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Preface

This book contains ten invited expository articles arising from the 91st LMS
Durham Symposium on “Numerical Analysis of Multiscale Problems” which took
place in the beautiful cathedral city of Durham in the UK from 5 to 15 July
2010. The Symposium was attended by 103 participants and was organised by
Ivan Graham, Tom Hou and Rob Scheichl. The scientific programme highlighted
novel research in theoretical numerical analysis and its applications to advances in
areas such as oil reservoir modelling, high frequency scattering, data assimilation,
waveguide modelling, uncertainty quantification, atomistic/continuum and polymer
modelling. The selected articles in this book are written by some of the Sympo-
sium’s speakers and their collaborators, including all those speakers who gave short
courses of three lectures each. The topics of the articles have been chosen to give a
good overall representation of the scope of the Symposium and to provide a resource
for researchers who would like to learn more about contemporary progress in this
area. The five themes of the Symposium, and all the speakers who supported them
are as follows.

Theme 1: Numerical analysis for multiscale PDEs. This theme was anchored
by short courses of Todd Arbogast and Mitch Luskin. Todd Arbogast surveyed
multiscale approximation for elliptic PDEs (in particular mixed methods), motivated
by problems in oil reservoir modelling, while Mitch Luskin described the numerical
analysis of problems arising in atomistic-continuum modelling in solid mechanics.
There was also a strong analysis content to the short courses of Andrew Stuart,
Markus Melenk and Christoph Schwab, described under the other themes below.
Yalchin Efendiev discussed approximation of high contrast diffusion problems
motivated by reservoir modelling, and his talk also had strong connections to
Themes 4 and 5. Endre Siili presented a talk on the fundamental analysis of high-
dimensional PDE models arising in polymer modelling, related strongly to Theme 3.
Assyr Abdulle’s talk concerned adaptivity in the heterogeneous multiscale method,
while the theme of atomistic/continuum modelling was continued in the talks of
Ping Lin and Christoph Ortner. Richard Tsai discussed micro/macro-modelling
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in porous media flow. Arieh Iserles talked on asymptotic-numerical multiscale
expansions, which was also related to Theme 2. Radial basis function approximation
applied to multiscale modelling problems in the geosciences was presented by
Holger Wendland, while Chris Budd presented moving mesh adaptive PDE methods
applied to problems in numerical weather forecasting.

Theme 2: Multiscale wave propagation problems. This theme was anchored by the
short course of Markus Melenk, and lectures by Liliana Borcea (inverse problems
for waves in random media), Olof Runborg (time domain problems in heterogeneous
media) and Zhiming Chen (on wave propagation problems in infinite domains).
Bjorn Engquist and Martin Gander both gave lectures on different aspects of robust
solvers for high frequency wave problems (see Theme 4). A session was also
devoted to asymptotic/numerical hybrid methods for wave problems and included
talks of Peter Monk, Simon Chandler-Wilde, Timo Betcke and Euan Spence.

Theme 3: Stochastic problems. This central topic was anchored by short courses
of Andrew Stuart (on the Bayesian approach to inverse problems and application to
data assimilation) and Christoph Schwab (PDEs with random input data and related
high dimensional parametrized PDEs). A new approach for numerical analysis of
PDEs with lognormal permeability fields was discussed by Marcus Sarkis. The short
course of Patrick Jenny focussed on applications, but also had strong resonance
with this Theme. Talks were also given by Mike Giles (multilevel Monte Carlo),
Oliver Ernst (generalised polynomial chaos), Catherine Powell (solvers for high
dimensional discretizations of stochastic PDEs) and Frances Kuo (quasi-Monte
Carlo methods), while Raul Tempone gave a lecture on discretisation of kinetic
Monte Carlo models in computational chemistry and Tom Hou considered the
reduced basis approach in a stochastic setting. Viet Ha Hoang discussed related
random hyperbolic problems.

Theme 4: Efficient solvers and computational aspects. This theme was anchored by
the lecture of Pater Bastian on the DUNE programming environment, sponsored by
the Centre for Numerical Algorithms and Intelligent Software (Edinburgh/Heriot-
Watt/Strathclyde), and the lecture of Bjorn Engquist on preconditioning in FEM
and matrix compression in BEM, both for the Helmholtz equation. Martin Gander
also gave a survey of high-frequency Helmholtz FEM solvers, with emphasis on
optimised interface conditions. Frédéric Nataf and Ludmil Zikatanov discussed
solvers for heterogeneous media problems, providing a different perspective on
problems introduced by Yalchin Efendiev (in Theme 1). Catherine Powell discussed
multigrid solvers for high-dimensional systems arising from pdes with random data
(linked to Theme 3).

Theme 5: Application areas. This theme was anchored by the short course of
Patrick Jenny who presented probability density function methods with applications
to problems such as turbulent combustion and CO, sequestration, and was also
linked to Theme 3. Lou Durlovsky discussed the state of the art in uncertainty
quantification in reservoir modelling in the real industrial context. Solutions to
multiscale differential equations modelling cell biology and molecular dynamics
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were presented respectively by John King and Ben Leimkuhler. An embedded
Industry Day included a number of external guests who joined with the participants
of the full Symposium. Talks were given by Paul Childs (Schlumberger, seismic
imaging), Anthony Baran (Met Office, scattering from ice crystals), Jill Ogilvy
(BAE Systems, high frequency scattering), Roland Masson (Institut Frangais du
Petrole) and Seong Lee (Chevron) (both on multiphase flow), Tim Payne (Met
Office, data assimilation in weather forecasting), Grigory Vilensky (UCL, PDE
modelling of ultrasound in cancer treatment), Peter Jimack (Leeds, lubrication
problems) and Andrew Cliffe (Nottingham, uncertainty quantification in waste
management). An additional talk by Xiao-Hui Wu (ExxonMobil) on uncertainty
quantification in reservoir simulation was presented later in the Symposium.

The scientific organisation was made straightforward by the excellent local
support at Durham, especially the help of our close colleagues James Blowey and
Max Jensen, and Fiona Giblin and the rest of the team in the Maths office, as
well as John Bolton and John Parker. Postgraduate students John Chapman, Aretha
Teckentrup, Ray Millward and Tatiana Kim operated the video camera.

Finally we would like to thank the UK Engineering and Physical Sciences
Research Council, the London Mathematical Society and The Centre for Numerical
Algorithms and Intelligent Software for the financial support which made the
meeting possible.

More information about the 91st LMS Durham Symposium is available at:

http://www.maths.dur.ac.uk/events/Meetings/LMS/2010/NAMP/

Bath Ivan Graham and Robert Scheichl
California Institute of Technology Thomas Hou
Sussex Omar Lakkis
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Multiscale Modelling and Inverse Problems

James Nolen, Grigorios A. Pavliotis, and Andrew M. Stuart

Abstract The need to blend observational data and mathematical models arises in
many applications and leads naturally to inverse problems. Parameters appearing
in the model, such as constitutive tensors, initial conditions, boundary conditions,
and forcing can be estimated on the basis of observed data. The resulting inverse
problems are usually ill-posed and some form of regularization is required. These
notes discuss parameter estimation in situations where the unknown parameters
vary across multiple scales. We illustrate the main ideas using a simple model for
groundwater flow.

We will highlight various approaches to regularization for inverse problems,
including Tikhonov and Bayesian methods. We illustrate three ideas that arise when
considering inverse problems in the multiscale context. The first idea is that the
choice of space or set in which to seek the solution to the inverse problem is
intimately related to whether a homogenized or full multiscale solution is required.
This is a choice of regularization. The second idea is that, if a homogenized solution
to the inverse problem is what is desired, then this can be recovered from carefully
designed observations of the full multiscale system. The third idea is that the
theory of homogenization can be used to improve the estimation of homogenized
coefficients from multiscale data.
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1 Introduction

The objective of this overview is to demonstrate the important role of multiscale
modelling in the solution of inverse problems for differential equations. The main
inverse problem we discuss is that of determining unknown parameters by matching
observed data to a differential equation model involving those parameters. The
unknown parameters may be functions, in general, and they may have variation
over multiple (Iength) scales. This multiscale structure makes the forward problem
more challenging: numerically computing the solution to the differential equation
requires very high resolution. The multiscale structure also complicates the inverse
problem. Should we try to fit the data with a high-dimensional parameter, or
should we seek a low-dimensional “homogenized” approximation of the parameter?
If a low-dimensional parameter model is used, how should we account for the
mismatch between the true parameters and the low-dimensional representation?
After obtaining a solution to the inverse problem, one typically wants to make
further predictions using whatever parameter is fit to the observed data, so it is
important to consider whether a low-dimensional representation of the unknown
parameter is sufficient to make additional predictions.

Throughout these notes the unknown parameters will be denoted by u € X;
typically u« is a function assumed to lie in a Banach space X. We use y € Y to denote
the data (for simplicity we usually take ¥ = R") and z to denote the predicted
quantity, assumed to be an element of a Banach space Z or, in some cases, a Z-
valued random variable. The map & : X — R" denotes the mapping from the
unknown parameter to the data, and .# : X — Z (or.% : X x§2 — Z in the random
case, where §2 denotes the sample space) denotes the mapping from the parameter
to the prediction. We sometimes refer to ¢ as the observation operator and .% as the
prediction operator. Both & and % are typically derived from a common solution
operator G : X — P mapping u € X to the solution G(u) € P of a partial
differential equation (PDE), where P is a Banach space. For example ¢ may be
derived by composing G with N linear functionals.

The ideal inverse problem is to determine u € X from knowledge of y € RV
where it is assumed that y = % (u). In practice, however, the data y is generated
from outside this clean mathematical model, so it is natural to think of the data y as
being given by

y=9u)+§ (1

for some £ € RV quantifying model error' and observational noise. The value of &
is not known, but it is common in applications to assume that some of its statistical
properties are known and these can then be built into the methods used to estimate
u. From (1) it follows that y is a random variable. Once the function u is determined
by solving this inverse problem, it can be used to make a prediction z = .7 (u).

"Model error can be incorporated within the set of unknown parameters u and estimated using data;
however this idea is not pursued here.
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We illustrate three ideas that arise when attempting to solve the inverse problem
defined by (1) in the multiscale context:

(a) The choice of the space or set in which to seek the solution to the inverse
problem is intimately related to whether a low-dimensional “homogenized”
solution or a high-dimensional “multiscale” solution is required for predictive
capability. This is a choice of regularization.

(b) If a homogenized solution to the inverse problem is desired, then this can be
recovered from carefully designed observations of the full multiscale system.

(c) The theory of homogenization can be used to improve the estimation of
homogenized parameters from observations of multiscale data.

In Sect.2 we consider in detail a worked example which exemplifies the use
of multiscale methods to approximate the forward problems ¢ and .%# for data
and predictions; this example will be used to illustrate many of the general ideas
developed in these notes, and the three ideas (a)—(c) in particular. Section 3 is
devoted to a brief overview of regularization techniques for inverse problems, and to
discussion of the idea (a). Section 4 is devoted to the idea (b). We study the problem
of estimating a single scalar parameter in a homogenized model of groundwater
flow, given data which is generated by a full multiscale model. This may be seen as a
surrogate for understanding the use of real-world data (which is typically multiscale
in character) to estimate parameters in homogenized mathematical models which
do not represent small scales explicitly. Section 5 is devoted to the idea (c). We
study the use of ideas from multiscale methodology to enhance parameter estimation
techniques for homogenized models. The viewpoint taken is that the statistics of the
error £ appearing in (1) can be understood using the theory of homogenization for
random media; when these statistical properties depend on the unknown parameter
u the noise £ is no longer additive and its dependence on u plays an important role
in the parameter estimation process.

1.1 Notation

The following notation will be used throughout. We use | - | to denote the Euclidean
norm on R™ (for possibly different choices of m). We let S¢ (resp. S%T) denote
the set of symmetric (resp. positive-definite) second order tensors on R?. If I' €
S+, we define the weighted norm | - | = |1"_% - | on R™. Throughout the notes,
X is a Banach space, containing the functions that we wish to estimate, and E a
reflexive Banach space compactly embedded into X. When studying the inverse
problem from a Bayesian perspective we will use Gaussian priors on X, defined via
a covariance operator ¢ on a Hilbert space H 2 X, with norm || - ||z and where
the embedding is continuous. In this situation £ will be the Hilbert space with norm
1672 - Nla.
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1.2 Running Example

We consider a model for groundwater flow in a medium with permeability tensor k,
pressure p and Darcy velocity v (or the volume flux of water per unit area) related
to the pressure via the Darcy law:

k .
v=——(Vp—pge) 2)
n

where k is the permeability tensor field (discussed later) w is the fluid viscosity, p is
the fluid density, g is the acceleration due to gravity and ¢é, is the unit vector in the z-
direction. We choose units in which u = 1. We also assume that we have a constant
density fluid and redefine the pressure by adding pgz (z is the vertical direction) to
write (2) in the form v = —k'V p. Assuming that the Darcy velocity is divergence-
free, except at certain known source/sink locations, we obtain the following elliptic
equation for the pressure:

Vev=f x in D,
p=0, x on aD, 3)
v=—kVp

where D C R? is? an open and bounded set with regular boundary, and f is
assumed to be known. The permeability tensor field k, however, is assumed to be
unknown and must be determined from data. In order to make the elliptic PDE (3)
for the pressure p well-posed, we assume that the permeability tensor k(x), for
x € D, is an element of S%* and so we write it as the (tensor) exponential: k(x) =
exp(u(x)), u € §7.Ttis natural to view u as an element of X := L*®°(D; S?) and to
consider weak solutions of (3) with f € H~'(D). Then we have a unique solution
pE HO1 (D) satisfying [18, ch. 6]

VPl = crexp(lull )l flla-1 “)

for some ¢; > 0 depending only on d and D, and |u|y being the essential
supremum of the spectral radius of the matrix u(x), as x varies over D:

ull x = ess — sup | max [u(x)&|
X€D g€RY

l&l=1

2For the application to groundwater flow, d = 2 or 3. However, the analysis presented in this paper
is valid in arbitrary dimensions.



Multiscale Modelling and Inverse Problems 5

Thus we may define G : X — Hj(D) by G(u) = p. Now consider a set of real-
valued continuous linear functionals £; : H'(D) — R and define ¢ : X — RY by
% (u); = £;(G(u)). The inverse problem is to determine u € X from y € RY where
it is assumed that y is given by (1). Using (4) one may show that G : X — HO1 (D)
(resp. 4 : X — RV) is Lipschitz. Indeed if p; denotes the solution to (3) with log
permeability u; then, we have

IVp1 = Valliz = (el = wellx exp(2(alx + lell0)) 1 f g (5)

Study of the transport of contaminants in groundwater flow is a natural example
of a useful prediction that can be made once the inverse problem is solved. To
model this scenario we consider a particle x(t) € R? which is advected by the
groundwater velocity field v/¢, where ¢ is the porosity (which is taken to be a
constant) of the rock and v is the Darcy velocity field from (3), and subject to
diffusion with coefficient 25. Assuming that the contaminant is initially at xj,j; we
obtain the stochastic differential equation (SDE):

dx = %d; + \/2_r)dW, x(0) = Xinit, (©)

where W(¢) is a standard Brownian motion on R . If we are interested in predicting
the location of the contaminant at time 7 then our prediction will be the function
F, given by %, (1) = x(T). Here for each fixed n € [0, co) the function .%, maps
X into the family of R —valued random variables.

2 The Forward Problem: Multiscale Properties

Some inverse problems arising in applications have the property that the forward
model ¢ mapping the unknown to the data will produce similar output on both
highly oscillatory functions # and on appropriately chosen smoothly varying
functions u. Furthermore, for some choices of prediction function .# the predictions
themselves will also be close for both highly oscillatory functions u and on appro-
priately chosen smoothly varying functions u. These properties can be seen from an
application of multiscale analysis, and we illustrate them by considering the problem
introduced in Sect. 1.2. There are many texts on the theory of multiscale analysis.
For example, the basic homogenization theorems discussed here are developed in
[7]. A recent overview of the subject, with many other references and using the
same notational conventions that we adopt here, is [27].
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We consider a multiscale version of the running example from Sect. 1.2 where
the permeability tensor is k = K€(x) = K(x,x/e) where K : D x T — S§¢+
is® periodic in the second argument, ¢ > 0 a small parameter. For now we have
assumed periodic dependence on the fast scale in K; however we will generalize
this to random dependence in later developments.

With this permeability we obtain the family of problems

Vav=Ff xin D, (7a)
p =0, x on dD, (7b)
Ve = —K°Vpe. (7¢)

If we set n = €ny, then the transport of contaminants is given by the SDE

dx¢ = d E; ) dt + /2noe dW, x°(0) = Xini. ()

Standard techniques from the theory of homogenization for elliptic PDEs, e.g.
[27, Ch. 12] can be used to show that for € small,

P(x) ~ ps(x) := po(x) + epi(x, ;) 9

where py and p; are defined as follows. First we introduce the cell problem for
x(x,y):

~V, - (VyxKT) =V, KT, yeT” (10)
We can now define for each x € D the effective (homogenized) permeability
tensor K

Kolx) = / 0(x. y)dy. (11
Td
O(x,y) = K(x,y) + K(x, )V, x(x, »)". (12)

The effective diffusivity Ko(x) is hence the average of Q (x, y) over the fast scale y.
This is not equal to the average of K(x, y) over y, except in trivial cases. We denote
by up the logarithm of K so that Ky = exp(uy)-

The function py is then defined as the solution of the (e independent) elliptic
PDE

Vev=f, xe€D, (13a)

3T denotes the d-dimensional unit torus.
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po=2g, Xxe€aD, (13b)
—K()Vpo. (13C)

Vo
and the corrector p; is defined by
pr(x,y) = x(x,y) - Vpolx). (14)
Note that (10) may be written as
-V, (@")=0, yeT” (15)

This shows that Q, which is averaged to give the effective permeability tensor, is
divergence-free with respect to the fast variable y.

It is possible to prove that, in the limit as € — 0, solutions to (7) converge to
solutions to (13), the convergence being strong in L?(D) and weak in H'(D) [1,
11, 27]. However if we want to prove strong convergence in H' then we need
to include information about the corrector term p;. The following theorem and
corollary summarize these ideas. For proofs see [1], or the discussion in the texts
[11,27].

Theorem 1. Let p¢ and po be the solutions of (7) and (13). Assume that [ €
C>(D) and that K € C*®(D; CZ2(T)). Then

tim [[p° = pg 1 = 0. (16)

Corollary 1. Under the same conditions as in Theorem 1 we have
1P = poll2 = 0 and [[VpS = (I + xy(.-/€)")Vpol2 — 0

as € — 0.

In fact it is frequently the case that the convergence in Theorem 1 may be
obtained in a stronger topology. Reflecting this we make the following assumption.

Assumption 2 The function p€ converges to po in L°°(D) and its gradient
converges to the gradient of po + €py in L>°(D) so that

lim [|p = pillwiee = 0.

In Appendix 2 we prove this assumption for the one dimensional version of (7).
The proof in the multidimensional case will be presented elsewhere [25]. The proof
of this assumption in the multidimensional case is based on the estimates proved
in [2] (in particular, Lemma 16), see also [16, Lemma 2.1].
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With these limiting properties of the elliptic problem (7) at hand it is natural to
ask what is the limiting behaviour of x¢ governed by (8). To answer this question
we define J

== %’ %0(0) = Xinit a7
Notice that this ordinary differential equation (ODE) has vector field vy which is
defined entirely through knowledge of the homogenized permeability Ky: once K
is known, the elliptic PDE (13) can be solved for py and then vy is recovered from
(13c¢). If we can show that solutions of (8) and (17) are close then this will establish
that the prediction of particle transport in the model (7), (8) can be made accurately
by use of only homogenized information about the permeability.

In proving such a result there are a number of technical issues which arise caused
by the presence of the boundary dD of the domain in which the PDE (7) is posed.
In particular solutions of (8) may leave D requiring a definition of the velocity field
outside D. These issues disappear if we consider the case where D is itself a box
of length L and is equipped with periodic boundary conditions instead of Dirichlet
conditions: we may then extend all fields to the whole of R¢ by periodicity. In this
case, the homogenization theory for (7) with (7b) replaced by periodic boundary
conditions is identical to that given above, except that (13b) is also replaced by
periodic boundary conditions. We write D = (LT)¢ and adopt this periodic setting
for the next theorem, which is proved in Appendix 1

Theorem 3. Let x€(t) and x(t) be the solutions to (8) and (17), with velocity fields
extended from D = (LT) to R? by periodicity, and assume that Assumption 2
holds. Assume also that f € C*°(D) and that K € C*(D; C} (T?)). Then

mE sup [|x°(¢) — x0(z)]| = O.
€—> 0<t<T

In summary, this example exhibits the property that, if the length scale € is small,
the data generated from K€ and K, may appear very similar due to homogenization
effects. Therefore, when trying to infer parameters from data, it is difficult to
distinguish between K¢ and K, without some form of regularization or prior
assumptions about the form of the parameter. On the other hand, Theorem 3 shows
that knowing only K| is sufficient to make accurate predictions of the trajectories
of (8).

3 Regularization of Inverse Problems

In this section we describe various approaches to regularizing inverse problems,
motivating them by reference to the multiscale example in the previous section.
The approach to regularizing which is described in Sect. 3.2 is developed in detail
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in [6]. The Tikhonov regularization approach from Sect. 3.3 is developed in detail in
[17,19]. Both of these regularization approaches are specific examples of the general
set-up often called PDE constrained optimization, which we discuss in Sect. 3.4;
this subject is overviewed in [20]. An overview of the Bayesian approach to inverse
problems, a subject that we outline in Sect. 3.5, is given in [19,21,29].

3.1 Set-Up

Our objective here is to determine u, given y, where u and y are related by (1).
In this section we consider the case where the date is finite and ¥ = RY. We
assume that, whilst the actual value of £ is not available, it is reasonable to view it
as a single draw from a statistical distribution whose properties are known to us. To
be concrete we assume that £ is drawn from a zero-mean Gaussian random variable
with covariance I": we write this as § ~ N(0, I'"). We make the following continuity
assumption concerning the observation operator ¢.

Assumption 4 For every r > 0 such that u; € X satisfies |u;||x < r,i = 1,2,
there are constants ¢y, ¢y > 0 such that

19 (u1) — 9 (u2)| < crexp(car)|lur — uzllx.

Note that this (local) Lipschitz condition also implies a bound on |¥ ()| that is
exponential in ||u| x.

In general the inverse problems such as that given by (1) with & = 0 are hard
to solve: they may have no solutions, multiple solutions and solutions may exhibit
sensitive dependence on initial data. For this reason it is natural to consider a least
squares approach to finding functions # which best explain the data. In view of the
assumed structure on £ a natural least squares functional is

1
D(u) = §|y—g(u)|zr. (18)

The weighting by I" in the Euclidean norm induces a normalization on the model-
data mismatch. This normalization is given by the assumed standard deviations of
the noise in a coordinate system defined by the eigenbasis for I".

Example 1. Consider the running example of Sect. 1.2. Inequality (5) implies that
Assumption 4 holds in this case, noting that ¢4(u); = {;(p) for some linear
functional £; on H'(D), with the choice X = L*(D;S?), provided f € H™'.
We use this example to illustrate why inverse problems are, in general, hard to solve.

Assume that the linear functionals £; satisfy the property that £; (p€ — po) — 0
as € — 0. This occurs if they are linear functionals on L?(D), by Theorem 1 or if
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Assumption 2 holds, if they are linear functionals on C (D). Writing this in terms of
¢ we have |9 (u€) — 9 (up)| — 0 as € — 0. (Note that this occurs even though u¢
and u are not themselves close.) Hence there is an uncountable family of functions
(indexed by all € sufficiently small) which all return approximately the same value
of @(u) and thus simply minimizing @ may be very difficult. Furthermore, there
may be minimizing sequences which do not converge. For example fix a particular
realization of the data given by y = %(up) where uy is the homogenized log
permeability. Then @(u€) > 0 for all € > 0 and @(u¢) — 0 as € — 0, since

1 1
2@ = Sy ~ Gt = 519 o) — G )|} (19)

On the other hand, #¢ does not converge in X as € — 0.

In order to overcome the difficulties demonstrated in this example regularization
is needed. In the remaining sections we discuss various regularizations, in general,
illustrating ideas by returning to the running example.

3.2 Regularization by Minimization Over a Compact Set

Recall that £ is a Banach space compactly embedded into X. We further assume
that E is reflexive. Let E\q = {u € E : |ullg < «}. Then E, is a closed
bounded set in £ and, according to the Banach—Alaoglou theorem, any sequence
in E,q must contain a weakly convergent subsequence with limit in E,4 (see, for
example, Theorem 1.17in [20] where also the case where the consequences of E,q
being convex, in addition to being closed and bounded, are studied). Now consider
the minimization problem

@ = inf ®(u). (20)

UEE

Theorem 5. Any minimizing sequence {u"},c;+ for (20) contains a weakly con-
vergent subsequence in E with limit i € E,q which attains the infimum: &) = &.

Proof. This is a classical theorem from the field of optimization; see [20] for
details and context. Since {u"} is contained in E,q we deduce the existence of a
subsequence (which for convenience we relabel as {u"}) with weak limit # € E,q.
Thus " — u in E. Hence, by compactness, u” — u in X. By Assumption 4 we
deduce that @ : E — R is weakly continuous. By definition, for any § > 0 there
exists N = N(§) such that

D <P(u,) <P+65 VYn=>N.
By weak continuity of @ : E — R we deduce that

D<) <D +34.
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The result follows since § is arbitrary. O

Example 2. Consider the running example of Sect.1.2. Let A denote a fixed
symmetric positive-definite tensor A so that log(A) is defined. We define the
subspace of tensor valued functions of the form ' = ul +1log(A), for some constant
u € R noting that then exp(u’) = exp(u)A. By Lipschitz continuity of 4 inu’ € X
we deduce (abusing notation) Lipschitz continuity of ¢ viewed as a function of
u € R. We define

Exq={ueck:|ul <o} (21)

We may take the norm || - ||g = |u|. Thus the problem (20) attains its infimum for
some u € E,q. The regularization of seeking to minimize @ over E,q corresponds
to looking for solution over a one-parameter set of tensor fields, in which the free
parameter is bounded by «. Note that such a solution set automatically rules out the
oscillating minimizing sequences which were exhibited in Example 1.

3.3 Tikhonov Regularization

Instead of regularizing by seeking to minimize ¢ over a bounded and convex
subset of a compact set £ in X, we may instead adopt the Tikhonov approach to
regularization. We consider the minimization problem

T = inf I(u), (22)
ucekE
where
A 2
I(u) = EllullE + P (u). (23)

Theorem 6. Any minimizing sequence {u"}, e+ for (22) contains a weakly con-
vergent subsequence in E with limit u which attains the infimum: 1(u) = 1.

Proof. This is a classical theorem from the calculus of variations; see [13] for details
and context. Since {u"} is a minimizing sequence and @ > 0, we deduce that for
any § > 0 there exists N = N(§) such that

A -
Sl <748, VnzN.

From this it follows that {u"},c;+ is bounded in E and hence contains a weak
limit %, along a subsequence which, for convenience, we relabel as {u"}. The weak
continuity of @ : E — R, together with weak lower semicontinuity of the function
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|| - I3 — R implies the weak lower semicontinuity of / : E — R. Hence

I(w) < liminfI(u,) < 1.
n—>oo

Since 1(u) > 1, the result follows. O

Example 3. Consider the running example of Sect. 1.2. Let E = H*(D;S) and
note that E is compact in X = L%®°(D;S?) for s > d/2. Thus the problem (22)
attains its infimum for some u € E. As with the example from the previous section
the regularization rules out highly oscillating minimizing sequences such as those
seen in Example 1. The choice of the parameter A will effect how much oscillation
is allowed in any minimizing sequence.

3.4 PDE Constrained Optimization

The regularizations imposed in the two previous subsections involed the imposition
of constraints on the input # to a PDE model and the resulting minimizations were
expressed in terms of u alone. For at least two reasons it is sometimes of interest
to formulate the minimization problem simultaneously over the input variable u,
together with the solution of the PDE p = G(u) € P: firstly computational
algorithms which work to find (p, u) in P x X can be more effective than working
entirely in terms of u € X; and secondly regularization constraints may be imposed
on the variable p as well ason u. If J : P x X — R then this leads to constrained
minimization problems of the form

min _ J(p,u): p=Gu), c(p,u) e X 24)
(pu)ePxX

where .#” denotes the constraints imposed on both the input «# and on the output p
from the PDE model. Typically the observation operator 4 : X — R" is found
from G and then the information in @ can be built into the definition of J.

Example 4. Consider the running example from Sect. 1.2 and assume that the
observational noise £ ~ N (0, y*I). Define

N
Ty = = S 1y = P + 2l + 221012
p’u_z)ﬂ.ly i\p ZMHS ZPP
<

for some s > d/2. Choosing A; = A and A, = 0, together with c(p,u) = (p, u)
and # = P x X we obtain from (24) the minimization from Example 3 in the
case I' = y?I. Choosing Ay = A, = 0, ¢(p,u) = (p,u) and # = P x E,q from
Example 2 we recover that example. Choosing A, # 0 or choosing the constraint
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set # to impose constraints on p leads to minimization in which the output p of
the PDE model is constrained as well as the input u that we are trying to estimate.

3.5 Bayesian Regularization

The preceding regularization approaches have a nice mathematical structure and
form a natural approach to the inverse problem when a unique solution is to be
expected. But in many cases it may be interesting or important to find a large class of
solutions, and to give relative weights to their importance. This allows, in particular,
for predictions which quantify uncertainty. The Bayesian approach to regularization
does this by adopting a probabilistic framework in which the solution to the inverse
problem is a probability measure on X, rather than a single element of X .

We think of (u, y) € X x R" as a random variable. Our goal is to find the
distribution of u given y, often denoted by u|y. We define the joint distribution of
(u, y) as follows. We assume that u and & appearing in (1) are independent mean
zero Gaussian random variables, supported on X and RV respectively, with covari-
ance operator %‘5 and covariance matrix I" respectively. By (1), the distribution of
y given u, denoted y|u, is Gaussian N(¥(u), I"). The measure 1o = N(0, 1%)
is known as the prior measure. It is most natural to define the measure po on a
Hilbert space H 2 X. Under suitable conditions on %', we have uo(X) = 1.
This means that under the measure (o, u € X almost surely so that ¢ (u) is well-
defined, almost surely. If uo(X) = 1, it follows that the Hilbert space E with norm
|-z = €72 ||y is compactly embedded into X. The space E is known as the
Cameron—Martin space. In the infinite dimensional setting, functions drawn from
Mo are almost surely not in the Cameron—Martin space. See [10, 23] for detailed
discussion of Gaussian measures on infinite dimensional spaces.

When solving the inverse problem, the aim is to find the posterior measure
w(du) = P(du|y), and to obtain information about likely candidate solutions to
the inverse problem from it. Informal application of Bayes’ theorem gives

P(uly) o< P(y|u)pmo(u). (25)

The probability density function for P(y|u) is, using the property of Gaussians,
proportional to

1
exp(—51y =9 @|}7) = exp(-Pw)).

The infinite dimensional analogue of this result is to show that w” is absolutely
continuous with respect to ©o with Radon—Nikodym derivative relating posterior to
prior as follows:

du’

Y 1
d,LL() (M) N E

exp (—@(u)). (26)
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Here ®(u) is given by (18) and Z = [, exp(—@(u))uo(du). The meaning of the
formula (26) is that expectations under the posterior measure p” can be rewritten
as weighted expectations with respect to the prior: for a function .# on X we may
write

[ Faow @ = [ 5 exp(-00)F wpold.
X X

Theorem 7. ([12]) Assume that (o(X) = 1. Then w” is absolutely continuous
with respect to jLy with Radon—Nikodym derivative given by (26). Furthermore the
measure WY is locally Lipschitz in the data y with respect to the Hellinger metric:
there is a constant C = C(r), such that, for all y, y' with max {|y|, [y'|} <r,

Ay (107, 117") < Cly = ¥']. 27)

If u, v are probability measures that are absolutely continuous with respect to
the probability measure p, then the Hellinger metric is defined as

2
1 d d
dHELL(/’Lﬂ U)Z = E/ (\/ l;lf)u) - \/ ZIE)M)) p(du)

For any function of u which is square integrable with respect to both x and v it may
be shown that the difference in expectations of that function, under ;& and under v,
is bounded above by the Hellinger distance. In particular, this theorem shows that
the posterior mean and covariance operators corresponding to data sets y and y’ are
O(|y — y'l) apart.

The choice of prior p, relates directly to the regularization of the inverse
problem. To see this we note that since the operator € is necessarily positive and
self-adjoint we may write down the complete orthonormal system

1
~Cm = 02w, meLT, lim o, = 0. (28)

A m—00

Then u ~ p can be written via the Karhunen-Log¢ve expansion as

u(x) = Z OmMimPm (X) (29)

mezt

where the 7,, form an i.i.d. sequence of unit Gaussian random variables. We may
regularize the inverse problem by modifying the decay rate of o,,. For example,
choosing 0, = 0 form ¢ .4, where .# C Z7 is finite, restricts the solution of
the inverse problem to a finite dimensional set, and is hence a regularization. More
generally, the rate of decay of the o,, (which are necessarily summable as %’ is trace
class) will affect the almost sure regularity properties of functions drawn from g
and, by absolute continuity of p” with respect to 119, of functions drawn from p”.
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In the case that X is a subset of H = L?(D) with D C R, the operator " may
be identified with an integral operator:

L)) = /D c(x1. 2P (2)dxs

for some kernel c¢(xy, x,). The regularity of c¢(x, x;) determines the decay rate of
om [22]. For example, if D is a rectangle and 4 = (—A)™* where —A has domain
H*(D) N H{ (D) then the corresponding measure jio has the property that samples
are almost surely in the Sobolev space H*(D) and in the Holder space C*(D) for
alls <a — % (see [14] for more details). In particular, if « > d /2, then u(X) =1
when X = L*°(D).

Priors which charge functions with a multiscale character can be built in this
Gaussian context. One natural way to do this is to choose .# as above so that it
contains two distinct sets of functions varying on length scales of &'(1) and &'(¢)
respectively. A second natural way is to choose a covariance function ¢ = ¢€ which
has two scales.

The formula (26) shows quite clearly how regularization works in the Bayesian
context: the main contribution to the expectation will come from places where
@ is close to its minimum value and where p( is concentrated; thus minimizing
@ is important, but this minimization is regularized through the properties of the
measure (o. We now develop this intuitive concept further by linking the Bayesian
approach to Tikhonov regularization and the functional / given by (23).

Given z € E and § < 1 define the small ball probability

J@) =P ({u: lu—zl <8}

Note that this ball is in X but centred at a point z € E, with E (the Cameron—
Martin space) compact in X. It is natural to ask where J%(z) is maximized as a
function of z and placing z in E allows us to answer this question. Furthermore we
then see a connection between the Bayesian approach and the Tikhonov approach
to regularization. The next theorem shows that small balls centred at minimizers of
(23) will have maximal relative probability under the Bayesian posterior measure,
in the small ball limit § — 0.

Theorem 8. ([15]) Assume that po(X) = 1. Then

. J3(z1)
§—0 JS(ZZ)

= exp(I(z2) — I(z21)).

In the Bayesian context the solution of the Tikhonov regularized problem is
known as the Maximum A Posteriori estimator (MAP estimator) [8, 19].
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4 Large Data Limits

In the previous section we showed how regularization plays a significant role in
the solution of inverse problems. Choosing the correct regularization is part of
the overall modelling scenario in which the inverse problem is embedded, as we
demonstrated in the running example of Sect. 1.2. In some situations it may be
suitable to look for the solution of the inverse problem over a small finite set of
parameters, whilst in others it may be desirable to look over a larger, even infinite
dimensional set, in which oscillations are captured.

This section is devoted entirely to inverse problems where a single scalar
parameter is sought and we study whether or not this parameter is correctly
identified when a large amount of noisy data is available. The development is tied
specifically to the running example, namely the PDE (3). For a fixed permeability
coefficient generating the data, Fitzpatrick has also studied the consistency and
asymptotic normality of maximum likelihood estimates in the large data limit [19].
Related work on parameter estimation in the context stochastic differential equations
(SDEs) may be found in [3,26,28].

4.1 The Statistical Model

We consider the problem of estimating a single scalar parameter u € R in the elliptic
PDE

V-v=f, xeD,
p=0, xe€adD, (30)

v=—exp(u)AVp

where D C R? is bounded and open, and f € H~! as well as the constant
symmetric matrix A are assumed to be known. We let G : R — H/(D) be defined
by G(u) = p. Then using the same linear functionals as in the running example
from Sect. 1.2 we may construct the observation operator ¢ : R — R" defined
by ¢4(u); = €;(G(u)). Our aim is to solve the inverse problem of determining
u given y satisfying (1). For simplicity we assume that £ ~ N(0,y*I) which
implies that the observational noise on each linear functional is i.i.d. N(0,y?).
Since u is finite dimensional we will simply minimize @ given by (18): no further
regularization is needed because u is already finite dimensional.

Notice that the solution p of (30) is linear in exp(—u«) and that we may write
G(u) = exp(—u) p* where p* solves
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V-v=f, xeD,
p* =0, xeadD. 31
v=—AVp*

Note that ¢ (u); = exp(—u){;(p*) so that the least squares functional (18) has
the form

N N
1 1
QW) = 55 D1y =GP = 55 31y —exp(-ut; (7
j=1

j=1

It is straightforward to see that @ has a unique minimizer u satisfying

Yyt (pY)

) (32)
Y (p)?

exp(—u) =

It is now natural to ask whether, for large N, the estimate u is close to the desired
value of the parameter. We study two situations: the first where the data is generated
by the model which is used to fit the data; and the second where the data is generated
by a multiscale model whose homogenized limit gives the model which is used to
fit the data.

4.2 Data from the Homogenized Model

In this section we demonstrate that, in the large data limit, random observational
error may be averaged out and the true value of the parameter recovered.
We define py = exp(—up) p* so that pg solves (30) with u = u.

Assumption 9 We assume that the data y is given by noisy observations generated
by the statistical model:

yj =4j(po) +§;

where {£;} form an i.i.d. sequence of random variables distributed as N(0, y?).

Theorem 10. Let Assumptions 9 hold and assume that liminfy_ % Z?’:l L
(p*)? > L >0as N — oo. Then &-almost surely

lim |exp(—u) —exp(—up)| = 0.
N—>00
Proof. Substituting the assumed expression for the data from Assumption 9 into the

formula (32) gives
exp(—u) = exp(—uo) + I,
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where

= % Z;\;l Ejgj (p*)
¥t ()’

Therefore,
2

Y 2
Yot (pr T NL

for N sufficiently large. Since /; is Gaussian we deduce that E 12 P'= O(N7P) as
N — oo. Application of the Borel-Cantelli lemma shows that /; converges almost
surely to zero as N — oo. O

E[1?] = (33)

This shows that, in the large data limit, random observational error may be
averaged out and the true value of the parameter recovered, in the idealized scenario
where the data is taken from the statistical model used to identify the parameter.
The condition that L > 0 prevents additional observation noise from overwhelming
the information obtained from additional measurements as N — oo. It is a simple
explicit example of what is known as posterior consistency [9] in the theory of
statistics.

4.3 Data from the Multiscale Model

In practice, of course, real data does not come from the statistical model used to
estimate parameters. In order to probe the effect that this can have on posterior
consistency we study the situation where the data is taken from a multiscale model
whose homogenized limit falls within the class used in the statistical model to
estimate parameters. Again we define py = exp(—ug)p* and we now define p¢
to solve (7) with K€ chosen so that the homogenized coefficient associated with this
family is Ko = exp(uo)A.

Assumption 11 We assume that the data y is generated from noisy observations of
a multiscale model.:

yj =4;(p°) +§;
with p¢ as above and the {£;} an i.i.d. sequence of random variables distributed as

N(0,y?).

Theorem 12. Let Assumptions 11 hold and assume that the linear functionals £ ;
are chosen so that

N
- 1 2
sy Ll mr =0 -

and liminfy 0 % Z?;l £;(p*)* > L >0as N — oo. Then £— almost surely
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lim lim |exp(—u) — exp(—up)| = 0.
e—>0 N—>o00

Proof. Notice that the solution of the homogenized equation is py = exp(—uo) p*.
We write

yi =4;(po) +£;(p° — po) +&;
= exp(—uo); (p*) +£;(p* — po) +&;.

Substituting this into the formula (32) gives
exp(—u) = exp(—up) + I + I3

where /; is as defined in the proof of Theorem 10 and is independent of €, and

YN 4 (pf = po)t;(p*)

I5 =
YN 4 (p*)?

The Cauchy—Schwarz inequality gives
N

(St = k)" (250 o)
(Zy=1€j(1)*)2)1/2 - NL S

|5] <

for N sufficiently large. As in the proof of Theorem 10 we have, &£-almost surely,
Al]imo | exp(—u) — exp(—ug) — I5| = 0.

From this and (34) the desired result now follows. O

The assumption (34) encodes the idea that, for small €, the linear functionals
used in the observation process return nearby values when applied to the solution
p¢ of the multiscale model or to the solution py of the homogenized equation. In
particular, Corollary 1 implies that if {£; (p)}?‘;1 is a family of bounded linear
functionals on L?(D), uniformly bounded in j, then (34) will hold. On the other
hand, we may choose linear functionals that are bounded as functionals on H (D)
yet unbounded on L?(D). In this case Theorem 1 shows that (34) may not hold
and the correct homogenized coefficient may not be recovered, even in the large
data limit. An analogous phenomenon occurs in inference for SDEs where if the
observations of a multiscale diffusion are too frequent (relative to the fast scale)
then the correct homogenized coefficients are not recovered [26, 28].
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5 Exploiting Multiscale Properties Within Inverse Estimation

In this section we describe how ideas from homogenization theory can be used
to improve the estimation of parameters in homogenized models. We consider a
regime where the unknown parameter has small-scale fluctuations that may be
characterized as random. In this case, if we attempt to recover the homogenized
parameter the error £ appearing in (1) is affected by the model mismatch. This is
because the simplified, low-dimensional parameter used to fit the data is different
from the true unknown coefficient. So, even when there is no observational noise,
the error £ has a statistical structure. Nevertheless, homogenization theory predicts
that this discrepancy between G («) and y associated with model mismatch will have
a universal statistical structure which can be exploited in the inverse problem, as we
now describe.

The specific ideas described here were developed by Nolen and Papanicolaou in
[24] for one dimensional elliptic problems, including the groundwater flow problem
that we study here. Bal and Ren [5] have employed similar ideas in the study
of Sturm-Liouville problems with unknown potential. We begin by describing in
Sect. 5.1 the homogenization and fluctuation theory for the case that the (scalar)
permeability k(x) is random. Then, in Sect. 5.2 we show how these ideas can be used
to develop an improved estimator for the homogenized permeability coefficient. We
conclude with numerical results in Sect. 5.3.

5.1 The Model

In this section we will present the approach of [24] in the simplest possible setting.
We consider the two-point boundary value problem

_ 4 (exp(u(x))d—”) — f(). xe[-L1] (353)
dx dx

p(=1) = p1) =0. (35b)

This is, of course, (3) in the one-dimensional setting d = 1.

It is assumed that the coefficient k(x) = exp(u(x)) is a single realization of a
stationary, ergodic and mixing random field k(x, ). Furthermore it is assumed that
k™! can be decomposed into a slowly varying non-random component, together
with a random, rapidly oscillating component:

1 1 X
k(x,w) - ko(x) o (;,w), (36)

where (X, w) is a stationary, mean zero random field with covariance
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R(x) = E(n(x + y)u(y)).

We assume that R(0) = 1 and fR R(x)dx = 1. Thus, 0% and € are the (given)
variance and correlation length of the fluctuations. We are interested in the case
where € < 1 so that the random fluctuations are rapid.

The solution p = p.(x,w) of (35) depends on € > 0 and on the realization of
k(x,®). However, in the limit as ¢ — 0, p, coverges to po(x) which is the solution
of the homogenized Dirichlet problem

-4 (ko(x)j—xpo) — f(). xe[-L1] (37a)

po(—=1) = po(1) = 0. (37b)

Observe that the homogenized coefficient is the harmonic mean of k: ko(x) =
E[k~']7'. Moreover, in the limit as € — 0, the solution p. has Gaussian fluctuations
about its asymptotic limit [4]. Specifically, one can prove that

P ) /D Q(x, yiko)vo (v ko) d Wy () (38)

in distribution as € — 0, where W, (w) is a Brownian random field, which is a
Gaussian process. Here vo(x; ko) = ko(x) po(x), and the kernel Q(x, y; ko) is then
related to the Green’s function for the one dimensional system:

P\ _ (01 ko) \ (P _ (&

Vy 0 0 % &)
If the 2 x 2 Green’s matrix for this system is G(x, y;k¢) : D x D — R? ® RZ, then
O(x,y:ko) = G1.1(x, y; ko). The important point here is that the integral

I(x,0) = O/D O(x.y:ko)vo(y: ko) dWy(w)

which appears on the right side of (38) is a centered Gaussian random variable with
covariance

E[/(0)1()] = o /D 0x, v ko)vo(y: ko) 0 (v, z: ko) .

This covariance depends on k(. The asymptotic theory given by the limit theorem
(38) gives us a good approximation of the statistics of p.(x, w) even when there is no
observation noise, and shows that the fluctuations depend on k. In this simple case
presented here, Q0 can be computed explicitly. In other cases, it can be computed
numerically; see [24] for more details.
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5.2 Enhanced Estimation

We now show how this asymptotic theory can be used to enhance estimation of
the homogenized parameter ko(x). The inverse problem is to identify the parameter
ko(x) in the model

-4 (ko(x);l—xpo) — f(v). xel-LI1]. (392)

po(=1) = po(1) = 0. (39b)

We take the viewpoint that the data actually come from observations of p.(x, w),
which is the solution of the multiscale model (35) with k(x,w) given by (36), so
there is a discrepancy between the model used to fit the data and the true model
which generates the data. Now the outstanding modelling issue is the choice of
statistical model for the error £ in (1).

Suppose we make noisy observations of p.(x;) at points {x; }jy=1 distributed
throughout the domain. Then the measurements are

yi = pe(xj o) +§&, j=1,...,N

where £; ~ N(0, y?) are mutually independent, representing observation noise. The
limit (38) we have just described tells us that for € small, these measurements are
approximated well by

yi ~ po(x;) + &},

where {E; }jy=1 are Gaussian random variables with mean zero and covariance

Cje(ko.€) = E[£;5)] = v*8,0 + 502/ 0 (x;. y:ko)vo(y:ko)* O (xe. z: ko) dy
D
(40)
Therefore, we model the observations as

Vi ~%ko) + &, j=1...N

where ¥ (ko) = po(x;;ko) with py being the solution of (39). The modified
statistical error & has two components. The first term y2§ j.¢ is due to observation
error. The second term comes from the asymptotic theory and is associated with
the random microstructure in the true parameter k(x, ). Of course, if € is very
small, relative to yz, then the observation noise dominates (40). In this case,
the observations of p. may be very close to observations of the homogenized
solution po, and we might simply assume that & ~ N(0, y*I), ignoring the error
associated with the model mismatch. On the other hand, if y? is small relative to
¢ then the statistical error & is dominated by the model mismatch. In this case,
homogenization theory gives us an asymptotic approximation of the true covariance
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structure of £, which is quite different from N (0, y21). See [24] for a discussion of
some properties of the covariance matrix C(ko, €).
Using the covariance (40), we make the approximation

1
B(ylko) ~ (=9 k) Clkos &)™ (v = G ko)),

1
—exp(
27| C(ko: €)] 2

where | - | denotes the determinant. The parameter ko(x) is a function, in general,
and we may place a Gaussian prior o on up(x) = log ko(x). Application of Bayes’
theorem (25) (with k¢ replacing u) gives that

B(ko|y) (=G k0)) Clko: ) (= ko) )t log ko)

1
—exp(
27| C (ko; €)| 2

where the constant of proportionality is independent of ko. The maximum a
posteriori estimator (MAP) is then found as the function k¢(x) which maximizes
P(koly) which is the same as minimizing /(ko) = —In(P(ko|y)). The key
contribution of homogenization theory is to correctly identify the noise structure
which has covariance C(ko; €) depending on k((x), the parameter to be estimated.

5.3 Numerical Results

In this section we discuss the results of a numerical computation that show some
advantage to using homogenization theory as we have just described, compared to a
simple least-squares approach. Given noisy observations of p.(x;) we may compute

the MAP estimator k 1 using (41) with covariance C (ko; €) given by (40):

1

kl = argmaxko m

exp(—3 (v = 7 (k) Clhoi )™ (v ~# (ko) Juollogho).  (41)

2
On the other hand, we might ignore the effect of the random microstructure and
simply use C = y21, accounting only for observation noise:

N 1 _
ky = argmax; eXP(—E)’ ly—-¢ (ko)lz)uo(IOg ko).  (42)

1
V2 |y |

Both estimates Igl and lgz are random variables, depending on the random data
observed, but we should hope that lgl gives us a better approximation of kg, since it
makes use of the true covariance (40). Indeed for simple linear statistical models, it
is easy to see that an efficient estimator, which realizes the theoretically optimal
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variance given by the Cramér—Rao lower bound, may be obtained by using the
true covariance of the data. However, using the incorrect covariance may lead to an
estimate with significantly higher variance than the theoretical optimum. See [24]
for more discussion of this point. The present setting is highly nonlinear and the
variance of the estimates Igl and lgz cannot be computed explicitly, since C(ko, €)
depends on k( in a nonlinear way through solution of the PDE. Nevertheless the
numerical results are consistent with the expectation that approximation of the
true covariance (through homogenization theory) yields a MAP estimator that has
smaller variance, relative to the estimate that makes no use of the homogenization
theory (see Fig. 3).

In Fig. 1 we show one realization of the true coefficient k(x, w) which was used
to generate the data. The highly-oscillatory graph represents the true coefficient
k(x,®) with variation on many scales. The slowly-varying harmonic mean kg (x)
also is displayed here as the thick curve; this function k¢ is what we attempt
to estimate. The data was generated as follows. Using one realization of k(x, ®)
and given forcing f, we solve the Dirichlet boundary value problem (35). The
observation data involves point-wise evaluation of p€(x;) at points {x; }?’=1 spaced
uniformly across the domain, plus independent observation noise N (0, y?) at each
point of observation. Using this data, we compute estimates 121 and lgg by minimizing
(41) and (42), respectively. For the computation shown here, the function k¢ (x)
is parameterized by the first three coefficients in a Fourier series expansion. So,

0 1 1 1
-1 -08 -06 -04 -02 0 02 04 06 038 1
X

Fig. 1 The thin erratic curve is one realization of the true coefficient k€(x, ®). The thick curve is
the slowly-varying harmonic mean k(x). This realization was used to generate the data
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35,

1.5

1 1 1 1
-1 -08 -06 -04 -02 0 02 04 06 08 1

Fig. 2 The thick curve is the true k. The dashed series represent 100 independent realizations of
the estimate &

computing ki and k» involves an optimization in R3. To evaluate P(ko|y) at each
step in the minimization algorithm, we must solve the forward problem (39) with
the current estimate of kg, and in the case of k 1 we must also compute C(ko, €). See
[24] for more details about this computation.

Figure 2 compares the estimate lgl(x) with the true function ko(x). Since the
estimate lgl(x) is a random function, we performed the experiment many times
(generating new k(x, ) to compute each estimate k 1) and display the results of 100
experiments. The data for 122 is qualitatively similar. Nevertheless, the pointwise
variance Var[l€ 1(x)] is smaller than Var[l€2 (x)], as shown in Fig. 3. This is consistent
with the linear estimation theory for which knowledge of the true data covariance
yields an estimate with optimal variance.

Acknowledgements The authors thank A. Cliffe and Ch. Schwab for helpful discussions con-
cerning the groundwater flow model.

Appendix 1

In this Appendix we prove Theorem 3 which, recall, applies in the case where (7b)
and (13b) are replaced by periodic conditions on D = (LT)“.

Theorem 13. Let x(t) and x((t) be the solutions to (8) and (17), with velocity
fields extended from D = (LT)? to RY by periodicity, and assume that Assump-
tion 2 holds. Assume also that f € C®(D) and that K € C*°(D; C;g('ﬂ‘d)).
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<11 -08 -06 -04 -02 0 02 04 06 08
X

Fig. 3 The upper series (0) is the empirical variance Var[lgz(x)]. The lower series (—) is

Var[lgl(x)]. Both quantities were computed using 500 samples

Then
lin})]E sup [|x€(t) — xo(2)|| = 0.
e— T

0<t<

Proof. To simplify the notation we will set the porosity of the rock to be equal to 1,
¢ = 1. Recall that v*(x) = K¢(x)V p®(x). Our first observation is that, for p(x)

given by (9),
K (x)Vp®(x) = K(x)Vpg(x) —8(x)

where
5(x) = —K“)V(p"(x) = pi()).

From Assumption 2 we deduce that
e—0

From the definition of pf(x) it follows that

K (x)Vpi(x) = Q°(X)V po(x) — €87 (x)

where

§1(x) = =K (x)Vipi(x,x/€),  0°(x) = Q(x,x/e).

From the definition of p; in (14) we see that

(43)

(44)

(45)
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18 ()l < C.
Putting (43) and (45) together we see that
VE(x) = —0°(x)V po(x) + 8°(x) + €87 (x)

and we see from (44) and (45) that the perturbations of v¢(x) from Q€(x)V po(x)
are small; it is thus natural to expect a limit theorem for x¢ solving (8) which
is Lagrangian transport in an appropriately averaged version of Q€(x)V po(x).
Furthermore, since Q(x, y) is divergence free in the fast y coordinate, by (15),
it is natural to expect that the appropriate average is the Lebesgue measure. We now
show that this is indeed the case.

From (8) we deduce that

x“(1) = x(0) +/0 (=0 (¥)Vpo(x(s)) + 8(x(5)) + €8 (x(s))) ds

++/2n0e W(2). (46)
Define now V(x,y) = —Q(x, ¥)V po(x) and consider the system of SDEs
d dw
ax _ (V(x, y) +8(x) + eSf(x)) + /200 —, (47a)
dt dt
dy 1 2n0 dW
A 5¢ ¢ ity 47b
o= (V@ y) +8°0) + 810 + | — — (47b)

Since y = x/e we see that x(¢), the solution of (47) is equal to x€(¢) appearing in
(40).
The process {x(z), y(z)} is Markov with generator

¢ = é((V(x,y) +8(x)) -V, + noAy)
(V0 2) +8°0) - Vi 85(6) - Vy + Vi ¥y + 10V, - V)
+enpAy + €87(x) - Vy
=: %(D% +68(x) - V,) + 4 + e
Consider now the Poisson equation
— 2@ = V(x,y) —vo(x) (48)

with (see (13)(c))
vo(x) = / V(x,y)dy.
Td
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Equation (48) is posed on .7¢ with periodic boundary conditions. Notice that x
enters merely as a parameter in this equation. The operator .% is uniformly elliptic
on T¢ and the right hand side averages to 0, hence, by Fredholm’s alternative this
equation has a solution which is unique, up to constants. We fix this constant by
requiring that [, ®(x,y)dy = 0. We define ®¢(x) := ®(x,x/e) and similarly
for £ @< (x). Applying Itd’s formula to @ and evaluating at y = x/e we obtain

doc(x) = é (AP +5(x) -V, @ (x,x/€)) dt + L1P°dt + € £,P dt
+@V},¢EdW + V210eV, 0 dW
= —é (V (x.x/€) —vo(x) + 8(x) - V, @(x, x/€)) di + L ®¢
+e L@ di + @Vy@EdW + V210eV, D dW.
Consequently,

/ V(x(s),y(s)) ds —/ vo(x(s)) ds
0 0
- / t (af(x(s)) Y, (x(5). x(5)/€) + €L D (x(5)) + ezgquf(x(s))) ds
0

— (P (x (1) = P (0))) + VEM (1),
where .
M) = / (\/2_novy¢>€ + e\/z_m)vxcpé) dw.
0

Since @(x, y) is periodic in both coordinates we have that

IV, ®@(x,x/€)llLe < C, [|@°(x)|lr= < C,
[ L1@ || e < C, | L1P |10 < C

and
E|MO)|" <=C, p=1 (49)

We combine the above calculations to obtain

x€(t) = x(0) + /0, vo(x€(s)) ds + HE(t) + JeME(1),

where
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HE(1) o= (@ (1) — & (x*(0)) + /0 (6°(x“(5)) + €8 (x“(5))) ds

+/0 <8€(x(s))~qu§(x(s),x(s)/6) + e LD (x(s))
2L (x (s))) ds

and 3
M<(t) = MS(1) + /2noW(2).

Our estimates imply that

limE sup |H¢(?)| = 0.

e~>0 4efo.7]
Furthermore, estimate (49), together with the Burkhdlder—-Davis—Gundy inequality
imply that

E sup |M(t)| <C.
t€[0,T]

On the other hand,
t
x(t) = x(0) + / vo(x(s)) ds.
0

Set (T) := Esup,¢p 7} [x“(t) — x(2)|. Because vy is periodic it is in fact globally
Lipschitz so that we obtain

T
0(T) < C/ O(t)dt + h*(T),
0

where
lim 2°(T) = 0.
e—>0

We use Gronwall’s inequality to deduce
0(T) < h (1 +CTeCT),

from which the claim follows. O

Appendix 2

In this appendix we study the homogenization problem (7) in one dimension. In
this case we can calculate the homogenized coefficient explicitly and to prove
Assumption 2. More details can be found in [27, Ch. 12].
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The Homogenized Equations

We take d = 1in (7) and set D = [0, L]. Then the Dirichlet problem (7) reduces to
a two—point boundary value problem:

d xX\\ dp\
~ (exp (u (x, Z)) I ) = f forx e (0,L), (50a)
p(0) =p(L) =0. (50b)

We assume that u(x, y) is smooth in both of its arguments and periodic in y with
period 1. Furthermore, we assume that this function is bounded from above and
below. Consequently, there exist constants 0 < o < < oo such that

o <exp(u(x,y)) <p, Vyel01]. (51)

We also assume that f* is smooth.

The cell problem becomes a boundary value problem for an ordinary differential
equation with periodic boundary conditions. Introducing the notation k(x, y) :=
exp(u(x, y)), the cell problem can be written as

ad ad ok (x,
= D (k) = FED oy e 0,1, (520
dy dy dy
1
x is 1-periodic, / x(x,y)dy =0. (52b)
0

Notice that the macrovariable x enters the cell problem (52) as a parameter. Since
d = 1 we only have one effective coefficient which is given by the one dimensional
version of (11),(12), namely

1 d
ko(x) = /0 (k(x,y> +k<x,y>£(x,y)) dy
0
- <k(x,y) (1 + %(x,y))> (53)

where we have introduced the notation (¢ (x, y)) := fol ¢(x,y)dy. The homoge-
nized equation is then

dx
p0) = p(L) =0. (54b)

— i (ko(x)@) =f, xe(0,L), (54a)
dx
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Explicit Solution of the Cell Problem

Equation (52a) can be solved exactly. After integrating the equation and applying
the periodic boundary conditions, we obtain

x(x,y) =-y+a /0 k) dy + ¢,
with
) = ! = (k) )
Jo (1/k(x.y)) dy
Therefore, from (53) we obtain:
ko(x) = (k(x,y»)™")~". (55)

The constant ¢, is irrelevant. This is the formula which gives the homogenized
coefficient in one dimension. It shows clearly that, even in this simple one—
dimensional setting, the homogenized coefficient is not found by simply averaging
the unhomogenized coefficients over a period of the microstructure. Rather, the
homogenized coefficient is the harmonic average of the unhomogenized coefficient.
It is quite easy to show that k¢ (x) is bounded from above by the average of k(x, y).
Notice that the homogenized coefficient can be written in the form

ko(x) = €™, where uo(x) = log ({exp(—u(x, )))™"). (56)

Error Estimates in W1:*° (D)

The fact that we can obtain an explicit formula for the solution of the boundary
value problem (50) as well as for the solution of the cell problem (52) enables us to
prove Assumption 2.

Proposition 14 Let p€(x) be the solution of the two-point boundary value prob-
lem (50) where the log permeability u(x, y) is smooth in both of its arguments and
satisfies (51). Let k(x, y) = exp(u(x, y)) and define

€

Vix) =k (x, g) dp

™

and 4 J
Vir.y) = k (x.) (1 + X (x,y)) ),
y X

where po(x) is the solution of the homogenized equation (54). Then
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lir% [V(x) = V(x,x/€)| Lo = 0. (57)

Notice that, by (14), the corrector pi(x,y) = x(x, y)%(x). Hence, using the

bound (51) from below on a, together with the definition (9) of pj, this theorem
delivers the following immediate corollary:

Corollary 2. Under the assumptions of Proposition 14 we have
i € —ps co = U.
lim [ p* = pallwice =0
Proof of Proposition 14. We have that

ko(x)
k(x,y)

dy
_— = —1
dy (x,y) +

Consequently
dp
V(x.y) = k@) 2 ().

Define a function F by F'(z) = f(z). We solve the homogenized equation to obtain
d
ko) P2 (x) = =F(x) + e,
dx

with

K QF@d
Jo k' @) dz

Similarly, from (50) we obtain

x\ dp¢ .
k (x;) y P —F(x)+c°,
with .
o= o K zz/OF @) dz
fOL k= (z,z/€)dz ‘

From the above calculations we deduce that

V() = Vx. x/€)llLoe = |e —c°].

It suffices to show that |¢ — c¢| = €(¢). This will follow from the fact that

L L
/k‘l(z,z/e)G(z)=/ ki (2)G(z)dz + O(e)
0 0
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for any smooth function G, as € — 0. To see this, define integer N and § € [0, €)
uniquely by the identity

L = Ne + 3. (58)

Then note that, using the uniform bounds on k(x, y) from below, together with
uniform (in y) Lipschitz properties of a(:, ) and G, we have for z, = ne,

N—1

L (n+1)e
/ k™Y (z,2/€)G(z)dz = Z/ k™ (20.2/€)G(z2)dz + O(e)
0

n=0 v "€
N=1 (m+1e
= Z / ko_l (Zn)G(Zn)dZ + ﬁ(E)
n=0 v "€
N=1 (m+1)e
-y / k' (G()dz+ O(e)

n=0 v "€

L
= / ko_l(z)G(Z)dZ + O(e).
0

This completes the proof. O
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Transported Probability and Mass Density
Function (PDF/MDF) Methods for Uncertainty
Assessment and Multi-Scale Problems

Patrick Jenny and Daniel W. Meyer

Abstract For the simulation of fluid flows, probability and mass density function
(PDF/MDF) methods have advantageous properties compared to moment-based
approaches or purely deterministic methods and are applicable in different fields.
For example, PDF and MDF methods are used for the quantification of uncertainty
in turbulent or subsurface flows, and the simulation of multi-phase flows or
rarefied fluids. In this chapter, differences of these methods compared to other
solution techniques are discussed and illustrated by application examples. Moreover,
the theory behind PDF and MDF methods is outlined. Finally, a PDF method
for uncertainty quantification in subsurface flows and an MDF method for the
simulation of rarefied fluid flows are discussed in more details.

1 Motivation for PDF or MDF Modeling

In many problems related to fluid dynamics, a statistical characterization is prefer-
able compared to a deterministic description. For example in uncertainty assessment
of contaminant transport in porous media, typically a statistical characterization of
the soil parameters that govern the flow field is available. Completely characterized
fields are unknown, though. Consequently, a methodology is applied that provides
statistical predictions of dependent quantities in the form of space- and time-
dependent probability density functions (PDFs) [19]. Similar conditions can be
found in turbulent flows were uncertainty originates from initial or boundary
conditions. PDF methods have a long tradition in turbulent combustion applications
and were pioneered in this field by Pope and coworkers [12, 23, 24]. In problems
that involve a wide range of length and timescales, a statistical description is
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used to reflect fine-scale information that cannot be resolved due to computational
limitations. Here, the mass fraction of fluid contained in a small-scale domain
volume that is in a certain state is characterized by a mass density function (MDF;
mass-weighted PDF times mean density) [23]. A similar concept are filtered density
functions (FDFs) [5] that were introduced in the context of large eddy simulation
(LES) to represent subgrid-scale effects. Direct numerical simulations (DNS) of
turbulent flows, where all length and timescales are resolved are computationally
very expensive and are performed only for idealized flows. For the solution of
high-dimensional PDF or MDF transport equations, particle-based Monte Carlo
techniques are typically applied [22]. Alternatively, if the joint PDF or MDF of
all relevant quantities is well approximated by an idealized shape, a limited set of
moment equations is sufficient to obtain predictions for the joint PDF or MDF.
For example, a Gaussian PDF is fully characterized by means and covariances.
Nevertheless, in many cases PDF, MDF, or FDF methods offer certain advantages
over moment methods or purely deterministic approaches.

In the following, some of these advantages are discussed and illustrated with
suitable examples from turbulent and subsurface flows and flows of rarefied gases.
In Sect. 2, the Fokker—Planck equation is derived, which is at the heart of most PDF
and MDF methods. More detailed application examples of PDF and MDF methods
for subsurface dispersion and rarefied gas flows are discussed in Sects.3 and 4,
respectively.

Complex PDF Shape: In many problems and application cases, the PDF is
arbitrary and a limited set of moments are insufficient to determine its shape.

Example Turbulent Mixing: An illustrative example is provided by considering
mixing in turbulent flows. Here, the joint PDF of chemical species concentrations
has usually a very complex shape that is resulting from the flow geometry, the
mixing dynamics, and the governing reaction mechanism. In Fig. I, simulation
results of the mixing of three streams in a statistically two-dimensional turbulent
channel flow are provided. The bi-variate composition PDFs are far from a joint
Gaussian and virtually impossible to characterize with a small set of moments. In the
joint PDF method, however, stochastic models are needed that account for unclosed
terms in the PDF transport equation. For example, mixing models account for the
molecular mixing term [21]. In Fig. 2, different mixing models are compared with a
reference DNS.

Non-Linearities in the governing equations can lead to severe closure problems in
the context of moment equations.

Example Turbulent Reactive Flows: The chemical reaction source term in a
turbulent reactive flow, Q,(Y,T), is typically a highly non-linear function of
the chemical composition vector Y = (Y1, 7Y>,..., Yn)T and the temperature 7.
Accordingly, it is generally not suitable to estimate its ensemble mean, i.e.,
(Q4(Y, T)), that appears in the mean conservation equation of Y, by Q,((Y), (T)).
Instead, a solution method is required that provides the full joint composition—
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Fig. 1 Simulation results of the turbulent mixing of three streams (red, green, and blue) with
different compositions in a channel are depicted. The composition of each stream at the left
inflow boundary is specified by an according point in the bi-variate Y;-Y, composition space.
The grey-shaded contour plot shows the mean concentration of the second scalar (Y,(x)). Joint
scalar PDFs at five different locations in the domain, i.e., A to E, are also provided. The crosses
in the according density plots, represent the local mean composition (Y(x)). A joint velocity—
composition—frequency PDF method was applied together with the PSP mixing model [17]

temperature PDF f(Y, T') since

©uv.1) = [ [ oux.)fv. 1T ay. )

Moreover, the particle-based Lagrangian solution techniques that are applied to
solve the PDF or MDF transport equations offer a natural approach to resolve non-
linear modeling and closure problems.

Complex Temporal or Spatial Correlation Behavior may lead to difficulties in a
moment-based framework.

Example Subsurface Flow: Simulation models for transport in the subsurface are
relevant in applications that deal for example with the spreading of contaminants.
The velocities of fluid particles that travel in the subsurface develop complex
correlation behavior for increasing spatial variability of the hydraulic conductivity.
This is illustrated in Fig. 3, where time series of fluid particle velocities are provided
for porous media with different conductivity variance 0. In the medium with high
variability, i.e., 07 = 4, fluid particles experience long correlated low-velocity
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Fig. 2 Simulation of turbulent mixing in a periodic box. The flow statistics are constant in time and
space and the composition statistics are constant in space. Depicted is the temporal evolution of the
bi-variate composition PDF resulting from a joint composition—frequency PDF method [18] with
different mixing models and from a DNS [15]. The plots in the first column represent the initial
condition and the ones in subsequent columns mixing stages at later times for equally normalized
r.m.s. values of the first concentration Y;. The following mixing models are included: modified
Curl [11], Euclidean minimum spanning tree (EMST) [27], interaction by exchange with the mean
(IEM) [30], and parameterized scalar profile (PSP) [17]

periods interrupted by short sections where they travel at high velocities in highly
conductive channels. Moment-based methods that are strictly valid for vanishing
conductivity variability or small o7 do not capture these effects accurately. Particle
based methods typically used in PDF methods, on the other hand, can incorporate
Lagrangian stochastic processes that reflect the outlined behavior accurately [19].
More details about a PDF method for uncertainty assessment of transport in
heterogeneous porous media are provided in Sect. 3.

Multi-Scale Problems: MDF or FDF methods are advantageous for problems that
involve a wide range of scales but where information about microscale variability is
secondary and variations at a relatively large macroscale are ultimately sought after.
If microscale processes depend on local properties only and macroscopic processes
depend weakly on microscopic quantities, a scale separation is possible. This is
an important precondition for the applicability of PDF or MDF methods. A weak
dependence is given if macroscopic processes depend on the microscale information
only in the form of statistical distributions that collect microscale data over
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macroscopic volumes. A strong dependence is given, if a process at the macroscale
depends on all details of the spatial distributions at the microscale. Variations
in the macroscopic quantities are then resolved by a coarse computational grid.
The subgrid-scale or microscale physics, however, are modeled with Lagrangian
material particles whose dynamics are evolved with suitable stochastic processes
(e.g., Brownian motion to model diffusion). The particle ensemble in each grid cell
approximates a local MDF or FDF that reflects the variability or distribution of
properties at the microscale. Macroscopic quantities are extracted from the MDFs
or FDFs and influence processes at the macroscale. Where applicable, simulation
strategies of this kind are superior to their conventional purely deterministic
counterparts, which focus on the macroscale and offer little flexibility to model
microscale effects. Deterministic methods that resolve the microscale, on the other
hand, are applicable only for small problems because of their high computational
cost. MDF or FDF methods honor microscale information in the form of statistical
distributions, i.e., MDFs or FDFs, which leads to a simplified and computationally
efficient coupling with macroscopic quantities.

t U/IY

Example CO, Sequestration in Saline Aquifers: In CO, sequestration applications,
supercritical CO; is injected as an additional phase into a saline aquifer displacing
brine. CO, and brine are immiscible phases. Saline aquifers have depths of the order
of hundreds of meters and extend horizontally over several kilometers. Two trapping
mechanisms act on the buoyant CO, as it migrates upward in the porous aquifer.
CO; fractions get trapped in the porous rock due to capillary forces, which is called
residual trapping. At the brine/CO; interface, CO, dissolves into the brine phase,
thus the density of the CO,-enriched brine increases, and fingers of dense brine
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form as is shown in Fig. 4. This mechanism is called dissolution trapping and it acts
at lengthscales that are orders of magnitude smaller than the extension of the aquifer.
A conventional Darcy-flow-based framework that relies entirely on macroscopic
properties offers limited capability to incorporate enhanced dissolution trapping
due to small-scale gravity fingering. In a particle-based MDF method, however,
dissolution is easily modeled by mass exchange between CO, and brine particles.
Moreover, heavy brine particles settle due to gravitational forces. Simulation
results [29] where an MDF method with corresponding models is compared with a
purely deterministic method are provided in Fig. 5. The deterministic method leads
to lower concentrations of dissolved CO, at the bottom of the reservoir and therefore
underestimates dissolution trapping.

Example Dynamics of Rarefied Gases: For rarefied gas flows or flows in very
small structures, the mean free path length A of gas molecules becomes large
compared to a macroscopic reference lengthscale L. Consequently, the Knudsen
number is no longer Kn = A/Ly <« 1 and the continuum assumption that is

brine with dissolved CO,

Fig. 4 Fully resolved
simulation of miscible
gravity-driven fingering of
CO,-enriched brine (dark
red) in lighter pure brine
(blue) [29]. At the beginning
of the simulation, the
enriched and pure brine fill
the top and bottom half of the
rectangular domain,
respectively

pure brine

initial condition MDF method Darcy flow
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Fig. 5 Two-phase flow simulations [29] of the evolution of a circular CO, cloud released in porous
media saturated with pure brine. Contour plots of the dissolved CO, concentration in the brine
phase are provided. Note that the CO, phase is not depicted. Results from a conventional Darcy
flow simulator including a dissolution model are compared with an MDF method that accounts for
enhanced dissolution due to gravity fingering
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at the heart of the Navier—Stokes equations becomes invalid. Collisions of gas
molecules at the microscale start to matter. Nevertheless, macroscopic quantities
like gas velocity or pressure distributions remain the focus of predictive methods.
Fortunately, individual molecule interactions do not induce significant changes in
these quantities and therefore a statistical treatment of molecule collisions seems
sufficient. For example in the MDF method [13], microscale collisions of molecules
or atoms are modeled by continuous stochastic processes for the particle velocities.
Macroscopic properties like density, velocity, or temperature, on the other hand, are
estimated on a relatively coarse grid based on an ensemble of stochastic particles
that represent gas molecules. MDF-based simulation results of a channel flow
with adiabatic walls and constant acceleration F in streamwise direction x, are
provided in Figs. 6-8. Macroscopic velocity profiles for different Knudsen numbers
are compared in Fig. 6. For Kn — 0, the velocity profile approaches the Poiseuille
profile with no-slip condition at the walls and consistent with the Navier—Stokes
equations. Joint PDFs of the wall-normal and streamwise velocity components
of molecules near the wall and in the channel center are provided in Fig.7 for
different Knudsen numbers. For low Kn, the joint PDF is approximately Gaussian
and consequently the PDF of the velocity magnitudes Maxwellian. An illustration
of the Knudsen paradox is provided in Fig.8: for constant acceleration F' but
different Kn, the overall mass flow has a minimum at Kn & 1. This effect is known
from experiments, e.g., [6], and is also predicted by the MDF method. More details
about the MDF method for the simulation of rarefied gas flows will be provided in
Sect. 4.

16 Kn=0.044
A n=0.
Fig. 6 Channel flow 14} @ Kn=0.71
simulations with a aA asdtay, A ® Kn=5.3
Fokker—Planck 12} A A 4 o \/— Poiseuille
;:quatiorf;—based MDF method ' : R Dececesl g
or rarefied gases [13].
1.0
Depicted is the streamwise ot®
. . el
macroscopic velocity . 2 08l e ; N
component U; normalized =) oo ,
with the bulk velocity u, R
resulting from the 0.6 4
Navier—Stokes equations. The A
wall-normal coordinate x; is 0.4}
normalized with the channel 4
width L. For vanishing 0.2}
Knudsen numbers Kn, the
. 0 ) )
flow approaches a laminar 0 02 0z

Poiseuille flow as given by

the Navier-Stokes equations xi/Lo
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Fig. 7 Channel flow simulations with a Fokker—Planck equation-based MDF method for rarefied
gases [13]. Joint velocity PDFs at different channel locations x; and for different Knudsen numbers
Kn are depicted. The normalized velocity components M;* are defined as M; /(Lo F /po/ o).

1
where py and py are reference density and pressure, respectively

2 Basic Background

In this section, the basic mathematical concepts and theories are introduced that are
used for the formulation and solution of PDF and MDF transport equations.

2.1 Illustration with Brownian Motion

Probably the first physical effect that was modeled with stochastic processes is
Brownian motion: in 1827, the botanist Robert Brown [3] discovered under a
microscope that pollen grains suspended in stagnant water perform a random
motion. Several decades later, first Einstein [7] and later Langevin [16] provided
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Fig. 8 Channel flow simulations with a Fokker—Planck equation-based MDF method for rarefied

gases [13]. The ratio of the non-dimensional channel mass flow J and acceleration F is depicted
as a function of the Knudsen number Kn. Experimental results were taken from [6]

a physical model for this so-called Brownian motion. Their work provides a
probabilistic quantification of the distance traveled by a pollen grain over time and is
based on a random process. Brownian motion is resulting from molecular collisions
at the pollen grain’s surface and Langevin proposed

dX; = N2I'dW, 2

as a model for the pollen grain’s motion X(z). Equation (2) is a so-called stochastic
differential equation (SDE) and W; (¢) is a Wiener process with d W; = W;(t +dt)—
W; (t) being independent normally distributed random variables with (d W;) = 0
and (dW;dW;) = dt ;. A statistically exact integration of the position X(¢) is
achieved with

AX; = V2T At g, 3

where &; are independent standard normal random variables and At is the time step
size. A sample trajectory of the random process given by (3) is depicted in Fig. 9.
Einstein showed that the evolution of the PDF of a pollen grain’s position,

fx(x;1), is given by

Ifx(x:1) 9

= I fx(x;1)], 4
g e (VU @)
which is a Fokker-Planck equation and where x; is the sample space coordinate
that corresponds to the stochastic variable X;(¢). The semicolon in the argument
list of fx(x;t) is used to point out that fx is a density with respect to x but not .
Correspondence relations between SDEs, e.g., (3), and Fokker-Planck equations,
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Fig. 9 Sample trajectory of the stochastic model process (3) for Brownian motion. 5,000 time
steps were calculated and the origin is indicated by the dashed horizontal and vertical lines

e.g., (4), are provided in the next section. See [9] for a more detailed and complete
account on stochastic diffusion processes.

2.2 General PDF Evolution Equations

2.2.1 Kramers-Moyal Expansion

Based on the sifting property of the Dirac §-function, i.e.,

/ 5(x — a)g(x) dx = g(a). 5)

and the definition of the statistical mean, i.e.,

aixon = | o) fr (i) dx, ®)

—00

one can write the PDF fy (x;¢) of the time-dependent random variable X (¢) as

Jx (i) = (8[X (1) — x]). (N

The PDF of X at a slightly later time r + Af can be written based on a Taylor
expansion as
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Fr (et + Af) = (8(X(1) — x + AX))

00 k
= fx(x;1) + Z%<(—%) §(X(t) — x) AX">
k=1""

0 9 k K| yee
= sien + Y (<) [ mwn] @

where in the last step the derivative operator with respect to x and the ensemble
mean were exchanged. By dividing the last equality in (8) by Af and taking the
limit At — 0 we get

Ay (xt) & I . (AXF|x:e)
R SaliEAe - lim —— % 0. 9
o1 ; o) | Am Ty D 2
- : -
G

which is the Kramers—Moyal equation with coefficients D®). It describes the
temporal evolution of the PDF fx (x;¢) based on an infinite number of conditional
means that involve powers of the increments AX. These increments are provided
by an according SDE for X (¢).

2.2.2 Theorem of Pawula

In a next step, it is demonstrated that for a certain class of stochastic processes X (¢)
the first two terms of the infinite series of the Kramers—Moyal equation are sufficient
to predict the PDF evolution. This derivation is based on the theorem of Pawula that
is outlined together with a proof in [25]. Because of its high relevance in the present
context, Pawula’s theorem and its proof are provided here:

Theorem 1. For D®) = 0 withr > 1, we have D® = D® = .. = 0.

Proof. The inequality of Schwarz relates statistical moments of two random
variables « and B:

(@B)® < (¢?)(B?). (10)
Fora = AX“ and B = AX? conditional on X(¢) = x and witha,b € {1,2,3,...}
we get
(AXPP|x:0)? < (AX2|x:1)(AX?|x:1). (11)
By multiplying the left hand with (¢ 4+ b)!/(a + b)! and the right hand side with
(2a)!/(2a)! (2b)!/(2b)! and by dividing through At and taking the limit Az — 0,
expression (11) leads together with the definition of D® in (9) to

[@a + k1D T < (2a)l(2a + 2k)1D ) DR+ (12)
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where b was substituted by a 4+ k with k € {0, 1,2,...}. Equation (12) implies
D =0 = pth=pttd _ 9 (13)
and
patk) _ g plath) _
Withr =a +k € {1,2,3,...} we get from the previous expression
D(Zr) =0 = D(Zr—k) =0
withk € {0,1,...,r — 1}, which leads to
D=0 = D¥ V=pF D= =prth=yo. (14)
Equation (13) and repeated use of (14) eventually lead to
D=0 = DO=DpW=_.=0 (15)

forr > 1. O

In Sects. 7.2.1 and 7.2.2, Gardiner [9] shows that if the statistics of AX meet certain
requirements, that essentially characterize a continuous stochastic process X(¢), the
Kramers—Moyal expansion can indeed be truncated after the second term as implied
by Theorem 1 of Pawula.

2.2.3 Fokker-Planck Equation
With the Kramers—Moyal expansion truncated after the first two terms we arrive at

afx (x31) DD fx(x;t) D fy(x;1)
= +
ot dx dx2

(16)

with

AX|x:t AXZ|x:t
DD = 1im w and D@ = lim w

At—0 At At—0 2At

So, for a given SDE for X(t), the coefficients D) and D® are determined and
the temporal evolution of the PDF fx(x;?) is given by (16), which is a Fokker-
Planck equation. The corresponding Fokker—Planck equation for several random
variables is crucial for transported PDF and MDF methods and is provided in the
following box.
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Multi-variate Fokker—Planck equation for the joint PDF fx(x;t) of the
random variable vector X(¢) = (X, X»,...)T with the sample space vector
x(1) = (x1,%2,...)":

et _ DY ) | D (s

ith 17
o1 ox; oo, an
AX;|x;t . AX;AX|x;t
pW lim ﬂ and D? = lim w
! At—0 At & At—0 2At

For increasing dimensionality of the probability space, conventional finite volume or
finite difference methods become computationally too expensive for the solution of
the Fokker—Planck equation (17). Alternatively, particle-based methods that evolve
an ensemble of particles based on the SDEs, i.e., X(z), are used [22].

Example Brownian Motion

Having presented the relation between SDEs and the multi-variate Fokker—Planck
equation, we return for illustrational purposes to the Brownian motion example
introduced in Sect.2.1. Langevin suggested to model Brownian motion with the
SDE (3), i.e., AX; = ~/2I" At &;, which leads based on (17) to

1 1
D;”’ = Altlglo Y. V2I'At(§;) = Oand D;; Altlglo TAr 2I'At{§:&;) = I'5;;.

With these results and (17) we obtain the specific Fokker—Planck equation (4), i.e.,

I & ,
= g AL

which is the diffusion equation found by Einstein. In a short excursion, it is verified
if Theorem 1 of Pawula is applicable for one-dimensional Brownian motion. For

AX = 2T At €,

1 1
DW = lim —— (2 At)*(*) = lim —I'*At =0
At—0 41 At At—0 2

and therefore based on Theorem 1, only the first two terms in the Kramers—Moyal
expansion (9) are non-zero.
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2.2.4 Ornstein—Uhlenbeck (OU) Process
A slight generalization of process (2) used to model Brownian motion is given by
dX = —t (X — xpy) dt + V2rdw, (18)

where 7 is a relaxation timescale and x, is a mean or equilibrium parameter. This
process describes Brownian motion in a parabolic potential and is called Ornstein—
Uhlenbeck (OU) process. The first term on the right hand side is a drift term that
reduces fluctuations in X (¢) and leads to a relaxation toward xj,. The second term
adds stochastic fluctuations and therefore counteracts the first term. In turbulent
flows, OU processes are used to model velocity components of fluid particles. Also
for this process D™ = 0 and therefore Theorem 1 is applicable. The corresponding
Fokker—Planck equation is given from relation (17):

. 2

D L frn| + S snl a9
t ox | T dx2

Fort — oo, fy(x;t) relaxes to a Gaussian equilibrium PDF with mean x,; and

variance t1 .

