ∧ Tj = (Vj,E j) =⇒ Vi∩Vj =
/0)}. The hypergraph language of F is then the set L(F ) = {⊗F | F ∈ LF(F )}. An FA
F respects canonicity iff each forest F ∈ LF(F ) is a canonical representation of some
well-connected hypergraph, namely, the hypergraph G =⊗F . We abbreviate canonicity
respecting FA as CFA. It is easy to see that comparing sets of hypergraphs represented
by CFA can be done component-wise as described in the below lemma.

Lemma 1. Let F1 = (A1
1 , . . . ,A

1
n1
, I1,O1) and F2 = (A2

1 , . . . ,A
2
n2
, I2,O2) be two CFA.

Then, L(F1) ⊆ L(F2) iff (1) n1 = n2, (2) I1 = I2, (3) O1 = O2, and (4) ∀1 ≤ i ≤
n : L(A1

i ) ⊆ L(A2
i ).

Sets of Forest Automata. The class of languages of forest automata is not closed under
union. The reason is that a forest language of an FA is the Cartesian product of the lan-
guages of all its components and that not every union of Cartesian products may be ex-
pressed as a single Cartesian product. For instance, consider two CFA F = (A ,B , I,O)
and F ′ = (A ′,B ′, I,O) such that LF(F ) = {(a,b, I,O)} and LF(F ′) = {(c,d, I,O)}
where a,b,c,d are distinct trees. The forest language of the FA (A ∪A ′,B ∪B ′, I,O) is
{(x,y, I,O) | (x,y) ∈ {a,c}×{b,d}}) and thus there is no CFA with the hypergraph lan-
guage equal to L(F )∪L(F ′). Therefore, we will work with finite sets of (canonicity-
respecting) forest automata, S(C)FA for short, where the language L(S) of a finite set
S of FA is defined as the union of the languages of its elements.

Note that any FA can be transformed (split) into an SCFA whose CFA represent
hypergraphs having a different interconnection of the cut-points (see [11] for details).

Testing Inclusion on SFA. The problem of checking inclusion on SFA, this is, checking
whether L(S) ⊆ L(S′) where S,S′ are SFA, can be reduced to a problem of checking
inclusion on tree automata. We may w.l.o.g. assume that S and S′ are SCFA.
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For an FA F = (A1, . . . ,An, I,O) where Ai = (Σ,Qi,Δi,Fi) for each 1 ≤ i ≤ n, we de-
fine the TA AF = (Σ∪{�I,O

n },Q,Δ,{qtop}) where �I,O
n �∈ Σ is a symbol with #(�I,O

n ) =
n, qtop �∈ ⋃n

i=1 Qi, Q =
⋃n

i=1 Qi ∪{qtop}, and Δ =
⋃n

i=1 Δi ∪Δtop. The set Δtop contains
the rule �I,O

n (q1, . . . ,qn) → qtop for each (q1, . . . ,qn) ∈ F1 × ·· · ×Fn. Intuitively, AF

accepts the trees where n-tuples of ordered trees representing hypergraphs from L(A)
are topped by a designated root node labelled by �I,O

n . It is now easy to see that the
following lemma holds (in the lemma, “∪” stands for the usual tree automata union).

Lemma 2. For two SCFA S and S′, L(S)⊆L(S′) ⇐⇒ L(
⋃

F ∈S
AF )⊆L(

⋃
F ′∈S′ AF ′

).

4 Hierarchical Hypergraphs

We inductively define hierarchical hypergraphs as hypergraphs with hyperedges possi-
bly labelled by hierarchical hypergraphs of a lower level. Let Γ be a ranked alphabet.

4.1 Hierarchical Hypergraphs, Components, and Boxes

A Γ-labelled (hierarchical) hypergraph of level 0 is any Γ-labelled hypergraph. For
j ∈ N, a hypergraph of level j + 1 is defined as a hypergraph over the alphabet Γ∪B j.

To define the set B j , we first define a Γ-labelled component of level j as a hypergraph
C = (V,E, I,O) of level j which satisfies the requirement that |I| = 1 and I ∩O = /0.

Then, B j is the set of Γ-labelled boxes of level j where each box B ∈ B j is a set of
Γ-labelled components of level j which all have the same number of output ports. We
call this number the rank of B, require that Γ∩B j = /0 and call boxes over Γ that appear
as labels of hyperedges of a hierarchical hypergraph H over Γ nested boxes of H.

Semantics of hierarchical hypergraphs and boxes. We are going to define the seman-
tics of a hierarchical hypergraph H as a set of hypergraphs �H�. If H is of level 0,
then �H� = {H}. The semantics of a box B, denoted �B�, is the union of semantics
of its elements (i.e., it is a set of components of level 0). In the semantics of a hyper-
graph H = (V,E, I,O) of level j > 0, each hyperedge labelled by a box B ∈ B j−1 is
substituted in all possible ways by components from the semantics of B (as in ordinary
hyperedge replacement used in graph grammars). To define this formally, we use an
auxiliary operation plug. Let e = (v,a,v) ∈ E be a hyperedge with #(a) = k and let
C = (V ′,E ′, I′,O′) be a component of level j − 1 to be plugged into H instead of e.
Let (o1, . . . ,ok) be the set O′ ordered according to �P. W.l.o.g., assume V ∩V ′ = /0.
For any w ∈ V ′, we define an auxiliary port matching function ρ(w) such that (1) if
w ∈ I′, ρ(w) = v, (2) if w = oi,1 ≤ i ≤ k, ρ(w) = v.i, and (3) ρ(w) = w otherwise.
We define plug(H,e,C) = (V ′′,E ′′, I,O) by setting V ′′ = V ∪ (V ′ \ (I′ ∪O′)) and E ′′ =
(E \ {e})∪{(v′′,a′,v′′) | ∃(v′,a′,v′) ∈ E ′ : ρ(v′) = v′′ ∧ ∀1 ≤ i ≤ k : ρ(v′.i) = v′′.i}.
Now, the semantics of a hypergraph H = (V,E, I,O) of level j is defined recursively as
follows: Let Plug(H) = {plug(H,e,C) | e = (v,B,v) ∈ E ∧ B ∈ B j−1 ∧ C ∈ �B�}. If
Plug(H) = /0, �H� = {H}, otherwise �H� =

⋃
H′∈Plug(H)�H ′�. Figure 1 (d) shows a hi-

erarchical hypergraph of level 1 whose semantics is the (hyper)graph of Figure 1 (c)
obtained using Plug. The only box used represents a DLL segment.
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4.2 Hierarchical Forest Automata

To represent sets of deterministic hierarchical hypergraphs, we propose to use (hier-
archical) FA whose alphabet contains SFA representing the needed nested boxes. For
a hierarchical FA F , we will denote by LH(F ) the set of hierarchical hypergraphs rep-
resented by it. Likewise, for a hierarchical SFA S, we let LH(S) =

⋃
F ∈S LH(F ).

Let Γ be a finite ranked alphabet. Formally, an FA F over Γ of level 0 is an ordinary
FA over Γ, and we let LH(F ) = L(F ). For j ∈ N, F is an FA over Γ of level j + 1 iff
F is an ordinary FA over an alphabet Γ∪X where X is a finite set of SFA of level j
(called nested SFA of F ) such that for every S ∈ X , LH(S) is a box over Γ of level j.
The rank #(S) of S equals the rank of the box LH(S).

For FA of level j + 1, LH(F ) is defined as the set of hierarchical hypergraphs that
arise from the hypergraphs in L(F ) by replacing SFA on their edges by the boxes
they represent. Formally, LH(F ) is the set of hypergraphs of level j + 1 such that
(V,E, I,O)∈ LH(F ) iff there is a hypergraph (V,E ′, I,O)∈ L(F ) where E = {(v,a,v) |
(v,a,v) ∈ E ′ ∧a ∈ Γ}∪{(v,LH(S),v) | (v,S,v) ∈ E ′ ∧S ∈ X}.

Notice that a hierarchical SFA of any level has finitely many nested SFA of a lower
level only, and the number of levels if finite. Therefore, a hierarchical SFA is a finitely
representable object. Notice also that even though the maximum number of cut-points
of hypergraphs from LH(S) is fixed (SFA always accept hypergraphs with a fixed max-
imum number of cut-points), the number of cut-points of hypergraphs in �LH(S)� may
be unbounded. The reason is that hypergraphs from LH(S) may contain an unbounded
number of hyperedges labelled by boxes B such that hypergraphs from �B� contain cut-
points too. These cut-points then appear in hypergraphs from �LH(S)�, but they are not
visible at the level of hypergraphs from LH(S).

Hierarchical SFA are therefore finite representations of sets of hypergraphs with pos-
sibly unbounded numbers of cut-points.

4.3 Inclusion and Well-Connectedness on Hierarchical SFA

In this section, we aim at checking well-connectedness and inclusion of sets of hyper-
graphs represented by hierarchical FA. Since considering the full class of hierarchical
hypergraphs would unnecessarily complicate our task, we introduce restrictions of hier-
archical automata that rule out some rather artificial scenarios and that allow us to han-
dle the automata hierarchically (i.e., using some pre-computed information for nested
FA rather than having to unfold the entire hierarchy all the time). In particular, we en-
force that for a hierarchical hypergraph H, well-connectedness of hypergraphs in �H�
is equivalent to the so-called box-connectedness of H introduced below, and, further,
determinism of graphs from �H� is equivalent to determinism of H.7

Proper boxes and well-formed hypergraphs. Given a component C of level 0 over Γ,
we define its backward reachability set br(C) as the set of indices i for which there is

7 Notice that for a general hierarchical hypergraph H, well-connectedness of H is nor implied
neither implies well-connectedness of hypergraphs from �H�. This holds also for determinism.
The reason is that a component C in a nested box of H may interconnect its ports in an arbitrary
way. It may contain paths from output ports to both input and output ports, but it may be
missing paths from the input port to some of the output ports.
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a path from the i-th output port of C back to the input port of C. Given a box B over Γ,
we inductively define B to be proper iff all its nested boxes are proper, br(C1) = br(C2)
for any C1,C2 ∈ �B� (we use br(B) to denote br(C) for C ∈ �B�), and the following holds
for all components C ∈ �B�: (1) C is well-connected. (2) If there is a path from the i-th
to the j-th output port of C, i �= j, then i ∈ br(C).8 A hierarchical hypergraph H is called
well-formed if all its nested boxes are proper. In that case, the conditions above imply
that either all or no graphs from �H� are well-connected and that well-connectedness of
graphs in �H� may be judged based only on the knowledge of br(B) for each nested box
B of H, without a need to reason about the semantics of B (in particular, Condition 2
guarantees that we do not have to take into account paths that interconnect output ports
of B). This is formalised below.

Box-connectedness. Let H = (V,E, I,O) be a well-formed hierarchical hypergraph over
Γ with a set X of nested boxes. We define the backward reachability graph of H as the
hypergraph Hbr = (V,E ∪Ebr, I,O) over Γ∪X ∪Xbr where Xbr = {(B, i) | B ∈ X ∧ i ∈
br(B)} and Ebr = {(vi,(B, i),(v)) | B ∈ X ∧(v,B,(v1, . . . ,vn))∈ E ∧ i ∈ br(B)}. Then we
say that H is box-connected iff Hbr is well-connected. The below lemma clearly holds.

Lemma 3. If H is a well-formed hierarchical hypergraph, then the hypergraphs from
�H� are well-connected iff H is box-connected. Moreover, if hypergraphs from �H� are
deterministic, then both H and Hbr are deterministic hypergraphs.

We straightforwardly extend the above notions to hypergraphs with hyperedges labelled
by hierarchical SFA, treating these SFA-labels as if they were the boxes they represent.
Particularly, we call a hierarchical SFA S proper iff it represents a proper box, we let
br(S) = br(�LH(S)�), and for a hypergraph H over Γ∪Y where Y is a set of proper
SFA, its backward reachability hypergraph Hbr is defined based on br in the same way
as backward reachability hypergraph of a hierarchical hypergraph above (just instead of
boxes, we deal with their SFA representations). We also say that H is box-connected iff
Hbr is well-connected.

Given an FA F over Γ with proper nested SFA, we can check well-connectedness
of graphs from �LH(F )� as follows: (1) for each nested SFA S of F , we compute
(and cache for further use) the value br(S), and (2) using this value, we check box-
connectedness of graphs in L(F ) without a need of reasoning about the inner structure
of the nested SFA. In [11], we describe how this computation may be done by inspecting
rules of the component TA of F . Properness of nested SFA may be checked on the level
of TA too as also described [11].

Checking inclusion on hierarchical automata over Γ with nested boxes from X , i.e.,
given two hierarchical FA F and F ′, checking whether �LH(F )�⊆ �LH(F ′)�, is a hard
problem, even under the assumption that nested SFA of F and F ′ are proper. We have
not even answered the question of its decidability yet. In this paper, we choose a prag-
matic approach and give only a semialgorithm that is efficient and works well in prac-
tical cases. The idea is simple. Since the implications L(F ) ⊆ L(F ′) =⇒ LH(F ) ⊆
LH(F ′) =⇒ �LH(F )� ⊆ �LH(F ′)� obviously hold, we may safely approximate the

8 Notice that this definition is correct since boxes of level 0 have no nested boxes, and the
recursion stops at them.
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solution of the inclusion problem by deciding whether L(F ) ⊆ L(F ′) (i.e., we abstract
away the semantics of nested SFA of F and F ′ and treat them as ordinary labels).

From now on, assume that our hierarchical FA represent only deterministic well-
connected hypergraphs, i.e., that �LH(F )� and �LH(F ′)� contain only well-connected
deterministic hypergraphs. Note that this assumption is in particular fulfilled for hierar-
chical FA representing garbage-free heaps.

We cannot directly use the results on inclusion checking of Section 3.4, based on
a canonical forest representation and canonicity respecting FA, since they rely on well-
connectedness of hypergraphs from L(F ) and L(F ′), which is now not necessarily the
case. However, by Lemma 3, every graph H from L(F ) or L(F ′) is box-connected
and both H and Hbr are deterministic. As we show below, these properties are still suf-
ficient to define a canonical forest representation of H, which in turn yields a canonicity
respecting form of hierarchical FA.

Canonicity respecting hierarchical FA. Let Y be a set of proper SFA over Γ. We aim
at a canonical forest representation F = (T1, . . . ,Tn, I,O) of a Γ∪Y -labelled hypergraph
H = ⊕F which is box-connected and such that both H and Hbr are deterministic. By
extending the approach used in Section 3.4, this will be achieved via an unambiguous
definition of the root-points of H, i.e., the nodes of H that correspond to the roots of the
trees T1, . . . ,Tn, and their ordering.

The root-points of H are defined as follows. First, every cut-point (port or a node
with more than one incoming edge) is a root-point of Type 1. Then, every node with
no incoming edge is a root-point of Type 2. Root-points of Type 2 are entry points of
parts of H that are not reachable from root-points of Type 1 (they are only backward
reachable). However, not every such part of H has a unique entry point which is a root-
point of Type 2. Instead, there might be a simple loop such that there are no edges
leading into the loop from outside. To cover a part of H that is reachable from such
a loop, we have to choose exactly one node of the loop to be a root-point. To choose
one of them unambiguously, we define a total ordering �H on nodes of H and choose
the smallest node wrt. this ordering to be a root-point of Type 3. After unambiguously
determining all root-points of H, we may order them according to �H and we are done.

A suitable total ordering �H on V can be defined taking an advantage of the fact that
Hbr is well-connected and deterministic. Therefore, it is obviously possible to define
�H as the order in which the nodes are visited by a deterministic depth-first traversal
that starts at input ports. The details on how this may be algorithmically done on the
structure of forest automata may be found in [11].

We say that a hierarchical FA F over Γ with proper nested SFA and such that hyper-
graphs from �LH(F )� are deterministic and well-connected respects canonicity iff each
forest F ∈ LF(F ) is a canonical representation of the hypergraph ⊗F . We abbreviate
canonicity respecting hierarchical FA as hierarchical CFA. Analogically as for ordi-
nary CFA, respecting canonicity allows us to compare languages of hierarchical CFA
component-wise as described in the below lemma.

Lemma 4. Let F1 = (A1
1 , . . . ,A

1
n1
, I1,O1) and F2 = (A2

1 , . . . ,A
2
n2
, I2,O2) be two hier-

archical CFA. Then, L(F1) ⊆ L(F2) iff (1) n1 = n2, (2) I1 = I2, (3) O1 = O2, and
(4) ∀1 ≤ i ≤ n : L(A1

i ) ⊆ L(A2
i ).
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Lemma 4 allows us to safely approximate inclusion of the sets of hypergraphs encoded
by hierarchical FA (i.e., to safely approximate the test �LH(F )� ⊆ �LH(F ′)� for hierar-
chical FA F , F ′). This turns out to be sufficient for all our case studies (cf. Section 6).
Moreover, the described inclusion checking is precise at least in some cases as discussed
in [11]. A generalization of the result to sets of hierarchical CFA can be obtained as for
ordinary SFA. Hierarchical FA that do not respect canonicity may be algorithmically
split into several hierarchical CFA, similarly as ordinary CFA (see [11]).

5 The Verification Procedure Based on Forest Automata

We now briefly describe our verification procedure. As already said, we consider se-
quential, non-recursive C programs manipulating dynamic linked data structures via
program statements given below9. Each allocated cell may have several next pointer
selectors and contain data from some finite domain10 (below, Sel denotes the set of all
selectors and Data denotes the data domain). The cells may be pointed by program
variables (whose set is denoted as Var below).

Heap Representation. As discussed in Section 2, we encode a single heap configura-
tion as a deterministic (Sel∪Data∪Var)-labelled hypergraph with the ranking function
being such that #(x) = 1 ⇔ x ∈ Sel and #(x) = 0 ⇔ x ∈ Data∪ Var, in which nodes
represent allocated memory cells, unary hyperedges (labelled by symbols from Sel)
represent selectors, and the nullary hyperedges (labelled by symbols from Data∪Var)
represent data values and program variables11. Input ports of the hypergraphs are nodes
pointed to by program variables. Null and undefined values are modelled as two spe-
cial nodes null and undef. We represent sets of heap configurations as hierarchical
(Sel∪Data∪Var)-labelled SCFA.

Symbolic Execution. The symbolic computation of reachable heap configurations is
done over a control flow graph (CFG) obtained from the source program. A control flow
action a applied to a hypergraph H (i.e., to a single configuration) returns a hypergraph
a(H) that is obtained from H as follows. Nondestructive actions x = y, x = y->s, or
x = null remove the x-label from its current position and label with it the node pointed
by y, the s-successor of that node, or the null node, respectively. The destructive action
x->s = y replaces the edge (vx,s,v) by the edge (vx,s,vy) where vx and vy are the
nodes pointed to by x and y, respectively. Further, malloc(x) moves the x-label to
a newly created node, free(x) removes the node pointed to by x (and links x and
all aliased variables with undef), and x->data= dnew replaces the edge (vx,dold) by
the edge (vx,dnew). Evaluating a guard g applied on H amounts to a simple test of
equality of nodes or equality of data fields of nodes. Dereferences of null and undef

9 Most C statements for pointer manipulation can be translated to these statements, including
most type casts and restricted pointer arithmetic.

10 No abstraction for such data is considered.
11 Below, to simplify the informal description, we say that a node is labelled by a variable instead

of saying that the variable labels a nullary hyperedge leaving from that node.
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are of course detected (as an attempt to follow a non-existing hyperedge) and an error
is announced. Emergence of garbage is detected iff a(H) is not well-connected.12

We, however, compute not on single hypergraphs representing particular heaps but
on sets of them represented by hierarchical SCFA. For now, we assume the nested SCFA
used to be provided by the user. For a given control flow action (or guard) x and a hierar-
chical SCFA S, we need to symbolically compute an SCFA x(S) s.t. �LH(x(S))� equals
{x(H) | H ∈ �LH(S)�} if x is an action and {H ∈ �LH(S)� | x(H)} if x is a guard.

Derivation of the SCFA x(S) from S involves several steps. The first phase is ma-
terialisation, where we unfold nested SFA representing boxes that hide data values or
pointers referred to by x. We note that we are unfolding only SFA in the closest neigh-
bourhood of the involved pointer variables; thus, on the level of TA, we touch only
nested SFA adjacent to root-points. In the next phase, we introduce additional root-
points for every node referred to by x to the forest representation. Third, we perform the
actual update, which due to the previous step amounts to manipulation with root-points
only (see [11] for details). Last, we repeatedly fold (apply) boxes and normalise (trans-
form the obtained SFA into a canonicity respecting form) until no further box can be
applied, so that we end up with an SCFA. We note that like unfolding, folding is also
done only in the closest neighbourhood of root-points.

Unfolding is, loosely speaking, done by replacing a TA rule labelled by a nested SFA
by the nested SFA itself (plus the proper binding of states of the top-level SFA to ports
of the nested SFA). Folding is currently based on detecting isomorphism of a part of
the top-level SFA and a nested SFA. The part of the top-level SFA is then replaced by
a single rule labelled by the nested SFA. We note that this may be further improved by
using language inclusion instead of isomorphism of automata.

The Fixpoint Computation. The verification procedure performs a classical (forward)
control-flow fixpoint computation over the CFG, where flow values are hierarchical
SCFA that represent sets of possible heap configurations at particular program locations.
We start from the input location with the SCFA representing an empty heap with all
variables undefined. The join operator is the union of SCFA. With every edge from
a source location l labelled by x (an action or a guard), we associate the flow transfer
function fx. Function fx takes the flow value (SCFA) S at l as its input and (1) computes
the SCFA x(S), (2) applies abstraction to x(S), and returns the result.

Abstraction may be done by applying the general techniques described in [6] to the
individual TA inside FA. Particularly, the abstraction collapses states with similar lan-
guages (based on their languages up-to certain tree depth or using predicate languages).

To detect spurious counterexamples and to refine abstraction, we use a backward
run similarly as in [6]. This is possible since the steps of the symbolic execution may
be reversed, and it is also possible to compute almost precise intersections of hierar-
chical SFA. More precisely, given SCFA S1 and S2, we can compute an SCFA S such
that �LH(S)� ⊆ �LH(S1)�∩�LH (S2)�. This underapproximation is safe since it can lead

12 Further, we note that we also handle a restricted pointer arithmetic. This is basically done by
indexing elements of Sel by integers to express that the target of a pointer is an address of
a memory cell plus or minus a certain offset. The formalism described in the paper may be
easily adapted to support this feature.
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Table 1. Experimental results

Example Forester Invader ARTMC Example Forester Invader ARTMC
SLL (delete) 0.04 0.1 0.5 SLL (reverse) 0.04 0.03
SLL (bubblesort) 0.12 Err SLL (insertsort) 0.09 0.1
SLL (mergesort) 0.12 Err SLL of CSLLs 0.11 T
SLL+head 0.04 0.06 SLL of 0/1 SLLs 0.13 T
SLLLinux 0.05 T DLL (insert) 0.07 0.08 0.4
DLL (reverse) 0.05 0.09 1.4 DLL (insertsort1) 0.35 0.18 1.4
DLL (insertsort2) 0.16 Err CDLL 0.04 0.09
DLL of CDLLs 0.32 T SLL of 2CDLLsLinux 0.11 T
tree 0.11 3 tree+stack 0.10
tree+parents 0.18 tree (DSW) 0.41 o.o.m.

neither to false positives nor to false negatives (it could only cause the computation not
to terminate). Moreover, for the SCFA that appear in the case studies in this paper, the
intersection we compute actually is precise. More details can be found in [11].

6 Implementation and Experimental Results

We have implemented the proposed approach in a prototype tool called Forester, having
the form of a gcc plug-in. The core of the tool is our own library of TA that uses the
recent technology for handling nondeterministic automata (particularly, methods for
reducing the size of TA and for testing language inclusion on them [2,3]). The fixpoint
computation is accelerated by the so-called finite height abstraction that is based on
collapsing states of TA that have the same languages up to certain depth [6].

Although our implementation is an early prototype, the results are encouraging with
regard to the generality of structures the tool can handle, precision of the generated
invariants as well as the running times. We tested the tool on sample programs with var-
ious types of lists (singly, doubly linked, cyclic, nested), trees, and their combinations.
Basic memory safety properties—in particular, absence of null and undefined pointer
dereferences, double free operations, and absence of garbage—were checked.

We have compared performance of our tool with the tool Space Invader [4] based
on separation logic and also with the tool ARTMC [7] based on abstract regular tree
model checking. The comparison with Space Invader was done against examples with
lists only since Invader does not handle trees. A higher flexibility of our automata ab-
straction manifests itself on several examples where Invader does not terminate. This is
particularly well visible at the test case with a list of sublists of lengths 0 or 1 (discussed
already in the introduction). Our technique handles this example smoothly (without any
need to add some special inductive predicates that could decrease the performance or
generate false alarms). The ARTMC tool can, in principle, handle more general struc-
tures than we can currently handle (such as trees with linked leaves). However, the
used representation of heap-configurations is much heavier which causes ARTMC not
to scale that well. (Since it is difficult to encode the input for ARTMC, we have tried
only some interesting cases.)

Table 1 summarises running times (in seconds) of the three tools on our case studies.
The value T means that the running time exceeded 30 minutes, o.o.m. means that the
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tool ran out of memory, and the value Err stands for a failure of symbolic execution.
The names of experiments in the table contain the name of the data structure handled
by the program, which ranges over “SLL” for singly-linked lists, “DLL” for doubly
linked lists (the prefix “C” means cyclic), “tree” for binary trees, “tree+parents” for
trees with parent pointers. Nested variants of SLL are named as “SLL of” and the type
of the nested list. In particular, “SLL of 0/1 SLLs” stands for SLL of nested SLL of
length 0 or 1. “SLL+head” stands for a list where each element points to the head
of the list, “SLL of 2CDLLs” stands for SLL whose each node is a source of two
CDLLs. The flag “Linux” denotes the implementation of lists used in the Linux kernel
that uses a restricted pointer arithmetic which we can also handle. All experiments
start with a random creation and end with a disposal of the specified structure. An
indicated procedure (if any) is performed in between the creation and disposal phase. In
the experiment “tree+stack”, a randomly created tree is disposed using a stack in a top-
down manner such that we always dispose a root of a subtree and save its subtrees into
the stack. “DSW” stands for the Deutsch-Schorr-Waite tree traversal (the Lindstrom
variant). We have run our tests on a machine with Intel T9600 (2.8GHz) CPU and 4GiB
of RAM.

7 Conclusion

We have proposed hierarchically nested forest automata as a new means of encoding
sets of heap configurations when verifying programs with dynamic linked data struc-
tures. The proposal brings the principle of separation from separation logic into au-
tomata, allowing us to combine some advantages of automata (generality, less rigid
abstraction) with a better scalability stemming from local heap manipulation. We have
shown some interesting properties of our representation from the point of view of inclu-
sion checking. We have implemented the approach and tested it on multiple non-trivial
cases studies, demonstrating the approach to be really promising.

In the future, we would like to first improve the implementation of our tool Forester,
including support for predicate language abstraction within abstract regular tree model
checking [6] as well as implementation of automatic learning of nested FA. From a more
theoretical perspective, it is interesting to show whether inclusion checking is or is not
decidable for the full class of nested FA. Another interesting direction is then a possi-
bility of allowing truly recursive nesting of FA, which would allow us to handle very
general structures such as trees with linked leaves.
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Abstract. We present techniques that enable designers to algorithmi-
cally synthesize cyber-physical architectural models with real-time con-
straints. We do this by providing a meta-architectural specification
language that allows designers to specify what properties their archi-
tectural models should have, not how to achieve them. This provides
designers with a qualitatively new level of abstraction that enables the
exploration of design spaces at the earliest stages of design, when doing
so provides the most benefit. Our key technical contribution is the devel-
opment of an Integer linear programming Modulo Theories (IMT) solver
along with a scheduling theory solver. Our solver was used to automati-
cally synthesize cyber-physical architectural models with hard real-time
constraints from a large-scale industrial design.

1 Introduction

The complexity of cyber-physical systems, such as ground, air, space, and sea
vehicles, continues to increase at an exponential rate, independent of any rea-
sonable metric used. These systems tend to be distributed and consist of nu-
merous interconnected components that share resources, interact in complex,
safety-critical ways, and have real-time constraints. Real-time constraints are
particularly important because cyber-physical systems interface with the phys-
ical world and have to respond to physical events in real-time; if they do not,
collision and loss of life are possible outcomes. The design of such systems is a
major challenge, e.g., the verification and validation of critical avionics software
is estimated to cost seven times as much as its software development costs.

There is wide consensus that the design of complex systems requires raising
the level of discourse by utilizing high-level modeling. The highest-level models
commonly used are architectural models: they describe the structural properties
of components and the connections between components. Many architecture de-
scription languages (ADLs), such as AADL [8], have been proposed to describe
and reason about this structure [12]. Even such high-level modeling languages
require users to specify what components are to be used and how they are to be
connected. The effort required to do this can be significant, e.g., the current ap-
proach used by our industrial partner required several engineering teams closely
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working together over a considerable amount of time to develop an architectural
model for the case study we consider.

In this paper, we revisit synthesis with the goal of enabling designers to work
at a higher level of abstraction and to algorithmically synthesize cyber-physical
architectural models that are correct by construction. Designers should only
specify what they want, not how to achieve it. The emphasis on what not how
is a departure from current high-level design methods. Such a shift will enable
designers to rapidly explore the design space during the earliest stages of design.
This is when the benefits of design exploration are greatest, as it is well known
that errors tend to become exponentially more expensive to correct the further
along the life-cycle they are discovered.

To solve the synthesis problem, in Section 4, we introduce the idea of Integer
linear programming Modulo Theories (IMT) solvers. An IMT solver resembles an
SMT (Satisfiability Modulo Theories) solver, except that instead of using a SAT
solver at the core, we use an ILP (Integer Linear Programming) solver. To our
knowledge, this is the first time that the combination of ILP with background
theories appears in the literature. We believe that the IMT approach has the
potential to be widely applicable, as many practical problems from Operations
Research and Engineering are routinely expressed using mathematical program-
ming tools such as CPLEX. If one wants to consider the combination of such
problems with other theories, then the IMT approach has the potential to enable
the kinds of advances enabled in verification by SMT.

For cyber-physical systems, dealing with real-time constraints is of paramount
importance. We consider static cyclic scheduling, an industrially-relevant and
particularly demanding type of real-time scheduling problem in Section 3. We
show how to solve multi-processor static-cyclic scheduling constraints using a
theory solver that can be used in our IMT approach and which is parameterized
by a decision procedure for the uniprocessor static-cyclic problem. Not surpris-
ingly, care is needed in the generation of theory lemmas, as discussed in section 5.
With synthesis problems, the expectation is that constraints are satisfiable. In
Section 6 we show how to take advantage of this by using a general-purpose
resource limit mechanism that tends to bias the solver towards parts of the state
space that are easier to reason about, often leading to dramatic performance
improvements.

We successfully implemented and used our approach on an industrial case
study from a very complex state-of-the-art aerospace design provided to us by our
industrial partners. Section 2 presents a high-level overview of the class of non-
scheduling constraints appearing in our case study and how they are modeled
in CoBaSA, our modeling language. CoBaSA and how it solves architectural
synthesis problems that do not include scheduling constraints was introduced in
previous work [11,10]. In section 8, we experimentally evaluate our work using
the above mentioned case study. We were able to quickly and fully automatically
synthesize cyber-physical architectural models with real time constraints for very
complex aerospace designs.
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2 Models and Constraints

In this section, we describe the system assembly constraints, the class of non-
scheduling constraints found in our case study, and how they are modeled in
CoBaSA [11], our modeling language. The case study is based on a real, pro-
duction design provided by an industrial partner in the aerospace domain. We
use terms consistent with the ARINC standards 651-1 and 664-7 [1]. A more
detailed description of the constraints is also available [10].

We considered a number of models during the course of several years. The
basic components of the models included: anywhere from 8 to 22 cabinets (cab-
inets provide various resources such as processors and battery backup units),
anywhere from 177 to 257 applications (we also refer to applications as hosted
functions or jobs), and anywhere from 70 to 288 global memory spaces (GMSs)
(GMSs allow applications to share memory). Other components include mes-
sages (for communicating between applications, sensor, and other components)
and virtual links (virtual links are part of a publish-subscribe network and are
used to aggregate and multicast messages). The models had between 1,000 and
2,000 virtual links and between 10,000 and 20,000 messages.

Resource Utilization: Cabinets provide various resources, including CPU time,
RAM memory, ROM memory, non-volatile memory, buffers, and send and re-
ceive bandwidth for virtual links. Cabinets also have limits on how many virtual
links they can receive and transmit. Hosted functions, global memory spaces,
virtual links, and messages consume these resources. Our meta models include
constraints stating that the sum of any resource used does not exceed the amount
of the resource that we have available.

Hosted Function Allocation: Hosted functions have to be mapped to cabi-
nets subject to the resource utilization constraints above, but we also have to
satisfy constraints of the following types. (a) Fixed cabinet constraints specify
that a particular hosted function has to be mapped to a particular cabinet.
(b) Separation constraints state that no pair of hosted functions in a given set
can reside on the same cabinet. (c) Co-location constraints state that given a
non-empty sequence of non-empty sets of hosted functions, we have to create
m groups, where m is the maximum of the cardinalities of the sets in the se-
quence. Furthermore, each hosted function in a set has to be assigned to one of
the m groups, no two hosted functions in the same set can be assigned to the
same group, and all hosted functions in a group have to be assigned to the same
cabinet.

Spare Cabinets and Hosted Functions: Spare cabinets allow us to operate
safely in the presence of a small number of cabinet failures. To that end, spare
cabinets are only allowed to run spare hosted functions. We are given a non-
empty set of hosted functions and are allowed to map at most one hosted function
from the set to a spare cabinet. Hosted functions that do not appear in such
constraints cannot be mapped to spare cabinets. If a non-spare cabinet fails, the
idea is to migrate its jobs to a spare cabinet.
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Global Memory Spaces and Hosted Functions: Constraints between GMSs
and hosted functions include. (a) Fixed cabinet constraints specify that a par-
ticular global memory space has to be mapped to a particular cabinet. (b) Co-
location constraints specify that a particular global memory space and all hosted
functions in a given non-empty set have to be mapped to the same cabinet.
(c) Read-only constraints specify that a particular global memory space has to
be allocated to all of the cabinets that a given set of hosted functions map to.
Note that read-only GMSs can be arbitrarily replicated.

Virtual links: Hosted functions publish and subscribe to virtual links. Virtual
links have exactly one publisher, but can have multiple subscribers. The sum of
the bandwidth required for the virtual links that the hosted functions located
on a cabinet publish or subscribe to cannot exceed the available outgoing or
incoming bandwidth, respectively. For the incoming bandwidth constraints, if
multiple hosted functions located on the same cabinet subscribe to the same
virtual link, then the cost of the virtual link is only counted once.

Message buffering: A virtual link is comprised of a non-empty set of messages.
Hosted functions are only really interested in messages, not virtual links. There-
fore, they only read the messages they care about from the virtual links they
subscribe to. Hosted functions buffer a given number of bytes for each message;
this can differ among subscribers of the same message. Each cabinet provides a
single buffer that is used for both message transmission and reception. The sum
of the buffering requirements for the messages that the hosted functions located
in the cabinet publish or subscribe to cannot exceed the capacity of the buffer.
When multiple hosted functions on the same cabinet subscribe to the same mes-
sage with different buffer requirements, they share space, so only incur the cost
of the maximum number of bytes buffered. Finally, each hosted function that
subscribes to a message uses either a queue buffer, or a sampling buffer for it
and hosted functions that subscribe to the same message but use different buffer
types cannot reside on the same cabinet.

Objective Functions: Our framework also allows for objective functions, which
we have used for load balancing, minimizing the maximum bandwidth used per
cabinet, etc.

Figure 1 shows simplified snippets of CoBaSA code for modeling a small subset
of the constraints. CoBaSA includes an object-oriented modeling language, e.g.,
the cabinet entity above can be thought of a class with three fields, where the
last two correspond to resources and have default values. C_1 is an instance of
the cabinet entity, and cabs is an array of cabinets. Similarly, we define an array
of jobs, jobs (though the entity definition is not shown).

CoBaSA also includes a declarative language for describing constraints. For
example the line starting with map defines a map, jobs-to-cabs from jobs to
cabs. The next five lines constrain jobs-to-cabs by requiring that cabinets
have enough CPU and RAM resources to satisfy all jobs mapped to them.

The constraint starting with for_all is a separation constraint: it states that
jobs J_1 and J_2 have to reside on different cabinets. The example demonstrates
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entity cab {

; id STRING

; cpu-time-avail 1000000

; ram-memory-avail 4294967296

}

var

; cab C_1 = { ; "C_1"; ; }

; cab[12] cabs =

[C_1, C_2, ..., C_12]

; job[200] jobs =

[J_1, J_2, ..., J_200]

// mapping jobs to cabinets

map jobs-to-cabs jobs cabs

constraint jobs-to-cabs

((cpu-time-req,

ram-memory-req))

((cpu-time-avail,

ram-memory-avail))

// jobs J_1 and J_2 separated

for_all c in cabs

{ jobs-to-cabs(J_1, c) implies

(not jobs-to-cabs(J_2, c)) }

Fig. 1. CoBaSA Modeling Language Examples

the high-level, declarative way in which we describe the system. We specify only
what properties our model should have, not how to connect jobs and cabinets to
achieve these properties. Figure 2 visualizes one of the solutions we synthesized.

We end this section by noting that many other cyber-physical systems (e.g.,
consider the automotive industry) will have similar types of constraints, thus,
we expect that our approach will be applicable to these systems as well.

3 Static Cyclic Scheduling

While our approach is independent of the types of real-time scheduling con-
straints used, in this paper, we consider static cyclic scheduling constraints.
Static cyclic scheduling is non-preemptive and periodic; it is easy to describe,
difficult to satisfy, and is used in industry.

We first describe uniprocessor static cyclic scheduling (USCS). Time is divided
into infinitely many slots. A job is defined as a triple (p, c, i). The period, p, is
the number of slots between successive executions of the job. The cost, c, is the
number of slots each execution takes. The identifier, i, is a natural number that
uniquely identifies the job. Given a set of jobs, a schedule is simply a starting
time t for each job such that t < p and no two jobs occupy the same slot. The
slots occupied by a job are slots of the form t+k ·p+m, for k ∈ N and 0 ≤ m < c.
That is, if a job is scheduled to start during slot t, then it occupies c consecutive
slots starting with slot t and this process repeats at slot t+ p, t+ 2 · p, . . . .

Given a set of jobs, the USCS problem is to determine whether there exists a
schedule.

Theorem 1. The USCS problem is NP-complete.

Proof. We reduce the NP-complete set partition problem to the USCS problem.
Given a multiset S = {n1, n2, . . . , nk} of natural numbers, we construct a set of
jobs

J = {(s, ni, i) | 1 ≤ i ≤ k} ∪ {(s/2, 1, k+ 1)}
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Fig. 2. One of the architectural models we synthesized, visualized as a graph. Pink
rectangles correspond to hosted functions, and green ovals to memory spaces. The
grey containers are cabinets. Edges between hosted functions visualize communication
through virtual links. The orange octagon is the external network.

where s = 2 +
∑
S. It is not hard to see that S can be partitioned into S1 and

S2 such that
∑
S1 =

∑
S2 = (

∑
S)/2 iff J is schedulable. To see that USCS

is in NP, notice that we can verify a schedule by checking than no pair of jobs
leads to a collision. With a little bit of analysis, this can be done by checking
for all pairs of jobs (p1, c1, i1) and (p2, c2, i2) starting at t1 and t2 respectively
that if i1 �= i2 then t1 �= t2, so without loss of generality assume t1 < t2, and we
have c1 ≤ t2 − t1 ≤ gcd(p1, p2) − c2.
In Multiprocessor Static Cyclic Scheduling (MSCS), we have multiple processors
that run in different speeds. The number of slots per cycle (e.g., per second) is
processor-dependent; a processor is defined as a pair (s, i) where s ∈ N is the
number of slots that the processor provides per cycle and i ∈ N is an identi-
fier unique among processors. In MSCS, we denote a job by a triple (r, c, i),
where r is the rate of the job, c is the cost, and i is the identifier. The period
of a job depends on the processor: a job (r, c, i) has period s/r on a processor that
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provides s slots per cycle. We assume that for each job and each processor,
the rate of the job r divides the number of slots per cycle s that the processor
provides.

Given a set of jobs, J , and a set of processors, P , the multiprocessor static
cyclic scheduling (MSCS) problem is to determine whether there exists a map-
ping from J to P such that for each processor, the set of jobs mapped to that
processor are schedulable. As USCS is a special case of MSCS, the following
corollary follows trivially:

Corollary 1. The MSCS problem is NP-complete.

We conclude this section by noting that given a static cyclic schedule, we can
statically determine the exact slots allocated to any job. On the one hand, this
makes static cyclic scheduling hard.1 On the other hand, this makes the schedule
very predictable, which in turn dramatically simplifies the analysis of the system
as a whole. This advantage is why static-cyclic scheduling is used for complex
cyber-physical systems.

4 ILP Modulo Theories

Our models include both system assembly constraints (as described in section 2)
and static cyclic scheduling constraints (as described in section 3). We cannot
simply run the ILP solver to assemble the components, and then run the sched-
uler, as the solution provided by the ILP solver might not be schedulable even
if a solution to the system assembly and scheduling constraints exists. To solve
this problem, we develop an ILP Modulo Theories (IMT) solver that combines
a background decision procedure with an ILP solver in much the same way that
SMT allows for the integration of theory solvers with SAT solvers [2,4,14].

We explored SAT as an alternative to ILP for our class of problems. We tried
different encodings of the system assembly constraints into SAT and different
SAT solvers. Performance was always at least three orders of magnitude worse
than using an ILP solver. We conjecture that the reason for this is that our
resource constraints are heavily arithmetic. Therefore, in this paper, we assume
an ILP solver as our core solver, but note that our work can also be used in an
SMT framework or with a pseudo-Boolean core solver.

4.1 Formal Preliminaries

Let J be a set of jobs and P be a set of processors. Let VJ,P = {V(j,p) | j ∈ J, p ∈
P} be a set of propositional variables. Note that we can represent any mapping,
M , from J to P as an assignment to VJ,P . The variable V(j,p) is true iff M maps
j to p. The variables in VJ,P are called map variables.

1 For example, for many scheduling problems, if the processor utilization is less than
some constant, then there exists a polynomial-time algorithm that is guaranteed to
find a schedule; alas this is not true for static cyclic scheduling.
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Definition 1. Let J be a set of jobs, P a set of processors, VJ,P a set of map
variables, and A an assignment to the variables in VJ,P . We say that the assign-
ment A is consistent with respect to a scheduling theory iff〈∀p ∈ P :: sched({j ∈ J | A(V(j,p)) = true}, p)〉
where sched(J, p) is a predicate that evaluates to true iff J is schedulable on p.

Let F be an ILP formula (a conjunction of linear equalities and inequalities)
over a set of integer and Boolean variables VF , such that VF ⊇ VJ,P , where
VJ,P is a set of map variables for a set of jobs J and processors P , as described
above. We say that an assignment A T -entails G = F ∧ Schedulable(J, P, VJ,P )
(written as A |=T G) iff A satisfies the linear constraints of F , and A is consistent
with respect to the scheduling theory. We say G is T -satisfiable iff there is an
assignment A such that A |=T G. The problem of determining whether G is
T -satisfiable is called the ILP Modulo (Scheduling) Theory problem.

Note that an IMT solver allows us to tackle the MSCS problem as described
in section 3. In this case, the formula F has constraints over VJ,P that force each
job to be mapped to exactly one processor.

4.2 Lazy IMT Approach

Our IMT solver (algorithm 1) involves an ILP solver and a specialized decision
procedure for scheduling. The ILP solver suggests assignments which are checked
by the scheduler. Each failed attempt to produce a schedule from an assignment
results in the learning of some theory lemmas. In analogy to [14], we call this
approach the lazy IMT approach, because it learns lemmas only when necessary.

We did try to express the scheduling and system assembly constraints as a
monolithic problem, thus following a more eager approach. The time required
by the solver was unreasonable. We believe that the clean separation between
the real-time and the architectural constraints was one of the reasons why we
were successful: a specialized solver works best for the former, an ILP encoding
for the latter, and IMT allows for efficient coordination between the two.

5 Theory Lemmas

To prevent the ILP solver from wasting its time on assignments that will not lead
to valid schedules, we generate theory lemmas that rule out as many assignments
as possible. Observe that when a set of jobs J is unschedulable on some processor
p, it is possible that some strict subset J ′ of J is also unschedulable on p. By
identifying such subsets, we can generate “good” theory lemmas that preclude
the allocation of any set of jobs that are “at least as hard” as J ′ on processors
that are “at most as powerful” as p.

5.1 Unschedulable Cores

Given an unschedulable set of jobs J , we identify the unschedulable subsets of
J that do not contain any unschedulable proper subset themselves. We call such
subsets unschedulable cores.
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Algorithm 1. The IMT algorithm
1: procedure imt-top-level(J, P, F )
2: Lemmas ← true
3: while true do
4: Ans ← ILPSolver(F ∧ L)
5: if Ans = UNSAT then
6: return UNSAT
7: else
8: A← Assignment from Ans
9: Schedulable ← true

10: for all p ∈ P do
11: Jp ← {j ∈ J |A(V(j,p)) = true}
12: if ¬sched(Jp, p) then
13: Lemmas ← Lemmas ∧ learn(Jp)
14: Schedulable ← false

15: if Schedulable then
16: return Ans

Definition 2. C is an unschedulable core of a set of jobs J , if (a) C ⊆ J , (b) C
is unschedulable, and (c) every proper subset of C is schedulable.

Property 1. Let J be an unschedulable set of jobs. ∀j ∈ J , if J \ {j} is schedu-
lable, then j must be in every unschedulable core of J .

Given a set of jobs, J , that has been found to be unschedulable on processor
p, the recursive function all-cores(J, p) shown in algorithm 2 returns the set
of all unschedulable cores. To acquire all cores, we consider all possible ways
of removing jobs from J . Some jobs will be in any unschedulable core of J by
property 1, so we only try to remove the remaining jobs (set D). If none of the
jobs in J can be removed, then J is an unschedulable core. Otherwise we recurse
on all sets J \ {d} for d ∈ D.

The algorithm can be thought of as performing search on a tree: if a node
corresponds to a set of jobs J , the children of the node are the |J | subsets of J
with cardinality |J | − 1 (one of the jobs removed). Note that instead of finding
all possible cores we can terminate the search after finding some given number
of cores.

We can make algorithm 2 more efficient by using a DAG instead of a tree,
since the tree may have distinct nodes annotated with the same set. In addition,
jobs with the same rate and cost can be aggregated and handled separately.
Space constraints prohibit a full accounting.

5.2 Subsumption

Given an unschedulable core, we want to introduce a lemma that precludes
the co-location of sets of jobs “harder” than the core. To this end, we need to
formalize the notion of “hard” with respect to jobs and sets thereof, and the
notion of “powerful” with respect to processors.
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Algorithm 2. Finding all unschedulable cores
1: procedure all-cores(J, p)
2: D← {j ∈ J | ¬sched(J \ {j}, p)}
3: if D = ∅ then
4: return {J}
5: else
6: A← ∅
7: for all d ∈ D do
8: A← A ∪ all-cores(J \ {d}, p)

9: return A

Definition 3 (Measurement of Difficulty for Jobs). �J is a partial order
on jobs: (r1, c1, i1) �J (r2, c2, i2) iff r1 divides r2 and c1 ≤ c2.
Definition 4 (Measurement of Difficulty for Sets). �S is a partial order
on sets of jobs: S �S T iff |S| ≤ |T | and there exists an injective mapping F
from S to T such that ∀j ∈ S, j �J F (j). We say that T is subsumed by S.

Intuitively, given an unschedulable set of jobs J , if we replace each job j in J
with a job j′ such that j �J j

′ (j′ is “at least as hard” as j) then the resulting
set of jobs (J \ {j}) ∪ {j′} will also be unschedulable. Similarly, given a set of
jobs J which is schedulable, if we replace each job j in J with a job j′ such
that j′ �J j, then the resulting set of jobs will be schedulable as well. Thus, the
following property holds:

Property 2. For sets of jobs S, T such that S �S T , (a) if S is unschedulable,
then T is unschedulable, and (b) if T is schedulable then S is schedulable.

Definition 5 (Measurement of Power for Processors). �P is a partial
order on processors: (s1, i1) �P (s2, i2) iff s1 divides s2.

5.3 Lemma Generation

Given a set of jobs, J , and a set of processors, P , ∀j ∈ J, ∀p ∈ P , let the map
variable V(j,p) denote that job j is allocated to processor p. Let C = {h1, ..., hm}
be an unschedulable core on some processor q ∈ P . We generate theory lemmas
for each processor p ∈ P where p �P q.

Non-Exhaustive Lemmas

For each processor p where p �P q, and for each job hi ∈ C we construct a
bucket B(i,p) that contains jobs that are “at least as hard” as hi: B(i,p) ⊆ {j ∈
J | hi �J j}. The buckets do not overlap (B(i,p) ∩ B(j,p) = ∅ for i �= j). Each
job j that can be mapped to processor p2 and is harder than one of the jobs hi

2 If we can deduce that j cannot be mapped to p, we record this fact and use it to
determine which jobs can be mapped to which processors.
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(hi �J j) has to be included in one of the buckets. If we replace any hi ∈ C
with a job in the corresponding bucket, we get an unschedulable set of jobs. We
generate the lemma ¬∧

1≤i≤m

(∨
j∈B(i,p)

V(j,p)

)
, which states that if we allocate

at least one job from each bucket to processor p, p will be unschedulable.
We attempt to construct buckets in a way that gives rise to useful lemmas.

Whenever a job j can go to multiple buckets, we choose (1) the bucket cor-
responding to the job itself, if the job is in the core; otherwise (2) randomly
among the buckets corresponding to jobs that have the same rate and cost as
j; if there are no such jobs, (3) among the buckets corresponding to jobs that
have the same rate as j; if there are no such buckets, (4) among the remaining
buckets. The rationale behind these choices is to ensure that we rule out the
allocation of the exact unschedulable set of jobs (and sets very similar to it) to
any processor. This guarantees that we make progress towards a solution and
ensures termination.

Notice that the lemmas we generate are non-exhaustive. It is possible that an
assignment A maps a set of jobs S such that C �S S to a processor p such that
p �P q, and A is consistent with our lemmas. This is because some of the jobs of
S could have gone to multiple buckets, but our choices when building the lemma
resulted in a bucket not being “inhabited” by any j ∈ S. We use non-exhaustive
lemmas because their encoding is small.

Exhaustive Lemmas

We can also construct buckets that include the map variables for all jobs that
are “at least as hard” as a job hi ∈ C and can be mapped to processor p:
B′

(i,p) = {j ∈ J | hi �J j}. Now a job can be in more than one bucket. For each
set of jobs {j1 ∈ B′

(1,p), j2 ∈ B′
(2,p), . . . , jm ∈ B′

(m,p)} such that ∀i, k, 1 ≤ i < k ≤
m : ji �= jk we can introduce the clause

∨
1≤i≤m ¬V(ji,p). If all ji were mapped

to a processor p such that p �P q, we would have allocated a set harder than
the core C, which is therefore unschedulable.

With this encoding, we need
∏

1≤i≤m |B′
(i,p)| clauses in the worst case. The

lemma allows us to rule out all sets of jobs S such that C �S S. We use
exhaustive lemmas for cores below a certain size, because smaller cores are more
frequently applicable and the product above remains manageable.

The recursive function exhaustive-lemma (algorithm 3) generates all clauses
for a list of buckets B′ and a processor p. The argument c is a partial clause (ini-
tially empty) that corresponds to finding a job jk for each bucket B′

(k,p), where
1 ≤ k ≤ |c|; c it is of the form

∨
1≤k≤|c| ¬V(jk,p). We use suffixes that the clauses

share to keep the encoding more compact. Assume that we have constructed a
partial clause c of length l, and that the jobs j, j′ ∈ B′

(l+1,p) do not appear in any
subsequent bucket. The clauses with prefixes c∨¬V(j,p) and c∨¬V(j′,p) share the
suffixes corresponding to the buckets B′

(i,p), where i > l+1. We use an auxiliary
variable for the disjunction V(j,p) ∨ V(j′,p), instead of generating a separate set
of clauses for each of j, j′.
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Algorithm 3. Exhaustive lemma generation
1: procedure exhaustive-lemma(p, c, B′)
2: if B′ = ∅ then
3: output clause c
4: else
5: L← {j ∈ first(B′) | ∀b ∈ rest(B′), j /∈ b}
6: if L �= ∅ then
7: v ← ∨

j∈L V(j,p)

8: exhaustive-lemma(p, c ∨ ¬v, rest(B′))

9: for all j ∈ (first(B′) \ L) do
10: B′

new ← {b \ {j} | b ∈ rest(B′)}
11: exhaustive-lemma(p, c ∨ ¬V(j,p), B′

new)

5.4 Memoization

The purpose of memoization is to avoid making expensive calls to the scheduler
when the (un)schedulability of a set of jobs can be inferred from the result of a
previous call. For sets S and T such that S �S T , if we have memoized that S is
unschedulable, T is also unschedulable by property 2 and we don’t have to call
the scheduler. Similarly, if we know that T is schedulable we can immediately
infer that S is schedulable. The result of each call to the scheduler is memoized
in a list as a pair containing the set of jobs on which it was called and the
corresponding (un)schedulability. Note that we can decide whether S �S T in
polynomial time by reducing the problem to matching in a bipartite graph.

When the (un)schedulability of a set of jobs is questioned, we access the mem-
oization list sequentially from its head until we find an element from which we
can infer (un)schedulability. To speed this operation up we eliminate redundant
elements: if the (un)schedulability of some set S in the memoization list becomes
inferable from the result of a new call to the scheduler for some set T , then we
memoize the (un)schedulability of T , and also remove S from the memoization
list. In addition, we keep sets ordered by their success rate (number of successful
inferences), so that the most frequently used sets are towards the beginning of
the list. If the list becomes too long, we can forget the least useful sets.

The memoization list is complementary to lemmas. For example, the memo-
ization list allows us to quickly infer that a set of jobs is schedulable, whereas
lemmas only rule out certain assignments. Even for unschedulable assignments
the memoization list can complement lemmas. For example, (1) we can infer
unschedulability before a lemma is introduced, say during core generation (algo-
rithm 2) and (2) we catch instances subsumed by a core but not caught by the
corresponding non-exhaustive lemma.

6 Resource Limits

It is possible that a query to the theory solver takes a long time to complete or
uses too much of some other resource (like memory). Since we expect that our
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synthesis problems have solutions, it make sense to avoid such queries and to
instead bias our solver towards solutions that are easier to justify. To that end,
we introduce resource-limit lemmas that allow us to quickly rule out difficult-
to-solve (but potentially satisfiable) scheduling instances in the hope that the
ILP solver will find instances that require fewer resources to justify. In order
to maintain completeness, we have to sometimes undo resource-limit lemmas
to prevent the ILP solver from becoming over-constrained. When resource-limit
lemmas are undone, we allow the exploration of previously blocked parts of
the search space with increased resource limits. Due to space limitations, we
informally describe how resource-limit lemmas work.

We set resource limits for both the scheduler and the ILP solver. In our class of
problems, it makes the most sense to restrict time, since that is the bottleneck.
If the scheduler times out on some instance, we consider that instance to be
unschedulable and generate lemmas to prevent the ILP solver from generating
similar scheduling problems. These lemmas are called resource-limit lemmas.
They are used in the same way as regular lemmas during ILP solving and will
be kept as long as the resulting ILP problem is satisfiable. However, when the ILP
problem becomes unsatisfiable, resource-limit lemmas will be removed and the
resource limit for the scheduler will be increased. The rationale behind this is that
the previous resource-limit lemmas might have over-constrained the search space
of the ILP solver and might have led to unsatisfiability. Therefore, removing the
lemmas and increasing the resource limit will give the ILP solver a chance to
explore a potentially bigger search space. When the ILP solver times out, not
only will we remove resource-limit lemmas and increase the resource limit for
the scheduler, but we will also increase the resource limit for the ILP solver.

The idea of resource-limit lemmas can also be used in the context of SMT as a
technique to manage the balance of resources used by the SAT solver and theory
solvers. The technique is likely to be useful in applications like synthesis, where
we expect a satisfying assignment to exist. In this case, steering the core solver
towards an area of the search space where we can find solutions and justify them
easily makes sense. In contexts where we expect the problem to be unsatisfiable,
the technique may be counterproductive since resource limits will eventually
have to be made large enough to fully explore the search space. On the other
hand, purging resource-limit lemmas is somewhat similar to a restart and may
exhibit similar benefits.

Note that we can use resource-limit lemmas selectively. For example, if the
last round of scheduling attempts led to the discovery of regular lemmas, we can
decide to not use any resource-limit lemmas. In this way we make progress (new
regular lemmas), but do not needlessly constrain the ILP (or SAT) problem with
resource-limit lemmas. Other options for selectively using resource-limit lemmas
include filtering the lemmas or using some small number of them per round.

7 Related Work

Architecture Description Languages (ADLs), such as AADL, can be used to
model and reason about safety-critical systems [12,8]. There has been work on
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ADLs that takes scheduling into account. However, these approaches check that
a particular architectural model satisfies scheduling and other constraints [6].
In contrast, we synthesize the architectural models, and they are correct by
construction.

Different kinds of real-time constraints have been studied. Liu and Layland [9]
laid out the basis for the real-time scheduling theory by studying the Rate-
Monotonic (RM) and Earliest Deadline First (EDF) algorithms. Sha et al. [17]
provide a historical overview of the topic. In contrast to these kinds of scheduling,
static cyclic is non-preemptive. In addition, Liu and Layland proved that if
utilization is below a specific bound then a rate-monotonic schedule exists. Thus,
there is a simple schedulability test for RM. This is not the case for static cyclic
scheduling.

There is recent work on allocating jobs to processors with using multi-
dimensional bin-packing algorithms, in the presence of scheduling, and other
constraints [5,7]. The scheduling policy in these cases is rate-monotonic. Un-
der restrictions on CPU utilization, rate-monotonic schedulability is ensured.
Therefore, such scheduling problems can be turned into bin-packing problems.
Unfortunately, this approach is not complete, e.g., there are schedulable prob-
lems for which this approach will not find solutions. In addition, the approach
does not work for static-cyclic scheduling. Finally the approach is too restric-
tive to express the constraints we need and has not been shown to scale to the
complexity of designs our work handles.

There are many task allocation algorithms for distributed real-time systems
that have been studied. This includes, but is not limited to, branch and bound
algorithms [15], SAT solving [13], and linear programming [3]. However, the
scheduling constraints studied in these cases are not as demanding as static
cyclic, and the class of constraints that can be handled is limited.

8 Experimental Evaluation

We summarize our experiences in synthesizing architectural models from the con-
straints provided by our industrial partner. We only focus on the most complex
problem we considered.

Our framework can be parameterized in many ways. We used a 0.1-second
CPU resource-limit for the scheduler and, in the presence of resource-limit lem-
mas, a 1 minute CPU resource-limit for the core solver. If either the scheduler or
the core solver time out, then we increase the CPU limit by 40%. We specified a
minimum load of 80% per processor, and we limited the search for cores to one
per unschedulable processor. If the scheduler timed out while trying to determine
the schedulability of a particular processor, we only generated resource-limit
lemmas when we failed to extract regular cores from any processor.

We ran our framework with both CPLEX and bsolo [16] as the core ILP
solvers. The experiments were run on an eight-core, 3.2 GHz Intel Xeon EM64T
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server with 96GB of memory (we never needed more than 1GB of memory for
any experiment). Our decision procedure for scheduling and the IMT solver were
implemented in OCaml. With the set of parameters described above, CPLEX
provided a solution after 103 seconds and required 13 iterations. bsolo required
1834 seconds and 23 iterations.

To evaluate the importance of resource-limits, we also ran the above exper-
iment with resource-limits disabled. Both CPLEX and bsolo fail to provide an
answer after two hours. CPLEX goes through 5 iterations and bsolo goes through
4 iterations. Analysis shows that the reason for this failure is that we spend lots
of time trying to determine the schedulability of processors. The resource-limit
mechanism works because it steers CoBaSA towards parts of the search space
with easier scheduling problems. We get the same failures (for both CPLEX and
bsolo) if we only disable scheduler resource-limits. On the other hand, if we only
disable solver resource-limits, then this has no effect on CPLEX (since it does
not timeout), but bsolo goes through 22 iterations and times out.

CoBaSA interacts with a collection of tools that our group has developed and
with off-the-shelf solvers. In order to increase our confidence in the validity of
the solutions CoBaSA generates, we implemented an independent checker that
validates solutions. The independent checker helped us identify several bugs in
our handling of constraints. Also, our industrial partner checks our solutions in
several independent ways. This has also been useful because there were cases
where we received incorrect specifications and constraints, or there was miscom-
munication between different groups.

The experiments show that our approach is capable of synthesizing industrial-
scale cyber-physical architectural models with real-time constraints. According
to our industrial partner, the current process by which architectural models are
created requires significant iteration between multiple engineering teams. Our
experiment evaluation clearly shows that our IMT approach leads to significant
performance and cost improvements.

9 Conclusions and Future Work

We showed how to algorithmically synthesize cyber-physical architectural models
by using a meta-architectural specification language that allows designers to
specify what constraints their architectural models must satisfy, not how to
achieve them. We did this by developing an ILP Modulo Theories (IMT) solver
with a resource-limit capability and a theory solver for static cyclic scheduling.
We successfully implemented and used our approach on an industrial case study
from a very complex state-of-the-art aerospace design. We believe that the IMT
approach has the potential to be widely applicable, as many practical problems
are routinely handled using ILP solvers, and the IMT approach allows one to
combine the power of ILP with specialized solvers for background theories. For
future work, we plan to further develop and explore the IMT approach.
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3. Cambazard, H., Hladik, P.-E., Déplanche, A.-M., Jussien, N., Trinquet, Y.: De-
composition and learning for a hard real time task allocation problem. In: Wallace,
M. (ed.) CP 2004. LNCS, vol. 3258, pp. 153–167. Springer, Heidelberg (2004)

4. de Moura, L., Ruess, H.: Lemmas on Demand for Satisfiability Solvers. In: SAT
(2002)

5. de Niz, D., Feiler, P.H.: On Resource Allocation in Architectural Models. In: ISORC
(2008)

6. Delange, J., Pautet, L., Plantec, A., Kerboeuf, M., Singhoff, F., Kordon, F.: Val-
idate, simulate, and implement ARINC653 systems using the AADL. In: SIGAda
(2009)

7. Dougherty, B., White, J., Balasubramanian, J., Thompson, C., Schmidt, D.C.:
Deployment Automation with BLITZ. In: ICSE (2009)

8. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The Architecture Analysis & Design Lan-
guage (AADL): An Introduction (2006)

9. Liu, C.L., Layland, J.W.: Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment. JACM 20(1), 46–61 (1973)

10. Manolios, P., Papavasileiou, V.: Virtual Integration of Cyber-Physical Systems by
Verification. In: AVICPS (2010)

11. Manolios, P., Vroon, D., Subramanian, G.: Automating component-based system
assembly. In: ISSTA (2007)

12. Medvidovic, N., Taylor, R.N.: A Classification and Comparison Framework for
Software Architecture Description Languages. IEEE Transactions on Software En-
gineering 26(1), 70–93 (2000)

13. Metzner, A., Herde, C.: RTSAT – An Optimal and Efficient Approach to the Task
Allocation Problem in Distributed Architectures. In: RTSS (2006)

14. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T).
JACM 53(6), 937–977 (2006)

15. Peng, D.-T., Shin, K., Abdelzaher, T.: Assignment and Scheduling Communicating
Periodic Tasks in Distributed Real-Time Systems. IEEE Transactions on Software
Engineering 23, 745–758 (1997)

16. Santos, J., Manquinho, V.M.: Learning Techniques for Pseudo-Boolean Solving. In:
Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330,
Springer, Heidelberg (2008)

17. Sha, L., Abdelzaher, T., Arzen, K.-E., Cervin, A., Baker, T., Burns, A., Buttazzo,
G., Caccamo, M., Lehoczky, J., Mok, A.K.: Real Time Scheduling Theory: A His-
torical Perspective. In: RTSS (2004)

https://www.arinc.com/


μZ– An Efficient Engine for Fixed Points with

Constraints

Kryštof Hoder, Nikolaj Bjørner, and Leonardo de Moura

Manchester University and Microsoft Research

Abstract. The μZ tool is a scalable, efficient engine for fixed points
with constraints. It supports high-level declarative fixed point constraints
over a combination of built-in and plugin domains. The built-in domains
include formulas presented to the SMT solver Z3 and domains known
from abstract interpretation. We present the interface to μZ, a number
of the domains, and a set of examples illustrating the use of μZ.

1 Introduction

Classical first-order predicate and propositional logic are a useful foundation for
many program analysis and verification tools. Efficient SAT and SMT solvers and
first-order theorem provers have enabled a broad range of applications based on
this premise. However, fixed points are ubiquitous in software analysis. Model-
checkers compute a set of reachable states as a least fixed point, or dually a
set of states satisfying an inductive invariant as a greatest fixed point. Abstract
interpreters compute fixed points over an infinite lattice using approximations.
An additional layer is required when using first-order engines in these contexts.

The μZ tool is a scalable, efficient engine for fixed points with constraints. At
the core is a bottom-up Datalog engine. Such engines have found several appli-
cations for static program analysis. A distinguishing feature of μZ is a pluggable
and composable API for adding alternative finite table implementations and ab-
stract relations by supplying implementations of relational algebra operations
join, projection, union, selection and renaming. Lattice join and widening can
be supplied to use μZ in an abstract interpretation context. The μZ tool is part
of Z3 [3] and is available from Microsoft Research since version 2.181.

2 Architecture �0 : [Int ] using pentagon
�1 : [Int ] using pentagon
�0(0).
�0(x) ← �0(x0), x = x0 + 1, x0 < n.
�1(x) ← �0(x), n ≤ x.

Fig. 1. Sample μZ input

A sample program is in Fig. 1 and the
main components of μZ are depicted on
Fig. 2. As input μZ receives a set of re-
lations, rules (Horn clauses) and ground
facts (unit clauses). The last rule uses the

1 http://research.microsoft.com/en-us/um/redmond/projects/z3/
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Fig. 2. μZ architecture

head predicate �1 and constraint n ≤ x. The parameter n is symbolic, even dur-
ing evaluation. A relation is specified by its domain and by its representation.
The example from Fig. 1 uses the pentagon abstract domain. Representations
may support approximation through widening that ensures convergence over
infinite domains.

2.1 Rule Transformations

To allow for optimizations and/or additional features, we may perform various
transformations on the input rules.
Free Variable Elimination. This transformation seeks to avoid large interme-
diary tables. It replaces rules of the form p(x, y) ← B[x] by p′(x) ← B[x]. (B[x]
stands for the body of the rule, and x denotes all the variables appearing in it.)
Furthermore, each occurrence of p in a body of some rule requires a version with
p′. E.g., for a rule q(x, y) ← p(x, y), r(x, z), p(z, y) we would need to introduce
three rules q(x, y) ← p′(x), r(x, z), p(z, y), q(x, y) ← p(x, y), r(x, z), p′(z),
q(x, y) ← p′(x), r(x, z), p′(z). The last rule introduces another free head vari-
able, which can be eliminated using the same procedure. The transformation
may increase the source program by an exponential factor, so μZ uses a limit
on the number of such transformations.
Magic Sets. The classical magic sets transformation [1] is an option in μZ that
specializes a set of rules with respect to a query.
Coalescing Rules. This transformation moves constants into a new relation
and a group of rules with a single rule:

p(x, c1) ← B[x, c1] .. p(x, cn) ← B[x, cn] 
→ p(x,y) ← B[x,y], r(y)

where r is a fresh relation containing tuples c1, . . . , cn. The transformation
trades n updates to p using unions by one update to p and a join between B
and the new relation r. In the context of μZ the transformation is particularly
useful after a Magic set transformation. We have not found it useful directly for
the user input.
Join Planning. The join planner splits long rules so that each rule contains at
most two positive relation predicates in its body. Number of negative relation
predicates and non-relation predicates in rules is not limited, because these do
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not lead to introduction of intermediate relations. The planner uses information
on the expected size of relations in order to make the intermediate relations
as small as possible. To this end the solver periodically restarts and reruns the
planner to make use of better size estimates. The join planner also attempts to
identify shared parts of rules in order to avoid their repeated evaluation.

2.2 Compilation to an Abstract Machine

The compiler transforms the bodies of rules into relational algebra operations.
These operations are atomic instructions in an abstract machine, which also
contains control and data-flow instructions to handle applications of the rules
until a fixed point is reached.

r(y, x) ρ#1	→#2,#2	→#1(r)
r(a, y) σ#1=a(r)
r(x, x) σ#1=#2(r)
r(x, y), ϕ[x, y] σϕ[#1,#2](r)
r(x, y), q(z, x) r �#1=#2 q
T [x,y] π#1(T [x,y])

We use a binary relation r(x, y) to il-
lustrate the compilation of rule bodies
into relation algebra. Renaming is used
to reorder the arguments to correspond
to r(x, y). Selection restricts r by fixing a
column to a constant, equating columns,
or constraining r with respect to an arbi-
trary predicate ϕ. Multiple relations are
combined using joins, and projection removes variables that are not used in the
head.

The abstract machine furthermore contains instructions for conditional jumps,
swap, copy, load, complementation (for stratified Datalog programs), and creat-
ing empty relations.

content
R0 := {0} �0
R2 := R0 Δ�0

while(R2 �= ⊥) {
R3 := �
R4 := R3 � R2 x, x0

R4 := σ#1=#2+1(R4)
R4 := σ#2<n(R4)
R5 := π#2(R4) x
R2, R0 := R5 \R0, R0 ∪R5

}
R1 := σ¬(#1<n)(R0) �1
�0 := R0

�1 := R1

Fig. 3. Compiled version of Fig. 1

The effect of applying a rule is to up-
date the relation in the head by taking
a union with the relation computed in
the body. The corresponding union op-
eration comes in two flavors: if the head
relation is used in a non-recursive con-
text, the corresponding operation de-
structively updates the head relation.
If the head relation is used in a recur-
sive context, the union operation fur-
thermore computes a differenec relation
Δ that is used to detect termination
and to minimize the number of records
that need to be examined in subsequent
joins. This contrasts using a contain-
ment relation to check for termination.

The requirement on Δ is the follow-
ing, where p is the head relation and q is the relation from the body: q ⊆ p →
Δ = ⊥, and q �⊆ p→ q \ p ⊆ Δ ⊆ p∪ q. Loops are terminated when Δ is empty.
The natural value for Δ would be q \ p, but for some representations this might
be expensive to evaluate.
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We use the relation dependency graph to obtain loops of smaller size and
evaluation order which leads to faster propagation of newly derived facts. We
identify strongly connected components of recursive head predicates and saturate
each of these components separately. We attempt to find an acyclic induced
subgraph of each component, and use this subgraph to obtain the evaluation
order inside the loop. The benefit of such order is that we do not have to carry the
“differences” of relations which are in the acyclic subgraph across loop iterations.

The engine supports two compilation modes: In standard Datalog compilation
mode, rules are compiled into instructions that perform a bottom-up saturation.
In the presence of stratified negation, it performs the saturation per stratum.
The compiler generates two phases in abstract interpretation mode: union on re-
cursive predicates is replaced by widening, and the recursive predicates are reset
(to the empty relations) between phases. Other compilation modes are possible
in future versions of μZ. In particular a mode for bounded-model checking where
fixed points are unrolled to a fixed depth, is of interest in applications.

2.3 Execution

Execution of the compiled code is performed by a register machine interpreter.
Registers store relation objects that implement relational algebra methods. Com-
pile time transformations suffice to avoid using counters or other data types in
registers.

2.4 Tables and Relations

The abstract machine works at the level of relational algebra while the repre-
sentation of relations is delegated to implementations.
Finite Collections. A basic representation of relations is as a finite collection
of records. Finite sets admit iterators that can enumerate elements from the
collection. Our default representation of finite collections is by hash tables with
on-demand indexing. Thus, one hash table may be indexed by multiple columns
at a time depending on which columns are used in different joins. An index is
created or updated when the correponding column is used in a join or a selection
by a constant. We found that hash tables offered a more efficient representation
for our benchmarks when compared with BDDs, though it is possible to create
examples where BDDs are significantly more compact [5]. We have plugged in
BDDs over the external relation API using the BuDDy package2.
Abstract Relations. The real utility of the relational algebra core is achieved
by also admitting relation representations that are truly abstract.

A precise, but abstract representation is achieved by mapping relational al-
gebra operations back to first-order formulas. We call this the SMT relation
as it uses the SMT solver Z3 for quantifier-elimination during projection and
checking for convergence. Translation from relational algebra into first-order
logic is a simple transliteration. For example  ⊥! = false ,  πxR! = ∃x. R!
2 http://buddy.wiki.sourceforge.net

http://buddy.wiki.sourceforge.net
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and  R �E S! =  R! ∧  S! ∧ E . The set of satisfying assignments to the free
variables in the formula correspond to records that are members of the relation.
Computing Δ requires a satisfiability check of  R! ∧ ¬ S!, which introduces
a formula with quantifier alternation. μZ relies on Z3’s support for quantifier
elimination for bit-vectors, Presburger arithmetic and algebraic data types to
compute Δ.
μZ also contains two built-in abstract relations for conjunctions of integer in-

tervals and bounds (relations of the form x < y). These domains are well-known
from abstract interpretation [2]. They are closed under join, projection and se-
lection, but they are not closed under union. Union is instead approximated by
a convex hull operation. The domains also support widening operations.
Compositionality. Explanations can be tracked by adding a column to each
relation and track rules by accumulating a term for the rules that are applied:

rl : p(x) ← q(x, y), r(x, y). 
→ rl ′ : p′(x, rl(u, v, y)) ← q′(x, y, u), r′(x, y, v).

There can be an unbounded number of explanations for a derived fact, but it
suffices to consider just one representative. We can encode this in a special re-
lational algebra of explanations, where unions of two sets of explanations selects
a suitable (in the case of μZ, oldest) representative. The remaining columns of
p′ do not belong to the algebra of explanations, but may be stored in a finite
table or an abstract relation. To support such joint representations, μZ allows
composing arbitrary tables and relations. The composition of a finite table with
another finite table or relation is obtained by adding an additional column to the
finite table to point to a table (relation) that contains values corresponding to a
row. The usual relational algebra operations are extended directly for this rep-
resentation. For example, the joint relation r(x, y, z) : {(1, 0, a), (1, 0, b), (1, 1, c)}
is represented as the map [(1, 0) 
→ {a, b}, (1, 1) 
→ {c}], and projecting the
second column produces πyr(x, y, z) : [1 
→ {a, b, c}]. The product and intersec-
tion of two abstract relations is also available, but in this case projection and
union are no longer precise because the normalized representation is as a vec-
tor of relations. Some precision is retained by supporting reduced products that
lets domains communicate constraints. For example, we obtain the Pentagon
domain by taking the product of the Interval i and Bound b domain subject
to having restriction (b ∪ {x < y}) ∧ (z = x − y) contribute the interval con-
straint (z ∈ [−∞,−1]); and extending unions on bounds to also accept intervals:
b ∪ i := {x < y ∈ b | supi(x) < infi(y)}.

3 Usage

A diagram showing the integration of options for μZ is in Fig. 4.
Interface. User can interact with μZ either by the means of the Z3 API (man-
aged or C) or pass the problem specification in a file from the command line.

Input files can be in one of the following formats: SMT2 format extended by
commands rule and query to add rules and start the fix-point search, in the
Bddbddb [5] format, or in the tuple format which allows fast reading of large
amounts of facts.
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Fig. 4. Possible configurations of μZ

Applications. Although μZ is a new tool, it has been already used in several
contexts3. We have run μZ on moderate size (2- 25K lines of pure Datalog code)
benchmarks extracted from the Javascript security analyzer Gatekeeper [4]. It
suffices to configure μZ using hash tables for storing relations. It spends in the
order of 100ms on these benchmarks due to transformations such as the free
variable elimination that eliminated many rules in favor of ground facts. The
Bddbddb tool [5], in contrast relies on the existence of good variable orderings to
avoid running out of physical memory. Using finite domains, we have also loaded
a representation of the Windows base kernel, and ran various queries on it. The
resulting data-base contained in the order of 106 facts. The efficient tuples front-
end loads the 2 GB data-base within 20 seconds, but stand-alone saturation is
infeasible. Queries can still be answered within a second on a standard dekstop
PC after the Magic sets transformation. A demonstration of μZ for solving
Traffic Jam puzzles is available. It illustrates the use of explanations.

4 Conclusion

μZ is a new efficient engine for fixed points with logical constraints. It integrates
and is available with Z3. This tool paper explained the main architecture of μZ
and provided background on pluggable and composable relations. We hope this
tool will enable several future applications that rely on efficient fixed point core
with special needs on domain representations.
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Abstract. BAP is a publicly available infrastructure for performing pro-
gram verification and analysis tasks on binary (i.e., executable) code. In
this paper, we describe BAP as well as lessons learned from previous in-
carnations of binary analysis platforms. BAP explicitly represents all side
effects of instructions in an intermediate language (IL), making syntax-
directed analysis possible. We have used BAP to routinely generate and
solve verification conditions that are hundreds of megabytes in size and
encompass 100,000’s of assembly instructions.

1 Introduction

Program analysis of binary (i.e., executable) code has become an important and
recurring goal in software analysis research and practice. Binary code analysis is
attractive because it offers high fidelity reasoning of the code that will actually
execute, and because not requiring source code makes such techniques more
widely applicable.

BAP, the Binary Analysis Platform, is the third incarnation of our infras-
tructure for performing analysis on binary code. Like other platforms such as
CodeSurfer/x86 [3], McVeto [15], Phoenix [11], and Jakstab [9], BAP first dis-
assembles binary code into assembly instructions, lifts the instructions to an
intermediate language (IL), and then performs analysis at the IL level. BAP
provides the following salient features:
– BAP makes all side effects of assembly instructions explicit in the IL. This

enables all subsequent analyses to be written in a syntax-directed fashion.
For example, the core code of our symbolic executor for assembly is only 250
lines long due to the simplicity of the IL. The operational semantics of the
IL are formally defined and available in the BAP manual [4].

– Common code representations such as CFGs, static single assignment/three-
address code form, program dependence graphs, a dataflow framework with
constant folding, dead code elimination, value set analysis [3], and strongly
connected component (SCC) based value numbering.

– Verification capabilities via Dijkstra and Flanagan-Saxe style weakest pre-
conditions and interfaces with several SMT solvers. The verification can be
performed on dynamically executed traces (e.g., via an interface with Intel’s
Pin Framework), as well as on static code sequences.

– BAP is publicly available with source code at http://bap.ece.cmu.edu/.
BAP currently supports x86 and ARM.
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We have leveraged BAP and its predecessors in dozens of security research ap-
plications ranging from automatically generating exploits for buffer overflows to
inferring types on assembly. A recurring task in our research is to generate log-
ical verification conditions (VCs) from code, usually so that satisfying answers
are inputs that drive execution down particular code paths. Generating VCs
that are actually solvable in practice is important; we routinely solve VCs hun-
dreds of megabytes in size that capture the semantics of 100,000s of assembly
instructions using BAP.

In the rest of this paper we discuss these features, how they evolved, compare
them to other platforms where possible, and provide examples of how we have
used them in various projects.

2 BAP Goals and Related Work

Fully representing the semantics of assembly is more challenging than it would
seem. In order to appreciate the difficulty, consider the three line assembly pro-
gram below. Suppose we want to create a verification condition (VC) that is
satisfied only by inputs that take the conditional jump (e.g., to find inputs that
take the jump). The challenge is that arithmetic operations set up to 6 status
flags, and control flow in assembly depends upon the values of those flags. Sim-
ply lifting line 1 to something like ebx = eax + ebx does not expose those side
effects.
1 add %eax , %ebx # ebx=eax+ebx ( s e t s OF, SF , ZF, AF, CF, PF)
2 sh l %c l , %ebx # ebx=ebx<<c l ( s e t s OF, SF , ZF, AF, CF, PF)
3 j c t a rge t # jump to ta rge t i f car ry f l a g i s s e t

The first generation of our binary analysis tools, asm2c, attempted to directly
decompile x86 assembly to C, and then perform all software analysis on the re-
sulting C code. asm2c left instruction side effects implicit, which made it difficult
to analyze control flow. Other binary tools such as instrumentors, disassemblers,
and editors (e.g., DynInst [13], Valgrind [12], and Microsoft Phoenix [11]) also
did not represent these side effects explicitly.

Our next incarnation, Vine, was designed to address the problem by explicitly
encoding side-effects in the IL. The result is that subsequent analyses and verifi-
cation could rely upon the IL syntax alone. Vine is significantly more successful
than asm2c, and has been used in dozens of research projects (see [5]).1 Vine used
VEX [12] to provide a rough IL for each instruction, which was then augmented
by Vine to expose all otherwise-implicit side effects. An important implemen-
tation decision was to implement the Vine back-end in OCaml (asm2c was in
C++). We found OCaml’s language features to be a much better match for
program analysis and verification. However, the Vine IL grew over time, lacked
a formal semantics for the IL itself, and did not handle bi-endian architectures
such as ARM correctly.

BAP is a complete re-design of Vine that encompasses lessons learned from
our previous work on binary analysis. The main goals of BAP are: 1) explicitly
1 Vine is still actively developed at Berkeley under the BitBlaze project [5].
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represent all assembly side-effects to allow for syntax-directed analysis; 2) use a
simple IL with formally defined semantics; 3) include useful analyses and verifica-
tion techniques appropriate for binary code (either by design or by adaptation);
and 4) allow user-defined analyses. The semantics of the BAP IL is formally
defined, which weeded out several bugs from Vine and allowed us to better ar-
gue about the correctness of implemented analyses and algorithms. The IL also
adds primitives to handle instruction issues discovered in Vine such as bi-endian
memory operations, and is simpler overall. In addition to modeling the semantics
of instructions explicitly, BAP also exposes the low-level semantics of memory
where loads and stores are byte-addressable and thus can result in “overlapping
operations”.

An example of the IL produced for Example 1 is (after deadcode elimination):

1 addr 0x0 @asm ”add %eax ,%ebx”
2 t : u32 = R EBX: u32
3 R EBX: u32 = R EBX: u32 + R EAX: u32
4 R CF : bool = R EBX: u32 < t : u32
5 addr 0x2 @asm ” sh l %c l ,%ebx”
6 t1 : u32 = R EBX: u32 >> 0x20 : u32 − (R ECX: u32 & 0 x1f : u32 )
7 R CF : bool =
8 ( (R ECX: u32 & 0 x1f : u32 ) = 0 : u32 ) & R CF : bool |
9 ˜ ( (R ECX: u32 & 0 x1f : u32 ) = 0 : u32 ) & low : bool ( t1 : u32 )

10 addr 0x4 @asm ” j c 0x000000000000000a ”
11 cjmp R CF : bool , 0xa : u32 , ”nocjmp0” # branch to 0xa i f R CF = true
12 l ab e l nocjmp0

3 BAP Architectural Overview

BAP is divided into front-end and back-end components that are connected by
the BAP intermediate language (IL), as shown in Figure 1. The front end is
responsible for lifting binary code for the supported architectures to the IL. The
back-end implements our program analyses and verifications for low-level code.

The front end reads binary code from an execution trace or a region of a
binary executable. When lifting instructions from a binary, BAP uses a linear
sweep disassembly algorithm. The user or an analysis is responsible for directing
BAP to properly aligned instructions. The result of lifting is an IL program.

An abbreviated definition of the IL syntax is shown in Table 1; the full IL
syntax and semantics are provided at [4]. The special statement indicates a
system call or other unmodeled behavior. Other statements have their obvious
meaning. All expressions in BAP are side-effect free. The unknown expression
indicates an unknown value; for instance, we use this to model the contents of
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Fig. 1. The BAP binary analysis architecture and components
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Table 1. An abbreviated syntax of the BAP IL

program ::= stmt*

stmt ::= var := exp | jmp exp | cjmp exp,exp,exp | assert exp

| label label kind | addr address | special string

exp ::= load(exp, exp, exp, τreg) | store(exp, exp, exp, exp, τreg) | exp ♦b exp

| ♦u exp | var | lab(string) | integer | cast(cast kind, τreg, exp)

| let var = exp in exp | unknown(string, τ )

registers having an undefined state after a specific instruction (e.g. the AF flag
after shl). The semantics of load(e1, e2, e3, τreg) is to load from the memory
specified by e1 at address e2. e3 tells us the endianness to use when loading
bytes from memory, which can vary at runtime on ARM. τreg tells us how many
bytes to load. store is similar, but takes an additional parameter to specify the
stored value.

The BAP IL can be transformed into other useful representations. One ex-
ample is static single assignment (SSA) [1] form. SSA form makes use-def and
def-use chains explicit in syntax, and enforces the use of three-address code.
These changes often make it significantly easier to implement new analyses and
optimizations.

Once a binary is lifted to the BAP IL, it can be analyzed by the BAP back-
end. The BAP back-end consists of program analyses and transformations. We
discuss these in more detail in Section 4.

Usage. Users are expected to use BAP’s front-end to lift binary code to IL form,
and then to interact with the analyses and transformations in the back-end.
Users can use BAP command line utilities out of the box to perform standard
operations. For instance, users can use the iltrans tool to create a pipeline
of actions that 1) converts an IL program to SSA form; 2) applies all BAP
optimizations; 3) converts back to IL form; 4) outputs a verification condition
(VC) for the optimized program.

BAP can also be extended programatically. New analyses can build on existing
analyses and transformations, allowing for modularity and reuse of implemented
analyses similar to a source-level compiler architecture.

4 BAP Capabilities

Analyses and Optimizations. Analyses can either be accessed programat-
ically, or via the command line iltrans utility. Built in analyses include the
ability to:
– Compute slices for a source or a chop for a source/sink pair so that subse-

quent analysis only considers relevant parts of a program. For example, if
we are interested in whether integer overflow occurs for a particular variable
we can reason about the slice of statements affecting (backwards slicing) or
affected by (forward slicing) that variable.
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– Optimize the IL. Optimizations are an important part of the BAP framework
for several reasons. First, the IL makes all side-effects explicit by default,
many of which may not matter for a particular analysis. Deadcode elimina-
tion will remove these. For instance, deadcode elimination will remove OF,
SF, ZF, AF, and PF in Example 2 because they are not relevant.

In our coreutils experiments [8], we found that the use of optimizations
resulted in an overall speedup of 4.5x in the time it took to generate and
solve formulas, and enabled us to solve 81% of the VCs that could not be
solved without optimizations.

– Evaluate the IL. Our evaluator allows us to run a BAP program and examine
any dynamic properties. For instance, the evaluator can be used to record
control flow, perform randomized testing of a software property, or verify
that the IL semantics are consistent with the real program’s.

Verification Conditions. BAP can create verification conditions using sev-
eral methods. A verification condition (VC) is a syntactically generated boolean
predicate over a program’s input variables that is true if and only if some pro-
gram property holds over the program’s execution on that input. Naturally, a
VC is valid if and only if the respective program property holds for all inputs.
BAP generates VCs with respect to a postcondition, such that if the formula is
true then the program terminates and the postcondition holds.

Built-in methods for generating VCs include:

– Dijkstra’s weakest preconditions (WP). The process involves converting the
BAP IL, which represents unstructured code, to Dijkstra’s guarded com-
mand language. The resulting VC is O(2n) in size where n is the number of
IL statements. Other methods produce smaller VCs.

– Efficient weakest preconditions. We implement two algorithms. First, we have
implemented Flanagan and Saxe’s algorithm, which guarantees the generated
VC will be only O(n2) in size where n is the number of IL statements. Second,
we have developed and proved correctness of a variant of Flanagan and Saxe
that can be run in the forward direction [8].

– Forward symbolic execution [14]. Symbolic execution is built into BAP’s
evaluator.

– Direct (API) and filesystem bindings to STP [7], as well as the ability to
interact via the filesystem with SMTLIB1 compliant decision procedures.

5 Applications

We have used the BAP toolchain for a number of binary analysis and verification
tasks. Due to space, please refer to [6] for a full list. Example applications are:

– We designed and performed type reconstruction on compiled C programs in
a system called TIE [10]. TIE analyzes each memory access in x86 to find
variable locations (similar to VSA [2]), creates a system of type constraints
based upon variable usage, and solves for a typing on all variables.
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– We evaluated the performance of VC generation algorithms by checking VCs
for leaf functions in GNU coreutils [8]. For instance, we tested each function
to see if the overflow flag could be set, or if the return address could be
overwritten2. For each condition, we generated a VC and checked its validity
with standard SMT solvers (CVC3 and Yices).

– Perform binary-only symbolic execution. We are able to lift TEMU [5] in-
struction traces to our IL, add constraints on the input, e.g., to find inputs
where a safety property breaks, generate an input that takes a specific branch
in the trace, and so on. We have used this to perform automatic patch-based
exploit generation, malware analysis, and other security-related tasks [5, 6].

6 Limitations

BAP currently supports subsets of the x86 and ARM ISAs. Some features, like
floating point and privileged instructions are unsupported. It is not possible to
prove the correctness of BAP’s lifting code correct because the semantics of
the x86 ISA is not formally defined. Instead, we use random testing to identify
any differences between the semantics of our lifted IL and behavior on a real
processor.

BAP’s lifting process expects to be pointed to an aligned sequence of instruc-
tions. Thus, the user must identify code locations. This can be done manually,
by relying on symbol data, or by using a recursive descent analysis (such as IDA
Pro). Lifting also assumes that code is static. BAP’s execution trace feature can
be used to reason about dynamic code.

Some analyses require indirect jumps to be resolved to concrete locations.
For instance, it is not possible to generate VCs using weakest preconditions in
the presence of unresolved indirect jumps, since weakest precondition is a static
analysis. (It is still possible to use dynamic symbolic execution, however.)

7 Conclusion

BAP is a flexible binary analysis framework that enables program analysis and
verification on binary code. BAP explicitly represents side effects of instructions
in a simple, formally defined IL. A number of analyses, optimizations, and veri-
fication techniques are already built into BAP, and adding new ones is easy. The
source code for BAP is periodically released at http://bap.ece.cmu.edu.
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Abstract. We present Hindley-Milner-Cousots (HMC), an algorithm that re-
duces verification of safety properties of typed higher-order functional programs
to interprocedural analysis for first-order imperative programs. HMC works as
follows. First, it uses the type structure of the functional program to generate a
set of logical refinement constraints whose satisfaction implies the safety of the
source program. Next, it transforms the logical refinement constraints into a sim-
ple first-order imperative program and an invariant that holds iff the constraints
are satisfiable. Finally, it uses an invariant generator for first-order imperative
programs to discharge the invariant. We have implemented HMC and describe
preliminary experimental results using two imperative checkers – ARMC and IN-
TERPROC – to verify OCAML programs. By composing type-based reasoning
grounded in program syntax and state-based reasoning grounded in abstract in-
terpretation, HMC enables the fully automatic verification of programs written in
modern programming languages.

1 Introduction

Automatic verification of semantic properties of modern programming languages is an
important step toward reliable software systems. For higher-order functional program-
ming languages with inductive and polymorphic datatypes, the main verification tool
has been type systems. These type systems traditionally capture only coarse data-type
properties (e.g., functions expecting ints are only passed ints), but not more precise,
semantic properties (e.g., that an array index is within bounds). For first-order imper-
ative programming languages, automatic tools based on abstract interpretation, such
as ASTREE [3], SLAM [1], BLAST [7], etc., can infer program invariants and prove
many semantic properties of practical interest. While these tools faithfully model the
semantics of base values like ints, they are overly imprecise on modern programming
features such as closures, higher-order functions, inductive datatypes or polymorphism.

We present Hindley-Milner-Cousots (HMC), an algorithm that combines type-based
reasoning for higher-order languages with invariant generation for first-order languages
to prove semantic properties of programs fully automatically and without additional
programmer annotations.

The link between types and invariants is the notion of refinement type check-
ing [2, 14, 20, 26], a type-based analogue of Floyd-Hoare logic. A refinement type
is a type whose “leaves” are base types decorated with refinement predicates. For ex-
ample, the refinement type {x :int | x < 100} list describes a list of integers, each
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of which is smaller than 100 and int → {x :int | x �= 0} → int describes a function
(e.g., integer division) whose second (curried) argument must be non-zero. By riding
atop type-structure, refinements can express sophisticated data structure invariants as
well [4, 5, 12]. While refinement type checking can be used to verify functional pro-
grams [2], the programmer must manually provide the refinements which is analogous
to the burden of writing loop-invariants together with pre- and post-conditions in the
imperative setting. HMC eliminates the need for programmer annotations and thereby
enables automatic checking via a three-step process.

Step 1: Constraint Generation. HMC generates a set of refinement constraints whose
satisfaction implies the safety of the source program. To verify safety of a functional
program, we need to compute safe overapproximations of the sets of values that various
expressions can evaluate to (i.e., the functional analogue of “reachable states” in the
imperative setting). With refinement types, overapproximation is formalized via sub-
typing. Thus, in the first phase, HMC makes a syntax directed pass over the functional
program to generate a set of subtyping constraints over refinement templates that rep-
resent the unknown refinement types for various program expressions. The templates
employ refinement variables κ as placeholders for the unknown refinement predicates,
which are analogous to program invariants, that decorate the leaves of the complex
types. Crucially, as the overapproximation is structured via types, we can use the stan-
dard rules for subtyping complex types to reduce the complex subtyping constraints
to a set of simple implication constraints [13, 22], whose satisfaction implies program
safety.

