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Abstract We review the stability properties of several discretizations of the
Helmholtz equation at large wavenumbers. For a model problem in a polygon, a
complete k-explicit stability (including k-explicit stability of the continuous prob-
lem) and convergence theory for high order finite element methods is developed.
In particular, quasi-optimality is shown for a fixed number of degrees of freedom
per wavelength if the mesh size h and the approximation order p are selected such
that kh=p is sufficiently small and p D O.log k/, and, additionally, appropriate
mesh refinement is used near the vertices. We also review the stability properties of
two classes of numerical schemes that use piecewise solutions of the homogeneous
Helmholtz equation, namely, Least Squares methods and Discontinuous Galerkin
(DG) methods. The latter includes the Ultra Weak Variational Formulation.

1 Introduction

A fundamental equation describing acoustic or electromagnetic phenomena is the
time-dependent wave equation

@2w

@t2
� c2�w D g;

given here for homogeneous, isotropic media whose propagation speed of waves
is c. It arises in many applications, for example, radar/sonar detection, noise
filtering, optical fiber design, medical imaging and seismic analysis. A commonly
encountered setting is the time-harmonic case, in which the solution w (and
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correspondingly the right-hand side g) is assumed to be of the form Re
�
e�i!tu.x/

�

for a frequency!. Upon introducing the wavenumber k D !=c and the wave length
� WD 2�=k, the resulting equation for the function u, which depends solely on the
spatial variable x, is then the Helmholtz equation

��u � k2u D f: (1)

In this article, we concentrate on numerical schemes for the Helmholtz equation at
large wavenumbers k. Standard discretizations face several challenges, notably:

(I) For large wavenumber k, the solution u is highly oscillatory. Its resolution,
therefore, requires fine meshes, namely, at least N D kd degrees of freedom,
where d is the spatial dimension.

(II) The standardH1-conforming variational formulation is indefinite, and stability
on the discrete level is therefore an issue. A manifestation of this problem
is the so-called “pollution”, which expresses the observation that much more
stringent conditions on the discretization have to be met than the minimal
N D O.kd / to achieve a given accuracy.

The second point, which will be the focus of the article, is best seen in the following,
one-dimension example:

Example 1.1. For the boundary value problem

� u00 � k2u D 1 in .0; 1/, u.0/ D 0; u0.1/� iku.1/ D 0; (2)

we consider the h-version finite element method (FEM) on uniform meshes with
mesh size h for different approximation orders p 2 f1; 2; 3; 4g and wavenumbers
k 2 f1; 10; 100g. Figure 1 shows the relative error in the H1.˝/-semi norm (i.e.,
ju � uN jH1.˝/=jujH1.˝/, where uN is the FEM approximation) versus the number
of degrees of freedom per wavelength N� WD N=� D 2�N=k with N being the
dimension of the finite element space employed. We observe several effects in Fig. 1:
Firstly, since the solution u of (2) is smooth, higher order methods lead to higher
accuracy for a given number of degrees of freedom per wavelength than lower order
methods. Secondly, asymptotically, the FEM is quasioptimal with the finite element
error ju � uN jH1.˝/ satisfying

ju � uN jH1.˝/ � CpN
�p
� jujH1.˝/ (3)

for a constant Cp independent of k. Thirdly, the performance of the FEM as
measured in “error vs. number of degrees of freedom per wavelength” does depend
on k: As k increases, the preasymptotic range with reduced FEM performance
becomes larger. Fourthly, higher order methods are less sensitive to k than lower
order ones, i.e., for given k, high order methods enter the asymptotic regime in
which (3) holds for smaller values of N� than lower order methods.
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Fig. 1 Performance of h-FEM for (2). Top: p D 1, p D 2. Bottom: p D 3, p D 4 (see
Example 1.1)

The behavior of the FEM in Example 1.1 has been analyzed in [36,37], where error
bounds of the form (see [36, Thm. 4.27])

ju � uN jH1.˝/ � Cp
�
1C kpC1hp

�
hpjujHpC1.˝/ (4)

are established for a constant Cp depending only on the approximation order p. In
this particular example, it is also easy to see that jujHpC1.˝/=jujH1.˝/ � kp , so that
(4) can be recast in the form

ju � uN jH1.˝/ � Cp
�
1C kpC1hp

�
.kh/pjujH1.˝/ � �

1C kN
�p
�

�
N

�p
� jujH1.˝/:

(5)
This estimate goes a long way to explain the above observations. The presence of the
factor 1 C kN

�p
� explains the “pollution effect”, i.e., the observation that for fixed

N�, the (relative) error of the FEM as compared with the best approximation (which
is essentially proportional to N�p

� in this example) increases with k. The estimate
(5) also indicates that the asymptotic convergence behavior (3) is reached for N� D
O.k1=p/. This confirms the observation made above that higher order methods
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are less prone to pollution than lower order methods. Although Example 1.1 is
restricted to 1D, similar observations have been made in the literature also for
multi-d situations as early as [11]. We emphasize that for uniform meshes (as in
Example 1.1) or, more generally, translation invariant meshes, complete and detailed
dispersion analyses are available in an h-version setting, [1, 20, 36, 37], and in a
p/hp-setting, [1–3], that give strong mathematical evidence for the superior ability
of high order methods to cope with the pollution effect.

The present paper, which discusses and generalizes the work [49,50], proves that
also on unstructured meshes, high order methods are less prone to pollution. More
precisely, for a large class of Helmholtz problems, stability and quasi-optimality is
given under the scale resolution condition

kh

p
� c1 and p � c2 log k; (6)

where c1 is sufficiently small and c2 sufficiently large. For piecewise smooth
geometries (e.g., polygons), additionally appropriate mesh refinement near the
singularities is required.

We close our discussion of Example 1.1 by remarking that its analysis and, in
fact, the analysis of significant parts of this article rests on H1-like norms. Largely,
this choice is motivated by the numerical scheme, namely, an H1-conforming
FEM.

1.1 Non-standard FEM

The limitations of the classical FEM mentioned above in (I) and (II) have sparked a
significant amount of research in the past decades to overcome or at least mitigate
them. This research focuses on two techniques that are often considered in tandem:
firstly, the underlying approximation by classical piecewise polynomials is replaced
with special, problem-adapted functions such as systems of plane waves; secondly,
the numerical scheme is based on a variational formulation different from the
classical H1-conforming Galerkin approach. Before discussing these ideas in more
detail, we point the reader to the interesting work [8], which shows for a model
situation on regular, infinite grids in 2D that no 9-point stencil (i.e., a numerical
method based on connecting the value at a node with those of the eight nearest
neighbors) generates a completely pollution-free method; the 1D situation is special
and discussed briefly in [21, Sec. 7].

Work that is based on a new or modified variational formulation but rests on
the approximation properties of piecewise polynomials includes the Galerkin Least
Squares Method [29, 30], the methods of [7], and Discontinuous Galerkin Methods
([24–26] and references there). Several methods have been proposed that are based
on the approximation properties of special, problem-adapted systems of functions
such as systems of plane waves. In anH1-conforming Galerkin setting, this idea has
been pursued in the Partition of Unity Method/Generalized FEM by several authors,
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e.g., [4, 34, 38, 39, 44, 48, 56, 57, 69]. A variety of other methods that are based on
problem-adapted ansatz functions leave the H1-conforming Galerkin setting and
enforce the jump across element boundaries in a weak sense. This can be done
by least squares techniques ([10, 41, 53, 58, 68] and references there), by Lagrange
multiplier techniques as in the Discontinuous Enrichment Method [22, 23, 70] or
by Discontinuous Galerkin (DG) type methods, [14–16, 27, 32, 33, 35, 43, 51, 52];
in these last references, we have included the work on the Ultra Weak Variational
Formulation (UWVF) since it can be understood as a special DG method as
discussed in [14, 27].

1.2 Scope of the Article

The present article focuses on the stability properties of numerical methods for
Helmholtz problems and exemplarily discusses three different approaches in more
detail for their differences in techniques. The first approach, studied in Sect. 4,
is that of the classical H1-based Galerkin method for Helmholtz problems. The
setting is that of a Gårding inequality so that stability of a numerical method can
be inferred from the stability of the continuous problem by perturbation arguments.
This motivates us to study for problem (9), which will serve as our model Helmholtz
problem in this article, the stability properties of the continuous problem in Sect. 2.
In order to make the perturbation argument explicit in the wavenumber k, a detailed,
k-explicit regularity analysis for Helmholtz problems is necessary. This is worked
out in Sect. 3 for our model problem (9) posed on polygonal domains. These results
generalize a similar regularity theory for convex polygons or domains with analytic
boundary of [49, 50]. Structurally similar results have been obtained in connection
with boundary integral formulations in [42, 47].

We discuss in Sects. 6.2 and 6.3 somewhat briefly a second and a third approach
to stability of numerical schemes. In contrast to the setting discussed above,
where stability is only ensured asymptotically for sufficiently fine discretizations,
these methods are stable by construction and can even feature quasioptimality in
appropriate residual norms. We point out, however, that relating this residual norm
to a more standard norm such as the L2-norm for the error is a non-trivial task. Our
presentation for these methods will follow the works [14, 27, 33, 53].

Many aspects of discretizations for Helmholtz problems are not addressed in
this article. Recent developments in boundary element techniques for this problem
class are surveyed in [17]. We also refer to the extended version of the present
article [21].

1.3 Some Notation

We employ standard notation for Sobolev spaces, [13, 55, 65]. For domains ! and
k ¤ 0 we denote

kuk21;k;! WD k2kuk2
L2.!/

C kruk2
L2.!/

: (7)
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This norm is equivalent to the standard H1-norm. The presence of the weight k
in the L2-part leads to a balance between the H1-seminorm and the L2-norm for
functions with the expected oscillatory behavior such as plane waves eikd�x (with d
being a unit vector). Additionally, the bilinear form B considered below is bounded
uniformly in k with respect to this (k-dependent) norm.