After having introduced the basic formulation of PDF methods, two different
application examples are outlined in the next sections. The first example deals with a
PDF method for uncertainty quantification in subsurface flow and transport, whereas
the second example is about an MDF method for rarefied gas flows.

3 Illustration of PDF Method for Uncertainty Assessment
in Subsurface Flow Transport

The spreading of a passive tracer in a saturated porous medium is described by the
advection—dispersion equation (ADE)

(20)

ic ., aC _ 0 aC
o Mox T ax :

— ii—
jaxj

where C(x,?) is the local tracer concentration and x; and ¢ are coordinates in
space and time, respectively. D is the dispersion tensor that accounts for pore-
scale dispersion (PSD), which includes mechanical mixing in the rock pores and
molecular diffusion. The formulation (20) is based on a porous medium with
constant porosity n(x) = n, which is often a reasonable assumption. The flow
velocity u(x), that quantifies advective transport in the fluid phase, is determined
based on Darcy’s law and the continuity equation, i.e.,
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K
u=—VhandV-u=0,
n

respectively, where h(x) is the hydraulic head and K(x) is the hydraulic
conductivity.

In groundwater aquifers that are shallow with large horizontal extensions, K(x)
fluctuates typically over several orders of magnitude. Furthermore, information
about the hydraulic conductivity is sparse and therefore, it is considered to be
a random variable and is usually characterized by geostatistical models [14].
In Monte Carlo (MC) simulations, realizations K(x) are generated consistently
with the selected geostatistical model. For each realization, the flow field u(x)
is calculated and transport is simulated which is computationally expensive since
variations in individual K(x)- and C(x, t)-realizations have to be resolved [26]. For
a sufficiently large ensemble, concentration statistics are obtained that eventually
approximate the local concentration PDF f(c; X, t) with the concentration sample
space variable ¢ [4].

Alternative less expensive approaches are based on specific geostatistical
models. The multi-Gaussian model is based on the assumption that the log-
conductivity Y(x) = In[K(x)] at every point in space is described by a joint
Gaussian distribution. Moreover, an exponentially decaying correlation structure
with correlation length [y is typically used for Y(x) and the variability of Y is
characterized by a spatially constant mean and variance 012,. For a constant mean
flow velocity (u(x)) = (U,0)” and o} close to zero, analytical or semi-analytical
expressions can be derived for the first two concentration moments (C(x,?)) and
oé (x, t). Corresponding derivations are based on perturbation methods that neglect
higher-order terms with respect to o¢ [8]. These methods imply Gaussian joint
velocity PDFs fy(v;X) (where v is the sample space variable of u), which is only
a good approximation for 012, < 0.5 [20]. For higher log-conductivity variances,
the joint velocity PDF develops long tails that represent high velocity magnitudes
(compare Fig. 3) and becomes skewed in longitudinal x;-direction.

Recently, a transported PDF method was proposed [19] that accounts for non-
Gaussian velocity effects and is applicable for large log-conductivity variances 012,.
Fluid particles with properties position X, velocity u, and concentration C are
considered. The SDEs that determine the evolution of these properties are given

by

.
2
Il

updt ++/2D; d W),
du; = a(u;) dt — 8,02 E dt + b(u;) d W) with

dE = uydt, and
dC = M(C,u)dt, (21

where i € {1,2}, and a(u;) and b(u;) are nonlinear drift and diffusion functions
that are different for the longitudinal and transverse velocity components u; and u5,
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respectively. Einstein’s summation convention does not apply for bracketed repeated
indices. Moreover, §;, denotes the Kronecker delta, wy is a model parameter, and
M (C,u) is a dilution model that accounts for PSD effects. Similar models are used
in PDF methods for turbulent flows to model molecular diffusion effects [18]. & ()
is an auxiliary random variable that leads to a partially negative autocorrelation
function of the transverse velocity component in agreement with observations from
MC simulations. The coefficients D; denote the diagonal elements of the dispersion
tensor whose off-diagonal elements are assumed to be zero. The functions a (u;)
and b (u;) and the parameter wy were calibrated with MC simulations [20] for o%
ranging from 1/16 up to 4. The resulting stochastic processes reproduce the complex
correlation behavior and velocity PDF shapes observed in the MC simulations.
Based on the SDEs (21) and relation (17), the transport equation

N N

d
o o, ﬁ—a—vi[a(w)f] (22)

2
-—z[b(v,)zf]——[M(C v) f]

for the Eulerian joint velocity—concentration PDF f(v, c¢; X, t) can be derived [19].
By integrating this PDF over velocity sample space we obtain the local concen-
tration PDF f¢(c;x,t). From the PDF transport equation (22) and the ADE (20)
moment evolution equations can be derived where the ones resulting from the ADE
are exact reference equations. A comparison of the two equation sets leads to a
consistency requirement for the dilution model, i.e.,

(M(C,v)[u) =0 Vu (23)

This requirement implies that a suitable dilution model should not change the
velocity-conditional concentration mean.

For a given initial condition, an ensemble of particles can be evolved by
integrating the SDEs (21) over time. Statistical quantities like the concen-
tration mean, (C(x,?)), are estimated based on the particle ensemble on a
relatively coarse grid as illustrated in Fig. 10. The estimation grid needs to
resolve changes in the joint PDF f(v, ¢; X, t). By assuming that the joint PDF
is constant in each grid cell, one can use the particles in the grid cells to
approximate the PDF locally. For example, (C) in a grid cell is estimated by
averaging over the concentration values of particles in the corresponding cell.
The grid resolution requirements for MC simulations, on the other hand, are
considerably higher since gradients in individual Y (x) and C(x, t) realizations
have to be resolved.
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Numerical simulations of the spreading of an initially rectangular tracer cloud
depicted in Fig.11 were performed with the outlined PDF method for a log-
conductivity variance 03 = 2 and a Péclet number Pe = Uly /D = 1,000. In most
applications, Péclet numbers are of the order or larger than 100. An ensemble of ten
million particles and a computational grid with 71 x 41 grid cells were used (grid
spacing of [y /2). Comparisons with reference MC simulations reported by Caroni
and Fiorotto [4] are provided in Figs. 12 and 13. The asymmetric shapes of the
concentration mean and standard deviations depicted in Fig. 12 are a direct result of
the non-Gaussian velocity PDF and the complex correlation behavior in the velocity
statistics. Consequently, low-order approximations fail to predict this behavior. The
cumulative density functions (CDF) provided by the joint PDF method and the MC
simulations are compared at different locations x = (x1, 0)” (compare Fig. 11) and
times ¢ = x;/U in Fig. 13. Both CDFs and concentration moments are in good
agreement and therefore, the joint PDF method provides a good alternative to low-
order approximations and MC simulations.

4 Illustration of MDF Method for Rarefied Gas Flows

In rarefied gases or flows in very small structures, the continuum assumption
and consequently the Navier—Stokes equations become invalid and the dynamics
of molecules or atoms have to be considered. In this section, an MDF method
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Fig. 12 Comparisons of concentration mean (C[(x;,0)7,¢]) and standard deviation o¢
[(x1,0)7, ¢] resulting from the joint velocity—concentration PDF method (solid lines) and the MC
simulations (dashed lines) for 03 = 2 and Pe = 1,000. Comparisons are provided for times
tU/ly =2,5and 15

joint PDF method Monte Carlo
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Fig. 13 Comparison of the concentration CDFs resulting from the joint velocity—concentration
PDF method (left graph) and the MC simulations (right graph) for o = 2 and Pe = 1, 000.
Comparisons are provided at locations x;//y = 2, 5, 10, 15, and 20 at times ¢t = x;/U. In
both graphs, the abscissa represents the concentration sample space variable ¢ and the ordinate the
according cumulative probability

is outlined that takes molecular dynamics into account and that is based on the
Fokker—Planck equation (17). An ensemble of computational particles are used that
represent molecules or atoms. The particle motion that is subject to collisions and
interactions with walls is modeled with suitable continuous stochastic processes.
The outlined approach is, however, different compared to numerical solutions of the
classical Boltzmann equation, where particle collisions are resolved. This approach
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is called direct numerical simulation Monte Carlo (DSMC) [2] and leads to stiff
problems since changes in the macroscopic properties like velocity or internal
energy take place at larger length- or timescales compared to the timespan between
particle collisions. In the MDF method, on the other hand, particle collisions
are modeled by employing continuous OU processes for the particle velocity
components (compare SDE (18)). For these processes, a stable time integration
scheme is devised that allows for time step sizes that are of the order of the
macroscopic timescale, which leads compared to DSMC to a considerable reduction
in computational cost.

4.1 The Boltzmann Equation is an MDF Transport Equation

A monatomic gas is considered. Each computational particle represents one atom
or many identical atoms and has a velocity M(z) and a position X(¢). The
statistical distribution of atom velocities at location x and time ¢ are given by the
PDF f(V;x,t), where V is the sample space vector of M. It is assumed that in
equilibrium f(V;x, ¢) obeys a joint Gaussian distribution, which leads to a Maxwell
distribution for the magnitude of the atom velocity |M|. The gas mass in the same
volume is determined by the gas density p(x, 7). The mass density function (MDF)
is then defined as

F(V,x,t) = p(x,t) f(V;x,1). (24)

It is pointed out that this MDF definition is different from the one of Pope
(equation (3.59) in [23]) proposed for the simulation of compressible low Mach
number turbulent flows. There, the density p is also a random variable that depends
on the scalar vector which is included in the joint PDF. Therefore, Pope’s MDF
contains mainly probabilistic information and integration of the MDF over the entire
probability space leads to the mean density. The MDFs mentioned in this chapter,
however, contain statistical information about unresolved microscales and therefore
reflect deterministic quantities.

The Boltzmann equation is a conservation equation for . % (V, x, t) in V-x-space
and is given by . _ .

.7  OF;

W—i_Via_xi—i_f)—V,'_S(y)’ (25)
where F is an external force, e.g., gravity, and S(.%) is the collision operator. The
Boltzmann equation conserves mass, momentum and energy, the densities of which
are the following macroscopic quantities

(0, pU, pes + 5pU%) = / ((LV.3V) FdV, (26)
R N ——

Y cons

for a collision operator S(.%) that leaves these quantities unchanged, i.e.,
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0
/ VeonsS(#)dV =10 27
R3 0

for any .%, which is a minimal requirement for S(.%). In (26), U = (M) is
the mean velocity and e; = %((M — U)?) is the internal or sensible energy
for monatomic gases. So, as implied by (26), multiplication of the Boltzmann
equation (25) by ¥ ..ns and integration over velocity sample space V, leads for a
collision operator that satisfies requirement (27) to the following conservation laws:

dp  0pU;
- =0, 28
3t + ax]' ( )
dpU; dpU;U; apij

P — ,F. and 29
or " ox, ok, P %)

3p€S 8pUjes aqj 8U]
2L 0 —L =0. 30
o ax; xR 0

In the energy conservation equation (30), g; is the heat flux and in the momentum
conservation equation (29), p;; = p{(M; — U;)(M; — U;)) is the molecular stress
tensor. The latter can be written as a sum of an isotropic part and a deviatoric part,
ie., pjj = 8 p + mj, where p = p;;/3 and §;; denotes the Kronecker delta.
Comparing the definitions of p, p;;, and e, leads to the thermodynamic relation
p = % pey for the isotropic part of p;;. This expression is consistent with the well-
known expression for perfect gases, i.e., p = (y — 1) pe;, that are monatomic with
y = 5/3. The deviatoric part, 7;;, on the other hand, translates for very small
Knudsen numbers or very short collision timescales into the viscous term of the
Navier—Stokes equations.

4.2 Moment Equations

The set of moment equations (28), (29), and (30) provides the macroscopic
quantities p, U, ey, and p. The deviatoric part of the molecular stress tensor 7;; and
the heat flux ¢;, however, remain unknown. Corresponding transport equations can
readily be derived from the Boltzmann equation (25) by multiplication with u; u ;)
(the angle brackets in the subscripts identify the deviatoric part of the tensor u;u;
withu = V —U) and %ui uruy, respectively, and integration over velocity sample
space. This leads to

87r,»]~ aT[,‘j Uk am,’jk 4 8q(i BU(,
— 2 2 .
TR TR PR TN TONL

U
_/>:Pi, 31
Xk

and
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where
Py :/ wiu; S(F)dV and P; = %/ uiugug S(F)dV (33)
R3 R3

encapsulate contributions from the collision operator. Regularized 13-moment-
equations (R13) methods [28] solve the equation system consisting of five equations
for p, U, and e;, three equations for ¢, and five equations for 77;; (6 — 1 = 5 because
the isotropic part of m;;, p, is known from the thermodynamic relation). Closure
models are, however, needed to determine unknown quantities that appear in (31)
and (32).

4.3 Collision Operators

So far, little information was provided about the collision operator S(.%). Based on
the assumption that velocities of colliding particles are uncorrelated and indepen-
dent of position (Stosszahlansatz), Boltzmann proposed the operator S®°!”)_ Since
individual collisions have to be considered in S B°"_its applicability is limited due
to the high computational cost involved. However, it proved to be accurate for a
wide range of scenarios and therefore is considered as a benchmark. Less expensive
alternative operators are tested for example by comparing the resulting P;; and P;
with the reference expressions

2 1
7ij and PI-(BOhZ) __Z

(Boltz) _
PP = ;
TBoltz TBoltz

qi (34)

that are implied by S®°_ Here, 1.y, is a collision timescale that is inversely
proportional to the fluid density and proportional to the atom mass. An alternative
collision operator is for example the Bhatnagar—Gross—Krook (BGK) operator [1]:

1
SEINF) = —(Fu = P), (35)
TBGK

where .7, is a joint Gaussian equilibrium MDF and tpg is a relaxation timescale
parameter to be determined. Therefore, the BGK operator enforces a relaxation of
the MDF .Z to the equilibrium MDF .%), at a given rate tpgk. It leads to

1
mi; and PPN = —— ¢, (36)
TBGK TBGK

(BGK) _
PPN = —
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In the remainder of this section, we will focus on a collision operator that is based
on a Fokker—Planck (FP) equation [13], i.e.,

S(FP)(y)=i L(V._U)gz _|_8_2 ﬁgz (37)
Wi Lo l aV;oV; \ 3tpp '

where tpp is a relaxation timescale parameter. This operator is based on a continuous
multi-variate OU process (compare (19)) and involves a drift term (first term on
the right hand side) that reduces velocity fluctuations and a diffusion term (second
term) that randomly adds fluctuations proportional to ,/es. Furthermore, it leads
to a multi-variate Gaussian equilibrium MDF and accordingly to a Maxwellian
distribution of the velocity magnitudes. With S® we get from (33)

2 3
PP = —Z g and P = ——¢,. (38)
/ Tpp Trp

Now, by comparing the P;; from the less expensive BGK and FP operators with
the Boltzmann reference expression (34), the relaxation timescale parameters are
determined, i.e., Tggk = TBoirz and Tep = 27p.i,. With these choices the degrees
of freedom in the two collision operator models are exhausted and the following
expressions for P; are resulting:

(BGK) _
p; = —

31
— g and P = _Z qi. (39)
TBoltz 2 TBoliz

These results are inconsistent with the reference expression (34) from the Boltz-
mann collision operator and imply also deviations in the resulting Prandtl numbers.
Nevertheless, both operators do not need to resolve collisions of atoms and therefore
are computationally less expensive. In fact, the time step of the FP operator is
restricted only by timescales determined by changes in the macroscopic quantities
as will be shown later.

4.4 Numerical Solution

Insertion of the FP-based collision operator (37) into the Boltzmann equation (25)
leads to

0.7 0.7 ad 1 02 2e;
v, — —(V;=U)—F | F —Z ). (40
Jt + ax; aV; { |:TFP( ) :| } + aV; aV; (3‘1,’1:1) ) (40)

For the numerical solution of this MDF transport equation, a particle-based Monte
Carlo method is used. The corresponding SDEs that describe the evolutions for the
particle position X and velocity M are determined based on the general relation (17)
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Fig. 14 An ensemble of particles with particle indices j evolving in the computational domain
is depicted. A grid with nodes J and kernel functions g7 (x) are used to estimate macroscopic
quantities like U(x’, ¢) and e, (x’, ) at the grid nodes x’. Both tent and top-hat kernel functions
are depicted. Each particle j has a position X/ (¢) and velocity M/ (¢)

and the MDF transport equation (40):

dXi = M,' dt with (41)
1 4e;

dM; :_[_ (Mi_Uf)—Ff} dr + dW: (o). (42)
TFp Ris

Based on these SDEs, an ensemble of computational particles that represent a large
number of atoms can be evolved in a computational domain as illustrated in Fig. 14.
Macroscopic quantities are estimated from the particles at grid nodes similar to the
procedure outlined in Sect. 3 for the estimation of statistical moments. Accordingly,
the computational grid has to resolve changes in the macroscopic quantities.

The solution algorithm for the MDF method with a second order integration
scheme for the particle position involves the following steps:

1. U and e; at time ¢ are estimated at each grid node and interpolated to the
particle positions.

. The time step size Af is determined.

. A first half-time-step is performed to estimate the particle mid-points.

. Mid-point boundary conditions are applied.

. U and e, at time ¢t + At/2 are interpolated from the grid nodes to the
particle mid-point positions.

. The new particle velocities and positions are computed.

7. The boundary conditions are enforced.

WD AW N

(=)}
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In the remainder of this section, we focus on two aspects of this algorithm: first,
it is shown how macroscopic quantities are calculated (point 1 in the algorithm) and
second, an efficient time integration scheme is outlined that allows for time step
sizes that exceed the relaxation or collision timescale tgp (points 3 and 6).

4.4.1 Estimation of Macroscopic Quantities

For a computational grid that accurately resolves spatial variations of macroscopic
quantities like U or e; we assume local ergodicity, i.e., the MDF .7 (V,x, 1) is
approximately constant in the vicinity of a grid node x’, where J is the grid node
index. Macroscopic quantities at each grid node are then estimated based on the
particles surrounding the grid node. In the estimation process, particles that are
located close to the grid node x/ have a higher weight versus particles that are
further away. The particle weights are accounted for by kernel functions g7 (x). For
example, to estimate a quantity at the grid node J, the weight of particle j located
at X/ is determined by g7 (X/). Tent and top-hat kernel functions are depicted in
Fig. 14. For example, the macroscopic velocity U is then estimated by

U(xj, t) = Zj g;, where (43)
N, Np
2w (@)=Y _{ZXOMW ), 7 0= {&X O]},
j=1 i=1

and N, is the number of particles. The internal energy e, (X, ) is estimated accord-
ingly. Like in other Monte Carlo methods, a sufficient number of particles is required
to keep the statistical error at an acceptable level.

For problems that are stationary, time averaging can be used to relax requirements
for the particle ensemble size. The corresponding expressions for %/ (t) and #7 ()
are given by

Np
w6 =pw (t— A+ (1 - Y {&' X ()M ()} and
j=l1
Np
W) =pw = A+ (- Y {7 X O]}
j=1

where i € [0, 1] is a memory factor. For u close to unity and zero the past and
present are more dominant in the averaging procedure, respectively. It has been
shown that this time-averaging technique allows to dramatically reduce the number
of particles, which in general improves computational efficiency and reduces
memory requirements for FP-based methods.
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4.4.2 Accurate Time Integration Scheme

For the time integration of SDEs (41) and (42), an appropriate time integration
scheme is required. Jenny et al. [13] have demonstrated that standard integration
schemes may not conserve the internal energy and therefore caution is needed
when selecting an integration scheme. In a brief derivation a scheme is presented
that works for time step sizes At¢ that exceed tgp. At the beginning of the time
step (time ¢ = ty) the initial particle velocity and position are M(zy) and X(t),
respectively. After introducing the transformations

X/(t) = Xi(t) — Xi(to) — (Ui + wep F7)(t — 1) and (44)
M/(t) = M;(t) — (U; + e F;). (45)

and the substitution

4es
b= [ (46)
3Trp
we arrive at the somewhat simplified SDEs
dy(t) = —Ay(t)dt + BdW(z) 47
with 1
(M) |t O _|boO

and W(#) being a vectorial Wiener process where all components are statistically
independent. Here, it was assumed that the macroscopic velocity U, the internal
energy e,, and the force F are constant over one integration time step. The SDE
system (47) is a bi-variate OU process (Sect. 2.2.4) for which Gardiner (Sect. 4.4.6
in [9]) has outlined an analytical solution of the form

(y(1)) = exp[-A(t —10)|(y(10)) and (49)
(y(0).y" () = ([y() = YOIy (s) — (y(s)")
exp[—A(r — 10)]{y(0), ¥" (t0)) exp[~A(s — 10)]

min(z,s)
+ / exp[—A(r — ¢")|BB” exp[-AT (s — )] d1t’.

fo

For a known initial condition at the beginning of the time step (t = fo), i.e.,
y(t0) = (M/(1), X](#))", the exact solution of the system (47) for ¢ > i is a
joint Gaussian PDF that is fully characterized by the mean (y(¢)) and the covariance
matrix (y(¢),y (¢)). With the coefficients given in (48) and with the definition of
the matrix exponential function, i.e.,
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1
exp(A) = ) A",
k=0 "

the resulting moments for X/ (¢) and M/ (¢) are determined as

/0ty = exp [~ o)

Fp

X/ Oly(to)) = o0 { I —exp [—@}} M (10).

TFp
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TFp
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TFp

+Tpp % 1 —exp [—20 — ZO)i|} } , and
TFp

0. X 0lsa0) = T 1= 2exp [0 4 [0

TFp TFp

These expressions are consistent with (74) and (75) in [13]. With At = ¢ — 1, (44)
and (45), and the definitions M;" = M;(ty), X = Xi(t), andy" = (M, X!"), this
leads for M"*! = M;(¢) and X"t = X, (t) to

At
(M*ly") = exp (_r_) (M}" = Ui = mep Fy) + Ui + e Fr,
FP

At
(Xy") = e [1 —exp (—T—)} (M} = Ui — e Fi)
FP

+(U; + wpFy) At + X,

2e; At
(M,"“,Mf“ly”) = Te [1 —exp (—2‘[—):| , (50)
FP
2e; At
(X Xy = % {21‘ — 41pp |:1 —exp (——)i|
TFP

At
+tp |1 —exp| —2— , and
TFP

2e; At At
(MM Xy = 2ot |:1 —2exp (——) + exp (—2—):| .
3 TFp
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Note that the components M; and X; are independent in the different coordinate
directions and consequently, covariances with indices j # i are equal to zero, for

example, (M, Mj’?;’i1|y”) =0.

Integration of the SDEs (41) and (42) is performed as follows: for a given time
step At and initial condition (M, X!"), two random numbers (M ', X"*")
are drawn from the bi-variate Gaussian PDF defined by (50).

Except for the fact that F and the macroscopic quantities U and e, are assumed
to be constant over At, the scheme defined by (50) is exact. This is an advantageous
property since At does not need to resolve the collision or relaxation timescale tgp,
but only variations in the macroscopic quantities and the external force.

4.5 Simulation Results

Simulations were performed for different flow geometries and Knudsen num-
bers [13]. Channel flow simulations with constant mean free path length A but
variable channel widths L and corresponding Knudsen numbers, Kn = A/L,,
were already discussed in Sect.1 (Figs.6-8). The MDF method with the FP
collision operator is able to provide accurate predictions of the Knudsen paradox
at a considerably lower computational cost compared to DSMC. Especially for
large Knudsen numbers, complex velocity distributions were predicted at different
locations in the channel (compare Fig. 7). It is virtually impossible to capture such
effects with moment-based approaches like the R13 method.

The computational efficiency and stability of the time integration scheme is
demonstrated in Fig. 15: velocity distributions of the flow around a cylinder in a
channel with gravity are provided at different grid resolutions. The Knudsen number
in these simulations was 0.4. At the bottom and top boundaries, periodic boundary
conditions were applied and the left and right sides represent isothermal walls. For
the estimation of macroscopic quantities at grid nodes, top-hat kernel functions were
applied. Ten particles per grid cell were used and time averaging was applied to
reduce the statistical error. The main flow characteristics are captured already at a
very coarse resolution of 8 x 8§ grid cells and the total flow rate is within 5.1% of
the flow rate obtained with the 64 x 64 grid. This gives a clear indication of the
accuracy and computational efficiency of the time integration scheme. Furthermore,
the simulations illustrate that the MDF method can also be applied easily for more
complex flow scenarios.
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Fig. 15 Simulations of the flow around a cylinder in a channel with gravity. Simulations with
different computational grids and time step sizes At are compared. All plots show velocity
distributions and the colors represent velocity magnitudes ranging form Mach numbers equal to
zero (dark blue) up to 0.3 (dark red)

5 Discussion

In this chapter, the basic structure of probability or mass density function
(PDF/MDF) methods was presented. An efficient PDF (or MDF) method to solve
Fokker—Planck (FP) equations was outlined. Such equations describe the evolution
of multi-variate PDFs or MDFs that encapsulate probabilistic or statistical quantities
relevant to certain problems. FP equations result from corresponding Kramers—
Moyal expansions for continuous processes for which the theorem of Pawula is
applicable. The coefficients in a FP equation are directly related to an equivalent set
of temporal stochastic differential equations (SDEs) that determine the evolution of
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particles. These particles evolve in the multi-variate probability or property space
and directly imply an efficient numerical solution algorithm for the FP equation.
Macroscopic quantities are estimated from the particle ensemble on a computational
grid with the help of kernel functions. Unresolved microscale physics is modeled
by SDEs that may also depend on macroscopic quantities. The Lagrangian particle-
based viewpoint facilitates the formulation of appropriate models in flow and
transport problems. Furthermore, the particle ensemble provides not just means and
covariances of relevant quantities, but complete distributions. This offers a higher
level of closer compared to moment-based or deterministic methods that focus on
the macroscale. These factors make PDF or MDF methods ideally suited for certain
multi-scale problems. Several application examples were provided that illustrate
these features.

For uncertainty quantification in subsurface flows, a joint PDF method was
outlined that provides accurate results at a much lower computational cost compared
to Monte Carlo (MC) simulations. The small-scale velocity fluctuations that deter-
mine advective transport are modeled with suitable stochastic processes that share
certain key statistics with the real process observed in MC simulations. PSD effects,
that also depend on small-scale structures, are modeled with a suitable dilution
model. The outlined PDF method was validated for heterogeneous media with o7
up to 2 and should be extended for spatially inhomogeneous cases including log-
conductivity measurements.

For simulations of rarefied gas flows or flows in very small structures, an MDF
method with a Fokker—Planck (FP) collision operator was outlined. If paired with
an efficient and accurate integration scheme, the FP operator is computationally
very efficient since large time steps can be used. Unlike BGK-operator or DSMC
methods, collision timescales need not to be resolved. In statistically stationary
cases, time averaging can be applied to reduce the number of computational
particles. Recently, an improved FP operator was proposed [10] that resolves
Prandtl number deficiencies of the linear FP operator outlined in this chapter. An
interesting option for future work is to incorporated the FP-based MDF method into
a hybrid simulation framework were moment equations for macroscopic quantities
are solved. For large Knudsen numbers (Kn > 10), DSMC is accurate and computa-
tionally efficient and could be applied to determine unclosed higher-order moments
like the molecular stress tensor. However, for intermediate Knudsen numbers,
DSMC becomes expensive and a FP-based methodology seems advantageous. If
the Knudsen number goes below unity, purely macroscopic or Eulerian methods like
the R13 model, and for very low Kn, the Navier—Stokes equations are probably most
efficient. The suggested framework is a unification in the sense that its components
are identical for different Kn. Exceptions are the molecular stresses and heat
fluxes, for which different Eulerian and Lagrangian methods are selected depending
on Kn.
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A Computational and Theoretical Investigation
of the Accuracy of Quasicontinuum Methods

Brian Van Koten, Xingjie Helen Li, Mitchell Luskin, and Christoph Ortner

Abstract We give computational results to study the accuracy of several quasicon-
tinuum methods for two benchmark problems — the stability of a Lomer dislocation
pair under shear and the stability of a lattice to plastic slip under tensile loading.
We find that our theoretical analysis of the accuracy near instabilities for one-
dimensional model problems can successfully explain most of the computational
results for these multi-dimensional benchmark problems. However, we also observe
some clear discrepancies, which suggest the need for additional theoretical analysis
and benchmark problems to more thoroughly understand the accuracy of quasicon-
tinuum methods.

1 Introduction

Multiphysics model coupling has captured the excitement of the engineering
research community for its potential to make possible the numerical simulation
of heretofore computationally inaccessible multiscale problems. The capability to
assess the accuracy of these multiphysics methods is crucial to both the verification
of existing methods and the development of improved methods.

During the past several years, a theoretical basis has been developed for
estimating the error of atomistic-to-continuum coupling methods [2, 3,8-13, 16, 19,
21-28,32,34-36]. However, the accurate computation of lattice instabilities such as
dislocation formation and movement, crack propagation, and plastic slip are primary
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goals of atomistic-to-continuum coupling methods; and a theoretical analysis of the
accuracy of atomistic-to-coupling methods up to the onset of lattice instability of
the atomistic energy has thus far only been achieved for one-dimensional model
problems [5,11,12,14,34,35]. This theoretical analysis and corresponding numerical
experiments have given a precise understanding of the varying accuracy of these
methods for simple model problems, but it is not known to what degree these errors
are significant for the multi-dimensional problems of scientific and technological
interest.

We have developed a benchmark test code to study the atomistic-to-continuum
coupling error for a face-centered cubic (FCC) crystal. Following the benchmark
investigation of Miller and Tadmor [31], the displacement U (x;, x5, x3) of the
atoms from their reference lattice positions is constrained by the atomistic analogue
of continuum “plane strain” symmetry:

U= (U, Uy, 0) and U (x1, x2, x3) = u(x1, x2)

where the crystal coordinates are given in terms of the basis vectors defined using
Miller indices[1] by e; =[110], e;=[001], and e3 =[110]. We note that the
computation of the atomistic energy and forces for an atomistic displacement with
plane strain symmetry requires the summation of the interaction of each atom with
neighboring atoms in three-dimensional space.

We have recomputed the benchmark study of Miller and Tadmor [31] for the
Lomer dislocation dipole to more clearly separate the errors due to continuum
modeling error, atomistic-to-continuum coupling error, and solution error. We allow
a more general atomistic domain that is fully surrounded by a continuum region.
We have also investigated plastic slip for tensile loading. Further investigation is
underway to study the coarsening error in the continuum region and the far-field
boundary condition error.

We have found that the patch-test consistent quasi-nonlocal (QNL) method [40]
gave a more accurate critical shear strain than the popular “ghost force correction”
quasicontinuum coupling method [30, 38] tested in [31] (see Table 1 and Fig. 7).
This result confirms our earlier theoretical analysis of the dependence of the critical
shear strain error on the accuracy of the atomistic-to-continuum coupling [14].

The motivation for the ghost force correction method (equation (12) below)
was to correct the large coupling errors of the original quasicontinuum method
(QCE) [41] by applying a “dead load” correction [30, 31, 38]. We have recast
the ghost force correction method in a numerical analysis setting as an iterative
method to solve the equilibrium equations for the force-based quasicontinuum
(QCF) method [8,9], and we have proven for a one-dimensional model problem that
the ghost force correction (QCE-QCF) method is inaccurate near lattice instabilities
because it uses the patch-test inconsistent QCE method as a preconditioner for the
QCEF equilibrium equations [15]. The benchmark tests we present here confirm that
the QCE-QCF method is not as accurate as the QNL method near lattice instabilities.

By contrast, we found that the wh® error was smaller for the QNL method than
for the QCE-QCF method far from lattice instabilities (see Figs.7-9), which is
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contrary to expectations based on our analyses of a 1D model in [11, 13, 15, 34],
where we have shown that the QCF method (the limit of the QCE-QCEF iteration) is
a more accurate approximation than the QNL method.

Another result of our numerical experiments that contradicts our 1D analysis [15]
is that near a slip instability the QCE-QCF method has comparable accuracy to the
QNL-QCF method, which uses the QNL energy as a preconditioner. To explain
this, we note that our 1D analysis in [15] can be considered a good model for
cleavage fracture, but not for the slip instabilities studied in the present paper. We
are currently attempting to develop a 2D benchmark test for cleavage fracture to
demonstrate that the QCE-QCF method may be less accurate than the QNL-QCF
method near some types of lattice instabilities.

2 The Atomistic and Quasicontinuum Models

2.1 A Model for Plane Strain in the Face Centered
Cubic Lattice

Let .Z be a face centered cubic (fcc) lattice [1] with cube side length a and nearest-
neighbor distance a/ V2 . Our plane strain model is most easily derived by viewing
the fcc lattice .2 as being generated by the primitive lattice vectors

a) = ‘5’(0, L1, a= %(1, 0.1), and a3 = %(1’ 1, 0). (1

The cubic supercells are then generated by the cubic lattice vectors

Ay =a(1,0,0)=—a;+a,+a3, A>=a(0,1,0)=a —ay+as,

(2)
A3 =a(0,0, 1) =a; +a; —as.

We let P be the orthogonal projection of .’ onto the plane with normal given by
ay —ay = (=1, 1, 0) (or the (110) plane using Miller indices since we have that
Ay — Ay = =2(a1 —ay)), and let Q = I — P be the projection onto the line parallel
toa; —ay = 5(=1, 1, 0) (or the [110] direction using Miller indices [1]). We
observe that the projection of .’ onto the plane normal to a; —a, = 5(—1, 1, 0)
(or the (110) plane using Miller indices) is a triangular lattice .7 := P.Z. Each
point in the triangular lattice .7 := P.Z is thus the projection of a column of atoms
with spacing a/~/2 parallel to a; —a, = 5(=1, 1, 0) (or the [1 10] direction using
Miller indices) as depicted in Fig. 1.

Now let @ be a finite subset of the triangular lattice .7, and let §2 be the right
cylinder over w in the fcc lattice .. We will call a displacement U : 2 — R?
periodic if
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® ®

®

® ®
W//\/

Fig. 1 Tlustration of the FCC lattice and the projection onto the (1 10) plane. The grey shaded
region represents the (110) plane, the asterisks are the points in the triangular lattice .7, and
the disks are the atoms in the FCC lattice .. The vertical lines emanating from the points in .7
represent the columns of atoms in the FCC lattice which project onto points of .7. The reader
should imagine that there is a vertical column of atoms emanating from each point of .7

Ux) = U(X + n(a; —az)) forall X € 2 andalln € Z.

We note that the scale of the periodicity is |a; — a2| = a/~/2. Any periodic
displacement U reduces to a displacement u : @ — R? defined by

u(x) ;= U(X) forany X € £ with PX = x.

We let 7/ denote the space of displacements of w.

We will now derive an energy per period &* : % — R and a corresponding
force field on w. Let ¢ be a pair potential. For example, we use the Morse potential
in our numerical experiments below. We will adopt a fourth-nearest neighbor pair-
interaction model. For this choice of the interaction model the quasi-nonlocal
coupling method [40] can be applied. We note that, throughout, we understand nth
nearest neighbours in terms of Euclidean distance in the reference configuration in
R? (i.e., in the 3D FCC lattice) [40].

Let .# denote the .Z-interaction range, by which we mean the set of all vectors
pointing from an atom in £ to one of its first, second, third, or fourth nearest-
neighbors. Representative first, second, third, or fourth nearest-neighbor vectors are
given in terms of the primitive lattice vectors (1) and cubic lattice vectors (2) by

a ‘_’)’ 2a; = (0, a, a),

a1=(0 a a)’ A = (a, 0, 0), a2+a3=<a, 33
(3

272
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with the full set of first, second, third, or fourth nearest-neighbor vectors given by
Ssymmetry.
For X € £2, we let

My ={Be.#:X+Bec.

We will often call directions B € .#y bonds. We note that .# # .#x when X lies
in a shallow layer along the boundary of §2. We also note that we have .Zx, = .#x,
if PX; = PX, = x, hence we can unambiguously use the notation .#, := .
where PX = x for x € w.
For any B € . and any displacement U(X), we define the difference operator
83 by
dgU(X) :=U(X + B) - U(X),

whenever X, X + B € £2. We define the set of projections 5 = PB of the bonds in
A and .#x onto the plane (1 10) by

R:=PH and R =P My.
For periodic displacements U(X ), we define
opu(x) :=u(x +b) —u(x) =UX +B)—-U(X) =03U(X)

where u(x) = U(X) forx = PX and b = PB. It will also be convenient to use the
notation
dpu(x) := dpu(x) = dgU(X) for PB =b.

The energy per period &“ : % — R is given by

Eu)i=3Y > (B +dpu(x)))

XE€w Be.M

where we note that the difference in the deformed positions of atoms at X + B and
X is B + dpu(x). The corresponding force at x € w is then given by

d d
T (u)(x) = —au—(x)@@“(u)(X) = )

> (B +0su(x)). @

Be. sy

where % above denotes the partial derivative with respect to the displacement
u(x) of the atom with projected reference position x € . We define the first
variation (or, gradient) of &“(u) by §&“(u), which is given for each x € w by

9
8 (u)(x) 1= m@@“(u)(x). (5)
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We can then express (4) in operator notation by
F(u) = =68 (u).

We will now formulate a boundary value problem for the energy &¢. We let
I C w denote the part of the “boundary” where the displacements are constrained.
In the numerical experiments described below, I" will be a shallow layer of atoms
along all or some of the boundary of w. Let the space of admissible displacements
that are equal to uyp € % on the boundary I" be denoted by

Adm(up) :=={u € % : u(x) = up(x) forall x € I'}.

We will study the minimization problem (or more precisely, the local minimization
problem):

Find u € arg local min &“(v). (6)
ve€Adm(ug)

The Euler-Lagrange equation corresponding to problem (6) is

—8&8(u)(x) =0 forallx e w \ T,

u(x) = up(x) forallx eI

In our numerical experiments, we consider only initial displacements u satisfy-
ing up : @ — (110), where we recall that (110) is the plane with normal given
by a; —ay = 5(—1, 1, 0). We will call any displacement u : @ — (110) a plane
displacement, and we will let 7 C 7 denote the space of plane displacements. For
plane displacements, & can be interpreted as the energy of the two dimensional
crystal @ computed using a pair potential which depends on the bond direction.

The restriction of the energy per period &% (u) : 4 — R to plane displacements
¥ can then be given by

Ew) =5 du(lb + dpu(x)). ue, (7

XEW hER,

where ¢, : (0,00) — R is given by

b= > ¢(*+1087)")

{Be.#\: PB=b}

where we recall that Q = I — P is the projection onto the line parallel to a; —a, =
5(=1, 1, 0). Roughly speaking, ¢ (|6 + dpu(x)|) is the energy of the interaction of
atom x with all of its neighbors in the column over x 4 b. For x € w, we will call
the inner sum
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Ew) =15 Y ¢u(lb+ dpu(x)))

beER

the atomistic energy at x.
It will be convenient to establish coordinates adapted to the triangular lattice .7,
which lies in the plane defined by the normal a; —a; = 5(—1, 1, 0) (or the (1 10)

plane). This plane is spanned by the orthogonal vectors of length a/+/2 in the [1 1 0]
direction and of length « in the [0 0 1] direction given by

Vii= %(Al + A2) =da3 = %(17 L, O)v

Voi=As=a, +a,—az; =a(0,0,1).

Throughout the remainder of this paper, we will denote the coordinates of (x1, x;)
in the { V|, V> } basis by

(1)1, Uz) =V + .

The triangular lattice .7 is then generated by the basis vectors (1, 0) and
(1/2, 1/2).

It can be checked that there are four distinct symmetry-related projected interac-
tion potentials, ¢ (r), corresponding to interactions with bonds B such that

by = (1, 0) PB = by and OB = n(a; —a,) for n =—-1,0, 1,

b, = (2, 0) PB =byand OB =0,

by=(1/2,1/2) PB =bsand OB = n(a; —ay) for n = -3/2, —1/2,
1/2,3/2,

bs =(3/2,1/2) PB =bsand OB =n(a; —a) for n =—1/2, 1/2.

where the planar bonds b; are displayed in Fig.2. The remaining interaction
potentials, ¢, (r) for b € Z, can be obtained by symmetry from ¢, (r) = ¢, () =
&b, (1), 1, (1), ¢p, (1), and ¢y (r). We note that the lattice constant a is contained
in the definition given in the previous paragraph for the coordinates (v, v).

Now observe that for u € ¥ we have §&“(u) € ¥ where the gradient
8&“(u) is defined by (5). Therefore, if a gradient-based minimization algorithm
(such as the steepest descent method or the nonlinear conjugate gradient algorithm
discussed below) is started from a plane displacement, it will terminate at a plane
displacement. Thus, since we will only consider initial configurations which are
plane displacements, we will be able to use the restriction of £“ to ¥ N Adm(uo) in
our numerical experiments. This is important since & restricted to #" N Adm(u)
is the energy of a two dimensional crystal, and in that case the patch-test consistent
atomistic to continuum coupling method developed in [37] can be used.
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2.2 Energy-Based Quasicontinuum Approximations

We will construct a local approximation to the energy &“. Our methods follow [40].
First, we define an extrapolated difference operator D. The difference operator D
will approximate the vector pointing from an atom to one of its neighbors using only
the vectors pointing from an atom to its nearest neighbors. The nearest neighbors
are the atoms depicted in Fig. 2. Recall that # := P.#; we thus have b; € Z for

the vectors b;, i = 1,...,7, depicted in Fig.2, and moreover, &% is obtained by
applying the lattice symmetries of .7 to by, ..., b;. For these vectors, we define the
operators

Dy, 1 = 0, fori € {1,3,4},

D_;,Z 1= 20p,,
Dy = = 0, + O,
Dy = = 0y + Os.
Dy, : = 20p,,

and extend the definition by symmetries of .7 so that Dy is defined for all b € Z.
Using the difference operator D, we define the Cauchy—Born energy by

) =1 (b + Dpu(x))).

XEW hER,

We will call the inner sum

EPw) =1 Y ¢u(|b + Dyu(x)|)

bER,
+ + + + + + + +

+ + o Op, Ob, + +

6 7

*b Ob + +

4 5

Fig. 2 In the above display of the (1 10) plane, the origin is marked with a dot, the nearest
neighbors of the origin are marked with asterisks, and the other neighbors are marked with circles.
The bond vector b; is the vector pointing from the origin to the atom marked b;
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the continuum energy at x, so

EPw) =Y EL(w).

XEw

The following remark gives a more detailed motivation for these definitions.

Remark 1 (The Cauchy-Born Approximation). We call &°°(u) the Cauchy—Born
energy since, if the displacement u is interpreted as a piecewise linear spline with
respect to the canonical triangulation of .7, it can be rewritten as an integral over a
stored energy density.

To make this precise, we observe that the continuum energy at x € w such that
X+ b e wforall b € Z is given for uniform displacements uf (x) := Fx — x
where F € R¥? by

&L W) =3 (D).

beR

We thus define the Cauchy—Born stored energy density, W,j, : R2*? — R U {+o0},
by

LS ves (I Fb)

1%

Wep(F) =

where v is the area associated with each atom (in the 2D lattice). Moreover, for u €
% , let u denote the piecewise affine interpolant of u with respect to the canonical
triangulation of .7, let Vu denote the resulting displacement gradient, and let @
denote the union of those elements.

For periodic boundary conditions, or by modifying the functional &? (1) at the
boundary I" of the domain w, one can use Shapeev’s bond density lemma [37] to
prove that

EPw) = / Wy (Vit) dx.

w

We note that this modification of the functional &?(u) at the boundary does
not affect the minimization of quasicontinuum energies whose set of admissible
displacements, Adm(u), are constrained in the entire boundary of w, such as for
the Lomer Dislocation Dipole problem that we study. More detailed discussions and
analyses of the Cauchy—Born approximation can be found in [4, 17, 18].

Now let  := &/ U € be a partition of @ into an atomistic region </ and a
continuum region €. We define the energy based quasicontinuum (QCE) energy by

gq(re(u) = Z g\fl (I/l) + Z @f"v‘b(u) ®)

xeof X€EE
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Following [40], we also define the quasi-nonlocal (QNL) energy by

W) =1 (s (1b+Dpu(x) )+ — x5(x) i (1b+0pu(x)]), (9)

XEW bER,

where
1 ifxeFandx+be¥,

0  otherwise.

xp(x) i= {

The reason for the introduction of the QNL method was that the QCE method
did not pass the patch test [11,38], that is, the coupling mechanism defined in (8)
results in non-zero forces (the “ghost forces”) at the atomistic/continuum interface
under homogeneous displacements (or, deformations). By contrast, it was shown in
[40] that the QNL energy (9) does pass the patch test [11, 14,40], as long as two
atoms interact only when they share a common nearest neighbor. The authors of
[40] consider only the case where the pair potential does not depend on the bond
direction. Nonetheless, the argument which they give may be applied to show that
the QNL energy (9) passes the patch test also in the present case.

The importance of passing the patch test lies in the fact that the “ghost forces”
can be understood as a consistency error, which results in an O(1) relative error in
the displacement gradient [11]. Moreover, it was shown in [14], that they can result
in a O(1) relative error in the prediction of critical loads at which lattice instabilities
occur.

To achieve an efficient quasicontinuum method, the positions of atoms in
the continuum region are normally further constrained by piecewise linear inter-
polation [30]. The development of an implementable and patch-test consistent
quasicontinuum energy that allows coarsening by piecewise linear interpolation in
the continuum region has been achieved so far only for two-dimensional problems
with pair potential interactions [37]. The development of patch-test consistent
quasicontinuum energies for many-body potentials such as the popular embedded
atom method (EAM) or for three-dimensional problems is an open problem.

2.3 The Force Based Quasicontinuum Approximation

The force based quasicontinuum (QCF) approximation gives a patch-test consistent
approximation for atomistic-to-continuum coupling even with coarsening in the
continuum region [6, 8]. Force-based multiphysics coupling methods are generally
popular because of their algorithmic simplicity. However, force-based coupling
methods are known to give non-conservative force fields [6, 8], and our recent
research described at the end of this section has discovered additional stability
problems for QCF approximations and solution methods [15].

Instead of approximating the energy &¢ by a local energy, we can approximate
the forces .% (u) directly. This leads to the force based quasicontinuum (QCF)
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approximation. As above, let ® := &/ U % be a partition of ® into an atomistic
region .7 and a continuum region . Define .Z4°/ : ¥ — ¥ by

—§&u)(x)  ifx € o,

F1! = 10
WO =1\ _sebuyx)  ifx €@ (10)

We consider the boundary value problem
FI1 (u)(x) =0 forallx e w \ T, an

u(x) =up(x) forallx eI

It was shown in [12, 13,29], for one-dimensional model problems, that the solution
of problem (11) approximates the solution of problem (6). It is also true that the
QCF method passes the patch test [8].

In our numerical experiments we will solve (11) using an iterative method
defined in [8,9]. Let uy € ¥ be given, and let £9¢ be either £9" or &°¢. Then
we let u,+1 € Adm(up) N 7 be the solution of the problem:

u,+1 € arg local min { & (v) — Z (chf (up)(x) + 681° (un)(x)) -v(x)p .

ve€Adm(up)NY XEw

12)
The method (12) with £9¢ = &£9° is the popular ghost force correction method
proposed in [30]. We have proposed the method &9¢ = &9 as a ghost force
correction method with improved stability properties [15]. For £9¢ = £%°¢, we call
the iteration (12) the QCF-QCE iteration; for £9¢ = &9 we call it the QCF-QNL
iteration.
The Euler-Lagrange equation for problem (12) is

8E1 (1) (x) = FI7 () (x) + 8E9 (uy)(x)  forallx € w\ T,

Up4+1(x) = up(x) forall x € I.

It is easy to see that, if the sequence of iterates converges, then its limit must be
a solution of problem (11). Moreover, under certain technical conditions related to
the stability of the preconditioner £9¢, it can be shown that the sequence indeed
converges [8,9, 15].

A QCF solution method that can theoretically give inaccurate results is the
use of a nonlinear conjugate gradient solver for the force-based quasicontinuum
equations [6, 31, 39]. We have proven that the linearization of the force-based
equilibrium equations is not positive definite [13], which implies that the conjugate
gradient solution of this problem is unstable [15]. We have discovered from informal
discussions with computational physicists that their conjugate gradient iterative
solution of force-based multiphysics coupling methods sometimes oscillates rather
than converges, a phenomenon partially explained by our theoretical analysis of this
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instability. We are developing benchmark tests to further study the reliability of the
conjugate gradient solution of the force-based quasicontinuum equations.

We have shown theoretically and computationally for one-dimensional model
problems that the GMRES method is a reliable and efficient solver for the force-
based quasicontinuum equations [15]. We are thus also preparing multi-dimensional
benchmark tests to evaluate the reliability and efficiency of the GMRES solution of
the force-based quasicontinuum equations.

3 Numerical Experiments

3.1 The Lomer Dislocation Dipole: Analytical Model

Following the numerical experiments presented in [31], we consider a dipole of
Lomer dislocations, as depicted in Fig. 3. The Lomer dislocation has Burgers vector
b = [110] in the (00 1) plane [20]. The dipole should be a stable equilibrium if
the distance between the cores is large enough so that the Peach-Koehler elastic
attraction of the dislocations is weaker than the critical force needed to overcome
the Peierls energy barrier [31].

We will study the stability of the dipole when a shear is applied to the crystal. By
a shear, we mean a homogeneous deformation of the lattice .7 that takes the form

x> o(y)x where o(y):= ((1) )1/) .

We call y the shear strain. We say that the shear is positive if y > 0 and negative if

y < 0. More generally, we will apply a shear to the deformation x + u(x) given by
the displacement u(x) to obtain the sheared deformation

y=applied shear

W N [001]
Dy
L T D, ]_.[110]

Ly

Fig. 3 The atomistic and continuum (yellow) domains for the Lomer dislocation dipole. The size
of the total computational domain is L; = 75 X a/ V2 and L, = 60 X a where a is the length of
the sides of the cubic supercell. The atomistic domain is given by D| = k xa/ V2 and D, = kxa
for k = 3, 4, 5. The separation of the dipole used in the initial guess te;qs isw = 10 X a/ V2
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x +u(x) > o(y) (x +u(x)).

A positive shear applied to the top and bottom boundaries of the crystal changes
the energy landscape to favor the movement of the dislocations apart. As y
increases, the shear force overwhelms both the Peierls force and the Peach-Koehler
elastic attraction. Thus, the original equilibrium configuration of the dipole becomes
unstable, and the dislocations move away from each other. We call the value of y
at which this instability occurs the critical strain. In our numerical experiments, we
will simulate the process of slowly shearing the crystal until the critical strain is
reached.

To understand the movement of the Lomer dipole theoretically, we model the
local minima of the atomistic energy for displacements constrained on the boundary
I'" to be o(y)x — x and constrained to be in the energy well of a Lomer dipole with
separation w:

—~ inf & (V) ~E! (W’ V) = g{?}isﬁl (W) + éocﬁpole attraction (W)
veAdm(o (y)x—x,w)

+ éoa(;)plied shear(w’ )’) + éol‘ﬁ)undary effect (W’ V)

where Adm (o(y)x —x, w) is the set of admissible displacements roughly
described above. Here the classical Peierls-Nabarro misfit energy [20], the classical
Peach-Koehler interaction energy [20], and our modeling of the effect of the applied
shear are given for w > 0 and y > 0 by

b 2 d
PN L

27(1 —v) b (1—=v)b
b2 w
ébd(:pole attraction w)=—— ln Z s (13)
By w
Sopplied shearWs V) = 1w + Bay — T

where u is a characteristic shear modulus, v is a characteristic Poisson’s ratio, L
is a characteristic length, b = a/+/2 is the magnitude of the Burger’s vector, d =
a/~/2 is the interatomic spacing between the (110) planes, and i, B, and B3
are constants with 83 > 0. Although our model for the misfit energy &< . (w)
and the dipole attraction & . yuraciion (W) are well-known approximations of the
atomistic energy &“(v) [20], our bilinear model for the shear energy &3 .. (w,y)
is not derived from the atomistic energy and our justification is based only on the
qualitative behavior it predicts for the stability of the Lomer dipole.

After scaling the atomistic energy & (v), the dipole separation w, and the shear
strain y, and after neglecting the boundary effect &4y efrect (W ¥) = 0, we can
obtain from (13) the model
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Ew,y) =cosw+ flnw — pw (14)

for some B > 0. We chose f = 12 in our numerical experiments. We then find that
the force conjugate to the dipole separation w is given by

L0y _aw-B oy, (15)
ow w

We can see from the force field displayed in Fig.4 that the dipole separation w
becomes unstable at a critical shear strain y and will tend to infinity under gradient
flow dynamics for the force field (15) (for example, consider the stability of the
equilibrium solution branch starting at w = 1.5 as y is increased). The Lomer
dislocations similarly separated to the boundary at a critical shear strain y in our
numerical experiments (see Fig. 5).

3.2 The Lomer Dislocation Dipole: Numerical Experiments

In out numerical experiments we use the Morse interatomic potential
¢(r) := (1 —exp(a(r — 1))* forr >0,
with

o:=44.

25 Force Field

zero force set

20

15}

=10}

_5 1 1 1 1 1 1 1 )
05 1 1.5 2 25 3 3.5 4 4.5

Fig. 4 The force field (15) for the Lomer dipole model (14) with § = 12
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Separated Lomer Dipole Dislocations
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Fig. 5 Separation of the Lomer dislocations to the boundary after continuation past a critical
strain to y = 0.070. Cartensian coordinates are used to label the axes. The top and bottom of
the deformation of the reference domain w are not displayed, but the entire width of the deformed
reference domain is displayed. The triangular mesh was constructed from the reference lattice

We remark that we did not choose @ = 4.4 in order to model some specific material.
Rather, we chose this value of « as small as possible while retaining a stable dipole.
For smaller values of & we were unable to compute a stable dipole, whereas, if «
is chosen too large then the atomistic, Cauchy—Born, and quasicontinuum models
are almost identical since the first neighbor interactions, which would become
dominant, are treated identically in all models.

We chose the lattice spacing a so that the FCC lattice . is a ground state for
the atomistic energy defined by the Morse potential and using a cut-off radius that
includes first, second, third, and fourth-nearest neighbor interactions (determined
from the reference positions). Specifically, we let a be the minimizer of

1 3
U(r) = 12¢ \/;r 1 6¢ (r) + 240 \/;r +12¢(«/§r),

which is the energy per atom in the undeformed lattice with lattice spacing r since
each atom in the . lattice has 12 nearest neighbors, 6 next-nearest neighbors, 24
third-nearest neighbors, and 12 fourth-nearest neighbors (see (3)). The minimum is

attained when a = 1.3338.
We let w be the rectangular domain consisting of 150 columns of atoms parallel

to V, with each column containing 60 atoms defined in the (v;, v;) coordinates by

w=1{k1):0<k<74, 0<1<59
Uf(k+1/2.14+1/2):0<k <74, 0<1 <59!.

We take the boundary I" of w to be a layer of atoms four rows deep around the edges
of w, so that
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IF={k I):k=01 7374 0<1<59
Uf(k+1/2,14+1/2):k=0,1,73,74, 0 <[ <59}
Uf(k+1/2,14+1/2):0<k <74, 1=0, 1,58, 59
U{(k+1/2,14+1/2):0<k <74,1=0, 1, 58, 59}.

With this choice of I", for any atom x € w \ I', all fourth-neighbors of x belong to
. Thus, there are no boundary effects for the reference lattice when a = 1.3338.
This choice of I" corresponds to taking Dirichlet boundary conditions on the entire
boundary. Throughout the rest of this section, we will consider only displacements
u so that for some y > 0, we have u(x) = o(y)x — x forall x € I'. For such a
displacement, we will call the shear strain y the shear on the boundary.

We will now discuss how the stable Lomer dipoles displayed in Fig.6 are
computed. We first construct an initial guess u,j,s for the displacement field
corresponding to a Lomer dipole by using the displacement fields of the isotropic,
linear elastic solution for the edge dislocations [20] at the left and right pole of the
dipole, respectively. More precisely, the formula for these displacement fields is

E 3
uy

2 X1 — X 2(1 — U)((Xl — xf)2 + (xp — X;)Z)

" b*| 1—-2v N N
2 =‘z[mln(“ =D+ (=)

+

(x1 = x})* = (%2 — x3)? }
41 =) (0 =P + (2 = x)?)

where x = L, R refers to the left or the right edge dislocation, respectively, b* is the
corresponding Burgers vector, and x*, i = 1,2, are the components of the position
vectors [20]. In our numerical experiments, we set the initial positions of the Lomer
dislocations in the reference configuration to be (in the (v, v,) coordinates)

(vf,v§)=<32,3o+é> and (le,sz):<42,30+§>.

We note that initial dislocation positions are placed between the center row of atoms
at v, = 30 and the first row above the center v, = 30 + 1/2, with vF =30+ 1/6
and vX = 30 + 1/3 placed symmetrically about v, = 30 + 1/4 (see Fig. 6).

The displacements u”, u®, are estimates of the displacement fields for isolated
edge dislocations. By superimposing them, we obtain an estimate of the elastic

displacement field for the dipole (without shear):

L R
Uelas = U~ +u.
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(c) Atomistic region (5)

Fig. 6 The atomistic regions for the Lomer dislocation dipole. Not all of the continuum region is
displayed. The mesh is the Delaunay triangulation [7] of the reference lattice (i.e., with the atoms
as the nodes). The atomistic region is shaded grey. (a) Atomistic region (3) (b) Atomistic region
(4) (c) Atomistic region (5)
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Finally, we apply a shear deformation to the deformation field x + .45,

x + M.(e)las (x) =0(y) (x + teras (x)) ,

which yields an initial guess for the displacement field for the Lomer dipole under
applied shear:

uglas(x) = 0(y) (x + teras(x)) — x.
We use the displacement u?,as = 0(Y0)Ueras(x) — x as a starting guess for a
preconditioned nonlinear conjugate gradient method (P-nCG), which is described
in Sect. 4, to solve the minimization problem (6).

It is challenging to find a stable dipole. In fact, we were unable to find a stable
dipole without applying a positive shear to the boundary. That is, we did not find a
Lomer dipole that was a local minimum of the atomistic energy (7) subject to the
boundary condition u(x) = 0 for all x € I". We were also unable to find a stable
dipole when the parameter « in the Morse potential was too small. Essentially, we
found that as « decreased, the interval of shear strains for which a given dipole
was stable became smaller. After some experimentation, we did find a stable Lomer
dipole with o = 4.4 and with shear on the boundary yy = 0.0375.

Our atomistic and quasicontinuum models utilize a fourth-nearest neighbor
cutoff calculated from the positions in the reference lattice, which is in fact the
largest possible neighborhood for the QNL method applied to an FCC lattice [40].
Such a cutoff is acceptable for atomistic configurations that are “close” to the
reference lattice, however, for the highly deformed positions near the dipole a
cutoff in deformed coordinates ought to be used. Even though the dominant nearest-
neighbour interactions are always included in our calculation, a more precise
understanding of the error committed for second- to fourth-nearest neighbours is
required.

Next we describe how we simulate the shearing of the dipole. For simplicity, we
will explain how this is done for energy-based methods before we discuss the force-
based method. Let 1 be the displacement field of the stable Lomer dipole discussed
above. Suppose that y; is the shear on the boundary for u. Let y be an increasing
sequence of shear strains, and let 8y, 41 := Yk+1 — Yk- & can be either the atomistic
energy (7), the QCE energy (8), or the QNL energy (9).

We perform the following iteration starting with the displacement uy. Suppose we
have a dipole with displacement field u; which solves the boundary value problem

— 68 (ug)(x) =0 forallx e w \ T,

uy(x) =o(y)x —x forallx €I

We let

g 11(x) = 0 (8yi) (x + u(x)) — x.
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Observe that u}{) 4 satisfies the boundary condition

u2+1(x) =0(Yr+1)x —x forallx € I
We use the P-nCG algorithm to compute a new local minimizer uy 4 ‘“near” u2 i1
which satisfies the new boundary condition uy+;(x) = o (Yk+1)x —x forall x € I'.
We call this process the shear loading continuation.

We terminate the shear loading continuation when we can no longer find an
equilibrium u 41 (x) close to the initial guess o (§yx+1) (x + ux(x))—x. In practice,
this means that we stop when the nCG algorithm returns a deformation in which
the cores of the dislocations have moved apart. If the dislocations move apart at
the (k + 1)th step of the iteration, then we assume that the critical strain must be
between yx and Yy 1.

For the force based approximation (10), we use a similar iteration to find the
critical strain. At each step in the iteration, we solve the boundary value problem

F1 (up41)(x) = 0 forallx e w \ T, 16)
ug+1(x) = o(Yk+1)x —x  forallx € I

We solve (16) using the ghost force correction iteration defined in (12). We use the
same initial guess

u) (%) = 0 (8yrs1) (X + up(x)) — x

as in the energy-based case, and we solve each iteration of ghost force correction
using the P-nCG algorithm.

We presented computational results for the deformation of a Lennard-Jones chain
under tension in [9] that demonstrate the necessity of using a sufficiently small
parameter step size to ensure that the computed solution remains in the domain
of convergence of the ghost force correction iteration (defined below as QCE-
QCF) method. These results exhibit fracture before the actual load limit if the
parameter step size is too large. We thus conclude that the shear strain §y; 4 must
be sufficiently small to ensure that our computed solution remains in the domain of
convergence of the QCE-QCF method since it would otherwise predict instability
for the Lomer dipole before that predicted by the QCF method.

We perform the shear loading iteration for each of the quasicontinuum methods
using three different atomistic regions, as depicted in Fig. 6. The atomistic region
(3) (resp., (4), (5)) is a box containing the dipole such that there are three (resp.,
four, five) rows of atoms between the continuum region and each of the atoms in the
pentagons surrounding the cores of the dislocations, or more precisely, the atomistic
region (k) is the box given in (v, v, ) coordinates by [32 — k,43 + k] x [30 —
k,30 + k] for k = 3,4,5. Throughout the remainder of this section, QNL-QCF
(resp. QCE-QCF) will refer to the QCF method implemented using the ghost force
correction iteration preconditioned by the QNL (resp. QCE) energy [15]. We will let
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QNL-QCF(k) (resp. QCE-QCF(k), QNL(k), QCE(k)) refer to the QNL-QCF (resp.
QCE-QCF, QNL, QCE) method with atomistic region (k) for k one of 3, 4, or 5.

We note that the atomistic regions studied in the benchmark tests given in [31]
extended to the lateral boundaries of the computational domain w, or, following
the notation used in Fig. 3 these tests study the case 2D; + w = L. Thus, the
benchmark tests [31] do not present the capture of a Lomer dipole in an atomistic
region fully surrounded by a continuuum region and do not study the effect of
coupling error in the dipole plane (1 10).

In Table 1, we give the critical strains for each method in decreasing order. The
columns y~ and y* are the shear strains at the last step before the dislocations
moved apart, and at the first step for which the dislocations moved, respectively.
The column labeled “Error” displays the relative error from the critical strain of the
atomistic model, calculated by the formula

Error = M, (17)
Yat

where 7, is the mean of y~ and y T for the atomistic method, and 7, is the mean
of y~ and y* for the quasicontinuum method. We wish to stress that if y* for
some method is equal to y~— for another method, then no strong statement can
be made comparing critical strains of the two methods. For example, our data do
not show that QNL(5) has a significantly higher critical strain than QCE-QCEF(5).
Rather, our data suggest only that the critical strain of the QCE-QCF(5) method is in
the interval [0.038172,0.038177] and that the critical strain of the QNL(5) method
is in [0.038177,0.038181]. Thus, the critical strains of the two methods are very
close.

The reader will observe that the critical strain of the fully atomistic model is
the highest. The critical strain predicted by the QCE method is the lowest, and is
the farthest from the critical strain of the atomistic model. This is not surprising

Table 1 The critical strain for the Lomer dislocation dipole under shear. The Error is given by
(fa, — )74(.) /Var in percent which is defined precisely in the paragraph surrounding (17)

Method Critical strain Error
v~ yt

Atomistic 0.038190 0.038194 0.000 %
QNL(5) 0.038177 0.038181 0.034 %
QCE-QCF(5) 0.038172 0.038177 0.046 %
QNL-QCE(5) 0.038172 0.038177 0.046 %
QNL4) 0.038164 0.038168 0.069 %
QCE-QCF(4) 0.038155 0.038159 0.092 %
QNL-QCF4) 0.038155 0.038159 0.092 %
QNL(3) 0.038111 0.038116 0.206 %
QCE-QCF(3) 0.038081 0.038085 0.286 %
QNL-QCF(3) 0.038081 0.038085 0.286 %

QCE(3) 0.037750 0.037775 1.125 %
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in light of the results on the stability of one dimensional chains obtained in [14].
It is surprising, however, that the QNL method predicts the critical strain of the
atomistic model more accurately than the QNL-QCF force-based method, since we
expected that the stability of the QNL-QCF method would be determined by the
QNL preconditioner [15]. It also somewhat surprising that the QCE-QCF iteration
predicted the critical strain as accurately as the QNL-QCEF iteration. The analysis
given in [15] suggests that the QCE-QCF iteration should lose stability at a lower
strain than the QNL-QCEF iteration.

Figure 7 consists of graphs showing the relative w!-* error versus the shear strain
for various quasicontinuum methods. The w'*> norm is defined by

| Dpu(x)]|
[|te]] 1,00 1= max max ————
x€o beZ,  |b|

)

and we define the relative error in w"> by

”uqc _ua||w1~°°

(18)

et (tge: Un) = ==
al|wlhoe

Here u,. denotes a solution of one of the quasicontinuum models, and u, denotes a
solution of the atomistic model with the same boundary conditions.

The reader will observe that the error of the QCE method is the greatest. This is
largely due to the presence of ghost forces [10]. The error of the QNL method is the
least. Again, this is surprising since various analyses [11, 13, 15,29,34] suggest that
the force based method should be more accurate than the QNL method. However, we
note that a similar effect was observed in one-dimensional numerical experiments
in [29]: while for large atomistic regions the QCF method was considerably more
accurate than the QNL method, for smaller atomistic regions the QNL method
was clearly more accurate. The atomistic regions studied here in our numerical
experiments for the Lomer dislocation dipole are very small.

3.3 Tensile Loading

In our next experiment, we examine the accuracy of various quasicontinuum
methods for the computation of the resistance to slip under an applied tension. By
a tension, we mean a homogeneous deformation of the lattice .7 which takes the

form
1+y 0)

x = t(y)x where t(y) ::( 0 1

when expressed in the basis of the coordinate vectors V; and V. We will let t(y)
denote such a tension, and we will call y the tensile strain. We call a tension positive
if y > 0 and negative if y < 0.
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In our numerical experiments, we use the same pair potential and lattice spacing
as for the Lomer dipole problem. We let @ be the rectangular domain consisting of
120 columns of atoms parallel to 1V, with each column containing 15 atoms defined
in the ( vy, v, ) coordinates by

w={k,1):0<k<59 0<I<14}
U{k+1/2,1+1/2):0<k <59,0<1] <14}.

We will now let I" consist of four columns of atoms parallel to V), at the left edge of
w, and four columns at the right edge of w, that is,

M=k 1):k=0,1,58759 0<[<14}
Uf(k+1/2,14+1/2):k=0,1,58 59, 0<1[<14}.

This corresponds to choosing Dirichlet boundary conditions on the sides of w
parallel to V5, and free boundary conditions on the sides of w parallel to V.

To find the critical strain for the crystal under tension, we perform an iteration
similar to the shear loading iteration. Let y, be an increasing sequence of tensile
strains with Yy = 0. We let 1 be the displacement field of the undeformed reference
lattice w described above. Then we let 14 solve the problem

F(up4+1)(x) =0 forallx e w \ T,
(19)
ug+1(x) = t(k+1)x —x  forallx e I

Here .% is the gradient of one of the energies (7), (8), (9), or else the force-based
method (10). We solve (19) using the same methods discussed above for the shear
loading iteration, except that in this case we start each step with the initial guess

U (x) =1 (%) (x + ux (x)) — x.

We call this iteration the tensile loading continuation. We stop the continuation
when the P-nCG algorithm (or a ghost force correction iteration) returns a deforma-
tion in which a slip has occurred.

Our numerical experiments are designed to test how well the boundary between
the atomistic and continuum regions resists slip under tensile loading. When we
perform the tensile loading iteration for the fully atomistic model, we found that a
slip tends to occur along the slip plane indicated in Fig. 8a when a critical tensile
load is reached. Figure 8a shows the configuration of the crystal immediately after
a typical slip has occurred. We note that the slip allows the crystal to accommodate
an increased tensile strain with a decrease in the energy. We then chose an atomistic
region .« whose boundary is along that line, as depicted in Fig. 8b.
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(a) The natural slip plane. We choose an atomistic region whose boundary is the plane highlighted
in grey. The mesh is the Delaunay triangulation [7] of the reference lattice.
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(b) The atomistic region .27 is shaded grey. All atoms in .o are marked with a blue dot.

Fig. 8 The atomistic (<) and continuum (%) regions for the tensile loading experiment. (a) The
natural slip plane. We choose an atomistic region whose boundary is the plane highlighted in grey.
The mesh is the Delaunay triangulation [7] of the reference lattice. (b) The atomistic region < is
shaded grey. All atoms in <7 are marked with a blue dot

Table 2 The critical strain under tension. The Error is given by (y,, — )7qc) /YVar in percent, which
is defined in (17)

Method Critical strain Error
v~ yt

Atomistic 0.081635 0.081649 0.000 %

QNL 0.081593 0.081607 0.052 %

QCE-QCF 0.081242 0.081270 0.473 %

QNL-QCF 0.081101 0.081130 0.645 %

QCE 0.063900 0.064200 21.548 %

We observe that the critical strains of the quasicontinuum models were lower than
the critical strain of the atomistic model. Our results are summarized in Table 2. In
Table 2, the columns y~ and y ™ are the tensile strains at the last step before slip is
observed and at the first step for which slip is observed, respectively. The column
labeled “Error” is the percent error from the critical strain of the atomistic model.
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We observe that the critical strain of the QCE model is lower than the critical
strain of any of the other models. This is in agreement with the one dimensional
stability results established in [14]. However, we were surprised to find that the
critical strain predicted by the QNL method is higher than the critical strain
predicted by the QNL-QCEF force based method, since we expected that the stability
of the QNL-QCF method would be determined by the QNL preconditioner [15].
We were also surprised to observe that the critical strain of the QNL-QCF method is
less than the critical strain of QCE-QCF. The one-dimensional analyses in [12, 15]
suggest that the force based methods should have a comparable critical strain as
QNL, and that the QCE-QCEF iteration should lose stability at a lower strain than the
QNL-QCEF iteration.

Figure 9 consists of graphs showing the relative w!'*> error versus the tensile
strain for various quasicontinuum methods. We observe that the QCE model had the
greatest error. This is primarily the result of the ghost forces which arise in the QCE
model. The QNL model had the lowest error. Again, this is somewhat surprising in
light of the one dimensional theory [11,13, 15,29, 34], which predicts that the force
based methods should have lower error than the QNL method.

4 Conclusion

Materials scientists and engineers typically attempt to verify their multiphysics
methods by benchmark tests. However, definitive conclusions from these benchmark
tests are often not possible since they combine many sources of error (modeling
error, coupling error, solution error, boundary condition error, etc.). Further sup-
porting theory is needed to select a set of test problems that thoroughly samples the
solution space.

We are developing an improved theoretical basis for benchmarking atomistic-to-
continuum coupling methods based on the multiscale numerical analysis developed
by us and others. Our goal is to be able to reliably predict the accuracy of atomistic-
to-continuum coupling methods for general deformations and loads from numerical
experiments for a small set of mechanics problems. This set of mechanics problems
should sample the fundamental modes of material instability such as dislocation
formation, slip, and fracture.

Our discussion of the benchmark tests presented in this paper give many
examples of the predictive success of the theoretical analysis we have developed
during the past few years, but we also describe several cases where our theoretical
analysis seems to predict a different outcome than our computational experiments.
This discrepancy between theory and computational experiment occurs when our
theoretical analysis does not adequately model the computational problem and is
motivation to develop more general theoretical analysis.
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Appendix: A Preconditioned Conjugate Gradient Algorithm

In this appendix, we describe the preconditioned nonlinear conjugate gradient
optimization algorithm (P-nCG) and the corresponding linesearch method, which
we used in the numerical experiments in this paper.

Let & : RY — R U {400} be continuously differentiable in {u : &(u) < oo}.
If £ is an energy of the type discussed above, then the standard nonlinear conjugate
gradient method [33, Sec. 5.2] is convergent, but very inefficient, due to the poor
conditioning of the Hessian matrix at local minima.

Let P € RY*N be a symmetric positive definite matrix, e.g., a discrete Laplacian
or a modification thereof. A simple but considerably more efficient method is
obtained if all inner products in the conjugate gradient algorithm are replaced
by a P-inner product (u,v)p = u’Pv, and all gradients §&(u) by P-gradients
8p&(u) = P7'8& (u). The P-gradient §p& (1) “represents” the gradient §& (u) in
the P-inner product (v, w)p := v Pw, since

(Sp& (), w)p = (P18E ) Pw = 8& W) w = (8& (), w).

In practice, we allow a new preconditioner to be computed at each step. A basic
preconditioned conjugate gradient algorithm of Polak-Ribiere type can be described
as follows:

(0) Input: uy € RY;

(1) Evaluate Py; go = P;'8& (uo); so = 0;

(2) Forn =1,2,... do:

3) Evaluate P,;

4) gn =P 18E (uy);

() Bn = max{0, (g:, &n — &a—1)P,/ (&n—1. En—1)Pu_y )3
(6) Sp = —&n t+ ﬂnsn—l§

@) o, < LINESEARCH;

() Up = Up—1 + Oy Sy}

In the following we specify further crucial details of our implementation:

1. Preconditioner: The choice of preconditioner has the biggest influence on the
efficiency of the optimization. We project all atoms onto a single plane and
triangulate the resulting set of nodes. On this triangulation, we assemble the
standard P1-finite element stiffness matrix, K,,, discretizing the negative Laplace
operator. The preconditioner P, is obtained by imposing homogeneous Dirichlet
boundary conditions on the clamped nodes.

2. LINESEARCH: Our linesearch is implemented following Algorithms 3.5 and
3.6 in [33] closely. We use cubic interpolation from function and gradient values
in the “Interpolate” step of Algorithm 3.6. We guarantee the strong Wolfe
conditions, [33, (3.7)] with constants ¢; = 10™%, ¢, = 1/2.
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3. Initial guess for a,: If the initial guess ai,o) for the new steplength «,, which
is passed to the LINESEARCH routine, is chosen well, then actual linesearch
can be mostly avoided, which can result in considerable performance gains.
Following [33, (3.60)], and extensive experimentation with alternative options,
we choose ot,(,o) = 2(E(up—1) — EWn—2))/(gn, Sn) p,-

4. Termination Criteria: We terminate the iteration successfully if the following
condition is satisfied:

(Nt = wa-1lloo < TOLE® 0t 1ty — s, < TOLY )

and (86 @)lloo < TOLF or lgullp, <TOLY)
and  (£(u-1) = £(w) = TOLg ),

where || - || oo denotes the £>°-norm, and || - ||p denotes norm associated with the P-
inner product. The tolerance parameters are adjusted for each problem. Typical
choices are TOL® = TOL, = 1075, TOL{® = TOL} = 107*, TOLs =
1074,

We terminate the iteration unsuccessfully if a maximum number of iterations
is reached, or if the LINESEARCH routine is unable to make any progress.
Note also that, since P-nCG is a descent method, we have & (u,—1) — & (u,) =
|g(un—l) - éa(“n)l

5. Robustness Checks: In addition, our algorithm uses various minor modifications
to increase its robustness. Since these do not significantly affect its performance,
we have decided to not give any details.

The algorithm described above is both efficient and robust for most of the
problems we consider. However, we wish to stress certain difficulties that arise
in the presence of “meta-stable” states and particularly shallow local minimizers,
which are difficult to distinguish numerically. In our experience, dislocations fall
precisely into this category.

On some occasions, our algorithm would fail when a particularly low tolerance
setting was used. The reason for the failure is usually that the directional derivative
along the search direction is non-negative (up to numerical precision) and hence the
linesearch fails or stagnates. Replacing the conjugate direction by a steepest descent
direction (one of our robustness checks) resolves this problem only partially. We
were able to overcome these difficulties mostly by tweaking the various optimization
parameters.
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Coarse-Grid Multiscale Model Reduction
Techniques for Flows in Heterogeneous
Media and Applications

Yalchin Efendiev and Juan Galvis

Abstract In this paper, we give an overview of our results [35, 38, 45, 46] from
the point of view of coarse-grid multiscale model reduction by highlighting some
common issues in coarse-scale approximations and two-level preconditioners.
Reduced models discussed in this paper rely on coarse-grid spaces computed by
solving local spectral problems. We define local spectral problems with a weight
function computed with a choice of initial multiscale basis functions. We emphasize
the importance of this initial choice of multiscale basis functions for both coarse-
scale approximation and for preconditioners. In particular, we discuss various
choices of initial basis functions and use some of them in our simulations. We show
that a naive choice of initial basis functions, e.g., piecewise linear functions, can lead
to a large dimensional spaces that are needed to achieve (1) a reasonable accuracy
in the coarse-scale approximation or (2) contrast-independent condition number of
preconditioned matrix within two-level additive Schwarz methods. While using a
careful choice of initial spaces, we can achieve (1) and (2) with smaller dimensional
coarse spaces.

1 Introduction

Many problems in applications occur in media that contain multiple scales and
have a high contrast in the properties. For example, fractured reservoirs typically
have large variations in their conductivities. These large variations bring additional
small-scale parameters into the problem. Numerical discretization of flow problems
in such heterogeneous media results to very large ill-conditioned systems of
linear equations. Several approaches are proposed to solve such systems. Some
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approaches involve the solution on a coarse grid (e.g., [1-7, 15, 17-21,25,26, 30—
34,38-41,43,44,48,51,52,55,56,60-62,66—69,72,75,79]). In these approaches,
coarse-grid properties, such as upscaled conductivities or multiscale basis functions,
are constructed that represent the media or the solution on the coarse grid. For
solving high-contrast problems on a fine grid, robust iterative methods that converge
independent of the contrast and multiple scales are needed (e.g, [8,28,50,63,71,73,
74,76] and references therein). In this review paper, we will describe some of our
work toward a design of robust preconditioners and coarse-grid solution techniques
for multiscale high-contrast problems.

Multiscale methods attempt to compute the solution on a coarse grid. One of the
commonly used approaches is upscaling methods (e.g., [16,20, 30,47, 58,59, 79])
where coarse-grid conductivities are computed, and then the flow equation is
solved on this coarse grid. Instead of coarse-grid conductivities, multiscale basis
functions can be used to represent the solution on a coarse grid ([4, 14, 52, 56]).
In the latter, multiscale basis functions are constructed on a coarse grid, and
the approximation for the solution of fine-scale equation is sought on a finite
dimensional space spanned by these basis functions. Multiscale basis functions are
typically constructed by solving the local flow equation on a coarse grid subject
to some boundary conditions. This shares similarities with upscaling methods
where local problems are solved to compute effective properties. It is known that
the boundary conditions of these local problems play an important role in the
accuracy of the coarse-grid solution techniques. In particular, the use of artificial
boundary conditions that do not contain correct small-scale information of the
fine-scale solution leads to resonance errors [42,49, 52]. To remedy this situation
and improve subgrid capturing errors, various approaches are proposed. These
approaches include the use of reduced boundary conditions [52, 56], oversampling
methods [31, 40, 42, 52], limited global information and harmonic coordinates
[39, 69], local-global approaches [24,32,57], and so on. All these approaches are
intended to improve the subgrid accuracy.

To design robust iterative methods for the solution of the fine-scale problem, one
can use coarse-grid multiscale solutions and additional local subdomain corrections
(as in domain decomposition methods) to converge to a fine-scale solution in a
few iterations. Domain decomposition methods use the solutions of local problems
and a coarse problem in constructing preconditioners for the fine-scale system. The
number of iterations required by domain decomposition preconditioners is adversely
affected by the contrast in the media properties (e.g., [50] and the references
therein). It is known that if high and low conductivity regions can be encompassed
within coarse grid blocks such that the variation of the conductivity within each
coarse region is bounded, several domain decomposition preconditioners result to
a system with the condition number independent of the contrast (e.g., [63, 76]).
Because of the complex geometry of fine-scale features (e.g., complex fracture
geometry), it is very often impossible to separate low and high conductivity regions
into different coarse grid blocks. Thus, it can require many iterations for iterative
methods to converge.
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In this paper, our goal is to improve the convergence rate of coarse-grid
multiscale approximations as well as the performance of two-level domain decom-
position iterative solvers by designing coarse spaces. This is very important for
practical applications where one encounters small scales and high contrast in media
properties.

We discuss constructing coarse spaces that are used in multiscale finite element
methods (MsFEMs) for solving the problem on a coarse grid as well as in two-
level preconditioners for iterative solutions. The construction of coarse spaces starts
with an initial choice of multiscale basis functions that are supported in coarse
regions sharing a common node. These basis functions are complemented using
weighted local spectral problems that are defined in coarse blocks sharing a common
node. The weight function in the local spectral problem is computed based on
the initial choice of multiscale basis functions. Furthermore, we identify important
eigenvalues (small eigenvalues in our case, see discussion below) and corresponding
eigenvectors that represent important features of the solution. Coarse spaces are
constructed by multiplying the selected eigenvectors with the initial multiscale basis
functions. The estimate for the convergence of MSFEM and the condition number
of two-level preconditioners discussed in the paper depends on the maximum of
the inverse of the eigenvalues whose eigenvectors are not included in the coarse
space. The maximum is taken over all coarse nodes. It is known that the number of
iterations required by iterative methods, such as domain decomposition methods,
is affected by the contrast in the media properties that are within each coarse-
grid block ([50]). Our goal is to choose the initial multiscale space such that the
eigenvalues of the local spectral problems increase rapidly.

The eigenvalues of the high-contrast spectral problem, depending on the weight
function, can have multiple small eigenvalues, which are asymptotically vanishing
as the contrast increases. The number of small eigenvalues depends on the choice
of weight function, and consequently, on the choice of initial basis functions. The
eigenvectors corresponding to the small eigenvalues contain important features of
the local solution and need be included in the coarse space. With a naive choice
of initial basis functions, one can get a large number of small eigenvalues, which
are asymptotically vanishing as the contrast increases. The latter occurs when there
are many isolated high-conductivity inclusions. By choosing initial basis functions
appropriately, we can include all isolated inclusions into one basis function at each
node. Consequently, the coarse space only includes basis functions corresponding
to isolated channels (high-conductivity regions that connect the boundaries of the
coarse block). We discuss the fact that the channels can not be removed with the
help of initial multiscale basis functions.

Because the convergence of MSFEMs and the condition number of the pre-
conditioned matrix depends on the inverse of the first eigenvalue, such that the
corresponding eigenvector is not included in the coarse space, we need to include
eigenvectors corresponding to all small eigenvalues, which are asymptotically
vanishing as the contrast increases. Indeed, if the eigenvectors corresponding to the
small, asymptotically vanishing as contrast increases, eigenvalues are not included
in the coarse space, then the convergence of MSsFEM may be reduced and the
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condition number of the preconditioned matrix will be extremely large. The initial
multiscale coarse space is designed such that the corresponding local eigenvalue
problem has fewer small eigenvalues which are asymptotically vanishing as the
contrast increases.