Step 2: Constraint Translation. Next, HMC transforms the implication constraints into
a first-order imperative program that is safe if and only if the constraints are satisfiable.
This translation – our main technical contribution – is founded upon two key insights.
First, the refinement variables κ, normally viewed as placeholders for (unknown) refine-
ment predicates, semantically represent (unknown) n-ary relations over the value being
defined by the refinement type and the n − 1 variables that are in scope at the point
where the type is defined. Second, the constraints on each κ can be used to encode
a simple first-order imperative function Fκ whose input-output semantics corresponds
to an n-ary relation that satisfies the constraints on κ. The n − 1 components of the
relation are treated as input parameters of the function Fκ, and the value component
of the relation becomes the output of the function. Using these insights we design an
algorithm that translates type-bindings into function calls and implications into assign-
ments/assumes, respectively. Thus, we obtain a first-order imperative program that is
safe if and only if the constraints are satisfiable, i.e., whose safety implies the safety of
the source functional program.

Thus, the two-step HMC algorithm uses type-structure to reduce the safety of a
higher-order functional program to the safety of a first-order imperative program.

Step 3: Verification of Obtained First-Order Program. In a third step, we use existing
invariant generation tools for first-order imperative programs to automatically verify the
safety of the imperative program produced during the second step.

The most immediate dividend of our approach is that HMC allows one to read-
ily apply any of the well-developed semantic imperative program analyses to the
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verification of modern software with polymorphism, inductive datatypes, and higher-
order functions. More importantly, HMC provides a “separation-of-concerns” that can
open the door to a suite of precise model checkers and abstract interpreters capable
of handling languages with advanced features. Using HMC, the analysis designer can
factor the analysis into two parts: a syntactic, type-system based component that ana-
lyzes macroscopic language concerns like collections, inductive types, polymorphism,
closures, etc., and a semantic, abstract interpretation-based component that analyzes
microscopic language concerns like invariant relationships between primitive integers
or booleans. Thus, HMC provides a simple way to incorporate independent progress in
type systems for specifying complex control as well as dataflow and in invariant gener-
ation techniques into the verification flow. For example, one can tune the precision and
scalability of an analysis either by changing the amount of context-sensitivity in the
type system (e.g., via intersection types) or by using more/less precise abstract domains
(e.g., using polyhedra instead of octagons).

To demonstrate the feasibility of our approach, we have developed two safety
verifiers for ML programs, HMC(ARMC) and HMC(INTERPROC), which use the
CEGAR-based ARMC [21] software model checker and the Polyhedra-based INTER-
PROC [17] analyzer, respectively, to verify the translated programs. This allows fully
automatic verification of a set of OCAML benchmarks for which previous approaches
either required manual annotations (either the refinement types [26] or their constituent
predicates [22]), or an elaborate customization and adaptation of the counterexample-
guided abstraction refinement paradigm [24].

Related Work. Our starting point was the vast body of work in the verification of
imperative programs (see, e.g., [10] for a survey), including tools such as SLAM [1],
BLAST [8], and ASTREE [3], and to “lift” the techniques to higher-order programming
languages. We were influenced by work on refinement types [6, 13] implemented in
dependent ML [26] and, more recently, combined with predicate abstraction [12, 22],
but wanted to eliminate the need for explicit annotations (or predicates).

Kobayashi [15, 16] gives an algorithm for model checking higher order programs by
a reduction to model checking for higher-order recursion schemes (HORS) [19], which
has been augmented to perform CEGAR [24, 25]. For safety verification, HMC shows
a promising alternative, enabling us to reuse the vast literature on invariant generation
for first order programs (using abstract interpreters or model checkers).

While we have implemented our tool for ML, our constraint language is generic and
can express refinement constraints arising out of other expressive source languages,
such as F7 [2] or C [23], which include module signatures, recursive and contextual
types, mutable state, etc. Thus, through the collaboration of types and invariants, HMC
opens the door to the automatic safety verification of complex properties of programs
in modern languages.

2 Overview

We outline the steps of the HMC algorithm. For lack of space, we omit the full formal-
ization and correctness proofs and provide the main insights through an example. The
formalization can be found in [11].



HMC: Verifying Functional Programs Using Abstract Interpreters 473

let rec iteri i xs f =
match xs with
| [] -> ()
| x::xs’ -> f i x;

iteri (i+1) xs’ f

let mask a xs =
let g j y = a.(j) <- y && a.(j) in
if Array.length a = List.length xs then

iteri 0 xs g

Fig. 1. ML Example

An ML Example. Figure 1 shows a simple ML program that updates an array a using
the elements of the list xs. The program comprises two functions. The first function is
a higher-order list indexed-iterator, iteri, that takes as arguments a starting index i, a
(polymorphic) list xs, and an iteration function f. The iterator goes over the elements
of the list and invokes f on each element and the index corresponding to the element’s
position in the list. The second function is a client, mask, of the iterator iteri that takes
as input a boolean array a and a list of boolean values xs, and if the lengths match, calls
the indexed iterator with an iteration function g that masks the jth element of the array.

Suppose that we wish to statically verify the safety of the array reads and writes in
function g; that is to prove that whenever g is invoked, 0 ≤ j < len(a). As this example
combines higher-order functions, recursion, data-structures, and arithmetic constraints
on array indices, it is difficult to analyze automatically using either existing type sys-
tems or abstract interpretation implementations in isolation. The former do not infer
handle arithmetic constraints on indices, and the latter do not precisely handle higher-
order functions and are often imprecise on data structures. We show how our technique
can automatically prove the correctness of this program.

Refinement Types. To verify the program, we compute program invariants that are ex-
pressed as refinements of ML types with predicates over program values [2, 13, 22]. The
predicates are additional constraints that must be satisfied by every value of the type.
We work with a fixed set of base types β, comprising int for integer values, bool for
boolean values, and ui, a family of uninterpreted types that encode complex source lan-
guage types such as products, sums, recursive types etc.A base value, say of type β, can
be described by the refinement type {ν :β | p} where ν is the value variable of the re-
finement type that names the value being defined, and p is a refinement predicate which
constrains the range of ν to a subset of β. For example, {ν :int | 0 ≤ ν < len(a)} de-
notes the set of integers that are between 0 and the value of the expression len(a). Thus,
the (unrefined) type int abbreviates {ν :int | true}. Base types can be combined to
construct dependent function types, where the value variable for the input type, i.e., the
name of the formal parameter, can appear in the refinement predicates in the output
type, thereby expressing a “post-condition” that relates the function’s outputs with its
inputs. For example, {x :int | 0 ≤ x} → {ν :int | ν = x + 1} is the type of a func-
tion which takes a non-negative integer parameter and returns an output which is one
more than the input. Thus, the input and output types describe pre- and post-conditions



474 R. Jhala, R. Majumdar, and A. Rybalchenko

for the function. In the following, we write x :β for the type {x :β | true}, and x :r for
{x :β | r}, when β is clear from the context,

Safety Specification. Refinement types can be used to specify safety properties by en-
coding pre-conditions into primitive operations of the language. For example, consider
the array read a.(j) (resp. write a.(j) <- e) in g which is an abbreviation for
get a j (resp. set a j e.) By giving get and set the types

a :α array → {i :int | 0 ≤ i < len(a)} → α ,

a :α array → {i :int | 0 ≤ i < len(a)} → α→ unit ,

we can specify that in any program the array accesses must be within bounds. More gen-
erally, arbitrary safety properties can be specified [22] by giving assert the refinement
type {p :bool | p = true} → unit.

We assume that the call-by-value dynamic semantics of ML programs is formalized
using a standard small-step (contextual) operational semantics.1 We write � for the
single evaluation step relation for expressions, and write

∗
� to describe the reflexive,

transitive closure of � . To capture program errors, we assume there is a special Err
value, and if a constant is applied to a value that is not in the domain of the constant (e.g.,
accessing an array out of bounds, or calling assert with false), then the application
reduces to Err. For a program e, we say that e safe if there is no derivation of the form
e

∗
� Err. In other words, a program is safe if it never reduces to Err.

Safety Verification. The ML type system is too imprecise to prove the safety of the
array accesses in our example as it infers that g has type j :int → y :bool → unit,
i.e., that g can be called with any integer j. If the programmer manually provides the
refinement types for all functions and polymorphic type instantiations, refinement-type
checking [2, 5, 26] can be used to verify that the provided types were consistent and
strong enough to prove safety. This is analogous to providing pre- and post-conditions
and loop invariants for verifying imperative programs. For our example, a refinement
type system could check the program if the programmer provided the types:

iteri :: i :int → {xs :α list | 0 ≤ len(xs)} →
({j :int | i ≤ j < i + len(xs)} → α→ unit) → unit

g :: {j :int | 0 ≤ j < len(a)} → bool → unit

Automatic Verification via HMC. As even this simple example illustrates, the anno-
tation burden for verification can be quite high. Instead, we show how our algorithm
combines type-based reasoning for complex language features and abstract interpreta-
tion for first-order control flow to automatically verify the program without requiring re-
finement annotations. Our HMC algorithm proceed as follows. First, we use the source
program to generate a set of constraints which is satisfiable if the program is safe. Sec-
ond, we translate the constraints into a first-order imperative target program which is
safe iff the set of constraints is satisfiable. After these two steps, we can analyze the tar-
get program with any first-order safety analyzer. If the analyzer determines the target is

1 Our formalization of the algorithm actually uses a core fragment μML of ML. We keep the
following discussion simple by simply referring to ML programs.
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safe, we can soundly conclude that the constraints are satisfiable, and hence, the source
program is safe. Next, we illustrate these steps using the source program from Figure 1.

Notation. LetX be a set of variables. We use ν, x, y, z and subscripted versions thereof
to range over X . A state σ is a partial map from variables X to values in the universe
U(β) of values of type β. We lift states to maps from expressions to values and pred-
icates to boolean values in the standard manner. We write [·] for the state with empty
domain, and write σ[z 
→ v] for the state that maps the variable z to v and all other
variables y to σ(y).

2.1 Step 1: Constraint Generation

First, we generate a system of refinement constraints for the source program [13, 22].
To do so, we (a) build templates that refine the ML types with refinement variables
that stand for the unknown refinements, and (b) make a syntax-directed pass over the
program to generate subtyping constraints that capture the flow of values.

Templates. For the functions iteri and g from Figure 1, with the respective ML types

i :int → xs :α list → (j :int → α→ unit) → unit

j :int → bool → unit

we generate the templates

i :int → xs :{0 ≤ len(xs)} → (j :κ1(j, i, xs) → α→ unit) → unit

j :κ2(j, a, xs) → bool → unit

The templates refine the ML types with parameterized refinement variables that rep-
resent the unknown refinements. κ1(j, i, xs) represents the unknown refinement that
describes the values passed as the first input to the function f that is used by the iter-
ator iteri. The values are the first elements of tuples belonging to a ternary relation
between the values of j and the two other program variables in-scope at that point,
namely i and xs. κ2(j, a, xs) represents the unknown refinement that describes the
values passed as the first input to g. In this case, the values belong to a ternary relation
over j: the formal and the two variables a and xs in scope at that program point.

For clarity of exposition, we have use the trivial refinement true for some variables
(e.g., for α and bool); HMC would automatically infer these refinements. We model
the length of lists (resp. arrays) with an uninterpreted function len from the lists (resp.
arrays) to integers, and (again, for brevity) add the refinement stating xs has a non-
negative length in the type of iteri.

Constraints. Informally, refinement constraints reduce the flow of values within the
program into subtyping relationships that must hold between the source and target of
the flow. A refinement r is either a concrete predicate p drawn from some predicate lan-
guage or a parameterized refinement variable κ(x0, . . . , xn), where κ is a refinement
variable of arity n. We assume, without loss of generality, that each κ has a fixed arity.
A refinement type binding ρ is a triple {x :β | r} comprising a variable x that is being
bound, a base type β describing the base type of x, and a refinement r that describes
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Predicates σ |= p iff σ(p) = true

Environments Σ, [·] |= ∅
Σ, σ |= G;{x :β | r} iff Σ, σ \ x |= G and

Σ, σ |= {x :β | r}
Refinements Σ, σ |= {x :β | p} iff σ |= p

Σ, σ |= {x :β | κ(y0, . . . , yn)} iff (σ(y0), . . . , σ(yn)) ∈ Σ(κ)

Constraints Σ |= G  {x1 :β | r1} ≺ {x2 :β | r2} iff For all σ :
Σ, σ |= G;{ν :β | r1} implies

Σ, σ |= {x1 :β | r2[x1/x2]}

Fig. 2. Constraint Satisfaction

an invariant satisfied by all the values bound to x. A refinement environment G is a se-
quence of refinement bindings. A refinement constraint G # {x :β | r1} ≺ {x :β | r2}
states that when the program variables satisfy the invariants described in G, the type r1
must be a subtype of r2, that is, the set of values described by the refinement r1 must
be included in the set of values described by the refinement r2.

Satisfaction. A relational interpretation for κ of arity n is a subset of U(β1)×. . .U(βn)
for appropriate types β1, . . . , βn for the parameters of κ. A relational modelΣ is a map
from refinement variables κ to relational interpretations. Figure 2 formalizes the notion
of when a relational interpretation Σ satisfies a constraint. A state satisfies a predicate
if the predicate evaluates to true in the state. A state satisfies a predicate refinement
binding if the tuple of values of relevant variables belongs to the relation corresponding
to the refinement. A state satisfies an environment if it satisfies each binding in the envi-
ronment. A relational interpretation satisfies a constraint if every state that satisfies the
LHS of the constraint also satisfies the RHS of the constraint. A relational interpretation
satisfies a set of constraints if it satisfies each constraint in the set.

Constraint Generation. Let Generate(e) denote the procedure that takes as input a pro-
gram e and uses the type structure of the program to generate constraints. Generate(e)
proceeds syntactically over the structure of the program. We omit the full description
of the procedure Generate(e), which is similar to the constraint generation procedure
for refinement type constraints (e.g., [2, 6, 13, 22]). Theorem 1 summarizes the main
property of Generate(e).

Theorem 1. If Generate(e) is satisfiable then e is safe.

For our example, the following subtyping constraints are generated syntactically from
the code. First consider the function iteri. The call to f generates

G # {ν :int | ν = i} ≺ {ν :int | κ1(ν, i, xs)} (c1)

where ν is the parameter’s value, and the environment bindings are

G
.= i :int; {xs :α list | 0 ≤ len(xs)};
x :α; {xs′ :α list | 0 ≤ len(xs′) = len(xs) − 1}



HMC: Verifying Functional Programs Using Abstract Interpreters 477

The constraint ensures that at the call-site, the refinement of the actual is included in
(i.e., a subtype of) the refinement of the formal. The bindings in the environment are
simply the refinement templates for the variables in scope at the point the value flow
occurs. The refinement type system yields the information that the length of xs′ is one
less than xs as the former is the tail of the latter [12, 26]. Similarly, the recursive call to
iteri generates

G # j :κ1(j, i, xs)→α→ unit≺(j :κ1(j, i, xs) → α→ unit)[i + 1/i][xs′/xs]

which states that type of the actual f is a subtype of the third formal parameter of iteri
after applying substitutions [i + 1/i] and [xs′/xs] that represent the passing in of the
actuals i + 1 and xs′ for the first two parameters respectively. By pushing the sub-
stitutions inside and applying the standard rules for function subtyping this constraint
simplifies to

G # j :κ1(j, i + 1, xs′) ≺ j :κ1(j, i, xs) (c2)

Next, consider the function mask. The array accesses in g generate

G′; j :κ2(j, a, xs); y :bool # {ν = j} ≺ {0 ≤ ν < len(a)} (c3)

a “bounds-check” constraint where G′ has bindings for the other variables in scope,
namely a :bool array and {xs :bool list | 0 ≤ len(xs)}. Finally, the flow due to
the third parameter for the call to iteri yields

G′; len(a)=len(xs)  j :κ2(j, a, xs)→ bool→ unit ≺ j :κ1(j, 0, xs)→ bool→ unit

where, on the RHS, we have substituted the actuals 0 and xs for the formals i and
xs. The last conjunct in the environment represents the guard from the if under whose
auspices the call occurs. By standard function subtyping, the above reduces to

G′; len(a) = len(xs) #j :κ1(j, 0, xs) ≺ j :κ2(j, a, xs) (c4)

By Theorem 1, if the set of constraints given by (c1), (c2),(c3), and (c4) is satisfiable,
then the program is safe.

2.2 Step 2: Translation to Imperative Program

Our main contribution is a translation from the satisfiability problem for a set of refine-
ment constraints to the safety verification problem for an imperative program.

Imperative Programs. We write imperative programs in μC, a first-order imperative
language with variables ranging over base types β. An instruction is either an assign-
ment x ← e, an assume assume p, an assert assert p, or the sequencing I; I or non-
deterministic choice I[]I of two instructions. An assignment to a target variable is of one
of three kinds. Either (1) x ← e: an expression e over the variables is evaluated and as-
signed to the target variable x, or, (2) x ← nondet(): an arbitrary non-deterministically
chosen value of the appropriate base type is assigned to x, i.e., the target variable is
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“havoc-ed”, or (3) x ← F(y1, . . . , yn): a function F is called, and its return value is as-
signed to the target variable x. A function definition has a name F, a sequence of formal
parameters z1, . . . , zn, a body instruction I, and a return variable z0. A program is a
set of functions including a distinguished entry function F0 that takes no arguments.

Imperative Semantics. We formalize the call-by-value semantics of μC programs us-
ing a standard big-step transition relation between program configurations. A configu-
ration is either a state, i.e., a partial map from variablesX to values, or a special unsafe
configuration Err. All the variables in an μC program are local. That is, the variables of
each (state) configuration describe the values of the variables of a single “stack-frame”.
The transition relation is described by the judgment P, I # σ ↪→ σ′ that stipulates that
in the program P, the execution of the instruction I causes the machine to move from a
configuration σ to the configuration σ′.

The expression and havoc assignments update the target variable with the RHS and a
non-deterministically chosen value respectively. The call assignment updates the target
value with any of the possible values returned by the callee (i.e., the value of the return
variable of the callee in the exit configuration of the callee.) Dually, the return instruc-
tion simply assigns the return value into the return variable z0. The assume instruction
proceeds without updating the state only if the corresponing predicate holds (and other-
wise, the program halts). Thus, μC eschews if-then-else instructions in favor of the the
more general assume and choice instructions. The assert instruction is like the assume,
but if the predicate does not hold, the system transitions into the configuration Err (in
which it remains forever.)

Let P be an μC program whose entry function F0 has the body I0. We say that P is
μC-safe if there is no transition P, I0 # [·] ↪→ Err.

Translation. The constraints generated in Step 1 encode the semantics of program com-
putations. In the second step, we define a translation [[C]] that takes a set of constraintsC
and constructs an μC-program such that C is satisfiable iff [[C]] is safe. Our translation
is based on two observations.

Refinements are Relations. The first observation is that refinement variables in the
constraints stand for relations between program variables: the set of values denoted by
a refinement type {x0 :β0 | p} where p is a predicate that refers to the program variables
x0, . . . , xn of base types β0, . . . , βn is equivalent to

{t0 | ∃(t1, . . . , tn) s.t. (t0, . . . , tn) ∈ Rp ∧n
i=1 ti = xi}

where Rp is an (n + 1)-ary relation in β0 × . . . × βn defined by p. For example,
{ν :int | ν ≤ i} is equivalent to the set {t0 | ∃t1 s.t. (t0, t1) ∈ R≤ ∧ t1 = i} , where
R≤ is the standard ≤-ordering relation over the integers. In other words, each param-
eterized refinement variable κ(x0, . . . , xn) can be seen as the projection on the first
co-ordinate of a (n + 1)-ary relation over the variables (x0, . . . , xn). Thus, the prob-
lem of determining the satisfiability of the constraints is analogous to the problem of
determining the existence of appropriate relations.

From Relations to Imperative Programs. The second observation is that the problem
of finding appropriate relations can be reduced to the problem of analyzing a simple
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imperative program, which encodes each refinement variable with a function whose
input-output semantics correspond to the relation described by the refinement variable.

The imperative program derived from a set of constraintsC consists of a set of mutu-
ally recursive functions, one for each parameterized refinement variable in C, together
with a “main” function that checks the safety property. In particular, for the variable
κi with arity n + 1, the imperative program has a function Fi that enjoys the fol-
lowing function property: Fi takes n arguments v1, . . . , vn and (non-deterministically)
returns a value v0 iff the tuple v0, . . . , vn is in the relation corresponding to κi in ev-
ery relational model that satisfies C. Following this intuition, an environment binding
x :κi(y1, . . . , yn) can be encoded as a function call x ← Fi(y1, . . . , yn) and each lower-
bound constraint on kvari, i.e., where κi appears on the RHS can be encoded as a return
from Fi after a prefix of instructions that establishes the conditions of the LHS of the
lower-bound constraint. Next, we outline the translation [[C]], summarized in Figure 3.

Functions from Refinement Variables. Figure 4 shows the imperative program trans-
lated from the constraints for our running example. There are two functions F1 and F2,
corresponding to the refinement variables κ1 and κ2. The function F1 encodes the func-
tion property for κ1. The formals z1, z2 encode the second and third elements of the
relation κ1. The return value encodes the first element of the relation κ1. The body of the
function is the non-deterministic choice between a set of two blocks which encode κ1’s
lower-bound constraints (c1) and (c2) respectively. Similarly, the function F2 encodes
the function property for κ2, via a single block that encodes κ2’s only lower-bound
constraint (c4).

Bound Translation. The translation gathers all the constraints whose RHS have con-
crete refinements into a set

C ↓⊥ .= {c ∈ C | c ≡ # ≺ p}

and translates these constraints into the entry function f0. Intuitively, in such constraints
the RHS defines a concrete “upper bound” on the set of tuples that satisfy LHS. In the
translated μC program, the entry function enforces the upper bound via assert in-
structions as described below. The main function F0, in which execution starts, encodes
the concrete-upper-bound (i.e., “bounds-check”) constraint (c3) which stipulates that
the value of the variable j is within bounds. The body of F0 translates the constraint
to an assertion over the corresponding variables. As with the other functions, the main
function is the non-deterministic choice of all the blocks that encode the individual
upper-bound constraints.

Blocks. To ensure that Fi satisfies the function property, we first gather the set C ↓κi of
constraints where κi appears on the RHS of the constraint. Formally,

C ↓κi
.= {c ∈ C | c ≡ # ≺ κi( )}

Each constraint in the set C ↓κi is individually translated into a block of straight-line
assignments and assumes that has the block property that the state at the end of the
block, maps the formals z1, . . . , zn and the return value z0 to a tuple of values that
must belong in every relational model of κi that satisfies the constraint. Thus, the body
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instruction of Fi, i.e., the choice composition of all the blocks is such that each tuple of
inputs and output of Fi belongs in every relational interpretation of κi.

To ensure that the translation of each constraint G # {x1 :β | r1} ≺ {x2 :β | r2} in
C ↓κi has the block property, we translate the constraint into a straight-line block of
instructions with three parts: a sequence of instructions that establishes the environment
bindings ([[G]]), a sequence of instructions that “gets” the values corresponding to the
LHS ([[{x :β | r1}get]]) and a sequence of instructions that “sets” the return value of Fi

appropriately ([[{x :β | r2}]]set).

Get Instructions. Each environment binding is encoded as a local variable, and gets
translated as a “get” operation that defines the local variable as follows. Bindings with
unknown refinements κi(x0, . . . , xn) are translated into calls x0 ← Fi(x1, . . . , xn) to Fi

with arguments x1, . . . , xn, with the return value assigned to x0. Bindings with concrete
refinements p are translated into non-deterministic assignments followed by an assume
enforcing that the non-deterministically assigned values satisfy p.

Set Instructions. Each RHS refinement is translated into a “set” operation as follows. A
concrete refinement p is translated into an assert which enforces that the RHS refine-
ment is indeed an upper bound on the values populating the corresponding type in the
inclusion constraints. A parameterized refinement κi(x0, . . . , xn) is translated into an
assume that establishes the equalities between each xi and the formal zi representing
the ith tuple element, followed by a return x0. Thus, the translation guarantees that
any execution that reaches the end of the block is such that the tuple of values of the
return variable and formals of Fi satisfies the constraint to which the RHS refinement
(over κi) belongs.

Correctness of Translation. The correctness of the key translation step of the HMC
algorithm is stated by Theorem 2. Due to lack of space we defer the proof to [11].

Theorem 2. [Translation] C is satisfiable iff [[C]] is μC-safe.

Consider the constraint (c2) which is translated to the second block in F1 (i.e.,
the block after the non-deterministic choice []). The (trivial) environment bind-
ing i :int, is encoded as a non-deterministic assignment i ← nondet() fol-
lowed by the (elided) assume assume true. The (non-trivial) environment binding
{xs :α list | 0 ≤ len(xs)} is encoded as

xs ← nondet(); assume (0 ≤ len(xs))

where in the encoded program xs takes on values of a basic uninterpreted type ui,
and len is an uninterpreted function from ui to int. Similarly xs′ gets assigned an
arbitrary value, that has non-negative length and whose length is 1 less than that of xs.
The LHS of (c2) corresponds to the environment binding j :κ1(j, i + 1, xs′). Thus, in
the encoded block, the local j is defined via a (recursive) call to F1(i + 1, xs′). The
block is terminated by returning the value j, after assuming that function parameters z1

and z2 equal the tuple elements i and xs of the RHS parameterized refinement, thereby
ensuring that the right set of tuples populate corresponding refinement κ1.

The HMC Algorithm. The HMC algorithm takes the ML program, generates con-
straints (Step 1, Generate(·)) and translates them into an imperative program (Step 2,
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C ↓κ .
= {c ∈ C | c ≡  ≺ κi( )}

C ↓⊥ .
= {c ∈ C | c ≡  ≺ p}

[[C]]
.
= let κ1, . . . , κm = Ref. vars. of C in

[[0, 0, C ↓⊥]],
[[1, arity κ1, C ↓κ1]]
, . . . ,
[[m, arity κm, C ↓κm]]

[[i, a, {c1, . . . , cn}]] .
= fi(z1, . . . , za){[[c1]][] . . . [][[cn]]}

[[G  {x1 :β | r1} ≺ {x2 :β | r2}]] .
= [[G; {x1 :β | r1}]]get;

[[{x1 :β | r2[x1/x2]}]]set

[[{x :β | r};G]]get
.
= [[{x :β | r}]]get; [[G]]get

[[∅]]get
.
= skip

[[{x :β | p}]]get
.
= x← nondet();

assume p

[[{x0 :β | κi(x0, . . . , xn)}]]get
.
= x← fi(x1, . . . , xn)

[[{x :β | p}]]set
.
= assert p

[[{x0 :β | κ(x0, . . . , xn)}]]set
.
= assume (∧n

j=1xj = zj)
return x

Fig. 3. Translating Constraints To μC Programs

[[·]]). After this, it runs an off-the-shelf abstract interpretation or invariant generation tool
on the translated program, and uses the result of this analysis to determine whether the
original ML program is safe.

A safety verifier V is a procedure that takes an input program and returns Safe or
Unsafe. V is sound for a language if for each program x in the language, V(x) = Safe
implies that x is safe. HMC converts a verifier for the (first-order, imperative) language
μC to a verifier for the (higher-order, functional) language ML in the following way:

HMC(V) .= λe.V([[Generate(e)]])

The correctness of HMC follows by combining Theorems 1 and 2.

Theorem 3. [HMC Algorithm] If V is a sound verifier for μC, then HMC(V) is a
sound verifier for ML.

For the translated program shown in Figure 4, the CEGAR-based software model
checker ARMC [21] or the abstract interpretation tool INTERPROC [17] finds that the
assertion is never violated. From the invariants computed by the tools, we can find so-
lutions to the refinement variables:

κ1
.= i ≤ ν < i + len(xs) κ2

.= 0 ≤ ν < len(a)
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F0 (){
a← nondet();
xs← nondet(); assume (0 ≤ len(xs));
j← F2(a, xs);
assert (0 ≤ j < len(a));

}

F2 (z1, z2){
a← nondet();
xs← nondet(); assume (0 ≤ len(xs));
assume (len(a) = len(xs));
j← F1(0, xs);
assume (z1 = a ∧ z2 = xs);
return j;

}

F1 (z1, z2){
i← nondet();
xs← nondet(); assume (0 ≤ len(xs));
xs′ ← nondet(); assume (0 ≤ len(xs′) = len(xs)− 1);
j← nondet(); assume (j = i);
assume (z1 = i ∧ z2 = xs);
return j;

[]
i← nondet();
xs← nondet(); assume (0 ≤ len(xs));
xs′ ← nondet(); assume (0 ≤ len(xs′) = len(xs)− 1);
j← F1(i + 1, xs′);
assume (z1 = i ∧ z2 = xs);
return j;

}
Fig. 4. Translated Program

which suffice to typecheck the original ML program. Indeed, these predicates are easily
shown to satisfy the constraints (c1), (c2), (c3) and (c4).

By exploiting the refinement type structure, HMC reduces verification of programs
with advanced language features to verification of simple imperative programs that are
amenable to analysis by a wide variety of analysis algorithms and tools.

3 Experiments

To demonstrate the feasibility of HMC, we have instantiated it for OCAML with two
off-the-shelf imperative verifiers. We use the liquid types types infrastructure imple-
mented in DSOLVE [22] to generate refinement constraints from OCAML programs.
The implementation uses OCAML’s implementation of Hindley-Milner type inference
to obtain the ML types for each expression, after which the refinement constraints are
generated via a syntax-directed pass. Instead of parameterized refinement variables,
these constraints have variables with pending substitutions and a separate set of well-
formedness (WF) constraints that define the scope of each κ. In a first post-processing
step, we use the WF constraints to introduce parametrized refinement variables in place
of the pending substitutions. In a second post-processing step, we perform constraint
simplifications like constant propagation and resolution.
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We use two back-end imperative verifiers to verify the translated programs:
ARMC [21], a counterexample-guided software model checker based on predicate ab-
straction and interpolation-based refinement, and INTERPROC [17], a static analyzer
for recursive programs that uses a set of numerical domains such as polyhedra and oc-
tagons to compute invariants over numeric variables. In our experiments, we invoked
INTERPROC with a polyhedral domain implemented using the Polka library [9]. For
each benchmark, the invariants computed by ARMC and INTERPROC could be used to
synthesize refinement types for the original source ML program.

Results. Table 1 shows the results of running the two verifiers on suite of small OCAML

examples. In addition to the running time, we report the number of predicates discov-
ered by ARMC. The rows with prefix na_ are a subset of the array manipulating pro-
grams from [22], where the safety objective is to prove array accesses are within bounds.
The other rows correspond to the benchmark suite used to evaluate the DEPCEGAR ver-
ifier [24], where each program contains a set of assertions designed to enforce safety.
For each program we created a buggy version that contains a manually inserted safety
violation. We observe that despite our blackbox treatment of ARMC and INTERPROC

we obtain running times that are competitive with DEPCEGAR on most of the exam-
ples (DEPCEGAR uses a customized procedure for unfolding constraints and creating
interpolation queries that yield refinement types).

Refinements Discovered. Most of the atomic predicates discovered by ARMC and IN-
TERPROC fall into the two-variables-per-inequality fragment. However, the example
MASK from Section 2 required a predicate that refers to three variables, and thus could
not be verified using a simpler domain (e.g., octagons). In this case, INTERPROC deter-
mined the following relationship between the input and output variables of F1 and F2

(after existentially eliminating local variables):

F1 :: z1 ≤ ν ≤ z1 + len(z2) − 1
F2 :: 0 ≤ ν ≤ len(z1) − 1 ∧ len(z1) = len(z2)

These invariants are sufficient to show that the assertion in F0 always holds.

4 Discussions: Completeness

Since the safety verification problem for higher-order programs is undecidable, the
sound HMC cannot also be complete in general. Even in the finite-state case, in which
each base type has a finite domain (e.g., Booleans), completeness depends on the gen-
eration of refinement constraints.

For example, in our current formulation, we employ a context insensitive form of
constraint generation where we use the same template for a (monomorphic) function
at different call points. It has been shown through practical benchmarks that since
the types themselves capture relations between the inputs and outputs, the context-
insensitive constraint generation suffices to prove a variety of complex programs safe
[2, 12, 22]. Nevertheless, there can be a loss of information. Consider the program
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Table 1. Experimental Results: ARMC (s) denotes the time taken (in seconds) by ARMC to
analyze the translated program in its correct and buggy version; DNF indicates that the tool did
not finish on the benchmark. ARMC Preds. denotes the number of predicates iteratively found
by ARMC in order to verify the safe benchmarks. INTERPROC (s) denotes the time (in seconds)
taken by INTERPROC to analyze the translated program in its correct and buggy version; * means
INTERPROC was not precise enough to prove all assertions, i.e., raised false alarms.

Program ARMC (s) ARMC Preds. INTERPROC (s)

correct / buggy correct / buggy

na_dotprod-m 0.04 / 0.04 2 0.55 / 0.56
na_arraymax-m 0.32 / 0.05 6 0.40 / 0.23
na_bcopy-m 0.09 / 5.94 3 0.33 / 0.38
na_bsearch-m 0.91 / 0.10 11 9.73 / 2.76
na_insertsort 0.03 / 0.03 0 40.11 / 7.38
na_heapsort DNF / DNF *27.99 / 28.26
boolflip 0.23 / 0.19 5 0.05 / 0.09
lock 0.03 / 0.03 0 *0.19 / 0.23
mult-cps-m 0.03 / 0.03 0 0.08 / 0.12
mult-all-m 0.03 / 0.03 1 0.13 / 0.07
mult 0.03 / 0.03 2 0.08 / 0.06
sum-all-m 0.03 / 0.03 1 0.10 / 0.08
sum 0.03 / 0.03 2 0.02 / 0.02
sum-acm-m 0.04 / 0.03 2 *0.10 / 0.13

let check f x y = assert (f x = y) in
check (fun a -> a) false false ;
check (fun a -> not a) false true

For check, our constraint generation produces the template

({x :bool | κ1} → {κ2}) → {κ3} → {κ4} → unit

which is too weak to show safety as the template “merges” the two call sites for check.
However, we can regain sensitivity via the following refined intersection type [5, 6, 15,
18], for check:

∧ (x : bool → {ν = x}) → {¬ν} → {¬ν} → unit
(x : bool → {ν = ¬x}) → {¬ν} → {ν} → unit

It is important to note that our translation works holds for any set of implication
constraints (Theorem 2). Thus, one can improve the precision of HMC, by using a
more expressive refinement type system to generate the constraints, without having to
modify the back-end invariant generation. For example, to recover completeness in the
finite-state case, we can use intersection type system of [15] that uses a finite number
of “contexts” to generate the implication constraints, after which a finite-state checker
e.g., BEBOP [1] would suffice to give a complete verification procedure. (We omit this in
our current implementation as there can be a super-exponential number of implication
constraints, and the relational refinements were sufficient for our experiments.)
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Abstract. We present a layered bit-blasting-free algorithm for existen-
tially quantifying variables from conjunctions of linear modular (bit-
vector) equations (LMEs) and disequations (LMDs). We then extend
our algorithm to work with arbitrary Boolean combinations of LMEs
and LMDs using two approaches – one based on decision diagrams and
the other based on SMT solving. Our experiments establish conclusively
that our technique significantly outperforms alternative techniques for
eliminating quantifiers from systems of LMEs and LMDs in practice.

1 Introduction

Quantifier elimination (henceforth called QE) is the process of converting a for-
mula containing existential and/or universal quantifiers in a suitable logic into a
semantically equivalent quantifier-free formula. Formally, let A be a quantifier-
free formula over a set X of free variables in a first-order theory T . Consider the
quantified formula Q1y1Q2y2 . . . Qmym. A, where Y = {y1, . . . ym} is a subset
of X , and Qi ∈ {∃, ∀} for i ∈ {1, . . .m}. QE computes a quantifier-free formula
A′ with free variables in X \ Y such that A′ ≡T Q1y1Q2y2 . . . Qmym. A, where
≡T denotes semantic equivalence in theory T . This has a number of impor-
tant applications in formal verification and program analysis. Example applica-
tions include computing abstractions of symbolic transition relations, computing
strongest postconditions of program statements and computing interpolants in
CEGAR frameworks. Since ∀y. ϕ ≡ ¬∃y.¬ϕ in all first-order theories, it suffices
to focus on algorithms for eliminating existential quantifiers. This paper presents
one such algorithm for a fragment of the theory of bit-vectors that we have found
useful in verification of word-level RTL designs.

Currently, the most popular technique for eliminating quantifiers from bit-
vector formulae involves blasting bit-vectors into individual bits (Boolean vari-
ables), followed by quantification of the blasted Boolean variables. This
approach has some undesirable features. For example, blasting involves a bitwidth-
dependent blow-up in the size of the problem. This can present scaling problems
in the usage of Boolean reasoning tools (e.g. BDD based tools), especially when
reasoning about wide words. Similarly, given an instance of the QE problem,

� This work was supported by a research grant from Board of Research in Nuclear
Sciences, India.

G. Gopalakrishnan and S. Qadeer (Eds.): CAV 2011, LNCS 6806, pp. 486–503, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



A Quantifier Elimination Algorithm 487

blasting variables that are quantified may transitively require blasting other vari-
ables (that are not quantified) as well. This can cause the quantifier-eliminated
formula to appear like a propositional formula on blasted bits, instead of being
a bit-vector formula. Since reasoning at the level of bit-vectors is often more
efficient in practice than reasoning at the level of bits, QE using bit-blasting
might not be the best option if the quantifier-eliminated formula is intended to
be used in further bit-vector level reasoning. This motivates us to ask if we can
efficiently eliminate quantifiers in the theory of bit-vectors without resorting to
bit-blasting (or model enumeration) in practice. Ideally, we would like to ob-
tain such a QE procedure for the entire theory of bit-vectors. Unfortunately, we
do not have this yet. We therefore focus on a fragment of the theory, namely
Boolean combinations of equations and disequations of bit-vectors, that we have
found useful in word-level verification of RTL designs.

Since bit-vector arithmetic is the same as modular arithmetic on integers, our
algorithm can also be viewed as one for existentially quantifying variables from
a Boolean combination of linear modular integer equations and disequations. A
Linear Modular Equation (LME) is an equation of the form c1 ·x1+· · ·+cn ·xn =
c0 (mod 2p) where p is a positive integer constant, x1, . . . , xn are p-bit non-
negative integer variables, and c0, . . . , cn are integer constants in {0, . . . , 2p −1}.
Similarly, a Linear Modular Disequation (LMD) is a disequation of the form
c1 ·x1 + · · ·+ cn ·xn �= c0 (mod 2p). Conventionally, 2p is called the modulus of
the LME or LMD. For notational convenience, we will henceforth use “LMC” to
refer to a Linear Modular Constraint, i.e. an LME or LMD. Since every variable
in an LMC c1 ·x1+· · ·+cn·xn �� c0 (mod 2p), where ��∈ {=, �=}, represents a p-
bit integer, it follows that a set of LMCs sharing a variable must have the same
modulus. However, there are applications where we need to consider Boolean
combinations of LMCs that do not share any variable, and have different moduli.
In such cases, we propose to appropriately shift the moduli of LMCs, so that
all LMCs have the same modulus. This can always be done since the LMCs
λ1 ≡ c1 ·x1 + · · ·+cn ·xn �� c0 (mod 2p) and λ2 ≡ 2q ·c1 ·x′1 + · · ·+2q ·cn ·x′n ��
2q · c0 (mod 2p+q) are related in the following way: every solution of λ1 can
be bit-extended to give a solution of λ2, and every solution of λ2 can be bit-
truncated to give a solution of λ1. Hence, using λ2 in place of λ1 suffices for
checking satisfiability and also for finding solutions of Boolean combinations of
LMCs. In the remainder of this paper, we will assume without loss of generality
that whenever we consider a set of LMCs, all of them have the same modulus.

Our primary motivation for studying QE of LMCs comes from bounded model
checking (BMC) of word-level RTL designs. As an example, consider the syn-
chronous circuit shown in Fig. 1, with the relevant part of its functionality de-
scribed in VHDL in the right half of the figure. The thick shaded arrows and the
thin solid arrows represent 8-bit words and 1-bit lines respectively. The circuit
comprises a controller and two 8-bit registers, A and B. The controller switches
between two states, 0 and 1, depending on the value of A. In state 0, A works
as a down-counter until it reaches 0x001, in which case A loads itself with an

1 We use the 0x prefix to denote hexadecimal values.
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input value from InA and the controller switches to state 1. In state 1, A works
as an up-counter until it reaches 0xff, in which case it loads the value from
InA and the controller switches to state 0. Register B is always loaded with
the value of A+ 1 except when A has the value 0xff. If this happens in state 0
(down-counting state), B decrements its previously stored value; otherwise, B
increments its previously stored value.

....
if (clock’event and clock = ’1’) then
case state is
when ’0’ =>
if (A = x"00") A <= InA; state <= ’1’;
else A <= A-1; state <= ’0’; end if;
if (A = x"ff") B <= B-1;
else B <= A+1; end if;

when others =>
if (A = x"ff") A <= InA; state <= ’0’;

B <= B+1;
else A <= A+1; state <= ’1’; B <= A+1;
end if;

end case;
end if;

....

Fig. 1. An Example Circuit

A word-level transition relation, R, for this circuit can be obtained by con-
joining the following three equality relations, where all operations on A and B
are assumed to be modulo 28.

state′ = ite(state = 0, ite(A = 0x00, 1, 0), ite(A = 0xff, 0, 1))

A′ = ite(state = 0, ite(A = 0x00, InA, A− 1), ite(A = 0xff, InA, A + 1))

B′ = ite(state = 0, ite(A = 0xff, B− 1, A + 1), ite(A = 0xff, B + 1, A + 1))

In the above relations, state′, A′ and B′ refer to values of state, A and B after
the next rising edge of the clock. Note also that A, A′, B and B′ are 8−bit
wide bit-vector variables and state and state′ are propositional variables. Since
R is a conjunction of equalities involving ite, and since a = ite(b, c, d) represents
(b ∧ (a = c)) ∨ (¬b ∧ (a = d)), R is essentially a Boolean combination of LMCs.

The above circuit has the property that once started in state 0, it never
reaches state 1 with 0x00 in register B. Suppose we wish to use BMC to prove
that this property holds for the first N cycles of operation. This can be done
by unrolling the transition relation N times, conjoining the unrolled relation
with the negation of the property, and then checking for satisfiability of the
resulting constraint using an SMT solver that can reason about bit-vectors.
Since R contains all variables (in unprimed and primed versions) that appear in
the RTL description, unrolling R a large number of times gives a constraint with
a large number of variables. This problem is particularly acute for circuits with
a large number of internal state variables. While the number of variables in a
constraint is not the only factor that affects the performance of an SMT solver,
for large enough values of N , the increased variable count indeed has an adverse
effect on the performance of the solver, as indicated by our experiments.
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In order to alleviate the above problem, one can use an abstract transition
relation R′ that relates only a chosen subset of variables relevant to the property
being checked, while abstracting the relation between the other variables. In our
example, we can compute such an R′ by existentially quantifying the bit-vector
variables A and A′ from R. This gives R′ as:

((state′ = 1) ∧ (B′ = 0x01)) ∨
((state′ = 0) ∧ (B′ = ite(state = 0, B− 1, B + 1))) ∨

((state′ = state) ∧ (B′ �= 0x00) ∧ (B′ �= 0x01))

On careful examination, it can be seen that if we unroll R′ (instead of R) during
BMC, we can still prove that the circuit never reaches state 1 with 0x00 in B, if it
starts in state 0. Since R′ contains fewer variables thanR, the constraint obtained
by unrollingR′ has fewer variables. In general, this can lead to significantly better
performance of the back-end SMT solver, as demonstrated in our experiments.

The example presented above is representative of a more general scenario. In
general, Boolean combinations of LMCs arise when building transition relations
of RTL designs and/or embedded systems containing conditional statements that
check for equalities of words/registers. Building an abstract transition relation
in such cases requires existentially quantifying variables from Boolean combina-
tions of LMCs. Obtaining the abstract transition relation at the word-level is
particularly appealing since it allows word-level reasoning to be applied to the
abstraction. This motivates us to study the problem of eliminating quantifiers
from Boolean combinations of LMCs without resorting to bit-blasting (or model
enumeration) in practice.

Contributions. There are two primary contributions of this paper. First, we
describe a bit-blasting-free algorithm for eliminating quantifiers from conjunc-
tions of LMCs. The algorithm is based on a layered approach, i.e., the cheaper
layers are invoked first and more expensive layers are called only when required.
Later, we extend this to an algorithm for eliminating quantifiers from Boolean
combinations of LMCs. While our algorithm uses a final layer of model enumer-
ation for the sake of theoretical completeness, extensive experiments indicate
that we never need to invoke this layer in practice. Our second contribution is
an extensive set of carefully conducted experiments that not only demonstrate
the effectiveness of our approach over alternative techniques, but also allows
us to identify criteria for choosing the right QE technique for a given problem
instance.

Related Work. Several interesting approaches have been proposed earlier for
reasoning about LMEs (e.g., [6,7]). Although our study indicates that non-trivial
counts of LMDs appear in constraints arising from real verification problems,
LMDs have traditionally received relatively less attention. Jain et al [7] showed
that the satisfiability problem for a conjunction of LMCs is NP-hard. However,
their work subsequently focused on systems of LMEs and Linear Diophan-
tine Equations and Disequations, and discussed algorithms to compute inter-
polants in such systems. Bit-blasting [3] followed by bit-level QE is arguably the
dominant technique used in practice for eliminating quantifiers from bit-vector
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constraints. As discussed earlier, this approach, though simple, destroys the
word-level structure of the problem and does not scale well for LMCs with large
modulus. Since LMEs and LMDs can be expressed as formulae in Presburger
Arithmetic (PA) [3], QE techniques for PA (e.g. those in [5]) can also be used to
eliminate quantifiers from Boolean combinations of LMCs. Similarly, automata-
theoretic approaches for eliminating quantifiers from PA formulae [8] can also be
used. However, converting the results obtained as PA formulae back to Boolean
combinations of LMCs is often difficult. Also, empirical studies have shown that
using PA techniques to eliminate quantifiers from Boolean combinations of LMCs
often blows up in practice [3]. The work that is most closely related to our work
is that of Ganesh and Dill [6]. The authors of [6] present a technique for reduc-
ing LMEs to a solved form by selecting variables in a specific order. While this
does not directly give us a technique to eliminate a user-specified variable from
a conjunction of LMEs, their work can be extended to achieve this. More impor-
tantly, [6] does not consider the problem of eliminating variables in constraints
involving LMDs. This problem is addressed in our work.

2 Quantifier Elimination for a Conjunction of LMCs

The problem we wish to solve in this section can be formally stated as follows.
Given a set of LMCs over variables x1, . . . , xn, let A denote the conjunction of
the LMCs. Without loss of generality, we wish to compute A′ ≡ ∃x1 · · · ∃xt. A,
where A′ is a Boolean combination of LMCs. For reasons of succinctness, we
also require that A′ contains no ground terms other than integer constants,
and no ground (sub-)formulas other than true and false. This problem is easily
seen to be NP-hard. This follows from the facts: (i) the satisfiability problem
for a conjunction of LMCs is NP-hard, even when all moduli are a priori fixed
to 4 (see [7]), and (ii) a conjunction of LMCs A over x1, . . . , xn is satisfiable
iff an algorithm for computing A′ ≡ ∃x1 · · · ∃xn. A returns true (due to the
succinctness requirement of A′).

Since an algorithm for computing ∃xi. A can be used in an iterative way to
compute ∃x1 · · · ∃xt. A, we will initially focus on the (seemingly simpler) problem
of computing ∃xi. A in the subsequent discussion. All LMCs considered in the
remainder of this section have modulus 2p, for some positive integer p, unless
stated otherwise. For notational clarity, we will therefore omit mentioning “
(mod 2p)” with LMCs in the following discussion. We have skipped the proofs
of most lemmas and details of some procedures due to lack of space. For the
interested reader, these details can be found in [13].

Lemma 1. An LMC c1 · x1 + · · ·+ cn · xn �� c0 can be equivalently expressed as
2k1 · x1 �� t1, where ��∈ {=, �=}, t1 is a term free of x1, and k1 is an integer
such that 0 ≤ k1 ≤ p− 1.

Example: All LMCs in this example have modulus 8. Consider the LME 6x+
4y = 0. Rearranging the terms modulo 8, we get 3 · 21x = 4y. Multiplying by 3
(multiplicative inverse of 3 modulo 8) and simplifying gives, 21x = 4y.
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Henceforth whenever we express an LMC as 2ki · x1 �� ti (mod 2p) where
��∈ {=, �=}, it will be implicitly understood that “ti is a term free of x1 and ki

is an integer such that 0 ≤ ki ≤ p − 1”. Lemma 1 ensures that there is no loss
of generality in doing this.

Lemma 2. ∃x1. (2k1 · x1 = t1) (mod 2p) ≡ (2p−k1 · t1 = 0) (mod 2p)

Example: All LMCs in this example have modulus 8. ∃y. (21.y = 5.x + 2) ≡
(23−1.(5.x+ 2) = 0) ≡ (4.x = 0)

Lemma 3. Let A be the conjunction of m LMEs of the form 2ki · x1 = ti,
where i ranges from 1 through m. Then ∃x1. A can be equivalently expressed as
a conjunction of LMEs each of which is free of x1.

Example: All LMCs in this example have modulus 8. Consider the problem
of computing ∃y. ((21y = 5x + 2) ∧(22y = 5x + 6z) ∧(21y = 2x + 4)). This
can be equivalently expressed as ∃y. ((2y = 5x + 2) ∧(2 · (5x + 2) = 5x + 6z)
∧(5x + 2 = 2x + 4)). Simplifying modulo 8, we get ∃y. ((2y = 5x + 2)) ∧(5x +
2z = 4) ∧ (3x = 2). Using Lemma 2, we obtain the final result as (4x = 0)
∧(5x+ 2z = 4) ∧ (3x = 2).

Lemma 4. Let A be the conjunction of r LMCs of the form 2ki ·x1 �� ti, where
��∈ {=, �=} and i ranges from 1 through r. Let 2k1 ·x1 = t1 be the LME with the
minimum ki among all LMEs in A. Then ∃x1. A ≡ ψ1 ∧ ∃x1. ψ2, where ψ1 is a
conjunction of LMCs independent of x1, and ψ2 is a conjunction of LMDs and
at most one LME i.e., 2k1 · x1 = t1. In addition, ψ2 contains only those LMDs
from A in which the coefficient of x1 is of the form 2ki , where ki < k1.

Example: All LMCs in this example have modulus 8. Consider the problem
of computing ∃y. ((21y = 5x + 2) ∧(22y = 5x + 6z) ∧(21y �= 2x + 4) ∧(20y �=
6x+7z)). This can be equivalently expressed as ∃y. ((2y = 5x+2) ∧(2·(5x+2) =
5x + 6z) ∧(5x + 2 �= 2x + 4) ∧(y �= 6x + 7z)). Simplifying modulo 8, we get
(5x + 2z = 4) ∧ (3x �= 2) ∧∃y. ((2y = 5x + 2) ∧ (y �= 6x + 7z)). Note that ψ1

and ψ2 here are (5x + 2z = 4) ∧ (3x �= 2) and (2y = 5x + 2) ∧ (y �= 6x + 7z)
respectively.

For the remainder of the paper, we adopt the convention that algorithms for
eliminating a single variable will have names starting with “QE1 ”,while those
for eliminating multiple variables will have names starting with “QE ”.

Lemmas 1 through 4 yield two simple algorithms: (a) QE1 LME that takes an
LME and a variable to quantify out, and returns the equivalent quantifier-free
formula (based on Lemma 2), and (b)QE1 Layer1 that takes a conjunction of
LMCs and a variable x1 to quantify out and returns the equivalent conjunction
of ψ1 and ∃x1.ψ2 (as given by Lemma 4). As we will soon see, QE1 Layer1 forms
the core of the first layer of our layered QE algorithm.

If the ki’s of all LMDs in A are such that k1 ≤ ki, then ∃x1. ψ2 reduces to
∃x1. (2k1 · x1 = t1). According to Lemma 2, this is equivalent to 2p−k1 · t1 = 0.
Hence, in this case, algorithms QE1 Layer1 and QE1 LME suffice to compute
∃x1. A. In general, however, ψ2 may contain LMDs containing x1 that require
further processing before x1 is eliminated. We describe techniques for doing this
in the following subsections.
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2.1 Dropping Unconstraining LMDs

We now consider the problem of simplifying ∃x1. ψ2 obtained above, when ∃x1. ψ2

contains LMDs. Let ψ2 ≡ ξ ∧ λ, where λ is an LMD and ξ is a conjunction of
LMCs. We say that λ is unconstraining in ∃x1. ψ2 iff ∃x1. (ξ ∧ λ) ≡ ∃x1. ξ. Un-
constraining LMDs can simply be dropped from ∃x1. ψ2, thereby simplifying the
task of QE. Unfortunately, identifying all unconstraining LMDs from ψ2 involves
invoking an SMT solver for quantified bit-vector formulas. In this subsection, we
present a sound technique for identifying a subset of unconstraining LMDs in
∃x1. ψ2. Our approach exploits the fact that an LMD is satisfied even if a single
bit in the left-hand side of the LMD differs from the corresponding bit in the
right-hand side. We therefore propose to identify LMDs in ∃x1. ψ2 that can be
satisfied by selectively assigning values to specific bits of x1, without causing
any other LME or LMD in ∃x1. ψ2 to be violated. Since x1 is existentially quan-
tified, these LMDs are effectively unconstraining in ∃x1. ψ2. We illustrate this
idea below through an example.

Consider ∃x. (ξ∧λ), where ξ ≡ (4x = 6y+2z)∧(2x �= 2y+4z)∧(2x �= 6y+6z)
and λ ≡ (x �= y + z), and all LMCs have modulus 8. For clarity of exposition,
we use the notation x[i] to denote the ith bit of a bit-vector x, and adopt the
convention that x[0] denotes the least significant bit of x. We claim that any
solution of ξ can be “engineered” by possibly modifying the value of x[2] to give
a solution of ξ ∧ λ, and vice versa. In order to see why this is true, note that
the LME 4x = 6y + 2z constrains only x[0] and the LMDs (2x �= 2y + 4z),
(2x �= 6y+6z) constrain only x[0] and x[1]. Therefore, the value of x[2] does not
affect satisfaction of ξ. Any solution of ξ can therefore be engineered to become
a solution of ξ ∧ λ by ensuring that x[2] differs from the most-significant bit
of y + z. Hence, ∃x. (ξ) ⇒ ∃x. (ξ ∧ λ). The converse, i.e. ∃x. (ξ ∧ λ) ⇒ ∃x. (ξ)
obviously holds. Hence in this example, (x �= y + z) is an unconstraining LMD
in ∃x. (ξ ∧ λ).

DropLMDSimple(E, D, x1)
core ← E;
while(core �= E ∪ D)

if (isExt(core, E ∪ D, x1))
return core;

else
d ← getLstCnstr(D\core);
core ← core ∪ d;

return core;

DropImpliedLMD(E, D, x1)
while(true)
impl ← NULL;
for each LMD d ∈ D

if (E ∪ (D\d) ⇒d)
impl ← d; break;

if (impl = NULL)
break;

D ← D\impl;
return E∪D;

Fig. 2. Algorithms to drop unconstraining LMDs

The above idea leads to a simple algorithm, called DropLMDSimple, shown
in Fig. 2. This algorithm takes as inputs a set of LMEs E, a set of LMDs D,
and a variable x1 to be quantified from the conjunction of all LMCs in E ∪D.
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Algorithm DropLMDSimple returns a subset of LMCs in E ∪ D such that the
result of quantifying x1 from the conjunction of LMCs in this subset is equivalent
to the result of quantifying x1 from the conjunction of LMCs in E ∪D.

Algorithm DropLMDSimple computes the desired subset in a variable core
that is initialized to E. Subsequently, it determines if any solution to the con-
junction of LMCs in core can be engineered by modifying specific bits of x1 to
give a solution to the conjunction of LMCs in E∪D. This is achieved by invoking
a function isExt. If such an engineering is indeed possible, then all LMDs not
in core are unconstraining, and algorithm DropLMDSimple returns core. Oth-
erwise we use the function getLstCnstr to identify the LMDs in D \ core whose
truth depends on the least number of bits of x1. Intuitively, these LMDs are the
most difficult ones to satisfy among the LMDs in D\core. These LMDs are then
included in core and the process repeats. Clearly, algorithm DropLMDSimple
terminates since core cannot have more LMCs than those in E ∪D.

Since each LMD is of the form 2ki ·x1 �= ti, the LMD with the largest ki is the
one whose truth depends on the least number of bits of x1. This gives a simple
implementation of function getLstCnstr. One possible implementation of isExt
is through the use of an SMT solver that checks if one quantified formula implies
another quantified formula. However, this is inefficient in general. Instead, we
propose an implementation of isExt based on the following Lemma.

Lemma 5. Let kcore be the smallest among the ki’s of all LMCs 2ki · x �� ti
in core. Let D \ core be expressed as {(2k1 · x �= t1), . . . , (2kn · x �= tn)}. If

2kcore −
n∑

i=1

2ki ≥ 1, any solution to the conjunction of LMCs in core can be

engineered to give a solution to the conjunction of LMCs in E ∪D.

We give a sketch of the proof of Lemma 5. Let C1 be the conjunction of LMCs
in core and C2 be the conjunction of LMDs outside core. Let π be any solution
of C1. Clearly π constrains only bits x[0] through x[p − kcore − 1] of x. Hence
there are 2kcore ways in which bits x[p− kcore] through x[p− 1] can be assigned
values without affecting the truth of any LMC in C1. It can be shown that η =

2kcore −
n∑

i=1

2ki under-approximates the number of ways in which bits x[p−kcore]

through x[p − 1] can be assigned values in the solution π of C1 such that we
obtain a solution of C2 while still satisfying C1. Therefore if η ≥ 1, there exists
at least one assignment of values to bits x[p− kcore] through x[p− 1] such that
π can be engineered to be a solution of the conjunction of LMCs in E ∪D.

DropLMDSimple may not be able to identify all the unconstraining LMDs in
∃x1. ψ2. For example, consider the problem ∃x. ((2x = y) ∧ (x �= 2y) ∧ (x �= y)),
where all LMCs have modulus 8. Here core is {2x = y}, kcore = 1, k1 = k2 =
0. Therefore, η = 0 and DropLMDSimple concludes that it is not possible to
engineer a solution of (2x = y) to give a solution of (2x = y)∧(x �= 2y)∧(x �= y)
by assigning values to specific bits of x. Hence, DropLMDSimple cannot identify
any LMD to drop. However, it can be seen that (2x = y) ∧ (x �= 2y) ⇒ (x �= y).
Hence ∃x. ((2x = y) ∧ (x �= 2y) ∧ (x �= y)) ≡ ∃x. ((2x = y) ∧ (x �= 2y)). Once
x �= y is dropped, DropLMDSimple can further simplify ∃x. ((2x = y)∧(x �= 2y))
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to ∃x. (2x = y). Based on this idea, we present an algorithm to drop implied
LMDs called DropImpliedLMD (see Fig. 2). The notation used in this algorithm
is the same as that used in algorithm DropLMDSimple. The implication check
in DropImpliedLMD requires invoking an SMT solver, in general.

We now present an algorithm QE1 Layer3 which drops LMDs from ∃x1. ψ2

using DropLMDSimple and DropImpliedLMD. Given ∃x1. ψ2, QE1 Layer3 ini-
tially invokes DropLMDSimple to drop unconstraining LMDs. If one or more
LMDs remain, DropImpliedLMD is invoked to identify the implied LMDs and
drop them. If there exist LMDs in the output of DropImpliedLMD, we invoke
DropLMDSimple once again. Thus finally, we are left with a conjunction of
LMCs ψ′

2 with possibly fewer LMDs vis-a-vis to ψ2, while guaranteeing that
∃x1. ψ2 ≡ ∃x1. ψ

′
2.

The algorithms QE1 Layer1, DropLMDSimple and QE1 Layer3 form the
first three layers of our layered QE algorithm. We present in Fig. 3 a proce-
dure QE1 Layers1To3 that tries to compute ∃x1. A using these layers. Initially
QE1 Layer1 is called to reduce ∃x1. A to ψ1 ∧ ∃x1. ψ2. If ψ2 is free of LMDs,
QE1 LME is called to compute ∃x1. ψ2; hence ∃x1. A gets computed by the first
layer itself. If ψ2 is not free of LMDs, QE1 Layers1To3 initially calls DropLMD-
Simple and later on QE1 Layer3 (if required) to drop the LMDs. If all the
LMDs in ∃x1. ψ2 are dropped by DropLMDSimple (or QE1 Layer3 ), ∃x1. A gets
computed in the second (or third) layer. Otherwise, QE1 Layers1To3 returns
ψ1 ∧ ∃x1. ψ

′
2 such that ψ1 ∧ ∃x1. ψ

′
2 ≡ ∃x1. A. The techniques required to com-

pute such (harder) instances of ∃x1. A are presented in the following subsection.

2.2 Splitting and Model Enumeration

Let us have a closer look at those instances of ∃x1. A that cannot be computed
by QE1 Layers1To3. The difficulty in QE in such cases arises from the fact that
there are some bits x1 constrained by the LMDs but not by any LME. For
example, consider the problem of computing ∃x. ((2x = a) ∧ (x �= b) ∧ (x �= c))
where all the LMCs have modulus 8. The LME (2x = a) constrains only bits
x[1] and x[0] of x, whereas the LMDs constrain bits x[0], x[1] and x[2]. It can
be observed that in this example, QE cannot be performed by QE1 Layers1To3.
We now describe two techniques to compute such instances of ∃x1. A, namely
Splitting and Model Enumeration2.

Splitting is based on the observation that each LMD 2ki · x1 �= ti can be
equivalently expressed as the disjunction of two constraints : an LMD (2k ·x1 �=
2k−ki · ti) and a conjunction ((2k · x1 = 2k−ki · ti) ∧ (2ki · x1 �= ti)) where
ki < k. Repeated application of this converts A into A1 ∨ . . .∨An where each Ai

is a conjunction of LMCs. Thus, ∃x1. A is equivalent to ∃x1. A1 ∨ . . . ∨ ∃x1. An

where each subproblem ∃x1. Ai is potentially “simpler” to solve than the original
problem ∃x1. A. For example, in the previous problem, the LMD (x �= b) can

2 For all the benchmarks we have experimented with, Splitting and Model Enumeration
were never required to eliminate quantifiers. Hence they are only briefly described
here.
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be split into (2x �= 2b) ∨ ((2x = 2b) ∧ (x �= b)) converting the problem into
∃x. ((2x = a)∧(2x �= 2b)∧(x �= c))∨∃x. ((2x = a)∧(2x = 2b)∧(x �= b)∧(x �= c)).

Model Enumeration is based on the observation that ∃x1. A can be equiva-
lently expressed as A|x1←0 ∨ . . . ∨A|x1←2p−1 (where A|x1←i denotes A with x1

replaced by constant i).
We call (i) the procedure that makes use of Splitting and Model Enumeration

to compute ∃x1. A as QE1 Layer4 and (ii) the procedure that makes use of
QE1 Layer4 to compute ∃x1 · · · ∃xt. A as QE Layer4.

We present in Fig. 3 the algorithm QE LMC that computes ∃x1 · · · ∃xt. A
using QE1 Layers1To3 and QE Layer4. QE LMC initially tries to eliminate the
quantified variables x1, . . . , xt one by one by invoking QE1 Layers1To3. Vari-
ables that cannot be eliminated by QE1 Layers1To3 are collected in a set Y.
It can be observed that after the for loop in QE LMC, ∃x1 · · · ∃xt. A can be
equivalently expressed as ϕ1∧∃Y. ϕ2 where ϕ1 and ϕ2 are conjunctions of LMCs.
This is achieved using the function scopeReduce in Fig. 3. Finally ∃Y. ϕ2 is com-
puted by QE Layer4. The result is conjoined with ϕ1 to obtain the final result.
QE Layer4 computes ∃Y. ϕ2 as a disjunction of conjunctions of LMCs. Hence
the final result is, in general, a Boolean combination of LMCs.

QE1 Layers1To3(A, x1)
ψ1 ∧ ∃x1. ψ2 ← QE1 Layer1 (A, x1);
if (ψ2 is free of LMDs)

return (ψ1∧ QE1 LME (ψ2, x1));
else
e ← LME in ψ2;
ψD,2 ← set of LMDs in ψ2;
if(DropLMDSimple({e}, ψD,2, x1) = {e})

return (ψ1∧ QE1 LME (e, x1));
else
ψ′

2 ← QE1 Layer3 ({e}, ψD,2, x1);
if(ψ′

2 = e)
return (ψ1∧ QE1 LME (e, x1));

else return (ψ1 ∧ ∃x1. ψ
′
2);

QE LMC(A, {x1, . . . , xt})
Y ← {};
for each xi ∈ {x1, . . . , xt}
A′ ← QE1 Layers1To3 (A, xi);
if(A′ is free of xi)
A ← A′;

else /*A′ ≡ ψ1 ∧ ∃xi. ψ
′
2*/

A ← ψ1 ∧ ψ′
2;

Y ← Y ∪ {xi};
ϕ1 ∧ ∃Y. ϕ2 ← scopeReduce(A, Y );
ϕ′

2 ← QE Layer4 (ϕ2, Y );
return ϕ1∧ ϕ′

2;

Fig. 3. Procedures QE1 Layers1To3 and QE LMC

3 Boolean Combinations of LMCs

Algorithm QE LMC described above eliminates a set of variables from a con-
junction of LMCs. In this section, we explore two approaches for extending
QE LMC to Boolean combinations of LMCs. Specifically we investigate a Deci-
sion Diagram (DD) based approach and a DAG based (or SMT solving based)
approach.
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3.1 DD Based Approach

We introduce a data structure called Linear Modular Decision Diagram (LMDD)
that represents Boolean combinations of LMCs. LMDDs are like BDDs [4], but
with nodes labeled by LMEs. The problem we wish to solve in this subsection
can be formally stated as follows. Given an LMDD f representing a Boolean
combination of LMCs over a set of variables X , we wish to compute an LMDD
g ≡ ∃V. f where V ⊆ X .

The algorithms presented in this subsection use the following helper functions:
a) createLMDD for creating an LMDD from a DAG representing a Boolean
combination of LMCs, b) isUnsat to determine if the conjunction of LMCs in
the given set is unsatisfiable, d) getConjunct to compute the conjunction of
LMCs in a given set ϕ, e) AND, OR, NOT, ITE to perform the basic operations
on LMDDs indicated by their names. We denote a non-terminal LMDD node f
as (P (f), H(f), L(f)) where P (f) is the LME labeling the node and H(f) and
L(f) are the high child and low child respectively as defined in [4].

A straightforward procedure to compute ∃V. f is to apply QE LMC to each
path originating at the node f similar to Black-box QE on Linear Decision
Diagrams described in [1]. However, as observed in [1], this technique is not
amenable to dynamic programming and the number of recursive calls to the
procedure is linear in the number of paths in f (which is can be exponential in
the number of nodes).

In the following discussion we present a more efficient procedure QuaLMoDE
to compute ∃V. f . QuaLMoDE makes use of a procedure called QE1 LMDD
that eliminates a single variable v from f (see Fig. 4). To compute ∃v. f , we call
QE1 LMDD with arguments f , { }, { } and v. QE1 LMDD performs a recursive
traversal of the LMDD rooted at f collecting the set of LMEs E, and the set of
LMDs D, containing v that it encountered along the path from f .

In general, if E denotes the set of LMEs and D denotes the set of LMDs,
QE1 LMDD(f , E, D, v) computes an LMDD for ∃v. (f ∧CE ∧CD), where CE

and CD denote the conjunctions of LMEs in E and LMDs in D, respectively.
Using Lemma 1, E can be expressed as {(2k1 · v = t1), . . . , (2kn · v = tn)}.
Without loss of generality, let k1 be the smallest among k1, . . . , kn. Let g be an
internal non-terminal node of f . Thus g can be represented as (P (g), H(g), L(g)).
Suppose P (g) is (2k · v = t) where k ≥ k1. It can be observed that g can
then be simplified to

(
(2k−k1 · t1 = t), H(g), L(g)

)
using the LME (2k1 · v = t1).

Procedures selectLME and simplifyLMDD (see Fig. 4) respectively perform the
selection of LME with the minimum k among the LMEs in E and simplification
of f using the selected LME as described above. The procedure applyL1 in Fig. 4
returns an LME equivalent to the argument LME using Lemma 1.

It can be observed if the same LMDD node is encountered with the same
LME following two different paths, the results of the calls to simplifyLMDD
must be the same. Hence simplifyLMDD can be implemented with dynamic
programming.

Note that if simplifyLMDD is successful in eliminating all occurrences of vari-
able v using the LME selected, QE1 LMDD returns without any further recursive
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QE1 LMDD(f, E, D, v)
if (f = 0 ∨ isUnsat(E ∪ D))
return 0;

if (f = 1)
return createLMDD(QE LMC
(getConjunct(E ∪ D), {v}));

if (E �= φ)
e1 ← selectLME (E);
f’ ← simplifyLMDD(f, v, e1);
if (f’ is free of v)

return AND(f’, createLMDD
(QE LMC (getConjunct(E ∪ D), {v})));

else
f’ ← f;

e ← P(f’);
if (e is free of v)

return ITE(e, QE1 LMDD(H(f’), E, D, v),
QE1 LMDD(L(f’), E, D, v));

else
return OR
(QE1 LMDD(H(f’), E ∪ {e}, D, v),
QE1 LMDD(L(f’), E, D ∪{¬e}, v));

simplifyLMDD(f, v, e1)
if (f = 1 or f = 0)
return f;

e ← P(f);
if (e is free of v)

return ITE(e,
simplifyLMDD(H(f), v, e1),
simplifyLMDD(L(f), v, e1));

else
applyL1 (e, v);
/* gives (2k · v = t) */
applyL1 (e1, v);
/* gives (2k1 · v = t1) */
if (k ≥ k1)

return ITE(2k−k1 · t1 = t,
simplifyLMDD(H(f), v, e1),
simplifyLMDD(L(f), v, e1));

else
return ITE(e,
simplifyLMDD(H(f), v, e1),
simplifyLMDD(L(f), v, e1));

Fig. 4. Algorithms QE1 LMDD and simplifyLMDD

calls. The procedure QE1 LMDD can be repeatedly invoked to compute ∃V. f .
This is implemented in the procedure QuaLMoDE.

3.2 DAG Based Approach

The problem we wish to solve in this subsection is the following. Given a DAG f
representing a Boolean combination of LMCs over a set of variables X , we wish
to compute a DAG g ≡ ∃V. f where V ⊆ X .

We present an algorithm Monniaux to compute ∃V. f , that is a simple exten-
sion of the algorithm EXISTELIM in [2]. EXISTELIM as given in [2] computes
∃V. f where f is a Boolean combination of linear inequalities over reals. A naive
way of computing this is by converting f to DNF by enumerating all satisfying
assignments, and by using a QE technique for conjunctions of linear inequal-
ities. EXISTELIM improves upon this by generalizing a satisfying assignment
to obtain a cube of satisfying assignments, and by projecting the cube on the
remaining variables (not in V ) before its complement is conjoined with f and
further satisfying assignments are found.

The algorithm Monniaux designed by us is an extension of the algorithm
EXISTELIM, with the following changes: a) The predicates are LMCs, not linear
inequalities over reals, b) the projection algorithm PROJECT (see [2]) is replaced
by QE LMC, and c) the algorithm GENERALIZE2 (see [2]) for generalization
of conjunctions is replaced by an algorithm GENERALIZE2 LMC.



498 A.K. John and S. Chakraborty

Given a formula G and a conjunction M of literals of G such that M ⇒ ¬G,
the algorithm GENERALIZE2 described in [2] removes unnecessary literals from
M and returns M ′ such that M ⇒ M ′ and M ′ ⇒ ¬G. However, in our exper-
iments with LMCs, we have found that GENERALIZE2 is prohibitively time
consuming as it involves a large number of SMT solver calls.We therefore de-
signed algorithm GENERALIZE2 LMC that works in the following way. Given
a conjunction of literalsM , we effectively have an assignment of Boolean value to
each atomic predicate in the formula ¬G. We evaluate the propositional skele-
ton (DAG representation of the propositional structure) P of ¬G using these
Boolean values assigned to the atomic predicates. This assigns a Boolean value
bn to each node n in P . We now find the subset Sn of literals in M that is
sufficient to evaluate n to bn. Let Sr be the set of literals found in this way for
the root r of P . Let M ′ be the conjunction of literals in Sr. It is easy to see that
M ⇒M ′ and M ′ ⇒ ¬G. We illustrate this idea with a simple example. Let ¬G
be the formula ite(A,B,C)∨ite(D,E, F ) and letM be A∧B∧¬C∧¬D∧¬E∧F
where A, B, C, D, E and F are LMCs. It is easy to see that the set of literals
{A,B} is sufficient to cause ite(A,B,C) to evaluate to true. Similarly {¬D,F} is
sufficient to cause ite(D,E, F ) to evaluate to true. Hence, {A,B} (or {¬D,F})
is sufficient to cause ¬G to evaluate to true. Hence GENERALIZE2 LMC would
therefore return A ∧B (or ¬D ∧ F ) as M ′.

4 Experimental Results

We performed three sets of experiments to achieve the following goals: a) eval-
uate the performance of QuaLMoDE, Monniaux and QE LMC, b) compare the
performance of QE LMC with alternative QE techniques and c) evaluate the
utility of our QE algorithms in word-level RTL verification.

The experiments were performed on a 1.83 GHz Intel(R) Core 2 Duo ma-
chine with 2GB memory running Ubuntu 8.04. We implemented our own LMDD
package for carrying out QE experiments using the DD based approach. In our
implementation, we convert LMDs with modulus 2 to equivalent LMEs as a
simplification step. Hence, in this section “LMD” refers to LMDs with modulus
greater than 2.

Evaluation of QuaLMoDE, Monniaux and QE LMC : In order to evalu-
ate QuaLMoDE and Monniaux, we used a benchmark suite consisting of 210 real
benchmarks and 212 artificial benchmarks. The real benchmarks were obtained
in the following manner. We took a set of real word-level VHDL designs and
derived their symbolic transition relations. One set of real benchmarks was ob-
tained by quantifying out all the internal variables (i.e. neither input nor output
of the top-level module) from these symbolic transition relations. Effectively this
gives abstract transition relations of the designs. The second set of real bench-
marks were obtained by applying iterative squaring to the symbolic transition
relations for 3-5 steps. Each step of iterative squaring involves quantifying out
one copy of all state variables in the symbolic transition relations. We observed
a significant number of LMDs in these benchmarks when expressed in Negation
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Normal Form (NNF) (see Fig. 5(a)). In order to generate the artificial bench-
marks, we selected some of our real benchmarks and some SMTLib benchmarks
from the category QF BV/bruttomesso/simple processor/ [10] and used random
choices for the set of variables to be eliminated3. The total number of variables
(N), number of variables to be eliminated (E) and the number of bits to be
eliminated in the entire set of benchmarks range from 3 to 175, 1 to 170 and 1
to 1265 respectively.
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We measured the QE time by QuaLMoDE and Monniaux for each benchmark
(for QuaLMoDE, this includes the time taken to build LMDDs). It was observed
that (see Fig. 5(b)) for benchmarks with N−E below a certain threshold t1 and
E/N above a certain threshold t2, Monniaux outperformed QuaLMoDE in most
cases. For our benchmark suite, t1 and t2 were empirically estimated as 75 and
0.5 respectively. For the other benchmarks, we observed that QuaLMoDE out-
performed Monniaux. It was also observed that, for benchmarks with t1 ≤ N−E,
Monniaux timed out irrespective of E/N . We figured out that the different be-
haviours of Monniaux and QuaLMoDE were due to the following reasons. (i) For
3 The SMTLib benchmarks contain bit-vector operators like selection and concatena-

tion, which our work does not address. We introduced a fresh variable to denote the
result of each such operator.
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benchmarks with low N −E and high E/N , the interleaving of projection inside
model enumeration in Monniaux simplified the problem considerably whereas
for the other benchmarks this simplification was not substantial. (ii) The single
variable elimination strategy in QuaLMoDE resulted in a large number of calls
to QE1 LMDD for benchmarks with low N − E and high E/N .

The number of calls to QE LMC from QuaLMoDE and from Monniaux while
performing QE for the real benchmarks ranged from 1 to 205 and from 1 to 3842
respectively. We observed that a considerable number of these calls contained
LMDs. The average number of LMDs in QE LMC calls from QuaLMoDE and
from Monniaux ranged from 0 to 12.2 and 0 to 18.8, respectively. The average
of the ratio of the number of LMEs to the number of LMDs ranged from 0 to 1
and from 0.19 to 23.4 respectively.

We evaluated the roles of different layers of QE LMC in performing QE for
the real benchmarks. It was observed that all quantifiers were eliminated by the
first two layers, without even a single call to QE1 Layer3 or QE Layer4. A large
fraction of the calls to QE1 Layers1To3 were solved by the first layer itself and
the remaining were solved by the second layer (see Fig. 6)4.
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Comparison of QE LMC with alternative QE techniques : We have com-
pared the performance of QE LMC with QE based on Presburger Arithmetic
using Omega Test and with QE based on bit-blasting (see Fig. 7). In the latter
case, we implemented a procedure BV Solve that first quantifies out variables
appearing with odd coefficients in LMEs using the ideas described in [6] and
then uses bit-blasting and BDD based bit-level QE [11] for the remaining vari-
ables. We used a set of 405 benchmarks that are instances of the QE problem for
conjunction of LMCs; 371 of these arise from calls from QuaLMoDE/Monniaux
when QE is performed on the real benchmarks and the remaining 34 are ran-
domly generated. Our results clearly demonstrate that QE LMC outperforms
both alternative QE techniques. In Fig. 7(a), a benchmark is labeled “Odd” if

4 Note that the y-axis of both plots are in log-scale. One is added to the y-values to
include the points with no calls to the second layer.
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Table 1. Experimental Results on VHDL Programs

Design LOC SS TR
UNR=500

NA QL QB

machine 1 363 8 (371, 20, 547) TO(TO) 98(4, 27) TO(TO, -)
machine 2 373 6 (371, 19, 341) TO(TO) 70(2, 0) TO(TO, -)
machine 3 383 7 (395, 22, 344) TO(TO) 75(3, 3) TO(TO, -)
machine 4 253 4 (235, 19, 515) 1497(1418) 79(1, 0) TO(TO, -)
machine 5 253 4 (235, 19, 387) 1527(1451) 76(1, 0) TO(TO, -)
machine 6 363 4 (242, 15, 56) 122(80) 41(0, 0) 52(2, 3)
machine 7 379 5 (270, 20, 61) 206(152) 52(3, 1) 66(3, 5)
machine 8 251 2 (170, 13, 83) 225(195) 30(1, 1) 35(4, 1)
machine 9 251 3 (170, 13, 323) TO(TO) 30(1, 1) 53(28, 1)
machine 10 363 5 (242, 15, 356) TO(TO) 40(1, 0) 63(13, 3)
machine 11 363 6 (352, 22, 96) TO(TO) 97(1, 7) 98(2, 24)
machine 12 363 5 (242, 15, 356) TO(TO) 478(8, 427) TO(TO, -)

board 1 404 4 (265, 13, 163) 1455(1426) 51(24, 0) TO(TO, -)
board 2 373 3 (283, 13, 163) TO(TO) 66(49, 0) TO(TO, -)
board 3 503 4 (284, 13, 190) TO(TO) 67(44, 0) TO(TO, -)
board 4 415 3 (272, 11, 31) 362(229) 111(10, 3) 215(104, 13)

All times are in seconds. TO : > 1800 seconds, LOC : Lines of code, SS : Symbolic simulation
time, TR : Transition relation details (dag size, number of variables, number of bits), NA : With-
out abstraction : total time (simplifyingSTP time), QL : With QuaLMoDE for abstraction : total
time (QuaLMoDE time, simplifyingSTP time), QB : With QBV Solve for abstraction : total time
(QBV Solve time, simplifyingSTP time) (for NA, QL and QB most of the remaining time is spent
in slicing - we use a naive implementation of slicer), UNR : Number of BMC unrollings

each quantified variable in it appears with odd coefficient in at least one LME
and “Even” otherwise. Our results demonstrate that BV Solve performs com-
parable to QE LMC for the “Odd” benchmarks, but not for the “Even” ones.
This is not surprising since BV Solve uses the technique from [6] to eliminate
variables whenever possible before bit-blasting. Hence it is able to eliminate vari-
ables without any bit-blasting for all “Odd” benchmarks. In contrast, BV Solve
has to bit-blast for “Even” benchmarks, thereby performing poorly.

Utility of our QE algorithms in verification : In order to evaluate the util-
ity of our QE algorithms, we used QuaLMoDE to compute abstract transition
relations when checking safety properties of a set of word-level VHDL designs
using BMC. We first derived the symbolic transition relation R of each design.
For each BMC frame i, we then used slicing to obtain a slice Ri of R containing
only the relevant part of R for this frame. Next, we eliminate a chosen subset of
variables (subset of internal variables) from Ri to obtain R′

i using QuaLMoDE
as well as QBV Solve (an extension of BV Solve using the DD based approach
to handle Boolean combinations of LMCs). The final unrolled constraint is a
conjunction of the different R′

is computed by QuaLMoDE/QBV Solve. This is
conjoined with the negation of the safety property being checked and given
to an SMT solver for checking satisfiability. The SMT solver used is simpli-
fyingSTP [12]5. Table 1 gives a summary of these results. The designs in our
experiments machine 1 to machine 12 are modified versions of publicly avail-
able benchmarks obtained from [9]. The remaining designs are proprietary and

5 We selected simplifyingSTP because (i) it is the winner of SMT-COMP 2010 bit-
vector category and (ii) it has a variable eliminator implemented as per [6].
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were obtained from safety critical applications used in nuclear reactors. They are
control-oriented designs with wide data paths. Our results clearly demonstrate
(i) the significant performance benefit of using abstract transition relations com-
puted by QuaLMoDE in these verification exercises, and (ii) the performance
benefits of QuaLMoDE over QBV Solve in computing the abstract transition
relations particularly for designs involving constant multiplications with even
coefficients and large bit widths.

Our QE algorithms can be used in principle for checking the satisfiability
of Boolean combinations of LMCs. This can be done by quantifying out all
variables. However preliminary experiments suggest that this approach is not
competitive with DPLL-style SMT solvers or with bit-blasting followed by QBF
solving. Thus, the intended usage of our algorithms is for eliminating some (but
not all) variables from Boolean combinations of LMCs.

5 Conclusion

In this paper, we addressed the QE problem for LMCs. Our main contributions
are: (i) a bit-blasting-free QE algorithm for conjunctions of LMCs that is later
extended to a QE algorithm for Boolean combinations of LMCs, and (ii) com-
parison of our approach with alternative techniques and the identification of a
simple-to-use criteria for choosing the right QE approach for a given problem
instance. We propose to study QE for linear modular inequalities and non-linear
modular equalities as part of future work.
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Abstract. Several verification tools exist for checking safety properties
of programs and reporting errors. However, a large part of the program
development cycle is spend in analyzing the error trace to isolate loca-
tions in the code that are potential causes of the bug. Currently, this is
usually performed manually, by stepping through the error trace in a de-
bugger. We describe Bug-Assist, a tool that assists programmers localize
error causes to a few lines of code. Bug-Assist takes as input an ANSI-C
program annotated with assertions, performs bounded model checking
to find potential assertion violations, and for each error trace returned
by the model checker, returns a set of lines of code which can be changed
to eliminate the error trace. Bug-Assist formulates error localization as a
MAX-SAT problem and uses scalable MAX-SAT solvers. In experiments
on a set of C benchmarks, Bug-Assist was able to reduce error traces to
only a few lines of code. Bug-Assist is available as an Eclipse plug-in,
enabling its easy deployment in the code development phase.

1 Introduction

Quality assurance is a major component of the software development cycle. Re-
cent years have seen an explosion in static and dynamic analysis tools that can
automatically look for classes of program errors. These tools take (unmodified)
code as input, and produce error traces (and test cases) to demonstrate how as-
sertions about correct behavior can be violated. However, after such tools report
error traces, it is usually up to the programmer to debug and locate the faulty
lines in the program, before modifying the program to eliminate the error trace.
Thus, even with the support of automatic verification tools, a large part of the
development cycle is spent in debugging, where the programmer looks at a long,
failing, trace and tries to localize the problem to a few lines of source code that
elucidate the cause of the problem.

We present Bug-Assist, a tool for fault localization for ANSI-C programs. The
tool and the user manual can be downloaded at http://bugassist.mpi-sws.org.
The input to our tool is a C program, instrumented with assertions which specify
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the correct behavior of the program, and either a test case failing an assertion or
an option to run a model checker looking for assertion violations. If a violation is
found, the output is a minimal set of program statements such that there exists
a way to replace these statements to correct the program execution.

Bug-Assist is available as a command-line tool and through a graphical user
interface (GUI) as a plugin inside the popular integrated development environ-
ment (IDE) Eclipse. The GUI is similar to existing GUI based debugging tools
inside Eclipse IDE, which are familiar to software engineers. So the programmer
need not worry about the command line options or the internal symbolic analysis
instead can look in to the highlighted potential buggy lines in the source code
window.

Internally, Bug-Assist constructs a Boolean formula from a failing test case,
and uses a MAX-SAT solver to identify minimal sets of instructions whose mod-
ification can eliminate the failing execution. The failing test case is obtained
either directly from the testsuite for the program, or obtained using a bounded
model checker (CBMC) integrated within Bug-Assist.

We evaluated Bug-Assist using programs from the Siemens set of benchmarks
with injected faults [4]. In each case, Bug-Assist can efficiently and precisely
determine the exact (to the human) lines of code that constitute the reason
of the “bug”. The TCAS program in the testsuite is run with all the faulty
versions in detail to illustrate the completeness of the tool. Each of these test
cases consisted of 173 lines of code and the maximum time to localize the bug
locations was 0.136 seconds with the average number of buggy lines came to 8%
of the total lines of code [7]. The other 4 programs are used to show the scalability
of the tool by using error trace reduction methods for real world programs. This
shows the effectiveness of using the tool in parallel with the code development
process.

While there has been a lot of research in fault localization [1,5,6], to the best of
our knowledge, there is no publicly available tool for pin-pointing error locations.
Delta-debugging tools, that minimize the input for a failing run, exist [9], but
have a somewhat orthogonal emphasis: reducing the failure causing input. Bug-
Assist fills in the gap between error traces and bug-fixing by pointing out exact
locations of the code where corrections should be made instead of minimal code
fragments demonstrating failure. We believe Bug-Assist can be effectively used
in conjunction with a delta-debugging tool.

2 Tool Description

2.1 User Guide

The tool is available as an eclipse plugin and as a command line tool for linux
platform. It takes as input an ANSI-C program with properties specified as assert
statements. The tool can also generate implicit assertions for array bound checks,
null pointer checks, etc. If the program violates the specifications, it outputs the
potential lines of code which are the repair candidates for the program. For
localizing error for a faulty program file.c, we can run Bug-Assist as follows:
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./bugassist file.c –ba –maxsat <solver location>

where the option –ba outputs the potential repair locations. The –maxsat gives
user the flexibility to choose the MAX-SAT solver by providing the solver exe-
cutable location as Bug-Assist generates the MAX-SAT instances following the
general MAX-SAT competition format. The detailed list of options can be ob-
tained with the option –help.

2.2 The Integrated Debugging Environment

Fig. 1. A screenshot of the tool localizing error for a simple program

To improve the usability of our tool, we have built an Eclipse plugin and a
GUI to help the programmer find bug locations during the development process.
During the code development phase, the programmers might only be interested
in modules or files under the current development branch. Therefore Bug-Assist
IDE creates a new project which gives the users the flexibility to pick the files
and functions for which they want to check for property violations and debug
the problems only within those files.

Figure 1 shows Bug-Assist IDE analyzing a simple program “minmax.c”, which
computes the minimum and maximum among its input arguments. There is an
error in the program at line 10. During the first run of Bug-Assist, it lists out the
assertions which are specified in the system. In the example program there is an
explicit assertion claiming “least” should be less than or equal to “most” and is
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listed in the claims window. Additionally, one can specify implicit assertions for
null pointer checks or array-bounds checks, by setting properties of the model
checker.

When the model checker returns the violated assertions, the programmer can
now double click on each of the violated assertions to find the potential lines of
code that lead to the violation of that property. The three potential bug locations
analyzed by the tool is given in the “C Trace” window in Figure 1. Selecting each
of these bug locations highlights the corresponding location in the source code
viewer, helping the programmer to effectively visualize the problem cause and
to provide a fix. After fixing the error, (in this case it is to change the variable
“most” to “least” at line 10) the user can run the model checker again to check
if the fix is correct and does not break for other inputs.

2.3 Tool Architecture

Internally, our algorithm leverages symbolic analysis of software based on
Boolean satisfiability, and reduces the problem to maximum Boolean satisfiabil-
ity. Maximum Boolean satisfiability (MAX-SAT) is the problem of determining
the maximum number of clauses of a given Boolean formula in CNF that can be
satisfied by any given assignment.

Fig. 2. The tool architecture

Figure 2 shows the tool ar-
chitecture with the program
flow. We describe the tool in-
ternals informally using the
same program shown in Fig-
ure 1. The function minmax
sets the “least” and “most”
variables to the first argu-
ments and then eventually
sets those variable to the min-
imum and maximum value
respectively from the input
variables (shown in lines 5–
12). After comparing “least”
with “input2”, instead of up-

dating the “least” variable the program updates the “most” variable.
Bug-Assist performs the following two steps to localize the bug. First, from

the program, it uses bounded model checking [2,3] (using the tool CBMC
[3]) to construct a symbolic trace formula: a Boolean formula in conjunctive
normal form such that the formula is satisfiable iff the program execution is fea-
sible. For the example, CBMC (label B in Figure 2) gives a counter example with
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input1 = 10, input2 = 1, and input3 = 5, which makes most = 1 and violates
the assertion at line 13. The trace formula TF encoding the program semantics
is:

TF ≡least1 = input11 ∧ most1 = input11 ∧ guard1 = most1 < input21∧
most2 = (!guard1?most1 : input21) ∧ guard2 = most2 < input31∧
most3 = (!guard2?most2 : input31) ∧ guard3 = least1 > input21∧
most4 = (!guard3?most3 : input21) ∧ guard4 = least1 > input31∧
least2 = (!guard4?least1 : input31)

We then extend the trace formula by conjoining it with constraints so that
the final states ensure the program post-condition:

Φ ≡ input11 = 10 ∧ input21 = 1 ∧ input31 = 5︸ ︷︷ ︸
test input

∧ TF︸︷︷︸
trace formula

∧ least2 ≤ most4︸ ︷︷ ︸
assertion

The extended trace formula essentially states that starting from the initial con-
dition, executing the program trace leads to a state satisfying the post-condition.
Notice that the extended trace formula for a failing execution must be unsatis-
fiable.

Second, it feeds the extended trace formula in conjunctive normal form (CNF)
to a partial maximum satisfiability solver (label D in Figure 2). In partial MAX-
SAT, the input clauses can be marked hard or soft, and the MAX-SAT instance
finds the maximum number of soft clauses that can be satisfied by an assignment
which satisfies every hard clause. In our algorithm, we mark the input constraints
(that ensure that the input is a failing test) as well as the post-condition as
hard. This is necessary: otherwise, the MAX-SAT algorithm can trivially return
that changing an input or changing the post-condition can eliminate the failing
execution.

In the case of Φ, we mark the constraints coming from the test input and
the assertion as hard, and leave the clauses in the trace formula soft. We use
an off-the-shelf MAX-SAT solver [8] to compute a maximal set of clauses of the
extended trace formula that can be satisfied, and take the complement of this
set as a candidate set of clauses that can be changed to make the entire formula
satisfiable. Since each clause in the extended trace formula can be mapped back
to a statement in the code, this identifies a candidate localization of the error
in terms of program statements. Note that there may be several minimal sets
of clauses that can be found in this way, and we enumerate each minimal set as
candidate localizations for the user.

The clauses returned by MAX-SAT point to line 9 as a potential error location
in the first iteration of our program. In the next iteration of MAX-SAT, we make
the clauses arising out of line 9 hard and ask for any other correction locations.
We repeat this process until MAX-SAT gives the problem to be unsatisfiable.
All the three error locations reported by tool is shown in Figure 1.

In our implementation, we group clauses (label E) arising out of the same
program statement together making the resulting MAX-SAT instance simple.
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This ensures our algorithm localizes errors at the program statement level. Error
localization can be performed at other levels of granularity as well. For example,
to localize bugs at the function or module level, we can group clauses coming
from the same function or module in the MAX-SAT instance.

