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Abstract

For geodetic and geophysical purposes, such as geoid determination or the study
of the Earth’s structure, heterogeneous gravity datasets of various origins need to
be combined over an area of interest, in order to derive a local gravity model at
the highest possible resolution. The quality of the obtained gravity model strongly
depends on the use of appropriate noise models for the different datasets in the
combination process. In addition to random errors, those datasets are indeed often
affected by systematic biases and correlated errors.

Here we show how wavelets can be used to realize such combination in a
flexible and economic way, and how the use of domain decomposition approaches
allows to recalibrate the noise models in different wavebands and for different
areas. We represent the gravity potential as a linear combination of Poisson
multipole wavelets (Holschneider et al. 2003). We compute the wavelet model of
the gravity field by regularized least-squares adjustment of the datasets. To solve
the normal system, we apply the Schwarz iterative algorithms, based on a domain
decomposition of the models space. Hierarchical scale subdomains are defined as
subsets of wavelets at different scales, and for each scale, block subdomains are
defined based on spatial splittings of the area. In the computation process, the data
weights can be refined for each subdomain, allowing to take into account the effect
of correlated noises in a simple way. Similarly, the weight of the regularization can
be recalibrated for each subdomain, introducing non-stationarity in the a priori
assumption of smoothness of the gravity field.
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We show and discuss examples of application of this method for regional gravity
field modelling over a test area in Japan.
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1 Introduction

The knowledge of the geoid is essential for various
geodetic and geophysical applications. For instance,
it allows the conversion between GPS-derived and
levelled heights. It is also the reference surface for
ocean dynamics. The geoid can be computed from an
accurate gravity model merging all gravity datasets
available over the studied area. With the satellite grav-
ity missions GRACE and GOCE, our knowledge of
the long and medium wavelengths of the gravity field
is or will be greatly improved (Tapley et al. 2004;
Drinkwater et al. 2007). The gravity models derived
from those missions need to be locally refined using
high resolution surface gravity datasets, to obtain the
local high resolution models that will be used for
geoid modeling. Such refinements also allow to under-
line possible biases of the surface gravimetry and
to improve the local gravity models, provided that a
proper combination with the satellite models is car-
ried out, with an appropriate relative weighting of
the datasets. Featherstone et al. (1998) provide an
overview of methods developed to realize such combi-
nation, using the Stokes integration. Different weight-
ing schemes have been proposed by various authors,
see for instance Kern et al. (2003). Local functional
representations of the gravity field can also be used
(see Tenzer and Klees 2008, for an overview). They
can be related to least-squares collocation in reproduc-
ing kernel spaces (Sansò and Tscherning 2003).

Here we show that wavelet representations of the
gravity field can be very useful for that purpose.
Because of their localization properties, the wavelets
indeed allow a flexible combination of various
datasets. We first explain how to compute a local
wavelet model of the gravity field combining different
datasets by an iterative domain decomposition
approach. Then, we provide an example of application
over Japan, an area where significant variations of the
gravity field occur in a wide range of spatial scales.

2 Discrete Wavelet Frames

The gravity potential is modeled as a linear combi-
nation of wavelets. Wavelets are functions well local-
ized both in space and frequency, which makes them
interesting to combine data with different spatial and
spectral characteristics. To model a geopotential, har-
monic wavelets are well-suited (Freeden et al. 1998,
Schmidt et al. 2005). We chose to use axisymmetric
Poisson multipole wavelets, introduced by Holschnei-
der et al. (2003). Because they can be identified with
equivalent non-central multipolar sources at various
depths, they are well-suited to model the gravity poten-
tial at a regional scale. A wavelet is described by
its scale parameter (defining its width), its position
parameter (defining its center in space), and its order
(defining the multipoles, as explained in Holschneider
et al. 2003). Here we use order three Poisson wavelets,
which provide a good compromise between spatial and
spectral localization.

A wavelet family is built by an appropriate
discretization of the scale and position parameters,
as explained in Chambodut et al. (2005), Panet
et al. (2004, 2006). First, a sequence of scales is chosen
in order to ensure a regular coverage of the spectrum.
This leads to a dyadic sequence of scales. Then, for
each scale, a set of positions on the mean Earth sphere
is chosen, in order to ensure a regular coverage of the
sphere. The number of positions increases as the scale
decreases, because the dimension of harmonics spaces
to be generated by the wavelets increases. The wavelets
are thus located at the vertices of spherical meshes that
are denser and denser as the scale decreases.