We would like to mention that there have been many works where various
multiscale methods for high-contrast problem and iterative solvers for multiscale
high-contrast problems are investigated. We briefly discuss some of the contribu-
tions that are relevant to our work. There have been a number of works where
multiscale basis functions are designed for high-contrast problems. This includes
the work [18] where global multiscale spectral basis functions are constructed using
the global spectral problem for Laplace equation. A spectral convergence has been
proved. Further, the authors extend this approach and present basis localization in
[70]. In this approach, they show that one can localize basis functions by using
modified local problems in larger (than the target coarse-grid block) subdomains.
The paper [27] designs multiscale basis functions for high-contrast problems where
heterogeneities have special forms. The authors study local boundary conditions
for basis functions and show that by solving carefully selected local problems one
can achieve optimal convergence. In fact, if these basis functions are used as initial
basis functions, then the coarse space dimension will be smaller compared to using
reduced problems on the boundaries as well as standard multiscale basis functions.
In [28], the authors propose a multiscale approach using an integral formulation
of the high-contrast problem. The proposed approach uses contrast-independent
problems on a coarse grid to construct an approximation of the fine-scale solution.
Spectral basis functions are used in [9, 23, 51, 78] to approximate the solution
on a coarse grid. However, these methods do not employ initial multiscale basis
functions in designing local spectral problems. As we note in this paper, with a
good choice of initial basis functions one can incorporate many small-scale features
into one basis functions and achieve a dimension reduction. When complementing
these spaces, one can obtain much smaller dimensional coarse spaces (depending
on heterogeneities) if initial basis function space is appropriately chosen.

There have been many works on designing domain decomposition precondition-
ers that converge independent of contrast. In the context of domain decomposition
methods we can consider overlapping and nonoverlapping methods. It was shown
that nonoverlapping domain decomposition methods converge independently of the
contrast (e.g. [29,63,65,76]) when conductivity variations within coarse regions are
bounded. The final condition number estimate when using a two-level overlapping
domain decomposition method involves the ratio H/§, where H is the coarse-mesh
size and § is the size of the overlap region. The estimate with respect to the ratio
H /§ can be improved with the help of the small overlap trick ([76]). When there
are heterogeneities within coarse blocks, special local multiscale coarse spaces are
needed. In a number of works [3, 50], the authors studied convergence of domain
decomposition solvers when local heterogeneities have special forms, e.g., high-
conductivity inclusions are strictly inside a coarse-grid block. Our works, that are
summarized here, extend these methods to general heterogeneities by constructing
special local multiscale coarse spaces. In [64], the authors consider enrichment
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of coarse spaces to obtain contrast-independent preconditioners. Their methods do
not use initial basis functions in the construction of local spectral problems that is
important for dimension reduction and one of the main ingredients of our theory.

Numerical results are presented. We show the results for the convergence of
MsFEMs when the coarse space contains eigenvectors that correspond only to
small, asymptotically vanishing (as contrast increases), eigenvalues as well as
when additional eigenvectors are included. The convergence rate is observed as
H'*P /Ay, where 1/ Ay is related to the inverse of the smallest eigenvalue. Further-
more, we present numerical results for two-level additive Schwarz preconditioners
where we observe contrast-independent condition number of the preconditioned
matrix as we increase the contrast. Using appropriate initial multiscale spaces we
reduce the dimension of the coarse space that is needed for achieving contrast-
independent bound for the preconditioner.

The paper is organized in the following way: in the next section, we present some
background discussion on multiscale spaces. In Sect. 3 we present our strategy for
complementing coarse spaces. In Sect.4, we discuss the use of coarse spaces in
domain decomposition preconditioners. Finally, numerical results are presented in
Sect. 5.

2 Preliminaries. Multiscale Model Reduction: Solving
Equations on a Coarse Grid with MsFEM

In this section, we will give a brief overview of MsFEM as a method for solving
a problem on a coarse grid. MSFEMs consist of two major ingredients: (1) multi-
scale basis functions and (2) a global numerical formulation which couples these
multiscale basis functions. Multiscale basis functions are designed to capture the
fine-scale features of the solution. Important multiscale features of the solution need
to be incorporated into these localized basis functions which contain information
about the scales which are smaller (as well as larger) than the local numerical scale
defined by the basis functions. In particular, we need to incorporate the features
of the solution that can be localized and use additional basis functions to capture
the information about the features that need to be separately included in the coarse
space. A global formulation couples these basis functions to provide an accurate
approximation of the solution. Many illustrations are done in two dimensions in this
paper; however, the results hold in higher dimensions.
We consider the second order elliptic equation with heterogeneous coefficients

—div(k(x)Vu) = f in D (1)
subject to some boundary conditions. Here « (x) is a heterogeneous spatial field with

multiple scales and high contrast (e.g., see Fig. 8 for an example of a permeability
field). Let .7 be a usual conforming partition of D into finite elements (triangles,
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Fig. 1 Schematic description of coarse regions

quadrilaterals and etc.). We call this partition the coarse grid and assume that the
coarse grid can be resolved via a finer grid (see Fig. 4 for illustration of a coarse and
a fine grid). We denote by N, the number of coarse nodes, by { y,-}fvzvl the vertices
of the coarse mesh .7 ¥ and define the neighborhood of the node y; by

wi:U{KjegH; vi € K;} (2)
(see Fig. 1) and the neighborhood of the coarse element K by
a)K=U{wj€3H; yj € K}. 3)

Our objective is to seek multiscale basis functions for each node y;. We denote
the basis functions for the node i, )(i’ , and assume that the basis functions are
supported in w;. As in standard finite element methods, once multiscale basis
functions are constructed (see Fig.2 for illustration), we seek uy = Zij Cij )(i’ s
where ¢;; are determined from

a(ug,v) = f(v), forallve Vj, 4
Vo = span{y/},
a(u,v) = / k(x)Vu(x)Vv(x)dx forallu,v e HOl (D) (&)
D

and

fv) = /D f(x)v(x)dx forallv € H)(D).

Once ¢;;’s are determined, one can define a fine-scale approximation of the solution
. . . . _ j
by reconstructing via basis functions, ug = ), ; Cij Xi -
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Fig. 2 Illustration of some multiscale basis functions

One can also view MsFEM in the discrete setting. Assume that the basis functions
are defined on a fine grid as @; with i varying from 1 to N, where N, is the number
of basis functions. Given coarse-scale basis functions, the coarse space is given by
(for simplicity we keep the same notation as in the continuous formulation)

Ne
Vo = span{®; };Z,, (6)
and the coarse matrix is given by Ay = RoART, where A is the fine-scale finite
element matrix representation of the bi-linear form a in (5) and

Rl =[@y,..., &y,

Here &;’s are discrete coarse-scale basis functions defined on a fine grid (i.e.,
vectors). Multiscale finite element solution is the finite element projection of the
fine-scale solution into the space Vj. More precisely, multiscale solution ug is
given by

Aouo = fo,

where fo = Rl b.

2.1 Coarse Spaces

In this section, we will discuss some coarse spaces constructed to capture the fine-
scale features of the solution. We will first consider coarse spaces where there is
only one basis function per coarse node y; . For this reason, we will use the notation
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xi. Further, we discuss how these basis functions can be complemented so that our
coarse-scale approximation converges to the fine-scale solution rapidly.

2.1.1 Linear Boundary Conditions

First, let X? be the nodal basis of the standard finite element space Wy . For example,
Wy consists of piecewise linear functions if 7 is a triangular partition or Wy
consists of piecewise bi-linear functions if 7 is a rectangular partition. We define
“standard” multiscale finite element basis functions that coincide with X? on the
boundaries of the coarse partition and satisfy:

divikVy™) =0 inK €w;, x" =y indK, VK €aw, (7
where K is a coarse grid block within w; (see Fig.?2 for illustration of multiscale
finite element basis functions).

Note that multiscale basis functions coincide with standard finite element basis
functions on the boundaries of coarse grid blocks, and may be oscillatory in the
interior of each coarse grid block depending on k. Even though the choice of )(io can
be quite arbitrary, our main assumption is that the basis functions satisfy the leading
order homogeneous equations when the right hand side f is a smooth function (e.g.,
L, integrable).

Remark 1. Note that in the global formulation of MsFEM one can choose the test
functions from Wy and arrive at the Petrov-Galerkin version of multiscale finite
element method as introduced in [54] (see also [40]). Many other global variational
formulations have been investigated in the literature.

Remark 2. We would like to remark that the MSFEM formulation allows one to
take an advantage of scale separation. In particular, K in (7) can be chosen to be a
volume smaller than the coarse grid. See [40] for discussions.

2.1.2 Oversampling Technique

Because of linear boundary conditions, the basis functions do not capture the fine-
scale features of the solution along the boundaries. This can lead to large errors.
When coefficients have a single physical scale € (i.e., k(x) = «(%)) it has been
shown that the error (see [53]) is proportional to €/H, and thus can be large when
H is close to €. To illustrate this concept, we depict in Fig. 3, the permeability field
(left figure), fine-scale solution (middle figure), and multiscale solution (right figure)
computed on a 3 x 3 coarse grid. As we can see from this figure, the multiscale
solution with linear boundary conditions does not capture the fine-scale features of
the solution along the boundaries of the coarse grid. In particular, multiscale solution
differs from the fine-scale solution along the boundaries of coarse blocks. This can
lead to large errors.
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Fig. 3 Left: Permeability field. Middle: Fine-scale solution. Right: Coarse-scale solution with
multiscale basis functions that have linear boundary conditions

fine block

oversampling coarse block
region

Fig. 4 Schematic description of oversampled regions

Motivated by such examples, Hou and Wu in [52] proposed an oversampling
technique for multiscale finite element method. Specifically, let X;’”’S be the basis
functions satisfying the homogeneous elliptic equation in the larger domain S D K

(see Fig. 4). We then form the actual basis x?" by linear combination of X'-’VS’S

1 9
ovs __ ovs,S
Xi = E :aij)(j .
J

The coefficients «;; are determined by condition x¢"*(y;) = §;;, where y; are
nodal points. Other conditions can also be imposed (e.g., o;; are determined based
on homogenized parts of )(f”’s ). Note that this method is non-conforming. One
can also multiply the oversampling test functions X?’”’S by linear basis functions to
restrict them onto w; and thus obtain a conforming method. Numerical results and

more discussions on oversampling methods can be found in [40].
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Many other boundary conditions are introduced and analyzed in the literature.
For example, reduced boundary conditions are found to be efficient in many porous
media applications ([56]).

2.1.3 The Use of Limited Global Information

Previously, we discussed multiscale methods which employ local information in
computing basis functions with the exception of energy minimizing basis functions.
The accuracy of these approaches depends on local boundary conditions. Though
effective in many cases, multiscale methods that only use local information may not
accurately capture the local features of the solution. In a number of previous papers,
multiscale methods that employ limited global information are introduced. The main
idea of these multiscale methods is to incorporate some fine-scale information about
the solution that can not be computed locally and that is given globally. More
precisely, in these approaches, we assume that the solution can be represented by
a number of fields py,..., py, such that

u~ G(pi,... pn), (8)

where G is a sufficiently smooth function, and py,.., py are global fields.
These fields typically contain the essential information about the heterogeneities
at different scales and can also be local fields defined in larger domains. In
the above assumption (8), p; are solutions of homogeneous elliptic equations,
div(kV p;) = 0, with some prescribed boundary conditions. These global fields
are used to construct multiscale basis functions (often multiple basis functions
per coarse node). Finding py, ..., py, in general, can be a difficult task and we
refer to Owhadi and Zhang [69] as well as to [39] where various choices of global
information are proposed.

We will also consider energy minimizing basis functions (see [80]), where basis
functions are obtained by minimizing the energy of the basis functions subject to
a global constraint. More precisely, one can use the partition of unity functions
{ )(fmf }f\’:”l, with N, being the number of coarse nodes, that provide the least energy.
This can be accomplished by solving

minZ/ K|V)(fmf|2 9)
i Vi

subject to Y )(fmf = 1 with Supp(y;) C wi, i = 1,...,N,. Note that the
restriction ) )(fmf = 1 is a global constraint though it is not tied to any particular

global fields unlike the methods discussed previously. One can solve (9) following a
procedure discussed in [80] or the preconditioned iteration in [77]. We note that the
computation of these basis functions requires the solution of a global linear system
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and it is expensive compared to the local computation of multiscale finite element
basis functions with linear boundary conditions y*.

3 Complementing Coarse Spaces

3.1 Motivation

The coarse spaces discussed above often need to be complemented if more accurate
coarse-scale solutions or more robust preconditioners are sought. For this reason, we
seek additional basis functions that improve the accuracy of the approximation and
we would like to keep the dimension of the coarse space as small as possible. We will
consider complementing the coarse spaces described above by finding appropriate
local fields in w; and by multiplying them with our multiscale functions; see [38]
and also [10-14]. We start with the coarse space generated by one basis function per
node mentioned above, e.g., )(? or xi¥ or )(fmf or so on, and further we complement
this space by adding basis functions in each w;. For simplicity from now on, unless
otherwise is stated, we denote the initial basis function for node i by y; where y;
can be computed with any of the above discussed methods. We will emphasize that
this initial choice of basis function is crucial for determining the dimension of the
coarse space needed to obtain an accurate coarse-scale approximation and robust
preconditioners.

In the procedure below, we will define local approximations of the solution
in each w;, denoted by 1/fi] (where i is the node and [ is the number of the
local approximant). Then, multiscale basis functions will be constructed as )(il/fi’
(see Fig.5 for illustration), and the space will be Span(){ﬂ/fil ). Furthermore, the
coarse-scale solution is sought based on (4) with the coarse spaces defined by

Vo = span(x;¥;).

3.2 Coarse Space Dimension. Motivation for Dimension
Reduction

We first motivate the choice of the coarse spaces based on our analysis presented in
[38]. We briefly review the results of [38]. Consider the eigenvalue problem

div(kVy") = A2Tye, (10)

where A7 (or simply A}) and ¥ (or simply ) are eigenvalues and eigenvectors
in w; and ¥ is defined by

Ny

~ 1 :

K:mKZ|V)(j|2. (11
j=1
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Fig. 5 Schematic description of basis function construction. Left: subdomain w;. Right-Top:
Selected eigenvector 1,//1-‘Z with small eigenvalue. Right-Bottom: product y; w,l where y; is the initial
basis function of node i

We recall that y; are initial multiscale basis functions, e.g., y; = X,Q or yj = x**
or y; = )(fmf , and N, is the number of the coarse nodes. One can choose other
multiscale basis functions, for example, multiscale basis functions that employ
limited global information. The eigenvalue problem considered above is solved
with zero Neumann boundary condition and it is understood in a discrete setting
(see Appendix for the details of eigenvalue problem setup in the discrete setting).
Note that the eigenvalues of (10) depend on the initial basis functions y;. Assume

eigenvalues are given by
0=A7 <Ay <.

Basis functions are computed by selecting a number of eigenvalues (starting with
small ones) and multiplying corresponding eigenvectors by initial multiscale basis
functions y; (see Fig.5 for the illustration). Thus, multiscale space is defined for
each i as the span of y; ‘ﬁzwi’ [ = 1,...,L;, where L; is the number of selected
eigenvectors.

We note that the dimension of the coarse space depends on the choice of ¥ and
thus it is important to have a good choice of ¥ when solving the local eigenvalue
problem. In this paper, we design a good choice for ¥ via initial multiscale basis
functions. The essential ingredient in designing ¥ is to guarantee that there are
fewer small eigenvalues of (10) which are asymptotically vanishing as the contrast
increases. With an initial choice of multiscale basis functions that contain many
small-scale localizable features of the solution, one can reduce the dimension of the
coarse space as we show in this paper. In particular, we note that the eigenvectors
corresponding to small, asymptotically vanishing, eigenvalues represent the local
features of the solution that are not captured by the initial multiscale basis functions.
This gives a natural way to complement initial coarse spaces and emphasizes the
importance of the initial multiscale spaces. If initial basis functions are not chosen
carefully, it can result to large dimensional coarse spaces as discussed in the paper.
Thus, the use of advanced multiscale techniques in constructing initial basis helps
to reduce the dimension of the coarse space needed to achieve contrast-independent
two-level domain decomposition preconditioners and more accurate coarse-grid
solutions.
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In [38], we show that under some conditions the convergence rate is inversely
related to the smallest eigenvalue whose eigenvector is not included in the coarse
space. This is also observed in our numerical results. More precisely, we show that
the convergence rate in the energy norm || p KXV (u— uo)|? is proportional to

H! +8
max ——, (12)
i ALt
where H is the coarse mesh size and § > 0 is related to the smoothness of the
coefficients. For example, for smooth coefficients one can have § = 1 and thus
recover classical error estimates. We note that these results assume that the right
hand side f is a smooth function. We refer to [22] for including the effects of rough
source terms in our multiscale simulations. We see from here that one needs to reach
larger, O(1), eigenvalues as fast as possible. More precisely, with a choice of initial
basis functions y;, we need to get rapid increase of eigenvalues. We note that (12)
also is a main factor in the condition number of the preconditioned matrix that is
computed using two-level additive Schwarz (see discussions later and [35,45, 46]).
Thus, our goal is to choose initial basis functions such that eigenvalues increase
rapidly and more precisely, we have fewer asymptotically small eigenvalues.

3.3 Eigenvalue Behavior

In this section, we will discuss how various choices of initial multiscale basis
functions can affect the eigenvalue behavior. We start with piecewise linear basis
functions, i.e., y; are linear basis functions. In this case, ¥ and « have similar
high-contrast regions because V y; are piecewise constant functions over coarse-grid
regions. This eigenvalue problem is the same as the one considered in [35,45, 46].
In particular, if there are m separated inclusions and channels, then one can observe
m small eigenvalues which are asymptotically vanishing as the contrast increases.
These small eigenvalues represent high-conductivity regions of the weight function
(this can be seen from the corresponding Rayleigh-Quotient). We recall that the
inclusions are isolated high-conductivity regions within a coarse block, while
channels are isolated high-conductivity regions that connect the boundaries of the
coarse blocks (w; in this case). In fact, these small eigenvalues are inversely related
to the high-conductivity values of the coefficients. We assume throughout that the
coefficient takes values 1 and 7, where 7 is large. The corresponding eigenvectors
have constant values (in the asymptotic sense when the contrast increase to infinity)
within each high-contrast region.

In Fig. 6, we depict a region with three high-conductivity inclusions and one
high-conductivity channel. The first four eigenvalues are small and are given by
[0, 0.0745¢ —5, 0.0918e —5, 0.2416¢ —5] for n = le + 8. Here we used piecewise
linear functions y; to compute ¥ in (11). We depict eigenvectors corresponding to
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Fig. 6 Illustration of eigenvectors in a unit square coarse block. Left: Permeability field «.
Middle: Second eigenvector. Right: Third eigenvector. The first four eigenvalues using ¥ = &
are [0 0.0745¢ — 5 0.0918¢ — 5 0.2416¢ — 5]. The fifth eigenvalue is 9.88

the second and third smallest eigenvalues. The eigenvectors corresponding to the
small, asymptotically vanishing, eigenvalues represent all possible constants within
high-conductivity regions. The fifth eigenvalue is 9.88 and thus, there is a large gap
in the spectrum.

The choice of initial multiscale basis functions, and consequently the choice
of & can result in large coarse dimensional spaces that are needed to eliminate
small eigenvalues. Note that without including eigenvectors that correspond to small
eigenvalues, one expects very large errors that are proportional to the contrast.
Thus, it is essential that we reduce the number of small eigenvalues, which are
asymptotically vanishing as the contrast increases.

Note that in many cases, one can have a very large number of small isolated high-
conductivity regions within the domain. To illustrate this, in Fig. 7, we schematically
depict a coarse region with many small isolated high-conductivity inclusions. In this
case, the dimension of the coarse space is very large. For example, if the size of
inclusions is of order €, then, we may need a coarse space with the dimension that
can scale as ély (for some y > 0 depending density of the inclusions) when there
are many inclusions. However, it turns out that one can encapsulate the effects of
isolated inclusions in a single basis function per coarse node that will ultimately
reduce the dimension of the coarse space. This is done via the initial choice of
partition of unity functions resulting to a new weight matrix . This is discussed in
the next section.

3.4 Reduced Dimensional Coarse Spaces

In this section, we will discuss how one can reduce the dimension of the coarse space
that is spanned by eigenvectors corresponding to asymptotically small eigenvalues.
In particular, we will show that one can reach O(1) eigenvalues with fewer basis
functions if initial multiscale basis functions are chosen appropriately.
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Fig. 7 Schematic description of a coarse region with many isolated inclusions. This will lead to a
large dimensional coarse space unless the initial multiscale space is chosen properly

As we mentioned, if the partition of unity functions y; are piecewise linear
polynomials then ¥ and k have the same high-contrast structure. We are interested
in partition of unity functions that can “eliminate” isolated high-conductivity
inclusions. This can be achieved by minimizing the number of high-conductivity
components in K. We note that the high-conductivity regions of the weight k¥ deter-
mine the number of small eigenvalues. By choosing multiscale finite element basis
functions or energy minimizing basis functions as defined above (see Sect.2.1),
we can eliminate all isolated high-conductivity inclusions, while preserving the
channels. The elimination of isolated high-conductivity inclusions is understood in
a sense that their fine-scale features are incorporated into a single basis function.
Indeed, the energy of local solutions remains bounded in the high-conducting
regions that are isolated. This can be observed in our numerical experiments. In
Fig. 8 we depict the coarse grid and « (left plot) and ¥ (right picture) using multiscale
basis functions on the coarse grid. One can observe that isolated inclusions are
removed in ¥, and consequently, the coarse space contains only long channels that
connect boundaries of the coarse grid.

We are interested in the partition of unity functions that can “eliminate” isolated
high-conductivity inclusions and thus reduce the dimension of the coarse space.
In particular, the effects of isolated inclusions are represented by a coarse-scale
basis function in each ;. This can be achieved by minimizing high-conductivity
components in k. In particular, by choosing multiscale finite element basis functions
or energy minimizing basis functions (as discussed in Sect.2.1), we can eliminate
all isolated (i.e., not touching the boundaries of the coarse grids) high-conductivity
inclusions, while preserving the channels. To remove the degrees of freedoms
associated with isolated inclusions that intersect only a single boundary segment of
the coarse-grid block, we can use oversampling, energy minimizing basis functions,
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108

1

Fig. 8 Left: Coarse mesh and original coefficient. Here n = 108. Right: Coarse mesh and
coefﬁcient?computed as in (11) using (linear) multiscale basis functions

multiscale basis functions with limited global information or basis functions
proposed in [27]. In our numerical results, we will use energy minimizing basis
functions.

We note that one can not remove the channels with the partition of unity
functions. Indeed, because the partition of unity functions have “unit” gradient flow
within coarse-grid blocks, there will be a non-zero gradient within channels, and
thus, ¥ will remain high. Thus, an optimal initial partition of unity functions will be
those that can eliminate all isolated inclusions. As we show numerically, multiscale
finite element basis functions can achieve that. For example, for the permeability
field depicted in Fig.6, we can remove all three inclusions and ¥ will contain
only one channel. In fact, more sophisticated multiscale basis functions can further
reduce the dimension by eliminating the inclusions that touch boundaries.

4 The Use of Coarse Spaces in Domain Decomposition
Preconditioners

In this section, we describe how the coarse spaces proposed earlier can be used in
two-level domain decomposition preconditioners. In particular, we show that one
can obtain preconditioners that yield a contrast-independent condition number, and
thus they are optimal in terms of physical parameters. The details of these results can
be found in [35,45,46]. See [36] for extension of the results to multilevel methods.

Next, we briefly describe the two-level domain decomposition setting that we
use. We denote by {D{}f\':l the overlapping decomposition obtained from the
original nonoverlapping decomposition { D; } 1N=1 by enlarging each subdomain D; to

Dl{=D,~U{x€D,dist(x,D,-)<8,-}, i=1,...,N, (13)
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where dist is some distance function and let Voi (D) be the set of finite element
functions with support in D/. We also denote by RiT : Voi (D}) — V" the extension
by zero operator. Using the coarse triangulation .7 ¥, we denote the basis functions
{@i}fvél (N, is the number of coarse basis functions), and Ay = ROAROT, Rg =
[D1,....Py,] (see Sect. 2).

We can solve the fine-scale linear system iteratively with the preconditioned
conjugate gradient (PCG) method. Any other suitable iterative scheme can be used
as well. We use the two-level additive preconditioner of the form

N
B™'=RjA;'Ry+ Y R AT'R;, (14)

i=1
where the local matrices are defined by
vA;w = a(v,w) forallv,w e V} (D)), (15)

i=1,...,N. See [63,76] and references therein. The application of the precondi-
tioner involves solving a coarse-scale system and solving local problems in each
iteration. In domain decomposition methods, our main goal is to reduce the number
of iterations in the iterative procedure. The appropriate construction of the coarse
space Vy plays a key role in obtaining robust iterative domain decomposition
methods.

In the general setting of domain decomposition methods, the overlapping subdo-
mains {D]} and the coarse triangulation .7 A are not related. The two partitions of
unity used here can be chosen independently of each other. Both partitions of unity
are needed to construct a contrast-independent domain decomposition method. In
the numerical experiments, we will assume that the overlapping subdomains { D/}
coincide with the coarse vertex neighborhoods {w;} of .7#. In this case § < H,
where § = max,<;<y §; is the overlapping parameter.

Next, we present main results from [35,45,46]. We define the coarse interpolation
Io: V(D) = V, by

N, L;

Iy = ZZ(/_’M;”) "G, (16)

i=1{=1

where 7" is the fine-scale nodal value interpolation (in previous discussions, we
have simply used y;v,” for fine-scale interpolation). The following weighted L?
approximation and weighted H' stability properties are valid (see [35, 45, 46] for
the proof).

Lemma 1. For all coarse element K we have

1
/ v — Igv)? < / K| Vy|? (17)
K AL+t Jog
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1
/KlVIovl2 =< max{l, }/ K| Vv|?, (18)
K AL+l Jog

where Ag 41 = miny, ex Af2+1 and wg is in (3).

Using Lemma 1, the condition number of the preconditioned operator B~! A4
with B™! defined in (14) using the coarse space V) in (A.6) can be estimated. See
[35,45,46,63,76].

Lemma 2. The condition number of the preconditioned operator B~' A with B!
defined in (14) using the coarse space V;y defined in (A.6) and (A.5) is of order

b1+

cond(B™'A) < C¢ < max{l,

bl
ALt AL+

. ®;
where A1 = 12;%/\““'

Remark 3. The computations of the eigenvectors and coarse spaces can be expen-
sive, in general; however, the proposed coarse spaces can reduce the number
of iterations and CPU time significantly if the conductivity has high contrast or
the problem is solved multiple times. One can consider the cost of computing
eigenvectors (and coarse spaces) as a pre-processing step. Eigenvalue computations
can be done consecutively and one can stop once the next eigenvalue exceeds a
certain threshold. For example, for problems without high-contrast, one will stop
after the computation of the first eigenvalue and eigenvector.

We note that the computations of the eigenvectors can be carried out hierarchi-
cally and this allows reducing the computational cost in solving the eigenvalue
problem, see [36, 38]. We have shown that with such inexpensive hierarchical
computations, we still have optimal preconditioners in terms of the contrast.

5 Numerical Results

In this section, we present representative numerical results for coarse-scale approx-
imation and for the two level additive preconditioner (14) with the local spectral
multiscale coarse spaces as discussed above. The equation —div(x Vi) = 1 is solved
with boundary conditions u = x + y on dD. For the coarse-scale approximation,
we will vary the dimension of the coarse spaces and investigate the convergence
rate as a function of coarse-mesh size, minimum eigenvalue, and the contrast. For
preconditioning results, we will investigate the behavior of the condition number
as we increase the contrast for various choices of coarse spaces. We will show that,
using multiscale basis functions as the initial coarse space, one can achieve contrast-
independent results with a small dimensional coarse space. In our simulations, we
run the Preconditioned Conjugate Gradient (PCG) until the £, norm of the residual
is reduced by a factor of 10'°. We take D = [0, 1] x [0, 1] that is divided into 10 x 10
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Fig. 9 Coefficients k. The
numerical results are
presented in Tables 1-5

equal square subdomains. Inside each subdomain we use a fine-scale triangulation,
where triangular elements constructed from 10 x 10 squares are used.

We consider the scalar coefficient x(x) depicted in Fig.9 that corresponds
to a background one and high conductivity channels and inclusions. The values
of conductivities vary within each region. In particular, we choose the high
conductivities between 1 and 107 randomly for each region.

First, we present the results for a two-level preconditioner. We implement a two-
level additive preconditioner with the following coarse spaces: multiscale functions
with linear boundary conditions (MS); energy minimizing functions (EMF); spectral
coarse spaces with ¥ = k where piecewise linear partition of unity functions are
used as an initial space (LSM ¥ = «); spectral coarse spaces with ¥ defined by
(11) where multiscale finite element basis functions with linear boundary conditions
(™) are used as an initial space (LSM ¥ with MS); spectral coarse spaces with K’
defined by (11) where energy minimizing basis functions (x°”/) are used as an
initial space (LSM ¥ with EMF). In Table 1, we show the number of PCG iterations
and estimated condition numbers. We also show the dimensions of the coarse spaces.
First, we note that the standard coarse space with one basis per coarse node has
the dimension 81 x 81. The smallest dimension can be achieved by using energy
minimizing basis functions as an initial coarse space. Similarly, more sophisticated
multiscale basis functions, e.g., those proposed in [27], can also remove isolated
inclusions that intersect one of the boundary segments of a coarse block and the
computations of these basis functions are cheaper. We observe that the number of
iterations does not change as the contrast increases when spectral coarse spaces are
used. On the contrary, when using multiscale basis functions (one basis per coarse
node), the condition number of the preconditioned matrix increases as the contrast
increases.

In our next numerical tests, the accuracy of MSFEMs is investigated (see also
[38] for more details). In particular, we test the accuracy of MSFEMs when coarse
spaces include eigenvectors corresponding to small, asymptotically vanishing (as
contrast increases), eigenvalues as well as the cases when additional eigenvectors
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Table 1 Number of iterations until convergence and estimated condition number for the PCG and
different values of the contrast n with the coefficient depicted in Fig. 9. We set the tolerance to
le-10. Here H = 1/10 with & = 1/100

n MS EMF LSM (& =«x) LSM(x,MS) LSM (x, EMF)
103 97(1.92e+-03) 71(1.01e+03) 32(8.79e+00)  34(1.01e+01)  32(9.63e+00)
10° 149(1.92e+05)  97(9.93e+04) 33(8.83e+00)  35(1.02e+01)  34(9.73e+00)
107 210(1.92e407)  116(9.93e+06)  35(8.83e+00) 47(2.34e+01) 41(1.17e+01)
Dim 81 81 165 113 113

are included in the coarse space (see [38] for more discussions). We choose the
following notation: LSM+-n indicates that the coarse spaces that include eigenvec-
tors corresponding to small, asymptotically vanishing, eigenvalues and n additional
eigenvectors corresponding to the next n eigenvalues (in an increasing order). E.g.,
LSM+-0 indicates the coarse space that only includes eigenvectors corresponding
to small, asymptotically vanishing eigenvalues, while LSM+-1 indicates the coarse
space that includes eigenvectors corresponding to small, asymptotically vanishing
eigenvalues, plus one more eigenvector in each coarse region that corresponds to the
next largest eigenvalue. We consider two different contrasts and two different coarse
mesh sizes. We study the convergence of the methods LSM (when'¥ = «) and LSM
(when multiscale basis functions, either y”* or )(””f, are used to construct ¥).

First, in Fig. 10, we compare coarse-scale approximations of the solution for
various spaces on 10 x 10 coarse grid. In the top left figure, the fine-scale solution
is depicted. In the top middle figure, the solution computed with multiscale basis
functions with linear boundary conditions (y™*) is plotted. In the top right, we
depict the solution computed with energy minimizing basis functions (x*"/). The
figures in the second row correspond to coarse-scale approximations computed
using spectral basis functions where we use the eigenvectors that correspond to
asymptotically small eigenvalues as the contrast increases. Here, the bottom left
figure corresponds to the case where the initial space consists of piecewise linear
functions, the bottom middle figure corresponds to the case where the initial space
consists of multiscale basis functions with linear boundary conditions, and the
bottom right figure corresponds to the case where the initial space consists of energy
minimizing multiscale basis functions. We see that the approximations with one
basis function per node are not accurate (note that we do not use any special global
information to construct boundary conditions). In Fig. 11, we depict the coarse-scale
approximations with local spectral basis functions when two additional eigenvectors
are taken in the coarse space. The latter has better accuracy as one can see comparing
Figs. 10 and 11. The approximation errors are presented in Tables 2—5 that we will
discuss next.

In all numerical results, the errors in the energy norm (| - |3), H' norm
(| - 13,), L*-weighted norm (| - |7,), maximum of the first non-chosen eigen-
value A7, H> = min; Az,41H? and the mean of first non-chosen eigenvalues
{Ar,+1 H?} (mean(Ap,+1 H?)) are presented. The last two columns have been scaled
by a factor of H? to properly compare with the case of the coefficient ¥ defined
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Fig. 10 The results for coarse-scale approximations. Coarse space contains only the eigenvectors
that correspond to asymptotically small eigenvalues
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Fig. 11 The results for coarse-scale approximations. Coarse space contains the eigenvectors that
correspond to asymptotically small eigenvalues and two additional eigenvectors for each coarse
node
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in (11). We present the convergence as we increase the number of additional
eigenvectors.

In Tables 2 and 3, we present the numerical results for LSM when the initial
coarse space consists of piecewise linear basis functions for the contrasts n = 10*
and n = 10°, respectively. The dimension of the coarse space is 165. We observe
that the convergence is robust with respect to the contrast; however, the dimension
of the coarse space can be reduced without sacrificing the accuracy. Moreover, the
error reduces as the eigenvalue increases.

In Tables 4 and 5, we present the numerical results when the initial coarse
space consists of multiscale basis functions with linear boundary conditions for
the contrasts 7 = 10* and n = 10°, respectively. The dimension of the coarse
space is reduced to 113. We observe that the convergence is robust with respect to
the contrast and the error reduces as the minimum eigenvalue increases. Moreover,
we observe smaller errors compared to the case with piecewise linear initial
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Table 2 Convergence results for LSM with the increasing dimension of the coarse space. LSM+n
indicates that the coarse spaces include eigenvectors corresponding to small, asymptotically
vanishing eigenvalues, and n additional eigenvectors corresponding to the next n eigenvalues. Here,
n = 10*. The coefficient is depicted in Fig.9

H=1/10_ |1} -1, I, AUTH? mean(hy, 4 ) H
LSM+4-0 1.43¢ — 01 1.42¢ — 01 6.17¢ — 04 5.42e — 01 2.54e + 00
LSM+41 5.60e — 02 5.60e — 02 9.36e — 05 1.85¢ + 00 6.42¢ 4+ 00

LSM+2 532¢ —02 532e—02 859 —05 3.20e+00  9.37¢ + 00
LSM+3 4.70e — 02  4.70e —02  6.53¢ — 05 6.61le + 00 1.23¢ + 01
LSM+4 4.0le—02 4.0le—02 4.80e—05 9.45¢ + 00 1.62e + 01
LSM+5 2.93e —02 293¢ —02 2.74e —05 1.12¢ + 01 1.89¢ + 01

Table 3 Convergence results for LSM with increasing dimension of the coarse space. LSM+n
indicates that the coarse spaces include eigenvectors corresponding to small, asymptotically
vanishing eigenvalues, and n additional eigenvectors corresponding to the next n eigenvalues. Here,
n = 10°. The coefficient is depicted in Fig.9

H=1/10 |-1} HR B AMtH?  mean(hy, 4 1) H?
LSM+0 1.43¢ — 01 1.43¢ — 01 6.17¢ — 04 5.4le — 01 2.54e + 00
LSM+1 5.60e — 02 5.60e — 02 9.36e — 05 1.85e + 00 6.42e + 00

LSM+2 533e —02 533e—02  8.60e —05 3.20e +00  9.37¢ 4+ 00
LSM+3 4.70e —02  4.70e —02  6.54¢ —05  6.6le + 00 1.23¢ + 01
LSM+4 4.0le—02 4.0le—02 4.80e—05 9.45¢ + 00 1.62e + 01
LSM+5 293¢ —02 293¢ —02 2.74e — 05 1.12e + 01 1.89¢ + 01

Table 4 Convergence results for LSM with increasing dimension of the coarse space. LSM +n
indicates that the coarse spaces include eigenvectors corresponding to small, asymptotically
vanishing eigenvalues and n additional eigenvectors corresponding to the next n eigenvalues. Here,
n = 10*. The initial coarse space is spanned by multiscale basis functions with piecewise linear
boundary conditions (y”**). The coefficient is depicted in Fig. 9

H=1/10_ |-} -2, 2 i mean(ly, 11)
LSM+0 1.28¢ — 01 1.28¢ — 01 7.83e — 04 1.42¢ — 01 8.72¢ — 01
LSM+1 4.06e — 02 4.06e — 02 6.04e — 05 8.53¢ — 01 1.75¢ + 00
LSM+2 3.80e — 02 3.79¢ — 02 4.76e — 05 1.42¢ + 00 2.85¢ + 00
LSM+3 3.16e — 02 3.16e — 02 3.54e — 05 2.35¢ + 00 4.16e + 00
LSM+4 2.50e — 02 2.4%9¢ — 02 2.87e — 05 3.34e + 00 4.93e¢ + 00
LSM+5 2.06e — 02 2.05¢ — 02 1.95¢ — 05 4.10e + 00 5.70e + 00

conditions. We repeat the numerical results for coarse-scale approximations when
the initial coarse space consists of energy minimizing basis functions for the
contrasts = 10* and n = 10° in Tables 6 and 7. When using energy minimizing
basis functions, we observe even smaller errors compared to the case with the initial
coarse space consisting of multiscale basis functions with piecewise linear boundary
conditions.

In our next numerical results, we present convergence rates when the coarse mesh
is chosen to be H = 1/20. We will present this only for the case of multiscale basis
functions with linear boundary conditions. In Tables 8 and 9, numerical results for
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Table 5 Convergence results for LSM with increasing dimension of the coarse space. LSM +n
indicates that the coarse spaces include eigenvectors corresponding to small, asymptotically
vanishing eigenvalues and n additional eigenvectors corresponding to the next n eigenvalues. Here,
n = 10°. The initial coarse space is spanned by multiscale basis functions with piecewise linear
boundary conditions (y”**). The coefficient is depicted in Fig. 9

H=1/10 |-[} |-, |- 12, min mean(A/, 1)
LSM+0 1.44e — 01 1.39¢ — 01 8.10e — 04 1.42¢ — 01 8.72¢ — 01
LSM+1 4.52¢ — 02 4.26e — 02 6.43¢ — 05 8.53¢ — 01 1.75e¢ + 00
LSM+2 4.00e — 02 3.97e — 02 4.92¢ — 05 1.42¢ + 00 2.85¢ + 00
LSM+3 3.36e — 02 3.34e — 02 3.80e — 05 2.35¢ + 00 4.16e + 00
LSM+4 2.69¢ — 02 2.67e — 02 3.27e — 05 3.34e 4+ 00 4.93¢ + 00

LSM+5 2.23e — 02 2.21e — 02 2.16e — 05 4.10e + 00 5.70e + 00

Table 6 Convergence results for LSM with energy minimizing functions (") as initial coarse
space and increasing dimension of the resulting coarse space. LSM + n indicates that the coarse
spaces include eigenvectors corresponding to small, asymptotically vanishing eigenvalues and n
additional eigenvectors corresponding to the next n eigenvalues. Here, n = 10*. The coefficient is
depicted in Fig. 9

H =1/10 -3 |- 12, |- 12 At mean(Ap, 41)
m+0 1.28¢ — 01 1.28e — 01 7.83e — 04 1.46e — 01 9.22¢ — 01
LSM+1 3.85¢ — 02 3.85¢ — 02 5.73e — 05 8.70e — 01 1.94¢ + 00

LSM+2 3.52¢ — 02 3.52e — 02 4.45¢ — 05 1.01e + 00 2.70e + 00
LSM+3 2.94e — 02 2.94e — 02 3.21e — 05 1.93¢ + 00 3.62¢ + 00
LSM+4 1.96¢ — 02 1.96e — 02 1.84e — 05 2.76e + 00 4.35¢ + 00
LSM+5 1.17e — 02 1.17¢ — 02 7.72e — 06 3.25¢ + 00 5.37e + 00

Table 7 Convergence results for LSM with energy minimizing functions (x* /) as initial coarse

space and increasing dimension of the resulting coarse space. LSM + n indicates that the coarse
spaces include eigenvectors corresponding to small, asymptotically vanishing eigenvalues and n
additional eigenvectors corresponding to the next n eigenvalues. Here, n = 10°. The coefficient is
depicted in Fig. 9

H=1/10 |1} |-, -2, A mean(l, +1)
LSM+0 1.22¢ — 01 1.21e — 01 7.41e — 04 1.45¢ — 01 9.22¢ — 01
LSM+1 4.20e — 02 4.15¢ — 02 6.32¢ — 05 8.70e — 01 1.94e 4 00
LSM+2 3.76e — 02 3.74e — 02 4.74e — 05 1.01e + 00 2.70e + 00
LSM+3 3.16e — 02 3.15e — 02 3.52e — 05 1.93¢ + 00 3.62¢ + 00
LSM+4 2.16e — 02 2.16e — 02 2.2le —05 2.76e + 00 4.35¢ + 00

LSM+5 1.34e — 02 1.34¢ — 02 9.98e — 06 3.25¢ + 00 5.37e + 00

the contrasts 7 = 10* and n = 10° are presented. We observe that the error is smaller
when compared to the case H = 1/10. We compute the parameter 8 (see (12)) and
the corresponding B’s are B = 0.3474,0.1335,1.1116, 1.8323,2.6273,3.0011 for
the case n= 10* and B = 0.5117,0.2855,1.1863,1.9202,2.7302, 3.1174 for the
case n = 10°.
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Table 8 Convergence results for LSM with the increasing dimension of the coarse space.

LSM +n indicates that the coarse spaces include eigenvectors corresponding to small, asymptoti-
cally vanishing eigenvalues and n additional eigenvectors corresponding to the next n eigenvalues.
Here, n = 10*. The initial coarse space is spanned by multiscale basis functions with piecewise
linear, boundary conditions (y"*). The coefficient is depicted in Fig. 9

H=1/20 - | - %_,1 | - 2L2 Jmin mean(ILi+1)
LSM+0 1.20e — 01 1.20e — 01 1.79¢ — 04 1.19¢ — 01 8.20e — 01
LSM+1 3.45¢ — 02 3.45¢ — 02 2.00e — 05 9.15¢ — 01 1.54e + 00
LSM+2 2.10e — 02 2.10e — 02 7.68¢ — 06 1.19¢ + 00 2.25¢ + 00
LSM+3 1.10e — 02 1.10e — 02 2.36e — 06 1.90e + 00 3.40e + 00
LSM+4 4.93¢ — 03 4.92¢ — 03 7.80e — 07 2.73e + 00 4.14e + 00
LSM+5 2.82¢ — 03 2.82¢ — 03 3.44e —07 3.74e 4 00 5.00e + 00

Table 9 Convergence results for LSM with the increasing dimension of the coarse space.

LSM +n indicates that the coarse spaces include eigenvectors corresponding to small, asymptoti-
cally vanishing eigenvalues and n additional eigenvectors corresponding to the next n eigenvalues.
Here, n = 10°. The initial coarse space is spanned by multiscale basis functions with piecewise
linear, boundary conditions (y"*). The coefficient is depicted in Fig. 9

H=1/20 |-} |- 12, |- 12, Amin mean(A, )
LSM+0 1.21e — 01 1.21e — 01 1.79¢ — 04 1.19¢ — 01 8.20e — 01
LSM+1 3.45¢ — 02 3.45¢ — 02 2.0le — 05 9.15¢ — 01 1.54e + 00
LSM+2 2.10e — 02 2.10e — 02 7.69¢ — 06 1.19¢ + 00 2.25¢ + 00
LSM+3 1.10e — 02 1.10e — 02 2.36e — 06 1.90e + 00 3.40e + 00
LSM+4 4.95¢ — 03 4.94¢ — 03 7.83¢ — 07 2.73e + 00 4.14e + 00

LSM+5 2.82e — 03 2.82¢ — 03 3.44e — 07 3.74e 4 00 5.00e + 00

6 Conclusions

In this paper, we discuss coarse-scale spaces for MSFEMs and two-level domain
decomposition methods. The coarse space construction starts with an initial choice
of a multiscale space. This space is complemented based on a local spectral problem.
In this local spectral problem, the initial multiscale space is used to construct a
suitable weight function. We show that a careful choice of initial spaces is important
and can lead to a substantial dimension reduction for coarse spaces when the
media contain many isolated inclusions. We discuss the convergence of coarse-
scale approximation and contrast-independent estimates for the condition number of
the preconditioned matrix using these coarse spaces. We present numerical results
when the initial coarse space is chosen to be piecewise linear where one needs a
large dimensional coarse space. We show that one can use smaller dimensional
coarse spaces without sacrificing the convergence. This is accomplished via a
careful choice of the initial multiscale space. We also present the estimates for the
condition number of the preconditioned matrix that shows that the condition number
is independent of the contrast when using smaller dimensional coarse spaces that are
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discussed in the paper. The extension of these results to more complex problems,
such as Stokes-Brinkman equations, is presented in [37].
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Appendix: Discrete Formulation of Eigenvalue Problem
and Basis Construction

For any w;, we define the Neumann matrix A“" by
VAW = / kVvVw forallv,we V(2), i=1,....N, (A.1)
wi
and the mass matrix of same dimension M by
vM©@w = / | Tvw  forall v,w € VH(£2). (A.2)

We consider the finite dimensional symmetric eigenvalue problem
A% =AM p (A.3)

and denote its eigenvalues and eigenvectors by {1;"} and {;” }, respectively. Note
that the eigenvectors {1//29 } form an orthonormal basis of V" (£2) with respect to the
M® inner product. Note that A7" = 0. We order eigenvalues as
Aﬁ“"fk‘f"f---fk‘j"f.... (A.4)
The eigenvalue problem above corresponds to the approximation of the eigenvalue

problem
—div(k Vv) = Akv

in £ with homogeneous Neumann boundary condition, where ;" denotes the £th
eigenvector of the Neumann matrix associated to the neighborhood of y;.

We choose the basis functions that span the eigenfunctions corresponding to
small, asymptotically vanishing, eigenvalues in the way described below. Let
{ Xi}lN=V1 be a partition of unity subordinated to the covering {w;}. Define the set
of coarse basis functions

@iy =y, forl <i <Nyandl <{<L;, (A.5)
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where L; is the number of eigenvalues that will be chosen for the node i. Denote by
Vo, as before, the local spectral multiscale space

Vo=span{®;,:1 <i < Nyand1 <{ < L;}. (A.6)

References

1. J. E. Aarnes, On the use of a mixed multiscale finite element method for greater flexibility
and increased speed or improved accuracy in reservoir simulation, SIAM MMS, 2 (2004),
421-439.

2. J. E. Aarnes, Y. Efendiev, and L. Jiang, Analysis of multiscale finite element methods using
global information for two-phase flow simulations, SIAM MMS, 2008.

3. J. Aarnes and T. Hou, Multiscale domain decomposition methods for elliptic problems with
high aspect ratios, Acta Math. Appl. Sin. Engl. Ser., 18(1):63-76, 2002.

4. ]. E. Aarnes, S. Krogstad, and K.-A. Lie, A hierarchical multiscale method for two-phase flow
based upon mixed finite elements and nonuniform grids, Multiscale Model. Simul. 5(2) (2006),
337-363.

5. A. Abdulle and B. Engquist, Finite element heterogeneous multiscale methods with near
optimal computational complexity, Multiscale Model. Simul. 6 (2007), no. 4, 10591084.

6. G. Allaire and R. Brizzi, A multiscale finite element method for numerical homogenization,
SIAM MMS, 4(3), 2005, 790-812.

7. T. Arbogast, Implementation of a locally conservative numerical subgrid upscaling scheme for
two-phase Darcy flow, Comput. Geosci., 6 (2002), 453—481.

8. T. Arbogast, G. Pencheva, M. F. Wheeler, and 1. Yotov, A multiscale mortar mixed finite
element method, SIAM J. Multiscale Modeling and Simulation, 6(1), 2007, 319-346.

9. I. Babuska and R. Lipton, Optimal Local approximation spaces for generalized finite element
methods with application to multiscale problems, Multiscale Model. Simul. 9(1), 373-406
(2011)

10. 1. Babuska, Ivo, V. Nistor and N. Tarfulea, Generalized finite element method for second-order
elliptic operators with Dirichlet boundary conditions, J. Comput. Appl. Math. 218 (2008), no
1, 175-183.

11. 1. Babuska, U. Banerjee, and J. E. Osborn, Survey of meshless and generalized finite element
methods: A unified approach, Acta Numerica, 1-125, 2003.

12. 1. Babuska, G. Caloz, and E. Osborn, Special finite element methods for a class of second order
elliptic problems with rough coefficients, SIAM J. Numer. Anal., 31:945-981, 1994.

13. I. Babuska and J. M. Melenk, The partition of unity method, Internat. J. Numer. Methods
Engrg., 40:727-758, 1997.

14. 1. Babuska and E. Osborn, Generalized finite element methods: Their performance and their
relation to mixed methods, SIAM J. Numer. Anal., 20:510-536, 1983.

15. M. Balhoff, S. Thomas, and M. Wheeler, Mortar coupling and upscaling of pore-scale models,
Computational Geosciences, vol. 12 (September, 2007), no. 1, pp. 15-27.

16. A. Bensoussan, J. L. Lions, and G. Papanicolaou, Asymptotic analysis for periodic structures,
Volume 5 of Studies in Mathematics and Its Applications, North-Holland Publ., 1978.

17. L. Berlyand and A. Novikov, Error of the network approximation for densely packed
composites with irregular geometry, SIAM Journal on Mathematical Analysis, 34(2) (2002).
385-408.

18. L. Berlyand and H. Owhadi, Flux norm approach to finite dimensional homogenization
approximations with non-separated scales and high contrast, Archives for Rational Mechanics
and Analysis (2010, Volume 198, Number 2, 677-721).



Coarse-Grid Multiscale Model Reduction Techniques 123

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

3

—

32.

33.

34.

35.

36.

37.

38.

L. Borcea and G.C. Papanicolaou, Network approximation for transport properties of high
contrast materials, SIAM Journal on Applied Mathematics, vol. 58, no. 2, 1998, 501-539.

A. Bourgeat and A. Piatnitski, Approximations of effective coefficients in stochastic homoge-
nization, Ann. Inst. H. Poincare Probab. Statist. 40 (2004), no. 2, 153-165.

A. Brandt, Multiscale solvers and systematic upscaling in computational physics, Computer
Physics Communication, 169 (2005) 438—441.

V. Calo, Y. Efendiev, and J. Galvis, A note on vatiational multiscale methods for high-contrast
heterogeneous flows with rough source terms, article in press (available online February 02-
2011), Advances in Water Resources.

T. Chartier, R. Falgout, V.E. Henson, J. Jones, T. Manteuffel, S. McCormick, J. Ruge, and
P.S. Vassilevski, Spectral element agglomerate AMGe, in Domain Decomposition Methods
in Science and Engineering X VI, Lecture Notes in Computational Science and Engineering,
Springer-Verlag, Berlin Heidelberg 55(2007), 515-524.

Y. Chen and L.J. Durlofsky, Adaptive local-global upscaling for general flow scenarios in
heterogeneous formations, Transport in Porous Media, 62 (2006), 157-185.

Z. Chen and T.Y. Hou, A mixed multiscale finite element method for elliptic problems with
oscillating coefficients, Math. Comp., 72 (2002), 541-576.

Z. Chen and T. Savchuk, Analysis of the multiscale finite element method for nonlinear and
random homogenization problems, SIAM J. Numer. Anal., 46 (2008), 260-279.

C.C. Chu, I.G. Graham, and T.Y. Hou, A new multiscale finite element method for high-contrast
elliptic interface problem, Math. Comp., 79 , 1915-1955, 2010.

E. Chung and Y. Efendiev, Reduced-contrast approximations for high-contrast multiscale flow
problems, Multiscale Model. Simul. 8 (2010), no. 4, 1128”1153.

M. Dryja, Multilevel Methods for Elliptic Problems with Discontinuous Coefficients in
Three Dimensions, Seventh International Conference of Domain Decomposition Methods in
Scientific and Engineering Computing, by David E. Keyes and Jinchao Xu, vol. 180, 1994,
43-47.

L.J. Durlofsky, Numerical calculation of equivalent grid block permeability tensors for
heterogeneous porous media, Water Resour. Res., 27 (1991), 699-708.

. L.J. Durlofsky, Coarse scale models of two-phase flow in heterogeneous reservoirs: Volume

averaged equations and their relation to existing upscaling techniques, Comp. Geosciences 2
(1998), 73-92.

L.J. Durlofsky, Y. Efendiev, and V. Ginting, An adaptive local-global multiscale finite volume
element method for two-phase flow simulations, Advances in Water Resources, 30 (2007), 576—
588.

J. Eberhard, S. Attinger, and G. Wittum, Coarse graining for upscaling of flow in heterogeneous
porous media, Multiscale Model. Simul. 2 (2004), no. 2, 2697301.

J. Eberhard and G. Wittum, A coarsening multigrid method for flow in heterogeneous porous
media. Multiscale methods in science and engineering, 1117132, Lect. Notes Comput. Sci.
Eng., 44, Springer, Berlin, 2005.

Y. Efendiev and J. Galvis, A domain decomposition preconditioner for multiscale high-contrast
problems, in Domain Decomposition Methods in Science and Engineering XIX, Huang, Y.;
Kornhuber, R.; Widlund, O.; Xu, J. (Eds.), Volume 78 of Lecture Notes in Computational
Science and Engineering, Springer-Verlag, 2011, Part 2, 189-196.

Y. Efendiev, J. Galvis and P. Vassielvski, Spectral element agglomerate algebraic multigrid
methods for elliptic problems with high-Contrast coefficients, in Domain Decomposition
Methods in Science and Engineering XIX, Huang, Y.; Kornhuber, R.; Widlund, O.; Xu, J.
(Eds.), Volume 78 of Lecture Notes in Computational Science and Engineering, Springer-
Verlag, 2011, Part 3, 407-414.

Y. Efendiev, J. Galvis, R. Lazarov and J. Willems, Robust domain decomposition precondition-
ers for abstract symmetric positive definite bilinear forms, submitted.

Y. Efendiev, J. Galvis, and X. H. Wu, Multiscale finite element methods for high-contrast
problems using local spectral basis functions, Journal of Computational Physics. Volume 230,
Issue 4, 20 February 2011, Pages 937-955.



124 Y. Efendiev and J. Galvis

39.

40.

41.

42.

43.

44.

45.

46.

47.

48

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Y. Efendiev, V. Ginting, T. Hou, and R. Ewing, Accurate multiscale finite element methods for
two-phase flow simulations, J. Comp. Physics, 220 (1), 155-174, 2006.

Y. Efendiev and T. Hou, Multiscale finite element methods. Theory and applications, Springer,
20009.

Y. Efendiev, T. Hou, and V. Ginting, Multiscale finite element methods for nonlinear problems
and their applications, Comm. Math. Sci., 2 (2004), 553-589.

Y. Efendiev, T. Y. Hou, and X. H. Wu, Convergence of a nonconforming multiscale finite
element method, SIAM J. Num. Anal., 37 (2000), 888-910.

W. E and B. Engquist, The heterogeneous multiscale methods, Commun. Math. Sci. 1 (2003),
no. 1, 87-132.

W. E, P. Ming, and P.W. Zhang, Analysis of the heterogeneous multiscale method for elliptic
homogenization problems, J. AMS., 2005, Vol. 18, 121-156.

J. Galvis and Y. Efendiev, Domain decomposition preconditioners for multiscale flows in high
contrast media, SIAM MMS, Volume 8, Issue 4, 1461-1483 (2010).

J. Galvis and Y. Efendiev, Domain decomposition preconditioners for multiscale flows in high-
contrast media: Reduced dimension coarse spaces, SIAM MMS, Volume 8, Issue 5, 1621—
1644 (2010).

M. Gerritsen and L.J. Durlofsky, Modeling of fluid flow in oil reservoirs, Annual Reviews in
Fluid Mechanics, 37 (2005), pp. 211-238.

. A. Gloria, Analytical framework for the numerical homogenization of elliptic monotone

operators and quasiconvex energies, SIAM MMS, 5 (2006), No. 3, pp 996-1043.

A. Gloria, Reduction of the resonance error. Part 1: Approximation of homogenized
coefficients, Math. Models Methods Appl. Sci. (M3AS), Issue: 1(2011) pp. 1-30 DOI:
10.1142/S0218202511005507.

I. G. Graham, P. O. Lechner, and R. Scheichl, Domain decomposition for multiscale PDEs,
Numer. Math., 106(4):589-626, 2007.

U. Hetmaniuk and R. Lehoucq, Special finite element methods based on component mode
synthesis techniques, Sandia National Laboratories, Technical report SAND 2009-0115J.
Accepted for publication in ESAIM: Mathematical Modelling and Numerical Analysis.

T.Y. Hou and X.H. Wu, A multiscale finite element method for elliptic problems in composite
materials and porous media, Journal of Computational Physics, 134 (1997), 169-189.

T.Y. Hou, X.H. Wu, and Z. Cai, Convergence of a Multiscale Finite Element Method for Elliptic
Problems With Rapidly Oscillating Coefficients, Math. Comput., 68 (1999), 913-943.

T.Y. Hou, X.H. Wu, and Y. Zhang, Removing the cell resonance error in the multiscale
finite element method via a Petrov-Galerkin formulation, Communications in Mathematical
Sciences, 2(2) (2004), 185-205.

T. Hughes, G. Feijoo, L. Mazzei, and J. Quincy, The variational multiscale method - a
paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg, 166 (1998),
3-24.

P. Jenny, S.H. Lee, and H. Tchelepi, Multi-scale finite volume method for elliptic problems in
subsurface flow simulation, J. Comput. Phys., 187 (2003), 47-67.

L. Jiang, Y. Efendiev and I. Mishev, Mixed multiscale finite element methods using approximate
global information based on partial upscaling, Computational Geosciences 14 (2010), 319-
341.

V. Jikov, S. Kozlov, and O. Oleinik. Homogenization of differential operators and integral
functionals, Springer-Verlag, 1994, Translated from Russian.

J. V. Lambers, M. G. Gerritsen, and B. T. Mallison, Accurate Local Upscaling with Variable
Compact Multi-point Transmissibility Calculations, Computational Geosciences 12, Special
Issue on Multiscale Methods for Flow and Transport in Heterogeneous Porous Media (2008),
p. 399-416.

I. Lunati and P. Jenny, Multi-scale finite-volume method for compressible multi-phase flow in
porous media, J. Comp. Phys., 216:616-636, 2006.

I. Lunati and P. Jenny, Multiscale finite-volume method for compressible multiphase flow in
porous media, Journal of Computational Physics, 216, (2006), 616-636.



Coarse-Grid Multiscale Model Reduction Techniques 125

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

1. Lunati and P. Jenny, The Multiscale Finite Volume Method: A flexible tool to model physically
complex flow in porous media, 10th European Conference on the Mathematics of Oil Recover
y Amsterdam, The Netherlands, 4 7 September, 2006.

T. P. A. Mathew, Domain decomposition methods for the numerical solution of partial
differential equations, volume 61 of Lecture Notes in Computational Science and Engineering,
Springer-Verlag, Berlin, 2008.

F. Nataf, H. Xiang, V. Dolean, N. Spillane, A coarse space construction based on local
Dirichlet to Neumann maps, accepted for publication in SIAM J. Sci Comput., 2011.

S.V. Nepomnyaschikh, Mesh theorems on traces, normalizations of function traces and their
inversion, Soviet J. Numer. Anal. Math. Modelling, 6(2):151-168, 1991.

J. Nolen, G. Papanicolaou, and O. Pironneau. A framework for adaptive multiscale method for
elliptic problems. SIAM MMS., 7:171-196, 2008.

J.M. Nordbotten, Adaptive variational multiscale methods for multiphase flow in porous media,
SIAM MMS, 7(3), doi:10.1137/080724745.

M. Ohlberger, A posterior error estimates for the heterogenoeous mulitscale finite element
method for elliptic homogenization problems SIAM Multiscale Mod. Simul. pages 88-114
vol. 4 num. 1-2005.

H. Owhadi and L. Zhang, Metric based up-scaling, Comm. Pure and Applied Math., vol.
LX:675-723, 2007.

H. Owhadi and L. Zhang, Localized bases for finite dimensional homogenization approxima-
tions with non-separated scales and high-contrast, accepted SIAM MMS, Available at Caltech
ACM Tech Report No 2010-04. arXiv:1011.0986

C. Pechstein and R. Scheichl, Analysis of FETI methods for multiscale PDEs, Numerische
Mathematik 111(2):293-333, 2008.

M. Peszynska, M. F. Wheeler, 1. Yotov, Mortar upscaling for multiphase flow in porous media,
Comp. Geosciences (6), pp. 73-100, 2002.

M. Sarkis, Nonstandard coarse spaces and Schwarz methods for elliptic problems with
discontinuous coefficients using non-conforming elements, Numer. Math., 77(3), 383-406,
1997.

M. Sarkis, Partition of unity coarse spaces: enhanced versions, discontinuous coefficients and
applications to elasticity, Domain decomposition methods in science and engineering, Natl.
Auton. Univ. Mex., Mexico, 149-158, 2003.

D. Svyatskiy, D. Moulton and K. Lipnikov, Multilevel Multiscale Mimetic (M3) method for
two-phase flows in porous media, Journal of Computational Physics , vol. 227(14), 6727-6753,
2008.

A. Toselli and O. Widlund. Domain decomposition methods—algorithms and theory, volume
34 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2005.

J. Van lent, R. Scheichl, and I1.G. Graham, Energy-minimizing coarse spaces for two-level
Schwarz methods for multiscale PDEs. Numer. Linear Algebra Appl. 16 (2009), no. 10,
775-799.

P.S. Vassilevski, Coarse Spaces by Algebraic Multigrid: Multigrid Convergence and Upscaling
Error Estimates, (2010) (to appear). Available as Lawrence Livermore National Laboratory
Technical Report LLNL-PROC-432896, May 21, 2010.

X.H. Wu, Y. Efendiev, and T.Y. Hou, Analysis of upscaling absolute permeability, Discrete and
Continuous Dynamical Systems, Series B, 2 (2002), 185-204.

J. Xu and L. Zikatanov, On an energy minimizing basis for algebraic multigrid methods,
Comput. Visual Sci., 7:121-127, 2004.



Fast Algorithms for High Frequency Wave
Propagation

Bjorn Engquist and Lexing Ying

Abstract High frequency wave propagation is computationally challenging due to
the very large number of unknowns that are needed in direct numerical approxima-
tions. We will present new fast algorithms for the solution of the linear systems,
which follow from discretization of the Helmholtz equation and its related integral
equation formulation. For the Helmholtz equation we present a new type of
preconditioner, which, together with the GMRES iterative method, results in a near
optimal computational complexity. The cost of the preconditioner scales essentially
linearly with the number of unknowns and the number of iterations is independent
of frequency. In the integral equation case, a directional fast multilevel technique
also results in a near optimal computational complexity.

1 Introduction

There is currently an increasing interest in simulation of high frequency wave
propagation because of several driving forces behind this. An obvious reason is the
importance of wireless communication. Another is seismic exploration for natural
resources. Further applications include ultra sound medical imaging, acoustics, and
nondestructive testing of elastic structures. The underlying wave phenomena are
well described by the scalar wave equation, Maxwell’s equations, and the equations
of linear elasticity for acoustic, electromagnetic, and elastic waves respectively. We
will focus our presentation in this paper on the scalar wave equation,

d
% = c*(x)Au(x,t), u:D xRt >R, DcCR? (1)
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and in particular on the corresponding frequency formulation,

Au(x) + K2 (u(x) = f(x), kK (x) = % xeDCR? (2)

We will discuss the core algorithms in the solution of the related linear systems
of equations and these algorithms are relevant also for electromagnetic and elastic
wave propagation.

Simulations of high frequency wave propagation are computationally challeng-
ing. High frequency means that the important wavelengths in the solution are short
compared to the size of the computational domain. From the classical Shannon
sampling theorem we know that one needs at least two points per wavelength just
in order to represent the solution, [55]. Typical engineering simulations are done
with 5 to 20 points per wavelength in all dimensions due to numerical dispersion.
Similar requirements on the number of unknowns are also needed in finite element
and discontinuous Galerkin simulations.

This means that a 3D computation in the time domain requires at least O(w*)
unknowns and thus at least O(w*) flops. Due to error propagation these estimates
should actually be slightly higher in order to guarantee a given accuracy, [43].

One option to meet this challenge is to use one of the many high frequency
analytic approximations instead of the full wave equation. Classical examples are
geometrical optics, geometrical theory of diffraction, physical optics and Gaussian
beams. For a discussion of computations based on this class of techniques, see the
survey in [25]. We will consider numerical approximations of the full wave equation,
which contain all physical wave phenomena. Asymptotic models are in our case
only used as guidelines in the design and in analysis.

Even if all wave phenomena are kept, it is common to consider simplifications in
terms of the number of dimensions. A standard technique is to study the frequency
domain problem (2). In order to analyze a broad band signal, a superposition of
solutions to equations with different w is applied. Our original problem, which
required at least (w*) unknowns is thus reduced to one with at least O(w?). For
piecewise constant materials we can reformulate the wave equation as an integral
equation over the boundary and interface sets. The dimension is thus reduced further
and the requirement is O (w?) unknowns.

The choice of technique for the discretization of the wave equation in terms of
the selection of difference stencils or finite elements is important, but is outside the
scope of this presentation. The discretization method influences to some extent the
number of unknowns required for a given accuracy. The properties that we need
in our discussion of solutions of the linear algebraic systems resulting from the
discretization are common to many numerical methods.

The linear system of equations that follows from the discretization of the
Helmbholtz equation or the corresponding integral equation can of course be solved
by Gaussian elimination. The system from an approximation of the Helmholtz
equation in 3D can be solved by a multifrontal type Gaussian elimination with
nested dissection in O(N?) operations for N unknowns. The system from an
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integral equation formulation is dense and Gaussian elimination requires O(N?)
flops for 3D problems. (Note that N is typically much smaller for the integral
equation based methods.) It is natural to look at iterative methods for solving
the linear systems to reduce the computational cost. We will consider standard
iterative techniques as, for example, GMRES and QMR and focus on the crucial
preconditioning in the Helmholtz case and matrix vector multiply in the integral
equation case.

The key to a successful iterative method for the Helmholtz equation (2) is an
efficient preconditioner. There are many excellent preconditioning techniques for
standard elliptic positive definite problems, see e.g. the text [53]. The challenges
related to the high frequency Helmholtz equation are (on the algebraic side) that the
resulting linear system is not positive definite and (on the analytic side) that sharp
signals may propagate over long distances. The latter means that a preconditioner
approximating the solution with a slight error in the phase velocity creates a
large pointwise error even for quite short distances. This reduces the efficiency
of the preconditioning and serves as an explanation why methods based only on
independent approximations of wave propagation but not on the given discretization
have been disappointing. One such example is the use of multigrid, which otherwise
is highly successful for regular elliptic problems. See Sect.2.1 and the article by
Ernst and Gander [33] in this volume for further discussions.

There are other techniques that start from the given discretization and simplify
or compress it as, for example, in many different incomplete LU decompositions.
The reason for success of the techniques presented here is that they have enough
accuracy over reasonable distances and that they focus on highly compressible quan-
tities. For the latter property the sweeping nature of the ordering of elimination and
compression is essential, see Sect.2.2 for details. Other orderings of elimination,
for example the ones in [48, 59, 60], do not result the same optimal computational
complexity for the Helmholtz equation.

In Sects.2.3 and 2.4 we present two sweeping preconditioners, one based on
hierarchical matrix representation for the compression and the other on restricting
the domain of interaction between sets of unknowns by perfectly matched layers.
Section 2.5 extends the technique to the 3D case. The theory is developed for
constant coefficients and two dimensions in the first approach but all 2D and 3D
numerical examples indicate that both techniques for variable coefficients generate
methods, which scale essentially linearly with the number of unknowns independent
of frequency.

Section 3 deals with linear systems from discretzations of boundary integral
formulations. Again iterative methods supply the outer loop and our challenge is to
speed up the matrix vector multiplication, which otherwise for N unknowns requires
O(N?) operations, since we are dealing with dense matrices. The fast multipole
method (FMM), of Greengard and Rokhlin [39] reduces the computational cost to
O(N) for standard elliptic problems. As for the Helmholtz equation discussed above
sharp signals are carried by a solution over long distances. The interaction between
sets of unknowns at large distances is not automatically of low rank, independent
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of frequency. The original FMM thus fails to give the desired improvement in
computational complexity. Again the choice of sets for which the interaction
matrices can be compressed is crucial.

In Sect.3 we present a hierarchical decomposition of the unknowns which is
the basis for compression that reduces the computational cost to O(N log N). The
decomposition is not just in far and near fields but also in different directions, see
Sect.3.2. An approximation theorem, together with complexity estimates for the
algorithm gives the theoretical foundation for the overall computational cost. The
approximation theorem is constructive but we only use it as a guideline for how the
hierarchical decomposition should be done. The practical compression is done by
singular value decomposition (SVD) of the relevant interaction sub matrices. If the
SVD would be applied to the full interaction sub matrices the cost would be high but
it is enough to apply it to a random selection of rows and columns of these matrices.
The directional 2D algorithm is given in Sect.3.3 and in Sect. 3.4 the 3D case is
discussed.

2 Sweeping Preconditioner for the Helmholtz Equation

Let the domain of interest be the unit box D = (0, 1)d with d = 2, 3. The time-
independent wave field u(x) for x € D satisfies

w?

Au(x) + %u(x) = f(x), xeD, 3)

where o is the time frequency, c(x) is the velocity field, and f(x) is the external
force supported in D. Commonly used boundary conditions are approximations of
the Sommerfeld condition which guarantees that the wave field generated by f(x)
propagates out of the domain if ¢ (x) is constant outside a sufficiently large ball. By
appropriately rescaling the system, we can assume conveniently that the mean of
c(x) is equal to 1 and A = 2% is the (typical) wavelength.

w

2.1 Background

Efficient and accurate numerical solution of the Helmholtz problem is one of the
urgent problems in computational mathematics. This is, however, a very difficult
problem due to two main reasons. Firstly as we mentioned already, in a typical
engineering application, the Helmholtz equation is discretized with at least 5 to 20
points per wavelength. Therefore, the number of samples n in each dimension is
proportional to , the total number of samples N is n¢ = O(w?), and the discrete
system of the Helmholtz equation is of size O(w?) x O(w?). In the high frequency
range where w is large, this is an enormous system. Secondly, as the discrete
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system is highly indefinite and has a very oscillatory Green’s function due to the
wave nature of the Helmholtz equation, most of the modern multiscale techniques
developed for elliptic or parabolic problems are no longer effective.

The most efficient direct methods for solving the discretized Helmholtz systems
are the multifrontal methods with nested dissection [23, 36, 46]. The multifrontal
methods exploit the locality of the discrete operator and construct an L DL’ factor-
ization based on a hierarchical partitioning of the domain. Their computational costs
depend quite strongly on the dimensionality. In 2D, for a problem with N =n x n
unknowns, a multifrontal method takes O(N?3/?) steps and O(N log N) storage
space. The prefactor is usually rather small, making the multifrontal methods
effectively the default choice for the 2D Helmholtz problem. In 3D, for a problem
with N = n x n x n unknowns, a multifrontal method takes O (n%) = O(N?) steps
and O(n*) = O(N*/3) storage space, which can be very costly for large scale 3D
problems.

There has been a surge of developments in iterative methods for solving the
Helmholtz equation. The following discussion is by no means complete and more
details can be found in [30].

Standard multigrid methods do not work very well for the Helmholtz equation
for several reasons. The most important one is that the oscillations on the scale
of the wavelength cannot be carried on the coarse grids. Several methods have
been proposed to address this issue [9, 24, 34, 45, 47, 58]. Among them is the
wave-ray method that performs quite well for the constant coefficient case. Others
methods including [3, 22, 57] leverage the idea of domain decomposition. These
methods are typically quite suitable for parallel implementation, as the computation
in each subdomain can essentially be done independently. However, convergence
rates of these methods are usually quite slow [30]. Another class of methods
[2, 31, 32, 44] that attracts a lot of attention recently seeks to precondition the
Helmholtz operator with a shifted Laplacian operator A — #i)(a + iB) with
a > 0 to improve the spectral property of the discrete Helmholtz system. Since
the shifted Laplacian operator is elliptic, standard algorithms such as multigrid
can be used for its inversion. These methods offer quite significant improvements
for the convergence rate, but the reported number of iterations typically still grow
linearly with respect to . Another class of preconditioners [4, 35, 50] is based on
incomplete LU (ILU) decomposition, i.e., generating only a small portion of the
entries of the LU factorization of the discrete Helmholtz operator and applying
this ILU decomposition as a preconditioner. Recent approaches based on ILUT
(incomplete LU factorization with thresholding) and ARMS (algebraic recursive
multilevel solver) have been reported in [50]. Though these ILU preconditioners
bring down the number of iterations quite significantly, the number of iterations still
scales typically linearly in w.

In this section, we describe the preconditioners recently proposed in [28, 29].
What distinguish these preconditioners from previous developments is that the
number of iterations is essentially independent of the frequency w. We describe
these preconditioners in 2D first and then comment on the differences in 3D at
the end.
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2.2 Sweeping Factorization

In 2D, the computational domain is D = (0, 1)> with Sommerfeld boundary
condition specified at infinity. One standard way of approximating the Sommerfeld
boundary condition at finite distance is to use the perfectly matched layer (PML)
[5,15,42]. We introduce

(52) rerm
216[77,1—77], “)
("1%) tel—n 1]

—1 -1
s1(xy) = (1 + 10(x1)) . s2(x) = (1 + 1U(x2)) ,
w w

where 1 = +/—1, 7 is typically around one wavelength, and C is an appropriate
positive constant independent of . Computationally, the PML method replaces 9;
and 0, with s;(x)d; and s, (x,)d,, respectively. This effectively provides a damping
layer of width 1 and the resulting equation becomes

o(t) =

=0 @ 3|0

and

2
((5131)(5131) + (5202)(5202) + —) u=f, xeD,

w
(x)

u=0, x €aD.

If we assume without loss of generality that f(x) is supported inside [, 1 — n]?
(away from the PML), dividing the above equation by s (x1)s2(x72) results

s s w?
O =or )+ (=20 )+ ——— |u=1
52 S1 5152¢2(x)
which is complex symmetric. We discretize the domain [0, 1]? with a Cartesian grid
with spacing & = 1/(n + 1), where the number of points 7 in each dimension is

proportional to the wave number w, since a constant number of points is required
for each wavelength. The set of all interior points of this grid is denoted by

P ={pij=(h,jh):1=<i,j<n}

(see Fig. 1 (left)) and the total number of pointsin P is N = n2.

We denote by u; j, fi;, and ¢; ; the values of u(x), f(x), and c(x) at point
pi.j = (ih, jh), respectively. The 5-point stencil finite difference method gives the
equation at points in P using central differences. The resulting equation at x; ; =
(ih,jh)is
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Fig. 1 Left: Discretization grid in 2D. Right: Sweeping order in 2D. The dotted grid indicates the
part that has already been eliminated
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with u;/ - equal to zero for index (i’, j') that violates 1 < i’, j < n. Here (---)
stands for the sum of the first four coefficients. We order both #; ; and f; ; row by
row starting from the first row j = 1, define the vectors

1
U= (Ui, U0y ey Un Lo s Uiy Uy ooy Unp)

f = (fl,l?f2,17“"fl“l,l’"'7ﬁ,n7f2,n7“‘5f;1,n)ta

and denote the discrete system of (5) by Au = f. We further introduce its
block version by defining P,, to be set of the indices in the mth row, i.e., P, =
{Pi.m> P2m>---» Pnmy and introducing

Up = (ul,ms Umy - v”n,m)t s fm = (fl,ms f2,mv cees fn,m)t .

Clearly u = (u}, ub. ... )", f = (f]. f5..... fl), and the system Au = f
takes the following block tridiagonal form

Ay A u f
A, A Uy f
o =" (6)
An—l,n )
An,n—l Ann Un fn
where A,, , are tridiagonal and A4,, ,,—] = Aﬁn_ 1 are diagonal matrices.

We then introduce the concept of sweeping factorization of the matrix A, which
is essentially a block tridiagonal L DL' factorization (or Thomas algorithm [17])
that eliminates the unknowns layer by layer, starting from the absorbing layer next
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to x, = 0 (see [28] for details). The result of this process is a factorization

S1

S>

A=Ly-- Ly . Li_ ---Lj, )

n—1"

Sn

where S1 = Ai11, Sm = Amwm — Amm— lS ! \Am—im form = 2,...,n, and Ly
is given by Li(Prs1, Pr) = Ax+1xS7", Lk(P,, P)=1 (1<i <n),and
zero otherwise. This process is illustrated graphically in Fig. 1 (right). Inverting this
factorization for A gives the following formula for u:

St
w= (LY (L) . n- LT f. €]
. .

By introducing 7,, = S;!, the construction of the sweeping factorization is

m

summarized in the following algorithm.

Algorithm 1 Construction of the sweeping factorization of A.
1: S1 = Al,l and T1 = Sl_l

2: form=2,...,ndo

3: Sm = Am,m - Am.mfleflAmfl,m and T;" = Sr;1

4: end for

Since S, and T,, are in general dense matrices of size n x n, the cost of the
construction algorithm is of order O(n*) = O(N?). Once the factorization is ready,
the computation of u = A~! f in (8) is given as follows. The cost of computing u

Algorithm 2 Computation of u = A~ f using the sweeping factorization of A.
1: form=1,...,ndo

2: M/Yl - ./;Yl

3: end for

4: form=1,...,n—1do

5: Up+1 = Unp+1 — Am+1,m(Tmum)

6: end for

7: form=1,...,ndo

8: Uy, = Tipttyy,

9: end for

10: form=n—1,...,1do

11: Uy = Uy — Tm(Am.m+lum+l)
12: end for
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with Algorithm 2 is of order O(n*) = O(N*?). Obviously the product T},u,, in the
second and the third loops only needs to be carried out once for each m. However,
we prefer to write the algorithm this way to simplify the presentation.

Both Algorithms 1 and 2 are about O(N '/?) times more expensive compared to
the multifrontal method. A natural question is that whether it is possible to make
Algorithms 1 and 2 more efficient by approximating 7,, accurately and efficiently.
To do that, we consider the physical meaning of the Schur complement matrices
T, of the sweeping factorization. Let us restrict to the top-left m x m block of the
factorization (7).

Ay Aip S,

S>
Az Aza =Ly Ly, _ Li,_,---Li, 9
Am—l,m h

Am,m—l Am,m Sm

where the L; matrices are redefined to their restrictions to the top-left m xm blocks.
The matrix on the left is in fact the discrete Helmholtz equation restricted to the half
space below x, = (m + 1)h and with zero boundary condition on this line. Inverting
the factorization (9) gives

-1
A1 A s

1
Ay Asp

S
=Ly ?
Am—l.m

—1
Am,m—l Am,m Sm
Lt - L

The matrix on the left side is an approximation of the discrete half-space Green’s
function of the Helmholtz operator with zero boundary condition. On the right side,
due to the definition of the matrices L, ..., L,—1, the (m, m)th block of the product
is exactly equal to S, !. Therefore, we reach the following essential observation:
T, = S, 1 is the discrete half-space Green function of the Helmholtz operator with
zero boundary at x, = (m + 1)h, restricted to the points on x, = mh. Based on this
observation, we propose two different approaches that approximate 7,, effectively.
When combined with Algorithms 1 and 2, they result in efficient preconditioners.

2.3 Hierarchical Matrix Algebra Approach

The main observation of the first approach is that 7,,, and S,,, are highly compressible
since their off-diagonal blocks are numerically low-rank. The following theorem
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[28] proves this for constant velocity field ¢(x) = 1 for the continuous half-space
Green’s function.

Theorem 3. Let

Y ={pim = (h.mh),i =1,....4} and
X ={pim = (h,mh),i =L+ 1,....,n},

for 1 < £ < n and G be the (continuous) half-space Green’s function of
the Helmholtz operator for the domain (—o00,00) X (—oo, (m + 1)h) with zero
boundary condition on x, = (m + 1)h and Sommerfeld condition elsewhere. Then
(G(x,¥))xex,yey is numerically low-rank. More precisely, for any € > 0, there
exist R = O(logw|loge|?), functions {o,(x)}1<,<r for x € X, and functions
1B (Mh<r<r for v € Y such that

R
G(x.y) =) e()p,(y)| se¢ for xeX yeV.

r=1

For a fixed ¢ > 0, Theorem 3 says that the rank R grows logarithmically with
respect to w (and thus to n). Numerical experiments confirm the result of Theorem 3.
For the constant coefficient case ¢(x) = 1 with 32 = 32 (n = 256), Fig.2 (left)
shows the numerical ranks of the off-diagonal blocks of 7, at m = 128. For each
off-diagonal block, the singular values of this block are calculated and the value in
each block indicates the number of singular values that are greater than 107°. For
non-constant velocity fields ¢(x), the rank estimate would depend on the variations
in ¢(x) and numerical results suggest that the off-diagonal blocks of 7}, and S,
still admit this low-rank property for a wide class of c(x). An example for the
non-constant velocity field is given in Fig.2 (right). We would like to emphasize

25 25
20 SO 20
100 15 100 15
150 10 150 10
200 5 200 5
250 0 250 0
50 100 150 200 250 50 100 150 200 250

Fig. 2 Numerical ranks of off-diagonal blocks of T,,. Left: Constant coefficient case with PML
boundary condition. Right: Non-constant coefficient case with PML boundary condition

3
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that both the Sommerfeld boundary condition and the layer-by-layer sweeping
order starting from a PML layer are essential for the low-rankness result. Other
elimination patterns, such as the ones in the multifrontal algorithm or in [48] do not
result efficient solution methods for the Helmholtz equation.

Since 7,, and S, are highly compressible with numerically low-rank off-diagonal
blocks, it is natural to represent these matrices using the hierarchical matrix
framework proposed by Hackbusch et al [7, 38, 40]. For each m, we construct a
hierarchical decomposition of the grid points of P, through bisection. At level 0
(the top level), there is only one group J? = P,,. At level £, there are 2° groups J}
fori =1,...,2¢ given by

JE=A{pim: G —=1)-n/2" +1<t<i-n/2%.