A formal definition of the localization algorithm as well as experimental eval-
uations can be found in [7].
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3. Clarke, E., Kröning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer,
Heidelberg (2004)

4. Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experimentation with
testing techniques: An infrastructure and its potential impact. Empirical Software
Engineering 10(4), 405–435 (2005)

5. Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error explanation with distance
metrics. Int. J. Softw. Tools Technol. Transf. 8(3), 229–247 (2006)

6. Jones, J.A., Harrold, M.J.: Empirical evaluation of the tarantula automatic fault-
localization technique. In: ASE 2005: Automated Software Engineering, pp. 273–282.
ACM, New York (2005)

7. Jose, M., Majumdar, R.: Cause clue clauses: Error localization using maximum
satisfiability. In: PLDI 2011: Programming Language Design and Implementation,
ACM, New York (2011)

8. Marques-Silva, J., Planes, J.: Algorithms for maximum satisfiability using unsatis-
fiable cores. In: DATE 2008: Design, Automation and Test in Europe, pp. 408–413.
ACM, New York (2008)

9. Zeller, A.: Isolating cause-effect chains from computer programs. In: Daemen, J.,
Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–10. Springer, Heidelberg (2002)



Synthesis of Distributed Control through Knowledge
Accumulation�

Gal Katz1, Doron Peled1, and Sven Schewe2

1 Department of Computer Science,
Bar Ilan University, Ramat Gan 52900, Israel

2 Department of Computer Science,
University of Liverpool, Liverpool, UK

Abstract. In distributed systems, local controllers often need to impose global
guarantees. A solution that will not impose additional synchronization may not
be feasible due to the lack of ability of one process to know the current situation
at another. On the other hand, a completely centralized solution will eliminate all
concurrency. A good solution is usually a compromise between these extremes,
where synchronization is allowed for in principle, but avoided whenever possi-
ble. In a quest for practicable solutions to the distributed control problem, one
can constrain the executions of a system based on the pre-calculation of knowl-
edge properties and allow for temporary interprocess synchronization in order to
combine the knowledge needed to control the system. This type of control, how-
ever, may incur a heavy communication overhead. We introduce the use of simple
supervisor processes that accumulate information about processes until sufficient
knowledge is collected to allow for safe progression. We combine the knowledge
approach with a game theoretic search that prevents progressing to states from
which there is no way to guarantee the imposed constraints.

1 Introduction

Designing concurrent systems such that they satisfy a given specification is a highly
difficult task that requires a lot of creativity. Automatic synthesis is very desirable, but
unfortunately undecidable [16,10,11,5,20]. Separating the design of the system such
that global constraints can be later imposed on a distributed system can be a very pow-
erful tool. The hardness of imposing distributed control is derived from the fact that the
processes can only rely on their individual observations of the system state. Such lim-
ited local information can be described as knowledge that processes have at each point
of the execution [4,7].

In the classical approach to the synthesis of distributed control [24,18,19], memory
is added to each process. This memory is updated based on the observation made by
the respective process and, based on the state of this memory, the processes can support
transitions or block them. Checking whether a distributed system can be controlled in
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this way to satisfy a given property is undecidable [22,23], even when the imposed
property is an invariant on states and subsequent transitions [6].

In this paper, we study the problem of controlling distributed systems to satisfy an in-
variant property by adding supervisory processes that can communicate asynchronously
with several processes, helping them to make a safe progress decision. We show that in
this case controllability is decidable; it is EXPTIME complete, and PSPACE complete
for systems with or without uncontrollable transitions, respectively.

In order to decide controllability and determine a control strategy, we first perform
a global strategy search in order to avoid being trapped into a state where the invariant
cannot be satisfied. Then, the obtained reduced state space is redistributed according to
the original processes based on model checking the processes knowledge [13,1,2,6]. The
information gathered during the model checking stage is used as a basis for a program
transformation that controls the execution of the system by adding constraints on the
enabledness of transitions. This does not produce new program executions or deadlocks,
and consequently preserves all stuttering closed [14] linear temporal logic properties of
the system [12].

When a process does not have enough local knowledge to progress safely, it can hang
on a supervisor process. Supervisors accumulate information about multiple processes
that are hung on them until sufficient knowledge is acquired. In a series of solutions,
we show strategies to minimize the amount of overhead in terms of additional commu-
nication and synchronization, and of blocking of concurrent occurrence of transitions.
There are several contributions in this paper:

– While most of the results on distributed synthesis are negative, we provide a con-
structive and efficient solution. We introduce supervisor processes that, while run-
ning asynchronously with the controlled system, accumulate the knowledge from
several processes until a decision to safely execute a transition can be made.

– Knowledge has been shown to be a useful tool to impose distributed con-
trol [1,2,6,18]. Synchronization [6] or message passing [18] can be used to prevent
blocking (deadlock) due to lack of knowledge. However, the controlled system may
still block by reaching a state where all the possible enabled transitions would vi-
olate the imposed property. We solve this by calculating knowledge based on the
result of a game theoretic strategy search.

– We introduce a detailed and realistic concurrency model that distinguishes the part
of the global state that a process can observe from the smaller part it can control.

2 Preliminaries

The model used in this paper is Petri Nets. It was chosen due to its visual representation.
The method and algorithms developed here can equally apply to other models, e.g.,
transition systems, communicating automata, etc.

Definition 1. A (1-safe) Petri Net N is a tuple (P,T,E,s0) where

– P is a finite set of places,
– the states are defined as S = 2P where s0 ∈ S is the initial state,
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Fig. 1. Petri Nets: (a) without priorities and (b) with priorities a ' d and b ' c

– T is a finite set of transitions, and
– E ⊆ (P×T )∪(T ×P) is a bipartite relation between the places and the transitions.

For a transition t ∈ T , we define the set of input places •t as {p ∈ P | (p, t) ∈ E}, and
output places t• as {p ∈ P | (t, p) ∈ E}.

Definition 2. A transition t is enabled in a state s, denoted s[t〉, if •t ⊆ s and t•∩ s ⊆• t
(we allow self loops). A state s is in deadlock if there is no enabled transition from it.

Definition 3. A transition t can be fired (or executed) from state s to state s′, denoted
by s[t〉s′, when t is enabled at s. Then, s′ = (s\• t)∪ t•.

Definition 4. Two transitions t1 and t2 are dependent if (•t1 ∪ t1•)∩ (•t2 ∪ t2•) �= /0. Let
D ⊆ T ×T be the dependence relation. Two transitions are independent if they are not
dependent.

Transitions are visualized as lines, places as circles, and the relation E is represented
using arrows. In Figure 1(a), there are places p1, p2, . . . , p7 and transitions a, b, c, d.
We depict a state by putting full circles, called tokens, inside the places of that state. In
the example in Figure 1(a), the initial state s0 is {p1, p2, p7}. The transitions that are
enabled from the initial state are a and b. If we fire transition a from the initial state,
the tokens from p1 and p7 will be removed, and a token will be placed in p3. In this
Petri Net, all transitions are dependent on each other, since they all involve the place
p7. Removing p7, see Figure 1(b), makes both a and c become independent from both
b and d.

Definition 5. An execution of a Petri Net N is a maximal (i.e., it cannot be extended)
alternating sequence of states s0t1s1t2s2 . . ., where s0 is the initial state, such that, for
each states si in the sequence, si[ti+1〉si+1. We denote these executions by exec(N).

For convenience, we sometimes use as executions just the sequence of states, or just
the sequence of transitions, as will be clear from the context. A state is reachable in a
Petri Net if it appears on at least one of its executions. We denote the reachable states
of a Petri Net N by reach(N). In order to simplify the presentation and not distinguish
between finite and infinite maximal executions, a special new element ε is added to T ; it
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has no input and output places and can be fired exactly in states s with deadlocks (where
no other transition is enabled), thence s[ε〉s. Yet, these states are still distinguished as
deadlocks.

We use places also as state predicates. As usual, we write s |= pi iff pi ∈ s and extend
this in the standard way to Boolean combinations on state predicates. For a state s, we
denote by ϕs the formula that is a conjunction of the places in s and the negated places
not in s. Thus, ϕs is satisfied exactly by the state s. For the Petri Net in Figure 1(a),
the initial state s0 satisfies ϕs0 = p1 ∧ p2 ∧¬p3 ∧¬p4 ∧¬p5 ∧¬p6 ∧ p7. For a set of
states Q ⊆ S, we call

∨
s∈Q ϕs, or any logically equivalent propositional formula ϕQ, a

characterizing formula of Q. As usual in logic, when ϕQ and ϕQ′ characterize sets of
states Q and Q′, respectively, then Q ⊆ Q′ exactly when ϕQ → ϕQ′ .

An invariant [3] of N is a subset of the states Q ⊆ 2S; a net N satisfies the invariant
Q if reach(N) ⊆ Q. A generalized invariant of N is a set of pairs I ⊆ S × T ; a net N
satisfies I if, whenever s[t〉 for a reachable s, then (s, t)∈ I. This covers the above simple
case of an invariant when pairing up every state that appears in Q with all transitions T .

Definition 6. An execution of a Petri Net N restricted with respect to a set I ⊆ S ×T,
denoted execI(N), is the set of executions s0t1s1t2s2 . . . ∈ exec(N) such that, for each
pair siti+1 in the sequence, (si,ti+1) ∈ I holds. The set of states reachable in execI(N) is
denoted reachI(N).

Lemma 1. reachI(N) ⊆ reach(N) and execI(N) ⊆ exec(N).

Definition 7. A process π of a Petri Net N is a subset of the transitions T satisfying
that, for each pair t1,t2 ∈ π of independent (i.e., (t1, t2) �∈ D) transitions in π, there is
no reachable state s in which both t1 and t2 are enabled.

We will represent the separation of transitions of a Petri Net into processes using dotted
lines. We assume a given set of processes C that covers all transitions (except ε) of the
net, i.e.,

⋃
π∈C π = T . A transition can belong to several processes, e.g., when it models

a synchronization between processes. Let proc(t) = {π | t ∈ π} be the set of processes
to which t belongs. For the Petri Net in Figure 1(a), there are two executions: acbd
and bdac. There are two processes: the left process πl = {a,c} and the right process
πr = {b,d}. We use the same partitioning of transitions to processes in Figure 1(b).

The neighborhood of a set of processes Π includes all places that are either inputs or
outputs to transitions of Π.

Definition 8. The neighborhood ngb(π) of a process π is the set of places
⋃

t∈π(•t ∪ t•).
For a set of processes Π ⊆ C , ngb(Π) =

⋃
π∈Π ngb(π).

A set of processes Π owns the places in their neighborhood that cannot gain or loose a
token by a transition that is not exclusively in Π.

Definition 9. The places owned by a set of processes (including a singleton process)
Π, denoted own(Π), is ngb(Π)\ ngb(C \Π).

When a notation refers to a set of processes Π, we will often replace writing the single-
ton process set {π} by writing π, e.g., we write own(π). Note that ngb(Π1)∪ngb(Π2) =
ngb(Π1 ∪ Π2), while own(Π1) ∪ own(Π2) ⊆ own(Π1 ∪ Π2). The neighborhood of
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process πl is {p1, p3, p5, p7}. Place p7 in Figure 1(a) is neither owned by πl , nor by
πr, but it is owned by {πl,πr}. It belongs to the neighborhood of both processes and
acts as a semaphore. It can be captured by the execution of a or of b, guaranteeing that
¬(p3 ∧ p4) is an invariant of the system.

Our goal is to control the system to satisfy a generalized invariant by restricting
some of its transitions from some of the states. We may be allowed to control only
part of the transitions ct(T ) ⊆ T , called controllable transitions. The other transitions,
uc(T ) = T \ ct(T ), are uncontrollable. Note that we may be at some state where ei-
ther some uncontrollable transitions, or all enabled transitions, violate the generalized
invariant. Being in such states is therefore “too late”; part of the controlling task is to
avoid reaching such states.

As a running example for a generalized invariant we use a property of priorities.

Definition 10. A Petri Net with priorities is a pair (N,'), where N is a Petri Net and
' is a partial order relation among the transitions T of N. For the set I' = {(s, t) |
t is maximal among the enabled transitions in s w.r.t. '}, the set of prioritized execu-
tions execI'(N) of (N,') is the set of executions restricted to I'.

The executions of the Petri Net M in Figure 1(b) (when the priorities a ' d and b ' c
are not taken into account) include abcd,acbd,bacd,badc, etc. However, the prioritized
executions of (M,') are the same as the executions of the Net N in Figure 1(a).

Enforcing prioritized executions in a completely distributed way may be impossible.
In Figure 1(b), a and c belong to the left process πl , and b and d belong to the right
process πr, with no interaction between the processes. The left process πl , upon having
a token in p1, cannot locally decide whether to execute a; the priorities dictate that a can
be executed if d is not enabled, since a has a lower priority than d. But this information
is not locally available to πl , which cannot distinguish between the cases where πr has
a token in p2, p4, or p6.

The local information of Π at a given state consists of the restriction of the state to
the neighborhood of the transitions of Π.

Definition 11. The local information of a set of processes Π of a Petri Net N in a state
s is s Π= s∩nbg(Π).

In the Petri Net in Figure 1(a), the local information of πl in any state s consists of
the restriction of s to the places {p1, p3, p5, p7}. In the depicted initial state, the local
information is {p1, p7}. The local state restricts the places to the ones changeable only
by a process (or set of processes).

Definition 12. The local state of a set of processes Π of a Petri Net N in a state s is
s(Π= s∩own(Π).

The local state of πl in Figure 1(a) is {p1}. It is always the case that s(Π⊆ s Π.

Lemma 2. If π �∈ Π then s(Π∪{π} is the (disjoint) union of s(Π and s π∩own(Π∪{π}).

3 A Globally Controlled System

Before providing a solution to the distributed control problem we need to provide a
solution to a related global control problem. Some reachable states are not allowed
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according to the generalized invariant. In order not to reach these states, we may need
to avoid some transitions that lead to such states from previous states. This is done using
game theoretical search.

The game is played between a constructor, who wants to preserve the generalized
invariant I indefinitely, and a spoiler, who has the opposite goal. The game is played
on the states S of a net, starting from the initial state s0. In each round, the constructor
player chooses a nonempty subset of enabled transitions that must include all enabled
uncontrollable transitions. Subsequently, the spoiler chooses a transition from this set,
which is then executed. The spoiler wins as soon as she can choose a transition that
violates I, i.e., (s,ts) /∈ I, while the constructor wins if he can avoid this for ever.

Let B (for “bad”) be the reachable states that we do not want to reach, namely,

B = {s | s ∈ reach(N)∧ (∃t ∈ uc(T )(s[t〉∧ (s, t) �∈ I)∨∀t ∈ T s[t〉 → (s,t) �∈ I})

We may be forced into B in a single step from every state that has an uncontrollable
transition into B or for which all enabled transitions allowed according to I lead to
states in B.

Let attr(A) be states s that satisfy that one of the following conditions:

– s ∈ A, or
– there exists an uncontrollable transition t enabled1 in s with s[t〉s′ and s′ ∈ A, or
– for all transitions t enabled in s, such that s[t〉s′ and (s, t) ∈ I, it holds that s′ ∈ A.

As usual, we define attrn(A) = attr(attrn−1(A)), where attr1(A) = attr(A). Because of
the monotonicity of the attr(A) operator (with respect to set inclusion) and the finiteness
of the state space, there is a least fixpoint attr∗(A), which is attrn(A) = attrn+1(A) for
some (smallest) n.

Now, let G = reach(N)\attr∗(B). These are the “good” reachable states in the sense
that they are allowed by I and the system can be controlled to henceforth adhere to I.

Definition 13. Let R = {(s,t) ∈ I | ∃s′ s[t〉s′ ∧ s,s′ ∈ G} be the safe transition relation.

If the initial state is good (or, equivalently, G is nonempty), then the constructor can
win by playing according to R. If, on the other hand, s0 is in the attractor attr∗(B) of
the bad states, then s0 is in attrn(B) for some n ≤ |S|. But by the definition of attrn(B),
the spoiler can force the game to attrn−1(B) in the next step, then to attrn−2(B), and so
forth, and thus make sure the bad states are reached within n steps.

Lemma 3. The constructor can force a win if, and only if, s0 ∈ G.

This game can obviously be evaluated quickly on the explicit game graph, and hence
in time exponentially in the number of places. EXPTIME completeness can be demon-
strated by a simple reduction from the PEEK-G5 [21] game. An instance of PEEK-G5

consists of two disjoint sets of Boolean variables, X (owned by a safety player) and
Y (owned by a reachability player), a subset Z ⊆ X ∪Y of them that are initially true,
and a Boolean formula ϕ over X ∪Y that the reachability player wants to become true
eventually. The game is played in turns between the safety and the reachability player

1 If s[t〉 and s �∈ A then (s,t) ∈ I.



516 G. Katz, D. Peled, and S. Schewe

(say, with reachability player moving first), who in their turn can change the truth value
of up to one of their variables.

To reduce the PEEK-G5 game to the question if the initial state s0 of a Petri Net
is good, we introduce two places for each variable in X ∪Y , where a token is always
in exactly one of them, one for true and one for false. Initially, the tokens are placed
in accordance with Z. We also have introduce two control places, indicating that it is
the reachability and safety player’s move, respectively. (We again always have a token,
called the control token, in exactly one of these places.) The invariant I represents the
formula ¬ϕ.

For each variable v ∈ X (resp. v ∈ Y ), we have a transition that takes the control
token from the safety (resp. reachability) place and the token from the true/false place
of v, and puts the control token to the reachability (resp. safety) place and toggles the
value of v by putting a token into the false/true place of v. We also transitions that
only take the control token from the safety (resp. reachability) place and put it into the
reachability (resp. safety) place. (In total, we have 2|X ∪Y |+2 transitions.) Exactly the
2|Y |+1 transitions that move the control token from the reachability to the safety place
are uncontrollable. The initial state is the state encoding Z with the control token in the
reachability place.

The constructor can play the role of the safety player in the PEEK-G5 game by choos-
ing a singleton set of transitions when the control pebble is in the safety place, while
the spoiler can play the role of the reachability player by choosing among the enabled
(uncontrollable) transitions when the control pebble is in the reachability place.

Lemma 4. Deciding if the constructor can force a win is EXPTIME complete.

In case all transitions are controllable, checking whether or not s ∈ G (or (s, t) ∈ R) can
be done in PSPACE using a binary search for an ultimately periodic cycle in reachI(N)
that includes the state s (followed immediately by the transition t, respectively). For
hardness, it is easy to reduce the halting problem of a deterministic space-bounded
Turing machine to this decision problem by representing the tape explicitly.

Lemma 5. Deciding if the constructor can force a win is PSPACE complete for Petri
Nets with only controllable transitions.

4 Knowledge Based Distributed Control

In control theory, the transformation that takes a system and allows blocking some
transitions adds a supervisor process [17,24,19], which is usually an automaton that runs
synchronously with the controlled system. This (finite state) automaton observes the
controlled system, progresses according to the transitions it observes, and blocks some
of the enabled transitions, depending on its current state [24]. This is often insufficient
for obtaining distributed control [18]. We propose a control mechanism with supervisors
that run asynchronously with the controlled processes.

In the following definitions, we can often use either the local information or the local
state. When this is the case, we will use s|Π instead of either s Π or s(Π.
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Definition 14. Let Π ⊆ C be a set of processes. Define an equivalence relation ≡Π⊆
reach(N)× reach(N) such that s ≡Π s′ when s|Π = s′|Π.

As s|Π can stand for either s Π or s(Π, this gives two different equivalence relations.
When it is important to distinguish between them, we denote the one based on “ ” as
≡w

Π (weak equivalence) and the one based on “(” as ≡s
Π (strong equivalence). It is easy

to see that the enabledness of a transition depends only on the local information of a
process that contains it, as stated in the following lemma.

Lemma 6. If t ∈ π and s ≡w
π s′ then s[t〉 if, and only if, s′[t〉.

This lemma does not hold when we replace ≡w
π by ≡s

π. In the Prioritized Petri Net in
Figure 1(b), e.g., we have that {p1, p2}≡w

πl
{p1, p4}, since in both states πl has the same

local information {p1}. In the state {p1, p2}, a is a maximal priority enabled transition
(incomparable with b), while in {p1, p4}, a is not maximal anymore, as we have that
a ' d, and both a and d are now enabled.

Definition 15. The processes Π (jointly) know a property ψ in a state s, denoted s |=
KΠψ, if, for each s′ such that s ≡Π s′, we have that s′ |= ψ.

We distinguish knowledge based on strong equivalence ≡s
Π (and hence on local states),

denoted Ks
Πϕ, from knowledge based on weak equivalence ≡w

Π (and hence local infor-
mation), denoted Kw

Πϕ. Since there can be multiple local informations for a single local
state, we have Ks

Πϕ → Kw
Πϕ. Therefore the knowledge based on the local state (resp.

local information) is called strong (resp. weak) knowledge.
In order to make choices (to execute a transition) that take into account knowledge

based on local information, a process, or a set of processes, needs to have some guaran-
tee that the local information will not be changed by other processes while it is making
the decision. For a single process, this may be achieved by the underlying hardware.
On the other hand, it is unreasonable to require such a guarantee for a set of processes.
Thus, for decisions involving a set of processes, knowledge based on the joint local
state is used instead.

The classical definition of knowledge is based on the relations ≡Π over the reachable
states. However, when using knowledge to control a system to satisfy a generalized in-
variant, one may calculate the equivalences and the knowledge based on the states that
appear in the executions of the original system that satisfy this general invariant [2].
This (cyclic looking) claim is proved [2] by induction on the progress of the execution
in the controlled system: the controlled system allows at any state to execute only transi-
tions that preserve the generalized invariant. For the same argument, when our allowed
transitions will be restricted according to the safe transition relation R, we can further
restrict the states space used to calculate the knowledge to G ⊆ reach(N).

The definition of knowledge that we use assumes that the processes do not maintain
a log with their history. The use of knowledge with such a log, called knowledge with
perfect recall [13], is discussed in [1]. It is shown there that updating such a log can
require enormous complexity for each process. We henceforth use knowledge formulas
combined with Boolean operators and propositions. For a detailed syntactic and seman-
tic description of logics with knowledge one can refer, e.g., to [4]. Once s |= KΠψ is
defined, ψ can also be a knowledge property, hence s |= KΠ′KΠψ (knowledge about
knowledge) is also defined.



518 G. Katz, D. Peled, and S. Schewe

Lemma 7. If s |= KΠϕ and s ≡Π s′, then s′ |= KΠϕ.

Lemma 8. Knowledge is monotonic: if Π′ ⊆ Π then KΠ′ϕ → KΠϕ.

We will use the following propositional formulas, with propositions that are the places
of the Petri Net, to explain the approach and the implementation:

- The good states G: ϕG.
- The states where a transition t is enabled: ϕen(t).
- At least one transition is enabled, i.e., there is no deadlock: ϕdf =

∨
t∈T ϕen(t).

- Transition t is allowed from the current state by the safe transition relation R: ϕgood(t)
- The local information (resp. local state) of processes Π at state s: ϕs Π (resp. ϕs(Π ).

The corresponding sets of states can easily be computed by model checking and stored
in a compact way, e.g., using BDDs.

Now, given a Petri Net, one can perform model checking in order to calculate
whether s |= Kπψ. The processes Π know ψ at state s exactly when (ϕG ∧ϕs|Π)→ ψ is a
propositional tautology. We can also check properties that include nested knowledge by
simply checking first the innermost knowledge properties and marking the states with
additional propositions for these innermost properties.

Model checking knowledge using BDDs, is not the most space efficient way of
checking knowledge properties, since ϕG can be exponentially big in the size of the
Petri Net. In a (polynomial) space efficient check (which has a higher time complex-
ity), we enumerate all states s′ such that s ≡π s′, check reachability of s′ using binary
search, and, if reachable, check whether s′ |= ψ. This can apply also to nested knowl-
edge formulas, where inner knowledge properties are recursively reevaluated each time
they are needed. The PSPACE complexity is subsumed by the EXPTIME complexity
in the general case algorithm for the safe transition relation R.

Definition 16. An extended Petri Net [9] is a Petri Net with a finite set of variables Vπ
over a finite domain per each process π ∈ Π. In addition, a transition t can be aug-
mented with a predicate ent on the variables Vt = ∪π∈proc(t)Vπ and a transformation
function ft (Vt). In order for t to fire, ent must hold in addition to the basic Petri Net
enabling condition on the input and output places of t. When t fires, in addition to the
usual changes to the tokens, the variables Vt are updated according to the transforma-
tion ft .

We transform a Petri Net N and a generalized invariant I into an extended Petri Net N′
that allows only the executions of N controlled according to I.

Definition 17. A controlling transformation obeys the following conditions:

– New transitions and places can be added.
– The input and output places of the new transitions are disjoint from the existing

places.
– Variables, conditions and transformations, as in Definition 16 can be added to ex-

isting transitions.
– Existing transitions will remain with the same input and output places.
– It is not possible to fire from some point an infinite sequence of added transitions.
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The added transitions are grouped into new (supervisory) processes. The added vari-
ables will represent some knowledge-dependent finite memory for controlling the sys-
tem, and some interprocess communication between the original processes and the
added ones. Processes from the original net will have disjoint sets of variables from
one another; intuitively, the independence between the original transitions is preserved
by the transformation, although some coordination may be enforced indirectly through
the interaction with the new supervisory processes.

As a natural extension of Definition 11, s C maps a state s of the transformed version
N′ into the places of the original version N by projecting out additional variables and
places that N′ may have on top of the places of N. In this way, we will be able to relate
the sets of states of the original and transformed version. Firing of a transitions added
by the controlling transformation does not change s C and is not considered to violate
I (the requirement that (si,ti+1) in Definition 6 is imposed only when ti+1 is from the
original net N). Note that our restrictions on the transformation implies that the sets
ngb(Π) and own(Π) for Π ⊆ C are not affected by the transformation.

Definition 18. Two sequences of states σ and σ′ are equivalent up to stuttering [14]
when, by replacing any finite adjacent repetition of the same state by a single occur-
rence in either σ or σ′, we obtain the same sequence. Let stutcl(Γ) be the stuttering
closure of a set Γ of sequences, i.e., all sequences that are stuttering equivalent to some
sequences in Γ.

Lemma 9. A controlling transformation produces an extended Petri Net N′ from N
such that exec(N′) C⊆ stutcl(exec(N)).

Lemma 10. Given that s |= KΠϕ in some basic Petri Net N, then s |= KΠϕ also in a
transformed version N′.

5 Control Using Knowledge Accumulating Supervisors

According to the knowledge based approach to distributed control [1,6,2,18], model
checking of knowledge properties is used at a preliminary stage to find when, depending
on the local information, an enabled transition can be safely fired. In our case, this
means checking s |= Kw

π ϕgood(t) (by Lemma 7, the satisfaction only depends on s π).
At runtime, a process supports a transition in every local information where this holds.
The following support policy uses this information at runtime:

A transition t can be fired (is enabled) in a state when, in addition to its original
enabledness condition, at least one of the processes in proc(t) supports it.

Lemma 11. If t ∈ π∩uc(T ) and (s, t) ∈ R, then s |= Kw
π ϕgood(t).

This follows from the observation that the safe transition relation does not restrict the
uncontrolled transition. This means that an uncontrolled transition can always be sup-
ported by any processes that contains it.

It is possible that, in some (non deadlock) states of G, no process has enough local
knowledge to support an enabled transition and, furthermore, no uncontrollable tran-
sitions are enabled. We may count such global states as additional “bad states”, and
repeat the strategy calculation to refine the state space further, as done in Section 3.
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Still, there are cases where the local knowledge will not be sufficient, as in the pri-
ority example in Figure 1(b). Then, we may need to synchronize several processes to
collect more knowledge. Then, a process can decide, based on its current knowledge,
whether it needs to hang on a supervisor and send it its local state; the supervisor can
make a decision, based on accumulated joined knowledge of several hung processes,
that one of them can support an enabled transition. For example, in Figure 1(b), in the
initial state the local information (and also the local state) of πl is {p1}. Thus, πl does
not have enough knowledge to support any transition. Similarly, the local information
of πr is {p2}, which also is not sufficient to support any transition. After they both hang
on a supervisor, it has enough information to support a or b.

To simplify the presentation, we will describe the solution in several steps. Each
solution is an improvement over the previous solutions.

Solution 1. [Completely centralized; Waiting for all processes]

First, we assume that there is a single supervisor process T , which is responsible for
all processes. At this point, assume that no uncontrollable transitions are allowed. Deal-
ing with them is deferred until Solution 3. A process hangs on a supervisor, when the
following property does not hold:

κπ
1 =

∨
t∈π

Kw
π ϕgood(t)

When T sees that all processes are hanging on it, then it can acquire the complete
global state from the individual processes. Since all processes are hung, none of them
can progress. Each process then reports its local information to the supervisor T . Now,
T has enough information to instruct some process to support an enabled transition,
according to the safe transition relation R. When a transition is supported and fired, all
processes are freed from being hung.

This solution prevents new deadlocks in the system that did not occur under the
original Petri Net: if no process has the local knowledge that is required to progress, no
process π has the knowledge according to κπ

1; eventually all processes will hang on T ,
and T has the capability to break the deadlock.

Solution 2. [Supervisor can decide based on a subset of processes]

The supervisor T keeps the updated joint local state of the hung processes Π. When
a process π hangs, it updates this view by transmitting to T its local information s π,
from which T keeps (according to Lemma 2) s π∩own(Π∪{π}). Since all processes
in Π′ = Π ∪ {π} are now hung, no other process can change these places. Then the
knowledge Ks

Π′ϕgood(t) can be used to support a transition t. Recall that knowledge based
decisions of a single process use weak knowledge (based on the local information),
while multiple processes use strong knowledge (i.e., based on the joint local state).

The supervisor process T can identify (precalculated) joint local states where enough
knowledge is available to decide that a transition t is allowed by the safe transition
relation R and make one of the processes in proc(t) support it. The supervisor T does
not need to wait for all processes to hang on it to make such a decision. Once t is fired,
T frees all hung processes.
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Solution 3. [Hanging processes may still progress]

Consider the following cases:

1. After the decision of a process π to hang on T , other processes make changes to
π’s local information that allow it to support some transition t.

2. A transition t with {π, π′} ⊆ proc(t) is supported by π′ while π is hung.
3. An uncontrollable transition can always be executed, even if it belongs to a hung

process.

In all of these cases, we allow π to notify T that it has decided not to hang on it anymore.
Moreover, T , which acquired information about the hung processes Π, will have to
forget the information about the places own(Π)\ own(Π\ {π}).
We can now weaken the condition κπ

1 for a process not to hang into:

κπ
2 =

∨
t∈π

Kw
π ϕgood(t) ∨Kw

π
∨

π′ �=π

∨
t∈π′

Kw
π′ϕgood(t)

That is, a process does neither hang on the supervisor when it has enough knowledge to
support a transition, nor if it knows that some other process has such knowledge. In the
latter case, it does not actually need to distinguish which process has that knowledge.

The ability of processes to hang on a supervisor but also to progress independently
before the supervisor has made any supporting choice requires some protocol between
the processes and the supervisor. The α-core protocol [15,8] can be adopted here.

Solution 4. [Multiple supervisors]

Instead of having a single supervisor T , we use several supervisors T1,T2, . . . ,Tk. Each
supervisor Ti takes care of a set of processes proc(Ti). These sets are pairwise disjoint
and do not necessarily cover all the processes.

An effectively checkable criterion to determinte if at least one process or supervisor
will be able to provide a progress from any nondeadlock state in G is as follows:

(ϕG ∧ϕdf ) →
( ∨

t∈π∈C
Kw

π ϕgood(t) ∨
∨

i∈1...k

∨
t∈π∈proc(Ti)

Ks
proc(Ti)ϕgood(t)

)
It is interesting to compare Solution 3 with Solution 4. The former is more flexi-

ble in the sense that knowledge accumulated is not limited to a fixed partitioning of
the processes. On the other hand, the latter solution allows true concurrency between
transitions supported with the help of supervisors, whereas the former one interleaves
the firing of such transitions. A solution that allows supervisors for a nondisjoint set of
processes, which achieves the flexibility of Solution 3 and allows concurrent (indepen-
dent) support of transitions by different supervisors as in Solution 4, is also possible.
At first glance, this looks like gaining from both worlds; in practice, however, allowing
processes to hang on multiple supervisors requires a large amount of overhead.

Lemma 12. Under our transformations from a Petri Net N to an extended Petri Net N′,
exec(N′) C⊆ stutcl(execI(N)) holds.

This is proved by induction on prefixes of the execution and using Lemma 9.

Lemma 13. N′ satisfies all stuttering invariant temporal properties of N.

This follows from the fact that our transformation does not introduce new deadlocks.
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6 Implementing Supervisors

Processes hang on a supervisor in some arbitrary order. The supervisor needs to decide,
based on the part of the global state that it sees, whether there is enough information to
support some transition. We consider first the case of a single supervisor.

Definition 19. Let L = {s(Π×Π | s ∈ G,Π ⊆ C} denote the set of joint local states,
each paired up with the set of relevant processes (then G×C ⊆ L). We define )⊆ L×L
(and, symmetrically, *) as follows: q ) q′ if q = (s(Π1 ,Π1),q′ = (s(Π2 ,Π2) (i.e., both
are part of the same global state s) and Π1 ⊆ Π2. We say that q′ subsumes q.

Definition 20. The support function supp : L → 2T returns, for each q ∈ L, the tran-
sitions that are allowed by R from all states that subsume q. Formally, supp(q) =
∩(s,C )*q{t | t ∈ T,(s,t) ∈ R}.

That is, for q = (s(Π,Π), t ∈ supp(q) iff s |= Ks
Πϕgood(t). If t ∈ supp(q)∩ ct(T ), then

the supervisor can select a process in proc(t) to support t. Obviously, when q ) q′,
supp(q) ⊆ supp(q′). There is no need for a supervisor to store in the domain of supp
elements q = (s(Π,Π) where |Π|< 2; in this case, when supp(q) �= /0, the process with
that local state can locally support a transition without the help of a supervisor.

Definition 21. Let �⊆ L×L be such that q � q′ if q = (s(Π,Π) and q′ = (s(Π∪{π},Π∪
{π}), where π �∈ Π (i.e., q′ extends q according to exactly one process).

In the example from Figure 1(b), we have that ({p1},{πl}) � ({p1, p2},{πl,πr}) and
({p2},{πr}) � ({p1, p2},{πl,πr}). The supervisor updates its view about the joint lo-
cal state of the processes according to the relation �: when moving from q to q′ by
acquiring the relevant information about a new processor π; consequently, its knowl-
edge grows and it can decide to support one of the transitions in supp(q′).

Definition 22. A joint local state q is minimal supporting if supp(q) �= /0 and, for each
q′ such that q′ � q, supp(q′) = /0.

Definition 23. The upward closure ↑U of a subset of the joint local states U ⊆ L is
{q ∈ L | ∃q′ ∈ U q′ ) q}.

Because processes hang on a supervisor one by one, there is no need to calculate and
store all the cases of the function supp.

Lemma 14. A sufficient condition for restricting the domain U ⊆ L of supp for a su-
pervisor, without introducing new deadlocks, is that G×{C} ⊆↑U.

This suggests the following algorithm for calculating the representation table for supp:
perform DFS such that if q � q′, then q is searched before q′; backtrack when visiting q
again, or when supp(q) �= /0. This algorithm can be used also for multiple supervisors,
when restricting the search to the joint local states of Π ⊆ proc(Ti) for each Ti.

In order to reduce the set of local states that a supervisor needs to keep in the support
table, one may decide that a supervisor will not always support transitions as soon as
the joint local state of the hung processes allows that. This introduces further delays
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Table 1. Tests and Results

Processes States Global table
size

Avg. num. of
hung procs.

Duration
(sec)

5 164 147 3.24 0.0002
8 3344 3296 4.06 0.2
9 9136 8449 4.37 1.3
10 24960 21371 4.65 6.8

in decisions, where the supervisor waits for more processes to hang even when it can
already support some transitions. On the other hand, in this case the set of supported
transitions may be larger, allowing more nondeterminism.

The size of the global state space of a Petri Net is O(2|P|). Since we need to keep
also the joint local states, the size of the support table that we store in a supervisor, is
O(2|P|+|C |) (which is the size of L). However, by Lemma 14, the representation may be
much more succinct. In theory, when there are no uncontrollable transitions, a (partic-
ularly slow) supervisor can avoid storing the support table, and perform the PSPACE
binary search each time it needs to make a decision on a joint local state.

7 Experimental Results

We implemented a prototype tool that allows to define Petri Nets with priorities and then
simulate their executions according to Solution 3 described above. The tool uses model
checking for building the local support tables for each process, as well as a central
support table allowing the supervisor to base its support on accumulated knowledge.
The tests were performed on a standard PC with Intel CoreTM2 Duo Processor and
2GB RAM.

In order to measure the efficiency of the suggested solution, the tests were repeated
for several Petri Nets with various numbers of processes, places, and transitions. In each
test, multiple random execution sequences of 10,000 steps were generated, allowing to
gather reliable performance statistics. Table 1 summarizes some tests and their results.
The table presents, for each test, the number of global states, the size of the table used
by the supervisor, the average number of hanged processes needed until the supervisor
could support a transition, and the model checking duration.

8 Conclusions

We have developed a simple and effective algorithm for synthesizing distributed control.
The resulting control strategy uses communication and knowledge collection without
blocking the processes unnecessarily. One strength of our approach is that it is complete
in the sense that, provided a centralized solution exists, it finds a solution. However,
this does not come at the cost of centralizing the control completely. To the contrary,
the system can progress without the support of a global or regional supervisor as soon
as the local information suffices to do so.
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Our solution for the distributed control of systems uses knowledge to construct a
distributed controller for a global constraint. In [1,2], it is demonstrated that the lo-
cal knowledge may be insufficient to construct a controller. Knowledge of perfect re-
call [13], which depends not only on the local state (information), but on the gathered
visible history, can alleviate some, but not all, of these situations. The use of inter-
process communication to obtain joint knowledge is suggested in [18]; however, no
systematic algorithm for collecting such knowledge, or for evaluating when enough
knowledge has been collected, was provided there. In [6], joint knowledge is calculated
through temporary multiprocess synchronization. However, such synchronization is ex-
pensive, and multiple interactions (including different interactions of the same set of
processes) may require a separate synchronizing process. We proposed here a practical
solution for distribute control where a small number of (or even a single) supervisor(s)
run(s) concurrently with the controlled system.

The algorithms in [1,2,6] guarantee a solution only under the assumption that the
required constraint on a distributed system may not cause a deadlock (i.e., is nonblock-
ing); accordingly, at the limit, one may synchronize all the processes and then make a
decision how to progress given the global state. These solutions work, e.g., in the case
of imposing priorities without uncontrollable transitions. However, when imposing the
priorities when uncontrollable transitions are allowed, such control synthesis may fail:
a state where the uncontrollable transitions have minimal priority among the enabled
ones would be too late, and needs to be eliminated in advance. Our solution solves this
problem by calculating the knowledge based on a reduced state space that avoids being
blocked in such situations.

An interesting research direction is to deal with more general temporal properties.
The difficulty lies with the need to use global memory for controlling the system and
then distributing it according to the original architecture.
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Abstract. In this paper, we propose a new randomised algorithm for
deciding language equivalence for probabilistic automata. This algorithm
is based on polynomial identity testing and thus returns an answer with
an error probability that can be made arbitrarily small. We implemented
our algorithm, as well as deterministic algorithms of Tzeng and Doyen
et al., optimised for running time whilst adequately handling issues of
numerical stability. We conducted extensive benchmarking experiments,
including the verification of randomised anonymity protocols, the out-
come of which establishes that the randomised algorithm significantly
outperforms the deterministic ones in a majority of our test cases. Fi-
nally, we also provide fine-grained analytical bounds on the complexity
of these algorithms, accounting for the differences in performance.

1 Introduction

Probabilistic automata were introduced by Michael Rabin [16] as a variation on
non-deterministic finite automata. In a probabilistic automaton the transition
behaviour is determined by a stochastic matrix for each input letter. Proba-
bilistic automata are one of a variety of probabilistic models, including Markov
chains and Markov decision processes, that are of interest to the verification
community. However a distinguishing feature of work on probabilistic automata
is the emphasis on language theory and related notions of equivalence as opposed
to temporal-logic model checking [1,4,8,12,13,14].

Probabilistic automata accept weighted languages: with each word one asso-
ciates the probability with which it is accepted. In this context two automata A
and B are said to be equivalent if each word is accepted with the same probability
by both A and B. It was shown by Tzeng [21] that equivalence for probabilistic
automata is decidable in polynomial time, although this fact can also be ex-
tracted from results of Schützenberger [17] on minimising weighted automata.
By contrast the natural analog of language inclusion—that B accepts each word
with probability at least as great as A—is undecidable [6] even for automata of
fixed dimension [2].
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The motivation of Tzeng to study equivalence of probabilistic automata came
from learning theory. Here our motivation is software verification as we continue
to develop apex [12], an automated equivalence checker for probabilistic imper-
ative programs. apex is able to verify contextual equivalence of probabilistic
programs1, which in turn can be used to express a broad range of interesting
specifications.

apex works by translating probabilistic programs into automata-theoretic
representations of their game semantics [8]. The translation applies to open pro-
grams (i.e., programs with undefined components) and the resultant automata
are highly abstracted forms of the program operational semantics. Intuitively,
only externally observable computational steps are visible in the corresponding
automata and internal actions such as local-variable manipulation remain hid-
den. Crucially, the translation relates (probabilistic) contextual equivalence with
(probabilistic) language equivalence [14]. Accordingly, after two programs have
been translated into corresponding probabilistic automata, we can apply any lan-
guage equivalence testing routine to decide their contextual equivalence. In some
of our case studies, we shall use automata generated by apex for benchmarking
the various algorithms discussed in the paper.

In conjunction with the ability of the apex tool to control which parts of a
given program are externally visible, the technique of verification by equivalence
checking has proven surprisingly flexible. The technique is particularly suited to
properties such as obliviousness and anonymity, which are difficult to formalise
in temporal logic.

In this paper we develop a new randomised algorithm for checking equivalence
of probabilistic automata (more generally of real-valued weighted automata).
The complexity of the algorithm is O(nm), where n is the number of states of
the two automata being compared and m is the total number of labelled transi-
tions. Tzeng [21] states the complexity of his algorithm as O(|Σ| ·n4); the same
complexity bound is likewise claimed by [5,10] for variants of Tzeng’s proce-
dure. Here we observe that the procedure can be implemented with complexity
O(|Σ| · n3), which is still slower than the randomised algorithm.

This theoretical complexity improvement of the randomised algorithm over
the deterministic algorithm is borne out in practice. We have tested the algo-
rithms on automata generated by apex based on an anonymity protocol and
Herman’s self-stabilisation protocol. We have also generated test cases for the
equivalence algorithms by randomly performing certain structural transforma-
tions on automata. Our results suggest that the randomised algorithm is around
ten times faster than the deterministic algorithm. Another feature of our ex-
periments is that the performance of both the randomised and deterministic
algorithms is affected by whether they are implemented using forward reachabil-
ity from the initial states of the automata or using backward reachability from
the accepting states of the automata.

1 Two programs are contextually equivalent if and only if they can be used inter-
changeably in any context.
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2 Algorithms for Equivalence Checking

Rabin’s probabilistic automata [16] are reactive according to the taxonomy of
Segala [19]: the transition function has type Q×Σ → Dist(Q), where Q is the set
of states, Σ the alphabet and Dist(Q) the set of probability distributions on Q.
Another type of probabilistic automata are the so-called generative automata in
which the transition function has typeQ→ Dist(Σ×Q). The automata produced
by apex combine both reactive and generative states. In this paper we work
with a notion of R-weighted automaton which encompasses both reactive and
generative transition modes as well as negative transition weights, which can
be useful in finding minimal representations of the languages of probabilistic
automata [17]. In the context of equivalence checking the generalisation from
probabilistic automata to R-weighted automata is completely innocuous.

Definition 1. An R-weighted automaton A = (n,Σ,M,α, η) consists of a pos-
itive integer n ∈ N representing the number of states, a finite alphabet Σ, a
map M : Σ → R

n×n assigning a transition matrix to each alphabet symbol,
an initial (row) vector α ∈ R

n, and a final (column) vector η ∈ R
n. The au-

tomaton A assigns each word w = σ1 · · ·σk ∈ Σ∗ a weight A(w) ∈ R, where
A(w) := αM(σ1) · · ·M(σk)η. Two automata A,B over the same alphabet Σ are
said to be equivalent if A(w) = B(w) for all w ∈ Σ∗.

From now on, we fix automata A = (n(A), Σ,M (A), α(A), η(A)), and
B = (n(B), Σ,M (B), α(B), η(B)), and define n := n(A) + n(B). We want to check
A and B for equivalence. It is known that if A and B are not equivalent then
there is a short word witnessing their inequivalence [15]:

Proposition 2. If there exists a word w ∈ Σ∗ such that A(w) �= B(w) then
there exists a word w of length at most n such that A(w) �= B(w).

It follows immediately from Proposition 2 that the equivalence problem for
weighted automata is in co-NP. In fact this problem can be decided in poly-
nomial time. For instance, Tzeng’s algorithm [21] explores the tree of possible
input words and computes for each word w in the tree and for both automata
the distribution of states after having read w. The tree is suitably pruned by
eliminating nodes whose associated state distributions are linearly dependent
on previously discovered state distributions. Tzeng’s procedure has a runtime of
O(|Σ| ·n4). Another algorithm was recently given in [10]. Although presented in
different terms, their algorithm is fundamentally a backward version of Tzeng’s
algorithm and has the same complexity. (An advantage of a “backward” algo-
rithm as in [10] is that repeated equivalence checks for different initial state dis-
tributions are cheaper, as results from the first equivalence check can be reused.)
Variants of Tzeng’s algorithm were also presented in [5] for checking linear-time
equivalences on probabilistic labelled transition systems, including probabilis-
tic trace equivalence and probabilistic failures equivalence. These variants all
have run time O(|Σ| · n4) as for Tzeng’s algorithm. It has been pointed out
in [7] that more efficient algorithms can actually be obtained using techniques
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from the 60s: One can – in linear time – combine A and B to form a weighted
automaton that assigns each word w the weight A(w) − B(w). An algorithm of
Schützenberger [17] allows to compute a minimal equivalent automaton, which is
the empty automaton if and only if A and B are equivalent. As sketched in [7],
Schützenberger’s algorithm runs in O(|Σ| · n3), yielding an overall runtime of
O(|Σ| · n3) for checking equivalence.

2.1 Deterministic Algorithms

Since the focus of this paper is language equivalence and not minimisation, we
have not implemented Schützenberger’s algorithm. Instead we have managed
to speed up the algorithms of [21] and [10] from O(|Σ| · n4) to O(|Σ| · n3)
by efficient bookkeeping of the involved vector spaces. Whereas [7] suggests to
maintain an LU decomposition to represent the involved vector spaces, we prefer
a QR decomposition for stability reasons. We have implemented two versions
of a deterministic algorithm for equivalence checking: a forward version (related
to [21]) and a backward version (related to [10]). In the following we describe the
backward algorithm; the forward version is obtained essentially by transposing
the transition matrices and exchanging initial and final states.

Figure 1 shows the backward algorithm. The algorithm computes a basis Q
of the set of state distributions{(

M (A)(σ1) . . .M (A)(σk)η(A)

M (B)(σ1) . . .M (B)(σk)η(B)

)
| σ1 . . . σk ∈ Σ∗

}
represented by n-dimensional column vectors. It is clear that A and B are equiv-

alent if and only if α(A)u(A) = α(B)u(B) for all vectors
(
u(A)

u(B)

)
in Q.

Computing a basis Q of the set of state distributions requires a membership
test to decide if a new vector is already included in the current vector space.
While a naive membership test can be carried out in O(n3) time, maintaining
the basis in a canonical form (here as an orthogonal set) admits a test in O(n2).

Given a set Q = {q1, . . . , qk} of k ≤ n orthogonal vectors and another vector
u ∈ R

n, we denote by u ↓ Q the orthogonal projection of u along Q onto the
space orthogonal to Q. Vector u ∈ R

n is included in the vector space given by
Q, if u is equal to its projection into Q, i.e., the vector u− u ↓ Q. Vector u ↓ Q
can be computed by Gram-Schmidt iteration:

for i from 1 to k
u := u− qT

i u

qT
i qi
qi

return u

Thereby qTi denotes the transpose of vector qi. Note that this iteration takes
time O(nk).

The improvement from the O(|Σ|·n4) bound for equivalence checking reported
in [5,10,21] to O(|Σ| ·n3) arises from the fact that we keep the basis in canonical
form which reduces the O(n3) complexity [5,10,21] for the membership test to
O(n2). Since each iteration of the equivalence checking algorithm adds a new
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vector to Q or decreases the size of worklist by one, |Σ| · n iterations suffice for
termination. Thus the overall complexity is O(|Σ| · n3).

For efficiency, we consider an implementation based on finite-precision floating
point numbers. Therefore we need to take care of numerical issues. To this end,
we use the modified Gram-Schmidt iteration rather than the classical Gram-
Schmidt iteration, as the former is numerically more stable, see [20].

To be more robust in presence of rounding errors, vectors are compared up to
a relative error ε > 0. Two vectors v, v′ ∈ R

n are equal up to relative error ε ∈ R,
denoted by v ≈ε v

′, iff ‖v−v′‖
‖v‖ < ε. The relative criterion is used to compare the

weight of a word in automaton A and B, and to check if a vector u ∈ R
n is

included in a vector space given by a set of base vectors Q, i.e., u ≈ε u− u ↓ Q.

Algorithm EQUIV←,det

Input: Automata A = (n(A), Σ, M (A), α(A), η(A)) and B = (n(B), Σ, M (B), α(B), η(B))

if α(A)η(A) �= α(B)η(B)

return “α(A)η(A) = A(ε) �= B(ε) = α(B)η(B)”
worklist := {(η(A), η(B), ε)}
η :=

(
η(A)

η(B)

)
if ‖η‖ = 0

return “A and B are both empty and hence equivalent”
Q := {η}
while worklist �= ∅

choose and remove (v(A), v(B), w) from worklist
forall σ ∈ Σ

u(A) := M (A)(σ)v(A); u(B) := M (B)(σ)v(B); w′ := σw
if not α(A)u(A) ≈ε α(B)u(B)

return “α(A)u(A) = A(w′) �= B(w′) = α(B)u(B)”

u :=

(
u(A)

u(B)

)
q := u ↓ Q
if not u− q ≈ε u

add (u(A), u(B), w′) to worklist
Q := Q ∪ {q}

return “A and B are equivalent”

Fig. 1. Deterministic algorithm (backward version ←)

2.2 Randomised Algorithms

In this section we present a new randomised algorithm for deciding equivalence of
R-weighted automata. Recall from Proposition 2 that two R-weighted automata
with combined number of states n are equivalent if and only if they have the
same n-bounded language, that is, they assign the same weight to all words of
length at most n. Inspired by the work of Blum, Carter and Wegman on free
Boolean graphs [3] we represent the n-bounded language of an automaton by a
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polynomial in which each monomial represents a word and the coefficient of the
monomial represents the weight of the word. We thereby reduce the equivalence
problem to polynomial identity testing, for which there is a number of efficient
randomised procedures.

Let A = (n(A), Σ,M (A), α(A), η(A)) and B = (n(B), Σ,M (B), α(B), η(B)) be two
R-weighted automata over the same alphabet Σ. Let n := n(A) + n(B) be the
total number of states of the two automata. We introduce a family of variables
x = {xσ,i : σ ∈ Σ, 1 ≤ i ≤ n} and associate the monomial xσ1,1xσ2,2 . . . xσk,k

with a word w = σ1σ2 . . . σk of length k ≤ n. Then we define the polynomial
P (A)(x) by

P (A)(x) :=
n∑

k=0

∑
w∈Σk

A(w) · xσ1,1xσ2,2 . . . xσk,k . (1)

The polynomial P (B)(x) is defined likewise, and it is immediate from Proposi-
tion 2 that P (A) ≡ P (B) if and only if A and B have the same weighted language.

To test equivalence of P (A) and P (B) we select a value for each variable xi,σ

independently and uniformly at random from a set of rationals of size Kn, for
some constant K. Clearly if P (A) ≡ P (B) then both polynomials will yield the
same value. On the other hand, if P (A) �≡ P (B) then the polynomials will yield
different values with probability at least (K − 1)/K by the following result of
De Millo and Lipton [9], Schwartz [18] and Zippel [22] and the fact that P (A)

and P (B) both have degree n.

Theorem 3. Let F be a field and Q(x1, . . . , xn) ∈ F[x1, . . . , xn] a multivariate
polynomial of total degree d. Fix a finite set S ⊆ F, and let r1, . . . , rn be chosen
independently and uniformly at random from S. Then

Pr[Q(r1, . . . , rn) = 0 | Q(x1, . . . , xn) �≡ 0] ≤ d

|S| .

While the number of monomials in P (A) and P (B) is proportional to |Σ|n, i.e.,
exponential in n, writing

P (A)(x) = α(A)

⎛⎝ n∑
i=0

i∏
j=1

∑
σ∈Σ

xσ,j ·M (A)(σ)

⎞⎠ η(A) (2)

it is clear that P (A) and P (B) can be evaluated on a particular set of numerical
arguments in time polynomial in n. The formula (2) can be evaluated in a forward
direction, starting with the initial state vector α(A) and post-multiplying by the
transition matrices, or in a backward direction, starting with the final state
vector η(A) and pre-multiplying by the transition matrices. In either case we get
a polynomial-time Monte-Carlo algorithm for testing equivalence of R-automata.
The backward variant is shown in Figure 2.
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Algorithm EQUIV←,rand

Input: Automata A = (n(A), Σ, M (A), α(A), η(A)) and B = (n(B), Σ, M (B), α(B), η(B))

if α(A)η(A) �= α(B)η(B)

return “α(A)η(A) = A(ε) �= B(ε) = α(B)η(B)”
v(A) := η(A); v(B) := η(B)

for i from 1 to n do
choose a random vector r ∈ {1, 2, . . . , Kn}Σ
v(A) :=

∑
σ∈Σ r(σ)M (A)(σ)v(A)

v(B) :=
∑

σ∈Σ r(σ)M (B)(σ)v(B)

if α(A)v(A) �= α(B)v(B)

return “∃w with |w| = i such that A(w) �= B(w)”
return “A and B are equivalent with probability at least (K − 1)/K”

Fig. 2. Randomised algorithm, backward version

Algorithm EQUIV←,rand

Input: Automata A = (n(A), Σ, M (A), α(A), η(A)) and B = (n(B), Σ, M (B), α(B), η(B))

v
(A)
0 := η(A); v

(B)
0 := η(B);

for i from 1 to n do
choose a random vector r ∈ {1, 2, . . . , Kn}Σ
v
(A)
i :=

(∑
σ∈Σ r(σ)M (A)(σ)

)
v
(A)
i−1;

v
(B)
i :=

(∑
σ∈Σ r(σ)M (B)(σ)

)
v
(B)
i−1;

if α(A)v
(A)
i �= α(B)v

(B)
i

w := ε;
u(A) := α(A); u(B) := α(B);
for j from i downto 1 do

choose σ ∈ Σ with u(A)M (A)(σ)v
(A)
j−1 �= u(B)M (B)(σ)v

(B)
j−1;

w:= wσ;
u(A) := u(A)M (A)(σ);
u(B) := u(B)M (B)(σ);

return “α(A)u(A) = A(w′) �= B(w′) = α(B)u(B)”
return “A and B are equivalent with probability at least (K − 1)/K”

Fig. 3. Randomised algorithm with counterexamples, backward version

2.3 Runtime

The randomised algorithm is simpler to implement than the deterministic algo-
rithm since there is no need to solve large systems of linear equations. While the
deterministic algorithm, carefully implemented, runs in time O(|Σ| ·n3), the ran-
domised algorithm runs in time O(n · |M |), where |M | is the number of nonzero
entries in all M(σ), provided that sparse-matrix representations are used. In al-
most all of our case studies, below, the randomised algorithm outperforms the
deterministic algorithm.
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2.4 Extracting Counterexamples

We can obtain counterexamples from the randomised algorithm by exploiting
a self-reducible structure of the equivalence problem. We generate counterex-
amples incrementally, starting with the empty string and using the randomised
algorithm as an oracle to know at each stage what to choose as the next letter
in our counterexample. Here the important thing is to avoid repeatedly running
the randomised algorithm, which would negate the complexity advantages of this
procedure over the deterministic algorithm. In fact this can all be made to work
with some post-processing following a single run of the randomised procedure as
we now explain.

Once again assume that A and B are weighted automata over the same al-
phabet Σ and with combined number of states n. To evaluate the polynomial
P (A) we substitute a set of randomly chosen rational values r = {rσ,i : σ ∈
Σ, 1 ≤ i ≤ n} into the expression (2). Here we will generalize this to a notion
of partial evaluation P (A)

w (r) of polynomial P (A) with respect to values r and a
word w ∈ Σm, m ≤ n:

P (A)
w (r) = α(A)M (A)(w)

⎛⎝ n∑
i=m

n∏
j=m+1

∑
σ∈Σ

rσ,j ·M (A)(σ)

⎞⎠ η(A) (3)

Notice that P (A)
ε (r) = P (A)(r) where ε is the empty word and, at the other

extreme, P (A)
w (r) = A(w) for any word w of length n. We define P (B)

w similarly.

Proposition 4. If P (A)
w (r) �= P (B)

w (r) then either A(w) �= B(w) or m < n and
there exists σ ∈ Σ with P (A)

wσ (r) �= P (B)
wσ (r)

Proof. Considering the equation (3) and the corresponding statement for B the
contrapositive of the proposition is obvious: if A(w) = B(w) and P (A)

wσ (r) �=
P

(B)
wσ (r) for each σ ∈ Σ then P (A)

w (r) = P (B)
w (r).

From Proposition 4 it is clear that the algorithm in Figure 3 generates a coun-
terexample trace given r such that P (A)(r) �= P (B)(r).

3 Experiments

Implementation. To evaluate the deterministic and randomised algorithms, we
have implemented an equivalence checker for probabilistic automata in C++
and tested their performance on a 3.07 GHz workstation with 48GB of memory.
The forward and the backward algorithm have about 100 lines of code each,
and the randomised one around 80, not counting supporting code. We use the
Boost uBLAS library to carry out vector and matrix operations. Numbers are
represented as double-precision floating point numbers. In order to benefit from
the sparsity of vectors and transition matrices, we store them in a sparse repre-
sentation which only stores non-zero entries.
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Sparsity also plays a role in the Gram-Schmidt procedure because, in our
context, the argument vector u often shares non-zeros with only a few base
vectors. We have implemented an optimised version of Gram-Schmidt that only
projects out base vectors that share non-zero positions with the argument. This
can lead to dramatic speed-ups in the deterministic algorithms (the randomised
algorithm does not use Gram-Schmidt).

3.1 Herman’s Protocol

We consider Herman’s self-stabilization protocol [11], in which N processes are
arranged in a ring. Initially each process holds a token. The objective of Herman’s
protocol is to evolve the processes into a stable state, where only one process
holds a token. The algorithm proceeds in rounds: in every round, each process
holding a token tosses a coin to decide whether to keep the token or to pass it
to its left neighbour; if a process holding a token receives an additional token,
both of these tokens expire. We will be interested in the number of rounds that
it takes to reach the stable state. The corresponding apex model “announces”
each new round by making calls to an undefined (external) procedure round
inside the control loop of the protocol. Making the announcements at different
program points within the loop (e.g. at the very beginning or the very end)
results in different automata shown in Figure 4 (for N = 3).

A few remarks are due regarding our graphical representation of automata.
Initial states are marked by a grey background. Accepting states are surrounded
by a double border and labelled by a distribution over return values, e.g., the
automaton on the left returns value 0 with a probability of 3

4 .

0 (0,3/4)r u n _ r o u n d ,  1

r u n _ r o u n d ,  1 / 4

0 (0,1)
r u n _ r o u n d ,  3 / 4

2

r u n _ r o u n d ,  1 / 4 r u n _ r o u n d ,  3 / 4
r u n _ r o u n d ,  1 / 4

Fig. 4. Herman’s protocol: automata for early (left) and late (right) announcement

These automata are structurally different and not bisimilar. However, intu-
itively, it should not matter at which position within the loop the announcement
is made and therefore we check if the resulting automata are equivalent. Here is
how the four algorithms perform in this case study.

states equivalence checking
N sspec sprot t←,rand t←,det t→,rand t→,det
9 23 24 0.00 0.00 0.00 0.00

11 63 64 0.00 0.09 0.05 0.13
13 190 191 0.15 2.66 1.19 3.60
15 612 613 3.98 93.00 30.32 119.21
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3.2 Grade Protocol

Assume that a group of students has been graded and would like to find out the
sum of all their grades, e.g. to compute the average. However, none wants to
reveal their individual grade in the process.

The task can be accomplished with the following randomised algorithm. Let
S ∈ N be the number of students, and let {0, · · · , G − 1} (G ∈ N) be the set
of grades. Define N = (G − 1) · S + 1. Further we assume that the students
are arranged in a ring and that each pair of adjacent students shares a random
integer between 0 and N −1. Thus a student shares a number l with the student
on the left and a number r with the student on the right, respectively. Denoting
the student’s grade by g, the student announces the number (g + l − r)mod N .
Because of the ring structure, each number will be reported twice, once as l and
once as r, so the sum of all announcements (modulo N) will be the same as the
sum of all grades. What we can verify is that only this sum can be gleaned from
the announcements by a casual observer, i.e. the observer cannot gain access to
any extra information about individual grades. This correctness condition can be
formalised by a specification, in which the students make random announcements
subject to the condition that their sum equals the sum of their grades.

Correct protocol. To check correctness of the Grade protocol, we check if the
automaton resulting from the implementation of the protocol is equivalent to
the specification automaton. Both automata are presented in Figure 5 for G = 2
and S = 3. Both automata accept words which are sequences of grades and
announcements. The words are accepted with the same probability as that of
producing the announcements for the given grades. Adherence to specification
can then be verified via language equivalence.

In Figure 6 we report various data related to the performance of apex and
the equivalence checking algorithms. The reported times tspec and tprot are those
needed to construct the automata corresponding to specification and the pro-
tocol respectively (we also give their sizes sspec, sprot). The columns labelled by
t←,rand, t←,det, t→,rand, t→,det give the running time of the language equivalence
check of the respective automata using the four algorithms. The symbol − means
that the computation timed out after 10 minutes.

The running time of the deterministic backwards algorithm is higher than
the one of the forward algorithm because the backwards algorithm constructs a
different vector space with a higher number of dimensions.

Faulty protocol. Moving to test cases for inequivalence checking, we compare
the specification for the Grade Protocol with a faulty version of the protocol in
which the students draw numbers between 0 and N − 2 (rather than N − 1, as
in the original protocol). The running times and automata sizes are recorded in
Figure 7.

Both the deterministic and the randomised algorithms are decision algorithms
for equivalence and can also generate counterexamples, which could serve, e.g.,
to repair a faulty protocol. We test counterexample generation on the faulty
version of the protocol.
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Fig. 5. Automata generated by apex: protocol (top) and specification (bottom)
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apex states equivalence checking
G S tspec tprot sspec sprot t←,rand t←,det t→,rand t→,det
2 10 0.00 0.02 202 1102 0.00 0.41 0.00 0.02
2 20 0.05 0.24 802 8402 0.10 26.09 0.03 0.26
2 50 1.75 6.46 5,002 127,502 8.08 - 1.21 10.07
2 100 25.36 82.26 20,002 1,010,002 240.97 - 10.56 159.39
2 200 396.55 - 80,002 -
3 10 0.02 0.16 383 3803 0.02 5.79 0.01 0.09
3 20 0.22 1.64 1,563 31,203 0.69 598.78 0.23 1.33
3 50 6.99 39.27 9,903 495,003 61.76 - 9.29 63.16
3 100 102.42 - 39,803
3 200 - -
4 10 0.04 0.56 564 8124 0.07 37.32 0.04 0.36
4 20 0.53 5.47 2,324 68,444 2.25 - 0.77 4.95
4 50 15.94 142.59 14,804 1,102,604 210.00 - 30.27 222.50
4 100 232.07 - 59,604
4 200 - -
5 10 0.09 1.46 745 14,065 0.17 164.87 0.10 0.68
5 20 0.96 16.39 3,085 120,125 5.36 - 1.92 14.49
5 50 28.81 417.58 19,705 1,950,305 508.86 - 62.64 335.01
5 100 417.59 - 79,405
5 200 - -

Fig. 6. Equivalence checks for the Grade Protocol

apex states equivalence checking
G S tspec tprot sspec sprot t←,rand t∗←,rand t←,det t→,rand t∗→,rand t→,det

2 10 0.00 0.10 202 8,845 0.02 0.02 6.71 0.01 0.01 0.26
2 20 0.05 2.24 802 151,285 1.85 1.86 - 0.12 0.14 11.28
2 50 1.75 170.40 5,002 6,120,205 - - - 17.38 18.60 -
3 10 0.00 0.10 383 63685 0.51 0.51 - 0.06 0.07 6.81
3 20 0.05 2.24 1,563 1,150,565 86.57 86.61 - 2.51 2.84 441
3 50 1.75 170.40 9,903 -
4 10 0.00 0.10 564 207,125 8.04 8.04 - 0.34 0.35 60.57
4 20 0.05 2.24 2,324 3,816,145 - - - 17.11 17.31 -
4 50 1.75 170.40 14,804 -
5 10 0.00 0.10 745 481,765 27.22 27.25 - 1.33 1.37 269.71
5 20 0.05 2.24 3,085 8,966,725 - - - 72.29 72.53 -
5 50 1.75 170.40 19,705 -

Fig. 7. Inequivalence checks for the Grade Protocol

The deterministic algorithm stores words in the work list which immediately
yield a counterexample in case of inequivalence. In the context of the randomised
algorithm (as described in Section 2.4), counterexample generation requires extra
work: words need to be reconstructed using matrix vector multiplications. To
quantify the runtime overhead, we record running times with counterexample
generation switched on and off.

The running time of the backward randomised algorithm with counterexample
generation is denoted by t∗←,rand and analogously for the forward algorithm. The
runtime overhead of counterexample generation remains below 12%.

3.3 Randomised Inflation

Next we discuss two procedures that can be used to produce random instances of
equivalent automata. We introduce two directional variants (by analogy to the
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forward and backward algorithms) that, given an input automaton, produce an
equivalent automaton with one more state. Intuitively, equivalence is preserved
because the new state is a linear combination of existing states, which are then
suitably adjusted.

Backward Inflate. From a given automaton A = (n,Σ,M,α, η), we con-
struct an equivalent automaton A′ with an additional state such that the
automaton A′ is not bisimilar to the original automaton A. The automaton
A′ = (n + 1, Σ,M ′, α′, η′) has an additional state that corresponds to a linear
combination of states in A. To this end, the inflation procedure randomly picks
several vectors:

– a single row vector δ ∈ R
n which controls the transitions out of the new

state; to obtain a substochastic transition matrix, we ensure δ ≥ (0, . . . , 0)
(where ≥ is meant componentwise) and δ(1, . . . , 1)� = 1;

– column vectors s(σ) ∈ R
n for all σ ∈ Σ that define the probability that

flows into the new state; for probabilistic automata one should ensure
(0, . . . , 0)� ≤ s(σ) ≤ (1, . . . , 1)� and s(σ)δ ≤M(σ).

We define the transition matrices such that the new state n + 1 is a linear
combination of the old states, weighted according to δ. The transition matrix
for σ ∈ Σ is defined as folllows:

M ′(σ) :=
(
M(σ) − s(σ)δ s(σ)
δM(σ) 0

)
and α′ := (α 0) and η′ :=

(
η
δη

)
.

Proposition 5. A and A′ are equivalent.

Proof. For any word w = σ1 · · ·σk ∈ Σ∗, define c(w) := M(σ1) · · ·M(σk)η and
c′(w) :=M ′(σ1) · · ·M ′(σk)η′. We will show:

c′(w) =
(
c(w)
δc(w)

)
for all w ∈ Σ∗. (4)

Equation (4) implies the proposition, because A′(w) = α′c′(w)
(4)
= αc(w) =

A(w). We prove (4) by induction on the length of w. For the induction base, we

have c′(ε) = η′ =
(
η
δη

)
=

(
c(ε)
δc(ε)

)
. For the induction step, assume (4) holds

for w. Let σ ∈ Σ. Then we have

c′(σw) =M ′(σ)c′(w) =
(
M(σ) − s(σ)δ s(σ)
δM(σ) 0

)(
c(w)
δc(w)

)
=
(
M(σ)c(w)
δM(σ)c(w)

)
=

(
c(σw)
δc(σw)

)
,

completing the induction proof. -.
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Forward Inflate. Forward Inflate is a variant obtained by “transposing”
Backward Inflate. In this variant it is hard to keep the matrices stochas-
tic. However, nonnegativity can be preserved. Construct an automaton A′ =
(n+ 1, Σ,M ′, α′, η′) as follows. Pick randomly:

– a column vector δ ∈ R
n;

– row vectors s(σ) ∈ R
n for all σ ∈ Σ; for nonnegative automata one should

ensure δs(σ) ≤M(σ).

Define

M ′(σ) :=
(
M(σ) − δs(σ)M(σ)δ

s(σ) 0

)
and α′ := (α αδ) and η′ :=

(
η
0

)
.

Proposition 6. A and A′ are equivalent.

The proof is analogous to that of Proposition 5.
We have conducted experiments in which we compare automata with their

multiply inflated versions. Our initial automaton is the doubly-linked ring of
size 10, i.e. the states are {0, · · · , 10}, there are two letters l and r such that the
probability of moving from i to (i+ 1)mod 10 on r is 0.5 and the probability of
moving from i to (i−1)mod 10 on l is 0.5 (otherwise the transition probabilities
are equal to 0). The table below lists times needed to verify the equivalence of
the ring with its backward inflations.

#inflations t←,rand t←,det
1 0.001282 0.00209
5 0.001863 0.004165

10 0.002986 0.008560
20 0.003256 0.007932
50 0.009647 0.058917

100 0.045588 0.306103
200 0.276887 2.014591
500 3.767168 29.578838

4 Conclusion

This paper has presented equivalence checking algorithms for probabilistic au-
tomata. We have modified Tzeng’s original deterministic algorithm [21]: by keep-
ing an orthogonal basis of the underlying vector spaces, we have managed to
improve the original quartic runtime complexity to a cubic bound. Further, we
have presented a novel randomised algorithm with an even lower theoretical
complexity for sparse automata. Our randomised algorithm is based on poly-
nomial identity testing. The randomised algorithm may report two inequalent
automata to be equivalent. However, its error probability, established by a theo-
rem of Schwarz and Zippel, can be made arbitrarily small by increasing the size
of the sample set and by repeating the algorithm with different random seeds.
The randomised algorithm outperforms the deterministic algorithm on a wide
range of benchmarks. Confirming the theoretical error probabilities the algo-
rithm has detected all inequivalent automata and was able to generate suitable
counterexample words.
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Abstract. REST is a software architectural style used for the design
of highly scalable web applications. Interest in REST has grown rapidly
over the past decade, spurred by the growth of open web APIs. On the
other hand, there is also considerable confusion surrounding REST: many
examples of supposedly RESTful APIs violate key REST constraints. We
show that the constraints of REST and of RESTful HTTP can be pre-
cisely formulated within temporal logic. This leads to methods for model
checking and run-time verification of RESTful behavior. We formulate
several relevant verification questions and analyze their complexity.

1 Introduction

REST – an acronym for Representational State Transfer – is a software archi-
tectural style that is used for the creation of highly scalable web applications.
It was formulated by Roy Fielding in [8]. The REST style provides a uniform
mechanism for access to resources, thereby simplifying the development of web
applications. Its structure ensures effective use of the Internet, in particular of
intermediaries such as caches and proxies, resulting in fast access to applications.
Over the past decade, interest in REST has increased rapidly, and it has become
the desired standard for the development of large-scale web applications. The
flip side to this is a considerable confusion over the principles of RESTful design,
which are often misunderstood and mis-applied. This results in applications that
are functionally correct, but which do not achieve the full benefits of flexibility
and scalability that are possible with REST. Fielding has criticized the design
of several applications which claim to be RESTful, among those are the photo-
sharing application Flickr [9] and the social networking API SocialSite [10].

The criticisms show that some of the confusion is between REST and the Hy-
pertext Transfer Protocol (HTTP) [7]. (Aside: Fielding is also a co-author of the
HTTP RFC.) While RESTful applications are implemented using HTTP, not
every HTTP-based application is RESTful, and not every RESTful application
must use HTTP: REST is an architectural style, while HTTP is a network-
ing protocol. Another common mistake is to call a application RESTful if it
uses simpler encodings than those in the Remote Procedure Call (RPC) based
SOAP/WSDL [26] mechanism. The distinction goes far beyond this superficial
difference. These and other, more subtle, confusions motivate our work.

G. Gopalakrishnan and S. Qadeer (Eds.): CAV 2011, LNCS 6806, pp. 541–556, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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A question which arises naturally is whether it is possible to automatically
check an application for conformance to REST. Doing so requires a precise spec-
ification of REST. In this paper, we address both questions. A formal character-
ization of REST has benefit beyond its use in automated analysis. It should also
result in clear and effective communication about REST, and can enable deeper
analysis of this elegant and effective architectural style.

We begin by formulating RESTful behavior in a general setting. A key contri-
bution is to show that REST can be formalized within temporal logic. Two
constraints define RESTful behavior. One, statelessness, is a branching-time
property. The other, hypertext-driven behavior, is expressible in linear temporal
logic. Both are safety properties. We then consider the common case of RESTful
HTTP, and discuss how HTTP induces variants of the temporal properties.

The temporal specifications may be applied in several ways for verifying that
a client-server application is RESTful. One is to model-check a fixed instance
of the application [4,23]. The parameterized model checking question is also of
much interest, as web applications typically handle a large number of clients.
These questions presume a ‘white-box’ situation, where implementation code is
available for analysis. A second group of questions concern run-time checking
of RESTful behavior, a ‘black-box’ approach, where the only observable is the
client-server communication. A third group of questions concern the synthesis
of servers which meet a specification under RESTful constraints.

We show that, for a fixed instance, model-checking statelessness can be done
in time that is linear in the size of the state-space of the instance and polynomial
in the number of resources. On the other hand, checking that an instance satisfies
a specification assuming hypertext-driven client behavior is PSPACE-complete
in the number of resources. This property can be checked at run-time, however,
in time that is polynomial in the number of clients and resources. We show
decidability for parameterized model-checking under certain assumptions; the
general case remains open. The full version of this paper [15] has complete proofs
of theorems and further detail on RESTful HTTP.

2 REST and its Formalization

Our goal in the formalization is to stay as close as is possible to its description
by Fielding in [8], which should be consulted for the rationale behind REST.

2.1 Building Blocks for Rest

REST is built around a client-server model which includes intermediate com-
ponents, such as proxies and caches. An application is structured as a (con-
ceptually) single server component (server, for short) and a number of client
components (clients). All relevant communication is between a client and the
server. Each request for a service is sent by a client to the server, which may
either reject the request or perform it, returning a response in either case to
the client. A server manages access to resources. A resource is an abstract unit
of information with an intended meaning. Examples are a data file, a temporal



Formalization and Automated Verification of RESTful Behavior 543

service (e.g., ‘current time in France’), or a collection of other resources (e.g.,
‘all files in a directory’).

An entity describes the value of a resource at a given time; it can be viewed as
the state of a resource. A resource state may be constant (e.g., ‘Uri’s birth date’)
or changing (e.g., ‘current time in France’), but it must take on values which
correspond to the intended meaning of the resource. A state may contain both
uninterpreted data and links to other resources. This creates a ‘Linked Data’
view [3] of all the information under the control of an application. A resource
identifier (resource id, for short) is a name by which a resource is identified. The
mapping of names to resources is fixed and unique. In HTTP-based applications,
Uniform Resource Identifiers (URIs) [27] are the resource identifiers. A resource
representation is a description of the state of the resource at a given time. A
state may have multiple representations (e.g., a web page may be represented as
HTML, or by an image of its content).

A RESTful architecture has a fixed set of uniform methods. Hence, every appli-
cation following that architecture must be based on these methods, which effec-
tively decouples interface from implementation. In contrast, for an abstract data
type or RPC model, the method set is unconstrained. Properties of a method,
such as safety (no invocation changes server state) and idempotence (repeated
invocation does not change server state) are required to hold uniformly, i.e., for
all instantiations of the method.

2.2 Formalizing Resource-Based Applications

A resource-based application is one that is organized in terms of the previously
described building blocks, which are formally defined by a resource structure: a
tuple RS = 〈R, I,B, η, C,D,∼, OPS,RETS〉, where R is a set of resources; I is
a set of resource identifiers; B ⊆ I, is a finite set of root identifiers ; η : I 
→ R
is a naming function, mapping identifiers to resources, a partial function that is
injective on its domain; C is a set of client identifiers; D is a set of data values,
with an equivalence relation ∼ ⊆ (D ×D); OPS is a finite set of methods; and
RETS is a finite set of return codes.

For simplicity, we use a specific form of resource representation, a pair 〈ids; d〉
in 2I ×D. Here, ids is a set of resource identifiers, and d a piece of data. This
abstracts from HTML or XML syntax and formatting, and clearly separates
resource identifiers from data values. The relation ‘∼’ may be used to ignore
irrelevant portions of data, such as counters or timestamps. We extend it to
resource representations as 〈ids1; d1〉 ∼ 〈ids2; d2〉 iff ids1 = ids2 and d1 ∼ d2.

A client-server communication (a communication, for short) is represented by
a ‘request/response’ pair, with the syntax c::op(i, args)/rc(rvals), where: c ∈ C
is a client identifier; op ∈ OPS is a method; i ∈ I, is a target resource identifier ;
args is a finite list of arguments ; rc ∈ RETS is a return code; and rvals is
a finite list of return values. The arguments and return values are specific to
the method. Both may include resource identifiers, data values, and resource
representations. (We omit more complex data types for simplicity.)



544 U. Klein and K.S. Namjoshi

With each communication m are associated two disjoint sets of resource iden-
tifiers, denoted L(m) (linked) and UL(m) (unlinked). The set L(m) describes
resources that are made known to the requesting client, and includes resource
identifiers which are returned as results in the communication, or that are cre-
ated by it. The set UL(m) are identifiers which are revoked at the client.

Given a resource structure RS, a RS-family is a collection of client and server
processes, defined over elements of RS. A RS-instance is a specific choice of
clients and a single server from a RS-family, with the processes interacting us-
ing CCS-style synchronization [17] on communications. A global state of a RS-
instance is given by a tuple with a local state for the server process and a local
state for each client process. A computation is an alternating sequence of global
states and actions, where an action is either a (synchronized) communication
between a client and the server, or an internal process transition.

Caveats: In reality, requests and responses are independent events, which al-
lows the processing of concurrent requests to overlap in time. The issue is dis-
cussed further in Section 4, as treating it directly considerably complicates the
model. There is also an implicit assumption that methods have immediate ef-
fects. In practice, (e.g., HTTP DELETE) a server may return a response but
postpone the effect of a request. This issue is discussed in Subsection 3.2.

A communication sequence σ is a (possibly infinite) sequence of communica-
tions carried out between a set of clients and the server. The projection of a
communication sequence σ on a client c, written σ|c, is the sub-sequence of σ
which contains only those communications initiated by client c. A computation
of a RS-instance induces a communication sequence given by the sequence of
actions along that computation.

It is important to distinguish between the case where a method is successfully
processed by the server, and where it is rejected without any server state change.
This is done by mapping return codes to the abstract values {OK,ERROR},
where OK represents the first case and ERROR the second.

For a finite communication sequence σ, the set assoc(σ) of resource identifiers
defines those resources ‘known’ at the end of σ. For the empty communication
sequence, assoc(λ) = B. Inductively, assoc(σ;m) is (assoc(σ) ∪ L(m))\UL(m),
if m has return code OK, and it is assoc(σ), if the return code is ERROR.

For a finite computation with induced communication sequence σ, assoc(σ)
and I\assoc(σ) define the associated and dissociated resource identifiers, respec-
tively. We associate a partial function deref : I 
→ 2I × D with the state of
the server; deref (i), if defined, is the current representation of the resource η(i)
(which must be defined if deref (i) is defined).

2.3 Formalization of RESTful Behavior

For this section, fix a structureRS = 〈R, I,B, η, C,D,∼, OPS,RETS〉, and con-
sider RS-instances. The two temporal properties discussed below define whether
the behavior of an RS-instance is RESTful. It is usually more convenient to
describe the failure cases, and also more helpful for the purpose of automatic
verification. In the temporal formulas, we use a modified next-time operator,
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X〈a〉, where a is an action. Its semantics is defined on a sequence with atomic
propositions on each state and an action label on each transition. For a sequence
σ and position i, define σ, i |= Xa(φ) to hold if σ, i + 1 |= φ and the transition
from step i to step i+ 1 is labeled with a.

Before diving into the specifics, it is worthwhile to point out a couple of impor-
tant considerations. First, as in any formalization of a hitherto informal concept,
there may be subtle differences between an informal idea and its formalization;
we point out those that we are aware of. Second, a large part of the usefulness
of a formalization lies in the testability of these properties. It is helpful to make
a distinction between formal properties which can be tested given complete in-
formation of the implementation of clients and the server (a ‘white-box’ view),
and those which can be tested only on the observable sequences of interaction
between clients and the server (a ‘black-box’ view). The first viewpoint is in-
teresting for model-checking; the second for run-time verification. Since we are
targeting both approaches, we present the properties from both points of view,
making it clear if one leads to a weaker test than the other. This distinction is
important only for the safety and idempotence properties.

1. Stateless Behavior. In ([8], Chapter 5), this property is described as fol-
lows: “. . . each request from client to server must contain all of the information
necessary to understand the request, and cannot take advantage of any stored
context on the server.” We formalize it by requiring that the server response to
a request be functional; i.e., independent of client history or identity. (A ‘client’
should be understood to be a machine, rather than a user.) Failure of state-
lessness is shown by a finite computation followed by a two-way fork, where for
some distinct client identifiers c, d, one branch of the fork contains the com-
munication c::op(i, a)/r1(v1), and the other branch contains the communication
d::op(i, a)/r2(v2), and either r1 �= r2, or v1 �= v2. This failure specification cap-
tures the situation where, given an identical history, the same method carried
out by different clients has distinct results.

This is a branching-time property. The failure case is expressed as follows in
a slight modification of Computation Tree Logic (CTL) [5], which allows the
operator EX〈a〉, for an action a.

(∃c, d ∃i, op, a, r1, v1, r2, v2 : c �= d ∧ (r1 �= r2 ∨ v1 �= v2) ∧
EF(EX〈c::op(i,a)/r1(v1)〉(true) ∧ EX〈d::op(i,a)/r2(v2)〉(true)))

The property suffices to detect the common cases of hidden per-client state.
One subtlety is that the the property is based on observable, semantic effects
of a hidden state, not its syntactic presence. Hence, it holds of a server which
retains auxiliary per-client information – such as a request counter – but does
not use that information to influence the response to a request.

The formalization is also slightly stronger than the intended informal no-
tion of statelessness, in the following sense. Consider a server which implements
a method as “if (client=c) then return 3 else return 4”. This has no
hidden state, yet the method has different results for distinct clients c and d,
and fails the property.
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2. Hypertext-driven behavior. Informally, this property requires a client to
access a resource only by ‘navigating’ to it from a root identifier. It is also referred
to by the acronym HATEOAS, which stands for “Hypertext/Hypermedia As The
Engine Of Application State”. The failure specification is a finite computation
with induced communication sequence of the form σ; c::op(. . . , i, . . .)/rc(. . .), for
some σ, return code rc, method op, and resource identifier i among the arguments
of op, such that all of the following hold: i �∈ assoc(σ|c), and if L is the linked
set of the last communication, then i �∈ L. The return code and values are not
important. It suffices that the identifier i is currently not associated from the
perspective of the client c.

This condition can be expressed in Linear Temporal Logic (LTL) [20], most
conveniently by using past temporal operators [16] to express the condition i �∈
assoc(σ|c). The past-LTL formula for failure, denoted ϕHT , can be built up as
shown below.

In the following, the predicate by(m, c) is true if communicationm is by client
c; OK(m) is true if m has return code OK; arg(m, i) is true if resource id i is an
argument to the request in m; Y is the 1-step predecessor operator with variant
Y〈a〉 (formally, σ, i |= Y〈a〉(φ) if (i ≥ 1) and σ, (i − 1) |= φ, and the transition
from step i to step i+ 1 is labeled by a); and p S q is the ‘since’ operator which
holds if q holds in the past, and p holds since then. Precisely, σ, i |= p S q iff
(∃k : 0 ≤ k ≤ i : σ, k |= q ∧ (∀j : k < j ∧ j ≤ i : σ, j |= p)). Note that ¬Y (true)
is true only at the initial state of a sequence.

ϕHT =(∃c, i : F(access(c, i) ∧ ¬ inassoc(c, i))), where
access(c, i) =(∃m : X〈m〉(true) ∧ by(m, c) ∧ arg(m, i) ∧ i �∈ L(m)), and

inassoc(c, i) =(¬ revoked(c, i)) S granted(c, i), where
revoked(c, i) =(∃m : Y〈m〉(true) ∧ OK(m) ∧ by(m, c) ∧ i ∈ UL(m)), and
granted(c, i) =(∃m : Y〈m〉(true) ∧ OK(m) ∧ by(m, c) ∧ i ∈ L(m)) ∨

(¬Y(true) ∧ i ∈ B)

3. Safety and idempotence. REST explicitly includes intermediaries in the
model, such as caches and proxies. It is encouraged to have methods which
are uniformly idempotent or safe, as intermediaries can more effectively use
these methods to reduce latency or mask temporary server failures. While these
properties are not required of REST methods, they can be formalized in LTL
and model-checked. Unlike the two main properties, the formalization of safety
and idempotence is different in the white-box and black-box views.

For the black-box setting, we require the following additional constructs. We
suppose that there is a distinguished method, READ(i), where i is the target
resource identifier. It returns either ERROR or OK(deref (i)), the representa-
tion of the resource identified by i. The linked and unlinked sets are empty.
We extend the equivalence relation ‘∼’ is to a list of return values: for lists a
and b, a ∼ b holds if the lists have the same length and corresponding elements
have the same types and are related by ‘∼’. In the following, we also assume that
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one can identify whether a communication affects a resource; this information is
typically available for specific instances of REST, such as RESTful HTTP.

– Safety of a method. A method is considered safe if it does not modify
resources. In the black-box view, changes to resources can be detected by
means of READ methods. A failure for the safety of method op is a finite com-
putation with communications c1::READ(i)/OK(r1) and c2::READ(i)/OK(r2)
occurring in that order, with r1 �∼ r2, where no intervening communication
modifies or dissociates the resource η(i) but includes at least one communi-
cation using op. Informally, failure of safety is signaled by a difference in the
representation of the resource identified by i before and after method op.

– Idempotence of a method. For a method to be idempotent, repeated in-
vocation should have no additional effect on resources. In the black-box view,
such changes can be detected by means of READ methods. A failure for the
idempotence of method op is a finite computation where the communications
c1::op/rc(rv1), c2::READ(i)/OK(r1), c3::op/rc(rv2), and c4::READ(i)/OK(r2)
occur in that order, r1 �∼ r2 and the communications occurring between
these distinguished ones do not dissociate i or modify the resource η(i).
Informally, the property detects failure by detecting a difference in the rep-
resentation of a resource identified by i before and after the second instance
of a communication with method op.

Both black-box properties are weaker than their white-box counterparts. For
instance, it is possible that method op changes the server state of a resource –
perhaps by incrementing an auxiliary counter – but this change is not propagated
to the representation, and is hence unobservable by a READ. This violates safety
in the white box view, but not in the black-box view.

Naming Independence. We present an interesting consequence of the REST-
ful properties, which shows that the specific choice of naming function does not
matter, if client-server behaviors are hypertext-driven. To make this precise,
consider structures RS and RS′ which are identical except for the naming func-
tions. The naming functions, η and η′, are required to map each base name to
the same resource. The functions induce a name correspondence: a name i in
an RS-instance corresponds to a name j in an RS′-instance if both map to the
same resource, i.e., if η(i) = η′(j).

If clients Ci and C′
i in the hypothesis of the theorem are based on the same

program text, a sufficient condition for bisimularity up to naming is that names
are used opaquely: i.e., no constant names are present, names can only be stored
to and copied from variables, and the only relational test allowed for names is
equality of name variables. The proof of the theorem is given in the full version.

Theorem 1. Consider an RS-instance M with clients C1, . . . , Ck and server
S, and an RS′-instance M ′ with clients C′

1, . . . , C
′
k and server S′. Suppose that,

for each i, clients Ci and C′
i are bisimular up to the naming correspondence, as

are S and S′. Then, for each hypertext-driven computation σ of M , there is a
hypertext-driven computation σ′ of M ′ such that global states σ(i) and σ′(i) are
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bisimular, for each i, and the induced communication sequences match up to the
naming correspondence.

3 Rest on Http, and Variations

In this section, we show how the property templates from Section 2 can be in-
stantiated for a concrete protocol, HTTP, which is the primary protocol used for
constructing RESTful applications. The result is a formal definition of RESTful
HTTP behavior.

3.1 Formal RESTful HTTP

HTTP is a networking protocol for distributed, collaborative, hypermedia infor-
mation systems [7]. The bulk of the interest in REST among developers is in
the context of HTTP-based applications. We start by demonstrating how HTTP
satisfies the framework requirements described in Subsection 2.1.

HTTP is typically used in a client-server model. HTTP resources are uniquely
identified using their Uniform Resource Identifiers (URIs) [27]. For HTTP ap-
plications, the fields of a resource representation 〈uris ∈ 2I ; d ∈ D〉 are used
as follows: uris is a set of URIs, links that exist in the resource, and data is
any data, of any type, that is contained in a resource. It may include auxiliary
data, such as counters, which is relevant to server-internal processes, but has
no relevance to client behavior. Such data can be elided through an appropriate
definition of ‘∼’. The HTTP RFC [7] defines nine methods. We present here
the four main methods, the remaining five have no impact on resources. To rep-
resent the HTTP concept of subordinate resources, we use a partial mapping,
S : I 
→ 2I , which maps each resource identifier to the set of resource identi-
fiers for its subordinate resources, if any. We only describe successfully processed
communications, which return the abstract return code OK, all other codes map
to ERROR. The main HTTP methods, with their linked and unlinked sets, are
as follows.

– GET(i)/OK(deref (i)): The method returns the current entity (resource rep-
resentation) of the resource identified by i from the server. Both L and UL
are empty.

– DELETE(i)/OK: The method dissociates the resource identifier i on the
server, resulting in deref (i) bring undefined. Here, L is empty, and UL = {i}.
The HTTP RFC actually only requires that the server ‘intends’ to dissociate
it [7]. We discuss this more complex scenario in Subsection 3.2.

– PUT(i, 〈uris; d〉)/OK: The method associates a resource identified by i, if it
is not already associated, and assigns a value to its corresponding entity so
that deref (i) = 〈uris; d〉. If this is a new association, then S(i) = {}. Here,
UL is empty, while L = {i}.

– POST(i, 〈uris; d〉)/OK(j): The method associates a fresh resource, which is
identified by j, and sets S(j) = {} and deref (j) = 〈uris; d〉. The resource
identified by j becomes a subordinate of the resource identified by i, and j
is added to S(i). Here, UL is empty, while L = {j}.
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Instantiating the REST property templates from Subsection 2.3 with the HTTP
methods results in a formal definition of RESTful HTTP. This is a rather tech-
nical, mostly straightforward translation, and is given in the full paper.

3.2 Variations on RESTful HTTP Properties

In this section we mention several common or reasonable modifications of the
HTTP model from Subsection 3.1, and discuss how they impact the RESTful
HTTP properties. Complete descriptions of these modifications and the corre-
sponding changes to the properties are in the full paper.

Cascade of DELETE Methods by Subordination. One side-effect of the
POST method is the creation of a subordination relation from the target resource
identifier to the newly associated one. A common feature in many HTTP appli-
cations is the requirement that when a resource identifier is dissociated through
a DELETE call, its subordinates are deleted as well (which, in turn, may trigger
more dissociations of resource identifiers with higher degrees of subordination to
the originally deleted one). In our model, this would translate into a (recursive)
modification to the linked set of DELETE communications. In RESTful HTTP,
this change would require modifying all properties whose definition relies on the
unlinked sets of communications (the hypertext-driven sequences property and
any idempotence properties) to use more complex, yet easily computed, defini-
tions of the unlinked sets.

Subordination Expressed as a Link. Here, subordination is expressed as
a link, i.e., for every i ∈ I such that deref (i) = 〈uris; d〉, if S(i) is defined, then
S(i) ⊆ uris. In this case, a side effect of the communication c::POST(i, r)/OK(j)
would be the modification of the resource identified by i to include j in uris. The
idempotence property should account for this case by considering that successful
POST methods modify existing resources.

Background Data Modifications by the Server. In some cases, where the
semantics of the domain D are such that it is is (partially or fully) dynamic by
nature, HTTP allows the server to modify the data field of resource represen-
tations arbitrarily, in accordance with their semantics. An example is a ‘current
time’ resource, whose value is updated by the server. Successive GET’s on this
resource would result in different values for the time, potentially violating the
safety property of GET. This case can be handled by a proper definition of the
data equivalence relation to ignore such changes.