The wavelet family thus obtained forms a frame
(Holschneider et al. 2003). It provides a complete
and stable representation of the modeled field, that
may also be redundant. The redundancy is evalu-
ated by comparing the number of wavelets, approxi-
mated with band-limited functions, with the dimension
of harmonic spaces to be generated (Holschneider
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Table 10.1 Description of the wavelet frame used in gravity
modelling over Japan.

Scale (km) Number of wavelets Area covered

300 380 25=49ıN, 129=153ıE
150 1406 25=49ıN, 129=153ıE
75 2,401 29=45ıN, 133=149ıE
38 9,604 29=45ıN, 133=149ıE
20 38,220 29=45ıN, 133=149ıE

et al. 2003). The wavelet family used in this study
(see Table 10.1) is over-complete with a redundancy
estimated to 1.4 at 10 km resolution.

Here, we build a wavelet family suitable for local
gravity field modeling by refinement of a global geopo-
tential model derived from GRACE data with a surface
gravity dataset. We need to combine two datasets:
the high resolution surface gravity one, and a dataset
created at the ground level from the geopotential model
up to degree 120, extending two degrees outside the
surface data. We then select the wavelets as follows.
First, the largest wavelet scale is limited by the size of
the area covered with data. Scales larger than half of
the width of the area indeed cannot be reliably con-
strained by local datasets. Second, wavelet positions,
for each scale, are selected in the area covered by data.
Potential data are modeled by large scale wavelets, and
smaller scales are added to model the surface data. This
leads to the wavelet set detailed in Table 10.1. Note
that, although the central frequency of the smallest
scale wavelets is 20 km, the spectrum is well covered
down to 10 to 15 km resolution.

3 Domain Decomposition Methods

The coefficients of the wavelet representation of the
gravity potential are computed by least-squares fit of
the datasets. Each data type can be related to the poten-
tial by a functional relation, leading to the observation
equations for each dataset i , with i D 1; : : : ; I . We
obtain the following model:

bi D Ai � x C "i

Here, bi is the measurement vector, Ai the design
matrix relating the observations to the wavelet coef-
ficients of the geopotential, and x the coefficients to
be determined. The vector "i contains the data errors

(comprising white noise and correlated errors), with
covariance matrix W �1

i . This matrix is not considered
perfectly known a priori, and we will parameterize it
with variance factors estimated in the computational
process (see below). We then derive the normal system
for each dataset: Ni � x D fi , where Ni D At

i � Wi � Ai

is the normal matrix, and fi D At
i � Wi � bi is the

associated right hand side. Summing the normals for
all datasets, and adding a regularization term �K leads
to the system to solve:

.N C �K/ � x D f (10.1)

with N D P
i Ni and f D P

i fi . The regularization
may be needed if the data distribution leads to an ill-
posed problem, and also to stabilize the inversion if the
wavelet family is too redundant.

To solve this problem and introduce flexibility, we
apply iterative domain decomposition methods (see for
instance Chan and Mathew (1994) and Xu (1992)).
Here we briefly recall the principle of such approaches.
The least-squares computation of a wavelet model can
be viewed as a projection of the data vectors on the
space H D L2.

P
/ spanned by the wavelets, whereP

stands for the Earth mean sphere. In the domain
decomposition approaches, also named Schwarz algo-
rithms, we split H into smaller subspaces named sub-
domains fHk; k D 1; : : : ; pg, that may be overlapping
or not, so that we have H D ˙

p

kD1Hk . In order for
the computation to converge fastly, it is interesting to
choose not too correlated subdomains, and we natu-
rally define subdomains spanned by the wavelets at
a given scale (hereafter referred to as: scale subdo-
mains). If the scale subdomains still comprise too
many wavelets, which is the case at the smaller scales,
we split them into smaller subdomains spanned by sub-
sets of wavelets at the given scale. These are referred
to as: blocks subdomains. They correspond to a spatial
splitting of the area into blocks. To each scale level cor-
responds a block splitting, with only one block for the
larger scales and an increasing number of blocks as the
scale decreases. Here we used a simple definition of
the blocks, limited by meridians and parallels, but one
may consider general shapes, for instance following
the physical characteristics of the area. We defined
overlapping blocks subdomains, with the size of the
overlap area depending on the scale level, in order to
speed up the convergency of the computations. On the
other hand, our scale subdomains are non-overlapping.
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Finally, to each subdomain corresponds a subset of
the total wavelet coefficient vector x that is to be
computed.