The bisection is stopped when each group Jf contains only a small number of
points. Hence, the number of total levels L of bisection is equal to log,n — O(1)
(see Fig. 3 (left)). Two groups Jf and Jf, are called well-separated if the distance
between them is greater than or equal to their width. It is clear that if J, f and Jf, are
well-separated then Tm(Jf, Jf/) (the restriction of T}, to Jf and Jf/) is numerical
low-rank and stored in a low-rank factorized form (the same is also true for S,,).
It is not difficult to see that the storage cost of matrices 7;, and S,, is of order
O(Rnlogn). In our implementation, the rank R of off-diagonal blocks is chosen
a priori to be a fixed number, which turns out to be sufficient for the purpose of
constructing a preconditioner. All basic operations of the standard linear algebra
have their hierarchical version in this hierarchical matrix framework:

* hmatvec(G, f): matrix vector multiplication of matrix G with vector f. Its cost
is O(Rnlogn) where R is the rank of the low-rank approximation.

e hadd(G, H) and hsub(G, H): matrix addition and subtraction. Both of them
take O(R?nlogn) steps.

[

_I_

H+HA -

Fig. 3 Hierarchical matrix representation. Left: Hierarchical partitioning of the index set J for
each layer. Right: Induced partitioning of the matrix 7,, in the weakly admissible case. Off-
diagonal blocks (in white) are stored in low-rank factorized form. Diagonal blocks (in gray) are
stored densely
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e hmul(G, H) and hinv(G): matrix multiplication and matrix inversion. For both,
the computational cost is O(R2n log® n).

e hdiagmul(G, D) and hdiagmul(D, G): multiplication of a hierarchical matrix
G with a diagonal matrix D on the right and on the left. These procedures take
O(Rnlogn) steps each.

We can replace the operations in Algorithms 1 and 2 with their hierarchical
versions. Let us denote the approximations of S,, and 7}, in the hierarchical matrix
representation by S, and T, respectively.

Algorithm 4 Construction of the approximate sweeping factorization of A in the
hierarchical matrix framework.

1: ’§1 = Al,l and’i:l = hinV(’S:l).

2: form=2,....,ndo . . .

3: S = hsub(4,, ,, hdiagmul(A4,, ,,—, hdiagmul(T',,—;, A;y—1.,)) and T, = hinv(S,,).
4. end for

The cost of Algorithm 4 is O(R*n?log?n) = O(R2N log> N). Once the factoriza-
tion is ready, the computation of u ~ A~ f takes the following steps.

Algorithm 5 Computation of u ~ A~!'f using the approximate sweeping
factorization of A in the hierarchical matrix framework.

1: form=1,...,ndo

2 Uy = fm

3: end for

4: form=1,..., n—1do -

5: Un+1 = Un+1 — Am+l,m : hmatveC(va Mm)
6: end for

7. form=1,....,ndo_

8: u,, = hmatvec(T ,,, u,,)

9: end for

10: form =n — 1,...,1d0~
11: Uy = Uy — hmatveC(va Am,m+lum+l)
12: end for

The cost of Algorithm 5 is O(Rn?logn) = O(RN log N). Algorithm 5 defines an
operator

M:f= 05 D u= @, ),

which is an approximate inverse of the discrete Helmholtz operator A. When the
threshold € > 0 is set to be sufficiently small, M can be used directly as the inverse
of A and u can be taken as the solution. However, a small € > 0 value means that
the rank R of the low-rank factorized form needs to be fairly large, thus resulting
large storage and computation cost. On the other hand, when R is kept rather small,
Algorithms 4 and 5 are more efficient both in terms of storage and time. Though
the resulting M is not accurate enough as the direct inverse of A, it serves as an
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excellent preconditioner and we call it the sweeping preconditioner. We can then
combine it with iterative solvers such as GMRES and TFQMR [53, 54] by solving
the preconditioned system

MAu = Af.

Since the cost of applying M to any vector is O(RN log N), the total cost of the
iterative solver is O(N;RN log N), where N; is the number of iterations. The
numerical results demonstrate that N; is in practice very small, thus resulting in
an algorithm with almost linear complexity.

In the presentation of the sweeping preconditioner, we choose the sweeping
direction to be in the positive x, direction. It is clear that sweeping along the other
three directions (i.e., the positive x|, the negative x|, and the negative x,) also gives
a slightly different sweeping preconditioner. Due to the variations in the velocity
field (more precisely the existence of turning rays), a carefully selected sweeping
direction can often result in significantly fewer GMRES iterations than the other
directions do.

We illustrate the effectiveness of this preconditioner with a numerical example.
The velocity field ¢(x) is randomly generated and is tested with two external forces:
(1) a Gaussian point source located at (x1, x;) = (0.5,0.125) and (2) a Gaussian
wave packet at (xy,xp) = (0.125,0.125) and pointing in the (1, 1) direction. We
perform tests for % = 16,32,...,256 and discretize the equation with ¢ = 8
points per wavelength. Recall that R is the rank of the off-diagonal blocks in the
hierarchical matrix and we fix it to be 2. In all tests, the sweeping direction is
bottom-up from x, = 0 to x, = 1. The numerical results are reported in Table 1
and from the numbers we see clearly the frequency-independent iteration number
and linear scaling of the algorithm.

2.4 Moving PML Approach

Let us recall that the main task in making Algorithms 1 and 2 more efficient is to
find efficient approximation of 7,,. In the second approach, we approximate 7, in
a different way. Since 7}, : C" — C" maps an external force g,, € C" loaded only
on the mth layer to the solution v,, € C" restricted to the same layer, its domain of
interest is a neighborhood of x, = mh. We recall that the main idea of the PML
approximation is to approximate an infinite domain problem with a finite domain
problem that wraps the domain of interest with efficient damping layers. Therefore
it is natural to replace the half-space Helmholtz problem associated with 7, with
an approximate local subproblem with a PML close to x, = mh. So the central
idea is to push the PML from x, = 0 to a location that is a few buffer layers away
from x, = mh when approximating T,. We call this approach the moving PML
method, since these new PMLs do not exist in the original problem as they are only
introduced in order to approximate 7,, efficiently. The purpose of keeping a few
extra buffer layers is that the resulting approximation is more accurate. In practice
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n

o

E N

Table 1 Results for different w. Top: Velocity field ¢ (x). Middle: Solutions for two external forces
with w/(27) = 64. Bottom: Results for different @

w/(2w) q N =n? R Tetup Test 1 Test 2

N; iter Tsolve N; iter Tsolve
16 8 1282 2 6.50e—01 2 5.00e—02 2 5.00e—02
32 8 2567 2 5.10e+00 2 2.50e—01 3 3.00e—01
64 8 5122 2 3.48¢+01 3 1.49e+00 3 1.48e+00
128 8 10247 2 2.16e+02 4 8.99e+00 3 7.37e+00
256 8 20482 2 1.26e+03 5 4.64e+-01 3 3.25e+01

it is often reasonable to even move the PML right next to x, = m#h in order to gain
more efficiency. In fact, numerical results show that the extra buffer layers provide
little improvement on the approximation accuracy and hence the moving PML is
indeed placed right next to x, = mh in the following discussion.

To make this precise, let us assume that the width n of the PML is an integer
multiple of & and let b = n/ h be the number of grid points in the PML layer in the

-1
x, direction. Define sJ'(x,) = (1 +i w

problem on the domain D,, = [0, 1] x [(m — b)h, (m + 1)A]:

and introduce an auxiliary
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w?

((slal)(slao T+ (5202)(570) + 5y

)u:f, X € Dy, (10
u=0, x €dD,,.
This equation is discretized with the subgrid
Gn=Apij 1<i<nm—-b+1=<j<mj
of the original grid P and the resulting bn x bn discrete Helmholtz operator is

denoted by H,,. Following the main idea mentioned above, the operator 7', : g,, —
vy, defined by

* 0

—m;| (11)
* 0
" 8m

is an approximation to the matrix 7,,. Here each 0 stands for a zero vector of length
n and each *x for some vector of the same length. Notice that applying 7', to an
arbitrary vector g,, involves solving a linear system with matrix H,,, which comes
from the local 5-point stencil on the narrow grid G,, that contains only b layers.
Let us introduce a new ordering for G,, that iterates through the x, direction first
and denote the permutation matrix induced from this new ordering by P,,. Now the
matrix P, H, P}, is a banded matrix with only b — 1 lower diagonals and » — 1 upper
diagonals. Clearly the LU factorizatiog PyHy Pl = L, U, takes O(n) steps since
b is a constant and the application of T',, following (11) can be done also in O(n)
steps once the factorization is ready.

Let us incorporate the moving PML technique into Algorithms 1 and 2. The
computation at the first b layers needs to be handled differently, since it does not
make sense to introduce moving PMLs for these initial layers. Similarly, the last b
layers require some special treatment. Let us call the first b layers the front part and
the last b layers the end part. Define

up = @y, ... ouy)s  fr=f D)

uE:(u;_b+17"'7M£1)ts fE:(.f;’Lt—b-l—l""’fVlt)t'

Then we can rewrite Au = f as

Arr  Afrp+1 up fr

Ap+1.F Ap+1p+1 - Up+1 Jo+1

An—b,E
Agn—b AEE Ug fE
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The construction of the approximate sweeping factorization of A takes the following
steps.

Algorithm 6 Construction of the approximate sweeping factorization of A with

moving PML.

1: form=F,b+1,....n—>b,E do

2: If m = F, let Gp be the subgrid of the first b layers, Hr = App, and Pr be the
permutation matrix induced by the new ordering (x, first) of Gp. Construct the LU
factorization LpUr = PrHp pr. For other values of m, let G,, = {p;,j,l <i <
n,m—>b+1 < j < m}, Hy, be the discrete system of (10) on G,,, and P, be
the permutation induced by the new ordering of G,,. Construct the LU factorization
LyUpn = Py Hy Py,

3: end for

The cost of Algorithm 6is O(b3n?) = O(b*>N). Notice that as T}, are approximated
directly there is no need to compute S,,. Algorithm 2 takes the following form now
under this moving PML approximation.

Algorithm 7 Computation of u &~ A~! f using the sweeping factorization of A with

moving PML.

1: form=F,b+1,....n—>b,E do

2: Uy = fm

3: end for

4: form=F,b+1,....n—bdo _

5: Upt1 = um+1 — Apt1m(T uy,). For m =_F, The application Tpup is done

as P’ Ur 1L Prup. For other values of m, T, mly is done by forming the vector
,...,0, um)’ applying P!U 'L ! P, to it, and extracting the value on the last layer.

6: end for

7: form = F,b+1,. —b, E do

8: Uy = T, U - See step 5 for the application of T,,,
9: end for

10: form =n—»> ,b+ 1, F do

11: Uy = Uy — Tm (Am m41Um—1). See step 5 for the application of Tm
12: end for

The cost of Algorithm 7 is O(b*n?) = O(b*N), which is essentially linear as b is
a fixed constant. Algorithm 7 defines an operator

M:f=(ff i B —u= (g, ul),

which is an approximate inverse of the discrete Helmholtz operator A. In practice,
instead of generating the sweeping factorization of the original matrix A, it is more
effective to generate the factorization for the matrix A, associated with the modified
Helmbholtz equation
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(® + 10)?

Au(x) + W

u(x) = f(x), (12)

where the damping parameter « is an O(1) positive constant. We would like to
emphasize that (12) is very different from the equation used in the shifted Laplacian
approach (for example [31, 32, 44]), since in the shifted Laplacian formulation the
damping parameter is O(w) while here it is O(1). We denote by M, : f — u
the operator defined by Algorithm 7 with this modified equation. Since « is small,
A, and M, are close to A and M, respectively. Therefore, we propose to solve the
preconditioner system
MyAu= M, f

using the GMRES solver [53, 54]. As the cost of applying M, to any vector is
O(n?) = O(N), the total cost of the iterative solver scales like O(N; N ), where N;
is the number of iterations. The numerical results demonstrate that N; depends at
most logarithmically on N, thus providing a solver with almost linear complexity.

We illustrate this second sweeping preconditioner with the same randomly
generated velocity field and the results are reported in Table 2. Compared with the
first approach, the number of iterations is still essentially independent of @ but it
does grow due to the introduction of the damping parameter . On the other hand,
the setup cost is much lower.

2.5 3D Case

In 3D, the computational domain is D = (0, 1)?. By introducing also s3(x3) =

-1
(1 + 1%) , we can write down the equation with the PML condition

2
3 S_lal + 9, S_zaz + 9 S_333 + Y ), = f
§253 5183 S182 518283¢2(x)

The domain [0, 1]? is discretized with a Cartesian grid with spacing 27 = 1/(n + 1)
and the interior points of this grid are

P ={pijx = (ih, jh,kh):1<i,j k <n}.

We denote by u; j«, fijk, and ¢; ;i the values of u(x), f(x), and c(x) at point
Di.jx = (ih, jh, kh), respectively. The 7-point stencil finite difference method gives
the equation at points in P using central differences. We order u; jx and f; ;x by
going through the dimensions in order and define the vectors

t
U= (U1, U210y Un s e Ul W ooy Unnn) s

L= (fi11s oddseeos faddseeos frmms fromsevvs faonn) -
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Table 2 Results with varying w. Top: Velocity field c(x). Middle: Solutions for two external
forces with w/(2m) = 64. Bottom: Results for different @

w/(2w) q N =n? Tietup Test 1 Test 2

N; iter Tsolve N; iter Tsolve
16 8 1272 3.56e—01 18 4.91e—01 19 5.03e—01
32 8 2552 9.31e—01 18 2.42e+00 19 2.61e+00
64 8 5112 3.76e+00 17 8.66e+00 23 1.24e+01
128 8 10232 1.60e+01 19 3.90e+01 22 4.80e+01
256 8 20472 6.82e+01 17 1.54e+02 17 1.48e+02

The whole system then takes the form Au = f. We further introduce a block version
by defining P,, to be the indices in the mth row Py, = {P1.1m, P2ims---» Pnnm}
and denoting

Up = (ul,l,mv U2 1mse-s un,n,m)t s fm = (fl,l,mv f2,1,ma cee fn,n,m)t .

Then u = (u} ub.....ul)', f = (ff. fi..... )", and we get the same block
tridiagonal system (6) but each block is now of size n?> x n?. The sweeping
factorization takes the same form as the 2D one given in (7).
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2.5.1 Hierarchical Matrix Representation Approach

Recall that the main idea of our first approach is to approximate 7, using the
hierarchical matrix representation. At the mth layer for fixed m, we build a
hierarchical structure for the grid points in P,, through bisections in both x; and
X, directions. At the top level (level 0), the only group is J 101 = P,. Atlevel £, there
are 2° x 2¢ index groups Jlf-,i,j =1,...,2¢

T =Apeum (=1 -n/2"+1<s<i-n/2"(j—1)-n/2'+ 1<t < j-n/2".

The bisection is stopped when each set Ji‘j contains only a small number of
indices. This hierarchical partition is illustrated in Fig.4 (left)). Two index sets
Ji‘j and J{ ;+ on the same level £ are considered well-separated from each other
if max(|i —i'|,[j — j'l) > 1. When J{ and J, , are well-separated, the numerical

rank of their interaction T,,(J%, J| /) or S, (J55, JS, /) is of order O(n/2"). Since
the number of indices in J/; and J, is equal to (n/2)?, this numerical rank
scales like the square root of the number of indices in each set and hence it is still

favorable to store G(Ji‘j, Jf,j,) in a factorized form. In principle, the rank R of the

factorized form should scale like O(n/2¢). However, as the construction cost of the
approximate sweeping factorization scales like O(R?n° log> n) = O(R*N log® N),
following this scaling can be rather costly in practice. Instead, we choose R to be a
rather small constant since our goal is only to construct a preconditioner.

We illustrate the effectiveness of this 3D preconditioner with an example. The
velocity field is randomly generated and is tested with two external forces: (1) a
Gaussian point source located at (x1, x3, x3) = (0.5,0.5,0.25) and (2) a Gaussian
wave packet at (x1, x2, x3) = (0.5,0.25,0.25) and pointing in the (0, 1, 1) direction.
We perform tests for 5> = 5, 10,20 and discretize the equation with ¢ = 8 points
per wavelength. Recall that R is the rank of the factorized form of the hierarchical
matrix representation. It is clear from the previous discussion that the value of R

i B Sl Tl
Jia
1 1 le."l JEA Jg.-l J42.11 J’l

Jia | Jag =1 P78 P 2,1
g9, IiaJ3 8l 58l Jia
VT 2|03, 5 23

JIIII lell 12.2 2,2{V3,20+'4,2 Jll.z
Jl.l Jg.l '}32-1 I']l42,].

Jia

Fig. 4 Hierarchical matrix representation. Left: hierarchical decomposition of the index set for
each layer. Right: Induced partitioning of the matrix 7,, in the strongly admissible case. Blocks in
white are stored in low-rank factorized form. Blocks in gray are stored densely
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Table 3 Results for different w. Top: Velocity field ¢ (x) in cross-section view. Middle: Solutions

for two external forces with w/(27) = 20 on a plane near x; = 0.5. Bottom: Results for
different @
w/@2r) q N=n R Tew Test 1 Test 2

N, iter Tsolve N, iter Tsolve
5 8 40° 2 9.00e+-01 3 7.20e—01 3 7.20e—01
10 8 80° 3 2.37e+03 4 1.22e+01 3 9.90e+00
20 8 160° 4 4.74e+04 4 1.37e+02 3 1.07e+02

should grow with @ (and n). Here, we choose R = 2,3,4 for o = 5,10, 20,
respectively. The sweeping direction is bottom-up from x3 = 0 to x3 = 1. The
numbers reported in Table 3 demonstrate that the number of iterations is essentially
independent of w. However, the setup cost is rather high.

2.5.2 Moving PML Approach

Let us recall that the main idea of our second approach is to use moving PMLs
for the approximation of 7, : C” — C", which maps an external force
gm € C" loaded only on the mth layer to the solution v,, € C" restricted to
the same layer. Following the idea of pushing the PML near x3 = mh, we define

-1
s5(x3) = (1 +i Mﬂ) and introduce an auxiliary problem on the domain
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Dy = [0,1] x [0, 1] x [(m — b)h, (m + 1)h]:
2

(<s1 D) + (202 (20) + (T00)(5500) + =

)u=f, x € Dy, (13)

u=20, x €dD,,.
This equation is then discretized with the subgrid
Gn =A{pijk, 1 =i, j <nm—b+1=<k <m}

of the original grid P, with the resulting hn> x hn? discrete Helmholtz operator
denoted by H,,. The operator 7:,,1 D 8m € (OLN Vi € C" defined in (11) based
on solving H,, is then an approximation of 7,,. Since H,, comes from the 7-point
stencil with b layers, it can be viewed as a quasi-2D problem that can be solved
efficiently using the multifrontal method [23, 36, 46]. The construction phase of
the multifrontal method takes O(bh>n?) steps and applying to an arbitrary vector
takes O(b’n?logn) steps. As a result, the cost of Algorithm 6 in 3D is O(b*n*) =
O(b>*N*/?) and the one for Algorithm 7 is O(b*n’logn) = O(b*>N log N).

Though the complexity of Algorithm 6 is slightly higher than linear, it can be
improved by building the inverses of H,, under the hierarchical matrix framework
used in [28] or using the moving PML idea once again to the solution of H,,.
Either one of these two choices gives strictly linear complexity and they are indeed
of significant theoretical interest. However, we observe that, for many practical
problems that are not extremely large, the current version is at least equally
competitive since the efficiency of the multifrontal implementation has been highly
optimized due to its simple structure.

For the reason mentioned in the 2D case, we apply Algorithms 6 and 7 to the

discrete operator A, of the modified system Au(x) + (wj(’f;) u(x) = f(x), where
« is an O(1) positive constant. We denote by M, : f — u the operator defined
by Algorithm 7 for this modified equation. Since A, is close to A when « is small,
we propose to solve the preconditioner system My, Au = M, f using the GMRES
solver [53, 54]. Because the cost of applying M, to any vector is O(N log N),
the total cost of the GMRES solver is O(N;N log N), where N; is the number
of iterations required. The numerical results demonstrate that N; is essentially
independent of the number of unknowns N, thus resulting an algorithm with almost
linear complexity.

We illustrate the effectiveness of this 3D preconditioner with a numerical
example again with randomly generated velocity field. The results are reported in
Table 4 and we see clearly that the number of iterations is independent of w, the
computational cost follows linear scaling, and finally the setup cost is significantly
improved compared to the approach based the hierarchical matrix framework.
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Table 4 Results for different w. Top: Velocity field ¢ (x) in cross-section view. Middle: Solutions

for two external forces with w/(27) = 16 on a plane near x; = 0.5. Bottom: Results for
different @
w/(2w) q N =n3 Tietup Test 1 Test 2

N, iter Tsolve N, iter Tsolve
5 8 393 4.85e+00 12 5.26e+00 12 5.44e+4-00
10 8 793 6.69¢+4-01 11 5.10e+01 13 5.99e+01
20 8 159° 8.42e+02 11 5.58e+02 13 6.28¢e+02

3 Fast Directional Algorithm for Integral Equation

Formulation

In this section, we focus on the integral equation formulation of the exterior
scattering problem of the Helmholtz equation, which is arguably the simplest case of
the Helmholtz equation with piecewise constant materials. Suppose that the scatterer
D is a smooth object with O(1) diameter in the unit ball B(0, 1) and let ™ (x) to
be the incoming field. The scattered field u(x) satisfies the Helmholtz equation with

the Dirichlet boundary condition:
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Au(x) + 0’u(x) =0 for x eRY\ D

u(x) = —u"(x) for x e dD (14)
| llirn |x|@=D/2 ((ﬁ Vu(x)) - ia)u(x)) =0.

The last condition is the Sommerfeld radiation condition and it guarantees that the
scattered field u(x) propagates to infinity. The wavelength A is equal to %” and the
scatterer D is about @ wavelengths across.

One efficient way of solving this problem is to reformulate it with a boundary
integral equation (BIE) [16] such as for x € dD

0@+ [ (B8 6 o)y = (). wap. (15)

where ¢ (x) for x € dD is the unknown distribution on dD, n(y) is the exterior
normal of dD at y, n = O(w) is a constant as a function of space, and the kernel

1 (D

+Hy (w|x —y|), 2D
G-x7 = 4iwv07'
( y) {e [x—yl 3D

lx—yl °

is the fundamental solution of the free-space Helmholtz equation. The main
advantages of the BIE approach is that it reduces an unbounded d-dimensional
problem (14) to a bounded (d — 1)-dimensional problem (15). In addition, the
condition number is dramatically improved. Once ¢ (x) is solved from (15), the
scattered field u(x) can be simply computed by

u(x) = /BD (ag’f—a;}) —1- G(x, y)) o(y)dy, Vxe R? \ D.

3.1 Background

The boundary formulation (15) is often discretized with Galerkin, collocation,
or Nystrom methods, see [16] and the references therein for details. In a typ-
ical discretization, one uses a constant number of degrees of freedom for each
wavelength, hence the number of unknowns N of the discrete system scales like
O(1/A%1 = O(w?™).

One obvious disadvantage of the boundary formulation (15) is that the discrete
system is dense since the integral operator is global. Direct solvers are clearly too
expensive, especially for high frequency problems with large w. Therefore, iterative
algorithms such as GMRES [54] become the natural tool for solving the resulting
discrete system. At each step of the iterative solver, one then needs to evaluate the
N -body problem of the high frequency Helmholtz kernel



150 B. Engquist and L. Ying

N
w =y Gpi,py)- [, (16)

Jj=1

where {p;}1<i<y C B(0,1) are the appropriate quadrature or nodal points,
{fi}1<i<n are the sources at {p; }i<i<n, and {u;}1<;<y are called the potentials.

A similar problem can be formulated for the kernel ag}fgf )

The direct computation of (16) takes O(N?) = O(w*?~") operations. This
can be quite time consuming when w is large. Various fast algorithms have been
proposed to reduce this complexity in the past two decades. Among them, the most
popular approach is the high frequency fast multipole method (HF-FMM) developed
by Rokhlin et al. [12,13,51,52], which has an optimal O(N log N) complexity and
has been widely used. Other algorithms using related techniques can be found in
[14, 18, 56]. In [49], Michielssen and Boag proposed a multilevel multiplication
algorithm to bring the overall complexity down to O(N log* N). Another approach
for speeding up the computation of (16) is to exploit the translation-invariant
property of the kernel and use the fast Fourier transform to perform the non-
adjacent computation in the Fourier domain [6, 10]. Though quite efficient for many
situations, the asymptotic complexity of this approach is not optimal. A different
way to accelerate the N -body computation is to discretize the integral equation (15)
under the Galerkin framework with local Fourier bases or wavelet packets. Then the
stiffness matrix becomes approximately sparse under these bases since most of the
entries are close to zero and can be safely discarded [1,8,11,19-21,37,41].

In the rest of this section, we describe a directional algorithm for evaluating (16)
recently proposed in [26,27]. Not only this algorithm has the optimal O(N log N)
complexity, our implementation is also comparable to the most efficient imple-
mentation of the HF-FMM in literature [12, 13]. We focus the presentation of the
algorithm on the 2D case first and then comment on the difference in the 3D case.

as well.

3.2 Directional Low-Rank Property

Let us focus on the 2D case first. The main observation is a low-rank property of the
Helmholtz kernel.

Definition 1. Let f(x, y) be a function for x € X and y € Y. We say that f(x, y)
has a z-term e-expansion for X and Y if there exist functions {o(x)}1<s<; and
{Bs(¥)}1<s</ such that

f(x,y)— Zoes(x)ﬁs(y) <e VxelX,VyeY.

s=1

Since the two sets of functions {o(x)}1<s</ and {Bs(y)}1<s<s depend only on x
and y respectively, the above expansion is called separated. Let us consider
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Y = B(0,wA) and X ={x:6(x,0) <1/w,|x| > w?A}, (17)

where w > 2 and £ is a given unit vector, and 8 (x, {) is the spanning angle between
vectors x and £ (see Fig. 5 for an illustration).

The following theorem from [27] serves as the theoretical foundation of our
approach.

Theorem 8. For any € > 0, there exists a number t. independent of w such that
1oa
G(x.y) = 3 Hy (@lx = y])

has a te-term e-expansion for x € X = {x : 0(x,£) < 1/w,|x| > w?L} and
y €Y = B(0,wA) forany £.

The actual expansion is computed using a randomized procedure presented in [26,
27] and we refer to these papers for detailed description. The end result of this
randomized procedure is that one can find points {e;}1<;<; in Y, points {c }1<s<s.
in X, and a matrix D = (d;s)1<s.5<:, such that

Gy =Y Gx.e) (Z d,sG(cs,y)>‘ = 0(e) (18)
t=1

s=1

forany x € X and y € Y. In order to represent such a low rank approximation,
one only needs to store {cs}i<s<s., {€:}1<r<s., and the matrix D = (dis)1<s.s<s.
since the kernels G(x, e;) and G(cy, y) can be evaluated on the fly. Since all of them
together takes at most O(z‘f) storage space, this approximation is extremely efficient
storage-wise.

3.3 Directional Algorithm

In order to use the low-rank property to speed up the calculation of (16), we
construct an adaptive quadtree that contains the points {p; }1<; <. Starting from the
domain [—1, 1]2 that contains the whole scatterer, we subdivide the domain until that

Fig. 5 Two sets Y and X wA
that satisfy the directional

parabolic separation

condition

w?\
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Fig. 6 The far field is partitioned into wedges. From left to right, the width of the box B (not
shown) is wA = A, 2A, 4A. The radii of the far field boundaries are A, 41, and 16A, respectively

Fig. 7 B is a square with

width w > 2. For any fixed ¢,

there exists ¢’ such that W 5:¢ o
is contained in W2 where 2/w '
B’ is any one of B’s children \ﬂ

B l/w}

WB,Z

w?\

each leaf box contains only a small number of points. Since the scatterer boundary
is in fact discretized with O(1) points per wavelength, we can assume without loss
of generality that leaf boxes have width A in order to simplify the discussion.

We use B to denote a square in the quadtree and wA for its width. The near
field N2 is the union of the squares A that satisfy dist(4, B) < w?A, the far field
F8 is the complement of NZ, and the interaction list /2 contains the squares in
NP\NB on B’s level, where P is B’s parent square. Notice that the far field of a
square B in the high frequency regime is pushed away in order to be compatible
with the directional parabolic separation condition. In order to take advantage of the
directional separated approximations discussed in the previous section, the far field
F8 is further partitioned into a group of directional wedges, each belonging to a
cone with spanning angle O(1/w). We denote the set of the wedges of B by {W 8-}
and Fig. 6 illustrates the angular decompositions of F? forwd = 1,2, and 41. We
would like to emphasize that the wedges from adjacent levels also enjoy a natural
nested property: For each direction £ of box B, there exists a direction £’ such that
W B-L is contained in W 5" where B’ is any one of B’s children (see Fig. 7).

Let us consider the interaction between a square B of width wA and one of its
wedges W B¢ using the separated approximations (18) with Y = B and X = W &<,
We decorate the quantities {e; }1 <<, {Cs}1<s<s., and D = (dys)1<s.5<, Of (18) with
superscript ()5¢ to denote their dependence on B and £.
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We first consider the potentials in W 2* generated by the points in B. Applying
(18) to y = p; for each p; € B and summing them up with weight f; gives the
following estimate:

S Gl o fi— Gl ef) [ S at [ Y Ger . po f
1 s=1

Pi€EB t= S Pi€EB

<[ S 1sil] e

Di€EB
This implies that we can place a set of sources

fe
fP= 0 dgt | 0 G f; (19)
s=1 pi€B 1<t<t,
at points {e "1}15,51‘E to approximate the potential generated by the sources { f;}
located at points {p; € B}. Conceptually, the sources { f,B ’[}lstsré encode the
potential in W5 generated by the points in B and we call them the directional
equivalent sources of B in direction £. It is clear from (19) that { %%}, <, -,
can be computed simply from kernel evaluations and a matrix multiplication with
DB = (df ) 1<rs=.-
Let us now reverse the situation and consider the potential in B generated by the
points {p; € W5}, Since G(x, y) = G(y, x), summing over (18) with x = p; €
W Bt and weights f; leads us to the estimate

le

Y G fi=Y G cEY Y al | > Gl

pieWBL s=1 =1 pieWBL

<{ > 5]

Di cewBt

This means that once the potentials

w =" G p)f; (20)
piEWB 1<r<t.

at points {e,B ’[}15,5,6 are given, we can then approximate at any y € B the

potential generated by the points in W2, through a matrix multiplication with

DBt = (d,f’z) and kernel evaluations. Conceptually, the potentials {ufg ’[}15r5re

encode the potential in B generated by the points in W5 and we call them the

directional check potentials of B in direction £.
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The directional equivalent sources { f,” £ }1<i<, Will play the role of the multipole
expansion in classical FMM and the directional check potentials {ufg ’[}135;5 will
play the role of the local expansion in classical FMM. However, it is important
to notice that these quantities now depend on £ and thus vary from one wedge to
another.

Although (19) and (20) defines the equivalent sources and check potentials, they
do not result in efficient computation when either B or W 5* contains a large number
of points. This problem is remedied by the translation operators to be introduced
now. We follow the convention in [39, 51] to name these translation operators the
M2M, L2L, and M2L translations, even though no multipole or local expansions are
involved in our algorithm.

For a square B and a direction £, the M2M translation constructs the directional
equivalent sources { f,B ’[} ¢ from the equivalent sources of B’s children. Suppose that
the children squares have already computed their directional equivalent sources. Let
B’ be one of B’s child boxes. Due to the nested structure between the wedges of
B and B’ (i.e, for each £, there exists a direction £’ such that W5+ is contained in
WB'¥ for each child B’ of B, see Fig. 7), the M2M translation takes the equivalent
sources { f,B /‘[/},, p of the children squares as the true source and performs the
following step similar to (19)

fedalt (ZZG(CSB‘, el 1 “’) @1
s t’

B’

For a square B and a direction £, the L2L translation constructs the check
potentials of B’s children from the directional check potentials {u,B ‘{}, of B. If
r . . .

W Bt is the wedge of B’ that contains W2, we construct the check potentials

{uf/’z/}, as follows:

utB/’l/ - utB/’Z/ i ZG(@IB/’ ’ BZ) (Z dtB‘f Bi() ) (22)

Finally, the M2L translation is applied to all pairs of squares A and B that are
in each other’s interaction list. Suppose that B is in the wedge WAL of Aand A is
in the wedge W2 of B. The implementation of the M2L translation contains only
one step:

ubt = bt +ZG(e Lty f Al (23)

We would like to emphasize that all three operators take O(1) steps and involve
only kernel evaluation and matrix-vector multiplication with precomputed matrices.
Therefore, they are simple to implement and highly efficient.

With all these preparations, we are ready to give the overall structure of our new
algorithm.
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1. Partition the domain recursively into an adaptive quadtree until each leaf box has
width O(A). Since the boundary is discretized with a constant number of points
per wavelength, the number of points in each leaf box is O(1).

2. Travel up in the quadtree. For every such square B and each ¢, construct the
directional equivalent sources { f,B ’Z}, using (19) if B is a leaf box or the
directional M2M translation (21) if B is not. We skip the squares with width
greater than /w2 since their interaction lists are empty.

3. Travel down in the quadtree. For every such square B and for each direction £,
perform the following two steps:

(a) For each square A that is in W2 and also in B’s interaction list, perform the
directional M2L translation (23).

(b) Perform the directional L2L translation (22) to transform {u? ’Z}, to the
incoming check potentials for B’s children.

Again, we skip the squares with width greater than /wA.
4. Nearby interaction. For each leaf square B and for each p; € B, we add to u; the
nearby interaction from the points p; € N B,

The following theorem summarizes the complexity of the proposed algorithm.

Theorem 9. Let 0D be a piecewise smooth boundary curve in B(0,1). Suppose
that the points {p;}1<i<n are N = O(w) samples of 0D with a constant number of
points per wavelength. For any prescribed accuracy the proposed algorithm has a
computational complexity O(wlogw) = O(N log N).

We illustrate our 2D algorithm with a numerical example. The scatterer is a kite-
shaped object and the results are summarized in Table 5. Here N is the number of
points, K is the size of the problem in terms of the wavelength, € is the prescribed
error threshold such that the final error is to be bounded by a small constant multiple
of €, T, is the running time of our algorithm in seconds, Ty is the estimated running
time of the direct evaluation in seconds, T,/ T, is the speedup factor, and ¢, is the
relative error of our algorithm. Here ¢, is estimated by comparing the results of
our algorithm with the results of direct calculation at 200 randomly selected points.
These numbers demonstrate clearly that our algorithm scales like O(N log N) in
terms of the number of points. Furthermore, the error seems to grow only slightly as
we increase the number of points, indicating that the separated approximations are
stable.

3.4 3D Case

Let us now turn to the 3D case. For X and Y defined as Fig. 5 in 3D, we have proved
the following theorem in [26].

Theorem 10. For any € > 0, there exists a number t. that is independent of w such
that
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i, I— %%

T

/e

Table 5 Results of a kite-shaped model

(K, ¢€) N T.(sec) T, (sec) Ta/ T, €,
(2048,1e—4) 1.13e+5 4.00e+1 8.11e+3 2.03e+2 1.08e—4
(8192,1e—4) 4.53e+5 1.77e+2 1.30e+5 7.36e+2 1.33e—4
(32768,1e—4) 1.81e+6 8.04e+2 2.09e+6 2.60e+3 141le—4
(2048,1e—06) 1.13e+5 6.10e+1 8.11e+3 1.33e4-2 9.35e—7
(8192,1e—6) 4.53e+5 2.72e+2 1.30e+5 4.78e+2 9.15e—7
(32768,1e—06) 1.81e+6 1.24e+3 2.10e+6 1.70e+3 8.80e—7
(2048,1e—8) 1.13e+5 9.20e+1 8.16e+3 8.87e+1 1.45e—8
(8192,1e—8) 4.53e+5 4.05e+42 1.30e+5 3.22e42 1.31e—38
(32768,1e—8) 1.81e+6 1.80e+3 2.11e46 1.17e+3 1.52¢—38

ewlx—yl

G(x.y) =
lx — yl

has a te-term e-expansion for x € X = {x : 0(x,£) < 1/w,|x| = w?A} and
y €Y = B(0,wA) forany L.

Based on this theorem, an expansion in 3D similar to (18) can be constructed
using the randomized procedure in [26,27]. Starting from the domain [—1, 1]* that
contains the whole scatterer, we subdivide the domain until that each of the leaf
boxes contains only a small number of points. In order to take advantage of the
directional separated approximations, the far field F 2 for a box B of width wA is
further partitioned into O(w?) directional wedges, each belonging to a cone with
spanning angle O(1/w). The translations are defined in exactly the same way and
the algorithm proceeds in the same fashion. The following theorem summarizes the
complexity analysis in 3D.

Theorem 11. Let 0D be a piecewise smooth boundary surface in B(0, 1). Suppose
that the points {p; }1<i<y are N = O(w?) samples of 3D with a constant number
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Table 6 Results of the F16 model with the Helmholtz kernel

(K, €) N T, (sec) T,(sec) Ta/Ta €,

(32, le—4) 1.87e+5 5.00e+1 4.17e+3 8.34e+1 6.13e—4
(64, 1e—4) 7.46e+5 2.27e+2 6.58¢e+4 2.90e+2 6.69¢e—4
(128,1e—4) 2.98e+6 1.04e+3 1.03e+6 9.87e+2 6.89¢e—4
(256,1e—4) 1.19e+7 5.04e+43 1.64e+7 3.25¢+3 7.63e—4
(32, le—06) 1.87e+5 1.18e+2 4.06e+3 3.44e+1 2.72e—6
(64, 1le—06) 7.46e+5 6.12e+2 6.56e+4 1.07e+2 3.30e—6
(128,1e—06) 2.98e+6 3.07e+3 1.06e+6 3.45e+2 4.16e—6
(32, 1e—8) 1.87e+5 2.38e+2 4.07e+3 1.71e+1 6.34e—8
(64, 1e—8) 7.46e+5 1.29¢+3 6.64e+4 S5.14e+1 8.10e—8
(128,1e—8) 2.98¢e+6 6.42e+43 1.06e+6 1.64e+2 6.55¢e—8

of points per wavelength. Then for any prescribed accuracy, the proposed algorithm
has a computational complexity O(w?logw) = O(N log N).

We illustrate this 3D algorithm with a numerical example. The scatterer is a
fighter jet and we report the results in Table 6. These numbers demonstrate clearly
that our algorithm scales exactly like O(N log N) in terms of the number of points.

4 Conclusions and Future Work

In this paper, we presented the sweeping preconditioners for solving high frequency
Helmbholtz equation and a directional multilevel algorithm for its integral equation
formulation. Both algorithms achieve essentially linear complexity. There are
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several future research directions along this line. First, we would like to extend
these techniques to the Maxwell equations for electromagnetic scattering and the
equations for linear elastic waves. In both cases we expect the overall structure of
the algorithm to remain the same and some progress has already been made in the
Maxwell case.

Second, although with linear complexity, these algorithms might still take
significant running time due to the high frequency nature of the physical problem.
Therefore, it is important to develop scalable parallel implementations of these
algorithms.

Finally, the methods proposed here are both motivated by the asymptotic
theories such as geometric optics and geometric theory of diffraction, although the
algorithms themselves are purely numerical. It is interesting to see whether these
algorithms can be hybridized explicitly with the asymptotic methods, for example,
applying asymptotic methods wherever possible and only using the more expensive
numerical techniques when the asymptotic methods fail.
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Abstract The multiscale nature of geological formations can have a strong impact
on subsurface flow processes. In an attempt to characterize these formations at all
relevant length scales, highly resolved property models are typically constructed.
This high degree of detail greatly complicates flow simulations and uncertainty
quantification. To address this issue, a variety of computational upscaling (numer-
ical homogenization) procedures have been developed. In this chapter, a number
of the existing approaches are described. These include single-phase parameter
upscaling (the computation of coarse-scale permeability or transmissibility) and
two-phase parameter upscaling (the computation of coarse-scale relative perme-
ability curves) procedures. Methods that range from purely local to fully global
are considered. Emphasis is placed on the performance of these techniques for
uncertainty quantification, where many realizations of the geological model are
considered. Along these lines, an ensemble-level upscaling approach is described,
in which the goal is to provide coarse models that capture ensemble flow statistics
(such as the cumulative distribution function for oil production) consistent with
those of the underlying fine-scale models rather than agreement on a realization-
by-realization basis. Numerical results highlighting the relative advantages and
limitations of the various methods are presented. In particular, the ensemble-
level upscaling approach is shown to provide accurate statistical predictions at an
acceptable computational cost.
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1 Introduction

Subsurface formations such as oil reservoirs and aquifers typically display het-
erogeneous properties that vary over a range of length scales. Precise geological
characterization of these formations is challenging, however, as field measurements
are very sparse spatially. Property models are generally constructed through appli-
cation of a variety of geological and geostatistical modeling techniques. Because of
the stochastic nature of the characterization problem, multiple realizations of the
formation are typically generated, with each realization assigned an appropriate
probability. Then, by performing flow simulations for each of these models,
statistical measures of performance (e.g., cumulative distribution function for oil
production or aquifer discharge rate) can be computed.

The computational cost of the flow simulations required by this approach can
be prohibitive. Because geological features at many length scales can impact flow
and transport, models that resolve all relevant scales of heterogeneity must be
constructed. And, because there can be many uncertain geological properties and
parameters, a large number of geological realizations must be generated. Flow
simulation on even a single highly-detailed geological model can represent a
computational challenge. Simulation of hundreds or thousands of these models for
uncertainty quantification in practical field cases may not currently be realizable.

This general problem can be addressed in different ways. Specialized sampling
procedures could be applied to select appropriate models for flow simulation.
Existing sampling approaches, however, still require that a large number of flow
simulations be performed. Alternatively, the geological models can be coarsened
or upscaled prior to flow simulation. This entails the application of numerical
homogenization procedures to provide coarse-scale models that can be simulated
much more efficiently. These procedures, and their application and performance for
ensembles of geological models, will be the topic of this article.

There have been a wide variety of upscaling approaches that have been developed
in recent years. Some of these procedures are discussed in detail in the following
sections. Upscaling methods can be generally classified in terms of the types of
coarse-scale quantities computed (single-phase only versus single-phase and two-
phase flow functions) and the spatial domain over which the coarse-scale parameters
are computed (e.g., local versus global). Generally speaking, the accuracy of the
coarse model improves when larger spatial domains are used for the numerical
homogenization and when two-phase flow parameters are computed in addition to
single-phase parameters (for, e.g., oil-water problems). These extra computations
lead to additional expense, which must be balanced against the enhanced accuracy
provided.

Reviews discussing single-phase numerical upscaling procedures are presented
in, e.g., [35, 37, 62, 67]. Local single-phase upscaling techniques include those
described by [28, 60, 68, 71]. Many of these approaches differ in terms of the
boundary conditions applied, the size of the domain used for the numerical homog-
enization computations, and the particular parameters computed (coarse-block
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permeability or transmissibility). Techniques that use global fine-scale information
include the methods described in [41,56,69,72,74], while approaches that incorpo-
rate approximate (e.g., coarse-scale) global effects are presented in [9,11,17,36,49].
Early approaches that apply two-phase parameter upscaling appear in [S1, 64].
A number of two-phase upscaling techniques are discussed by [7, 23, 25]. More
recent approaches include those of [12, 14,33,40, 44,55, 65, 66]. These approaches
vary in terms of the boundary conditions and detailed upscaling calculations, the
size of the computational domain, and the form of the coarse-scale equations. We
note that, in many cases, the coarse-scale models generated using these procedures
can be used for a variety of flow problems.

Upscaling methods are related to multiscale finite element (MsFEM) and finite-
volume-based (MsFVM) techniques. Multiscale techniques have been studied
extensively for subsurface flow problems and our discussion of these approaches
will be brief. A comprehensive presentation is provided by [31]. Specific techniques
include the original MSFEM approach of [42], the MsFVM implementations of
[38, 39, 45, 46, 53, 70], and the mixed finite element approaches of [1, 3,5, 21].
Both upscaling and MSFEM/MsFVM approaches seek to construct coarse-scale
operators that capture the effects of subgrid property variation. In the case of
upscaling procedures, most (or all, depending on the specific approach) of the
required numerical homogenization computations are performed in a preprocessing
step. Multiscale techniques, by contrast, typically include both fine and coarse-scale
computations during the course of the simulation. In addition, the goal of most
multiscale procedures is to reproduce, as closely as possible, the fine-scale solution.
Thus these approaches often include some type of reconstruction step. Upscaling
techniques, by contrast, seek to provide a coarse-scale rather than a fine-scale
solution. For example, for subsurface flow problems, an ideal upscaling method
will give accurate boundary fluxes or injection and production rates, but it will not
provide state variables at the fine-scale level. Coarse-grid state variables should,
however, approximate (volume) averages of corresponding fine-scale quantities.
There are some techniques that effectively combine multiscale and upscaling ideas;
see, for example [53,57].

Just as the boundary conditions applied for the computation of upscaled param-
eters can affect coarse-grid accuracy, the boundary conditions used in the compu-
tation of the multiscale basis can also impact solution accuracy. Approaches for
addressing this issue include the use of fine-scale information outside the target
coarse-grid block (this approach is referred to as oversampling; see [42]), the use of
reduced boundary conditions [46], the use of global [1,32] and approximate global
[30, 47] single-phase flow information, and correction functions [38]. The impact
of local boundary conditions in heterogeneous multiscale methods is considered
in [73].

The need to quantify the impact of geological and other uncertainties on
multiscale flow problems adds an additional set of challenges. As noted ear-
lier, uncertainty is generally handled through use of multiple realizations, which
increases computational requirements. Within the context of upscaling procedures,
this problem has been addressed using ensemble-level upscaling [13,20], where the
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intent is for the coarse models to capture key fine-scale flow quantities in a statistical
sense rather than in a deterministic (realization-by-realization) manner. Uncertainty
quantification has also been treated within a multiscale context — see, e.g., [2].

This chapter proceeds as follows. We first present, in Sect.2, the fine and
coarse-scale governing equations as well as the basic finite volume discretization
procedure typically used in reservoir simulation. Single and two-phase upscaling
techniques are described in Sects. 3 and 4. Then, in Sect. 5, ensemble-level upscaling
approaches are presented. Numerical results in Sects. 3, 4 and 5 illustrate the per-
formance of a wide variety of numerical upscaling procedures. We conclude with a
summary and some suggestions for future research directions.

2 Governing Equations and Finite Volume Discretization

In this section we present the equations describing the flow of two immiscible fluids
(here taken to be oil and water) in a porous medium. These equations are provided
for both the fully-resolved (fine-scale) system and the coarse-scale model. The finite
volume discretization technique commonly used for reservoir simulation is briefly
discussed.

2.1 Oil-Water Flow Equations

We consider a two-phase, two-component system containing oil and water. The oil
component exists only in the oleic (or oil) phase and the water component exists
only in the aqueous (or water) phase; i.e., there is no mass transfer between phases.
The continuum (Darcy-scale) equations describing the flow of oil and water through
porous formations are derived by combining expressions for mass conservation with
Darcy’s law. Using the subscript j to designate component or phase (j = o for oil
and w for water), these equations can be written as:

d .
a7 90,8;) =V [0 Ak (Vp; = pjgic) | + ¢f = 0. (1

Here k is the absolute permeability tensor (essentially a flow conductivity) of the
rock, A; = k,;/u; is the phase mobility, with k,; the relative permeability to phase
J and u; the phase viscosity, p; is phase pressure, p; is the phase density, g is
gravitational acceleration, i, is the unit vector pointing in the downward-vertical
(gravity) direction, ¢ is time, ¢ is porosity (volume fraction of the pore space),
S is saturation (phase j volume fraction within the pore space) and ¢ is the
source/sink term (positive for production). The relative permeabilities k,; (S;), and
thus the mobilities A;, capture the phase interference effect; i.e., the impact of
saturation on flow rate. The general oil-water model is completed by incorporating
the saturation constraint (S, + S, = 1) and by specifying a capillary pressure
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relationship p.(S\) = p, — pw. In practice, the relative permeability curves
and the capillary pressure curves are determined empirically through laboratory
measurements (though pore and grain-scale modeling, such as the methodology
described in [58], is emerging as an alternative to time consuming experimental
procedures). These functions typically vary with rock type (and thus with spatial
location), though in the simulations presented here only a single set of curves will
be used.

In many oil-water systems, after a short early-transient period, the effects of
compressibility are very small and can be neglected. In addition, even at the fine-
grid block scale, the effects of capillary pressure are often negligible, which means
we can take p, = p,, = p. With these simplifications, and the further assumption
that the rock is incompressible (which means ¢ does not vary in time), (1) can be
rearranged into the following form:

V. {Ak [VP + g(kapo + Aw;ow)iz]} =R, (2)

S .
‘PE + V- [uf —k-i;dog(pw — po)] = —R,y. 3

Note that we now use S in place of S,. In (2) and (3), A(S)=21, + A,
u= — AKk[Vp + g(A,po + A,pw)i;] is the total (oil + water) Darcy velocity,
f(S)=2A,/(A, + A,,) is the so-called Buckley-Leverett flux function, R,, = g,/ pw
and R =q,/p, + qw/pw- Equation (2), often referred to as the pressure equation, is
elliptic, while (3), the saturation equation, is hyperbolic. For equal density fluids, or
in the absence of gravitational effects, (3) reduces to $dS/dt + V- (uf)= — R,,.

2.2 Coarse-Scale Flow Equations

In any type of upscaling or numerical homogenization procedure, a key first step
is the determination of the form of the coarse-scale equations. In general, the
coarse-scale equations can include terms, functional dependencies, and levels of
anisotropy that are not present in the fine-scale description. We now describe the
types of coarse-scale models that have been used for subsurface flow simulation.
The computation of the parameters appearing in these equations will be the subject
of Sects. 3 and 4, while the statistical assignment of some of these parameters will
be considered in Sect. 5.

We first discuss the coarse-scale single-phase flow equation. For this purpose
we consider the steady-state incompressible flow of a single component in a single
phase. Taking © = 1 and neglecting gravitational effects and the source term, (1)
(and (2)) reduces to:

V-kVp]=0. “)
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Under the assumption of length scale separation, in which k is assumed to vary
over a scale y that is small compared to the global length scale x, the form of the
coarse-scale equation is [8]:

V- [k*Vp] =0, o)

where k* is the upscaled or effective permeability tensor and the superscript ¢
designates a coarse-scale quantity.

For two-phase flow problems, the general form of the coarse-scale equation
is often assumed to be the same as the fine-scale model. For example, for
incompressible two-phase flow in the absence of gravitational effects and source
terms, the coarse model is of the form:

V- [A*k*Vp‘] =0, (6)
98¢ ,
o8 o + V- [uf*]=0. 7

The upscaled parameters k*(x) and ¢*(x) and functions A*(x, $¢) and f*(x, S°)
are computed in a preprocessing step. Note that, even if the fine-scale functions
f(S) and A(S) do not vary from block to block (i.e., they are not functions of x
or y), the coarse-scale functions are, in general, dependent on x and thus must be
computed for each coarse block.

Alternate upscaled representations have also been devised. Coarse-scale models
involving nonlocal effects were developed and applied by, e.g., [34,43]. A related
model, which includes only local terms and may thus be more amenable for com-
putation, is the generalized convection-diffusion (GCD) representation, described
by [12,33]. This model contains, in addition to convective subgrid effects (as are
captured in f* in (7)), a diffusive term. This term allows the model to properly
represent subgrid effects driven by short-length-scale permeability variations, as this
type of permeability correlation structure leads to diffusive rather than convective
corrections.

In the GCD model, rather than apply (7), the coarse-scale saturation equation is
given by:

60 V. /14 V m— V. [DVS] =0, ®)

dt

where m(x, S¢) is a correction to the convective flux and D(x, S)V.S¢ is a diffusive
flux (D is the coarse-scale diffusion tensor). Equation (8) could also be used for
systems in which capillary pressure effects are important. The general GCD model
additionally includes a VS¢ dependency in the coarse-scale pressure equation,
though a variant that uses an equation of the same form as (6) has been applied
successfully [12]. In the case of the GCD model (with (6) for the coarse-scale
pressure equation), the coarse-scale functions k*(x), ¢*(x), A*(x, S¢), m(x, S¢)
and D(x, S¢) must be computed in a preprocessing step.
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2.3 Finite Volume Discretization

We now briefly describe the finite volume representation typically applied for (1).
See [6] or [37] for more details. Analogous procedures are used to discretize
the coarse-scale flow equations. For simplicity we assume the model domain in
an x —y —z coordinate system is partitioned into N uniform grid blocks of
dimensions Ax x Ay x Az. Permeability k and porosity ¢ are taken to be constant
in each grid block, though they are discontinuous (with potentially large jumps)
from block to block. Neglecting capillary pressure and considering horizontal flow
in the x-direction (in which gravity does not act), the flow term in (1), for grid block
i, is represented in a fully-implicit formulation as:

a ap n n n n n n 1
I |:k/’/k/ (E)} ~ {(T )i +11/2 [7; =P +1] + (T; )11—11/2 [plj-—ll — D +1]} v’
9

where subscript j denotes phase and i denotes grid block, superscriptn 41 specifies
the next time step, and V = AxAyAzis the grid block volume. The transmissibility
(T; )” 12 relates the mass flow rate of phase j to the pressure difference between
grid blocks i — 1 and i and is given by:

kA
n+1 n+l
()it = (E)i_l/2 (pjkj)i—l/Z’ (10)

where A = AyAz is the area of the interface between blocks i — 1 and i. The
interface permeability k;_i/» is computed as the harmonic mean of k; and k;_;
and the p;A; term is upstream weighted. The transmissibility (7’; ):.’j_'ll /o 1s defined
similarly, as are the transmissibilities in the y and z-directions. Complications arise
with full-tensor permeabilities, as discussed in Sect. 3.3. The accumulation term in
(1) is represented using a first-order implicit (backward Euler) method.

In a typical reservoir simulation, grid blocks may be tens of meters on a side in x
and y while wellbore diameters are 0.25 m or less. This size disparity means that the
wellbore pressure, which is a quantity commonly specified (or computed) in flow
simulations, differs from the pressure of the grid block containing the well (the well
block). To capture this effect, the source/sink term in (1) is typically modeled using
a well index representation. This approach incorporates the analytical solution for
radial flow (in which p ~ logr, where r is radial distance from the wellbore) into
the numerical representation for ¢ ;. Specifically, a well equation of the following
form is introduced:

n+1 n N w
()" =W lo) ™ (ot = . (an
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w {1+1

Here (g is the flow rate of phase j (in units of mass/time) from block i into

Jj’i
the well (or vice versa) at time n + 1, pf g grid-block pressure at time n + 1,
p} is the wellbore pressure for the well located in grid block 7, and W; is the well

index. For a vertical well that fully penetrates block 7, W¥; is given by [59]:

2mkAz
Wi=|————| . 12
[bg(m/rw)l (12

where r,, is the wellbore radius and ry &~ 0.2 Ax for square grid blocks and isotropic
permeability fields. See [59] for further discussion and for expressions for W; for
more general cases.

The discretized representation of (1) entails 2N nonlinear algebraic equations
which must be solved to determine pressure and saturation in each grid block at
time n + 1. Solution of this system is accomplished using Newton’s method.

3 Upscaling of Single-Phase Flow Parameters

We now describe the numerical computation of the upscaled functions that appear
in the coarse-scale models presented in Sect. 2.2. We first consider upscaled single-
phase flow parameters. Our descriptions here and in Sect. 4 are for two-dimensional
systems, though the techniques considered are equally valid for three-dimensional
cases.

3.1 Local Permeability and Transmissibility Upscaling

The coarse-scale single-phase flow equation is given by (5). The upscaled perme-
ability k* can be computed using a variety of numerical homogenization procedures
(analytical approaches can also be used for idealized cases). Figure 1a depicts the
global flow domain, where the finer lines represent the fine-scale grid and the heavier
lines the coarse-scale grid. In local permeability upscaling procedures, the fine-scale
pressure equation (4) is solved on the fine-scale domain corresponding to the target
coarse block, subject to specified boundary conditions. Common choices for these
boundary condition are constant pressure on inlet and outlet boundaries and no
flow on all other boundaries (this is the standard procedure), or periodicity [28, 60].
Equation (4) must be solved twice in two-dimensional problems and three times in
three-dimensional problems, with pressure driven in each coordinate direction. The
upscaled permeability k* can then be computed in various ways (see discussion in
[75]); an accurate and robust approach is through the inversion of the coarse-scale
Darcy’s law [68,71]:

u=-k*Vp, (13)
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- (b) Local fine-scale region
—— +——— for T* upscaling

= |

(a) Global fine and coarse-scale grids (c) Extended local region
for T* upscaling

Fig. 1 Schematic showing global fine and coarse-scale grids and local regions to compute
upscaled parameters. (a) Global fine and coarse-scale grids. (b) Local fine-scale region for 7*
upscaling. (¢) Extended local region for 7™ upscaling

where u represents the averaged fine-scale velocities over the coarse-scale block and
V p is the averaged fine-scale pressure gradient over the coarse block. For Cartesian
grids, Vp = VP, as shown in [75].

Once k* is computed for all coarse blocks, coarse-scale transmissibility, as
appears in the coarse analog of (9), can be computed by harmonically averaging
appropriate components of k* in adjacent blocks (more general multipoint flux
techniques are required if full-tensor effects are important — see, e.g., [4]). An
alternate procedure, however, is to compute upscaled transmissibility (7*) directly.
This approach avoids the second (harmonic) averaging and has been shown to
provide improved coarse-model accuracy for highly heterogeneous systems [e.g.,
17,63].

Figure 1b illustrates the local fine-scale region used to directly compute 7*.
Note that 7* is defined at the interface between the two coarse blocks. Local
boundary conditions with constant pressure at the left and right boundaries and no
flow specified on the upper and lower boundaries (for flow in the x-direction) are
often assumed. Then the upscaled 7* (in the x direction) is determined via:

(TF)ig1)2 = _ql+—l_/2 (14)
Pi—Pit1

where g designates the integrated fine-scale flow rate through the interface and p;
and p; ., are the volume averages of the fine-scale pressures over the two coarse
blocks. An analogous problem with flow driven in the y-direction is solved to
determine 7.
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To reduce the effect of the assumed local boundary conditions, some neighboring
fine-scale cells can be included in the computation, as shown in Fig. lc. This
approach, referred to as extended local upscaling [68], is analogous to oversam-
pling, used in the computation of multiscale basis functions [42]. Extended local
upscaling can also be applied for the calculation of k*, in which case the fine-scale
computational domain is centered around the target coarse block rather than the
coarse interface as in Fig. lc.

In many subsurface flow problems, flow is mainly driven by wells. Because of
the nonlinear pressure field in the vicinity of the well (p ~ logr), which differs
from the slowly varying “linear” flow assumed when using standard or periodic
boundary conditions, upscaling in the near-well region requires the solution of
a well-driven flow problem. In addition to the upscaled transmissibilities linking
coarse-scale well blocks to adjacent blocks (these transmissibilities are designated
T.¥), an important additional quantity is the coarse-scale well index W;*. This can
be computed following the solution of the local fine-scale pressure equation with a
(well-driven) source term using:

q;

P — Di

1

5)

Here i designates the coarse block in which the well is located, g}" is the flow rate
into or out of the well, p}” is wellbore pressure and p; is the volume-averaged
fine-scale pressure over coarse block i. For details on near-well upscaling, refer
to [16,27,29,54].

We note that specialized treatments for well-driven flow have also been devel-
oped for multiscale finite element and finite volume methods. Such implementations
include those discussed in [1,22,45,48,50,70].

3.2 Global and Quasi-global Approaches

The local procedures described above are efficient, as the large-scale global flow
problem is decomposed into a series of small-scale, local flow problems (which can
be easily solved in parallel). As a result of assumptions regarding local boundary
conditions, they may however lose accuracy for highly heterogeneous permeability
fields that lack scale separation. In recent years, techniques that incorporate global
flow into upscaling calculations have been shown to improve the accuracy of coarse-
scale models.

This can be achieved by directly computing the upscaled properties from global
fine-scale (single-phase) flow solutions. Such global (single-phase flow) upscaling
procedures [41, 56, 69, 72, 74] entail the computation of k*, T* and near-well
parameters. Global upscaling eliminates the need for (assumed) local boundary
conditions, though it requires one or more global fine-scale solutions. It should be
kept in mind, however, that the global steady-state single-phase flow problem need
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(a) Global coarse-scale flow (b) Local fine-scale flow

Fig. 2 Schematic showing global coarse-scale grid and local fine-scale region. Local boundary
conditions are determined from global coarse-scale pressures (represented by X’s). (a) Global
coarse-scale flow. (b) Local fine-scale flow

be solved only once (or perhaps a few times), and that the resulting parameters can
then be applied to coarse-scale time-dependent multiphase flow simulations. Thus,
global single-phase upscaling is viable in practice in many cases.

Quasi-global approaches also incorporate global flow effects, though in this case
this information is only approximate. In local-global upscaling [e.g. 11, 17,36,49],
for example, the fine-scale boundary conditions used for the local upscaling com-
putations are determined from global coarse-scale solutions. The basic procedure
is illustrated in Fig.2. First, a local single-phase upscaling is performed and
the global coarse-scale pressure equation is solved. Global coarse-scale pressures
(represented by x’s in Fig. 2a) are then interpolated to provide boundary conditions
for extended local upscaling computations (as depicted in Fig.2b). The approach
thus incorporates (approximate) global flow effects while avoiding the solution
of the global fine-scale problem. Iteration and thresholding can be introduced to
improve accuracy and efficiency; for detailed algorithms refer to [11, 17].

We note that there are two basic ways in which global flow information (either
exact or approximate) can be used in upscaling calculations. The first approach
entails the use of “generic” global flow information, in which flow is driven by,
e.g., large-scale pressure differences in each coordinate direction. Approaches of
this type include those of [17,36, 72]. Generic flow information can be expected
to provide reasonable accuracy for many different flow scenarios, though for some
particular problems it may not provide the best accuracy achievable. The second
approach addresses this issue by using global information based on the specific
flow scenario [e.g., 11, 41,49, 56, 74]. In this case the coarse-scale properties
are adapted to the specific global problem and can thus be expected to provide
improved accuracy relative to those computed from generic flows. Some or all of
these “adaptive” properties may, however, need to be recomputed when global flow
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conditions change considerably. Thus there is a potential tradeoff between accuracy
and efficiency with these two basic approaches.

The local-global procedure has also been applied within a multiscale finite
volume element framework [30]. In this approach, multiscale basis functions are
first constructed using, e.g., oversampling and linear pressure conditions on the
boundary of the local (oversampled) regions. Using this initial set of basis functions,
the global problem is solved to provide the coarse-scale pressure field. This global
pressure solution is then used to provide boundary conditions in the generation
of a new set of (local-global) basis functions. Various specific treatments can be
applied, and conforming or nonconforming local-global basis functions can be
constructed.

3.3 Accounting for Full-Tensor Effects in Coarse Models

It is well known that fine-scale heterogeneity can lead to large-scale permeability
anisotropy, as can be seen immediately through consideration of layered systems. It
is also evident that, if the layering is skewed relative to the coordinate system, the
coarse-scale permeability will be a full tensor. Numerical effects similar to those
that appear with full-tensor permeabilities also arise from grid nonorthogonality. In
many practical cases, full-tensor and grid nonorthogonality effects are relatively
small and can be neglected or treated approximately. When these effects are
important, methods must be applied that are suitable for use with heterogeneous
full-tensor permeability fields. Within the context of permeability upscaling, one
can proceed by computing k* for each coarse block and then applying a multipoint
flux approximation (MPFA) for discretization [e.g., 4].

Alternatively, coarse-scale transmissibilities that capture subgrid and full-tensor
effects can be directly computed. Such an approach was developed for local
upscaling in [52, 61]. We note that MSFEM and MsFVM techniques also employ
a coarse-scale operator that captures full-tensor effects. In addition to these local
approaches, global and local-global transmissibility upscaling procedures that
represent full-tensor effects have also been developed and applied [9, 10].

In some cases it is possible to account approximately for full-tensor effects using
a nonlinear two-point flux approximation. Specifically, in [19], it was shown that
the use of a specialized two-point flux approximation in conjunction with global or
local-global upscaling procedures can approximately capture full-tensor effects in
coarse-scale simulations.

3.4 Numerical Results for Single-Phase Flow

We now present results for single-phase flow problems. We first illustrate the
performance of several different upscaling techniques. Then, results for the local-
global multiscale finite volume element method are provided.
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3.4.1 Performance of Various Upscaling Techniques

The performance of various single-phase upscaling techniques will now be assessed
for a challenging case. The example presented here is from [18]. We consider a two-
dimensional synthetic channelized system with highly variable permeability. A total
of 100 realizations, conditioned to seismic and well permeability data, are generated
to account for uncertainty in the permeability field. Three realizations are shown
in Fig. 3. One injection well and one production well penetrate high permeability
blocks in all realizations, as indicated in Fig. 3. The fine-scale model (of dimensions
100 x 100) is uniformly coarsened to 20 x 20. We consider a unit dimensionless
pressure difference between the injector and producer, and compare the total flow
rate Q between the fine and coarse-scale models.

Displayed in Fig.4 are cross-plots for the fine and coarse-scale flow rates for
the 100 realizations. The range of flow rate values reflects the uncertainty in the
permeability field. A perfect upscaling procedure would result in all points falling
on the 45° line. Figure 4a shows coarse-scale flow rates for models generated using
local k* upscaling without near-well upscaling (in this case, k* is computed for
the well block using a local approach and (12) is applied using coarse dimensions
and (k;‘xk;‘y)l/ 2 in place of k). The reference fine-scale flow rates are significantly
underestimated by these coarse models, demonstrating the inadequacy of the local
k* approach for this case. This underestimation is due to the inability of purely
local upscaling procedures to capture the large-scale permeability connectivity that
strongly impacts global flow and to the inaccurate near-well treatment. The coarse-
scale results are considerably improved through use of extended local T* and
near-well upscaling (displayed in Fig. 4b). Further improvement is achieved using
adaptive local-global upscaling (which includes near-well upscaling), where the
upscaled properties are adapted to the specific well configuration, as is evident in
Fig. 4c. These results demonstrate the advantage of incorporating global flow in the
upscaling calculations.

When considering large numbers of realizations, realization-by-realization
agreement may not be as important as agreement in key statistical quantities such

100000 g 100000 3 . = 5 - e ¥ 500

. B : . - - T4 - 4 L 500
i & e
0o 1000.00 00 1000.00
(a) Realization #1 (b) Realization #2 (c) Realization #3

, -~
' 4

Fig. 3 Three realizations of the permeability distribution (of dimensions 100 x 100) for the
channelized reservoir conditioned to synthetic seismic and well data. Locations of injection (3, 48)
and production (98, 28) wells are indicated as / and P (figure modified from [11]). (a) Realization
#1. (b) Realization #2. (¢) Realization #3
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Fig. 4 Well flow rates for fine and coarse-scale models for 100 realizations. Dotted lines represent
10% error and dashed lines 40% error (from [18]). (a) Local k™ upscaling only. (b) Extended local
T* with near-well treatment. (¢) Adaptive local-global 7* upscaling

as the cumulative distribution function (CDF) for flow rate over the ensemble, as
shown in Fig. 5. The fine-scale CDF is represented by the thick solid curve. The
CDF that results from the use of local k* upscaling is shifted significantly to the
left, indicating a clear bias (underestimation) in flow rate. The use of extended
local T* and near-well upscaling provides coarse-scale models with much better

accuracy —

the dot-dashed CDF curve is relatively close to the fine-scale CDFE.

Consistent with the cross-plot shown in Fig. 4c, the use of adaptive local-global T*
upscaling (thin solid curve) leads to a very accurate CDF. This demonstrates the
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Fig. 5 Comparison of CDF of well flow rates between fine and coarse-scale models

importance of using appropriate coarse-scale models in uncertainty quantification
and the potential bias that can arise through use of inaccurate upscaling procedures.

3.4.2 Results for Local-Global Multiscale Finite Volume Element Method

We now present a single set of results using the local-global multiscale finite volume
element method developed in [30]. These simulations involve 50 two-dimensional
channelized models taken from [24]. Although we do not show results for this case
using the upscaling techniques considered in the previous section, we note that the
application of standard upscaling procedures for this system results in significant
error. Local-global upscaling can, however, provide accurate coarse models (as
demonstrated in [17]).

For this problem, pressure is fixed at the left and right boundaries and no-flow
conditions are imposed at the upper and lower boundaries. Flow is single phase
and incompressible. The total flow rate through the system Q is then computed by
integrating the flux over the inlet (or outlet) boundary. The fine-scale model is of
dimensions 220 x 60 and the coarse-scale model is of dimensions 22 x 6.

Results for flow rates for both the standard (upper) and local-global (lower)
multiscale finite volume element method are shown in Fig.6. For the standard
method, we use no oversampling and apply linear pressure boundary conditions
for the construction of the basis functions (better accuracy can be achieved using
oversampling or reduced boundary conditions). Both sets of results are presented
as cross plots of the coarse-scale flow rates against the corresponding fine-scale
rates. The improvement achieved through the local-global updating of the basis
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Fig. 6 Comparison of global flow rates for side to side flow for (a) standard and (b) local-global
multiscale finite volume element method (from [30])

functions is evident. The average relative error in Q for the standard multiscale
finite volume element method (with the high-error point, designated by the x
in the upper figure, removed) is about 18%. For the local-global method, the
average error (based on all of the points) is reduced to about 2%. This example
illustrates that, consistent with our observations for upscaling procedures, the use of
approximate global information can also act to enhance the accuracy of multiscale
methods.
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4 Upscaling of Two-Phase Flow Functions

In many cases, reasonably accurate coarse-scale models for two-phase or multiphase
flow can be constructed with only the single-phase flow parameters upscaled
(assuming these single-phase flow parameters are sufficiently accurate). This is
often the case when the level of coarsening is moderate (relative to the permeability
correlation structure) and when the coarse grid is constructed to resolve key high-
permeability features. Some examples demonstrating accurate two-phase simulation
results using only single-phase parameter upscaling are presented in [19,68,74]. In
other cases, however, such as when a high degree of coarsening is applied or the
underlying permeability field is highly heterogeneous, the numerical homogeniza-
tion of two-phase flow parameters is also required. Even when two-phase parameter
upscaling is introduced, it is still essential to use a sufficiently accurate single-phase
upscaling procedure, so all of the methods described in the previous section remain
applicable. In this section, we focus on two-phase upscaling for coarse-scale models
described by (6) and (7). Reviews and comparative studies of some of the earlier
two-phase upscaling procedures are presented in [7,23,25].

The calculation of the upscaled two-phase flow functions can be somewhat
time consuming. However, it should be noted that the resulting coarse model can
generally be used for many flow simulations. For example, if a computational
optimization procedure is to be applied to optimize well rates, the same coarse
model can be used for many if not all of the required simulations (and these
optimizations may require hundreds or thousands of flow simulations). In such cases
the overhead associated with the upscaling will not be of major concern.

4.1 Numerical Procedures for Computing Upscaled Functions

In local two-phase upscaling, the fine-scale two-phase flow problem is solved on a
local domain (some amount of border region is commonly used). This entails the
solution of both the pressure and saturation equations (2) and (3) subject to pressure
and saturation boundary conditions.

In analogy to the commonly used boundary conditions for single-phase upscal-
ing, an intuitive choice for local boundary conditions for the two-phase problem is
to prescribe constant pressures along the inlet and outlet of the local region and no
flow through the boundaries parallel to the flow direction. Saturation at the inlet is
specified to be one. These “standard” local boundary conditions have been shown
to overestimate the local fine-scale fluxes, often leading to coarse-scale models that
predict early breakthrough of the injected fluid relative to the reference fine-scale
global solution.

In an attempt to correct this bias, “effective flux” boundary conditions (EFBCs)
were proposed [66]. These boundary conditions view the local region as an
inclusion immersed in a global domain, and specify the inlet and outlet local fluxes
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based on the local fine-scale permeabilities and a global background (or effective)
permeability. Thus, EFBCs consider global effects, in a very approximate sense.
Although EFBCs have been shown to reduce the bias associated with standard
boundary conditions, there are still cases, such as those characterized by very small
vertical permeability correlation lengths, where error persists [12]. For such cases
it is useful to incorporate more accurate global effects in the two-phase upscaling
calculations, as will be illustrated below.

Following the local fine-scale flow solution of (2) and (3) subject to appropriate
boundary conditions, the upscaled two-phase functions A* and f* (as appear in (6)
and (7)) are computed to preserve the average fine-scale total flow rate and fractional
flow of water. The upscaled total mobility function A*(S¢) is computed to satisfy:

A*(SOK*Vp© ~ AKVp = —u, (16)

where the overbar represents volume averaging and u designates the averaged fine-
scale total velocity. Note that the upscaled two-phase functions A*(S¢) and f*(S¢)
are both treated as directional quantities. The x-component in the above equation
gives A (S)k; Ap/Ax® = u,, where Ap represents the difference of the averaged
fine-scale pressures (of opposite sign to V p¢). Therefore A} (S¢) can be computed
as:

PRTRS g R

* kxAp/Axc  (kxAp/Ax<) Aych  TrAp

where Ax¢ and Ay¢ designate the dimensions of a coarse block, % is the model
thickness (Az), g, is the total volumetric flow rate in the x-direction, and k}
and 7)F are coarse-scale permeability and transmissibility in the x-direction (note
permeability is here taken as a diagonal tensor).

The upscaled fractional flow function f*(S¢) is computed to preserve the
averaged water flux u /" in the volume-averaged saturation equation. We then have

llcf*(SC) — W (18)

The directional fractional flow function in the x-direction is thus given by:

fI(S) = M;f- (19)

X

The coarse-scale saturation S¢ can be computed either as the pore-volume average
saturation in the upstream coarse block or over the fine-grid cells along the block
interface. This computation should be consistent with the numerical scheme used
for the coarse-scale saturation equation.

The upscaled functions A; and fy* are computed analogously, with the local
flow imposed in the y-direction. The calculation is repeated for each coarse block
(or coarse-block interface) in each flow direction. Note that after A* and f*
are computed, the upscaled relative permeabilities kr*j can be readily determined
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through the relationships A* = k) /u, + k), /i and f* = (k% /pw)/A*.
For more detailed discussion of the computation of the upscaled two-phase flow
functions, refer to [12, 14].

4.2 Global Methods and Near-Well Treatment

As is evident from the above discussion, the choice of local boundary conditions can
impact the accuracy of the coarse-scale two-phase flow parameters. To address this
issue, global and local-global two-phase upscaling approaches have been developed.

Global two-phase upscaling methods are expensive as they entail the solution
of the full fine-scale problem. Following this solution, coarse-scale functions are
computed as described above, using (17) and (19). As discussed below, in some
settings the use of global methods may be appropriate, particularly when the
upscaled functions can be reused for many simulations.

Local-global approaches, which incorporate approximate global information
into the determination of the local boundary conditions, also exist for two-phase
upscaling problems [14, 15]. These methods are more involved than those used for
single-phase upscaling as boundary information evolves in time and is required for
both pressure and saturation. The approach in [14] considers generic global flows,
i.e., global flow in the x and y-directions (for a two-dimensional system). Global
coarse information is incorporated by interpolating the coarse-scale solutions to
determine the local fine-scale boundary conditions.

More specifically, for a target coarse domain containing n, x n, fine cells, the

fine-scale fluxes and saturations (q,{_ and S,{_) at the inlet are computed from the
coarse-scale flux and saturation (¢$_ and S¢_) using (for flow in the x-direction):

@), = (272) isien,
X— X—

Tmax — Tmin

(Sif)L - (M) SC L 1<i<n,, (20)

Tmax — Tmin

where t,,,, and t,,;, represent the maximum and minimum values of time of flight
(7) along the fine-scale boundary x_ and i is the fine-block index along the local
boundary. Note that T is computed from the global single-phase fine-scale velocity
field (time of flight is inversely proportional to the velocity along streamlines).
Fluxes at the outlet boundary are prescribed analogously. To incorporate two-
phase flow effects in the global flow information, the local boundary conditions are
updated in accordance with the coarse-scale solutions. A criterion was introduced
such that the change of (averaged) local fine-scale saturation is approximately
equal to that of the global coarse-scale solution. For more detailed discussion, refer
to [14].
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As noted earlier, the upscaled properties can also be derived from a specific
global flow, in which case the resulting coarse model can provide enhanced
accuracy. Such an approach was applied in [15] to systems with strong full-tensor
effects and was shown to adequately capture the two-phase flow induced by the
full-tensor anisotropy. This approach shares some similarities with the nonlinear
two-point flux approximation for single-phase flow, discussed in Sect. 3.3.

We note that for alternate coarse-scale descriptions, such as the GCD model
discussed in Sect.2.2, the coarse-scale functions appearing in (8) must also be
numerically computed. Therefore, similar issues with local boundary conditions
and the dependency of the upscaled functions on global flow also arise. Although
global and local-global two-phase upscaling approaches could be applied to the
GCD model, such approaches have not yet been investigated.

Important near-well effects occur in multiphase flow simulations, and these can
be difficult to capture in coarse models in the absence of specialized treatments.
Challenging examples include models with large contrasts in phase mobilities (e.g.,
high-mobility water injected into a low-mobility oil) or cases where dissolved gas is
liberated from the oil phase in the vicinity of production wells. To accurately model
such cases in coarse-scale simulations, two-phase near-well upscaling procedures
have been devised [e.g., 44,55].

In the approach described in [55], coarse-scale well-block parameters, including
a parameter (R;) that quantifies the volume of gas dissolved in the oil phase as a
function of pressure, are computed for oil-gas models. Boundary conditions for the
“local well model” are determined using a local-global technique. Because of the
nonlinear nature of the equations and the complex interaction between two-phase
flow, phase behavior and near-well heterogeneity, direct averaging of the form
described in (16)—(19) does not guarantee accurate results. Rather, coarse-scale
parameters are computed in this case through use of a gradient-based optimization
procedure, where the difference between coarse-model phase flow rates and the
corresponding (integrated) fine-model flow rates are minimized over the local
well region. This minimization is accomplished by adjusting the coarse functions
(e.g., A)).

An adjoint procedure is used to provide the gradients. Using this approach, the
augmented cost function J4, which we seek to minimize, is given by:

N N
Ja=) L@ w+ Y A g (p'.p" ). @1)

n=1 n=1

Here n designates time step and N is the total number of time steps, L" quantifies
the mismatch between fine and coarse models at time step n, p”* represents all
of the coarse-model states (pressure and saturation) at time step 7, u represents
tabular values for the upscaled functions we wish to compute, A" represents the
vector of Lagrange multipliers at time step 7, and g"(p", p"~!,u) designates the
dynamic system (coarse-scale reservoir flow equations). The adjoint procedure
provides dJ,4/du, which is then used to minimize the cost function J4 using a
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gradient-based technique. For details on the computations and the performance of
the overall procedure, see [55].

4.3 Numerical Results Using Two-Phase Upscaling

We now present flow results for coarse-scale models generated using various two-
phase upscaling approaches. We first show results for individual realizations and
then present comparisons of ensemble statistics of the flow response for multiple
realizations. These examples are from [12,14], where coarse-scale simulation results
using different procedures, for a variety of fine-scale geological models, are shown.

4.3.1 Flow Results for Individual Realizations

We consider log-normal permeability distributions, generated using sequential
Gaussian simulation [26]. The permeability field is characterized by dimensionless
correlation lengths /, and /, (dimensionless correlation length is defined as the
correlation length divided by the model length in the corresponding direction) and
variance of logk (designated as 02). Two such permeability fields are shown in
Fig.7. The field in Fig. 7a is characterized by /, = 0.5 and /,, = 0.05, while that in
Fig. 7b is characterized by /, = 0.4 and /, = 0.01.

For both cases, the fine-scale model is of dimensions 100x 100. These models are
uniformly coarsened to provide coarse models that are of dimensions 10 x 10. Flow
is driven by specifying different pressures along the left and right boundaries of
the models, with no-flow conditions on the top and bottom. Water is injected at the
left boundary and oil and water are produced at the right boundary. The fine-scale

== — 3

(a) L, = 0.5, 1, = 0.05

Fig. 7 Fine-scale permeability fields, of dimensions 100 x 100 with different correlation lengths,
shown in log scale. For the permeability field in (a), the mean of log k is 0, and for that in (b), the
mean of logk is 3.0. The variance (o2) of log k is 4.0 for both fields. (a) I, = 0.5, [, = 0.05.
(b) I, =04,1, =0.01
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Fig. 8 Flow results using local two-phase upscaling with standard boundary conditions and
EFBCs for a log normal permeability field (/, = 0.5,1, = 0.05, 0 = 2.0) and M = 5 (figure
modified from [12]). (a) Total flow rate. (b) Oil cut

relative permeability functions are specified as k,,, = S? and k,, = (1 — S)?; the
oil-water viscosity ratio (i, / f4y) 18 5.

We generate coarse models using several different procedures and compare sim-
ulation results with the fine-scale reference solutions. The primitive coarse model
employs only the upscaled single-phase flow parameters, without any upscaled two-
phase flow functions (in this case we simply take kr*j = k;;). Coarse models are
also generated through application of local two-phase upscaling procedures using
both standard boundary conditions and EFBCs. Local-global two-phase upscaling
is additionally considered [14]. A global single-phase upscaling procedure [19] was
used to generate 7™ for all of the coarse models. This approach was employed to
ensure accuracy in the single-phase flow parameters.



Uncertainty Quantification for Subsurface Flow Problems 185

26

—— 100x100, fine ' TS
24 10x10, primitive ‘,\:s:*', P
10x10, local EFBCs “‘:\\@V
25 = == 10x10, local-global 2p ", .
y\' 5
20 ’\o"
Q, »
18 L
2 S
K
16 .
K4 -
K4 K
14 LA
P AS— . . .
0 0.2 0.4 0.6 0.8 1
PVI
(a) Total flow rate
1.2 r .
= 100x100, fine
n10x10, primitive
1 1==1 10x10, local EFBCs
2 E = = = 10x10, local-global 2p
08 i
Fo 0.6
04t
0.2
0 N
0 0.2 0.4 0.6 0.8 1
PVI
(b) Oil cut

Fig. 9 Flow results using various coarse models for a log normal permeability field ([, = 0.4,
[, =0.01,and 0 = 2.0), M = 5 (from [14]). (a) Total flow rate. (b) Oil cut

Flow results are presented in Figs. 8 and 9. These results display the total flow
rate (Q ) and the oil cut (F,) as a function of pore volume injected (PVI), defined as
(1/Vy) fot Q(t)dt, where V), is the total pore volume. Note that PVI corresponds to
a dimensionless time. Here total flow rate can be viewed as either the water injection
rate or the total (oil4+water) production rate, as the system is incompressible. Total
flow rate increases with time as more mobile water replaces less mobile oil within
the model. Oil cut is the fraction of oil in the produced fluid —it is 1 at early time and
then decreases once the injected water appears at the right edge of the model. Note
that Q, is greater in Fig. 9a than in Fig. 8a as a result of the higher permeability
values in Fig. 7b.

Shown in Fig. 8 are the results for the case [, = 0.5 and /, = 0.05. The primitive
model shows substantial error, particularly for F,. The coarse model based on kr*j
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generated using standard boundary conditions overcorrects the primitive model —
0O, is now too large and F, is generally underestimated relative to the fine model.
The coarse model based on k,’fj computed using EFBCs is accurate for both O,
and F,, which demonstrates the impact that local boundary conditions can have on
global flow results. These results are typical for permeability fields in this parameter
range.