Throughout this work, a standing assumption will be

jkj � k0 > 0I (8)

our frequently used phrase “independent of k” will still implicitly assume (8).
We denote by C a generic constant. If not stated otherwise, C will be inde-
pendent of the wavenumber k but may depend on k0. For smooth functions u
defined on a d -dimensional manifold, we employ the notation jrnu.x/j2 WD

X

˛2Nd0 Wj˛jDn

j˛jŠ
˛Š

jD˛u.x/j2:

1.4 A Model Problem

In order to fix ideas, we will use the following, specific model problem: For a
bounded Lipschitz domain ˝ � R

d , d 2 f2; 3g, we study for k 2 R, jkj � k0,

��u � k2u D f in ˝; (9a)

@nu C iku D g on @˝: (9b)

Henceforth, to simplify the notation, we assume k � k0 > 0 but point out that the
choice of the sign of k is not essential. The weak formulation for (9) is:

Find u 2 H1.˝/ s.t. B.u; v/ D l.v/ 8v 2 H1.˝/; (10)

where, for f 2 L2.˝/ and g 2 L2.@˝/, B and l are given by

B.u; v/ WD
Z

˝

.ru � rv � k2uv/C ik
Z

@˝

uv; l.v/ WD .f; v/L2.˝/ C .g; v/L2.@˝/:

(11)
As usual, if f 2 .H1.˝//0 and g 2 H�1=2.@˝/, then the L2-inner products
.�; �/L2.˝/ and .�; �/L2.@˝/ are understood as duality pairings. The multiplicative trace
inequality proves continuity of B; in fact, there exists CB > 0 independent of k
such that (see, e.g., [50, Cor. 3.2] for details)

jB.u; v/j � CBkuk1;k;˝kvk1;k;˝ 8u; v 2 H1.˝/: (12)
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2 Stability of the Continuous Problem

Helmholtz problems can often be cast in the form “coercive + compact perturbation”
where the compact perturbation is k-dependent. In other words, a Gårding inequality
is satisfied. For example, the sesquilinear form B of (11) is of this form since

ReB.u; u/C 2k2.u; u/L2.˝/ D kuk21;k;˝ (13)

and the embedding H1.˝/ � L2.˝/ is compact by Rellich’s theorem. Classical
Fredholm theory (the “Fredholm alternative”) then yields unique solvability of (10)
for all f 2 .H1.˝//0 and g 2 H�1=2.@˝/, if one can show uniqueness. Uniqueness
in turn is often obtained by exploiting analyticity of the solutions of homogeneous
Helmholtz equation, or, more generally, the unique continuation principle for elliptic
problems, (see, e.g., [40, Chap. 4.3]):

Example 2.1 (Uniqueness for (9)). Let f D 0 and g D 0 in (9). Then, any
solution u 2 H1.˝/ of (9) satisfies uj@˝ D 0 since 0 D ImB.u; u/ D kkuk2

L2.@˝/

(see Lemma 2.2). Hence, the trivial extension eu to R
2 satisfies eu 2 H1.R2/. The

observationsB.u; v/ D 0 for all v 2 H1.˝/ and uj@˝ D 0 show

Z

R2

reu � rv � k2euv D 0 8v 2 C1
0 .R

2/:

Hence, eu is a solution of the homogeneous Helmholtz equation and eu vanishes on
R
2 n ˝ . Analyticity of eu (or, more generally, the unique continuation principle

presented in [40, Chap. 4.3]) then implies thateu 	 0, which in turn yields u 	 0.

The arguments based on the Fredholm alternative do not give any indication of how
the solution operator depends on the wavenumber k. Yet, it is clearly of interest
to know how k enters bounds for the solution operator. It turns out that both
the geometry and the type of boundary conditions strongly affect these bounds.
For example, for an exterior Dirichlet problem, [12] exhibits a geometry and a
sequence of wavenumber .kn/n2N tending to infinity such that the norm of the
solution operator for these wavenumbers is bounded from below by an exponentially
growing term Cebkn for some C , b > 0. These geometries feature so-called
“trapping” or near-trapping and are not convex. For convex or at least star-shaped
geometries, the k-dependence is much better behaved. An important ingredient
of the analysis on such geometries are special test functions in the variational
formulation. For example, assuming in the model problem (10) that˝ is star-shaped
with respect to the origin (and has a smooth boundary), one may take as the test
function v.x/ D x � ru.x/, where u is the exact solution. An integration by parts
(more generally, the so-called “Rellich identities” [55, p. 261] or an identity due to
Pohožaev, [59]) then leads to the following estimate for the model problem (10):

kuk1;k;˝ � C
�kf kL2.˝/ C kgkL2.@˝/

� I (14)
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this was shown in [44, Prop. 8.1.4] (for d D 2) and subsequently by [19] for d D 3.
Uniform in k bounds were established in [31] for star-shaped domains and certain
boundary conditions of mixed type by related techniques. The same test function
was also crucial for a boundary integral setting in [18]. A refined version of this
test function that goes back to Morawetz and Ludwig, [54] was used recently in a
boundary integral equations context (still for star-shaped domains), [66].

While (14) does not make minimal assumptions on the regularity of f and g, the
estimate (14) can be used to show that (for star-shaped domains) the sesquilinear
form B of (10) satisfies an inf-sup condition with inf-sup constant � D O.k�1/ –
this can be shown using the arguments presented in the proof Theorem 2.5.

An important ingredient of the regularity and stability theory will be the concept
of polynomial well-posedness by which we mean polynomial-in-k-bounds for the
norm of the solution operator. The model problem (9) on star-shaped domains with
the a priori bound (14) is an example. The following Sect. 2.1 shows polynomial
well-posedness for the model problem (9) on general Lipschitz domains (Thm. 2.4).
It is thus not the geometry but the type of boundary conditions in our model problem
(9), namely, Robin boundary conditions that makes it polynomially well-posed. In
contrast, the Dirichlet boundary conditions in conjunction with the lack of star-
shapedness in the examples given in [12] make these problem not polynomially
well-posed.

2.1 Polynomial Well-Posedness for the Model Problem (9)

Lemma 2.2. Let ˝ � R
d be a bounded Lipschitz domain. Let u 2 H1.˝/ be a

weak solution of (9) with f D 0 and g 2 L2.@˝/. Then kukL2.@˝/ � k�1kgkL2.@˝/:
Proof. Selecting v D u in the weak formulation (10) and considering the imaginary
part yields

kkuk2
L2.@˝/

D Im
Z

@˝

gu � kgkL2.@˝/kukL2.@˝/:

This concludes the argument. ut
Next we use results on layer potentials for the Helmholtz equation from [47] to

prove the following lemma:

Lemma 2.3. Let ˝ � R
d be a bounded Lipschitz domain, u 2 H1.˝/ solve (9)

with f D 0. Assume uj@˝ 2 L2.@˝/ and @nu 2 L2.@˝/. Then there exists C > 0

independent of k and u such that

kukL2.˝/ � Ck
�kukL2.@˝/ C k@nukH�1.@˝/

�
;

kuk1;k;˝ � C
�
k2kukL2.@˝/ C k2k@nukH�1.@˝/ C k�2k@nukL2.@˝/

�
:

Proof. With the single layer and double layer potentials eV k and eKk we have the rep-
resentation formula u D eV k@nu � eKku. From [47, Lemmata 2.1, 2.2, Theorems 4.1,
4.2] we obtain
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keV k@nukL2.˝/ � Ckk@nukH�1.@˝/; keKkukL2.˝/ � CkkukL2.@˝/:

Thus, kukL2.˝/ � Ck
�kukL2.@˝/ C k@nukH�1.@˝/

�
: Next, using v D u in the weak

formulation (10) yields

kruk2
L2.˝/

� C
h
k2kuk2

L2.˝/
C k@nukL2.@˝/kukL2.@˝/

i

and therefore

kruk2
L2.˝/

C k2kuk2
L2.˝/

� C
h
k4kuk2

L2.@˝/
C k4k@nuk2

H�1.@˝/
C k�4k@nuk2

L2.@˝/

i
;

which concludes the proof. ut
Theorem 2.4. Let ˝ � R

d , d 2 f2; 3g be a bounded Lipschitz domain. Then there
exists C > 0 (independent of k) such that for f 2 L2.˝/ and g 2 L2.@˝/ the
solution u 2 H1.˝/ of (9) satisfies

kuk1;k;˝ � C
�
k2kgkL2.@˝/ C k5=2kf kL2.˝/

�
:

Proof. We first transform the problem to one with homogeneous right-hand side f
in the standard way. A particular solution of (9a) is given by the Newton potential
u0 WD Gk ? f ; here, Gk is a Green’s function for the Helmholtz equation and we
tacitly extend f by zero outside ˝ . Then u0 2 H2

loc.R
d / and by the analysis of the

Newton potential given in [50, Lemma 3.5] we have

k�1ku0kH2.˝/ C ku0kH1.˝/ C kku0kL2.˝/ � Ckf kL2.˝/: (15)

The difference eu WD u � u0 then satisfies

��eu � k2eu D 0 in ˝; @neu C ikeu D g � .@nu0 C iku0/ DW eg: (16)

We have with the multiplicative trace inequality

kegkL2.@˝/ � C
h
kgkL2.@˝/ C ku0k1=2H2.˝/

ku0k1=2H1.˝/
C kku0k1=2H1.˝/

ku0k1=2L2.˝/
i

� C
�kgkL2.@˝/ C k1=2kf kL2.˝/

�
: (17)

To get bounds on eu, we employ Lemma 2.2 and (17) to conclude

keukL2.@˝/ � Ck�1kegkL2.@˝/ � C
�
k�1kgkL2.@˝/ C k�1=2kf kL2.˝/

�
; (18)

k@neukL2.@˝/ � C
�kegkL2.@˝/ C kkeukL2.@˝/

� � C
�kgkL2.@˝/ C k1=2kf kL2.˝/

�
:

(19)
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Lemma 2.3 and the generous estimate k@neukH�1.@˝/ � Ck@neukL2.@˝/ produce

keukH1.˝/ C kkeukL2.˝/ � C
�
k2kgkL2.@˝/ C k5=2kf kL2.˝/

�
: (20)

Combining (15), (20) finishes the argument. ut
The a priori estimate of Theorem 2.4 does not make minimal assumptions on the
regularity of f and g. However, it can be used to obtain estimates on the inf-sup
and hence a priori bounds for f 2 .H1.˝//0 and g 2 H�1=2.@˝/ as we now show:

Theorem 2.5. Let ˝ � R
d , d 2 f2; 3g be a bounded Lipschitz domain. Then there

exists C > 0 (independent of k) such that the sesquilinear form B of (11) satisfies

inf
0¤u2H1.˝/

sup
0¤v2H1.˝/

ReB.u; v/

kuk1;k;˝kvk1;k;˝ � Ck�7=2: (21)

Furthermore, for every f 2 .H1.˝//0 and g 2 H�1=2.@˝/ the problem (10) is
uniquely solvable, and its solution u 2 H1.˝/ satisfies the a priori bound

kuk1;k;˝ � Ck7=2
�kf k.H1.˝//0 C kgkH�1=2.@˝/

�
: (22)

If˝ is convex or if˝ is star-shaped and has a smooth boundary, then the following,
sharper estimate holds:

inf
0¤u2H1.˝/

sup
0¤v2H1.˝/

ReB.u; v/

kuk1;k;˝kvk1;k;˝ � Ck�1: (23)

Proof. The proof relies on standard arguments for sesquilinear forms satisfying a
Gårding inequality. For simplicity of notation, we write k � k1;k for k � k1;k;˝ .