Once the subdomains have been defined, the
Schwarz algorithms consist in the following steps:
(1) project the data vector and the normal systems
on each subdomain, (2) compute the local wavelet
coefficients by least-squares fit of the datasets for
each wavelet subdomain, (3) gather these subsets of
coefficients and update the global solution vector x,
dropping the coefficients of wavelets located in the
overlap areas and reweighting the coefficients, (4)
update the right-hand side and iterate the computation.
The coefficient weights are defined as the inverse of the
number of overlapping blocks to which they belong.
The Schwarz algorithms exist in two versions: the
sequential one, where the subdomain solutions are
computed sequentially, and the parallel one, where
they are computed at the same time. In the case of
multi-resolution representations based on wavelets, it
is interesting to apply a hybrid algorithm, combining
sequential Schwarz iterations on the scales subdomains
with parallel iterations on the blocks. To design
the iteration path over the scales, we followed the
iteration sequences of multi-level iterative methods
called multigrids. Multigrid methods (Wesseling 1991;
Kusche 2001) are based on the resolution of successive
projections of the normal system on coarse or fine
grids, applying multi-level Schwarz iterations between
subdomains corresponding to the grids. They are
similar to a multi-scale resolution using wavelets,
the wavelet coefficients at a given scale defining the
details to add to a coarser grid approximation in order
to obtain the finer grid approximation of the signal. We
thus applied standard grid iterations schemes (from
coarser to finer grids and vice versa) to design the
wavelets scales iteration schemes (from larger to finer
scales and vice versa). Figure 10.1 summarizes the
approach.

In such iterative approach, it is possible to reweight
the datasets and the regularization subdomain per sub-
domain. Following ideas by Ditmar et al. (2007) devel-
oped in the case of a Fourier analysis of data errors, we
model the datasets systematic errors as a linear combi-
nation of wavelets, and add a white noise component.
To model the systematic errors, we assume here that
there exists a discrete orthonormal wavelet basis B
sampled at the data points (it may be different from
the Poisson wavelets frame). This requires a regular

Fig. 10.1 The Schwarz iterative algorithm. Each layer corre-
spond to a scale subdomain, and the solid lines define the spatial
blocks. The gray arrows show the iterations over the scales.

enough data sampling. Then, the covariance matrices
of the errors W �1

i may be written as:

W �1
i D F t

i � D�1
i � Fi ; (10.2)

where Fi and Di are square matrices of size equal to
the number of data in the dataset i . Fi is an orthogonal
matrix containing the basis B wavelets sampled at the
data points, and we have: F t

i � Fi D I . The weight
matrix Wi thus verifies:

Wi D F t
i � Di � Fi : (10.3)

If the datasets errors can be considered locally
stationary (without any abrupt variations) over the
subdomains, then the projections of Di over these
subdomains can be approximated with a white noise of
constant subdomain-dependent variance �k , leading
to a block-diagonal structure of Di . Inserting (10.3)
into (10.1), and assuming a good enough decorrelation
between the Poisson wavelets and the discrete wavelets
of basis B for different scales and blocks, leads to a
rescaling of the subdomains normals by a factor �k .
In other words, the subdomains normals highlight
different components of matrix Wi , and the scaling
factors �k are roughly estimated using variance
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components analysis (Koch 1986; Kusche 2003) of
a discrete wavelet transform of the residuals. The
regularization may be reweighted in this way too.
However, for the convergence of the iterations, a low
condition number of the normal system is needed.
This may require to increase the regularization weight.
Thus, we chose to follow an iterated regularization
approach (Engl, 1987), where an initially strong
regularization is progressively removed by iterating,
the number of iterations finally controlling the amount
of regularization.