It was observed in [12], however, that the EFBC model loses accuracy for
[, < 0.02. There it was shown that accurate coarse models for very small /, can
be generated through use of either a global upscaling procedure or via application
of the GCD model (as noted earlier, the GCD model is able to capture diffusive
effects driven by short-length-scale permeability variations). These observations are
consistent with the results presented in Fig. 9 for the case /[, = 0.4 and /, = 0.01.
For this example, the primitive model again shows error in F,,. The EFBC model is
less accurate for both O and F, than in the previous case (Fig. 8). More specifically,
it overpredicts the flow rate of the injected water, which leads to an overestimate of
Q. and to an underestimate of F, (use of the standard method would result in even
larger errors). The local-global two-phase upscaling, by contrast, provides accurate
results for both quantities.

The time required for the computation of the upscaled two-phase flow parameters
can be considerable. Timings are reported, for example, in [12], where two-
dimensional models containing 100 x 100 fine cells were coarsened to 10 x 10
coarse models. In that work directional A* and f* were computed for all coarse
grid blocks using local two-phase upscaling methods. Overall speedups for these
coarse models relative to the fine-scale models (overall speedup accounts for the
time required for the upscaling calculations and the coarse-model simulations) of
4-10 were achieved. Runtime speedups were significantly larger, however, ranging
from 400 to 900. Thus, as noted above, the overhead associated with two-phase
upscaling is much less of a concern if the coarse model is to be run many times.

4.3.2 Flow Results for Multiple Realizations

The next set of results involves flow simulation on multiple permeability real-
izations, as would be required for uncertainty quantification. We generate 100
realizations of the fine-scale permeability field with /[, = 0.4, [, = 0.01 and
o = 2 (one realization is shown in Fig.7b). Results for the fine and primitive
coarse-scale models are shown in Fig. 10 as the lighter gray curves. The black
solid curve shows the P50 (median) response, and the black dashed curves display
the so-called P10 and P90 results. These curves are computed such that 10% and
90% of the responses fall below the corresponding curves. Figure 10a displays the
fine-scale predictions, while Fig. 10b is for the primitive coarse model. Note that
time is nondimensionalized here and in subsequent two-dimensional simulations
using system variables (i.e., not in terms of PVI). We next compute these key
statistical quantities (P50, P10 and P90 curves) for coarse-scale models generated
using different approaches.
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0 0.02 0.04 0.06
Time
(a) Fine-scale model

0 0.02 0.04 0.06
Time

(b) Primitive coarse model

Fig. 10 Oil cut for 100 realizations (represented by gray curves) for log normal permeability fields
(I, =04,1, =0.01,0 = 2.0) and M = 5. Black curves represent P50 (solid curve) and P10-P90
interval (dashed curves) (from [14]). (a) Fine-scale model. (b) Primitive coarse model

The comparisons between results for coarse-scale models and the reference
fine-scale results are shown in Fig. 11. Here, the solid curves correspond to the
fine-scale results and the dot-dash curves to the coarse-scale models. The thick
curves represent P50 results and the thin curves the P10 (lower curves) and P90
(upper curves) flow responses. Figure 11a compares the fine and primitive coarse
models. The primitive coarse model shows large errors, with the P10-P90 intervals
predicted by the fine and coarse models overlapping very little. Displayed in Fig. 11b
are the results using local EFBC upscaling. These results are better than those
using the primitive model, though there is a clear bias toward underprediction of
F, (consistent with the results in Fig.9). The results using local-global two-phase
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Fig. 11 Comparison of P50 (thick curves) and P10-P90 interval (thin curves) for oil cut between
fine-scale (solid curves) and coarse-scale (dot-dash curves) models for log normal permeability
fields (I = 0.4,1, = 0.01, 0 = 2.0) and M = 5 (from [14]). (a) Primitive coarse models.
(b) Local two-phase upscaling (EFBCs). (¢) Local-global two-phase upscaling
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upscaling are shown in Fig. 11lc. We see that the fine-scale P50 and P10-P90
predictions are captured very well by the coarse model, and that the biases in the
other two modeling procedures have been eliminated.

S Efficient Upscaling of Multiple Geological Models

Application of the upscaling methods described in previous sections can provide
coarse-scale models of reasonable accuracy in many cases. In the case of single-
phase parameter upscaling, generation of the coarse model requires only the steady-
state solution of the single-phase flow equation, so these computations are generally
not overly demanding unless the fine model is highly detailed. The determination of
upscaled two-phase parameters, by contrast, can be computationally demanding, as
discussed above.

This cost may be of particular concern if many geological realizations are to be
considered, as is required for uncertainty quantification. For these cases, the two-
phase upscaling procedure must be accelerated if it is to be used in practice. In
recent work, we have developed an approach referred to as ensemble-level upscaling
(EnLU) [13, 20]. The goal of EnLU is to efficiently provide upscaled two-phase
flow parameters for multiple coarse-scale models. This approach avoids the block-
by-block computation of &, (S¢) (or A* and ™) by applying instead a statistical
assignment procedure. The intent of EnLU is for the coarse models to provide
simulation results (for relevant quantities) that are in statistical agreement with the
results that would have been computed from the underlying fine-scale models. In
the following sections, we present the specific EnLU procedures and then provide
numerical results for two and three-dimensional problems.

5.1 Ensemble-Level Upscaling Procedures

Assume we have an ensemble of N, fine-scale geological realizations on which
we wish to perform flow simulation, with the goal of computing, e.g., expected oil
production or the cumulative distribution function for oil production over the N,
models. Because the fine-scale simulations are expensive, and N, such simulations
are required, our intent is to perform these flow simulations on highly coarsened
models. Thus we require coarse-scale single-phase flow parameters (k* or 7*)
as well as two-phase flow functions (k; or A* and f*) for each coarse block in
all N, models. We could of course directly apply the methods described in the
previous sections to compute the required coarse-block parameters and functions
for all coarse blocks in all models. Such an exhaustive approach will provide
speedup compared to performing N, fine-scale simulations, but it will still be
expensive, mostly because of the computations required to compute the two-phase
flow parameters for all coarse blocks.



190 L.J. Durlofsky and Y. Chen

In the EnLU approach, the goal is to reduce the amount of computation required
to provide coarse-scale models. However, because upscaled single-phase flow
parameters can be computed efficiently, we compute them exhaustively; i.e., for
each coarse block in each realization. It may be possible to assign some of these
parameters statistically, as discussed below. The savings achieved in our current
EnLU approach arise from the fact that we compute (using one of the flow-based
procedures described in Sect. 4) the upscaled two-phase flow functions for only N,
of the N, realizations, where N,/ N, <~ 0.1. For the coarse blocks in the remaining
(N; — Nc) models, the k', curves are assigned using a statistical procedure. Thus
the time required to generate the N, coarse models from the N, fine models is
greatly reduced relative to the time that would be required if the upscaled two-phase
flow functions were directly computed, for each coarse block, using the (relatively
expensive) flow-based methods discussed in Sect. 4.

The overall EnLU method is presented in detail in [13,20], and the key aspects
of the approach are described in the following section. The general procedure is as
follows. The kr*j curves that are computed using a flow-based technique (for the grid
blocks in the N, realizations) provide the “training” data. Each of these kr*j curves
is then quantified by a single parameter, §k,;, which is simply the area between the
fine-scale k,; (S) curve and the coarse-scale k,’fj (S€) curve. The idea is to then find a
small number of coarse-block “attributes” that can be quickly computed (e.g., some
statistics of the underlying local fine-scale permeability field) that correlate with
8k.;. These attributes can then be used to statistically assign §k,; and thus a coarse-
scale kr*j (S€¢) curve. This means that, for coarse blocks in the (N, — N.) models,
rather than perform flow simulations to determine k,’fj (8€) for each block, k,’fj (89
can be assigned using a very fast statistical procedure.

Some type of regression technique could be used to relate §k,; to the coarse-
block attributes. Here, rather than proceed in this way, we perform a K-means
clustering in low-dimensional attribute space, and then construct the cumulative
distribution function (CDF) for k,; associated with each cluster. Then, for each
coarse block in the (N, —N.) models, we compute the block attributes, find the target
cluster, determine §k,; through statistical simulation based on the cluster CDF, and
then assign the k5 (S¢) curve from dk,;. The spatial correlation structure of the
upscaled functions can also be incorporated into the statistical simulation. We note
that the EnLLU procedure could also be applied for other coarse-scale descriptions
such as the GCD model presented in Sect. 2.2.

As indicated above, in our current implementation we compute the upscaled
single-phase flow parameters (k* or 7*) through solution of (4) for all coarse
blocks in all N, models. Any of the methods described in Sect.3 can be used
for this purpose. It should, however, be possible to apply an EnLU approach for
these parameters, as we do in the current implementation for k,’fj (S¢). Such a
treatment would proceed along the same lines as the EnLU procedure described
below. Specifically, we would compute k* or T* for all grid blocks in N, models,
then determine appropriate attributes that correlate with this training data (these
attributes would presumably involve the underlying fine-scale permeability field
in the target block and in neighboring regions), and then assign k* or T* to grid
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blocks in the remaining (N, — N,) models through statistical simulation. It will also
be important to preserve the spatial correlation structure of the coarse-scale k* or
T* fields, which can be accomplished using the geostatistical simulation described
below.

5.1.1 Parameterization, Attributes and Clustering

The procedures described here provide, in the general case, k and k) curves in
each coordinate direction for every coarse block. The description below is for kr*j in
the x-direction; analogous procedures are applied for kr*j in the other coordinate
directions. We apply a simple one-parameter representation of the upscaled k;‘j
curves. We characterize any upscaled curve based on the area between the k;‘j curve
and the original fine-scale k,; (S) curve; i.e., we compute

1 J * .
Bkrj =~ D k5 (S5) = ki (S| = 0.w, (22)
i=l

where N is the number of (equally spaced) saturation values at which the two
curves are evaluated. This approach is illustrated in Fig. 12 for k), and k, for
two different grid blocks. Although the underlying k,;(S) curves are the same in
all fine-grid blocks in this example, the k; curves (and thus ék,;) differ for the
two coarse blocks as a result of the different underlying fine-scale permeability
fields. This parameterization does not uniquely define the k;‘j curve, and more
complex parameterizations could be used (see [13, 20] for discussion of other
approaches). However, this single-parameter representation appears adequate for
the EnLLU procedure.
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Fig. 12 Parameterization of upscaled relative permeabilities. Dashed curves represent fine-scale
k,; and solid curves represent upscaled k,*j: (a) k:‘j in x for one coarse block and (b) k:‘j in x for
another coarse block (from [20])
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Fig. 13 Clustering and resultant CDFs using attributes CV(u,), o (logk) and integral range of
autocorrelation function of logk: (a) 5 clusters and (b) calibration CDFs for the 5 clusters
(from [20])

The attributes used in EnLU should, to the extent possible, be fast to compute,
correlate with 6k,;, and be statistically independent of one another. In our earlier
work we investigated the use of various sets of attributes. In [13], the average
and standard deviation of single-phase fine-scale Darcy velocities within the coarse
block region, i, and o (u, ), available from the solution of (4) (which is solved during
the calculation of k* or 7*), were used as the coarse-block attributes. The quantity
o (uy) provides a measure of subgrid velocity fluctuations, which strongly impact the
coarse-scale two-phase flow functions. In subsequent work [20], improved results
were achieved using the coefficient of variation (CV) of the fine-scale single-phase
Darcy velocity (o (uy)/uy), the integral spatial range of the autocorrelation function
of the fine-scale log k, and the standard deviation of the fine-scale log k, designated
as o (log k). These quantities are computed over the target coarse block and involve
the fine-scale single-phase velocity field and the underlying permeability field.

Clusters are then formed by plotting all of the training data points in the space
defined by the attributes and applying a K-means clustering algorithm. The 6k,;
values of the points are not used in forming the clusters. The CDF for dk,;
corresponding to each cluster can now be easily generated.

The resulting clusters and their associated CDFs (for §k,,, in x) using the three
attributes are shown in Fig. 13. It is evident that the clusters are distinct in attribute
space and that the CDFs show clear separation, which are both desirable properties.
This demonstrates that the selected attributes are indeed meaningful for use in
simulating upscaled relative permeabilities.

5.1.2 Stochastic Simulation of Coarse-Block Relative Permeabilities

Simulation of upscaled relative permeability (we designate the statistically simu-
lated function as 6k,;) by sampling from the target cluster CDF can be expressed as
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follows: B
Skyj = F7 (U@[0,1])). j = o.w, (23)

where F;~! is the inverse CDF of target cluster i and U denotes the CDF of a
uniform random function between 0 and 1 (represented by u [0, 1]). This approach
is referred to as EnLU with random drawing.

As discussed in [20], application of (23) does not directly incorporate any
information regarding the spatial correlation structure of 8k,; into 8k,;. Such
information might be available, for example, from the training data; i.e., the N,

realizations for which we compute k,’.“j using flow-based two-phase upscaling.

Alternatively, one might seek to constrain 8k, ; to honor the correlation structure of
the underlying fine-scale permeability field. This can be accomplished most readily
in the case of Gaussian permeability models, which are often used to represent
permeability in subsurface formations. Such models are fully characterized by
the two-point autocorrelation function. In geological contexts, this information is
typically described in terms of the variogram.

In the simulation of §k,;, information regarding spatial correlation can be
introduced by replacing the uniform random function in (23) by a multi-Gaussian
random function g. We then have:

8kyj = F' (G(g)). j = o.w, (24)

where G is the CDF of g. Standard geostatistical algorithms (e.g., sequential
Gaussian simulation [26]) can be used to generate g. The use of the back-transform
F ! assures that the calibration CDF from the target cluster is honored. Once 8k,
is determined through statistical simulation, the full k7';(S) curve is determined by
searching the target cluster for the nearest §k,; and then assigning the associated
curve to the block. B

The use of additional information in the simulation of §k,;, including cross-
correlation between different variables, is discussed in [20]. In that work, an
example is presented that demonstrates improved accuracy in the upscaled model
(as measured by the correlation coefficient between models constructed using flow-
based §k,; and statistically simulated 8k,;) when spatial correlation information
is included in SIgrj. We have not, however, observed significant differences in
ensemble-level flow quantities using (24) in place of (23). It is nonetheless
possible that the realization-by-realization agreement between fine and coarse-scale
simulations (at least for some simulation quantities) may be improved through use
of (24), though this issue requires further study.

5.2 Numerical Results Using Ensemble-Level Upscaling

In this section we present results for both two and three-dimensional systems using
EnLU. Various core upscaling procedures are applied, and different variants of
EnLU are used.
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5.2.1 Results for 2D Systems

The first example is from [13]. This case involves 100 realizations of a model
characterized by dimensionless correlation lengths /, =0.4 and /, =0.01 and
variance of log permeability (%) of 4. This is the same set of realizations described
in Sect. 4.3 (one realization is displayed in Fig. 7b). Recall that the fine-scale models
contain 100 x 100 grid blocks. The problem set up is as described in Sect. 4.3 (water
is injected at the left boundary and production is at the right boundary).

Coarse-scale results (on 10 x 10 grids) for this example are presented for three
different upscaling approaches. These include the use of primitive models (in which
fine-scale k,; curves are applied in the coarse-scale model), models in which all
upscaled functions are computed numerically using a flow-based procedure, and
models in which EnLU is applied. In the numerically upscaled models, the coarse-
scale relative permeability functions are determined from global solutions (i.e.,
global two-phase flow upscaling). This is the most expensive approach, as it entails
the fine-scale solution of the two-phase flow equations. In many practical settings
this global approach would not be appropriate, but it is useful for current purposes
as it acts to minimize upscaling error. In addition this approach is, as we will see,
reasonable for use with EnLU because only a small fraction of realizations need
to be simulated. Specifically, in this case, 10% of the realizations are numerically
upscaled, while for the remaining 90% the k,’.“j curves are assigned using EnLLU with
random drawing, as described above. In all cases, the upscaled single-phase flow
parameters (7*) are computed using global single-phase flow simulations (recall
that this entails the global solution of (4)).

The ensemble results for oil cut (P50, P10-P90 interval) for the primitive coarse
models were presented earlier (in Fig. 11a). Results for the other procedures are
shown in Fig. 14. As shown in the previous section, the use of the primitive models
(Fig. 11a) clearly results in a significant shift to the right for all three curves, with F,
significantly overpredicted. The use of numerically simulated k,’.“j curves (Fig. 14a)
provides results of excellent accuracy, as would be expected. The EnLU results,
shown in Fig. 14b, are of essentially the same accuracy as the results with the
numerically simulated k,’,“j. This demonstrates the applicability of EnLU for this
problem.

It is of interest to consider other measures of the level of agreement provided
by EnLU. Shown in Fig. 15 is a cross-plot of the time at which F, = 0.8 for
each coarse model against the corresponding fine model (for all 100 realizations).
The bias associated with the primitive models (open circles) is evident, as is
the accuracy of the numerically computed k,’,“j (solid circles). The EnLU results
(crosses) display more scatter than the models that use numerically computed k,’.“j,
though the bias evident in the results from the primitive models is essentially
eliminated. The CDF for the time at which F, = 0.8 is shown for the various
models in Fig. 16. Here again we see essential agreement in results using EnLU
with the reference fine-scale results, along with the bias in the primitive model
results. These results demonstrate that, as expected, there is a loss of accuracy in
the realization-by-realization agreement for models constructed using EnLU, but
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Fig. 14 Comparison of P50 (thick curves) and P10-P90 interval (thin curves) for oil cut between
fine-scale (solid curves) and coarse-scale (dot-dash curves) models for a log normal permeability
field (I, = 04,1/, = 0.01, 0 = 2.0) and M = 5 (from [13]). (a) Full flow-based (global 2p
upscaling). (b) EnLU (10% sim.)
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the statistical response of the EnL.U models agrees closely with that of their fine-
scale counterparts.

5.2.2 Results for 3D Systems with Well-Driven Flow

We next consider a three-dimensional example taken from [20]. In this case the fine
and coarse models contain 55 x 55 x 25 and 11 x 11 x 5 grid blocks respectively.
The fine-scale models are characterized by [, = [, = 0.5, [, = 0.025 and 0> = 3.
Five realizations of the permeability field are shown in Fig. 17a. Flow is driven by
a water injection well and four production wells (arranged in a five-spot pattern as
shown in Fig. 17b). For this case, i,/ = 10.
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Fig. 17 (a) Log normal permeability fields (/, = 0.5, [, = 0.5, [, = 0.025, ¢ = 1.73) and
(b) well locations — one injector (in the center) and four producers

The upscaled permeability k* for this example is computed using a local method
and the k;"j are determined through application of EFBCs. The use of local k*
upscaling is adequate in this case because the permeability fields are Gaussian and
o is not that large. Single-phase near-well upscaling (7> and W;*) is applied for all
of the wells, though two-phase near-well upscaling is applied only for the injection
well (it was shown in [44] that, for this type of oil-water model, the impact of well-
block k,*j is greatest for injection wells). In the models for which EnLU is applied,
the upscaled functions are computed for 3% of the models and are assigned to the
other 97% through application of (24). See [20] for more details.

Results for well oil cut (P10, P50, P90) for two of the production wells are
shown in Fig. 18 for the primitive models, the models with numerically computed
k;"j and the models using EnLLU. The bias in the primitive model results is again
apparent. The upscaled models using both the numerically computed (Fig. 18b) and
statistically simulated (Fig. 18c) k,*j curves provide very accurate results. CDFs for
field oil production rate (oil production summed over the four production wells)
are presented in Fig. 19. The primitive models again show substantial bias, which is
essentially eliminated using the other two approaches. There is some inaccuracy in
the results using the numerically computed k,*j for CDF > 0.7, which also appears
in the EnLU results. This is due to the limitations of the underlying (local) upscaling
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Fig. 18 Comparison of fine and coarse-scale P50, P10 and P90 predictions of well oil cut
(producers 1 and 3) for log-normal permeability fields (/, = 0.5,/, = 0.5, [, = 0.025, 0 = 1.73)
with M = 10 (from [20]). (a) Primitive coarse model. (b) Full flow-based. (¢) EnLU (3% sim.)

procedures used for this example. Because EnLU uses training data generated by the
core upscaling method, it inherits the limitations associated with that approach.

6 Concluding Remarks

In this chapter we described a variety of numerical homogenization procedures
applicable for use in subsurface flow simulation. Techniques for the computational
upscaling of both single-phase and two-phase flow parameters were discussed.
A new methodology, ensemble-level upscaling, in which the aim is to provide
coarse models suitable for computing key flow statistics rather than realization-
by-realization agreement, was also presented. Numerical results for many of the
methods discussed illustrated the relative advantages and limitations of the various
procedures.

There are many useful directions for future research on upscaling for subsurface
flow modeling and uncertainty quantification. The core computational upscaling
methodologies are well developed for single-phase and two-phase flow, though
there has been much less work addressing three-phase systems, compositional
models (which may contain many components) and thermal models (required to
simulate steam injection, for example). Future effort should be directed toward
the development of upscaling procedures for these practically important yet chal-
lenging processes. It will also be of interest to devise coarse-scale modeling
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Fig. 19 Comparison of CDFs of field oil production rate between fine and coarse-scale models at
t = 100 days for log-normal permeability fields (/, = 0.5,1, = 0.5, [, = 0.025, o = 1.73) with
M = 10 (from [20])

capabilities for problems that involve coupled flow and geomechanical effects, as
this coupling can be important in both oil recovery and geological carbon storage
operations.

It is now recognized that uncertainty quantification for oil production should
account for uncertainty in geological “style” (e.g., depositional setting, structural
geological model) in addition to considering multiple realizations for a particular
style. In the ensemble-level upscaling procedure discussed here, all realizations
were sampled from the same ensemble, so different geological styles were not con-
sidered. It will be of interest to extend the EnLU procedures to handle realizations
generated for a variety of geological styles. It will also be useful to combine EnLU
approaches with data assimilation procedures to enable the construction of coarse
models that are consistent with production data and other field measurements. This
will enable more realistic predictions for future production and will provide models
that are well suited for use in computational optimization procedures.
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Sparse Tensor Approximation of Parametric
Eigenvalue Problems

Roman Andreev and Christoph Schwab

Abstract We design and analyze algorithms for the efficient sensitivity computa-
tion of eigenpairs of parametric elliptic self-adjoint eigenvalue problems on high-
dimensional parameter spaces. We quantify the analytic dependence of eigenpairs
on the parameters. For the efficient approximate evaluation of parameter sensitivities
of isolated eigenpairs on the entire parameter space we propose and analyze a sparse
tensor spectral collocation method on an anisotropic sparse grid in the parameter
domain. The stable numerical implementation of these methods is discussed and
their error analysis is given. Applications to parametric elliptic eigenvalue problems
with infinitely many parameters arising from elliptic differential operators with
random coefficients are presented.

1 Introduction

Multiparametric eigenvalue problems (EVPs) arise in numerous applications: we
mention only engineering (parametric design optimization of the spectrum of
structures in solids, fluids and electromagnetics), uncertainty quantification, stability
analysis of engineering systems and the like. Other applications arise in the
perturbation analysis in physics. Accordingly, there is a sizable body of references
devoted to eigenvalue perturbation analysis. The mathematical theory of perturba-
tion evolved in close connection to these applications; seminal works are by Rellich
and Kato, see [33,39] and references therein.

In recent years, much attention has been devoted to the computational analysis
of so-called complex systems; in the context of the results in the present paper, such
engineering systems could be, e.g. deterministic initial boundary value problems
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depending on possibly a large number of design parameters. Alternatively, one could
consider spectral problems for partial differential equations with random field input
such as, e.g. diffusion problems with random heat conductivity. Adopting parametric
representations of input random fields (e.g. by Karhunen-Logve expansions) renders
the EVP of interest deterministic but depending on possibly a countable number of
parameters.

Prior to entering the technical subject matter of this paper, let us briefly comment
on the notion of “sparse tensor discretization” in the present context. Increasingly,
in engineering and in the sciences, there is a need for the numerical solution of
partial differential equation (PDE) models for a number of input parameters; in
particular, models of so-called “complex systems” are often characterized by PDE
models that depend on possibly countably many parameters. The task of numerical
solution of the PDE model on the entire parameter space thus has to deal with
the issue of numerical approximation in high dimension. Standard techniques of
discretization are not efficient in high dimensional parameter spaces, due to the
curse of dimensionality. One readily available alternative is Monte Carlo sampling
which yields a convergence rate N ~'/? in terms of the number N of samples,
independent of the dimension of the parameter domain that is sampled. However,
the rate 1/2 is insufficient for achieving a low computational complexity, since each
“sample” amounts to solving a PDE problem numerically. In addition, the parameter
dependence in these problems is often very smooth (in fact, we show here that
isolated eigenpairs depend analytically on the parameters), which is not exploited
by Monte Carlo sampling. In recent years, therefore, deterministic, high order
discretization techniques in parameter spaces have been proposed. They exploit
the idea of analytic parameter dependence for expanding the unknown, parametric
solution into multivariate polynomials of these parameters. Coefficients in these
expansions are determined either by spectral collocation or by Galerkin projections.
Without asserting completeness, we mention only [3-5,16,17,20,34,46,49,50] and
the references there for technical aspects and applications to a host of problems in
engineering and in the sciences.

As a rule, these spectral approximation techniques exploit analytic parameter
dependence in that they yield exponential convergence in terms of the spectral
approximation order. The spectral projection methods are, however, still prone to
the curse of dimensionality, and exponential convergence is de-facto lost in the
range of computationally accessible spectral orders when the dimension of the
parameter space becomes even moderately large (practically, 10 and higher). Still,
for parametric problems which depend only on a few parameters, the spectral
approach has been repeatedly demonstrated in engineering applications to be
superior to, for example, Monte Carlo sampling, see e.g. [20, 47, 48] and the
references there.

For high dimensional parameter spaces, however, several essential modifications
of this argument are required: on the one hand, it is necessary to track the size
of domains of analyticity in dependence on the dimension, to exploit sparsity
in polynomial expansions of the parametric solution. This has been proposed,
for example, in [17, 35] and has shown to yield substantial improvements in
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computational efficiency and allowed, in particular, to treat numerically problems
in two spatial dimensions depending on several hundred parameters. In these
algorithms, however, the level of discretization in space and time is equal for all
polynomial coefficients resp. for all collocation points, so that these anisotropic
discretization approaches exploit sparsity in polynomial expansions, in some sense.
They are tensor product discretizations in the sense that they can be viewed as a
tensorization of a (sparse, anisotropic) discretization scheme in parameter space
and a family of (space-time) discretizations in physical space. Still, when the
numerical solution of a single instance of the physical problem already entails
massive computational effort (we think, for example, of parametric sensitivity
studies in global climate simulations), even the approaches which exploit sparsity in
parametric expansions of the solution entail a prohibitive computational effort and
more sophisticated approaches are required.

Numerical analysis, in particular a careful study of the smoothness of solutions
in dependence on the parameters and their regularity in physical space and time, and
the approximation properties of discretizations in parameter as well as in physical
space, pointed the way to more efficient discretizations. In [43,44], it was shown for
the first time that sparse discretizations of parametric PDE problems which depend
on a countable number of parameters could achieve arbitrary high, algebraic rates
of convergence in terms of N, the number of instances of the physical problem to
be solved, with constants that are independent of the dimension, i.e., converging at
a dimensionally robust rate and outperforming Monte Carlo Methods, in terms of
the rate of convergence.

The analysis in [43,44] was performed under rather restrictive assumptions on
the parameter dependence, in particular, on exponential growth of the size of domain
of analyticity of the solutions’ parameter domains. This analysis was subsequently
considerably refined in [12, 13] and extended to parabolic and wave equations with
random coefficients in [29, 30] to algebraically growing analyticity domains, with
an in a sense optimal sparsity relation between parametric inputs and outputs.

This analysis paved the way, on the one hand, for the coarsening of dis-
cretizations in physical space and time for “high order” terms in the polynomial
expansions (which are, a-priori, known to be relatively small). On the other hand,
the results in [12, 13] the design of adaptive, optimal algorithms in [21-24].

The adaptation of the discretization level in physical space to the relative
coefficient size in the solution’s polynomial expansion can therefore be viewed as
sparse tensor product discretization and is, in fact, a direct generalization of the
idea of sparse grids (see e.g. [11] and the references there) well-known from high-
dimensional numerical integration, and going back to [41].

Importantly, also in the context of collocation schemes, such sparse tensor
discretizations can be applied with any given forward solver for instances of
problems of interest, while essentially preserving the theoretically best possible
convergence rates, as was demonstrated for elliptic problems with parametric diffu-
sion coefficients in [6,7]. A concrete algorithmic strategy for the determination of
quasioptimal sets of “active” polynomial coefficients based on a-priori information
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on the parametric dependence of the inputs in the PDE has been given in [8], and
has been used on connection with a stochastic Galerkin discretization.

In the present paper, we extend, among others, the approach to a sparse tensor
stochastic collocation technique: given a predicted sets of active polynomial degrees
in the solution’s spectral expansion with respect to the parameters, we propose a
family of sparse interpolation operators generalizing, among others, the Smolyak
construction from [41] used in [35].

We use this interpolant for the Finite Element approximation of parametric
eigenvalue problems of elliptic, self-adjoint operators.

In the present paper, we develop the numerical analysis of parametric eigenvalue
problems for self-adjoint operators on possibly high dimensional parameter spaces
in an abstract setting: we consider parametric operator families A(y) € Z(V, V™)
depending on a vector of real parameters y = (yi, y2,...). This setup covers
differential- and integral operators acting between separable Hilbert spaces V
and V*, and, therefore, also multiparametric matrix pencils. We assume in the
present paper that the dependence on the spectral parameter is linear and that the
dependence on the problem parameter is affine.

The outline of the paper is as follows: in Sect. 2, we present an abstract variational
formulation of self-adjoint parametric eigenvalue problems, with affine parameter
dependence. We establish in particular holomorphic parameter dependence of
isolated, simple eigenpairs, and give explicit bounds on the size of the domains
of analyticity, in dependence on the input data. These results draw upon classical
results on analytic dependence of spectra due to Rellich and Kato; see e.g. [33,39]
and the surveys [37, 38].

In Sect. 3, we review the abstract theory of Galerkin approximation of variational
eigenvalue problems, drawing upon the basic reference [2] and the references there.

Section 4 then present the first and most important instance of the abstract
theory, namely a class of second order elliptic eigenvalue problems where the
differential operator depends in an affine fashion on countably many parameters.
This situation typically arises in the context of elliptic PDEs whose operator
has random coefficients, if the randomness is parametrized by a Karhunen-Loeve
expansion (see e.g. [17,40]).

The core technical material of the present paper is contained in Sect. 5, namely
the extension of the sparse tensor collocation operator to a quite arbitrary class of
sets of “active” polynomial modes which we term “monotone”, and for which the
sparse tensor interpolation operators introduced here are proved to be unisolvent and
well-conditioned, generalizing the analysis in [6-8]. Importantly, the analysis of the
sparse tensor collocation operator in Sect. 5 is also applicable to source problems.
Section 6 illustrates the foregoing analysis with some numerical experiments on
a model eigenvalue problem, corresponding to the source problem which was
considered in [8]. Section 7 briefly summarizes the main conclusions of the present
work and indicates several generalizations which will, however, be presented
elsewhere.
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2 Parametric Eigenvalue Problems

We present a class of abstract eigenvalue problems for parametric self-adjoint
families of operators with real-analytic dependence on a vector of parameters and
discuss the dependence of their eigenpairs on these parameters. This will be the
foundation of the design and the analysis of sparse tensor approximation methods
in subsequent sections.

We will specialize on operators of the particular form

AY)=A+ 1B+ y:1B + ...

with a self-adjoint “principal part” A. In first approximation, the affine dependence
of A(y) on the parameter vector y = (y1, y2,...) will also appear in the case of
general smooth nonlinear dependence y — A(y).

Specific examples are also provided in the next section. In particular, operators
depending on a countable number of parameters arise in applications such as PDEs
with spatially inhomogeneous random coefficients.

2.1 Variational Eigenvalue Problems

Let V and H be separable Hilbert spaces over R (or C) with inner products (-, )y
and (+,-) and norms || - ||y and || - || i, respectively. Unless stated otherwise, V and
H are assumed to be infinite-dimensional. We assume V' and H form the Gel fand
triple V.C H = H* C V* with dense and compact injections, where H =~ H*
indicates identification of the “pivot space” H with its dual H*. By (-, -)yxy* we
denote the duality pairing on V' and V'*.

Letb : V x V — C be a bilinear (or sesquilinear) form for which there exist
constants y > 0 and C; > 0 such that

Yu,ve Vi |b(u,v)| < Cillullv|vllv, @))]

- by

>y>0 ()
0£ueV ozvey |lullv]vily

and

YO#veV: suplb(u,v)| >0. 3)

ueV

We denote by A € Z(V, V*) the operator corresponding to the form b (-, -) via the
identification b (u,v) = (v, Au)yxy= for all u,v € V. Then (1)—(3) imply that both,
A and its adjoint A* are isomorphisms between the space V' and its dual V'*.
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We call A € C eigenvalue of the form b(-, ) if there exists an eigenvector 0 #
w € V associated to A, such that

YveV: bwv)=AWw vy, 4)

in which case the pair (A, w) € C x V is called eigenpair of b(-, ).

By 0(A) we denote the spectrum of an operator A [37, Ch. VI]. Conditions (1)—
(3) and compactness of the embedding V' C H imply the existence of a unique
compact linear operator T € .Z(V, V) such that

Yu,veV: b(Tu,v) = (u,v)y. 5)

The pair (A, w) € C x V satisfies (4) if and only if ATw = w # 0, i.e., if and only
if the pair (A~!, w) is an eigenpair of the compact operator 7. Note that by (2), the
eigenvalue A is non-zero.

Let u € o(T), i # 0. The number A = ! is an eigenvalue of the form b (-, ).
The smallest integer o such that Ker((i — 7)%) = Ker((u — T)**) is called ascent
of  — T. The dimension m = dimKer((u — T)%) is finite and is called algebraic
multiplicity of A. Vectors in Ker((u — T)%), the generalized eigenspace of T
corresponding to A are called generalized eigenvectors of T corresponding to A. The
geometric multiplicity of u is equal to dim Ker(u — T'). The b-adjoint of T, denoted
by T is defined by b(T'u,v) = b(u, Tyxv) forall u,v € V. A pair (A,v) € C x V is
called adjoint eigenpair of the form b(-,-) if and only if (A~1,v) is an eigenpair of
Tx,ie.,v # 0and b(u,v) = A (u,v)y forall u € V. In this case v is called adjoint
eigenvector corresponding to A. Generalized adjoint eigenvectors of T are exactly
the generalized eigenvectors of Tx. An eigenvalue A € o(A) is called isolated if
dist(A, a(A)\{A}) > 0.1Itis called discrete if it is isolated and if for self-adjoint A: it
is of finite multiplicity, i.e., dim{u € V : Au = Au} < oo see [37, Theorem VIIL.10];
for non-selfadjoint A: the spectral projection P, = —ﬁ gﬁu—l\=r (A—pwdp, is
finite dimensional [38, Ch. XII]. An eigenvalue A € o (A) 1s called nondegenerate
if the respective dimension equals one.

2.2 Abstract Parametric Eigenvalue Problems

We consider a family of real, parametric eigenvalue problems, and assume until
further specification that V and H are Hilbert spaces over R (rather than over C).
Assume we are given a family of bounded self-adjoint operators A(y) € Z(V,V*)
parameterized by a vector y = (yy, y2,...) of real numbers, which we assume to
take values in bounded intervals, after rescaling y,, € [—1, 1]. In many applications,
we deal with a finite, but possibly large number M of parameters, whereas for
applications from elliptic PDEs with random coefficients we allow countably many
parameters. Accordingly, we assume y € U, where
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-1, M ,
U= [ ] < 00

11N, M =oo. ©
For M = oo the summation “ZZI: 1" is understood an (unconditionally) convergent
infinite sum. For U we consider a Hausdorff topology, i.e., the Euclidean topology if
U is finite-dimensional; if U is infinite-dimensional we equip U with the topology
and metric of £°°(N). This setting fits the abstract framework of [28]. Forall y € U
we associate to A(y) the bilinear form

b(y;):VxV >R, (uv)—>b(y,uv):= (u Ay)v)yxy* @)
We assume that y — A(y) is uniformly bounded on U':

Yu,ve Vi (u, Ay)v)vxy= < sup |[[AW)|| 2wy llullv]vv, (8
U

S
with sup,c;; [|A(¥) || 2(v,v*) < 0o, and uniformly elliptic on U
Ja>0: VyeU: VveV: mAQ)W)yxy > al|[}. 9)

This implies that for every y € U the operator A(y) is boundedly invertible, i.e., for
its inverse we have ||A7!(»)|| £@+*v) < @~'. The compactness of the embedding
V — H implies that the parametric EVP: given y € U, find

Ay)eR and 0#w(y) eV st Ay)w(y) =A(y)w(y)  (10)

or, in variational form: given y € U, find

A)eR, 0Fwy)eV: VvelV: blyiw(y).v) =) W) u
(1D

admits, for every y € U, countably many real eigenvalues (A;(y));j>1 C R of
finite multiplicity. Here, and in the following, we always assume the eigenvalue
sequences to be numbered in increasing magnitude, counting multiplicities, i.e.,
an eigenvalue of multiplicity k is listed k times. The corresponding set of eigen-
functions {w;(y)};>1 C V forms a countable dense set in V, and therefore, by
compact and dense embedding V' — H, we assume w.l.o.g. that for every y € U
the sequence (w; (y));j>1 forms a countable orthonormal basis of H .

2.3 Analyticity

We are particularly interested in the case where the dependence of A(y) on the
parameters y,, is analytic in a suitable sense and, more specifically, in the case when
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the dependence of A(y) on each coordinate y,, is affine, possibly after linearization
of A(y) given smooth dependence on the parameter vector y: there exist A, B,, €
LV, V*), m > 1, such that

M
Vy=(ryn..)€U: Ap)=A+ ) yuB, (12)
m=1

with convergence in .Z(V, V*).

Remark 1. To ensure coercivity (9) of A(y) in (12), it is sufficient that in (12) the
“mean operator” A and the “fluctuations” B,, satisfy

(v, /Iv)yxy* > &||v||%/ Vvel,

JdJae>0 and Ik <1: (13)

M
Z | Bl vy < Kka.

m=1

Indeed, condition (13) implies (9) witha = @(1—«) > O: forany y € U andv € V
we have

M

b(yiv,v) = b(0:v,v) — (Z ||Bm||$(V,V*)) VI = & — ol

m=1

As we will show, under certain conditions the eigenpairs (An, (¥), Wi (¥))m>1
depend analytically on the parameter vector y. To make this precise, we first recall
definitions and facts on Hilbert space valued analytic functions. To this end, from
now on we assume that V and H are complex separable Hilbert spaces and extend
all inner products and duality pairings sesquilinearly for complex valued arguments.
We emphasize that this extension is for purposes of analysis only; the parametric
eigenvalue problems under consideration here are real and self-adjoint (for non-
selfadjoint operators some of our results require essential modifications in their
statement and proof).

We recall some definitions. Assume initially that M < oo. Let X be a Banach
space over C and let E C CM be an open, bounded and connected domain, M € N.
A function x : E — X is said to be:

o (Strongly jointly) analytic in E if for each a € E there is {cj }keN(z)u C X such that

the Taylor series )y e Ck 1Y, 2w — am)*r is summable to x(z) for z € E
sufficiently close to a.

e (Strongly) holomorphic in E if for each a € E each first order partial derivative
limo-p—o(x (a+heyn)—x(a))/ h exists in X where e,, € CM is the mth standard
unit vector.

e Weakly analytic in E if for each £ € X™* the function £(x(-)) is a C-valued
analytic function in E (equivalently, holomorphic by Hartogs’ theorem [31,
Theorem 2.2.8]).
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For X endowed with a locally convex sequentially complete topology (e.g.
Banach space) these notions coincide, see [28, Theorem 2.1.3], also [37, Theorem
VI14].

In the case M = oo we call x : E — X (jointly) analytic on a set E C¢ CM
which is open w.r.t. £2°(N), if X is locally convex sequentially complete and if the
series |

fQ=fay+ 3 —(DN-a)
veny '
#supp V<00
is uniformly summable for z—a in any compact subset of the largest balanced subset
of the set E —a (here, E C E —a is called balanced if z € EA|¢| <1 = {z € E).

2.3.1 CaseM =1

The case M = 1 is of independent interest, and also serves as a building block
for the multiparameter case. Therefore, we recapitulate the pertinent results here.
For single parameter, regular' analytic spectral perturbation theory we refer to [33,
Chaps.I and II] and [38, Chap. XII]. For M = 1, the operator A(y) in (12) takes
the form

A(y)=A+yB, yeU=[-11]. (14)

We can extend A(:) to an entire, operator-valued function by allowing y € C. In
this case, the dependence of the eigenpairs (A;(y),w;(»));>1 on the parameter y
is well understood. Although the dependence of A(y) on y in (14) is analytic, the
eigenpairs of A(y) do not necessarily inherit this analytic dependence:

Example 1 ([33], Sect. I1.1 or [38], Sect. XII.1). ForV = C? consider

A = (é _01) 2 (‘f (1)) c LWV,

Then A(z) has eigenvalues A+(z) = ++/1+ 7% and is real and self-adjoint for
real z. Evidently, for |z| < 1, the eigenvalues are complex-analytic functions of z.
However, even though the map z — A(z) is entire analytic and R > 7 — A (z) are
real-analytic functions, the maps C 3 z +— A1 (z) exhibit singularities as complex-
analytic functions at z = =i. Note that A(z) is symmetric for Imz = 0, but is not
Hermitean for any Im z # 0, and even not diagonalizable for z = +i.

We now consider in (10) the parametric operator A(y) as restriction to U of the
analytic, Z(V, V*)-valued function

'as opposed to “asymptotic”, see [38], Sect. XIL.2 and XIL3.
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A:C— 2LV, V"), z+ AR):= A+ zB. (15)

Note that the extension of the self adjoint A(y), y € R, obtained in this fashion is
not necessarily Hermitean (cf. Example 1).
We will assume that (13) holds, which in the case M = 1 becomes the following.

Assumption 1. There exist @ > 0 and k < 1 s.1.
Re(v, AV)yxy+ > @|v|[;, VYveV and ||B|lgwy* <Kka. (16)

Under Assumption 1, the variational form of the eigenvalue problem for A(z) in
(15) satisfies the assumptions (1)—(3):

Proposition 1. Let Assumption 1 hold. Then, for any 0 < § < 1 and all z € C
with |z| < «~'§ the sesquilinear form b(z;-,-) : V. x V — C, b(z;u,v) =
(u, A(2)v)yxv=satisfies (1)—~(3) with

y=a(l—8 >0, Ci=|Allgwy+ + K 8|Bllzyy. (17)

in particular, for any k < 8. Moreover, for all z € C with |z| < k~'8 the operator
A(2) is boundedly invertible with supy,| <~ AT @)l z=v) < (@1 =8)~ L

By compactness of the embedding V < H, for every y € U, the spectrum
o(A(y)) of the self-adjoint operator A(y) is discrete and consists of at most
countably many real eigenvalues A;(y), j = 1,2,... of finite multiplicity which
accumulate only at infinity. As A(y) is symmetric, the algebraic and geometric
multiplicities of A (y) coincide.

We are interested in the relation of A(y) € a(A(y)) to eigenvalues A(z) € C of
the complex extension A(z) in (15) of A(y).

Theorem 1. For z € C, consider the family (15) of linear operators where A, B
satisfy Assumption 1. Fix y € U = [—1,1]. Let A(y) € 0(A(y)) C R be a discrete
eigenvalue of A(y) of multiplicity m € N. Then the following holds:

(a) There exist m (not necessarily distinct) complex-valued functions of z which are
single-valued and analytic near 7 = y, denoted by AW A@ A gk
that A\D(y) = A(y), j = 1,....mand AY)(z), j = 1,....m are discrete
eigenvalues of A(z) nearz =y,

(b) There are no other eigenvalues of A(z) near A(z),

(c) There are m complex-analytic V -valued functions w W such that near
2=y, w(2),..., w"(2) are corresponding eigenvectors of A(z),

(d) The domains of analyticity contain discs {z € C : |z — y| < €} where ¢ =
e(k) ~k Lask = 0.

Proof. Parts (a) and (b) are in Theorem XII.13 in [38]. Part (c) is Problem 17 in
Sect. XII of [38] applied to the projector P(z — y) in Theorem XII.13 of [38]. Part
(d) follows by a scaling argument. O
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The following quantitative bound on the parameter range ensuring ellipticity will
be useful later for obtaining uniform bounds on convergence radii.

Theorem 2. Let Assumption 1 hold. Fix y € U. Let A(y) € o(A(y)) be isolated
and nondegenerate. Define the spectral gapy = y(y, A(y)) = dist(A(y), a(A(¥))\

{A(D).

Then there exists z = A,(z) € d(A(z)) with A,(y) = A(y) which is complex-
analytic in the disc E(y,k,y/AM(y)) = {z€C:|z—y| < 2%} Moreover,
Ay (2) € 0(A(2)) is isolated and nondegenerate for each z € E(y,k,y/A(y)).

Proof. We have ||Bv||y+= < ka|pv||y < #MHA(y)vHV* for all v € V by

coercivity [|[A(y)v||y+ = &(1 — |y|k)||v||v. Theorem XII.8 of [38] (Kato-Rellich)
and Theorem XII.11 of [38] show the claimed analyticity inside the circle of radius

_ oLkt =1yl
r=la+e'b+ad()+e))] ' = -—n (18)
21+ /y
witha—lk‘yl,b—Oande—% O
Remark 2. Note that
1 5§+ 0(8%), for § — 0,

S (19)
144671 1-867"+0067%), for §— .

Thus, as the ratio § = y/A(y) becomes small, the size of the domain analyticity
is critically restricted. If y is large compared to A(y), the size of the domain of
analyticity is essentially given by k™!, cf. Theorem 1.

An analytic continuation argument yields the “y-uniform” version of
Theorem 2.

Corollary 1. Suppose that U > y +— A(y) € a(A(y)) is continuous and such that
foreachy € U, A(y) is isolated and nondegenerate. Let § > 0 be such that

VyeU: dist(A(y),a(A(y) \{A(»)}) = 5A(y).

Then we can extend y + A(y) to a functions z + A(z) which is analytic on
E(k,8) = UyeU E(y,k,6), s.t. A(z) € 0(A(z)) is isolated and nondegenerate
forall z € E(k, ).

Proof. We need the following special case of Lemma 1 below: for all y € U there
exists r > 0 s.t. for any two continuous functions fi, f> : B, (y) — 0(A(z)),

H) =A() = L) VyeB(NU = filz) = falz) Yze B (),

where B, (y) ={zeC:|z—y| <r}.
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We only sketch the rest of the proof, omitting the technical details. Let U C
K, C K, C ... C E(k,8) be a monotonic sequence of compact sets such
that E(k,8) = (J,ey Ku- On every K, an extension A, of A can be constructed
using Theorem 2 which is complex-analytic on any open B C K, and unique by
Lemma 1. Moreover, all A, agree on their respective domains of definition, giving
rise to a complex-analytic extension of A to E(x, §), again unique by Lemma 1. O

232 CaseM >1
In generalizing the above results to M > 2 parameters, care is necessary, as the
following example due to Rellich shows, cf. [38, p. 60].

Example 2. Consider the two-parameter family of symmetric 2 x 2 matrices

10 01
A(y1.y2) = n (O _1) + (1 O)'

Then A is linear, hence entire analytic in y; and y,, and symmetric for real

y; however, its eigenvalues A(y1, y2) = =£.,/y] + y3 are not real-analytic with
respect to yy, y, in any vicinity of the origin. Note also that A(0,0) has a double
eigenvalue 0.

In this section we derive sufficient conditions which preclude this kind of
singularity. For technical reasons we focus on eigenvalues which are isolated and
nondegenerate. The following theorem is a local result on holomorphic dependence
of an isolated and nondegenerate eigenvalue of the complex extensionof U > y —
A(y) givenin (12)to CM 3 71> A(z) := A + Z;ﬁf:l Zm By, on the parameters.

Theorem 3. Suppose z € CM is such that A(z) has an isolated and nondegenerate
eigenvalue A(z). Pickm € N, m < M, and write e, = (0,...,0,1,0,...), nonzero
in mth coordinate. Then 3¢, (z) > 0 s.t. for E;y := {Cn € C: |0 < €m(2)}:

1. There exists a unique complex-analytic function
En 3 &n > Mz + emln) € 0(A(z+ emln)),

2. Mz + en&y) is isolated and nondegenerate for all ¢, € E,,,
3. There exists a complex-analytic V -valued function

E,>C¢,—>wiz+enln) eV

such that w(z + enlm) is a corresponding eigenvector for all {, € E,,.

Proof. Note first that for any r > 0 the complex-analytic operator-valued function
Cm > A(zZ + emCy) is uniformly bounded on the closed disk {¢,, € C: [{] < 7}.
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Thus, by [38, Exercise XIL.8], the Kato-Rellich theorem [38, Theorem XII.§]
applies. O

We now prove the following lemma ensuring uniqueness of the extension.

Lemma 1. Let E C U be connected by polygonal paths in the following sense: for
any 74,725 € E there existn € Nand zo,...,z, € E with zo0 = z4, 7, = 2 and

[zi—1 2] = {tze—1 + (U1 —=t)z :t € [0, 1]} CE forall k=1,...,n.

Take continuous functions f,g : E — Cwith f(2),g(z) € 0(A(z)) forallz € E
such that f(z) and g(z) are isolated and nondegenerate forallz € E. If f(z) = g(2)
for some 7 € E, then f(z) = g(z) forallz € E.

Proof. Suppose to the contrary that for some z,, z, € E we have f(z,) = g(z,) and
f(zp) # g(zp). Let ¢ : [0,1] — E be a continuous function with ¢(0) = z, and
¢ (1) = z,. Without loss of generality we can assume that:

o d(t) =2z + t(zp — 24)-

* Ve > 0 there exists t € (0,¢) with f(¢(2)) # g(¢(¢)) (to this end note that
{z€e E: f(z) = g(z)} isclosed in E).

« The family of operators ¢ — A(¢) = A(zq + ¢(z5 — 24)), |¢] < 2 is well-defined
and is complex-analytic.

By the Kato-Rellich theorem [38, Theorem XII.8], there exists exactly one point
w(&) € a(A(¢)) close to 1u(0) = f(zq) = g(z4) for ¢ sufficiently small, w.l.o.g.
for |¢] < 2 by rescaling (z, — z,). But this contradicts f(zp) # g(zp) if we set
é‘ = 1' O

In the following (Theorem 4) we identify the range of z € CM close to the
parameter set U such that the conditions of Theorem 3 apply. We start with a
Lemma.

Lemma 2. Fixy e U = [-1,11M and t € CM. Assume that for some p € (0, 1]

B(p) =Y 1Bl (20)

m>1

is finite. Assume Kk := éﬂ(p) SUp,,> 1 |§m|||Bm||§(PV,V*) < 00, where o > 0 is as in
9). Then

12 GnBullzavs) = B(p) sup ol 1Bl o) @1)
m=

m>1

and moreover, for @ := a, k, A := A(y) and B := Zmzl Cm By we have (16).
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Proof. Equation (21) follows by the triangle and the Holder inequalities. Thus,
||B||.2v,v*) < k& and (16) holds by the assumptionthated = ¢ and A = A(y). O

The results of this section are now combined in the following theorem.

Theorem 4. For the family of operators A(y), y € U = [—1,1]™, assume that
i) A(y) is of the form (12), ii) (8) and (9) hold, iii) for some p € (0,1], the
perturbations are p-summable as in (20), iv) A(y) € o(A(y)) is an isolated
and nondegenerate eigenvalue for all y € U with corresponding eigenfunction
w() € V, |lw)|lg = 1 and v) the function U > y > (A(y),w(y)) € RxV is
continuous. Finally, assume that vi) there exists § > 0 such that dist(A(y), o0 (A (y))\

U‘HBmH *
{A(»)Y) = 8A(y) forall y € U. Let ¢ € (0,1). Define t,,, := (1 — E)Wm
form > 1, and

E(1) :={z € CM 1 dist(z, [-1.,1]) < 70} (22)

Then (A, w) can be extended to a jointly complex-analytic function on E (7).

Proof. For any z € E(t) we first identify a candidate A(z) € o(A(z)) which is
isolated and nondegenerate. Fix z € E (7). Take y = y(z) € U with |z, — Y| < T,
m > 1. Define { = z — y. Obviously, || < ©,, and therefore

o

B(p) sup IZmIIIB gty = (1= S)W'

l_
Thus, for k := éﬁ(p) SUp,,> | |§m|||Bm||_¥,(pV,V*) we have (1 —¢)7! < 21,( 1+}S r.

Consider the complex-analytic operator-valued function t — A(y +t{) = A(y) +
t Zmzl ¢m B By Corollary 1 and Lemma 2 there exists a complex-valued function

t— i( y +t¢) € a(A(y + t£)) which depends holomorphically on the parameter ¢
in the disk

{teC:lt|]<(l—-e) Y c{teC:|t|] < ——

and which is such that A (y+1t¢) isisolated and nondegenerate eigenvalue, whenever

[t] < 2;< 1+5 ——, in particular for # = 1. Thus, ;\(y + ¢) is a candidate for the

holomorphic extension A(z) of the parametric eigenvalue. By Lemma 1, )NL( y+0)is,
in fact, the same eigenvalue for any choice of y € U, { € CM satistying y + ¢ = z.
Therefore, A(z) := A(y + ) is well-defined. Similar considerations apply to the
eigenfunction w(z). In the remainder of the proof, we distinguish two cases:

Case M < oo. By Theorem 3 and Lemma 1, the function (A, w) is separately
complex-analytic in E(7). The classical Hartogs’ theorem [31, Theorem 2.2.8]
implies joint complex-analyticity of (A, w) on E (7).
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Case M = oo. The function (4, w) is analytic on E(7) in the sense of Definition
2.3.1 of [28]. The claim therefore follows using [28, Prop. 3.1.2] and [28, Theorem
3.1.5]. O

Remark 3. Note that summability with p < 1 is required in (20) for the analyticity
region E(7) in (22) to increase with dimension m.

3 Galerkin Discretization of Abstract Variational
Eigenvalue Problems

To prepare the convergence analysis of the Smolyak-Galerkin approximation of
parametric eigenvalue problems we recapitulate abstract results for the Galerkin
method for elliptic eigenvalue problems from [2].

Variational approximations of the abstract eigenvalue problem (4) are defined in
terms of a one-parameter family {V},};~9 C V of finite-dimensional subspaces of
increasing dimension N (h) — oo as h — 0, which is densein V, i.e., forallu € V:
limy, ¢ infyey, ||u — x||lv = 0. We assume that

- lau.v)

> y(h) > 0. (23)
0Zueti oever; Nullv VI

We further assume stability of {V},},-¢ in the sense that

YueV: limyh) ™" inf |u— x|y = 0. (24)
h—0 XEV)

We define P, : V — V), as the projector characterized by
YueV,veV,: a(Pyu,v)=a(u,v). (25)

The projection P, is quasi-optimal in V':

C .
[lu— Ppully < (14‘@) Xlglfh flu— xllv. (26)

Galerkin approximations (A, w,) of eigenpairs are obtained by restricting the
abstract eigenvalue problem (4) to V},: find

A, eC and O 75 wpeV, st VYveV,: a(wyv) = An wn,vg. Q7

Equation (27) is a matrix eigenvalue problem of dimension N (%) = dim V},, so that
there exist N (h), in general complex, eigenvalues A;(h), j = 1,..., N(h). By (23),
the eigenvalues are non-zero. The pair (A, wy) is an eigenpair of (27) if and only if
(A7, wy) is an eigenpair of the compact operator Tj, : V — V}, defined by
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YueV,veV,: a(Thu,v) = (u,v)y. (28)

The operator T} can be written as P T.

Let now A € C be an eigenvalue of (4) with algebraic multiplicity m and ascent
a(1),i.e., A1 € C is an eigenvalue of the operator 7 with algebraic multiplicity m
and a (1) is the ascent of A™! — T'. Since T is compact, T}, = P, T — T in norm in
Z(V,V) by (26) and, as h — 0, there are m discrete eigenvalues A, (h), ..., A, (h)
of (27) that converge to A. Define

A (A) = {w : wis a generalized unit eigenvector of (4) for A},

AM* (L) := {w: wis a generalized adjoint unit eigenvector of (4) for A}
and their approximation bounds

G() = sup inf lu—yly and Q)= sup inf Ju—zly. (29)
uet (X) X€Va uet* (1) XV

There holds the following general result on the asymptotic eigenvalue error analysis.

Theorem 5. Consider the variational eigenvalue problem (4) and its variational
approximation (27). For A € o(A), let a()) denote the ascent of A~' — T. Then:

1. There exists a constant C > 0 such that, as h — 0,
N R 1 &
‘A - )L(h)‘ < Cye (M (h) where Ah) = —3"2;(h).  (0)
j=1

2. And

1
Aj(h) |
(€29)

}A - i(h)} < Cy() e (Mer (k) where A(h) = %Z

Jj=1

A =2;()| < Cly(h) " en(M)eg (1)) /D, (32)

4. Let A(h) be an eigenvalue of (27) such that lim,—o A(h) = A € a(A). Suppose
further that for each h > 0 the vector wy, € Vj is a unit vector which satisfies
(A(R)™" =Ty wy, = 0 for some positive integer k < a(L). Then, for any £ € N
with k < £ < a(A) there is a vector u, € V such that

A" =D up =0 and |luy—whlly < Cly(h)~ ex(1)TFHV/«D —(33)
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4 Parametric Elliptic EVPs

Let D C RY be a bounded Lipschitz domain. We consider the parametric diffusion
operator A(y) given by

(A (x) = =V - (alx. y)Vil(x)), xeD, yeU (34)

for a family of diffusion coefficients y + a(-, y), which is parametrized by a vector
y = (¥1,)2,...) belonging to the set U of admissible parameters, defined in (6).
The parameters y,,, m = 1,2, ... could denote design parameters of an engineering
system, or states of an optimal controller; they could also denote random coefficients
in a wavelet or Karhunen-Loeéve expansion of the random field y — a(:,y). We
present examples for the latter scenario below.

4.1 Assumptions on the Data

We suppose that in addition to being bounded and Lipschitz the domain D C R¢
is simply connected. We denote by (-,-) the L?(D) scalar product which extends
uniquely by continuity to the duality pairing on Hy (D) x H~'(D), again denoted

The parameter dependence of the eigenvalue problem enters through the diffu-
sion coefficient a. We assume that a : U — L°°(D) is uniformly positive, i.e., that
there exist constants 0 < dpin < dmax < 00 such that

VyeU: 0<amn=essinfa(x,y) =|laC, y)llLep) = ama < 00. (35)
X€

In particular, (35) implies that (23) holds with y(h) = amin > O for any closed
subspace {0} # V, € V. For every y € U consider the parametric Dirichlet
eigenvalue problem:

find A(y)eR and 0#w(y) e Hy(D) st AQ)w(u) = 1()w(y).
(36)

Of particular interest is the case when the diffusion coefficient depends affinely
on the parameter vector y € U (for background on the following assumption see
[8,13]):

Assumption 7. The parametric diffusion coefficient is of the form

a(x,y) = a(x) + Y ym¥m(x). (37)

m>1

with y,, € [-1,1], and
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Z 1 Vml|Loo(p) =

m>1

K _
Qmin (38)
14+«

with amin = essinfp a, k > 0. Further, we assume

Yl o < (39)

m>1

with some p € (0, 1).

In particular, U 3 y + a(-,y) € W'(D) and for B(p), given by (20), we have
B(p) = Zmzl ||Bm||i;(vy*) =< Zmzl ||1/fm||€oo(D) < 00, where we define B, by
(Bnu,v) = (Ymu,v) forall u,v € HJ (D).

Remark 4. Equation (39) implies for (36) that Aw(y) € L*(D) forall y € U. If
D C R is convex, this in turn implies that w(y) € W = H*(D) N HJ (D) for
all y € U. For polygonal domains D C R? with straight sides, the same statement
holds for W being a weighted Sobolev space, see [1]. For simplicity we assume in
the following that D C R? is convex.

We obtain the following corollary to Theorem 4.

Corollary 2. In the setting of Theorem 4 with A(y) given by (34) let Assumption 7
hold. Let D C R? be convex. Then, the eigenpair (A, w) can be extended to a jointly
complex-analytic function on E (%) with values in C x (H*(D) N H (D)), where
T is given by T, = min{t,, c||¥n||” Wi OO(D)} with ¢ > 0 being arbitrary, and T and
E(-) are as in (22).

Proof. Assume z € CM is such that dist(z, [-1,1]) < 7, € (0,00), m > 1. Then
(36) implies

—a(-,2)Aw(z) = A(@w(z) + Vw(z) - Va(,2). (40)

The mappings z +— a(:, z) and z +— Va(:, z) are jointly complex-analytic with values
in L*°(D) by (39). Given Assumption 7, Theorem 4 holds for 7 € E(7) where 7, =
min{z,, c||¥n| |ﬁ/_1.loo(D)} with ¢ > 0 arbitrary and t and E(-) are as in (22), and thus
the pair (A(z), w(z)) is jointly complex-analytic in an open neighborhood & of z with
values in R x H{ (D). Therefore z > w(z) is jointly complex-analytic on & with
values in L?(D). Since sup_¢; ||a(-, 2)| lwico(py < oo andessinf ;epxe alx,z) >
0, from (40) we obtain Aw(z) € L?(D) for all z € &. Moreover, z > Aw(z) is
jointly complex-analytic on ¢ with values in L>(D), as can be easily checked using
(40). O

The weak formulation of the parametric EVP is obtained in the usual way by
testing (36) in HO1 (D) and integrating by parts. This results in the parametric
eigenvalue probem: for every y € U, find A(y) € R and 0 # w(y) € H} (D)
such that
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@Vu(y). Vi) + > yuUmue(y). m) = A()(y).n) ¥ne Hy(D).  (41)

m>1

By assumption (35) and the Lax-Milgram lemma, for every y € U the operator
A(y) € £ (H (D), H"'(D)) is boundedly invertible and by the compactness of
the embedding L?(D) C H~'(D) for every y € U the inverse T(y) = A~'(y) :
L>(D) — HO1 (D) is compact. Hence, for every y € U, the elliptic operator
A(y) admits a countable set of eigenvectors {w;(y)};>1 C H/(D) forming an
orthonormal basis of L?(D) with corresponding eigenvalues 0 < A;(y) < A,(y) <

.and A; — oo as j — oo which we assume to be numbered in increasing
order, counting multiplicity. Due to the self-adjointness of A(y), the eigenvalues’
dependence on y € U is Lipschitz [33, Sect. V.4.3, Theorem 4.10]. This Lipschitz
dependence (which fails to hold for general, non self-adjoint operators) allows us to
speak of parametric eigenvalue families.

Remark 5. Enumeration of the eigenvalues A;(y) can be done in two ways: first,
as stated above, for every y € U in increasing eigenvalue magnitude, and second,
in increasing eigenvalue magnitude with respect to a reference value of y, e.g. y =
0 € U. Due to possible crossings of eigenvalues, the two eigenvalue numberings
may differ.

Remark 6. For every y € U the fundamental or spectral gap Ax(y) — A1(y) is
strictly positive and A;(y) is nondegenerate by the Krein-Rutman theorem see e.g.
[27, Theorem 1.2.6]. Thus there exists § > 0 such that

dist(A1(y), o (A(¥) \ {A1(»)}) = 8Ai(y) forall y e U. (42)

We are in particular interested in computing for all y € U the “ground state”,
i.e., the smallest eigenvalue A1 (y) and a corresponding eigenfunction w (y) of (41).
This shall be understood from now on.

4.2 Multilevel Finite Element Spaces in D

We discretize the space V = HO1 (D) by means of a dense, nested sequence of

subspaces
Oy=V,CcVcVic...cV=H,D),

of finite dimensions ny = dimV; < oo. For instance, Vp, £ > 0 could consist of
continuous functions, which are piecewise linear w.r.t. a mesh .#, { > 1 resulting
from a uniform refinement of .#;_,, with . being a given finite, regular, simplicial
mesh. Other subspace sequences, such as spectral, isoparametric or p-version finite
element discretizations could be considered as well. With respect to a basis {¢,.([) o
for V, the abstract Galerkin discretization (27) becomes a family of parametric
matrix eigenvalue problems, the Galerkin projections of (41) onto V;: for y € U,
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find A;(y) € Rand 0 # u;(y) € V; such that

@Vu(y). Vi) + Y yuWmVu(), V) = () @(y).n) VneVe,  (43)

m>1

where, foreach y € U and £ = 0, 1, .. ., the pair (A¢(y),u¢(¥)) € R x V4 denotes
the Galerkin approximation of the first eigenpair in Vj.

The algebraic structure of (43) is particularly convenient for computation.
Indeed, denoting by A((f), A,(,f), m > 1 the stiffness matrices and by MO the mass

matrix w.r.t. the basis {¢"}'L , given by

Ay = @ve". Ve ALYy = Ve Ve, MY =(4".s"),

the problem (43) reads for any given y € U: find

n ¢
e w() eRxR"™ st (AY + " yu A (y) = 2 ()M Oug(y).
m>1
(44)
Thus, the matrices need only be assembled once if a hierarchic basis is used, and
once on each level of interest £ € Ny if standard hat functions are used. Note that the
method presented below uses (44) only with finitely supported sequences (yn)m>1-

Remark 7. For the ground state we know that the eigenvalue is separated and that
the corresponding eigenvector can be chosen to be positive, see Remark 6, uniformly
in the choice of the parameter by Lipschitz dependence of the eigenpair on the
parameter. Therefore, we normalize the approximate parametric eigenvector u(y)
at any given y € U by imposing the normalization uy(y) "M©uy(y) = 1 and
positivity, [, > 7L, i(z)(x)(u@(y))idx > 0.

We make the following assumption on the ansatz spaces V;, which is satisfied by
the usual finite element ansatz spaces (see, e.g., [10]).

Assumption 8. There exists aty > 0 and C > 0 such that for all t € [0, ty]:

: —tL
inf 1 =il p) = €27 M Iw (43)

v

forall ¢ € Ngandv € W. Here, W = H}(D) N H't'(D), ¢f. Remark 4. In
particular, (45) implies (24).

4.3 Numerical Solution of the Parametric EVP

In this section we discuss the numerical solution of the parametric matrix eigenvalue
problems (44) for fixed y € U. By Assumption (35), for each y € U and ¢ € Ny,
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the matrix A((f) + 2 s ymAL is symmetric positive definite. Setting y,, = 0, for
all m > M, we conclude that the truncated matrix Aff) + Zn]‘f=l ymA,(,f) has the

same property uniformly w.r.t. M € N. Hence, forany y € U,{ € Npand M € N,
the truncated problem

M
u () er A + Dy A (v) = 1M )M (y)  46)

m=1

is a symmetric positive definite generalized matrix eigenvalue problem. By the same
reasoning, the first eigenvalue of the truncated system (46) is simple, i.e., of single
multiplicity, uniformly in y € U for all £ > 0 sufficiently large, see Corollary 3. We

identify w;(y1, y2,..., ym,0,...) = uEM)(yl, ..., yu) and denote by u,(y) € V¢

the function
ng

{4
w(y) =Y ¢ ().
i=1
Any numerical method for symmetric generalized eigenvalue problems applies
to (46), see, e.g. [14,25,26,42]. For our computations we use the JDBSYM library
[19], which implements a variant of the Jacobi-Davidson method.

4.4 Abstract Error Bounds

Based on the abstract eigenvalue approximation theory in Sect.3, we obtain the
following a-priori error bounds, cf. [2, Sect. 8].

Proposition 2. Consider the eigenvalue problem (36) (or in variational form (11))
with the operator A(y) being the parametric diffusion operator given by (34).
Assume (35), and let Assumption 7 hold. For some m > 1 let (A, (¥), wn(y)) be
an eigenpair of the EVP (36) with eigenspace of multiplicity one forall y € U, i.e.,
eigenvalue crossings are excluded.

Then there exist C > 0 and hy > 0 such that the Galerkin eigenvalue
approximation from the finite element space Vy is quasi-optimal uniformlyiny € U:
foreveryy € U and every 0 < h < hy

Wi (7)) =Wl oy < CenRn(¥)) = C inf |lwu(¥) = vallgi (o). 47)
v EVy 0
For the Galerkin eigenvalue approximations we have

An(¥) = A (0] < Clex(n()))* < C inf (Wi (¥) =il - (48)
v EVy 0 (D)

Using Remark 6, Assumption 8 and sup,¢; |[wn(y)|[w < oo we obtain the
following corollary.
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Corollary 3. For h > 0 sufficiently small, the spectral gap of the discretized
problem, )Lg(y) — A’f(y) is strictly positive uniformly in 'y € U. Moreover, for
0 <t <19 asin Assumption 8, we have

sup |[wi(») = w{ D)l gypy < Ch' and  sup [21(y) = A (0)| < CH* (49)
yeU yeU

where C < o0 is independent of h for sufficiently small h > 0.

5 Sparse Composite Collocation Method

In this section we introduce a generalization of the sparse grid collocation operator
introduced in [6, 35]. We develop a formalism and approximation results, see e.g.
Lemma 4, which in particular enable comparison with (multilevel) Monte Carlo
methods.

5.1 Sparse Collocation Operator: Basic Properties

In this section we define the sparse collocation operator based on general monotone
index sets, and investigate some of its properties such as unisolvency. We start
by collecting the necessary definitions. Let L, denote the univariate Lagrange
polynomial of degree n € Ny scaled such that f_ll | L, (Z)|2% = 1.Forn € Ny let
i, denote the Lagrange interpolation operator of degree n which maps a continuous
function v € C°([—1, 1]) to a polynomial i, v of degree n with (i,v)(z) = v(z) in
the Gauss-Legendre points z € {—1 < zj <... <z, <1:L,+1(z) = 0}. Denote
by {wi}i—, C (0,00) the corresponding Gauss-Legendre quadrature weights [18].
Define j, = i, —iy—1, n = 0 where, by convention, i_; := 0. Let % C NON
denote the collection of all multiindices v € N} such that for each v € F
the support suppv = {m € N : v, # 0} is finite. For a multiindex v € F we
denote by L, the tensorized Legendre polynomial L, = L,, ® L,, ® ---, that is
L,(y) = [, Lv, (ym) for all y € U. For a multiindex set A C .# we denote
by P4 the span of {L, : v € A}. Note that P is dense in L2 (U), where 7 is the
uniform probability measure. Below we frequently use the notation 14 = 1if A4 is
true and 14 = O otherwise, as well as v < v iff v,, < v, for all m > 1. For any
finite multiindex set A C .# we define the sparse collocation operator

Iy =Y jun (50)

veEAm>1

with the convention /g := 0. Due to A being finite, for each of the finitely many v €
A the tensorized operator ®mz 1 Jv, has only finitely many non-trivial increment
factors j,,, m € suppv, while j, = jo = ip for m ¢ suppv. This implies that
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I, is well defined on bounded continuous functions on U. The operator /, has
appeared in various variants, i.e., for specific choices of A in the literature, see
[3,4,6,7,35,36] and references therein. In particular, the generic definition (50)
accommodates all formulas of [5].

Definition 1. A multiindex set A C .% is called monotone if the following
implication holds:

VveA: DeFAV<v=TDeA.

In particular, {}, {0} and .% are monotone. Monotone multiindex sets A for 14
defined by (50) are of particular interest, as the following lemma shows.

Lemma 3. Let A C ¥ be finite and monotone. Then Iop = p forall p € Py.
Moreover, 1, is unisolvent on Py, i.e., Yp € Pyp: Ipp = 0 implies p = 0.
Further, defining Q 4 as the span of the monomials {U > y + y’ : v € A}, we have
dimP, = #A = dim Q4 < oo and moreover Q4 = Py4.

Proof. Observe that I,y Ly, = &), ju, L
m € N. This allows to write forv € A

= 0if v/, > v, for at least one

Vm

Vm

bl =Y Qi Lo =) Y vy Lu, = Q) Lv, =Ls, (D

v/ <vm>1 m>1v} =0 m>1

which shows the first assertion. Let now p € P4 = span{L, : v € A}s.t. I,p = 0.
By (51), linearity of 7, and linear independence of the set {L,},c4 imply p = 0.
The statement dimP, = #A = dim Q4 < oo is obvious. Since A is monotone, we
have L, € Q4, forall v € A, and hence P4, C Q4. Now dimP, = dimQ4 < oo
implies Py = Q4. O

Note that in general, however, I 4 is not interpolatory, as the cardinality of the set
of collocation nodes in (50) may be larger than dim Py, as the following example
shows.

Example 3. Consider A = {vy =0,v; = (1,0,0,...),v, = (0,1,0,0,...)} con-
sisting of three multiindices. The corresponding sparse collocation operator 1,4 is
then based on the following five collocation nodes: z‘(;" =0,z = (_ﬁ’ 0,...),

2= (+JL§,0,...), 2= (o,—%,o,...) and z}? = (0,+JL§,0,...).

The following observation will be useful: for any monotone A C .% we have

Vwed: JJom+D=#TecA:i=<v} (52)

m>1

Lemma 4 (Number of collocation points). Let A C .# be monotone and finite.
Then the number collocation points in 14 is at most (#A)>.
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Proof. We can write I4 as I, = Zve A clj‘ ®m>1 iy,» where each term requires
]_[m>1(vm + 1) collocation points by definition of i,, n > 0. The number of
collocation points in /4 can therefore be estimated as

S [Jon+DE Y #5ea:<vy < #a= @)

veEAm>1 veA vEA

|

Remark 8. Note that the upper bound (#A)? is independent of the “effective
dimension” #_J, < , supp v. Moreover, the exponent 2 in the upper bound (#A)% on
the number of collocation points in /4, is sharp, as can be seen from the sequence

A([ = {(Vl,...,VM,O...) Ey:HVHgl(N) 5@}, V4 :0,1,...

while

where M > 1 is fixed. Indeed, by [6, Sect. 6.2], we have #A, = (M + E)

the number of collocation points in /4, is given by N,, = (2];[]; K). This yields
2M + 0\ M+ 0M?
iz (Br) e = oo = (BES) s gy

with the implied constant independent of £ > 0. Thus, Ny, ~ (#A()2 as { — oo.

Remark 9. For £ > 0 let n} := 1(>1)2". For a monotone and finite A C .# define
A = Uyepld € F:Vm > 1: 0, <min{n} > v,, : £ > 0}}. For each £ > 0,
n; + 1 is the number of nodes in the Clenshaw-Curtis quadrature rule of order
n; + 1. The nodes of these Clenshaw-Curtis quadrature rules are nested, cf. [35].
Thus, if we defined i, to be the Lagrange interpolation operator based on the
nodes of the Clenshaw-Curtis quadrature rule of order min{n; > n : £ > 0} + 1,
for monotone and finite A the number of collocation points in /4~ would be exactly
#A* = dimP4-, as opposed to the possibly quadratic growth in Remark 8.

The following is a characterization of /4 for monotone multiindex sets A C .#
by an expansion into tensorized multivariate Legendre polynomials.

Lemma 5. Let A C % be monotone and finite, and assume C‘f‘ e R, ve Aare

such that Iy = Y ., Rpus1iv,- Then for f € C°(U:R) we have I, f =
Y veadd(f)Ly, where d}(f), v/ € A, is defined by

di(f) =D el Y wiLu(@) f (@),
vEA/ n=<v

Vo Vi Vo (V] SV
where w, =[], w;» € Randzy = (z;!,22,...) €U, n <v € A

n n’sn’
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Proof. We have the univariate formula i,v = ) ,,_, d(v)L,s with coefficients
dy(v) = Y4y WiLw(2})v(2}) as can be immediately checked using the fact
that the Gauss-Legendre quadrature formula p +— > ,_ wj p(z]) integrates
polynomials p = L,/ L, of degree at most 2n + 1 exactly [18, (1.4.7) and (1.4.14)].
Thus we obtain

Inf =Y M Qi | £ =D Y LY wiLu@)fE),

vEA m>1 vEA v/ <v n=<v

which, after exchanging the summation, yields the claim. O

5.2 Multiindex Sets A(p, €)

In what follows, we specialize our considerations to multiindex sets A of a particular
structure, motivated by a-priori estimates obtained in [12] for coefficients a(x, y)
satisfying Assumption 7. To describe the structure of these sets, let ¢y denote the
collection of non-increasing sequences of reals less than one and tending to zero:

CO={;L=(,u1,,u2,...)e[O,l)N:1>,u12u22--- and mli_I)I(l)o,um=0}.

For u € co, v € F we write u” = [],,en 42 (with 0° := 1) and for & > 0 we
define

Ap,e) ={veF:pu’ = e} (53)

Clearly, for any i € ¢y and any & > 0 the multiindex set A(u, €) is finite and
monotone. The multiindex sets A(u, ¢) were introduced in [9] and investigated in
the context of the stochastic Galerkin method for elliptic stochastic PDEs in [8]. The
next result give precise asymptotics for the cardinality of the sets A(u, £) defined in
(53) for a sequence i € ¢y which models algebraic decay of terms in the expansions
given in (12) and (37).

Lemma 6. For i € co given by ,, = (1 +m)™° witho > 1,
1. As ¢ — 0, the cardinality of the set A(L, €) in (53) equals
24/10gv
2/ (log )
2. We have sup,.q 3 e p(u.q(1")? < oo ifand onlyif p > 1/o.

Here and throughout, the function log always denotes the natural logarithm.

#A(u.e) = F(e7V°) where F(x) = x—————(1 + 0(1/ logx))
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Proof. See [8, Prop. 4.5] for the proof of the first claim. The second is a special
case of [13, Lemma 7.1]. We provide a direct argument for completeness here. Let
0 <8 < po—1,c(8 > 0be such that F(x) < c(§)x'T¥ for x > 1. Take
y =0/(po — 1 —§) and let I, be the interval I, = [277",277®=D) Note that

#v e Z ' el,) <#A(u,27"") = FQ2"/%) < ¢(§)2r"/°0+9),

We compute

sup Y () =lim o Y0 () =)0 Y ()

£0 e A(.e) vEA(L.E) nzl neE
< ZC(S)ZV”/“(HS)Z_W("_I) = c(8)2"" Zz—yn(p—(lﬁ)/a)’
n>1 n>1

which equals ¢(§)2?” < oo. For 0 < p < 1/o, the sum }_ ., wh obviously
diverges. O

In Example 3 we showed that, in general, #/A4 > dimPy, i.e., the number of
deterministic problems to be solved for the determination of 1, is larger than the
number of monomials in P4 which determine the precision of 1,4, cf. (56). To
facilitate comparison with Monte-Carlo methods, we quantify the convergence of
I 4 in terms of the number of deterministic problems to be solved. To this end, we
bound dim P, = #A for several classes of monotone index sets A.

Definition 2. For y € ¢y and 0 < ¢ < 1, define

1+
l_um

B, e) ;= max{im > 1: [, > ¢} Z 4#suppy l_[ (54)

VEA(1,8) mesupp v
where A(u, ¢) is as in (53) and

x* () ;= inf{xe > 0: sup e*AB(u,¢) < oo},

O<e<l

which may be infinite. We refer to x* (u) as asymptotic overhead order of | € c.

The class of sequences € c¢p which have finite asymptotic overhead order
x* () < oo includes some important families, as we show in the following.

Lemma 7 (Asymptotic overhead order for algebraic decay). For the model
sequence [y, = (1 4+ m)~% with algebraic decay with fixed order ¢ > 1 the
asymptotic overhead order x* (1) is bounded by »* (1) < 2(1 + log4)/o.

Proof. Let0 < & < ;. Clearly max{m > 1: j1,, > &} < ¢~'/?. Using [8, Lemma

4.8] we therefore have #suppv < 2log (s_l/ ") if u” is sufficiently small for v €
A(, €) to hold. Thus, for v € A(u, €) and any fixed § > 0 we obtain
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4#suppv 1_[ 1+ i < (4 + 8)—2/010g£ — 8—210g(4+8)/a
mesupp v - m
1V is sufficiently small and trivially the same bound otherwise. From Lemma 6 we
have #A(u, &) < e~1+9/9 and thus, for ¢ — 0

1
B, e) <max{m > 1: p, > e#A(u, &) max 475wV l_[ el Se™™

vEAGLE) mesuppy Hom
with %s = 1/0 + (1 4+ 8)/0 4+ 21log(4 + 8) /0. Thus »* () < xs. Since § > 0 was
arbitrary, the claim follows. O

Lemma 8 (Isotropic sparse tensor product asymptotic overhead order). Ass-
ume [ € co is of the form (o) = pp = -+- = upy = o > 0, Uy = 0form > M,
where M € N is fixed. Then the asymptotic overhead order of p is x* (i) = 0.

Proof. Take any » > 0. With L = loge/log o (for simplicity an integer) we
have [45]

M + L)M

#A(L, €) = (MA_/I'_ L) < % <(=loge) <& for £—0

and the other terms in (54) are bounded, independently of &€ > 0. O

Lemma 7 and Lemma 8 give rise to an even larger family of sequences p for
which the asymptotic overhead order of i can be estimated.

Proposition 3. Let " € ¢ for which the asymptotic overhead order of u'V is
finite, i.e., % = x*(uV) < oo. Let M > 1 and n € cy be a sequence with
,uf,:) > W for m > M. Then we have »x*(p) < x*(u(V).

Proof. We assume w.l.o.g. that 0 < ¢ < min{u,, /L(ll)}. Define u® € ¢y by M,(,?) =
Lon<myit1, m > 1. Let H, be the map H, : A(n©, &) x A(uV, &) — A(u, &) given
by

v,(,?) m<M

v,(nl) m> M.

h=2 D) H(h) = lsov with v, =
Observe that H, is well-defined and surjective, and thus
#A(p.£) < #A A, 2)

due to ¢ < 1. Noticing further that

max{m > 1: ,, > e} <max{m > 1: ,uf,?) > gymax{m > 1: ,uf,i) > e}
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and forall h = (W@, vy € H7'(A(, €)) we have
supp H,(h) < suppv® U (suppvP' N {m e N:m > M})

and thus also

SRS N TN | R g e
i L —pm — — Mm 1 — pm
meésupp H, (h) méesupp v mesupg;“)
- l_[ 1+ pyy 1—[ 1+ )
- 1— (0) 1— 1) ’
mé&supp v(©) Hm mé&supp v Hom

we conclude from Lemma 8 that Z(u) < Z(u?)B(uV) < e % * as e — 0 for
any § > 0. This shows the claim. O

5.3 Sparse Collocation Operator: Approximation Properties

For complex-analytic functions on product domains, e.g. as described in Theorem 4,
we obtain the following theorem on the approximation property of /4 for multiindex
sets A of type (53). We will need the following elementary inequality [12, (3.13)]:
forall0 < p <g <oo,M > 1and u € ¢y N LP(N),

4
3wt < M|l - (55)
m>M

Theorem 6. Let {p,;}m>1 be a sequence with p,, > 1 and p,, — oo. For each
m > 1 let &,, denote the ellipse in C with sum of semiaxes p,, (asin [15, p. 312]).
Define & := [],,»1 ép,- Let v : & — C be a jointly complex-analytic function.
Define 1 € cq by_,um = SUP,/>m #, m € N. Assume sup,,-| wm® < oo for
some o > 0 and that x* (i) < oo. Take x > »* (). Then there exists C > 0 such
that

Hageeyy —vllzwsey < C (€7 + & 77) [l cozey (56)

forall 0 < & < 1, where w is the uniform probability measure on U.