Given u 2 H1.˝/ we define z 2 H1.˝/ as the solution of

2k2.�; u/L2.˝/ D B.�; z/:

Theorem 2.4 implies kzk1;k � Ck9=2kukL2.˝/; and v D u C z satisfies

ReB.u; v/ D ReB.u; u/CReB.u; z/ D kuk21;k�2k2kuk2
L2.˝/

CReB.u; z/ D kuk21;k :

Thus,

ReB.u; v/ D kuk21;k;
kvk1;k D ku C zk1;k � kuk1;k C kzk1;k � kuk1;k C Ck9=2kukL2.˝/

� Ck7=2kuk1;k :

Therefore,
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ReB.u; v/ D kuk21;k � kuk1;kCk�7=2kvk1;k ;
which concludes the proof of (21). Example 2.1 provides unique solvability for (9)
so that (21) gives the a priori estimate (22). Finally, (23) is shown by the same
arguments using (14). ut

3 k-Explicit Regularity Theory

3.1 Regularity by Decomposition

Since the Sobolev regularity of elliptic problems is determined by the leading
order terms of the differential equation and the boundary conditions, the Sobolev
regularity properties of our model problem (9) are the same as those for the
Laplacian. However, regularity results that are explicit in the wavenumber k are
clearly of interest; for example, we will use them in Sect. 4.2 below to quantify
how fine the discretization has to be (relative to k) so that the FEM is stable and
quasi-optimal.

The k-explicit regularity theory developed in [49,50] (and, similarly, for integral
equations in [42, 47]) takes the form of an additive splitting of the solution into
a part with finite regularity but k-independent bounds and a part that is analytic
and for which k-explicit bounds for all derivatives are available. Below, we will
present a similar regularity theory for the model problem (9) for polygonal˝ � R

2,
thereby extending the results of [49], which restricted its analysis of polygons to the
convex case. In order to motivate the ensuing developments, we quote from [50] a
result that shows in a simple setting the key features of our k-explicit “regularity by
decomposition”:

Lemma 3.1 ([50, Lemma 3.5]). Let BR.0/ � R
d , d 2 f1; 2; 3g be the ball of

radius R centered at the origin. Then, there exist C , � > 0 such that for all k
(with k � k0) the following is true: For all f 2 L2.Rd / with suppf � BR.0/ the
solution u of

��u � k2u D f in R
d ;

subject to the Sommerfeld radiation condition

lim
jxj!1

jxj d�1
2

� @u

@jxj � iku
�

D 0 for jxj ! 1;

has the following regularity properties:

(i) ujB2R.0/ 2 H2.B2R.0// and kukH2.B2R.0// � Ckkf kL2.BR.0//.
(ii) ujB2R.0/ can be decomposed as u D uH2 C uA for a uH2 2 H2.B2R/ and an

analytic uA together with the bounds
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kkuH2k1;k;B2R.0/ C kuH2kH2.B2R.0// � Ckf kL2.BR.0//;
krnuA kL2.B2R.0// � C�n maxfn; kgn�1kf kL2.BR.0// 8n 2 N0:

A few comments concerning Lemma 3.1 are in order. For general f 2 L2.BR.0//,
one cannot expect better regularity thanH2-regularity for the solution u and, indeed,
both regularity results (i ) and (ii ) assert this. The estimate (3.1) is sharp in its
dependence on k as the following simple example shows: For the fundamental
solution Gk (with singularity at the origin) and a cut-off function � 2 C1

0 .R
d /

with supp� � B2R.0/ and � 	 1 on BR.0/, the functions u WD .1 � �/Gk
and f WD ��u � k2u satisfy kukH2.B2R.0// D O.k2/ and kf kL2.BR.0// D O.k/.
Compared to (3.1), the regularity assertion (3.1) is finer in that its H2-part uH2 has
a better k-dependence. The k-dependence of the analytic part uA is not improved
(indeed, kuA kH2.B2R.0// � Ckkf kL2.BR.0//), but the analyticity of uA is a feature
that higher order methods can exploit.

The decomposition in (ii ) of Lemma 3.1 is obtained by a decomposition of the
datum f using low pass and high pass filters, i.e., f D L�kf C H�kf , where the
low pass filter L�k cuts off frequencies beyond �k (here, � > 1) andH�k eliminates
the frequencies small than �k. Similar frequency filters will be important tools in
our analysis below as well (see Sec. 3.3.1). The regularity properties stated in (ii )
then follow from this decomposition and the explicit solution formula u D Gk ? f

(see [50, Lemma 3.5] for details).
Lemma 3.1 serves as a prototype for “regularity theory by decomposition”.

Similar decompositions have been developed recently for several Helmholtz prob-
lems in [49] and [42, 47]. Although they vary in their details, these decomposition
are structurally similar in that they have the form of an additive splitting into a
part with finite regularity with k-independent bounds and an analytic part with
k-dependent bounds. The basic ingredients of these decomposition results are
(a) (piecewise) analyticity of the geometry (or, more generally, the data of the
problem) and (b) a priori bounds for solution operator. The latter appear only in
the estimate for the analytic part of the decomposition, and the most interesting
case is that of polynomially well-posed problems. We illustrate the construction
of the decomposition for the model problem (9) in polygonal domains ˝ � R

2.
This result is an extension to general polygons of the results [49], which restricted
its attention to the case of convex polygons. We emphasize that the choice of the
boundary conditions (9b) is not essential for the form of the decomposition and
other boundary conditions could be treated using similar techniques.

3.2 Setting and Main Result

Let ˝ � R
2 be a bounded, polygonal Lipschitz domain with vertices Aj , j D

1; : : : ; J , and interior angles !j , j D 1; : : : ; J . We will require the countably
normed spaces introduced in [6, 45]. These space are designed to capture important
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features of solutions of elliptic partial differential equations posed on polygons,
namely, analyticity of the solution and the singular behavior at the vertices. Their
characterization in terms of these countably normed spaces also permits proving
exponential convergence of piecewise polynomial approximation on appropriately
graded meshes.

These countably normed spaces are defined with the aid of weight functions

˚
p;

�!̌
;k

that we now define. For ˇ 2 Œ0; 1/, n 2 N0, k > 0, and
�!̌ 2 Œ0; 1/J ,

we set

˚n;ˇ;k.x/ D min

8
<

:
1;

jxj
min

n
1; jnjC1

kC1
o

9
=

;

nCˇ

;

˚
n;

�!̌
;k
.x/ D

JY

jD1
˚n;ˇj ;k.x �Aj /: (24)

Finally, we denote by H1=2
pw .@˝/ the space of functions whose restrictions of the

edges of @˝ are in H1=2.
We furthermore introduce the constant Csol .k/ as a suitable norm of the solution

operator for (9). That is, Csol .k/ is such that for all f 2 L2.˝/, g 2 L2.@˝/ and
corresponding solution u of (9) there holds

kuk1;k;˝ � Csol.k/
�kf kL2.˝/ C kgkL2.@˝/

�
: (25)

We recall that Theorem 2.4 gives Csol .k/ D O.k5=2/ for general polygons and
Csol .k/ D O.1/ by [44, Prop. 8.1.4] for convex polygons. Our motivation for using
the notation Csol .k/ is emphasize in the following theorem how a priori estimates
for Helmholtz problems affect the decomposition result:

Theorem 3.2. Let ˝ � R
2 be a polygon with vertices Aj , j D 1; : : : ; J . Then

there exist constants C , � > 0,
�!̌ 2 Œ0; 1/J independent of k � k0 such that

for every f 2 L2.˝/ and g 2 H
1=2
pw .@˝/ the solution u of (9) can be written as

u D uH2 C uA with

kkuH2k1;k;˝ C kuH2kH2.˝/ � CCf;g

kuA kH1.˝/ � .Csol .k/C 1/ Cf;g

kkuA kL2.˝/ � .Csol .k/C k/ Cf;g

k˚
n;

�!̌
;k

rnC2uA kL2.˝/ � C.Csol .k/C 1/k�1 maxfn; kgnC2�nCf;g 8n 2 N0

with Cf;g WD kf kL2.˝/ C kgk
H
1=2
pw .@˝/

and Csol .k/ introduced in (25).

Proof. The proof is relegated to Sect. 3.4. We mention that the k-dependence of our
bounds on kuA kL2.˝/ is likely to be suboptimal due to our method of proof. ut
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Theorem 3.2 may be viewed as the analog of Lemma 3.1, (ii ); we conclude this
section with the analog of Lemma 3.1, (i ):

Corollary 3.3. Assume the hypotheses of Theorem 3.2. Then there exist constants

C > 0,
�!̌ 2 Œ0; 1/J independent of k such that for all f 2 L2.˝/, g 2 H1=2

pw .@˝/

the solution u of (9) satisfies kuk1;k;˝ � CCsol .k/
�kf kL2.˝/ C kgkL2.@˝/

�
as

well as

k˚
0;

�!̌
;k

r2ukL2.˝/ � Ck.Csol .k/C 1/
h
kf kL2.˝/ C kgk

H
1=2
pw .@˝/

i
:

Proof. The estimate for kuk1;k;˝ expresses (25). The estimate for the second
derivatives of u follows from Theorem 3.2 since u D uH2 C uA . ut

3.3 Auxiliary Results

Just as in the proof of Lemma 3.1, an important ingredient of the proof of
Theorem 3.2 are high and low pass filters. The underlying reason is that the
Helmholtz operator �� � k2 acts very differently on low frequency and high
frequency functions. Here, the dividing line between high and low frequencies is at
O.k/. For this reason, appropriate high and low pass filters are defined and analyzed
in Sect. 3.3.1. Furthermore, when applied to high frequency functions the Helmholtz
operator behaves similarly to the Laplacian �� or the modified Helmholtz operator
�� C k2. This latter operator, being positive definite, is easier to analyze and
yet provides insight into the behavior of the Helmholtz operator restricted to high
frequency functions. The modified Helmholtz operator will therefore be a tool for
the proof of Theorem 3.2 and is thus analyzed in Sect. 3.3.3.

3.3.1 High and Low Pass Filters, Auxiliary Results

For the polygonal domain ˝ � R
2 we introduce for � > 1 the following two low

and high pass filters in terms of the Fourier transform F :

1. The low and high pass filters L˝;�f W L2.˝/ ! L2.˝/ and H˝;� W L2.˝/ !
L2.˝/ are defined by

L˝;�f D .F�1�B�k .0/F .E˝f //j˝; H˝;�f D .F�1�R2nB�k.0/F .E˝f //j˝ I

here, B�k.0/ is the ball of radius �k with center 0, the characteristic func-
tion of a set A is �A, and E˝ denotes the Stein extension operator of [67,
Chap. VI].

2. Analogously, we define L@˝;�f W L2.@˝/ ! L2.@˝/ and H@˝;� W L2.@˝/ !
L2.@˝/ in an edgewise fashion. Specifically, identifying an edge e of˝ with an
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interval and letting Ee be the Stein extension operator for the interval e � R to
the real line R, we can define with the univariate Fourier transformation F the
operators Le;� andHe;� by

Le;�g D .F�1�B�k .0/F .Eeg//je; He;�g D .F�1�RnB�k .0/F .Eef //jeI

the operatorsL@˝;� andH@˝;� are then defined edgewise by .L@˝;�g/je D Le;�g

and .H@˝;�g/je D He;�g for all edges e � @˝ .

These operators provide stable decompositions ofL2.˝/ andL2.@˝/. For example,
one has L˝;� CH˝;� D Id on L2.˝/ and the bounds

kL˝;�f kL2.˝/ C kH˝;�f kL2.˝/ � Ckf kL2.˝/ 8f 2 L2.˝/;

where C > 0 depends solely on ˝ (via the Stein extension operator E˝).
The operators H˝;� and H@˝;� have furthermore approximation properties if the
function they are applied to has some Sobolev regularity. We illustrate this for
H@˝;�:

Lemma 3.4. Let ˝ � R
2 be a polygon. Then there exists C > 0 independent of k

and � > 1 such that for all g 2 H1=2
pw .@˝/

k1=2.1C �1=2/kH@˝;�gkL2.@˝/ C kH@˝;�gk
H
1=2
pw .@˝/

� Ckgk
H
1=2
pw .@˝/

:

Proof. We only show the estimate for kH@˝;�gkL2.@˝/. We consider first the case
of an interval I � R. We define HI;�g by HI;�g D F�1�RnB�k .0/FEIg, where
�RnB�k .0/ is the characteristic function for R n .��k; �k/ and EI is the Stein
extension operator for the interval I . Since, by Parseval, F is an isometry onL2.R/
we have

kHI;�gk2
L2.I /

� kHI;�gk2
L2.R/

D
Z

RnB�k.0/

jFEIgj2 d�

D
Z

RnB�k.0/

.1C j�j2/1=2

.1C j�j2/1=2 jFEIgj2 d� � 1

.1C.�k/2/1=2
Z

R

.1Cj�j2/1=2jFEIgj2 d�:

The last integral can be bounded by CkEIgk2
H1=2.R/

. The stability properties of

the extension operator EI then imply furthermore kEIgkH1=2.R/ � CkgkH1=2.I /. In
total,

kHI;�gkL2.I / � C
1

.1C .�k/2/1=4
kgkH1=2.I / � Ck�1=2.1C �/�1=2kgkH1=2.I /;

where, in the last estimate, the constant C depends additionally on k0. From this
estimate, we obtain the desired bound for kH@˝;�gkL2.@˝/ by identifying each edge
of ˝ with an interval. ut
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3.3.2 Corner Singularities

We recall the following result harking back to the work by Kondratiev and Grisvard:

Lemma 3.5. Let ˝ � R
d be a polygon with vertices Aj , j D 1; : : : ; J , and

interior angles !j , j D 1; : : : ; J . Define for each vertex Aj the singularity function
Sj by

Sj .rj ; 'j / D r
�=!j
j cos

�
�

!j
'j

	
; (26)

where .rj ; 'j / are polar coordinates centered at the vertex Aj such that the edges
of ˝ meeting at Aj correspond to 'j D 0 and 'j D !j . Then every solution u of

��u D f in ˝; @nu D g on @˝;

can be written as u D u0 C PJ
jD1 a�j .f; g/Sj with the a priori bounds

ku0kH2.˝/ C
JX

jD1
ja�j .f; g/j � C

h
kf kL2.˝/ C kgk

H
1=2
pw .@˝/

C kukH1.˝/

i
: (27)

The a�j are linear functionals, and a�j D 0 for convex corners Aj (i.e., if !j < �).

Proof. This classical result is comprehensively treated in [28]. ut

3.3.3 The Modified Helmholtz Equation

We consider the modified Helmholtz equation in both a bounded domain with Robin
boundary conditions and in the full space R

2. The corresponding solution operators
will be denoted SC

˝ and SC
R2

:

1. The operator SC
˝ W L2.˝/ 
H1=2

pw .@˝/ ! H1.˝/ is the solution operator for

��u C k2u D f in ˝; @nu C iku D g on @˝ . (28)

2. The operator SC
R2

W L2.R2/ ! H1.R2/ is the solution operator for

��u C k2u D f in R
2: (29)

Lemma 3.6 (properties of SC
˝ ). Let ˝ � R

2 be a polygon and f 2 L2.˝/,

g 2 H1=2
pw .@˝/. Then the solution u WD SC

˝ .f; g/ satisfies

kuk1;k;˝ � k�1=2kgkL2.@˝/ C k�1kf kL2.˝/: (30)
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Furthermore, there exists C > 0 independent of k and the data f , g, and there
exists a decomposition u D uH2 CPJ

iD1 a
C
i .f; g/Si for some linear functionals aC

i

with

kuH2kH2.˝/ C
JX

iD1
jaC
i .f; g/j � C

h
kf kL2.˝/ C kgk

H
1=2
pw .@˝/

C k1=2kgkL2.@˝/
i
:

(31)

Proof. The estimate (30) for kuk1;k;˝ follows by Lax-Milgram – see [49,
Lemma 4.6] for details. Since u satisfies

��u D f � k2u in ˝; @nu D g � iku on @˝;

the standard regularity theory for the Laplacian (see Lemma 3.5) permits us to
decompose u D uH2 C PJ

iD1 a�i .f � k2u; g � iku/Si . The continuity of the linear
functionals a�i reads

JX

iD1
ja�i .f � k2u; g � iku/j � C

h
kf � k2ukL2.˝/ C kg � ikuk

H
1=2
pw .@˝/

i
:

Since .f; g/ 7! SC
˝ .f; g/ is linear, the map .f; g/ 7! aC

i .f; g/ WD a�i .f �k2u; g�
iku/ is linear, and (30), (27) give the desired estimates for uH2 and aC

i .f; g/. ut

Lemma 3.7 (properties of SC
R2

). There exists C > 0 such that for every � > 1 and
every f 2 L2.R2/ whose Fourier transform Ff satisfies supp Ff � R

2 nB�k.0/,
the solution u D SC

R2
f of (29) satisfies

kuk1;k;R2 � k�1 1
p
1C �2

kf kL2.R2/; kukH2.R2/ � Ckf kL2.R2/:

Proof. The result follows from Parseval’s theorem and the weak formulation for u
as follows (we abbreviate the Fourier transforms by bf D Ff and bu D Fu):

kuk2
1;k;R2

D .f; u/L2.R2/ D .bf ;bu/L2.R2/

�
sZ

R2

.j�j2 C k2/�1jbf j2 d�
sZ

R2

.j�j2 C k2/jbuj2 d�

D
sZ

R2nB�k.0/
.j�j2 C k2/�1jbf j2 d�kuk1;k;R2 � 1

k
p
1C �2

kbf kL2.R2/kuk1;k;R2 ;

where, in the penultimate step, we used the support properties of bf . Appealing again
to Parseval, we get the desired claim for kuk1;k;R2 . The estimate for kukH2.R2/ now
follows from f 2 L2.R2/ and the standard interior regularity for the Laplacian. ut
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3.4 Proof of Theorem 3.2

We denote by S W .f; g/ 7! S.f; g/ the solution operator for (9). Concerning
some of its properties, we have the following result taken essentially from [49,
Lemma 4.13]:

Lemma 3.8 (analytic regularity of S.f; g/). Let ˝ be a polygon. Let f be
analytic on˝ and g 2 L2.@˝/ be piecewise analytic and satisfy for some constants
eCf , eCg , �f , �g > 0

krnf kL2.˝/ � eCf �
n
f maxfn; kgn 8n 2 N0 (32a)

krn
T gkL2.e/ � eCg�

n
g maxfn; kgn 8n 2 N0 8e 2 E ; (32b)

where E denotes the set of edges of˝ and rT tangential differentiation. Then there

exist
�!̌ 2 Œ0; 1/J (depending only on ˝) and constants C , � > 0 (depending only

on ˝ , �f , �g , k0) such that the following is true with the constant Csol .k/ of (25):

kuk1;k;˝ � Csol .k/.eCf C eCg/ (33)

k	
n;

�!̌
;k

rnC2ukL2.˝/ � CCsol .k/k
�1.eCf C eCg/�

n maxfn; kgnC2 8n 2 N0:

(34)

Proof. The estimate (33) is simply a restatement of the definition of Csol.k/. The
estimate (34) will follow from [45, Prop. 5.4.5]. To simplify the presentation, we
assume by linearity that g vanishes on all edges of ˝ with the exception of one
edge 
 . Furthermore, we restrict our attention to the vicinity of one vertex, which
we take to be the origin; we assume 
 � .0;1/ 
 f0g, and that near the origin, ˝
is above .0;1/ 
 f0g, i.e., f.r cos'; r sin '/W 0 < r < �; 0 < ' < !g � ˝ for
some �, ! > 0.

Upon setting " WD 1=k, we note that u solves

�"2�u � u D "2f on˝; "2@nu D "."g � iu/ on @˝:

On the edge 
 , the function g is the restriction of G1;0.x; y/ WD g.x/e�y=" to 
 .
The assumptions on f and g then imply that [45, Prop. 5.4.5] is applicable with the
following choice of constants appearing in [45, Prop. 5.4.5]:

Cf D "2eCf ; CG1 D ""1=2eCg; CG2 D "; Cb D 0; Cc D 1;

�f D O.1/; �G1 D O.1/; �G2 D O.1/; �b D 0; �c D 0;

resulting in the existence of constants C , K > 0 and
�!̌ 2 Œ0; 1/J with
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k˚
n;

�!̌
;k

rnC2ukL2.˝/
� CKnC2 maxfnC 2; kgnC2 �

k�2eCf C k�1kuk1;k;˝ C k�3=2eCg

�

for all n 2 N0. We conclude the argument by inserting (33) and estimating
generously k�1eCf C k�1=2eCg � C

�eCf C eCg

�
.

We remark that this last generous estimate comes from the precise form of our
stability assumption (25). Its form (25) is motivated by the estimates available for
the star-shaped case, but could clearly be replaced with other assumptions. ut
Corollary 3.9 (analytic regularity of S.L˝;�f; L@˝;�g/). Let˝ be a polygon and

� > 1. Then there exist
�!̌ 2 Œ0; 1/J (depending only on ˝) and C , � > 0

(depending only on ˝ , k0, and � > 1) such that for every f 2 L2.˝/ and
g 2 L2.@˝/, the function u D S.L˝;�f; L@˝;�g/ satisfies with Cf;g WD kf kL2.˝/C
kgkL2.@˝/

kuk1;k;˝ � CCsol.k/Cf;g (35)

k˚
n;

�!̌
;k

rnC2ukL2.˝/ � CCsol.k/k
�1�n maxfn; kgnC2Cf;g 8n 2 N0: (36)

Proof. The definitions of L˝;�f and L@˝;� imply with Parseval

krnL˝;�f kL2.˝/ � C.�k/nkf kL2.˝/ 8n 2 N0;

krn
T L@˝;�gkL2.@˝/ � C.�k/nkgkL2.@˝/ 8n 2 N0;

where again rT is the (edgewise) tangential gradient. The desired estimates now
follow from Lemma 3.8. ut

Key to the proof of Theorem 3.2 is the following contraction result:

Lemma 3.10 (contraction lemma). Let ˝ � R
2 be a polygon. Fix q 2 .0; 1/.