4 Application Over Japan

We validated the method on synthetic tests consider-
ing white and colored noise models, and then apply
it to gravity field modeling over Japan, refining a
GRACE-derived global geopotential model (EIGEN-
GL04S by Biancale et al. 2005) with a local gravity
model by Kuroishi and Keller (2005). We generated
5448 potential values at the Earth’s surface from the
EIGEN-GL04S model up to degree and order 120. The
cumulative error is estimated to 0:8 m2=s2 in rms. The
local gravity model is a 3 by 3 min Fayes anomaly
grid at the Earth’s surface (103,041 data), merging
altimetry-derived, marine and land gravity anomalies
(Fig. 10.2). The altimetry-derived gravity anomalies
are the KMS2002 ones (Andersen and Knudsen 1998).
In order to avoid aliasing from the highest frequencies
of the gravity data, we removed the highest frequencies
from the local model by applying a 10 km resolution
moving average filter, corresponding to the wavelet
model resolution. From both datasets, we removed the
lower frequencies modeled by the lower degree com-
ponents of the EIGEN-GL04S model, and the residuals
are modeled using wavelets. This allows us to con-
struct a hybrid spherical harmonics/wavelets model,
refining locally the global EIGEN-GL04S model using
wavelets. For the parametrization of the computation,
we use 5 scales subdomains. For the scales 300 km
and 150 km, there is only one block. For the scales
75 km, 38 km and 20 km, we split the area into 4,
16 and 36 blocks, respectively. We apply a few iter-
ation cycles over the scale subdomains, and a few
hundreds iterations over the blocks. We do not iterate
our estimations of the datasets reweightings using
variance components estimates, but carry out only

Fig. 10.2 Surface gravity model by Kuroishi and Keller (2005).

one weight estimation at the end of the computa-
tion of the wavelet model. Indeed, as the potential
data are perfectly harmonic, iterated variance compo-
nents estimates tend to lead to a perfect fit of these
data.

The results of a first computation, tightly con-
strained to the potential data for the large scale
wavelets, and with a progressive increase of the
weight of the surface data as the scale decreases,
highlighted discrepancies between the two datasets,
that we attributed to large scale systematic errors
in the surface gravity model. Applying a low-pass
filter to the residuals to the gravity anomaly data, we
defined a corrector model and subtracted it from the
surface gravity data. Applying the wavelet method
on the corrected datasets allows to progressively
improve the resulting wavelet model, and refine our
corrector model. The final corrector thus obtained is
represented on Fig. 10.3. It is consistent with results
from Kuroishi (2009), underlining similar biases in
the surface gravity model from a comparison with the
GGM02C/EGM96 geopotential model. The residuals
of the final wavelet model to the potential and gravity
anomaly data are represented on Fig. 10.4, and the final
wavelet model on Fig. 10.5. The RMSs of residuals
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Fig. 10.3 The final corrector model to the surface gravity
anomaly model, derived by low-pass filtering of the residuals
of the wavelet model to the gravity anomaly data.

are 0:80m2=s2 for the potential data, and 0.50 mGals
at 15 km resolution for the corrected anomaly data.
This is consistent with our a priori knowledge on
the data quality. We also note that these residuals
do not show any significant bias. The resolution
of the wavelet model may be slightly coarser than
that of the surface gravity model, which is why
we observe very small scale patterns in the gravity
anomaly residuals map. Small edge effects may also be
present.

Conclusion

We developed an iterative method for regional
gravity field modeling by combination of different
datasets. It is based on a multi-resolution repre-
sentation of the gravity potential using Poisson
multipole wavelets. We define scale and blocks
subdomains, and carry out the computation of the
wavelet model subdomain per subdomain. This
allows to introduce a flexible reweighting of the
datasets in different wavebands and in different
areas. Applying this approach to the example of
gravity field modeling over Japan, a challenging
area with important gravity undulations, allows

Fig. 10.4 Geographic distribution of residuals in the final com-
bination. Top panel: potential residuals to degree 120. Bot-
tom panel: residuals of corrected gravity anomalies at 15 km
resolution.

to derive a hybrid spherical harmonics/wavelet
model at about 15 km resolution, refining a global
geopotential model with a local high resolution
gravity model. Finally, the method can be used
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Fig. 10.5 Surface Fayes gravity anomalies computed from the
final wavelet model obtained in the present study.

to regional modeling of the forthcoming GOCE
level 2 gradient data, in combination with surface
gravimetry.
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