Proof. As in [6,36] we use the following approximation property of the univariate
interpolation operator i, for complex-analytic functions f on &, :

I/ _inf”LZ((—l,]);%) = C(pm)/"anchO(%)’ n=0,1,...
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where C(py,) = p,,,4—1 < Um — 0 as m — oo. In particular, forn = 1,2,.. .,
i <C "1 ! 5
||]nf||L2((_1,1);%) = Clom) iy, + E ”f”C"(%) 57
and there exists C < oo with ]_[mesuppv C(pm) < C forany v € .Z. Clearly,
||J‘0f||L2((_1,1);%) = ||f||C0([—1,1])‘ (58)

Another observation used in the following is this: for 0 < &* < & < 1 setting
no = max{n > 0: u’ > &*}yields u"°*! < ¢*, and thus form > 1

1F =D Tagzenrin f gty < Clom)e™ iy | flleogry. (59)

2 Pm
n>0

In the remaining part of the proof we assume w.Lo.g. that [[v[|coz,c) = 1.
Observe that (55) withg = 1 and p = 1 /0 yields

Y ® (Ioy = 1d"* W[ 2 wic) < Z Clom) =C Z Hom
m>M m>M

< CllullpyoqyM '™

where Id" is the identity on m-variate functions and Id =: Id" ® 1d"*, for all M >
1, in particular for M := max{m > 0: u,, > e} < ¢~ 1/7 as ¢ — 0. Moreover,
for any m € N, fixing z; € &;, j # m, the bound [|v[|coz.c) < 1 implies
lzm > v(z1, 22, .. .)||Co(ng;C) < 1. Thus, by stability (58), the claim (56) follows
from

Laguey —1d = Jpgue) ® Itoy + 1dM @ (1o —1dM*),

M _
where Jaue = ZveA(/M) Q=1 Jom» once [ Jaqollizwe) < £!™* has been

established. To do so, we now write, similarly to [6,45], using u* € co, i, = Mm+1,
m>1lforany0 <e <1

Tawa = Do | D0 Ve yin | ® Jug ® -+ ® gy,
v*eA(pn*re) \n=0

and use the decomposition

Jage — 1" =1d" ® (Jage oy —1d"™H) = T3, . (60)
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where
* _ 1 . . .
Liwo = D (10" =D Lpgmegueyydn | ® Jut ® - ® s, (61
V*EA(U* 8) n>0

For v as in the statement of the claim and ¢ > 0 we now estimate using (59) and
(57)

—1

* e * \ VX 1

Wieollzoo = Y. Clon——— ] ClomtnGu)" (1+ )
A ) (u*) 2

mesupp v* m

sscoonit X TT o (142

v*€A(u*,e) mesupp v* Hom+1

<e Y] 4t

1 _
VEA(j1,6) MESUPP v Hom

Repeating this argument using the decomposition (60) we obtain (56). O

Remark 10. The preceding result remains true for Banach space valued complex-
analytic functions v : & — X.

The bound (56) implies convergence I, ¢V — Vv in L2(U) as ¢ — 0 with a
rate r = min{l — %, 1 — 1/0} if u € ¢¢ has asymptotic overhead order x*(u) <
x» < 1. Examples include sequences p € ¢o with w,,, ~ m™° for a sufficiently large
o > 0, in which case, using Lemma 6 we obtain |[/4¢.¢v — V|2 w;0) S € <
(#A(, €))7 as e — 0. In particular, in this case the so-called curse of dimension
does not appear. The “effective dimension” # | J, A(ue) SUPP v, however, appears in
the computation cost of each sample, and thus the problem (of, e.g. computing the
average [, v(y)dm(y)) is tractable in the sense of [45].

Remark 11. For a particular choice of u € ¢( (as described below) and & > 0 the
multiindex set A(u, €) can be identified with the index set suggested in [35],

N
Xo(w,N) = {te N : Z(t,, —Da, < wlfmnianozn}

n=1

where w € R, N € N, a € Rﬁ. Indeed, assuming without loss of generality
that « is increasing and setting w,, = e, ¢ = uy form = 1,.... M,
wm = 0 form > M for a suitable ¢ > 0 and w = loge/logu, it is easy
to check that v € A(u,é¢) iff i € Xo(w, M), where we identify v,, = ¢, — 1,
m=1,....M.
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5.4 Sparse Composite Collocation Operator

We now compose the multilevel finite element discretization of the eigenvalue
problem from Sect. 4.2 with the sparse collocation operator (50) based on hierarchic
multiindex sets of the form (53) in a sparse way. For a given © € ¢ let
(¢j)j=0 € co be a sequence of thresholds. With (g;) ;>0 we associate a sequence
of nested multiindex sets A; = A(u,e;), Ay = @. For v € F we define
k(v) := inf{k > 0:v € A}, which may be infinite. We consider the following
sparse (tensor) composite collocation operator, proposed for isotropic collocation
in [6] (cf. also [6, Remark 6.2.5]):

A= Y (s = Ia )= Ae) (62)
0<k+{<L
and
wis i = Y (I, = Ia ) g —ue—y). (63)
0<k+{<L

Recall from Sect.4.3 that (A, u) is the “ground state” and (A, u¢) its Galerkin
approximation in the finite element space V.

We obtain the following result on the approximation property of the sparse
composite collocation operator u > iy .

Theorem 7. Let W C H, (D) andt > 0 be as in Assumption 8. Let D C R? be
convex according to Remark 4. Let {pn }m>1 be a sequence with p,, > 1 and p,, —
00 as m — oo. Assume thatu : & = [],,~, &,, — W is jointly complex-analytic.
Define i, m > 1 as in Theorem 6. Assume that j1,,m® — 0 as m — oo for some
o > 0. Ifo > 0is sufficiently large there exist x < 1 and C > 0 such that for L > 0

L

~ l—xn—1(L—k -

[|u— “LHL%(U;HO‘(D)) <C ( E ey 2 H(L—k) 4 ey x) Iullcowy- (64)
k=0

Proof. If 0 > 0 is sufficiently large, by Prop. 3 and Lemma 7 the asymptotic
overhead order of u satisfies x* () < 1. The rest follows as in [7, Sect. 6.3] using
Theorem 6 and Corollary 3. O

Corollary 4. Assume x* (1) < x < 1. Set &y := 27"%/0=%) k € N. Then
[|u— ’jiLlngr(U;H[)l(D)) < Lz_tL”””cO(E;W)- (65)

Next, we estimate the computational effort of the approximation u > ity. As in
[6,35,45] for computational purposes we rewrite (62) in terms of the interpolation

operators (X, - | iy,,. We will need the following lemma.



234 R. Andreev and C. Schwab
Lemma9. We have for L > 0

iL = Z I{V}AL—k(v) and 0y = Z I{u}uL—k(v)-

VEAL VEAL

Proof. For A L, L > 0 we compute

L

L
AL = Z I, (Mg —Aemy) = ZIAk Ak —A—(k+1))
=0 k=0

L L
= Z Z Ioy(Ar—k — A—k+1) = Z Z Lakcoy<iy Ty AL—k — AL—+1)),

k=0veA; k=0veEAL

and thus

L
AL = Z Iy Z Liwy<k(Ar—k — AL—k+1))

VEAL k=0
L
= > Iy Y OCrk—riwrn) = Y LAk
VEAL k=k(v) VEAL
and similarly for . O

Note that the non-composite case /4, A, corresponds to setting k(-) = 0 in the
above. Using Lemma 9, the definition of Iy,;, and factoring out the tensor product
(fy, —iv,—1) ® (iy, — iy,—1) ® -+ We obtain:

AL = Z ®(ivm — 1) AL—k(v)

vEAL m>1
_ 2 : 2 : nllg1 -
- (_1) e ® lvm_nnzA’L_k(V)
VEAL pefo.3N m>1
supp n&supp v
_ [[V=vll,1 ;
=D > lasolimvllogy=n D" Q) i, AL—i)-
VEAL VEAL m=>1

Finally, exchanging the sums and renaming the multiindices we obtain

he="3" 3" lazo lgioslloeg=nD" 10 @iy A (66)

VEAL VEAL m=1



Sparse Tensor Approximation of Parametric Eigenvalue Problems 235

and similarly

iy = Z Z 1(\)5\7)1(H\?—vHéoo(N)51)(_1)Hv_vml(N)®ivmuL—k(\7)‘ (67)

VEAL VEAL m>1

Remark 12. Standard hat function discretizations can be used to compute &y in

(67). Indeed, let 2", £ = 0,..., L be the contribution of u in (67) and let Py
denote the prolongation operator V,—; — V;. We then have

i =P+ PV + Py (L P @Y+ P L),

with total cost being proportional to the dimension of the ansatz space V.

An efficient algorithm for computing A, has been given in [8]. Observe that
forv € Ap = A(u,er) we have vV € Ap and v > v iff n = D — v satisfies
n € A(u,er/pn”). Thus, the same algorithm (with a straightforward modification
to take the constraint ||V — v|[gcoqyy < 1 and the variable level indicator k() into
account) can be used to compute the coefficients of the terms ),,,- | iy, A L—k(5) I
(66) and ), | 1v,, u L—k(5) in (67) efficiently.

Finally, the total computational effort for the application of the sparse composite
collocation operator to the eigenpair of the ground state (66) and (67) can be
estimated using the following lemma.

Lemma 10. For k > 0 assume #A; < 29%/2 4, > 0 and that the work for
determination of the numerical solution uy on one collocation node is bounded by
a constant multiple of 2°%, dy > 0. Then the computational effort for the numerical
realization of the sparse composite operator applied to the eigenpair of the ground
state is bounded by an absolute multiple ofLZma"{dl’dz}L as L — oo.

Proof. We compute from (67) using the fact v < v = k(v) < k(v) and (52)

L
Z l_[(Vm+ 1) | L2d2E=ko) 5LZ Z l‘[(vm+ 1) | 20

veA, \m>1 k=0veA\Ar—1 \m=>1
L
SLY (#A — #A) #4200
k=0

L
<L Z dikd>(L—k)
k=0

which shows the claim. O

We collect the foregoing in the following theorem.
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Theorem 8. For the parametric eigenvalue problem (10) assume the particular

form (34) with (35) and let Assumption 7 hold. Assume further that D C R? is

open, bounded and convex. For y € U let (A(y),u(y)) = (A1(y),w1(y)) denote

the eigenpair with smallest eigenvalue. Let ¢ € (0,1), ¢ > 0, and § > 0 is as in
aminll¥nl} oo )

. -1

(42) Deﬁne Tn = mll’l{(l — 8)ch”wmu€yl.oo(D)}’ m > 1, and E(‘L’)
as in (22). Let py := Ty + /1 + 12, m > 1 and i,y := sup,,,, pl—/, m > 1. Let
0 <t < 1and W be as in Assumption 8. If p € (0, 1) is sufficiently small then for
all0 < o < % — 1 there exist 0 < x < 1 and Cy > 0 such that:

1. sup,,~| umm® < oo and p has asymptotic overhead order x* (i) < x,
2. Defining g, = 27*%/0=%) qnd Ay = A(u, ex) we have #A; < 8;1/0,
3. The sparse composite approximation (63) satisfies for L > 0

e =il 2 vt oy = Cuw)L2™'t = C(u)Le}™

and
R —o(l— —o(1—x)/2
= it |2 0 0y < CaDEAL ™0™ < CaN 7™

where C(u) = Cillullcogrymy < 00 with Cy > 0 independent of L > 0, and
Ny, denotes the number of collocation pointsin 14, .

6 Numerical Examples

In the numerical examples we approximate the parametric eigenpairs by tensorized
polynomials using the sparse collocation method as described in Sect. 5.

We take an elliptic stochastic operator expanded in its Karhunen-Logve series as
a model example [8]. We set D = (—1,1) C Rand U = [—1,1]* and let the
diffusion coefficientin (34) be a(x, y) = a(x) +>_ > Ym¥m(x), (x,y) € D x U,

where a and {,, },»>1 C L°(D). Specifically, we seta = 1 and ¥, (x) = %,

x € D, m > 1. This implies || || oo (p) = m IV¥nllLoo(p) = G555 such
that ||V ||w1.co(p) = ﬁ + O(m™3) as m — oo. Hence, for all p > % we have
(¥mllwreo(p))m=1 € £7(N), which implies (39). In the computation we set p :=
0.6, § := 2.8 (empirical estimate from a few samples), dy;, := infyep @ — B(1),
¢ = 0 and ¢ = 10 in the definition of w, see Theorem 8; for f(p) we employ
the approximation 2%0:1 [V |i°°( py With Mo = 10° terms. This now completely
defines the multiindex sets A(u, ¢) for all € > 0.

Approximate mean E [u] = [, u(y)dn(y) and variance E [uz] — E[u]* of the
first eigenfunction u are shown in Fig. 1.

In Fig.2 convergence of the mean E [I A(M’E))L] — [EJ[A] and the number of
collocation points in I, . as functions of ¢ are investigated. We observe that the
error |IE [IA(M,E))L] —E [/\]| decays like ¢* as ¢ — 0, see Fig.2 (left). Fig.2 (right)
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Fig. 1 Mean and variance of the ground state of the parameteric diffusion equation (36) as
described in Sect. 6
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Fig. 2 Convergence of the mean of the computed parametric eigenvalue E [I A(/}.,E)A] — E[A]
and the corresponding number of collocation points in /4, ) as ¢ = 0. See Sect. 6 for details

suggests that N (,.¢), the number of collocation points in /4, ) behaves like g73/?

as ¢ — 0. Combining these yields }IE [IA(M))L] —-E [/\]| ~ NX:Z,?;).

In order to relate to the above theory, and verify convergence of the parametric
eigenvalue in L72r (U), we employ the parameterization via the Legendre polynomi-
als, see Lemma 5, which allows the computation of the L?T (U) norm to machine
precision. We consider finite element spaces based either on first or second order
splines on an equidistant mesh, and compare the “full tensor product” collocation
approximation /4,A, and the sparse composite collocation approximation )Au for
£ = 0,1,2 against an overkill reference solution. In the computation we set
g = 27 for simplicity. The first order spaces have 15, 31, 63, the second order
space have 16, 32, 64 degrees of freedom on levels £ = 0, 1,2 respectively.
The results are shown in Fig. 3, showing the error of the approximate parametric
eigenvalue versus the total number of degrees of freedom in space, that is the sum
of degrees of freedom of all EVPs solved; we observe algebraic convergence of the
sparse composite collocation method in the total number of degrees of freedom, as
can be expected from Theorem 8. As can be seen from Fig. 3, sparse composite

collocation approximation A, enjoys an improved convergence rate (as £ — 00)
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Fig. 3 Convergence of the eigenvalue in mean square sense for first and second order finite
element, using the collocation operator 4,A¢, £ = 0, 1,2 (FTP) and the sparse composite operator

Ae, £ =0,1,2 (STP), see Sect. 6

over the “full tensor product” collocation approximation / 4,A¢ in terms of the total
number of degrees of freedom.

7 Summary

We have quantified the analytic dependence of an isolated eigenpair of a linear
operator depending affinely on a vector of parameters in an abstract setting. We
have then specialized the discussion on stochastic differential operators expanded in
its Karhunen-Loeve series. Analyticity has been used to prove convergence of the
sparse composite collocation operator applied to the discretization of an isolated,
simple eigenpair. In particular, the approximation of the parametric eigenvector was
shown to allow for the same gains in complexity as in the case of source problems.
Our numerical example of an infinite dimensional paramateric eigenvalue problem
confirms algebraic convergence of the sparse composite collocation method in the
total number of degrees of freedom, and shows that sparse composite tensorization
can be an effective tool to reduce the complexity of the problem.

In the sequel we will address the case of non-selfadjoint operators, as well as
eigenpair computation with eigenvalue “crossings”.

We finally remark that the extension of most results presented here to parametric
spectral problems of polynomial and, more generally, holomorphic operator pencils
with general, analytic parameter dependence can be achieved with similar tools,
based on a suitable version of the implicit function theorem for holomorophic
functions (see, e.g. [32] for a statement and proof). This topic will be addressed
in forthcoming work.
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Mixed Multiscale Methods for Heterogeneous
Elliptic Problems

Todd Arbogast

Abstract We consider a second order elliptic problem written in mixed form,
ie., as a system of two first order equations. Such problems arise in many
contexts, including flow in porous media. The coefficient in the elliptic problem
(the permeability of the porous medium) is assumed to be spatially heterogeneous.
The emphasis here is on accurate approximation of the solution with respect to
the scale of variation in this coefficient. Homogenization and upscaling techniques
alone are generally inadequate for this problem. As an alternative, multiscale
numerical methods have been developed. They can be viewed in one of three
equivalent frameworks: as a Galerkin or finite element method with nonpolynomial
basis functions, as a variational multiscale method with standard finite elements,
or as a domain decomposition method with restricted degrees of freedom on the
interfaces. We treat each case, and discuss the advantages of the approach for
devising effective local multiscale methods. Included is recent work on methods
that incorporate information from homogenization theory and effective domain
decomposition methods.

1 Elliptic Systems with a Heterogeneous Coefficient

We consider a second order elliptic problem, which we write in mixed form, i.e., as
the following system of two first order equations:
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u=-—-aVp inf2C R? (Darcy’s law), (1)
Vou=f in 2 (Conservation), 2)
u-v=20 on 052. 3

The system models, e.g., incompressible, single phase flow in a porous medium in
which case the unknowns are p, the fluid pressure, and u, the Darcy velocity of
the fluid, while the known parameters are a., the medium permeability, and f, the
source or sink term (i.e., the wells) [17, 18,29]. The first equation is the empirical
Darcy Law relating the velocity to the pressure gradient, the second equation
expresses the mass conservation principle, and we take a boundary condition
representing no normal flow for simplicity of exposition. In this discussion, we
assume that a. is heterogeneous on a scale €.

Our objective is to find an accurate approximation of u and p while we respect
the principle of mass conservation, which is a critical property in many applications.
In fact, we are most interested in an accurate, conservative approximation to u, since
the velocity controls the transport of mass, such as a contaminant in the groundwater
or the macroscopic mixing of multiple phases.

We can rewrite the system (1)—(3) in mixed variational form as follows. Let (-, -),,
denote the L?(w) or (L?(w))¢ inner product, wherein we omit  when it is £2, and
define the Hilbert spaces H(div; ) := {v € (L*(2))¢ : V-v € L*(2)} and

V= Hy(div; 2) := {ve H(div;2) : v-v = 0 on 952},

where ||[V[)3, = |V + IV - V|3, Y[l = (. ¥). Using integration by parts to
rewrite
—(Vp,V) = (ps V. V)s

the problem is equivalent to
Find p € W = L?(£2)/R and u € V such that
(a:lu, v)—(p,V-v)=0 YVveV (Darcy’slaw), %)
(V-u,w) =(f,iw) VweW (Conservation). (5)
We remark that the mixed form preserves the conservation equation, and so allows
locally conservative approximations.
We have a saddle-point problem, since it has both positive and negative eigenval-

ues. There is a well-developed abstract theory for the well-posedness of such mixed
variational forms [13,21,22,26].

Theorem 1. [Babuska, 1973; Brezzi, 1974] For the abstract saddle-point problem
Find p € W andu € V such that
A, v)— (p,V-v) =G(v) VveyV,
(w,V-u) =Fw) VYweW,
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suppose A is a continuous, symmetric bilinear form, coercive on V N ker(V:), and
that there exists y > 0 such that

V-
inf sup (W—V) =Y ©)
weW vev [lwllw [IV]lv

Then there exists a unique solution (p,u) € W x V, and
Iplw + llully = CLFllw= + [1G v+
In our case, we satisfy the inf-sup condition (6), and
A(a,v) = (a:lu, v)

is continuous and coercive provided that the tensor a, € (L% (£2))?*¢ is uniformly
positive definite: there are o, > 0 and &® < oo such that

axE> <&Ta.(x)E <a*|E> VEER! ae. xe. )

Thus we have a well-posed problem for, say, f € L?(£2).
The complication comes from the problem of scale. Because a. varies on the
spatial scale e,
lu = 0(1) but |DFu| = O ).

Therefore, to approximate the solution accurately, we need to resolve the spatial
scale €, using a fine computational mesh of spacing &y < €. This is not always
computationally feasible, since it would require a mesh with many orders of mag-
nitude more elements than can be handled on the world’s largest supercomputers.
Instead we consider four multiscale numerical techniques, as follows.

1. Homogenization and upscaling [Bensoussan, Lions, and Papanicolaou, 1978;
Sanchez-Palencia, 1980]. We replace the coefficient a. in the differential equa-
tion by one that is easier to resolve.

2. Multiscale finite elements [Babuska and Osborn, 1983; Babuska, Caloz, and
Osborn 1994; Hou and Wu 1997; Chen and Hou 2003]. We define the finite
element space to better capture the fine scales.

3. Variational multiscale method [Hughes, 1995; Arbogast, Minkoff, and Keenan,
1998; Arbogast, 2000; Arbogast and Boyd, 2006]. We modify the variational
form to better capture the fine scales.

4. Domain decomposition and mortar methods [Schwarz, 1870; Arbogast, Pen-
cheva, Wheeler, and Yotov 2007]. We divide the problem into weakly coupled
small subdomains that can be resolved.
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2 Homogenization and Upscaling

We want to solve the problem on a coarse grid. Upscaling is the process of repre-
senting the system on a coarser scale by defining average or effective macroscopic
parameters in place of the true parameters (in our case, a.). Perhaps the most well-
developed mathematical theory of upscaling is homogenization [19,45,51,62]. We
begin with an overview of the philosophy of homogenization.

The solution u has high frequency “wiggles” due to the heterogeneity of a., as
illustrated in Fig. 1 Can we find the smooth “local average” u(x) without knowing
u(x)? The wiggles are irregular, so they are hard to deal with.

The key assumption in homogenization theory is that the heterogeneity has scale
separation, meaning the system separates into fine and coarse scales with some gap
in scales; that is, Fig. 1 is somehow an accurate picture of the scales separating into
fine wiggles and some coarse average. More precisely, we assume the heterogeneity
is periodic of period €, so that the wiggles are regular, and thus easily identified and
removed. Later we will see that this is basically the closure assumption that allows
the fine-scale details to be removed uniquely from the problem. We will let € — 0,
which should remove the wiggles (at least in some weak sense) and give us our
macro-scale model for the average flow.

Let Y be a unit-sized reference parallelepiped cell domain, which we scale by €.
Then 2 is composed of translated copies of €Y (see Fig.2). The permeability a. is
assumed to be, more generally, locally periodic, meaning that

ae(x) = a(x, y), ®)

where a(x, y) is periodic in y € Y but varies slowly and smoothly in x € £2.

Homogenization is very mathematical, and involves deep analysis of partial
differential equations [51]. Fortunately there is a simpler, more physical view of
homogenization, called formal homogenization [19, 62].

Fig. 1 The solution u with

high frequency wiggles

compared to its “local

average” u. Can we find u u(x)
without knowing u?

Fig. 2 The domain £2
composed of e-scaled xX+¢ey
reference parallelepipeds Y. %
General location x € £2 is
modified by y € Y to give
.. . ps
position x + €y. Scaling by A
1/€ focuses in on the details v
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As depicted in Fig. 2, we represent the idea of scale separation by assuming that
the space variable Xpsome € §2 has both a slow (denoted by x € §2) and a fast
(denoted by y € Y) component, where these scale as

Xabsolute ~ X + €Y.

At any point Xapsolutes X 1S the macroscopic position that ignores fine scales and
y allows us to “see” the local details under dilation by 1/e. In this way, we can
quantify how these local details affect larger scales. The local details disappear as
€ — 0, but not necessarily their coarse-scale effects.

Formal Assumption. Assume without proof that the true solution p(x) can be
expanded into a power series involving € as

p(x) ~ po(x,y) + € pi(x,y) + € pa(x,y) + -,

where in y = x /€ and each py is periodiciny € Y.

Note that the gradient operator scales as
V~V,+e'V,.
We expect that

p=pc—> po ase — 0.

Substitute the formal expansion into the equations (1)—(2) to obtain

(€Y, + Vo) a@ )€Yy + VO Y pray) = f.
k=0

Equating terms with like powers of € leads to the following conclusions (for more
details, see, e.g., [19,45,62]).

1. The €2 terms and periodicity in y imply that po(x,y) = po(x) only (i.e.,
homogenization removes y, as we had hoped).
2. The €~! terms imply the existence and form of a closure operator, which is

dpo(x)
an ’

d
Pi(x,y) =) w;(x,y)

J=1

where the w; solve the local cell problems, one for each coordinate direction
j=1,...4d,

-V, [a(x, YWVyw;(x, y)] =V, [a(x, y)ej] in 2 xY, 9
w;(x,y) is periodic in y, (10)

where e; is the standard unit vector in the jth direction.
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3. By averaging over the cell Y, the €” terms give the homogenized equations

u) = —aogVpy in 2 (Homogenized Darcy’s law), (11D
Veug= f in 2 (Conservation), (12)
u-v=0 on 952, (13)

wherein a(x) can be computed as the tensor

ao,ij (x) =

|Y|/ a(x. )| —(x ¥)+85) dy. (14)

Lemma 1. The homogenized permeability ay is symmetric and positive definite.

Therefore ay has d principle eigenvectors and only positive eigenvalues, which is
required of a permeability tensor in Darcy’s Law (11) on physical grounds.

Lemma 2. [Voigt-Reiss Inequality] The homogenized permeability ay lies between
the harmonic and arithmetic averages. More precisely, if

a:.= (ul/'/(a(x )~ dy) l and &:=|71|/Ya(x,y)dy,

then
ETa(x)E < ETag(x)E <€eTa(x)E VEeRY ae x €.

Thus we have the homogenized permeability tensor ao(x) from (14), and we can
compute po(x) from (11)—(13), which is well-posed by Theorem 1 and the remarks
following. In fact, one can prove the following theorem on convergence [7, 8,51],
essentially justifying the first two terms in the formal asymptotic expansion.

Theorem 2. Let p. and u. solve (4)—(5), with a. satisfying the local periodicity
condition (8), and let py and uy solve (11)—(13). If py € H*(2) N W1 () and
the first order corrector is defined as

31’0 (x )

p = p0+eZw](x x/€) ——— = po(x) + € p1(x,x/e),

j=1

then there is C > 0, independent of €, such that

Ipe = pollo = Ce and |V(pe — p)llo = CVe.

Moreover, let oy = ag' and define the fixed tensor o = a (I + Dw)ay, i.e.,

lj(x y) - Zazk(x y)(gk + 80)%(;: y)) Q0,45 5
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which is independent of € and the domain 2. If 7c(x) = </ (x,x/¢€), then
U (x) = (x) uo(x) + 62 (x),

where

162110 < C{elluolli + ve|d82][wolloco} = O(Ne).

Herein, ||-[|x.».., denotes the norm in the Sobolev space W7 (w). We will omit p
when it is 2 and @ when it is £2. The theory of homogenization has seemingly solved
our problem with heterogeneity, since we are dealing with the case where € is small
and so the error in Theorem 2 is negligible. However, there are serious limitations
to this approach, especially in the mixed context where we are more concerned with
accurate approximation of u = u,.

First, po is approximated coarsely, and so has no microstructure. Thus

uy = —agVpo # ue.

We therefore need to use p 61 ~ p., which does contain the microstructure. However,
even though

ui = —aEVpe1 ~u and “(x)uy(x) ~ u,

we lose the divergence property, since
Voul#V-u.=f and V-ouy#V-u = f

This means that the local conservation principle is not satisfied. In fact, the error is
O(1), so we are not even approximately mass conservative.

Second, a subtle question in the two-scale separation case arises: given a.(x),
what is a(x, y)? In practice, one works on a coarse computational grid, and, given
X € §£2, one treats Y as a portion of the mesh (one or more coarse elements)
around x, and sets a(x, y) = a(y) there. But it is not completely clear that this
is appropriate.

Finally, and most importantly, we really want to develop techniques that apply to
the non-two-scale separation cases. We thus turn to multiscale numerical techniques.
However, we will use homogenization theory as a guide for the general case, since
the two-scale separation case is the only one we completely understand.

3 Multiscale Numerics

Within the multiscale numerical approach, the objective is to solve the problem in a
way that:

1. Does not fully incorporate the problem dynamics (i.e., solves some global coarse
scale problem to resolution 2 > €).
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2. Yet captures significant features of the solution, by taking into account the micro-
structure (to resolution /1y < €).

Many techniques fall into this general class of methods. We note the following
techniques and give some references, including what we believe are the first works
in the area, although our list is very incomplete, since there is a vast amount of work
in the area of multiscale numerics.

1. Multiscale finite elements began with the work of Babuska and Osborn in 1983
and experienced major advancements in the work of Hou and Wu starting in 1997
[14, 35, 46,47, 64]. These methods were extended to mixed systems explicitly
by Chen and Hou in 2003 [3, 4, 28], but they were actually defined implicitly
for mixed systems much earlier as variational multiscale methods by Arbogast,
Minkoff, and Keenan in 1998, as noted by Arbogast and Boyd in 2006 [8, 10].

2. Variational multiscale analysis began with the work of Hughes in 1995 [23,
48,49], and was defined for the mixed case by Arbogast, Minkoff, and Keenan
in 1998 [5,6,8,10,52,56,57].

3. Multiscale multilevel and mortar methods, in the context of homogenization
or multiscale problems, can be considered to be implicit in the work of Moulton,
Dendy, and Hyman in 1998, and were further developed by Xu and Zikatanov
in 2004 [41,53-55, 65]. These were extended to the mixed case in the sense of
multiscale mortar methods by Arbogast, Pencheva, Wheeler, and Yotov in 2007
[11]. A multiscale basis optimization technique was defined by Rath in 2006
[59,60].

4. Multiscale finite volumes and discontinuous Galerkin methods were also
developed. Multiscale finite volumes were first described by Jenny, Lee, and
Tchelepi in 2003 [39, 43, 50], and multiscale discontinuous Galerkin methods
were defined by Aarnes and Heimsund [1].

5. Heterogeneous multiscale methods were defined by E and Engquist in
2003 [32].

We discuss three of these techniques in detail herein: multiscale finite elements,
the variational multiscale method, and multiscale mortar methods. Each of these
take an overall multiscale strategy with four main components, as follows.

1. Localization. The full partial differential problem is decomposed into many
small, local, coarse element subproblems (of scale i > ¢).

2. Fine-scale effects. The local subproblems are given appropriate boundary
conditions and solved on the fine scale iy < € (to resolve variations in a.)
to define a coarse scale multiscale finite element or finite volume basis.

3. Global coarse-grid problem. This /-scale coarse basis is used to approximate
the solution globally.

4. Fine-grid reconstruction. The finite element basis encapsulates an /1 -scale fine
representation of the solution.

Note that in these methods, the problem is fully resolved on the fine scale, but the
problem is not fully coupled. The global problem is a reduced degree-of-freedom
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system. Computational efficiency comes from divide-and-conquer: small, localized
subproblems are easily solved; and the coupled global problem has only a few
degrees of freedom per coarse element, and so is relatively easily solved.

3.1 Nonmixed Multiscale Finite Elements

For simplicity, we introduce multiscale finite elements in the nonmixed case. Recall
that the objective is to define finite elements tailored to the problem at hand to better
capture the fine scales.

To make everything concrete, we begin with an example in one dimension.
Consider the problem

—(ap’) =0, 0<x<1, (15)

p(0) =0and p(1) =1, (16)

where a > 0 is highly oscillatory, leading to an oscillatory true solution, as indicated
in Fig.3. Let X = Hj(0,1) = {w e H' : w(0) = w(1) = 0}. Then our problem

has the variational form
Find p € X + x such that

(ap’,W)=0 VwelX.
We choose a uniform grid of five points x; = i/4,i = 0, 1,2, 3, 4. We illustrate

the definition of finite elements beginning with the standard piecewise linear basis
before defining the multiscale variant.

0.75 1.5
0.5 1
0.25 0.5
!
00 0.25 0.5 0.75 1 00 0.25 0.5 0.75 1

Fig. 3 The true solution p is shown on the left for the coefficient a on the right (although a
becomes very small, it remains uniformly positive)
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Standard finite element space X). At x;, i = 1,2,3,4, we define §; to be
piecewise linear over the mesh such that g; (x;) = §;;. To state this constructively,
let x5 = 1. As illustrated in Fig. 4, we define ¢;, supported in (x;—1, X; +1), by:

1. Setting ¢; on the boundary of each element separately, so g; (x;) = §;;;

2. Linearly interpolating over each element separately;

3. Joining the two pieces together continuously to form ¢; and setting X;, =
span{g; j.

Multiscale finite element space X;. Localize X to the element £ = (x;—1, X;)
as X(E) = HOI(E). As illustrated in Fig.5, at x;, i = 1,2,3,4, we define ¢;,
supported in (x;—1, X;+1), by:

1. Setting ¢; on the boundary of each element separately, so g; (x;) = §;;;
2. Solving the homogeneous problem on each element £
Find g¢; € X(E) + gi(x) such that

(ag!, W) =0 YweX(E),

where E is (x;—1, x;) or (x;, X;+1), using the appropriate linear function ¢; (x)
for the boundary conditions;

3. Joining the two pieces together continuously to form ¢; and setting X, =
span{q; }.

We illustrate the finite element solutions that result from using standard and
multiscale finite elements in Fig.6. This is merely an illustration, since the
multiscale finite elements reproduce the exact solution in one dimension, but not in

0.75

0.5

Xi-1 XX Xit+1 0.25
gi(x-1)=0  qi(x)=1 qi(x41)=0 of !

Fig. 4 Construction of standard piecewise linear basis functions in one dimension

0.75

0.5
Xi—1 Xi X Xi+1 ozs |
gi(xi-1) =0 qi(xi)=1  qi(xi41) =0 oLt

0

Fig. 5 Construction of multiscale basis functions in one dimension
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075 i
05
=
0.25
0l
0 0.25 0.5 075 1

Fig. 6 The solid line is the true solution, the dashed line illustrates the multiscale finite element
solution (actually, it is exact), and the dashed-dotted line is the standard finite element solution

higher dimensions. To avoid misleading the reader, an error has been displayed. The
point is that standard elements simply cannot represent the microstructure, whereas
multiscale elements have this ability.

For the general multi-dimensional problem

—V-a.Vp=f 1in$2, a7
—a.Vp-v=0 onds2, (18)

the standard variational problem is
Find p € X = H'(£2)/R such that

Ac(p,w) == @ Vp,Vw) = (f,w) YweX. (19)

General finite element construction. Let .7}, be a finite element partition of £2.
Define standard ¢; and multiscale ¢; finite elements on an element £ € .7, as
follows.

1. Set ¢; and ¢g; on JE to be some simple polynomial. More generally, in the
multiscale case, we can set ¢; = £;(x) on dE, where {; is any appropriate
function.

2. Use some polynomial interpolation over E to define ¢;. However, for multiscale
elements, we solve the homogeneous problem on each element £

Find g; € X(E) + ¢;(x) such that

Aé(qivw)E:O VWEX(E)s
i.e., we solve the Dirichlet problems (on a fine grid)

—V-a/Vgi =0 inkE, (20)
qi =4{; ondE. (21)
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3. Join the pieces together continuously to form X, = span{g;} and X, =
span{g; }.

We remark that the multiscale approach has a lot of flexibility in Steps 1 and 2, and
there exist many variants of the above procedure.

Multiscale structure of X;. When we set ¢; to be g; on each element boundary
(i.e., we take £; = g;), we can exhibit the multiscale structure of X by noting that

qi = qi + (qi —qi) =14 +q].
In this form, we define ¢/ by
Find ¢/ € X(E) such that
Ag(qi/,w/)E =—A(q;. W) YW € X(E).

The g/ € X(E) = H,(E) are “bubble functions,” localized to a coarse element
by imposing homogeneous Dirichlet boundary conditions. They are fine-scale and
contain the microstructure information. The ¢g; are coarse-scale.

Theorem 3. Ler X; = span{q.}. Then
Xy = span{qi + 4} G Xn @ Xj,

is a Hilbert space direct sum decomposition into coarse and fine scales.

3.2 Nonmixed Variational Multiscale Method

Again for simplicity, we introduce the variational multiscale method in the non-
mixed case, treating the system (17)—(18). Recall that the objective is to modify the
variational form of the differential system (19) to better capture the fine scales.

We begin by separating the solution space X = H!(£2)/R into coarse and fine
scales using a Hilbert space direct sum decomposition. Let

X=XaoX, (22)
and separate the standard variational form into coarse and fine scales through the
test functions as

Find p = p + p’ € X & X’ such that

Acp+p . w)y=(fw) VweX (Coarsescales), (23)
Ap+p' . W)= (f,w) VYw €X' (Fine scales). (24)
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Rewrite the fine scale equation as
Ac(p' W) = (fiw) —Ac(p,w) Y w e X',
and note that this is a well defined problem for p’. Tt implicitly defines an affine
upscaling operator taking X to X’. The linear part of the operatoris p’ : X — X/,

and it satisfies
Ac(P' @), W) = —Ac@G.w) Yw eX. (25)

The constant part of the upscaling operator is p’ € X', which satisfies
AG W)= (fiw) VYW eX. (26)

The full upscaling operator is p'(-) + 5’ : X — X, and given coarse scales, we can
obtain fine scales as

p'=p{+7. 27)

Now the coarse scale equation is simply
Ac(p+ P'(P). W) = (L) — Ac(p'. W) Y weX,

and the effect of the fine scales is manifest within this coarse-scale variational
problem. Taking w' = p’(w) in (25) enables us to symmetrize the form to

Ac(p + P'(P).w + P'() = (fw) — Ac(p. W) VweX. (28
If we define the bilinear and linear forms to be
Be(p,w) = Ac(p+ P'(p),w+ p'(W)) and  F(w) = (fiw) — Ac(p', W),
then we have the modified variational form
B(p,w)=FWw) VYweX. (29)
In the variational multiscale method, both the bilinear and linear forms are modified.

Choice of Hilbert space decomposition. To be useful for finite element approxi-
mation, we need to localize the fine scales. For .7}, a (coarse) finite element partition

of 2, let
X' =P X(E) =P H)(E).
E E
and then X = X @ X', where
X = X/X' ~ {q|. : e s a coarse edge of .7} }.

Thus X is determined by its values on dE V E € .7j,.
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Finite element approximation. We use a standard Galerkin finite element space
X, = {Gn} and the multiscale fine space X’. That is, X" is localized and

XyeX' cXoX =H'/R

In practice, we must further approximate X'|z = X(E) on each element E by a
finite element space on a very fine mesh X, / (E). However, since E is small, we
can make this approximation as accurate as we need, and so for simplicity we will
assume that it is handled exactly.

We have three equivalent ways to describe the finite element approximation. The
primary method is given by direct approximation of (29); however, it is instructive
to instead start from the original two-scale decomposition (23)—(24). This leads to

Version 1. Find p, = p, + p;, € X, ® X’ such that

Ac(pn,w) = (fiw) Vwe X, ® X'

But X;, @ X' is a very large space. In fact, pj, and p), are related, and the solution is
in a much smaller space.

Since Galerkin methods minimize energy, the multiscale solution minimizes
energy in the large space X, @ X'. For these methods, if one specifies the value
of the finite elements on dF, then the best approximation comes from using the
finite element that minimizes energy within E.

Theorem 4. If the multiscale finite elements are specified on OE for each element
E € 9, then the best approximation comes from using the multiscale finite element
that minimizes energy within E.

By solving for the upscaling operator as above, we obtain the equivalent form
Version 2. Find p; € X}, such that
BE(P_Iu "_V) = egf("?}) Vwe Xh-

Now X is very small, but we must find the upscaling operator to relate g, and
P5,(@n). Given a basis X;, = span{g; }, we solve a local Dirichlet problem for each
¢; on element £

Ac(Gi + p'(Gi).w)e =0 VY eX(E).

These are the same problems as in the multiscale finite element case, so X, =
span{g; + p'(g:)} are the same elements from Theorem 3, and we can reformulate
the variational multiscale method as a multiscale finite element method

Version 3. Find p;, € X}, such that

Ac(pp,w) = (fiw) —A(p'.w) Y we X,
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Theorem 5. Up to treatment of [ (i.e., p’), the variational multiscale and multi-
scale finite element methods are the same in this basic setting.

Unlike multiscale finite elements, the variational multiscale method naturally
handles nonzero f. Henceforth we will use this correction in the multiscale finite
element method as well.

4 Mixed Variational Multiscale Method

The mixed case (4)—(5) is complicated by the fact that we treat directly both the
scalar unknown p € W = L?(£2)/R and the vector unknownu € V = Hy(div; 2).
We base our two-scale expansion of the solution space W x V on the local mass
conservation principle. Given a coarse computational mesh of elements ., on £2
with element edges (or faces) &, let the pressure space be W = W @ W', where

W C {w € W : wis constant on each coarse element E € .7},
W' =Wt
The velocity space is then V = V @& V', where
Vi=(vVeV:V.vVeW vV.-v=00m0dEVY E c )},
V:=V/V ~{v-vondE : E € F}.
Note that V' is localized by imposing homogeneous Neumann boundary conditions,
leaving V with full normal velocity coupling on the coarse edges e € &). Note
also that we have decomposed V according to coarse and fine scales related to mass

conservation, since we can define V explicitly in such a way that

V.V =W (coarse conservation),

V.-V =W’ (fine subgrid conservation).
We can now separate scales uniquely via the direct sum as
p=p+p eWaedW and u=u+u ecVaV.
Moreover, we can separate the variational form (4)—(5) into coarse scales

(@ '@+u),¥)—(p,V-¥) =0 VveV, (30)
(V-a,w) = (f.w) VYweW, (31)
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and fine scales

(@ '@+u),v)—(p . V-v)=0 Vv eV, (32)
V-, w) = (fin) vw eWw'. (33)

As noted in [6], we have the following well-posedness result.

Lemma 3. The inf-sup condition holds over both W xV and W'xV', with constants
independent of the coarse mesh and €. Moreover, givenu € V, there exists a unique
solution (p’,u’) € W' x V' and

1P llo + II'llv < C{lLfllo + l1uflo}-

Thus we can define a closure operator relating fine scales to coarse scales from
(32)—(33). This is an affine operator, with linear part defined for v € V as (p’, @) €
W' x V', where

(@' V+8),V)—(p,V-V)=0 VYV eV, (34)
V-u',w)=0 vw eWw, (35)

and constant part defined as (p’,0’) € W’ x V', where

@'w.V)—(p'.V-V)=0 VV eV, (36)
V-, w) = (fin) vw eWw. (37)
That is,
pP=p@+p and v =0'()+0.
Lemma 4. The operator &’ : V — V' Nker(V-) is bounded and linear:

Using the upscaling operator to replace fine-scale quantities in (32)—(33), we
obtain the upscaled variational problem (written in symmetric form)
Find (p,u) € W x V such that

(@'@+ @), V+a(F) - (p,V-V) = —(a.'W,¥) YVveV, (38)
(V-u,w) = (fiw) YVwe W, (39)
with the full solution given by
p=p+p@+p and u=u+d0'(a)+u.
Note that the equations maintain strict local conservation on both scales.

We can also rewrite the problem as
Find (p,u) € W x V such that
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(a.'a,v) — (a0 (), 0 (V) — (p,V V) = —(a]'@,V) VveV,
(V-u,w) = (f,w) Vive W.

The positive diffusion term (a:lﬁ, v) has a negative subscale correction, which is
therefore antidiffusive on the coarse scale. This is the main reason that effective
parameters (merely replacing a. on E by some average quantity in the original
equations) cannot work well. Rather, some multiscale ideas are needed.
Numerical Approximation. Choose any inf-sup stable mixed space W}, x V;, on the
coarse mesh [21,26]. Then we approximate p ~ p, and u ~ u;, as

Version 1. Find (5, ;) € W, x V}, such that

(aZ' @y + 0 @), Vi + 0 (V8)) — (P, V- Vi) = —(a.' W Vi) Vv, €V,

(40)
(V-ap,wp) = (fown) Vo € Wi,
(4D
and then set
ph=rpn+p (W) +p and w,=u,+0'(w,) + 0. (42)
By defining the space
Vi = {V+ W)t eV} SV +V, (43)
we can express the method as the multiscale finite element method
Version 2. Find p;, € W, and u, € V;, + @’ such that
(a7 "wp,vi) — (P V-vi) =0 Vv, €V, (44)
(V- wywn) = (fo0n) v iy € Wi, (45)
with the reconstruction p, = p, + p’'(w;) + p’. Furthermore, after some

manipulation of the equations, we can express the method in the non-computable
form B
Version 3. Find p;, € W and u;, € V}, + V' such that
(a7 "ap.vi) = (pr.V-vi) =0 Vv, €V +V, (46)
V-w,w) =(fiw) YweW. 47
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5 Mixed Multiscale Finite Elements

The mixed multiscale finite element method is defined above in (44)—(45). Our task
is to define the discrete spaces. We will define some of the simplest mixed multiscale
finite elements that are commonly used. In all cases, we will take the pressure space

Wy, := {w € L*(£2) : w is constant on each coarse element E € .7}, }.

We deal with the fact that W, ¢ W = L?(£2)/R in the usual way. Since

V~{v-vondE : E € 7},

we need only specify v € V on coarse element edges e € &,. We obtain the
corresponding multiscale finite element v, by solving the local Neumann problem.
For simplicity, we work in two dimensions on rectangular elements.

Raviart-Thomas mixed elements (RT0). The standard lowest order Raviart-
Thomas vector variable space VETO [61] has one basis function VeRTO associated with

each coarse element edge e € &),. The degrees of freedom are the constants v - v|,
for each edge e € &),. For example, if E = [0, 1]? then we have the four pieces

(7)) () )

which are joined to neighbors across the edge for which v - v = 1. This is the
standard polynomial definition.

We can also define these finite elements as the solution to two types of differential
equations. The first we will call the element definition. For each edge e € &, let
E.;,i = 1,2, be the two elements that contain e. We solveon £ = E,;,i = 1,2,

RTO _ RTO - 1-—= — .=
v, =-Vo¢, inE, 7" 7 ey
RTO . 2= — — =y
Veve " = =xlel/|E] lnE,g — —— e e|l— — 1 (48)
o, ) OondE e, A o ’
¢ " |lone Ee Ee2
However, it is equally valid to define vR™ on the dual-support element E, = E,; U
E., by solving
AR o |
==
RTO _ RTO - 1 - |-~ 7
Ve - _vd)e mn Eés 4. 1 s ;/
RTO . . 41— —=—s = (49)
V'Ve ::l:le|/|EE,l| m Eé,is 1 = 1525 A= —_— —1— —= ;
I~ ==-" =
RTO T R R 7 7
v, v=20 on dE,. E
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We have the following convergence result [61]. Since these elements have no
dependence on the scale €, they are accurate only when i < e, i.e., h resolves the
fine-scale heterogeneity.

Theorem 6. [u—uf™|o < Cllu|;h = O(h/e).

The main idea of multiscale finite elements is to use a. in their definition. In the
boundary value problems above, we simply insert the coefficient a..
Variational multiscale element (MEQ) based on RT0. The simplest multiscale
element (MEO) is due implicitly to Arbogast, Minkoff, and Keenan in 1998 [10]
(cf. [8,28]). It is based on using RTO as the coarse space in the variational multiscale
method, or, equivalently, using the element definition of the RT0O element above.
Define v}'E € VMEO for each coarse element edge e € &, by solving

VMEO — 4 VMEO iy s s
V. MEO = +le|/|E inE, |- - = P
DTS B S N
yMEO OondE \e, R =
¢ " |lone. el E,,

We have the following convergence result [6, 8,28].

Theorem 7. In general, |u — w}||y < Cllu|,h = O(h/e€). In the two-scale

separation case, W is the solution of the homogenized problem and
Ju = w™llg = C {lluollih + [wolloe + [olloco v/e/ 7).

Since wy is independent of €,

lu—w) o = O(min{h/e, h+e+ e/h}).

Multiscale dual-support (MD) elements. Elements based on RTO can also be
defined using the dual-support definition. This was done first by Aarnes et al. [3,4].
Define vMP € VhMD for each coarse element edge e € &, by solving

IO L

MD _ MD 7 E——
v, —acvVe, in E,, ; 4/2 T
V-vMP = tle|/|E.;| inEe;,i=12,7 - —|— | (D
' 1 ,/,_»\:}4,4) 4
vy =0 on dF,. E,

The shape on E,; depends on E,,, and vice-versa. Thus, as defined by
Ciarlet [31], this is not a finite element. Nevertheless, we will consider it to be a
finite element. It has a problem with convergence in the classical sense (i.e., the error
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should vanish as 7 — 0) [7]. As noted in [7], the problem is related to anisotropy.
For example, if one takes a constant

A O

ac(x) =a=QAQ" with A = (O "

) and Q a rotation,

we have a genuine anisotropy when the rotation is not a multiple of 77/2 and A; #
A», but no microstructure. On e € &), the MD element VS’ID has a nonconstant
normal trace vVMP - v. Therefore the space VhMD cannot reproduce constants, so the
method cannot converge in any reasonable sense as i — 0.

It should be noted that these elements are designed to be effective when 7 > €.
If for some reason one would take 4 — 0, one should also change elements when A
becomes smaller than &'(¢). Moreover, there are many variants of this basic element
as defined herein which improve the convergence properties when /i > €.
Second order accurate elements (BDM1 and ME1). The standard elements of
Brezzi, Douglas, and Marini, defined in 1985, also use a piecewise constant scalar
space W), but they are formally second order accurate for the velocity space
VEDMI [24,25]. The BDM1 elements have two degrees of freedom per element
edge. That is,

vBPMI |, is a linear function for each edge e € &,.

However, we maintain the conservation property that V - v|£ is a constant on each
element E € .7, for all vBPM! ¢ VBPMI "o v . VBPMI — 1, ‘More precisely, on a
rectangular element E € .7}, a finite element in VEPM! has eight degrees of freedom
a,b,....has
BDMI (a +bx+cy+2gxy—hx2)
v = ) .
d+ex+ fy—gy +2hxy

The multiscale variant, due to Arbogast in 2000 [5], is defined using BDMI as
the coarse space in the variational multiscale method, giving V%’IEI with two degrees
of freedom per edge e € &,. Fori = 1,2 and L; a basis for linear polynomials on
e, we construct vMF! by solving

MEI MEI 7 1 = =
Vei =—a V¢, nE, ) =7 T=lo 4 T T o
’ ’ 7 — .
1 ’ /{7 T ’ )/ -
ME] . / — A1 —
V'Vei = — L,' 1nE,; /.,/7\ e A — T |e 52
’ |E| e 7 — = - — ( )
A - 7 e
yMEL | _ 0 ondE \e, E(i=1) E(i=2)
o L;one,

and joining the two pieces from each side of e.
We have the following convergence result [6, 8].
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Theorem 8. In general, ||u — u;;’IEl lo < Cllul2h* = O(h?/€?). In the two-scale
separation case, W is the solution of the homogenized problem and

= o = C { 1w 2% + wolloe + I0ollo.co €/ B} = O(* + € + Vel ).

Some additional elements. As noted earlier, the multiscale finite element approach
allows great flexibility in their definition. We note here four main variants.

1.

Oversampled elements (OS). Hou et al. [28,46] pro-

posed an oversampling technique for the local partial 7 ﬂ/ﬂ__>
differential systems used to define multiscale finite ele- 2 - - .
ments. Instead of solving on £ € 7}, one solvesona 7 ﬂ‘\\’\)\'_: .
larger domain, and then restricts the solution back to E. 7} 7~ = " ~|
This gives a nonconforming method, since the pieces f Tl \z .
do not join continuously across edges. The advantage ( S—

of oversampling is that it increases the variability on
dE and allows for better multiscale approximation.

. Generalized finite elements and partition of unity methods. Babuska

et al. [14, 16, 64] advocate creating a multiscale finite element basis from
local multiscale functions, perhaps defined by oversampling as above. However,
instead of simply restricting back to the element E € .7, (or E, for e € &), one
uses a partition of unity method so that the resulting elements are conforming.

. Reduced dimension-based elements. Hou and Wu [46] proposed defining the

multiscale boundary condition on e € &, by solving a reduced dimension
problem. In the case of the nonmixed system, one would first solve the lower
dimensional problem —V, - a,V, p, = 0 on e for p,. Then one sets the boundary
condition in (20)—(21) to be £; = p,. Again this improves the variability on JF.
It is not so clear that this technique applies to the mixed problem, since we need
information normal to e (i.e., vV - V).

. Local eigenfunction-based elements. Efendiev, Galvis, and Wu, as well as

Hetmaniuk and Lehoucq [33, 44] propose that, in the differential problems
defining the multiscale finite elements, the boundary condition v-v on e € &,
be based on the solution of a local eigenfunction problem (solved in, e.g., E,
and restricted to e). The eigenbasis is the most efficient basis, and so should give
a good definition of the local boundary condition on e. The energy minimizing
extension into E,;, i = 1,2, is then the best choice for finite element, as noted
above in Theorem 4. Techniques for efficient definition of the multiscale basis,
and for reducing its dimension, are given in [33].

. Homogenization-based elements (HE). Arbogast [7] proposes using homog-

enization theory to define v-v on e € &), and energy minimizing extension
into E,;, i = 1,2. The idea is easily seen from the homogenization theorem,
Theorem 2. The microstructure is

u. ~ A,
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that is, u, is a fixed, e-scale multiple of a smooth function. Since we know how
to approximate a smooth function (e.g., by a polynomial), we should define

Vi ~ {4V : v is some nice smooth function}.

However, these finite elements lie outside H (div; §2), so we use the idea merely
to define the normal velocity. For e € &), we approximate the smooth part,
corresponding to ug - v|,, by a constant vector. Thus we have two degrees of
freedom per edge, and a basis for the homogenization-based finite element space
(HE) VEE can be constructed by energy minimizing extension of the normal
traces

e v, to VSF‘, i=1,2.

6 A Multiscale Analysis of the Approximation Errors

In this section, we analyze the variational multiscale method (40)—(41), or, equiv-
alently, the multiscale finite element method (44)—(45) with the @’ correction term.
Throughout this section, we will tacitly assume that a. is uniformly positive definite
(7) and that V - V) C W,. We noted already that the MD finite elements do not
converge as i — 0, but the MEO and ME1 elements are better behaved. We assume
that the upscaling operator (i.e., the local problems on E) is solved exactly, since
it can be well resolved on a fine grid. Because our problems are well-posed (recall
Lemma 3), small discretization errors on the subgrid scale will propagate boundedly
in the error estimates that we present later. However, for completeness, we note
in passing the following theorem, which accounts for subgrid approximation for
standard multiscale elements [6].

Theorem 9. In the variational multiscale method (40)—(41), suppose that inf-sup
stable finite elements Wy x Vi are used on the coarse scale H which approximate
velocity to order L. Suppose also that the upscaling operator is approximated on
a subgrid of element size h < H by a mixed method W), x Vj, approximating the
velocity to order L. If Py, denotes fine grid L*-projection onto W, = Wy + W/,
then

la?@—wp)lo < inf a7 2 (w—vy)]o < CcH",
VeV +v),
Vvi=2w, f

V.ou, = f@th.

Moreover; if pressure is approximated to coarse order M and fine order m < M,
then

||gZWhP - ph”O =< Ce(HM_mhm_{—l + HL+1),
lp = pallo < C(HM "™ + H' ).
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Of course, the constants suffer from the problem of scale. However, in the resolved
case, the combination of coarse BDM1 spaces (i.e., ME1) with fine RTO gives the
nice estimates (L =2, =M =m = 1)

”u_uh”O = CeHZv ”V : (ll _uh)”O = Chv and ||P - ph”O = Cs(h + H3)s

which suggests the scaling H = ~/h, giving €'(h) convergence.

We turn now to multiscale error analysis that quantifies the error in terms of /2 and
€. The proof is based on comparison to the homogenized solution, and so applies
technically only to the two-scale separation case, i.e., when (8) holds, which we
tacitly assume throughout this section. The style of proofis due to Hou et al. [35,47]
in groundbreaking work on the multiscale analysis of finite element methods. For
the mixed case, see also [8,28].

We begin with a general quasioptimality result [6].

Theorem 10. Foranyv € Vj, + V' such thatV-v=V -u, = f,

||a€—l/2(u6 —w)llo < ”ae_l/z(ue =9)llo,

V'uh:f'

Proof. Since we assumed the upscaling operator is solved exactly, we obtain
precisely that V - u, = f from (47). This means that the multiscale method is
locally conservative on the fully resolved fine scale.

The velocity error is bounded by subtracting (4) and (46) and taking a test
function v — uy,, where v € V;, 4+ V’ has the required divergence. That we optimize
over the larger space V, + V' instead of V; is a consequence of the fact that the
upscaling operator is defined as energy minimizing extension. O

We sketch now a simplified multiscale convergence proof [7] involving certain
projection operators and four key results. We analyze here only MEO and avoid
complexities like oversampling, thus proving the multiscale part of Theorem 7.
The first key result is quasioptimality, Theorem 10. The second key result is
homogenization, Theorem 2, which says that u, ~ .2Z,uy. Thus our goal is to find
any ve ~ Zeug in VY + @' with V-ve = Vou, = f.

The third key result involves dealing with the € scale of our finite elements, so we
define corresponding homogenized finite elements. We replace the true coefficient a,
in the definition of the finite elements (50) with the corresponding homogenized one
ay, giving a finite element space

Y MEO MEOY

on = span{vO, .
eES

Since our finite elements are defined by boundary value problems, the homoge-
nization theorem applies, although we will see numerical resonance (i.e., factors of
€/ h) in the estimate, which come from localizing to the element E, of scale /.
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Lemma 5. Foreach e € &,

MEO E, MEO
‘Q{f Oe + 96 ‘

3

€ €
165M 0.5, < CLellve=ll1e, + VelIENVEE Nlo.0o., } = ﬁ(— + \/%)hd/z-

h

We next define flux-based projection operators for both VME and V}'¥°, which
are related through the lemma above. The average normal flux across e € &, is

1
ygz—/v'vgds.
le| Je

The usual Raviart-Thomas projection is defined as

780y .= E yev§T0 € VETO.

€€
Similarly, we define
MEO,, .__ MEO MEO MEO, MEO  yMEO
TV = E YeVe €V and 7, E YeVoo € Vou s
eE€E) e€E)

leading us to the third key result.

Lemma 6. Let &y, be L?-projection onto Wy, the space of piecewise discontinu-
ous constants. Then

V. 71 Dy =vV. ]TMEOV= V. 7Ry = WWhV-V,
720 — Al Vlo < C vl (e/ h + Vel ).

Proof. The divergence condition follows from the Divergence Theorem. For the
estimate, note that

MEOQ MEO,, _ MEQ MEQ E¢ MEO
TV — ATy V—E VeV, JZ%VO )—E Vel M.

eESE) e€S)

Theorem 2 on homogenization gives us that

A

1My — o s < S [y [O5MED
eCOE

C Z (h_d/2||V||l,E@)(% + \/%)hd/z

eCOE

IA
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=C Y Ivhe (s + \/%)

eCOE

and the proof is completed by squaring, summing over all £ € .9}, and noting that
there is finite overlap of the E,. O

The fourth and final key result concerns smooth approximation by 7). In

general, this is not a nice operator. However, for the types of vector fields we
consider, it approximates well.

Lemma 7. If vy = —agVy, then

vo — 7™ volo < C|lvoll1/2.

Proof. Let

v =v— )y = —aOV(¢>O — Z Ve S?EEO) in E,
eCIE

which is a potential field satisfying the Neumann problem

V-W:V-VO—C@W,IV-VO in E,

W Ve = Vo Ve — Ve one C JF.

The standard energy estimate (see, e.g., [36,38]) gives the result. O

We are now ready to state and prove the discrete inf-sup condition. We need to
use the elliptic regularity theorem (see, e.g., [21, 36, 38]), which requires that £2
have, e.g., a C ! boundary or that §2 be convex [42].

Lemma 8. If 2 supports elliptic regularity, then there is some B > 0, independent
of €, such that
(wn, V - Vi)

su > Blwallo Y wi € Wy
wevie [Vallo + 11V - vallo

Proof. Recall that wy, is orthogonal to constants. Solve
V.vg=wy in £2, (53)

Vo = —aOngo in .Q, (54)
vo-v =20 on 452, (55)
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and note that elliptic regularity implies that
Ivolli = Cllwallo-

Take

v, = nileOvO € VhMEO,

for which
V-Vh = gZWhV‘VO = v_vh.

Then, by the third and fourth key results,

Ivillo < 17500 — 7)™ v lo + || (0™ vo — Vo)l + [l Zvollo

= Clvolli = Cliwallo.

and the result follows. O

Theorem 11. If 2 supports elliptic regularity and py € H*(£2) N W1 (82), then

0 -
lue — w0 + | 2, pe — Pullo

<C{(e+e/h+ e/h+h)|uolli + velluolloo}.
V,uleEo = f

Proof. Since u, ~ wMuy + 0 € VY 4 0 and V - ()™u + @) = 2, V -

u + V-’ = f, by quasioptimality, key result one or Theorem 10, we have that

ue — w)™ |y < Cllue — 7Muy — '[lo
< C{llue — Fewglo + || e (uo — 7)™ uo) [lo

+ | ey ug — 7 ug o + (18 ]lo,
and the velocity estimate follows from the final three key results, Theorem 2,
Lemmas 6 and 7, and the standard energy estimate of (36)—(37), which says that

1&llo < ClIl 25 fll-1 < Cllf lloh < Clluollih.

The divergence result follows in general, and the pressure result follows from the
inf-sup condition, Lemma 8 and the difference of (4) and (46). ]

We remark that a similar proof holds for ME1 [7]. We also note that recent
work by Babuska and Lipton [15] and Efendiev, Galvis, and Wu [33] shows
multiscale convergence for certain multiscale methods independently of the two-
scale separation hypothesis (8).
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7 Domain Decomposition and Mortar Methods

In this section, we discuss a restricted class of domain decomposition and mortar
methods related to the mixed finite element methods considered earlier for our
heterogeneous elliptic problem. In 1988, Glowinski and Wheeler [40] defined
nonoverlapping domain decomposition for mixed methods by iterating on the
Dirichlet-to-Neumann map. As depicted in Fig.7, given the pressure A on the
subdomain interfaces I", one computes the flow locally. Based on the flux mismatch
on I' (i.e., the jump in wu - v), one updates A using, e.g., conjugate gradients.
Once converged, the full fine-scale problem is solved. The technique allows
great flexibility in handling interdomain multiphysics (different physical models in
different subdomains) and is well suited to parallel computation. It allows us to
handle interdomain multiscale aspects as well.

In 1994, Bernardi, Maday, and Patera [20] defined mortar methods to glue
the subdomains together weakly when the subdomain meshes do not match. As
illustrated in Fig. 8, Arbogast, Cowsar, Wheeler, and Yotov in 2000 [9] extended the
mortar idea to mixed methods, using a continuous or discontinuous linear mortar A.
The idea was to use grid spacings of &'(h) for all grids.

The mixed mortar method is similar to our previous multiscale techniques. It has
the same four basic components noted in Sec. 3 above: localization to subdomains,
fine-scale effects resolved on the subdomains, a global interface problem for the
mortar unknowns, and fine-grid reconstruction over §2. If the mortar resolves the
computational meshes, i.e., the subdomain and mortar mesh spacings are &'(h), h <
€, we obtain a fully resolved and weakly but fully coupled approximation.

2, r §2, 2 r §2;

A A

Fig. 7 Illustration of domain decomposition. The domain £2 on the right is shown separated on
the left for clarity. On the interface I", A resolves the computational mesh on both 92, and 052,

Fig. 8 Illustration of mortar
mixed methods. On the 2 r 2,
interface I", A does not match
the computational mesh on
052, and/or 0£2,. The idea

l;
here is to consider that &, h,, "
and /i3 are of the same order,
so the problem is fully U \ 2

coupled PR h
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Fig. 9 Illustration of
multiscale mortar mixed 2

r 2,
methods. Here, H is much
coarser than /; and h,. We

A

use a higher order mortar

approximation to compensate

for the coarseness of the grid

and maintain good overall h
accuracy

hs

\ 2

“H

The idea behind the multiscale mortar mixed method is to relax the coupling
dynamics as in multiscale methods. As illustrated in Fig.9, we use the following
four main components.

1. Localization. Divide §2 into many small subdomains (or coarse elements of scale
H), over which the original partial differential system is imposed.

2. Fine-scale effects. The subdomains are given Dirichlet boundary conditions p =
A on I' and solved on the fine scale / to define the local solution.

3. Global coarse-grid interface problem. The weakly defined flux mismatch
(Gump in u - v) on I" is used to define a better A on scale H > h, and we iterate
this and the previous step until convergence is attained.

4. Fine-grid representation of the solution. We obtain a fully resolved and well
coupled approximate solution if A is approximated in a higher order space.

To be more precise, let £2 be decomposed into nonoverlapping subdomains £2;,
which correspond to coarse elements in our previous methods. Define the interfaces
Ly=02in0R;, =), and I}:=020T
i<j
With v; denoting the outer unit normal to d§2;, the differential problem (1)—(3) is

equivalent to the decomposed system

1

a u=-Vp in £2; (subdomain Darcy’s law), (56)
Veu=f in £2; (subdomain conservation), (57)
ulp - v +ulp v =0 on I7;  (conservation on interface I"),  (58)
ple; = ple, onlj;  (continuity of p on I"), (59)
u-v=20 on d452. (60)

A variational form is
Find p € L*(£2;), u € Hy(div; £2;), and A = p € H'/*>(I") such that

(@ 'a,v)g —(p.V-V)go + (A, v-v)r, =0 Vve Hy(div; $2;), (61)
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(V-u,wo = (fiw)e Ywe L*(£2), (62)

> uevi ) =0 Ve H'2(IN), (63)

i

where we use (-,-) for interface inner products for emphasis and Hy(div; £2;) =
{v e H(div; £2;) : v-v = 0 on d£2}. The last equation enforces continuity of flux
onl.

The multiscale mortar mixed method. For finite element approximation, define
on each £2; a fine scale finite element partition 9,19" of maximal element diameter
h < €, and let W,; x V,; C L*(£2;) x Hy(div; £2;) be any of the usual mixed
finite element spaces. For the mortar, define a coarse scale finite element partition
915” on each [j; of maximal element diameter H, and let My ;; be a space of
continuous or discontinuous finite elements. For W, = U; Wy, ;, V;, = U;V;,;, and
My = U;; My ;;, the multiscale mortar method is

Find p, € Wy, u;, € Vy, and Ay € My such that

(@', Vg — (pn, V-V, + Au,v-vi)p =0 YveV,, (64)
V- uh’w)gi =(/f, W)Qi Ywe W, (65)
Y (wievipwhp =0 Ve My.  (66)

i

Now the last equation enforces only weak continuity of flux on I".
The usual way to solve this system is to reduce it to an interface problem [40].
Since it is an affine problem in A, we define the bilinear and linear forms on My by

du (o p) =Y dui(op) = =Y (@) - vi, w13,

1

1

gu () =Y gui(w) = Y (W -vi, p)r;,

where (a; (1), pr(1)) € V, x W), solves the linear part of the problem (i.e., with A
given and f = 0)

(@ "oy (M), Vg, — (Pr(M).V-V)g = —(A.v-vi)r VveV, (67)
(Vi (1), w)g, =0 Vwe Wy, (68)

and (0, py) € Vj, x W, solves the constant part (i.e., with A = 0 and f given)

(@' v)o, — (pn, V)2, =0 VveV, (69)
V-ap,w)o = (fiwg VYwe W,,. (70)



272 T. Arbogast

Theorem 12. The interface bilinear form dy (-, -) is symmetric and positive definite
on My. In fact,
dy (. p) = (a7 0 (1), by (). (71)

Moreover,

du(Ap, ) = gu(n) Y e My
if, and only if, the solution to (64)—(66) satisfies

ph=Pn(Au) + pr and w, =0,(Ag) + U.

Thus, our problem reduces to a symmetric and positive definite linear system,
and it can be solved, for example, by conjugate gradient iteration. In that case, the
computations involve once solving for (u,, p,) to get g5 (1), and at each iteration
k, solving for (8, (A%,), pr(A%))) to get dp (A%, ).

Multiscale finite element formulation. Implicit in the method are multiscale finite
elements. To see them, let {{¢} be a basis for My and define

we = pu(pe) and g i= Gy (). (72)
Then
Ay =ZAN,L(, ph=ZX(W(+ﬁh, and uh=leV[+l~lh,
J4 J4 J4

and the method seeks {A;} such that

Y AeduGue, ) = gu(we) Yk,
l

which, using (71) and (70) and taking A = u; and v = u,, in (67), is equivalent to
D hea e, vi) = (fiwe) — (@i, ve) - Yk
¢

The multiscale finite elements are now evident [11,37]. Let

M

Nupg = span{ (W) } J  — :\\
Vi x // - J/ ¢ |
T

_ P(jee) Wi \\j\\: ,
- Spa“{ (ﬁh(m))} “ (Vh)‘ =

(73)
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Then the method is
Find (Plu uh) € Nh,H + (ﬁh, flh) such that

(@ 'wp,v) = (fiw) Y(w.v) € Ny

This is an unusual multiscale finite element space. Not only do we couple pressures
and velocities, but we allow nonzero normal flow on the boundary of the “coarse
elements” d£2; (it is merely weakly zero). However, our multiscale finite elements
are indeed locally defined over the subdomains.
Variational multiscale method formulation. We can also relate our method to the
variational multiscale method in several ways, and thereby extract different sets of
multiscale finite elements. If we decompose the discrete mortar space L*(I") =
My & M}, and drop M, we obtain the original formulation with multiscale finite
elements (73).

Another approach is to decompose the velocity space. Define the weakly
continuous normal velocities

V, = {V eV, Z(v vi,u)p =0V e MH}.
i
The method reduces to: Find p;, € W, and u, € V,,, such that

@ up V) =Y (. V-V)g, =0 ¥YveV,, (74)

1

> (Vewwg = (fiw) Vwe W (75)

1

Our Hilbert space decomposition of V,, involves the weakly zero normal velocities
Viv = {V c Vw : (V- ]),,u,)['ij =0 V[L S MH’,']' and Vl,]}

ThenV,, ~V,,/ V!, is defined by its degrees of freedom on the interfaces as

Vo > {(v, ) 1 v eV, VL. (76)
With W/ := V- V/ and W,, := (W/)*, we have the decomposition
I/Vh = VT/W b VVV: and Vw = ‘_Iw ® Viv

Proceeding as before, we obtain coarse and fine scale equations analogous to (30)—
(33), an upscaling operator analogous to (34)—(37), and the upscaled equation
analogous to (38)—(39).

The point is that we obtain formally the same variational multiscale method as
before, but now we use nonconforming elements with greater flexibility near 052;.
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The greater flexibility results from the fact that we control the normal velocities only
weakly. According to (76) a basis can be found by finding for each £ any function
Vye € V,, such that (v, ¢, tx) = 8. That is, we specify v,, ¢ - v on the boundaries
of the “course elements” 0£2;, but only in the weak sense. Moreover, the boundary
condition on the other coarse edges I'; U I'; \ I7; is only weakly zero, so some flow
between subdomains is allowed on the fine scale.

We have the following a-priori error estimates [11].

Theorem 13. If pj, w;, and Ay are locally approximated by polynomials of degree
L —1,k —1, and m — 1, respectively, then there exists C, independent of h and H,
such that

IV (=w)lo < C|lfleh",
e —wyllo < C{lalle* + | plws1/2H™ ™2 + Jllegrjoh* B},
Ip = pallo < C{lplleh® + 1| plmsijpH™ 2

+ (1 leh" + Nl H + ullprjoh® B2},

where the last estimate requires that §2 support elliptic regularity.

The velocity estimate is formally @'(h* + H™~'/2), but of course it suffers from
the problem of scale when &7 < € < H. Since A is defined on I", we lose 1/2-
derivative going to £2, or H~'/? in the estimates. Thus when & and H are of the
same order, we need polynomials of degree 1 (actually 1/2) more for the mortar
approximation [9].

The error estimate bounds given in Theorem 13 depend on the solution, and so
may be very large for our heterogeneous problem. To deal with this problem of
scale, one can use a-posteriori analysis to adapt the meshes to the scales of the
system [9,58]. One can also define a mortar space based on homogenization, which
results in an error estimate for the two-scale separation case that is optimal and has
no numerical resonance term [12]. From Theorem 2,

d
ad
A~ pl= (1+ejz=:1wj(x,x/e) Wj)po(x), (77)
so we define My by replacing py above by piecewise polynomials and restrict back
to .

8 Some Numerical Results

We present two numerical test examples that model incompressible single phase
flow in a porous medium. The permeability fields are geostatistically generated,
with the first being statistically homogeneous. Since homogenization theory extends
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to this case, the multiscale convergence results relating the coarse grid spacing h
to € apply, as do the techniques mentioned that are defined using homogenization
theory. The other test case has a permeability that is highly nonhomogeneous in the
statistical sense, and so the convergence results do not strictly apply. That is, we
are far from the case of scale separation. Nevertheless, the example is presented to
demonstrate that the methods presented herein can work well even in these cases.

In each example, the domain is a rectangle in R?. The permeability is defined as a
piecewise constant on a fine uniform rectangular grid. Moreover, the source function
f is positive in the lower left corner element and of equal strength but negative in
the upper right corner element.

We solve each problem nine times, divided into three sets of experiments. For the
first set of experiments, we solve the problem on the fine grid using standard RTO
and BDM1 mixed elements. This gives us the “true” or reference solution that the
multiscale techniques should approximate. We take the RTO results as the reference
solution.

For the second set of experiments, we solve the problem using the variational
multiscale method on a coarsened grid that leaves a 10 x 10 subgrid; that is, we use
a factor of 100 upscaling. We use the multiscale finite elements defined in Sect. 5,
in particular, the standard MEO and ME1 multiscale finite elements, as well as the
multiscale dual support elements MD and the ones defined through homogenization
theory HE.

For the final set of experiments, we solve each problem using the domain
decomposition mortar method, using subdomains with the same 10 x 10 subgrid.
We use a single mortar element along the subdomain (or coarse grid) edges, with
the mortar space defined as the piecewise discontinuous linear or quadratic functions
P1M and P2M, as well as the mortar space defined using homogenization HM (77).

The upscaling operator or subgrid problems are solved on the fine 10 x 10 grid
using RTO.

8.1 Example 1: A Statistically Homogeneous Permeability

In the first example, the permeability field is a scalar field with a variation of about
5 orders of magnitude. It is depicted in Fig. 10 on a base-10 log scale. The fine
grid is 50 x 50, and the coarse grid is only 5 x 5. We also show the fine-scale
velocity using BDM1. Note that the color is the speed |u|, on a log scale, while the
arrows, barely visible, show the velocity itself. Thus nearly all the flow concentrates
in channels, depicted in warmer colors, from the lower left injection well to the
upper right extraction well.

In Fig. 11 we show results for the seven multiscale methods, and the fine-scale
RTO result in the center plot (which is nearly identical to the BDM1 result). The
variational multiscale method using various multiscale elements have been plotted
beside and above the RTO result for easy comparison. The mortar results appear in
arow below RTO. All the methods appear to do well to the eye.
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Permeability a, BDMI velocity u

Fig. 10 Ex. 1. Left: The permeability on a log scale. Right: The velocity u as computed on the fine
scale using BDM1. The arrows show the velocity and the color shows its magnitude (speed) on a
log scale

Considering the fine-scale RTO results as the reference solution, we give the
relative errors of the other eight methods in Table 1. The methods differ in the
number of degrees of freedom each has on the coarse interfaces, so this is given in
one column of the table. Next we show errors in both pressure and velocity, though
velocity is normally the more important quantity. The errors are measured in the
L?- and L*°-norms. Note that RT0 and BDM1 disagree in velocity by 3.6% in L2,
indicating that the problem is difficult to resolve on our 50 x 50 mesh, and giving
an idea of the error that we should tolerate in these applications.

The basic methods MEO, ME1, P1M, and P2M are actually relatively poor, giving
25% to 39% relative L? velocity errors. If one looks carefully at Fig. 11, one can see
the differences between these methods and RT0. MEO and ME1 are too numerically
diffuse, and PIM and P2M mainly have difficulties in a few isolated points in the
domain. The remaining three methods are quite reasonable, both in terms of the
numerical error and in the velocity plots. The MD method has 17% L? velocity
error, followed by the HE method with 9% error, and finally the HM mortar method
does the best job at 4% relative velocity error.

8.2 Example 2: A Statistically Nonhomogeneous Permeability

The second numerical test example is based on the Tenth Society of Petroleum
Engineers Comparative Solution Project [30]. The project includes a difficult three-
dimensional permeability field. We take one 60 x 220 two-dimensional slice, the
twentieth, which represents a near shore environment with definite local channeling.
It is badly nonisotropic, as depicted in Fig. 12. The permeability is a diagonal tensor,
so we show the two components of permeability, which vary on a log scale by about
5 orders of magnitude. As one can see from the BDM1 fine-scale solution (we show
only the speed |u|, again on a log scale), the flow field is quite complex. Generally
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Fig. 11 Ex. 1. The arrows show the velocity u, and the color depicts its magnitude (speed) on a
log scale. The center plot shows the fine-scale RTO velocity, with the multiscale finite elements
beside and above it. The mortar methods are on the bottom row

speaking, fluid that enters the domain at the lower left corner injection well cannot
travel upwards in the y-direction until it travels in x a good third of the domain.
It then experiences a greater y permeability, and so flows along the permeability
channels to the upper right corner extraction well.

The other eight techniques’ speeds are shown in Fig. 13, and the relative errors
are given in Table 2. As we surmised from the permeability field, we have now
quantified that this is a very difficult problem: the BDM1 solution has 8.6% relative
velocity error in L? compared to RTO, even though each is solved on the fine grid.
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Table 1 Ex. 1. Relative errors with respect to the fine-scale RTO solution for pressure p and
velocity u, measured in both L? and L norms for three sets of methods. First, BDMI is obtained
on the fine grid, and differs by a small amount from RT0. Next are the multiscale finite element
methods, and the number of coarse degrees of freedom (DOF) used by each method is noted.
Finally, the mortar methods are shown with their number of DOF per mortar interface (i.e., coarse
grid edge)

Method DOF per Pressure error Velocity error
coarse edge 12 1,00 12 1,00

BDM1 - 0.043 0.041 0.036 0.028
MEO 1 0.329 0.329 0.300 0.343
MEL1 2 0.150 0.144 0.249 0.345
MD 1 0.068 0.105 0.170 0.136
HE 2 0.054 0.084 0.088 0.066
PIM 2 0.157 0.139 0.388 0.948
P2M 3 0.099 0.097 0.323 0.819
HM 3 0.006 0.012 0.041 0.044

1.50E-11

4.74E-12 Ja0e 0o
1.50E-12 s
| 4.74E13 28
e 1.50E-06
4.74E-14 gl
e 1.50E-07
474E-15 5isoeld
150515 3.23E-08
474E-16 s
1.50E-16 :
y-permeability BDM1 velocity u

Fig. 12 Ex. 2. Lefr: The anisotropic x- and y-permeabilities on a log scale. Right: The speed |u]
as computed on the fine scale using BDM1 on a log scale

The multiscale finite elements MEO and MEI1 have very large 72% and 63%
errors, respectively. The figure shows that they give speeds that are much too diffuse
compared to RTO.

The multiscale elements MD and HE do much better (45% and 30% error,
respectively). The mortar methods P1M and P2M are quite similar (42% and 31%
error, respectively). Each of these four methods have speed plots that match RTO
quite well to the eye, and in particular, match the high-speed channel flow quite
well. These solutions would be sufficient for preliminary engineering analyses and
some stochastic simulation studies. However, only the mortar method based on
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Fig. 13 Ex. 2. The speed |u| on a log scale. The center plot shows the fine-scale RTO velocity,
with the multiscale finite elements beside and above it. The mortar methods are on the bottom row
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Table 2 Ex. 2. Relative errors with respect to the fine-scale RTO solution for pressure p and
velocity u, measured in both L? and L norms for three sets of methods. First, BDMI is obtained
on the fine grid, and differs somewhat from RTO. Next are the multiscale finite element methods,
and the number of coarse degrees of freedom (DOF) used by each method is noted. Finally, the
mortar methods are shown with their number of DOF per mortar interface (i.e., coarse grid edge)

Method DOF per Pressure error Velocity error
coarse edge 12 1,00 12 1,00

BDM1 - 0.047 0.052 0.086 0.164
MEO 1 2.454 0.414 0.717 0.598
MEL1 2 0.799 0.194 0.625 0.443
MD 1 0.223 0.332 0.453 0.575
HE 2 0.149 0.197 0.303 0.261
PIM 2 0.132 0.056 0.418 0.748
P2M 3 0.075 0.038 0.306 0.441
HM 3 0.027 0.023 0.142 0.198

homogenization theory [12] has a reasonable error at 14%. Perhaps to the eye it
is also the closest match to RTO.

8.3 Some Techniques for Controlling Errors

Because multiscale methods are reduced degree of freedom methods, they are
subject to error in somewhat unforeseen ways. A clear example was seen in Fig. 11,
where both PIM and P2M have trouble at a spot on the coarse interface parallel to
y between subdomains (4, 4) and (5, 4), counting from the lower left. It is not clear
why this spot causes trouble for these two methods but not the others.

There has been a great deal of recent work on trying to mitigate this problem.
Several authors advocate the use of limited global information to improve the
definition of multiscale finite elements [2, 3,27, 34]. The method seems most useful
in the case of nonlinear problems, in which case one solves a global fine-scale
linear problem, and time dependent and stochastic problems, in which case one
solves only one or a few global fine-scale problems. The global information can be
used to better define the multiscale finite element on the boundaries of the coarse
elements, and then one uses energy minimizing extension into the interior. Some
works deal with adaptive methods and a-posteriori error estimation and control of
errors [11, 52,57, 58]. Basically, one includes more scales where the errors are
estimated to be large. Other works deal with using the ideas of multiscale finite
elements and domain decomposition to define better iterative solvers for the fine-
scale system [41,53-55,59, 60, 65]. The idea is to iterate on the fine-scale system
to convergence using multiscale ideas basically as a preconditioner or in defining
prolongation and restriction operators in multigrid.
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On Stability of Discretizations of the Helmholtz
Equation

S. Esterhazy and J.M. Melenk

Abstract We review the stability properties of several discretizations of the
Helmholtz equation at large wavenumbers. For a model problem in a polygon, a
complete k-explicit stability (including k-explicit stability of the continuous prob-
lem) and convergence theory for high order finite element methods is developed.
In particular, quasi-optimality is shown for a fixed number of degrees of freedom
per wavelength if the mesh size & and the approximation order p are selected such
that kh/p is sufficiently small and p = O(logk), and, additionally, appropriate
mesh refinement is used near the vertices. We also review the stability properties of
two classes of numerical schemes that use piecewise solutions of the homogeneous
Helmbholtz equation, namely, Least Squares methods and Discontinuous Galerkin
(DG) methods. The latter includes the Ultra Weak Variational Formulation.

1 Introduction

A fundamental equation describing acoustic or electromagnetic phenomena is the
time-dependent wave equation

3%w
2

— — " Aw =g,

o2 &
given here for homogeneous, isotropic media whose propagation speed of waves
is c¢. It arises in many applications, for example, radar/sonar detection, noise
filtering, optical fiber design, medical imaging and seismic analysis. A commonly
encountered setting is the time-harmonic case, in which the solution w (and
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correspondingly the right-hand side g) is assumed to be of the form Re (e_i“”u(x))
for a frequency w. Upon introducing the wavenumber k = w/c and the wave length
A = 21/ k, the resulting equation for the function u, which depends solely on the
spatial variable x, is then the Helmholtz equation

—Au—k*u=f (D

In this article, we concentrate on numerical schemes for the Helmholtz equation at
large wavenumbers k. Standard discretizations face several challenges, notably:

(I) For large wavenumber k, the solution u is highly oscillatory. Its resolution,
therefore, requires fine meshes, namely, at least N = k9 degrees of freedom,
where d is the spatial dimension.