Delayed Executions of Completed DELETE Communications. In the
HTTP RFC ([7]) it is said that when the server successfully processes a DELETE
request it merely means that “at the time the response is given, it intends to
delete the resource or move it to an inaccessible location.” Our interpretation
of this quote is that the single resource identifier that is in the unlinked set of
successfully processed DELETE communications is dissociated only after some
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arbitrary, finite, delay, unless it is associated in the meantime by another com-
munication. Although this behavior makes our definition of assoc(s) irrelevant,
it does not complicate the HTTP application of the hypertext-driven sequences
property, due to the fact that HTTP clients must ‘assume’ anyway that resources
on which they performed successful DELETE methods are no longer accessible for
them. All other properties, however, need to be modified to account for the fact
that DELETE methods are not as well-behaved as assumed earlier. The HTTP
statelessness property, for instance, would have to disallow ‘temporal forks’ that
include DELETE methods performed by different clients which take effect at
different times.

3.3 Distinguishing REST from HTTP

Following are some interesting hypothetical applications which clarify the differ-
ences between HTTP and REST, and which address some common misunder-
standings regarding RESTful HTTP.

Consider an application which uses only two HTTP methods: PUT and GET.
A client encodes methods in the uri argument of PUT(uri, junk) requests, where
junk - a resource representation - is a meaningless constant. A GET communi-
cation is used by a client to examine the state of the server. This application
is compliant with the HTTP RFC, as there is no restriction on the PUT com-
munications’ return values. However, it is non-RESTful, since it would either
have to include an infinite set of root identifiers (each uri argument being one),
or it would violate the hypertext-driven behavior property. The Flickr API is
non-RESTful for a similar reason.

Consider an application which relies entirely on POST communications, and
uses a single root identifier, base, for all such communications (one may consider
B = {base}). In any POST(base, 〈base; data〉)/OK(uri) communication, clients
encode methods in the data field. We consider two variants:

1. The return value of an method is encoded in the newly associated URI uri,
returned as a result of POST. This is compliant with the HTTP RFC, but it goes
against the notion of dividing information into distinct resources, as the base URI
must be treated as a single resource. As there is no division into resources (which
would be created by – and used to identify – different clients), this application
is likely to violate the HTTP statelessness property. Moreover, it is also likely
to violate the resource identifier opaqueness assumption from Subsection 2.3,
as a program must interpret the URI strings returned by POST. While the
opaqueness assumption is not an essential part of REST, it is important to
simplify program development and maintenance.

2. The newly associated URI uri is used to point to a resource whose represen-
tation is the result of the method, and which is later retrieved by a GET on the
uri. This violates the HTTP RFC, which requires that the result of POST iden-
tifies a resource with the supplied data as its representation. As in the previous
case, this application is also likely to violate the HTTP statelessness property.
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4 Automated Verification of RESTful Behavior

In this section, we formulate and discuss questions relevant to the automated
verification of RESTful behavior. We give preliminary results and point to ques-
tions that are still open.

4.1 Computation Model

The somewhat informal model used previously can be made precise as follows.
Client and server processes are modeled as labeled transition systems. A commu-
nication is modeled as a CCS synchronization [17]. Hence, in a communication
of the form ‘request/response’, a client offers this communication at its state, the
server offers to accept it, and the two are synchronized to effect the communica-
tion. Processes may have internal actions, including internal non-determinism.
The CCS model is appealing for its simplicity but assumes atomic communi-
cation. We formulate problems and solutions in this model. Subsequently, we
discuss how the atomicity requirement may be relaxed, which brings the analy-
sis closer to real implementation practice.

4.2 Fundamental Questions

The two properties of REST, statelessness and hypertext-driven behavior, lead
to the following key verification questions.

ST. Does a client-server application M satisfy the statelessness property?
HT1. For a client-server application M , does its specification, ϕ, hold for all

computations where client behavior is hypertext-driven?
HT2. For a client-server application M , do all computations which are not

hypertext-driven satisfy a ‘safe-behavior’ property ξ?

These fundamental questions may be asked for a program with a fixed set of
clients and resources, or in the parameterized sense. One may also ask if vio-
lations of these properties can be detected using run-time monitors. Another
interesting question is whether, given an application specification, one can syn-
thesize a server which satisfies it (again, fixed or parameterized).

4.3 Automata Constructions

A nondeterministic automaton which detects a failure of the hypertext-driven
behavior property works as follows. For a given input word, the automaton
guesses the client and resource identifier with which to instantiate the failure
specification, then keeps track of whether the resource id belongs to the cur-
rent assoc for that client. It accepts if, at some point, there is a request by
the client using the resource id, but the id is not part of the current assoc set.
Keeping track of whether a resource id belongs to the assoc set for a client does
not require computing the assoc set. A simple two-state machine suffices, with
states In(c, i) and Out(c, i). If the current communication m is by client c and
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is successful, a transition is made from In(c, i) to Out(c, i) if i ∈ UL(m), and
from Out(c, i) to In(c, i) if i ∈ L(m). Otherwise, the state is unchanged. The
number of automaton states, therefore, is polynomial in |I| and |C|.

The deterministic form of this automaton must track all clients and resource
ids simultaneously. Thus, the size of a state of the deterministic automaton
is O(|I| · |C|), and its state space is exponential: O(2|I|·|C|). Non-deterministic
failure automata for safety and idempotence can be derived similarly from their
failure specifications; these are described in the full paper.

4.4 Model-Checking for Fixed Instances

A fixed instance has a fixed set of resources and clients. The parameters of
interest are the sets in the underlying resource structure: the clients, C, the
resource identifiers, I, and the data domain, D.

Statelessness is expressed in a slight variant of CTL, as described previously.
(The extension does not affect model-checking complexity.) The indexed prop-
erty expands out to a propositional formula which is polynomial in the sizes of
I and D. Hence, using standard CTL model-checking algorithms [4,23], the ST
property can be verified in time linear in the overall application state space and
polynomial in the resource structure parameters.

Property HT1 can be verified as follows. A violation of HT1 is witnessed
by a computation where all clients are hypertext-driven but ϕ is false. This
can be checked using automata-theoretic model checking [24] by forming the
product of the application process with (1) a Büchi automaton for the negation
of ϕ, and (2) an automaton which checks that all clients follow hypertext-driven
behavior. The property is verified iff the product has an empty language. The
second automaton is the deterministic automaton from Section 4.3, with negated
acceptance condition.

Property HT2 can be verified by forming the product of the application pro-
cess with (1) a Büchi automaton for the negation of ξ, and (2) an automaton
which checks for failure of hypertext-driven behavior by some client. The prop-
erty is verified iff the product has an empty language. The second automaton is
the non-deterministic failure automaton from Section 4.3. The verification takes
polynomial time if the size of the application state space is polynomial in the
parameter sizes. The verification of HT1 is significantly more difficult.

Theorem 2. Verification of HT1 for a fixed instance is PSPACE-hard in the
number of resources. It is in PSPACE if a state of the application and of the
negated specification automaton can be described in space polynomial in the pa-
rameter sizes.

Proof Sketch. Membership in PSPACE is straightforward, by observing that
the automaton used to describe the hypertext-driven property for HT1 has a
state size which is polynomial in the the parameter sizes.

PSPACE-hardness for HT1 holds under severe restrictions: a single client,
where client, server, and negated specification automaton have a state-space
with size polynomial in the parameters’ sizes. The reduction is from the question
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of deciding, given a Turing Machine (TM) M and input x, whether M accepts
x within the first |x| + 1 tape cells, which is a PSPACE-complete problem (IN-
PLACE ACCEPTANCE in [19]). The reduction uses the server state to store the
TM head position, while a TM configuration is encoded in the implicitly defined
assoc set for the client, using resources to represent tape cell contents. �

4.5 Parameterized Verification

The parameterized verification question has particular importance, as web appli-
cations usually handle a large number of clients and resources. Since statelessness
is not a given, it is necessary to assume a server which stores information about
each client, which implies that the state space of the server is also unbounded.
Nonetheless, the problem can be solved under certain assumptions.

Suppose that clients have a finite state space, X , and that the state space of
the server can be written as Y × [C → Z], where Y and Z are finite sets. Thus, a
global state of an instance with N clients is a triplet (c, a, b), where c is an array
of client states, of size N , a is the finite part of the server state, and b is an array
of N server-side entries. Assume further that on receiving a request from client
i, the server update depends only on, and may only modify, the components a
and b(i); i.e., the new entry for client i does not depend on the entries of the
other clients. Then, by a change of viewpoint, one may combine the entry b(i)
on the server with the state c(i) of client i, obtaining an equivalent application
where the new client space is X ×Z, and the server space is Y . Both spaces are
now finite, although there is still an unbounded number of clients. This situation
fits the model in [11], where an algorithm is given for checking linear-temporal
properties. The algorithm has very high worst-case complexity, however, so it
may be more fruitful to try alternative methods, such as the method of invisible
invariants [21,18], or methods based on upward-closed sets [1].

Several questions remain open. The modeling above implicitly assumes a
bounded set of resources and data values. Moreover, the suggested algorithm
applies only to linear-time properties and cannot, therefore, be used to check
statelessness.

4.6 Run-Time Monitoring

Perhaps the most promising immediate application of the formalization is run-
time monitoring. In this setting, the client-server communications are captured
by an intermediate proxy, which passes them through analysis automata. This
method can be applied to the properties HT1 and HT2; statelessness, being a
branching-time property, cannot be checked at run-time, unless some form of
backtracking is implemented. The automata described in Section 4.4 for model-
checking HT1 and HT2 can be used for run-time verification of safety speci-
fications. The non-deterministic automata used for checking hypertext-driven
behavior must be determinized for run-time analysis. This can be done on the
fly, as is the case for implementations of the Unix grep command (cf. [2]). The
size of the deterministic automaton state is O(|I| · |C|), so the required storage
is O(|I| · |C| ·K), where K is the state-size of the negated specification automa-
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ton. For each communication, the update of the automaton state requires time
proportional to the size of the state, and is hence polynomial in the resource
parameters. An alternative to run-time verification is off-line testing of a logged
communication sequence.

4.7 Synthesizing Servers

A particularly intriguing question is the possibility of synthesizing RESTful
servers. A specific question is the following: given a resource structure and a
specification ϕ, synthesize a stateless server which satisfies ϕ. We show below
that, under certain assumptions, the statelessness constraint can be dropped.
We define a server specification ϕ to be universally synthesizable if there exists
a server implementation which satisfies ϕ given any set of clients. A sufficient
condition for ϕ to be universally synthesizable is if it is insensitive to client ids
and is synthesizable for a single, arbitrary client. Insensitivity means that for
sequences σ, δ which agree up to client ids in communications, σ |= ϕ iff δ |= ϕ.

Theorem 3. Consider a server temporal logic specification ϕ. The specification
ϕ is deterministically and universally synthesizable iff ST ∧ ϕ is deterministi-
cally and universally synthesizable.

Proof Sketch. For the left-to-right direction, given a deterministic server M
implementing ϕ, one can direct all communications to it through an intermediary
which replaces all client ids with a single, dummy, client id. By the universality
of M , this combination satisfies ϕ; as M ‘sees’ only a single client id and is
deterministic, the combination is stateless. �

The synthesis problem for LTL specifications, assuming a bounded state-space,
was solved in [22]. Implementing the intermediary adds constant complexity.

Adding the assumption that client interactions are hypertext-driven may make
an otherwise-unsynthesizable specification synthesizable, but it may also add
significantly to the specification complexity.

4.8 Relaxing the Atomicity of Communications

So far, we have assumed that communications are atomic. In real implemen-
tations, however, a request and its response are distinct actions. This allows
requests from different clients to overlap in time. To handle this concurrency, we
assume that the server is linearizable [12]. Every computation produces results
which are equivalent to one where each method takes effect atomically.

Hypertext-driven behavior is formulated entirely in terms of the request and
response parameters. If clients are not allowed to issue concurrent requests,
hypertext-driven behavior holds of a computation iff it holds of its lineariza-
tion. Assume that the service specification is also defined on communication
sequences, and has the same property. Then, it suffices to check properties over
the linearized subset of computations, which corresponds to the atomic com-
munication model. This reasoning does not apply to statelessness, which is a
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branching property, and thus outside the scope of linearizability. Further work is
necessary to formulate a notion like linearizability for branching-time properties.

5 Related Work and Conclusions

There is surprisingly little in the literature on formal definitions and analysis of
REST. In [13], the authors describe a pi-calculus model of RESTful HTTP. This
model, however, comes across as a mechanism for programming a specific type of
RESTful HTTP application. The paper does not consider the general properties
of REST: statelessness and hypertext-following, nor does it describe a methodol-
ogy for checking that arbitrary implementations satisfy these properties. There
are also a number of books and expository articles on REST, but those do not
include formal specifications, nor do they consider analysis questions.

Our work appears to be – to the best of our knowledge – the first to pre-
cisely formulate the key properties of REST, and to demonstrate interesting
consequences, such as naming independence and the PSPACE-hardness of ver-
ification. This work also opens up a number of interesting questions. One is
to use the formalization as a basis to investigate questions about REST itself:
for instance, how to combine authentication with REST, and how to extend
REST to executable representations [6]. We have argued that the parameterized
model-checking and synthesis questions are especially relevant for web applica-
tions using REST. Constructing a practically usable verifier for REST properties
is itself a non-trivial task. We have experimented with simple examples verified
using SPIN [14]. An effort to use JPF [25] to verify applications written in the
JAX-RS extension of Java was unsuccessful, however, as JPF currently lacks
support for key libraries in JAX-RS. Our current focus is on creating a run-
time checker, which has the advantage of being independent of implementation
language.

To summarize, the formal modeling of REST clarifies its definition, and also
raises several challenging questions, both in modeling and in automated analysis.
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Abstract. Bounded model checking is a symbolic bug-finding method
that examines paths of bounded length for violations of a given LTL
formula. Its rapid adoption in industry owes much to advances in SAT
technology over the past 10–15 years. More recently, there have been in-
creasing efforts to apply SAT-based methods to unbounded model check-
ing. One such approach is based on computing a completeness threshold :
a bound k such that, if no counterexample of length k or less to a given
LTL formula is found, then the formula in fact holds over all infinite
paths in the model. The key challenge lies in determining sufficiently
small completeness thresholds. In this paper, we show that if the Büchi
automaton associated with an LTL formula is cliquey, i.e., can be decom-
posed into clique-shaped strongly connected components, then the asso-
ciated completeness threshold is linear in the recurrence diameter of the
Kripke model under consideration. We moreover establish that all unary
temporal logic formulas give rise to cliquey automata, and observe that
this group includes a vast range of specifications used in practice, consid-
erably strengthening earlier results, which report manageable thresholds
only for elementary formulas of the form F p and G q.

1 Introduction

LTL bounded model checking (BMC) [4,3] is a symbolic bug-finding method that
searches for lasso-shaped counterexamples to an LTL formula in a given Kripke
structure. Within three or four years following its introduction, it was found
to have almost entirely replaced BDD-based model checkers in the hardware
industry, owing to the fact that many users care more about finding bugs quickly
than about formal proofs of their absence, especially as the latter often require
vast amounts of memory and time. This major success can be attributed mostly
to the impressive advances made in SAT technology over the past 10 to 15 years.

The fundamental approach underpinning BMC is to look for counterexamples,
or bugs, of bounded length. As such, an absence of counterexample is inconclu-
sive; a genuine bug could still lurk deeper in the system. For this reason, from the
very inception of the technique, researchers have attempted to turn BMC into a
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complete method with the ability also to guarantee the absence of counterexam-
ples of any length. See, for instance, the original work of Biere et al. [4], or the
2008 Turing Award lecture of Ed Clarke [7], in which the problem is described
as a topic of active research.

In [4], Biere et al. observed that for safety properties of the form G p, a com-
pleteness threshold is given by the diameter (longest distance between any two
states) of the Kripke structure under consideration: indeed, if no counterexam-
ple to G p of length at most the diameter of the system can be found, then no
counterexample of any length can possibly exist. Likewise, for liveness proper-
ties such as F q, the recurrence diameter (longest loop-free path) of the Kripke
structure can be seen to be an adequate completeness threshold. But the general
problem of determining reasonably tight completeness thresholds for arbitrary
LTL formulas remains wide open to this day.

Note that the diameter (for safety properties) and the recurrence diameter
(for liveness properties) are not merely sound bounds, they are also worst-case
tight. In other words, no smaller completeness threshold expressible strictly in
terms of the diameters can be achieved. Of course, in any particular situation
the least completeness threshold may well be orders of magnitude smaller than
the diameter, but determining its value is clearly at least as hard as solving the
original model-checking problem in the first place, and we must therefore be
content with sound but reasonably tight over-approximations.

In this paper, we describe an efficient technique for obtaining fairly tight, lin-
ear completeness thresholds for a wide range of LTL formulas, as a function of the
diameter and recurrence diameter of any Kripke structure under consideration.
All Büchi automata that are cliquey, i.e., that can be decomposed into clique-
shaped strongly connected components, admit linear completeness thresholds.
Moreover, we show that such automata subsume unary linear temporal logic,
and indeed comprise a wide range of formulas used in practice, including, for
example, the vast majority of specifications appearing in Manna and Pnueli’s
classic text on the specification of reactive and concurrent systems [12].1 We
also show that computing these linear completeness thresholds can be done in
time linear in the size of the given Büchi automata. Finally, we exhibit some
simple (non-cliquey) Büchi automata, and corresponding LTL formulas, having
superpolynomial and even exponential completeness thresholds.

In the past, researchers have been able to achieve completeness thresholds by
studying the product structure of the Kripke model and the Büchi automaton
corresponding to the specification of interest; see, e.g., [6,1]. Such thresholds
are in general incomparable with the ones we present in this paper. Moreover,
a significant disadvantage of the earlier approach is that it requires one to in-
vestigate a structure which is often much too large and unwieldy to construct,
let alone perform any calculations upon. Another benefit of the present ap-
proach is that, once the diameter and recurrence diameter of a given Kripke
structure are known (or over-approximated), they can be put to use against any

1 For instance, specifications such as conditional safety, guarantee, obligation, response,
persistence, reactivity, justice, compassion, etc., all fall within our framework.
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number of specifications, whereas the earlier approach requires a fresh calcula-
tion of the diameters of each of the different product automata, possibly resulting
in prohibitive computation costs.

Orthogonal research directions aiming to achieve completeness of bounded
model checking include cube enlargement techniques [13], circuit co-factoring [8],
induction [16], and Craig interpolation [14].

2 Definitions

By LTL\X we denote standard propositional linear temporal logic [5] without
the next-time operator X; all the results in this paper also hold if backwards
temporal operators are included as well. Every LTL\X formula ϕ is invariant
under stuttering, meaning that any two stuttering-equivalent paths either both
satisfy or both violate ϕ (see [5] for a precise definition).2

Let AP be a finite set of atomic propositions. A Kripke structure is a tuple
M = (S, S0, R, L) with finite set of states S, set of initial states S0 ⊆ S, transition
relation R ⊆ S × S, and state-labelling function L : S → 2AP , which assigns to
each state the set of atomic propositions considered to be true in that state.
A path through M is a sequence (πi)l

i=0 (l ∈ � ∪ {∞}) of states such that for
i < l, (πi, πi+1) ∈ R. By |π| we denote the number l of edges in π. Thus, if π is
finite, its last vertex is π|π|. An infinite path π is lasso-shaped and k-bounded if
there exist two finite paths u and v such that π = u.vω and |u|+|v| ≤ k. Here, vω

denotes infinite repetition of v, and u and vω are concatenated. For concatenating
two paths, we require that the last state of the first path be identical to the
first state of the second path. Thus the definition of k-bounded implies that
u|u| = v0 = v|v|. The concepts of ‘reachable’ (existence of a connecting path)
and ‘distance between reachable states’ (length of shortest connecting path) are
defined in the standard way.

A (generalised) Büchi automaton is a tuple B = (S, S0, R, L,A) with finite
set of states S, set of initial states S0 ⊆ S, transition relation R ⊆ S × S, state-
labelling function L : S → B(AP), and family A ⊆ 2S of accepting sets of states;
here B(AP) denotes the set of all Boolean combinations of atomic propositions
in AP . Note that states (rather than transitions) are labelled, namely by such
Boolean combinations of atomic propositions. An infinite path π through B is
accepting if, for each state set T ∈ A, π visits a state of T infinitely often.

The product of Kripke structure M = (S, S0, R, L) with Büchi automaton
B = (S′, S′

0, R
′, L′,A′), denoted M × B, is defined as the Büchi automaton

(S′′, S′′
0 , R

′′, L′′,A′′) with

– S′′ = {(s, s′) ∈ S × S′ |L(s) � L′(s′)}3

– S′′
0 = (S0 × S′

0) ∩ S′′

2 Many computer scientists, starting with Lamport in the 1980s [11], have argued that
high-level specifications of computer systems always ought to be stuttering-invariant.

3 By L(s) � L′(s′), we mean that the Boolean formula L′(s′) evaluates to true if all
variables in L(s) are assigned true and all other variables are assigned false.
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– R′′ = {((s1, s′1), (s2, s′2)) ∈ S′′ × S′′ |(s1, s2) ∈ R and (s′1, s
′
2) ∈ R′}

– L′′ : S′′ → 2AP × B(AP) with L′′(s, s′) = (L(s), L′(s′))
– A′′ = {(S × T ′) ∩ S′′ |T ′ ∈ A′} .

Note that the labelling functions of M and B determine which states exist (are
valid) in the productM×B. There is a transition in the product iff corresponding
transitions are present in both components. For our purposes, the labelling of
states in the product automaton is irrelevant. Finally, the acceptance set family
A′′ is derived from that of the Büchi automaton.

The product construction is related to LTL model checking as follows:

Theorem 1 ([9]). Let M be a Kripke structure and ϕ an LTL formula. There
exists a generalised Büchi automaton B¬ϕ such that M |= ϕ exactly if M ×B¬ϕ

has no accepting path.

In figures, we represent Büchi automata as directed graphs. Initial states have
an incoming edge without source. Accepting states are drawn as filled discs (our
illustrating examples all have a singleton acceptance set family, in other words
they are simple Büchi automata), and other states are drawn as hollow circles.
In Kripke structures (cf. Figure 4), we depict the label of a state as a set of
propositions, omitting the braces {}.

For a Kripke structureM , we writeM |=k ϕ to denote that every lasso-shaped
k-bounded path π in M satisfies ϕ. A completeness threshold for M and ϕ is an
integer k such that

M |=k ϕ ⇒ M |= ϕ .
This definition reflects the intuition behind bounded model checking: assuming
that there is no counterexample to ϕ of length at most k, ϕ should hold in M .
We can generalise this definition to Büchi automata as follows: a completeness
threshold for a Kripke structure M and a Büchi automaton B is any integer k
such that, ifM×B has any accepting path, then it has a k-bounded lasso-shaped
accepting path. With these definitions, an integer k is a completeness threshold
for a Kripke structureM and formula ϕ precisely if it is a completeness threshold
for M and B¬ϕ, where B¬ϕ is the result of translating ¬ϕ into any equivalent
generalised Büchi automaton.

The following are key notions in this paper:

Definition 2. Let M be a Kripke structure. The distance from a state s to
a state t is the length of a shortest path from s to t (or ∞ if there is no such
path). The diameter of M , denoted d(M), is the largest distance between any
two reachable states (‘longest shortest path’). The recurrence diameter of M ,
denoted rd(M), is the length of a longest simple (loop-free) path through M .

3 Büchi Automata with Linear Completeness Thresholds

Given a Kripke structure and an LTL formula, it is clear that determining the
smallest completeness threshold is at least as hard as the model-checking prob-
lem itself, and is thus not something we are aiming to achieve. Rather, the
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goal of this paper is to establish a class of LTL formulas admitting complete-
ness thresholds that are linear in the diameter and the recurrence diameter of
any given Kripke structure. In this section, we first introduce a class of gener-
alised Büchi automata, termed cliquey, with this property. We also present an
algorithm which, given a cliquey automaton B, produces a symbolic arithmetic
expression ct(d, rd) such that, for any Kripke structureM , ct(d(M), rd(M)) is a
valid completeness threshold for M and B. Moreover, the expression ct is linear
in d and rd . In Section 4, we exhibit a class of LTL formulas that have cliquey
Büchi representations, namely unary linear temporal logic formulas.

Let sap(B) = min{k |B has a lasso-shaped k-bounded accepting path}, for a
non-empty Büchi automaton B. An sap(B)-bounded accepting path is called a
shortest accepting path, SAP for short. If B is empty, let sap(B) = −∞.

Definition 3. A generalised Büchi automaton B has a linear complete-
ness threshold if there exists c ∈ � such that for all Kripke structures M ,
sap(M ×B) ≤ c · rd(M).

We are now ready to define a class of Büchi automata that admit linear com-
pleteness thresholds.

3.1 Cliquey Büchi Automata

The class of automata we consider in this section is characterised by a particular
structure of the underlying transition graph:

Definition 4. A directed graph is cliquey if every maximal strongly connected
component (SCC) is a bidirectional clique, i.e. any two nodes of an SCC are
connected by an edge in either direction. In particular, every node has a self-
loop.

We say that a generalised Büchi automaton is cliquey if its underlying graph
structure (ignoring the vertex labelling and the accepting condition) is cliquey.
The Büchi automaton in Figure 1 (a) is cliquey, whereas that in (b) is not cliquey.
Moreover, we shall see in Section 5.1 that the latter has no equivalent cliquey
representation.

Theorem 5. Every cliquey generalised Büchi automaton admits a linear com-
pleteness threshold.

Proof: Let B be cliquey, M an arbitrary Kripke structure with recurrence di-
ameter rd , and Π =M ×B. We show sap(Π) ≤ c · rd , for a number c that can
be chosen independently ofM . If Π has no accepting path, then sap(Π) = −∞,
so there is nothing to prove. Otherwise, let π be an SAP of Π , and let C1, . . . , Cs

be the sequence of SCCs of B that π traverses, in this order. We now bound the
length of π in each SCC.

Consider a non-final SCC Ci (i.e., i < s), and let πi be the segment of π
that traverses Ci (in other words, πi is a maximal segment of π such that the
projection of its states to B is a path in Ci). Suppose |πi| ≥ rd +2. The prefix of
πi of length |πi| − 1 exceeds M ’s recurrence diameter rd . Thus we can find two
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product states of the form (m, b) and (m, b′) along this segment. Let (m′′, b′′) be
the successor of (m, b′) along πi (note that (m′′, b′′) still belongs to πi):

(m, b) � (m, b′) → (m′′, b′′) .

From (m, b′) → (m′′, b′′) in Π , we conclude m → m′′ in M . Since Ci is a
clique, we conclude b→ b′′ in B. Hence, (m, b) → (m′′, b′′) in Π . This, however,
contradicts the fact that π is an SAP through Π . Therefore, |πi| ≤ rd + 1.

Consider now the final SCC Cs, and let the family of accepting sets of B be
A = {A1, . . . , An}. The segment πs of π traversing Cs visits each Ai infinitely
often. Since each Ai is finite, there exists in fact a fixed state ai ∈ Ai in each of
them that is visited infinitely often. Segment πs thus looks like this:

(m, b) � (m1, a1) � (m2, a2) � . . . � (mn, an) � (m, b) .

Using the same argument as in the non-final case, each segment abbreviated
by � has length at most rd + 1 (otherwise, a shorter accepting path could be
constructed). As a result, |πs| ≤ (n+ 1)(rd + 1).

In total, |π| ≤ (s − 1)(rd + 1) + (n + 1)(rd + 1), clearly inducing a linear
completeness threshold, for example with constant c = 2(s+n) (note that s and
n are parameters of B and do not depend on M). �

3.2 Computing Completeness Thresholds of Cliquey Automata

The proof in Section 3.1 establishes linearity of the completeness threshold for
cliquey Büchi automata. It is, however, very coarse. Among others, the argument
ignores the structure of the SCC quotient graph. In the following, we give a
higher-order algorithm that takes a cliquey Büchi automaton B as input and
returns a function ct over two arguments. When supplied with the diameter d
and the recurrence diameter rd of a Kripke structure M , this function returns
a completeness threshold for M and B: sap(M ×B) ≤ ct(d, rd). Exploiting the
fact that B is cliquey, ct(d, rd) will be linear in d and rd .

The algorithm proceeds in two stages. In the first stage, each clique in the SCC
quotient graph of B is assigned a cost, as a function of d and rd , of traversing it
in the product automaton M ×B, namely the maximum length a path segment
can ‘spend’ in this clique, given that the path is an SAP. In the second stage, the
algorithm traverses the SCC quotient graph, in order to symbolically compute
respective longest paths from initial cliques to all cliques, using the cost measures
computed during the first stage. The result returned by function ct is then the
maximum path length computed, over all cliques that could potentially serve as
the clique visited last along an accepting path.

The Cost of Traversing a Clique. For a generalised Büchi automaton B with
accepting sets A1, . . . , An, call a clique C in B accepting if for each i ∈ {1, . . . , n},
C ∩ Ai �= ∅. Such a clique contains a state from each accepting set and is thus
eligible as a final clique, visited infinitely often, as M ×B is traversed. Further,
we say C is vacuously labelled if, for each Büchi state b in C, L(b) = true. The
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significance of this condition is that such a Büchi state b can be paired with
any Kripke state m: the condition L(m) � L(b) holds for any m. This will be
instrumental in redirecting certain non-optimal paths, as we shall see below.

We denote the cost of traversingC as a non-final clique by cost [C], and the cost
of traversing C as a final clique by costf [C]. These values are assigned according
to Table 1, depending on whether C is vacuously labelled or not, and whether
C is accepting or not. Note that an accepting clique may well be traversed as a
non-final clique, whereas a non-accepting clique cannot be traversed as a final
clique.

Table 1. Over-approximating the cost of traversing a clique

C vacuously labelled? C accepting? cost [C] costf [C]

no no rd + 1 ∞
no yes rd + 1 (n + 1)(rd + 1)
yes no d ∞
yes yes d (n + 1)d

To discuss these figures, consider first the typical case in which C is not
vacuously labelled. We have seen in the proof of Theorem 5 in Section 3.1 that
any SAP segment within C, visited as a non-final clique, is of length at most
rd + 1; it does not matter here whether C is accepting or not. When visited as
the final clique, however, C must be accepting; in this case said segment is of
length at most (n+ 1)(rd + 1), as shown in the same proof.

If C is vacuously labelled, we can strengthen the argument from Section 3.1:
let s = (m0, b0) � (m1, b1) be a path segment of an SAP whose projection to
the B component runs within C. Suppose the length of s is greater than M ’s
diameter d. Then there is a path π from m0 to m1 in M with |π| < |s|. Path π
can be used to form a path through C in the product that is shorter than s: pair
every state along π with b0, except the last state m1, which is paired with b1
as above. The product states (m, b) thus created vacuously satisfy the condition
L(m) � L(b), since L(b) = true. The B-components of the new path form a path
in B, since they run within a clique, with self-loops on all states. These findings
contradict the fact that s is a segment of an SAP through M × B. Therefore,
|s| ≤ d, so d is the cost of traversing C as a non-final clique. For traversing C
as the final clique (assuming it is accepting), the cost is (n+ 1) times higher, as
before: we apply the diameter argument to each subsegment of s between two
accepting states.

The Cost of Traversing the SCC Quotient Graph. The second stage is
to ‘collect’ the costs we have computed per clique in stage 1. Which cliques of B
are visited in an actual SAP in M ×B of course depends on M . For our results
to hold over any Kripke structure, we determine a longest path through the SCC
quotient graph. This quotient graph is acyclic, so that the single-source longest
path problem can be solved in time linear in the number of quotient edges, by
traversing the graph in topological order.
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A complication is that, since we do not have the concrete Kripke structure
at hand, the costs of moving from clique to clique are given symbolically, by
expressions of the form appearing in Table 1. Thus, when comparing the lengths
of paths to a particular clique found so far, instead of recording the new length
as the numerical maximum of the two given lengths, we record it as the symbolic
maximum of the two length expressions. The final result reported by the function
will thus be an expression involving the parameters d and rd of the unknown
Kripke structure, as well as linear operators connecting them, such as addition,
constant multiplication, and max.

The traversal of the SCC quotient graph is shown in Algorithm 1. It assumes
the Büchi automaton has a unique initial clique C0 (i.e., a clique containing
initial states of B); we handle the general case below. The algorithm keeps the
cost of traversing a clique, as computed in Table 1, in an array cost , and the cost
of reaching and traversing a clique in an array reach, both as a non-final and
final clique (the latter stored in arrays with subscript f). The reach values are
initialised to 0. For the initial clique, these values are set to the cost to traverse
it (Line 4).

Algorithm 1. Maximum length of an SAP in M ×B
Input: B with initial clique C0

0: for each clique C do
1: initialise cost [C], costf [C] as in Table 1
2: reach [C] := reachf [C] := 0
3: end for
4: reach [C0] := cost [C0], reachf [C0] := costf [C0]
5: for each clique C of B in a topological order, starting at C0 do
6: for each successor clique D of C do
7: reach [D] := max{reach [D], reach [C] + cost [D]}
8: if D is accepting then
9: reachf [D] := max{reachf [D], reach [C] + costf [D]}

10: end if
11: end for
12: end for
13: return max{reachf [C] | C is accepting}

The algorithm traverses the cliques C of B in some topological order, starting
with C0, and examines all of C’s successor cliques D. Value reach is updated to
the maximum of its current value and the value obtained by reaching D via C.
Value reachf is updated analogously, but only if D is accepting. After processing
all cliques this way, the algorithm returns the maximum of the values reachf [C]
over all accepting cliques.

If B has several initial cliques, the algorithm is performed for each of them
in turn; in this case we return the maximum over all values obtained, as the
maximum length of an SAP, for any Kripke structure M .
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Complexity. The applications of + and max in the algorithm are to be un-
derstood as symbolic operations. That is, the result returned in Line 13 is an
expression, involving d, rd and the linear operators +, max, and constant mul-
tiplication (the latter come from the base expressions in Table 1). In the worst
case, the expression can contain a number of max applications that is linear
in the number of edges of the SCC quotient graph. In many cases, however,
the symbolic maximum can be evaluated to one of its arguments. For example,
max{rd , d} = rd , while max{rd , 2d} cannot be simplified.

The algorithm itself also has linear time complexity, as a (slight modification
of the) standard algorithm to compute longest paths in a directed acyclic graph.

4 Linear Temporal Logic and Cliquey Automata

We now turn to temporal-logic model checking, and investigate the relationship
with cliquey Büchi automata. In this section, we write bold-face LTL, LTL\X,
and CL to denote the set of ω-regular languages that correspond to LTL formu-
las, LTL\X formulas, and cliquey Büchi automata respectively.

Lemma 6. CL ⊆ LTL: every cliquey generalised Büchi automaton can be en-
coded as an equivalent LTL formula.

Proof: Given a cliquey automaton B, we show how to express its language in
LTL. Recall that every strongly connected component of B is a clique, and that
an accepting clique is one that has a non-empty intersection with each accepting
set of B. There are only a finite number of SCC paths that go from a initial
clique to an accepting clique. Moreover, for each pair of neighbouring cliques Ci,
Ci+1 along such a path, there is only a finite number of edges from Ci to Ci+1.
We can therefore write the language of B as a finite union of ‘path languages’
each of which encodes the words along a path π to an accepting clique such that
any successive cliques Ci, Ci+1 along π are connected by a unique edge.

Each path language can be written as an ω-regular expression over the alpha-
bet 2AP , of the form

L(i0).L(C0)∗.L(o0)︸ ︷︷ ︸
first clique

L(i1).L(C1)∗.L(o1)︸ ︷︷ ︸
second clique

L(i2) . . . L(of−1) L(if).L(Cf )ω︸ ︷︷ ︸
final clique

(1)

where, for clique number j, L(ij) is the labelling of the unique in-point (entry)
of Cj coming from Cj−1, L(oj) is the labelling of the unique out-point (exit) of
Cj to Cj+1, and L(Cj) is the union of the labellings of all Büchi states in Cj .
For example, a clique of three states, with the entry state labelled a, exit state
labelled b and a third state labelled c, where a, b, c ∈ 2AP , is encoded as a regular
expression a.{a, b, c}∗.b.

Expression (1) can be turned into a star-free ω-regular expression by replac-
ing the subexpressions L(Cl)∗ by ∅.L(Cl).∅, where X denotes complementation.
Being star-free, it is well-known that this expression is equivalent to a suitable
LTL formula [10,15]. �



566 D. Kroening et al.

Lemma 7. CL �⊆ LTL\X : there exist cliquey automata that cannot be encoded
as LTL\X formulas.

Proof: Consider the Büchi automaton B in Figure 1 (a). B is cliquey: the
two p-labelled states form one SCC, the q-labelled state forms the other SCC,
and both are cliques. B does not, however, correspond to any LTL\X formula:
B’s language contains the word {p}.{p}.{q}ω, but not the word {p}.{q}ω. Since
these two words are stuttering equivalent, an encoding ofB as an LTL\X formula
would violate the stuttering closure of LTL\X. �

(a)

p qp
(b)

qp r

Fig. 1. (a) A cliquey Büchi automaton that does not correspond to any LTL\X formula;
(b) A non-cliquey Büchi automaton with linear completeness threshold

Lemma 8. LTL\X �⊆ CL : not all LTL\X formulas have a cliquey automaton
encoding.

Proof: Let AP = {p, q, r}, and let p! be a short-hand notation for p ∧ ¬q ∧ ¬r,
and similarly for q! and r! . Consider the LTL\X formula

ϕ = p! ∧ G ( (p! ⇒ (p! U q!)) ∧ (q! ⇒ (q! U r!)) ∧ (r! ⇒ (r! U p!)) ) . (2)

To prove that ϕ does not have a cliquey Büchi encoding, we first show:

Property 9. Any cliquey Büchi automaton over AP = {p, q, r} that accepts the
word ({p}.{q}.{r})ω also accepts some word in (2AP )∗.{q}.{p}.(2AP)∗.

Proof: Let B be cliquey and accept w := ({p}.{q}.{r})ω. We show that B also
accepts some word with the substring {q}.{p}. Any path π in B along which w
is accepted contains infinitely many states with a label that is satisfied by {p}.
Since B has finitely many states, these states are not all different; let b be a
state with such a label that occurs twice along π. Let c be the state following
the first occurrence of b; the label of c is satisfied by {q}. Since c is between two
occurrences of b along π, states b and c belong to the same SCC. As B is cliquey,
b and c are in fact part of one clique; thus there is an edge from c to b in B. Now
consider the path π′ that is identical to π, except that one occurrence of the
edge b → c is replaced by the segment b → c → b → c. Path π′ is a valid path
in B. It is also accepting, since we have only added two edges to the accepting
path π. Finally, π′ accepts a word that contains the substring {q}{p}. �

We can now prove Lemma 8: any automaton B that encodes ϕ in equation (2)
accepts ({p}.{q}.{r})ω, but does not accept any word with substring {q}.{p},
since a path with such a trace would violate ϕ. It follows that B is not cliquey. �
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We have so far shown that while CL is contained in LTL, LTL\X and CL are
incomparable. Of particular interest is the intersection of the latter two: LTL\X
formulas that have a cliquey representation. To narrow in on this class, con-
sider the unary temporal logic fragment of LTL\X, denoted UTL\X, i.e., LTL\X
without the until operator U (and, if one is using past temporal operators, with-
out the past counterpart of U either). The formulas of UTL\X are built from
atomic propositions using Boolean connectives and the unary temporal opera-
tors F (eventually), and

←−
F (sometime in the past)—the dual operators G and←−

G are derived in the usual way. Formally, UTL\X is defined by the following
grammar:

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | Fϕ | ←−
F ϕ ,

where p is any atomic proposition. Naturally, we denote the associated class of
languages UTL\X.

We now have:

Lemma 10. UTL\X ⊆ CL : every UTL\X formula can be encoded as a gen-
eralised cliquey Büchi automaton.

Proof: We prove this lemma by constructing, for any UTL\X formula ϕ, a
cliquey automaton Aϕ that encodes it. Define the closure of ϕ to be the set
cl(ϕ) of all subformulas of ϕ and their negations, where we identify ¬¬ψ with ψ.

Say that s ⊆ cl(ϕ) is a complete type if (i) for each formula ψ ∈ cl(ϕ) precisely
one of ψ and ¬ψ is a member of s; (ii) ψ1 ∧ ψ2 ∈ s iff ψ1 ∈ s and ψ2 ∈ s; (iii)
ψ ∈ s implies Fψ ∈ s and

←−
F ψ ∈ s. Given types s and t, write s ∼ t if s and

t agree on all formulas whose outermost connective is a temporal operator, i.e.,
s ∼ t exactly if for all formulas ψ we have Fψ ∈ s iff Fψ ∈ t, and

←−
F ψ ∈ s iff←−

F ψ ∈ t. Write tpϕ for the set of complete types for ϕ.
An ω-word w over alphabet 2AP naturally extends to an ω-word w = w0w1 . . .

over alphabet tpϕ, where wi = {ψ ∈ cl(ϕ) |(w, i) |= ψ}.
Recall that a generalised Büchi automaton has a family A = {A1, . . . , An}

of accepting sets such that an accepting run must visit each Ai infinitely often.
We define a generalised Büchi automaton Aϕ = (S, S0, R, L,A) that accepts
{w ∈ (2AP )ω |(w, 0) |= ϕ}. The set of states is S = tpϕ, with the set S0 of

initial states consisting of those s ∈ tpϕ such that (i) ϕ ∈ s and (ii)
←−
F ψ ∈ s

only if ψ ∈ s. The state-labelling function L : S → B(AP) is defined by L(s) =∧
(s∩AP)∧∧{¬p | p ∈ AP \ s}. The transition relation R consists of those pairs

(s, t) such that

(i)
←−
F ψ ∈ t iff either ψ ∈ t or

←−
F ψ ∈ s,

(ii) Fψ ∈ s and ψ �∈ s implies Fψ ∈ t, and
(iii) ¬Fψ ∈ s implies ¬Fψ ∈ t .

The accepting set family is A = {AF ψ |Fψ ∈ cl(ϕ)}, where AF ψ = {s |ψ ∈
s or Fψ �∈ s}. This completes the definition of Aϕ.

We finally argue that automaton Aϕ is cliquey: by the definition of the tran-
sition relation of Aϕ, states s and t are in the same connected component iff
s ∼ t. Any two states s and t with s ∼ t are connected by a transition. �
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Combining Theorem 5 and Lemma 10 yields one of our main results:

Theorem 11. Every UTL\X formula admits a linear completeness threshold.

Finally, one may wonder whether LTL\X formulas that have a cliquey represen-
tation are in fact always equivalent to some UTL\X formula. The answer is no,
as our next result shows:

Lemma 12. LTL\X ∩ CL �⊆ UTL\X : there exist LTL\X formulas that do
have a cliquey representation yet are not equivalent to any UTL\X formula.

Proof (sketch): Let a, b, c be distinct elements of 2AP , and consider the language
L = (a+ b+ c)∗.a.a∗.b.(a+ b+ c)ω. L is captured by the LTL\X formula F(a ∧
(aU b)), and it is also clear that L is cliquey. Using the results of [17], one
can show that this language is inexpressible in UTL (let alone UTL\X). For
example, one can compute the syntactic monoid associated with L and invoke
the characterisation of syntactic monoids of UTL-definable languages from [17]
to obtain the desired result. We omit the details. �

Figure 2 summarises our expressiveness results. All inclusions are strict.

�����

�
�
�
�
� �

�

���

Fig. 2. Relationships among various classes of ω-regular languages

5 Beyond Cliqueyness

Two natural questions arise as to whether cliqueyness is necessary in order to
achieve a linear completeness threshold, and whether there actually are any ω-
regular languages that fail to have linear completeness thresholds. We answer
the first question negatively and the second one positively. In fact, we show that
ω-regular languages can be engineered to have completeness thresholds bounded
below in the worst case by superpolynomial and even exponential functions of
the recurrence diameter of Kripke structures.

5.1 Linear Completeness Thresholds without Cliqueyness

Consider the Büchi automatonB depicted in Figure 1 (b). It is clearly not cliquey
and is in fact semantically non-cliquey, i.e., not equivalent to any cliquey Büchi
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automaton. To see this, observe that B accepts the word w := ({p}.{q}.{r})ω,
yet no word with the substring {q}.{p}. By Property 9, B cannot be equivalent
to a cliquey automaton.

We claim that B nonetheless has a linear completeness threshold: namely, for
any Kripke structureM , sap(M×B) ≤ rd(M)+1. Indeed, if an SAP had length
greater than rd(M) + 1, its projection onto M would have to exhibit an ‘inner’
loop that for some reason could not be cut out. A straightforward case analysis
then quickly leads to a contradiction.

5.2 Büchi Automata with Non-linear Completeness Thresholds

On the other hand, not every LTL formula and in fact not every LTL\X formula
has a linear completeness threshold. Consider the non-cliquey automaton B in
Figure 3, which encodes the LTL\X formula

ϕ = p ∧ ¬r ∧ G ( (p ∧ ¬r) ⇒ ( (p ∧ ¬r) U (q ∧ ¬r) ) ∧
(q ∧ ¬r) ⇒ ( (q ∧ ¬r) U r! ) ∧
r! ⇒ ( r! U (p ∧ ¬r) ∨ G r!) ) .

Again, the notation r! is short for r ∧ ¬p ∧ ¬q.

r!
q ∧ ¬rp ∧ ¬r

Fig. 3. A non-cliquey Büchi automaton with superpolynomial completeness threshold

To show that B has no linear completeness threshold, we construct a collection
(Mi)∞i=1 of Kripke structures such that, for each i, we have sap(Mi × B) ≥
i/4 · rd(Mi).

The construction is depicted in Figure 4. Mi contains i copies of a q-labelled
loop, ‘q-loop’ for short. Each q-loop comprises i states. Consecutive occurrences
of the q-loop are connected via an r-labelled state, or r-state for short. The final
r-state has a self-loop.

Let us compute Mi’s recurrence diameter: a longest loop-free path starts at
the first state of the first q-loop (a successor of the first p, q-state), follows that
loop around to the first p, q-state, then follows the baseline path—skipping all
intermediate q-loops—all the way to the final q-loop. It then enters that loop
and follows it to the last of its states (before the loop is closed). Mi thus has a
recurrence diameter of at most 4i.
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Fig. 4. Kripke structure family (Mi)
∞
i=1 witnessing a non-linear completeness threshold

An SAP of Π =M ×B, however, must take all q-loops. To see this, consider
the initial state of Π , which is labelled ({p, q}, p ∧ ¬r). B does not allow an
r-state as successor (both possible transitions [one of which is a B-self-loop]
require successors satisfying ¬r). Thus the joint path must enter the first q-
loop. During this loop, B stays in the (q ∧ ¬r)-state, up to and including the
time when M finishes the loop and arrives back at the p, q-state. At this time
the shortest path continues at the state labelled ({r}, r!), followed by the state
labelled ({p, q}, p ∧ ¬r), at which point it is forced into the next q-loop of Mi.
Note that, for this path to be accepting, it has to visit an r-state ofMi infinitely
often, which is only possible via the self-loop reachable after all the q-loops have
been taken.

Having to go through i loops each of size i, an SAP of Π has length at least i2.
Combining this with the size of the recurrence diameter of at most 4i, we see
that the completeness threshold for B is at least quadratic in the recurrence
diameter of Kripke structures. �

It is not difficult to see our family of Kripke structures can in fact be modified
to exhibit a cubic completeness threshold for our very same automaton B, by
modifying the loops slightly and grafting a further additional family of loops
onto each of them. In this vein, one sees that completeness thresholds exceeding
any given polynomial can in fact be achieved, so that our formula ϕ and Büchi
automaton B have superpolynomial completeness threshold.

In fact, even exponential completeness thresholds can be achieved for LTL
formulas.4 Consider a family of Kripke structures, each of which resembles a
full binary tree, with bidirectional edges between every parent and child. The
recurrence diameter of any such structure is the length of a longest loop-free path
from one leaf to another, and is therefore logarithmic in the size of the structure.
These structures can however be instrumented in such a way that a certain LTL
formula forces the unique accepting path to perform a depth-first traversal of the
entire tree, resulting in a path of length exponential in the recurrence diameter.
To achieve this, atomic propositions are used to keep track of the depth of nodes
modulo 3, and further propositions label the root, leaves, and left and right
4 We are grateful to one of the anonymous referees for this observation.
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children accordingly. A traversal of the tree is then orchestrated by requiring
that (i) whenever an interior node is entered from above (which is determined
by knowledge of the depths modulo 3 of the present node and that of the previous
one), then the left child should be visited next; (ii) whenever a non-leaf node is
returned to from a left child, then the right child should be visited next; and
(iii) whenever a non-leaf node is returned to from a right child, then the parent
node should be visited next. Finally, the rightmost leaf is labelled with a special
proposition which the formula requires to hold eventually.

6 Concluding Remarks

We have presented a method for calculating fairly tight, linear completeness
thresholds for a large class of LTL specifications. The algorithm we propose is
highly efficient, running in time linear in the size of the Büchi automaton. Several
potential bottlenecks however remain, including the following two:

– Computing the diameter and recurrence diameter of a large Kripke structure
can be computationally prohibitive; one possible remedy might be to settle
for tractable over-approximations of the diameters, as in [2], in a trade-off
which would likely require careful consideration.

– It has often been empirically observed that bounded model checking com-
putations tend not to scale up very well. Since many Kripke structures have
deep recurrence diameters (of the order of the total number of states, for
example), one can expect that exploring the system to the required depth
prove in certain cases to be intractable.

Nonetheless, this is an area of active research in which progress is being made on
several fronts. Our hope is that the techniques presented here may prove benefi-
cial not only to practitioners, but also to other researchers whose technology it
might potentially complement.

Alongside these practical considerations, two interesting theoretical questions
arise: (i) is it decidable whether a given LTL formula (or more generally a given
ω-regular language) has a linear completeness threshold; and (ii) is the complete-
ness threshold of an ω-regular language always either linear or superpolynomial?
We leave these questions as further research.
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Abstract. Wolverine is a software verification tool using Craig in-
terpolation to compute invariants of ANSI-C and C++ programs. The
tool is an implementation of the lazy abstraction approach, generating a
reachability tree by unwinding the transition relation of the input pro-
gram and annotating its nodes with interpolants representing safe states.
Wolverine features a built-in interpolating decision procedure for equal-
ity logic with uninterpreted functions which provides limited support for
bit-vector operations. In addition, it provides an API enabling the inte-
gration of other interpolating decision procedures, making it a valuable
source of benchmarks and allowing it to take advantage of the continuous
performance improvements of SMT solvers. We evaluate the performance
of Wolverine by comparing it to the predicate abstraction-based verifier
SatAbs on a number of verification conditions of Linux device drivers.

1 Introduction

The last decade has seen significant progress in the area of automated software
verification, manifesting itself in a number of impressive verification tools. A
recent and comprehensive survey of software verification techniques is provided
in [1] and a comparison of verification tools can be found in [2]. One approach
that received particular attention is predicate abstraction [3], a technique that
constructs a conservative abstraction of the original program using a finite set of
first-order-logic predicates to track relevant facts about the program variables.

The performance of such predicate abstraction-based software model checkers
is contingent on suitable predicates. Contemporary verification tools (e.g., Mi-
crosoft’s Slam [4]) derive these predicates from spurious counterexamples in an
iterative manner [5,6]. Recent incarnations of this technique (such as Blast [7])
rely on Craig interpolation to derive predicates, taking advantage of the inherent
properties of interpolants which enable concise abstractions.

Some flavours of this interpolation-based abstraction mechanism avoid the
use of predicate abstraction to construct an abstract transition relation alto-
gether [8,9,10]. This omission has several advantages:
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y:=x c:=0

[y�=0]

[y=0]

y:=y&(y-1)

c:=c+1

assert(y�=x)

y:=x c:=0 [y �=0] y:=y&(y-1) c:=c+1 assert(y�=x)
1

Fig. 1. A program and one of its execution traces

– It eliminates computationally expensive calls to a theorem prover that pred-
icate abstraction-based verifiers require to construct an abstraction, and

– it decreases the size and the complexity of the implementation of the verifi-
cation tool significantly (by about two thirds in our experience).

The algorithm presented in [8] (and our implementation Wolverine) essentially
follows the lazy abstraction paradigm [11], but retains the abstract transition
function at the coarsest level (determined by the control-flow-graph of the pro-
gram under scrutiny). The reachability tree obtained by unwinding this transi-
tion function is annotated with interpolants representing an over-approximation
of the reachable states. A fixed point of these annotations constitutes an invari-
ant establishing the correctness of the program with respect to a given safety
property. Section 2 provides more details.

Contributions. Wolverine is a software verification tool checking reachability
properties stated in terms of assertions and implements the algorithm described
in [8]. It is, to the best of our knowledge, the first freely available1 software model
checker for C/C++ programs based on this algorithm.

Wolverine features a built-in interpolating decision procedure for equality
logic with uninterpreted functions which provides limited support for bit-vector
operations, while many comparable verification tools use linear arithmetic to
approximate semantics of the program. In addition, it provides a programming
interface (described in Section 3) enabling the integration of other interpolating
decision procedures, allowing it to take advantage of the continuous performance
improvements of interpolating SMT solvers (see, for instance, [12,13,14]).

We present an evaluation of our implementation in Section 4 and provide a
tool to generate additional benchmarks on the website of Wolverine.

2 Implementation

The implementation of Wolverine is based on the CProver frame-
work(written in C++), which also forms the foundation of the verification tools

1 Source available under a BSD-style license on http://www.cprover.org/wolverine.

http://www.cprover.org/wolverine
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CBMC [15], SatAbs [16], and Impact [8]. We describe the implementation of
Wolverine using the example program in Figure 1. The program implements
Wegner’s algorithm, determining how many bits of x are set to one. The as-
sertion assert(y �=x) is a näıve safeguard against non-termination. Wolverine

uses symbolic simulation to construct a reachability tree. To this end, it unwinds
the control flow graph of the program until an assertion is reached. The shortest
execution trace of our example program reaching the assertion is shown at the
bottom of Figure 1. In order to check whether the trace violates the assertion,
Wolverine transforms it into static single assignment form:

prefix︷ ︸︸ ︷
(y1 = x0) ∧ (y1 �= 0) ∧ (y2 = y1&(y1 − 1))

➀∧
¬ assertion︷ ︸︸ ︷
(y2 = x0) (1)

Using slicing, we eliminate the assignments to c, since they are not relevant to
the correctness of the program. The effect of negating the asserted condition
is that every satisfying assignment of Formula (1) represents a witness for an
assertion violation. Note, however, that the formula is unsatisfiable and therefore
this execution cannot violate the assertion. Accordingly, the sub-formula tagged
“prefix” in Formula (1) represents a set of reachable states (at location ➀ in the
trace) that is safe with respect to the assertion.

Wolverine splits the symbolic representation of the execution trace into n
partitions A1, . . . , An, one for each basic block traversed by the trace. It passes
these n formulas on to an interpolating decision procedure (by default the built-
in algorithm described in [17,18]), which returns n− 1 interpolants I1, . . . , In−1

that satisfy the following conditions [8]:

1. For all 1 ≤ j ≤ n, (Ij−1 ∧Aj) implies Ij (with I0 = true and In = false), and
2. for all 1 ≤ j < n, Ij refers only to SSA variables that occur in A1, . . . , Aj as

well as in Aj+1, . . . , An.

The first condition guarantees that each interpolant Ij represents a set of safe
states at the respective program location from which no state violating the as-
sertion is reachable via the given trace (i.e., the interpolants and the program
statements in the trace form Hoare triples). The second condition above guar-
antees that the interpolants refer only to SSA variables that are live at the cor-
responding location in the trace. For instance, a valid sequence of interpolants
for the formulas (y1 = x0), (y1 �= 0), (y2 = y1&(y1 − 1)), and (y2 = x0) would
be y1 = x0, (y1 = x0) ∧ (y1 �= 0), and (x0 �= 0) ∧ (y2 ≤ x0 − 1).

After mapping the SSA variables back into the original program context,
Wolverine annotates the corresponding path in the reachability tree accord-
ingly, e.g., the node ➀ is labelled (x �= 0) ∧ (y ≤ x− 1).

Wolverine continues expanding the reachability tree until each leaf is either
fully expanded or covered by a previously discovered node. A node is covered if its
(or one of its predecessors’) annotation implies the annotation of a previously
discovered node associated with the same program location.2 For instance, if
2 The fact that interpolation is non-monotonic imposes some restrictions on the cov-

ering relation, which are described in more detail in [8,19].
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Wolverine annotates a node ➁ (which succeeds ➀ in the reachability tree and
also corresponds to the program location following the assignment y:=y&(y-1))
with (x �= 0) ∧ (y ≤ x− 1), then ➁ is covered by ➀.

The built-in decision procedure supports bit-vector operations using a limited
set of inference rules (such as (t1 = t2 & t3) # (t1 ≤ t2) and (1 > t1) # (t1 = 0)
for terms ti of type unsigned integer). Details are provided in [19,17]. Moreover,
it uses eager bit-blasting and a SAT solver to identify an unsatisfiable core
before invoking the “word-level” interpolating decision procedure [19,18]. If the
decision procedure fails to provide an interpolant, Wolverine falls back on using
the weakest precondition. Finally, using the option --interpolator smt-out,
Wolverine is able to print the SSA instances in the SMT-LIB format, enabling
the generation of benchmarks.

3 Interface for Interpolating Decision Procedures

Wolverine provides a C++ interface for calling external interpolating deci-
sion procedures. In order to integrate an external solver into Wolverine, the
programmer has to implement a class inheriting from external interpolatort:

class external interpolatort: public wolver interpolatort {
. . .
virtual bool initialise();

virtual bool process options(const optionst&);

protected:

virtual bool translate(const expr listt&)=0;

virtual decision proceduret::resultt solve()=0;

virtual bool read interpolants(expr listt&)=0; };

The public methods initialise and process options provide an opportu-
nity to initialise the external tool and to deal with command line parameters.
Wolverine provides the class external processt, which supports the execu-
tion of and communication with command line tools.

The methods translate and read interpolants are required to convert for-
mulas between the representation used by the external interpolator and expres-
sions in the CProver format. CProver expressions (represented by the class
exprt) are annotated syntax trees with typing information. The class typet is
used to store types. Wolverine expects the interpolants returned to be typed.
Accordingly, an interpolator which discards the typing information needs to re-
store it before returning a result to Wolverine. The CProver framework
provides support for this task in form of the methods c[pp] typecheck.

The method solve returns D UNSATISFIABLE, D SATISFIABLE, or D ERROR.
In the latter case, Wolverine provides the option to fall back on computing
interpolants using the weakest precondition. If the instance is satisfiable, the
trace represents a valid counterexample and is reported. Otherwise, the method
read interpolants is expected to return in its parameter a sequence of typed
expressions which satisfy the conditions stated in Section 2.
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Fig. 2. Performance results Wolverine vs SatAbs on DDVerify drivers

4 Checking Linux Device Drivers

Figure 2 provides a comparison of Wolverine with the predicate-abstraction
based verifier SatAbs on a number of sequential device driver benchmarks (gen-
erated with DDVerify [20], which provides a harness and an OS model anno-
tated with assertions) on a 3GHz Intel Core i7 CPU with 4GB RAM.3 Figure 2(a)
shows the run-time of Wolverine and SatAbs on 22 assertions related to the
usage of IO ports for the machzwd device driver [20]. Wolverine performs better
than SatAbs in all but 6 cases. The performance gain is particularly impressive
for the assertions zf readw.[1,2], for which both tools report a counterexample.
We attribute this to the lower overhead of the search algorithm of Wolverine.
In the case of the claims zf set control.[1,2], we observe a large number of
coverage checks in Wolverine for different branches of the reachability tree,
and the eager abstraction approach of SatAbs prevails.

The scatter-plot in Figure 2(b) shows the run-time for 73 array bound checks
for the machzwd driver (displayed using ×) and 78 array bound and IO properties
for the driver nbd (indicated by ◦). SatAbs exceeded the time-out of 100 seconds
for 23 properties of machzwd, and SatAbs as well as Wolverine timed out in
22 cases for nbd. Our results suggest that, while SatAbs is significantly faster
when few predicates are sufficient to prove an assertion correct, Wolverine’s
lazy approach is more robust as the number of predicates increases.

5 Conclusion

Wolverine is a freely available implementation of the interpolation-based lazy
abstraction algorithm presented in [8]. Its modular design enables the integration
of modern interpolating SMT solvers, making it future-proof and (when combined
with DDVerify [20]) a valuable source for benchmarks. Our experimental eval-
uation shows that our implementation is competitive when compared to existing
predicate-abstraction based verification tools. As future work, we intend to inte-
grate and study the performance impact of different interpolation techniques.
3 Performance results for the device drivers presented in [7] are reported in [19].
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Abstract. Studies of biological systems are often facilitated by diagram
models that summarize the current understanding of underlying mech-
anisms. The increasing complexity of our understanding of biology ne-
cessitates computational models that can extend these representations
to include their dynamic behavior. We present here a new tool we call
Synthesizing Biological Theories which enables biologists and modelers
to construct high-level theories and models of biological systems, captur-
ing biological hypotheses, inferred mechanisms, and experimental results
within the same framework. Among the key features of the tool are con-
venient ways to represent several competing theories and the interactive
nature of building and running the models using an intuitive, rigorous
scenario-based visual language. The definition of the modeling language
is geared towards enabling formal verification and analysis.

1 Introduction

Biological systems and their ability to function robustly and perform compli-
cated processes have been a source of fascination and scientific enquiry for many
years. Recently, significant advances in biology have enabled a deeper mecha-
nistic understanding of many fundamental underlying processes. Computational
modeling is gaining prominence in the biological community as it allows us to for-
mulate hypotheses and reason about the biological implications of these models
in a precise and formal way that could lead to an improved scientific under-
standing. Performing certain experiments in the biological system is often not
possible, or may require a lot of work to overcome technical hurdles. Yet, run-
ning a simulation and analyzing the underlying model is possible and holds a
potential of guiding experimental work and thinking about the consequences of
performing certain experiments even before they become feasible.

In this paper we present a new tool for biological modeling we call Syn-
thesizing Biological Theories (SBT) which enables biologists and modelers to
construct high-level theories and models of biological systems, capturing biolog-
ical hypotheses, inferred mechanisms, and experimental results within the same
framework using an intuitive, rigorous scenario-based visual language. The tool
is publicly available at [SBT11] together with a user manual, documentation and
sample models. In this paper we present the main challenges we tried to address
while building the tool, its design principles, highlights of the main functionality
and also briefly discuss several of the future directions.

G. Gopalakrishnan and S. Qadeer (Eds.): CAV 2011, LNCS 6806, pp. 579–584, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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2 Main Challenges and Design Principles

We set out to build a tool that would be intuitive for experimental biologists,
yet powerful to allow modeling, simulation and analysis of large and complex
biological systems. We use scenarios as the basic modeling unit for specifying
behavior. In SBT Version 1.0 we support a scenario-based language inspired by
live sequence charts [DH01]. The reason for adopting a scenario based language is
the ability to break up a complex model specifications into many charts (scenar-
ios). Each chart can represent an explicit hypothesis about the system, a certain
property that holds for the system, or a representation of an experimental re-
sult. The ability to view a chart in isolation from the entire model and examine
its assumptions is important for biological modeling; the utility and impact of
the model depends critically on all the biological assumptions it makes and the
ability of experimental biologists to understand the representation in detail.

A user interface allows the user to build the model by interacting with a
simple browser to define classes, types, objects and their properties and methods.
Navigating complex models with many charts and filtering relevant objects is
supported, where the object name serves as the key and all relevant items starting
with a given prefix are displayed. The motivation for using this modeling scheme
rather than coding custom software applications is to provide an easier entry
point for experimental biologists with the goal of making such tools useful for a
wider community. For this reason we use a visual representation for the scenario
modeling language and provide a simple-to-use interface to construct scenarios,
using the same visual representation during execution to provide meaningful
feedback to the user. The tool was designed to support complex models and has
been tested with models containing thousands of objects and hundreds of charts.

3 The SBT Language and Tool

We now describe the main features of our tool Synthesizing Biological Theories
(SBT), with emphasis on the novel aspects of our work. The current version
of SBT is 1.0, publicly available at [SBT11]. We also mention some extensions
that we implemented in experimental versions of the tool but are not part of
the first version, which we plan to make available in next versions. SBT uses a
specification language inspired by live sequence charts (LSCs) [DH01].

3.1 Classes, Objects, Types

We adopt an object oriented framework, where a model is composed of a set
of classes which are restricted to single inheritance. An object is an instance of
a class, and a model contains a definition of static objects that are present at
runtime when the model starts executing. In addition dynamic objects can be
created and deleted during runtime as specified in the model scenarios.

A class is a structural template from which physical and conceptual entities
called objects originate. In a biological model a class can, for example, represent a
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certain type of cell, while objects of this class are the actual cells. Classes, which
can be added by the user in SBT, consist of methods, messages, and properties.
Methods are parameterless communications that may be received by the class or
its objects. Messages are similar to methods, except with parameters. Properties
are variables belonging to the class and collectively describe the state of the class
and its objects. Properties can be modified using messages called setters.

Properties and message parameters have types which describe their domain.
User-defined types can be constructed by parameterizing the SBT primitives
range and enumeration, bound, and boolean.

3.2 Generalized Charts

The LSC definition [DH01] makes a distinction between two types of charts,
universal and existential, but the SBT execution engine maps these to a single
type of chart we call a generalized chart. This single chart type is made possible
through the use of a third warm temperature [Plo08]. The intuition is that a
cold LSC location is generally understood to denote that no progress is required
beyond the location, whereas a hot location means that progress is required.
Applying this notion to precharts, however, is not straightforward: strictly in-
terpreted, this means that the chart would never have to progress beyond the
initial locations of the chart and therefore the chart is vacuously satisfied with-
out ever having left the initial state. What is actually intended is a similar but
somewhat looser interpretation whereby progress is still not required, but ad-
vancement is required if an enabled event occurs at any prechart location. Our
use of generalized charts and warm temperatures allows SBT to capture our in-
tended semantics in an elegant way while avoiding special cases in the underlying
execution engine.

3.3 Subcharts

Subcharts are charts which can be embedded in a parent chart. The execution
engine internally maintains subchart executions as their own individual execu-
tion, which can satisfy or violate just as any other chart. Subcharts follow an
orthogonal approach whereby any chart in the requirements may be added as a
subchart to any other LSC1.

Upon termination, subchart termination status propagates up to the parent
chart, which will respond accordingly. For example, if a subchart is located within
the prechart of its parent and it violates, the parent will close without violation.
If the subchart is located in the main chart of the parent, however, the parent
chart will also violate. When the subchart is satisfied, its parent may progress
beyond the subchart.

3.4 Symbolic Instances

Symbolic instances are those that can be bound to objects of a specified class
at runtime when the first visible event on the instance line occurs. A quantifier
1 The user interface of SBT 1.0 does not fully support this currently although the

execution engine does.
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expression over the class properties is associated with the symbolic instance. For
each object satisfying the quantifier expression at binding-time, a new chart is
created in which the symbolic instance is replaced with the concrete object.

The set can be universally or existentially quantified: all executions in the set
must satisfy for universal instances, whereas only one must satisfy for existential
instances. The symbolic instances are numbered such that charts with multiple
symbolic instance lines will be quantified in a specific order.

Symbolic instances can also be used to create new objects dynamically from
a class definition using the special SBT method create. Once created, dynamic
objects can be referenced using symbolic instances and even destroyed.

4 Execution Modes

SBT presents a set of novel language constructs and runtime execution semantics
geared towards biological modeling, we highlight some of these in the following
section.

4.1 Deterministic vs. Nondeterministic Execution

Scenarios consist of visible events which are observable and hidden events which
are non-observable, where SBT (on behalf of the biological system) picks and
executes events internally. The choice of which internal events the biological
system picks can have a great impact on whether or not the chart is eventually
satisfied (i.e., accepts the behaviors.) SBT supports both a deterministic and
nondeterministic mode:

According deterministic mode, a visible event is executed and then the ex-
ecution engine determines whether any hidden events are enabled. If so, it ar-
bitrarily selects and executes one at the same instant2 as the closest preceding
visible event. This is repeated until no more hidden events are enabled.

On the other hand, nondeterministic mode attempts all possibilities by effec-
tively splitting a single run into multiple threads of parallel execution, of which
one must eventually be satisfied. The LSC is considered satisfied if any run in
the set accepts. This mode operates across two axes of nondeterminism: it selects
not only the choice of which hidden event to execute next, but also the choice
of whether to proceed to then next hidden event (if one exists) or remain in the
present location.

For nondeterministic mode we found that the visualization of progress along
the charts is useful to follow the nondeterminism. Nondeterminism is essential
for modeling of biological systems as it provides an easy way for the modeler
to represent a certain assumption when the precise mechanism is still unknown.
Additional experience still needs to be gained to identify the most useful way to
specify this nondeterminism and to restrict it in cases where it is not needed to
simplify progress visualization and improve performance.
2 The word “instant” is used here in the sense of reactive systems operating under the

synchrony hypothesis.
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4.2 Stepping Mode

Stepping mode specifies how events are to be generated. There are two modes:
Interactive mode allows the user to execute any event by selecting it from a

list of available events. Both system and environment events are available for
selection, where system events are those controlled by the biological model and
environment events are external. Super-stepping mode allows the user to execute
a visible environment event, and the biological system will respond with a multi-
event response called a super-step, which terminates when no system events are
enabled or the main charts of all universal charts have closed.

In super-stepping mode, the event selection policy can either be arbitrary (de-
fault) or random, where the engine will select only non-violating events according
to the chosen policy.

Violating executions are removed from the nondeterministic execution set.
The set itself violates when and if the last execution in the set violates.

4.3 Configurations

A user can run simulations and investigate the system behavior at any stage
during construction of the model. The user can set a configuration by selecting
which charts in the model are used and which are not, allowing to ignore charts
that are still “in progress.” Several different configurations per model can be
maintained, one of them is designated as the active configuration in use, the
typical usage of multiple configurations in biological modeling is for maintaining
several competing hypotheses that share most of the scenarios in the model but
differ on certain specific charts thus representing different variants of the model.

4.4 Display Options

The basic visualization provided by SBT shows property values of all objects in
the model (i.e., all static objects and dynamic objects that have been created
but not yet deleted) and the progress of all active charts. The user can set any of
these options to be active or not. Runs of simulations can be recorded and later
replayed for more careful investigation. The execution engine was designed to
run independently from the user interface to ensure a clean separation between
the modules and allowing to connect other components to the execution engine,
version 1.0 supports connecting the executed models to a processing visualization
environment.

5 Biological Examples and Future Directions

A scenario-based approach using LSCs and the Play-Engine [HM01] to model
vulval development in C. elegans was presented in [KKM08]. The model focused
on six cells and how their fate is specified. This is conceptually an important
process in developmental biology, where developing up-to-date realistic and pre-
dictive models for this system is a major challenge requiring development of
powerful tools and methodologies [FH07].
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To deal with models with large cell populations, SBT supports dynamic cre-
ation and destruction of objects. It is now being actively used to study stem
cell population dynamics in the C. elegans germ line, embryogenesis and emer-
gent behavior of bacteria populations [KLH10]. As these models and new ones
are published, they will be made part of the tool’s online samples and made
available as a resource to the research community.

We hope that in the future, similar competitions to those conducted for SMT
solvers in the SMT-competitions can be organized for biological models. Since the
format of the models and the properties are still under investigation, we believe
that making our tool and other such tools available will help allow CAV and the
formal verification community to become familiar with the challenges and special
characteristics of such models. SBT experimental versions support verification
and analysis of models [KS09, KPP09, MK11], the inherent difficulties in scaling
such methods to large-scale realistic biological models can provide challenging
research opportunities.

References

[DH01] Damm, W., Harel, D.: LSCs: Breathing life into message sequence charts.
Formal Methods in System Design 19(1), 45–80 (2001)

[FH07] Fisher, J., Henzinger, T.A.: Executable Cell Biology. Nature Biotechnol-
ogy 25(11), 1239–1249 (2007)

[HM01] Harel, D., Marelly, R.: Specifying and executing behavioral requirements:
The play-in/play-out approach. In: Software and System Modeling, SoSyM
(2003)

[KKM08] Kam, N., Kugler, H., Marelly, R., Appleby, L., Fisher, J., Pnueli, A., Harel,
D., Stern, M.J., Hubbard, E.J.A.: A scenario-based approach to modeling
development: A prototype model of C. elegans vulval fate specification. De-
velopmental Biology 323(1), 1–5 (2008)

[KPP09] Kugler, H., Plock, C., Pnueli, A.: Controller Synthesis from LSC Require-
ments. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp.
79–93. Springer, Heidelberg (2009)

[KS09] Kugler, H., Segall, I.: Compositional Synthesis of Reactive Systems from
Live Sequence Chart Specifications. In: Kowalewski, S., Philippou, A. (eds.)
TACAS 2009. LNCS, vol. 5505, pp. 77–91. Springer, Heidelberg (2009)

[MK11] Milicevic, A., Kugler, H.: Model Checking Using SMT and Theory of Lists.
In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011.
LNCS, vol. 6617, pp. 282–297. Springer, Heidelberg (2011)

[Plo08] Plock, C.: Synthesizing Executable Programs from Requirements. PhD the-
sis, New York Univ. (2008)

[SBT11] Microsoft Research Cambridge, Synthesizing Biological Theories (2011),
http://research.microsoft.com/SBT/endthebibliography

http://research.microsoft.com/SBT/endthebibliography


PRISM 4.0:

Verification of Probabilistic Real-Time Systems

Marta Kwiatkowska1, Gethin Norman2, and David Parker1

1 Department of Computer Science,
University of Oxford, Oxford, OX1 3QD, UK

2 School of Computing Science,
University of Glasgow, Glasgow, G12 8RZ, UK

Abstract. This paper describes a major new release of the PRISM prob-
abilistic model checker, adding, in particular, quantitative verification of
(priced) probabilistic timed automata. These model systems exhibiting
probabilistic, nondeterministic and real-time characteristics. In many ap-
plication domains, all three aspects are essential; this includes, for ex-
ample, embedded controllers in automotive or avionic systems, wireless
communication protocols such as Bluetooth or Zigbee, and randomised
security protocols. PRISM, which is open-source, also contains several
new components that are of independent use. These include: an exten-
sible toolkit for building, verifying and refining abstractions of proba-
bilistic models; an explicit-state probabilistic model checking library; a
discrete-event simulation engine for statistical model checking; support
for generation of optimal adversaries/strategies; and a benchmark suite.

1 Introduction

This paper describes a major new release, version 4.0, of the PRISM probabilistic
model checker. This adds, in particular, formal modelling and analysis capabili-
ties for systems with probabilistic, nondeterministic and real-time characteristics,
through support for verification of (priced) probabilistic timed automata.

PRISM already provides model checking for several types of probabilistic mod-
els: discrete- and continuous-time Markov chains and Markov decision processes,
as well as a modelling language in which to express them. The tool has been
widely taken up (downloaded more than 20,000 times) and used for quantitative
verification in a broad spectrum of application domains, from wireless commu-
nication protocols to quantum cryptography to systems biology. In many cases,
flawed or anomalous behaviour has been identified, from worst-case performance
conditions for Bluetooth [2] to behavioural predictions (later validated experi-
mentally) for biological signalling pathways [4].

Increasingly, though, new application domains are dictating the need for quan-
titative verification techniques and tools for richer classes of models. Embedded
systems, such as in multimedia devices or avionic systems, exhibit stochastic
behaviour and also operate under constraints on timing and other resources.
PRISM 4.0 supports (priced) probabilistic timed automata, a natural model for
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Time Nondeterminism Probabilistic Models

discrete
no discrete-time Markov chains (DTMCs)

yes
Markov decision processes (MDPs)

probabilistic automata (PAs)

continuous
no continuous-time Markov chains (CTMCs)

yes
probabilistic timed automata (PTAs)

priced probabilistic timed automata (PPTAs)

Fig. 1. The types of probabilistic models currently supported by PRISM, classified by
modelling of time and the presence of nondeterminism; boldface denotes new additions

such systems. It also incorporates several new components, including engines for
quantitative abstraction-refinement [9] and statistical model checking [14,5]. The
components are designed to be extensible and re-usable. As well as improving
scalability for existing model types and adding support for (infinite-state) PTAs,
they are targeted at facilitating verification of more expressive classes of models
such as probabilistic and stochastic hybrid systems.

1.1 Functionality Overview

We begin with a brief overview of the current functionality of the PRISM tool.
Items in boldface denote new or improved features in version 4.0, which are
described in more detail in the remainder of the paper.

– modelling and construction of many types of probabilistic models (see Fig. 1
for a summary), now including probabilistic timed automata; all can be
augmented with costs or rewards, in the case of PTAs yielding the model of
priced probabilistic timed automata;

– model checking of a wide range of quantitative properties, expressed in a
language that subsumes the temporal logics PCTL, CSL, LTL and PCTL*,
as well as extensions for quantitative specifications and costs/rewards;

– multiple model checking engines, both symbolic (BDD-based) and explicit-
state; and a variety of probabilistic verification techniques, such as symme-
try reduction and quantitative abstraction refinement;

– a discrete-event simulator, with support for statistical model checking
methods, including confidence-level approximation and acceptance sampling;

– model import options, e.g. from SBML (systems biology markup language);
– optimal adversary/strategy generation for nondeterministic models;
– a GUI, with model editor, simulator and graphing, or command-line tool;
– a benchmark suite of probabilistic models and associated properties.

2 Probabilistic Timed Automata (PTAs)

Probabilistic timed automata (PTAs) [6,12] are finite-state automata enriched
with real-valued clocks, in the style of timed automata, and with discrete prob-
abilistic choice, in the style of Markov decision processes (MDPs).
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Clocks are real-valued variables, whose values increase simultaneously over
time. Predicates over clock variables called guards and invariants are assigned
to transitions and states, respectively, imposing restrictions on when transitions
can occur and how long can be spent in a state. For ease of modelling, we can also
add finite-ranging data variables to a PTA. Transitions between states can reset
clocks (to integer values) and update data variables. This is done probabilistically:
the target state, clock resets and variable updates are specified by a discrete
probability distribution. The choice between multiple transitions, as well as the
elapse of time (subject to invariant satisfaction) are both nondeterministic.

Fig. 2 (left) shows a simple example of a PTA, modelling repeated attempts
to transmit a message over an unreliable channel. The system tries to send for
between 1 and 2 time-units. With probability 0.1, this fails, in which case a delay
of between 3 and 5 time-units elapses before retrying (up to N times).

PTAs can be augmented with information about costs incurred or, equiva-
lently, rewards gained (PRISM uses the latter terminology). This model, often
known as priced PTAs, allows reasoning about a wide range of additional prop-
erties, such as energy consumption or resource usage. PRISM supports linearly
priced PTAs, where costs/rewards are accumulated at a rate proportional to the
elapse of time, with the rate depending on the current state (and data variables).

Finally, we mention that PTAs also support parallel composition (as for timed
automata and MDPs), in which multiple PTAs operate concurrently, synchro-
nising on transitions with matching labels. For precise details, see [11].

Modelling PTAs. PRISM uses a uniform modelling language for all the prob-
abilistic models that it supports, including PTAs. This is a textual language,
based on guarded command notation. To support PTAs, PRISM 4.0 adds a new
clock datatype. Clock variables can appear (as convex expressions) in guards, on
the left-hand side of a command, and can be reset, like any other variable, with
an update on the right-hand side. A new invariant keyword is introduced to
allow expression of invariants. Fig. 2 (right) gives a PRISM modelling language
description for the example PTA described above. It also shows an example of
a PRISM reward structure, labelled “energy”, to create a priced PTA which
assigns a reward rate of 2.5 when s=0, i.e. during message transmission.

PTA verification techniques. PRISM analyses two main classes of properties
for PTAs: (i) the minimum/maximum probability of reaching a target, possibly
within a time bound (e.g. “the maximum probability of an airbag failing to
deploy within 0.02 seconds”); and (ii) the minimum/maximum expected reward
accumulated until a target is reached (e.g. “the maximum expected time for the
protocol to terminate”). Two verification methods are implemented:
– Quantitative abstraction refinement [9] constructs and analyses a series of

probabilistic abstractions, automatically refining at each step to produce
more precise results (see also Section 3). By using stochastic two-player game
abstractions, defined in terms of zones, this yields an effective technique for
exact verification of probabilistic reachability properties of PTAs [10]. Since
experimental results in [10] show that this method generally outperforms all
others currently available, this is the default engine in PRISM.
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pta
const int N ;
module transmitter

// Local variables
s : [0..3] init 0;
tries : [0..N+1] init 0;
x : clock;
invariant

(s=0 ⇒ x≤2)& (s=1 ⇒ x≤5)
endinvariant

// Guarded commands
[send] s=0 & x≥1 & tries≤N → 0.9 : (s′=3)

+ 0.1 : (s′=1)&(tries′=tries+1)&(x′=0);
[retry] s=1 & x≥3 → (s′=0)&(x′=0);
[quit] s=0 & tries>N → (s′=2);

endmodule
rewards “energy” (s=0) : 2.5; endrewards

Fig. 2. Left: A PTA, with clock x and integer variable tries, modelling attempted
message transmission over an unreliable channel. Right: corresponding PRISM code.

– Digital clocks [11] performs an automatic model translation to an equivalent
finite-state, discrete-time model (with integer-valued clocks)1 and then uses
PRISM’s existing MDP model checking techniques. For (non-probabilistic)
timed automata, such methods are usually much less efficient than on-the-
fly zone-based reachability (as, e.g., in UPPAAL [13]). For PTAs, which lack
such on-the-fly methods, the digital clocks approach remains competitive,
especially in combination with PRISM’s symbolic (BDD-based) implemen-
tation. This method also has the widest applicability, supporting both proba-
bilistic reachability properties and expected cumulative rewards for (linearly)
priced probabilistic timed automata [11].

Related tools. UPPAAL [13] is the leading verification tool for timed automata.
A recent extension, UPPAAL-PRO [15], adds support for PTAs, but currently
only analyses maximum probabilistic reachability properties. Fortuna [1] sup-
ports the same class but also allows the inclusion of reward-bounds when (lin-
early) priced PTAs are considered. Another tool aimed at verification of proba-
bilistic real-time systems is mcpta [3], which translates a subset of the modelling
language Modest into PRISM using digital clocks [11]. Finally, MRMC [7], a
probabilistic model checker for Markov chains and Markov reward models, has
recently also added support for continuous-time MDPs, another model combin-
ing nondeterministic, probabilistic and real-time features. For a more detailed
list of probabilistic verification tools, including other tools for abstraction refine-
ment (such as RAPTURE, PASS) and statistical model checking, see [18].

3 Other New PRISM Components and Features

Quantitative abstraction refinement toolkit. As described above, PRISM’s
default PTA verification technique uses quantitative abstraction refinement [9].
This can be seen as a quantitative analogue of classical counterexample-guided
1 Under slight restrictions, e.g. strict clock comparisons (such as x<1) are not allowed.
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abstraction refinement. It provides a fully automatic approach to verification of
large or infinite-state probabilistic systems, by iteratively building, analysing and
refining increasingly precise probabilistic abstractions. In addition to PTAs [10],
the same approach has been applied to verification of probabilistic software (us-
ing predicate abstraction and SAT) [8] and to finite-state MDPs [9]. While these
implementations all build abstractions of MDPs as stochastic two-player games,
the same approach can be used to, for example, build abstractions of Markov
chains as Markov decision processes. Quantitative abstraction refinement is im-
plemented in PRISM in the form of an extensible toolkit, with support for mul-
tiple model types, a choice of refinement strategies and various configurable
optimisations.

Explicit-state probabilistic model checking library. PRISM already
features several model checking engines (called “MTBDD”, “sparse”, and “hy-
brid”), all either fully or partially symbolic (i.e. BDD-based). The tool now
incorporates a new, entirely explicit-state probabilistic model checking library,
implemented in Java and based on sparse matrix data structures. It supports
stochastic two-player games, Markov decision processes and discrete- and
continuous-time Markov chains. The code is designed to serve as a general
purpose library, either for inclusion in other techniques or for prototyping new
model checking algorithms. For example, the library is used in the abstraction-
refinement toolkit, in which probabilistic models need to be constructed and
modified on-the-fly, a task not well-suited to symbolic implementations.

Simulation engine and statistical model checking. Version 4.0 of PRISM
incorporates a newly rewritten version of its discrete-event simulation engine.
This provides efficient random generation of paths through PRISM models, both
for the purposes of debugging models and to support so-called statistical (or ap-
proximate) model checking techniques [14,5]. PRISM now offers two types of
such analysis. For quantitative properties (e.g. P=?[·] in PRISM notation), it
either generates a confidence interval (based on a given confidence level) or a
probabilistic guarantee of correctness, using the Chernoff-Hoeffding bound [5].
For bounded properties (e.g. P<0.1[·]), it uses acceptance sampling [14], im-
plementing Wald’s sequential probability ratio test (SPRT). Statistical model
checking offers significantly improved scalability, in comparison to conventional
probabilistic model checking techniques, and applies to a broader class of models.

Optimal adversary (strategy) generation. PRISM’s MDP verification im-
plementation now includes the ability to generate optimal adversaries (also
known as strategies). This means that, when PRISM computes the minimum or
maximum value for a probabilistic reachability (or expected reward) property, it
can also generate an adversary (resolution of nondeterminism in the model) that
produces it. This can be used to debug or analyse the results of model checking,
for example in order to generate probabilistic counterexamples, or to produce
an optimal solution for a scheduling problem. Furthermore, by using the digital
clocks engine, optimal adversaries can also be generated for PTAs.
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The PRISM benchmark suite. There are a large number of existing PRISM
case studies, distributed with the tool, included in publications and on the tool
website [16]. These are widely used, for example to evaluate new model checking
techniques, or to compare model checking implementations and tools. Unfor-
tunately, there are often several different variants of each model and it is not
always easy to locate a particular class of models or properties. The PRISM
benchmark suite [17] aims to provide a comprehensive source of freely-available
benchmarks for probabilistic model checking. It includes a large selection of
probabilistic models, of varying types and sizes, and corresponding properties
for model checking, grouped by type. External contributions are also welcomed.

Technical details and availability. PRISM is free and open source (GPL). It
is coded in a mix of Java and C++, and runs on all major operating systems.
It is available for download from http://www.prismmodelchecker.org/.

Acknowledgments. The authors are part supported by ERC Advanced Grant
VERIWARE, EU-FP7 project CONNECT, DARPA project PRISMATIC and
EPSRC grant EP/D07956X. For a full list of PRISM contributors, see [16].
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Abstract. We call a data structure overlaid, if a node in the structure
includes links for multiple data structures and these links are intended
to be used at the same time. In this paper, we present a static program
analysis for overlaid data structures. Our analysis implements two main
ideas. The first is to run multiple sub-analyses that track information
about non-overlaid data structures, such as lists. Each sub-analysis infers
shape properties of only one component of an overlaid data structure,
but the results of these sub-analyses are later combined to derive the
desired safety properties about the whole overlaid data structure. The
second idea is to control the communication among the sub-analyses
using ghost states and ghost instructions. The purpose of this control is
to achieve a high level of efficiency by allowing only necessary information
to be transferred among sub-analyses and at as few program points as
possible. Our analysis has been successfully applied to prove the memory
safety of the Linux deadline IO scheduler and AFS server.

1 Introduction

Recent advances in verification research have resulted in successful industrial-
strength software verifiers, such as Microsoft SDV and Astrée. These tools do
verification-by-static-analysis, where the tools work fully automatically without
asking the user to insert loop invariants or procedure specifications. But these
tools cannot approach many parts of operating systems, because of their inaccu-
rate or unsound treatment of the heap. In fact, the heap is one of the outstanding
problems holding back verification-by-static-analysis (or software model check-
ing). Although there have been works approaching verification of the heap in
real-world systems programs [3,14], fundamental problems remain, and one of
the most fundamental is the presence of nontrivial, but not unrestricted, shar-
ing. The not unrestricted aspect gives some hope that techniques might be found
that do not immediately run into an efficiency brick wall.

In this paper, we consider the automatic verification of overlaid data struc-
tures, which show such nontrivial but not unrestricted sharing. We call a data
� We want to thank Gilad Arnold, Patrick Cousot, Peter Hawkins, Peter O’Hearn,
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structure overlaid, if a node in the structure includes links for multiple data
structures and these links are intended to be used at the same time. These
overlaid data structures are frequently used in systems code in order to impose
multiple types of indexing structures over the same set of nodes. For instance,
the deadline IO scheduler of Linux has a queue whose nodes have links for a
doubly-linked list as well as links for a red-black tree. The linked list is used to
record the order in which nodes are inserted in the queue, and the red-black tree
provides an efficient indexing structure on the sector fields of the nodes.

Our goal is to build an efficient yet precise program analysis for overlaid data
structures, capable of verifying the memory safety or shape properties of real-
world programs. The objective here is not to verify toy problems of overlaid data
structures, but to verify real-world examples. In fact, we created an analyser in
2008 that could prove the memory safety of toy examples, but this analyser
could not scale to verify real code like the deadline IO scheduler for several
fundamental reasons (see Section 7). Also, there have been other papers that
take on toy programs using overlaid data structures or graphs, but they are all
too imprecise or too expensive to verify serious programs [9,7,4,13].

In this paper, we present a new program analysis for overlaid data structures,
which can verify the memory safety and shape properties of medium sized real-
world examples from Linux. Our analysis implements two main ideas:

1. Run multiple sub-analyses that track information about standard data struc-
tures, such as lists: Each sub-analysis infers shape properties of only one com-
ponent of an overlaid data structure, but the results of these sub-analyses
are later combined to derive the desired safety properties about the whole
overlaid data structure. This is reminiscent of cartesian abstraction [2].

2. Control the communication among the sub-analyses using ghost states and
ghost instructions: We found that to prove the memory safety of programs
using overlaid data structures, the sub-analyses need to transfer information
among themselves (using a form of reduction [5]); the memory safety of
the programs often relies on the fact that components of an overlaid data
structure use the same set of nodes. Our analysis controls this information
transfer in order to achieve a high level of efficiency. It aims at allowing only
necessary information to be transferred among sub-analyses and only at as
few program points as possible. To achieve the aim, the analysis uses ghost
states, special instructions for modifying ghost states, and algorithms that
insert those instructions before or during the main phase of the analysis.

Related work. We discuss three further related works here. The first is the syn-
thesis approach by Hawkins et al. [8], where a programmer specifies an overlaid
data structure using a high level specification in the style of a relational database.
This approach focuses on generating new correct programs using overlaid data
structures, and it is complementary to the results of this paper. The second is
the general meet algorithm [1] for finding intersections of heap abstractions in
TVLA. The algorithm is related to our operator for transferring information
among sub-analyses, but it aims at computing the exact meet, not an efficient
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struct node { struct node *next;
struct node *p,*l,*r;
int key; };

struct node *q1s, *q1t, *q2;

void move_request() {
struct node *c;
c = list_remove_first(&q1s);
if(c==0) return; //trans(list->tree)(c)
tree_remove(c); //move(c,gamma)
list_add_first(&q2,c);
c = 0; //moveRgn(gamma,beta)
}

(a) C code (b) a snapshot of data structure

Fig. 1. Baby IO scheduler

over-approximation of the meet as in this paper. The last is the Hob system by
Kuncak et al. [10], where one can apply different analysis plug-ins for different
data structures, combine the analysis results, and verify that values stored in
these data structures are properly related. This system regards an overlaid data
structure as a single data structure, and requires a plug-in for its analysis. This
requirement can be met by the analysis in this paper.

2 Informal Description

We start with an informal description of our analysis using the baby IO scheduler
in Figure 1(a), which is modelled on the Linux deadline IO scheduler.

Our baby IO scheduler schedules IO requests using two disjoint queues. When
a request arrives, it is stored in the first queue. Later the request is selected
according to a scheduling policy, processed, and moved to the second queue. In
order to help the performance of the scheduling, the first queue uses an overlaid
data structure with list and tree components. The list component is a singly-
linked list starting from q1s, and it keeps requests in FIFO order. The tree
component is a binary search tree with parent pointers. The address of the root
of the tree is stored in q1t, and the tree provides an efficient search mechanism
on the key field of requests. The second queue is, on the other hand, a simple
linked list from q2, storing processed requests in FIFO order. A concrete example
of both queues is shown in Figure 1(b).

The move_request function in Figure 1 shows a typical example of exploiting
both components of an overlaid data structure. This function removes the first
node of the list component q1s of the overlaid data structure. Then, it switches
to the tree component, removes the node from the tree, and adds it to q2.
One important aspect is that the removal from the tree exploits the correlation
between components of the overlaid data structure—both the list q1s and the
tree q1t use the same set of nodes. Although the node c is found using the list
part, the correlation ensures that the node is in the tree as well. Hence, the
removal from the tree can be performed safely without traversing the tree.
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The main challenge for automatically proving the memory safety or shape
properties of the baby IO scheduler is to find a good representation of the over-
laid data structure (q1s, q1t), which enables the design of an efficient yet precise
program analysis. Although nodes in this data structure are highly shared, this
sharing has a pattern, i.e., it is generated by the overlay of a list and a tree. Fur-
thermore, our baby scheduler, like the original Linux IO scheduler, relies only on
the correlation between the list and tree components found in the move_request
function—both components are formed using exactly the same set of nodes. We
would like the representation to exploit fully the pattern of (q1s,q1t), and to
express only this relatively weak correlation of its two components.

Our solution is to use the conjunction of two types of assertions ϕ∧ψ, where
ϕ describes the heap only in terms of list fields and ψ does the same but using
only the fields from the tree (including key). To express that the components of
an overlaid data structure use the same set of nodes, ϕ and ψ use what we call
region variables α, β, γ, which denote sets of memory addresses. Concretely, our
analysis infers that the data structures of our IO scheduler normally satisfy the
following assertion:

(ls(q1s)α ∗ ls(q2)β) ∧ (tr(q1t)α ∗ trueβ). (1)

The predicate ls(x) means a singly-linked list starting from the address x, and
tr(y) a tree rooted at y. The separating conjunction P ∗Q means that the heap
consists of two disjoint sub-heaps described by P and Q.

The first conjunct in (1) says that the heap contains two disjoint singly-linked
lists q1s and q2. Using the subscripts−α and−β, it also states that the addresses
of the nodes in the list q1s form the set α, and those of the nodes in the list
q2 the set β. The second conjunct, on the other hand, talks about tree-related
properties of the heap. According to this conjunct, the heap contains a tree
with root address q1t. Furthermore, the addresses of nodes in the tree form
the set α, while the addresses of all the other nodes make the set β. Note that
each conjunct has its own characterisations of α and β. To be consistent, both
characterisations of α should mean the same, which implies that the list and the
tree use the same set of nodes. This is exactly the type of correlation that we
want to express for the overlaid data structure (q1s, q1t).

This representation enables an interesting strategy for analyzing a client pro-
gram of an overlaid data structure. The strategy is to run multiple sub-analyses
that are designed for tracking information about standard non-overlaid data
structures, such as lists and trees. Each of these sub-analyses infers shape prop-
erties of only one component of the overlaid data structure, hence handling only
one conjunct in our representation. The desired memory properties of the pro-
gram are then proved by combining the results of the sub-analyses.

Our analysis implements a real-world adjustment of this strategy. Note that
in our example, the sub-analyses cannot be completely independent. They need
to communicate during (not after) analysis, because of the above-mentioned
correlation among components of an overlaid data structure; in the function
move_request, the removal of c from the tree cannot be inferred to be safe with-
out looking at the list. To address this concern while keeping the communication
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cost of the sub-analyses low, our analysis uses ghost instructions for region vari-
ables. It runs the sub-analyses independently most of the time, except at a few
program points where the memory safety proof demands communication among
the sub-analyses. At these program points, the analysis inserts ghost instructions
that initiate communication among sub-analyses. Furthermore, even in those
communication points, the analysis tries to keep the communicated information
as simple as possible, using region variables.

We illustrate the analysis using the move_request function in Figure 1. In
this case, our analysis runs the list and tree sub-analyses, which update the
conjunct for list and that for tree, respectively. The first step of our analy-
sis is a pre-analysis that inserts ghost instructions for changing the values of
region variables or for transferring information between the list and tree sub-
analyses. For our move_request example, the pre-analysis inserts translist�tree(c)
and move(c, γ) before and after tree_remove, as shown in Figure 1. The first in-
struction translist�tree(c) tells the tree sub-analysis to get information about cell
c from the list sub-analysis, and it is a so-called reduction operator in program
analysis [5]. The instruction is inserted here, because the pre-analysis conjec-
tures that information about cell c at this program point will be necessary for
verification. The second instruction move(c, γ) tells the analysis to manage the
values of region variables by moving the address c from its current region to the
region γ. We defer the details of the pre-analysis to Section 5.

The second step is to run the move_request function symbolically, starting
from the assertion in (1), while abstracting away unnecessary information from
time to time. This symbolic abstract execution is done by invoking the corre-
sponding routines of the sub-analyses. The command list_remove_first(&q1s)
is run first in this manner, and results in the assertion

(ls(q1s)α ∗ c �→ {}α ∗ ls(q2)β) ∧ (tr(q1t)α ∗ trueβ) (2)

for the true branch of the following conditional statement. Compared to the
original in (1), the assertion has additionally c �→ {}α in the first conjunct, and
this additional predicate describes the cell c removed from the list q1s. In this
abstract execution, our analysis runs only the list sub-analysis not the tree one,
because it detects that list_remove_first(&q1s) is equivalent to skip as far
as the tree sub-analysis is concerned.

Note that only the first conjunct of (2) knows the allocatedness of cell c in α.
The next instruction transtree�list(c) makes the analysis transfer the information
about cell c from the first to the second conjunct, which gives the assertion:

(ls(q1s)α ∗ c �→ {}α ∗ ls(q2)β) ∧ (ϕ(q1t, c, α) ∗ trueβ). (3)

Here ϕ(q1t, c, α) is an assertion with free variables q1t, c, α, and it describes
a tree with root q1t and a normal node c such that all nodes of the tree form
the set α.1 This refinement of assertions is how our analysis enables the commu-
nication between sub-analyses, this time from the list to the tree sub-analysis.
1 Concretely, ϕ(q1t, c, α) is ∃uvwxy. tseg(q1t, 0, c, u)α∗c �→ {p:u, l:v, r:x}α∗tseg(v, c,

0, w)α ∗tseg(x, c, 0, y)α where tseg is a tree segment predicate explained in Section 4.
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The transferred information allows the analysis to prove the memory safety of
the following instruction tree_remove(c), which is handled by the tree sub-
analysis only, and to over-approximate the instruction’s output states by the
assertion:

(ls(q1s)α ∗ c �→ {}α ∗ ls(q2)β) ∧ (tr(q1t)α ∗ c �→ {}α ∗ trueβ). (4)

This assertion has c �→ {}α in both conjuncts, hence confirming that the node c
is indeed removed from both the list q1s and the tree q1t.

The next instruction is the ghost instruction move(c, γ) inserted by the pre-
analysis. This instruction simply changes the subscript of c �→ {} from α to γ:

(ls(q1s)α ∗ c �→ {}γ ∗ ls(q2)β) ∧ (tr(q1t)α ∗ c �→ {}γ ∗ trueβ). (5)

Semantically, this change means that the allocated cell c is moved from the set α
to the set γ, which only contains c. The decision for singling out c and putting it
in a separate set γ is made because the pre-analysis detected a possibility of mov-
ing cell c between two different data structures. This possibility is indeed realized
in the program, because the following two instructions list_add_first(&q2,c)
and c = 0 move the cell c to the second queue q2. The analysis tracks the move
of the cell, using its list sub-analysis, and transforms (5) to the assertion:

(∃a. ls(q1s)α ∗ q2 �→ {next:a}γ ∗ ls(a)β) ∧ (∃b. tr(q1t)α ∗ b �→ {}γ ∗ trueβ). (6)

The variable a has the old value of q2, and b the old value of c.
Note that the sub-formula q2 �→ {next:a}γ ∗ ls(a)β in (6) describes a list start-

ing from q2 of length at least one (because of cell q2). The list sub-analysis
decides that this length information is not necessary for verifying the memory
safety of the program, and it plans to drop the information by replacing the sub-
formula by ls(q2). To do this, the analysis inserts the instruction moveRgn(γ, β)
for moving all cells in γ to β, and analyzes the inserted instruction:

(∃a. ls(q1s)α ∗ q2 �→ {next:a}β ∗ ls(a)β) ∧ (∃b. tr(q1t)α ∗ b �→ {}β ∗ trueβ). (7)

The reason for inserting the instruction moveRgn(γ, β) is to make sure that the
changes in the values of region variables happen consistently for both conjuncts
(i.e., both sub-analyses), although the changes are initiated by the need for
abstracting a part of the first conjunct. Now, both the head q2 and the tail a
are in the same set β, so the abstraction applies and gives the final result:

(ls(q1s)α ∗ ls(q2)β) ∧ (tr(q1t)α ∗ trueβ). (8)

Here b �→ {}β ∗ trueβ is also abstracted to trueβ by the tree sub-analysis. This
amounts to forgetting the fact that β contains at least one cell.

Our formalization of the ideas described so far will form the rest of the paper.

3 Formal Setting for Region Variables

Instrumented storage model. We use a storage model where a state consists
of three components. The first two are the usual ones, namely, the stack for
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s, h, η |= ϕα ⇐⇒ s, h, η |= ϕ and dom(h) = η(α)
s, h, η |= e ∈ α ⇐⇒ [[e]]s ∈ η(α)

s, h, η |= e �→ {�f : �e} ⇐⇒ dom(h) = {[[e]]s} and h([[e]]s)fi = [[ei]] for all 1 ≤ i ≤ |�f|
s, h, η |= p(�e) ⇐⇒ h ∈ [[p]]([[�e]]s)
s, h, η |= emp ⇐⇒ dom(h) = ∅ and η(α) = ∅ for all α
s, h, η |= P ∗Q ⇐⇒ ∃h1, h2, η1, η2. (h1, η1) • (h2, η2) = (h, η)

and s, h1, η1 |= P1 and s, h2, η2 |= P2

Fig. 2. Semantics of sample assertions. We assume a function [[e]] from Stacks to Vals
that defines the meaning of expression e, and a mapping [[p]] from value tuples to heaps
that specifies the semantics of primitive predicate p.

program variables and the heap for dynamically allocated cells. The third one
is, however, unusual, and it defines the values of region variables.

To give a formal definition of our model, we need four disjoint countable
sets: a set Addrs of addresses; a set Vars of normal variables x, y, z; sets Fields
and Regions that respectively contain field names f, g of heap cells and region
variables α, β, γ. We assume that a fixed constant null is not in Addrs. The
storage model is defined by the following equations:

Vals = Addrs ∪ {null} Stacks = Vars→Vals Heaps = Addrs⇀fin(Fields⇀Vals)
Partitions = Regions→ P(Addrs) States = Stacks× Heaps× Partitions

Note that a state has three components (s, h, η) ∈ States, where s defines the
values of stack variables, h specifies the contents of allocated cells, and η maps
region variables to address sets. We call a pair (h, η) well-formed if the mapping
η defines a partition of allocated cells, that is, the following holds:

(dom(h) = ∪α∈Regionsη(α)) ∧ (∀α, β ∈ Regions. α �≡ β =⇒ η(α) ∩ η(β) = ∅).
A state (s, h, η) is well-formed when (h, η) is well-formed. In the rest of this
paper, we consider only well-formed states and pairs of heaps and region-maps.

Note that in a well-formed state, every allocated address belongs to a unique
region. As a result, a fact about an allocated address l can be approximated by
the region variable α containing l. For instance, when the variable x contains the
address l of an allocated cell (i.e., s(x) = l), we can approximate this information
by s(x) ∈ η(α). Our analysis uses this approximation to form the lightweight
information to be passed among the sub-analyses.

Assertions. Assertions ϕ describe properties of states, and are defined as fol-
lows:

e ::= x | null ϕ ::= ϕα | e= e | e∈α | e �→ {#f :#e} | p(#e)
| emp | ϕ ∗ ϕ | true | ϕ ∧ ϕ | ¬ϕ | ∃x. ϕ

This is a variant of the assertion language from separation logic [12]. The first ϕα

says that the heap satisfies ϕ and all the allocated addresses in the heap form the
set α. This is the most unusual case of our assertion language, and it enables one



Program Analysis for Overlaid Data Structures 599

[[assume(b)]](s, h, η)= if ([[b]]s = true) then {(s, h, η)} else ∅
[[x := newα,F ()]](s, h, η)= {(s[x �→ l], h[l �→ v], η[α �→ η(α) ∪ {l}]) |

l ∈ Addrs \ dom(h) and v is a function from F to Vals}
[[move(e, α)]](s, h, η)= if ¬(∃β. [[e]]s ∈ η(β)) then err

else {(s, h, η[β �→ η(β) \ {[[e]]s}, α �→ η(α) ∪ {[[e]]s}])}
[[moveRgn(α, β)]](s, h, η)= {(s, h, η[α �→ ∅, β �→ η(α) ∪ η(β)])}

Fig. 3. Semantics of sample primitive instructions. We assume a function [[b]] from
Stacks to {true , false} that defines the meaning of boolean b.

to talk about the values of region variables, the new part of our storage model.
The next two are the usual equalities on expressions and the membership of an
expression to a region variable. The assertion x �→ {#f : #e}means a heap containing
only one cell x that stores #e in fields #f. This definition does not require that #f
be the only fields in cell x. Hence, the cell x can have fields other than #f. The
following case p(#e) is the application of a primitive predicate p, such as the tree
or singly-linked list predicates, and it is mainly used to describe a recursive data
structure. Our assertion language includes separating connectives—emp for the
empty heap and the region variables all having the empty set, and ϕ ∗ ψ for
the splitting of both the heap and the region-variable map such that one pair
satisfies ϕ and the other ψ. The remaining cases are the standard connectives
from classical logic, and they have the usual meanings. We point out that other
standard connectives from classical logic can be defined in a standard way.

The formal semantics is given by a satisfaction relation |= between well-formed
states and assertions (s, h, η) |= ϕ, and sample clauses of the semantics appear
in Figure 2. The clause for ϕ ∗ ψ uses the following partial combining operator
(h1, η1) • (h2, η2) on well-formed pairs of heaps and region-maps:

(h, η) • (h′, η′) =
{

(h � h′, λβ. η(β) � η′(β)) if dom(h) ∩ dom(h′) = ∅
undefined otherwise

The operator merges two pairs of heaps and region-maps when they do not
overlap. The definition of ϕ ∗ψ uses this operator to express the splitting of the
heap and region-map components. Also note that the semantics of emp says that
both the heap and the region map are empty.

Syntax and semantics of programs. We consider simple imperative pro-
grams specified in terms of standard control flow graphs. These programs are
directed graphs (V,E) with two distinguished vertices entry, exit ∈ V and a la-
beling function L from E to primitive instructions. The vertex entry is required
to have no incoming edges and exit no outgoing edges.

The syntax of primitive instructions c are given by the following grammar:

e ::= x | null c ::= assume(b) | x := e | x := e.f | e.f := e
b ::= e = e | e �= e | free(e) | x := newα,F () (where F ⊆ Fields)
| b ∧ b | b ∨ b | move(e, α) | moveRgn(α, β)

Most cases are standard imperative operations. For instance, assume(b) checks
whether the input state satisfies b. If so, it skips. Otherwise, it diverges. The
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only exceptions are the last three cases. The instruction x := newα,F () allocates
a new cell with fields F , and puts this cell into the region α. The fields of this
new cell are uninitialized. The next two move(e, α) and moveRgn(α, β) are ghost
instructions that mainly manipulate the region-map parts of states. When cell
e is allocated in the input state, move(e, α) removes this cell from its current
region, and puts it in the region α. The instruction moveRgn(α, β) moves all the
cells in the region α to the region β. Hence, at the end of this instruction, α
contains no cells, while β contains all cells that used to be in α. The meaning of
both instructions is not ambiguous, because we assume that the input states are
well-formed and so all allocated addresses belong to only one region variable.

Our analysis uses move and moveRgn to ensure that the region-map part of
a state carries useful information about heap data structures. In particular, it
aims to put each data structure, such as a list or a tree, in its own partition
described by some region variable α, because then knowing e ∈ α is sufficient to
identify the data structure containing e.

The formal meanings of primitive instructions are given in terms of functions
from States to P(States)∪{err}, where err models a memory error. Sample cases
of the semantics appear in Figure 3.

4 Abstract States

Our abstract domain consists of assertions of the form:

(ϕ1,1 ∨ . . . ∨ ϕ1,m1) ∧ (ϕ2,1 ∨ . . . ∨ ϕ2,m2) ∧ . . . ∧ (ϕn,1 ∨ . . . ∨ ϕn,mn). (9)

Each conjunct here records the current analysis result of one sub-analysis. For
instance, the first conjunct could express the findings of the list analysis, and say
how fields for singly-linked lists are connected in the heap. The second conjunct
could, on the other hand, be concerned with the result of the tree analysis, and
describe the connection of tree-related fields. Notice that a disjunction appears
right under the conjunction. This disjunction is used by a sub-analysis to keep
track of various correlations of stack variables and heap data structures explicitly.
We point out that this is the only disjunction explicitly appearing in the abstract
state; ϕi,j does not contain any disjuncts inside.

Formally, our domain is parameterized by a finite collection F = {Fi}1≤i≤n

of sets of fields and primitive predicates p. The intention is that n specifies
the number of sub-analyses, and that each Fi describes the fields and primitive
predicates that the sub-analysis i cares about.

Once a parameter F is given, we can construct our abstract domain D(F) in
three steps. First, we define special forms of assertions, called symbolic heaps:

Π ::= true | e = e | e �= e | Π ∧Π Pure formulae
Σ ::= trueα | (e �→ {#f : #e})α | (p(#e))α | emp | Σ ∗Σ Spatial formulae
H ::= ∃#x.Π ∧Σ Symbolic heaps

TheΠ part of a symbolic heap describes the information about variables, and the
Σ part expresses a property on the heap and region-map components of states.
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Note that in a symbolic heap, the region subscript −α is used only in limited
places with three basic predicates. Furthermore, the pure part of a symbolic heap
does not contain membership expressions e ∈ α; all memberships are implicitly
expressed using the subscript formulae−α. These and other syntactic restrictions
in symbolic heaps (such as the absence of disjunction and negation) are imposed
so that we can reuse the core components of existing separation-logic based shape
analyses, such as abstraction algorithms and transfer functions [6]. We write SH
for the set of all symbolic heaps.

Second, we define a set of assertions used by each sub-analysis i. Let SHi be
the set of symbolic heaps H such that all points-to predicates (e �→ {#f : #e})α in
H mention only fields in Fi (i.e., #f ⊆ Fi), and all primitive predicates (p(#e))α

in H belong to Fi (i.e., p ∈ Fi). The domain for the sub-analysis i is Di =
Pfin(SHi). The finite powerset operator is used here to express finite disjunction.
For instance, the set {H1, . . . , Hm} ∈ Di means the disjunction H1 ∨ . . . ∨Hm.

Finally, the abstract domain D(F) is defined by D = D1 × . . . × Dn ∪ {�}
for n = |F|. The cartesian product means the conjunction of assertions. For
instance, the assertion (9) in the beginning of this section is formally represented
by the tuple ({ϕ1,1, . . . , ϕ1,m1}, {ϕ2,1, . . . , ϕ2,m2}, . . . , {ϕn,1, . . . , ϕn,mn}) in
this domain. The element � means the possibility of error. We will use d to
denote a non-� element in D, and di to mean the i-th component of d.

The domain D(F) is a lattice, when � is considered the largest element and
the non-� elements are ordered pointwise. Then, the lattice operations of D(F)
are obtained by extending corresponding operations on the Di’s pointwise. For
instance, the join d � d′ is given by (d1 � d′1, . . . , dn � d′n).

Weak reduction operator. One important operator of our domain is a weak
reduction operator that transfers information among components of abstract
states. The transferred information is about the allocatedness of a cell and a
region variable α containing this cell. For instance, consider the abstract state:(

x �→ {next:0}α ∨ (∃a. x �→ {next:a}α ∗ ls(a)α)
) ∧ tr(y)α

where only the first conjunct says that cell x is allocated and belongs to the set
α. Using our reduction operator, we can transfer this information about cell x
from the first to the second conjunct. Given appropriate parameters, the opera-
tor transforms this abstract state to the one below:(
x �→ {next:0}α ∨ (∃a. x �→ {next:a}α ∗ ls(a)α)

)
∧ ∃uvw. tseg(y, 0, x, u)α∗ x �→ {p:u, l:v, r:w}α∗ tseg(v, x, 0, )α∗ tseg(w, x, 0, )α.

Here the predicate tseg(a, b, c, d) describes a rooted tree segment with one hole.
The root is a and its parent pointer points to b. The hole of the segment is an
outgoing pointer from the tree, going from address d to address c. The source d
belongs to the segment, but the target c does not. We write in the parameter
of tseg when we do not want to specify the parameter.2 Note that the second
conjunct now talks about the allocatedness of cell x and its membership of α.

2 Formally, ϕ ∗ tseg(a, b, c, ) is an abbreviation for ∃d.ϕ ∗ tseg(a, b, c, d) for a fresh d.
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getΠ(e, emp) = NoInfo

getΠ(e, e′ �→{�f: �e′′}α ∗Σ) = if (Π � e = e′) then α else getΠ(e, Σ)

getΠ(e, p(�e′)α ∗Σ) = if (Π ∧ p(�e′) � e �→{} ∗ true) then α else getΠ(e, Σ)
getRegion(e, H) = let (∃�x. Π ∧Σ) = H in getΠ(e, Σ)
caseID(e, tr(e0)α) =
{(uvwxy, tseg(e0, 0, e, u)α ∗ e �→ {p:u, l:v, r:w}α ∗ tseg(v, e, 0, x)α ∗ tseg(w, e, 0, y)α)}

caseID(e, tseg(e0, e1, e2, e3)α) =
{(uvwx, tseg(e0, e1, e, u)α ∗ e �→ {p:u, l:v, r:w}α ∗ tseg(v, e, e2, e3)α ∗ tseg(w, e, 0, x)α),
(uvwx, tseg(e0, e1, e, u)α ∗ e �→ {p:u, l:v, r:w}α ∗ tseg(v, e, 0, x)α ∗ tseg(w, e, e2, e3)α)}

case(e,α,Π)(Σ, emp) = ∅
case(e,α,Π)(Σ, e′ �→{�f: �e′′}β ∗Σ′) =

if (Π � e �= e′ or α �≡ β) then case(e,α,Π)(Σ ∗ e′ �→{�f: �e′′}β , Σ′)
else {([], e=e′, Σ ∗ e′ �→{�f: �e′′}β ∗Σ′)} ∪ case(e,α,Π)(Σ ∗ e′ �→{�f: �e′′}β , Σ′)

case(e,α,Π)(Σ, p(�e′)β ∗Σ′) =

if (α �≡ β) then case(e,α,Π)(Σ ∗ p(�e′)β, Σ′)
else {(�a, true, Σ ∗Σ′′ ∗Σ′) | (�a, Σ′′) ∈ caseID(e, p(�e′))} ∪ case(e,α,Π)(Σ ∗ p(�e′)β, Σ′)

caseSH(e, α, H) =
let (∃�x. Π ∧Σ) = H in {∃�x�a. (Π ∧Π ′) ∧Σ′ | (�a, Π ′, Σ′) ∈ case(e,α,Π)(emp, Σ)}

Fig. 4. Subroutines getRegion and caseSHi. The function caseID below is a parameter
provided for each primitive predicate p. In the figure, we give an example of caseID for
tr and tseg.

Our operator is defined by lifting a similar reduction operator on symbolic
heaps to abstract states. We first describe this original unlifted operator, denoted
trans. Let i be a sub-analysis id and e an expression.

transi(e)(H : SH, H ′ : SHi) : Di =
let R = getRegion(e,H) in if (R = NoInfo) then {H ′} else caseSH(e,R,H ′).

The operator transi(e)(H,H ′) transfers information about cell e from H to H ′,
and the transferred information talks about the allocatedness of e and a re-
gion variable that contains e. The operator starts by calling the subroutine
getRegion(e,H), which has two possible outcomes. The first outcome is NoInfo
indicating that H does not have any information on cell e. In this case, the input
H ′ gets no information from H , and it becomes the output of trans. The second
outcome is a region variable α satisfying the entailment H � e ∈ α, which means
that according to H , the region variable α contains cell e. Given this outcome,
the operator trans conjoins the membership information e ∈ α with H ′, and calls
a case-analysis routine that transforms the assertion back into a set of symbolic
heaps in SHi, while ensuring the soundness condition expressed below:

H = caseSH(e, α,H ′) =⇒ (e ∈ α ∧H ′) �
∨
H

One implementation of getRegion and caseSH is given in Figure 4.
For sub-analysis ids i, j and an expression e, we define our weak reduction

operator transi�j(e) : D → D by transi�j(e)(�) = � and

transi�j(e)(d) = let H =
⋃
{transj(e)(H,H ′) | (H,H ′) ∈ di × dj} in d[j �→ H].
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This operator applies transj to all possible symbolic-heap combinations from the
i and j-th components of d, and uses the result to update the j-th component.

Note that the parameters i, j, e control the transferred information by our
reduction operator. It restricts the source to only one component of an abstract
state, and does a similar restriction on the target. Furthermore, it transfers infor-
mation only about cell e, with respect to its membership to one region variable.
This fine-grained control is essential for the performance of our analysis. Based
on the results of a pre-analysis, our analysis does only necessary information
transfer among component sub-analyses, by using our reduction operator with
carefully chosen parameters and only at necessary program points.

5 Pre-analysis

The input to our analysis is a control flow graph G = (V,E, entry, exit, L) and
an initial abstract state dinit ∈ D \{�}. Since G represents a normal C program,
its labelling L does not use our ghost instructions or weak reduction operator.

Given this input, the analysis first runs a pre-analysis, which changes G by
inserting ghost instructions of the form move(e, α) or our weak reduction operator
transi�j(e). Intuitively, the pre-analysis finds a program point v such that if cell e
is allocated at v in the concrete semantics, all sub-analyses are likely to infer the
allocatedness of e. Then, it picks a fresh region variable α, and inserts move(e, α)
after v. For transi�j(e), the pre-analysis inserts this instruction before a program
point v′, if it makes the following three conclusions at v′:

1. The cell e will be dereferenced by the sub-analysis j.
2. The sub-analysis is unlikely to infer that all cells reachable from e by Fj-

fields are allocated or null, while this allocation property indeed holds in
the concrete semantics.

3. But the sub-analysis i is likely to infer the same type of information about
cells reachable from e by Fi-fields.

Here {Fi}1≤i≤n is a parameter to our analysis. The first can be detected easily by
a simple syntactic check, but the other two require more sophisticated reasoning.
In the remainder of this section, we focus on this reasoning as well as that used
for inserting move(e, α).

Both types of reasoning are based on data-flow analyses. Let Subanalyses be
the set of sub-analysis ids {1, . . . , n}, and Exp the set of expressions in the input
control flow graph G. Define the domain Dpre by Dpre = P(Subanalyses × Exp).
Two data-flow analyses compute maps from program points to Dpre, denoted Rr

and Rp, by repeatedly applying the following equations:

for k ∈ {r, p} and v ∈ V \ {entry}, Rk
n+1(v) =

⋂
(v′,v)∈E

�L(v′, v)��
k(Rk

n(v′)).

This commonality leaves only Rr(entry), Rp(entry), �L(v′, v)��
r, and �L(v′, v)��

p

unspecified. We give this missing information about the two data-flow analyses
in Figure 5.
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Rr
n(entry) = {(i, e) | e is null or appears in all H in (dinit)i}, Rp

n(entry) = ∅
For k ∈ {r, p}, �c�


k(X) = (X ∪ deref(c))\kill(c)∪ genk(c, X) with deref, kill, genk below:

instr c deref(c) kill(c) genr(c, X) genp(c, X)

assume(b) ∅ ∅ ∅ ∅
x := e ∅ Subanalyses× {x} {(i, x) | (i, e) ∈ X} {(i, x) | (i, e) ∈ X}
x := e.f {(i, e) | f ∈ Fi} Subanalyses× {x} {(i, x) | f ∈ Fi} ∅
e.f := e′ {(i, e) | f ∈ Fi} ∅ ∅ ∅
free(e) ∅ Subanalyses× {e} ∅ ∅
x := newα,F () ∅ Subanalyses× {x} Subanalyses× {x} Subanalyses× {x}

Fig. 5. Subroutines used by the pre-analysis. The abstract state dinit ∈ D is the initial
abstract state given as the input to the whole analysis.

Our intention is that if (i, e) ∈ Rr(v), then sub-analysis i likely infers that at
program point v, all cells reachable from e by Fi-fields are allocated or null, if
this property holds in the concrete semantics. Also, by (i, e) ∈ Rp(v), we intend
that the sub-analysis i knows enough to prove the allocatedness of e at program
point v, if e is indeed allocated in the concrete semantics. Hence, if our intentions
are properly implemented, the reasoning steps necessary for inserting trans and
move(e, α) can be done using Rr and Rp.3

The definitions of �c��
r and �c��

p in Figure 5 follow our intentions. The only
exception is in the use of deref and genr(x:=e.f, X). Here the definitions as-
sume that after the dereference operation e.f, all sub-analyses caring about f
know both types of reachability and allocatedness information regarding e. Intu-
itively, this assumption amounts to hypothesizing that our pre-analysis inserts
the reduction operator trans in all the necessary places, so that by the time that
the field f is dereferenced, every sub-analysis interested in the field knows the
necessary information.

Finally, the definitions of Rp(entry) and Rr(entry) in Figure 5 reflect another
assumption of ours: That the initial abstract state dinit does not imply allocated-
ness, but it contains expression e in the i-th conjunct only when the null status
or the allocatedness of cells reachable from e is known to sub-analysis i.

6 Invariant Inference

Next, our analysis runs its main invariant inference engine, which computes an
invariant at each program point. Our invariant inference engine takes an initial
abstract state dinit and the output of our pre-analysis, which is a control flow
graphG = (V,E, entry, exit, L) that can include ghost instructions move(e, α) and
the reduction operator transi�j(e) (but not moveRgn(α, β)). Given this input, the
engine computes two maps I and A from program points, the first I to abstract
states and the next A to sets of ghost instructions of the form moveRgn:

M = {moveRgn(α, β) | α, β ∈ Regions(dinit, L)}, I : V → D, A : V → P(M).
3 move(e, α) is inserted after a program point v if Subanalyses×{e}⊆Rp(v). Our second

and third conditions for inserting transi�j(e) are (j, e) �∈ Rr(v) and (i, e) ∈ Rr(v).
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[[c]]
(d) = if (∃i. [[c]]
i(di) = �) then � else ([[c]]
1(d1), . . . , [[c]]


n(dn))

abs(d)= (abs1(d1), ..., absn(dn)) [[transi�j(e)]]

(d) = transi�j(e)(d)

[[move(e, α)]]
(d) = [[moveRgn(α, β)]]
(d)= d[β/α]
let check(i, H) =

(1) Find finitely many Hk’s in SHi such that

H � ∨
k∈K Hk and Hk has the form ∃ �xk.Πk ∧ e �→{ �fk: �e′k}βk

∗Σk.
(2) If cannot find, return {�}. Otherwise, for the found Hk’s, rename the

subscript βk of e �→{...}βk
by α and return {∃ �xk.Πk ∧ e �→{ �fk: �e′k}α ∗Σk}k∈K .

and ri =
⋃{check(i, H) | H ∈ di} for all i

in if (∃i s.t. � ∈ ri) then � else (r1, . . . , rn)

Fig. 6. Abstract transfer functions. The abstract value d below is not �. When � is
the input, abs(�) = [[c]]
� = �. We assume that [[c]]
i and absi are given.

Here Regions(dinit, L) is the set of region variables appearing in dinit or some
instruction in the range of L. Note that since Regions(dinit, L) is finite, so are
M , its subsets and the collection P(M). The first map I is the usual result of
a program analysis, and keeps an invariant at each program point. The second
map A records the ghost instructions dynamically discovered and then executed
during the invariant inference. These instructions move cells from one region
variable to another, and they are added and executed so as to maintain the
relationship between region variables and data structures in the heap.

Our analysis uses the standard fixpoint algorithm for control flow graphs, with
one interesting twist regarding the map A for ghost instructions. Assume that
for all normal or ghost instructions or our weak reduction operator, c, we are
given the transfer function for c, and the following two functions:

[[c]]� : D → D, abs : D → D, enableAbs : D → P(M). (10)

Here abs(d) abstracts assertions in d, and enableAbs(d) returns ghost instructions
in M that will enable further abstraction of d. Now, for (finite) subsets M0 of
M , define [[M0]]�(d) = ([[cn]]� ◦ . . .◦ [[c1]]�)(d), where c1, . . . , cn is one enumeration
ofM0 according to a fixed scheme. (In our analysis, this choice does not matter,
because the transfer functions of any two instructions in M commute.) Using
what we have assumed or defined, we define the main fixpoint algorithm below:

In(entry) = dinit, In+1(v) =
⊔

(v′,v)∈E(abs ◦ [[An(v)]]� ◦ [[L(v′, v)]]�)(In(v′)),
An(entry)= ∅, An+1(v)=An(v) ∪ enableAbs(In+1(v)).

Note that since P(M) is finite, there are only finitely many values for A, and
the fixpoint computation of A does not cause non-termination. In practice, we
found that the analysis time is dominated by the fixpoint computation for I.

To complete the story, we need to discharge our assumption of the three
functions in (10). For normal instructions c, we define [[c]]� and abs by applying
componentwise the sub-analyses’ transfer functions [[c]]�i : Di ∪ {�} → Di ∪ {�}
and abstraction routines absi : Di → Di. The details are given in Figure 6. The
figure also shows that [[transi�j(e)]]� is implemented by the reduction operator
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with the same name, [[moveRgn(α, β)]]� by the substitution of the source region
variable α by the target β, and [[move(e, α)]]� by the exposure of a points-to fact
e �→ {. . .}βk

from a symbolic heap followed by the renaming of its subscript βk

by α. The remaining operator is enableAbs, which we define by enableAbs(d) =
{moveRgn(α, β) | abs([[moveRgn(α, β)]]�(d)) �= d}. This operator returns all the
region movement operations that enable further abstraction of its input d.

7 Experiments

We have implemented an interprocedural version of the analysis (based on the
RHS algorithm [11]), and applied it to verify the memory safety of two types
of programs. The first are toy examples of modest size and with just enough
structure to warrant an overlaid analysis. The second are programs lifted from
the Linux 2.6.37 code base. The results of our experiments appear in Figure 7.

The figure also includes the numbers obtained by applying our previous anal-
ysis built in 2008 to the same examples. This previous analysis couples the sub-
analyses more tightly (using the abstract domain P(SH1× . . .× SHn)∪ {�}), it
does not use ghost instructions, and it transfers information among sub-analyses
more frequently than our current analysis. The figure shows that the current
implementation performs better, and the performance gain becomes more sig-
nificant, when a program becomes bigger or more complicated. There are also a
number of programs that cannot be analysed at all by the old analysis.

The right-most column records the number of transi�j(e) inserted by the pre-
analysis of our current implementation. It shows that very little communication
is happening. We consider this a primary factor of the efficiency of the analysis.

The benchmark set consists of the following programs, and can be found at
https://sites.google.com/site/overlaiddata.

– list-dio is an abstract version of the deadline IO scheduler. It uses two
doubly-linked lists instead of list and tree. The sim version skips the request-
move routine, which cannot be verified by the old analysis.

– many-keys has an overlaid data structure of doubly-linked lists that are
ordered by different keys. The number of lists is annotated in the filename.

– many-lists uses multiple doubly-linked lists implemented by different fields.
These lists do not share nodes, so they do not form an overlaid data struc-
ture. However, our analysis can analyse each list separately, using a distinct
conjunct for each list. The number of lists is annotated.

– cache has one doubly-linked list and pointers to cells in the list that were
recently accessed. We can separately analyse the list and pointers by using
our technique. The number of cache pointers is annotated.

– block/deadline-iosched.c has an overlaid data structure of a doubly-
linked list and a red-black tree to maintain a list of requests. The original
source was modified as follows: irrelevant fields and procedures such as ones
for locks, and language constructors such as arrays that our analyser does not
support, were removed, and assumptions were inserted to tree operations to
compensate for our inaccurate tree abstraction. The sim/sim2 version skips
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filename # of analysis time (sec) speedup # of trans
lines (A) old (B) new (A/B) inserted

list-dio-sim.c 110 3.12 1.56 2.0 2
list-dio.c 134 – 3.95 – 4
many-keys-3.c 92 1.65 0.72 2.3 2
many-keys-4.c 98 8.16 1.22 6.7 3
many-lists-3.c 106 1.90 1.37 1.4 3
many-lists-4.c 124 12.53 3.05 4.1 4
cache-1.c 88 1.29 0.97 1.3 9
cache-2.c 93 14.70 1.81 7.8 11

linux/block/deadline-iosched-sim.c 1,941 237.67 32.76 7.3 4
linux/block/deadline-iosched-sim2.c 1,968 5,399.73 100.06 54.0 4
linux/block/deadline-iosched.c 2,131 – 364.45 – 5
linux/fs/afs/server-sim.c 712 705.67 22.61 31.2 9
linux/fs/afs/server.c 1,084 – 1,932.65 – 13

Fig. 7. Experimental result. Used Intel Core i7 2.66GHz with 8GB memory.

procedures that the old analyser cannot verify due to its imprecision, as well
as procedures of high analysis cost.

– fs/afs/server.c also has a similar data structure to maintain servers but
it has one more component of doubly-linked list for removing servers: Servers
to be removed are additionally connected to the graveyard list. So, in this
case, the overlaid data structure consists of three components.

8 Conclusion

In this paper, we have presented a static analysis for overlaid data structures,
capable of verifying memory safety of real world programs. Our insight is to
decompose an overlaid data structure into its components, and to track compo-
nents using sub-analyses as independently as possible, while allowing communi-
cation among them using ghost instructions. Besides the progress in verifying
more challenging data structures, we hope that our work has provided further ev-
idence that with proper understanding of more programming patterns in systems
code, together with specialized abstractions, one can design effective automatic
verifiers for ever-larger classes of real-world systems programs.
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Abstract. We present the first symbolic execution and automatic test
generation tool for C++ programs. First we describe our effort in extend-
ing an existing symbolic execution tool for C programs to handle C++
programs. We then show how we made this tool generic, efficient and
usable to handle real-life industrial applications. Novel features include
extended symbolic virtual machine, library optimization for C and C++,
object-level execution and reasoning, interfacing with specific type of ef-
ficient solvers, and semi-automatic unit and component testing. This tool
is being used to assist the validation and testing of industrial software
as well as publicly available programs written using the C++ language.

1 Introduction

With the ubiquitous presence of software programs permeating almost all as-
pects of daily life, providing robust and reliable software has become a necessity.
Traditionally, software quality has been assured through manual testing which is
tedious, difficult, and often gives poor coverage of the source code especially when
availing of random testing approaches. This has led to much recent work in the
formal validation arena [4,1]. One such formal technique is symbolic execution
which can be used to automatically generate test inputs with high structural
coverage for the program under test. The widely used symbolic execution en-
gines currently are able to handle C or Java programs only. So far there has
been no such formal tool designed specifically for the automatic validation and
test generation for C++ programs. Currently C++ is the language of choice for
most low-level scientific and performance critical applications in academia and
industry. This paper describes our efforts in creating the first industrially usable
symbolic execution engine for C++ programs.

Symbolic execution [4,1] performs the execution of a program on symbolic
(open) inputs. It characterizes each program path it explores with a path con-
dition which denotes a series of branching decisions. The solutions to path con-
ditions are the test inputs that will assure that the program under test runs
along a particular concrete path during concrete execution. Typically a decision
procedure such as a SMT (Satisfiability Modulo Theory) solver is used to find
the solutions and prune out false paths. Exhaustive testing is achieved by explor-
ing all true paths. Some sanity properties can also be checked such as memory
out-of-bound access, divide-by-zero, and certain types of user-defined assertions.
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Our tool is built on top of a symbolic execution engine KLEE [4] which is able
to handle sequential C programs (mainly Unix utility programs). Our extended
tool addresses the following questions and issues:

– How to extend a symbolic executor to handle C++ features?
– What optimizations are necessary to make the tool efficient and scalable?
– Can the tool work well on industrial applications and other important pro-

grams and beat manual testing with minimal manual effort?

2 Extended Executor for C++ Programs

As shown in Fig. 1, the tool’s flow is similar to KLEE’s. A C++ program is
compiled into LLVM [7] bytecode, which is interpreted by KLOVER for symbolic
execution. To handle the C++ library constructs we use a special C++ library
which is described later. After the execution, statistics information and sanity
check results are given. The other set of outputs are concrete test cases, which
can be replayed in the real setting (e.g. compiled by GCC and run in a machine).
After the replay, source program coverage is produced by gcov.

Fig. 1. Overall architecture of KLOVER

Virtual Machine State. A symbolic state in KLOVER models a machine
execution state. A register stores a concrete value or a symbolic expression. A
memory is organized as components, each of which has a concrete address and
an array of bytes recording the value. The fields of a C++ object are allocated
consecutive memory blocks. In the following example, the two fields of object 1
(with runtime type t1) satisfies m1,2 = m1,1 + size(fd1,1). The memory blocks
of different objects do not have to be consecutive, which can support automatic
dynamic resizing. If a pointer can refer to multiple components, then a new state
is generated for each possible reference (determined by SMT solving).

object1 : t1 . . . object2 : t2 . . .

(m1,1,fd1,1) (m1,2, fd1,2) . . . (m2,1, fd2,1) . . . . . .

C++ Language Features. Most C++ features such as templates and class
inheritance are handled by the LLVM-GCC compiler. However, since C++ is far
more complicated than C, there may be extra LLVM instructions (mainly in-
trinsic functions) and external functions which KLEE doesn’t handle. Presently
KLOVER can handle most of the widely occurring C++ specific LLVM instruc-
tions and external functions, and we are extending the tool further to handle
the complete set. The new instructions and issues include:
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– Advanced Instructions. For example, the llvm.stacksave intrinsic is used to
remember the current state of the function stack, which is to be restored
by llvm.stackrestore. The implementation of these instructions follows their
semantics and is quite straightforward.

– Exceptions. An important feature of C++ is to provide built-in support for
exceptions. The several llvm.eh. instructions along with a few external func-
tions need to be interpreted in the right exception semantics, e.g. propagate
the exceptions up the stack. We introduce a specific data structure to rep-
resent exceptions, build the exception table, control the bytecode execution
flow of exceptions, and interpret exception instructions.

– C++ RTTI. C++’s Run-time Type Information system keeps information
about an objects type at runtime. Besides enabling RTTI in LLVM-GCC,
we keep track of the the runtime types of objects of polymorphic classes so
as to handle operations such as dynamic cast. Class hierarchy information is
inferred from the type definitions in LLVM and the control flow.

– Memory Model . C++’s memory model involves many atomic operations and
synchronization intrinsics. The compilation to specific platforms may also
involve them. For example, llvm.memory.barrier guarantees ordering between
specific pairs of memory access types, and lvm.atomic .load.add performs the
add and store atomically. We do not address concurrency in this paper; while
in [5] we describe how to extend KLOVER for GPU programs and compare
symbolic execution with other symbolic methods [6] for concurrent programs.

C++ Library. The C++ standard includes a library for all commonly used
data structures and algorithms. We choose and optimize the uClibc++ library
[8] so as to improve the performance of symbolic execution. We compile this
library into LLVM bytecode and load it into the engine dynamically. We maintain
two versions of the C++ library: one for symbolic execution, the other one for
handling concrete values and the Just-In-Time compilation of external functions.

3 Optimizations

To scale up the tool we adopt a variety of optimizations which are essential to
the tool’s performance and usability. These optimization are in addition to the
ones done in KLEE which KLOVER inherits. The new optimizations can have a
huge impact on the quality of results and symbolic execution time, as shown by
the following example. We compare the cases without any optimization, with our
optimized library, and with our string solver, on the main benchmark program
used in [2]. The first two cases could not achieve full branch coverage since the
input string is of specific size. In this section we elaborate these optimizations.

No Optimization +Optimized Lib. +FLA String Solver

#tests bran. cov. time #tests bran. cov time #tests bran. cov. time

>10,000 67% >2 hr. 6 67% 6 sec. 9 100% 3 sec.

The standard C++ library is designed for concrete execution. Efficient sym-
bolic execution requires rewriting all the C and C++ class implementations to:
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(1) avoid unnecessary conditional statements to reduce the number of generated
paths; (2) convert expensive expressions into cheaper ones; and (3) build fast
decision procedures into the library implementation. KLOVER has optimized a
number of commonly-used classes and algorithms with a similar purpose as [3].
Library Optimization (Operational Approach). The first optimization
technique modifies the body of a function, which will be executed directly. For
example, the compare method of the String class is as follows. It will produce only
one path regardless of the values of the two input strings (of concrete lengths).

_UCXXEXPORT int compare(const basic_string& str) const {

size_type rlen = vector<Ch, A>::elements;

if (rlen > str.elements) rlen = str.elements;

int v = 0; // 1, 0 and -1 stand for gt, eq and lt respectively

for (size_type i = 0; i < rlen; i++)

v += (~(!v)+1) & ((operator[](i)>str[i]) - (operator[](i)<str[i]));

v += (~(!v)+1) & ((vector<Ch, A>::elements > str.elements) -

(vector<Ch, A>::elements < str.elements));

return v;

}

Library Optimization (Relational Approach). We can build a solver in
the source code without “executing” the implementation. For example, the
find last of method is as follows, where Vr denotes the return value. Function as-
sume informs the executor to record the constraint. This implementation relates
the inputs and outputs using logical formulas. It also produces only one path.
Building solvers through source code definitions is a core feature of KLOVER.

find_last_of (const char c) {

size_type rlen = vector<Ch, A>::elements;

assume(Vr >= -1 && Vr < rlen);

for (size_type i = 0; i != rlen ; i++)

assume(i <= Vr || operator[](i) != c);

assume(Vr == -1 || operator[](Vr) == c);

}

Object-level Execution and Reasoning. One of the main features of C++
is class and object. KLOVER’s intermediate language (IL) is extended to model
them directly. During the execution, a method call is not immediately expanded
to its implementation when it is first encountered. Instead, a “lazy evaluation”
approach is adopted to delay the evaluation until needed. Consider the follow-
ing code. When the condition is encountered, KLOVER builds the expression
str.substr(str.find last of(’/’) + 1) = “EasyChair”, which can be simplified to str =

s1 + “/EasyChair” for a free string variable s1. KLOVER builds in such simplifi-
cations and decision procedures (see next section) for common classes. We may
simply use the library definitions of the methods to interpret this expression —
now the interpretation is delayed to the condition point. We believe that object
level abstractions is crucial for a Object-oriented language like C++.
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int k = str.find\_last_of(’/’);

string rest = str.substr(k + 1);

if (rest == "EasyChair") ...

Specific Solvers. To further improve the performance of object-level reasoning,
we implement off-the-shelf solvers for some common data structures. For instance
we’ve implemented a string solver based on SMT solving which is similar to that
in [2]. Consider the above example. Our solver creates the following expression
constraining the values and lengths of the string variables. The constraints on
the lengths are first extracted and solved to obtain a (minimal) instance for each
length. Then the length of each string is set and the string constraint is solved.
With such built-in solvers KLOVER not only improves the performance, but also
allows more feasible inputs (e.g. having variable lengths).

∧ (k = −1 ∧ ∀i ∈ [0, len(str)) : str[i] �= ’/’ ∨
k ∈ [0, len(str)) ∧ str[k] = ’/’ ∧ ∀i ∈ [k + 1, len(str)) : str[i] �= ’/’)

∧ rest = str[k + 1, len(str)) ∧ len(rest) = len(str)− k − 1
∧ rest = “EasyChair” ∧ len(rest) = 9

4 Experimental Results

KLOVER requires a driver to invoke a C++ program with symbolic inputs. A
user is free to mark any input symbolic, but should ensure that the relationship
between the inputs is appropriate. Since C++ program encapsulate the members
of a class, the driver calls a class’s public methods to make an object “symbolic”.

KLOVER supports the declaration of an array to have a symbolic length.
When an access to such an array is out of bounds; we increase dynamically
the array’s size to accommodate this access (up to some ceiling). KLOVER also
supports the declaration of a possibly null pointer. Through such extensions,
KLOVER is able to reduce the manual testing burden significantly over KLEE.

We run KLOVER on some real-life applications developed in Fujitsu on a lap-
top with two 1.60GHz processors and 2GB memory. Table 4 compares KLOVER

with the manual method for unit testing. The size of these classes are about
5,500 lines of code in total. The (semi-automated) drivers for KLOVER are much
more succinct and apprehensive than the manually written ones. For each class,
KLOVER achieves much higher coverage by producing only a small number of
test cases (<20). KLOVER’s unit testing is able to beat manual testing in all
cases, both in line coverage and branch coverage. Similar results have been ob-
tained on other industrial instances, e.g. a real application with around 130,000
and 51,000 lines in the *.hh and *cc files respectively.

We also run KLOVER on some C++ applications which are publicly available
(e.g. at www.sourceforge.com). Table 4 shows the results for SHA-1 (a cryp-
tographic hash function), Balancing AVL tree, a Regular Expression package
(ported from java.util.regex), and a URI package for analyzing URLs. For these
widely-used algorithms, there exist no prior effort on checking and testing their
C++ versions using symbolic execution or other formal methods. Reg.Exp. and
URI contain intensive string operations. KLOVER reveals several bugs (infinite
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Table 1. Experimental results of unit testing an industrial application. We compare
manual unit testing with KLOVER in terms of the driver’s size and the coverage (of
format line coverage / branch coverage).

Class Driver LOC Coverage Driver LOC Coverage Exec.
(Manual) (Unit, Manual) (KLOVER) (Unit, KLOVER) Time

Class 1 547 50.6%/27.65% 73 96.4%/78.8% 2.4s
Class 2 726 96.21%/59.65% 45 100%/75.9% 0.3s
Class 3 537 93.51%/73.33% 58 97.4%/73.6% 0.5s
Class 4 337 94.16%/86.11% 52 100%/87.2% 0.5s
Class 5 286 87.68%/70.27% 95 100%/77% 2.6s

Table 2. Experimental results on the C++ versions of some publicly available pro-
grams. KLOVER checks their sanity and produces test cases.

Prog. Source Sanity Coverage #tests Coverage #tests Exec.
LOC (Manual) (Manual) (KLOVER) (KLOVER) Time

SHA-1 450 Y — — 97.50%/91.67% 22 30s
AVLTree 700 Y 81.17%/42.04% 150 92.86%/41.53% 13 10m
Reg.Exp. 3,100 N* 58.88%/59.12% 12 87.87%/89.19% 999(5*) 37s
URI 2,200 Y 86.5%/62.0% 180 89.8%/64.4% 134 2.5m

loops) in “Reg.Exp.” which are missed by the manual testing. The replaying in
real settings shows that these bugs are real in 5 test cases.

It is possible that some run-time exception cases (e.g. running out of memory)
are not covered by KLOVER such that the coverage may not reach 100%. The
coverage with KLOVER can be improved further with refined drivers. We inten-
tionally keep the drivers simple such that they can be written quickly by the
users knowing little about the applications. Yet such drivers (with appropriate
constraints on the symbolic inputs) are able to achieve high coverage.

Concluding Remarks. Our tool is the first symbolic executor and test gener-
ation designed and tuned particularly for industrial C++ programs. We plan to
further extend the tool and scale it up for larger C++ programs.
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Abstract. In this paper we introduce a new formal model, called finite
state machines with time (FSMT), to represent real-time systems. We
present a model checking algorithm for FSMTs, which works on fully
symbolic state sets containing both the clock values and the state vari-
ables. In order to verify timed automata (TAs) with our model checking
algorithm, we present two different methods to convert TAs to FSMTs. In
addition to pure interleaving semantics we can convert TAs to FSMTs
having a parallelized interleaving behavior which allows parallelism of
transitions causing no conflicts. This can dramatically reduce the num-
ber of steps during verification. Our experimental results show that our
prototype implementation outperforms the state-of-the-art model check-
ers UPPAAL and RED.

1 Introduction

The application area of real-time systems grows with an enormous speed and
along with that grows their complexity as well as the damage caused by their
failure. For these reasons verification of such systems becomes more and more
important. Timed automata (TAs) [1,2] turned out to be an adequate formalism
for modeling and verifying real-time systems. Timed automata generalize finite
automata by adding real-valued clock variables. All clock variables evolve over
time with the same rate and they can be reset during discrete steps which in
turn happen in zero-time. Verifying safety properties of TAs can be reduced
to the computation of all states reachable from the initial states and checking
whether an unsafe state can be reached (forward model checking). Equivalently
the problem can be reduced to the computation of all states from which unsafe
states can be reached and checking whether some initial states are included in
this set of states (backward model checking).

Model checking approaches for TAs based on reachability analysis can be classi-
fied into fully symbolic and semi-symbolic approaches. Semi-symbolic approaches
represent discrete locations of TAs explicitly whereas sets of clock valuations are
represented symbolically e.g. by unions of clock zones. Clock zones are convex re-
gions which result from an intersection of clock constraints of the form xi−xj ∼ d
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where d ∈ Q, ∼ ∈ {<,≤,=,≥, >} and xi, xj are clock variables. UPPAAL [13,3],
the probably most prominent semi-symbolic approach, represents clock zones by
so-called difference bound matrices (DBMs) and provides efficient methods for
manipulating DBMs. These techniques are well-suited when the sizes of the dis-
crete state space and the numbers of different clock regions per location remain
moderate. CDDs [12] make the attempt to represent unions of clock zones more
compactly. CDDs are BDD-like data structures where nodes are labeled by clock
differences xi−xj and the outgoing edges of nodes are labeled by (disjoint) inter-
vals of rational numbers. CRDs [23] are a variant of CDDs where outgoing edges
of nodes are labeled by upper bounds for clock differences instead of disjoint inter-
vals. CRDs were combined with BDDs (leading to CRD+BDDs) to provide a fully
symbolic representation of the state space in the tool RED [23].
Another fully symbolic representation has been given by difference decision di-
agrams (DDDs) [18] which are basically BDD representations where the decision
variables are boolean abstractions of clock constraints xi − xj ∼ d. Computing
all states reachable by evolution of time amounts to the existential quantification
of a real-valued variable. Both for CRD+BDDs and DDDs this quantification is
performed based on the classical Fourier–Motzkin technique which requires enu-
merating all paths in the diagram. Restricted to a path representing a conjunction
of clock constraints, the Fourier–Motzkin technique is strongly related to quan-
tifier elimination in DBMs by the shortest-path closure [14]. As in DDDs, Seshia
and Bryant [22] consider BDD representations using boolean abstractions of clock
constraints, however they reduce real-valued quantifier elimination to adding so–
called transitivity constraints followed by a series of quantifications for boolean
variables. Recently, Clock Matrix Diagrams (CMDs) were introduced [10]. CMDs
basically correspond to CRD+BDDs where sequences of edges representing con-
vex constraints are collapsed into single edges labeled by DBMs and boolean vari-
ables are restricted to the lowest levels in the variable orders.

In this paper we first introduce a new formal model for real-time systems, called
finite state machines with time (FSMT), which is especially suited for symbolic
verification algorithms. We present a fully symbolic model checking algorithm
for FSMTs. In order to verify TAs (with additional integer variables in the state
space) we present a method to convert a TA into an FSMT. In addition to normal
interleaving semantics (i.e. asynchronous semantics) of TAs we give a symbolic
representation of an FSMT simulating a ‘parallelized interleaving’ behavior, which
allows parallelism of transitions causing no conflicts. This parallelized interleaving
behavior can dramatically reduce the number of steps during verification.

In contrast to partial-order reduction (e.g. [16,19]) which reduces the number
of states to be considered during model checking, parallelized interleaving does
not avoid certain computation paths or states, but combines their traversal into
one symbolic step and thus accelerates state space traversal. Consider a TA T
composed from n components TA1, . . . , TAn and suppose – for simplicity – that
the local discrete transitions of the components are independent, i.e., they are
neither related through read or write conflicts nor they synchronize over actions.
According to the semantics of the concurrent asynchronous system T a discrete
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step of T consists in a discrete step of some component TAi. For the concurrent
execution of one discrete step per component, there are n! different sequences
and 2n different states (one state for each subset of executed components). If
the specification does not distinguish between these sequences, partial-order re-
duction can reduce n! sequences to one representative sequence consisting of
n transitions. Symbolic model checkers without partial-order reduction already
compute a symbolic representation of all 2n states visited on n! sequences by n
symbolic steps. Symbolic model checking with parallelized interleaving assumes
that each component TAi may or may not take a transition, considers all pos-
sible combinations in parallel, and computes a symbolic representation for all
these 2n states by one single step. Of course, for the general case we have to
analyze which components may run in parallel without changing the semantics.

Path reduction [24] provides an alternative possibility for mitigating negative
effects of pure interleaving. Path reduction analyzes components and replaces
certain computation paths by single transitions. In that way, computation paths
of components are compressed, leading to a reduced number of possible inter-
leavings of different components. Path reduction is orthogonal to our technique,
since it preprocesses components, whereas parallelized interleaving improves the
parallel execution of several components by combining computation paths re-
sulting from different interleavings into one symbolic step.

Our model checking algorithm uses LinAIGs (‘And-Inverter-Graphs with lin-
ear constraints’) [7,21,6] to describe the state space. LinAIGs provide a fully
symbolic representation both for the continuous part (i.e. the clock values) and
the discrete part (i.e. the state variables). For state space compaction LinAIGs
profit to a large extent from the enormous progress made in the area of SAT and
SMT (SAT modulo Theories) solving [4,9]. For the quantification of real-valued
variables, LinAIGs make use of the Weispfenning–Loos test point method [15]
which is especially suitable for LinAIG representations.

First experimental results show that our prototype implementation outper-
forms UPPAAL and RED in both configurations, for pure interleaving behav-
ior and for parallelized interleaving behavior. The results also indicate that for
benchmarks allowing parallelized interleaving behavior this approach has a stun-
ning performance due to reduction of the number of steps during verification.

The paper is organized as follows. In Sect. 2 we give a brief review of the
well-known timed automata (TA), then we introduce finite state machines with
time (FSMT) in Sect. 3. In Sect. 4 we provide an insight into the functioning
of our model checking algorithm. In Sect. 5 we introduce a method to convert
a TA into an FSMT using standard interleaving and parallelized interleaving.
Sect. 6 is dedicated to the results where we evaluate our approach with both
configurations. We conclude the paper in Sect. 7.

2 Preliminaries – Timed Automata

Real-time systems are often represented as timed automata (TAs) [1,2].
TAs use clock variables X := {x1, . . . , xn}. The set of clock constraints C(X)

contains atomic constraints of the form (xi ∼ d) and (xi − xj ∼ d) with d ∈ Q
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and ∼ ∈ {<,≤,=,≥, >}. Let Cc(X) be the set of conjunctions over clock con-
straints. c ∈ Cc(X) describes a subset of R

n, namely the set of all valuations of
variables in X which evaluate c to true.

xi ≤ 5

xi ≤ 5

int := i
int = i
xi := 0
int := 0

s
(i)
0

s
(i)
1

s
(i)
2

Fig. 1. Example TAi

We consider TAs with integer variables. Let
Int := {int1, . . . , intr} be a set of bounded inte-
ger variables. lb : Int→ Z and ub : Int→ Z assign
lower and upper bounds to inti ∈ Int (lb (inti) ≤
ub (inti)). Let Assign (Int) be the set of assign-
ments to integer variables. The right-hand side of
an assignment to an integer variable inti may be an
integer arithmetic expression over integer variables
and integer constants.

Let Cond(Int) be a set of constraints of the form (inti ∼ d) and (inti ∼ intj)
with d ∈ Z, ∼ ∈ {<,≤,=,≥, >} and inti, intj ∈ Int. Let Condc(X, Int) be the
set of conjunctions over clock constraints and constraints from Cond(Int).

Example 1. The timed automaton TAi shown in Fig. 1 has only one clock vari-
able,X = {xi}. It has three ‘locations’ s(i)0 , s(i)1 , and s(i)2 . Locations are connected
by transitions which may be labeled. The transition (s(i)2 → s

(i)
0 ), e.g., is labeled

with the guard int = i, with an assignment int := 0, and with the clock reset
xi := 0. The location s(i)1 is labeled with a clock constraint xi ≤ 5 which is a
so-called location invariant.

In general, transitions in TAs are labeled with guards, actions, assignments to
integers and resets of clocks. Guards are restricted to conjunctions of clock con-
straints and constraints on integers. Actions from Act := {a1, . . . , ak} are used
for synchronization between different TAs. For our purposes they do not have a
special meaning when considering one timed automaton in isolation. Transitions
in different automata labeled with the same actions are taken simultaneously. If
a transition in a TA is not labeled by an action, then this transition can only
be taken, if all other TAs stay in their current location. Resets are assignments
to clock variables of the form xi := 0. Invariants in TAs are conjunctions of
clock constraints assigned to locations. A TA may stay in a location as long as
the location invariant is not violated. Timed automata are formally defined as
follows:

Definition 1 (Timed Automaton). A timed automaton (TA) is a tuple 〈L,
l0, X,Act, Int, lb, ub, E, Inv〉 where L is a finite set of locations, l0 ∈ L is an
initial location, X = {x1, . . . , xn} is a finite set of real-valued clock variables, Act
is a finite set of actions, Int = {int1, . . . , intr} is a finite set of integer variables.
lb : Int→ Z and ub : Int→ Z assign lower and upper bounds to each inti ∈ Int
with lb(inti) ≤ ub(inti) for 1 ≤ i ≤ r, E ⊆ L × Condc(X, Int) × (Act ∪ {ε})×
2X × 2Assign(Int) × L is a set of transitions and the function Inv : L → Cc(X)
assigns a conjunction of clock constraints as invariant to each location. If for
e = (l, ge, act, re, assigne, l

′) ∈ E it holds that act ∈ Act, then we call e a
transition with a synchronizing action; if act = ε, then we call e a transition
without synchronizing action.
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Definition 2 (Semantics of a Timed Automaton). Let TA = 〈L, l0, X,
Act, Int, lb, ub, E, Inv〉 be a timed automaton. A state of TA is a combination
of a location and a valuation of the clock variables and integer variables.

– There is a continuous transition from state s = (l, xv
1, . . . , x

v
n, int

v
1, . . . , int

v
r)

to state s′ = (l, xw
1 , . . . , x

w
n , int

v
1, . . . , int

v
r) (s →c s′) iff (xv

1 , . . . , x
v
n) and

(xw
1 , . . . , x

w
n ) fulfill Inv(l), lb(inti) ≤ intvi ≤ ub(inti) ∀1 ≤ i ≤ r, and there

is t ∈ R
+
0 with ∀1 ≤ j ≤ n : xw

j = xv
j + t.

– There is a discrete transition from state s = (l, xv
1, . . . , x

v
n, int

v
1, . . . , int

v
r) to

state s′ = (l′, xw
1 , . . . , x

w
n , int

w
1 , . . . , int

w
r ) (s →d s′) iff (xv

1 , . . . , x
v
n) fulfills

Inv(l), (xw
1 , . . . , x

w
n ) fulfills Inv(l′), lb(inti) ≤ intvi , intwi ≤ ub(inti), ∀1 ≤

i ≤ r, and ∃e = (l, ge, act, re, assigne, l
′) ∈ E with (xv

1 , . . . , x
v
n, int

v
1, . . . , int

v
r)

fulfills the guard ge, xw
i = 0 for xi ∈ re, xw

i = xv
i for xi /∈ re, the val-

ues intw1 , . . . , int
w
r result from intv1, . . . , int

v
r by applying the assignments in

assigne.
– →=→d ∪ →c is the transition relation of a TA. A trajectory of a TA is a fi-

nite or infinite sequence of states (sj)j≥0 with s0 = (l0, 0, . . . , 0, lb(int1), . . . ,
lb(intr)) and sj−1 → sj for each j > 0. A state is reachable, if there is a
trajectory ending in that state.

A timed system is a system of p timed automata {TA1, . . . , TAp}. A timed sys-
tem has an interleaving semantics, i.e., transitions in different timed automata
may not be taken simultaneously unless they synchronize over actions. For sim-
plicity, we assume that only two timed automata are able to synchronize over a
binary synchronization channel. As usual, the composition of p timed automata
is again a timed automaton.

3 Finite State Machines with Time

δ1...
δl

resetx1

resetxn

I

Y

X

...

..

.

..

.

Fig. 2. FSMT

Now we present a new formal model to represent real-time sys-
tems, the finite state machines with time, which are especially
suited for being represented symbolically. A finite state ma-
chine with time, to which we will refer as FSMT in this paper,
is an extension of finite state machines by real-valued clock
variables. Later on, we will present a fully symbolic model
checking algorithm for FSMTs and then a translation from
TAs into FSMTs.

Let X := {x1, . . . , xn} be the set of real-valued clock vari-
ables, Y := {y1, . . . , yl} a set of (binary) state variables,
I := {i1, . . . , ih} a set of (binary) input variables. Let Cb(X)
be the set of arbitrary boolean combinations of clock con-
straints and Cb(X,Y ) be the set of arbitrary boolean com-
binations of clock constraints and state variables (similarly
for Cb(X,Y, I)). As usual, c ∈ Cb(X,Y ) describes a subset of
R

n × {0, 1}l, namely the set of all valuations of variables in X and Y which
evaluate c to true. An FSMT is defined as follows (see Fig. 2 for an illustration):
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Definition 3 (FSMT). A finite state machine with time (FSMT) is a tuple
〈X,Y, I, init, (δ1, . . . , δl), (resetx1 , . . . , resetxn), Inv〉 where X := {x1, . . . , xn}
is a set of clock variables, Y := {y1, . . . , yl} is a set of state variables, I :=
{i1, . . . , ih} is a set of input variables, init : (R+

0 )n × {0, 1}l → {0, 1} is a pred-
icate describing the set of initial states, δi : (R+

0 )n × {0, 1}l × {0, 1}h → {0, 1}
(1 ≤ i ≤ l) are transition functions, resetxj : (R+

0 )n × {0, 1}l × {0, 1}h → {0, 1}
(1 ≤ j ≤ n) are reset functions, Inv : (R+

0 )n × {0, 1}l → {0, 1} is a predicate
describing a state invariant, and init ∧ ¬Inv = 0. The functions δi and resetxj

can be represented by boolean combinations from Cb(X,Y, I), init and Inv can
be represented by boolean combinations from Cb(X,Y ).

A state of an FSMT is a valuation s = (xv
1 , . . . , x

v
n, y

v
1 , . . . , y

v
l ) ∈ (R+

0 )n×{0, 1}l of
the clock variables and the state variables. A valuation (yv

1 , . . . , y
v
l ) is also called

a location of the FSMT. Trajectories of an FSMT always start in states fulfilling
init and all states on these trajectories have to fulfill the state invariant Inv. An
FSMT may perform discrete steps which are defined by transition functions δi
based on the valuations of clocks, state variables, and inputs. When performing
a discrete step, a clock xi is reset to 0 iff resetxi evaluates to 1. Moreover an
FSMT may perform continuous steps (or time steps) where it stays in the same
location, but lets time pass. This means that all clocks may be increased by the
same constant as long as the resulting state stays in the set described by Inv.
More formally, the semantics of FMSTs is defined as follows:

Definition 4 (Semantics of an FSMT). Let F = 〈X,Y, I, init, (δ1, . . . , δl),
(resetx1 , . . . , resetxn), Inv〉 be an FSMT.

– There is a continuous transition from state s = (xv
1 , . . . , x

v
n, y

v
1 , . . . , y

v
l ) to

state s′ = (xw
1 , . . . , x

w
n , y

v
1 , . . . , y

v
l ) (s →c s′) iff Inv(s) = Inv(s′) = 1 and

there is t ∈ R
+
0 with ∀1 ≤ j ≤ n : xw

j = xn
j + t.1

– There is a discrete transition from state s = (xv
1 , . . . , x

v
n, y

v
1 , . . . , y

v
l ) to state

s′ = (xw
1 , . . . , x

w
n , y

w
1 , . . . , y

w
l ) (s →d s′) iff Inv(s) = Inv(s′) = 1 and there

is (iv1, . . . , ivh) ∈ {0, 1}h with
∀1 ≤ i ≤ l : yw

i = δi(xv
1 , . . . , x

v
n, y

v
1 , . . . , y

v
l , i

v
1, . . . , i

v
h),

∀1 ≤ j ≤ n : xw
j =

{
xv

j , if resetxj(xv
1 , . . . , x

v
n, y

v
1 , . . . , y

v
l , i

v
1, . . . , i

v
h) = 0

0, if resetxj(xv
1 , . . . , x

v
n, y

v
1 , . . . , y

v
l , i

v
1, . . . , i

v
h) = 1.

– →=→d ∪ →c is the transition relation of F . A trajectory of F is a finite or
infinite sequence of states (sj)j≥0 with init(s0) = 1 and sj−1 → sj for each
j > 0. A state is reachable, if there is a trajectory ending in that state.

We consider systems of FSMTs {F1, . . . , Fp}, where the components are running
in parallel. Communication in such a system is realized just as for communicating
1 Usually we require that Inv fulfills the following property: If we fix variables y1, . . . , yl

of Inv to arbitrary constant values 0 or 1, then the resulting predicate shall describe
a convex set. If this would not be the case, then there could be a continuous transition
from s to s′ with time step of length t, but no continuous transition from s to s′′

with time step of length t′ < t, since Inv(s′′) = 0.
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FSMs. FSMTs communicate by reading each other’s state variables, clocks, and
shared input variables. Thus, composition of FSMTs is done just by replacing
input variables of the components by state variables of other components or by
inputs of the overall system. The composition of p FSMTs F1, . . . , Fp is again
an FSMT:

Definition 5. Let F1, . . . , Fp be FSMTs with Fi = 〈X,Y (i), I(i), init(i), δ(i),

(reset(i)x1 , . . . , reset
(i)
xn), Inv(i)〉, Y (i) = {y(i)1 , . . . , y

(i)
li
}, I(i) = {i(i)1 , . . . , i

(i)
hi
}. Let

map :
⋃p

i=1 I
(i) → (I ∪ ⋃p

i=1 Y
(i)) be a mapping for the inputs of components

F1, . . . , Fp and let I = {i1, . . . , ih} be the set of (global) inputs. Then the composi-
tion of F1, . . . , Fp wrt.map is an FSMT F with F = 〈X,⋃p

i=1 Y
(i), I,

∧p
i=1 init

(i),

(δ̃(1), . . . , δ̃(p)), (∨p
i=1reset

(i)
x1 , . . . ,∨p

i=1reset
(i)
xn), ∧p

i=1Inv
(i)〉 and δ̃(i)(x1, . . . , xn,

y
(i)
1 , . . . , y

(i)
li
, i1, . . . , ih) = δ(i)(x1, . . . , xn, y

(i)
1 , . . . , y

(i)
li
,map(i(i)1 ), . . . ,map(i(i)hi

)).

4 Model Checking Algorithm

Algorithm 1. Model checking algorithm
Φ0 := ¬safe; Φcollect := 0; i := 0
while (Φi ∧ ¬Φcollect �= 0) do

if (Φi ∧ init �= 0) then return false

Φcollect := Φcollect ∨ Φi

i := i + 1
Φi := Prec(Φi−1)
if (Φi ∧ init �= 0) then return false

Φi := Pred(Φi)

return true

Algorithm: Our model checking al-
gorithm is a backward model check-
ing algorithm working on an FSMT
F = 〈X,Y, I, init, (δ1, . . . , δl),
(resetx1 , . . . , resetxn), Inv〉 as de-
fined in Def. 3. It starts with the
negation of a safety predicate safe
and – step by step – computes sets
of states from which ¬safe can
be reached. The main loop con-
sists of a continuous step given by
Φi := Prec(Φi−1) and a discrete
step given by Φi := Pred(Φi). The
implementation of Prec and Pred
will be shown below. After each of these steps we test whether one of the ini-
tial states was reached. The main loop is left when an initial state was reached
(which means that the safety property is violated) or when a fixpoint is reached
(which means that the safety property holds).

Continuous step: Let Φ (x1, . . . , xn, y1, . . . , yl) be a state set of our model check-
ing algorithm. Then the state set reachable by a (backward) continuous step
(letting time pass) can be described by
Prec(Φ)(x1, . . . , xn, y1, . . . , yl) =
∃λ [(λ ≥ 0) ∧ Φ (x1 + λ, . . . , xn + λ, y1, . . . , yl)] ∧ Inv(x1, . . . , xn, y1, . . . , yl)

(1)

Discrete step: The resulting state set Pred(Φ) of a discrete step contains all
predecessors of Φ from which Φ can be reached by a discrete transition in the
FSMT. The first part of the discrete step is a substitution of the state variables
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and the clock constraints in the current state set representation Φ. (Note that
as an invariant of our model checking algorithm all computed state set represen-
tations are in Cb(X,Y ), i.e., they are boolean combinations of boolean variables
and clock constraints.) Each state variable yi is substituted with its transition
function δi:

yi ← δi (x1, . . . , xn, y1, . . . , yl, i1, . . . , ih) (2)

Consider a clock constraint of the form (xi − xj ∼ d) with xi, xj ∈ X , ∼∈
{<,≤,=,≥, >} and d ∈ Q. There are only four possible cases how a clock con-
straint can be changed due to resets executed during a transition: (1) xi and xj

are reset, (2) only xi is reset, (3) only xj is reset or (4) none of the clock variables
in the constraint is reset. We use the reset conditions resetxi to determine when
a clock variable xi is reset. The substitution for each clock constraint of the form
(xi − xj ∼ d) in the state set is then

(xi − xj ∼ d)← ( ( resetxi ∧ resetxj ∧ (0 ∼ d) )∨
( resetxi ∧ resetxj ∧ (xi ∼ d) )∨
( resetxi ∧ resetxj ∧ (−xj ∼ d) )∨
( resetxi ∧ resetxj ∧ (xi − xj ∼ d) ) ) (3)

(Of course, (0 ∼ d) reduces to constant 0 or 1.)
Φ′ (x1, . . . , xn, y1, . . . , yl, i1, . . . , ih) is obtained from Φ (x1, . . . , xn, y1, . . . , yl)

by substituting all state variables as shown in Eqn. (2) and all clock constraints
as shown in Eqn. (3) simultaneously.

The second part of the discrete step is a quantification of the boolean input
variables i1, . . . , ih in Φ′ followed by an intersection with the invariant Inv:

Pred(Φ)(x1, . . . , xn, y1, . . . , yl) =
[∃i1, . . . , ih Φ′ (x1, . . . , xn, y1, . . . , yl, i1, . . . , ih)] ∧ Inv (x1, . . . , xn, y1, . . . , yl)

(4)

Implementation based on LinAIGs: We have implemented a prototype of the
model checking algorithm using LinAIGs [7,21,6] for representing sets of states.
LinAIGs are able to provide a compact representation for arbitrary boolean com-
binations of linear constraints and boolean variables (which of course include the
formulas from Cb(X,Y )). LinAIGs consist of both a boolean and a continuous
part. The boolean part of LinAIGs is represented by functionally reduced And-
Inverter-Graphs (FRAIGs) [17,20], which basically are boolean circuits consist-
ing only of and gates and inverters. In order to represent the continuous part,
LinAIGs use a set of boolean constraint variables Q where each linear constraint
is encoded by some ql ∈ Q. For keeping the overall representation as compact as
possible, LinAIGs make heavy use of SMT solvers [4,9]. SMT solvers are used
to prove that nodes represent equivalent predicates and thus can be merged.
Moreover, they are used to detect and remove ‘redundant linear constraints’,
i.e., constraints which are present in the current LinAIG, but not really needed
for describing the represented predicate. This operation fights the increase in the
number of linear constraints / boolean constraint variables which was already



624 G. Morbé, F. Pigorsch, and C. Scholl

observed in [22]. Since in our application the linear constraints are restricted to
clock constraints, we do not need SMT solvers for full linear arithmetic, but only
for difference logic which can be solved much more efficiently.

Apart from boolean operations, LinAIGs support quantification of boolean
and real variables and thus fit exactly the technical needs of our implementa-
tion. For the quantification of real-valued variables, LinAIGs make use of the
Weispfenning–Loos test point method [15]. (This method can even be used for
linear constraints instead of more restricted clock constraints.) If there are k
clock constraints with variable xi, then the existential quantification ∃xiΦ for
LinAIG Φ can basically be reduced to O(k) substitutions of test points into Φ
with an overall worst-case increase of the representation by a factor of O(k).
The quantifier elimination method from [22] is specialized to difference logic and
adds up to O(n2) transitivity constraints to Φ (when n is the number of clock
variables), followed by O(k) quantifications of boolean variables. Quantification
of O(k) boolean variables may increase the representation including transitivity
constraints by a factor of O(2k) in the worst case. However, since such worst-
case considerations do not always reflect the situation in practical applications
we plan to implement the quantifier elimination method from [22] in the future
as well and compare the results.

5 From Timed Automata to FSMTs

In order to be able to verify systems of TAs using our framework presented so
far, we present how to convert a system of TAs into an FSMT.

Components of FSMTs run in parallel, whereas components of TAs run asyn-
chronously (one after the other) according to the interleaving semantics (unless
parallelism is enforced by synchronization actions). In our translation we con-
sider two different implementations of the interleaving semantics of TAs. At first,
in Sect. 5.2, we show how to transform a TA into an FSMT keeping its pure in-
terleaving behavior. Then, in Sect. 5.3, we present how to convert a TA into an
FSMT with a parallelized interleaving behavior, in which we allow – in addition
to single steps of components according to the interleaving semantics – paral-
lelism for transitions causing no conflicts when taken in parallel. The different
conflicts possible with parallelized interleaving behavior are also described in
Sect. 5.3. The motivation for the parallelized interleaving variant consists in an
accelerated state space traversal.

5.1 First Steps of Translation

We consider a system of p timed automata {TA1, . . . , TAp}. The locations of
timed automaton TAq = 〈L(q), l

(q)
0 , X,Act, Int, lb, ub, E

(q), Inv(q)〉 (1 ≤ q ≤ p)
are encoded with boolean variables y(q)1 , . . . , y

(q)
lq

(the location bits) for which
we use a logarithmic encoding with lq =

⌈
log

(
L(q)

)⌉
. The sets of location

bits of two different TAs are disjoint. The integer variable inti with (1 ≤ i ≤ r)
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occurring in the timed system is replaced by a binary encoding of boolean vari-
ables b(i)1 , . . . , b

(i)
fi

(the integer bits). As lb (inti) and ub (inti) are known for
all 1 ≤ i ≤ r, the number of integer bits fi needed to represent inti is also
known. The location bits and the integer bits together form the set of state bits
{y1, . . . , yl}.

The location invariants in a TA can be merged into one condition for the
complete automaton of the form Inv(q)(y(q)1 , . . . , y

(q)
lq
, x1, . . . , xn) (by a simple

conjunction of an implication for each location with the meaning ‘if TAq is in
location l, then the location invariant of l holds’).

A timed automaton TAq has a total of mq := |E(q)| transitions. Assume that
transition i in TAq is a transition with the discrete location (ε(i,s)1 , . . . , ε

(i,s)
lq

) as

source and the discrete location (ε(i,d)
1 , . . . , ε

(i,d)
lq

) as destination. Let the transi-

tion i be labeled with a guard g(q)i and a reset set r(q)i ∈ 2{x1,...,xn}. In order to
make things easier in Sect. 5.2 and Sect. 5.3, the guard g(q)i is extended by the
constraint that the source of its corresponding edge is location (ε(i,s)1 , . . . , ε

(i,s)
lq

),

i.e., it is changed to the new guard g′(q)i := g(q)i ∧
(

(y(q)1 )ε
(i,s)
1 ∧ . . . ∧ (y(q)lq

)ε
(i,s)
lq

)
.

Moreover, a transition i in TAq may be labeled with a synchronization action
aq,i. How to treat these actions is shown in Sect. 5.2 for interleaving behavior
and in Sect. 5.3 for parallelized interleaving behavior.

5.2 Modifications for Pure Interleaving Behavior

In order to use the model checking algorithm with pure interleaving behavior,
it has to be assured that at any time only one TA may take a transition while
the others remain in their current location unless of course two TAs synchronize.
(Remember that for simplicity we confine ourselves to binary synchronization.)
We have two types of transitions which have to be considered separately:

– For transitions of two different TAs without synchronization actions it has to
be ensured that they are not enabled at the same time. For this we use new
input variables {el−1, . . . , e0}, l = �log(p)� in a system of p timed automata
and we add different assignments for these new input variables to the guards
of such transitions: For each transition i in a timed automaton TAq which
is not labeled with a synchronization action we add these input variables to
the guard g′(q)i and get a new guard g′′(q)i = g

′(q)
i ∧ (

e
ql−1
l−1 ∧ . . . ∧ eq0

0

)
with

bin (q) = (ql−1, . . . , q0). (bin (q) is the binary representation of q.)
– For transitions labeled with a synchronization action we cannot use the previ-

ous modification as this would cause the synchronized transitions not be en-
abled at the same time. Let us assume that transition i in TAq and transition
j in TAk are labeled with the same action a{(q,i),(k,j)}. To assure synchro-
nization without the use of actions we extend the guards of the synchronized
transitions. The new guard of transition i in TAq and of transition j in TAk

is g′′(q)i = g
′′(k)
j := g

′(q)
i ∧ g′(k)

j ∧
((
e

ql−1
l−1 ∧ . . . ∧ eq0

0

) ∨ (
e

kl−1
l−1 ∧ . . . ∧ ek0

0

))
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(b) Read/write problem on in-
tegers

Fig. 3. Conflicts caused by parallel behavior

with bin (k) = (kl−1, . . . , k0) and bin (q) = (ql−1, . . . , q0). This allows us to
realize synchronization without using actions simply by the fact that one
component may read the state bits and inputs of the other component.

Since for an FSMT we have to define transition functions, we have to avoid the
case that there is a state where no transition into a successor state is enabled. For
this reason we introduce a self loop to every location in each timed automaton
TAq. The self loop of a location li gets as guard the conjunction of the negated
guards of all outgoing transitions, thus the self loop of a location is enabled
whenever no other outgoing transition is enabled.

Moreover, we have to exclude non-deterministic behavior (as allowed for TAs)
to arrive at deterministic transition functions for FSMTs. When more than one
transition is enabled in a TA at the same time it is chosen non-deterministically
which one is taken. To establish determinism for FSMTs we use new input
variables. For a set of t transitions with the same source we build a graph with
one node for each transition and we add an edge between two transitions e1 and
e2 iff e1 and e2 are non-disjoint. Then the question how many additional input
variables are needed in order to make guards non-disjoint is reduced to a coloring
problem for the resulting graph. If col is the number of colors needed for coloring,
then we need �log(col)� input variables to make the guards disjoint. These input
variables can be shared within a TA but must not be shared among different
TAs. A timed automaton TAq requires t(q) = �log(col(q)max)� input variables to
guarantee determinism, where col(q)max is the maximum number of colors occurring
for transitions with the same source.

After these transformations we can build the transition functions, reset con-
ditions and invariant to get an FSMT representation of the timed system with
pure interleaving behavior. This is shown in Sect. 5.4.

5.3 Modifications for Parallelized Interleaving Behavior

In the previous section we have seen which modifications have to be done to
convert a timed system into an FSMT with pure interleaving behavior. In this
section we will show the modifications to get an FSMT with parallelized inter-
leaving behavior. To this end several potential conflicts have to be considered.
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– In a parallelized interleaving run there may be conflicts caused by resets
of clock variables. Consider the timed system shown in Fig. 3(a) which
consists of components TA(1) and TA(2). When parallel transitions of two
components are allowed, the state (s(1)2 , s

(2)
2 , 0, 0) is reachable from state

(s(1)1 , s
(2)
1 , 6, 6) by taking the transitions from s

(1)
1 and s(2)1 in parallel. But

according to interleaving semantics this state is unreachable. If w.l.o.g. TA(1)

takes the transition leaving its initial state first, then it resets the clock y
and y will never be larger than 1. Thus the transition of TA(2) from s(2)1 will
never be enabled and TA(2) always stays in its initial location. (A similar
observation holds for the case that TA(2) is executed first.)

To avoid the problem of reaching more states than allowed by the seman-
tics of interleaving, we force the timed system to simulate a pure interleaving
behavior in such cases by adding read/write-enable numbers for clock vari-
ables. Assume q timed automata TAi1 , . . . , TAiq having transitions which
both read and reset a clock variable xi at the same time. Then we need
�log(q+ 2)� additional input variables to encode read/write-enable numbers
rwxi . With the following approach these read/write-enable numbers inhibit
that transitions reading xi and transitions resetting xi are enabled at the
same time: Each guard of a transition in TAik

(1 ≤ k ≤ q) with transitions
reading and resetting xi is extended by ‘rwxi = bin(k+1)’. The guard of each
transition only reading xi (only resetting xi) is extended by ‘rwxi = bin(0)’
(rwxi = bin(1)’). Note that enabling parallel transitions only reading xi or
enabling parallel transitions only writing xi does not cause a problem. (All
writes set the clock value to the same value 0.)2

– Another conflict of the same type may occur with integers. It is obvious
that two transitions updating the same integer inti must not be taken in
parallel because of write/write problems. But, just as we have seen for clock
variables there may also be read/write conflicts on integer variables. In the
timed system consisting of TA(3) and TA(4) shown in Fig. 3(b) the state
(s(1)2 , s

(2)
2 ) is not reachable according to interleaving semantics. However it

is reachable, if transitions can be taken in parallel.
Just as for the read/write conflict for clock variables we force the timed

system to take an interleaving behavior for transitions causing conflicts on
integer variables. For each integer inti we introduce a read/write-enable
number rwinti . The guard of each transition reading the value of integer
inti is extended by ‘rwinti = bin(0)’. Assume q TAs TAi1 , . . . , TAiq updating
inti. Each guard of a transition in TAik

(1 ≤ k ≤ q) which updates inti is
extended by ‘rwinti = bin (k)’. This makes it impossible that two TAs write
inti at the same time, since the corresponding guards cannot be enabled at
the same time. Equally it is impossible that any integer variable is read and
updated in the same discrete transition.

2 Under certain circumstances the number of needed input variables can be minimized
based on the fact that transitions of the same component TAi can not be executed
in parallel anyway.
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The synchronization is handled in a similar way as we have seen in Sect. 5.2 for
pure interleaving behavior. Let us assume that transition i in TAq and transition
j in TAk are labeled with the same synchronization action a{(q,i),(k,j)}. Then the
guards of both transitions are changed to g′′(q)i = g′′(k)

j := g′(q)i ∧g′(k)
j . The action

a{(q,i),(k,j)} is no longer needed to synchronize the transitions. Both components
in the system synchronize by reading each others state bits and inputs.3

Parallelized interleaving is introduced to accelerate model checking runs by
reaching certain states faster. But of course, we should not lose intermediate
states of interleaved executions. For that reason we give each component the non-
deterministic choice to stay in its current location during a discrete step. For this
we introduce a self loop with guard ‘true’ to every location in the automaton. By
taking this transition the automaton does not leave the current location and does
no assignments to clocks or integer variables. Then, to introduce determinism
we do the same modifications using input variables as we have done for pure
interleaving behavior in Sect. 5.2.

The resulting system is deterministic and has a parallelized interleaving be-
havior. In the following section we show how to compute transition functions,
reset conditions and a global invariant.

5.4 Computation of a Symbolic Representation

Based on the guards g′′(q)i for transitions i of TAq (from (ε(i,s)1 , . . . , ε
(i,s)
lq

) to

(ε(i,d)
1 , . . . , ε

(i,d)
lq

)) as computed in Sect. 5.2 or 5.3 it is easy to compute the tran-
sition functions for state bits encoding locations of TAq. We have to consider
m′

q transitions for Tq (including new self loops added in Sect. 5.2 or 5.3). The

transition function δ(q)j computes when the state bit j in the modified automaton
TAq is set to true. (Assume that the set of all input variables we have added
according to Sect. 5.2 or 5.3 is {i1, . . . , ih}.) Then

δ
(q)
j (x1, . . . , xn, y1, . . . , yl, i1, . . . , ih) =∨

1≤i≤m′
q

ε
(i,d)
j =1

g
′′(q)
i (x1, . . . , xn, y1, . . . , yl, i1, . . . , ih) (5)

The transition functions for state bits resulting from encoding of integer variables
are derived from location encodings, the guards computed in Sect. 5.2 or 5.3,
and right-hand side expressions of assignments.4 Details are omitted here.

Besides the transition functions we need the reset functions for clocks. The
following function indicates when the clock variable xi is reset in TAq:

3 For ease of exposition we omit the special case of concurrent read/write or
write/write on synchronizing transitions here.

4 In our prototype implementation we restrict the right-hand sides of assignments to
integer constants, integer variables and additions of two integers.
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reset(q)xi
(x1, . . . , xn, y1, . . . , yl, i1, . . . , ih) =∨

1≤i≤m′
q

xi∈r
(q)
i

g
′′(q)
i (x1, . . . , xn, y1, . . . , yl, i1, . . . , ih) (6)

The overall reset function for a clock xi is computed by resetxi = ∨p
q=1reset

(q)
xi .

As a last component of the FSMT computed from a system of timed automata
TA1, . . . , TAP , we compute the global invariant Inv simply by conjunction of
all local invariants Inv(q).

The transition functions, reset conditions, and the invariant provide a fully
symbolic representation of the corresponding FSMT. Our model checking algo-
rithm uses this representation to perform fully symbolic model checking.

6 Experimental Results

Tab. 1 shows the results of our prototype FSMT-MC applied to several bench-
marks with safety properties. In principle our LinAIG based implementation
would allow model checking for full TCTL, but in our prototype only model
checking for safety properties is implemented. We ran FSMT-MC with pure
interleaving behavior (FSMT-MC inter) and with parallelized interleaving be-
havior (FSMT-MC para) and we compare the results to two state-of-the-art
model checkers Uppaal v.4 and RED 8. By default Uppaal performs forward
model checking and RED performs backward model checking. For Uppaal we
tried both breadth first (‘bf’) and depth first (‘df’) traversal. We did not per-
form a comparison with TMV [22]; for safety properties TMV was outperformed
by RED in [22]. All benchmarks were originally modeled as timed automata
and were automatically translated into FSMTs with pure interleaving and par-
allelized interleaving behavior. CPU times for our (un-optimized) translator are
also given in Tab. 1, column (TA2FSMT). We have conducted all experiments
on a 16 core AMD Opteron with 2.3 GHz and 64 GB RAM with a time limit
of 3 CPU hours and a memory limit of 2 GB. An entry ‘to’ in the table shows
that the time limit was reached, an entry ‘mo’ shows that the memory limit was
reached. All times in Tab. 1 are given in CPU seconds.

For our experiments we used parameterized benchmarks containing a number
n of identical components, since this made it easy for us to generate sets of
increasingly complex benchmarks for comparison. Actually we do not consider
parameterized benchmarks as the main field of application for our algorithm
and thus we did not make use of symmetry reduction [11,5], neither within our
tool nor within any competitor. The first column in Tab. 1 gives the number of
components for each benchmark instance.

The first benchmark implements our toy example from Fig. 1. It consists
of n TAs TA1, . . . , TAn as shown in Fig. 1 with ¬safe :=

∧n
i=1 s

(i)
1 (which is

reachable from the initial states). Comparing pure interleaving and parallelized
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interleaving, we can observe an enormous performance gain for parallelized in-
terleaving due to a reduction of the number of steps in state space traversal. Our
algorithm with parallelized interleaving behavior can finish state space traversal
just after one step by taking the transition (s(i)0 → s

(i)
1 ) for all TAi in parallel.

Our algorithm with pure interleaving behavior computes in one step for each
state reached so far all the predecessors reachable by one backward step of an
arbitrary automaton. Thus in this simple example it needs n steps for a sys-
tem with n processes to arrive at the initial state. Uppaal performs much worse
on this example, since it works on an explicit representation of locations and
it computes all possible permutations of enabled transitions step by step. Our
approach clearly outperforms RED as well which is based on a different fully
symbolic representation and performs only pure interleaving.

The second benchmark is Fischer’s well known mutual exclusion protocol. As
property we verify if it is possible that all components are in the critical region
at the same time. As we can see in Tab. 1 the results of our algorithm with a
pure interleaving behavior are better than the results with a parallelized interleav-
ing behavior. This is caused by the fact that the Fischer protocol does not allow
parallel behavior. Even if we run our model with a parallelized interleaving behav-
ior, a pure interleaving behavior is simulated due to the read/write-enable num-
bers for the integer variable used in the benchmark. The additional inputs for the
read/write-enable numbers which have to be quantified in the discrete step are
responsible for the loss of performance. But in both configurations for pure in-
terleaving and for parallelized interleaving behavior our symbolic model checking
algorithm can solve systems with a lot more processes than Uppaal and RED.

The third benchmark ‘critical region’ models a system with n processes and
a distributed arbiter which controls access to a critical region.5 As we can see

Table 1. Experimental results

uppaal red fsmt-mc ta2fsmt

bf df inter para inter para

to
y

e
x
.

8 0.1 0.2 20 4 0.2 5 4
9 0.3 0.9 mo 5 0.2 6 5

14 360 777 mo 36 0.5 9 9
15 mo mo mo 58 0.5 9 10
22 mo mo mo 3308 1.4 41 21
23 mo mo mo to 1.5 42 24

100 mo mo mo to 73 170 936

F
is

ch
e
r

7 0.2 0.3 33 6 10 3 2
8 1 1.6 mo 19 24 4 3

11 77 308 mo 151 101 8 4
12 305 1686 mo 256 580 9 5
13 1190 9046 mo 517 1052 10 5
14 mo to mo 1259 1677 11 5
18 mo to mo 2515 4267 57 8
19 mo to mo 3218 to 59 9
21 mo to mo 8918 to 68 10

uppaal red fsmt-mc ta2fsmt

bf df inter para inter para

c
ri

t.
re

g
io

n 4 0.5 0.9 3 7 4 3 3
5 17 51 27 17 8 4 4
6 860 5294 mo 31 17 6 6
7 to to mo 71 50 7 8

13 to to mo 3869 1113 22 23
15 to to mo 8423 3627 28 32
16 to to mo to 2776 39 35
17 to to mo to 8762 46 42

F
D

D
I

9 0.1 3 76 4 4 22 40
10 0.2 13 mo 5 5 26 49
14 1 5445 mo 19 24 50 100
15 2 to mo 29 39 57 117
39 8081 to mo 2865 509 556 2590
40 to to mo 479 4852 591 1828
46 to to mo 4486 449 841 2070
47 to to mo to 3086 892 1652

5 A detailed description of this benchmark and models for all benchmarks used in this
paper can be found at http://www.informatik.uni-freiburg.de/∼morbe/fsmt/.
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in Tab. 1 our model checking algorithm is able to handle much more processes
than Uppaal and RED. As this benchmark allows parallel behavior our model
checking algorithm with parallelized interleaving performs best and it can solve
up to 17 processes whereas Uppaal runs into a timeout already for 7 processes
and RED exceeds the memory limit already for 6 processes.

Finally, our last benchmark ‘FDDI’ models a fiber-optic token ring local area
network [8] where we check that the token is always at exactly one station. Up-
paal is able to solve instances up to 39 stations, RED up to 9 stations. For the
FDDI model parallelized interleaving performs only slightly better than pure
interleaving. However, both variants are superior to Uppaal and RED. The ver-
sion with pure interleaving arrives at 46 instances, the version with parallelized
interleaving at 47 instances.

7 Conclusions

We presented a new formal model to represent real-time systems, the finite
state machine with time, which is well-suited for fully symbolic verification al-
gorithms. We presented a backward model checking algorithm to verify FSMTs.
In order to verify TAs with our algorithm we presented two different methods
to convert TAs into FSMTs. The resulting FSMT has either a pure interleaving
behavior or a parallelized interleaving behavior, which can dramatically reduce
the number of verification steps and brings an enormous gain of performance
for certain benchmark classes. Even for other benchmarks like the well-known
Fischer protocol which do not profit from parallelized interleaving, our model
checker outperforms other state-of-the-art model checkers due to its fully sym-
bolic data structure building upon the success of modern SMT solvers. Based on
the same algorithmic framework we plan to develop a model checker supporting
forward or combined forward / backward model checking as well.

References

1. Alur, R.: Timed automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS,
vol. 1633, pp. 8–22. Springer, Heidelberg (1999)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo, M.,
Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Hei-
delberg (2004)

4. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T.A., van Rossum, P., Schulz,
S., Sebastiani, R.: MathSAT: Tight integration of SAT and mathematical decision
procedures. J. Autom. Reasoning 35(1-3), 265–293 (2005)

5. Clarke, E., Jha, S., Enders, R., Filkorn, T.: Exploiting symmetry in temporal logic
model checking. Formal Methods in System Design 9(1/2), 77–104 (1996)

6. Damm, W., Dierks, H., Disch, S., Hagemann, W., Pigorsch, F., Scholl, C., Wald-
mann, U., Wirtz, B.: Exact and fully symbolic verification of linear hybrid au-
tomata with large discrete state spaces. Science of Computer Programming (to
appear, 2011)
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Abstract. We report the first complete formal verification of a time-
triggered bus interface at the gate and register level. We discuss hard-
ware models for multiple clock domains and we review known results and
proof techniques about the essential components of such bus interfaces:
among others serial interfaces, clock synchronization and bus control.
Combining such results into a single proof leads to an amazingly sub-
tle theory about the realization of direct connections between units (as
assumed in existing correctness proofs for components of interfaces) by
properly controlled time-triggered buses. It also requires an induction ar-
guing simultaneously about bit transmission across clock domains, clock
synchronization and bus control.

1 Introduction

Clean formal definitions of time-triggered systems have been given in [11] and [9].
The simple time-triggered systems whose hardware realization is studied in this
paper are inspired by the FlexRay standard [5]. They are constructed by coupling
several processors by means of bus interfaces to a single real time bus as shown
in Figure 1.

A processor together with its bus interface is called an electronic control unit
(ECU). We denote by ECUi the i’th ECU. The hardware of each ECU is clocked
by its own oscillator. Oscillators of different ECU’s have almost but not exactly
identical clock periods τi (corresponds to ECUi). As a consequence of this, timers
on different ECU’s tend to drift apart and need to be synchronized periodically.

On the bus interface of eachECUi pairs of send and receive buffers ECUi.sb(j)
and ECUi.rb(j) with j ∈ {0, 1} serve both for the local communication between
processors and their local bus interface and for communication between bus
interfaces over the bus.

Time-triggered systems work in rounds r each consisting of a fixed even num-
ber ns of slots s ∈ {0, . . . , ns−1} according to a fixed schedule which is identical
for each round. The work consists of:
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bus control ler

Processor Processor

bus control ler bus control ler

Fig. 1. ECU’s Interconnected by a Communication Bus

– Local computation. During slot s each processor can access buffers
sb((s+ 1) mod 2) and rb((s+ 1) mod 2) of its bus interface via memory
mapped I/O for local computation. We will not consider local computation
in this paper.

– Message broadcast. A fixed scheduling function send specifies for each slot s
the ECU ECUsend(s) whose bus facing send buffer sb(s mod 2) will broadcast
to the bus facing receive buffers rb(s mod 2). Observe that in the following
slot s + 1 mod ns these receive buffers face the processors. This allows to
overlap local computation with message broadcast. It is a special case of
pipelining in the sense of [10].

We refer to the slot s of round r by (r, s). We denote the first local cycle of slot
(r, s) on ECUu by αu(r, s) and the last cycle by ωu(r, s). The values αu(r, 0)
and ωu(r, ns−1) at boundaries of rounds are determined in a non-trivial way by
clock synchronization. The standard local length of a slot is cs cycles. How many
cycles of a slot have locally passed is tracked by local counters. An ‘interior’ slot
boundary αu(r, s) = ωu(r, s− 1) occurs, if the local counter is 0 mod cs.

We denote by ECU j
u the state of ECUu at hardware cycle j. The essential

correctness statement of the bus interfaces whose formal proof can be found
at [1] is then a very simple and clean statement about message transfer:

Theorem 1. ∀ u, r, s : ECU
αsend(s)(r,s)

send(s) .sb(s mod 2) = ECUωu(r,s)
u .rb(s mod 2)

A hardware realization of such a bus interface has obviously to deal with the
following 5 problems:

1. Definition of a hardware model with multiple clock domains.
2. Bit transfer across clock domains. As setup and hold times for registers

cannot be guaranteed across different clock domains, i.e., here over the bus,
the sender puts each message bit for n > 1 cycles on the bus. The receiver
will try to sample m ≤ n of these ‘hardware’ bits roughly in the middle of
the n bits.1 Situations where hardware bits are incorrectly sampled from the
bus due to missed set up or hold times have to be dealt with. Note that in
such situations the receiving registers do not necessarily sample bits in an
unpredictable way. They can also become metastable.2 Registers that are
not clocked can stay metastable for very many cycles.

1 The FlexRay standard requires n = 8, m = 5 and a majority vote on the sampled
bits. This allows the correction of certain bit errors on the bus.

2 They hang at the voltage between the thresholds recognized as 0 and 1.
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3. Message transfer across clock domains. If a message m[0 : � − 1] consisting
of � bytes is transmitted, then the sender inserts at the start of each byte
m[i] so called sync edges SE into the message. It also inserts a message
start sequence MS and a message end sequence ME.3 Thus, message m is
transformed by the sender into:

f(m) =MS ◦ SE ◦m[0] . . . SE ◦m[�− 1] ◦ME
and then each bit of f(m) is put n times on the bus. The purpose of the sync
edges is to permit the receiver a low-level clock synchronisation. Because sync
edges occur at regular intervals, the receiver knows when to expect them in
the absence of clock drift. If a sync edge before byte m[i] occurs 1 receiver
cycle earlier/later than without clock drift, then the receiver knows that his
clock has slipped/advanced against the sender clock and adjusts the cycles
when it samples the m hardware bits belonging to the same n copies of a
message bit accordingly.

The final Theorem 1 we aim at is clearly a theorem about message transfer
using such a mechanism. Hardware devices performing such a transfer are
called serial interfaces. Correctness theorems about serial interfaces assume
a single sender in one clock domain directly connected by a wire to a single
receiver in a second clock domain.

4. Control of bus contention. During each slot s there must be a transmission
window where for all ECU’s the local timers indicate that they are in slot
s. During this window ECUsend(s) broadcasts a send buffer content and all
other ECU’s stay off the bus. This is achieved in the following way: (i) Let
D = Q + d + 1 where Q is the maximum difference of local cycle counts
between clock synchronizations, d is the pipeline depth of the transmission
pipeline and the 1 accounts for effects of cross domain clocking (see Schedule
Constraint 2 of [10]). Then the sender ECUsend(s) begins transmission only
D cycles after the local start of slot s and finishes transmission D cycles
before the start of the next slot. (ii) All other ECU’s stay off the bus during
the complete slot s.

Note that during the transmission window of slot s the bus acts for each
ECUi like a direct wire between ECUsend(s) and ECUi. Thus, correctness
of serial interfaces can be applied during this window. Note however that
bus contention control hinges on clock synchronization.

5. Clock synchronization. At the start of each round ECU’s exchange synchro-
nization messages in order to synchronize clocks according to some protocol.
Non-trivial protocols based on Byzantine agreement are used if one wants
to provide fault tolerance against the failure of some ECU’s. Without fault
tolerance a single sync message broadcast from a master ECU suffices at the
start of each round. Note however that sync messages need to be transferred.
The natural vehicle for this transfer is the bus. Thus, clock synchroniza-
tion hinges on message transfer (at least for the synchronization messages),

3 Along the lines of the FlexRay protocol for instance, we use falling sync edges 10
before each byte, 01 as start sequence and end sequence.



636 C. Müller and W. Paul

message transfer on bus contention control and bus contention control on
clock synchronization. Any theorem stating in isolated form the correctness
of clock synchronization, bus contention control or message transfer alone
must use hypotheses which break this cycle in one way or the other. If the
theorem is to be used as part of an overall correctness proof, then one must
be able to discharge these hypotheses in the induction step of a proof argu-
ing simultaneously about clock synchronization, bus contention and message
transfer. A paper and pencil proof of this nature can be found in [7].

The remainder of this paper is organized as follows. In Section 2 we discuss hard-
ware models with multiple clock domains and develop some basic theory about
the operation of buses spanning multiple clock domains. In Section 2.3 and 3 we
review related work about the verification of serial interfaces and clock synchro-
nization algorithms. In our presentation we highlight situations, where existing
proofs assume direct connections between units that need to be realized by prop-
erly controlled buses in the overall proof. Section 4 outlines the overall correctness
proof. It contains a quite involved induction hypothesis (Theorem 3) and a quite
subtle argument that ‘nothing happens’ between the end of the message window
of the last slot of round r−1 and the transmission of the synchronization message
of round r. We also present some details about the mechanization of the proof. In
Section 5 we conclude and discuss future work.

2 Models for Hardware with Multiple Clock Domains

2.1 The Detailed Model

The obvious detailed model for this purpose is obtained by formalization of data
sheets for hardware components as in [12]. The logic has three values 0, 1 and
Ω. The latter value models any voltage between the thresholds recognized as 0
and 1. Signals are mappings from real time R to {0, 1, Ω}; thus, I(t) denotes the
value of signal I at real valued time t. This allows to give algebraic definitions for
detailed timing diagrams of circuits consisting of gates, registers and memories.
The part of this model relevant for 1-bit registers with data input signal In, data
output signal Out and clock enable signal ce has as parameters setup time ts,
hold time th, as well as minimum and maximum propagation delays tpmin and
tpmax. It is easy to specify that setup and hold times, e.g., for the data input
are met for a clock edge at time T :

∃ a ∈ {0, 1} : ∀t ∈ [T − ts, T + th] : In(t) = a

If we also assume that setup and hold times are met for the clock enable signal
ce at time T and ∀t ∈ [T − ts, T + th] : ce(t) = 1, then the output of the
modeled register i) does not change before T + tpmin, ii) becomes undefined in
(T + tpmin, T + tpmax) and iii) assumes the new value In(T ) from T + tpmax

until the next clock edge say at time T + τi:

Out(t) =

⎧⎨⎩
Out(T ) : t ∈ (T, T + tpmin]
Ω : t ∈ (T + tpmin, T + tpmax)
In(T ) : t ∈ [T + tpmax, T + τi]
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This behaviour is also illustrated in Figure 2(a).
This simple part of the definition which models completely regular clocking

has an important consequence. Imagine we have In(T ) = Out(T ), i.e., we clock
the old value again into the register. Then in the digital abstraction the output is
constant in two consecutive cycles. In the detailed hardware model however (and
in reality) we have a possible spike Out(t) = Ω for t ∈ (T + tpmin, T + tpmax).
If we want to guarantee, that the output really stays stable (Out(t) = Out(T )
for t ∈ (T, T + τi)) , we need to disable clocking at edge T : ce(t) = 0 for
t ∈ [T − ts, T + ts]. If clocking is properly enabled but setup or hold time is
violated or the input is undefined, then after the maximum propagation delay
the output stays 0, 1 or undefined (the latter case models metastabilty):

∃a ∈ {0, 1, Ω} : ∀t ∈ [T + tpmax, T + τi] : Out(t) = a

Metastabilty is highly unlikely to occur. That a metastable value in one register
R which is clocked into a second register R̂ results in the metastability of R̂ too
is so unlikely that one models it as impossible.4 The result is an unpredictable
digital value:

∃a ∈ {0, 1} : ∀t ∈ [T + tpmax, T + τi] : R̂(t) = a

Using minimal and maximal propagation delays of gates and access times of
memories one can complete this model in a straightforward way. Correctness
theorems about any hardware - with multiple clock domains or not - should in
the end hold in this one detailed model.

We will denote by single capital letters, e.g., Ru digital registers of clock
domain u; we denote by InR,u their analog input signals and by OutR,u their
analog output signals in the detailed model.
4 Using two subsequent registers to avoid metastability is a common technique in

hardware design.
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2.2 The Hybrid Model and the Bus

Fortunately, in our case we can restrict the use of the detailed model to the part
of the hardware, where clock domain crossing occurs. This portion consists of the
bus, the send register S and the receiver register R as depicted in Figure 2(b).
The remaining hardware is partitioned into clock domains, one for each ECU. In
each clock domain u (clock domain of ECUu) we can abstract from the detailed
model local digital hardware configurations hu with, e.g., register components
hu.R ∈ {0, 1}, hardware cycles i ∈ N, configuration hi

u during cycle i in the
following way. We couple local cycle numbers i on ECUu (hence, in clock domain
u) with the real time eu(i) of the i’th local clock edge on ECUu by setting for
some constant cu: eu(i) = cu + i · τu. This edge starts local cycle i on ECUu.
For t ∈ [eu(i) + tpmax, eu(i) + τu], i.e., after the propagation delay the output
OutR,u(t) of register R on ECUu is stable for the rest of local cycle i of ECUu.
We abstract this value to the digital register value:

hi
u.R = dig(OutR,u, eu(i+ 1))

The function dig(s, t) digitizes the output of signal s at real valued time t:
dig(s, t) := if s(t) �= Ω then s(t) else x, for some x ∈ {0, 1}.

If we now define a hypothesis ’Correct detailed timing analysis’ stating that
for all local cycles setup and hold times for register inputs are met5, then one
can show that the hardware configurations hi

u we just abstracted are exactly the
configurations one would get by applying the transition function δH of ordinary
digital hardware models

Theorem 2. Assume correct detailed timing analysis. Then: ∀i : hi+1
u = δH(hi

u).

This justifies the use of ordinary digital logic within clock domains and restricts
the use of the detailed model to the boundaries between the domains, in our
case the bus.

2.3 Transmitting Bits across the Bus

We use two lemmas from Schmaltz [12] dealing with bit transmission across
clock domains in the detailed register model. Schmaltz has formally verified the
bit transmission correctness between two directly linked digital registers with
different clocks.

To introduce these lemmas formally we need one more definition. Let R and S
be two registers from two different clock domains u and v, respectively; they are
interpreted using the detailed register model. Assume the clock enable signal of
the send register S is active in cycle c. By the definition of the detailed register
model, the output of S will change right after ev(c) + tpmin. We want to know
at which minimal cycle the receive register R will ‘notice’ the change of its input
signal changing its own content. We call such cycle the next affected cycle and
define it as: cyu,v(c) = min{ x | ev(c)+ tpmin < eu(x)− ts}. Thus, the receiver’s

5 Summing propagation delays along appropriate paths.
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next affected cycle of sender’s cycle c is the first cycle, whose set up time lies
right after the output change of S.

Lemma 1 (Low-Level Bit Transmission Correctness). Assume that the
clock enable signal of register R is always active, and the analog input of R is
the analog output of S during n sender cycles starting from some cycle c:

∀i ∈ [ev(c) + tpmin, ev(c+ n)] : InR,u(t) = SOut,v(t)

If S samples a stable input value V at cycle c and then clocking of S is disabled
for n subsequent cycles, then R will sample the new output of S for at least m+σ
cycles starting from the next affected cycle ξ = cyu,v(c):

∀i ∈ [0,m− 1] : Rξ+i+σ = V, for σ ∈ {0, 1}
Note that m ≤ n due to possible clock drifts of the register clocks. The addi-
tional cycle σ (delay) may arise if set up or hold times are violated.6 The direct
linking of registers should be considered as an abstraction of the bus, when there
is no bus contention. Moreover, Schmaltz extended Lemma 1 to a high-level mes-
sage transmission correctness for a concrete send and receive units obeying the
message protocol mentioned in Section 1.

Lemma 2 (High-Level Message Transmission Correctness). Let su be a
send unit of ECUv; let ru be a receive unit of ECUu. Let R be the input register
of ru and S the output register of su. Let L be the length of a transmitted message
in bytes. Let ts be the length of a message transmission in local cycles. Let bcv(i)
be the cycle, when the send unit su starts the broadcast of the i’th byte. Let
cyu,v(c) = ξ for a receiver cycle ξ. Assume that:

1. su starts a message broadcast in cycle c;
2. ru is idle in cycle ξ.
3. send and receive registers are directly connected for ts cycles:
∀t ∈ [ev(c) + tpmin, ev(c+ ts− 1)] : InR,u(t) = SOut,v(t)

Then, every byte of the transmitted message is transmitted correctly from the
send buffer su.sb to an intermediate byte buffer ru.rByte:

∀ i ≤ L : subcv(i).sb[i] = rucyu,v(bcv(i))+80+γ .rByte, with γ ∈ {−1, 0, 1}
On the left side, subcv(i).sb[i] denotes the content of the i’th byte in send buffer
su.sb (slot is not fixed, so sb can be instantiated by any of two buffers) of
send unit su at cycle bcv(i). On the right side, we have the content of a buffer
ru.rByte of the receive unit ru at the next cycle cyu,v(bcv(i)) affected by the
transmission of the i’th byte, plus 80 + γ. That is, due to clock drift, the entire
transmitted byte will be successfully sampled either in 79 cycles after the next
affected cycle, or in 80/81 cycles. This Lemma was proven by model checking
of control automata of su and ru, and by interactive combining of these results
using Lemma 1.
6 This happens, if ev(c) + tpmin < eu(ξ)− ts < ev(c) + tpmax.



640 C. Müller and W. Paul

2.4 Modeling the Bus

We model the outputs of send registers Sv facing the bus as open collector
output. In this case the bus computes the logical ‘and’ of the signals put on the
bus:

∀t : bus(t) =
∧
v

OutS,v(t)

The intended use of the bus is to simulate for all slots s the direct connection
of a sender register Ssend(s) to the receiver registers Ru on the bus during the
transmission window W (s) ⊂ [eu(α(r, s)), eu(ω(r, s))]7 of slot s, because this
permits to apply results about clock domain crossing bit transmission for pairs
of directly connected senders and receivers. Obviously, this is achieved by keeping
OutS,u(t) = 1 for all t in the window and all u �= send(s).
Lemma 3 (Absence of Bus Contention). If for all u �= send(s) and for all
t ∈W (s) we have OutS,u(t) = 1, then ∀t ∈W (s) : bus(t) = OutS,send(s)

While this lemma is trivial, showing the hypothesis requires not only to show
that the Su have constant value 1 in the digital model for u �= send(s). One has
also to establish the absence of spikes by showing (in the digital model) that
clocking of these registers is disabled in the transmission window. This depends
on correct schedule execution, which, in turn, depends on the absence of bus
contention at the previous synchronizations, etc.

2.5 An Alternative Model

A model more suited for model checkers than the hybrid model above has been
proposed and used in [4]. This clock model is based on so-called timeout au-
tomata. The progress of global time is enforced cooperatively by sender and
receiver clocks. This model deals with metastability but does not model the set
up and hold times explicitly. The clock modeling is partially protocol-dependent.
Since the sender’s clock progress depends on the receiver’s clock progress, it is
not fully clear how to extend this model to several receiver clocks. Unfortunately,
no discussion was provided about the gap between the given stack of abstractions
and modeling of actual hardware (counterpart to our Theorem 2).

3 Related Work and Results Used

In [9], Pike has presented several results. One part of his work related to this pa-
per was a corrected and significantly extended version of Rushby’s formalism [11],
which allows to verify time-triggered systems by abstracting them to synchronous
protocols. He specifies timing constraints, which a schedule of a time-triggered
protocol has to fulfill, to form in its system run so-called ‘cuts’. These cuts are
7 W (s) is the time segment in global time where all ECU’s are locally in slot s; it

should be long enough to transmit a message.
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Fig. 3. Scheduler Automata

time segments, where the state of the time-triggered system can be related to
a state of its synchronous counterpart. The correctness of the time-triggered
schedule would then follow from the correctness of the synchronous protocol. He
also applies this approach to verify the schedule timings of two protocols of the
SPIDER bus architecture: Clock Synchronization and Distributed Diagnosis.8

However, it remains unclear how exactly the timing properties of hardware im-
plementations of these protocols were derived and mapped to the formal model.
Moreover, the proposed technique assumes even in the proof of timing properties
of a Clock Synchronization protocol already synchronized clocks initially. That
is, to extend the proof to all round correctness one needs to use the proposed
proof as an induction step. However, to show the initial clock synchronization
the startup correctness might become necessary.

In [8], Pfeifer formally analyzes two fault-tolerant algorithms implemented in
the Time-Triggered Protocol TTP/C: Group Membership and Clock Synchro-
nization. Both algorithms were analyzed, using a hand-derived mathematical
specification of the TTP/C protocol. Although, the algorithms have a circular
dependency on each other, Pfeifer has analyzed them in isolated form and on
different levels of abstraction. He also introduces an abstract principle how to
combine both proofs resolving the dependency.

Böhm has used Lemma 1 to verify the correct schedule execution for directly
wired bus controllers [3]: one master and n slaves. The master ECU always sends
a message in slot 0. The first bit of this message serves as a synchronization
signal. The scheduler used in the connected ECU’s is the main control block of
the bus controller. It computes the internal state of the controller and counts
passed slots. The schematic representation of the scheduler state automaton is
depicted in Figure 3. After the initial reset signal, all ECU’s are in state init.
After all configuration registers are written, the operating system running on
top of the processor initiates a special signal, which forces all ECU’s to change

8 Note that no correctness of the synchronous version of these protocols was provided.
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either to state i wait if the ECU was configured as a master ECU, or to state
rcv wait otherwise. The master waits in state i wait for a certain amount of
cycles iwait. Assuming that all ECU’s are started roughly at the same time, it
should be guaranteed that after the master’s initialization and additional iwait
cycles all slaves are initialized and are in state rcv wait. The size of iwait can be
estimated by industrial worst case execution time analyzers [7]. In state rcv wait
slaves are waiting for a synchronization message after the initialization and after
the end of each round. In state ts D wait each ECU is waiting for ts+D cycles,
which is a sum of transmission length (ts) and offset D before the end of a
slot. In this state an ECU is sending or receiving, depending on its role in the
current slot. Then a slave ECU either switches back to rcv wait if the maximal
number of slots in a round is reached, or to state D wait. In D wait all ECU’s are
waiting for D hardware cycles. This is a waiting time (cf. Section 1) before each
new slot, which is necessary due to clock drift to guarantee that all ECU’s have
finished the previous slot. Afterwards, each ECU enters a new slot. If it enters
a slot as a sender, the scheduler sends a broadcast signal to the send unit going
through state start snd. Otherwise, it switches directly to state ts D wait. The
master ECU acts as a sender in the first slot of each round. It goes through state
start snd sending a new synchronization message to the bus. Afterwards, it
switches as a receiver between states D wait and ts D wait during ns− 1 slots.

We say synchronization happens i) on the master at the state transition from
D wait to start send; at this point the local timer of master has value D. ii)
on a slave at the state transition from rcv wait to ts D wait which is triggered
by the synchronization message sent by the master. On this transition the slave
sets its local timer to D.

W.l.o.g., we assign to the master ECU the index 0: ECU0. We can now define
the missing slot boundaries. On the master all slots have length cs: α0(r, s) =
ω0(r, s − 1) = α0(r, s − 1) + cs. The master executes its schedule statically. On
slaves u slot (r − 1, ns− 1) ends and slot (r, 0) starts when the synchronization
message is received: αu(r, 0) = ωu(r − 1, ns− 1) = cyu,0(α0(r, 0) +D).

We define that the system is ready for synchronization at cycle c of the master,
when:

– in local cycle c the master is in state D wait, its local timer is D− 1 and its
serial interface is idle and, hence, ready for data transmission;

– for u �= 0 in local cycle cyu,0(c), the receiving ECUu is in state rcv wait, its
serial interface is idle, and, thus, ready for data sampling and the internal
pipeline of the receive units has sampled Ones from the bus in the last e
local cycles for some fixed constant e < d (thus no spurious sync messages
are already in the pipe).

By assuming that synchronization message is transmitted via dedicated direct
connections between the master and the slaves, Böhm does not need to assume
bus contention control for the transmission of the synchronization signals and,
thus, he is in a position to do an induction over all slots s of all rounds r. However
in his main result - that we use - he assumes that at the start of some round r
ECU’s are ready for synchronization and then he argues only about the slots of
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this round r. He does not argue that at the end of the round the system is ready
for synchronization again. We use the following result from [3].

Lemma 4. Assume: 1. the system is ready for synchronization and the master
is in cycle c; 2. the output of master’s register S is the input of all Ru registers
during 8 master cycles: ∀ t ∈ [ev(c), ev(c+ 7)] : InR,u(t) = OutS,v(t).

Then, the master initiates the synchronization message, and all directly con-
nected slaves and the master itself will start the execution of the fixed schedule
consisting of ns slots. Each slot on each ECU starts before and ends after the
message transmission window defined as transmission time of the sender. After
cs local cycles of slot ns− 1 the master is in state D wait and the slaves are in
state rcv wait. Formally:

∀ slot s of some round r : u is receiver in slot s→
1. synchronization happens at round r –

slave u receives the synchronization message at cycle cyu,0(c) + σ + d
2. W (s) ⊂ [eu(αu(r, s)), eu(ωu(r, s))]

where W (s) = [esend(s)(αsend(s)(r, s) +D), esend(s)(ωsend(s)(r, s)−D)]
3. ECUu with u �= send(s) is in state rcv wait in cycle αu(r, ns− 1) + cs, and
ECUsend(s) is in state D wait in cycle αsend(s)(r, ns− 1) + cs.

Remember that d is the depth of transmission pipeline, i.e., the delay of the
path of the signal from the scheduler of the sender to the scheduler of the re-
ceiver. That the synchronization message is received by the slaves was proven
by applying Lemma 1. After synchronization is achieved the proof of the lemma
boils down to a statement about the values of the local counters and can be
derived with a very high degree of automation. The timing properties of the
schedule hardware were proven interactively by multiplying local times with the
corresponding τ .

However, we can only apply Lemmas 1, 2 and 4 in our generalized semantic,
consisting of n ECU’s interconnected by a bus, if we argue about the absence
of bus contention during all signal transmissions on the bus. We have to justify
the bus abstraction, which will be assumed using the directly wired send and
receive registers. This abstraction will be discharged in the next section.

4 Overall Proof

The correctness of message transmission between all ECU’s of our bus system
can be roughly split in two parts: (1) the bus value correctness during a mes-
sage transmission (absence of bus contention), and (2) the high-level message
transmission. The first part depends only on the correctness of the scheduler
unit and low-level bit transmission between ECU’s over the bus. The high-level
message transmission relies on the bus value correctness, low-level bit trans-
mission correctness and the correctness of send and receive units executing the
message protocol. Thus, formally verifying the first property, we provide a bus
architecture, which can be instantiated with an arbitrary message protocol. In
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Section 4.2 we present a proof sketch of the first property. In Section 4.3 we
outline the correctness proof sketch of the high-level message transmission, con-
solidating the results of Section 4.2 with results achieved in previous verification
efforts explained in Subsection 2.3 and Section 3.

4.1 Global Assumptions

To verify the automotive bus controller, the following axioms were assumed and
are implicitly used in every theorem below:

1. Clock periods deviate by at most 0.38%;9

2. Slot 0 starts on the master immediately after leaving the i wait state;
3. When master enters slot 0, all slaves are initialized and are waiting for the

synchronization;
4. ECU’s are configured in such way, that in every slot exactly one ECU is a

sender.

Note that we omit assumptions of technical nature here, which are not relevant
for the communication protocol itself, like assumption that the processor doesn’t
change it’s configuration registers during a system run, etc.

4.2 Proof Sketch of the Bus Value Correctness

While previous lemmas have assumed in slot s a direct connection between a
slave u and the master (InR,u(t) = OutS,send(s)), the generalized model extended
by the bus, models the analog input of every Ru register as output of the bus:

∀ ECU u : ∀t : InR,u(t) = bus(t) (1)

To use previous results for an overall message transmission correctness, we have
to show that bus(t) can be substituted by OutS,send(s) during the transmission
time W (s) of every slot s.

Theorem 3 (Bus Value Correctness). For all rounds r holds:

1. the system is ready for synchronization at cycle α0(r, 0) +D of the master;
2. during the entire message transmission time in every slot s of round r the

bus value is equal to the analog output of the send register of the sender:

∀t ∈W (s) : bus(t) = OutS,send(s)(t)

Before we sketch the proof of Theorem 3, we list three helper lemmas, which do
not depend on the cyclic argumentation necessary for the proof of Theorem 3.

Lemma 5. After the initialization the system is ready for synchronization and
the master begins a message broadcast in cycle αu(0, 0) +D.
9 This constant is derived from the concrete parameters of our implementation. Note

that FlexRay standard assumes maximal deviation of size 0.15%.
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This lemma is proven by construction of the scheduler and the control logic of
configuration registers. Using mostly a model checker, we have formally verified
that after a reset each ECU reaches state rcv wait or i wait according to its
status (master/slave). Then we assume (cf. Global Assumption 3) that if the
master leaves the i wait state, all slaves are in the state rcv wait.

Lemma 6. Let the send unit of the serial interface of ECUu be idle during time
interval I. Then during I the analog output of the send register of ECUu is 1:

∀t ∈ I : OutS,u(t) = 1

This lemma was proven by showing that the send register S is only clocked if
the send unit is not idle. We define the time interval of local slot (r, s) of ECUu

as: slotu(r, s) = [eu(αu(r, s), ωu(r, s)] and show the next lemma.

Lemma 7. Let u �= send(s) and let r be any round. Then the send unit of
ECUu is idle during slotu(r, s).

A simple induction about the scheduler automaton shows, that at the start of a
slot the send unit is idle. The send unit is only started in state start send. But
if ECUu is not the sender, then the automaton is during the slot only in states
�= start snd. We are finally ready to argue by induction simultaneously about
synchronization and bus contention control.

Proof (of Theorem 3). By induction on rounds r. Base case, r = 0. We first
show Claim 1 for r = 0. After startup the send units of all slaves are idle and
the system is ready for synchronization by Lemma 5.

Next we show Claim 2 for round r = 0. We first discharge hypothesis 2 of
Lemma 4 for c = α0(r, 0)+D stating that the bus behaves during the transmis-
sion of the sync message like a direct connection between the master and the
slaves. A slave ready for synchronization is in state rcv wait and the send unit
of its serial interface is idle. In 9 cycles it cannot reach state start send. Using
Lemma 6 with I = [e0(c), e0(c+ 7)] we conclude that ECUu transmits Ones on
the bus during I. By Lemma 3 we get InR,u(t) = OutS,0(t) for all t ∈ I. We
are ready to apply Lemma 4. By Claim 1 of Lemma 4 we can conclude, that
synchronization takes place and thus slot 0 of round 0 starts on all ECUs. Thus
from now on we can use lemmas that argue about slots in round 0.

Consider any slot s of round 0 and any u �= send(s). By Lemma 7 ECUu stays
off the bus during slotu(0, s). By Claim 2 of Lemma 4 we haveW (s) ⊂ slotu(0, s).
By Lemma 3 the bus acts like a direct connection between OutS,send(s) and InR,u

during W (s) and we have shown Claim 2 of Theorem 3 for round r = 0.
Induction step, r − 1 → r. We assume the theorem holds for round r− 1 and

show that it holds for round r. We start with Claim 1 for round r. By Claim
1 of the induction hypothesis the system is ready for synchronization at cycle
α0(r − 1, 0) +D of the master. By Claims 1 and 2 of the induction hypothesis
for slot 0 of round r − 1 Hypothesis 1 and 2 of Lemma 4 hold. By Claim 3 of
Lemma 4 each slave u is in state rcv wait in local cycle αu(r − 1, ns− 1) + cs
and the master is in state D wait in local cycle α0(r − 1, ns− 1) + cs.
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We show a subtle technical lemma about the time when slaves are waiting
for the synchronization signal of the master at the end of rounds. Note that
for slaves u the start cycles αu(r, 0) are only defined after we have shown that
synchronization has occurred, thus we cannot use them yet. Fortunately for the
master α0(r, s) is always defined.

Lemma 8. Let u �= 0 be the index of any slave. Let

t ∈ [eu(αu(r − 1, ns− 1) + cs, eu(cyu,0(α0(r, 0) +D))

be a time when slave u waits for the sync signal from the master. Then the slave
observes an idle bus at time t: bus(t) = 1.

This lemma is proven by contradiction. We fix the first time point t between the
last slot of a round eu(αu(r − 1, ns − 1) + cs) and the start of the next round
eu(cyu,0(α0(r, 0)+D)), where the bus value is not equal ‘1’. By bus construction
there is at least one ECU producing bus activity at t. Since t lies before the
start of a new round, the disturbing ECU cannot be master, since there was no
synchronization message yet. If the disturbing ECU is a slave, we show that it
should be in state rcv wait, because there was no bus activity before t, hence
no synchronization message was received by any slave. Since no one is sending,
we use Lemma 6 and the bus construction to show that its value is the idle value
‘1’ which contradicts to our assumption.

Lemma 8 implies that all slaves stay in state rcv wait until local cycle
cyu,0(α0(r, 0)+D)). By construction of the schedule automaton the master stays
in state D wait until local cycle α0(r, 0)+D. By construction of the serial inter-
faces the interface of an ECU in state rcv wait is idle. This applies here for the
slaves. By the construction of the hardware, non-idle send units of serial inter-
faces occur only on ECUs in state ts D wait. Thus, at cycle α0(r, 0) +D of the
master the system is ready for synchronization, Claim 1 of Theorem 3 is shown
for round r and we can argue about the slots in round r also for the slaves. The
proof of Claim 2 for round r now proceeds along the lines of the proof for round
0. It is somewhat simpler because Hypothesis 2 of Lemma 4 follows directly from
Lemma 7. ��

4.3 Message Transmission Correctness

After we have proven the correctness of Theorem 3, we can use it to ensure the
absence of bus contention during all transmissions of all rounds. We discharge
Hypothesis 1 and 2 of Lemma 2 for cycle c = αsend(s)(r, s) +D (similarly to the
argumentation in Theorem 3) by showing that if a sender ECUi starts a message
transmission at a cycle (r, s), then the receive unit of every receiver will be idle
at the corresponding next affected cycle. Hypothesis 3 of Lemma 2 follows from
Theorem 3. We also show that all bytes written to the intermediate byte buffer
rByte of the receive unit will be correctly written to the receive buffer.

Lemma 9. All bytes written to the intermediate buffer ruu.rByte in slot s will
eventually be written to the receive buffer ruu.rb, and will stay there unchanged
until the end of a slot:
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∀ i ≤ L : rucyu,v(bcv(i))+80+γ
u .rByte = ruωu(r,s)

u .rb(s mod 2)[i]

We also show stability of the active send buffer content. This is possible due to
double buffer construction and restricting of the processor access to the buffer
sb(s mod 2) during a message transmission.

Lemma 10. The content of the send buffer remains stable during slot s:

∀ i ≤ L : suα(r,s)
v .sb(s mod 2)[i] = subcv(i)

v .sb(s mod 2)[i]

Finally, using Lemmas 2, 9 and 10 we can show the main message transmission
correctness during all slots of all rounds stated in Theorem 1.

5 Conclusion and Future Work

We presented recent results on verification of an automotive time-triggered real-
time bus system, which was inspired by the FlexRay standard. The network
consists of electronic control units interconnected by a bus. We have verified the
startup routine, the clock synchronization, the correct TDMA scheduling and
a low-level bit transmission. Finally, consolidating these results, we have shown
the correctness of recurrent message broadcasts during a system run. In con-
trast to most of previous research, we not only show the algorithmic correctness
of protocols, but we also provide justified models to link these protocols to a
concrete gate-level hardware.

The verification was carried out on several abstraction layers using a combi-
nation of an interactive theorem prover Isabelle/HOL supported by the model
checking technique [14]. The ECU implementation has been automatically trans-
lated to Verilog [13] directly from formal Isabelle/HOL hardware descriptions
and has been synthesized with the Xilinx ISE software. The implementation
which consists of several FPGA boards interconnected into a prototype of a
distributed hardware network was reported in [6].

During the presented verification work, several bug were discovered in the
hardware implementation, as well as in previous verifications. For example,
Lemma 1 has originally assumed a permanent connection between the send and
receive registers. This abstraction cannot be justified in a bus architecture with
multiple senders. Moreover, Lemmas 4 and 2 have assumed that the second re-
ceive register R̂ contains value ‘1’ in cycle cyu,v(c) + 1. This cannot be shown,
in the case when the timing constraints of the first receive register R are not
met and the metastable value sampled in cycle cyu,v(c) flips to 0 in the next
cycle. Furthermore, in the original proof of Lemma 2 used an assumption like:
cyu,v(k + 80 · i) = cyu,v(k) + 80 · i which is in general not true.10

As part of the future work we see an extension of the presented controller
by fault-tolerance features [2]. For example, supplying each ECU with a bus
guardians should be easy, by taking the same scheduler with independent clock
and slightly modified timing parameters. Moreover, due to redundancy in the
10 The proof was fixed by Schmaltz on our demand.
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message protocol, the bus controller is already fault-tolerant against signal jitter.
The computing and verifying of its maximal fault assumptions remains as future
work.
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Abstract. We present Synthia, a new tool for the verification and syn-
thesis of open real-time systems modeled as timed automata. The key
novelty of Synthia is the underlying abstraction refinement approach [5]
that combines the efficient symbolic treatment of timing information by
difference bound matrices (DBMs) with the usage of binary decision di-
agrams (BDDs) for the discrete parts of the system description. Our
experiments show that the analysis of both closed and open systems
greatly benefits from identifying large relevant and irrelevant system
parts on coarse abstractions early in the solution process. Synthia is
licensed under the GNU GPL and available from our website.

1 Introduction

A crucial factor for the acceptance of automatic system analysis techniques is
how well they scale when the models become more complex. A powerful concept
aiming at increasing the scalability is automatic abstraction refinement, where,
beginning with a coarse abstraction of the original system, only those parts are
incrementally refined that are necessary for proving a certain property.

In this paper, we report on Synthia, a new tool that makes abstraction
refinement available for the analysis of open real-time systems modeled in a syn-
tactically enhanced variant of the popular timed automata formalism by Alur
and Dill [1]. An open system distinguishes between external and internal non-
determinism, of which one type represents an unpredictable environment and the
other type represents a partial implementation. Synthia checks if the system is
realizable (i.e., whether there exists a full implementation) such that, indepen-
dent of the environment, some safety requirements are satisfied. Synthia can
also certify the (un)realizability by generating a controller that represents safe
(violating) implementations (environments). The verification of closed systems,
where the implementation is deterministic and complete, is a special case and
can equally well be handled by Synthia.
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2 Underlying Approach

Computational Model. We interpret a given open real-time system as a
two-player game played on a timed automaton, in which player Adam controls
the choices of the partial implementation and player Eve controls the nondeter-
minism of the unpredictable environment. A specified safety property defines the
dual winning conditions for the players: while Eve wins whenever the property
is eventually violated, Adam wins when the property is always satisfied.

As fundamental computation model, we consider timed game automata [6],
an alternating extension of timed automata [1], where the controllability of each
transition is assigned to a particular player. We always assume our timed game
automata to be strongly nonzeno. Synthia also supports additional syntactic
features such as parallel composition or arithmetic expressions over bounded
integer variables. In the following, we use the term location to refer to any pure
discrete state information, including integer variable valuations. We consider
an asymmetric semantics, where Eve is prioritized in situations in which both
players can play an active move, which leads to determinacy of all games.

Synthesizing a safety controller corresponds to computing a winning strategy
for Adam. For obtaining such a strategy, we compute the set of states from which
the players can enforce their respective winning objectives. For Eve, this is done
by taking the so-called attractor of the set of bad (i.e., requirement-violating)
states. Any strategy that enforces staying in the complement of this set is then
winning for Adam. In case of a closed system, there are only Eve moves, in which
case game solving naturally boils down to checking reachability.

Abstraction Refinement. Synthia’s main analysis algorithm is an efficient
implementation of the approach introduced in [5]. We collapse sets of concrete
locations of the original timed game automaton into single abstract locations. In
these so-obtained syntactic abstractions, we distinguish between may and must
transitions: between two abstract locations n and n′, for a player p,

– there is a may transition for p, if there is some concrete location subsumed
by n having a p-transition to some concrete location subsumed by n′;

– there is a must transition for p, if all concrete locations subsumed by n have
a p-transition to some concrete location subsumed by n′.

We obtain an abstract game by letting Eve play on her must transitions and
Adam play on his may transitions. Clearly, in our abstractions Eve is weakened
and Adam is strengthened, compared to the original game. Thus, computing the
attractor of the bad states in the abstract game yields an under-approximation
of the attractor in the original game.

The abstraction refinement procedure begins with the trivial abstraction that
comprises (at most) four abstract locations: (1) one subsuming all initial loca-
tions; (2) one subsuming all bad locations; (3) one subsuming all safe locations
(from which no bad location is reachable); (4) one subsuming all other locations
which are not in (1)-(3). Then, in each iteration of the following refinement loop,
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�0 �1
u2, y > 15

i = 100

u1, x > 1

x := 0, i := i + 1

c, y > 2
i = 50
i := 0

(a) Original game

�0 ∧ i = 0 �0 ∧ 1 ≤ i ≤ 50
�0 ∧ i ≥ 51 ∨
�1 ∧ i = 100

u1, x > 1

x := 0

u1, x > 1, x := 0
c, y > 2

u1, x > 1

x := 0

u2, y > 15

n0

n1

n�

(b) Initial abstraction

�0 ∧ i = 0

�0 ∧ i = 50

�0 ∧ 1 ≤ i ≤ 49

�0 ∧ i ≥ 51 ∨
�1 ∧ i = 100

u1, x > 1, x := 0

c, y > 2
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x > 1
x := 0

u1, x > 1 x := 0

u1, x > 1, x := 0

u2

y > 15

n0

n′′
1

n′
1

n�

(c) Final abstraction

Fig. 1. Example timed game and its abstractions with transitions surely available
(solid lines) and potentially available (dashed lines)

we compute the attractor of the bad states in the respective current abstraction;1

if it contains a concrete initial state, we can stop the iteration as we can surely
deduce a concrete winning strategy for Eve. On the other hand, if the abstract
game is safe, we refine the abstraction such that the attractor is extended in the
refined game. If no such refinement is found, we can deduce that Eve loses and
Adam wins.

Optimizations. The symbolic treatment of the locations allows us to apply
computationally cheap but effective optimizations based on pure discrete ana-
lyses of the control structure of the original game. For instance, in the initial
abstraction, Synthia only considers those locations which are both forward
reachable from the initial locations and backward reachable from the bad loca-
tions. Also, before constructing the initial abstraction, Synthia enlarges the set
of bad locations by those locations from which Eve can force the system into a
bad location. Furthermore, the selection of possible refinements can be restricted
to (an over-approximation of) the forward reachable states.

Example. Consider the timed game depicted in Fig. 1(a) comprising the clocks
x and y, as well as the integer variable i ranging from 0 to 100. Adam controls
the transition c and Eve controls the transitions u1 and u2. Eve wins when �1 is
eventually visited. It is easy to see that Adam has a winning strategy by playing
c whenever it is available (i.e., when i = 50). The initial abstraction (Fig. 1(b))
is based on all locations that are reachable in a purely discrete manner. Here, we
note that the abstract bad location n� subsumes the concrete location �1∧i = 100
as well as �0∧i ≥ 51, which is the result of the bad-location enlargement. As this
abstract game is safe, the refinement heuristic determines to split n1 such that
u1 becomes available for Eve, which leads to an enlargement of the attractor.

1 In fact, Synthia incrementally updates an attractor under-approximation.
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The resulting game (Fig. 1(c)) is still safe as the attractor can only be updated
for n′′1 to y − 1 ≤ x ∨ 1 < x. Now, any further refinement would not enlarge the
attractor (e.g., making the u1-transition between n′1 and n′′1 available to Eve is
useless since then, n′′1 is only entered when x = 0 and y > 2, in which case only
c is available but not u1).

3 The Tool Synthia

Availability and Usage. Synthia is licensed under the GNU General Public
License and available at

http://react.cs.uni-saarland.de/tools/synthia.

Due to the lack of space, it is impossible to explain all of Synthia’s features in
this paper. Instead, in this section we present some standard usage scenarios. A
detailed description of the command line parameters, the file format, as well as
a step-by-step tutorial can be found on the tool’s website.

A specification is given in form of an XML file and essentially comprises a plant
model with requirements. Assuming that robot.xml represents a specification,
then the simplest way to execute Synthia is the following:

$ synthia robot.xml

This lets Synthia check whether there exists a controller influencing the plant
such that regardless of the uncontrollable behavior, the requirements are always
satisfied. Specifications can have parameters with default values which can be
overridden using the command line argument -D:

-Dprocesses:2 -Ddelay:23 -Dtimeout:42

Requirements are given as conjunctions of assumptions and guarantees. A system
does not satisfy its requirements if (1) there is a trace that eventually violates
the guarantees, and (2) each prefix of that trace satisfies the assumptions. For
example, the following lines of an XML specification file encode a requirement
describing a location invariant and a bounded reachability guarantee:

<assume>in(loc) imply (x <= {delay})</assume>
<guarantee>(not in(goal)) imply (y <= {timeout})</guarantee>

To let Synthia synthesize a controller in addition to checking realizability, the
following command line parameters can be used:

$ synthia robot.xml --synth-cont controller.xml
$ synthia robot.xml --synth-cont-plant controlled_plant.xml

The former call generates a model (in the Synthia file format) that only com-
prises the controller, while the latter generates a model where the synthesized
controller is embedded into the original plant.

http://react.cs.uni-saarland.de/tools/synthia
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Implementation Details. Synthia is written in C++ and uses, besides some
standard Boost libraries, the CUDD BDD library [7] for representing transi-
tion relations and sets of locations, as well as the Uppaal DBM library [4] for
representing and manipulating clock zones.

After parsing the specification, as explained in [5], Synthia constructs a
BDD-based representation of the control structure and sets up the initial ab-
straction. As an extension to [5], Synthia also considers abstractions of the
guards of abstract transitions. Hence, a refinement either consists of splitting an
abstract location or of making a guard of an abstract transition precise.

The actual game solving procedure that runs on the abstract games and up-
dates the attractor under-approximation is implemented as a pure backward
solving algorithm. The selection of refinements is carried out in form of a for-
ward zone-based reachability analysis: only those abstract locations and transi-
tions are considered which appear in this analysis.

As a further optimization, additionally to under-approximating the attractor
of the requirement-violating states, Synthia also computes an under-approxi-
mation of the attractor of the safe states. This is done by a concurrent game
solving procedure, in which Adam is weakened and Eve is strengthened.

4 Experimental Results

Table 1 shows a comparison of Synthia 1.2.0 with the game solver Uppaal-

Tiga 0.16 [2]. We note that the latter subsumes the basic model checking engine
of Uppaal 4.1.4 [3], which is automatically applied in case of closed-system
properties.

From left to right, the columns show the benchmark instance, whether it is
a safe/realizable instance, the number of refinement steps, the number of ab-
stract locations in the final abstraction, Synthia’s running time and memory
consumption, the parameters for which Uppaal-Tiga showed the best results,
Uppaal-Tiga’s number of explored states, running time and memory consump-
tion. Running times are given in seconds, memory consumption in MB, the time
limit was set to 4 hours, and the memory limit was set to 4 GB. All experiments
were conducted on a 2.6 GHz AMD Opteron computer running Ubuntu 10.04.
The model files used for the benchmarks can be downloaded along with the tool.

Fischer and CSMA/CD are standard benchmarks from the closed-system ver-
ification domain. The instances are parametrized in the number of components.
The benchmark Robot is to decide whether a robot has a strategy to quickly tra-
verse a square-shaped grid with a wall in the middle that has two gates through
which the robot can pass. Up to a certain amount of time, nondeterministically,
one of the gates can close upon which the robot has to react. The instances are
parametrized in the edge length of the grid. The benchmark Tank asks for the
existence of a controller that controls the inflow to a water tank such that a
desired fill level is reached within a given amount of time. It is parametrized by
the precision in which the continuous flow is digitized.

Except for unsafe Fischer, where a depth-first-search on the precise system
quickly detects the error, Synthia’s abstraction refinement approach always
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Table 1. Performance comparison of Synthia with Uppaal-Tiga

Safe / Synthia Uppaal-Tiga

Benchmark Realizable Steps Abs Time Mem Params States Time Mem

Fischer 60 No 116 119 2957 1321 -o1 520 5 39
Fischer 65 No 126 129 2247 935 -o1 6 1 26
Fischer 70 No TIMEOUT -o1 256 4 41
Fischer 13 Yes 169 172 4 86 -C -S2 29122758 1324 1127
Fischer 14 Yes 196 199 5 88 -C -S2 93835680 4661 3501
Fischer 15 Yes 225 228 6 90 MEMOUT
Fischer 30 Yes 900 903 355 228 MEMOUT
Fischer 40 Yes 1600 1603 2628 453 MEMOUT
Fischer 51 Yes 2601 2604 14262 1405 MEMOUT
Fischer 52 Yes TIMEOUT MEMOUT
CSMA/CD 15 Yes 4 5 6 118 -C 11681796 442 2639
CSMA/CD 16 Yes 4 5 8 158 -S2 27901956 1302 3072
CSMA/CD 17 Yes 4 5 16 252 MEMOUT
CSMA/CD 21 Yes 4 5 1474 3804 MEMOUT
CSMA/CD 22 Yes MEMOUT MEMOUT

Robot 300 No 356 360 10 87 43147361 486 120
Robot 500 No 596 600 58 98 199601281 2322 233
Robot 1000 No 1196 1200 182 145 TIMEOUT
Robot 2000 No 2396 2400 1153 365 TIMEOUT
Robot 3000 No TIMEOUT MEMOUT
Robot 300 Yes 376 380 18 97 92655832 1067 165
Robot 500 Yes 626 630 132 129 429037638 4965 356
Robot 1000 Yes 1251 1255 401 256 TIMEOUT
Robot 2000 Yes 2501 2505 8011 1061 MEMOUT
Robot 3000 Yes TIMEOUT MEMOUT
Tank 100 No 28 19 3 91 85852 183 416
Tank 300 No 28 19 14 125 -F1 512034 1532 1309
Tank 500 No 28 19 32 176 -F1 1993710 13991 3882
Tank 1000 No 28 19 50 280 MEMOUT
Tank 5000 No 28 19 1724 996 MEMOUT
Tank 10000 No 28 19 8077 1923 MEMOUT
Tank 10 Yes 54 35 1 80 482227 55 280
Tank 20 Yes 42 29 2 82 1978965 449 1668
Tank 30 Yes 45 31 2 84 MEMOUT
Tank 100 Yes 55 36 8 113 TIMEOUT
Tank 500 Yes 44 31 51 205 MEMOUT
Tank 1000 Yes 53 35 107 359 MEMOUT
Tank 5000 Yes 45 32 1865 1354 MEMOUT
Tank 10000 Yes 53 35 8349 3808 MEMOUT

clearly outperforms Uppaal-Tiga. Interestingly, while Uppaal-Tiga suffers
from an exponential blow-up for increasing instance sizes, the final abstractions
found by Synthia are several orders of magnitude smaller than the original
systems: quadratic in the number of components for Fischer, linear in the edge
length of the grid for Robot, or even of constant size for CSMA/CD and Tank.
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Abstract. Abstract interpretation techniques have played a major role
in advancing the state-of-the-art in program analysis. Traditionally,
stand-alone tools for these techniques have been developed for the
numerical domains which may be sufficient for lower levels of program
correctness. To analyze a wider range of programs, we have developed a
tool to compute symbolic fixpoints for quantified bag domain. This do-
main is useful for programs that deal with collections of values. Our tool
is able to derive both loop invariants and method pre/post conditions via
fixpoint analysis of recursive bag constraints. To support better preci-
sion, we have allowed disjunctive formulae to be inferred, where appro-
priate. As a stand-alone tool, we have tested it on a range of small but
challenging examples with acceptable precision and performance.

1 Introduction

Abstract interpretation [2] is a technique to infer program’s properties. It re-
quires the least fixed point of a monotone function over an abstract domain of
the program’s semantics to be computed. Let 〈L,≺〉 be a complete lattice and
⊥ be its least element. A function f : L → L is monotone if f(u) ≺ f(v) when
u ≺ v with all u, v in L. One classical method to find the fixed point is Kleene
iteration, which computes the ascending chain f0 = ⊥, fi+1 = f(fi) with i > 0
until we find i∗ satisfying fi∗+1 = fi∗ . Widening operator [3] is used to guarantee
that the ascending chain is finite.

Traditionally, stand-alone abstract interpretation (AI) tools have been devel-
oped for the numerical domains (such as Octagon [8] and Polyhedra [4]). Little
attention has been paid to building such tools for richer pure domains, such as
bags, maps and sequences. Stand-alone AI tools focus primarily on the logics of
the abstract domains and use sound mechanisms for approximating recursion via
fixed point computation. They have been widely adopted by program analysis
systems that are customized to analyze properties from programs (e.g. [1,9]).
� The tool is available at http://loris-7.ddns.comp.nus.edu.sg/˜project/fixbag/.

G. Gopalakrishnan and S. Qadeer (Eds.): CAV 2011, LNCS 6806, pp. 656–662, 2011.
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Some recent works [10,11] have proposed methods to automatically infer dis-
junctive numerical invariants for added precision. However, numerical invariants
are often insufficient for higher levels of program correctness. For example, many
programs are constructed to compute a collection of values whose correctness
cannot be captured using only numerical properties. Instead, we require a quan-
tified bag domain to provide more precise program analyzers for such programs.
To the best of our knowledge, there is no current published tool that can discover
quantified bag invariants. We present FixBag, a stand-alone fixpoint calculator
for quantified bag constraints. The tool has the following characteristics:

– FixBag can infer disjunctive fixed points of formulae with bag constraints.
The maximum number of disjuncts is provided by end-users. Supported bag’s
operators are union (∪), intersection (∩), and subset (S1 ⊆ S2), where S1

and S2 denote bags.
– FixBag can find fixed points with quantified constraints. Specifically, the

system supports the universal quantifier of the form ∀x ∈ S : P (x) and the
existential quantifier of the form ∃x ∈ S : P (x), where x, S, and P (x) are a
variable, a bag, and a predicate concerning x, respectively.

– FixBag partially supports arithmetic constraints on size properties over
bags. Currently, FixBag allows the following types of size properties to be
inferred: |S1| = m× |S2|, m ≤ |S|, or |S| ≤ m, where m denotes an integer.

Section 2 gives an overview via examples. Section 3 introduces the algorithm to
infer fixed points, as used in our tool. Section 4 summarizes our experimental
results. Section 5 concludes with a short discussion on related works.

2 Motivating Examples

Our tool is able to compute disjunctive fixpoints for constraint abstractions over
the bag domain. To illustrate its capability, we shall analyze two list functions
that are commonly used in functional languages by initially showing their re-
spective constraint abstractions prior to fixpoint analysis. We stress that our
tool is language-independent, as its inputs are logical formulae (with bag and
size constraints) that may be applied to similar abstractions for programs from
other programming languages too.

Our first example is a well-known filter function, which selects elements
from a list that satisfy a predicate, p, as given below in Caml syntax:

filter p xs = match xs with

| [ ] → [ ]
| x : xs → if (p x) then x : (filter p xs) else (filter p xs)

The corresponding constraint abstraction, named filterB , for this function
has three parameters: p to denote the predicate p of filter, S to capture the
elements of input list xs, and R to capture the elements of the method’s output.

filterB(p, S, R) ≡ S={} ∧ R={} ∨ ∃x, S1, R1 ·S={x}∪S1∧
(p(x) ∧R={x}∪R1 ∧ filterB(p, S1, R1) ∨
¬p(x) ∧R=R1 ∧ filterB(p, S1, R1))
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When this constraint abstraction is passed to our tool, we could infer the
following fairly precise closed-form formula using universally quantified bags:

filterB(p, S, R) ≡ (∀x ∈ R : p(x)) ∧ (∀x ∈ S −R :¬p(x)) ∧ R ⊆ S

Our next example is a membership function that determines if an element
exists within an input list or not. Its Caml code is given below:

mem v xs = match xs with | [ ] → false

| x : xs → if x = v then true else (mem v xs)

The corresponding constraint abstraction has three parameters, as shown:

memB(v, S, r) ≡ S={}∧¬r ∨ ∃x,S1 ·S={x}∪S1 ∧ (x=v∧r ∨ x �=v∧memB(v, S1, r))

A precise closed-form formula for this function requires both disjunction and
quantified bag formulae, as shown below, which our tool can derive:

memB(v,S, r) ≡ (∀x ∈ S : x �=v)∧¬r ∨ (∃x ∈ S : x=v)∧ r

These two examples show that a good treatment of quantified formulae and
disjunctions is needed to support more precise analysis.

3 Algorithm

This section presents the algorithm behind FixBag. One of the necessary op-
erators used in fixpoint analysis is hulling, which is well-developed for numerical
domains. However, to the best of our knowledge, there is no work that calculates
the hulling operations on bag/set domain to date. To realize this, we propose
a rule-based approach that uses propagation and simplification rules to attain
the hulling of formulae for the bag domain. Similar to CHR [5], our propaga-
tion rules Rp add new implied constraints to a formula while simplification rules
Rs reduce the size of a formula by removing redundant constraints from it. Al-
though these rules 1, by themselves, simply preserve the logical equivalences of
the original formula, they can help create intermediate results that would play
important roles in other operations. Let φ1 � φ2 be

∧k
i=1 di where d1, ..., dk are

all shared conjuncts of two conjunctive formulae φ1 and φ2. Definition 1 shows
how to find the hulling result of φ1 and φ2.

Definition 1 (Hulling). Given two conjunctive formulae φ1 and φ2, we divide
each of them into two parts: the first one (Γ ) contains all conjuncts of the form
m1 ≤ |S| ≤ m2 and the other one (Δ) has the remaining conjuncts. Thus, the
two original formulae are represented as φ1 = Γ1 ∧Δ1 and φ2 = Γ2 ∧Δ2. The
hulling operation is defined as φ1 	 φ2 = Γ1 	 Γ2 ∧Δ1 	Δ2 where

– Γ1 	 Γ2 =
(
∧

mi1 ≤ |Si| ≤ mi2)︸ ︷︷ ︸
(1)

∧ (
∧

mj1 ≤ |Sj | ≤ mj2)︸ ︷︷ ︸
(2)

∧ (
∧

min(m
i′1, m

j′1) ≤ |S
i′j′ | ≤ max(m

i′2, m
j′2))︸ ︷︷ ︸

(3)

where (1) contains all (mi1 ≤ |Si| ≤ mi2) ∈ Γ1 that Si is not in in Γ2, (2)
consists of all (mj1 ≤ |Sj | ≤ mj2) ∈ Γ2 that Sj is not in Γ1, and (3) has all
Si′j′ that has (mi′1 ≤ |Si′j′ | ≤ mi′2) ∈ Γ1 and (mj′1 ≤ |Si′j′ | ≤ mj′2) ∈ Γ2.

1 Rp and Rs are available at the tool’s website.
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– Δ1 	 Δ2 = simplify
Rs

(Δ1	̂Δ2) where Δ1	̂Δ2 = propagate
Rp

Δ1 �

propagate
Rp

Δ2.

The latter is the harder operation. Intuitively, we find two closures (correspond-
ing to Δ1 and Δ2) of conjunctive constraints that are closed under the set of
propagation rules Rp, compute the intersection of the closures, and simplify the
result by the collection of simplification rules Rs. We also define a version of
the hulling operation without simplification as φ1	̂φ2 = Γ1 	 Γ2 ∧ Δ1	̂Δ2. It
is needed when we want to check whether a particular conjunct contributes to
the hulling result or not. This notion is used to measure the closeness of two
conjunctive formulae in Definition 2. Given two conjunctive formula φ1 and φ2,
φ1"φ2 quantifies their closeness as a rational number2 in the range of 0..1. The
larger the number is, the closer they are to each other. We denote �φ� (#φ$) the
number of conjuncts (disjuncts) in a conjunctive (disjunctive) formula φ.

Definition 2 (Affinity Measure). Given two conjunctive formulae φ1 and φ2,

the affinity measure " is defined as follows: φ1 " φ2 = �(φ1∧φ2)�(φ1�̂φ2)�
�φ1∧φ2�

While our hulling only works with conjunctive formulae, selective hulling [10]
can deal with disjunctive ones. Our tool can increase the precision of the output
fixpoints by allowing up to μ disjuncts to be present during the analysis pro-
cess. The main idea is to repeatedly call hulling with a closest pair of disjuncts
taken from the latest formula until there are at most μ disjuncts remaining. The
function normalize converts a given formula into the disjunctive normal form.

Definition 3 (Selective Hulling). Given a disjunctive formula φ =
∨k

i=1 di

and a maximum number of disjuncts μ, the selective hulling operation ⊕μ is
defined as ⊕μφ = normalize(⊕̂μφ) where ⊕̂μφ is recursively defined as follows:

⊕̂μφ =

⎧⎨⎩
φ if k ≤ μ
⊕̂μ

(
(di′ 	 di′′) ∨

∨
i∈{1..k}\{i′,i′′} di

)
if k > μ

where (i′, i′′) = argmax(dj′ " dj′′ ) with 1 ≤ j′, j′′ ≤ k and j′ �= j′′

Widening [3] is used to ensure that the fixpoint analysis terminates. To maintain
disjunctions in the widening process, selective widening [10] is required.

Definition 4 (Selective Widening). Given two disjunctive formulae φ1 =∨k
i=1 di and φ2 =

∨k
j=1 ej, the selective widening operation φ1
φ2 is defined as

φ1
φ2 = normalize(φ1
̂φ2) where φ1
̂φ2 is recursively defined as follows:

φ1
̂φ2 =

⎧⎨⎩
φ1 	 φ2 if k = 1
(di′ 	 ej′) ∨ (

∨
i∈{1..k}\{i′} di
̂

∨
j∈{1..k}\{j′} ej) if k > 1

where (i′, j′) = argmax(di′′ " ej′′) with 1 ≤ i′′, j′′ ≤ k
2 For simplicity, we may also use an integer-based affinity measure [10] defined as

φ1 � φ2 = round( 
(φ1∧φ2)�(φ1�̂φ2)�

φ1∧φ2� × 98) + 1.
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The algorithm to find the fixpoint for formulae with bag constraints shares
the same ideas with the one used in [10] to infer disjunctive postconditions. The
main challenges here are how we support affinity measure, selective widening,
and selective hulling to work with the bag domain. Given a recursive function f ,
we start with f0 = ⊥ (which is false in the bag domain) and then compute an
ascending chain f1, f2, ..., until we find two equal consecutive elements fi∗+1 =
fi∗ . If the current value in the chain is fi, the next item fi+1 will be calculated
as bottomup(f, fi, μ), which is either f(fi) or its sound approximation with the
help of selective hulling and widening operations. The first kind of operations
helps us achieve a disjunctive fixpoint while the second one ensures the chain
will converge. Algorithm 1 shows how we can obtain fi+1 from f , fi, and μ.

Algorithm 1. Calculating fi+1 = bottomup(f, fi, μ)

ffi ← normalize
(
f(fi)

)
1

if �ffi� < μ then2

return ffi3

else if fi = ⊥ or �⊕μffi� < μ or �fi� < μ then4

return ⊕μffi5

else6

return fi
(⊕μffi)7

First, we normalize the result of f(fi) to achieve ffi , which is a candidate for
fi+1. If #ffi$ < μ, we return ffi , otherwise we need to find a suitable approx-
imation of ffi that has no more than μ disjuncts. If fi = ⊥ or #⊕μffi$ < μ,
the approximation is ⊕μffi . If the two previous conditions fail, we have fi �= ⊥
and #⊕μffi$ = μ. At this point, the approximation will depend on #fi$ be-
cause selective widening only works with two formulae that have the same num-
ber of disjuncts. Therefore, if #fi$ < μ, we still return ⊕μffi . Finally, when
#⊕μffi$ = #fi$ = μ holds, the best approximation is fi
(⊕μffi), which not only
maintains up to μ disjuncts but also contributes to the convergence of the chain.

Soundness. The soundness of our tool is critically dependent on the sound-
ness of the closure process used in the hulling operation. This process is guar-
anteed to be sound, as long as each simplification and propagation rule (from
Rs and Rp, respectively) preserves logical implication. This property helps to
ensure that selective widening and selective hulling will always generate a sound
over-approximation of ffi .

4 Experimental Results

We tested our tool on a set of methods from the OCaml’s List library. To sup-
port higher-order functions, FixBag handles uninterpreted functions and multi-
argument predicates. It takes the abstraction of each function and a number
μ, denoting the maximal number of disjuncts allowed during the fixpoint infer-
ence, as its arguments and returns two closed-form (fixpoint) formulae, one to
denote the function’s post-condition and the other to derive its pre-condition.
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We also measured the running-time of the analysis process. These results and
the inference rules are detailed at our tool’s website.

We have encountered several examples where disjunctive analysis can obtain
more precise fixpoints than conjunctive analysis. Conjunctive analysis can be
simulated using μ = 1. In general, each analyzed function has an upper bound
of μ; increasing μ over this bound does not help achieve more precise fixpoints
and does not affect the analysis time.

5 Related Works and Conclusion

Libraries to support abstract interpretation are popular for program analysis
systems, but they are focused mostly on the numeric domains [8,1]. In the non-
numeric domains, abstract interpretation tools have been developed for shape
analysis [7,12] and for constraint-based analysis [6]. The former is for discovering
data shapes of heap-manipulating programs rather than their pure properties;
and are thus focused on program codes rather than logical formulae. The latter
is meant as a scalable tool for flow-based constraints, rather than for analyzing
collections. Both systems do not automatically handle quantified formulae and
have restricted use of disjunctive formulae.

We have built a stand-alone abstract interpretation tool for quantified bag
domain. Our use of simplification and propagation techniques is inspired from
CHR [5], while the use of affinity-based hulling and widening is targeted at
more precise disjunctive fixpoints. Our experiments have shown that our tool is
capable of efficiently analyzing the collection properties for non-trivial functions.

Acknowledgement. We thank the reviewers for insightful feedback, and grate-
fully acknowledge the support of MoE research grant R-252-000-411-112.
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Abstract. Recent work in robotics has applied formal verification tools to au-
tomatically generate correct-by-construction controllers for autonomous robots.
However, when it is not possible to create such a controller, these approaches do
not provide the user with feedback on the source of failure, making the experience
of debugging a specification somewhat ad hoc and unstructured, and a source of
frustration for the user. This paper describes an extension to the LTLMoP toolkit
for robot mission planning that encloses the control-generation process in a layer
of automated reasoning to identify the cause of failure, and targets the users at-
tention to flawed portions of the specification.

Keywords: synthesis, LTL, GR(1), unrealizability, unsatisfiability, robot control.

1 Introduction

High-level robot control is a topic of current research in robotics. The goal is to auto-
matically generate controllers for autonomous robots to achieve desired high-level be-
havior involving a non-trivial sequence of actions, such as, “collect all my socks from
the apartment floor and put them in the laundry bag”. Recent work in robotics [11, 15]
has applied efficient synthesis techniques [12] to automatically generate provably cor-
rect, closed loop, low-level robot controllers that satisfy high-level behaviors specified
in temporal logic. A discrete abstraction of the workspace is used, and the robot goals
and environment assumptions are described using Linear Temporal Logic, which can
express a rich set of infinite behaviors. The generated continuous robot controllers are
provably correct in that the closed loop system they form is guaranteed, by construc-
tion, to satisfy the desired specification when the robot operates in an environment that
satisfies the modeled assumptions.

However, such synthesis-based approaches present the user with no feedback when
synthesis is impossible, i.e., when there exists an environment in which the robot fails to
achieve the desired behavior – we call such a specification unsynthesizable. An unsyn-
thesizable specification is either unsatisfiable, in which case the robot cannot achieve
the desired behavior in any environment, or unrealizable, in which case there exist en-
vironments that can thwart the robot. When the specification is unsynthesizable, the
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above approaches fail to produce the desired behavior, but do not provide the user with
a source of failure, or suggest changes that would allow synthesis of a controller. In
addition, even when synthesis is possible, the generated automaton may fail to produce
the desired behavior for reasons that involve unsatisfiability or unrealizability of the
environment assumptions. This can make the experience of debugging a specification
somewhat ad hoc and unstructured, and a source of frustration. This paper describes a
procedure for enclosing the control-generation process in a layer of automated reason-
ing that focuses the cause of failure and targets the users attention to relevant portions
of the specification. We present a method of narrowing down the source of unsynthe-
sizability in specifications that can be represented as GR(1) formulas in LTL.

The debugging procedure described in this paper is implemented within Linear Tem-
poral Logic MissiOn Planning (LTLMoP)[8], an open source, modular, Python-based
toolkit that allows users to input structured English specifications describing high-level
robot behavior, and automatically generates and implements the relevant hybrid con-
trollers using the approach of [11]; the synthesized controllers can be embedded within
a simulator or used with physical robots. The most recent version of LTLMoP can be
downloaded online1. There has been considerable previous work on analyzing unsat-
isfiable and unrealizable LTL formulas [2, 4–6, 14]. Our work is most closely related
to that of [9], who present an interactive tool, RATSY [3] for demonstrating specifica-
tion unrealizability. The debugging procedure we implement for LTLMoP differs from
RATSY in that rather than allowing the user to explore counterexamples, it provides
explicit information about specification components in the context of the robot control
problem. We highlight flawed portions of the user-defined specification (either desired
system behavior or environment assumptions), and identify cases of unexpected behav-
ior that specifically affect this domain, such as trivial solutions.

2 Technical Overview

We first review some preliminaries relating to the application of formal methods to high-
level robot control, and outline LTLMoP’s controller-synthesis procedure (depicted in
Fig. 1). We consider a robot functioning in a continuous environment. The robot re-
acts to the environment as perceived through its sensor inputs, and chooses from a set
of actions including moving between adjacent locations. The tasks themselves include
infinite behaviors such as visiting locations or performing actions infinitely often.

Applying formal methods techniques such as model checking and synthesis to con-
tinuous settings in robotics requires a discrete abstraction of problems to enable de-
scription with a formal language. As mentioned earlier, the underlying formal language
used to define high-level specifications in this work is Linear Temporal Logic (LTL) (cf.
[7]). LTLMoP includes a parser that automatically translates English sentences from a
defined grammar [10] into LTL formulas. This allows users to define desired robot be-
haviors (including reactive behaviors) and specify assumptions on the environment’s
behavior using an intuitive descriptive language rather than the underlying formalism.

As shown in Fig. 1, LTLMoP takes as input a user-defined specification, a map of
the environment and a description of the robot sensors and actuators. The specification

1 http://ltlmop.github.com

http://ltlmop.github.com
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Fig. 1. Overview of LTLMoP architecture

is parsed into a formula of the form ϕ = (ϕe ⇒ ϕs), where ϕe includes assumptions
about the sensor propositions, and thus about the behavior of the environment, and ϕs

represents the desired robot behavior. ϕ is in the subclass of LTL described in [12],
and the efficient algorithm introduced therein is used to synthesize an automaton that
implements the input specification with the described robot in the given environment.
The synthesis algorithm is implemented in the JTLV framework [13], with formulas
for the system and environment initial conditions, transitions and goals represented as
Binary Decision Diagrams (BDDs).

The created automaton is correct-by-construction: if a behavior can be achieved in
all environments satisfying the given assumptions, then the LTL formula describing
the behavior holds for every possible execution of the automaton. This implementing
discrete automaton is then viewed as a hybrid controller, wherein a transition between
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states corresponds to the activation of one or more atomic continuous controllers that
satisfy the bisimulation property [1] (e.g., the motion controllers are guaranteed to drive
the robot from one region to another regardless of the initial state within the region).

We refer the reader to [11] for a complete discussion of the hybrid controller, and
to [8] for a description of how atomic controllers are incorporated into the hybrid con-
troller in LTLMoP. Finally, the synthesized hybrid controller can be embedded within a
simulator or used with physical robots (such as the Pioneer 3-DX depicted in Fig. 1).

3 Unsynthesizable Specifications and Undesirable Behavior

A specification ϕe =⇒ ϕs that does not produce a controller is either unrealizable
or unsatisfiable, and there are several possible reasons for either. In addition, if ϕe is
unsatisfiable, then all initial states are winning for the system, and so we do get an
automaton, but a trivial one consisting of all the initial states but no transitions. We
would like to identify this case, since the resulting behavior is probably not as intended.

With regards to unrealizability, we can just as well consider winning system
strategies that prevent the environment from satisfying the formula ϕe. Overloading
terminology, we say that the environment is unrealizable in this case. Note that if the
environment is unrealizable, an otherwise unrealizable robot specification may be syn-
thesizable if the robot can win by preventing the environment from upholding its as-
sumptions. In fact, if the environment is unsatisfiable, every robot specification (even
an unsatisfiable one) is synthesizable. In the robotics domain, we would like to flag
this case, since we would like the robot to fulfill its goals rather than thwart the given
environment.

(a) Analyzing an unsynthesizable specification (b) Trivially synthesizable spec.

Fig. 2.
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Listing 1 Excerpt of a fire-fighting scenario specification with corresponding LTL

1 Env starts with false ¬πperson ∧ ¬πhazardous item

2 Robot starts with false ¬πpick up ∧ ¬πdrop ∧ ¬πcarrying item

3 Robot starts in porch ϕporch

4 If you were in porch then do not person �(ϕporch ⇒ ¬�πperson)
5 If you were in porch then do not �(ϕporch → ¬�πhazardous item)

hazardous item
6 Do pick up if and only if you are sensing �(�πpick up

hazardous item and you are not activating ⇔ (�πhazardous item ∧ ¬�πcarrying item))
carrying item

7 If you did not activate carrying item then �(¬πcarrying item → ¬�ϕporch)
always not porch

8 Do radio if and only if you are sensing person�(�πradio ⇔�πperson)
9 If you are activating radio or you were

activating radio then stay there �((�πradio ∨ πradio)→
∧
l

(ϕl ⇔�ϕl))

10 If you are not activating carrying item and ��((¬πcarrying item ∧ ¬πradio)→ ϕdining)
you are not activating radio then visit dining ...

.

4 Analyzing a Specification in LTLMoP

Given an unsynthesizable specification in LTLMoP, we apply a series of simple checks
to determine which components of the corresponding LTL formula are flawed, trace
them back to their structured English counterparts, and highlight these in the Specifica-
tion Editor. We identify unsatisfiability of the system and environment initial conditions,
single-step transitions, goals, and the conjunction of transitions and goals using boolean
satisfiability tests, without checking the LTL specification as a whole. As a result, some
unsatisfiable safety conditions are identified as unrealizable instead.

Consider the specification in Listing 1 from the fire-fighting scenario described in
[8]. Removing the environment safety requirement in line 4 makes the specification
unrealizable, because the environment can force the robot into a safety violation by
setting πperson to true in the porch. By line 8, this causes the robot to set πradio to
true in the next time step; line 9 then requires it to stay where it is (i.e., � ϕporch),
but line 7 requires ¬ � ϕporch. The robot thus has no legal next state. Our analysis
determines that the system (robot) is unrealizable because the environment can force
a safety violation, and marks all safety sentences as in Fig. 2(a). Consider the same
specification, augmented with the (clearly unsatisfiable) environment safety condition,
Always person and not person (� (πperson ∧ ¬πperson)). Synthesis succeeds, but as noted in Fig.
2(b), the environment liveness is unsatisfiable and the generated automaton is trivial.

5 Conclusions and Future Work

We have described a method for systematically analyzing the environment and system
components of autonomous robot control specifications. By exploiting the structure of
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the specification, we identify possible reasons for failure to create an implementing
robot controller. Our approach is implemented as part of the open source LTLMoP
toolkit. We enclose the synthesis in a layer of reasoning that identifies the cause of
failure, enabling the user to target their attention to the relevant portions of the specifi-
cation. Once we identify a specification (or part thereof) as unsatisfiable or unrealizable,
there is still potential for further analysis. Future work will leverage existing techniques
[2, 5, 6, 9] to isolate the source of failure and provide the user with comprehensive
feedback, including modifications to the input that would result in an implementing
automaton.
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Abstract. Verifying code equivalence is useful in many situations, such
as checking: yesterday’s code against today’s, different implementations
of the same (standardized) interface, or an optimized routine against a
reference implementation. We present a tool designed to easily check the
equivalence of two arbitrary C functions. The tool provides guarantees
far beyond those possible with testing, yet it often requires less work
than writing even a single test case. It automatically synthesizes inputs
to the routines and uses bit-accurate, sound symbolic execution to verify
that they produce equivalent outputs on a finite number of paths, even
for rich, nested data structures. We show that the approach works well,
even on heavily-tested code, where it finds interesting errors and gets
high statement coverage, often exhausting all feasible paths for a given
input size. We also show how the simple trick of checking equivalence
of identical code turns the verification tool chain against itself, finding
errors in the underlying compiler and verification tool.

1 Introduction

Historically, code verification has been hard. Thus, implementors rarely make
any effort to do it. We present uc-klee, a modified version of the klee [2] tool
designed to make it easy to verify that two routines are equivalent. This ability
is useful in many situations, such as checking: different implementations of the
same (standardized) interface, different versions of the same implementation, op-
timized routines against a reference implementation, and finding compiler bugs
by comparing code compiled with and without optimization. Comparing identi-
cal code against itself finds bugs in our own tool.

Previously, cross checking code that takes inputs with complex invariants
or complicated data structures required tediously constructing these inputs by
hand. From experience, the non-trivial amount of code needed to do so can
easily dwarf the size of the checked code (e.g., as happens when checking small
library routines). Manual construction also leads to missed errors caused by
over-specificity. For example, when manually building a linked list containing
symbolic data, should it have one entry? Two? A hash table should have how
many collisions and in which buckets? Creating all possible instances is usually
difficult or even impossible. Further, manually specifying pointers (by assigning
the concrete address returned by malloc) can limit paths that check relationships
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on them, such as when an if-statement checks whether one pointer is less than
another. In general, if input has many constraints, a human tester will miss one.

In contrast, using our tool is easy: rather than requiring users to manually
construct inputs or write a specification to check code against, they simply give
our tool two routines (written in raw, unannotated C) to cross check. The tool
automatically synthesizes the routines’ inputs (even for rich, nested data struc-
tures) and systematically explores a finite number of their paths using sound,
bit-accurate symbolic execution. It verifies that the routines produce identical
results when fed identical inputs on these explored paths by checking that they
either (1) write the same values to all escaping memory locations or (2) terminate
with the same errors. If one path is correct, then verifying equivalence proves
the other is as well. If the tool terminates, then with some caveats (discussed in
§ 3.4), it has verified equivalence up to a given input size.

Because uc-klee leverages the underlying klee system to automatically ex-
plore paths and reason about all values feasible on each path, it gives guarantees
far beyond those of traditional testing, yet it often requires less work than writing
even a single test case. We show that the approach works well even on heavily-
tested code, by using it to cross check hundreds of routines in two mature,
widely-used open source libc implementations, where it:

1. Found numerous interesting errors.
2. Verified the equivalence of 300 routines (150 distinct pairs) by exhausting

all their paths up to a fixed input size (8 bytes).
3. Got high statement coverage — the lowest median coverage for any experi-

ment was 90% and the rest were 100%.

A final contribution is a simple, novel trick for finding bugs in the compiler and
checking tool by turning the technique on itself, which we used to detect a serious
llvm optimizer bug and numerous errors in uc-klee.

2 Overview

Cross checking implementations simplifies finding correctness violations because,
rather than requiring that users write a functional specification, it lets the tool
use a second implementation as a reference — functional differences will show
up as mismatches. A natural concern is what happens on invalid inputs. In
our experience, real code often shows error equivalence, where an illegal input
causes the same behavior in both (e.g., when given a null pointer, both cross
checked routines crash). Our tool exploits this fact and treats equivalent crashes
as equivalent behavior, but flags when one implementation crashes and the other
does not. (In general, cross checking cannot detect when two routines make
equivalent mistakes.) This finesse works well in practice. In the rare cases where
inputs are allowed to produce differing results, it is easy for simple, user-written
C code to filter these inputs (discussed further in § 2.1).

We show how uc-klee works by walking through the simple but complete
example in Figure 1, which gives two trivial routines intended to add a value
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to a structure field and the cross checking harness that uc-klee provides to
compare them. The user compiles the routines using uc-klee’s compiler (llvm)
and gives the resultant bitcode modules and two routine names to uc-klee,
which links the code against a checking harness and runs the result. At a high
level, the cross checking harness executes as follows:

1. It marks all function parameters as containing unconstrained symbolic data
(i.e., they can contain any value representable given their size). uc-klee will
lazily allocate memory on demand if this symbolic data is used as a pointer
and dereferenced (discussed below).

2. It uses symbolic execution to explore (ideally all) paths in the two imple-
mentations, checking that they produce identical effects when run on the
same values.

3. If a path’s constraints permit a value that causes an error (such as a division
by zero, null pointer dereference, or assertion failure), uc-klee verifies that
the other routine terminates with the same error when run with the same
input values. uc-klee also forks execution and explores a path on which the
error does not occur so that it can cross-check the routine on the remaining
values.

4. At the end of each path, uc-klee traverses all reachable memory, and uses
its constraint solver to prove this memory has equivalent contents at the end
of both paths. If this check fails, it generates a concrete input to demonstrate
the difference. If the check succeeds, then with some caveats (see § 3.4) uc-

klee has verified the two routines as equivalent since the constraints it tracks
are accurate and exact (down to the level of a single bit). Thus, if one path
is correct, uc-klee has verified that the other path is correct as well.

Note that uc-klee’s equivalence guarantee only holds on the finite set of paths
that it explores. Like traditional testing, it cannot make statements about paths
it misses. However, in many cases, even if there are too many paths, klee can
at least show total equivalence up to a given input size.

At a more detailed level, the code in Figure 1 works as follows:

Lines 14–18: stack allocates two variables to pass as the routine’s parameters
(f and v) and marks them as symbolic.

Line 21: creates a copy of the current address space, which it will restore later
so that add bad runs on identical values.

Line 22: uses klee eval to run add. This call returns once for each path ex-
plored in add. If add terminates with an error, the error is stored in e1.

Line 3: at the first dereference f→val, uc-klee checks if f can be null. Since
f has no constraints on its value, it can, so uc-klee forks execution and
continues as follows:

Error path: adds the constraint that f is null, records in e1 that a null deref-
erence error occurred, and returns from klee eval.

Non-error path: adds the constraint that f is not null and attempts to resolve
the dereference. It determines that f is an unbound symbolic pointer, so it
allocates memory (of size foo), marks it as symbolic, binds it to f, and con-
tinues executing until the path completes. It then returns from klee eval.
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1 : // two routines to cross−check.
2 : int add(foo *f, int v) {
3 : f−>val = f−>val + v;
4 : return f−>val;
5 : }
6 : int add bad(foo *f, int v) {
7 : f−>val = f−>val + 1;
8 : return f−>val;
9 : }
10:
11: // harness provided by uc−klee
12: main() {
13: klee err e1,e2;
14: int retv, v;
15: foo *f;
16:
17: klee make symbolic(&f);
18: klee make symbolic(&v);

19:
20: // record memory state "add" runs on.
21: int s0 = klee snapshot();
22: klee eval(retv = add(f,v), &e1);
23: int s1 = klee snapshot();
24:
25: // discard writes, keep path constraints
26: klee restore(s0);
27: klee eval(retv = add bad(f,v), &e2);
28: int s2 = klee snapshot();
29:
30: // compare results.
31: if (!klee compare errors(&e1,&e2)
32: | | !klee compare(s1, s2, &f)
33: | | !klee compare(s1, s2, &v)
34: | | !klee compare(s1, s2, &retv))
35: klee error("Mismatch!\n");
36: }

Fig. 1. Trivial but complete checking example

Line 22 (after klee eval): the two paths execute independently through the
remaining code.

Line 23: records the memory state produced by running add, which it later
compares against the memory state produced by running add bad.

Line 26: restores the values of f and v that the current path ran add on so that
add bad runs on identical values. It discards all writes add did (otherwise
add bad would run with a modified value for f→val), but preserves all
constraints, including any pointers it lazily bound (i.e., the dereference of f
on line 3).

Line 27: evaluates add bad using klee eval. The error path also returns with
a null pointer error (since f is constrained to null and line 7 dereferences
it). The non-error path executes without error; the dereferences of pointer f
(lines 7,8) resolve to the same object lazily allocated at line 3.

Line 31: checks that both paths returned with the same error state (they did).
Lines 32–34: checks that the values transitively reachable from the routines’

outputs in each memory state are equivalent (§ 3.2 describes this analysis
in more detail). On the non-error path, the check for f (line 32) fails and
produces a test case with v equal to some value other than 1 (the single
value for which both routines return identical results).

Notes. While the example declares the input variables f and v with their static
types for readability, as far as uc-klee is concerned they could have been un-
typed byte arrays (which is how uc-klee treats them in any case) since our
implementation correctly handles casting between pointers and integers.

Although this example does not access environment variables, uc-klee addi-
tionally marks the global environ pointer as unbound in order to explore paths
where its values are read. Section 4 gives an example difference found as a result.
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For performance, uc-klee does not explore paths that have identical llvm

instructions since they must produce the same results. uc-klee silently prunes a
path when it satisfies both of the following conditions: (1) all previously executed
basic blocks are identical and (2) all reachable basic blocks are identical.

2.1 Handling Uninteresting Mismatches

A tight specification that maps each input value to a single output value provides
the simplest use case for uc-klee since any difference between implementations
constitutes a bug. For looser specifications that include “don’t cares,” user ef-
fort may be needed to suppress uninteresting differences that uc-klee would
otherwise report. Examples include permitting code to do anything when fed il-
legal input values or representing “success” by any non-zero integer rather than
a single, specific value (e.g., 1). Note that the problems caused by permitting
flexibility are not specific to uc-klee — any method (such as randomized or
specification-based testing) that checks output values or behavior has to deal
with them.

uc-klee provides a simple yet general mechanism for eliminating uninter-
esting mismatches. Instead of invoking checked code directly (lines 22 and 27
in Figure 1), it passes the checked routine and its arguments to a user-supplied
function, which calls the checked routine after filtering its input (e.g., by using an
if-statement to skip illegal values) and then returns the (possibly canonicalized)
return value.

Figure 2 shows an example filter for the isdigit function in the C library,
specified to return non-zero if its input represents a digit in ASCII and 0 oth-
erwise. The filter first rejects input values that fall outside the range specified
in the C standard (line 2). It then invokes the passed-in isdigit function (line
4) and canonicalizes all non-zero return values to 1. In our experiments, this
routine eliminated all mismatches for isdigit and 11 analogous routines.

1 : int isdigit f(int (*f)(int), int c){
2 : if (c < EOF | | c > 255)
3 : return 0;
4 : return ((*f)(c) != 0);
5 : }

Fig. 2. Simple filter routine

In practice, even if a specification permits
variable behavior, code tends to behave sim-
ilarly. In fact, the most wide-spread use for
uc-klee we envision — checking new ver-
sions of code against old versions — suffers
from this problem the least since such de-
cisions are consistent across revisions. Even
where we would expect the most variance in behavior — independently-
developed code bases fed error inputs — implementations tend to behave sim-
ilarly. For example, in our experiments, checked routines typically crashed on
illegal pointer inputs rather than returning differing values.

Many of the differences uc-klee found illustrated needless ambiguities in the
underlying standard, which permitted divergent behavior without a subsequent
gain in speed, power, or simplicity. In future work, we plan to explore the use of
uc-klee as an automatic tool for finding such specification imprecisions.

In a sense, uc-klee inverts the typical work factor for checking code: a tra-
ditional specification-based approach requires specifying what behavior the user
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cares about (i.e., the functionality the code should implement), whereas uc-

klee infers this information “for free” by cross checking implementations. On
the other hand, uc-klee (may) require specifying the “don’t care” behaviors
(when code is allowed to differ), which typically takes orders of magnitude less
effort than specifying functionality. Further, users only need to specify these de-
tails on demand, after uc-klee detects an uninteresting mismatch. In contrast,
specification verification requires non-trivial work before doing any checking.

3 Implementation

In this section we discuss the trickiest part of implementing uc-klee: tracking
whether a piece of memory contains a pointer and if so, to which memory object.
We then describe how it uses this ability both to compare the results of two
procedure invocations (§ 3.2) and to lazily allocate memory when an unbound
pointer is dereferenced (§ 3.3). We then discuss limitations.

3.1 Referents: Tracking Which Memory Contains Pointers

uc-klee tracks pointers using a referent-based approach similar to [15,21], but
modified to support symbolic execution. Each register, stack location, global, and
heap object has a corresponding piece of shadow memory. Whenever code writes
a pointer to memory or a register, uc-klee writes the starting address of the
pointed-to object (its referent) to this shadow memory at the same offset. When
code writes a non-pointer value, uc-klee clears these shadow values, indicating
that the memory does not contain a pointer. The key advantage this approach
is that we can determine what object a pointer was intended to point to even if
the pointer’s actual value refers to an address outside the bounds of the object
(and potentially inside a different, allocated object).

For space reasons we elide most details of this tracking. It roughly mirrors that
of a concrete tool, with the one difference that we must reason about reads and
writes at symbolic locations — i.e., those calculated using symbolic expressions
and hence representing a set of values rather than a single concrete value (a
constant). For example, suppose variable i has the constraint 0 <= i < n where
n is the size of array a. Then the write a[i] = &p conceptually creates a set of
n possible (exclusive) arrays since the write of address &p could be to a[0] or
a[1] or ... a[n] depending on the value of i. Subsequent stores using symbolic
indices create more possibilities; reads cause similar explosions. Thus, we cannot
just trivially calculate which shadow location to propagate this information to
or read it from. Fortunately, the solution is easier to describe than the problem:
klee already has the ability to reason about the reads and writes checked code
performs at symbolic locations; by handling and representing shadow memory
in the same way as arrays in checked code, we can reuse this same machinery.

Low-level C code can egregiously violate any sensible notion of typing. To
handle such code we took the extreme position of completely ignoring static
types and treating all memory as potentially containing a pointer. (We may
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revisit this decision in the future.) While there are a variety of details to get
right, the most common problem is that given a dereference *(p+q), we do not
robustly know which value (p or q) holds the address, and which the offset.
We determine this information based on usage rather than type, and mark any
location as not holding a pointer if the code performs operations such as: bitwise
operations that lose upper bits (losing the lower few bits is okay), negation, left
shift, multiplication, division, modulus, and subtracting two pointer values. As a
result, we can reliably check code that does type debasements far beyond merely
casting between pointers and integers.

3.2 Object Comparison

We define two routines as being equivalent on a path if they write identical values
to all memory transitively reachable from their return value and each of their
formal arguments. That is, pointer values (addresses) can differ as long as (1) the
objects they point to do not, and (2) the pointer is to the same offset within the
object. uc-klee checks this property by doing a mark and sweep of all reachable
memory and using the constraint solver to prove that all non-pointer bytes are
equal. In the concrete case, comparisons reduce to constants, avoiding expensive
satisfiability queries. For symbolic bytes that neither routine modifies, the values
in each address space snapshot contain identical symbolic expressions, which are
trivially equivalent. If uc-klee detects a pointer, it adds the referenced objects
(from each snapshot) to a queue for later traversal, rather than comparing the
objects’ addresses, which may differ between the two procedures. In the case of
pointers stored into memory at symbolic offsets, it is possible for a particular
value to resolve to multiple objects. In this case, uc-klee examines every pair
of objects to which the two pointers could resolve. If a single pair of objects
differs, uc-klee flags the error. Note that unless a function’s return value or one
of its formal arguments contains a pointer to a global variable, uc-klee does
not automatically compare global variables because multiple implementations
typically utilize an incompatible set of globals.

3.3 Lazy Initialization

uc-klee uses a variation on lazy initialization [16] to dynamically allocate ob-
jects on an as-needed basis. This prior work was in the context of checking a
single class method in type-safe Java; our implementation aims at cross checking
non-type-safe C functions.

When the test harness marks function arguments as symbolic (the call to
klee make symbolic on lines 17–18 of Figure 1), uc-klee also sets an “un-
bound” bit in shadow memory. At each pointer dereference *p, uc-klee exam-
ines this shadow memory to check whether p is an unbound pointer and hence
must be lazily allocated. If a dereferenced pointer p is unbound, uc-klee:

1. Allocates an object of size n (discussed below) and marks it as contain-
ing unbound, symbolic bytes. Any dereference of this memory will similarly
(recursively) allocate an object.
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2. Constrains p’s referent to equal the addressm of the allocated object (pbase =
m), ensuring future dereferences map to the same object.

3. Constrains p’s “unbound” bit to false (bound). This prevents uc-klee from
unintentionally allocating a new object during a subsequent dereference of
the same pointer. Note that once a referent is bound, it can never become
unbound, even if the object is explicitly free’ed by the procedure.

4. Constrains p to point within the allocated object: m <= p < m+ n.

Each lazy allocation creates a unique memory object. A different approach would
allow unbound pointers to resolve to existing objects of the same type. We did
not use this method since it significantly increases the state space and can lead
to many false positives. The main drawback of our current approach is that uc-

klee cannot satisfy address constraints of code that specifically targets pointers
to overlapping memory blocks, which limits coverage. We plan to revisit this
decision as we encounter more real examples that require it.

Address constraints. Additional complexity arises when code compares un-
bound pointers. Suppose we take the true path of an equality comparison x ==
y and both y and x are unbound. If x is subsequently dereferenced and bound
to a new object, we want y to be bound to the same object (and vice versa).
We initially thought doing so would require constructing dynamic dependency
graphs to determine where a pointer comes from (difficult in the general case
given complex symbolic expressions). Fortunately, our shadow memory scheme
makes the solution simple: merely constrain x’s shadow memory to equal y’s
(xbase = ybase and xunbound = yunbound). A subsequent binding of one will make
the other bound as well. If only one pointer is unbound, we do the same thing,
with the same effect. Note that, on the false path (where x �= y), we do not add
a constraint that their shadow memory differs because x and y may point to
different bytes in the same object (and thus may share a referent).

Code sometimes compares two pointers to different objects using greater-
than or less-than conditions (such as a binary tree sorted by address). While
not strictly legal, uc-klee must nonetheless support such comparisons in order
to be effective. Unlike equality, these comparisons add no additional constraints
on referents. Instead, when a subsequent dereference causes uc-klee to lazily
allocate an object, the object’s address must satisfy all existing path constraints.
To accomplish this, uc-klee allocates two large (e.g., 32 megabyte) memory
pools on startup at high and low address ranges. Each allocation searches both
of these pools for a block whose address does not violate the path constraints. If
it cannot find one, the path terminates and uc-klee reports a runtime error. The
most common cause we observed was code that specifically checks whether two
pointers overlap. As we mentioned above, uc-klee does not allocate overlapping
objects; thus, such constraints cannot be satisfied.

Allocation size. When uc-klee lazily allocates an object, it must choose a
fixed size for that object. When an unbound pointer references a type of known
size (e.g., an int or a struct), we simply allocate the exact size necessary to
store that type. However, we cannot do the same when the pointer might refer
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to an array (since C arrays do not have statically known sizes). For example,
when a ‘char *’ (string) is dereferenced, we do not know the size of the string.
Unfortunately, making it too small will limit statement coverage, since many (or
all) paths would terminate with out-of-bounds dereferences. Making it too large
will disguise legitimate out-of-bounds errors in the code. Our current solution is
a hack, but it seems to work well enough in practice. We first consider allocating
an object of a user-specified minimum size (for our experiments, we found that
a minimum size of 8 bytes works in most cases). uc-klee queries the constraint
solver to test whether this allocation size would satisfy the current memory
operation. If not, uc-klee iteratively doubles the guess. Within logarithmic
time, uc-klee either finds a satisfying allocation size or reaches a user-specified
maximum (e.g., 2 kilobytes). If the maximum fails, uc-klee terminates the path
and reports a runtime error to the user.

Depth limits. Lazy initialization allows uc-klee to dynamically support hier-
archical data structures such as linked lists and trees. To control the resulting
path explosion, our tool limits this type of allocation to a user-specified depth
limit, incrementing a counter on each nested allocation. If the depth counter
exceeds the limit, our tool terminates the path and outputs a warning. Without
a depth limit, the path space would quickly become unmanageably large.

3.4 Limitations

This section enumerates the known limitations of uc-klee. We are of course
vulnerable to bugs in uc-klee or its environment modeling code. We check at
the implementation level, which makes it easy to work with real code. However, it
makes any verification claims true only for the specific compiler and architecture
we used for our experiments. These guarantees may not hold on code where
the compiler must make a choice among several unspecified behaviors (such as
function argument evaluation order) or when running on a machine that differs
in some observable way (such as word size or endianness).

During cross checking we only invoke a routine a single time and check it
in isolation, missing behaviors that require multiple invocations or coordination
across routines. In general, we may miss behaviors for code that depends on the
values of addresses (e.g., greater-than or less-than relationships among objects
allocated by malloc). More specifically, as discussed § 3.3, there are several
limitations in our approach to lazy initialization. We assume that lazily allocated
objects cannot alias existing objects, so we will not exercise code that checks for
overlap (such as memmem) or expects an unbound pointer to point to the middle
of an existing object (e.g., a circular buffer). We will also miss paths that need
objects larger than our maximum size, since these will always terminate with an
error. Indirect calls to unbound function pointers are unsupported at this time.
On paths that have errors, uc-klee is unable to identify the root cause. Thus,
it will not detect when two checked routines terminate with the same error type,
but from different causes.

The underlying system, klee, must replace a symbolic value with a single con-
crete example when used as an allocation size or in a floating point operation.
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Thus, our tool may miss bugs exposed by different concrete values later in the
execution path. In addition, klee cannot handle routines that return structures,
contain inline assembly, call unresolved external routines, or call external rou-
tines using symbolic arguments. When a path encounters one of these, uc-klee

flags the routine as unverified.

4 Evaluation

This section shows that uc-klee works well at verifying equivalence by cross
checking recent versions of two heavily-tested open source C libraries: uClibc,
an implementation of the C standard library targeted at embedded devices, and
Newlib, an embedded libc implementation by Red Hat used by Cygwin and
Google Native Client. We demonstrate its effectiveness on three common use
cases, cross checking: different implementations of the same interface, different
versions of the same code, and identical code to find errors in the verification
tool chain (in our case: the llvm compiler and uc-klee itself).

We measure the quality of cross checking in two ways: (1) crudely, by the
statement coverage it achieves, and (2) by whether checking exhausts all paths
and terminates, since that verifies that the routines are equivalent up to a fixed
input size when invoked a single time (modulo the limitations discussed in § 3.4).

It is a bit tricky to measure statement coverage for library code. We com-
pute coverage of a cross checked routine as a percentage of the total number
of llvm instructions reachable from it, with the exception that when routine
a calls another exported routine b that we will also cross check, we exclude b’s
instructions from a’s coverage statistics. Usually, such calls can only exercise a
small fraction of b’s code (e.g., when a calls printf with a format string that
just contains “hello world”). On the other hand, if a calls c and we do not
generate a test harness for c, we do count its instructions since we conservatively
assume it is an internal helper function that a should thoroughly exercise. Note:
every instruction is included in the coverage statistics for at least one procedure.

For all experiments, we ran uc-klee on each procedure for up to 10 minutes,
and allowed each procedure to read from up to 2 symbolic files of 10 bytes
each (klee argument --sym-files 2 10). This was in addition to the symbolic
arguments and environment generated by the cross checker. Our machine was a
quad-core 2.8 GHz Intel i7 machine with 12GB of RAM running Fedora Linux 12.

4.1 Different Implementations: Newlib vs. uClibc

Our first experiment cross checks Newlib’s source repository from July 2010
against uClibc version 0.9.31. We modified both libraries to use uc-klee’s
memory allocator. We also disabled several uClibc internal startup and shut-
down tasks that interfered with uc-klee. Finally, to keep the experiments man-
ageable, we disabled optional features, such as wide character and locale support.

We automatically generated a test harness for each routine that both libraries
implemented with the exception of variadic routines or those whose prototypes
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Fig. 3. Instruction coverage reported by our cross checking experiments. Each vertical
bar represents a single procedure, sorted by coverage. The “incomplete” category in-
cludes routines whose analysis did not complete within 10 minutes or hit a limitation
in klee or uc-klee. The median statement coverage for the left graph was over 90%
(59 routines had 100%) and for the right was 100% (105 had 100%).

differed. We could extend our system to support the former by generating mul-
tiple test cases for different numbers of arguments. Our experiment tested all
other exported procedures, even those that demonstrate weaknesses in our tool.

Figure 3 (left) shows the coverage reported by uc-klee. In the routines where
uc-klee found no differences, it checked 66 to termination (versus 15 where it
exceeded the time limit), thereby verifying equivalence for the given input size,
despite many having entirely different structure and overall appearance to the
human eye. The two implementations of ffs (“find first bit set”) in Figure 4
are a good example: uc-klee exhausted all 33 paths in the test harness and
terminated after 6.8 seconds, reaching 100% statement coverage.

1 : int ffs (int word) {
2 : int i=0;
3 : if (!word)
4 : return 0;
5 : for (;;)
6 : if (((1 << i++)&word) != 0)
7 : return i;
8 : }

(a) Newlib

1 : int ffs(int i) {
2 : char n = 1;
3 : if (!(i & 0xffff)) { n += 16; i >>= 16; }
4 : if (!(i & 0xff)) { n += 8; i >>= 8; }
5 : if (!(i & 0x0f)) { n += 4; i >>= 4; }
6 : if (!(i & 0x03)) { n += 2; i >>= 2; }
7 : return (i) ? (n+((i+1) & 0x01)) : 0;
8 : }

(b) uClibc

Fig. 4. Two implementations of ffs (“find first set bit”) uc-klee verifies as equivalent
despite their difference in appearance and approach

uc-klee found differences in 57 of the 143 functions checked, at least 7 of
which were real bugs—despite the code being heavily tested, actively used, and
designed to do well-understood tasks. One interesting example was an error
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in Newlib’s implementation of remove (Figure 5), which the POSIX stan-
dard mandates should work for both files and directories. uc-klee detects that
Newlib returns -1 (error) while uClibc returned 0 (success) when the symbolic
input filename could refer to a directory. This error would be difficult to detect
statically.

1 : int remove r(struct reent *ptr,

2 : const char *filename) {
3 : if ( unlink r (ptr, path) == −1)
4 : return −1;
5 : return 0;

6 : }
7 :

8 : int remove(const char *filename) {
9 : return remove r( REENT,

10: filename);

11: }
(a) Newlib

1 : int remove(const char *filename)

2 : {
3 : int saved errno = errno;
4 : int rv;

5 : rv = rmdir(filename);

6 : if ((rv < 0) && (errno == ENOTDIR)) {
7 : set errno(saved errno);

8 : rv = unlink(filename);

9 : }
10: return rv;

11: }
(b) uClibc

Fig. 5. uc-klee detects that Newlib does not handle directory removal correctly

We achieved high statement coverage in most but not all procedures. One
common cause of low coverage is that we only cross check code using a single
invocation. In certain cases, multiple invocations of a routine are required in
order to reach additional code. In other cases, one routine may write values to
globals or statics that are read by another. A good example of both is atexit,
which registers routines to be run on program termination by exit. A simple
extension would allow uc-klee to handle such cases.

4.2 Different Versions of the Same Implementation: uClibc

To measure uc-klee’s effectiveness at cross checking different versions of the
same code, we used it to compare all functions that appeared in both uClibc

0.9.30.3 (March 2010) and uClibc 0.9.31 (April 2010) that were not byte-code
identical. This selection yielded 203 routines (out of 399 possible), each of which
uc-klee analyzed for up to 10 minutes.

Figure 3 (right) plots the instruction coverage. uc-klee revealed 2 previ-
ously unknown bugs and also detected 5 instances of bugs that were patched in
the newer release. We elide a detailed discussion for space reasons and instead
provide a brief example for each.

The newer version of uClibc introduced a bug in ctime (used to convert a
time record to a string). The older version used a persistent internal structure
(i.e., static) for storage that lacked thread safety. The newer version instead
used a stack-allocated buffer that it never initialized. A sufficiently large input
value caused the returned string to differ, which uc-klee detected.

uc-klee confirmed that a number of bugs present in uClibc 0.9.30.3 were
corrected in version 0.9.31. One example is unsetenv (below). The old code (left)
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terminated with an out-of-bounds read when environ is NULL (e.g., after a call
to the function clearenv), while the new code (right) exited gracefully:

1 : char **ep = environ;
2 : while (*ep != NULL) { . . . }

(a) unsetenv: uClibc 0.9.30.3

1 : char **ep = environ;
2 : if (ep) while (*ep != NULL) { . . . }

(b) unsetenv: uClibc 0.9.31

4.3 Checking the Checker: Finding Bugs in UC-KLEE and LLVM

A standard caveat in verification papers is that their claims are contingent on the
correctness of the verifier and underlying compiler. One of our contributions is the
realization that one can detect errors in both by simply attempting to prove the
equivalence of identical code, thus turning the verification system on itself.

Finding compiler optimizer bugs. We check that an optimizer has correctly
transformed a program path by compiling the same routine both with and with-
out optimization and cross checking the results. With the usual caveats, if any
possible value exists that would cause the path to give different results, uc-klee

will detect it. If there is no such value, it has verified that the optimizer worked
correctly on the checked path. If it terminates, it has shown that the optimizer
transformed the entire routine correctly. Any discrepancies it finds are due to
either compiler bugs or the routine depending on unspecified behavior (e.g.,
function evaluation order between sequence points). Because the library code we
checked intends to be portable, even use of unspecified compiler behavior almost
certainly constitutes an error.

We compared all 622 procedures in uClibc 0.9.31, compiled with no optimiza-
tion (-O0) versus high optimization (-O3). This check uncovered at least one bug
in llvm 2.6’s optimizer but did not expose its root cause. For memmem, uc-klee

reported a set of concrete inputs where the unoptimized code returned an offset
within haystack (the correct result), while the optimized code returned NULL,
indicating that needle was not found in haystack. We confirmed this bug with
a small program. Since llvm is a mature, production compiler, the fact that we
immediately found bugs in this simple way is a strong result. We found a total
of 70 differences, but because of time constraints could not determine whether
they were due to this bug or others. Future work will be necessary to test opti-
mization levels between these two extremes and attempt to automatically find
a minimal set of optimization passes that yield an observable difference.

Finding UC-KLEE bugs. In general, tool developers can detect verifier bugs
by simply cross checking a routine against another identical copy of itself (i.e.,
compiled at the same optimization level). This check has been a cornerstone of
debugging uc-klee—it often turned up tricky errors after development pushes.

The uc-klee bugs we found fell into two main categories: (1) unwanted non-
determinism in uc-klee and its environmental models, which makes it hard to
replay paths or get consistent results, and (2) bugs in our initial pointer tracking
approach. In fact, as a direct result of the tricky cases cross checking exposed
in this pointer tracking implementation, we threw it away and instead designed
the much simpler and robust method in Section 3.1.
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4.4 Results summary

Figure 6 summarizes the results presented in this section. The “klee Limi-
tations” row describes procedures that resulted in incomplete testing due to
limitations in the underlying klee tool: inline assembly (141 procedures), ex-
ternal calls with symbolic arguments (206), and unresolved external calls (17).
“uc-klee Limitations” are cases where the tool failed to lazily allocate objects
either because the required size of the object exceeded our specified maximum of
2KB (20 procedures) or uc-klee was unable to allocate an object whose address
satisfied the path constraints (117 procedures). Note that limitations resulted in
individual paths being terminated. As a result, certain procedures encountered
a variety of limitations on different paths. In particular, a procedure deemed
“klee limited” may have also encountered uc-klee limitations, although the
converse is not true.

Newlib/ uClibc llvm uc-klee

uClibc Versions Optimizer Self-check
Procedures Checked 143 203 622 622
Procedures Verified 66 84 335 335
Differences Detected 57 20 70 12
No Differences (timeout) 15 30 85 91
klee Limitations 4 56 94 147
uc-klee Limitations 1 13 38 37
100% Coverage 59 105 367 375
Mean Coverage 72.2% 80.7% 85.6% 85.6%
Median Coverage 90.1% 100.0% 100.0% 100.0%

Fig. 6. Breakdown of procedures checked in each experiment

5 Related Work

This paper builds on the many recent research projects in symbolic execution,
such as [2,3,12,16,22], as well as several pieces of our past work. About a decade
ago, we showed how to avoid the need for manual specification by cross checking
multiple implementations in the context of static bug finding [9], an idea we
later used with symbolic execution [2,3]. This latter work only handled complete
applications or routines run on manually constructed symbolic input; this paper
shows how to easily check code fragments with unbound inputs and how to use
cross checking to find bugs in the checking infrastructure itself. This paper is
related to under-constrained execution [8], but modified to support the cross
checking context, where many of the tricky issues are elided.

Many previous approaches to software checking have been specification based,
requiring extensive work on the part of the user. One example is the use of model
checking to find bugs in both the design and the implementation of software [1,4,
5,11,13,14], which requires manually building test harnesses. A second example is
recent verification work that checks code manipulating complex data structures
against manually constructed specifications [6,7,10,18]. While both can exploit
their specifications to reduce the state space, they require far more user effort
than uc-klee.

Similar work has attempted to cross check largely identical code by using
over-approximation to filter out unchanged portions of Java code [20]. While
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their technique is sound with respect to verification, a consequence of over-
approximation is that reported differences may not concretely affect the output.
In contrast, uc-klee generates test cases that supply concrete inputs to expose
behavioral differences in the code.

Earlier work in cross checking has focused on combinational circuits in hard-
ware [4,17,19]. While an important milestone, hardware verification is simpler
than general purpose software equivalence checking, which includes loops, com-
plex pointer relationships, and other difficult constructs.

Smith and Dill [23] recently verified the correctness of real-world block cipher
implementations. Their work exploits the key properties that block ciphers have
fixed input sizes and loop iterations, enabling full loop unrolling. They developed
several constraint optimizations that we hope to adapt for cross-checking general-
purpose code.

6 Conclusion

We have presented uc-klee, a tool that often makes cross checking two im-
plementations of the same interface easier than writing even a single test case.
The preliminary results demonstrate the usefulness of our approach, which often
exhaustively explores all paths and verifies two procedures as equivalent up to a
given input size.

We are currently building an improved version of uc-klee that is capable of
cross checking individual code patches rather than complete routines, thereby
reducing the problems of path explosion. Further, by jumping to the start of a
patch, it will more robustly support code not easily checked by dynamic tools
(such as device driver code). We plan to use this ability to check that kernel
patches only remove errors or refactor code (for simplicity or performance) but
do not otherwise change existing functionality.
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tems. A relational abstraction is obtained by replacing the continuous
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tions (ODE). As a result, we abstract a given hybrid system as a purely
discrete, infinite-state system. We apply k-induction to this abstraction
to prove safety properties, and use bounded model-checking to find po-
tential falsifications. We present the basic underpinnings of our approach
and demonstrate its use on many benchmark systems to derive simple
and usable abstractions.

1 Introduction

In this paper, we present relational abstractions of hybrid systems. A relational
abstraction transforms a given hybrid system into a purely discrete transition
system by summarizing the effect of the continuous evolution of states over time
using relations. The abstract discrete system is an infinite-state system that can
be analyzed using standard techniques for verifying systems such as k-induction
and bounded model checking.
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dynamics in each mode by means of a relation R(x0,x). The relation R relates a
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time instant, through some time trajectory of the system starting from x0. Such
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The two views above provide two key advantages of the relational abstraction
approach. As a consequence of the first view, we can use techniques for gener-
ating invariants for continuous systems to generate a relational abstraction. We
propose simple extensions of template-based invariant generation techniques,
which can abstract systems with linear as well as nonlinear dynamics, to con-
struct relational abstractions. Template-based techniques allow us to specify the
form of the relational abstraction [9,19]. Therefore, our technique can be used
to obtain linear arithmetic relations for systems with nonlinear dynamics.

As a consequence of the second view, we obtain discrete infinite-state abstrac-
tions of hybrid systems. This enables us to use techniques such as k-induction
using decision procedures [37], abstract interpretation [11,21], or virtually any
technique for discrete systems, to analyze hybrid systems.

It is well-known that the problem of verifying hybrid systems is quite hard,
both in theory and in practice. Recently, many advances have yielded remarkably
efficient tools for integrating affine ODEs over sets and that work over large state
spaces [24,5,39,16,35,17]. However, we have observed that a significant gap in
performance remains when these techniques are used to perform symbolic model
checking, along the lines of tools such as HyTech and PHAVer [23,15]. In our
experience, this gap stems from the need to handle the dynamics repeatedly for
the same mode, often with small variations between subproblems. In this paper,
we hypothesize that the situation with continuous dynamics is analogous to that
of function calls encountered during program analysis. During inter-procedural
program analysis, it is often observed that the analysis of each function call,
given the state at the entry to the call, is quite efficient. However, the overall
inter-procedural analysis is often not scalable due to repeated analysis of the
same function with different actual parameters. Therefore, as in the case of
function calls in program analysis, we propose summarization techniques that
abstract the effect of the dynamics in each mode by a discrete transition [27]. As
a result, our technique can efficiently handle continuous dynamics. However, on
the flip side, our approach may lose precision if the relational abstraction is too
conservative. Furthermore, the computation of relational invariants implicitly
doubles the number of state variables.

Our approach is able to prove safety properties of hybrid systems using tech-
niques such as k-induction, as well as to discover potential violations through
bounded model checking. To evaluate the idea of using relational abstractions
of hybrid systems, we generate relational abstractions of some standard bench-
marks and model check these abstractions. We generate relational abstractions
using a combination of quantifier elimination tools (REDLOG, QEPCAD) to
search for templatized invariants [42,8,38], and polyhedral analysis of ODEs us-
ing fixed point iteration over cones [36]. We analyze the resulting relational
abstractions using the SAL framework from SRI [34,40]. Our preliminary exper-
iments are quite promising: our approach has the ability to prove properties of
hybrid systems that are known to be complex, while at the same performing
much more efficiently than symbolic model checkers. The data from our exper-
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iments along with an extended version of this paper with proofs will be made
available online1. We now discuss other related ideas in the literature.

Transition Invariants and Variance Analysis: The idea of defining
“progress” invariant predicates over pairs of states, x, x, is well-known in the
field of program analysis. A lot of work has been done on verifying liveness
properties using ranking functions, transition invariants, and progress invari-
ants [4,30,10,18]. However, there are some important distinctions between these
various forms of relational invariants. Transition invariants [30] capture the re-
lationship between the current state and any previous state (at a particular pro-
gram location). Transition invariants were used to prove termination. Progress
invariants capture the relationship between the current state and the immediately
previous state (at a particular program location) [18]. Progress invariants were
used to compute complexity bounds of programs. The relational abstractions
presented here have a subtle difference: they capture the relationship between
the current state and all previous states after the current mode was entered.
When combined with the entry and exit conditions of a mode, relational invari-
ants are exactly summaries of that mode. We use relational invariants to create
abstractions of hybrid systems that can be used, for instance, to verify safety
properties.

Podelski and Wagner provide a verification procedure for (region) stability
properties of hybrid systems [31], where they derive binary reachability relations
over trajectories of a hybrid system, similar to what is being proposed here.
However, there are two key differences in our methodology: (a) Our approach
deals with the dynamics at each mode up front, deriving relational abstractions.
On the other hand, the technique of Podelski et al. transforms the entire hybrid
system, relying on safety verification built into a tool such as Phaver to derive the
relations [15]. Our goal in this paper is to make the process more efficient using
constraint-based approaches and improve hybrid system safety verification in the
first place. (b) Second, our ultimate goal is to verify safety properties efficiently
as opposed to verifying stability.

Abstractions of Hybrid Systems: Many different types of discrete abstrac-
tions have been studied for hybrid systems including predicate abstraction [2,41]
and abstractions based on invariants [28]. The use of counterexample-guided ab-
straction refinement for iterative refinement has also been investigated in the
past (Cf. Alur et al. [2] and Clarke et al. [7], for example). In this paper, the
proposed abstraction yields a discrete but infinite state system.

Hybridization is a technique for converting nonlinear systems into affine sys-
tems by subdividing the invariant region into numerous subregions and approxi-
mating the dynamics as a hybrid system by means of a linear differential inclusion
in each region [23,3,12]. However, such a subdivision is expensive as the number
of dimensions increases and often infeasible if the invariant region is unbounded.

Reachability Analysis: Reasoning about the reachable set of states for flows
of nonlinear systems is an important primitive that is used repeatedly in the

1 Cf. http://www.csl.sri.com/~tiwari/relational-abstraction/

http://www.csl.sri.com/~tiwari/relational-abstraction/
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analysis of nonlinear hybrid systems. This has been addressed using a wide
variety of techniques in the past, including algebraic techniques, interval analysis,
constraint propagation, and Bernstein polynomials [32,26,29,33,13].

2 Preliminaries

We present the basic definitions and properties of continuous systems defined by
Ordinary Differential Equations (ODE). Let R denote the set of real numbers.
We use a, . . . , z with subscripts to denote (column) vectors and A, . . . , Z to
denote matrices. For an m × n matrix A, the row vector Ai, for 1 ≤ i ≤ m,
denotes the ith row. We define continuous systems using vector fields.

Definition 1 (Vector Field). A vector field F over a set X ⊆ R
n is a function

F : X �→ R
n mapping each x ∈ X with a field direction F(x).

Vector fields commonly arise from the definition of time-invariant systems. A
time-invariant system defined by the ODE dx1

dt = f1(x), . . . , dxn

dt = fn(x) can be
identified with the vector field F(x) = (f1(x), . . . , fn(x)). Therefore, a continu-
ous system S : 〈F, X〉 is defined by a tuple consisting of the vector field F and a
domain (also referred to as a mode invariant) X ⊆ R

n. We now define the time
trajectories of a continuous system:

Definition 2 (Time Trajectories). A time trajectory of a continuous system
S : 〈F, X〉 is a function τ : [0, T ) �→ R

n for some T > 0, such that: τ(t) ∈ X,
for all t ∈ [0, T ) and dτ

dt = F(τ(t)), ∀ t ∈ [0, T ).

Note 1. To facilitate presentation, we have (deliberately) restricted our atten-
tion to time-invariant and autonomous systems. The full generalization to time
variant, non-autonomous systems will be presented in an extended version.

If the continuous system S is defined by a Lipschitz continuous vector field
F, then for any x0 ∈ X , we can guarantee the existence of a unique time trajec-
tory τ such that τ(0) = x0 [25]. Henceforth, we will assume that the systems
considered are defined by Lipschitz continuous vector fields. An affine system
S is a continuous system whose dynamics are defined by an affine vector field
dx
dt = Ax + b. If f(x) is continuous and differentiable over x then we write ∂xf
to denote the vector of its partial derivatives w.r.t each xi. The Lie derivative
of a function g with respect to a field F is given by LF (g) := (∂xg) · F(x),
where ‘·’ computes the dot product of two vectors.
Positive Invariant Set: A set M ⊆ X is an invariant set for the system S
iff for any x ∈ M , every time trajectory τ : [0, T ) �→ X such that τ(0) = x is
entirely contained in M ; that is, (∀ t ∈ [0, T )) τ(t) ∈M .

Let M be a closed set defined by the assertion
∧m

j=1 gj(x) ≤ 0 for some
finite m. For technical reasons, we assume that each gj(x) is continuous and
differentiable, and M is a “practical set” satisfying the constraint qualification
(Cf. Blanchini & Miani [6], page 104):

(∀ x ∈ X), (∃z) gj(x) + ∂xgj · z < 0 . (1)
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R1 = 1KOhm

L = 2mH

R2 = 0.5KOhm

5V 1mF
S

VC

VL

Fig. 1. Circuit diagram for an LCR circuit with a voltage-controlled switch S

Informally, the constraint qualifications ensure that
∧

j gj(x) < 0 represents the
(relative) interior of the setM and

∨
j gj(x) = 0 represents the boundary. It can

be shown that all affine functions gj and positive-semidefinite quadratic forms
(defining n-dimensional ellipsoids) satisfy these conditions.

Theorem 1. The set M :
∧m

j=1 gj(x) ≤ 0 is a positive invariant for the vector
field F if for each j ∈ [1,m] the following assertion holds true: ∀ x ∈ X : gj(x) =
0 ∧ ∧

i�=j gi(x) ≤ 0 ⇒ LF (gj) < 0.

The theorem states that under appropriate conditions, a closed set M is a posi-
tive invariant set if the vector field F lies in the tangent cone at each point on the
boundary of the set. It is a direct consequence of Nagumo’s theorem, a more gen-
eral result that holds for non-Lipschitz continuous dynamics and non-“practical”
sets as well. The theorem above provides a basis for various techniques for gen-
erating invariants for continuous systems using quantifier elimination and con-
straint solving [32,36,19,29].

Hybrid Systems: Hybrid systems combine the continuous evolution of state
with discrete, instantaneous jumps that can alter the state as well as the dy-
namics of a system [22].

Definition 3 (Hybrid System). A hybrid system H is defined by a set of
discrete modes 〈m1, . . . ,mk〉, wherein, each mode mi is defined by a continuous
system Si : 〈Fi, Xi〉. The system can change modes through a set of discrete
transitions τ1, . . . , τm. Each transition is defined by a prior mode m0, a post-
mode m1 and a transition relation ρ[x,x′] ⊆ Xm0 ×Xm1 , that relates the state
x ∈ Xm0 before the transition to the state x′ ∈ Xm1 obtained as a result of
taking the transition. The initial conditions are given by the initial mode minit

with the initial state set Θ ⊆ Xinit.

A hybrid system is a switched system if each discrete transition of the system
does not modify the continuous state variables. In other words, each discrete
transition relation ρ[x,x′] can be written as ρ : γ(x) ∧ x′ = x, for guard γ(x).
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Example 1 (Switched system). Figure 1 shows the circuit diagram for a voltage-
controlled switch that closes whenever the voltage across the capacitor (VC)
exceeds 4V , and opens whenever VC goes below 1V .

With the switch S open, the dynamics of the voltage across capacitor VC and
the voltage across the inductor VL are given by dVC

dt = 5 − VC − VL,
dVL

dt =
−5 + VC − VL. Likewise, with the switch S closed, the dynamics of the voltage
across the inductor are given by dVC

dt = 5 − 3VC − VL,
dVL

dt = −5 + 3VC − VL.
In each mode, we assume the mode invariant (VC , VL) ∈ [−10, 10]× [−10, 10].

3 Relational Abstractions

We define relational abstractions for continuous systems, and present proof rules
for checking that a given relation is an abstraction of the time trajectories of a
continuous system defined by ODEs.

Let S : 〈F, X〉 be a continuous system defined by the vector field F, and domain
(invariant) X . It is assumed that S arises from a mode of a larger hybrid system.
Let R(x,y) be a relation over X ×X .

Definition 4 (Relational Abstraction Without Time). The relation R ⊆
R

2n is a (timeless) relational abstraction of a continuous system S if for all
time trajectories τ : [0, T ) �→ X of the system S, it is the case that (∀ t ∈
[0, T )) (τ(0), τ(t)) ∈ R.

Thus, for a time invariant system, a relational abstraction R captures all pairs
of states (x,y) such that it is possible to reach y from x in a finite amount of
time by evolving according to the dynamics of the system.

A relational abstraction R ⊆ X × X is said to be complete for a system S
if whenever R(x,y) holds, there exists a time trajectory τ : [0, T ) �→ X such
that τ(0) = x and τ(t) = y, for some time 0 ≤ t < T . Likewise, a relational
abstraction R is linear if it can be expressed as an assertion in the theory of
linear arithmetic over reals.

Note 2. A continuous system whose dynamics are defined by constants (such
as a mode of a multirate hybrid automaton) has a complete, linear relational
abstraction. For instance, the evolution of the ODE dx

dt = 2, dy
dt = −3 can be

abstracted by the relation R(x, y, x′, y′) := x′−x ≥ 0 ∧ 1
2 (x′−x) = −1

3 (y′−y).
In fact, we can show that hybrid systems with constant dynamics in each mode
are bisimilar to a purely discrete transition system through relationalization. On
the other hand, linear vector fields can fail to have complete abstractions.

We now define an “extended system” S′ from a given system S such that
invariants of S′ will yield relational abstractions for S.

Definition 5 (Extended System). Let S be a continuous system over x ∈ R
n

defined by vector field F and invariant region X. The extended system S′ has state
variables (x,y) ∈ R

2n with the dynamics.

dy

dt
= F(y),

dx

dt
= 0 , (2)
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invariant region given by X×X and with the initial conditions x(0) = y(0) ∈ X.

We now refine the notion of positive invariants from Section 2 to account for the
presence of initial conditions in the system.

Definition 6 (Initialized Positive Invariant). A set M is an initialized pos-
itive invariant for the system S with initial conditions X0 ⊆ M iff for all time
trajectories τ : [0, T ) �→ R

n of S starting from τ(0) ∈ X0 we have τ(t) ∈ M for
all t ∈ [0, T ).

An initialized positive invariant is an over-approximation of all states reachable
through a time trajectory starting from some pre-specified set of initial states.
This is, in fact, the true analog of an invariant for a program.

Note that every positive invariant setM (following the definition in Section 2)
that contains the initial set X0 is an initialized positive invariant. On the other
hand, an initialized positive invariant may not be a general positive invariant.
This is because, it may be possible for trajectories that start from some state in
the set M −X0 to exit the invariant set M .

Lemma 1. A relation R is a relational abstraction of S if and only if R is an
initialized positive invariant for S′.

Proofs are provided in an extended version of the paper.
Therefore, if we can compute initialized positive invariants of the extended

system S′ with initial states x(0) = y(0), we may use them to obtain relational
abstractions. In this work, we use various techniques that can compute positive
invariants M (using the definition in Section 2) of systems S that contain some
initial set of states X0.

Theorem 2. Let M be a positive invariant of the extended system S′ containing
the initial states X0 = {(x,x) | x ∈ X}. Then M is a relational abstraction of
the system S.

Proof. We note that a positive invariant M containing the initial states X0 is
also an initialized positive invariant. I.e, for any trajectory σ starting from X0,
we know that σ(t) ∈M since σ(0) ∈M . The rest follows from Lemma 1.

The converse of the theorem above does not hold, in general. As discussed
above, a positive invariant M containing the initial set of states X0 is not nec-
essarily an initialized positive invariant.

Note 3. The extended system can be expressed, equivalently, using the (time
reversed) system instead of the system (2),

dy

dt
= 0,

dx

dt
= −F(x) (3)

with the initial conditions x(0) = y(0).
In other words, a relational abstraction R(x,y) is a positive invariant of one

of two dynamical systems: System 2 where x is frozen in time and y evolves
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according to the vector field F, and System 3 where y is frozen in time and x
evolves according to the time reversed field −F.
Proof Rule for Relational Abstractions: The proof rule for relational
abstractions can be derived from the proof rule for invariant sets. Furthermore,
techniques for synthesizing invariants can be directly used to synthesize rela-
tional abstractions. We now present a proof rule for checking if a relation R is a
sound abstraction. We assume that the relation R is specified as an assertion of
the form

R(x,y) : g1(x,y) ≤ 0 ∧ . . . ∧ gm(x,y) ≤ 0 ,

wherein g1, . . . , gm are continuous and differentiable functions over R
2n. Further-

more, for technical reasons, we assume that the set R∩ (X ×X) in R
2n defined

by the relation R restricted to X is a closed set and gj satisfy the constraint
qualifications in (1).

Definition 7. The following rules allow us to conclude that the relation R, as
specified above, is a relational abstraction of a continuous system S:

Initialization: ∀ x ∈ X, R(x,x) , and
Flow Preservation: We may use the rule for forward time:

∀j ∈ [1,m], ∀ x,y ∈ X,
∧
i�=j
gi(x,y) ≤ 0 ∧ gj(x,y)=0 ⇒ (∂ygj)·F(y) < 0 ,

or the rule for time reversed dynamics:

∀j ∈ [1,m], ∀x,y ∈ X,
∧
i�=j

gi(x,y) ≤ 0 ∧ gj(x,y)=0⇒ (∂xgj)·(−F(x)) < 0 .

Example 2. We now consider relationalizations for the inductor-capacitor-
resistor (LCR) circuit in Example 1. Consider the mode when the switch is
open with dynamics given by dVC

dt = 5− VC − VL,
dVL

dt = −5 + VC − VL.
We wish to show that the relation R(VC0, VL0, VC , VL), represented by the

assertion below, is a relational abstraction: (VC0, VC , VL0, VL) ∈ [−10, 10]4 ∧
VC + 5VL ≤ VC0 + 50 ∧ 4VL ≤ VL0 + 30 ∧ 2VL − 3VC ≤ 2VL0 + 30.

Let us consider the inequality VC + 5VL − VC0 − 50 ≤ 0. For the initial
condition, we set VC = VC0 and VL = VL0 and verify that 5VL0 ≤ 50 holds over
the invariant region (VC0, VL0) ∈ [−10, 10]2. Likewise, the Lie derivative of the
left-hand side expression is given by 4VC − 6VL − 20. We verify the following
entailment using an SMT solver

R(VC0, VL0, VC , VL) ∧ VC + 5VL − VC0 − 50 = 0 |= 4VC − 6VL − 20 < 0 .

The remaining constraints are similarly verified.

Disjunctive Relational Abstraction: Often, the relational abstraction can
be represented as the disjunction R(x,y) :

∨m
j=1 Rj(x,y) of finitely many rela-

tions R1, . . . , Rm, such that (a) each relation Rj is represented by an assertion
over x,y satisfying the flow preservation proof rule in Definition 7, and (b) the
disjunctive relation R(x,y) satisfies the initialization rule.
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Example 3. Consider, once again, the LCR circuit in Example 1. The relation
below is a disjunctive relational abstraction for the switch open mode:

|VL| ≤ max (|VL0|, |VC0 − 5|) ∧ |VC − 5| ≤ max (|VL0|, |VC0 − 5|) .
Verifying this fact can be performed by expanding the definitions of max and
| · |. The resulting assertion is cast in the disjunctive normal form, and the flow
preservation proof rule in Definition 7 can be checked for each disjunct. The
initialization rule can be checked for the whole disjunction.

3.1 Relational Abstractions of Hybrid Systems

A relational abstraction of a hybrid system is constructed by replacing each con-
stituent continuous system by its relational abstraction and keeping the discrete
transitions unchanged. Specifically, if H is a hybrid system (Definition 3) with k
modes and n real-valued variables, then the relational abstraction of H is a state
transition system over the state space {1, . . . , k} ×R

n whose transition relation
is the union of the discrete transitions of H and the relational abstractions of
the k modes of H.

Several classes of hybrid automata, such as timed automata and linear hybrid
automata, have complete relational abstractions. Since the discrete transitions
are not abstracted, we only need to ensure that the relational abstraction of the
continuous dynamics are complete.
Timed Automata: The continuous dynamics of a timed automata with n
clocks, x1, . . . , xn, can be abstracted by the relation ∧n

i=2(x1− x10 = xi− xi0)∧
x1 ≥ x10. It is easy to check that this is a complete abstraction.
Multirate Automata: The continuous dynamics defined by ODEs dx1

dt =
c1, . . . ,

dxn

dt = cn, where c1, . . . , cn are nonzero constants, can be abstracted by
the relation ∧n

i=2(
x1−x10

c1
= xi−xi0

ci
) ∧ x1−x10

c1
≥ 0. Again, it is easy to check

that this is a complete abstraction. Note that the result for timed automata is
obtained as a special case where all ci are 1.
Rectangular Automata: In rectangular automata, the dynamics in each
mode are specified as a1 ≤ dx1

dt ≤ b1, . . . , an ≤ dxn

dt ≤ bn. Assuming 0 < ai ≤ bi
for all i, these dynamics can be abstracted by the relation

0 ≤ max
(
x1 − x10

b1
, . . . ,

xn − xn0

bn

)
≤ min

(
x1 − x10

a1
, . . . ,

xn − xn0

an

)
Again, it is easy to check that this is a complete abstraction.
Linear Hybrid Automata: In linear hybrid automata, the dynamics in
each mode are specified as a linear constraint φ(ẋ) over the dotted variables ẋ.
Without loss of generality, we can restrict φ to be of the form A1ẋ ≤ b1 ∧ A2ẋ ≥
b2, where A1, A2 are n×n rational matrices and b1, b2 are n×1 vectors consisting
of positive rationals. These dynamics can be abstracted by the relation

0 ≤ max(A1(x− x0)./b1) ≤ min(A2(x− x0)./b2)
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Fig. 2. Framework for implementing a safety verification engine using relationalization

where ./ is componentwise division. This is again a complete abstraction. Note
that the result for rectangular automata is obtained as a special case where
A1, A2 are identity matrices.
Linear Systems with Rational Eigenvalues: First consider the linear
system dx

dt = Dx, where D is a diagonal matrix with rational entries λ1, . . . , λn.
For simplicity assume λi �= 0 for all i. Since they are rational, the λi’s can be
written as integer multiples of some base rational λ, that is, λ1 = c1λ, . . . , λn =
cnλ for some rational λ and integers c1, . . . , cn. A complete relational abstraction
of the linear system is given by

(∃r > 0)
n∧

i=1

[xi = rcixi0]

If A is not diagonal, but diagonalizable with all rational eigenvalues, then a
relational abstraction can be obtained in the same way after doing a change of
variables transformation. If A is nilpotent, then again the linear system can be
shown to have a complete relational abstraction.

4 Implementation

Figure 2 shows the overall verification framework. It consists of two parts: (a)
an invariant generator for generating the relational abstraction of the input hy-
brid system, and (b) a verifier for analyzing the relational abstraction using
techniques such as k-induction and bounded model checking (BMC). Note that
other verification techniques/tools are equally applicable here. Our framework
abstracts each mode up front. It is possible, in practice, to implement the ab-
straction on-the-fly, whenever a previously unseen mode is entered.

We now discuss the implementation of relational abstraction, restricting our
attention here to techniques that have been employed in our experiments.
We primarily apply template-based methods for generating relational abstrac-
tions [9,19]. Template-based techniques formulate an unknown parameterized
form for the required invariant and cast the problem of generating the invariant
as an ∃∀ formula. These ∃∀ formulas can be solved directly using quantifier elim-
ination techniques over the theory of reals [42,8], or they can be first converted
into ∃ formulas through dualization. The ∃ formulas, which contain nonlinear
constraints over the unknown parameters, can be solved using either fixed point
iteration over cones [36], or using bit-vector solvers [19], or by simulating the
system numerically [20]. In our experiments, we use a specialized quantifier elim-
ination technique [38] and the tool TimePass, which implements a fixed point
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iteration with widening over polyhedral cones for affine ODEs [36]. We consider
three types of abstractions affine, eigen, and box.
Affine abstractions: Affine abstractions employ the template: a ·x+b ·x0 ≥
a0. In practice, the template: a(x− x0) ≥ a0 suffices after taking the initiation
into account. Affine relational abstractions are computationally inexpensive to
generate, but they are also of relatively poor quality.
Eigen abstractions: For linear systems, such as dx/dt = Ax, whenever A
has real eigenvalues, useful relational abstractions can be generated using the
eigenvectors of AT corresponding to those real eigenvalues [39]. Here, AT denotes
the transpose of matrix A. Specifically, if c is such that AT c = λc, then by simple
algebraic manipulation, we obtain d

dt (c1x1 + . . .+ cnxn) = λ(c1x1 + . . .+ cnxn)
where c := [c1; . . . ; cn] and x := [x1; . . . ;xn]. Let p denote the linear expression
c1x1 + . . . + cnxn and let p0 denote the linear expression c1x10 + . . . + cnxn0.
Here, xi0 denotes the old value of xi. If λ < 0, then we know that the value of p
approaches zero monotonically. Consequently, we get the relational abstraction
(p0 < 0 ⇒ p0 ≤ p < 0) ∧ (p0 > 0 ⇒ p0 ≥ p > 0). Similarly, we can write the
relational invariants for the case when λ > 0 and λ = 0.
Box abstractions: Box relational abstractions are Boolean combinations of
affine relational invariants of the form

max (a1|x1|, . . . , an|xn|) ≤ max (a1|x10|, . . . , an|xn0|)
where ai’s are unknown nonnegative real numbers. Discovering appropriate val-
ues for ais does not require expensive quantifier elimination. We can find box
relational invariants in O(n3) time. Box invariants do not always exist: sufficient
(and necessary) conditions for their existence are known [1]. Example 3 shows a
box invariant for the switch open mode.

5 Experimental Evaluation

We evaluate our approach over the navigation benchmarks [14], to experimen-
tally evaluate the usefulness of relational abstractions for verifying hybrid sys-
tems. The navigation benchmarks model a vehicle moving in a 2-dimensional
rectangular space [0,m− 1]× [0, n− 1]. This space is partitioned in m× n cells.
Let x, y denote the position of the vehicle and vx, vy denote its velocity. Then
the dynamics of the vehicle in any particular cell are given by the ODEs:

dx
dt = vx dvx

dt = a11(vx − b) + a12(vy − c)
dy
dt = vy

dvy

dt = a21(vx − b) + a22(vy − c)
where the matrix A := [a11, a12; a21, a22] and the direction (b, c) are parameters
that can potentially vary (for each of the cells)2.

Every benchmark in the suite is specified by fixing the matrix A, the number
of cells m × n, the direction (b, c) in each cell, and initial intervals for each
2 The matrix A is Hurwitz: the dynamics for (vx, vy) asymptotically converge to (b, c).
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Table 1. Comparison of various abstractions over the NAV benchmarks. All experi-
ments were performed on an Intel Xeon E5630 2.53GHz single-core processor (x86 64
arch) with 4GB RAM running Ubuntu Linux 2.6.32-26. Legend — depth: k-induction
depth, time: time taken by verifier, status: P: Proved Property, CE: k-induction
base case fails and counterexample is produced, F: inductive step fails, no proofs or
counterexample. Note: Relational eigeninvariants are inapplicable for nav07, nav08
(indicated by -). k-induction timings reported as t1 + t2 indicate that an auxiliary
lemma was used. t1 is the time to prove the property, and t2 to discharge the lemma.

Benchmark Affine Invs Affine+Eigen Invs Affine+Eigen+Box Invs

depth status time(s) depth status time(s) depth status time(s)

nav01 4 F 0.63 4 F 0.88 4 F 1.91
nav01 5 P 0.75 5 P 0.91 5 P 1.36

nav02 4 F 0.64 4 F 0.87 4 F 1.8
nav02 5 P 0.68 5 P 1.04 5 P 3.33

nav03 4 F 0.60 4 F 0.91 4 F 1.72
nav03 5 P 0.67 5 P 1.05 5 P 2.7

nav04 3 CE 0.49 8 F 3.21 8 F 34.883
nav04 4 P 0.75+0.99 4 P 0.98+2.21

nav05 2 CE 0.47 8 F 3.85 8 F 37.31
nav05 8 P 2.15+2.50 8 P 5.38+11.05

nav06 4 CE 0.61 8 F 18.01 8 F 494.5
nav06* 4 CE 1.03 8 P 21.80+7.42 8 P 40.22+35.08

nav07 5 CE 0.66 - - - 5 F 69.9
nav07 - - - 6 P 6.25

nav08 4 CE 0.52 - - - 6 CE 0.95

nav09 4 CE 0.57 4 CE 1.45 4 CE 19.87

nav10 3 CE 0.44 3 CE 0.99 3 CE 0.95

of the four state variables x, y, vx, vy. Our experiments focus on proving the
unreachability of a distinct cell marked B for each benchmark instance [14].

In our experiments, we verify the safety property for the navigation bench-
marks using k-induction over the relational abstraction. We use the SAL infinite
bounded model checker, with the k-induction flag turned on (sal-inf-bmc -i),
which uses the SMT solver Yices in the back end. Table 1 reports the results. For
each benchmark, we report the depth used for performing k-induction (under
“depth”), the output of k-induction (under “status”), and the time it took (un-
der “time”). There are three possible outputs: (a) the base case of k-induction
fails and a counterexample is found (denoted by “CE”), (b) the base case is
proved, but the induction step fails; i.e., no counterexample is found, but no
proof is found either (denoted by “F”), (c) the base case and the induction step
are successfully proved (denoted by “P”). Since we perform k-induction on an
abstraction, the counterexamples may be spurious, but the proofs are not. As
Table 1 indicates, relational abstractions are sufficient to establish safety of the
benchmarks nav01–nav05, nav06*, and nav07. The system nav06* is the same
as nav06 but with a slightly smaller set of initial states. However, the proof fails
on nav06 and nav08–nav10. There are two reasons for failure: (a) poor quality
of abstraction, which is reflected in entries “CE” in Table 1, and (b) inability
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to find suitable k-inductive lemmas. This happens in the case of nav06, where
the proof fails without yielding a counterexample. As discussed in Section 4, we
employed three kinds of relational abstractions for each mode: affine, eigen, and
box. Table 1 also shows performance of each of these techniques.

Affine abstractions: In Table 1, Columns (2)–(4) report results on affine
relational abstractions. We note that affine abstractions are sufficient to prove
safety of benchmarks nav01–nav03, but they fail on all other benchmarks.

Eigen abstractions: The dynamics in each mode of the benchmarks nav01–
nav06 and nav10 have negative real eigenvalues. In Table 1, Columns (5)–(7)
present results using a relational abstraction obtained by combining affine and
eigen abstractions. For nav04–nav06, the combination eliminates the spurious
counterexamples. However, no such benefit is seen on nav08–nav10 benchmarks.
The dynamics in benchmarks nav07–nav08 do not have any real eigenvalues.

Box abstractions: The dynamics of all modes of all benchmarks in Table 1
satisfy all the conditions for the existence of box invariants, which enables us
to generate box relational invariants for each of them. Columns (8)–(10) report
results using a relational abstraction obtained by combining affine, eigen, and
box relational invariants. In the case of nav07, where there are no eigen invari-
ants, addition of box invariants eliminated the counterexamples from the model
and even enabled verification of safety using k-induction with depth 6. However,
no such benefit is seen for benchmarks nav08–nav10. Also, when eigen invari-
ants exist, then adding box invariants does not seem to improve the quality of
abstraction. Note that the use of box invariants increases the time taken to per-
form k-induction: this is expected since box invariants have a complex Boolean
structure, which increases the search space of the SMT solver.

Comparison with Other Tools: Comparing our timings with those reported
in the literature for the very same benchmarks, especially previous work by one
of the authors [35], we note that our techniques are at least an order of magnitude
faster on the larger benchmarks (10s of seconds vs. 100s−1000s of seconds using
template-based flowpipes [35]). A detailed comparison will be made available in
our extended version.

Disjunctive and conjunctive relational invariants: One plausible reason
for the failure to prove nav08–nav10 benchmarks is that we do not consider
invariants of richer Boolean structure, such as 2-disjunctive invariants of the
form p(x0) ≥ 0 ⇒ p(x,x0) ≥ 0. Even though eigen invariants have this form,
there may be other invariants of this form that are not related to the eigenvectors
of the A-matrix. We also do not consider conjunctive invariants of the form
p1 ≥ 0 ∧ p2 ≥ 0. Note that p1 ≥ 0 and p2 ≥ 0 need not separately be inductive,
but their conjunction could be inductive. For this reason, we often fail to find
them by just considering templates for p1 ≥ 0 and p2 ≥ 0 separately.

Overcoming limitations of k-induction: Even if the relational abstractions
are strong enough to rule out all unsafe behaviors, we may still fail to prove the
system safe using k-induction. This will happen if the safety property is not
k-inductive for any k. This is possibly the case for benchmarks nav04-nav06.
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Table 2. Time (in milliseconds) to generate all affine equality, inequality and eigen
relational invariants for all modes of all the benchmarks

Type of Relational Invariant Time (no state invariant) Time (with state invariant)

Affine Inequality 60ms 6740ms

Affine Equality + Eigen 70ms 340ms

However, we are able to successfully prove safety of nav04 and nav05 by using
an auxiliary lemma. The auxiliary lemma was itself verified by k-induction again.
For nav06, we are unable to find any suitable auxiliary lemma at this time.

Another plausible cause for the failure of k-induction is the introduction of
spurious loops in the relational abstraction, where no such loops exist in the
concrete system. Analysis of the counterexamples to the induction step in nav06
(generated by sal-inf-bmc -i -ice) strongly indicates this possibility.

One way to eliminate spurious loops in the abstract is based on assuming that
the concrete system stays in a mode for some small, but fixed, amount of time.
Under the assumption that the concrete system stayed in a mode for at least
0.1 second, we strengthened the affine invariants of nav06, allowing us to prove
safety of nav06 (for a slightly smaller set of initial states than what is specified
in the nav06 benchmarks). These results are reported in row nav06* in Table 1.
We conjecture that this trick will eliminate all the spurious counterexamples in
the other navigation benchmarks.
Quantifier elimination for generating relational invariants: The new
redlog/qepcad combination [38] is quite effective in generating all the affine and
eigen invariants used in our experiments. Table 2 provides the time taken by all
runs of the quantifier elimination process to generate these invariants. We report
times for two cases depending on whether we used a template of the form ψ[x0]⇒
R(x0,x), with a state invariant antecedent guarding the relation. The times are
negligible since the benchmarks are 4-dimensional systems (they all involve only
four real-valued variables) with relatively simple (linear) dynamics in each mode.
As a final remark, note that quantifier elimination does not return specific values
for the parameters, but constraints on the unknown parameters. We choose
values by solving a satisfiability problem. In our examples, the constraints after
elimination were simple enough to perform this step manually. The redlog files
that were used to generate the relational invariants and SAL models of the
relational abstraction are publicly available3.

6 Conclusions

We have presented an approach for verifying hybrid systems based on relational
abstractions. Relational abstractions can be constructed compositionally by ab-
stracting each mode separately. Our initial results are quite encouraging. The
technique successfully solves some of the standard benchmark examples an or-
der of magnitude faster than symbolic model checkers. The abstractions can be
3 http://www.csl.sri.com/~tiwari/relational-abstraction/

http://www.csl.sri.com/~tiwari/relational-abstraction/
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coarse, and k-induction itself can be challenging to apply on hybrid systems in
practice. Our future work will focus on improving the speed and precision of
relational abstraction generation to enable fast proofs for complex systems. We
also wish to apply our techniques to nonlinear hybrid systems in order to derive
linear arithmetic abstractions.
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Abstract. We present a novel static analysis technique that substan-
tially improves the quality of invariants inferred by standard loop invari-
ant generation techniques. Our technique decomposes multi-phase loops,
which require disjunctive invariants, into a semantically equivalent se-
quence of single-phase loops, each of which requires simple, conjunctive
invariants. We define splitter predicates which are used to identify phase
transitions in loops, and we present an algorithm to find useful split-
ter predicates that enable the phase-reducing transformation. We show
experimentally on a set of representative benchmarks from the litera-
ture and real code examples that our technique substantially increases
the quality of invariants inferred by standard invariant generation tech-
niques. Our technique is conceptually simple, easy to implement, and
can be integrated into any automatic loop invariant generator.

Keywords: Static analysis, invariant generation, decomposition of
multi-phase loops.

1 Introduction

A key problem in any automatic software verification system is the inference of
loop invariants. A consistent theme in the literature is that most loops found in
practice require only simple quantifier-free conjunctive invariants (i.e., invariants
that are conjunctions of elementary facts) and that such invariants are relatively
easy to infer using standard techniques such as [8,28,23].

However, some loops in real programs fundamentally require disjunctive in-
variants (i.e., an invariant with at least one disjunction). While relatively rare,
obtaining accurate invariants for such loops is still important for successful veri-
fication, as imprecision in the analysis of even a small part of a program tends to
spread, often reducing analysis precision for much of, or even the entire, program.
As a result, a number of previous efforts have proposed techniques for inferring
disjunctive invariants [19,5,20,18,1]. While there is considerable diversity in the
approaches taken, the proposed disjunctive invariant generation techniques are
considerably more involved than the more straightforward conjunctive case.
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To illustrate the problem of disjunctive invariant generation, consider Fig. 1(a),
which is the motivating example of [19]. To prove the validity of the assertion,
the following disjunctive invariant is required:

(x ≤ 50 ∧ y = 50) ∨ (50 ≤ x ≤ 100 ∧ y = x) . (1)

Abstract interpretation-based techniques that generate only conjunctive invari-
ants fail on this example. For instance, the widely-used abstract interpretation-
based tool Interproc works over convex abstract domains [21] and computes
invariants that are conjunctions of linear inequalities. For this loop, Interproc

computes the post-condition 50y ≥ 2599 and cannot verify the assertion y = 100
tested in the last line of Fig. 1(a). Techniques such as [17] can infer disjunctive
invariants, but for this example do so in a brute-force manner, performing 50 re-
finement iterations. Similarly, predicate abstraction techniques such as Slam [2]
and Blast [3] generate a sequence of predicates of the form x = 1, x = 2, . . .
during abstraction refinement and require 100 refinement iterations. Some much
more elaborate techniques using interpolants [22] and probabilistic inference [19]
can verify the correctness of this program without counting to the loop bound,
but it is difficult to give an intuitive characterization of the class of loops for
which these techniques can infer useful disjunctive invariants.

x=0;y=50;

while(x<100)

{

x=x+1;

if(x>50)

y=y+1;

}

assert(y==100);

(a) Example from [19]

x=0;y=50;

while(x<=49)

{

x=x+1;

}

while(x<100 && x>49)

{

x=x+1;

y=y+1;

}

assert(y==100);

(b) The example after splitting.

Fig. 1. Loop (a) requires a disjunctive invariant, but the equivalent program (b) re-
quires only conjunctive invariants

While Fig. 1(a) is a synthetic example, it is representative of the loops found
in practice that require disjunctive invariants. Specifically, this example has two
important properties:

(a) The need for a disjunctive invariant arises from a particular conditional or
conditionals in the loop body; in this case, the statement if (x > 50). Not
all conditionals imply that a disjunctive invariant is needed, but conditionals
whose predicate is related to how many iterations the loop has executed, as
in Fig. 1(a), usually do. For example, one of the more common patterns in
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practice is that the conditional causes the loop to do something different in
its base (the first or first few iterations) and inductive cases (all subsequent
iterations).

(b) The conditionals in question exhibit a fixed number of phase transitions
during execution. A phase is a sequence of iterations in which the conditional,
if it is evaluated, always evaluates to the same value, either true or false. A
phase transition occurs when the conditional evaluates to b in one iteration,
and the next time it is evaluated, it evaluates to ¬b. In Fig. 1, the conditional
test x > 50 has two phases and one phase transition: it is false for iterations
1-50, and true for iterations 51-100.

In principle, there are many loops requiring disjunctive invariants that do not
satisfy conditions (a) and (b). However, it is our experience that the vast majority
of loops arising in practice that require a disjunctive invariant do so because of
conditionals with a fixed number of phases. For example, we have manually
inspected the 95 loops found in OpenSSH, and found that exactly 9 of these
loops require disjunctive invariants. Furthermore, of these 9 loops, all but one1

satisfies conditions (a) and (b) above. Throughout this paper, we refer to loops
satisfying conditions (a) and (b) as multi-phase loops.

The observation that multi-phase loops constitute a large majority of the loops
that are not amenable to reasoning by standard invariant generation techniques
motivates our approach: Rather than developing techniques to directly infer dis-
junctive invariants, we employ static analysis to identify phase transitions of
multi-phase loops by computing splitter predicates. We then perform a program
transformation that converts such multi-phase loops requiring disjunctive invari-
ants to a semantically equivalent sequence of single-phase loops, each of which
requires only conjunctive invariants. In general, if a loop has a conditional with
k phases, it can be split into k successive loops without the conditional test.

As an example, consider again the loop from Fig. 1. Here, we can eliminate
the phase transition by splitting the loop into two loops, one for each phase, as
shown in Fig. 1(b). The resulting two loops have no conditionals and require
only simple conjunctive invariants. Recall that the invariant for Fig. 1(a) is (x ≤
50 ∧ y = 50) ∨ (50 ≤ x ≤ 100∧ y = x). Here, the first disjunct, x ≤ 50∧ y = 50,
corresponds to the invariant of the first loop from Fig. 1(b), and the second
disjunct, 50 ≤ x ≤ 100 ∧ y = x, is the invariant of the second loop in Fig. 1(b).
Furthermore, Interproc, which fails to verify the assertion for Fig. 1(a), easily
discovers the loop invariants needed to prove the assertion for Fig. 1(b).

As this example illustrates, our approach effectively reduces the problem of in-
ferring disjunctive invariants for a complex, multi-phase loop to the better under-
stood problem of inferring conjunctive invariants for a sequence of single-phase
loops. This strategy explicitly separates the task of identifying phase transitions
from the inference of loop invariants, and allows standard invariant generation
techniques to be successful for programs which previously might only be verified
using much more sophisticated methods. Our technique is conceptually simple,

1 This loop alternates its behavior from iteration to iteration.
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easy to implement, and improves the quality of invariants discovered by a large
class of invariant generation techniques.

1.1 An Overview of the Technique

Consider a loop while(P ){E[C]} where E is an expression with one hole [·] for
the predicate of an if statement, and C is the predicate plugged into the hole. For
example, in Fig. 1(a), P = x < 100, E = x++; if([·]) y++;, and C = x > 50.
We are interested in finding a predicate Q with two properties:

(a) Q should be a splitter predicate, which informally means that it can be used
to divide the loop into two loops that execute one after the other.

(b) When Q (resp. ¬Q) is true on entry into the loop body, a particular condi-
tional test C in the loop should be guaranteed to be true (resp. false).

IfQ has both of these properties, which we formalize in Sect. 3, then the following
semantic equivalence holds:

while(P ){E[C]} ≡ while(P ∧ ¬Q){E[false]}; while(P ∧Q){E[true]} . (2)

If we can find such a splitter predicate Q, then we can decompose the original
loop into two loops, one in which the conditional’s predicate is always false
and the other in which it is always true. Constant folding then eliminates the
conditionals, resulting in simpler loops.

Note that a predicate satisfying conditions (a) and (b) above identifies the
loop iteration in which a phase transition occurs for C: When Q becomes true,
the first of the split loops terminates, and this corresponds to the first iteration
in which C evaluates to true in the original loop. Furthermore, observe that the
the splitter predicate is, in general, different from the conditional test C. For
example, Q = x > 49 satisfies (2) for the program of Fig. 1(a).

It is straightforward to generalize (2) to transform loops with if conditions
having any fixed number k of phase transitions into the composition of k loops.
In this paper, we discuss only the case where the predicate of an if statement
has at most one phase transition; besides being simpler to present, this case is
also the only one we have thus far encountered in practice.

This paper makes the following contributions:

– We present a static analysis technique to decompose multi-phase loops re-
quiring disjunctive invariants into a sequence of simpler single-phase loops,
whose invariants can be inferred using standard techniques.

– We define phase splitter predicates, which are key to identifying phase tran-
sitions of multi-phase loops, and we present an algorithm for computing
them.

– The proposed technique is simple to implement and relies only on SMT
solvers already used in many verification systems.

– Our evaluation on a combination of representative examples from the liter-
ature and loops taken from real programs shows that our technique allows
standard conjunctive invariant generation techniques to produce results com-
parable to some of the recently proposed advanced techniques for disjunctive
invariant generation.
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The rest of the paper is organized as follows: Section 2 presents a simple lan-
guage for the formal development; Section 3 defines splitter and phase splitter
predicates. Section 4 gives an algorithm for computing phase splitter predicates.
Section 5 describes our prototype implementation, and Section 6 describes our
experimental results. Section 7 surveys related work, and Section 8 concludes.

2 Language

Figure 2 gives the syntax of a simple imperative language we use for the formal
development. We assume a family of integer-valued program variables x, y, z, . . . ,
a set of primitive relational operators (RelOp ), and binary arithmetic operators
( BinOp ). We distinguish between a normal statement s and a statement with
one hole h; the unique hole [·] in h indicates where a predicate can be inserted to
complete the statement. If h is a statement with one hole and C is a predicate,
then h[C] is the statement (with no holes) formed by replacing the [·] in h by C.
We omit the formal definition of the replacement operation, which is standard.

s ∈ Statement ::= skip | x := e | assert(P )
| s; s
| while(P ){s}
| if(P ) {s} else {s}

P ∈ Predicate ::= true | false | e RelOp e | ¬P | P1 ∨ P2 | P1 ∧ P2

e ∈ Iexpr ::= int | x | x BinOp y

h ∈ StatementWithOneHole ::= | h; s | s; h
| if([·]) {s} else {s}
| if(P ) {h} else {s}
| if(P ) {s} else {h}

Fig. 2. The syntax of the language we use for the formal development

Figure 3 gives the small-step operational semantics for the language of Fig. 2.
An environmentE is a function from program variables to integers. Integer values
are denoted by v. In each step we take a reducible expression, execute one step
of computation, and possibly update E. Each transition maps an environment,
statement pair 〈E, s〉 to a new pair 〈E′, s′〉. The operational rules are standard;
we note only that the rules for statement sequences always reduce the first
statement 〈E, s1; s2〉→〈E′, s′1; s2〉 until the first statement evaluates to skip,
at which point the rule 〈E, skip; s〉→〈E, s〉 is applied to transfer control to the
remainder of the statement sequence.

Definition 1 (Semantic Equivalence). Two statements s1 and s2 are seman-
tically equivalent, denoted s1 ≡ s2, if

∀E1, E2 (〈E1, s1〉→∗〈E2, skip〉) ⇔ (〈E1, s2〉→∗〈E2, skip〉)
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〈E, skip; s〉→〈E, s〉

〈E,x := v〉→〈E[x �→ v], skip〉
〈E, x := y〉→〈E[x �→ E(y)],skip〉

v = E(x) BinOp E(y)

〈E, z := x BinOp y〉→〈E[z �→ v], skip〉
E(P ) = false

〈E,assert(P )〉→ABORT

E(P ) = true

〈E,assert(P )〉→〈E, skip〉

〈E, s1〉→〈E1, s
′
1〉

〈E, s1; s2〉→〈E1, s′1; s2〉
E(P ) = true

〈E, if(P ) {st} else {sf}〉→〈E, st〉
E(P ) = false

〈E, if(P ) {st} else {sf}〉→〈E, sf 〉
E(P ) = true

〈E,while(P ){s}〉→〈E, s; while(P ){s}〉
E(P ) = false

〈E, while(P ){s}〉→〈E, skip〉

Fig. 3. The small-step operational semantics of the language from Fig. 2

3 Splitter Predicates

As discussed in Sect. 1, a key idea that allows our technique to identify phase
transitions in loops is the concept of splitter predicates, which we define next.

Definition 2 (Splitter Predicate). A predicate Q is a splitter predicate for a
loop while(P ){B} if

while(P ){B} ≡ while(P ∧ ¬Q){B}; while(P ∧Q){B}
According to this definition, a predicate Q is a splitter predicate for a loop L
if L can be decomposed as the sequence of two loops L1;L2 where ¬Q always
holds at the head of L1 and Q always holds at the head of L2. Thus, if Q is a
splitter predicate, then Q’s observed truth value changes at most once during
the execution of L.

The following theorem describes how to verify whether a given predicate Q is
a splitter predicate for a loop L by issuing a single query to a constraint solver:

Theorem 1. For a loop L = while(P ){B}, if Q satisfies the Hoare triple

{P ∧Q}B {Q ∨ ¬P}
then Q is a splitter predicate for L.

Proof. We claim the following:

while(P ){B} (a)
≡ while(P ){while(P ∧ ¬Q){B}; while(P ∧Q){B}} (b)
≡ while(P ∧ ¬Q){B}; while(P ∧Q){B} (c)

For any predicate Q (whether Q is a splitter predicate or not), it is easily verified
that loop (a) is equivalent to loop (b). Intuitively, loop (b) expresses that the
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truth-value of Q may in general change any number of times in the original
loop. For the second step, if the outer loop executes its body either 0 or 1 times
(i.e., Q’s truth value changes at most once) then it is easy to check that (b) is
equivalent to (c). Thus, it suffices to prove that the outer loop of (b) executes
either 0 or 1 times if {P ∧Q}B {Q ∨ ¬P}. There are two cases:

– If ¬P holds on entry to the outer loop, the outer loop executes its body 0
times.

– If P holds on entry to the outer loop, the outer loop’s body is executed at
least once. Clearly ¬P ∨Q is a post-condition of the first inner loop. There
are two cases on entry to the second inner loop:

• If ¬P holds, the second inner loop terminates without executing its body
and then the outer loop terminates after one iteration.

• Otherwise P holds, and therefore from the post-condition of the first
inner loop we know Q also holds on entry to the second inner loop.
Applying the assumption {P ∧Q}B {Q ∨ ¬P}, we conclude that Q is
an invariant of the second inner loop whenever the second inner loop
executes at least once. Since Q cannot become false, the second inner
loop terminates only when ¬P holds, and therefore the outer loop exits
after completing one iteration.

Since the outer loop executes its body 0 or 1 times in all cases, (b) ≡ (c), and
therefore (a) ≡ (c). Therefore, Q is a splitter predicate. ��

Observe that not every splitter predicate is useful for the purpose of decomposing
a loop into phases, because not every splitter identifies the phase transition
associated with a conditional in the loop body. For example, in Fig. 1(a), x > 60
is a splitter predicate, as x > 60 is initially false, but stays true once it becomes
true. On the other hand, x > 60 is not a useful splitter because it does not
exactly split the loop into the two phases of the conditional test x > 50. We
require a class of splitter predicates that satisfy a stronger condition:

Definition 3 (Phase Splitter Predicate). A splitter predicate Q that satis-
fies the additional requirement

while(P ){E[C]} ≡ while(P ∧ ¬Q){E[false ]}; while(P ∧Q){E[true]}

is called a phase splitter predicate.

According to this definition, a phase splitter predicateQ for a loop L decomposes
the loop into two loops L1;L2, where both L1 and L2 have fewer branches in
the loop body. Since a phase splitter predicate eliminates a conditional C in the
original loop body, there is a relationship between the phase splitter for loop L
and the conditional C. We now make this relationship precise.
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Definition 4. Consider a loop while(P ){B[C]}. We define B, the code that
executes before the hole in B, by structural induction on B.

if([·]) {s} else {s} = skip

if(P ) {h} else {s} = assert(P );h
if(P ) {s} else {h} = assert(¬P );h
h; s = h
s;h = s;h

Note that if we allow holes inside if statements of nested loops, then the no-
tion of code that executes before the hole is no longer straightforward. This is
the primary reason for disallowing holes inside nested loops in the definition of
StatementWithOneHole in Fig. 2.

Recall that our goal is to find a splitter predicate Q such that (i) if Q holds at
the loop head, then the conditional C inside one if statement always evaluates
to true, and (ii) if ¬Q holds at the loop head, then the conditional C inside the
same if statement always evaluates to false. The following lemma states the
relationship between a predicate Q at the loop head and the conditional C in
an if statement:

Lemma 1. Let Q be any predicate. Then,

If {Q}B {C}, then while(P ∧Q){B[C]} ≡ while(P ∧Q){B[true]}
If {Q}B {¬C}, then while(P ∧Q){B[C]} ≡ while(P ∧Q){B[false]}

Proof. The proof of this lemma is given in the full version of the paper available
at http://www.stanford.edu/~isil/cav2011-full.pdf. ��
Just as Thm. 1 showed that we could use constraint solving techniques to de-
termine whether Q is a splitter predicate, Lemma 1 shows that solving another
constraint problem determines whether Q causes a conditional to have only one
phase within the loop. Because we split the original loop into two loops, we
must solve two constraint problems, one for each of the split loops, to ensure
that the conditional in both loops can be eliminated. This leads us to the fol-
lowing theorem, which reduces the problem of checking phase splitter predicates
to a constraint solving problem:

Theorem 2. Consider a loop L = while(P ){B[C]} and let Q be a predicate
such that

{Q} B {C} (3)
{¬Q} B {¬C} (4)

{P ∧Q} B[C] {Q ∨ ¬P} (5)

Then Q is a phase splitter predicate.

Proof. By (5) and Thm. 1, Q is a splitter predicate for L. Hence L ≡ L1;L2

where L1 = while(P ∧ ¬Q){B[C]} and L2 = while(P ∧Q){B[C]}. By (4)
and Lemma 1, L1 ≡ while(P ∧ ¬Q){B[false]}. By (3) and Lemma 1, L2 ≡
while(P ∧Q){B[true]}. Hence Q is a phase splitter predicate. ��
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4 Algorithm for Splitting

In Thm. 2 of the previous section, we showed how to check whether a predicate
is a phase splitter, but we have not yet answered the question of how to find
candidate splitter predicates. In this section, we discuss an algorithm for finding
candidate phase splitter predicates and transforming a multi-phase loop into a
sequence of simpler loops.

phase split(L)
1: foreach conditional test C in L = while(P ){B[C]} do
2: Q = WP(B,C)
3: if ({¬Q}B {¬C}) ∧ ({P ∧Q}B[C] {Q ∨ ¬P}) then
4: L1 = while(P ∧ ¬Q){B[false]}
5: L2 = while(P ∧Q){B[true]}
6: B1 = phase split(L1)
7: B2 = phase split(L2)
8: return B1;B2

9: endif
10: done
11: return L

Fig. 4. Phase splitting algorithm

Our algorithm considers loops in an inside-out fashion, starting with the in-
nermost nested loops first. The pseudo-code for splitting a single loop is given in
Fig. 4; in the figure, WP denotes a standard precondition computation. This pre-
condition should be as weak as possible, and ideally it is the weakest precondition
(hence WP) although in practice we must settle for a decidable approximation.
Here, we repeatedly consider each if statement in the body of the outermost
loop and attempt to find a splitter predicate for the if’s conditional test. Given
the conditional C of some if statement, we first compute the precondition Q
of C with respect to B. Since Q is a precondition, it must satisfy condition (3)
of Thm. 2. In our implementation we use a constraint solver to compute a pre-
condition that is as weak as possible (see Sect. 5). We then explicitly check the
other two conditions (4) and (5) of Thm. 2 to guarantee that we do not split the
loop unless Q is a phase splitter predicate. If Q is indeed a predicate identifying
phase transitions, then L is split into two loops L1 and L2 in lines 5 and 6 of
Fig. 4. Since it may be possible to further decompose L1 or L2 into even simpler
loops with fewer phases, we recursively invoke the phase split algorithm, which
transforms L1 (resp. L2) into a sequence of loops B1 (resp. B2). The final result
of splitting L is then given by the sequence B1;B2.

Observe that the algorithm in Fig. 4 considers conditionals in the loop body
in an arbitrary order. The reader might wonder whether the order in which
conditionals are considered matters, as one order might yield a better decompo-
sition than another. Fortunately, it turns out that the order in which we test the
conditionals in the algorithm is irrelevant, because if C is a splitter predicate
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of the original loop, then it is guaranteed to remain a splitter predicate of the
transformed loop. The following theorem makes this statement precise:

Theorem 3. If Q is a splitter predicate of while(P ){B} satisfying the hypoth-
esis of Thm. 1 and P ′ ⇒ P , then Q is a splitter predicate of while(P ′){B}.
Proof. We show {P ′ ∧Q}B {¬P ′ ∨Q}. It then follows from Thm. 1 that Q is a
splitter predicate for while(P ′){B}. We reason as follows:

(P ′ ⇒ P )⇒ (Q ∨ ¬P ⇒ Q ∨ ¬P ′)
(P ′ ⇒ P )⇒ (P ′ ∧Q⇒ P ∧Q)
{P ∧Q} B {Q ∨ ¬P}

Using Hoare’s consequence rule we obtain {P ′ ∧Q}B {Q ∨ ¬P ′}. Hence Q is a
splitter predicate for while(P ′){B}. ��
Because the loop predicates in split loops are only stronger than the loop pred-
icate of the original loop, Theorem 3 shows that if we have two splitters Q1

and Q2, then if we split on Q1, Q2 remains a splitter predicate for each of the
new loops. Furthermore, it is easy to see from Thm. 2, that Q2 still causes the
same conditional(s) to be eliminated whether we split on Q1 first or not. Thus,
choosing one phase splitter predicate Q over another phase splitter predicate Q′

cannot make further splitting by Q′ illegal or vice versa.
As mentioned above, loops are split beginning with innermost loops and pro-

ceeding to outermost loops. The reason for selecting this order is that the weak-
est precondition of a code fragment containing a loop requires computing loop
invariants. Thus, when splitting an outer loop, the weakest precondition com-
putation may be required to compute loop invariants for any inner loops. By
splitting the innermost loops first, the weakest precondition computation deals
only with loops that have already been simplified as much as possible, making
it easier to infer better invariants using standard techniques.

4.1 Revisiting the Running Example

We now illustrate the execution of our algorithm on the example from Fig. 1(a).

1. For this loop, we have:
P = x ≤ 99
B = x++;if([·])y++
C = x > 50
B = x++

2. A candidate phase splitter predicateQ is computed asQ = WP(x > 50, x++).
Using a weakest precondition computation engine, we obtain Q = x > 49 as
a candidate phase splitter predicate.

3. Now, we check whether the candidate predicate Q satisfies condition (4) of
Thm. 2 by querying the validity of the formula (¬x > 49 ∧ x′ = x + 1) ⇒
¬x′ > 50, which is indeed valid.
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4. Finally, we verify that candidate Q is a phase splitter predicate by checking
the validity of the following constraint:

(x > 49∧x ≤ 99∧x′ = x+1∧ (x′ > 50⇒ y′ = y+1))⇒ x′ > 49∨¬x′ ≤ 99

This formula is valid, allowing us to perform the phase splitting transforma-
tion, which yields the decomposition shown in Fig. 1(b).

5 Implementation

We have implemented a prototype version of the algorithm described in this
paper using the SAIL program analysis front-end [10] and the Mistral SMT
solver [11,13] for a subset of the C programming language. The weakest precon-
dition computation step in the algorithm is implemented by using the quantifier
elimination capabilities of Mistral. More specifically, to compute the weak-
est precondition of C with respect to code fragment B, we first convert B to
single static assignment (SSA) form [9]. We then generate a constraint φs for
any statement s in the following way: For each basic statement s (e.g., an as-
signment or assertion), we generate the corresponding atomic constraint in the
constraint language, and a sequence s1; s2 is converted to the constraint φs1∧φs2

where φs1 and φs2 are the constraints derived from statements s1 and s2 respec-
tively. For an if statement, if(C) then s1 else s2, we generate the constraint
(C ∧ φs1)∨ (¬C ∧ φs2).2 To generate weakest preconditions for nested loops, we
use a constraint obtained with the help of an invariant generation tool. Finally,
we compute the weakest precondition of C with respect to B by computing the
constraint φB and then by existentially quantifying and eliminating all inter-
mediate variables (i.e., variables with version number greater than one in SSA
form).

6 Experiments

We evaluate our technique by comparing the quality of the loop invariants ob-
tained from two publicly available invariant generation tools, Interproc [25]
and InvGen [20], before and after decomposing multi-phase loops into a se-
quence of single-phase loops. Interproc is an abstract interpretation-based
tool that implements the interval, octagon, and polyhedra abstract domains
using the Apron [21] and Fixpoint[15] libraries. In contrast to Interproc,
InvGen is a template-based invariant generator (see Sect. 7), which employs
non-linear constraint solving to find valid instantiations for the unknown pa-
rameters of user-specified template invariants. Table 1 summarizes the results of
our experiments on a set of challenging benchmarks, consisting of representative
examples from the literature. All of our experimental benchmarks are available

2 For soundness it is important that the negation here result in an overapproximation;
for example, bracketing constraints [12] can be used.
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Table 1. Comparison of the invariants generated by Interproc and InvGen on some
benchmark programs before and after applying our technique

File LOC Interproc InvGen

Before split After split Q Before split After split Q

time(s) Proof? time(s) Proof? time(s) Proof? time(s) Proof?

popl07 13 0.014 N 0.014 Y + 0.425 N 0.215 Y +

cav06 22 0.020 N 0.030 Y + 0.318 N 0.28 Y +

tacas08 30 0.018 N 0.021 Y + 0.344 Y 0.298 Y =

svd* 48 0.016 Y 0.014 Y + 0.784 Y 0.794 Y +

heapsort* 45 0.022 Y 0.036 Y + 0.976 Y 1.55 Y +

mergesort* 73 0.048 N 0.09 N || 4.813 Y 12.138 Y +

spam* 55 0.024 Y 0.029 Y + 0.0521 Y 0.0397 Y +

ex1 23 0.090 N 0.027 Y + 416.985 N 0.621 Y +

ex2 21 0.011 N 0.011 Y + 123.945 N 0.553 Y +

svd1 49 0.016 N 0.014 Y + 0.456 N 0.784 Y +

heapsort1 46 0.022 N 0.036 Y + 2.291 Y 1.278 Y +

mergesort1 74 0.048 N 0.090 Y || 4.924 Y 11.431 Y +

spam1 56 0.024 N 0.029 Y + 0.46 Y 0.759 Y +

from http://www.stanford.edu/~isil/invariant-benchmarks.txt. For gen-
erating invariants on each of these benchmarks, we used the polyhedra abstract
domain of Interproc and the default templates provided by InvGen.

We now briefly describe the benchmark programs from Table 1. All of the
benchmarks contain one or more assertions. The benchmark popl07 is the pro-
gram in Fig. 1 and the motivating example of [19]; cav06 and tacas08 are the
motivating examples from [14] and [16] respectively. The next four benchmarks
are programs from the test suite of InvGen. The program spam also occurs as
SpamAssassin-loop in [24]. The next benchmark, ex1, is an interesting varia-
tion of cav06, and ex2 is an example illustrating that splitting can be carried
out in any order to obtain equivalent results in the presence of multiple split-
ter predicates. The programs svd1, heapsort1, and spam1 have code similar to
svd, heapsort, and spam but require stronger assertions to be proved; similarly,
mergesort1 differs only in having weaker assertions than mergesort.

The entries in the table marked Y indicate that a given tool was able to prove
the assertions correct for the benchmark and N indicates that the tool could not
prove at least one assertion. The column labeled “Before Split” shows whether a
given tool was able to prove the assertions without using our technique, and the
column labeled “After Split” describes whether the same tool could prove the
same assertions on the loops decomposed by our technique. The column labeled
“Q” compares the quality of the invariants obtained before and after using our
technique. An entry labeled + in this column means that the tool generates bet-
ter, i.e., logically stronger, invariants on the loops transformed by our technique,
a || indicates that the invariants are incomparable (there are several invariants
and some are stronger and some are weaker), and an = indicates that the in-
ferred invariants were logically equivalent. Benchmarks marked with * indicate
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that the original benchmark code used a feature which is not part of the input
language of Interproc; we manually modified these benchmarks before using
them as input to Interproc. The time taken for computing phase splitter pred-
icates was negligible; our algorithm took no longer than 90 milliseconds on any
benchmark from Table 1.

The results shown in Table 1 demonstrate that our technique substantially
improves the quality of the invariants generated by both Interproc and In-

vGen and allows them to verify assertions they could not verify previously.
Consider only the first 9 programs (those above the double line); we discuss the
4 variations separately below. The invariants discovered by Interproc improve
(i.e., are logically strengthened) in 8 out the 9 benchmarks. On mergesort the
invariants discovered by Interproc are incomparable before and after splitting
due to the non-monotonicity of the widening operator [7,8]. On the same set of
9 benchmarks, InvGen discovers logically stronger invariants on 8 benchmarks
after splitting, and obtains a logically equivalent invariant on one benchmark.

Table 1 shows not only that there is an improvement in the quality of in-
variants after splitting, but also that Interproc and InvGen can prove many
assertions after splitting that they could not previously verify. More specifically,
in 6 of the first 9 benchmarks, Interproc fails to prove at least one assertion
in the original program, but can verify all assertions in these programs after
splitting. Similarly, InvGen cannot verify 4 of the 9 original benchmarks, but it
can prove all the assertions in these programs after our transformation. Recall
that five of the benchmarks (tacas08 through spam) are included in InvGen’s
test suite; thus, it is not surprising that InvGen can verify the assertions in
programs on which it was developed. We note that InvGen was unable to verify
the four programs that were not taken from its test suite, but was able to verify
all four of them after performing our transformation.

Observe that there are some benchmarks in Table 1 where the tools are able
to prove the assertions both before and after splitting, but yield strictly stronger
invariants after splitting. To demonstrate that this extra precision is useful, we
created variants svd1, heapsort1, and spam1 of svd, heapsort, and spam with
stronger assertions (shown below the double line). Notice that Interproc can
verify these three benchmarks after splitting, but is unable to do so before.

Also observe that for mergesort1 Interproc is unable to prove the assertions
both before and after splitting, despite yielding new facts after splitting. We
demonstrate that these new invariants are again useful by designing mergesort1
with weaker assertions. As shown below the double line in Table 1, Interproc

can take advantage of these new facts obtained through splitting.

7 Related Work

Techniques for Multi-Phase Loops. There is an existing body of work whose
goal is to improve the quality of invariants for multi-phase loops [27,15,14,1,18].
For example, Mauborgne and Rival address this problem in [27]. In contrast
to our technique, their method is not fully automatic; it critically depends on
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user input for partitioning directives. The techniques described in [15,14] also
attempt to improve the quality of invariants for multi-phase loops by guiding a
static analysis to compute a fix-point on one phase of the loop before considering
the next phase. Since our algorithm for identifying phases is independent of the
particular abstract domain used for inferring invariants, our approach can recover
precision irrespective of the abstract domain used for invariant generation.

Two recent works [18,1] take a similar approach to the one we present: splitting
a loop to produce multiple loops with simpler invariants. These approaches first
enumerate all the paths through a loop body and then they either search for all
the possible sequences in which these paths can execute [18] or they eliminate the
infeasible path sequences [1]. Since the number of paths is, in general, best case
exponential in the number of conditionals in the loop body, both techniques have
to rely on heuristics to keep the number of paths under consideration tractable.
In contrast to both [18] and [1], our approach is less eager: we delay the worst-
case exponential search to an SMT solver; if the solver can prove the properties
of splitter predicates without reasoning about all the paths, we take advantage
of that fact. Our approach is also much simpler and easier to implement, does
not use heuristics, and yields some new insight into the nature of the problem
(e.g., the independence of splitter predicates).

Direct Techniques for Inferring Disjunctive Invariants. Many different
approaches have been developed for directly inferring disjunctive invariants, and
some of these techniques are capable of discovering precise invariants for some
of our benchmarks without decomposing the loop into phases. These approaches
include (i) template-based techniques, such as [6,20,4], (ii) techniques based on
predicate abstraction such as [2,3,22,16,5], and (iii) techniques based on proba-
bilistic inference [19]. While some of these approaches are, in principle, capable
of discovering precise invariants in loops exhibiting multiple phases, they are
significantly more complicated, less efficient, and less widely-used than standard
abstract interpretation-based techniques for generating conjunctive numeric in-
variants such as [8,28,26]. We discuss each of these three classes in more detail
below.

Template-Based Techniques. Given an input template (i.e., parametrized
form of invariant) provided by the user, template-based techniques find values for
the parameters such that these instantiated templates correspond to inductive
invariants [6,20,4]. While these techniques can, in principle, find precise invari-
ants for multi-phase loops if the user provides appropriate disjunctive templates,
they suffer from two drawbacks: First, they are not fully automatic since they
require the user to specify the shape of the desired invariant. Second, since many
template-based techniques require solving non-linear constraints, their applica-
bility is limited by the lack of efficient algorithms for solving such constraints.

Predicate Abstraction Techniques. Techniques based on the basic form of
counterexample guided abstraction refinement such as [2,3], are, in principle, ca-
pable of inferring disjunctive invariants. However, these techniques often diverge
or take a very large number of refinement steps. More sophisticated invariant



Simplifying Loop Invariant Generation Using Splitter Predicates 717

generation techniques based on predicate abstraction are considered in [22,16,5].
The basic idea underlying [22] is to use interpolants to generate counterexam-
ples. To guarantee convergence, this technique restricts the language of the in-
terpolants to some finite language L, and can therefore only find invariants in
this restricted language. Hence, a poor choice of language degrades its perfor-
mance. The technique described in [16] uses counterexample guided abstraction
refinement to tune widening strategies in an abstract interpretation framework.
While this technique can sometimes be helpful for generating more precise in-
variants for multi-phase loops, it is difficult to characterize the class of loops
for which this technique will generate useful invariants. The technique presented
in [5] combines counterexample-guided abstraction refinement with template-
based invariant generation techniques. More specifically, the counterexamples
produced in this technique are not finite program paths, but full-fledged pro-
grams called path programs. The algorithm in [5] then employs template-based
techniques to infer invariants of the path program, which are used to refine the
analysis. While this technique is capable of finding disjunctive invariants, it is
not directly helpful for multi-phase loops.

Probabilistic Techniques. Gulwani and Jojic formulate the problem of invari-
ant generation as probabilistic inference, and use machine learning techniques
to infer invariants [19]. Their technique is capable of inferring the disjunctive
invariant from Fig. 1. However, this technique is not guaranteed to converge,
and it is difficult to characterize the class of loops for which it succeeds. Fur-
thermore, this approach is significantly more involved than our algorithm for
splitting loops with multiple phases.

8 Conclusion

We have proposed a static analysis technique to identify phase transitions in
loops and decompose multi-phase loops into a sequence of simpler loops with
fewer phases. We have demonstrated that standard invariant generation tools
benefit substantially from the technique proposed in this paper, raising their
level of precision to that of recently proposed methods for disjunctive invariant
generation. Our technique is conceptually simple, easy to implement, and can
be integrated into any invariant generation technique.
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28. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computa-
tion 19(1), 31–100 (2006)

http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/index.html
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/index.html


Monitorability of Stochastic Dynamical Systems

A. Prasad Sistla, Miloš Žefran, and Yao Feng
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Abstract. Monitoring is an important run time correctness checking
mechanism. This paper introduces the notions of monitorability and
strong monitorability for partially observable stochastic systems, and
gives necessary and sufficient conditions characterizing them. It also
presents important decidability and complexity results for checking these
properties for finite state systems. Furthermore, it presents general mon-
itoring techniques for the case when systems are modeled as quantized
probabilistic hybrid automata, and the properties are specified as safety
or liveness automata. Experimental results showing the effectiveness of
the methods are given.

1 Introduction

The growing complexity of modern engineered systems and their increased re-
liance on computation calls for novel approaches to guaranteeing their correct
functioning. This is especially important for safety critical systems such as med-
ical devices and transportation systems where a failure can have catastrophic
consequences.

One way to ensure correctness of a complex system is to thoroughly test
and/or verify it. While testing can increase confidence in a component, it can not
guarantee correctness. Verification, on the other hand, can guarantee correctness,
but it is simply not feasible, for example, for a car with advanced engine controls
and numerous networked microprocessors. In other cases, the component might
have been verified for correctness on a model which was not accurate. And more
importantly, even if through verification a component is found to be defective,
we may still want to use it if the incorrect behavior only occurs rarely.

An alternative to testing and verification is to monitor the behavior of the
component at run time. The monitor observes the inputs and outputs of the
component and checks whether the behavior of the system is consistent with
the expected behavior. Monitors can be especially useful if a fail-safe shutdown
procedures can be developed, which is true for a broad class of systems. The fun-
damental advantage of monitors is that they are in principle easy to implement,
and they are independent of the design procedures used to develop a component.
While wrong assumptions might lead to a faulty design, the monitor is indepen-
dent of design decisions and can therefore easily detect that the component is
failing to perform its function.

In control systems literature, it is commonly assumed that system behavior is
stochastic and the state of the system is not directly observable. Furthermore, in
digital control systems the state is typically quantized. We thus consider Hidden

G. Gopalakrishnan and S. Qadeer (Eds.): CAV 2011, LNCS 6806, pp. 720–736, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Monitorability of Stochastic Dynamical Systems 721

Markov Chains (HMC) to model such discrete state systems. In our earlier work
[10,24], we addressed the problem of monitoring a system, modeled as a HMC H ,
when the correctness specification is given by a deterministic Streett automaton
A on infinite strings. In these works, we considered external monitoring where
the automaton A is defined on the outputs generated by the system. There we
defined two measures, called Acceptance Accuracy (AA) and Rejection Accuracy
(RA) that capture the effectiveness of the monitor. Monitoring algorithms for
achieving arbitrary high values of accuracies were presented when H and A are
finite state systems. The values (1 − AA) and (1 − RA) are measures of false
alarms and missed alarms, respectively, and should be kept low.

In this paper, we consider internal monitoring where the automaton A is
specified on the states of the system, not on its outputs. Further, we allow both
the system H and the automaton A to have infinite number of states. Since
states are not directly observable, internal monitoring is significantly harder than
external monitoring. In this setting, we define two notions of monitorability. We
say that a system H is strongly monitorable with respect to an automaton A,
if there is a monitor such that both of its accuracies are 1. We give a necessary
and sufficient condition for strong monitorability. We show that, for finite state
systems, the problem of deciding whether a system H is strongly monitorable
with respect to an automaton A is PSPACE-complete.

We also define a more realistic notion called monitorability. A system H is
said to be monitorable with respect to an automaton A if accuracies arbitrarily
close to 1 can be achieved, i.e., for every x ∈ [0, 1), there is a monitor such that
both of its accuracies are greater than or equal to x. We present a fundamental
result that exactly characterizes monitorability. It states that a system H is
monitorable with respect to A exactly when the probability measure of the set
of so-called 0/1-limit sequences is 1. We show that even for finite state systems,
determining monitorability is undecidable; more specifically, it is shown to be
r.e.-complete. However, we identify some sufficient conditions for monitorability.

Finally, we consider systems specified as quantized probabilistic hybrid au-
tomata [11]. We assume that the correctness automaton, called property au-
tomaton, is specified by a non-probabilistic quantized hybrid automaton. We
present monitoring algorithms for these cases that employ particle filters for
state estimation. When the property automaton A specifies a safety property on
the discrete states of the system, then one can achieve arbitrary high levels of
accuracies by appropriately specifying threshold probability parameter. When
A also includes a liveness property, one can achieve high levels of accuracies
by approximating it using safety automata with timeouts. High accuracies can
be achieved by adjusting the time-out parameters. We implemented these tech-
niques in Matlab and evaluated them for an example of a train equipped with
electronically controlled pneumatic (ECP) brakes. Experimental results showing
the effectiveness of the monitoring algorithms are presented.

In summary the main contributions of the paper are as follows: (1) a Hidden
Markov model for modeling infinite state systems and accuracy measures when
the property automaton is specified on system states; (2) definitions of moni-
torability and strong monitorability, and exact characterizations of systems that
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satisfy these properties; PSPACE-completeness result for checking strong moni-
torability and undecidability for checking monitorability for finite state systems;
identification of sufficient conditions, that hold in practice, for monitorability;
(3) monitoring algorithms when the system and property automata are specified
by probabilistic hybrid automata and hybrid automata, respectively; and (4) ex-
perimental results showing the effectiveness of our approach. Due to the space
limitations, most proofs have been omitted in the current version; for complete
details we refer the reader to [26].

2 Related Work

For external monitoring, it is easy to see that every safety property is strongly
monitorable and [10] shows that, for finite state systems, all properties includ-
ing liveness properties are monitorable. There we employ dynamically increas-
ing timeouts to achieve monitorability of liveness properties. The current paper
employs completely different techniques and presents some fundamentally new
results on monitorability for internal monitoring.

Several authors consider monitoring temporal properties of deterministic sys-
tems capable of measuring system state [30, 20, 8, 3, 6]. Some of them define
monitorability, but it is only with respect to a property. In contrast, we consider
partially observable stochastic systems (i.e., HMCs). In this case, the monitor-
ing problem is significantly more difficult and both the system and the property
need to be considered when defining monitorability.

A problem that has been extensively studied is monitoring and diagnosis of
hybrid automata [14,29,4,17,2], where the aim is to detect when the automaton
enters a fail state so that the system can appropriately react. In most cases, these
works employ techniques that depend on the specific possible modes of failure.
None of the above works addresses the general problem of monitoring system
behaviors against specifications given in an expressive formal system such as the
hybrid automata. Furthermore, they do not address the problem of monitoring
liveness properties.

Control synthesis for stochastic discrete-event systems has been studied in [15,
18]. In contrast to our work, the authors only consider finite-state systems with
directly observable state. Similarly, the literature on diagnosability of partially-
observable discrete-event systems (e.g. [31]) only considers deterministic finite-
state systems.

A method for monitoring and checking quantitative and probabilistic prop-
erties of real-time systems has been given in [23], [21] considers monitoring in-
terfaces for faults using game-theoretical framework, and conservative run time
monitors were proposed in [16,25]; none of these works is intended for monitoring
of hybrid systems.

3 Definitions and Notation

Sequences. Let S be a set. Let σ = s0, s1, . . . be a possibly infinite sequence over
S. For any i ≥ 0, σ[0, i] denotes the prefix of σ up to si. If α1 is a finite sequence
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and α2 is either a finite or an ω-sequence then α1α2 denotes the concatenation of
the two sequences in that order. We let S∗, Sω denote the set of finite sequences
and the set of infinite sequences over S. If C ⊆ Sω and α ∈ S∗ then αC denotes
the set {αβ : β ∈ C}.
Safety Properties. For any σ ∈ Sω, let prefixes(σ) denote the set of prefixes
of σ and for any C ⊆ Sω, let prefixes(C) = ∪σ∈C(prefixes(σ)). We say that
C ⊆ Sω is a safety property if the following condition holds: for any σ ∈ Sω, if
prefixes(σ) ⊆ prefixes(C) then σ ∈ C. For any C ⊆ Sω, let closure(C) be the
smallest safety property such that C ⊆ closure(C).

Automata. We consider deterministic Streett automata to specify properties
over infinite sequences. Each such automaton A has an input alphabet Σ and
defines a language L(A) ⊆ Σω. These automata can have countable number of
states. Throughout sections 3 and 4, an automaton refers to a Streett automaton.
We also consider Büchi automata, a subclass of Streett automata, and a subclass
of Büchi automata called safety automata whose language is a safety property.

Markov Chains. We assume that the reader is familiar with basic probability
theory, random variables and Markov chains. We consider stochastic systems
given as Markov Chains [19] and monitor their computations for satisfaction of
a given property specified by an automaton or a temporal formula. A Markov
chain G = (S,R, φ) is a triple satisfying the following: S is a set of countable
states; R ⊆ S × S is a total binary relation (i.e., for every s ∈ S, there exists
some t ∈ S such that (s, t) ∈ R); and φ : R → (0, 1] is a probability function
such that for each s ∈ S,

∑
(s,t)∈R φ((s, t)) = 1. Note that, for every (s, t) ∈ R,

φ((s, t)) is non-zero. Intuitively, if at any time the system is in a state s ∈ S, then
in one step, it goes to some state t such that (s, t) ∈ R with probability φ((s, t)).
A finite path p of G is a sequence s0, s1, . . . , sn of states such that (si, si+1) ∈ R
for 0 ≤ i < n. For any such p, if n > 0, then let φ(p) =

∏
0≤i<n φ((si, si+1)); if

n = 0 then let φ(p) = 1. An infinite path of G is an infinite sequence of states
s0, s1, ... such that ∀i ≥ 0, (si, si+1) ∈ R. We let Paths(G) and Paths(G, s) for
any s ∈ S, respectively, denote the set of all infinite paths in G and the set of
all infinite paths in G starting from s.

For any Markov chain G, as given above, we define a class EG of measurable
sets of infinite sequences over S. EG is the σ-algebra [19] generated by sets of
sequences of the form pSω where p ∈ S∗. Now, for any system state r ∈ S,
we define a probability function FG,r defined on EG as follows. Intuitively, for
any C ∈ EG, FG,r(C) denotes the probability that a sequence of states generated
from the system state r, is in C. FG,r is the unique probability measure satisfying
all the probability axioms [19], such that for every p ∈ S∗ and C = pSω, if p is
the empty sequence then FG,r(C) = 1, if p is a finite path starting from state
r then FG,r(C) = φ(p), otherwise FG,r(C) = 0.

Although, for convenience, we have considered all sequences in Sω in defining
EG, sequences that are not paths in G do not contribute to the probability of
any C ∈ EG, as shown below. Since S is a countable set, it is not difficult to
see that Paths(G), Paths(G, r) ∈ EG. Further more, for any C ∈ EG, it can be
shown that FG,r(C) = FG,r(C ∩ Paths(G)) = FG,r(C ∩ Paths(G, r)).
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For any D ∈ EG, we let FG,r|D denote the conditional probability function
given D; formally, for any C,D ∈ EG, FG,r|D(C) = FG,r(C∩D)

FG,r(D) . For any α ∈ S∗

and C = αSω , we let FG,r(α) denote the probability FG,r(C) and FG,r|α denote
the conditional probability function FG,r|C. For a set C ⊆ S∗, we let FG,r(C)
denote FG,r(CSω).

We will use automata to specify properties over sequences of states of a
Markov chain G. The input symbols to the automata are states of G, i.e., mem-
bers of S. It has been shown that, for any automatonA, L(A) is measurable [28].
We will be interested in monitoring sequences of states of a system modeled by
G, i.e., computations generated by G, to ensure that it satisfies the property
given by an automaton A. However, the monitor can not observe the actual
states of the system.

Hidden Markov Chains. A Hidden Markov Chain (HMC) [5] H = (G,O, r0)
is a triple where G = (S,R, φ) is a Markov chain, O : S → Σ is the output
function and r0 ∈ S is the initial state. Intuitively, for any s ∈ S, O(s) is the
output generated in state s and this output is generated when ever a transition
entering state s is taken. The generated symbols become inputs to the monitor.H
is called Hidden Markov chain because one only observes the outputs generated
in each state but not the actual state1. We extend the output function O to
paths of G as follows. For any finite or infinite path p = s0, s1, . . . , si, . . . in
G, O(p) = O(s0), O(s1), . . . , O(si), . . .. For any finite or infinite sequence α in
Σ∗ ∪Σω, we let O−1(α) denote the set of p ∈ S∗ ∪ Sω such that O(p) = α. For
any C′ ⊆ Σ∗ ∪Σω, we let O−1(C′) = ∪α∈C′(O−1(α)).

For any HMC H as given above, we define a class EH of sets of infinite se-
quences over Σ and for any r ∈ S, we define a probability measure FH,r on
EH as follows. EH is the σ-algebra generated by the sets αΣω for α ∈ Σ∗. For
any system state r ∈ S and C′ ∈ EH , FH,r(C′) = FG,r(O−1(C′)). Intuitively,
FH,r(C′) denotes the probability that an output sequence generated from the
system state r, is in C′.

Quantized Probabilistic Hybrid Automata. Quantized probabilistic hy-
brid automata (QPHA) are probabilistic hybrid automata [11] whose continuous
variables are quantized. Their semantics is given by a HMC, but they provide
a convenient formalism for specifying systems. A quantized probabilistic hybrid
automaton A is a tuple (Q, V,Δt, E , T , c0) where Q is a finite set of discrete
states (modes); V = {xq}q∈Q ∪{yq}q∈Q ∪{nq}q∈Q is the finite set of real-valued
continuous, output and noise variables, respectively, that will be assumed to
be quantized ;Δt is the sampling time; E is a function that with each q ∈ Q
associates a set E(q) of difference equations describing the evolution of the con-
tinuous state and the output at time t+Δt as a function of the state at t and
the noise variables; T is a function that assigns to each q ∈ Q a set of transition

1 In the traditional definition of HMCs considered in literature, the output of a state
can be any symbol in Σ generated with a probability distribution that is specific to
the state; since Σ is a countable set, it is not difficult to see that by duplicating each
state as many times as there are output symbols, such a HMC can be converted into
an equivalent HMC consistent with our model.
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triplets (pqi, φi, ψi), where the guard φi is a predicate over the set of continu-
ous and discrete variables, pqi is a probability distribution over transition target
discrete states, and the reset relation ψi is a set of assignments that update or
reset some of the continuous variables; and c0 denotes the initial discrete and
continuous states of the automaton. If no noise variables are present and for
each all transition triplets the transition target state set is a singleton, a QPHA
becomes a quantized hybrid automaton (QHA) [1]. A property can be specified
if an appropriate acceptance condition is defined for a QHA. In fact, in this case
the QHA is equivalent to a Streett automaton.

Within each mode q, the evolution of the QPHA is given by the difference
equations. Since the continuous, noise and output variables are assumed to be
quantized, these transitions can be interpreted as an HMC. When a guard φi

becomes satisfied, a transition takes place from q to some target mode q′ ac-
cording to the probability distribution pqi. The overall evolution of the QPHA
can be thus interpreted as the evolution of an appropriate HMC. See [11,12] for
details. We will use QPHA to model systems. A property can be modeled using
QHA by defining an appropriate acceptance condition.

Monitors. A monitorM : Σ∗ → {0, 1} is a function with the property that, for
any α ∈ Σ∗, if M(α) = 0 then M(αβ) = 0 for every β ∈ Σ∗. For an α ∈ Σ∗,
we say that M rejects α, if M(α) = 0, otherwise we say M accepts α. Thus if
M rejects α then it rejects all its extensions. For an infinite sequence σ ∈ Σω,
we say that M rejects σ iff there exists a prefix α of σ that is rejected by M ;
we say M accepts σ if it does not reject it. Let L(M) denote the set of infinite
sequences accepted byM . It is not difficult to see that L(M) is a safety property
and O−1(L(M)) is measurable (it is in EG).

Note that for a monitor to be implementable,M has to be a computable func-
tion as observed in [30] for deterministic systems. We will not further consider
this issue in this paper.

Accuracy Measures. Let A be an automaton on states of H . The acceptance
accuracy of M for A with respect to the HMC H , denoted by AA(M,H,A),
is the probability FG,r0|L(A)(O−1(L(M))) where r0 is the initial state of H .
Intuitively, it is the conditional probability that a sequence generated by the
system is accepted by M , given that it is in L(A). We define the rejection
accuracy of M for A with respect to H , denoted by RA(M,H,A), to be the
probability that a sequence generated by the system is rejected by M , given
that it is not in L(A); formally, it is the probability FG,r0|C(D), where C,D are
the complements of L(A) and O−1(L(M)) respectively.

Monitorability. We say that a system H is strongly monitorable with respect
to an automaton A if there exists a monitor M such that AA(M,H,A) =
RA(M,H,A) = 1, i.e., both of its accuracies are 1. We say that a system H
is monitorable with respect to an automaton A if for every x ∈ [0, 1) there
exists a monitor M such that AA(M,H,A) ≥ x and RA(M,H,A) ≥ x. Strong
monitorability is a property that is difficult to satisfy. In the next section, we
give necessary and sufficient conditions for these properties to be satisfied.
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It is worth noting that monitorability, while related to the classical notion of
observability, is fundamentally different from it. It is not difficult to construct
hybrid systems that are not observable or even discrete-state observable but are
monitorable.

4 Conditions for Monitorability

In this section we give necessary and sufficient conditions for strong monitora-
bility and monitorability. Let H = (G,O, r0) be a HMC where G = (S,R, φ)
is the associated Markov chain. Let A be an automaton with input alphabet S.
H,G,A are fixed throughout this section unless otherwise stated.

4.1 Strong Monitorability

We define a set of infinite paths OverlapSeq(H,A) that intuitively captures non-
trivial overlap, based on the generated outputs, between sets of infinite paths of
G that are accepted and those that are rejected by A. We say that a finite path
p in G is good if it starts from r0 and the set C of infinite paths, accepted by A,
having p as a prefix, has non-zero measure, i.e., FG,r0(C) > 0 where C = (pSω∩
Paths(G, r0) ∩ L(A)). Let GoodPaths(H,A) be the set of infinite paths in G
having only good prefixes. Now we define OverlapSeq(H,A) = (Paths(G, r0)−
L(A))∩ O−1(O(GoodPaths(H,A))). Intuitively, OverlapSeq(H,A) is the set of
p ∈ Paths(G, r0) such that p is rejected by A and each of its prefix generates the
same output sequence as some good path in G, i.e., it can not be distinguished
from a good path based on the outputs.

The following theorem gives a necessary and sufficient condition for strong
monitorability.

Theorem 1. Let H = (G,O, r0) be a hidden Markov chain where G = (S,R, φ)
is the associated Markov chain. Let A be an automaton with input alphabet S.
H is strongly monitorable with respect to A iff FG,r0(OverlapSeq(H,A)) = 0.

The lower bound in next theorem is proved by reduction from the non-universality
problem for non-deterministic safety automata:

Theorem 2. Given a finite HMC H and a finite state automaton A, the prob-
lem of determining if H is strongly monitorable with respect to A is PSPACE-
complete.

If H is strongly monitorable with respect to A, using the techniques employed
in the proof of the above theorem, we can construct a monitorM ′ both of whose
accuracies equal 1. M ′ simply constructs a deterministic automaton C and runs
it on the output generated by H . It rejects iff C rejects. M ′ does not estimate
any probabilities.

4.2 Monitorability

Consider any α ∈ Σ∗. According to our notation FH,r(α) is the probability that
an output sequence of length n, generated by H from state r, is α. Let α ∈ Σ∗ be
such that FH,r(α) > 0. Now, we define a probability measure AccProb(α) which
is the conditional probability that an execution of the system H that initially
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generated the output sequence α is accepted by A. Formally, AccProb(α) =
FH,r0|C(L(A)) where C = O−1(α)Sω . Let RejProb(α) = 1 − AccProb(α).
Observe that RejProb(α) is the conditional probability that an execution of the
system that initially generated the output sequence α is rejected by A.

Recall that for any β ∈ Σω and integer i ≥ 0, β[0, i] denotes the prefix of
β of length i + 1. Now, let OneSeq(H,A) be the set of all β ∈ Σω such that
limi→∞ AccProb(β[0, i]) exists and its value is 1. Similarly, let ZeroSeq(H,A)
be the set of all β ∈ Σω such that the above limit exists and is equal to 0. Let
ZeroOneSeq(H,A) = OneSeq(H,A) ∪ ZeroSeq(H,A). The following lemma
states that the sets OneSeq(H,A) and ZeroSeq(H,A) are measurable. It also
states that the measure of those executions of H that generate output sequences
in OneSeq(H,A) (resp., sequences in ZeroSeq(H,A)) and that are rejected by
A (respectively, accepted by A), is zero.

Lemma 1. The sets OneSeq(H,A) and ZeroSeq(H,A) are measurable (both
are members of EH). Furthermore,

FG,r0(O
−1(OneSeq(H,A)) − L(A)) = 0 and

FG,r0(O
−1(ZeroSeq(H,A)) ∩ L(A)) = 0.

The following theorem, a central result of the paper, gives a necessary and suf-
ficient condition for the monitorability of H with respect to A. But in addition
to providing a characterization of the monitorability, the theorem also provides
a method for constructing monitors as explained in Section 4.3.

Theorem 3. For any HMC H and deterministic Streett automaton A, H is
monitorable with respect to A iff FH,r0(ZeroOneSeq(H,A)) = 1.

Proof. Let H = (G,O, r0) be a HMC where G = (S,R, φ) is a Markov chain,
and A be a deterministic Streett automaton with input alphabet S. Assume that
H is monitorable with respect to A.

Suppose that FH,r0(ZeroOneSeq(H,A)) < 1. Let F = Σω −
ZeroOneSeq(H,A). Clearly FH,r0(F ) > 0. Consider any β ∈ F . It should
be easy to see that for some m > 0, the following property holds (otherwise β is
in (ZeroOneSeq(H,A))):

Property 1. AccProb(β[0, i]) < (1 − 1
2m ) for infinitely many values of i and

RejProb(β[0, j]) < (1− 1
2m ) for infinitely many values of j.

For each m > 0, define Fm to be the set of sequences β ∈ F such that m
is the smallest integer that satisfies Property 1. It is easy to see that the set
{Fm : m > 0} is a partition of F . It should also be easy to see that Fm ∈ EH ,
i.e., is measurable, for each m > 0. Since FH,r0(F ) > 0, it follows that for some
m > 0, FH,r0(Fm) > 0. Fix such anm and let x = FH,r0(Fm). From Property 1,
it can be shown that for any C ∈ EH , such that C ⊆ Fm and y = FH,r0(C) > 0,
the following property holds:

Property 2. FH,r0(O
−1(C) ∩ L(A)) ≥ y

2m and FH,r0(O
−1(C) − L(A)) ≥ y

2m .
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Now, consider any monitor M . Recall that L(M) is the set of infinite sequences
over Σ that are accepted byM . Since L(M) is a safety property, it is easily seen
that L(M) ∈ EH , i.e., it is measurable. Now, since x = FH,r0(Fm) and Fm =
(Fm ∩L(M)) ∪ (Fm −L(M)), it is the case that either FH,r0(Fm ∩L(M)) ≥ x

2
or FH,r0(Fm − L(M)) ≥ x

2 . In the former case, by taking C = Fm ∩L(M) and
using Property 2, we see that the measure of bad executions of the system (i.e.,
those in Sω − L(A)) that are accepted by the monitor is ≥ x

2m+1 and in the
latter case, by taking C = (Fm − L(M)), the measure of good executions of
the system that are rejected is ≥ x

2m+1 . Now, let z = max{FH,r0(Paths(G, r0)∩
L(A)), FH,r0(Paths(G, r0)−L(A))}. From the above arguments, we see that for
every monitorM , either RA(M,H,A) ≤ 1− x

z·2m+1 orAA(M,H,A) ≤ 1− x
z·2m+1 .

This contradicts our assumption that H is monitorable with respect to A.
Now, assume that FH,r0(ZeroOneSeq(H,A)) = 1. Let z ∈ (0, 1). Let

Mz : Σ∗ → {0, 1} be a function such that for any α ∈ Σ∗, Mz(α) = 0
iff there exists a prefix α′ of α such that RejProb(α′) ≥ z. Clearly Mz

is a monitor. When extended to infinite sequences Mz(β) = 0 for every
β ∈ ZeroSeq(H,A), i.e., it rejects all of them. The second part of lemma 3 im-
plies that FG,r0(O−1(ZeroSeq(H,A))∩L(A)) = 0, and it can further be deduced
that FG,r0((Sω − O−1(ZeroSeq(H,A)) − L(A)) = 0. From these observations,
it follows that RA(Mz, H,A) = 1. It should be easy to see that the measure of
good executions of H that are rejected by Mz is ≤ min{y, 1 − z} where y =
FG,r0(Paths(G, r0) ∩ L(A)). Therefore, AA(Mz , H,A) ≥ 1− min{y,1−z}

y . Now,
for any given x ∈ (0, 1), we can chose a value of z such that AA(Mz, H,A) ≥ x
and RA(Mz, H,A) = 1. This implies that H is monitorable with respect to A.

�
The following result can be obtained by reducing the non-universality problem
for Probabilistic Finite State Automata.

Theorem 4. The problem of deciding if a finite state HMC is monitorable with
respect to a finite state automaton is r.e.-complete and hence is undecidable,
where r.e. is the set of recursively enumerable sets.

Remark 1. Theorem 3 generalizes to the case when we replace A by an
arbitrary measurable set C ∈ EH by defining AA(M,H,C) to be simply
FG,r0|C(O−1(L(M))).

4.3 Monitoring Algorithms

Although, the problem of determining if a HMC is monitorable with respect to
an automaton A for finite state systems, is undecidable, we can give sufficient
conditions that ensure monitorability.

Intuitively, H = (G,O, r0) is going to be monitorable with respect to an au-
tomaton A if the statistics (i.e., probability distributions) of outputs generated
in paths ( in Paths(G, r0)) that are accepted by A is different from those gener-
ated in paths that are rejected by A. Many times, this property may be known.
For example, consider a system that can fail, i.e., can get into any of a set of
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failure states and once it gets into these states, it remains in these states. Further
more, assume that the probability distributions of outputs generated in failure
states is different from that in non-failure states. Such systems are monitorable
with respect to properties that hold only on computations without failure states.

Consider the HMC given in Figure 1 with initial state s. Its output symbols
are a, b. Let A be the automaton that accepts all paths in which state v appears
infinitely often. This HMC is monitorable with respect to A, but is not strongly
monitorable with respect toA. The probabilities of generation of a, b are different
in the two strongly connected components.

wv

t

3/4 3/4

1/4
1/4

3/4

1/4

3/41/4

1/2

1/2

a b

a

a

b
s

u

Fig. 1. A HMC that is monitorable

Assume thatH is monitorable with respect toA. Now, we address the problem
of constructing accurate monitors for it. The second part of the proof of theorem
4 gives an approach. Here we choose some probability threshold value z. After
each output symbol generated by H , if α is the output sequence generated thus
far, we compute RejProb(α) and reject (i.e., raise an alarm) if RejProb(α) ≥ z.
Theorem 3 implies that as the threshold probability value z approaches 12, we
get a sequence of monitors that have accuracies approaching 1. This method
requires computation of RejProb(α). Since A is deterministic, if H and A are
finite state systems then we can construct their product Markov chain and using
standard techniques [19] we can compute RejProb(α). For infinite state systems
the above approach does not work and it may not be efficient even for finite
state systems.

Monitoring Safety Properties. Assume that the system is modeled using a
probabilistic hybrid automaton and a property is specified by a safety automaton
A. We construct the product of the hybrid automaton model of the system and
the automaton A. As the system runs, using an appropriate estimator that uses
the product automaton, after each output generated by the actual system, we
estimate the probability that the system execution is bad. This is estimated
to be the probability that the component denoting the state of A is an error
state in the product automaton, given that it has generated the observed output
sequence. If this estimated value is ≥ z then we reject. When the system is
monitorable with respect to A, we can achieve high accuracies by increasing z.

2 Making z = 1 may result in rejection accuracy being 0.
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Monitoring Liveness Properties. Monitoring of properties specified by live-
ness automata can be achieved using the methods given in [25, 16]. Let A be a
Büchi automaton3. We convert A into a safety automaton A′ by using timeouts.
Let T ′ be positive time out value. A is modified so that if an accepting state is
not reached within T ′ units from the start or from the last time an accepting
state is reached, then the automaton goes to the error state. It is fairly easy
to show that any input sequence that is rejected by A is also rejected by A′;
however A′ rejects more input sequences. Thus, A′ is an approximation of A.
Note that we get better approximations by choosing larger values of T ′. The
above construction can be incorporated by including a counter variable in the
HA model. The details are straightforward. This approach will be used in the
experimental section.

5 Example

Consider the operation of a train with electronically-controlled pneumatic (ECP)
brakes [9]. In this case, a braking signal is sent to each of the N cars of the
train that subsequently engage their own brakes. We consider the case when the
braking systems of individual cars can fail. If this happens to more than a given
number of cars (2N/3 in our example) the train might not be able to stop and it
should start an emergency stopping procedure (for example, engaging the brakes
using the traditional pneumatic system). We would therefore like to develop a
monitor that can correctly trigger the stopping mechanism in the event when
several of the cars have faulty brakes, allowing the train operators to take the
advantage of the superior braking performance of the ECP while not sacrificing
the safety of the train.

Velocity System

q
v
=1                                        

                                             
v(k+1)=0.1353*v(k)+0.8647*[25+2.5*sin(k)]+n

1

q
v
=2                           

                                
v(k+1)=v(k)−0.5*max{0,i−3}+n

2

v>28.5

i>0i=0
q

v
=3                           

                                
v(k+1)=v(k)−0.5*max{0,i−3}+n

3

Notes:   n
1
~N(0,1)      

             n
2
~N(0,0.1)

             n
3
~N(0,0.5)

Observation model

y=v+n
3

Fig. 2. Velocity subsystem for the train with ECP brakes

Figure 2 describes how the train velocity v evolves. The train starts in the
discrete state qv = 1 and remains in that state until the velocity exceeds a
threshold VU = 28.5, when it switches to the discrete state qv = 2. The train
remains in the state qv = 2 until one of the brakes engages and it switches to state
qv = 3. The velocity in states qv = 2 and qv = 3 depends on the number of brakes
3 The construction can be easily extended to an arbitrary Streett automaton.
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that have been engaged through the braking force term −0.5 max{0, i−#N/3$},
where i is the number of brakes that have been engaged and N is the number
of cars (N = 10 for the simulations). Note that in order for the brakes to slow
down the train at least #N/3$ brakes need to be engaged. When all the brakes
disengage, the velocity system switches back to the state qv = 1. When in the
state qv = 1, the train accelerates to a constant velocity VC = 25 and oscillates
around it with the amplitude 2.5. The measured variable y is assumed to be
v, however the measurements are corrupted by a measurement noise n3. It is
worth noting that the dynamics of the system (and thus statistical properties of
output sequences) are different for qv = 1 and qv = 3. The system thus satisfies
the sufficient conditions for monitorability given in Section 4.3.
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Fig. 3. ECP braking subsystem of each car of the train

Figure 3 describes the operation of the braking system of each of the cars.
The braking system starts in the discrete state qb = 1 and remains in that state
until the velocity exceeds a threshold VU = 28.5, when it switches to the discrete
state qb = 2. The braking system remains in the state qb = 2 until the timer c1
reaches L1 = 1 (modeling delays in actuation and computational delays). Note
that the initial value of the timer c1 in the state qb = 2 is not deterministic, so
the duration of time the system remains in qb = 2 is a random variable. After
the timer reaches L1, the braking system can fail with a probability p = 0.1 and
permanently switch to qb = 3. With the probability p = 0.9 it either returns to
state qb = 1 if the velocity already fell below the threshold VL = 20, or switches
to qb = 4 and engages in braking sequence otherwise. When the brake engages
the variable i is increased by 1, thereby affecting the velocity of the train as
described above. When the velocity falls below VL = 20, the brake disengages
after a random amount of time (modeled by the timer c2 in the state qb = 5),
when it switches to the state qb = 1.

Since a braking system is defined for each car, the overall model of the system
is roughly a product of N copies of the braking system with the velocity system.
For N = 10, the number of discrete states of the resulting automaton approaches
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30 million. Observe that if the system above is allowed to run forever then all
the breaks will eventually fail with probability one. To prevent this, we assume
that the brakes can only fail in the first τ units of time. To capture this, we add
an additional counter in the breaking subsystem that allows the transition from
qb = 2 to the qb = 3 only if this counter is less than τ ; this is not shown in the
figure. For the simulations, τ = 500.

v>28.5

counter ← T’ Property Automaton

q=2q=1 q=3

counter(k+1)=counter(k)−1 counter(k+1)=counter(k)

& (counter>0) counter<=0(v<20)

counter(k+1)=counter(k)

1 2

Fig. 4. Property automaton for the train with ECP brakes

The desired behavior of the train is given by the following specification: every
time the train velocity increases beyond VU , the train should brake so that the
velocity decreases below VL. This is given by a liveness automaton that has two
states q = 1 and q = 2, and whose initial state as well as the single acceptance
state is q = 1. This automaton P is converted to a safety automaton P ′ using a
static time out T ′ according to the approach given in Section 4.3. Figure 4 shows
the modified automaton P ′, where all the modifications of the original liveness
automaton are shown in red. Note that P ′ has an additional state q = 3 which
is the error/bad state.

State estimation. Let S be the system automaton and P ′ the modified property
automaton given in Figure 4. Note that P ′ has a single error/bad state q = 3.
We construct the product of S and P ′ to obtain the product automaton S ×P ′.
Using this product automaton and using the outputs generated by the actual
system, our MonitorM estimates the probability that the state component of the
property automaton P ′ is the bad state. Thus, it becomes necessary to estimate
the probability that the property automaton P ′ enters the bad state. This can
be achieved by propagating the belief (probability distribution over the states of
the product automaton) from the current state to the next state, given the new
observation [22]. Particle filters were developed as a computationally efficient
approximation of the belief propagation [7, 13, 27]. They have been successfully
applied in the hybrid system community for state estimation [17,4,14,29]. These
methods become impractical for realistic systems with high number of states and
several improvements have been suggested in recent years. It is also worth noting
that for particle filters, both estimation accuracy and time complexity increase
with the number of particles. The exact relationships depend on the structure
of the system and transition probabilities and are difficult to characterize. All
these issues are beyond the scope of the present paper.
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Experimental results. As described in Section 4, the monitor M computes
the probability that the property automaton P ′ is in a bad state and raises an
alarm when this probability surpasses a given threshold P . In order to evaluate
the performance of the monitor numerically, the system was run 1000 times.
Particle filter was used to estimate the probability of each state of the product
automaton S × P ′. The number of particles for the particle filter was η = 200.
This number was chosen so that particles were not depleted during the transients
corresponding to discrete state transitions. The simulation was terminated when
either an alarm was raised, or the discrete time (number of steps the system has
taken) reached Td = 700. As explained above, the brakes can only fail during the
first τ = 500 units of time. For each run, the number of brakes that failed (the
braking system was in qb = 3) was recorded, as well as the state of the monitor.
The acceptance and rejection accuracies, respectively, denoted by AA(M,S,P ′)
and RA(M,S,P ′) were computed according to:

AA(M,S,P ′) =
ga

ga + gr
RA(M,S,P ′) =

br
ba + br

,

where ga (resp., gr) is the number of good runs that were accepted (resp., re-
jected), and br (resp., ba) is the number of bad runs that were rejected (resp.,
accepted). Note that gr corresponds to the number of false alarms, and ba to the
number of missed alarms; accuracies approach 1 as these numbers approach 0.
A run was considered good if the state of the property automaton at Td = 700
was not equal to 3, and bad otherwise.

Table 1. Results of experiments for different values of z and T ′

(a) Monitor outcomes for 1000 runs

z
T ′ = 20

ga gr ba br AA RA

0.050 254 262 0 484 0.492 1.000
0.100 256 222 0 522 0.536 1.000
0.150 256 200 0 544 0.561 1.000
0.300 258 155 0 587 0.625 1.000
0.500 259 117 0 624 0.689 1.000
0.750 259 80 0 661 0.764 1.000
0.875 259 56 0 685 0.822 1.000
0.950 259 43 1 697 0.858 0.999

(b) Monitor accuracies

z
T ′ = 20 T ′ = 40 T ′ = 60
AA RA AA RA AA RA

0.050 0.49 1.00 0.98 1.00 1.00 1.00
0.100 0.54 1.00 0.99 1.00 1.00 1.00
0.150 0.56 1.00 0.99 1.00 1.00 1.00
0.300 0.62 1.00 1.00 1.00 1.00 1.00
0.500 0.69 1.00 1.00 1.00 1.00 1.00
0.750 0.76 1.00 1.00 1.00 1.00 1.00
0.875 0.82 1.00 1.00 1.00 1.00 1.00
0.950 0.86 1.00 1.00 1.00 1.00 1.00

An example of the monitor performance for T ′ = 20 and different values of
the threshold probability z is shown in Table 1a. As expected, if z increases the
acceptance accuracy AA increases as it becomes more difficult to reject a run.
However, even for z = 0.95 the acceptance accuracy does not reach 1 because
the small value of T ′ makes it easy for a run to be rejected. Also, as z increases,
the rejection accuracy decreases since it becomes more difficult for the particle
filter to estimate that the property automaton entered the fail state with such
a high probability.
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Table 1b shows accuracy measures of the monitor for different values of the
probability threshold z and time out value T ′. It can be seen that as z increases
the acceptance accuracy increases. Similarly, as T ′ increases the acceptance ac-
curacy increases. The reason for this is that as z increases, the estimate of the
probability that the state of the property automaton P ′ is the bad state must
be higher before the monitor raises an alarm. Clearly for z1 < z2, if the moni-
tor with the threshold z2 would raise an alarm so would the monitor with the
threshold z1, while the reverse is not true. So with lower z, the probability that
a false alarm is declared is higher. The same reasoning explains the trends as
T ′ increases. As discussed above, the rejection accuracy may decrease as z in-
creases; similarly, larger T ′ could lead to more missed alarms. However, these
trends can not really be observed in our example due to excellent performance
of the particle filter.

6 Conclusion

In this paper we formulated the problem of monitoring both safety and liveness
properties for partially observable stochastic systems. Two different notions of
monitorability are defined and necessary and sufficient conditions are given for
systems to satisfy these properties. Complexity and decidability results for check-
ing these two notions of monitorability for finite state systems are presented. We
also presented a general approach for monitoring when the system is specified
as a (quantized) probabilistic hybrid automaton and the property is specified as
a safety or liveness hybrid automaton. The monitors have been implemented for
an example of a train equipped with electronically controlled pneumatic brake.
Particle filters were used as state estimators. Experimental results showing the
effectiveness of our approach are presented.
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26. Sistla, A.P., Žefran, M., Feng, Y.: Monitorability of stochastic dynam-
ical systems. Technical Report CVRL-2011-01, Computer Vision and
Robotics Laboratory, University of Illinois at Chicago, Chicago, IL (2011),
http://www.cvrl.cs.uic.edu/~milos/publications/papers/cav2011_long.pdf

27. Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust Monte Carlo localization for
mobile robots. Artificial Intelligence 128(1-2), 99–141 (2001)

28. Vardi, M.: Automatic verification of probabilistic concurrent systems. In: 26th An-
nual Symposium on Foundations of Computer Science, pp. 327–338. IEEE Com-
puter Society Press, Los Alamitos (1985)

29. Verma, V., Gordon, G., Simmons, R., Thrun, S.: Real-time fault diagnosis. IEEE
Robotics & Automation Magazine 11(2), 56–66 (2004)

30. Viswanathan, M., Kim, M.: Foundations for the run-time monitoring of reactive
systems - fundamentals of the maC language. In: Liu, Z., Araki, K. (eds.) ICTAC
2004. LNCS, vol. 3407, pp. 543–556. Springer, Heidelberg (2005)

31. Yoo, T., Lafortune, S.: Polynomial-time verification of diagnosability of partially
observed discrete-event systems. IEEE Transactions on Automatic Control 47(9),
1491–1495 (2002)

http://www.cvrl.cs.uic.edu/~milos/publications/papers/cav2011_long.pdf


Equality-Based Translation Validator for LLVM

Michael Stepp, Ross Tate, and Sorin Lerner

University of California, San Diego
{mstepp,rtate,lerner}@cs.ucsd.edu

Abstract. We updated our Peggy tool, previously presented in [6], to
perform translation validation for the LLVM compiler using a technique
called Equality Saturation. We present the tool, and illustrate its effec-
tiveness at doing translation validation on SPEC 2006 benchmarks.

1 Introduction

Compiler optimizations have long played a crucial role in the software ecosystem,
allowing programmers to express their programs at higher levels of abstraction
without paying the performance cost. At the same time, however, programmers
also expect compiler optimizations to be correct, in that they preserve the be-
havior of the programs they transform. Unfortunately, this seemingly simple
requirement is hard to ensure in practice. One approach to improving the relia-
bility of compiler optimizations is a technique called Translation Validation [4].
After each run of the optimizer, a separate tool called a translation validator tries
to show that the optimized program is equivalent to the corresponding original
program. Therefore, a translation validator is just a tool that tries to show two
programs equivalent. In our own previous work [6], we developed a technique
for reasoning about program equivalence called Equality Saturation, and a tool
called Peggy that implements this technique. Although our paper focused mostly
on performing compiler optimizations using Peggy, we also showed how Equality
Saturation can be used to perform translation validation, and that Peggy is an
effective translation validator for Soot, a Java bytecode-to-bytecode optimizer.

Inspired by the recent results of Tristan, Govereau and Morrisett [7] on trans-
lation validation for LLVM [1], we have updated our Peggy tool so that it can be
used to perform translation validation for LLVM, a more aggressive and more
widely used compiler than Soot. This updated version of Peggy reuses our pre-
viously developed equality saturation engine described in [6]. However, we had
to develop several new, LLVM-specific components for Peggy: an LLVM front-
end for the intermediate representation used by our equality-saturation engine;
new axioms for our engine to reason about LLVM loads, stores and calls; and
an updated constant folder that takes into account LLVM operators. Finally,
we present new experimental results showing the effectiveness of Peggy at doing
translation validation for LLVM on SPEC 2006 C benchmarks.
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int g(p,t) {
*p := t | (t & 4)
return 0

}
store

load

tp 4
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3int f(p,t) {
*p := t
*p := *p | (t & 4)
return 0

}
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(b)

(c)

f gfv gv
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Fig. 1. (a) Original code (b) Optimized code (c) Combined E-PEG

2 Overview

We first present several examples demonstrating how Peggy performs translation
validation. These examples are distilled versions of real examples that we found
while doing translation validation for LLVM on SPEC 2006.

Example 1. Consider the original code in Figure 1(a) and the optimized code in
Figure 1(b). There are two optimizations that LLVM applied here. First, LLVM
performed copy propagation through the location *p, thus replacing *p with t.
Second, LLVM removed the now-useless store *p := t.

Our approach to translation validation uses a representation that we devel-
oped and presented previously called Program Expression Graphs [6] (PEGs). A
PEG is a pure functional representation of the program which has nice proper-
ties for reasoning about equality. Figure 1(c) shows the PEGs for f and g. The
labels fv and fσ point to the value and heap returned by f respectively, and
likewise for g – for now, let us ignore the dashed lines. In general, a PEG is a
(possibly cyclic) expression graph. The children of a node are shown graphically
below the node. Constants such as 4 and 0 have no children, and nodes with a
square around them represent parameters to the function and also have no chil-
dren. PEGs encode the heap in a functional way using the standard operators
load and store. In particular, given a heap σ and a pointer p, load(σ, p) returns
the value at address p; given a heap σ, a pointer p, and a value v, store(σ, p, v)
returns a new heap identical to σ, except that the value at address p is v. The
PEG for f takes a heap σ as an input parameter (in addition to p and t), and
produces a new heap, labeled fσ, and a return value, labeled fv.

Our approach to translation validation builds the PEGs for both the original
and the optimized programs in the same PEG space, meaning that nodes are
reused when possible. In particular note how t & 4 is shared. Once this combined
PEG has been constructed, we apply equality saturation, a process by which
equality axioms are repeatedly applied to infer equalities between PEG nodes. If
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load

p

char* f(p,s,r) {
x := strchr(s,*p)
*r := *p+1
return x

} (a)
(b)

(c)
char* g(p,s,r) {

t := *p
x := strchr(s,t)
*r := t+1
return x

}
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call
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store
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ffv ggv

Fig. 2. (a) Original code (b) Optimized code (c) Combined E-PEG

through this process Peggy infers that node fσ is equal to node gσ and that node
fv is equal to node gv, then Peggy has shown that the original and optimized
functions are equivalent. In the diagrams we use dashed lines to represent PEG
node equality (in the implementation, we store equivalence classes of nodes using
Tarjan’s union-find data structure). Note that E-PEGs are similar to E-graphs
from SMT solvers like Simplify [3] and Z3 [2], but specialized for representing
programs and with algorithms specialized to handle cyclic expressions which
arise much more frequently in E-PEGs than in typical SMT problems.

Peggy proves the equivalence of f and g in the following three steps:

Peggy adds equality 1© using axiom: load(store(σ, p, v), p) = v
Peggy adds equality 2© by congruence closure: a = b⇒ f(a) = f(b)
Peggy adds equality 3© by axiom: store(store(σ, p, v1), p, v2) = store(σ, p, v2)

By equality 3©, Peggy has shown that f and g return the same heap, and are
therefore equivalent since they are already known to return the same value 0.
Example 2. As a second example, consider the original function f in Figure 2(a)
and the optimized version g in Figure 2(b). p is a pointer to an int, s is a
pointer to a char, and r is a pointer to an int. The function strchr is part
of the standard C library, and works as follows: given a string s (i.e., a pointer
to a char), and an integer c representing a character1, strchr(s,c) returns a
pointer to the first occurrence of the character c in the string, or null otherwise.
The optimization is correct because LLVM knows that strchr does not modify
the heap, and the second load *p is redundant.

The combined PEGs are shown in Figure 2(c). The call to strchr is repre-
sented using a call node, which has three children: the name of the function,
the incoming heap, and the parameters (which are passed as a tuple created by
the params node). A call node returns a pair consisting of the return value and
the resulting heap. We use projection operators ρv and ρσ to extract the return
value and the heap from the pair returned by a call node.
1 It may seem odd that c is not declared a char, but this is indeed the interface.
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int f(x,y,z) {
for (t:=0; t<z; t:=x*y+t) {} 
return t

} (a)
(b)

(c)
int g(x,y,z) {

xy := x*y
for (t:=0; t<z; t:=xy+t) {}
return t

}
*

zx y

fv gv

f g

Fig. 3. (a) Original code (b) Optimized code (c) Combined E-PEG

To give Peggy the knowledge that standard library functions like strchr do
not modify the heap, we have annotated such standard library functions with an
only-reads annotation. When Peggy sees a call to a function foo annotated with
only-reads, it adds the equality only-reads(foo) = true in the PEG. Equality 1©
in Figure 2(c) is added in this way.

Peggy adds equality 2© using: only-reads(n) = true ⇒ ρσ(call (n, σ, p)) = σ.
This axiom encodes the fact that a read-only function call does not modify the
heap. Equalities 3©, 4©, and 5© are added by congruence closure.

In these 5 steps, Peggy has identified that the heaps fσ and gσ are equal, and
since the returned values fv and gv are trivially equal, Peggy has shown that
the original and optimized functions are equivalent.

Example 3. As a third example, consider the original code in Figure 3(a) and
the optimized code in Figure 3(b). LLVM has pulled the loop-invariant code
x*y outside of the loop. The combined PEG for the original function f and
optimized function g is shown in Figure 3. As it turns out, f and g will produce
the exact same PEG, so let us focus on understanding the PEG itself. The θ
node represents the sequence of values that t takes throughout the loop. The
left child of the θ node is the first element of the sequence (0 in this case) and
the right child provides any element in the sequence after the first one in terms
of the previous element. The eval/pass pair is used to extract the value of t
after the loop. The ≥ node is a lifting of ≥ to sequences, and so it represents the
sequence of values that t ≥ z takes throughout the loop. pass takes a sequence of
booleans and returns the index of the first boolean in the sequence that is true.
Therefore pass in this case returns the index of the last iteration of the loop.
eval takes a sequence of values and an integer index, and returns the element of
the sequence at that index. Therefore, eval returns the value of t after the last
iteration of the loop (a denotational semantics of PEGs can be found in [6]).

As Figure 3 shows, the PEG for the optimized function g is the same as the
original function f. Peggy has validated this example just by converting to PEGs,
without even running equality saturation. One of the key advantages of PEGs is
that they are agnostic to code-placement details, and so Peggy can validate code
placement optimizations such as loop-invariant code motion, lazy code motion,
and scheduling by just converting to PEGs and checking for syntactic equality.
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3 Implementation

Axioms. Peggy uses a variety of axioms to infer equality information. Some
of these axioms were previously developed and state properties of built-in PEG
operators like θ, eval , pass , and φ (which are used for conditionals). We also im-
plemented LLVM specific axioms to reason about load and store, some of which
we have already seen. An additonal such axiom is important for moving unaliased
loads/stores across each other: p �= q ⇒ load(store(σ, q, v), p) = load(σ, p).

Alias Analysis. The axiom above can only fire if p �= q, requiring alias in-
formation. Our first attempt was to encode an alias analysis using axioms, and
run it using the saturation engine. However, this added a significant run-time
overhead, and so we instead took the approach from [7], which is to pre-compute
alias information; we then used this information when applying axioms.

Generating Proofs. As described in our follow-up work [5], after Peggy val-
idates a transformation it can use the resulting E-PEG to generate a proof of
equivalence of the two programs. This proof has already helped us determine
how often axioms are useful. In the future, we could also use this proof to im-
prove the run-time of our validator: after a function f has been validated, we
could record which axioms were useful for f , and enable only those axioms for
subsequent validations of f (reverting back to all axioms if the validation fails).

4 Results

We used Peggy to perform translation validation for LLVM 2.8 on SPEC 2006
C benchmarks. We enabled the following optimizations: dead code elimination,
global value numbering, partial redundancy elimination, sparse conditional con-
stant propagation, loop-invariant code motion, loop deletion, loop unswitching,
dead store elimination, constant propagation, and basic block placement.

Figure 4 shows the results: “#func” and “#instr” are the number of functions
and instructions; “%success” is the percentage of functions whose compilation
Peggy validated (“All” considers all functions; “OC”, which stands for “Only
Changed”, ignores functions for which LLVM’s output is identical to the input);
“To PEG” is the average time per function to convert from CFG to PEG; “Avg
Engine Time” is the average time per function to run the equality saturation
engine (“Success” is over successful runs, and “Failure” over failed runs).

Overall our results are comparable to [7]. However, because of implemen-
tation differences (including the set of axioms), an in-depth and meaningful
experimental comparison is difficult. Nonetheless, conceptually the main differ-
ence is that [7] uses axioms for destructive rewrites, whereas we use axioms
to add equality information to the E-PEG, thus expressing multiple equivalent
programs at once. Our approach has several benefits over [7]: (1) we simultane-
ously explore an exponential number of paths through the space of equivalent
programs, whereas [7] explores a single linear path – hence we explore more of
the search space; (2) we need not worry about axiom ordering, whereas [7] must
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Benchmark #func #instr
%success To Avg Engine Time

All OC PEG Success Failure

400.perlbench 1,864 269,631 79.0% 73.3% 0.531s 1.028s 11s
401.bzip2 100 16,312 82.0% 76.9% 0.253s 0.733s 19s
403.gcc 5,577 828,962 80.8% 74.9% 0.558s 0.700s 19s
429.mcf 24 2,541 87.5% 87.0% 0.216s 0.500s 19s
433.milc 235 21,764 80.4% 75.0% 0.246s 0.188s 9s
456.hmmer 538 57,102 86.4% 84.6% 0.285s 0.900s 11s
458.sjeng 144 23,807 77.1% 72.5% 1.099s 0.253s 7s
462.libquantum 115 5,864 73.9% 64.3% 0.123s 0.167s 8s
464.h264ref 590 131,627 74.2% 70.5% 0.587s 0.846s 12s
470.lbm 19 3,616 78.9% 76.5% 0.335s 0.154s 3s
482.sphinx3 369 28,164 88.1% 86.0% 0.208s 0.480s 12s

Fig. 4. Results of running Peggy’s translation validator on SPEC 2006 benchmarks

pick a good ordering of rewrites for LLVM – hence it is easier to adapt our
approach to new compilers, and a user can easily add/remove axioms (without
worrying about ordering) to balance precision/speed or to specialize for a given
code base; (3) our approach effectively reasons about loop-induction variables,
which is more difficult using the techniques in [7]. However, the approach in [7]
is faster, because it explores a single linear path through the space of programs.

Failures were caused by: (1) incomplete axioms for linear arithmetic; (2) in-
sufficient alias information; (3) LLVM’s use of pre-computed interprocedural
information, even in intraprocedural optimizations. These limitations point to
several directions for future work, including incorporating SMT solvers and bet-
ter alias analyses, and investigating interprocedural translation validation.
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Abstract. Pushdown systems (PDS) naturally model sequential recur-
sive programs. Numeric data types also often arise in real-world pro-
grams. We study the extension of PDS with unbounded counters, which
naturally model numeric data types. Although this extension is Turing-
powerful, reachability is known to be decidable when the number of rever-
sals between incrementing and decrementing modes is bounded. In this
paper, we (1) pinpoint the decidability/complexity of reachability and
linear/branching time model checking over PDS with reversal-bounded
counters (PCo), and (2) experimentally demonstrate the effectiveness of
our approach in analysing software. We show reachability over PCo is
NP-complete, while LTL is coNEXP-complete (coNP-complete for fixed
formulas). In contrast, we prove that EF-logic over PCo is undecidable.
Our NP upper bounds are by a direct poly-time reduction to satisfaction
over existential Presburger formulas, allowing us to tap into highly opti-
mized solvers like Z3. Although reversal-bounded analysis is incomplete
for PDS with unbounded counters in general, our experiments suggest
that some intricate bugs (e.g. from Linux device drivers) can be discov-
ered with a small number of reversals. We also pinpoint the decidabil-
ity/complexity of various extensions of PCo, e.g., with discrete clocks.

1 Introduction

Pushdown systems (PDS) are natural abstractions of sequential programs with
unbounded recursions whose verification problems have been extensively studied
(cf. [4,12,35]). In addition to recursions, numerical data types commonly arise in
real-world programs. A standard approach to these potentially infinite domains
is to map them into abstract domains that are more amenable to analysis (e.g.
finite ones like {Pos, Neg, Zero}, or infinite ones expressed by intervals, difference
bound matrices, polyhedra, etc.). For other types of program analysis, it is also
common to simply ignore numerical data types. For a comprehensive treatment
of these techniques, and others, the reader is referred to the survey [11].

In this paper, we study a different approach. Motivated by the success of
pushdown systems (or similar models like boolean programs) in software model
checking (cf. [2,3,29]), we aim to investigate extensions of pushdown systems
with numerical data types and preserve nice properties, such as decidability and
good complexity. A clean and simple approach is to enrich pushdown systems
with unbounded counters, which can be incremented/decremented and tested
for zero. Unfortunately, this model is Turing-powerful, even without the stack.
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One way to retain decidability of reachability is to impose an upper bound r on
the number of reversals between incrementing and decrementing modes for each
counter (cf. [9,19]). In fact, decidability holds even if discrete clocks are added
to the model [9]. On the other hand, the complexity of reachability over these
models is still open; a simple analysis of [9,19] yields at least double exponential-
time complexity for their algorithms. Recently, the authors of [13] observed that
replacing the use of Parikh’s Theorem [24] in [19] by a recently improved ver-
sion of [34] immediately yields an NP procedure for this reachability problem
(without clocks) for fixed numbers of reversals and counters, yielding only an
NEXP procedure in general. Furthermore, the decidability of linear/branching
time model checking over these models is also unknown.

There are at least two potential applications of reversal-bounded model check-
ing (cf. [9,20]). First, it could be used as a sound but incomplete verification tech-
nique for the case of unbounded reversals. Despite this incompleteness, results
in bounded model checking suggest that “shallow” bugs are common in practice
(cf. [11]). Clearly, reversal-bounded model checking is an infinite-state general-
ization of bounded model checking over counter systems. A second application
is the use of reversal-bounded counters for tracking the number of times certain
actions have been executed to reach the current configuration. For example, we
can check the existence of a computation path in a recursive program where the
number of invocations for the functions f1, f2, f3, and f4 are the same. Similar
counting properties (and their model checking problems) have been studied in
many other contexts (cf. [22] and references therein).
Contributions. We begin by studying pushdown systems enriched with
reversal-bounded counters, which can be compared against and incremented by
constants given in binary, but without clocks (PCo). This model is more general
than the model studied in [13,19], which allows only counters to be compared
against 0 and incremented by {−1, 0, 1}, though at the cost of an exponential
blow-up (cf. [20]) our model can be translated into their model. Our main con-
tributions are (1) to pinpoint the decidability/complexity of reachability and
linear/branching time model checking over PCo, and (2) experimentally demon-
strate the effectiveness of our approach in the analysis of software.

We show that reachability over PCo is NP-complete, while LTL model
checking is coNEXP-complete (coNP-complete for fixed formulas). In con-
trast, we prove that model checking EF-logic over PCo is undecidable.
All of our lower bounds hold already for PDS with one 1-reversal counter
wherein numeric constants, which can be either be compared against or
used to increment/decrement counters, are restricted to 0 or 1. Our NP
upper bounds are established by a direct poly-time reduction to satisfac-
tion over existential Presburger formulas, allowing us to tap into highly
optimized solvers like Z3 [10]. This reduction also permits additional con-
straints on the number of actions executed and the values of the counters
at the end of the run (also specified in existential Presburger arithmetic)
without further computation overhead in the reduction. We have implemented
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our algorithm and use it to analyse several examples, including some derived
from memory management issues in Linux device drivers. Although reversal-
bounded analysis is only complete up to the bound on the number of reversals,
our experiments suggest that many subtle bugs manifest themselves even within
a small number of reversals, which our tool can detect reasonably fast. Without
increasing complexity, our algorithm can also check whether a given PDS P
with unbounded counters is r-reversal bounded, for a given input r ∈ N; note
that this is not the same as deciding whether P is reversal-bounded, which is
undecidable [14]. In the case when P is r-reversal bounded, our technique gives
a complete coverage of the infinite state space, which suggests the usefulness of
our technique in proving correctness as well as finding bugs.

We then study the extension of PCo with discrete clocks (PCC). We show
that LTL model checking over PCC is still coNEXP-complete, but hardness holds
even for a fixed formula. Similarly, we show that reachability over PCC is NEXP-
complete. We also show that, without reversal-bounded counters, model checking
EF-logic over PCC is EXPSPACE-complete even for a fixed formula.

Related work. The complexities of most standard model checking problems
over pushdown systems are well-understood. In relation to our results, we men-
tion that LTL model checking over PDS is EXP-complete and is P-complete for
fixed formulas [4] (the latter is also the complexity for reachability), whereas
model checking EF-logic is PSPACE-complete [4,35]. Therefore, adding reversal-
bounded counters yields computationally harder problems in both cases.

Over reversal-bounded counter systems (without stack), reachability is NP-
complete but becomes NEXP-complete when the number of reversals is given in
binary [18]. On the other hand, when the numbers of reversals and counters are
fixed, the problem is solvable in P [16]. The techniques developed by [16,18],
which reason about the maximal counter values, are very different to our tech-
niques, which exploit the connection to Parikh images of pushdown automata
(first explicated in Ibarra’s original paper [19] though not in a way that gives op-
timal complexity or practical algorithm). For LTL model checking, the problem
is solvable in EXP even in the presence of discrete clocks [31], whereas EF-logic
model checking is still decidable but becomes undecidable for CTL [31].

For discrete-timed systems, reachability is known to be PSPACE-complete
[1], where hardness holds already for three clocks [8]. Using region graph con-
structions [1], LTL model checking and EF-logic can also be easily shown to
be PSPACE-complete. Note that we do not consider timed logics (cf. [5]). The
complexities of pushdown systems with clocks have also been studied, e.g., [7].

Organization. §2 contains preliminaries. In §3, we define the basic model
PCC that we study. §4 and §5, contain upper and lower bounds for model
checking PCo. In §6, we extend our results to PCC. Experimental results
are given in §7. Other extensions and future work are given in §8. Due to
the space limit, some proofs are in the full version from the project page
http://www.cs.ox.ac.uk/recount.

http://www.cs.ox.ac.uk/recount
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2 Preliminaries

Transition systems. An action alphabet ACT is a finite nonempty set of ac-
tions. A transition system over ACT is a tuple S = 〈S, {→a}a∈ACT〉, where S
is a set of configurations and each →a⊆ S × S is an a-labeled transition rela-
tion containing the set of all a-labeled transitions. We use → to denote the
union of all →a. A (computation) path in S is a finite or infinite sequence
π = α0 →a1 α1 →a2 . . . such that αi ∈ S, αi →ai+1 αi+1 and ai ∈ ACT for
each i. If π is finite, let last(π) denote the last configuration in π. In this case,
a1a2 . . . is said to be a (finite) trace in S from α0 to last(π). Automata We
assume familiarity with automata theory. In particular, nondeterministic Büchi
automata (NBWA), cf. [32], and pushdown automata (PDA), cf. [27]. For an
NBWA A, we denote by L(A) the language recognized by A. Similarly, given a
PDA we also write L(P) for the language P recognizes.
Parikh images. Given an alphabet Σ = {a1, . . . , ak} and a word w ∈ Σ∗, we
write P(w) to denote a tuple with |Σ| entries where the ith entry counts the
number of occurrences of ai in w. Given a language L ⊆ Σ∗, we write P(L) to
denote the set {P(w) : w ∈ L}. We say that P(L) is the Parikh image of L.
Logic The syntax of LTL (cf. [17,31,32]) over ACT is given by: ϕ, ϕ′ := a (a ∈
ACT) | ¬ϕ | ϕ∨ϕ′ | ϕ∧ϕ′ | Xϕ | ϕUϕ′. Given an ω-word w ∈ ACTω and an LTL
formula ϕ over ACT, we define the satisfaction relation w |= ϕ in the standard
way. Write [[ϕ]] for all w ∈ ACTω such that w |= ϕ. EF-logic (over ACT) is a
fragment of CTL (cf. [17,31]) with the syntax ϕ, ψ := � | ¬ϕ | ϕ∨ψ | 〈a〉ϕ (a ∈
ACT) | EFϕ. Given an EF formula ϕ, a transition system S = 〈S, {→a}a∈ACT〉
and s ∈ S, we may define S, s |= ϕ in the standard way.
Presburger formulas. Presburger formulas are first-order formulas over natu-
ral numbers with addition. Here, we use extended existential Presburger formulas
∃x1, . . . , xk.ϕ where ϕ is a boolean combination of expressions

∑k
i=1 aixi ∼ b for

constants a1, . . . , ak, b ∈ Z and ∼∈ {≤,≥, <, >, =} with constants represented
in binary. It is known that satisfiability of existential Presburger formulas is
NP-complete even with these extensions (cf. [26]).

3 Pushdown Systems with Counters and Clocks

The model. An atomic clock constraint on clock variables Y = {y1, . . . , ym} is
simply an expression of the form yi ∼ c or yi − yj ∼ c, where ∼ ∈ {<, >, =},
1 ≤ i, j ≤ m and c ∈ Z. An atomic counter constraint on counter variables
X = {x1, . . . , xn} is simply an expression of the form xi ∼ c, where c ∈ Z.
A clock-counter (CC) constraint θ on (X, Y ) is simply a boolean combination
of atomic counter constraints on X and atomic clock constraints on Y . Given
a valuation ν : X ∪ Y → N to the counter/clock variables, we can determine
whether θ[ν] is true or false by replacing a variable z by ν(z) and evaluting the
resulting arithmetic expressions in the obvious way. Let ConstX,Y denote the set
of all CC constraints on (X, Y ). Intuitively, these formulas will act as “enabling
conditions” (or “guards”) to determine whether certain transitions can be fired.
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A pushdown system with n counters and m discrete clocks is a tuple P =
(Q, ACT, Γ, δ, X, Y ) where (1) Q is a finite set of states, (2) ACT is a set of
action labels, (3) Γ is a stack alphabet, (4) X = {x1, . . . , xn} is a set of counter
variables, (5) Y = {y1, . . . , ym} is a set of clock variables, and (6) δ is a transition
relation of P , which is defined to be a finite subset of (Q×Γ ∗×ConstX,Y )×ACT×
(Q×Γ ∗×2Y ×Z

n). A configuration of P is a tuple (q, u,u,v) ∈ Q×Γ ∗×N
n×N

m.
Given a ∈ ACT and two configurations α1 = (q, u,u,v) and α2 = (q′, u′,u′,v′)
of P , α1 →a,P α2 iff there exists 〈(q, w, θ), a, (q′, w′, Y ′,w)〉 ∈ δ such that

– θ holds under the valuation (u,v),
– for some v ∈ Γ ∗, u = wv and u′ = w′v,
– if Y ′ = ∅, then each clock progresses by one time unit, i.e., v′ = v + 1; if

Y ′ �= ∅, then the clocks in Y ′ are reset, while other clocks do not change,
i.e., for each yi ∈ Y , set v′i := 0 and, for each yi /∈ Y , set v′i := vi.

– u′ := u + w (note, all elements of u′ must be non-negative).

The transition system generated by P is SP = 〈S, {→a}a∈ACT〉, where S denotes
the set of configurations of P and →a is defined to be →a,P .

Notice that in this model, which is similar to the model given in [9], clocks
are updated via transitions. This is slightly different from the usual definition
of discrete timed systems (cf. [1]) in which (1) clocks may progress within any
particular state of the system without taking any transitions as long as some
invariants are satisfied, and (2) transitions are instantaneous. However, by in-
troducing self-looping transitions with no reset and adding an extra “dummy”
clock which always resets for old transitions, we can easily construct a weakly
bisimilar system in our model. See [9] for more details.

Let us now define the r-reversal-bounded variant of this model for each r ∈
N. Syntactically, a pushdown system with n r-reversal bounded counters and m
discrete clocks is simply a pair (r,P) of number r and a pushdown system P with
n counters and m clocks. Together with a given initial configuration α of P , the
system (r,P) generates a transition system Sα

(r,P) = 〈S, {→a}a∈ACT〉 defined
as follows. Let SP = 〈S′, {→′

a}a∈ACT〉 be the transition system generated by
P . A path π in SP from α is said to be r-reversal-bounded if each counter of
P changes from a non-incrementing mode to non-decrementing mode (or vice
versa) at most r times in the path π. For example, if the values of a counter x in
a path π from α are 1, 1, 1, 2, 3, 4, 4, 4, 3, 2, 2, 3, then the number of reversals of x
is 2 (reversals occur in between the overlined positions). This sequence has three
phases (i.e. subpaths interleaved by consecutive reversals or end points): non-
decrementing, non-incrementing, and finally non-decrementing. This intuition
suffices for understanding the main ideas in this paper, though we provide the
detailed definitions in the full version. The set S is then defined to be the set of
all finite r-reversal-bounded paths from α. Given two such paths π and π′ such
that π′ = π, α′, we define π →a π′ iff last(π) →′

a α′. Notice that Sα
(r,P) is a tree.

We write (r, n, m)-PCC to denote the set of all pushdown systems with n
r-reversal-bounded counters and m discrete clocks. We write PCC to denote the
union of all (r, n, m)-PCC for all r, n, m ∈ N. Similarly, we use (r, n)-PCo to
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denote (r, n, 0)-PCC and (r, m)-PCl to denote (r, 0, m)-PCC. We use PCo and
PCl as well in the same way.

Unless stated otherwise, we make the following conventions: (1) the number
r of reversals is given in unary, and (2) numeric constants in CC constraints
and counter increments are given in binary. In the sequel, we will deal with
(control-state) reachability, model checking LTL and EF over PCC (and their
variants) defined as follows:

– Reachability: given a PCC P and two configurations α, α′ of P (in binary
representation), decide whether α′ is reachable in Sα

P .
– Control-state reachability: given a PCC P and two states q, q′ of P , decide

whether there exist stack contents u, u′ ∈ Γ and counter values c, c′ ∈ N
k

such that (q′, u′, c′) is reachable in S
(q,u,c)
P .

– LTL model checking: given a PCC P , a configuration α of P (in binary),
and an LTL formula ϕ, decide whether Sα

P , α |= ϕ.
– EF model checking: given a PCC P , a configuration α of P (in binary), and

an EF formula ϕ, decide whether Sα
P , α |= ϕ.

4 Upper Bounds for Model Checking PCo

In this section, we show that reachability over PCo is in NP by providing a
direct poly-time reduction to satisfactions of existential Presburger formulas.
As applications of our technique, we will provide: (1) an NP upper bound for
control-state reachability with additional constraints on counter values at the
beginning/end of the run and how many times actions are executed at the end
of the run, and (2) a coNEXP upper bound for LTL model checking over PCo
(coNP for fixed formulas). Lower bounds are proved in the next section.

An NP procedure for reachability over PCo. We prove the following.

Theorem 1. Reachability over PCo is NP-complete. In fact, it is poly-time re-
ducible to checking satisfactions of existential Presburger formulas.

Given an (r, k)-PCo P = (Q, ACT, Γ, δ, X), and two configurations α = (q, u, c)
and α′ = (q′, u′, c′) of P , our algorithm decides if α′ is reachable from α in SP .
Let c = (c1, . . . , ck) and c′ = (c′1, . . . , c′k). We assume that u = u′ = ⊥ since,
by hardwiring u and u′ into the finite control of P the standard way, the PCo
P may initialize the stack content to u and make sure the final stack content
is precisely u′. In addition, let d1 < . . . < dm denote all the numeric constants
appearing in an atomic counter constraint as a part of CC constraints in P .
Without loss of generality, we assume that d1 = 0 for notational convenience.
Let REG = {ϕ1, . . . , ϕm, ψ1, . . . , ψm} be a set of formulas defined as follows. Note
that these formulas partition N into 2m pairwise disjoint regions.

ϕi(x) ≡ x = di, ψi(x) ≡ di < x < di+1 (1 ≤ i < m), ψm(x) ≡ dm < x .

A vector v in Modes = REGk × [0, r]k × {↑, ↓}k is said to be a mode vector.
Given a path π = α0α1 . . . αh from α to α′, we may associate a mode vector vj
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to each configuration αi in π that records for each counter: which region its value
is in, how many reversals its used, and whether its phase is non-decrementing (↑)
or non-incrementing (↓). Consider the sequence σ = {vj}h

j=0 of mode vectors. A
crucial observation is that each mode vector v ∈Modes in this sequence occurs
in a contiguous block, i.e., if 0 ≤ j ≤ j′ ≤ h are such that vj (resp. vj′ ) is the first
(resp. last) time v appearing in σ, then vl = v for all l ∈ [j, j′]. Intuitively, once
a change occurs in σ, we cannot revert to the previous vector. This is because
any such change will incur an extra reversal for at least one counter. There are
at most Nmax := |REG| × (r + 1)× k = 2mk(r + 1) distinct mode vectors in σ.

In outline, to avoid an exponential blow-up in our reduction, we will first
construct a very rough “upperapproximation” of the PCo P as a PDA P ′. In-
tuitively, P ′ will simulate P , while guessing and remembering only how many
mode vector changes have occurred, but disregarding the counter information.
In this case, there are runs in P ′ that are not valid in P . Each time P ′ fires a
transition t (derived from a transition t′ of P by disregarding counters), it will
also output information about the counter tests and in(de)crements associated
with t′, and how many changes in the mode counter have occurred thus far
(recorded in the states of P ′). Since P ′ is of polynomial size, we apply on P ′ the
linear-time algorithm of Verma et al. [34] to compute the Parikh images of CFGs
(equivalently, PDA). Building on the output formula, we use further existential
quantifications to guess the evolution of the mode vectors, on which we impose
further constraints to eliminate invalid runs. We give the details below.
Building the PDA P. Define P ′ = (Q′, ACT′, Γ, δ′, (q, 0), F ′) allowing transitions
to execute a (finite) sequence of actions, instead of just one. These are for con-
venience and can be encoded in the states of P ′. Let Q′ = Q× [0, Nmax− 1] and
define ACT′ implicitly from δ′. In fact, ACT′ is a (finite) subset of {(ctri, u, j, l) :
i ∈ [1, k], u ∈ Z, j ∈ [0, Nmax − 1], l ∈ {0, 1}} ∪ (ConstX,∅ × [0, Nmax − 1]). Here,
l ∈ {0, 1} signifies whether this action changes the mode vector. We define δ′ by
initially setting δ′ = ∅ and adding rules as follows. If 〈(q, w, θ), a, (q′, w′,u)〉 ∈ δ
where u = (u1, . . . , uk) then for each i ∈ [0, Nmax − 1] we add

〈((q, i), w), (θ, i)(ctr1, u1, i, 0)(ctr2, u2, i, 0) . . . (ctrk, uk, i, 0), ((q, i), w′)〉
to δ′. If i ∈ [0, Nmax − 1), we also add the following rule:

〈((q, i), w), (θ, i)(ctr1, u1, i, 1)(ctr2, u2, i, 1) . . . (ctrk, uk, i, 1), ((q, i + 1), w′)〉
In this way, P ′ makes “visible” the counter tests and the counter updates per-
formed. Finally, the set F ′ of final states are defined to be {q′} × [0, Nmax − 1]
and the initial control state is (q, 0).
Constructing the formula. Fix an ordering on ACT′, say α1 < . . . < αl. For
convenience, by f we denote a function mapping αi to i for each i ∈ [1, l].
We apply the linear-time algorithm of [34] on P ′ above to obtain χ(z), where
z = (z1, . . . , zl), such that for each n ∈ N

l we have n ∈ P(L(P ′)) iff χ(n) holds.
We impose constraint χ to eliminate vectors that do not correspond to traces of
P ′. Currently, P ′ knows only the maximum number of allowed changes in mode
vectors, but is not “aware” of other information about the counters. Therefore,
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the formula that we construct should assert the existence of a valid sequence of
mode vectors that respect the counter tests and updates that P ′ outputs. We
construct HasRun of the form

∃z∃m0, . . . ,mNmax−1

(
Init(m0) ∧ GoodSeq(m0, . . . ,mNmax−1) ∧ χ(z)∧

Respect(z,m0, . . . ,mNmax−1) ∧ EndVal(z)

)
where m0, . . . ,mNmax−1 are variables for representing a valid sequence of mode
vectors occurring in the run of P .

Let us now elaborate HasRun. First, since a mode vector is a member of
Modes = REGk × [0, r]k × {↓, ↑}k, we set mi to be a tuple of variables
{regi

j , rev
i
j , arr

i
j : j ∈ [1, k]}, where:

– regi
j is a variable that will range over [1, 2m] denoting which region the jth

counter is in (a number of the form 2i+1 refers to ϕi, while 2i refers to ψi).
– revi

j is a variable that will range over [0, r] denoting the number of reversals
that have been used thus far by the jth counter.

– arri
j is a variable that will range over {0, 1} denoting the current arrow

direction, e.g., 0/1 for ↑/↓ (non-decrementing/non-incrementing mode).

Using Init(m0), we assert that the initial mode vector needs to respect the
given initial configuration α = (q, u, c), where c = (c1, . . . , ck). More precisely,

Init(m0) ≡
k∧

j=1

(
rev0

j = 0 ∧
m∧

i=1

(
reg0

j = 2i− 1↔ ϕi(cj)
∧

reg0
j = 2i↔ ψi(cj)

))
.

In fact, since c is given, we could replace some of these variables by constants.
However, being able to define this in the formula allows us to prove something
more general, as we will see later.

Recall that the target configuration is α′ = (q′, u′, c′), where c′ = (c′1, . . . , c
′
k).

We assert that the end counter values match c′. This definition is given as follows.
Note, multiplications by constants are allowed within Presburger arithmetic.

EndVal(z) ≡
k∧

j=1

⎛⎝ r∑
i=0

∑
(ctrj ,d,i,l)∈ACT′

d× zf(ctrj ,d,i,l)

⎞⎠ = c′j .

We define GoodSeq(m0, . . . ,mNmax−1) to express that m0, . . . ,mNmax−1 is
a valid sequence of mode counters. The formula is a conjunction of smaller
formulas defined below. One conjunct says that each revi

j must be a number in
[0, r]. Likewise, we add conjuncts expressing that each regi

j (resp. arri
j) ranges

over [1, 2m] (resp. {0, 1}). We also need to state that changes in the direction
arrows incur an extra reversal (otherwise, no reversal is incurred):

k∧
j=1

Nmax−1∧
i=0

0 ≤ revi
j ≤ r. ∧

k∧
j=1

Nmax−2∧
i=0

(
arri

j �= arri+1
j → revi+1

j = revi
j + 1

∧
arri

j = arri+1
j → revi+1

j = revi
j

)
.
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Finally, the sequence {regi
j}Nmax−1

i=0 must obey the changes in {arri
j}Nmax−1

i=0 :

k∧
j=1

Nmax−2∧
i=0

(
regi

j < regi+1
j → arri+1

j = 0
∧

regi
j > regi+1

j → arri+1
j = 1

)
.

I.e., since regions denote increasing intervals, going to higher (resp. lower) regions
mean the counter mode must be non-decrementing (resp. non-incrementing).

Lastly, we give Respect(z,m0, . . . ,mNmax−1). Again, this is a conjunction.
First, when the jth counter is non-incrementing (resp. non-decrementing), we
allow only non-negative (resp. non-positive) counter increments:

k∧
j=1

Nmax−1∧
i=1

(
arri

j = 0→ ∧
(ctrk,d,i,l)∈ACT′,d<0 zf(ctrk,d,i,l) = 0

∧
arri

j = 1→ ∧
(ctrk,d,i)∈ACT′,d>0 zf(ctrk,d,i,l) = 0

)
.

Secondly, the value of the jth counter at the beginning and end of each mode
must respect the guessed mode vector. Let us first introduce some notations.
Observe that the value of the jth counter at the end of ith mode vector can be
expressed by cj +

(∑i−1
i′=0

∑
(ctrj ,d,i′,l)∈ACT′ d× zf(ctrj ,d,i′,l)

)
+

∑
(ctrj ,d,i,0) d ×

zf(ctrj ,d,i,0). Let us denote this term by EndCounteri
j . Similarly, the value at the

beginning of the ith mode is cj +
∑i−1

i′=0

∑
(ctrj ,d,i′,l)∈ACT′ d × zf(ctrj ,d,i′,l). We

denote this term by StartCounteri
j . Hence, this second conjunct is

k∧
j=1

Nmax−1∧
i=0

m∧
l=1

(
regi

j = 2l− 1 → (ϕl(EndCounteri
j) ∧ ϕl(StartCounteri

j))
∧

regi
j = 2l → (ψl(EndCounteri

j) ∧ ψl(StartCounteri
j))

)
.

Finally, we need to express that no invalid counter tests are executed in a given
mode. To test whether a CC constraint θ is satisfied by the values b = (b1, . . . , bk)
of the counters, it is necessary and sufficient to test whether θ is satisfied by
some vector b′ = (b′1, . . . , b

′
k), where each bi lies in the same region in REG as

b′i. Therefore, the desired property can be expressed as:

Nmax−1∧
i=0

∧
(θ,i)∈ACT′

zf(θ,i) > 0→ θ(StartCounteri
1, . . . ,StartCounteri

k).

Of course, we might want to make the formula smaller by associating new vari-
ables for all terms StartCounteri

j and EndCounteri
j . Since the translation from

PDA to CFGs produces an output of cubic size, it is easy to check that the size
of HasRun is cubic in ‖P‖, r, and k.

Applications. We start with a straightforward application of the above proof:
Control-state reachability over PCo with additional existential Presburger con-
straints on counter values at the beginning/end of the run and on how many
times actions are executed at the end of the run can be checked in NP. In fact,
it is poly-time reducible to checking satisfactions over existential Presburger for-
mulas. To see this, observe that the counter values in α and α′, which were
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treated as constants in HasRun, could be treated as variables. Hence, we can add
the additional constraint within the inner bracket of HasRun as a conjunct, and
quantify the new variables for counter values. Secondly, we have the following:

Theorem 2. LTL model checking over PCo is coNEXP-complete. For fixed for-
mulas, it is coNP-complete.

For this, we begin with the standard Vardi-Wolper automata-theoretic approach
[32] reducing the complement of this problem to recurrent reachability over PCo:
given a PCo P = (Q, ACT, Γ, δ, X) and a subset F ⊆ Q, decide if there is a run of
P visiting configurations of the form (q, u, c) where q ∈ F infinitely often. This
reduction obtains an NBWA of exponential size from the negation of the given
LTL formula, and builds the product of this NBWA and P . Thus, the reduction
is exponential in the LTL formula but polynomial in the PCo. Therefore, it
suffices to show that recurrent reachability is in NP. Observe that all infinite
runs π of P stabilise in some mode, expressed by a mode vector m. We split π
into a subpath from the initial configuration α to a configuration α′ = (q′, u′, c′)
in π in mode m, and the rest of the path from α′. In fact, if c′ = (c′1, . . . , c

′
k),

then α′ could be chosen such that if the value of the jth counter after α′ in π has
a maximum c (e.g. when jth counter value stabilises in a region < 2m, which is
bounded), then c′j = c. By allowing only rules which do not decrement counters
whose values do not stabilise, we may treat the path from α′ as a path of a PDS
with no counters. Hence, we use a well-known lemma of PDS (w.l.o.g. assume
that transitions of PDS/PCo only check the top stack character):

Lemma 3 ([4]). Given a PDS P = (Q, ACT, Γ, δ), an initial configuration α,
and a set F ⊆ Q, then there exists an infinite computation path of P from α vis-
iting F infinitely often iff there exist configurations (p, α) ∈ Q×Γ , (g, u), (p, αv)
such that g ∈ F and (i) α can reach (p, αw) for some w ∈ Γ ∗, and (ii) (p, α)
can reach (g, u), from which (p, γv) is reachable.

We construct a PCo P ′ that simulates P (for the initial subpath of the recurrent
reachability witness). Eventually, it decides to stop simulating P at some config-
uration (p, αw,v). The state and the top-stack character are then made visible
by P ′ with an action (p, α). The PCo P ′ then empties the stack and continues
the simulation of P from (p, α) except that (1) only rules which increment coun-
ters by non-negative values are allowed, but instead of actually modifying the
counter values, actions of the form +ctrj will be executed if the rule increments
the jth counter by a positive value (2) counter tests θ are no longer performed,
but instead we execute actions that signify θ. When a configuration of the form
(g, u,v) is reached with g ∈ F , it will make it visible by performing an action
of the form g!. At any given time after this, it may output a character (p′, α′),
where p′ is the current state and α′ is the current top stack character, and go
into the state Finish. There exists a computation path of P from α that visits
F infinitely often iff there exists a path from α to the Finish in P ′ such that:
(a) the number executions of some (p, α) is 2, (b) some g! action has been ex-
ecuted, (c) if the region of the end value of the jth counter (corresponding to
the jth counter value of the initial witnessing subpath of P) is bounded (i.e.
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< 2m), then no action +ctrj must have been executed, and (d) no counter test
actions violating the regions of the end counter values have been executed. Using
the techniques from Theorem 1, we may express these constraints as a poly-size
existential Presburger formula. In conclusion, we have reduced recurrent reach-
ability over PCo to control-state reachability over PCo with constraints, which
we already saw to be in NP.

5 Lower Bounds for Model Checking PCo

In this section, we prove coNEXP and coNP lower bounds for model checking
LTL and reachability over PCo. We will also show that model checking EF-logic
is undecidable even for a fixed formula. All our lower bounds hold for (1, 1)-PCo
where counters can only be compared against 0 and incremented by {−1, 0, 1}.
Lower bound for LTL and reachability. We start with coNP-hardness for a
fixed LTL formula over (1, 1)-PCo. We show that the complement of this model
checking problem is NP-hard. It will be clear later that the same proof can be
used to show that reachability is NP-hard over (1, 1)-PCo. The idea is to reduce
from the NP-complete 0-1 Knapsack problem ([23]): given a1, . . . , ak, b ∈ N in
binary, decide whether

∑k
i=1 aixi = b for some x1, . . . , xk ∈ {0, 1}. The reduc-

tion constructs a (1, 1)-PCo P which initializes the counter to 0 and repeats
for each i ∈ [1, k]: guess xi, add aixi to the counter. The PCo then checks
whether the counter is b by substracting b and checking whether the result
is 0. If the test is positive, execute a special action success and then loop
silently. The LTL formula is G¬success. Note, this PCo makes one reversal.
The problem with this reduction, however, is that the numbers a1, . . . , ak, b
are given in binary, whereas each transition in P can add −1 or 1. Hence,
we cannot naively hardwire the “intermediate” values of a1, . . . , ak, b during
the computation in the finite control. Instead, we need to use the stack.

0 1 2 3

0’ 1’ 2’

x := x + 1

0→ ε0→ ε

1→ 0 1→ 0 1 → 0

ε → 1

0 → ε

ε → 1

ε → 1

x := x + 1
1→ 0

We illustrate this technique by the ex-
ample in the following figure on the
right. This is a PCo with one counter
x that increases x by the number rep-
resented by the topmost four bits on
the stack (edge label u → v defines
the stack operation). For example, if
the PCo starts with the configuration (3, 1101, 0), then it will end at the config-
uration (0, 0, 13). Using this technique, we will only need at most

∑k
i=1 log(ai)+

log(b) extra states and therefore avoiding an exponential blow-up.
For the coNEXP lower bound for non-fixed formulas, we reduce succinct 0-1

Knapsack. We define Succinct 0-1 Knapsack as the 0-1 Knapsack problem
where the input is given as a boolean formula θ with variables x1, . . . , xk+m where
k, m ∈ Z>0 are given in unary. Here θ represent the numbers a1, . . . , a2k−1, b ∈ N

each with precisely 2m bits (leading 0s permitted) as follows:

– The ith bit of bin(b) is defined to be x ∈ {0, 1} iff the formula θ evaluates
to x when x1, . . . , xk+m are evaluated to 0kbinm(i).
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– The ith bit of bin(aj) is defined to be x ∈ {0, 1} iff the formula θ evaluates
to x when the inputs to x1, . . . , xk+m are bink(j)binm(i).

The problem is to check whether
∑2k−1

i=1 aizi = b for some z1, . . . , z2k−1 ∈ {0, 1}.
The problem of Succinct 0-1 Knapsack can be shown to be NEXP-complete in
the same way that the problem Succinct Knapsack, where natural numbers can
be assigned to zi’s (instead of only {0, 1}), is shown in [33] to be NEXP-complete.

We now show a NEXP lower bound for the complement of LTL model check-
ing over (1, 1)-PCo by reducing from Succinct 0-1 Knapsack. The idea of the
reduction is the same as for the case of fixed formulas, but we will have to use
the LTL formula to count up to doubly exponential values.

The stack alphabet includes #, c0
1, c

1
1, . . . , c

0
m, c1

m. If the ith bit of aj is 1 and
zj has been guessed to be 1, then we need to add 2i to the counter. E.g., suppose
we’re on the 11 . . .1th bit of the a0. Using the techniques below, we calculate
the value of this bit. If it is 1, we increment 2(2m−1) times. To do this, we push
the following sequence on the stack, again using techniques described below.

0c0
m . . . c0

1#0c1
mc0

m−1 . . . c0
1# . . . . . . . . .#0c1

m . . . c1
1# (*)

That is, a bit-string with 2m many 0s, annotated with their bit positions (least
significant bit on the top/left of the stack). From this stack configuration, the
system counts up to 1c0

m . . . c0
1#1c1

mc0
m−1 . . . c0

1# . . . . . . . . .#1c1
m . . . c1

1#, i.e., a
bit-string with 2m many 1s, taking 2(2m−1) steps. We increment the counter +1
at each step.

To complete the proof, we need to know how to: (1) enumerate all assignments
to x1, . . . , xk+m and evaluate θ, (2) initialise the large counter described above,
and (3) increment the large counter from 00 . . .0 to 11 . . .1.
Problem 1: We store the current assignment on the bottom of the stack, us-
ing x0

1, x
1
1, . . . , x

0
k+m, x1

k+m. Initially, we push x0
1, . . . , x

0
k+m, making the pushed

characters visible using suitable action symbols. We then guess whether θ eval-
uates to 1. An LTL formula encoding θ asserts this guess is correct. To move to
the lexicographically next assignment, we erase the stack, making the characters
visible, and then guess the next assignment, using the LTL to check it.
Problem 2: Guess and push 0cy1

1 . . . cym
m #, using the formula to check this

matches the xy1
k+1, . . . , x

ym

k+m on the stack. We then push 0cY1
1 . . . cYm

m # (with
the values of Y1, . . . , Ym ∈ {0, 1} guessed) to the stack. This is done arbitrarily
many times and the PCo may stop at some point. To make sure we obtain (*)
on the top of the stack, we assert the successor property using the LTL formula.
Problem 3: This uses the idea for the fixed formula case: pop from the stack until
the first 0, then push a correct number of 1s annotated with the bit positions.
For this, an LTL formula asserts the successor property, cf. [28].

Undecidability results for EF-logic. We now turn our attention to model
checking EF-logic over PCo. It turns out that the problem is already undecidable
for a fixed formula with two operators. We reduce from the emptiness of linear
bounded Turing machines (LTM), which is undecidable (cf. [27]). Given an LTM
M that accept/rejects an input w using at most c|w| space, we compute a
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(1, 1)-PCo P , an EF formula ϕ, and a start state q0 of P such that SP , (q0, ε) |= ϕ
iff M is nonempty. We make P guess a word w and an accepting computation
path ofM, which is stored in the stack. The length c|w| is stored in the counter.
Once the path has been guessed, it suffices to show that: (P1) the length of
each guessed configuration is c|w|, and (P2) each non-initial configuration is a
successor of its previous configuration. The guessing and checking stages incur
one alternation for the EF formula. Since checking P2 requires us to check at
most four consecutive tape cells of M (once a cell is chosen), we can remember
this location by decrementing the counter, moving to the previous configuration
of M that is stored in the stack, and then further decrementing the counter
making sure that the end value is 0. See the full version for the proof.

Theorem 4. Model checking EF-logic over (1, 1)-PCo is undecidable even for a
fixed formula with two EF operators.

6 Adding clocks

To extend our results to the case of PCC, we use the region construction of Alur
and Dill [1] to reduce a PCC to a PCo of exponential size (in exponential time)
such that every run of the PCC can be projected, state-for-state, onto a run
of the PCo. From S4, we obtain a coNEXP (resp. NEXP) upper bound for LTL
model checking (resp. reachability) over PCC. We next provide a lower bound.

Theorem 5. Reachability is NEXP-hard for PDS with discrete clocks and one
1-reversal-bounded counter. When clock constraint constants are given in bi-
nary, only three clocks and one single-reversal counter are needed. Similarly,
LTL model-checking is coNEXP-hard, even for a fixed formula.

We first consider unary constants, and a non-fixed number of clocks. We adapt
the previous reduction from Succinct 0-1 Knapsack, except the formula can
no longer be used to evaluate the boolean formulas. Instead, we encode bits
with two clocks, which are equal iff the bit is 1. We evaluate boolean formulas
using the transition guards. To test all assignments to x1, . . . , xk+m we store
the valuation in the counters (not the stack). This is straightforward. Then, to
build the large counter on the stack, we use another set of clocks to store the bit
position values of the last two blocks pushed on to the stack. These clocks can
be used to ensure the successor relation between the two values. For binary clock
constraints, we use Courcoubetis and Yannakakis [8] to reduce to three clocks.

Recall that model checking EF-logic over PCo is undecidable. It turns out
that this problem is decidable over PCl. See the full version for a proof.

Theorem 6. Model checking EF over PCl is EXPSPACE-complete. The lower
bound holds for fixed formulas with two clocks with binary constraint constants,
or with a non-fixed number of clocks when the constraints are in unary.
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7 Experimental Results

We provide a prototypical C++ implementation of an optimised version of the
reduction in Section 4. In particular, from the Verma et al., we can derive, at
no cost, the number of times each rule of the PCo is fired. From this, we in-
fer the number of action symbols output, and hence, do not need additional
variables and transitions for these. In addition, the per mode information per
counter uses a single variable. Finally, we look for pairs of pushdown rules
〈(q1, a1,�), ε, (q2, a2, ∅, ∅n)〉 and 〈(q2, a2,�), ε, (q3, a3, ∅, ∅n)〉 such that a1 and a2

are single characters and the pair q2, a2 does not appear together in any other
rule. Furthermore, a2 does not appear in a rule 〈(q, w, θ), a, (q′, w′a2w

′′, Y,w)〉
where |w′| > 0. These rules can be replaced by 〈(q1, a1,�), ε, (q3, a3, ∅, ∅n)〉. Then
we remove unreachable productions from the generated CFGs. We used the 64-
bit Linux binary of Z3 2.16 [10] on the Presburger formulas on a quad-core, 2.4Gz
IntelR© XeonR© machine with 12GB of RAM, running FedoraTM12. We report the
time from the Linux command time for the translation and the run of Z3.
Double free in dm-target.c. In version 2.5.71 of the Linux kernel, a double
free was introduced to drivers/md/dm-target.c [30]. This was introduced to fix
a perceived memory-leak. When registering a new target, memory was allocated
and a check made to see if the target was already known. If so, it was freed and
an “exists” flag set. Otherwise the target was added to the target list. Before
returning, the exists flag was checked and the object was freed (again) if it was
set. We created, by hand, a model of this file using a counter to store the length
of the target list. The complete control flow of the file was maintained and data
only tracked when relevant to the memory management. The model outputs
special symbols to mark when memory is allocated or freed. We then look for a
run where, either an item was removed from the empty list, the number of free
calls was greater than the number of allocations, or, the code exited normally,
but more memory was allocated than freed. We were able to verify that the code
contained a memory error in version 2.5.71 and that the memory management
was correct in earlier versions (for a bounded number of reversals) provided as
many targets were registered as unregistered. Note, the counter is required to
track the size of the list which ensures that the number of allocations matches the
number of frees. The size of the dm-target.c is approximately 175 lines without
comments. Detecting the bug took 2s, and proving correctness took 1.7s, 2.9s,
16s, 24s and 77s for 1, 2, 3, 4 and 5 reversals respectively.
Memory leak in aer inject.c. In version 2.6.32 of the Linux kernel, the
file drivers/pci/pcie/aer/aer inject.c contains a memory leak that was
patched in the next version [25]: two lists of allocated objects are maintained,
but, when exiting, the code empties the items from the first list and frees them,
then, empties and frees the first list again, instead of the second. We created a
model of this driver with two counters to track the size of the lists and searched
for memory errors as in the previous example. Only one reversal was required
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to detect the memory leak. We showed that the patch corrects the problem (up
to one reversal). Note, without counters, it would always be possible for the
number of allocations to differ from the number of frees. The file aer inject.c
is approximately 470 lines without comments. Detecting the bug required 220s
and proving correctness for a single reversal took 508s.

Buffer overflow. Jhala and McMillan have a buffer overflow example which
their technique, SatAbs and Magic, failed to verify [21]. There are three buffers,
x, y and z of sizes 100, 100 and 200 and two counters i and j. First, i is used to
copy up to 100 positions of x into z. Then, counters i and j are used to copy up
to 100 positions of y into the remainder of z. There is overflow if i, which indexes
z, finishes greater than 199. This simply encodes into our model1 and could be
verified correct (since the example is trivially reversal bounded) in 1.6s.

David Gries’s coffee can problem [15]. We have an arbitrary number of
black and white coffee beans in a can. We pick two beans at random. If they are
the same colour, they are discarded and an extra black bean is put in the tin.
If they differ, the white is kept but the black discarded. The last bean in the
can is black iff the number of white beans is odd. This problem can be modelled
without abstraction by using the stack to count the number of black beans, and
a single-reversal counter to track the number of white beans. We verified in 1.3s
that the last bean cannot be white if the number of white beans is odd, and in
1.1s that the last bean may be white if the number of white beans is even.

8 Extensions and Future Work

We prove, in the full version of this paper, that (i) reachability and LTL for
a prefix-recognisable version of PCo is NEXP-complete and coNEXP-complete
respectively, even with one 1-reversal-bounded counter and a fixed formula; (ii)
LTL model checking for a fixed formula is coNEXP when the number of reversals
is given in binary, whereas reachability is in NEXP (a matching lower bound is in
[18], even without the stack); and (iii) the reachability problem for second-order
pushdown systems (cf. [17]) with reversal bounded counters is undecidable.

For future work we may investigate counter-example guided abstraction re-
finement. We would need counter-examples from the models of the existential
Presburger formula, and refinement techniques to add counters and reversals as
well as predicates. Furthermore, as we allow user defined numerical constraints
on reachability, we may also restrict LTL model checking to runs satisfying ad-
ditional numerical fairness constraints.

Acknowledgments. We thank the authors of [7] and [33] for their correspon-
dence, V. D’Silva for recommending [21], J. Leroux and P. Ruemmer for sug-
gesting Z3, A. Sangnier for [13], and anonymous referees for their comments. We
thank EPSRC (EP/F036361 and EP/H026878/1) for their support.

1 Comparison with constants is not implemented. We adjusted the formula by hand.
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vol. 6281, pp. 355–367. Springer, Heidelberg (2010)

14. Finkel, A., Sangnier, A.: Reversal-bounded counter machines revisited. In:
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