Then one can find
�!̌ 2 Œ0; 1/J (depending solely on ˝) and constants C , � > 0

independent of k such that for every f 2 L2.˝/ and every g 2 H
1=2
pw .@˝/, the

solution u of (9) can be decomposed as u D uH2 C PJ
iD1 ai .f; g/Si C uA C r ,

where uH2 2 H2.˝/, the ai are linear functionals, and uA 2 C1.˝/. These
functions satisfy

kkuH2k1;k;˝ C kuH2kH2.˝/ C
JX

iD1
jai .f; g/j � C

h
kf kL2.˝/ C kgk

H
1=2
pw .@˝/

i
;

kuA k1;k;˝ � CCsol.k/
�kf kL2.˝/ C kgkL2.@˝/

�
;

k˚
n;

�!̌
;k

rnC2uA kL2.˝/ � CCsol .k/k
�1�n maxfn; kgnC2 �kf kL2.˝/ C kgkL2.@˝/

�

for all n 2 N0. Finally, the remainder r satisfies
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��r � k2r D ef on ˝; @nr C ikr D eg

for some ef 2 L2.˝/ and eg 2 H1=2
pw .@˝/ with

kef kL2.˝/ C kegk
H
1=2
pw .@˝/

� q
�
kf kL2.˝/ C kgk

H
1=2
pw .@˝/

�
:

Proof. We start by decomposing .f; g/ D .L˝;�f; L@˝;�g/C.H˝;�f;H@˝;�g/ with
a parameter � > 1 that will be selected below. We set

uA WD S.L˝;�f; L@˝;�g/; u1 WD SC
R2
.H˝;�f /;

where we tacitly extendedH˝;�f (which is only defined on ˝) by zero outside ˝ .
Then uA satisfies the desired estimates by Corollary 3.9. For u1 we have by
Lemma 3.7 and the stability kH˝;�f kL2.˝/ � Ckf kL2.˝/ (we note that C > 0

is independent of k and �) the a priori estimates

ku1k1;k;R2 � Ck�1.1C �2/�1=2kH˝;�f kL2.˝/ � Ck�1.1C �/�1kf kL2.˝/;
ku1kH2.R2/ � CkH˝;�f kL2.˝/ � Ckf kL2.˝/:

The trace and the multiplicative trace inequalities imply for g1 WD @nu1 C iku1:

k1=2.1C �/1=2kg1kL2.@˝/ C kg1kH1=2
pw .@˝/

� Ckf kL2.˝/:

For g2 WD H@˝;�g � g1 we then get from Lemma 3.4 and the triangle inequality

k1=2.1C �/1=2kg2kL2.@˝/ C kg2kH1=2
pw .@˝/

� C
h
kgk

H
1=2
pw .@˝/

C kf kL2.˝/
i
:

Lemma 3.6 yields for u2 WD SC
˝ .0; g2/,

ku2k1;k;˝ � Ck�1=2kg2kL2.@˝/ � Ck�1.1C �/�1=2
h
kf kL2.˝/ C kgk

H
1=2
pw .@˝/

i
;

and furthermore we can write u2 D uH2 C PJ
iD1 a

C
i .0; g2/Si ; with

kuH2kH2.˝/ C
JX

iD1
jaC
i .0; g2/j � C

h
kf kL2.˝/ C kgk

H
1=2
pw .@˝/

i
:

We then define ai .f; g/ WD aC
i .0; g2/ and note that .f; g/ 7! ai .f; g/ is linear by

linearity of the maps aC
i and .f; g/ 7! g2. The above shows that uH2 and the ai

satisfy the required estimates. Finally, the functioneu WD u� .uA Cu1Cu2/ satisfies
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��eu � k2eu D 2k2.u1 C u2/ DW ef ; @neu C ikeu D 0 DW eg;

together with

kef kL2.˝/ � 2k2
�ku1kL2.˝/ C ku2kL2.˝/

� � C.1C �/�1=2
h
kf kL2.˝/ C kgk

H
1=2
pw .@˝/

i
:

Hence, selecting � > 1 sufficiently large so that for the chosen q 2 .0; 1/ we have
C.1C �/�1=2 � q allows us to conclude the proof. ut
Proof of Theorem 3.2. The contraction property of Lemma 3.10 can be restated as
S.f; g/ D uH2 C PJ

iD1 ai .f; g/Si C uA CS.ef ;eg/, where, for a chosen q 2 .0; 1/,
we have kef kL2.˝/ C kegk

H
1=2
pw .@˝/

� q
h
kf kL2.˝/ C kgk

H
1=2
pw .@˝/

i
together with

appropriate estimates for uH2 , ai .f; g/, and uA . This consideration can be repeated
for S.ef ;eg/. We conclude that a geometric series argument can be employed to write
u D S.f; g/ D uH2 CPJ

iD1eai .f; g/Si CeuA , where uH2 2 H2.˝/,euA 2 C1.˝/,
and the coefficients eai are in fact linear functionals of the data .f; g/. Furthermore,
we have with the abbreviation Cf;g WD kf kL2.˝/ C kgk

H
1=2
pw .@˝/

keuA k1;k;˝ � CCf;g

k˚
n;

�!̌
;k

rnC2euA kL2.˝/ � CCsol .k/k
�1Cf;g�n maxfn; kgnC2 8n 2 N0;

kkuH2k1;k;˝ C kuH2kH2.˝/ C
JX

iD1
jeai.f; g/j � CCf;g:

Finally, Lemma 3.11 below allows us to absorb the contribution
PJ

iD1eai.f; g/Si in
the analytic part by setting uA WD euA C PJ

iD1eai .f; g/Si . In view of ˇi < 1, we
have 2 � ˇi � 1 and arrive at

kuA kH1.˝/ � C.Csol.k/C1/Cf;g; kkuA kL2.˝/�CCf;g.Csol .k/Ck/;
k˚

n;
�!̌
;k

rnC2uA kL2.˝/ � CCf;g
�
Csol .k/k

�1 C k�1� maxfn; kgnC2 8n 2 N0;

which concludes the argument. ut
Lemma 3.11. Let ˇi 2 Œ0; 1/ satisfy ˇi > 1 � �

!i
. Then, for some C , � > 0

independent of k, the singularity functions Si of (26) satisfy kSikH1.˝/ � C and

k˚
n;

�!̌
;k

rnC2SikL2.˝/ � Ck�.2�ˇi /�n maxfn; kgnC2 8 2 N0

Proof. Follows by a direct calculation. See [21] for details. ut
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4 Stability of Galerkin Discretizations

4.1 Abstract Results

We consider the model problem (9) and a sequence .VN /N2N � H1.˝/ of finite-
dimensional spaces. Furthermore, we assume that .VN /N2N is such that for every
v 2 H1.˝/ we have limN!1 infvN2VN kv � vN kH1.˝/ D 0. The conforming
approximations uN to the solution u of (9) are then defined by:

Find uN 2 VN s.t. B.uN ; v/ D l.v/ 8v 2 VN : (37)

Since the sesquilinear form B satisfies a Gårding inequality, general functional
analytic argument show that asymptotically, the discrete problem (37) has a unique
solution uN and are quasi-optimal (see, e.g., [61, Thm. 4.2.9], [62]). More precisely,
there exist N0 > 0 and C > 0 such that for all N � N0

ku � uN k1;k;˝ � C inf
v2VN

ku � vk1;k;˝ : (38)

This general functional analytic argument does not give any indication of how C

and N0 depend on discretization parameters and the wavenumber k. Inspection of
the arguments reveals that it is the approximation properties of the spaces VN for
the approximation of the solution of certain adjoint problems that leads to the quasi-
optimality result (38). For the reader’s convenience, we repeat the argument, which
has been used previously in, e.g., [5, 9, 44, 49, 50, 60, 62] and is often attributed to
Schatz, [62]:

Lemma 4.1 ([49, Thm. 3.2]). Let ˝ � R
d be a bounded Lipschitz domain and B

be defined in (11). Denote by S? W L2.˝/ ! H1.˝/ the solution operator for the
problem

Find u? 2 H1.˝/ s.t. B.v; u?/ D .v; f /L2.˝/ 8v 2 H1.˝/: (39)

Define the adjoint approximation property �.VN / by

�.VN / WD sup
f 2L2.˝/

inf
v2VN

kS?.f /� vk1;k;˝
kf kL2.˝/

:

If, for the continuity constant CB of (12), the space VN satisfies

2CBk�.VN / � 1; (40)

then the solution uN of (37) exists and satisfies
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ku � uN k1;k;˝ � 2CB inf
v2VN

ku � vk1;k;˝: (41)

Proof. We will not show existence of uN but restrict our attention on the quasi-
optimality result (41); we refer to [42, Thm. 3.9] for the demonstration that (41) in
fact implies existence and uniqueness of uN . Letting e D u � uN be the error, we
start with an estimate for kekL2.˝/: Using the definition of the operator S? and the
Galerkin orthogonality satisfied by e, we have for arbitrary v 2 VN
kek2

L2.˝/
D .e; e/L2.˝/ D B.e; S?e/ D B.e; S?e�v/ � CBkek1;k;˝kS?e�vk1;k;˝:

Infimizing over all v 2 VN yields with the adjoint approximation property �.VN /

kekL2.˝/ � CB�.VN /kek1;k;˝ :

The Gårding inequality and the Galerkin orthogonality yield for arbitrary v 2 VN :

kek21;k;˝ D ReB.e; e/C 2k2kek2
L2.˝/

D ReB.e; u � v/C 2k2kek2
L2.˝/

� CBkek1;k;˝ku � vk1;k;˝ C .CBk�.VN //
2 kek21;k;˝ :

The assumption CBk�.VN / � 1=2 allows us to rearrange this bound to get
kek1;k;˝ � 2CBku � vk1;k;˝ . Since v 2 VN is arbitrary, we arrive at (41). ut
Lemma 4.1 informs us that the convergence analysis for the Galerkin discretization
of (9) can be reduced to the study of the adjoint approximation property �.VN /,
which is purely a question of approximation theory. In the context of piecewise
polynomial approximation spaces VN this requires a good regularity theory for the
operator S?. The strong form of the equation satisfied by u? WD S?f is

��u? � k2u? D f in ˝; @nu? � iku? D 0 on @˝; (42)

which is again a Helmholtz problem of the type considered in Sect. 3. More

formally, with the solution operator S of Sect. 3, we have S?f D S.f ; 0/, where
an overbar denotes complex conjugation. Thus, the regularity theory of Sect. 3 is
applicable.

4.2 Stability of hp-FEM

The estimates of Theorem 3.2 suggest that the effect of the corner singularities is
essentially restricted to an O.1=k/-neighborhood of the vertices. This motivates us
to consider meshes that are refined in a small neighborhood of the vertices. To fix
ideas, we restrict our attention to meshes T geo

h;L that are obtained in the following
way: First, a quasi-uniform triangulation Th with mesh size h is selected. Then, the
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elements abutting the vertices Aj , j D 1; : : : ; J , are refined further with a mesh
that is geometrically graded towards these vertices. These geometric meshes haveL
layers and use a grading factor � 2 .0; 1/ (see [65, Sec. 4.4.1] for a precise formal
definition). Furthermore, for any regular, shape-regular mesh T , we define

Sp.T / WD fu 2 H1.˝/W ujK 2 Pp 8K 2 T g; (43)

where Pp denotes the space of polynomials of degree p. We now show that on
the geometric meshes T geo

h;L , stability of the FEM is ensured if the mesh size h and
the polynomial degree p satisfy the scale resolution condition (6) and, additionally,
L D O.p/ layers of geometric refinement are used near the vertices:

Theorem 4.2 (quasi-optimality of hp-FEM). Let T geo
h;L denote the geometric

meshes on the polygon ˝�R
2 as described above. Fix c3 >0. Then there are

constants c1, c2 >; 0 depending solely on ˝ and the shape-regularity of the mesh
T

geo
h;L such that the following is true: If h, p, and L satisfy the conditions

kh

p
� c1 and p � c2 log k and L � c3p (44)

then the hp-FEM based on the space Sp.T geo
h;L / has a unique solution

uN 2Sp.T geo
h;L / and

ku � uN k1;k;˝ � 2CB inf
v2Sp.T geo

h;L /
ku � vk1;k;˝: (45)

Proof. By Lemma 4.1, we have to estimate k�.VN /with VN DSp.T geo
h;L /. Recalling

the definition of �.VN / we let f 2L2.˝/ and observe that we can decompose
S?f D uH2 C uA , where uH2 and uA satisfy the bounds

kuH2kH2.˝/ � Ckf kL2.˝/;
k˚

n;
�!̌
;k

rnC2uA kL2.˝/ � C.Csol.k/C 1/k�1�n maxfk; ngnC2kf kL2.˝/ 8n 2 N0:

Piecewise polynomial approximation on T
geo
h;L as discussed in [49, Prop. 5.6] gives

under the assumptions kh=p � C and L � c3p: (inspection of the proof of [49,
Prop. 5.6] shows that only bounds on the derivatives of order � 2 are needed):

inf
v2VN

kuH2 � vk1;k;˝ � C
h

p
kf kL2.˝/;

inf
v2VN

kuA � vk1;k;˝ � C



.kh/1�ˇmax eckh�bp C

�
kh

�0p

	p�
.Csol .k/C 1/kf kL2.˝/;

where ˇmax D maxjD1;:::;J ˇj < 1, and C , c, b > 0 are constants independent of h,
p, and k. From this, we can easily infer
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k�.VN / � C

�
kh

p
C k.Csol .k/C 1/



.kh/1�ˇmax eckh�bp C

�
kh

�0p

	p�

:

Noting that Theorem 2.4 gives Csol.k/ D O.k5=2/, and selecting c1 sufficiently
small as well as c2 sufficient large allows us to make k�.VN / so small that the
condition (40) in Lemma 4.1 is satisfied. ut
Corollary 4.3 (exponential convergence on geometric meshes). Let f be ana-
lytic on ˝ and g be piecewise analytic, i.e., f , g satisfy (32). Given c3 > 0, there
exist c1, c2 > 0 such that under the scale resolution conditions (44) of Theorem 4.2,
the finite element approximation uN 2 Sp.T geo

h;L / exists, and there are constants C ,
b > 0 independent of k such that the error u � uN satisfies

ku � uN k1;k;˝ � Ce�bp:

Proof. In view of Theorem 4.2, estimating ku � uN k1;k;˝ is purely a question of
approximability for c1 sufficiently small and c2 sufficiently large. Lemma 3.8 gives
that the solution u D S.f; g/ satisfies the bounds given there and, as in the proof of
Theorem 4.2, we conclude from [49, Prop. 5.6] (more precisely, this follows from
its proof)

inf
v2VN

kuA � vk1;k;˝ � C



.kh/1�ˇmax eckh�bp C

�
kh

�0p

	p�
.Csol .k/C1/.eCf CeCg/:

Theorem 2.4 asserts Csol .k/ D O.k5=2/, which implies the result by suitably
adjusting c1 and c2 if necessary. ut
Remark 4.4. 1. The problem size N D dimSp.T geo

h;L / is N D O..L C h�2/p2/.
The particular choice of L D c3p layers of geometric refinement, approximation
order p D c2 log k, and mesh size h D c1p=k in Theorem 4.2 ensures quasi-
optimality of the hp-FEM with problem size N D O.k2/, i.e., quasi-optimality
can be achieved with a fixed number of degrees of freedom per wavelength.

2. The sparsity pattern of the system matrix is that of the classical hp-FEM, i.e.,
each row/column has O.p2/ non-zero entries. Noting that the scale resolution
conditions (6), (44) require p D O.log k/, we see that the number of non-
zero entries per row/column is not independent of k. It is worth relating this
observation to [8]. It is shown there for a model problem in 2D that no 9 point
stencil can be found that leads to a pollution-free method.

3. Any space VN that contains Sp.T geo
h;L /, where h, p, and L satisfy the scale

resolution condition (44) also features quasi-optimality.
4. The factor 2 on the right-hand side of (45) is arbitrary and can be replaced by any

number greater than 1.
5. The stability analysis of Theorem 4.2 requires quite a significant mesh refinement

near the vertices, namely, L � p. It is not clear whether this is an artifact of
the proof. For a more careful numerical analysis of this issue, more detailed
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information about the stability properties of the solution operator S is needed,
e.g., estimates for kS.f; g/k1;k;B1=k .Aj /.

4.3 Numerical Examples: hp-FEM

All calculations reported in this section are performed with the hp-FEM code
NETGEN/NGSOLVE by J. Schöberl, [63, 64].

Example 4.5. In this 2D analog of Example 1.1, we consider the model problem
(9) with exact solution being a plane wave ei.k1xCk2y/, where k1 D �k2 D 1p

2
k and

k 2 f4; 40; 100; 400g. For fixed p 2 f1; 2; 3g, we show in Fig. 2 the performance
of the h-version FEM for p 2 f1; 2; 3g on quasi-uniform meshes by displaying the
relative error in the H1-seminorm versus the number of degrees of freedom per
wavelength. We observe that higher order methods are less prone to pollution. We
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Fig. 2 Top: h-FEM with p D 1 (left) and p D 2 (right) as described in Example 4.5. Bottom
left: h-FEM with p D 3 as described in Example 4.5. Bottom right: p-FEM for singular solution
on quasi-uniform mesh as described in Example 4.7
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Fig. 3 p-FEM for plane wave solution as described in Example 4.6. Left: quasiuniform mesh Th

with kh � 4. Right: Mesh T geo obtained from Th by strong geometric refinement near origin

note that the meshes are quasi-uniform, i.e., no geometric mesh refinement near the
vertices is performed in contrast to the requirements of Theorem 4.2.

Example 4.6. On the L-shaped domain ˝ D .�1; 1/2 n .0; 1/ 
 .�1; 0/ with 

being the union of the two edges meeting at .0; 0/, we consider

��u�k2u D 0 in ˝; @nu D 0 on 
 ; @nu�iku D g on @˝ n 
 ; (46)

where the Robin data g are such that the exact solution is u.x; y/ D ei.k1xCk2y/
with k1 D �k2 D 1p

2
k; and k 2 f10; 100; 1; 000g. We consider two kinds of

meshes, namely, quasi-uniform meshes Th with mesh size h such that kh � 4 and
meshes T geo that are geometrically refined near the origin. The meshes T geo are
derived from the quasi-uniform mesh Th by introducing a geometric grading on the
elements abutting the origin; the grading factor is � D 0:125 and the number of
refinement levels is L D 10. Figure 3 shows the relative errors in the H1-seminorm
for thep-version of the FEM where for fixed mesh the approximation orderp ranges
from 1 to 10. It is particularly noteworthy that the refinement near the origin has
hardly any effect on the convergence behavior of the FEM; this is quite in contrast
to the stability result Theorem 4.2, which requires geometric refinement near all
vertices of˝ .

Example 4.7. The geometry and the boundary conditions are as described in
Example 4.6. The data g are selected such that the exact solution is u D
J2=3.kr/ cos 2

3
', where .r; '/ denote polar coordinates and J˛ is a first kind

Bessel function. k 2 f1; 10; 20; 100; 200g. Our calculations are p-FEMs with
p 2 f1; : : : ; 10g on the quasiuniform mesh Th described in Example 4.7. The
results are displayed in the bottom right part of Fig. 2. The numerics illustrate that
the singularity at the origin is rather weak: we observe that the asymptotic algebraic
convergence behavior is ju � uN jH1.˝/ � Ckp

�4=3jujH1.˝/, where the constant Ck
depends favorably on k.
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4.4 Stability of Partition of Unity Method/Generalized FEM

The abstract stability result of Lemma 4.1 only assumes certain approximation
properties of the spaces VN . Particularly in an “h-version” setting, even non-
polynomial, operator-adapted spaces may have sufficient approximation properties
to ensure the important condition (40) for stability. We illustrate this effect for
the PUM/gFEM, [44, 48] with local approximation spaces consisting of systems
of plane waves or generalized harmonic polynomials (see Sect. 5 below) and the
classical FEM shape functions as the partition of unity. The key observation is that
for h sufficiently small, the resulting space has approximation properties similar to
the classical (low order) FEM space:

Lemma 4.8. Let T be a shape-regular triangulation of the polygon ˝ � R
2. Let

h be its mesh size; let .xi /MiD1 be the nodes of the triangulation and .'i /MiD1 be the
piecewise linear hat functions associated with the nodes .xi /MiD1. Assume kh � C1
for some C1 > 0. Let V master be either the space V p

GHP with p � 0 (see (47) below)
or the space W p

PW with p � 2 (see (48) below). Define, for each i D 1; : : : ;M ,
the local approximation Vi by Vi WD spanfb.x � xi /W b 2 V masterg. Then the space
VN WD PM

iD1 'iVi has the following approximation property: There exists C > 0

depending only on the shape regularity of T , the constant C1, and V master such
that

inf
v2VN

ku�vkL2.˝/Chku�vkH1.˝/�C
�
h2kukH2.˝/C.kh/2kukL2.˝/

� 8u2H2.˝/:

Proof. The proof exploits the smoothness of the functions in V master . Specifically,
one can find an element  2 V master with  D 1 C O..kh/2/. Then, the
approximation properties of the space spanf'i W i D 1; : : : ;M g can be exploited.
We refer to [21] for details. ut
Lemma 4.8 shows that the space VN , which is derived from solutions of the
homogeneous Helmholtz equation, nevertheless has some approximation power for
arbitrary functions with some Sobolev regularity. Hence, the condition (40) can be
met for sufficiently small mesh sizes:

Corollary 4.9 ([44, Prop. 8.2.7]). Assume the hypotheses of Lemma 4.8; in partic-
ular, let the space VN be constructed from systems of plane waves or generalized
harmonic polynomials. Assume additionally that˝ is a convex polygon. Then there
exists C > 0 independent of k such that for k2h � C the Galerkin method for (9)
with f D 0 is quasi-optimal, i.e., the solution uN 2 VN of (37) exists and satisfies

ku � uN k1;k;˝ � 2CB inf
v2VN

ku � vk1;k;˝:

Proof. In view of Lemma 4.1, we have to estimate �.VN /. To that end, we consider
(9) with f 2 L2.˝/ and g D 0. In view of the convexity of ˝ , we have Csol .k/ D
O.1/ and elliptic regularity then yields for the solution u of (9)
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kuk1;k;˝ C k�1kukH2.˝/ � Ckf kL2.˝/:

This allows us to conclude with Lemma 4.8 that

inf
v2VN

ku � vk1;k;˝ � C
�
.kh2 C h/kukH2.˝/ C .k.kh/2 C k2h/kukL2.˝/

�

� C..kh/2 C kh//kf kL2.˝/ � Ckh.1C kh/kf kL2.˝/:

Hence, k�.VN / can be made sufficiently small if k2h is sufficiently small. We
point out that convexity of ˝ is assumed for convenience – under more stringent
conditions on the mesh size h, quasioptimality holds for general polygons. ut

5 Approximation with Plane, Cylindrical, and Spherical
Waves

Systems of functions that are solutions of a (homogeneous) differential equation are
often called “Trefftz systems”. Prominent examples in the context of the Helmholtz
equation are, in the two-dimensional setting, “generalized harmonic polynomials”
and systems of plane waves given by

V
p
GHP WD spanfJn.kr/ein' W �p � n � ng; (47)

W
p
PW WD spanfeik!n�.x;y/Wn D 0; : : : ; p � 1g; !n D .cos

2�n

p
; sin

2�n

p
/I

(48)

here, Jn is a first kind Bessel function, the functions in V p
GHP are described in

polar coordinates and the functions of W p
PW in Cartesian coordinates. We point out

that analogous systems can be developed in 3D. These functions are solutions of
the homogeneous Helmholtz equation. For the approximation of a function u that
satisfies the homogeneous Helmholtz equation on a domain˝ � R

2, one may study
the “p-version”, i.e., study how well u can be approximated from the spaces V p

GHP

or W p
PW as p ! 1; alternatively, one may study the “h-version”, in which, for

fixed p, the approximation properties of the spaces V p
GHP or W p

PW are expressed in
terms of the diameter h D diam˝ of a domain under consideration. In the way of
illustration, we present two types of results:

Lemma 5.1 ([44]). Let ˝ � R
2 be a simply connected domain and ˝ 0 �� ˝ be

a compact subset. Let u solve ��u � k2u D 0 on ˝ . Then there exist constants C ,
b > 0 (possibly depending on k) such that for all p � 2:

inf
v2V pGHP

ku � vkH1.˝0/ � Ce�bp; inf
v2W p

PW

ku � vkH1.˝0/ � Ce�bp= lnp:
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Proof. See, e.g., [44] or [46, Thm. 5.3]. ut
Remark 5.2. Analogs of Lemma 5.1 hold if u has only some finite Sobolev
regularity. Then, the convergence rates are algebraic, [44], [46, Thm. 5.4],
[32].

The approximation properties of the spaces V p
GHP and W p

PW can be also be studied
in an h-version setting:

Proposition 5.3 ([32, Thm. 3.2.2]). Let ˝ � R
2 be a domain with diameter h and

inscribed circle of radius �h. Let p D 2
 C 1. Assume kh � C1. Then there exist
Cp > 0 (depending only on C1, � > 0, m, and p) and v 2 W 2
C1

PW such that

ku � vkj;k;˝;˙ � Cph

�jC1kuk
C1;k;˝;˙ ; 0 � j � 
C 1;

where kvk2j;k;˝;˙ D Pj
mD0 k2.j�m/jvj2Hm.˝/.

Several comments concerning Proposition 5.3 are in order:

1. The constant Cp in Proposition 5.3 depends favorably on p, and its dependence
on p can be found in [32, Thm. 3.2.3].

2. Proposition 5.3 is formulated for the space W p
PW of plane waves – analogous

results are valid for generalized harmonic polynomials, see [32, Thm. 2.2.1] for
both the h and hp-version.

3. Proposition 5.3 is formulated for the two-dimensional case. Similar results are
available in 3D, [32].

4. The approximation properties of plane waves in terms of the element size have
previously been studied in slightly different norms in [15].

6 Stability of Least Squares and DG Methods

Discrete stability in Sect. 4 is obtained from stability of the continuous problem by
a perturbation argument. This approach does not seem to work very well if one aims
at using approximation spaces that have special features linked to the differential
equation under consideration. The reason can be seen from the proof of Lemma 4.1:
The adjoint approximation property �.VN / (which needs to be small) measures how
well certain solutions to the inhomogeneous equation can be approximated from the
test space. If the ansatz space is based on solutions of the homogeneous equation,
then its capabilities to approximate solutions of the inhomogeneous equation are
clearly limited. In an h-version, the situation is not as severe as we have just seen in
Sect. 4.4 for the PUM/gFEM. In a pure p-version setting, however, the techniques
of Sect. 4.4 do not seem applicable.

An option is to leave the setting of Galerkin methods and to work with formu-
lations with built-in stability properties. Such approaches can often be understood
as minimizing some residual norm, which then provides automatically stability and
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quasi-optimality (in this residual norm). We will illustrate this procedure here by
two examples, namely, Least Squares methods and DG-methods. Our presentation
will highlight an issue stemming from this approach, namely, the fact that error
estimates in this residual norm do not easily lead to error estimates in more classical
norms such as the L2.˝/-norm.

6.1 Some Notation for Spaces of Piecewise Smooth Functions

Let T be a regular, shape-regular triangulation of the polygon ˝ � R
2. We

decompose the set of edges E as E D EI P[EB , where EI is the set of edges in
˝ and EB consists of the edges on @˝ . For functions u W ˝ ! R and � W ˝ ! R

2

that are smooth on the elements K 2 T , we define the jumps and averages as it is
customary in DG-settings:

• For e 2 EI , let KC
e andK�

e be the two elements sharing e and denote by nC and
n� the normal vectors on e pointing out ofKC

e andK�
e . Correspondingly, we let

uC, u� and � C and � � be traces on e of u and � fromKC
e andK�

e . We set:

ffuggje WD 1

2

�
uC C u��

; ff� ggje WD 1

2

�
� C C � ��

;

ŒŒu��je WD uCnC C u�n�; ŒŒ� ��je WD � C � nC C � � � n�:

• For boundary edges e 2 EB we define

ff� ggje WD � je ŒŒu��je WD ujen

With this notation, one can conveniently rearrange certain sums over edges:

Lemma 6.1 (“DG magic formula”). Let v W ˝ ! R and � W ˝ ! R
2 be

piecewise smooth on the triangulation T . Then:

X

K2T

Z

@K

v� � n D
Z

EI

ŒŒv�� � ff� gg C
Z

EI

ffvgg � ŒŒ� ��C
Z

EB

ŒŒv�� � ff� gg;

where
R
EI

and
R
EB

are shorthand notations for the sums of integrals over all edges
in EI and EB .

Finally, for piecewise smooth functions, rh denotes the piecewise defined gradient.

6.2 Stability of Least Squares Methods

Although Least Squares methods could be based on any space of approximation
spaces, we will concentrate here on the approximation by piecewise solutions of
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the homogeneous Helmholtz equation. With varying focus, this is the setting of
[10, 41, 53, 58, 68] and references therein. We illustrate the procedure for the model
problem (9) with f D 0. The approximation space has the form

VN D fu 2 L2.˝/W ujK 2 VN;K 8K 2 T g; (49)

where the spaces VN;K are spaces of solutions of the homogeneous Helmholtz
equation, e.g., systems of plane waves. For each edge e 2 E , we select weights
w1;e , w2;e > 0 and define the functional J W VN ! R by

J.v/ WD
X

e2EI

w21;ekŒv�k2L2.e/ C w22;ekŒ@nu�k2
L2.e/

C
X

e2EB

w22;ekg � .@nv C ikv/k2
L2.e/

I

here Œv�je WD ŒŒv��je and Œ@nv�je WD ŒŒrhv��je represent the jumps of v and @nv across the
edge e. If the exact solution u of (9) is sufficiently regular, then it is a minimizer of J
with J.u/ D 0. In a Least Squares method, J is minimizer over a finite dimensional
space VN of the form (49). Its variational form reads:

find uN 2 VN s.t.huN ; viJ;N D
X

e2EB

.g; @nv C ikv/L2.e/ 8v 2 VN ; (50)

where

hu; viJ;N WD
X

e2EI

w21;e.Œu�; Œv�/L2.e/Cw22;e.Œ@nu�; Œ@nv�/L2.e/

C
X

e2EB

w22;e.@nu C iku; @nv C ikv/L2.e/:

The positive semidefinite sesquilinear form h�; �iJ;N induces in fact a norm on VN : To
see the definiteness of h�; �iJ;N , we note that v 2 VN and J.v/ D 0 implies that v is in
C1.˝/ and elementwise a solution of the homogeneous Helmholtz equation. Thus,
it is a classical solution of the Helmholtz equation on˝ and satisfies @nv C ikv D 0

on @˝ . The uniqueness assertion for (9) with f D 0 and g D 0 worked out in
Example 2.1 then implies v D 0. Therefore, the minimization problem (50) is well-
defined. If the solution u of (9) satisfies u 2 H3=2C".˝/ for some " > 0, then
J.u/ D 0, and we get quasi-optimality of the Least Squares method in the norm
k � kJ;N D J.�/1=2:

ku � uN k2J;N D J.u � uN / D J.uN / D min
v2VN

J.v/ D ku � vk2J;N : (51)

We mention here that estimates for this minimum can be obtained from (local)
estimates in classical Sobolev norms as given in Sect. 5 using appropriate trace
estimates. Turning estimates for ku � uN kJ;N D J.uN /1=2 into estimates in terms
of more familiar norms such as ku � uN kL2.˝/ is not straight forward. It may be
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expected that the norm of the solution operator of the continuous problem appears
again; the next result, which is closely related to [14, 32, 33, 51], illustrates the kind
of result one can obtain, in particular in a p-version setting:

Lemma 6.2 ([53, Thm. 3.1]). Let˝�R
2 be a polygon. Let w1;e D k and w2;e D 1

for all edges and g 2 L2.@˝/. Let uN 2 VN be the minimizer of J , where VN ,
given by (49), consists of elementwise solutions of the homogeneous Helmholtz
equation.

(i) If ˝ is convex, then ku � uN k2
L2.˝/

� Ck�1 �
.kh/�1 C .kh/1

�
J.uN /.

(ii) If ˝ is not convex, then

ku � uN k2
L2.˝/

�
Ck�1 �

.kh/�1 C .kh/1
˚
1C minf1; khg�2ˇmax��

.Csol.k/C 1/2J.uN /;

where Csol.k/ is defined in (25) and satisfies Csol.k/DO.k5=2/ by
Theorem 2.4. The parameter ˇmax � 0 can be selected arbitrarily to satisfy
the condition ˇmax > 1 � mini �

!i
, where the !i are the interior angles of the

polygon.

Proof. The result (i ) is essentially the statement of [53, Thm. 3.1] in a refined
form as given in [33, Lemma 3.7]. While (ii ) is a novel result, it is only a slight
modification of (i ). We refer to [21] for the proof. ut
Remark 6.3. Lemma 6.2 assumes quasi-uniform meshes and the weights w1;e , w2;e
do not take the edge length into account. This limits somewhat it applicability in
an h-version context. However, the result is very suitable for a p-version setting.
We point out that in a case where the p-version features only algebraic rates
of convergence, one would have to give the parameters w1;e , w2;e a p-dependent
relative weight as opposed to the situation studied in Lemma 6.2.

6.3 Stability of Plane Wave DG and UWVF

The framework of Discontinuous Galerkin (DG) methods permits another way of
deriving numerical schemes that are inherently stable. In a classical, piecewise
polynomial setting, this is pursued in [24–26]; related work is in [52]. Here, we con-
centrate on a setting where the ansatz functions satisfy the homogeneous Helmholtz
equation. In particular, we study the plane wave DG method, [27, 33, 51], and the
closely related Ultra Weak Variational Formulation (UWVF), [14–16, 35, 43]. We
point out that the UWVF can be derived in different way. Here, we follow [14, 27]
in viewing it as a special DG method.

Our model problem (9) can be reformulated as a first order system by introducing
the flux � WD .1=ik/ru:

ik� D ru in ˝; iku � r � � D 0 in ˝; ik� � n C iku D g on @˝: (52)
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The weak elementwise formulation of the first two equations is for each K 2 T :

Z

K

ik� � � C
Z

K

ur � � �
Z

@K

u� � n D 0 8� 2 H.div; K/;

Z

K

ikuv C
Z

K

� � rv �
Z

@K

� � nv D 0 8v 2 H1.K/;

where H.div; K/ D fu 2 L2.K/W div u 2 L2.K/g and n is the outward pointing
normal vector. Replacing the spaces H1.K/ and H.div; K/ by finite-dimensional
subsets VN;K � H1.K/ and ˙N;K � H.div; K/ and, additionally, imposing a
coupling between neighboring elements by replacing the multivalued traces u and
� on the element edges by single-valued numerical fluxes buN , b�N to be specified
below, leads to the problem: Find .uN ; �N / 2 VN;K 
 ˙N;K such that

Z

K

ik�N � � C
Z

K

uNr � � �
Z

@K

buN� � n D 0 8� 2 ˙N;K ;

Z

K

ikuN v C
Z

K

�N � rv �
Z

@K

b�N � nv D 0 8v 2 VN;K:

The variable �N can be eliminated by making the assumption that rVN;K � ˙N;K

for all K 2 T and then selecting the test function � D rv on each element. This
yields after an integration by parts:

Z

K

ruNrv � k2uN v �
Z

@K

.uN �buN /@nv � ikb�N � nv D 0 8K 2 T : (53)

Since VN D fu 2 L2.˝/W ujK 2 VN;K8K 2 T g consists of discontinuous functions
without any interelement continuity imposed across the element edges, (53) is
equivalent to the sum over the elements: Find uN 2 VN such that for all v 2 VN

X

K2T

Z

K

ruN � rv � k2uN v C
Z

@K

.buN � uN /rv � n �
Z

@K

ikb�N � nv D 0: (54)

This formulation is now completed by specifying the fluxes buN and b�N , which at
the same time takes care of the boundary condition in (52):

For e 2 EI :

�
b�N D 1

ik ffrhuN gg � ˛ŒŒuN ��;
buN D ffuN gg � ˇ 1

ik ŒŒrhuN ��

For e 2 EB :

�
b�N D 1

ikrhuN � 1�ı
ik .rhuN C ikuNn � gn/:

buN D uN � ı
ik .rhu � n C ikuN � g/:

Different choices of the parameters ˛, ˇ, ı lead to different methods analyzed in the
literature. For example:
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1. ˛ D ˇ D ı D 1=2: this is the UWVF as analyzed in [14–16,35,43] if the spaces
VN;K consist of a space W p

PW of plane waves.
2. ˛ D O.p=.kh logp//, ˇ D O..kh logp/=p/, ı D O..kh logp/=p/: this

choice is introduced and advocated in [33,51] in conjunction with VN;K D W
p
PW .

With these choices of fluxes, the formulation (54) takes the form

Find uN 2 VN s.t. AN .uN ; v/ D l.v/ 8v 2 VN ; (56)

where the sesquilinear form AN and the linear form l are given by

AN .u; v/D
Z

˝

rhu � rhv�k2uv �
Z

EI

ŒŒu��ffrhvgg �
Z

EI

ffrhuggŒŒv�� �
Z

EB

ıu@nv �
Z

EB

ı@nuv

� 1

ik

Z

EI

ˇŒŒrhu��ŒŒrhv�� � 1

ik

Z

EB

ı@nu@nv C ik
Z

EI

˛ŒŒu��ŒŒv��C ik
Z

EB

.1 � ı/uv

(57)

l.v/ D � 1

ik

Z

EB

ıg@nv C
Z

EB

.1� ı/gv:

So far, the choice of the spaces VN;K is arbitrary. If the approximation spaces VN;K
(more precisely: the test spaces) consist of piecewise solutions of the homogeneous
Helmholtz equation, then a further integration by parts is possible to eliminate all
volume contributions in AN . Indeed, Lemma 6.1 produces

X

K2T

Z

K

ru � rv � k2uv D
X

K2T

Z

@K

urvn D
Z

EI

ŒŒu��ffrvgg C ffuggŒŒrv��C
Z

EB

ŒŒu��ffrvgg

so that AN simplifies to

AN .u; v/ D
Z

EI

ffuggŒŒrhv��C i
1

k

Z

EI

ˇŒŒrhu��ŒŒrhv�� �
Z

EI

ffrhuggŒŒv��C ik
Z

EI

˛ŒŒu��ŒŒv��

C
Z

EB

.1 � ı/u@nv C i
1

k

Z

EB

ı@nu@nv �
Z

EB

ı@nuv C ik
Z

EB

.1 � ı/uv:

Next, we make the important observation that ImAN induces a norm on the space
VN if ˛, ˇ > 0 and ı 2 .0; 1/. Indeed:

1. ˛, ˇ > 0 and ı 2 .0; 1/ implies ImAN .v; v/ � 0 8v 2 VN by inspection of
(57).

2. ImAN .v; v/ D 0 and the fact that VN consists of elementwise solutions of the
homogeneous Helmholtz equation implies as in the case of h�; �iJ;N in Sect. 6.2
that v 2 C1.˝/ solves the homogeneous Helmholtz equation and @nv D v D 0

on @˝; the uniqueness assertion of Example 2.1 then proves v 	 0.
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This is at the basis of the convergence analysis. Introducing

kuk2DG WD p
ImAN .u; u/ D 1

k
kˇ1=2ŒŒrhu��k2

L2.EI /
C k˛1=2ŒŒu��k2

L2.EI /

C 1

k
kı1=2@nuk2

L2.EB/
C kk.1 � ı/1=2uk2

L2.EB/
;

kuk2DG;C WD kuk2DG C kkˇ�1=2ffuggk2
L2.EI /

Ck�1k˛�1=2ffuggk2
L2.EI /

Ckkı�1=2uk2
L2.EB /

;

we can formulate coercivity and continuity results:

Proposition 6.4 ([14, 33]). Let VN consist of piecewise solutions of the homoge-
neous Helmholtz equation. Then k � kDG is a norm on VN and for some C > 0

depending solely on the choice of ˛, ˇ > 0, and ı 2 .0; 1/:

ImAN .u; u/ D kuk2DG 8u 2 VN ;
jAN .u; v/j � CkukDG;CkvkDG 8u; v 2 VN

Let the solution of u of (9) (with f D 0) satisfy u 2 H3=2C".˝/ for some " > 0.
Then, by consistency of AN , the solution uN 2 VN of (56) satisfies the following
quasioptimality estimate for some C > 0 independent of k:

ku � uN kDG � C inf
v2VN

ku � vkDG;C: (58)

Several comments are in order:

1. The UWVF of [15] featured quasi-optimality in a residual type norm. We recall
that the UWVF is a DG method for the particular choice ˛ D ˇ D ı D 1=2.

2. When VN consists (elementwise) of systems of plane waves or generalized
harmonic polynomials, then the infimum in (58) can be estimated using approx-
imation results on the elements by taking appropriate traces. This is worked out
in detail in [32, 33, 51] and earlier in an h-version setting in [15] (see also [14]).

3. The k � kDG -norm controls the error on the skeleton E only. The proof of
Lemma 6.2 shows how error estimates in such norms can be used to obtain
estimates for ku � uN kL2.˝/; we refer again to [14] where this worked out for
the UWVF and to [32, 33, 51] where the case of the plane wave DG is studied.
As pointed out in Remark 6.3, quasi-uniformity of the underlying mesh T is an
important ingredient for the arguments of Lemma 6.2.

It is noteworthy that Proposition 6.4 does not make any assumptions on the mesh
size h and the space VN except that it consist of piecewise solutions of the
homogeneous Helmholtz equation. Optimal error estimates are possible in an h-
version setting, where the number of plane waves per element is kept fixed:

Proposition 6.5 ([27]). Let ˝ be convex. Assume that VN;K D W
2
C1
Pw (
 � 1

fixed) for all K 2 T . Assume that ˛ is of the form ˛ D a=.kh/ and that ˇ > 0,
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ı 2 .0; 1=2/. Then there exist a0, c0, C > 0 (all independent of h and k) such that
if a � a0 and k2h � c0, then following error bound is true:

ku � uN k1;DG � C inf
v2VN

ku � vk1;DG;CI

here, k � k1;DG and k � k1;DG;C are given by kvk21;DG WD P
K2T jvj2

H1.K/
C

k2kvk2
L2.K/

C kvk2DG and kvk21;DG;C WD P
K2T jvj2

H1.K/
C k2kvk2

L2.K/
C kvk2DG;C.

Proof. The proof follows by inspection of the procedure in [27, Sec. 5] and is
stated in [51, Props. 4.2, 4.3]. The essential ingredients of the proof are: (a) inverse
estimates for systems of plane waves that have been made in available in [27] so
that techniques of standard DG methods can be used to treat AN ; (b) use of duality
arguments as in Lemma 4.1 to treat theL2-norm of the error; (c) the fact that in an h-
version setting, plane waves have some approximation power for arbitrary functions
in H2 (this is analogous to Lemma 4.8). ut
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