(IT) The standard H '-conforming variational formulation is indefinite, and stability
on the discrete level is therefore an issue. A manifestation of this problem
is the so-called “pollution”, which expresses the observation that much more
stringent conditions on the discretization have to be met than the minimal
N = O(k?) to achieve a given accuracy.

The second point, which will be the focus of the article, is best seen in the following,
one-dimension example:

Example 1.1. For the boundary value problem
—u"—kK*u=1 1in(0,1), u(0)=0, W' (1) —iku(l) = 0, )

we consider the s-version finite element method (FEM) on uniform meshes with
mesh size i for different approximation orders p € {1,2, 3,4} and wavenumbers
k € {1, 10, 100}. Figure 1 shows the relative error in the H'(£2)-semi norm (i.e.,
|u — un|p1(2y/|ul g1(o), where uy is the FEM approximation) versus the number
of degrees of freedom per wavelength N, := N/A = 2nN/k with N being the
dimension of the finite element space employed. We observe several effects in Fig. 1:
Firstly, since the solution u of (2) is smooth, higher order methods lead to higher
accuracy for a given number of degrees of freedom per wavelength than lower order
methods. Secondly, asymptotically, the FEM is quasioptimal with the finite element
error |u — uy | g1 (g) satisfying

lu—unlgie) ~ CoN, P lulgg) (3)

for a constant C, independent of k. Thirdly, the performance of the FEM as
measured in “error vs. number of degrees of freedom per wavelength” does depend
on k: As k increases, the preasymptotic range with reduced FEM performance
becomes larger. Fourthly, higher order methods are less sensitive to k than lower
order ones, i.e., for given k, high order methods enter the asymptotic regime in
which (3) holds for smaller values of N, than lower order methods. n
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Fig. 1 Performance of h-FEM for (2). Top: p = 1, p = 2. Bottom: p = 3, p = 4 (see
Example 1.1)

The behavior of the FEM in Example 1.1 has been analyzed in [36,37], where error
bounds of the form (see [36, Thm. 4.27])

|u— MNIHI(Q) < Cp (1 =+ kp+lhp) ]’ZPIMIHerl(Q) “)

are established for a constant C,, depending only on the approximation order p. In
this particular example, it is also easy to see that [u|y+1(o)/|ul g1(2) ~ k7, so that
(4) can be recast in the form

lu—uylgig) < Cp (1 + kP hP) (k)P ul i) ~ (1 + kN, 7)Y Ny P Jul g ).

)
This estimate goes a long way to explain the above observations. The presence of the
factor 1 + kN. A_ 4 explains the “pollution effect”, i.e., the observation that for fixed
N, the (relative) error of the FEM as compared with the best approximation (which
is essentially proportional to N, ? in this example) increases with k. The estimate
(5) also indicates that the asymptotic convergence behavior (3) is reached for N, =
O(k'/?). This confirms the observation made above that higher order methods
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are less prone to pollution than lower order methods. Although Example 1.1 is
restricted to 1D, similar observations have been made in the literature also for
multi-d situations as early as [11]. We emphasize that for uniform meshes (as in
Example 1.1) or, more generally, translation invariant meshes, complete and detailed
dispersion analyses are available in an A-version setting, [1, 20, 36, 37], and in a
pl/hp-setting, [1-3], that give strong mathematical evidence for the superior ability
of high order methods to cope with the pollution effect.

The present paper, which discusses and generalizes the work [49,50], proves that
also on unstructured meshes, high order methods are less prone to pollution. More
precisely, for a large class of Helmholtz problems, stability and quasi-optimality is
given under the scale resolution condition

— <q and p > cylogk, (6)
V4

where c; is sufficiently small and ¢, sufficiently large. For piecewise smooth
geometries (e.g., polygons), additionally appropriate mesh refinement near the
singularities is required.

We close our discussion of Example 1.1 by remarking that its analysis and, in
fact, the analysis of significant parts of this article rests on H !-like norms. Largely,
this choice is motivated by the numerical scheme, namely, an H '-conforming
FEM.

1.1 Non-standard FEM

The limitations of the classical FEM mentioned above in (I) and (II) have sparked a
significant amount of research in the past decades to overcome or at least mitigate
them. This research focuses on two techniques that are often considered in tandem:
firstly, the underlying approximation by classical piecewise polynomials is replaced
with special, problem-adapted functions such as systems of plane waves; secondly,
the numerical scheme is based on a variational formulation different from the
classical H '-conforming Galerkin approach. Before discussing these ideas in more
detail, we point the reader to the interesting work [8], which shows for a model
situation on regular, infinite grids in 2D that no 9-point stencil (i.e., a numerical
method based on connecting the value at a node with those of the eight nearest
neighbors) generates a completely pollution-free method; the 1D situation is special
and discussed briefly in [21, Sec. 7].

Work that is based on a new or modified variational formulation but rests on
the approximation properties of piecewise polynomials includes the Galerkin Least
Squares Method [29, 30], the methods of [7], and Discontinuous Galerkin Methods
([24-26] and references there). Several methods have been proposed that are based
on the approximation properties of special, problem-adapted systems of functions
such as systems of plane waves. In an H !-conforming Galerkin setting, this idea has
been pursued in the Partition of Unity Method/Generalized FEM by several authors,
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e.g., [4,34,38,39,44,48,56,57,69]. A variety of other methods that are based on
problem-adapted ansatz functions leave the H!-conforming Galerkin setting and
enforce the jump across element boundaries in a weak sense. This can be done
by least squares techniques ([10,41, 53, 58, 68] and references there), by Lagrange
multiplier techniques as in the Discontinuous Enrichment Method [22, 23, 70] or
by Discontinuous Galerkin (DG) type methods, [14-16,27,32,33,35,43,51, 52];
in these last references, we have included the work on the Ultra Weak Variational
Formulation (UWVF) since it can be understood as a special DG method as
discussed in [14,27].

1.2 Scope of the Article

The present article focuses on the stability properties of numerical methods for
Helmbholtz problems and exemplarily discusses three different approaches in more
detail for their differences in techniques. The first approach, studied in Sect. 4,
is that of the classical H'-based Galerkin method for Helmholtz problems. The
setting is that of a Garding inequality so that stability of a numerical method can
be inferred from the stability of the continuous problem by perturbation arguments.
This motivates us to study for problem (9), which will serve as our model Helmholtz
problem in this article, the stability properties of the continuous problem in Sect. 2.
In order to make the perturbation argument explicit in the wavenumber k, a detailed,
k-explicit regularity analysis for Helmholtz problems is necessary. This is worked
out in Sect. 3 for our model problem (9) posed on polygonal domains. These results
generalize a similar regularity theory for convex polygons or domains with analytic
boundary of [49, 50]. Structurally similar results have been obtained in connection
with boundary integral formulations in [42,47].

We discuss in Sects. 6.2 and 6.3 somewhat briefly a second and a third approach
to stability of numerical schemes. In contrast to the setting discussed above,
where stability is only ensured asymptotically for sufficiently fine discretizations,
these methods are stable by construction and can even feature quasioptimality in
appropriate residual norms. We point out, however, that relating this residual norm
to a more standard norm such as the L?-norm for the error is a non-trivial task. Our
presentation for these methods will follow the works [14,27,33,53].

Many aspects of discretizations for Helmholtz problems are not addressed in
this article. Recent developments in boundary element techniques for this problem
class are surveyed in [17]. We also refer to the extended version of the present
article [21].

1.3 Some Notation

We employ standard notation for Sobolev spaces, [13,55, 65]. For domains @ and
k # 0 we denote
lull} g = K20l + [Vl - %
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This norm is equivalent to the standard H '-norm. The presence of the weight k
in the L2-part leads to a balance between the H'-seminorm and the L2-norm for
functions with the expected oscillatory behavior such as plane waves ¢4 (with d
being a unit vector). Additionally, the bilinear form B considered below is bounded
uniformly in k with respect to this (k-dependent) norm.

Throughout this work, a standing assumption will be

|k| > ko > 0; €]

our frequently used phrase “independent of k” will still implicitly assume (8).
We denote by C a generic constant. If not stated otherwise, C will be inde-
pendent of the wavenumber k& but may depend on ky. For smooth functions u
defined on a d-dimensional manifold, we employ the notation |V"u(x)> :=

af!

) lel! | D u(x)|*.
o!

ozeNg:lal:n

1.4 A Model Problem

In order to fix ideas, we will use the following, specific model problem: For a
bounded Lipschitz domain 2 C R, d € {2,3}, we study for k € R, |k| > ko,

—Au—ku= fin 2, (9a)
dyu + iku = g on 052. (9b)

Henceforth, to simplify the notation, we assume k > ko > 0 but point out that the
choice of the sign of k is not essential. The weak formulation for (9) is:

Findu € H'(2)st.  Bu,v)=1(v) Vve H(Q), (10)

where, for f € L?(£2) and g € L?(352), B and [ are given by

B(M, V) = / (lel - Vv — kzu\_/) + ik/ uv, I(V) = (f, V)L2(.Q) + (g, V)L2(BQ)‘
Q FY?)

(11)

As usual, if £ € (H'(2)) and g € H~'/?(3£2), then the L>-inner products

(+9)12(2) and (-, +) 12(32) are understood as duality pairings. The multiplicative trace

inequality proves continuity of B; in fact, there exists Cp > 0 independent of k
such that (see, e.g., [50, Cor. 3.2] for details)

|B(u,v)| < Cllullixelvline  VYuve HY(R). (12)
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2 Stability of the Continuous Problem

Helmbholtz problems can often be cast in the form “coercive + compact perturbation”
where the compact perturbation is k-dependent. In other words, a Garding inequality
is satisfied. For example, the sesquilinear form B of (11) is of this form since

Re B(u,u) + 2k*(u, u) 120y = ||ull] 4 o (13)

and the embedding H'(£2) C L*(£2) is compact by Rellich’s theorem. Classical
Fredholm theory (the “Fredholm alternative”) then yields unique solvability of (10)
forall f € (H'(£2)) and g € H~/2(382), if one can show uniqueness. Uniqueness
in turn is often obtained by exploiting analyticity of the solutions of homogeneous
Helmbholtz equation, or, more generally, the unique continuation principle for elliptic
problems, (see, e.g., [40, Chap. 4.3]):

Example 2.1 (Uniqueness for (9)). Let f = 0 and g = 0 in (9). Then, any
solution u € H'(£2) of (9) satisfies u|sp = 0 since 0 = Im B(u, u) = k”””%ﬂ(ag)
(see Lemma 2.2). Hence, the trivial extension # to R? satisfies # € H'(R?). The

observations B(u,v) = 0 forallv € H'(£2) and u|y = 0 show

Vi -Vv— kv =0  VYve CPR?).
]RZ

Hence, 1 U is a solution of the homogeneous Helmholtz equation and % vanishes on
R? \ £2. Analyticity of % (or, more generally, the unique continuation principle
presented in [40, Chap. 4.3]) then implies that % = 0, which in turn yields u = 0. =

The arguments based on the Fredholm alternative do not give any indication of how
the solution operator depends on the wavenumber k. Yet, it is clearly of interest
to know how k enters bounds for the solution operator. It turns out that both
the geometry and the type of boundary conditions strongly affect these bounds.
For example, for an exterior Dirichlet problem, [12] exhibits a geometry and a
sequence of wavenumber (k,),en tending to infinity such that the norm of the
solution operator for these wavenumbers is bounded from below by an exponentially
growing term CeP* for some C, b > 0. These geometries feature so-called
“trapping” or near-trapping and are not convex. For convex or at least star-shaped
geometries, the k-dependence is much better behaved. An important ingredient
of the analysis on such geometries are special test functions in the variational
formulation. For example, assuming in the model problem (10) that §2 is star-shaped
with respect to the origin (and has a smooth boundary), one may take as the test
function v(x) = x - Vu(x), where u is the exact solution. An integration by parts
(more generally, the so-called “Rellich identities” [55, p. 261] or an identity due to
Pohozaev, [59]) then leads to the following estimate for the model problem (10):

lulike < C[I1f l2) + Igl20e)] : (14)
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this was shown in [44, Prop. 8.1.4] (for d = 2) and subsequently by [19] for d = 3.
Uniform in k bounds were established in [31] for star-shaped domains and certain
boundary conditions of mixed type by related techniques. The same test function
was also crucial for a boundary integral setting in [18]. A refined version of this
test function that goes back to Morawetz and Ludwig, [54] was used recently in a
boundary integral equations context (still for star-shaped domains), [66].

While (14) does not make minimal assumptions on the regularity of f and g, the
estimate (14) can be used to show that (for star-shaped domains) the sesquilinear
form B of (10) satisfies an inf-sup condition with inf-sup constant y = O(k~") —
this can be shown using the arguments presented in the proof Theorem 2.5.

An important ingredient of the regularity and stability theory will be the concept
of polynomial well-posedness by which we mean polynomial-in-k-bounds for the
norm of the solution operator. The model problem (9) on star-shaped domains with
the a priori bound (14) is an example. The following Sect.2.1 shows polynomial
well-posedness for the model problem (9) on general Lipschitz domains (Thm. 2.4).
It is thus not the geometry but the type of boundary conditions in our model problem
(9), namely, Robin boundary conditions that makes it polynomially well-posed. In
contrast, the Dirichlet boundary conditions in conjunction with the lack of star-
shapedness in the examples given in [12] make these problem not polynomially
well-posed.

2.1 Polynomial Well-Posedness for the Model Problem (9)

Lemma 2.2. Let 2 C RY be a bounded Lipschitz domain. Let u € H'($2) be a
weak solution of (9) with f = 0and g € L*(382). Then lull20) < k=1 gl z200)-

Proof. Selecting v = u in the weak formulation (10) and considering the imaginary
part yields

2 —
Kl sy =1 | g = Lglizany lel2ior
This concludes the argument. O

Next we use results on layer potentials for the Helmholtz equation from [47] to
prove the following lemma:

Lemma 2.3. Let 2 C R? be a bounded Lipschitz domain, u € H'(£2) solve (9)
with [ = 0. Assume u|yo € L*(02) and d,u € L*(3S2). Then there exists C > 0
independent of k and u such that

lull 2@y < Ck (lull 20 + 10l p-160)) -
lulli ke < C [k ull 20y + K2 10null g1y + k100l 202 ] -
Proof. With the single layer and double layer potentials Vi and K we have the rep-

resentation formula u = Vk 0, U — Kk u. From [47, Lemmata 2.1, 2.2, Theorems 4.1,
4.2] we obtain
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IViOaull L2y < CkllOnull g—1 0. | Krull20) < Ckllull 206

Thus, |lull22) < Ck (||u||Lz(3Q) + ||3nu||H71(39)) . Next, using v = u in the weak
formulation (10) yields

2 200,112
||V”||Lz(9) <C [k ||“||Lz(9) + ||3n“||L2(a:2)||M||L2(a:2)]
and therefore
196l ) + K2l 20 = € [kl 200y + K00l 1 a0 + K 10001325 |

which concludes the proof. O

Theorem 2.4. Let 2 C R, d € {2, 3} be a bounded Lipschitz domain. Then there
exists C > 0 (independent of k) such that for f € L*(2) and g € L*(052) the
solution u € H'(£2) of (9) satisfies

lullire < C [Kllglzpe) + K21/ @] -

Proof. We first transform the problem to one with homogeneous right-hand side f
in the standard way. A particular solution of (9a) is given by the Newton potential
up ‘= Gg » f; here, Gy is a Green’s function for the Helmholtz equation and we
tacitly extend f by zero outside §2. Then uy € H 120c (R9) and by the analysis of the
Newton potential given in [50, Lemma 3.5] we have

k™ uoll 2@y + luoll ey + klluoll 22y < ClLf llr2()- (15)
The difference 0 := u — uy then satisfies
—Ai—-k*u=0 in$2, 0,1 + iku = g — (3puo + ikug) =:g. (16)

We have with the multiplicative trace inequality

~ 1/2 1/2 1/2 1/2
I1Zl200) = C [Igl2a0) + luolly2 g luoly g + Klluoll 7 g ol ohg, |
< C[lglz@a) + 521 fll2@)] - (17)

To get bounds on %, we employ Lemma 2.2 and (17) to conclude

)l 200) < CkZ 200 < C [k gll200) + k_1/2||f||L2(9)], (18)

0,2l 1232) < C [||§||L2(3:2) + k||7||L2(39)] <C [||g||L2(3S2) + k1/2||f”L2(Q)]~
(19)
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Lemma 2.3 and the generous estimate |0, ]| y—1(32) < C ||0,u]| 12(32) produce

[l 12y + kNl 120) < C [K*lIgll200) + k5/2||f||L2(Q)]' (20)

Combining (15), (20) finishes the argument. O

The a priori estimate of Theorem 2.4 does not make minimal assumptions on the
regularity of f and g. However, it can be used to obtain estimates on the inf-sup
and hence a priori bounds for f € (H'(£2)) and g € H~'/?(3£2) as we now show:

Theorem 2.5. Let 2 C RY, d € {2,3} be a bounded Lipschitz domain. Then there
exists C > 0 (independent of k) such that the sesquilinear form B of (11) satisfies

Re B(u,v)

inf s ——— "7 >CkT2 1)
0ueH'(2) ove 1 (@) 1llik2 Ve

Furthermore, for every f € (H'(R2)) and g € H~'/?(082) the problem (10) is
uniquely solvable, and its solution u € H'(82) satisfies the a priori bound

lulixe < CK'? [ i@y + 181l a-120)] - (22)

If $2 is convex or if §2 is star-shaped and has a smooth boundary, then the following,
sharper estimate holds:

Re B(u,v)

in — > CkN (23)
0ueH'(2) ove () Uik VIiee

Proof. The proof relies on standard arguments for sesquilinear forms satisfying a
Garding inequality. For simplicity of notation, we write || - ||1.4 for || - ||1.x.2-
Given u € H'(£2) we define z € H'(£2) as the solution of
2k* (- u) 120y = B(-.2).
Theorem 2.4 implies ||z]l1x < Ck”?|lull2(q), and v = u + z satisfies
Re B(u,v) = Re B(u, u)+Re B(u,2) = [[ull} ,—2k|[ul| 72 (o) +Re B(u, ) = ||u]7 .

Thus,

2
Re B(u,v) = |lull,
il = llu+zllie < lullix + lzlhe < lullix + CE2ull 2

< Ck"*|ul|1 .

Therefore,
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Re B(u.v) = |lul}; = llullixCk™"2|v]|1x,

which concludes the proof of (21). Example 2.1 provides unique solvability for (9)
so that (21) gives the a priori estimate (22). Finally, (23) is shown by the same
arguments using (14). O

3 k-Explicit Regularity Theory
3.1 Regularity by Decomposition

Since the Sobolev regularity of elliptic problems is determined by the leading
order terms of the differential equation and the boundary conditions, the Sobolev
regularity properties of our model problem (9) are the same as those for the
Laplacian. However, regularity results that are explicit in the wavenumber k are
clearly of interest; for example, we will use them in Sect.4.2 below to quantify
how fine the discretization has to be (relative to k) so that the FEM is stable and
quasi-optimal.

The k-explicit regularity theory developed in [49,50] (and, similarly, for integral
equations in [42, 47]) takes the form of an additive splitting of the solution into
a part with finite regularity but k-independent bounds and a part that is analytic
and for which k-explicit bounds for all derivatives are available. Below, we will
present a similar regularity theory for the model problem (9) for polygonal £2 C R?,
thereby extending the results of [49], which restricted its analysis of polygons to the
convex case. In order to motivate the ensuing developments, we quote from [50] a
result that shows in a simple setting the key features of our k-explicit “regularity by
decomposition”:

Lemma 3.1 ([50, Lemma 3.5]). Let Bx(0) C R?, d e {1,2,3} be the ball of
radius R centered at the origin. Then, there exist C, y > 0 such that for all k
(with k > ko) the following is true: For all f € L*(R?) with supp f C Bg(0) the
solution u of

—Au—Ku= f inR?

subject to the Sommerfeld radiation condition

-1/ 0
lim |x|%(—u —iku) =0 for |x|— oo,
|x]—>00 X

has the following regularity properties:

(i) ulpyro) € H*(B2r(0)) and ||ull g2z 0p) < ChIl f 1 12Br(0))-
(ii) u|p,p(0) can be decomposed as u = up> + uzy for a ug> € H?*(Byr) and an
analytic u g together with the bounds
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kllug2 k.o + Ntz g2 gor0)) < ClIS IL2Bri0)

IVt || L2(Bog0yy < Cy" maxin, kY 7| £ 1l .28r0yy Y1 € No.

A few comments concerning Lemma 3.1 are in order. For general f € L?(Bz(0)),
one cannot expect better regularity than H -regularity for the solution u and, indeed,
both regularity results (i) and (ii) assert this. The estimate (3.1) is sharp in its
dependence on k as the following simple example shows: For the fundamental
solution Gy (with singularity at the origin) and a cut-off function y € C{°(R?)
with supp y C Byr(0) and y = 1 on Bg(0), the functions u := (1 — y)Gy
and f = —Au — k2M Satisfy ”M”HZ(BZR(O)) = O(kZ) and ||f||L2(BR(O)) = O(k)
Compared to (3.1), the regularity assertion (3.1) is finer in that its H*-part u> has
a better k-dependence. The k-dependence of the analytic part 1., is not improved
(indeed, [[ucr || g2(Bo0)) = Ckll f | 12(Bg(0)))> but the analyticity of u., is a feature
that higher order methods can exploit.

The decomposition in (ii ) of Lemma 3.1 is obtained by a decomposition of the
datum f using low pass and high pass filters, i.e., f = Ly f + Hyx f, where the
low pass filter L« cuts off frequencies beyond nk (here, n > 1) and H, eliminates
the frequencies small than nk. Similar frequency filters will be important tools in
our analysis below as well (see Sec. 3.3.1). The regularity properties stated in (ii )
then follow from this decomposition and the explicit solution formula u = Gy x f
(see [50, Lemma 3.5] for details).

Lemma 3.1 serves as a prototype for “regularity theory by decomposition”.
Similar decompositions have been developed recently for several Helmholtz prob-
lems in [49] and [42,47]. Although they vary in their details, these decomposition
are structurally similar in that they have the form of an additive splitting into a
part with finite regularity with k-independent bounds and an analytic part with
k-dependent bounds. The basic ingredients of these decomposition results are
(a) (piecewise) analyticity of the geometry (or, more generally, the data of the
problem) and (b) a priori bounds for solution operator. The latter appear only in
the estimate for the analytic part of the decomposition, and the most interesting
case is that of polynomially well-posed problems. We illustrate the construction
of the decomposition for the model problem (9) in polygonal domains 2 C R2.
This result is an extension to general polygons of the results [49], which restricted
its attention to the case of convex polygons. We emphasize that the choice of the
boundary conditions (9b) is not essential for the form of the decomposition and
other boundary conditions could be treated using similar techniques.

3.2 Setting and Main Result

Let 2 C R? be a bounded, polygonal Lipschitz domain with vertices 4;, j =
1,...,J, and interior angles w;, j = 1,...,J. We will require the countably
normed spaces introduced in [6,45]. These space are designed to capture important
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features of solutions of elliptic partial differential equations posed on polygons,
namely, analyticity of the solution and the singular behavior at the vertices. Their
characterization in terms of these countably normed spaces also permits proving
exponential convergence of piecewise polynomial approximation on appropriately
graded meshes.

These countably normed spaces are defined with the aid of weight functions

-
¢p7k that we now define. For B € [0,1),n € No, k > 0, and B € [0,1)7,
we set

n+p
D, pi(x) = min g1, W ,
min {1, ‘Zlﬁ}
J
@ 2,0 =[] Pugulx—4)). (24)

J=1

Finally, we denote by H 1%2 (02) the space of functions whose restrictions of the
edges of 052 are in H'/2.

We furthermore introduce the constant Cs,; (k) as a suitable norm of the solution
operator for (9). That is, Cs,; (k) is such that for all f € L*(2), g € L*(3£2) and
corresponding solution u of (9) there holds

lullike < Coot (k) [ILf 222 + 1€l 2000)] - (25)

We recall that Theorem 2.4 gives Cy,;(k) = O(k>/?) for general polygons and
Cso1 (k) = O(1) by [44, Prop. 8.1.4] for convex polygons. Our motivation for using
the notation C;, (k) is emphasize in the following theorem how a priori estimates
for Helmholtz problems affect the decomposition result:

Theorem 3.2. Let 2 C R? be a polygon with vertices Aj, j =1,...,J. Then

there exist constants C, y > 0, F € [0,1)’ independent of k > ko such that
forevery f € L>(2) and g € H;{f(ag) the solution u of (9) can be written as

U= g+ Uy with
kllupzllike + luplln2@) < CCryg
o | 111 (2) < (Csor(k) + 1) Cre
k”lxlg{ ”LZ(.Q) = (Csa/ (k) + k) Cfg
||¢>nYE>,kV”+2um||L2(Q) < C(Cyo1 (k) + Dk~ max{n, k}""2y"Cr, Vn € Ny

with Crg = || fllL2(2) + ”g”H,%?(BQ) and Cy, (k) introduced in (25).

Proof. The proof is relegated to Sect. 3.4. We mention that the k-dependence of our
bounds on [luc||12(g) is likely to be suboptimal due to our method of proof. O
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Theorem 3.2 may be viewed as the analog of Lemma 3.1, (ii); we conclude this
section with the analog of Lemma 3.1, (i ):

Corollary 3.3. Assume the hypotheses of Theorem 3.2. Then there exist constants
—
C >0, B €[0,1)’ independent of k such that for all f € L*(2), g € H,i@z(a.(z)

the solution u of (9) satisfies |ullixe < CCs(k)[IIf 2@ + lgl200)] as
well as

12,5, Vull 22y < CR(Cont ) + D [ F 22y + 121 1200 |-

Proof. The estimate for |ju||; 4o expresses (25). The estimate for the second
derivatives of u follows from Theorem 3.2 since u = ug> + gy . O

3.3 Auxiliary Results

Just as in the proof of Lemma 3.1, an important ingredient of the proof of
Theorem 3.2 are high and low pass filters. The underlying reason is that the
Helmholtz operator —A — k? acts very differently on low frequency and high
frequency functions. Here, the dividing line between high and low frequencies is at
O (k). For this reason, appropriate high and low pass filters are defined and analyzed
in Sect. 3.3.1. Furthermore, when applied to high frequency functions the Helmholtz
operator behaves similarly to the Laplacian —A or the modified Helmholtz operator
—A + k2. This latter operator, being positive definite, is easier to analyze and
yet provides insight into the behavior of the Helmholtz operator restricted to high
frequency functions. The modified Helmholtz operator will therefore be a tool for
the proof of Theorem 3.2 and is thus analyzed in Sect. 3.3.3.

3.3.1 High and Low Pass Filters, Auxiliary Results

For the polygonal domain £2 C R? we introduce for > 1 the following two low
and high pass filters in terms of the Fourier transform .%:

1. The low and high pass filters Lo, f : L*(£2) — L*(£2) and Hg , : L*(2) —
L?(£2) are defined by

Lonf =(Z  ye,0F (Eaf)le. Honf = (3‘\_1)(11@2\3",((0)3‘\(59]{))|9;

here, By, (0) is the ball of radius nk with center 0, the characteristic func-
tion of a set A is y4, and Ep denotes the Stein extension operator of [67,
Chap. VI].

2. Analogously, we define Lyg , f : L*(32) — L*(32) and Hyg , : L*(082) —
L?(3£2) in an edgewise fashion. Specifically, identifying an edge e of £2 with an
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interval and letting E, be the Stein extension operator for the interval e C R to
the real line R, we can define with the univariate Fourier transformation .%# the
operators L, ; and H, ; by

Leyg = (y_IXBnk(O)y(Eeg)NEv He,ng = (y_IXR\Bnk(O)y(Eef))le;

the operators Lyg , and Hjg, , are then defined edgewise by (Lo ,8)|e = Leng
and (Hye »8)|e = H. g for all edges e C 052.

These operators provide stable decompositions of L?(£2) and L?(3£2). For example,
one has Lo, + He, = 1d on L*(£2) and the bounds

Loy SN2 + 1 Heyf iz < Clf iz Vf e LX),

where C > 0 depends solely on §2 (via the Stein extension operator Ep).
The operators Hg ; and Hjg , have furthermore approximation properties if the
function they are applied to has some Sobolev regularity. We illustrate this for
Hag’ni

Lemma 3.4. Let 2 C R? be a polygon. Then there exists C > 0 independent of k
and n > 1 such that for all g € H;{f(a.(z)

12 12
K21+ ') | Hagnglli2og) + IHo2n8l 11200, = ClEN 12 00)

Proof. We only show the estimate for || Hye »gll12(52). We consider first the case
of an interval I C R. We define H;,g by H;,¢ = 7' xr\5,.0)-7 E1g, where
XR\B,(0) is the characteristic function for R \ (—nk,nk) and E; is the Stein
extension operator for the interval /. Since, by Parseval, .% is an isometry on L?(R)
we have

108V < VHag oy = [ |17 Erg de
R\Bﬂk(o)
1+ E>1? 2 1 2101/2 2
- UHED ) 5 E g at < —/(1+|s| )2\ FE, g dt.
/R\Bnk«» A+ g2 (k)72 [ !

The last integral can be bounded by C ||E1g||§11/2(R).

the extension operator £, then imply furthermore || E; gl 12y < C gl g1/2(7y- In
total,

The stability properties of

1 —1/2 ~1/2
IHingll2a) < Cw”é’”mﬂ(z) < CkV2A+ gl me g,

where, in the last estimate, the constant C depends additionally on k(. From this
estimate, we obtain the desired bound for || Hy g |l 12(52) by identifying each edge
of £2 with an interval. O
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3.3.2 Corner Singularities

We recall the following result harking back to the work by Kondratiev and Grisvard:

Lemma 3.5. Let 2 C R? be a polygon with vertices A, j =1,...,J, and
interior angles w;, j = 1,...,J. Define for each vertex A; the singularity function
Sj by

. bis
Sj(rj,<pj)=r;r/w’ cos (67%) (26)
j

where (r;, ¢;) are polar coordinates centered at the vertex A; such that the edges
of §2 meeting at A; correspondto ¢; = 0 and ¢; = w;. Then every solution u of

—Au=f in$2, dyu=g onas2,

can be written as u = ugy + ij'=1 af(f, g)S; with the a priori bounds
J
luolie) + D laf (£ = € [1f 2@y + I8l g, + Nl |- @)
j=l

A . . A _ . .
The aj are linear functionals, and a; = 0 for convex corners Aj (i.e., if w; < 7).

Proof. This classical result is comprehensively treated in [28]. O

3.3.3 The Modified Helmholtz Equation
We consider the modified Helmholtz equation in both a bounded domain with Robin

boundary conditions and in the full space R?. The corresponding solution operators
will be denoted S¢f and S

1. The operator S_j?' D L2(2) x H;QZ(B.Q) — H'(£2) is the solution operator for
—Au+ku=f ing, opu +iku=g onadf2. (28)
2. The operator S, : L*(R?) — H'(R?) is the solution operator for
—Au+ku=f iR (29)

Lemma 3.6 (properties of S3). Let 2 C R? be a polygon and f € L*(£2),
g€ H;V/VZ(B.Q). Then the solution u := Sg (f, g) satisfies

lullike <k gl 202 + k7 2@ (30)
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Furthermore, there exists C > 0 independent of k and the data f, g, and there
exists a decomposition u = uy> + Zij=1 ai+ (f. 2)S;: for some linear functionals a,.+
with

J
lune Ny + D 1aF (£ = C [1f i + 181120 + 5 gl 208 |-
i=1
31

Proof. The estimate (30) for |u|,xe follows by Lax-Milgram — see [49,
Lemma 4.6] for details. Since u satisfies

—Au= f—k’u in£, dyu=g—iku onds2,

the standard regularity theory for the Laplacian (see Lemma 3.5) permits us to
decompose u = ug> + Zijzl af(f — k’u, g — iku)S;. The continuity of the linear
functionals a reads

J
> lat(f —Koug —iku)l = C [If = Kull 2oy + g = ikull 10|

i=1

Since (£, g) = S (f. g) is linear, the map (£, g) — a;' (f.g) := a?*(f —k*u,g—
iku) is linear, and (30), (27) give the desired estimates for uz> and a,-+ (f.9)- O

Lemma 3.7 (properties of S]g;). There exists C > 0 such that for every n > 1 and

every f € L*(R?) whose Fourier transform .F f satisfies supp . f C R?\ B (0),
the solution u = Sﬂ'{zf of (29) satisfies

_ 1
llll e e < Kk lﬁllfllu(uv), lull h2@ey = ClLf 2@
n

Proof. The result follows from Parseval’s theorem and the weak formulation for u
as follows (we abbreviate the Fourier transforms by f = % f and u = Fu):

2 T
||’4||1,k,Rz = (/. M)LZ(RZ) = (fsu)LZ(RZ)

\/[ (|s|2+k2>—1|?|2ds\// (&P + k2)[al? dé
R2 R2

o~ 1 ~
= (EP + k)72 dEullyjre < —— I/ 2@ llell1 4 2.
\//RZ\Bnk(O) W 7 @)Ul e r

where, in the penultimate step, we used the support properties of }"\ Appealing again
to Parseval, we get the desired claim for [[u||; s 2. The estimate for [|u| ;2 (2) now
follows from f € L?(IR?) and the standard interior regularity for the Laplacian. O

IA
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3.4 Proof of Theorem 3.2

We denote by S : (f,g) — S(f,g) the solution operator for (9). Concerning
some of its properties, we have the following result taken essentially from [49,
Lemma 4.13]:

Lemma 3.8 (analytic regularity of S(f, g)). Let 2 be a polygon. Let [ be
analytic on §2 and g € L?(082) be piecewise analytic and satisfy for some constants
ny ng ny Vg > 0

IV" fllz2i@) < C sy max{n k}"  ¥n €Ny (32a)
IVigli2e < Coylmaxin, k}"  VneNy Yeed, (32b)

where & denotes the set of edges of §2 and V1 tangential differentiation. Then there

—
exist B € [0,1)’ (depending only on §2) and constants C, y > 0 (depending only
on 82, vy, Ye, ko) such that the following is true with the constant Cy (k) of (25):

”u”l,k,.Q =< Csa/(k)(,é:f + Eg) (33)
I8, 2, V" Pull 2@ < CCot (k™ (Cy + Cp)y" max{n k)" Vn € N
(34)

Proof. The estimate (33) is simply a restatement of the definition of Cj,; (k). The
estimate (34) will follow from [45, Prop. 5.4.5]. To simplify the presentation, we
assume by linearity that g vanishes on all edges of £2 with the exception of one
edge I'. Furthermore, we restrict our attention to the vicinity of one vertex, which
we take to be the origin; we assume I" C (0, 00) x {0}, and that near the origin, §2
is above (0, 00) x {0}, i.e., {(rcosg,rsing):0 < r < p,0 < ¢ < w} C £2 for
some p, w > 0.
Upon setting ¢ := 1/k, we note that u solves

—Au—u=¢f onf2, e20,u = e(eg —iu) on d52.
On the edge I, the function g is the restriction of Gy (x,y) := g(x)e™/* to I.
The assumptions on f and g then imply that [45, Prop. 5.4.5] is applicable with the

following choice of constants appearing in [45, Prop. 5.4.5]:

Cf = Szaf, CGI = 881/268,’ CG2 =g, Cb = O, Cc = 17
Yr = 0(1)7 Y6, = 0(1)5 YG, = 0(1)7 Vb = 0, Ye = 0,

—_—
resulting in the existence of constants C, K > 0 and 8 € [0, 1)’ with
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||¢n’§>’kvn+2'4||u(9)
< CK" P max{n + 2,k}" "2 (k72C s + k7 |ull k0 + k7/2C)

for all n € Np. We conclude the argument by inserting (33) and estimating
generously k~ 1Cf + k- 1/ZC <C (Cf +C ¢)-

We remark that this last generous estimate comes from the precise form of our
stability assumption (25). Its form (25) is motivated by the estimates available for
the star-shaped case, but could clearly be replaced with other assumptions. O
Corollary 3.9 (analytic regularity of S(Lg ,, f. Lo ,8)). Let 2 be a polygon and

n > 1. Then there exist ,_3) € [0,1)! (depending only on 2) and C, y > 0
(depending only on 2, ko, and n > 1) such that for every f € L*(£2) and
g € L*(082), the functionu = S(Lgq ., f, Lo yg) satisfies with C g = I 2 )+
lgllz200)

lullike < CCsu(k)Cry (35)

||<1>n,?kv"+2u||y(m < CCso(k)k~y" max{n, k}""2Cs,  Vn € Ny. (36)
Proof. The definitions of Ly, , f and Ljg , imply with Parseval

IV'Lany fllizg < COk)'II f 2 Vn € Ny,
VT Laganglli2oe) < Ck)"gll200) Vn € Ny,

where again Vr is the (edgewise) tangential gradient. The desired estimates now
follow from Lemma 3.8. O

Key to the proof of Theorem 3.2 is the following contraction result:

Lemma 3.10 (contraction lemma). Let 2 C R? be a polygon. Fix q € (0, 1).

Then one can find ,_3) € [0,1)’ (depending solely on 2) and constants C, y > 0
independent of k such that for every f € L*($2) and every g € HI/Z(B.Q), the

solution u of (9) can be decomposed as u = uy> + Zi=l ai(f,8)Si +uy + 1,
where uy: € H?*(R2), the a; are linear functionals, and u, € C®(82). These
functions satisfy

J

Kluellis + luelie + Y 1ai (£ = C [1f 2 + 18l 120
i=1

luer k2 < CCoot (k) [ f Il L2¢2) + €l 202 ] -
12, V" Puer 22y < CCrar (k™ y" max{n. k" [ £l 22 + lgll1202)]

forall n € Ny. Finally, the remainder r satisfies
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—Ar—kr=F ong, o,r +ikr =79¢

for some f € L2(2) and g € H;{VZ(B.Q) with

17 2o + 1811200 = @ (1 N2 + 18l 1200, ) -

Proof. We start by decomposing (1. g) = (Lo, f. Lo y8)+(He , f. Hye ,g) with
a parameter n > 1 that will be selected below. We set

U = S(Layf Lioyg), uy = St (Hayf),

where we tacitly extended Hg , f (which is only defined on §2) by zero outside £2.
Then u,, satisfies the desired estimates by Corollary 3.9. For u; we have by
Lemma 3.7 and the stability |Ho,; f|.22) < C| fll12(e) (We note that C > 0
is independent of k£ and 1) the a priori estimates

lurlhsme < Ck7MU+ 072 Hey fll 20 < CTHA 4+ )7 f 2@
luill 2@y < ClHan fllr2@) < CILf l2@)-

The trace and the multiplicative trace inequalities imply for g; := 9,,u; + iku;:
K720+ )2 gill 200y + ||g1||lev/v2(39) < Cllf i)

For g, := Hjg ;& — g1 we then get from Lemma 3.4 and the triangle inequality

K20+ ) Pl ooy + 1820 gy = € (1841200 + 1/ 2@ -

Lemma 3.6 yields for u, := Sg 0, g2),
lizlixe < CK2lgalizag) = KA+ ™21 2@y + 18l 120 |-

and furthermore we can write uy = ug> + Zijzl ai+ (0, g2)S;, with

J
lnell ey + Y 1aF 0.2 = € [If 2y + gl 1200, |

i=1

We then define a; (f, g) := a;|r (0, g>) and note that ( f, g) — a;(f, g) is linear by
linearity of the maps a,.+ and (f, g) + g2. The above shows that uy> and the a;
satisfy the required estimates. Finally, the functionw := u— (u. + u; + uy) satisfies
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— At — K2 = 2Ky + w) =: f, 0, u+iku=0=:g,

together with

172y = 262 (ln 2@y + N2l 2gy) < €O+ 72 [ iy + 1812 |-

Hence, selecting n > 1 sufficiently large so that for the chosen ¢ € (0, 1) we have
C(1 + n)~'/? < g allows us to conclude the proof. O

Proof of Theorem 3.2. The contraction property of Lemma 3.10 can be restated as
S(f.g) =up +Z —1ai(f.8)Si +ux+S(f.,g), where, for a chosen g € (0, 1),
we have |/ l22) + ||g||H11,{VZ(3Q) =9q [”f l22(2) + ”g”H},{f(ag)] together with
appropriate estimates for uy2, a; (f, g), and u, . This consideration can be repeated
for S(f,g). We conclude that a geometric series argument can be employed to write
u=S(f8) = uy+Y]_ | @(f g)Si +il, where uy> € H*(2),7iy € C®(82),
and the coefficients @; are in fact linear functionals of the data ( f, g). Furthermore,

we have with the abbreviation Cr, := || f |l .2() + llg]l H202)

[ter l1k.2 < CCpyq
12, % kvn+27d||u(9) < CCyi(k)k™ ' Crgy" max{n,k}"**  Vn e Ny,

J
kllupzlliig + g2l g2 + D@ (f.8)l < CCyy.

i=1

Finally, Lemma 3.11 below allows us to absorb the contribution Z,J —14a:(f,8)S; in
the analytic part by setting uo, := Uy + Zijzl'c}'i(ﬁ g)S;. In view of B; < 1, we
have 2 — B; > 1 and arrive at

e |12y < C(Coot (k) +1)Crg, klltier || 12(2) < CCro(Csor (k) +k),
||q>n3~kv"+2u%||ym) < CCryq [Cor(k)k™" + k™" max{n, k}"™> Vn € N,

which concludes the argument. O

Lemma 3.11. Ler B; € [0,1) satisfy B; > 1 — . Then, for some C, y > 0
independent of k, the singularity functions S; 0f(26) sansfy ISill 1@y < C and

e ngHzSi”LZ(m < Ck=C7 Py  max{n, k)" V €Ny

Proof. Follows by a direct calculation. See [21] for details. O
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4 Stability of Galerkin Discretizations

4.1 Abstract Results

We consider the model problem (9) and a sequence (Vy)yen C H!(£2) of finite-
dimensional spaces. Furthermore, we assume that (Vy)yen is such that for every
v € H'(£2) we have limy_ oo inf, ey [|[v — VN a1y = 0. The conforming
approximations uy to the solution u of (9) are then defined by:

Finduy € Vy s.t.  B(uy,v) =1(v) Vv e Vy. 37

Since the sesquilinear form B satisfies a Garding inequality, general functional
analytic argument show that asymptotically, the discrete problem (37) has a unique
solution uy and are quasi-optimal (see, e.g., [61, Thm. 4.2.9], [62]). More precisely,
there exist Ny > 0 and C > 0 such that for all N > N,

||M — I/IN”],]C’.Q < C inf ||M — V”],k’g. (38)
veEVN

This general functional analytic argument does not give any indication of how C
and Ny depend on discretization parameters and the wavenumber k. Inspection of
the arguments reveals that it is the approximation properties of the spaces Vy for
the approximation of the solution of certain adjoint problems that leads to the quasi-
optimality result (38). For the reader’s convenience, we repeat the argument, which
has been used previously in, e.g., [5,9,44,49, 50, 60, 62] and is often attributed to
Schatz, [62]:

Lemma 4.1 ([49, Thm. 3.2]). Let 2 C RY be a bounded Lipschitz domain and B
be defined in (11). Denote by S* : L*>(2) — H'(2) the solution operator for the
problem

Findu* € H () s.t. Bv.u*) =W, 2 YveH' (2). (39)

Define the adjoint approximation property n(Vy) by

n(Vy) = sup  inf 15D ~Vke
feLx (@) e I/ 1202

If; for the continuity constant Cg of (12), the space Vy satisfies
2Cpkn(Vy) = 1, (40)

then the solution uy of (37) exists and satisfies
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lu—unlike <2Cp inf u—v|ike. (41)
veEVN

Proof. We will not show existence of uy but restrict our attention on the quasi-
optimality result (41); we refer to [42, Thm. 3.9] for the demonstration that (41) in
fact implies existence and uniqueness of uy. Letting e = u — uy be the error, we
start with an estimate for |[e||;2(q): Using the definition of the operator $* and the
Galerkin orthogonality satisfied by e, we have for arbitrary v € Vy

||€||Lz(g) (e,€)22) = B(e,S"e) = B(e,S"e—v) < CgllelikellS*e—v|ikao-
Infimizing over all v € Vyy yields with the adjoint approximation property n(Vy)
lell 22y < Can(Va)llellik.e-
The Garding inequality and the Galerkin orthogonality yield for arbitrary v € Vi:
lelf o = Re Ble.e) + 2k |ell}2 g,

< Calelixellu—vlire + (Cpkn(Vy))? lellf .-

=ReB(e,u—v) + 2]‘2”6”%2(9)

The assumption Cpkn(Vy) < 1/2 allows us to rearrange this bound to get
llellik.e <2Cp|lu —v|ik.s- Since v € Vy is arbitrary, we arrive at (41). O

Lemma 4.1 informs us that the convergence analysis for the Galerkin discretization
of (9) can be reduced to the study of the adjoint approximation property n(Vy),
which is purely a question of approximation theory. In the context of piecewise
polynomial approximation spaces Vy this requires a good regularity theory for the
operator S*. The strong form of the equation satisfied by u* := S* f is

—Auw =k = f  inf2, O,u* —iku* =0 onds2, (42)

which is again a Helmholtz problem of the type considered in Sect.3. More

formally, with the solution operator S of Sect.3, we have S* f = S(f,0), where
an overbar denotes complex conjugation. Thus, the regularity theory of Sect.3 is
applicable.

4.2 Stability of hp-FEM

The estimates of Theorem 3.2 suggest that the effect of the corner singularities is
essentially restricted to an O(1/ k)-neighborhood of the vertices. This motivates us
to consider meshes that are refined in a small neighborhood of the vertices. To fix
ideas, we restrict our attention to meshes ﬂ,gzo that are obtained in the following
way: First, a quasi-uniform triangulation .7, with mesh size # is selected. Then, the



308 S. Esterhazy and J.M. Melenk

elements abutting the vertices A;, j = 1,...,J, are refined further with a mesh
that is geometrically graded towards these vertices. These geometric meshes have L
layers and use a grading factor o € (0, 1) (see [65, Sec. 4.4.1] for a precise formal
definition). Furthermore, for any regular, shape-regular mesh .7, we define

SNT):={ue H'(Q):ulx € ¥, VKe T}, (43)

where &, denotes the space of polynomials of degree p. We now show that on
the geometric meshes .7, 8% stability of the FEM is ensured if the mesh size / and
the polynomial degree p satlsfy the scale resolution condition (6) and, additionally,
L = O(p) layers of geometric refinement are used near the vertices:

Theorem 4.2 (quasi-optimality of hp-FEM). Let %fzo denote the geometric

meshes on the polygon 2 CR? as described above. Fix c3 > 0. Then there are
constants cy, ¢y >, 0 depending solely on §2 and the shape-regularity of the mesh
9,520 such that the following is true: If h, p, and L satisfy the conditions

kh
— <c¢; and p=>=clogk and L >c3p (44)
p

then the hp-FEM based on the space S”(Zfi”) has a unique solution
uy € SP(7,%°) and

lu—unlike <2Cp inf flu—vlike. (45)
vesr(Zy)

Proof. By Lemma4.1, we have to estimate kn(Vy) with Vy = S”(.7,%°). Recalling
the definition of n(Vy) we let f € L?>(£2) and observe that we can decompose

S* f =up> + ugy, where ug> and ug, satisfy the bounds

lumllm2@) = ClIf 22,

||@n’§>’kV”+2ud||Lz(Q) < C(Csor(k) + Dk 1y" max{k,n}”+2||f||L2(Q) Vn € No.

Piecewise polynomial approximation on ﬂth as discussed in [49, Prop. 5.6] gives
under the assumptions kh/p < C and L > c;3p: (inspection of the proof of [49,
Prop. 5.6] shows that only bounds on the derivatives of order > 2 are needed):

. h

inf flupgz —viike < C—=| 120
vEVN P

: 1—8 ckh—bp kh \*

inf |lug —vihke < C|(kh)y ~Pree +|1— (Csor (k) + DI f ll 2(2)
vEVN oop

where B,ax = max;=y,.sB; < 1,and C, ¢, b > 0 are constants independent of 7,
p, and k. From this, we can easily infer
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V4
kn(v) < 4 k(o) + 1) [(kh)l—ﬂm“e“h—bp + (ﬁ) ]} .
p oop

Noting that Theorem 2.4 gives Cy,;(k) = O(k/?), and selecting ¢, sufficiently
small as well as ¢, sufficient large allows us to make k7 (Vy) so small that the
condition (40) in Lemma 4.1 is satisfied. O

Corollary 4.3 (exponential convergence on geometric meshes). Ler f be ana-
Iytic on 2 and g be piecewise analytic, i.e., f, g satisfy (32). Given c3 > 0, there
exist ¢1, ¢ > 0 such that under the scale resolution conditions (44) of Theorem 4.2,
the finite element approximation uy € S? (Zlgz”) exists, and there are constants C,
b > 0 independent of k such that the error u — uy satisfies

lu—uy|1se < CeP.

Proof. In view of Theorem 4.2, estimating ||u — uy||1 4. is purely a question of
approximability for ¢, sufficiently small and ¢, sufficiently large. Lemma 3.8 gives
that the solution u = S(f, g) satisfies the bounds given there and, as in the proof of
Theorem 4.2, we conclude from [49, Prop. 5.6] (more precisely, this follows from
its proof)

kh \? ~ o~
inf s — vl < C [(kh)l—ﬂm“ef“’—bp " (—) ] (Cont()+1)(C +C ).
vEVN UOP

Theorem 2.4 asserts Cyo(k) = O(k>?), which implies the result by suitably
adjusting ¢; and c; if necessary. O

Remark 4.4. 1. The problem size N = dim S7(Z,%°) is N = O((L + h™?)p?).
The particular choice of L = c3 p layers of geometric refinement, approximation
order p = ¢;logk, and mesh size h = c¢;p/k in Theorem 4.2 ensures quasi-
optimality of the 4p-FEM with problem size N = O(k?), i.e., quasi-optimality
can be achieved with a fixed number of degrees of freedom per wavelength.

2. The sparsity pattern of the system matrix is that of the classical hp-FEM, i.e.,
each row/column has O(p?) non-zero entries. Noting that the scale resolution
conditions (6), (44) require p = O(logk), we see that the number of non-
zero entries per row/column is not independent of k. It is worth relating this
observation to [8]. It is shown there for a model problem in 2D that no 9 point
stencil can be found that leads to a pollution-free method.

3. Any space Vy that contains S”(.7,%"), where h, p, and L satisfy the scale
resolution condition (44) also features quasi-optimality.

4. The factor 2 on the right-hand side of (45) is arbitrary and can be replaced by any
number greater than 1.

5. The stability analysis of Theorem 4.2 requires quite a significant mesh refinement
near the vertices, namely, L ~ p. It is not clear whether this is an artifact of
the proof. For a more careful numerical analysis of this issue, more detailed
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information about the stability properties of the solution operator S is needed,
e.g., estimates for [[S(f, g)ll1.k.8,/(4)-

4.3 Numerical Examples: hp-FEM

All calculations reported in this section are performed with the hp-FEM code
NETGEN/NGSOLVE by J. Schoberl, [63, 64].

Example 4.5. In this 2D analog of Example 1.1, we consider the model problem
(9) with exact solution being a plane wave ei*1*+k2Y) 'where k) = —k, = \/Lik and
k € {4,40,100,400}. For fixed p € {1,2,3}, we show in Fig.2 the performance
of the A-version FEM for p € {1, 2, 3} on quasi-uniform meshes by displaying the
relative error in the H'-seminorm versus the number of degrees of freedom per
wavelength. We observe that higher order methods are less prone to pollution. We

p=1, plane wave solution, unit square p=2, plane wave solution, unit square
. 10°
_ 10 =
o o
= =
() [0} 1
10
£ £
2 2
£ .
@ 107 g 10
%] %]
| |
I I
_ ——k=4 > — 10°|——k=4
o -« -k=40 ‘o [ - -k=40
o~ k=100 -0~ k=100
_, |[=2=k=400 _[|2=k=400
10 0 1 2 10 0 1 2
10 10 10 10
DOF per wavelength DOF per wavelength
p=3, plane wave solution, unit square singular solution, quasi-uniform mesh
0
10° 10
5 S S
= —1 o
a0 £
E . § 10”
210 i
g -
8 oo T  |[~wk2zn=2
10 £
_l o
T e == k=20, h=0.2
B 10 T © ~—k=100, h=0.04
- o k=100 ® -#-k=200, h=0.02
_ [l=>— k=400 Ll—or™?
1075 - > 1075 ;
10 10 10 10 10
DOF per wavelength polynomial degree p

Fig. 2 Top: h-FEM with p = 1 (left) and p = 2 (right) as described in Example 4.5. Bottom
left: h-FEM with p = 3 as described in Example 4.5. Bottom right: p-FEM for singular solution
on quasi-uniform mesh as described in Example 4.7
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plane wave solution, L =0, 5 = 0.125 plane wave solution, L =10, = 0.125

10° Foe-ane 10° pZoe-ae
13 £
o =}
< -2 c -2
£ 10 £ 10
Q Q
i ¢
T 10 T 10"
s s
GL) -6 6 —6
? 10 ° 10 =<

-+-k=100
- -o- k=1000) 10 -o- k=1000|
2 4 6 8 10 2 4 6 8 10
polynomial degree p polynomial degree p

Fig. 3 p-FEM for plane wave solution as described in Example 4.6. Left: quasiuniform mesh .7,
with kh = 4. Right: Mesh 78 obtained from .7}, by strong geometric refinement near origin

note that the meshes are quasi-uniform, i.e., no geometric mesh refinement near the
vertices is performed in contrast to the requirements of Theorem 4.2. "

Example 4.6. On the L-shaped domain 2 = (—1,1)?\ (0,1) x (—1,0) with I
being the union of the two edges meeting at (0, 0), we consider

—Au—k’u=0 in2, du=0 onl, du—iku=g ond2\I, (46)

where the Robin data g are such that the exact solution is u(x, y) = eikix+ky)
with k; = —k, = \/Lik, and k € {10,100, 1,000}. We consider two kinds of
meshes, namely, quasi-uniform meshes .7, with mesh size & such that ki ~ 4 and
meshes .78 that are geometrically refined near the origin. The meshes .78 are
derived from the quasi-uniform mesh .7, by introducing a geometric grading on the
elements abutting the origin; the grading factor is 0 = 0.125 and the number of
refinement levels is L = 10. Figure 3 shows the relative errors in the H'-seminorm
for the p-version of the FEM where for fixed mesh the approximation order p ranges
from 1 to 10. It is particularly noteworthy that the refinement near the origin has
hardly any effect on the convergence behavior of the FEM; this is quite in contrast
to the stability result Theorem 4.2, which requires geometric refinement near all
vertices of £2. "

Example 4.7. The geometry and the boundary conditions are as described in
Example 4.6. The data g are selected such that the exact solution is u =
Joy3(kr) cos %(p, where (r,¢) denote polar coordinates and J, is a first kind
Bessel function. £ € {1, 10,20, 100,200}. Our calculations are p-FEMs with
p € {l,...,10} on the quasiuniform mesh .7, described in Example 4.7. The
results are displayed in the bottom right part of Fig.2. The numerics illustrate that
the singularity at the origin is rather weak: we observe that the asymptotic algebraic
convergence behavior is |u — uy |10y ~ Ckp_4/3|u|H1(9), where the constant Cj,
depends favorably on k. "
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4.4 Stability of Partition of Unity Method/Generalized FEM

The abstract stability result of Lemma 4.1 only assumes certain approximation
properties of the spaces Vy. Particularly in an “h-version” setting, even non-
polynomial, operator-adapted spaces may have sufficient approximation properties
to ensure the important condition (40) for stability. We illustrate this effect for
the PUM/gFEM, [44, 48] with local approximation spaces consisting of systems
of plane waves or generalized harmonic polynomials (see Sect.5 below) and the
classical FEM shape functions as the partition of unity. The key observation is that
for h sufficiently small, the resulting space has approximation properties similar to
the classical (low order) FEM space:

Lemma 4.8. Let 7 be a shape-regular triangulation of the polygon 2 C R>. Let
h be its mesh size; let (x;)M.| be the nodes of the triangulation and (¢;)!., be the
piecewise linear hat functions associated with the nodes (x;)".,. Assume kh < C;
for some Cy > 0. Let V'™5!¢" pe either the space VGPHP with p > 0 (see (47) below)
or the space W;,”W with p > 2 (see (48) below). Define, for eachi = 1,..., M,
the local approximation V; by V; := span{b(x — x;):b € V™5!¢"} Then the space
Vy = Zlel @i Vi has the following approximation property: There exists C > 0
depending only on the shape regularity of 7, the constant Cy, and V™*'" such
that

vlel}/ﬁ, lu=vllz2@) +hlu=vlm@) < C [F*|ull g2i@)+ k) |ull 20)] Yue H*(R2).

Proof. The proof exploits the smoothness of the functions in V"4¢”, Specifically,
one can find an element ¥ € V™" with v = 1 + O((kh)?). Then, the
approximation properties of the space span{g;:i = 1,..., M} can be exploited.
We refer to [21] for details. O

Lemma 4.8 shows that the space Vy, which is derived from solutions of the
homogeneous Helmholtz equation, nevertheless has some approximation power for
arbitrary functions with some Sobolev regularity. Hence, the condition (40) can be
met for sufficiently small mesh sizes:

Corollary 4.9 ([44, Prop. 8.2.7]). Assume the hypotheses of Lemma 4.8; in partic-
ular, let the space Vi be constructed from systems of plane waves or generalized
harmonic polynomials. Assume additionally that S2 is a convex polygon. Then there
exists C > 0 independent of k such that for k>h < C the Galerkin method for (9)
with f = 0 is quasi-optimal, i.e., the solution uy € Vy of (37) exists and satisfies

lu—unlike <2Cp inf |lu—v|ire-
vEVN
Proof. In view of Lemma 4.1, we have to estimate (V). To that end, we consider

(9) with f € L*(£2) and g = 0. In view of the convexity of £2, we have Cj,; (k) =
O(1) and elliptic regularity then yields for the solution u of (9)
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lulli ko + k_1||“||H2(.Q) < C|lfll2g)-
This allows us to conclude with Lemma 4.8 that
Jnf flu—viire =C [(kh® + W) ull p2 () + (k(kh)? + K1) ull 2(o)]
< C((kh)* + km)II fll2(2) < CRR(L 4+ kM) f || 12(2)-

Hence, kn(Vy) can be made sufficiently small if k%A is sufficiently small. We
point out that convexity of 2 is assumed for convenience — under more stringent
conditions on the mesh size &, quasioptimality holds for general polygons. O

S Approximation with Plane, Cylindrical, and Spherical
Waves

Systems of functions that are solutions of a (homogeneous) differential equation are
often called “Trefftz systems”. Prominent examples in the context of the Helmholtz
equation are, in the two-dimensional setting, “generalized harmonic polynomials”
and systems of plane waves given by

VéDHP = Span{Jn(kr)eimp:_P <n <nj, (47)
i 2 2
W;W = Span{e'kw”’(x’y):n =0,...,p— l}, w, = (cos ﬂ’ sin Ln)’
p
(48)

here, J, is a first kind Bessel function, the functions in V/,, are described in
polar coordinates and the functions of W}, in Cartesian coordinates. We point out
that analogous systems can be developed in 3D. These functions are solutions of
the homogeneous Helmholtz equation. For the approximation of a function u that
satisfies the homogeneous Helmholtz equation on a domain £2 C R?, one may study
the “p-version”, i.e., study how well u can be approximated from the spaces V/p
or W;,”W as p — oo; alternatively, one may study the “h-version”, in which, for
fixed p, the approximation properties of the spaces V', or W/, are expressed in
terms of the diameter 7 = diam £2 of a domain under consideration. In the way of
illustration, we present two types of results:

Lemma 5.1 ([44]). Let 2 C R? be a simply connected domain and 2’ CC §2 be
a compact subset. Let u solve —Au — k2u = 0 on 2. Then there exist constants C,
b > 0 (possibly depending on k) such that for all p > 2:

inf [|u—v] i@y < Ce™, inf |lu— vy @y < Ce P07,
VEVGPHP verfw
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Proof. See, e.g., [44] or [46, Thm. 5.3]. O

Remark 5.2. Analogs of Lemma 5.1 hold if u has only some finite Sobolev
regularity. Then, the convergence rates are algebraic, [44], [46, Thm. 5.4],
[32]. m

The approximation properties of the spaces V2, and W/, can be also be studied
in an A-version setting:

Proposition 5.3 ([32, Thm. 3.2.2]). Let 2 C R2 be a domain with diameter h and
inscribed circle of radius ph. Let p = 2 + 1. Assume kh < C,. Then there exist
C, > 0 (depending only on Cy, p > 0, m, and p) and v € W;’;VH such that

lu—=v]jkes < Coh* I ullyr1x0.5, 0<j<p+l,

2 _\J 2(j—m)|y,|2
where |[v[|5, o 5 = ook VIgm(q)-
Several comments concerning Proposition 5.3 are in order:

1. The constant C,, in Proposition 5.3 depends favorably on p, and its dependence
on p can be found in [32, Thm. 3.2.3].

2. Proposition 5.3 is formulated for the space WIfW of plane waves — analogous
results are valid for generalized harmonic polynomials, see [32, Thm. 2.2.1] for
both the & and hp-version.

3. Proposition 5.3 is formulated for the two-dimensional case. Similar results are
available in 3D, [32].

4. The approximation properties of plane waves in terms of the element size have
previously been studied in slightly different norms in [15].

6 Stability of Least Squares and DG Methods

Discrete stability in Sect. 4 is obtained from stability of the continuous problem by
a perturbation argument. This approach does not seem to work very well if one aims
at using approximation spaces that have special features linked to the differential
equation under consideration. The reason can be seen from the proof of Lemma 4.1:
The adjoint approximation property n(Vy) (which needs to be small) measures how
well certain solutions to the irhomogeneous equation can be approximated from the
test space. If the ansatz space is based on solutions of the homogeneous equation,
then its capabilities to approximate solutions of the inhomogeneous equation are
clearly limited. In an A-version, the situation is not as severe as we have just seen in
Sect. 4.4 for the PUM/gFEM. In a pure p-version setting, however, the techniques
of Sect. 4.4 do not seem applicable.

An option is to leave the setting of Galerkin methods and to work with formu-
lations with built-in stability properties. Such approaches can often be understood
as minimizing some residual norm, which then provides automatically stability and
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quasi-optimality (in this residual norm). We will illustrate this procedure here by
two examples, namely, Least Squares methods and DG-methods. Our presentation
will highlight an issue stemming from this approach, namely, the fact that error
estimates in this residual norm do not easily lead to error estimates in more classical
norms such as the L2(£2)-norm.

6.1 Some Notation for Spaces of Piecewise Smooth Functions

Let 7 be a regular, shape-regular triangulation of the polygon 2 C R2. We
decompose the set of edges & as & = & U&p, where &7 is the set of edges in
2 and & consists of the edges on 952. For functions u : 2 — Rand o : 2 — R?
that are smooth on the elements K € .7, we define the jumps and averages as it is
customary in DG-settings:

¢ Fore € &,let K;f and K be the two elements sharing e and denote by n™ and
n~ the normal vectors on ¢ pointing out of K and K. Correspondingly, we let
ut,u” and ot and o~ be traces on e of u and o from K and K. We set:

1 _ 1 _
e = (" +u7), Aol =3 (0" +07),
[u]le := utn®™ +un™, [e]lc ==t -n" 4067 -n".
* For boundary edges e € & we define
{o}le . =0al. [ulle := ul.n

With this notation, one can conveniently rearrange certain sums over edges:

Lemma 6.1 (“DG magic formula”). Letv : 2 — Rando : 2 — R? be
piecewise smooth on the triangulation . Then:

> [ voen= [ 61wt [ o3kl + [ Bl

KeT

where f & and f &, are shorthand notations for the sums of integrals over all edges
in & and &p.

Finally, for piecewise smooth functions, V; denotes the piecewise defined gradient.

6.2 Stability of Least Squares Methods

Although Least Squares methods could be based on any space of approximation
spaces, we will concentrate here on the approximation by piecewise solutions of
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the homogeneous Helmholtz equation. With varying focus, this is the setting of
[10,41,53,58, 68] and references therein. We illustrate the procedure for the model
problem (9) with f = 0. The approximation space has the form

Vy ={ue L*(2):ulx € Vg VK €T}, (49)

where the spaces Vy x are spaces of solutions of the homogeneous Helmholtz
equation, e.g., systems of plane waves. For each edge e € &, we select weights
Wi, W2 > 0 and define the functional J : Vy — R by

JO) = > wi W2 + W l0ntdl o + Y W llg = @nv +ikv)[72,);

eE€E ee&p

here [v]|, := [v]|. and [0,V]|c := [VrV]|. represent the jumps of v and d,,v across the
edge e. If the exact solution u of (9) is sufficiently regular, then it is a minimizer of J
with J(u) = 0. In a Least Squares method, J is minimizer over a finite dimensional
space Vi of the form (49). Its variational form reads:

finduy € Vi st.{uy.v)sn = Y (8. 0,y +ikv)aey  YveVy., (50)

eE€ER

where

(Lt, v)J,N = Z W%,e([u]s [v])Lz(e)—i_W%,g([anu]s [anv])Lz(e)

eE€E

+ ZW%E (anu + iku, 3nv + ikV)LZ(e).

e€Ep

The positive semidefinite sesquilinear form (-, -) v induces in fact a normon Vy: To
see the definiteness of (-, -) s v, we note that v € Vy and J(v) = 0 implies that v is in
C(£2) and elementwise a solution of the homogeneous Helmholtz equation. Thus,
it is a classical solution of the Helmholtz equation on §2 and satisfies d,v + ikv = 0
on 052. The uniqueness assertion for (9) with f = 0 and g = 0 worked out in
Example 2.1 then implies v = 0. Therefore, the minimization problem (50) is well-
defined. If the solution u of (9) satisfies u € H>?%¢(£2) for some ¢ > 0, then
J(u) = 0, and we get quasi-optimality of the Least Squares method in the norm
- llsw = JOY:

= un i3y = J@—un) = JGuy) = min JO0) = lu=vly. 1)

We mention here that estimates for this minimum can be obtained from (local)
estimates in classical Sobolev norms as given in Sect.5 using appropriate trace
estimates. Turning estimates for ||u — uy sy = J(uy)'/? into estimates in terms
of more familiar norms such as |[u — uy||;2(g) is not straight forward. It may be
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expected that the norm of the solution operator of the continuous problem appears
again; the next result, which is closely related to [14,32,33,51], illustrates the kind
of result one can obtain, in particular in a p-version setting:

Lemma 6.2 ([53, Thm. 3.1]). Let 2 C R? be a polygon. Let wie =kandw,, = 1
for all edges and g € L*(082). Let uy € Vy be the minimizer of J, where Vy,
given by (49), consists of elementwise solutions of the homogeneous Helmholtz
equation.

(i) If 2 is convex, then ||u — ”N”im)) <Ck™! ((kh)_1 + (kh)l) J(uy).
(ii) If §2 is not convex, then

2
||M —un ”LZ(Q) =

Chk™ (k)™ + (k) {1 + min{1. kh} =} ] (Coor (k) + 12T (uy).

where Cy(k) is defined in (25) and satisfies Cyoi(k) = O(k>?) by
Theorem 2.4. The parameter Bqax > 0 can be selected arbitrarily to satisfy
the condition By.,; > 1 — min; %, where the w; are the interior angles of the

polygon.

Proof. The result (i) is essentially the statement of [53, Thm. 3.1] in a refined
form as given in [33, Lemma 3.7]. While (ii) is a novel result, it is only a slight
modification of (i). We refer to [21] for the proof. |

Remark 6.3. Lemma 6.2 assumes quasi-uniform meshes and the weights wy ., wy .
do not take the edge length into account. This limits somewhat it applicability in
an h-version context. However, the result is very suitable for a p-version setting.
We point out that in a case where the p-version features only algebraic rates
of convergence, one would have to give the parameters w; ., wy, a p-dependent
relative weight as opposed to the situation studied in Lemma 6.2. "

6.3 Stability of Plane Wave DG and UWVF

The framework of Discontinuous Galerkin (DG) methods permits another way of
deriving numerical schemes that are inherently stable. In a classical, piecewise
polynomial setting, this is pursued in [24-26]; related work is in [52]. Here, we con-
centrate on a setting where the ansatz functions satisfy the homogeneous Helmholtz
equation. In particular, we study the plane wave DG method, [27,33,51], and the
closely related Ultra Weak Variational Formulation (UWVF), [14-16, 35,43]. We
point out that the UWVF can be derived in different way. Here, we follow [14,27]
in viewing it as a special DG method.

Our model problem (9) can be reformulated as a first order system by introducing
the flux o := (1/ik)Vu:

iko = Vu in £2, iku—V-0 =0 in 2, iko -n+iku =g ondf2. (52)
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The weak elementwise formulation of the first two equations is for each K € 7:

/ika-?+/uv-?—/ ut-n=20 VT € H(div, K),
K K 9K

/ikuv+/a-W—/ o-mv=0 Vve H(K),
K K oK

where H(div, K) = {u € L*(K):divu € L*(K)} and n is the outward pointing
normal vector. Replacing the spaces H'(K) and H(div, K) by finite-dimensional
subsets Vyx C H'(K) and X yx C H(div, K) and, additionally, imposing a
coupling between neighboring elements by replacing the multivalued traces u and
o on the element edges by single-valued numerical fluxes iy, 6 y to be specified
below, leads to the problem: Find (uy, 0 5) € Vy x X X y g such that

/ikaN'?+/uNV~?—/ UNT -n=0 YVt e Yyk,
K K aK

/ikuN\_/+/0’N-V\_/—/ oy -nv=20 Vv e Vyk.
K K aK

The variable o x can be eliminated by making the assumption that VVy x C X'y g
for all K € .7 and then selecting the test function T = Vv on each element. This
yields after an integration by parts:

/ VMNVV—kZMNV—/ (LtN —it\N)anv—ik(/)'\N -nyv =0 VK € 7. (53)
K dK

Since Vy ={u € L?(2):u|x € Vyx YK € 7} consists of discontinuous functions
without any interelement continuity imposed across the element edges, (53) is
equivalent to the sum over the elements: Find uy € Vy such that forall v € Vy

Z/VMN'VV—/CZMNV—F (/M\N—MN)Vv'n—/ ik3N~nV:O. (54)
Kkeg 'K K K

This formulation is now completed by specifying the fluxes Zy and @ y, which at
the same time takes care of the boundary condition in (52):

Fore € &;: % a:\N = %{VWN}I_ afun].
uy = {uny— By [Viun]
oy = %Vh”N - % (Vhuy + ikuyn — gn).

For e € &p: I .
B %uNzuN—%(th-n+1kuN—g).

Different choices of the parameters «, 8, § lead to different methods analyzed in the
literature. For example:
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1. « = B = § = 1/2: this is the UWVF as analyzed in [14-16,35,43] if the spaces
Vi .k consist of a space W;,”W of plane waves.

2. = O(p/(khlogp)), B = O((khlogp)/p), &= O((khlogp)/p): this
choice is introduced and advocated in [33,51] in conjunction with Vy g = W;,” W

With these choices of fluxes, the formulation (54) takes the form
Finduy € Vy s.t.  An(uy, V) = l(v) Vv e Vy, (56)

where the sesquilinear form Ay and the linear form / are given by

An(u,v) :/ Vo - Viv—k*uv —/ [l Vivy —/{th}l[l_)]] —/ Sud,v —/88,,@
2 &y &y Ep &p

1 1 — . s —
— E/& BIVaullViv] — * /53 80,ud,v + ik /51 afu][v] + ik /gB(l —§)uv
(57)

1
[v) = —+ 8g0,v + (1—23)gv.
ik &p &p

So far, the choice of the spaces Vi g is arbitrary. If the approximation spaces Vy x
(more precisely: the test spaces) consist of piecewise solutions of the homogeneous
Helmbholtz equation, then a further integration by parts is possible to eliminate all
volume contributions in A4y . Indeed, Lemma 6.1 produces

.__2_=
Z/KVMVV k~uv Z

Keo Keo

/B uVin = /g RV + G + /g Lt
so that Ay simplifies to
avten = [ vt + i [ pvaivia - [ @t +ik | otalp

1
| A=ud+i- | soudv— [ Souv+ik [ (1= 8w
&p k B B &p

Next, we make the important observation that Im Ay induces a norm on the space
Vy ifa, B > 0andé € (0, 1). Indeed:

l.a, 8 > 0and § € (0,1) implies Im Ay (v,v) > 0 Vv € Vy by inspection of
7).

2. Im Ay (v,v) = 0 and the fact that Vy consists of elementwise solutions of the
homogeneous Helmholtz equation implies as in the case of (-,-) ;5 in Sect. 6.2
that v € C!(£2) solves the homogeneous Helmholtz equation and d,v = v = 0
on 952; the uniqueness assertion of Example 2.1 then proves v = 0.
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This is at the basis of the convergence analysis. Introducing

1
g = Vim Ay ) = 2182 [Vaulls s, + a2l s,
1
+ E|I81/23n“||i2(g3) + k”(l - 8)1/2“||i2(g3),
lulfygs = Il + k1B~ 2, 5 o™ 202, RISl

we can formulate coercivity and continuity results:

Proposition 6.4 ([14,33]). Let Vi consist of piecewise solutions of the homoge-
neous Helmholtz equation. Then || - ||pc is a norm on Vy and for some C > 0
depending solely on the choice of o, f > 0, and § € (0, 1):

Im Ay (u,u) = ||ul|p6 Vu € Vy,

[An(u,v)| < Cllullpe.+IIVIipe Yu,v e Vy

Let the solution of u of (9) (with f = 0) satisfy u € H>?%¢(2) for some & > 0.
Then, by consistency of An, the solution uy € Vy of (56) satisfies the following
quasioptimality estimate for some C > 0 independent of k :

||M — “N”DG <C inf ||u — V||DG,+- (58)
vEVN

Several comments are in order:

1. The UWVF of [15] featured quasi-optimality in a residual type norm. We recall
that the UWVF is a DG method for the particular choicea = = § = 1/2.

2. When Vy consists (elementwise) of systems of plane waves or generalized
harmonic polynomials, then the infimum in (58) can be estimated using approx-
imation results on the elements by taking appropriate traces. This is worked out
in detail in [32,33,51] and earlier in an h-version setting in [15] (see also [14]).

3. The || - ||pg-norm controls the error on the skeleton & only. The proof of
Lemma 6.2 shows how error estimates in such norms can be used to obtain
estimates for ||u — uy||;2(); we refer again to [14] where this worked out for
the UWVF and to [32,33,51] where the case of the plane wave DG is studied.
As pointed out in Remark 6.3, quasi-uniformity of the underlying mesh 7 is an
important ingredient for the arguments of Lemma 6.2.

It is noteworthy that Proposition 6.4 does not make any assumptions on the mesh
size h and the space Vy except that it consist of piecewise solutions of the
homogeneous Helmholtz equation. Optimal error estimates are possible in an /-
version setting, where the number of plane waves per element is kept fixed:

Proposition 6.5 ([27]). Let §2 be convex. Assume that Vy g = W;ﬁ“ (n > 1
fixed) for all K € 7. Assume that « is of the form o = a/(kh) and that § > 0,
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8 € (0,1/2). Then there exist ay, co, C > 0 (all independent of h and k) such that
ifa > agand k>h < co, then following error bound is true:

lu—unlli.pc < C inf ||u—v|ipc+;
vEVN

here, || - |li.pG and || - |li.pG.+ are given by |VI[i pg = Y xer |V|§11(K) +
k2||v||i2(K) + V5 and ”V”%,DG,+ =2 kez |V|§.11(K) + kz”"”%}(;g) + ||V||2DG,+'

Proof. The proof follows by inspection of the procedure in [27, Sec. 5] and is
stated in [51, Props. 4.2, 4.3]. The essential ingredients of the proof are: (a) inverse
estimates for systems of plane waves that have been made in available in [27] so
that techniques of standard DG methods can be used to treat Ay; (b) use of duality
arguments as in Lemma 4.1 to treat the L?-norm of the error; (c) the fact that in an A-
version setting, plane waves have some approximation power for arbitrary functions
in H? (this is analogous to Lemma 4.8). O
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Why it is Difficult to Solve Helmholtz Problems
with Classical Iterative Methods

0O.G. Ernst and M.]J. Gander

Abstract In contrast to the positive definite Helmholtz equation, the deceivingly
similar looking indefinite Helmholtz equation is difficult to solve using classical
iterative methods. Simply using a Krylov method is much less effective, especially
when the wave number in the Helmholtz operator becomes large, and also algebraic
preconditioners such as incomplete LU factorizations do not remedy the situation.
Even more powerful preconditioners such as classical domain decomposition and
multigrid methods fail to lead to a convergent method, and often behave differently
from their usual behavior for positive definite problems. For example increasing the
overlap in a classical Schwarz method degrades its performance, as does increasing
the number of smoothing steps in multigrid. The purpose of this review paper is to
explain why classical iterative methods fail to be effective for Helmholtz problems,
and to show different avenues that have been taken to address this difficulty.

1 Introduction

We consider in this paper the iterative solution of linear systems of equations arising
from the discretization of the indefinite Helmholtz equation,
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with suitable boundary conditions yielding a well-posed problem. For k > 0
solutions of the Helmholtz equation, also known as the reduced wave equation,
describe the variation in space of linear propagating waves with wave number k.
The performance of standard iterative methods is much worse for such problems
than for the deceivingly similar looking equation

—(A-nu=f n>0, 2

which describes stationary reaction-diffusion phenomena but is often also called
Helmholtz equation in certain communities. For example in meteorology, the early
seminal papers [51, 59] led an entire community to call equations of the form
(2) Helmbholtz equations, see for example [14]. Even standard texts in applied
mathematics now sometimes use the term Helmholtz equation for both (1) and
(2), see for example [69]. The subject of this paper is exclusively the indefinite
Helmbholtz equation (1), which is much harder to solve with classical iterative
methods than equation (2), see also the recent review [20].

Discretizations of the indefinite Helmholtz equation (1) using, e.g., finite dif-
ferences or a finite element or spectral element method and appropriate boundary
conditions result in a linear system of equations

Au =T, (3)

which, for k sufficiently large, possesses an indefinite coefficient matrix A.

Often an approximation of the Sommerfeld radiation condition, which in d
space dimensions reads d,u — iku = o(r('=%/2) as the radial variable r tends
to infinity, is imposed on part of the boundary, specifying that wave motion
should be outgoing along physically open boundaries. The Sommerfeld condition
prescribes the asymptotic behavior of the solution, and its representation on finite
boundaries leads to nonlocal operators. For this reason localized approximations of
the Sommerfeld condition are used, the simplest of which is the Robin condition
dpu—iku = 0. As aresult, the linear system (3) has a complex-symmetric, but non-
Hermitian coefficient matrix as well as a complex-valued solution. The iterative
solution of the discrete Helmholtz problem (3) is difficult, even for constant wave
number k, and we will illustrate this in the first part of this paper, for Krylov
methods, preconditioned Krylov methods, domain decomposition methods and
multigrid. We then try to explain where these difficulties come from, and show what
types of remedies have been developed over the last two decades in the literature.
We will conclude the paper with some more recent ideas.
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2 Problems of Classical Iterative Methods

2.1 Krylov Subspace Methods

Krylov subspace methods seek an approximate solution of the linear system (3) in
the Krylov space

Hm(A,f) = spani{f, Af, A%, ..., A" 'f} = span{qo.q1. Q2. . ... Qu—1}, (4

where q; denotes the jth Arnoldi vector of .%,, i.e. the vectors obtained by
orthonormalization of the vectors f, Af, A*f, ... defining the Krylov space. We have
made the common choice of a zero initial guess for the solution, as is recommended
in the absence of any additional information, see for example [53]. We show in Fig. 1
how the wave number k fundamentally influences the solution of the Helmholtz
equation. We have set homogeneous Dirichlet conditions on all boundaries, except
on the left, where the Robin condition d,u — i ku = 0 was imposed, and we used a
point source in the upper right corner, i.e., a Dirac delta distribution concentrated at
this point, as the source term. In the case of Laplace’s equation (k = 0) the solution
is large only near the point source in the corner, whereas for k = 25, the solution
is large throughout the domain. The Krylov space constructed in (4), however, is
very similar for both problems: due to the local connectivity (we used a five-point
finite difference discretization for the Laplacian), the vector f is zero everywhere,
except for the grid point associated with the upper right corner point, and thus the
Arnoldi vector qq is just a canonical basis vector (1,0, ..., O)T. The next vector
in the Krylov space, Af, is then non-zero only for the points connected with the
first point, and the corresponding Arnoldi vector ¢; will have only two non-zero
entries, and so on. In the case of Laplace’s equation we see that the first Arnoldi
vectors are precisely non-zero where the solution is large, and thus it can be well

Solution of Laplace’s equation Solution of the Helmholtz equation

AR
Wt
LHALY
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%

N\ o B\ B N e <]

Fig. 1 Solution of Laplace’s equation on the left, with a point source on the boundary, and on the
right the solution of the Helmholtz equation, with the same boundary conditions
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Fig. 2 Evolution of the residual for GMRES, on the left for the case of Laplace’s equation, k = 0,
and on the right for the Helmholtz equation, k = 25

approximated in the Krylov space. By contrast, in the indefinite Helmholtz case,
where the solution is of the same size throughout the domain, these vectors do not
have an appropriate support to approximate the solution. We show in Fig.2 how
this influences the convergence of GMRES. While the residual decreases well in the
Laplace case over the first 2 x n iterations, where n is the number of grid points
in one direction, convergence stagnates in the Helmholtz case. For a more precise
quantitative analysis of this phenomenon, see [36]. Similar effects are also observed
in the advection dominated case of advection diffusion equations, see [24, 53]. It
is therefore important to have a preconditioner, a Krylov method alone is not an
effective iterative solver.

2.2 Algebraic Preconditioners Based on Factorization

The idea of preconditioning is as follows: instead of solving the original discretized
system Au = f, we solve the preconditioned system

M"Au=M"'t, ®)

where M is the so-called preconditioner. Preconditioners often arise from a
stationary iterative method

Mut! = Nu* +f (6)

derived from a matrix splitting A = M — N with M nonsingular. It is well
known that this method converges asymptotically rapidly, if the spectral radius of
the iteration matrix M ~'N is small. This implies that the preconditioned matrix
in (5),

M7'"A=M"'"M—-N)=I-M"'N
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Table 1 Iteration counts for QMR with and without preconditoner, applied to an indefinite
Helmholtz equation with increasing wave number

k QMR ILUCO’) ILU(le-2)

It Mflops It Mflops It Mflops
5 197 120.1 60 60.4 22 28.3
10 737 1858.2 370 1489.3 80 421.4

15 1,775 10185.2 > 2,000 > 18133.2 220 2615.1
20 > 2,000 > 20335.1 - - > 2,000 > 42320.1

has a spectrum clustered around 1 in the complex plane, which leads to fast
asymptotic convergence also for a Krylov method applied to the preconditioned
system (5). Clearly, the best preconditioner would be A~', since this makes the
spectral radius of M ~'N vanish since then M~'N=A"'0 = 0, and all the
eigenvalues of the preconditioned system M ~'A4 = I equal 1. But then one could
directly solve the system without iteration.

The idea of factorization preconditioners is to use an approximation of 4~! by
computing an approximate LU factorization of the matrix A, A ~ LU, and then
in each iteration step of (5), a forward and a backward substitution need to be
performed. Two popular algebraic variants are the ILU(0) and ILU(tol) precon-
ditioners, see [60]. For ILU(0), one computes an approximate LU factorization,
retaining entries in the LU factors only if the corresponding entry in the underlying
matrix A is non-zero. In the ILU(tol) variant, elements are kept, provided they
are bigger than the tolerance tol. We compare in Table 1 the performance of this
type of preconditioner when applied to the Helmholtz equation for growing wave
number k. We solve an open cavity problem as in the previous example in Sect. 2.1,
but now with a point source in the center. For this experiment, we keep the number
of grid points per wavelength constant, i.e. kh = 10, which means that the grid
is refined proportionally with increasing wave number. We observe that the ILU
preconditioners are quite effective for small wave numbers, but their performance
deteriorates when k becomes larger: the situation with ILU(’0’) is worse than
without preconditioning, and even ILU(tol) with a small drop tolerance does not
permit the solution of the problem. Here the Krylov subspace solver used was
QMR [30], but similar results are observed when using GMRES and other Krylov
methods, see [38].

2.3 Domain Decomposition Methods

The oldest and simplest domain decomposition method is due to Schwarz [62]. He
invented his alternating method in order to prove the Dirichlet principle, on which
Riemann had based his theory of analytic functions of a complex variable (See [39]
for a historical overview, and also [32] for an overview over the different continuous
and discrete variants of the Schwarz method). The idea of the alternating Schwarz
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Fig. 3 Drawing for the
original Schwarz method
using the notation in the text

\

00

Table 2 Performance of a classical Schwarz domain decomposition method for a discretized
Helmholtz equation

k 107 20 40 80 1607 107 20 40 80 1607
Overlap = h Overlap fixed
Iterative Div Div Div Div Div Div Div Div Div Div

Preconditioner 20 33 45 69 110 16 23 43 86 155

method is illustrated in Fig.3. One simply solves the original partial differential
equation alternatingly in overlapping subdomains, and uses as interface condition
the trace of the previously computed solution in the neighboring subdomain. For the
case of the Helmholtz equation and the two-subdomain decomposition in Fig. 3, the
algorithm is

—(A+K)dT =0 in2), —(A+ k)T =0 in 2,
ug‘H = u'l"H on I5.

(N

u’f“ =uj onI7,

We show in Table 2 numerical experiments for growing wave number k for the case
of a unit square cavity, open both on the left and on the right, using two subdomains
obtained by partitioning the cavity in the middle. We used the alternating Schwarz
method both as an iterative solver, as in (6), and as a preconditioner, as in (5), for
GMRES. We see that the alternating Schwarz method is not convergent for the
indefinite Helmholtz equation. Used as a preconditioner, we obtain a convergent
method, but iteration numbers grow with increasing wave number k. For diffusive
problems the alternating Schwarz method converges better when the overlap is
increased, which is also intuitively understandable. This is, however, not the case
for the Helmholtz equation, as we see comparing the case with overlap /, the mesh
size, and with fixed overlap, equal to 2/ on the coarsest grid, and then 44, 84 etc
when the mesh is refined: at the beginning, for small wave numbers, overlap seems
to help, but later, bigger overlap is detrimental to the performance of the Schwarz
preconditioner when applied to the Helmholtz equation.

2.4 Fictitious Domain Methods

While domain decomposition methods arrive at more manageable subproblems by
dividing a given problem region into smaller subregions, fictitious domain methods
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are based on imbedding the former in a larger domain for which a more efficient
solver may be available. The first such techniques [11, 46, 58, 61], also known as
domain imbedding or capacitance matrix methods, were developed to extend the
efficiency of fast Poisson solvers based on the Fast Fourier Transform or cyclic
reduction also to problems for which these methods are not directly applicable,
as they require some form of separation of variables. In [22] (see also [23]) this
idea was applied to exterior boundary value problems for the Helmholtz equation
in two dimensions, and it was shown how the Sommerfeld radiation condition can
be incorporated into a fast Poisson solver. Large-scale scattering calculations using
this approach can be found in [45].

Computationally, fictitious-domain methods represent the original discrete prob-
lem as a low-rank modification of a larger problem amenable to fast methods. The
fast solver plays the role of a discrete Green’s function much in the same way as
its continuous counterpart is used in the integral equation method for solving the
Helmholtz equation using layer potentials [13]. In fact, fictitious domain methods
require the solution of an auxiliary system of equations which is a discretization
of an integral operator on the boundary of the problem (scattering) domain. If
a suitable formulation is chosen these operators are often compact perturbations
of the identity, which can be exploited to obtain mesh-independent convergence
for iterative solution methods. The dependence on the wave number, however, is
typically linear. Convergence independent of the wave number and mesh size would
require more efficient preconditioning schemes for the discrete integral operator,
which are currently not available. Recent developments on the spectral analysis of
such operators necessary for the design of effective preconditioners can be found
in [6].

2.5 Multigrid Methods

Two fundamental observations led to the invention of multigrid methods:

e When applied to the Poisson equation, classical stationary iterative methods such
as Gauss-Seidel or damped Jacobi iteration effectively remove high-frequency
components of the error, but are very ineffective for low-frequency components.
Stiefel points this out very vividly in his 1952 paper [64] on precursors of the
conjugate gradient method, remarking that, after a few iterations of one such
basic iterative method, in which the residual is reduced significantly, subsequent
iteration steps decrease the residual only by very little, as if the approximation
were confined to a “cage”. !

1“Das Auftreten von Kiifigen ist eine allgemeine Erscheinung bei Relaxationsverfahren und sehr
unerwiinscht. Es bewirkt, dass eine Relaxation am Anfang flott vorwirts geht, aber dann immer
weniger ausgiebig wird ...".
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e The remaining low-frequency components in the error can be well represented
on a coarser grid,” as Federenko points out in his 1961 paper presenting the first
complete multigrid method [29]:

We shall speak of the eigenfunctions as “good” and “bad”; the good ones include those
that are smooth on the net and have few changes of sign in the domain; the bad ones
often change sign and oscillate rapidly [...] After a fairly small number of iterations, the
error will consist of “good” eigenfunctions [...] We shall use the following method to
annihilate the “good” components of the error. We introduce into the domain an auxiliary
net, the step of which is q times greater than the step of the original net.

The simplest multigrid scheme to which these developments led is the classical “V-
cycle”, which, applied to the system Au = f, reads:

function u =Multigrid(A4, f, up);
if isSmall(A) then u = A\ f else
u =DampedJacobi(v, 4, f, up);
r =Restrict( f — Au);
e =Multigrid(A,, r, 0);
u = u-+Interpolate(e);
u =DampedJacobi(v, 4, f, u);
end;

Here up denotes the initial approximation and A, the coarse-grid representation
of A.

We show in Table 3 the performance of this multigrid algorithm when applied to
a discretized Helmholtz equation, in our example a closed cavity without resonance
for the discretized problem.? We observe that the multigrid method fails to converge
as a stand-alone iterative solver except for a very small wave number. When
multigrid is used as a preconditioner, we obtain a convergent method, as in the

Table 3 Performance of a classical geometric multigrid method with optimally damped Jacobi
smoother applied to a discretized Helmholtz equation. v denotes the number of smoothing steps

k 257 5z 10m 20 2.57m S5m 10r 20 257 5% 10w 20w
v=2 v=>5 v=10

Iterative 7 Div Div Div 7 Stag Div Div 8§ Div Div Div

Preconditioner 6 12 41 127 5 13 41 223 5 10 14 87

’The idea of beginning the iteration on a coarse grid with a subsequent “advance to a finer net”,
not unlike the modern full multigrid approach, was in use already in the early days of “relaxation
methods”, as evidenced, e.g., in the book of Southwell [63, Sect. 52] from 1946.

3In a closed cavity, i.e., with homogeneous Dirichlet conditions imposed on all sides, it is important
to ensure that k2 is not an eigenvalue of the discrete Laplacian, since otherwise one obtains a
singular matrix. In the case of a multigrid solver then, one must be careful that k2 is not an
eigenvalue of the discrete Laplacian on each of the grids used in the multigrid hierarchy, which
we did for this experiment (see also Sect. 3.4).
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case of the Schwarz domain decomposition method, but again the iteration numbers
grow substantially when the wave number increases. We used again about 10 points
per wavelength in these experiments. Often one increases the number of smoothing
steps in the multigrid method to improve performance, and we see in Table 3 that,
for small wave numbers, this seems to help the preconditioned version, but for
large wave numbers, adding more smoothing steps can both improve and diminish
performance. Again, we observe that standard multigrid methods are not suitable
for solving the Helmholtz equation.

3 Iterative Methods for Helmholtz Problems

We now describe several iterative methods and preconditioners which have been
developed especially for solving discrete Helmholtz problems. In each case we first
give an explanation of why the classical iterative method or preconditioner fails, and
then show possible remedies.

3.1 Analytic Incomplete LU

The incomplete LU (ILU) preconditioners are based on the fact that the linear
system (3) could be solved by a direct factorization, the so-called LU factorization

A=LU, L lower triangular, U upper triangular. 8)
The solution of the linear system Au = LUu = f is then obtained by solving

Lv =f by forward substitution,

Uu = v by backward substitution.

If the matrix A is a discretization of the Helmholtz operator —(A + k?) in two
dimensions, and we use the lexicographic ordering* of the unknowns indicated in
Fig. 4, we can interpret the forward and backward substitutions geometrically: the
forward substitution process Lv = f determines first the variables in the leftmost
column of the domain, see Fig. 4, then in the second leftmost, and so on, until the last
column on the right. The process is sequential, and could be interpreted as a time-
stepping in the positive x-direction, solving an evolutionary problem. The backward
substitution process Uu = v, on the other hand, starts with the variables in the
rightmost column in Fig. 4, and then computes the second rightmost column, and so

4This presupposes a tensor-product grid structure.



334 0O.G. Ernst and M.J. Gander

Fig. 4 Ordering of the y
unknowns in the

discretization of the
Helmholtz operator

on, until the first column on the left is determined. Again the process is sequential,
and could be interpreted as a time-stepping, but this time in the negative x-direction.

From the explanation of the convergence of Krylov methods without precon-
ditioning given in Sect.2, we see that efficient transport of information in the
preconditioner is important for Helmholtz problems. We have, however, also seen
that the classical ILU preconditioners do not seem to bring about this transport
effectively enough: even the rather accurate approximate ILU(le-2) factorization
does not suffice.

In order to find what the evolution problems described by the LU factorization
could correspond to for the underlying Helmholtz equation, it was sought in [38] to
determine a factorization of the Helmholtz operator in the x direction,

— (A4 k%) =—(0y + A0 — Ar), )

where A; and A, are (non-local) operators to be determined such that (9) holds.
Given such a factorization at the continuous level one can solve —(A + k?)u =
—(0x + A1)(0x — Az)u = f by solving two evolution problems:

—(0y + Ay)v = f evolution problem in the forward x direction,

(0y — A2)u = v evolution problem in the backward x direction.

Taking a Fourier transform of the Helmholtz operator (ignoring boundary condi-
tions) in the y-direction with Fourier variable &, we obtain

Fy(—(A+ k) = =dex + £ =k = =0 + VE — k) (3. — VE —k?), (10)
and thus we have the continuous analytic factorization of the Helmholtz operator
— (A +K?) = —(0s + A1)y — 42). (1D

where A} = A, = f;l(,/éz —k?). Note that A;, j = 1,2, are non local

operators in y due to the square root in their symbol /£ — k2.
The discrete analogue of this factorization at the continuous level is the block
LDLT factorization of the discrete Helmholtz matrix A. In the case of a five point
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finite difference discretization, this matrix has the block structure

Ay =1 4—kh* -1
1

A=ﬁ -1 A2 . Aj= —1 4—k/’12'

A direct calculation shows that the block L DL factorization of 4 is given by

where the matrices T satisfy the recurrence relation
-1
Tipi=Aj1 =T, Ti= A4, (12)

as is easily verified by multiplying the matrices. We observe that in this exact
factorization the matrices 7; are no longer sparse, since the recurrence relation
(12) which determines them involves an inverse. This fill-in at the discrete level
corresponds to the non-local nature of the operators A;. Using a local approx-
imation of the matrices T; with tridiagonal structure gives only an approximate
LDLT factorization of A, which we call AILUC0’) (Analytic Incomplete LU). In
order to obtain a good approximation, the relation to the continuous factorization
was used in [38], and the spectral radius of the corresponding iteration matrix was
minimized. The performance of this preconditioner, which is now tuned for the
Helmbholtz nature of the problem, is shown in Table 4, for the same open cavity
problem as before. We clearly see that this approximate factorization contains much
more of the physics of the underlying Helmholtz equation, and leads to a better
preconditioner. Nonetheless, the iteration counts are still seen to increase with
growing wave number k.

Table 4 Performance comparison of the specialized AILU(’0’) preconditioner, compared to the
other ILU variants

k QMR ILUCO’) ILU(1e-2) AILU(CO)
It Mflops It Mflops It Mflops It Mflops

5 197 120.1 60 60.4 22 28.3 23 28.3
10 737 1858.2 370 1489.3 80 421.4 36 176.2
15 1,775 10185.2 2,000 18133.2 220 2615.1 43 475.9
20 2,000 20335.1 - - 2,000 42320.1 64 1260.2
30 - - - - - - 90 3984.1
40 - - - - - - 135 10625.0

50 - - - - - - 285 24000.4
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The AILU preconditioner goes back to the analytic factorization idea, see
[56] and references therein. It is very much related to the Frequency Filtering
Decomposition, as proposed by Wittum in [67, 68] and analyzed for symmetric
positive problems in [65], and for non-symmetric problems in [66]. There was
substantial research activity for these kinds of preconditioners around the turn of
the century, see [42], [12], [37], [1], and for Helmholtz problems this is one of the
best incomplete factorization preconditioners available. For more recent work, see
[2], [57], and for Helmholtz problems in particular [17] and [18], where this type of
preconditioner is called a “sweeping preconditioner”, and an optimal approximation
is proposed in the sense that iteration numbers no longer depend on the wave number
k, see also [19].

3.2 Domain Decomposition Methods for Helmholtz Problems

In the late 1980s researchers realized that classical domain decomposition methods
were not effective for Helmholtz problems, and the search for specialized methods
began. In his PhD thesis [15], Bruno Després summarizes this situation precisely:

L’objectif de ce travail est, aprés construction d’une méthode de décomposition de domaine
adaptée au probléme de Helmholtz, d’en démontrer la convergence.’

The fundamental new ingredient for such an algorithm turned out to be the
transmission condition between subdomains, as in the non-overlapping variant of
the Schwarz algorithm proposed by Lions [54]. The algorithm proposed by Bruno
Després reads

—(A+ kT =, in 2; ;3

(0n; — ik)u;%+1 = (0p, —ik)uf, on interface I'jy, (3)
and, on comparing with the classical alternating Schwarz algorithm in (7), we see
that now a Robin transmission condition is used at the interfaces. The algorithm was
considered by Després for many subdomains, but only without overlap, so that its
convergence can be proved using energy estimates.

To obtain further insight into why the transmission conditions are important, we
show in Fig.5 on the vertical axis the convergence factor of the algorithm for the
simple model problem of a square decomposed into two rectangles, plotted against
the index & of the Fourier modes. In this case, we can use Fourier series in the
direction of the interface to explicitly compute how each Fourier mode converges,
see for example [35]. We see on the left for the classical alternating Schwarz method
that low frequency modes are not converging at all, their convergence factor equals

5The goal of this work is to design a special domain decomposition method for Helmholtz
problems, and to prove that it converges.
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Fig. 5 Comparison of how each Fourier mode £ in the error converges, on the left for the
classical alternating Schwarz method with overlap, and on the right for the variant designed for
the Helmholtz equation, without overlap. The vertical axis denotes the convergence factor of a
Fourier mode

one. These modes correspond to the oscillatory, or propagating modes in the solution
of the Helmholtz equation, as are clearly visible, e.g., in the example in Fig. 1
on the right. High-frequency components, however, converge well in the classical
alternating Schwarz method. These modes correspond to evanescent modes, usually
only well visible for diffusive problems, as in Fig. 1 on the left. The situation for the
non-overlapping method of Després on the right is reversed: the new transmission
conditions lead to a rapidly converging method for the propagating modes in the
low-frequency part of the spectrum, but now high frequency components are not
converging.

Després wanted to prove convergence of the algorithm, and the technique of
energy estimates generally works only for the non-overlapping variants of the
algorithm. But Fig. 5 suggests that one could use the overlap for the high-frequency
modes, and the transmission condition for the low-frequency modes, in order to
obtain a method effective for all modes in a Helmholtz problem. In addition, it might
be possible to choose an even better transmission condition, as indicated toward the
end in Lions’ work [54], and also by Hagstrom et al. in [44]. All these observations
and further developments led at the turn of the century to the invention of the new
class of optimized Schwarz methods [34], with specialized variants for Helmholtz
problems [33,35]. For an overview for symmetric coercive problems, see [31].

Using optimized transmission conditions of zeroth order, which means choosing
the best complex constant in place of ik in the Robin condition, we obtain for the
same model problem as in Fig. 5 the contraction factors shown in Fig. 6 on the left.
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Fig. 6 Comparison of how each Fourier mode & in the error converges, on the left for an optimized
Schwarz method of order zero (OO0), and on the right for a second order optimized Schwarz
method (O02), both with overlap

Table S Asymptotic convergence factors obtained for a model problem

k fixed k?h const
Overlap 0 1—O(h+) 1= 0@k ")
1-0(k™%) 1<y<?
Overlap Cph 1— O(h%) ( 17322 = ); =3
1—0(k™)y>g
Overlap const 1 —const 1— 0(k7§)

We can see that all modes, except for the resonance mode,® now converge well. On
the right in the same figure, we show a second-order optimized Schwarz method, in
which one also uses the Laplace-Beltrami operator at the interface to obtain an even
more effective transmission condition. Using this operator in no way increases the
sparsity pattern of the subdomain solver, since second-order derivatives are already
present in the underlying discretization of the Laplacian.

A general convergence analysis of optimized Schwarz methods for Helmholtz
problems currently only exists for the non-overlapping case, using energy estimates.
This approach, however, does not allow us to obtain convergence factor estimates. In
addition, to prove convergence for the general overlapping case is an open problem.
For the model situation of two subdomains however, one can quantify precisely
the dependence of the convergence factor on the wave number k and the mesh
parameter 1. We show in Table 5 the resulting convergence factors from [33]. We see
that for a fixed wave number k and constant overlap, independent of the mesh size £,

%We denote by resonance mode that value of the Fourier parameter for which the transformed
Helmholtz operator becomes singular.
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Table 6 Numerical experiment for a two-subdomain decomposition

h Iterative Krylov k Krylov
Optimized Deprés Optimized Deprés Optimized
1/50 322 26 14 107 24 13
1/100 70 34 17 20 33 18
1/200 75 44 20 407 43 20
1/400 91 57 23 80 53 21
1/800 112 72 27 1607 83 32

the algorithm converges with a contraction factor independent of /. In the important
case where k scales with /1 as k” h in order to avoid the pollution effect, see [47,48],
we see that the contraction factor only depends very weakly on the growing wave
number: for example if the overlap is held constant, all Fourier modes of the error
contract at least with a factor 1 — O(k‘é).

In Table 6 we show a numerical experiment for a square cavity open on two
sides and the non-overlapping optimized Schwarz method in order to illustrate
the asymptotic results from Table 5. We used a fixed wave number k on the left,
and a growing wave number k on the right, while again keeping ten points per
wavelength. We show in the leftmost column the stand-alone iterative variant of the
algorithm in order to illustrate the sensitivity of the algorithm with respect to the
peak of the convergence factor at the resonance frequency. Since the discretization
modifies the continuous spectrum, a discretization with insufficient resolution may
have eigenvalues close to the resonance frequency, which are not taken into account
by the continuous optimization based on Fourier analysis, which in turn can result
in an arbitrarily large iteration count, as we see for example for 7 = %. Such
problems, however, disappear once the mesh is sufficiently refined, or when Krylov
acceleration is added, as one can observe in Table 6. This issue is therefore not
of practical concern. We also see that it clearly pays to use optimized parameters,
as the iteration count is substantially lower than with the first choice of ik in the
transmission conditions.

We finally show two numerical experiments, in order to illustrate that optimized
Schwarz methods for Helmholtz equations also work well in more practical situa-
tions. We first show the acoustic pressure in two spatial dimensions for the approach
of an Airbus A340 over the silhouette of a city, computed with a decomposition
into 16 subdomains, as shown in Fig.7 on the left. In this case, using a Robin
transmission condition with ik as parameter required 172 iterations, whereas the
optimized Schwarz method needed only 58 iterations to converge to the same
tolerance. For more details, see [35]. The second example is the interior of a Twingo
car from Renault, shown in Fig. 8. Here, the Robin transmission condition with i k
as parameter required 105 iterations, and the optimized Schwarz method 34. For
further details, see [33].

There is a second type of domain decomposition methods for Helmholtz prob-
lems from the FETI family of methods (Finite Element Tearing and Interconnect,
see [28]). These methods are based on a dual Schur complement formulation,
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’t.“\

Fig. 7 Airbus A340 in approach over a city, domain decomposition on the left, and result of one
simulation on the right

Pressure
5.480E+001

5.268E+001

5.036E+001

4.147E+001

3.924E+001

3.702E+001

Fig. 8 Simulation of the noise in the passenger cabin of a Twingo car from Renault: the pressure
range on the right goes from 37.02 to 54.8

which means that interior variables in the subdomains are eliminated, assuming that
Neumann traces are continuous across interfaces, and then a substructured system
is obtained by requiring that Dirichlet traces along interfaces match. A primal Schur
formulation would do the opposite: eliminate interior unknowns of subomains,
assuming that Dirichlet traces are continuous across interfaces, and then impose
continuity of the Neumann traces along interfaces in order to obtain a substructured
formulation. These methods usually require an additional preconditioner in order to
obtain convergence rates independent of (or only weakly dependent on) the mesh
parameter 4. An optimal choice is to use the primal Schur complement method
for the dual Schur complement formulation, and vice versa. In order to scale with
the number of subdomains, also a coarse grid is needed. For the case of Laplace’s
equation, the classical coarse grid is to use a constant per subdomain, since if FETI is
used to solve Laplace’s equation, interior subdomain problems containing Neumann
conditions all around have precisely the constant as a kernel. This idea transformed
an inconvenience of the original FETI idea, namely that interior subdomains are
singular, into a benefit: a natural coarse grid.

In order to adapt this class of methods to Helmholtz problems, the first
variant was the FETI-H method (for FETI-Helmholtz), see [27]. Instead of using
Neumann transmission conditions in the dual Schur complement formulation, Robin
conditions 0, — ik are used, but then still Dirichlet traces are matched in order
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to obtain a substructured formulation. This approach is thus very much related to
an optimized Schwarz method without overlap; however, only one type of Robin
conditions can be imposed, since the other one is Dirichlet. This means that always
on one side of the interface, a Robin condition with the good sign is used, whereas
on the other side, a Robin condition with the bad sign is imposed. For checkerboard
type partitions, one can ensure that subdomains have only Robin conditions with
constant sign all around. Otherwise, an algorithm was proposed to generate a choice
of sign which guarantees that subdomain problems are not singular. The original
formulation has no additional preconditioner, but a coarse grid in form of plane
waves.

The second algorithm in the FETI class specialized for Helmholtz problems
is FETI-DPH, see [26]. This is a FETI-DP formulation, which means that some
interface unknowns are kept as primal variables, where continuity is enforced,
and which serve at the same time as coarse space components. These are usually
cross points, and in FETI-DPH additional primal constraints are enforced at the
interfaces, using planar waves. Furthermore, a Dirichlet preconditioner is used on
top, like in the classical FETI formulation. A convergence analysis exists for this
algorithm, see [25], but it needs the assumption that subdomains are small enough.
A systematic comparison of all currently existing domain decomposition algorithms
for Helmholtz problems is in preparation, see [40].

3.3 Multigrid for Helmholtz Problems

We will see in this section that neither of the two fundamental observations made
by Stiefel and Federenko (cf. Sect. 2.5) hold for the case of the Helmholtz equation.
In an early theoretical paper about multigrid methods [4], Bakhvalov first advertises
the method also for indefinite problems:

For instance it is used in the case of the equation Au+Au = f with large positive A(xy, x7).
Previously no methods of solving this equation with good asymptotics for the number of
operations were known

but then later in the paper he discovers potential problems:

In the case of the equation Au + Au = f with large positive A we do not exclude the
possibility that the evaluation of (3.21) may be attained in order. Then the increase in the
number m in comparison with that calculated can lead to a deterioration in the discrepancy
of the approximation.

Three decades later Brandt and Livshits [8] take on the difficult Helmholtz case
again, and they try to explain the origin of the difficulties of the multigrid algorithm:

On the fine grids, where [the characteristic components] are accurately approximated by
the discrete equations, they are invisible to any local relaxation, since their errors can
have very small residuals. On the other hand, on coarser grids such components cannot
be approximated, because the grid does not resolve their oscillations.

Similarly, Lee, Manteuffel, McCormick and Ruge [50] explain the problem as
follows:



342 0O.G. Ernst and M.J. Gander

Helmholtz problems tax multigrid methods by admitting certain highly oscillatory error
components that yield relatively small residuals. Because these components are oscilla-
tory, standard coarse grids cannot represent them well, so coarsening cannot eliminate
them effectively. Because they yield small residuals, standard relaxation methods cannot
effectively reduce them.

In order to more precisely illustrate the problems of the multigrid algorithm when
applied to the Helmholtz equation, we consider now the Helmholtz equation in two
dimensions on the unit square,

—(A+Ku=f in2:=(0,1)x(0,1). (14)

We show two numerical experiments following the common strategy (cf. [7], [10,
Chap. 4]) that, in order to investigate the behavior of multigrid methods, one should
replace one of the two components (smoother or coarse grid correction) by a
component which one knows to be effective (even if it is not feasible to use this
component in practice), to test the other one. In a first experiment, we use a Fourier
smoother in order to explicitly remove the high-frequency components of the error,
and try to compute the solution shown in Fig.9, on top, which corresponds to the
choice of parameters f = —%, k = +/19.7 and fine-grid parameter & = % We
use a random initial guess ug, and a two-grid cycle. The result is shown in Fig. 9.

We clearly observe the following in this experiment: while the error on the
coarse grid is well resolved, the correction calculated on the coarse grid is 100%
incorrect, it has the wrong sign! Hence the problem does not seem to be that certain
(high) frequency components in the error are left to the coarse grid and cannot be
approximated accurately there: the mesh here is largely fine enough to represent the
component left. However, the correction calculated is incorrect: it is the operator
itself which is not well approximated. This had already been discovered in an earlier
paper by Brandt and Ta’asan [9] on slightly indefinite problems:

Usual multigrid for indefinite problems is sometimes found to be very inefficient. A strong
limitation exists on the coarsest grid to be used in the process. The limitation is not so much
a result of the indefiniteness itself, but of the nearness to singularity, that is, the existence
of nearly zero eigenvalues. These eigenvalues are badly approximated (e.g. they may even
have a different sign) on coarse grids, hence the corresponding eigenfunctions, which are
usually smooth ones, cannot efficiently converge.

For our second numerical experiment, we now use a damped Jacobi smoother
and compute the exact coarse-grid correction by computing it on the fine grid, then
restricting it to the coarse grid and prolongating it again back to the fine grid to
ensure that the coarse-grid correction is working properly (this would obviously not
make sense in a real multigrid code, but allows us to illustrate the reason why the
smoother fails). We try to compute the solution shown in Fig. 10, in the top left
graph, which corresponds to the parameters f = —1,000, k = 20 and fine mesh
size h = 31—2, and we use again a random initial guess uo and a two-grid cycle.
Its behavior is shown in the remaining graphs of Fig. 10. We clearly see that, even
though the coarse-grid correction is very effective, the smoother is responsible for
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a growing low-frequency mode, and the two-grid method does not converge. We
explain these two observations in the next section with a detailed two-grid analysis.

3.4 Two-Grid Analysis for the 1D Model Problem

To explain the difficulties of multigrid applied to the Helmholtz equation, we
consider the simplest possible case of the one-dimensional problem

—u' —k*u=f inf2=(0,1), u(0) = u(1) =0, (15)

with constant wave number k and perform a spectral analysis, much along the lines
of [43, Chap. 2] and [10, Chap. 5].

We assume that k2 is not an eigenvalue of the Dirichlet-Laplacian for this domain
and therefore the continuous problem possesses a unique solution, as do sufficiently
accurate discrete approximations. When multigrid is applied to cavity problems like
(15) one must always be careful that all coarse-grid problems are nonsingular. This
is, however, no longer an issue when damping is present, either in the form of an
absorbing medium or radiation boundary conditions.

Using the standard three-point centered finite-difference approximation of the
second derivative on a uniform mesh with N interior grid points and mesh width
h =1/(N + 1), (15) is approximated by the linear system of equations Au = f for
the function values u(x;) ~ u;, j = 1,..., N, at the grid points x; = jh, where

1
A= 7 tridiag (—1,2 — k2h%, —1) e RVV, (16)
The matrix A is symmetric and has the complete set of orthogonal eigenvectors

v; = [sin jémh]}_,, j=1,...,N. (17)

When it is necessary to rescale these eigenvectors to have unit Euclidean norm this
is achieved by the factor +/2h (for all j). The associated eigenvalues are given by

2(1 — ih 4 ih
_ 20 —cosjmh) ., 4 . oJjTh

A h? h?

k*,  j=1....N.
The form of the eigenvectors (17) reveals that these become more oscillatory with
increasing index j .

When N is odd, which we shall always assume for the pure Dirichlet problem, we
setn := (N —1)/2 and refer to the eigenpairs associated with the indices 1 < j <n
as the smooth part Iy, of the spectrum and the remainder as the oscillatory part Io.
Note that the eigenvalue with index j = (N + 1)/2 = n + 1 lies exactly in the
middle, with an associated eigenvector of wavelength 4/.
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3.4.1 Smoothing

The (damped) Jacobi smoother is based on the splitting A = ﬁD — (éD —A) of
the matrix A4 in (16), where D = diag(A4) and w is the damping parameter, resulting
in the iteration

Uyt =u, + oD ' (f— Au,) (18)

with associated error propagation operator
So=1-wD™'A. (19)

Noting that D = (2/h* — k?)I, we conclude that A and D are simultaneously
diagonalizable, which gives for S, the eigenvalues

ajzaj(w)zl—w(1— =1-w2l j=1,...,N, (20)

where we have introduced § = §(k,h) := (2 — k*h?)/ h? to denote the diagonal
entry of D, which is constant for this model problem.

In multigrid methods the smoothing parameter  is chosen to maximize damping
on the oscillatory part /o5 of the spectrum. For the Laplace operator (k = 0) the
eigenvalues of D' 4 are givenby A; /8§ = 1 —cos(jmh), j = 1,..., N, resulting
in, up to order h2, the spectral interval [0, 2], with o = [1, 2]. Maximal damping
on /. thus translates to the requirement of equioscillation, i.e.,

l—w=—(1-2w), obtained for w=w = 3. 3))

For this optimal value of @ each eigenmode belonging to the oscillatory modes
1

span{v,’;H, ..., Vi }isreduced by at least a factor of 6,4+ 1(wp) = 1—wy = 5 in each
smoothing step, independently of the mesh size h. Figure 11 displays the spectrum
A(Sy) of S, for the discrete 1D-Laplacian on the unit interval with mesh width
h = 1/50 for the values w = 1 (undamped) and the optimal value w = wy = 2/3,
plotted against the eigenvalues of D™ A, where we have scaled A in order to fix
the spectral interval independently of &. The smooth and oscillatory parts of the
spectrum /g, and I, are highlighted, and it can be seen that the eigenvalues of
Sy, lie on a straight line and that the spectral radius of S, is minimized on /. for
w = wo.
For the 1D Helmholtz operator (k > 0) the eigenvalues of D' 4 are

Aj—l 2cos jrh A N
5 22—k ST

and therefore, up to O(h?), these range between the extremal values

Al —k*h? d Ay 4—k%h?
—_—=— an —_—=—.
) 2 —k2h?’ 8 2 —k2h?
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1D Laplacian (k=0)
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Fig. 11 Eigenvalues of the undamped (w = 1) and optimally damped (@ = @) Jacobi smoother
plotted against those of the associated diagonally scaled 1D-Laplacian —A;, h = 1/50, divided
into smooth and oscillatory parts I, and /o. The Vertical dashed lines indicate the spectral radius
of S, restricted to the space of oscillatory eigenfunctions

Assuming the midpoint (A; + Ay)/2 is still positive, maximal smoothing of the
oscillatory modes is again obtained by equioscillation, which fixes w by requiring

]— _— = — . == = .
w8 25 e, W= wg S ETE (22)

AN A+ Ay . 2 — k2h?
(1 - w—) i

Figure 12 shows the analogous quantities of Fig. 11 for the Helmholtz equation
with wave number k = 107x. In contrast with the Laplacian case, the spectrum
of A now extends into the negative real axis. By consequence, any choice of the
relaxation parameter w will result in amplification of some modes, as we have seen
in our example in Fig. 10. In the case shown, these are precisely the eigenmodes of
A associated with negative eigenvalues. If this constitutes only a small portion of
A(A), then the coarse grid correction, the second component of multigrid methods
which eliminates smooth error components, can be expected to compensate for this
amplification. It is clear, however, that the amplification will both grow unacceptably
strong and extend over too large a portion of the spectrum for diminishing wave
resolution, i.e., for k/ large.

Therefore, fundamentally different smoothing iterations are needed for
Helmholtz problems. For this reason Brandt and Ta’asan [9] proposed using the
Kazmarcz relaxation, which is essentially Gauss-Seidel iteration applied to the
normal equations. This smoother has the advantage of not amplifying any modes,
but at the cost of very weak smoothing. Elman, Ernst and O’Leary [16] proposed
using Krylov subspace methods as smoothers. The difficulty here is that different
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1D Helmholtz operator, k=10r, A/h=10, kh=0.63
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Fig. 12 Same as Fig. 11, here for the Helmholtz operator. Eigenvalues of Jacobi smoother for
o = wr,w = 1 and ® = w, against those of the associated diagonally scaled 1D Helmholtz
operator —A;, — k2, h = 1/50 with wavelength-to-mesh ratio A/ 2 = 10

numbers of smoothing steps are necessary at different grid levels, and their optimal
determination is challenging.

3.4.2 Coarse-Grid Correction

Besides the finite difference discretization on the mesh
QF={x;=jh:j=0,...,N+1}

we consider the 1D model problem (15) discretized on a coarser grid with only n
interior mesh points

QH = {X] :]H] :0,...,n+1}

with twice the mesh width H = 2h, where N = 2n + 1 denotes the number of
fine-grid interior points. We transfer grid functions u? = [u{'[ s ull] (we omit
the zero boundary values) from £2% to the fine grid £2” using linear interpolation,
which defines the linear mapping

e — oh Ry P
defined by

]/ if j is even,

ity =10 =0 NtL
()2 + ] 4n2) i j s odd,

(23)
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with matrix representation

2
1 e RNXn

1
2
1

with respect to the standard unit coordinate bases in R” and R", respectively.
Following [43], we analyze the mapping properties of the linear interpolation
operator / 1’}1 on the coarse-grid eigenvectors
v? = [sin(j e H)[;—,. j=1,...,n

of the discrete 1D Dirichlet-Laplacian by way of elementary trigonometric manipu-
lations.

Proposition 1. The coarse-grid eigenvectors are mapped by the interpolation
operator I}fl according to

Iﬁvf=c§v’}—sfv§’\,+l_}», j=1...,n,
where we define
Jmh i .
cj = COST, §ji= smT, j=1...,n. 24)

In particular, VZ 41 is not in the range of interpolation.

The coarse-grid modes Vfl are thus mapped to a linear combination of their fine-

grid counterparts v/ and a complementary mode v/, with index j' := N 41— j.
Note the relations

cjpr=S8; Sjr=cj, j=1,...,n,

between complementary s; and c;. Interpolating coarse-grid functions therefore
always activates high-frequency modes on the fine grid, with a factor that is less
than one but grows with j (cf. Fig. 13).

To transfer fine-grid functions to the coarse grid we employ the full weighting
restriction operator
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Fig. 13 Coefficients c? and i i ’ 2|
. o7
s? of the eigenvectors of the 2
discrete 1D 0.8 -S|
Dirichlet-Laplacian under the
- . . 0.6
linear interpolation operator
for N =31,ie,n =15 04}
0.2+
0 -
0 5 ] 10 15
J
e e s

defined by

1 .
[Ilflllh]j = Z([uh]Zj—l + 20’ + [uh]2j+1), J=1....n. (25)

The associated matrix representation is given by [/ }f’ = %[I Z]T The restriction
operator is thus seen to be the adjoint of the interpolation operator if one introduces
on R” and R the Euclidean inner product weighted by the mesh size H and A,
respectively. Denoting by .#"(-) and Z(-) the null-space and range of a matrix, the
basic relation

RN =) e /(") =%y & /(I (26)

reveals that the range of interpolation and the null-space of the restriction are
complementary linear subspaces of RY, which are also orthogonal with respect
to the Euclidean inner product. Since the columns of / 1’_’1 are seen to be linearly
independent, the interpolation operator has full rank, which together with (26)
implies

dimZ (1)) = n, dim A (Ify=N—n=n+1.

Elementary trigonometric relations also yield the following characterization of / hH .

Proposition 2. The fine-grid eigenvectors are mapped by the restriction operator
I,f’ according to

iV = vy, =L @7
I;f’vlfv+1—j =—s;vil, j=1....n, (270)

IVt =0 (27¢)
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The coarse-grid correction of an approximation u” to the solution of (15) on the
fine grid £2” is obtained by solving the error equation A,e” = b — Au”" = r’
on the coarse grid. To this end, the residual is first restricted to the coarse grid and
a coarse-grid representation Ay of the differential operator is used to obtain the
approximation Ay I7r" of the error A;'r" on 2. The update is then obtained
after interpolating this error approximation to £2" as

v "+ 1A (b — A" (28)
with associated error propagation operator
C:=1—-1INA,'IF 4, (29)

In view of Propositions 1 and 2 the coarse-grid correction operator C is seen to
possess the invariant subspaces

span{vZH} and span{vﬁ’»,v’]’-/}, ji=N+1—], j=1....,n. (30

Denoting the eigenvalues of the discrete 1D Helmholtz operators on 22" and 27 by

4  , jmh .
A]}=ﬁsm2——k2, Jj=L...,N
and
4 ,jmH .
Af:ﬁSIHZT—kZ, ]:17---7’15

respectively, the action of the coarse-grid correction operator on these invariant
subspaces is given by

C[V’} Vl}-/]z[V]}Vl}/]Cj j=1,...,n,
where
Al /xh/
2 h =i cisir
c 1 AT 0 1] i
== Tlsmle-2dal=1 0 | en
/ 01 —s2 (A7 LY J 0 /\j/ 224 1 42
/ / Cjsj A =5 A
in additionto Cv"_ = v .
For k = 0 we observe as in [43]
Al 457 1 Ha Mg ! 1
— = ——— = — aswellas = = —, J=L...,n,
M (2s5¢))? M (2s5¢))? 53
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and therefore

A matrix of the form X = E 7):| has the eigenvalues and spectral norm
n

1/2
11 = 1 = vE ]

= VE + 2 V2. (33b)
For C; we thus obtain in the case of the Laplacian

pCH=s+E =1 |Gl =26} +ch.  j=1...n

From sjz. € [0, %] for j = 1,...,n we infer the bound

ICjI = max 212+ (-0 =v2,  j=1...n
o<t=<1

In the Helmholtz case k > 0 the spectral analysis of the coarse grid correction
operator C; becomes more tedious and no simple closed-form expression exists
for the spectral radius and norm of the 2 x 2 blocks C;. We therefore resort to
computation and consider the case of a fine mesh with N = 31 interior points. The
left of Fig. 14 shows a stem plot of the eigenvalues of the 2 x 2 blocks of C for the
Laplacian, which consist of ones and zeros, as C is an orthogonal projection in this
case, see (33a). On the right of Fig. 14 we see the analogous plot for k = 6.37. Note
that the unit eigenvalues remain, but that the second eigenvalue of each pair is no
longer zero. In particular, mode number 13 is amplified by a factor of nearly -4. This
mode is well outside the oscillatory part of the spectrum, so that smoothing cannot
be expected to offset such an error amplification. In the example we have shown in
Fig.9, we had chosen the parameters precisely such that the corresponding mode
was multiplied by the factor -1, which led to the correct shape of the coarse grid
correction, but with the wrong sign.

A simple device for obtaining a more effective coarse-grid correction for
Helmholtz operators results from taking into account the dispersion properties of
the discretization scheme. For our uniform centered finite-difference discretization
of the 1D Helmholtz operator with constant k

1
Lu~ ﬁ(—uj_l +2Mj _Mj-i-l) —kzbtj,
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Fig. 14 Eigenvalues of the coarse-grid correction operator with respect to a fine mesh with 7 =
1/32 for k = 0 (left) and k = 6.37 (right)

. ikhx. . .
plane-wave solutions e’*'*/ of the discrete homogeneous Helmholtz equation

possess a discrete wave number k" characterized by

K SN
k = h arccos ) .

As a result, the discrete solution exhibits a phase lead with respect to the true
solution, which grows with A. In the same way, coarse grid approximations in
a multigrid hierarchy will be out of phase with fine-grid approximations. This
suggests “slowing down” the waves on coarse grids in order that the coarse-grid
correction again be in phase with the fine-grid approximation. For our example,
this is achieved by using a modified wave number k in the coarse-grid Helmholtz
operator defined by the requirement

_ - [2(1—cos(kh
" =k, whichisachievedby & = ,/w.

An even better adjustment of the coarse-grid correction results from matching the
coarse-grid discrete wave number kH~ to the fine-grid discrete wave number k” by
choosing the modified wave number k on the coarse grid to satisfy

k" = k"  whichis achievedby k = k+/1—k2h2/4. (34)

Choosing a modified wave number according to (34) is also equivalent to avoiding
a possible “singularity” in the term )\ﬁ% / Afl in (31) by forcing the vanishing of Af
as a continuous function of j to occur in the same location as for A?.
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Fig. 15 Eigenvalues of the coarse-grid operator with respect to a fine mesh with 4 = 1/32 for
k = 6.3 using the modified wave number k given in (34) in the coarse-grid Helmholtz operator

Figure 15 shows the eigenvalues of the coarse-grid correction operator depicted
on the right of Fig. 14 with the modified wave number (34) used on the coarse grid.
The strong amplification of mode number 13 is seen to be much less severe, all
non-unit eigenvalues now being less than one in modulus.

Such a dispersion analysis can be carried out for all standard discretization
schemes, and it is found that higher order schemes have much lower phase error (cf.,
e.g., [3]), making them a favorable choice also from the point of view of multigrid
solvers. In higher dimensions higher order methods also possess nearly isotropic
dispersion relations, a necessary requirement for (scalar) dispersion correction.

3.4.3 Two-Grid Operator

Two-grid iteration combines one or more smoothing steps with coarse-grid cor-
rection. If v; and v, denote the number of presmoothing and postsmoothing steps
carried out before and after coarse-grid correction, the error propagation operator
of the resulting two-grid operator is obtained as T = S"2CS"'. Choosing damped
Jacobi iteration with relaxation factor @ as the smoothing operator, the results on the
spectral analysis of the damped Jacobi smoother and coarse-grid correction allow us
to decompose the analysis of the two-grid operator into the subspaces

span{vy, vy}, span{va, vy_1}, ..., span{v,, vV, 42}, span{v, 1}

of n pairs of complementary modes and the remaining “middle mode” v, 4. The
action of 7" on these one- and two-dimensional subspaces is represented by the
block diagonal matrix

T = diag(Ty, ..., Ty, Ty+1)
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with
J M 0N
v2 — T ~ g% L V1
o; 0 L=cjqm cjsjam o; 0
Ty = N 0 J=1....n (35
0 o) 22t g4l | L0 oy
Jiaf At
J J
and

Tt = (1 — )2,
the latter resulting from 0,1 = 1 — w (cf. (20)).

We begin again with the case k = 0, in which, due to (32), the 2 x 2 blocks in
(35) simplify to (see also [43])

. V2 2 2 . V1
T, = ["f O} 5 ["f O} with 0; = 1—2ws%, 0,/ = 1 — 2wc?.
0 oj s;ci |LO oy i J

Fixing vi = v and v, = 0 (pre-smoothing only) and w = wy (cf. (21)), this becomes

where

1 1 .
oj=§(3—4s]2-), oj/=§(4s]2.—1), j=1....n.
Using (33a) we obtain for the spectral radius

o(T;) = s?cf]‘f + c?o}’/, j=1,...,n, o(Tyy1) =37

Noting that ¢7 = 1 — 57 and s7 € [0, 3] forall j, we obtain the upper bound

o(T;)) <R, := max R,(t), R,(t):=1t (3 —34Z)" +(1—1) (4l3— 1)v

0<t<%

for j =1,...,n. Since RV(%) = (%)v this bound holds also for 7},+;. A common
upper bound for the spectral norms ||| is obtained in an analogous way using

(33b) as

3—41\% 4 —1\%
IT;|l < Ny:= max N,(r), N,(@):= |2]|¢2 ( ) +(1—1)2 ( ) ,
0<r<1i 3 3
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Table 7 Spectral radius of the two-grid operator for the Helmholtz equation with 7 = 1/32 for
varying wave number k and (pre) smoothing step number v. Left: standard coarse-grid operator,
right: with modified wave number on coarse grid

Wo(T) k=0 k=137 k =437 k =637 Wo(T) k =131 k =437 k =631

1 0.3333 0.3364  0.4093  0.8857 1 0.3365  0.5050  0.6669
2 0.1111 0.1170  0.2391 1.8530 2 0.1173  0.1648  0.1999
3 0.0787 0.0779  0.2623  1.6455 3 0.0779  0.1012  0.1542
4 0.0617 0.0613  0.2481 1.6349 4 0.0614  0.0568  0.1761
5 0.0501 0.0493  0.2561 1.5832 5 0.0493  0.0591  0.2012
10 0.0263 0.0256  0.2668  1.3797 10 0.0257  0.0790  0.3916

which holds forall j = 1....n 4+ 1dueto N,(3) = (3)".

Table 7 (left) gives the spectral radius of the two-grid operator for the Helmholtz
equation with v steps of presmoothing using damped Jacobi for a range of wave
numbers k. We observe that the iteration is divergent for k = 6.3, which
corresponds to a resolution of roughly 10 points per wavelength. Moreover, while
additional smoothing steps resulted in a faster convergence rate for k close to zero,
this is no longer the case for higher wave numbers. Table 7 (right) gives the spectral
radius of the same two-grid operator using the modified wave number according
to (34) on the coarse grid. We observe that, even for the unstable damped Jacobi
smoother, this results in a convergent two-grid method in this example. A more
complete analysis of the potential and limitations of this approach is the subject of
a forthcoming paper.

3.5 The Shifted Laplacian Preconditioner

An idea proposed in [21], going back to [5], which has received a lot of attention
over the last few years, see for example the references in [41], is to precondition the
Helmholtz equation (1) using a Helmholtz operator with a rescaled complex wave
number,

%= —(A+ (a + iB)k>), (36)

i.e., where damping has been added. The main idea here is that if the imaginary
shift B is large enough, standard multigrid methods are known to work again,
and, if the shift is not too large and o ~ 1, the shifted operator should still
be a good preconditioner for the original Helmholtz operator, where « = 1 and
B = 0. We show here quantitatively these two contradicting requirements for the
one-dimensional case on the unit interval with homogeneous Dirichlet boundary
conditions and a finite difference discretization. In that case, both the Helmholtz
operator and the shifted Helmholtz preconditioner can be diagonalized using a
Fourier sine series, as we have seen in Sect. 3.4, and we obtain for the corresponding
symbols (or eigenvalues)
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. 2 L2
L = ﬁa —cos jmh) —k*, L' = ﬁ(l —cos jmh) — (a + ip)k?,
j=1,....N.

Hence the preconditioned operator (.Z/)~!.#" has the symbol

A

" —2 4+ 2cos jmh + h?k?
Zh =2+ 2cos juh + h2k2(a 4+ if)’

The spectrum of the preconditioned operator therefore lies on a circle in the complex
plane, which passes through (0,0), and if « = 1, the center is at (%, 0) and the
radius equals %, as one can see using a direct calculation. Examples are shown in
Fig. 16. Since the circle passes through (0, 0) when the numerator of the symbol of
the preconditioned operator vanishes, i.e., when

2cos jrh + h*k* = 2, (37)

the spectrum of the preconditioned operator is potentially unfavorable for a Krylov
method, as one can see in Fig. 16 on the right. For @ = 1 and B small, we have

Ph k2h?

— =1-
Fh "o 2cos jmh + k2h?

B+ 0B,

which shows that the spectrum is clustered on an arc of the circle around (1, 0), as
illustrated in Fig. 16 on the left, provided 8 < min;=;__, |—2+2cos jxh+h*k?|.

How small must we therefore choose $? A direct calculation shows that we must

choose B < % in order to obtain a spectrum clustered about (1,0). We show in

o ® 0o,
%
0.4 1 0.4 4 °
°
0.2 A 0.2-¢®
° b
0 : : : : ! (¥ : : : : .
0.2 04 06 0.8 0.2 04 06 0.8 1
lo
~0.2 - —0.27 4
°
—0.4 - ° —044 %o
.'“0-

Fig. 16 Spectrum of the Helmholtz operator preconditioned with the shifted Laplacian precondi-
tioner with @ = 0 and f = 0.01 on the left, and = 1 on the right. The spectrum clustered
around the point (1,0) on the left is favorable for a Krylov method, while the spectrum on the right
is not, due to the eigenvalues close to zero
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Fig. 17 an illustration of this fact: from (37), we can compute a critical j where the
spectrum vanishes,

1 1
je = —(m — arccos(—1 + =k>h?)).
h 2
The spectrum being restricted to integer j, we can plot

d:=-2+4+2cosj.th+ k*h?,

in order to get an impression of the size of this quantity. We see in Fig. 17 that the
minimum distance d (oscillatory curve) behaves like 1/k (smooth curve), and thus
B needs to be chosen smaller than 1/ for a given problem if one wants to obtain a
spectrum of the preconditioned operator close to (1, 0).

Now, is it possible to solve the shifted Helmholtz equation effectively with
multigrid for this choice of B? In order to investigate this, we use the two-grid
analysis from Sect. 3.4, now applied to the shifted Laplace problem. We show in
Fig. 18 the spectral radius of the two grid iteration operator for each frequency pair
in (30), for k = 10, 100, 1000 using 10 points per wavelength on the fine grid,
choosing in each case B = 1/k. This numerical experiment shows clearly that,

10 20 30 40 50 60 70 80 90 100

_12 -

Fig. 17 Tllustration of how small B has to be chosen in the shifted Helmholtz preconditioner in
order to remain an effective preconditioner for the Helmholtz equation. Note the log scale on the
y-axis



Why it is Difficult to Solve Helmholtz Problems 359

0.9 -
80
0.8 8
) 70 4
0.7 4 7
) 60 4
0.6 6
0.5 5] 50
0.4 41 40 1
0.3 1 31 30 A
0.2 4 21 20 4
0.1 4 14 10 J
" T T T - T 7 T T T T 7 0 T T T

1 2 3 4 5 6 7 10 20 30 40 50 60 70 100 200 300 400 500 600 700
m m m

Fig. 18 Spectral radius of the two grid iteration operator for all frequency pairs. On the left for
k = 10, in the middle for k = 100 and on the right for k = 1,000, with the shift § = 1/k in
order to guarantee a spectrum away from (0, 0) of the Helmholtz operator preconditioned by the
shifted Laplace preconditioner

unfortunately, for the multigrid method to converge when applied to the shifted
Laplace operator, 8 can not be chosen to satisfy f§ < 1/k, since already for
B = 1/k the contraction factor p of multigrid grows like p ~ k (note the different
scaling on the axes in Fig. 18) and thus the method is not convergent. One can
furthermore show that 8 must be a constant, independent of k, in order to obtain a
contraction factor p < 1 and a convergent multigrid algorithm. These results suggest
a linear dependence on the wave number k of such a method, which is also observed
numerically, see for example [20].

3.6 Wave-Ray Multigrid

In [8] Brandt and Livshits proposed a variant of multigrid especially tailored to
the Helmholtz equation by exploiting the structure of the error components which
standard multigrid methods fail to eliminate. These are the so-called characteristic
components, which are discrete representations of functions of the form

u(x,y) = v(x, y)elfikey g2 g2 = k2, (38)

Such factorizations are common in geometrical optics (see, e.g. [49,52]), and from
there the terminology ray function for the amplitude term v(x, y) and phase for the
exponent k1 x + kyy is adopted. Characteristic components of the error are nearly
invisible to standard smoothing techniques since they have very small residuals on
grids which resolve these oscillations. On coarser grids they are contaminated by
phase errors and ultimately by approximation errors.

The ray functions, however, are smooth, and satisfy a convection-diffusion-type
PDE, called the ray equation, which is obtained by inserting (38) into the Helmholtz
equation. In their wave-ray multigrid method, Brandt and Livshits add so-called ray
cycles to the standard multigrid scheme, in which the ray functions of principal
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components are approximated by performing smoothing with respect to the ray
equation on auxiliary grids which they call ray grids.

We describe the basic idea for the simple 1D model problem (15) with constant
wave number k as first described in Livshits’ Ph.D. thesis [55]. Multidimensional
generalizations such as described in [8] introduce a considerable number of
technical and algorithmic complications. In 1D principal error components have
the form

v(x) = a(x)e™ + b(x)e k¥,

which, when inserted into the homogeneous Helmholtz equation, yields the equation
(a"(x) + 2ika’(x)) e + (b"(x) — 2ikb' (x)) e ¥ =0
which we separate into
Lia=ad"+2kd =0, L_b=0b"—-2ikb" =0.

The wave-ray method employs a standard multigrid scheme, say, a V-cycle, to
first eliminate the non-characteristic components from the error e, such that the
associated residual " = A"e" is approximately of the form

= ()€ + () je

with smooth ray grid functions rf} and rzl. By a process called separation the two
components of the residual are first isolated, resulting in the right hand sides of the
two ray equations
b h h hph h
Lia" = f{, LLb" = f,

which are each solved on separate grids and then used to construct a correction of
the current approximation.

Details of the separation technique, the treatment of multidirectional rays
necessary for higher space dimensions, suitable cycling schedules as well as the
incorporation of radiation boundary conditions can be found in [8, 55].

4 Conclusions

Solving the indefinite Helmholtz equation by iterative methods is a difficult task. In
all classical methods, the special oscillatory and non-local structure of the associated
Green’s function leads to severe convergence problems. Specialized methods exist
for all well known classes of iterative methods, like preconditioned Krylov methods
by incomplete factorizations, domain decomposition and multigrid, but they need
additional components tailored for the indefinite Helmholtz problem, which can
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become very sophisticated and difficult to implement, especially if one wants to
achieve a performance independent of the wave number k.
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References

1.

2.

3.

10.
11.

12.

13

14.

15.

17.

18.

19.

20.

21.

Y. Achdou and F. Nataf. Dimension-wise iterated frequency filtering decomposition. Num.
Lin. Alg. and Appl., 41(5):1643-1681, 2003.

Y. Achdou and F. Nataf. Low frequency tangential filtering decomposition. Num. Lin. Alg. and
Appl., 14:129-147, 2007.

M. Ainsworth. Discrete dispersion relation for 4p-version finite element approximation at high
wave number. SIAM J. Numer. Anal., 42(2):553-575, 2004.

. N. Bakhvalov. Convergence of one relaxation method under natural constraints on the elliptic

operator. Zh. Vychisl. Mat. Mat. Fiz., 6:861-883, 1966.

. A. Bayliss, C. Goldstein, and E. Turkel. An iterative method for the Helmholtz equation. J.

Comput. Phys., 49:443-457, 1983.

. T. Betcke, S.N., Chandler-Wilde, I. Graham, S. Langdon, and M. Lindner. = Condition

number estimates for combined potential operators in acoustics and their boundary element
discretisation. Numerical Methods for PDEs, 27(1):31-69, 2010.

. A. Brandt. Multigrid techniques: 1984 guide with applications to fluid dynamics. GMD

Studien 55, Gesellschaft fiir Mathematik und Datenverarbeitung, St. Augustin, Bonn, 1984.

. A. Brandt and I. Livshits. Wave-ray multigrid method for standing wave equations. Electron.

Trans. Numer. Anal., 6:162-181, 1997.

. A. Brandt and S. Ta’asan. Multigrid methods for nearly singular and slightly indefinite

problems. In Multigrid Methods I1, pages 99-121. Springer, 1986.

W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial. SIAM, 2000.

B. Buzbee, F. W. Dorr, J. A. George, and G. Golub. The direct solution of the discrete Poisson
equation on irregular regions. SIAM J. Numer. Anal., 8:722-736, 1974.

A. Buzdin. Tangential decomposition. Computing, 61:257-276, 1998.

. D. Colton and R. Kress. Integral Equation Methods in Scattering Theory. Wiley, New York,

1983.

L. Debreu and E. Blayo. On the Schwarz alternating method for ocean models on parallel
computers. J. Computational Physics, 141:93—111, 1998.

B. Després. Méthodes de décomposition de demains pour les problems de propagation d‘ondes
en régime harmonique. PhD thesis, Université Paris IX Dauphine, 1991.

. H. C. Elman, O. G. Ernst, and D. P. O’Leary. A multigrid method enhanced by Krylov subspace

iteration for discrete Helmholtz equations. SIAM J. Sci. Comp., 23:1290-1314, 2001.

B. Engquist and L. Ying. Sweeping preconditioner for the Helmholtz equation: Hierarchical
matrix representation. Preprint, 2010.

B. Engquist and L. Ying. Sweeping preconditioner for the Helmholtz equation: Moving
perfectly matched layers. Preprint, 2010.

B. Engquist and L. Ying. Fast algorithms for high-frequency wave propagation. this volume,
page 127, 2011.

Y. Erlangga. Advances in iterative methods and preconditioners for the Helmholtz equation.
Archives Comput. Methods in Engin., 15:37-66, 2008.

Y. Erlangga, C. Vuik, and C. Oosterlee. On a class of preconditioners for solving the Helmholtz
equation. Applied Numerical Mathematics, 50:409-425, 2004.



362

22.

23

24.

25.

26.

217.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

40.

41

42.

43.
44,

45.

0O.G. Ernst and M.J. Gander

O. G. Ernst. Fast Numerical Solution of Exterior Helmholtz Problems with Radiation Boundary
Condition by Imbedding. PhD thesis, Stanford University, 1994.

. O. G. Ernst. A finite element capacitance matrix method for exterior Helmholtz problems.

Numer. Math., 75:175-204, 1996.

O. G. Ernst. Residual-minimizing Krylov subspace methods for stabilized discretizations of
convection-diffusion equations. SIAM J. Matrix Anal. Appl., 22(4):1079-1101, 2000.

C. Farhat, P. Avery, R. Tesaur, and J. Li. FETI-DPH: a dual-primal domain decomposition
method for acoustic scattering. Journal of Computational Acoustics, 13(3):499-524, 2005.

C. Farhat, P. Avery, R. Tezaur, and J. Li. FETI-DPH: a dual-primal domain decomposition
method for accoustic scattering. Journal of Computational Acoustics, 13:499-524, 2005.

C. Farhat, A. Macedo, and R. Tezaur. FETI-H: a scalable domain decomposition method
for high frequency exterior Helmholtz problem. In C.-H. Lai, P. Bjgrstad, M. Cross, and
0. Widlund, editors, Eleventh International Conference on Domain Decomposition Method,
pages 231-241. DDM.ORG, 1999.

C. Farhat and F-X. Roux. A method of Finite Element Tearing and Interconnecting and its
parallel solution algorithm. Int. J. Numer. Meth. Engrg., 32:1205-1227, 1991.

R. Federenko. A relaxation method for solving elliptic difference equations. USSR Comput.
Math. and Math. Phys., 1(5):1092-1096, 1961.

R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method for non-Hermitian
linear systems. Numer. Math., 60:315-339, 1991.

M. J. Gander. Optimized Schwarz methods. SIAM J. Numer. Anal., 44(2):699-731, 2006.

M. J. Gander. Schwarz methods over the course of time. Electronic Transactions on Numerical
Analysis (ETNA), 31:228-255, 2008.

M. J. Gander, L. Halpern, and F. Magoulés. An optimized Schwarz method with two-sided
robin transmission conditions for the Helmholtz equation. Int. J. for Num. Meth. in Fluids,
55(2):163-175, 2007.

M. J. Gander, L. Halpern, and F. Nataf. Optimized Schwarz methods. In T. Chan,
T. Kako, H. Kawarada, and O. Pironneau, editors, Twelfth International Conference on Domain
Decomposition Methods, Chiba, Japan, pages 15-28, Bergen, 2001. Domain Decomposition
Press.

M. J. Gander, F. Magoules, and F. Nataf. Optimized Schwarz methods without overlap for the
Helmholtz equation. SIAM J. Sci. Comput., 24(1):38-60, 2002.

M. J. Gander, V. Martin, and J.-P. Chehab. GMRES convergence analysis for diffusion,
convection diffusion and Helmholtz problems. In preparation, 2011.

M. J. Gander and F. Nataf. AILU: A preconditioner based on the analytic factorization of the
elliptic operator. Num. Lin. Alg. and Appl., 7(7-8):543-567, 2000.

M. J. Gander and F. Nataf. An incomplete LU preconditioner for problems in acoustics. Journal
of Computational Acoustics, 13(3):1-22, 2005.

M. J. Gander and G. Wanner. From Euler, Ritz and Galerkin to modern computing. SIAM
Review, 2011. to appear.

M. J. Gander and H. Zhang. Domain Decomposition Methods for the Helmholtz equation:
A Numerical Study, submitted to Domain Decomposition Methods in Science and Engineering
XX, Lecture Notes in Computational Science and Engineering, Springer-Verlag, 2012.

. M. V. Gijzen, Y. Erlangga, and C. Vuik. Spectral analysis of the discrete Helmholtz operator

preconditioned with a shifted Laplacian. SIAM J. Sci. Comput., 29(5):1942—1958, 2007.

E. Giladi and J. B. Keller. Iterative solution of elliptic problems by approximate factorization.
Journal of Computational and Applied Mathematics, 85:287-313, 1997.

W. Hackbusch. Multi-Grid Methods and Applications. Springer-Verlag, 1985.

T. Hagstrom, R. P. Tewarson, and A. Jazcilevich. Numerical experiments on a domain
decomposition algorithm for nonlinear elliptic boundary value problems. Appl. Math. Lett.,
1(3), 1988.

E. Heikkola, J. Toivanen, and T. Rossi. A parallel fictitious domain method for the three-
dimensional Helmholtz equation. SIAM J. Sci. Comput, 24(5):1567-1588, 2003.



Why it is Difficult to Solve Helmholtz Problems 363

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61

62.

63.
64.

65.

66.

67.

68.

69.

M. A. Hyman. Non-iterative numerical solution of boundary-value problems. Appl. Sci. Res.
Sec. B2, 2:325-351, 1952.

F. Thlenburg and I. Babuska. Finite element solution to the Helmholtz equation with high wave
number. Part I: The h-version of the FEM. Computer Methods in Applied Mechanics and
Engineering, 39:9-37, 1995.

F. Ihlenburg and I. Babuska. Finite element solution to the Helmholtz equation with high
wave number. Part II: The A-p version of the FEM. SIAM Journal on Numerical Analysis,
34:315-358, 1997.

J. B. Keller. Rays, waves and asymptotics. Bull. Amer. Math. Soc., 84(5):727-750, 1978.

B. Lee, T. Manteuffel, S. McCormick, and J. Ruge. First-order system least squares (FOSLS)
for the Helmholtz equation. SIAM J. Sci. Comp., 21:1927-1949, 2000.

L. M. Leslie and B. J. McAveney. Comparative test of direct and iterative methods for solving
Helmholtz-type equations. Mon. Wea. Rev., 101:235-239, 1973.

R. M. Lewis. Asymptotic theory of wave-propagation. Archive for Rational Mechanics and
Analysis, 20(3):191-250, 1965.

J. Liesen and Z. StrakoS. GMRES convergence analysis for a convection-diffusion model
problem. SIAM J. Sci. Comput, 26(6):1989-2009, 2005.

P-L. Lions. On the Schwarz alternating method. III: a variant for nonoverlapping subdomains.
In T. F. Chan, R. Glowinski, J. Périaux, and O. Widlund, editors, Third International
Symposium on Domain Decomposition Methods for Partial Differential Equations , held in
Houston, Texas, March 20-22, 1989, Philadelphia, PA, 1990. SIAM.

I. Livshits. Multigrid Solvers for Wave Equations. PhD thesis, Bar-Ilan University, Ramat-Gan,
Israel, 1996.

F. Nataf. Résolution de 1’équation de convection-diffusion stationaire par une factorisation
parabolique. C. R. Acad. Sci., 1310(13):869-872, 1990.

Q. Niu, L. Grigori, P. Kumar, and F. Nataf. Modified tangential frequency filtering decompo-
sition and its Fourier analysis. Numerische Mathematik, 116(1), 2010.

W. Proskurowski and O. B. Widlund. On the numerical solution of Helmholtz’s equation by
the capacitance matrix method. Math. Comp., 30:433-468, 1976.

T. E. Rosmond and F. D. Faulkner. Direct solution of elliptic equations by block cyclic
reduction and factorization. Mon. Wea. Rev., 104:641-649, 1976.

Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company, 1996.

. V. Saul’ev. On solution of some boundary value problems on high performance computers by

fictitious domain method. Siberian Math. J., 4:912-925, 1963 (in Russian).

H. A. Schwarz. Uber einen Grenziibergang durch alternierendes Verfahren. Vierteljahrsschrift
der Naturforschenden Gesellschaft in Ziirich, 15:272-286, May 1870.

R. V. Southwell. Relaxation Methods in Theoretical Physics. Oxford University Press, 1946.
E. Stiefel. Uber einige Methoden der Relaxationsrechnung. Z. Angew. Math. Phys., 3:1-33,
1952.

C. Wagner. Tangential frequency filtering decompositions for symmetric matrices. Numer.
Math., 78(1):119-142, 1997.

C. Wagner. Tangential frequency filtering decompositions for unsymmetric matrices. Numer.
Math., 78(1):143-163, 1997.

G. Wittum. An ILU-based smoothing correction scheme. In Parallel algorithms for partial
differential equations, volume 31, pages 228-240. Notes Numer. Fluid Mech., 1991. 6th
GAMM-Semin., Kiel/Ger.

G. Wittum. Filternde Zerlegungen. Schnelle Loser fiir grosse Gleichungssysteme. Teubner
Skripten zur Numerik, Stuttgart, 1992.

E. Zauderer. Partial Differential Equations of Applied Mathematics. John Wiley & Sons,
second edition, 1989.



Editorial Policy

1. Volumes in the following three categories will be published in LNCSE:

i) Research monographs
ii) Tutorials
iii) Conference proceedings

Those considering a book which might be suitable for the series are strongly advised to
contact the publisher or the series editors at an early stage.

2. Categories i) and ii). Tutorials are lecture notes typically arising via summer schools
or similar events, which are used to teach graduate students. These categories will be
emphasized by Lecture Notes in Computational Science and Engineering. Submissions by
interdisciplinary teams of authors are encouraged. The goal is to report new developments
— quickly, informally, and in a way that will make them accessible to non-specialists. In the
evaluation of submissions timeliness of the work is an important criterion. Texts should
be well-rounded, well-written and reasonably self-contained. In most cases the work will
contain results of others as well as those of the author(s). In each case the author(s) should
provide sufficient motivation, examples, and applications. In this respect, Ph.D. theses will
usually be deemed unsuitable for the Lecture Notes series. Proposals for volumes in these
categories should be submitted either to one of the series editors or to Springer-Verlag,
Heidelberg, and will be refereed. A provisional judgement on the acceptability of a project
can be based on partial information about the work: a detailed outline describing the contents
of each chapter, the estimated length, a bibliography, and one or two sample chapters — or
a first draft. A final decision whether to accept will rest on an evaluation of the completed
work which should include

— at least 100 pages of text;

— atable of contents;

— an informative introduction perhaps with some historical remarks which should be
accessible to readers unfamiliar with the topic treated;

— asubject index.

3. Category iii). Conference proceedings will be considered for publication provided that
they are both of exceptional interest and devoted to a single topic. One (or more) expert
participants will act as the scientific editor(s) of the volume. They select the papers which are
suitable for inclusion and have them individually refereed as for a journal. Papers not closely
related to the central topic are to be excluded. Organizers should contact the Editor for CSE
at Springer at the planning stage, see Addresses below.

In exceptional cases some other multi-author-volumes may be considered in this category.

4. Only works in English will be considered. For evaluation purposes, manuscripts may
be submitted in print or electronic form, in the latter case, preferably as pdf- or zipped
ps-files. Authors are requested to use the LaTeX style files available from Springer at http://
www. springer.com/authors/book+authors?SGWID=0-154102-12-417900-0.

For categories ii) and iii) we strongly recommend that all contributions in a volume be
written in the same LaTeX version, preferably LaTeX2e. Electronic material can be included
if appropriate. Please contact the publisher.

Careful preparation of the manuscripts will help keep production time short besides ensuring
satisfactory appearance of the finished book in print and online.



5. The following terms and conditions hold. Categories 1), ii) and iii):

Authors receive 50 free copies of their book. No royalty is paid.
Volume editors receive a total of 50 free copies of their volume to be shared with authors, but

no royalties.

Authors and volume editors are entitled to a discount of 33.3 % on the price of Springer books
purchased for their personal use, if ordering directly from Springer.

6. Commitment to publish is made by letter of intent rather than by signing a formal contract.
Springer-Verlag secures the copyright for each volume.

Addresses:

Timothy J. Barth

NASA Ames Research Center
NAS Division

Moffett Field, CA 94035, USA
barth@nas.nasa.gov

Michael Griebel

Institut fiir Numerische Simulation
der Universitidt Bonn

Wegelerstr. 6

53115 Bonn, Germany

griebel @ins.uni-bonn.de

David E. Keyes

Mathematical and Computer Sciences
and Engineering

King Abdullah University of Science
and Technology

P.O. Box 55455

Jeddah 21534, Saudi Arabia
david.keyes @kaust.edu.sa

and

Department of Applied Physics
and Applied Mathematics
Columbia University

500 W. 120 th Street

New York, NY 10027, USA
kd2112@columbia.edu

Risto M. Nieminen

Department of Applied Physics
Aalto University School of Science
and Technology

00076 Aalto, Finland
risto.nieminen @tkk.fi

Dirk Roose

Department of Computer Science
Katholieke Universiteit Leuven
Celestijnenlaan 200A

3001 Leuven-Heverlee, Belgium
dirk.roose @cs.kuleuven.be

Tamar Schlick

Department of Chemistry
and Courant Institute

of Mathematical Sciences
New York University

251 Mercer Street

New York, NY 10012, USA
schlick@nyu.edu

Editor for Computational Science
and Engineering at Springer:
Martin Peters

Springer-Verlag

Mathematics Editorial IV
Tiergartenstrasse 17

69121 Heidelberg, Germany
martin.peters @springer.com



Lecture Notes
in Computational Science
and Engineering

1

10.
11.

12.

13.
14.
15.

16.

17.
18.
19.

20.

21.
22.

. D. Funaro, Spectral Elements for Transport-Dominated Equations.

. H.P. Langtangen, Computational Partial Differential Equations. Numerical Methods and Diffpack
Programming.

. W. Hackbusch, G. Wittum (eds.), Multigrid Methods V.

. P. Deuflhard, J. Hermans, B. Leimkuhler, A.E. Mark, S. Reich, R.D. Skeel (eds.), Computational
Molecular Dynamics: Challenges, Methods, Ideas.

. D. Kroner, M. Ohlberger, C. Rohde (eds.), An Introduction to Recent Developments in Theory and
Numerics for Conservation Laws.

. S. Turek, Efficient Solvers for Incompressible Flow Problems. An Algorithmic and Computational
Approach.

. R. von Schwerin, Multi Body System SIMulation. Numerical Methods, Algorithms, and Software.

. H.-J. Bungartz, F. Durst, C. Zenger (eds.), High Performance Scientific and Engineering Computing.
. T.J. Barth, H. Deconinck (eds.), High-Order Methods for Computational Physics.

H.P. Langtangen, A.M. Bruaset, E. Quak (eds.), Advances in Software Tools for Scientific Computing.

B. Cockburn, G.E. Karniadakis, C.-W. Shu (eds.), Discontinuous Galerkin Methods. Theory,
Computation and Applications.

U. van Rienen, Numerical Methods in Computational Electrodynamics. Linear Systems in Practical
Applications.

B. Engquist, L. Johnsson, M. Hammill, F. Short (eds.), Simulation and Visualization on the Grid.
E. Dick, K. Riemslagh, J. Vierendeels (eds.), Multigrid Methods VI.

A. Frommer, T. Lippert, B. Medeke, K. Schilling (eds.), Numerical Challenges in Lattice Quantum
Chromodynamics.

J. Lang, Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems. Theory, Algorithm, and
Applications.

B.1. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain Decomposition.
U. van Rienen, M. Giinther, D. Hecht (eds.), Scientific Computing in Electrical Engineering.

I. Babuska, P.G. Ciarlet, T. Miyoshi (eds.), Mathematical Modeling and Numerical Simulation in
Continuum Mechanics.

T.J. Barth, T. Chan, R. Haimes (eds.), Multiscale and Multiresolution Methods. Theory and
Applications.

M. Breuer, F. Durst, C. Zenger (eds.), High Performance Scientific and Engineering Computing.

K. Urban, Wavelets in Numerical Simulation. Problem Adapted Construction and Applications.



23.
24.

25.

26.
217.
28.

29.

30.

31.

32.

33.

34.

35.
36.

37.
38.
39.
40.

41.
42.

43.
44,
45.
46.
47.

L.F. Pavarino, A. Toselli (eds.), Recent Developments in Domain Decomposition Methods.

T. Schlick, HH. Gan (eds.), Computational Methods for Macromolecules: Challenges and
Applications.

T.J. Barth, H. Deconinck (eds.), Error Estimation and Adaptive Discretization Methods in
Computational Fluid Dynamics.

M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations.
S. Miiller, Adaptive Multiscale Schemes for Conservation Laws.

C. Carstensen, S. Funken, W. Hackbusch, R.H.W. Hoppe, P. Monk (eds.), Computational
Electromagnetics.

M.A. Schweitzer, A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential
Equations.

T. Biegler, O. Ghattas, M. Heinkenschloss, B. van Bloemen Waanders (eds.), Large-Scale PDE-
Constrained Optimization.

M. Ainsworth, P. Davies, D. Duncan, P. Martin, B. Rynne (eds.), Topics in Computational Wave
Propagation. Direct and Inverse Problems.

H. Emmerich, B. Nestler, M. Schreckenberg (eds.), Interface and Transport Dynamics. Computa-
tional Modelling.

H.P. Langtangen, A. Tveito (eds.), Advanced Topics in Computational Partial Differential
Equations. Numerical Methods and Diffpack Programming.

V. John, Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical
Results for a Class of LES Models.

E. Binsch (ed.), Challenges in Scientific Computing - CISC 2002.

B.N. Khoromskij, G. Wittum, Numerical Solution of Elliptic Differential Equations by Reduction to
the Interface.

A. Iske, Multiresolution Methods in Scattered Data Modelling.
S.-L. Niculescu, K. Gu (eds.), Advances in Time-Delay Systems.
S. Attinger, P. Koumoutsakos (eds.), Multiscale Modelling and Simulation.

R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Wildlund, J. Xu (eds.), Domain Decomposition
Methods in Science and Engineering.

T. Plewa, T. Linde, V.G. Weirs (eds.), Adaptive Mesh Refinement — Theory and Applications.

A. Schmidt, K.G. Siebert, Design of Adaptive Finite Element Software. The Finite Element Toolbox
ALBERTA.

M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations I1.
B. Engquist, P. Lotstedt, O. Runborg (eds.), Multiscale Methods in Science and Engineering.
P. Benner, V. Mehrmann, D.C. Sorensen (eds.), Dimension Reduction of Large-Scale Systems.
D. Kressner, Numerical Methods for General and Structured Eigenvalue Problems.

A. Borici, A. Frommer, B. Jod, A. Kennedy, B. Pendleton (eds.), OQCD and Numerical Analysis II1.



48.
49.

50.

S1.

52.
53.
54.
55.
56.
57.
58.

59.

60.

61.

62.
63.

64.

65.
66.
67.

68.
69.
70.

71.
72.

F. Graziani (ed.), Computational Methods in Transport.

B. Leimkuhler, C. Chipot, R. Elber, A. Laaksonen, A. Mark, T. Schlick, C. Schiitte, R. Skeel (eds.),
New Algorithms for Macromolecular Simulation.

M. Biicker, G. Corliss, P. Hovland, U. Naumann, B. Norris (eds.), Automatic Differentiation:
Applications, Theory, and Implementations.

A.M. Bruaset, A. Tveito (eds.), Numerical Solution of Partial Differential Equations on Parallel
Computers.

K.H. Hoffmann, A. Meyer (eds.), Parallel Algorithms and Cluster Computing.

H.-J. Bungartz, M. Schifer (eds.), Fluid-Structure Interaction.

J. Behrens, Adaptive Atmospheric Modeling.

O. Widlund, D. Keyes (eds.), Domain Decomposition Methods in Science and Engineering XVI.
S. Kassinos, C. Langer, G. Iaccarino, P. Moin (eds.), Complex Effects in Large Eddy Simulations.
M. Griebel, M.A Schweitzer (eds.), Meshfree Methods for Partial Differential Equations II1.

A.N. Gorban, B. Kégl, D.C. Wunsch, A. Zinovyev (eds.), Principal Manifolds for Data Visualization
and Dimension Reduction.

H. Ammari (ed.), Modeling and Computations in Electromagnetics: A Volume Dedicated to Jean-
Claude Nédélec.

U. Langer, M. Discacciati, D. Keyes, O. Widlund, W. Zulehner (eds.), Domain Decomposition
Methods in Science and Engineering XVII.

T. Mathew, Domain Decomposition Methods for the Numerical Solution of Partial Differential
Equations.

F. Graziani (ed.), Computational Methods in Transport: Verification and Validation.

M. Bebendorf, Hierarchical Matrices. A Means to Efficiently Solve Elliptic Boundary Value
Problems.

C.H. Bischof, H.M. Biicker, P. Hovland, U. Naumann, J. Utke (eds.), Advances in Automatic
Differentiation.

M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations IV.
B. Engquist, P. Lotstedt, O. Runborg (eds.), Multiscale Modeling and Simulation in Science.

L.H. Tuncer, U. Giilcat, D.R. Emerson, K. Matsuno (eds.), Parallel Computational Fluid Dynamics
2007.

S. Yip, T. Diaz de la Rubia (eds.), Scientific Modeling and Simulations.
A. Hegarty, N. Kopteva, E. O’Riordan, M. Stynes (eds.), BAIL 2008 — Boundary and Interior Layers.

M. Bercovier, M.J. Gander, R. Kornhuber, O. Widlund (eds.), Domain Decomposition Methods in
Science and Engineering XVIII.

B. Koren, C. Vuik (eds.), Advanced Computational Methods in Science and Engineering.

M. Peters (ed.), Computational Fluid Dynamics for Sport Simulation.



73.

74.

75.
76.

71.
78.

79.
80.

81.

82.
83.

H.-J. Bungartz, M. Mehl, M. Schifer (eds.), Fluid Structure Interaction II - Modelling, Simulation,
Optimization.

D. Tromeur-Dervout, G. Brenner, D.R. Emerson, J. Erhel (eds.), Parallel Computational Fluid
Dynamics 2008.

A.N. Gorban, D. Roose (eds.), Coping with Complexity: Model Reduction and Data Analysis.

J.S. Hesthaven, E.M. Rgnquist (eds.), Spectral and High Order Methods for Partial Differential
Equations.

M. Holtz, Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insurance.

Y. Huang, R. Kornhuber, O.Widlund, J. Xu (eds.), Domain Decomposition Methods in Science and
Engineering XIX.

M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations V.

P.H. Lauritzen, C. Jablonowski, M.A. Taylor, R.D. Nair (eds.), Numerical Techniques for Global
Atmospheric Models.

C. Clavero, J.L. Gracia, F.J. Lisbona (eds.), BAIL 2010 — Boundary and Interior Layers, Computa-
tional and Asymptotic Methods.

B. Engquist, O. Runborg, Y.R. Tsai (eds.), Numerical Analysis and Multiscale Computations.
L.G. Graham, T.Y. Hou, O. Lakkis, R. Scheichl (eds.), Numerical Analysis of Multiscale Problems.

For further information on these books please have a look at our mathematics catalogue at the following

URL: www . springer.com/series/3527


www.springer.com/series/3527

Monographs in Computational Science
and Engineering

1. J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.-A. Mardal, A. Tveito, Computing the Electrical
Activity in the Heart.

For further information on this book, please have a look at our mathematics catalogue at the following
URL: www . springer.com/series/7417

Texts in Computational Science
and Engineering

1. H. P. Langtangen, Computational Partial Differential Equations. Numerical Methods and Diffpack
Programming. 2nd Edition

2. A. Quarteroni, F. Saleri, P. Gervasio, Scientific Computing with MATLAB and Octave. 3rd Edition
3. H. P. Langtangen, Python Scripting for Computational Science. 3rd Edition

4. H. Gardner, G. Manduchi, Design Patterns for e-Science.

5. M. Griebel, S. Knapek, G. Zumbusch, Numerical Simulation in Molecular Dynamics.
6. H. P. Langtangen, A Primer on Scientific Programming with Python. 2nd Edition

7. A. Tveito, H. P. Langtangen, B. F. Nielsen, X. Cai, Elements of Scientific Computing.
8. B. Gustafsson, Fundamentals of Scientific Computing.

For further information on these books please have a look at our mathematics catalogue at the following
URL: www . springer.com/series/5151


www.springer.com/series/7417
www.springer.com/series/5151

	Numerical Analysis of Multiscale Problems

	Preface
	Contents
	Multiscale Modelling and Inverse Problems
	Transported Probability and Mass Density Function (PDF/MDF) Methods for Uncertainty Assessment and Multi-Scale Problems
	A Computational and Theoretical Investigation of the Accuracy of Quasicontinuum Methods
	Coarse-Grid Multiscale Model Reduction Techniques for Flows in Heterogeneous Media and Applications
	Fast Algorithms for High Frequency Wave Propagation
	Uncertainty Quantification for Subsurface Flow Problems Using Coarse-Scale Models
	Sparse Tensor Approximation of Parametric Eigenvalue Problems
	Mixed Multiscale Methods for Heterogeneous Elliptic Problems
	On Stability of Discretizations of the Helmholtz Equation
	Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods



