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Abstract. We introduce nondeterministic streaming string transducers
(nssts) – a new computational model that can implement MSO-definable
relations between strings. An nsst makes a single left-to-right pass on
the input string and uses a finite set of string variables to compute the
output. In each step, it reads one input symbol, and updates its string
variables in parallel with a copyless assignment. We show that nsst

are closed under sequential composition and that their expressive power
coincides with that of nondeterministic MSO-definable transductions.
Further, we identify the class of functional nssts; such an nsst allows
nondeterministic transitions, but for every successful run on a given input
generates the same output string. We show that deciding functionality of
an arbitrary nsst is decidable with pspace complexity, while the equiv-
alence problem for functional nssts is pspace-complete. We also show
that checking if the set of outputs of an nsst is contained within the set
of outputs of a finite number of dssts is decidable in pspace.

1 Introduction

In this paper, we introduce nondeterministic streaming string transducers (nssts).
A run of such a transducer processes an input string in a single left-to-right pass
in linear time, and computes an output string. The nondeterminism of an nsst

allows it to produce different outputs for different runs on an input string. Thus,
an nsst is a natural model for implementing relations between strings.

Classical literature on string-to-string transductions largely focusses on finite-
state transducers that realize rational relations [12]. In each step, such a trans-
ducer reads an input symbol and writes zero or more symbols to the output.
These transducers and their many variations have been extensively studied in
the literature. If restricted to a single left-to-right pass over the input, i.e., to
their streaming versions, the expressive power of finite transducers is limited.
For example, they can implement transductions such as inserting a symbol in an
input string and deleting a substring of the input string, but they cannot imple-
ment transductions such as reversing an input string or swapping two substrings
within an input string.
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Deterministic streaming string transducers (dssts), first introduced in [1,2],
in addition to all transductions implemented by deterministic finite transducers,
can implement transductions such as reversing a string and swapping substrings.
A dsst reads the input in a single left-to-right pass. In addition to a finite set of
states, it has a finite set of string variables that it uses to produce the output.
In each step, a dsst reads an input symbol, changes its state, and concurrently
updates all its string variables using a copyless assignment. The right-hand-sides
(RHS) in a copyless assignment consist of a concatenation of string variables and
output symbols, with the restriction that in a parallel assignment, a variable can
appear at most once across all right-hand-sides.

A dsst that reverses a string uses a single state and one string variable x. In
each step, if it reads the symbol a, it executes the assignment [x := a.x] (here ‘.’
is the string concatenation operator). At the end of its computation, x contains
the string that is the reverse of the input string. As another example, consider
the transformation mapping a string of the form l,m f to the string f m l (here
l, m and f respectively denote strings corresponding to some last, middle, and
first name, and ‘ ’ denotes a single space). A dsst with two variables x and y
can implement this transduction. It stores the substring till the comma (i.e., l)
in x, and stores the subsequent string (m) till it sees the space in y. It then sets
y to y. .x, resets x to the empty string, and stores the remaining substring (f)
in x. It finally outputs the string x. .y.

Compared to their deterministic counterparts that implement partial func-
tions between strings, nondeterministic finite transducers (nfts) can implement
relations between strings; for example, mapping a string to all its substrings.
However, nfts lack the expressiveness to implement transductions such as (1)
mapping a string w to all strings w′ obtained by swapping some prefix and suffix
of w, (2) mapping w to all strings w′ = p.rev(m).s, where w has the form p.m.s
(where p, m and s are substrings of w), and rev(m) denotes the reverse of m1.

In addition to all transductions realized by nfts, nssts can implement both
of these transductions. The first transduction is implemented by an nsst with
string variables x and y. It nondeterministically chooses some prefix p to store
in x and some following substring m to store in y. It then sets y to y.x, resets x,
copies the remaining input s to x, and finally outputs x.y. The nsst implement-
ing the second transduction copies some prefix p (chosen nondeterministically)
to x, and uses y to compute rev(m) for a nondeterministically chosen m. It then
sets x to x.y, appends the remaining input s to x, and finally outputs x.

The organization of the paper is as follows: After defining the nsst model
in Sec. 2, we characterize the expressive power of nssts in Sec. 3. We show
that nssts are closed under sequential composition, and prove that the expres-
sive power of nssts is equivalent to that of nondeterministic MSO-definable
transductions. We then compare both nssts and ε-nssts– an extended model
that allows ε-transitions – with classical models such as two-way nondeterminis-

1 For a given prefix p and a given suffix s, the transformation from p.m.s to p.rev(m).s
is well-known as the inversion operator for a string representation of a chromosome
[10]. Thus, this transduction generates all inversions of a string.
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tic generalized sequential machines. In Sec. 4, we explore decision problems for
nssts and their subclasses. An interesting and robust subclass of nssts is that
of functional nssts: these can have multiple runs on a given input string, but
the output produced in each run is identical. We show that checking whether an
nsst is functional is decidable in pspace, and show that checking equivalence
of functional nssts is pspace-complete.

In [2], the authors show how dssts can be viewed as natural models for a class
of sequential heap-manipulating programs, and reduce the verification problem
for such programs to decidable problems for dssts. A key application for nssts
would be in understanding the theoretical limits of verification problems for
concurrent heap-manipulating programs. Here, we wish to verify if the set of
behaviors of the concurrent program (say m1 ‖ m2) is a subset of the set of
behaviors engendered by some sequential execution of the programs m1 and m2.
For instance, checking linearizability of a set of methods often entails such a
check. With this goal in mind, we show that checking if the set of outputs of
an nsst is contained within the set of outputs generated by a fixed number of
dssts is decidable with pspace complexity.

2 Transducer Models

In this section, we introduce definitions related to transductions, review existing
models for specifying transductions, and formally define nssts. We observe the
following convention: the letters R and W denote transductions, and the letters
T , D denote the transducers implementing transductions.

Transduction. A transduction R from a finite input alphabet Σ to a finite output
alphabet Γ is a subset of Σ∗ × Γ ∗. A transduction is deterministic if for every
x ∈ Σ∗, there is at most one y such that (x, y) ∈ R, i.e., R is a partial function.
Otherwise, we say that the transduction is nondeterministic. Given an input
x ∈ Σ∗, we use R(x) to denote the set {y | (x, y) ∈ R}.

Valuedness. A transduction is called finitary if for every x ∈ Σ∗, the set R(x) is
finite. A transduction R is said to be k-valued for a given constant k, if the fol-
lowing holds: ∀x∈Σ∗ : |R(x)| ≤ k. A transduction is said to be bounded-valued
if there exists some constant k such that R is k-valued. A 1-valued transduction
is also called a functional transduction. A transduction is called bounded-length
if there exists a constant k such that for all x ∈ Σ∗ and for each y in R(x),
|y| ≤ k.|x|. Note that a bounded-valued transduction is obviously finitary, while
every bounded-length transduction is also finitary: for a constant k, and a given
input x, there are finitely many strings of length k.|x|.
Example 2.1. Consider the transduction Rcp ⊆ {a}∗ × (Γ ∪ {#})∗ defined as
the set {(an, w#w)|n ≥ 0, w ∈ Γ ∗, |w| = n}. Rcp maps an input an to a string
containing two identical copies of some output string of length n, separated by
#. As there are only finitely many strings of length n, Rcp is finitary. Further,
note that Rcp is bounded-length: for an input of length n, the output length is
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(2.n + 1). However, Rcp is not bounded-valued as the number of output strings
for an input of length n is |Γ |2n.

Example 2.2. Consider the transduction Rmult ⊆ Σ∗ × Σ∗ defined as the set
{(w, wm) |m ≥ 1, w ∈ Σ∗}. Rmult is nonfinitary, as it maps the input string w
to the set of all multiples of the string w. Clearly, Rmult is neither bounded-
valued nor bounded-length.

2.1 Background

We assume that each machine in the following discussion has finite input and
output alphabets Σ and Γ respectively. Each machine reads words from Σ∗, and
outputs words in Γ ∗. We use the notation �M� to define the semantics of M : for
an input string w ∈ Σ∗, �M�(w) defines the set of outputs of M on input w.

Finite Transducers. A finite sequential transducer (denoted as nft) is a finite-
state device that has a one-way read-only input tape and a one-way output tape.
It scans the input tape from the left to the right, and in each state it reads an
input symbol, writes a finite string to the output tape, changes its state, and
moves its reading head to the next position on the input tape. In each such step,
it can nondeterministically choose its next state and the output string that it
writes. The output of an nft is the string on the output tape if the nft finishes
scanning the input tape in some designated final state. Formally, we define an
nft T as the tuple (Q, Σ, Γ, E, q0, F ) where Q is a finite nonempty set of states,
Σ and Γ are input and output alphabets, E is a set of transitions defined as
a finite subset of Q × (Σ ∪ {ε}) × Q × Γ ∗, the state q0 ∈ Q is an initial state,
and F ⊆ Q is a set of final states. An nft may contain transitions in which
the nft writes some output string or changes state without moving its reading
head. We call such transitions as ε-transitions, and a nft in which such moves
are disallowed is called a ε-free nft or a nondeterministic generalized sequential
machine (ngsm).

Two-way Machines. A two-way nondeterministic generalized sequential machine
(denoted 2ngsm) is a finite-state device with a two-way read-only input tape
and a one-way output tape. In each step, the machine reads an input symbol,
changes its state, writes a finite string to its output tape, and moves its input
head as per its finite-state control. The input head either does not move (denoted
by 0), or is moved to the left (−) or to the right (+). In each such move, it has
a finite number of nondeterministic choices for the next state, output string
written and the direction for moving its head. The string on the input tape is
assumed to be 	w
, where 	 and 
 (�∈ Σ) are special symbols known as the left
and right end-markers. The ngsm halts if it moves right from 
, or left from 	.
It is possible that the computation of the machine may not terminate; however,
only halting runs contribute to the output. The output of the machine is the
string on the output tape if the machine terminates in a designated final state.
Formally, a 2ngsm is specified as the tuple (Q, Σ, Γ, E, q0, F ), where Q, Σ, Γ ,
q0 and F are defined as for finite transducers, while the set of transitions E is
defined as a finite subset of (Q × Σ ∪ {	,
} × Q × {−, 0, +} × Γ ∗).
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Determinism and Valuedness. The definition of determinism is the standard
one: no two distinct transitions starting in a state q have the same input symbol
symbol a. The deterministic versions of the machines defined above are denoted
as dft, dgsm, and 2dgsm. The transductions implemented by a dft, a dgsm

and a 2dgsm are obviously 1-valued (and thus finitary). Further, these transduc-
tions can also be shown to be bounded-length, as on an input of length n, these
machines take at most n steps, and each step contributes a constant number of
symbols to the output. In an ngsm, there are only finitely many paths corre-
sponding to each input string, and the length of output along each such path
grows proportional to that of the input. Thus, the transductions implemented
by an ngsm are bounded-length (and thus finitary) as well. However, note that
the transductions implemented by an ngsm are not bounded-valued in general.
The transductions implemented by nfts and 2ngsms are neither finitary nor
bounded-length.

MSO-definable String Transductions. String transductions can be described us-
ing Monadic Second Order logic [4,6]. The input to such a transduction is a
string w = w1w2 . . . wk viewed as an input string graph Gi with k+1 vertices
v0, . . . , vk, where the label of each edge (vi, vi+1) is wi. The labels for the ver-
tices and the edges appearing in the output string graph are expressed in terms
of MSO formulas over a fixed number of copies of Gi. Formally, a determinis-
tic MSO-definable string transduction (dmsos) W is specified by2 : (1) a finite
copy set C, (2) for each c ∈ C, vertex formulas ϕc(x), which are MSO formulas
with one free first-order variable variable x, and (3) for each a ∈ (Γ ∪ {ε}),
c, d ∈ C, edge formulas ϕc,d

a (x, y), which are MSO formulas with two free first
order variables x and y. The output graph (Go) is defined as follows: for each
vertex x in Gi and c ∈ C, the vertex xc is in Go if the vertex formula ϕc(x) is
true, and for all vertices xc, yd, there is an edge (xc, yd) labeled by a if the edge
formula ϕc,d

a (x) is true. Finally, the output is defined as the string formed by the
sequence of symbols (other than ε) that are the obtained by reading the labels
of edges of the output graph Go in order. If Go is not a legal string graph the
output is undefined. In case of MSO-definable transductions, we use the notation
�W �(x) synonymously with W (x), where x is an input string.

The nondeterministic variant of MSO-definable string transductions is ob-
tained by adding free second-order variables X1, . . . ,Xn that range over sets of
vertices. The vertex and edge formulas in this case have these variables as addi-
tional arguments. To obtain the output string graph, a (global) valuation of the
second-order variables X1, . . . ,Xk is chosen, and then the output string graph is
obtained as in the deterministic case. As the valuation for X1, . . . ,Xk is chosen
nondeterministically, there can be multiple possible outputs for a given input
string.
2 We present a definition slightly modified from the one in [6]. For ease of exposition,

we omit specification of a domain formula ϕdom, as it can be included to be a part
of the vertex and edge formulas. We also allow edges in the output graph to be
labeled with the empty string ε. It can be shown that such MSO-transductions are
equivalent to MSO-transductions that do not make use of ε-labels.
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Example 2.3. Consider the transduction Rss = {(w, u#v)|u, v are subsequences
of w}, where u, v, w ∈ Σ∗, and # �∈ Σ. We define Rss as a nmsos transduc-
tion W by choosing the copy set C = {1, 2}, and two parameters X1 and
X2. We use the formula edgea(x, y) to denote that there is an edge labeled
a between vertices x and y, and the formula last(x) (resp. first(x)) to denote
that x is the last (resp. first) node in the input string graph. We now define
the edge formulas: ϕ1,2

# (x, y,X1,X2) ≡ last(x) ∧ first(y), and, ∀j ∈ C, ∀a ∈ Σ:
ϕj,j

a (x, y,X1,X2) ≡ (x ∈ Xj) ∧ edgea(x, y), and ∀j ∈ C: ϕj,j
ε (x, y,X1,X2) ≡ (x �∈

Xj)∧
∨

a∈Σ edgea(x, y). Intuitively, the second order variable X1 is used to guess
which positions of the original string contribute to u, while X2 independently
guesses which positions contribute to v. ��

Hennie Machines. A two-way machine with a writable input tape and a write-
only output tape is defined in similar fashion to a 2ngsm. The instructions of
such a machine M are of the form (q, σ/α, q′, γ), which means that in state q, M
reads the symbol σ from the tape, overwrites it with the symbol α, transitions
to the state q′ and writes the finite string γ to the output tape. Here, σ, α ∈ Σ,
where Σ is the tape alphabet, and γ ∈ Γ ∗, which is the output alphabet. A
computation of M is called k-visiting, if each position of the tape is visited at
most k times. A Hennie machine is such a two-way machine with the property
that there exists a constant k such that every computation of the machine is
k-visiting. The classes of string transductions realized by nondeterministic and
deterministic Hennie machines are denoted by nhm and dhm, respectively.

Example 2.4. Consider the transduction Rcp of Ex. 2.1. In [6], it is shown that
Rcp can be realized by an nhm moving in two left-to-right passes over the tape.
In the first pass, it nondeterministically overwrites the input string an with some
output string w, and also writes w to the output. It then scans backward to the
beginning of the (overwritten) input, writes # to the output, and copies the
contents of the input tape to the output a second time. The nhm is 3-visit. ��

2.2 Streaming String Transducers

Deterministic streaming string transducers (dsst) have been proposed as an
effective machine model for MSO-definable string transductions [2,1]. A dsst

makes a single left-to-right pass over the input string mapping it to the out-
put string, while using a fixed set of string variables that can store strings over
the output alphabet. In each step, a dsst reads an input symbol a, changes
its state and updates all its string variables simultaneously using a copyless as-
signment. The right-hand-side (RHS) of any assignment to a string variable is
a concatenation of output symbols and some string variables, with the restric-
tion that in a given parallel assignment, any string variable can appear at most
once across all the right-hand-sides. For instance, let X = {x, y} be the set
of string variables, and let α, β, γ ∈ Γ ∗ be strings of output symbols. Then,
the update (x, y) = (α.x.β.y.γ, ε) is a copyless assignment, as it contains only
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one occurrence of x and y each. On the other hand, the assignment (x, y) =
(x.y, y.α) is not copyless as the variable y appears in the RHS twice. The two
main extensions to the dgsm model are that (1) dssts are not constrained to
add output symbols only at the end of the tape, and (2) they can compute
the output in multiple chunks that can be extended and concatenated (but not
duplicated) as needed.

We now present a nondeterministic extension of dssts: the class of nondeter-
ministic streaming string transducers (nssts). An nsst is defined as the tuple
(Q, Σ, Γ, X, E, q0, F ), where Q is a finite nonempty set of states, Σ and Γ are
respectively the input and output alphabets, X is a finite set of string vari-
ables with A as a set of copyless assignments to variables in X (mappings α
from X to (X ∪ Γ )∗ such that for any x ∈ X , x appears at most once in the set
{α(y) | y ∈ X}), E is a set of transitions that is a finite subset of (Q×Σ×A×Q),
q0 is an initial state, and F : Q → (X ∪ Γ )∗ is a partial output function such
that for every q ∈ Q and x ∈ X , there is at most one occurrence of x in F (q).

Semantics. We first make an observation: copyless assignments are closed under
sequential composition, i.e., if α1 and α2 are copyless assignments, the assign-
ment α1 ◦ α2 is also copyless. We define the semantics of an nsst in terms of
the summary of a computation of the nsst. For an nsst starting in state q
and processing the input string w, the summary is a set of pairs of the form
(α, q′), where α represents the effect of a sequence of copyless assignments to
the string variables, and q′ is a possible next state. Let id denote the iden-
tity assignment, i.e., it maps each x to x. We inductively define the sum-
mary Δ as a mapping from Q × Σ∗ to 2A×Q, where: Δ(q, ε) = {(id, q)}, and
Δ(q, w.a) = {(αw ◦ α, q′) | ∃q1, s.t. (αw, q1) ∈ Δ(q, w) ∧ (q1, a, α, q′) ∈ E}.

A valuation of a string variable is defined as the function ν : X → Γ ∗, which
maps each variable to some string in Γ ∗. Such a valuation is extended to map
strings in (X ∪ Γ )∗ to Γ ∗ in a natural fashion. Let νε be the initial valuation,
where for all x ∈ X , νε(x) = ε. We define the semantics of an nsst T as the set
of outputs �T �(w) generated by T on input string w:

�T �(w) = {νε(αw◦F (q)) | (αw , q) ∈ Δ(q0, w) and F (q) is defined}.
We now illustrate the model using a couple of examples.

Example 2.5. The nsst Tss implementing the transduction Rss from Ex. 2.3 has
a single state q and uses two string variables x and y. For each input symbol a, it
nondeterministically decides to append a to x or y or both or none. Formally, the
transitions of Tss are of the form (q, a, (x, y) := (x.γ1, y.γ2), q), where γ1, γ2 ∈
{ε, a}. The output function is defined as F (q) = x.#.y. ��
Example 2.6. The nsst Tcp implementing the transduction Rcp from Ex. 2.1 has
a single state q and uses two string variables x and y. For each input symbol it
nondeterministically chooses an output symbol γ ∈ {a, b} and appends it to both
x and y, i.e., the set of transitions E = {(q, a, (x, y) := (x.γ, y.γ), q) | γ ∈ {a, b}}.
The output function is defined as F (q) = x.#.y. ��
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Extensions and Subclasses. An nsst with ε-transitions (ε-nsst) can update its
string variables and change state without consuming an input symbol, i.e. E is
a finite subset of (Q× (Σ ∪ {ε})×A×Q). As we will see in Sec. 3, an ε-nsst is
more powerful than an nsst as it can implement nonfinitary transductions.

Lastly, we note some important subclasses of nssts, based on their valued-
ness. An nsst T is said to be k-valued, if the underlying transduction that it
implements is k-valued, i.e. for a given constant k, ∀w ∈ Σ∗, |�T �(w)| ≤ k. If
there exists some constant k such that T is k-valued, we say that T is bounded-
valued, and if k = 1, we say that the nsst is functional. In other words, all runs
of a functional nsst on the same input string, which end in a state q where F (q)
is defined, produce the same output string. Thus, the transduction realized by
such an nsst is a partial function. Functional nssts are an interesting subclass
of nssts, as their decision problems have good algorithmic properties.

3 Expressiveness Results

In this section, we first show that nssts are closed under sequential composition,
and they implement bounded-length transductions. We then compare nssts with
the class of nmsos-transductions, and show that they have the same expressive
power. Lastly, we compare the expressive power of ε-nssts with that of 2ngsms.

3.1 Properties of nssts

Sequential Composition of dssts. Let (Σ, Γ )-dsst be the shorthand for a dsst

that has Σ and Γ as its input and output alphabets respectively. Let T1 be
a (Σ1, Σ2)-dsst, with the set of states Q1, and the set of string variables X1,
and let T2 be a (Σ2, Σ3)-dsst with the set of states Q2 and the set of string
variables X2. We review the construction from [1] to construct the (Σ1, Σ3)-
dsst Ts = T1 ◦ T2, i.e., Ts is the sequential composition of T1 and T2. Let the
set of states and the set of string variables of Ts be Qs and Xs respectively.
When computing the sequential composition, the input to T2 is the output of
T1. Hence, the contents of any string variable x ∈ X1 are a possible input to
T2. Ts encodes the sequential composition as follows: (1) it simulates the action
of T1 by recording the state of T1 in its state, and, (2) at each step during the
simulation, it records maps f and g in its state, and uses these in conjunction
with its string variables to record the summary of T2 starting in each possible
state r ∈ Q2, on the contents of each string variable x ∈ X1.

We now formally define these maps. Recall that ν(x) denotes the valuation of
the variable x. We define the map f from Q2 ×X1 to Q2, such that f(r, x) = r′

if Δ2(r, ν(x)) = (α′, r′). For each state r ∈ Q2 and each string variable x ∈ X1,
Ts records the map f(r, x) in its state. A copyless assignment α in T2 maps each
y ∈ X2 to some concatenation of symbols from Σ3 (the output language of T2)
and X2. Thus the shape of α is some string of the form s1.y1.s2.y2.s3, where
the sk’s are some finite strings in Σ∗

3 and yj ’s are variables in X2. Ts uses its
string variables z ∈ Xs to store these sk chunks in such a manner that (1) no
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two variables in Xs appear consecutively, and (2) none of the variables in Xs or
X2 are repeated (in keeping with the copyless restriction on assignments). The
shape of each α(y) expression is then a string in (X2∪Xs)∗. We define the map g
from (Q2×X1×X2) to (X2∪Xs)∗, such that for each state r ∈ Q2, and for each
x ∈ X1, g(r, x, y) is the string that describes the shape of α(y). Thus, a state of
Ts is the tuple (q, f, g) ∈ (Q1× [(Q2×X1) → Q2]× [(Q2×X1×X2) → (X2∪Xs)∗].

It can be shown that the maximum number of z-variables required for each
state r ∈ Q2 and each string variable x ∈ X1 is 2.|X2|. Thus, the total number
of string variables required for Ts is 2.|X2|.|Q2|.|X1|. Further, as the z and y
variables strictly interleave and do not repeat, the number of possible shapes
is finite. This is key to ensure that the size of Ts (number of states and string
variables) is finite.

Example 3.1. Suppose that T2 contains the transitions:
t1 : (r0, a, (y1, y2) :=(c.y1.d, e.y2), r1) t2 : (r0, b, (y1, y2) :=(y1.y2.g, ε), r1)
t3 : (r1, b, (y1, y2) :=(g.y1.h, e.y2.d), r0)

The state of Ts when T1 is in state q and ν(x1) = abb encodes the effect of T2

executing transitions t1, t3 and t2 (in that order), and is of the form (q, f, g). Here
f(r0, x1) = r1, g(r0, x1, y1) = z1.y1.z2.y2.z3, and g(r0, x1, y2) = z4. The valuation
for the variables of Ts is: ν(z1) = gc, ν(z2) = dhee, ν(z3) = dg, and ν(z4) =
ε. Similarly, if ν(x2) = bbb, we encode the effect of T2 executing t2, t3, and t2,
and define f(r0, x2) = r0, g(r0, x2, y1) = v1.y1.v2.y2.v3, and g(r0, x2, y2) = v4.
The valuation of the variables is: ν(v1) = g, ν(v2) = ε, ν(v3) = ghedg, and
ν(v4) = ε. ��
Invariant. Suppose Δ1(q1

0 , w) is (α, q) (i.e., the summary of T1 after reading
w, beginning in its initial state q1

0). Suppose the state of Ts after reading the
input word w is (qs, f, g) and the valuation of its string variables is νw. Then the
following invariant holds: if Δ1(q1

0 , w) = (α, q), then qs = q, and, if Δ2(r, ν1(x)) =
(β, r′), then f(r, x) = r′, and for each y, νw(g(r, x, y)) = β(y).

Thus, to model the effect of a transition of T1 of the form (q, a, α, q′), we add
an edge of the form ((q, f, g), a, α′, (q′, f ′, g′)), where the maps f ′, g′, and the
assignment α′ to the variables of Ts are defined in a manner that satisfies the
above invariant.

Example 3.2. Consider the state in Ex. 3.1. Now suppose that T1 executes the
transition (q, a, (x1, x2) := (x2.x1, ε), q′). Suppose the resulting state of Ts is
(q′, f ′, g′). We only explain how the updates to the variable x1 are encoded. To
model the assignment x1 := x2.x1, we define f ′(r0, x1) = f(f(r0, x2), x1) which
evaluates to r1 (as seen from Ex. 3.1). Similarly, the map g′(r0, x1, y1) is obtained
by sequentially composing the maps g(r0, x2, y1) and g(r0, x1, y1) from Ex. 3.1.
The result of the composition yields the expression z1.v1.y1.v2.y2.v3.z2.v4.z3,
which is then compressed by combining adjacent zi and vi variables. Thus,
g′(r0, x1, y1) is defined to be z1.y1.v2.y2.z3 with the copyless assignments z1 :=
z1.v1 and z3 := v3.z2.v4.z3 (and no change to the other variables). Similarly,
we can compute g′(r0, x1, y2) = z4 by looking at the maps g(r0, x2, y2) and
g(r0, x1, y2). ��
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Sequential Composition of nssts. We now show that nssts are closed under
sequential composition.

Theorem 3.1. Let T1 be a (Σ1, Γ1)-nsst, T2 be a (Σ2, Σ3)-nsst, then one can
effectively construct Ts, a (Σ1, Σ3)-nsst such that for all strings w ∈ Σ∗

1 , we
have �Ts�(w) =

⋃

u∈�T1�(w)

�T2�(u).

Proof. The construction for the sequential composition of dssts extends to the
case of nssts in a straightforward fashion. We show how to compute the nsst

Ts = T1 ◦ T2. A run of Ts simulates a run of T1 on the input string w, and
simultaneously summarizes the action of some transition of T2 on the contents
of the string variables of T1. This summary is stored with the help of the maps
f and g that are part of its state, and its string variables. Thus, a state of Ts is
a finite subset of (Q1 × [f : Q2 ×X1 → Q2]× [g : Q2 ×X1 ×X2 → (X2 ∪Xs)∗]).

Unlike the deterministic case where the computation summary is a pair, the
summary Δ2(r, ν(x1)) of T2 is the set of pairs {(β1, r1), (β2, r2), . . .}. To ac-
commodate this, we define an invariant that all states of Ts satisfy: If Ts is
in the state (q, f, g) upon reading input string w, with the valuation νw for
its string variables, then for some α, (q, α) ∈ Δ1(q1

0 , w), and, if f(r, x) = r′,
and νw(g(r, x, y)) = β, then (β, r′) ∈ Δ2(r, ν1(x)). For a transition of the
form (q, a, α, q′) in T1, we add a transition ((q, f, g), a, α′, (q′, f ′, g′)) to Ts, such
that the copyless assignment α′, and the maps f ′ and g′ satisfy the invariant
(for the input w.a). We finally remark that the number of variables of Ts is
2.|X2|.|Q1|.|X1|, (the same as for dssts) and as the maps f , g are finite, the
number of states required for Ts is also finite. ��
Theorem 3.2. The transduction implemented by an nsst T is bounded-length,
i.e., there exists a constant c such that ∀w ∈ Σ∗, if u ∈ �T �(w), then |u| ≤ c.|w|.
Proof. We use the notation |α(x)| to denote the number of output symbols in
the expression α(x). We define |α| =

∑
x(|α(x)|). Now let �max = maxE(|α|),

i.e., the maximum number of output symbols added by any transition in T . Let
uw be the shorthand for some output of T upon reading the string w. We prove
the result by induction on the length of the input. The base case is valid; since
if |w| = 0, the length of uw is zero. The inductive hypothesis is stated as follows:
for input w, if uw ∈ �T �(w), then |uw| ≤ �max.|w|. Now consider an input of the
form w.a, and let q be the state of T after reading w. Let E′ be the subset of
E containing transitions of the form (q, a, β, q′). The number of output symbols
added by any transition in E′ is bounded by maxE′ |β|. However, by definition,
�max ≥ maxE′ |β|. Thus, for any uw.a ∈ �T �(w.a), |uw.a| ≤ �max.|w| + �max.
Thus, |uw.a| ≤ �max.|w.a|, since |w.a| = |w| + 1. ��

3.2 Comparison with Existing Models

For classes of transductions C1 and C2, we denote by C1 ⊆ C2 the fact that for
every transducer T of type C1, there is a transducer T ′ of type C2 such that
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�T � = �T ′�. We say that C1 is equi-expressive to C2 if C1 ⊆ C2 and C2 ⊆ C1.
The following relationships are known: dmsos = 2dgsm [6], dmsos = dsst [1],
nmsos �⊆ 2ngsm and 2ngsm �⊆ nmsos [6]. We now compare the expressive power
of nssts with respect to that of existing models/machines for nondeterministic
transductions such as nmsos-transductions, ngsm, and 2ngsm.

Expressive power of ngsm vs. nsst. A ngsm is a nsst with a single string
variable (say x), and every transition is of the form (q, a, x := x.γ, q′), where
a ∈ Σ, and γ ∈ Γ ∗. Thus, ngsm ⊆ nsst.

Expressive power of nmsos vs. nsst. We now show that the the class of nssts
is equi-expressive to nmsos-transductions. We first show that for every nsst

T we can define a nmsos transduction W such that �T � = �W �. In [1], the
authors shows how a sequence of states and copyless assignments of a dsst

can be encoded in the copy set of a dmsos-transduction. As a run of an nsst

T is such a sequence of states and assignments, it can also be encoded in the
copy set of a dmsos-transduction. The key ideas in this construction are: (1)
Let nx = maxE |α(x)| (i.e. the maximum number of output symbols added
by any assignment to the string variable x). Then, assignments to x can be
encoded within a copy set that has at most nx + 2 copies. In any step, for each
string variable x, we maintain a designated start vertex xb and a designated
end vertex xe for x, and the valuation of x (ν(x)) is obtained from the string
graph corresponding to the path beginning at xb and ending in xe. This graph
is linear and connected by construction. (2) Concatenation of string variables,
say x := x.y, is encoded by adding an edge between xe and yb. (3) A state of the
streaming transducer can be encoded by an MSO-formula on the input graph
(these formulas essentially capture the next-state function). (4) The output is
defined if the output graph – the sequence edges beginning in the start vertex
for the output and concluding in the end vertex – is a string graph.

Lemma 3.1. nsst ⊆ nmsos.

Proof. Recall that a nmsos transducer W has a finite copy set C, and a finite
set of parameters X = {X1, . . . ,Xm}, i.e., second order variables ranging over
sets of vertices. This proof combines two main ideas: (a) a given run of a nsst

T can be encoded in the finite copy set of a nmsos transducer W , and, (b) each
run of T can be guessed by W by guessing a valuation for its parameters. The
construction for part (a) is as discussed, for details see [1]. We focus on part (b).

As T is nondeterministic, there may be multiple transitions on a given input
symbol that are enabled in a state q. However, as the assignment in each transi-
tion is a copyless assignment over the same set of string variables, the copy set
required is the same as that for encoding a single run. However, different runs
may label an edge in the copy set with different labels.

To make the nmsos transduction W mimic a single run of T , we add param-
eters that consistently choose among the different labels available for a given set
of edges. Let the maximum number of transitions of T from any state q on any
input symbol a be d. Then, W uses the set of parameters X = {X1, . . . ,Xd}.
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Intuitively, the jth nondeterministic transition of T is chosen by W if the corre-
sponding vertex of the input graph is present in the valuation chosen for Xj by
W . Choosing the jth transition fixes a particular assignment αj to each string
variable. Now for each edge formula ϕi,j

a (x, y) that encodes the action of αj , we
define ϕi,j

a (x, y,X1, . . . ,Xd) = ϕi,j
a (x, y) ∧ (x ∈ Xj). We can similarly encode the

next state function in terms of the parameters.
We also assume that each of the vertex and edge formulas is conjoined with

a domain formula that specifies that for any vertex x ∈ Gi, x is contained in at
most one Xj in a given valuation, and the union of all Xj covers the set of all
vertices of the input graph3. In other words, using the parameters in X , W first
guesses a possible sequence of choices at each state in T , and then encodes that
sequence using the copy set and next-state relations (which are MSO-formulas as
in the deterministic case). It is obvious that the number of parameters required
is at most d, and thus finite. ��
In Lemma 3.2, we show that for every nmsos W , we can obtain a nsst T such
that �W � = �T �. The key idea is that a nmsos transduction is essentially the
sequential composition of a string relabeling with a dmsos transduction, both
of which are expressible as nssts.

Lemma 3.2. nmsos ⊆ nsst.

Proof. We recall from [6], that any nmsos transduction W can be written as the
sequential composition of a string relabeling and a dmsos transduction. A string
relabeling nondeterministically substitutes each symbol in w with a finite string
in Γ ∗. A string relabeling can be easily encoded by an nsst T1 that has one
state q, one string variable x, and for all a ∈ Σ, its transitions are of the form
(q, a, x := x.γ, q), where γ is a finite string in Γ ∗. From [1], we know that for
every dmsos W , there exists a dsst T2 that implements the same transduction.
Every dsst is an nsst, and from Theorem 3.1 we know that nssts are closed
under sequential composition; thus, T = T1 ◦ T2 is a nsst s.t. �W � = �T �. ��
From Lemmas 3.1 and 3.2, we can conclude that nssts are equi-expressive to
nmsos-transductions, formalized in Theorem 3.3 below.

Theorem 3.3. nsst = nmsos.

Comparing ε-nssts with existing models. We now investigate the expressive
power of ε-nssts, i.e., nssts that are allowed transitions without consuming
any input symbol. The expressive power of ε-nssts is greater than that of nssts:
consider an ε-nsst in which there is a state q reachable from the initial state q0

on the input string w, and q has an ε-loop (a cycle with only ε-transitions) that
adds some symbols to the output. The set of outputs for any input with w as its
prefix is infinite, as the ε-nsst can cycle through the ε-loop an infinite number
of times. Thus, the transduction realized by a general ε-nsst is nonfinitary.
3 It further ensures the technicality that if the number of outgoing transitions of T

corresponding to a particular state and input symbol is d′, where d′ < d, then in
this case, all Xj where j > d′ always evaluate to the empty set.
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If we restrict ε-nssts so that they are ε-loop-free, then we can show that the
class of such transducers coincides with nssts. The proof uses a construction
similar to the one used for eliminating ε-transitions in NFAs: a finite sequence of
transitions of the form (q1, ε, α1, q2), . . ., (qn, ε, αn, qn+1), (qn+1, a, β, q′) can be
replaced by the single transition: (q1, a, α1 ◦ . . .◦αn ◦β, q′). Since the transducer
is ε-loop-free, an infinite sequence with ε-transitions does not exist.

We now compare ε-nssts with 2ngsms. Though both classes can implement
nonfinitary transductions, we show that their expressive power is incomparable.
We first note that nmsos �⊆ 2ngsms [6], and as nsst = nmsos (Theorem 3.3),
and nsst ⊆ ε-nsst, we have that ε-nsst �⊆ 2ngsm, i.e., there are transductions
implemented by nssts and ε-nssts that cannot be implemented by 2ngsms. We
further show that 2ngsm �⊆ ε-nsst, by an example transduction that can be
realized by a 2ngsm but cannot be realized by an ε-nsst. A similar example
is used in [6] to show the incomparability of nmsos with 2ngsm; however, the
argument used therein is not applicable in our setting, as the transductions
realized by both 2ngsms and ε-nssts are nonfinitary.

Theorem 3.4. The transduction Rmult = {(w, wm) |m ≥ 1, w ∈ Σ∗} can be
realized by a 2ngsm, but cannot be realized by an ε-nsst.

Proof. The 2ngsm implementing the transduction Rmult has three states q, qb

and halt. It starts in state q scanning the input 	w
 from left to right, simul-
taneously copying it to the output. Upon reaching 
, it either transitions to the
state halt and moves right from 
, or transitions to qb and scans the input from
right to left without producing any output. Once it reaches 	, it transitions back
to the state q.

We note that Rmult is a nonfinitary transduction. If there is a ε-nsst Tε that
implements it, it must have a ε-loop on some state q that is reachable from the
initial state q0. We denote the summary of Tε for the ε-loop by Δ(q, ε-loop).
Suppose Δ(q, ε-loop) = (β, q). Let u, v ∈ Σ∗ be substrings of w such that u.v =
w, u is the input that drives Tε from q0 to q, and v is the input that drives
Tε from q to some state q′ (possibly the same), where F (q′) is defined. Now let
Δ(q0, u) = (α1, q), Δ(q, v) = (α2, q

′). Then Δ(q, w) is the set {(α1 ◦α2, q
′), (α1 ◦

β ◦ α2, q
′), (α1 ◦ β ◦ β ◦ α2, q

′), . . .}.
Suppose the number of symbols added to the output by α1 is t1, by β is t,

and by α2 is t2. Then the lengths of the outputs of Tε in state q′ are t1 + t2,
t1 + t + t2, t1 + 2.t + t2, and so on. However, Rmult requires that for any input
w, each of the outputs have length that is a multiple of |w|. This is possible
only if t1 = t2 = 0 and t = |w|. However, t is a fixed number for a given ε-loop,
and independent of the input w. Thus, once we fix Tε, it will produce incorrect
outputs for any w where |w| �= t. ��

Functional NSSTs. It is clear that the expressive power of functional nssts is
identical to that of the class dsst, as a transduction realized by a functional
nsst is single-valued and MSO-definable, i.e., a dmsos transduction, which is
the same as that for a dsst.
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Theorem 3.5. Functional nsst = dsst.

It is also easy to show that functional nssts are closed under sequential com-
position. The results follow from the fact that nssts are closed under sequential
composition, and single-valued transductions are closed under sequential compo-
sition. Finally, the expressivity relations between the different transducer models
are as shown in Fig. 1.

2ngsm

ε-nsst

nsst = nmsos = nhm

dsst = dmsos = dhm =
2dgsm = Functional nsst

dgsm

ngsm

Fig. 1. Expressivity Results

4 Decision Problems

In this section, we discuss decision problems for nssts, with special heed to the
class of functional nssts. In what follows, we make use of 1-reversal-bounded
m-counter machines. Such a machine is an NFA augmented with m counters,
where each counter can make at most one reversal (i.e., in any computation
each counter can go from increasing to decreasing mode at most once). It has
been shown that the nonemptiness problem for such machines is in nlogspace

in the size of the machine’s description. For further details on reversal-bounded
counter machines, please see [8].

Checking functionality. We now address the problem of checking if an arbitrary
nsst is functional. We show that this problem is decidable, and present an
algorithm with pspace complexity. To a large extent, our algorithm draws upon
techniques developed for checking equivalence of dssts discussed in [2]. We use
the following intuition: An nsst is not functional if there exists some input
string w such that there are outputs y1, y2 ∈ �T �(w) and y1 �= y2. We reduce
the problem of finding such distinct outputs to the nonemptiness problem for a
1-reversal-bounded 2-counter machine.

Theorem 4.1. For an nsst T , checking if T is functional is in pspace.

Proof. We construct a 1-reversal-bounded 2-counter machine M that for a given
input string w simultaneously simulates two paths in T corresponding to w,
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and checks if the resulting outputs u1 and u2 differ because of either of these
conditions: (1) |u1| �= |u2|, i.e., the lengths of u1 and u2 are different, (2) there
exists a position p such that the pth symbol in the string u1 (denoted u1[p])
differs from u2[p]. M nondeterministically chooses one of the above conditions
to check. Checking the first condition is easier and uses similar techniques as for
checking the second condition; thus, we focus on the latter. We now explain how
the second condition is checked.

M precisely keeps track of the state of T in each of the two paths being
simulated in its state. At the beginning of the computation, M pre-loads its
counters c1 and c2 with the same number; this number is the guess for the
position p in which the outputs might differ. For path i (i = 1, 2), at some step
in the simulation, M nondeterministically guesses that the symbol γi added by a
copyless assignment in this step appears at the pth position in the corresponding
output ui, and remembers γi in its state. It also guesses where each string variable
appears with respect to p in this output. Concretely, we define the mapping 

(called the string variable class) from X to an element of ζ = {L, R, C, N}. Here,

(x) is L, R, C or N , depending on whether x appears to the left of p, to the
right of p, contains p, or does not contribute to the output respectively. For each
output symbol added to the left of p in the first path, M decrements the counter
c1, and for each output symbol added to the left of p in the second path, M
decrements c2.

Let the symbol ⊥ denote that M has not made its guess for the symbol in
position p. Let Γ ′ = Γ ∪ {⊥}. Formally, the set of states S of M is a subset
of (Q × Q × (Γ ′ × ζX) × (Γ ′ × ζX)). To elaborate, the meaning of some state
(q, q′, γ1, 
1,⊥, 
2) in M is: T reaches states q and q′ from its initial state on
the same input string; M has guessed that the symbol at u1[p] is γ1, M has
not yet guessed the symbol at u2[p], and the mappings from the string variables
to classes along the two paths are 
1 and 
2. Except for the initial transitions
where M pre-loads c1 and c2, all transitions of M decrement the counters by
some non-negative amount. Thus, the counters of M are single-reversal.

The transitions of M are defined in a way that ensures that M consistently
guesses the classes for each string variable. We illustrate this with two examples.
Suppose (q, a, (x, y) := (x.d.y, b), r) and (q′, a, α, r′) are two transitions in T .

Suppose in state r, M guesses that the symbol d added to the string vari-
able x appears at u1[p]. In order to maintain consistency, in state q, M must
have assigned x to the class L, and y to the class R. In other words, we add
a transition from the state (q, q′,⊥, [
1(x) = L, 
1(y) = R], γ2, 
2) to the state
(r, r′, d, [
′1(x) = C, 
′1(y)], γ2, 


′
2), with no change to the counters. The mapping


′1(y) maps y to any string class in ζ other than C, and the mappings 
2 and 
′2
similarly ensure consistency with the assignment α along the second path.

Now consider the case where in state r, M guesses that the contents of x
(which are now x.d.y) appear to the left of the position p in u1. In order to
maintain consistency, in state q, M must have assigned x and y to the class
L. Thus, we add a transition between the states (q, q′, γ1, [
1(x) = L, 
1(y) =
L], γ2, 
2) and (r, r′, γ1, [
′1(x) = L, 
′1(y)], γ2, 


′
2) in M . As the assignment adds
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one letter to the left of p, M decrements c1 by one. Here, 
′1(y) maps y to any
string class in ζ, and γ1 is propagated unchanged.

Initially, no string variable is guessed to be in the class C, and at each step
at most one string variable can be guessed to be in the class C. At the end of
a computation, if c1 = c2 = 0, then it means that the symbols γ1 and γ2 in the
state of M are symbols in the same position p in u1 and u2, i.e., γ1 = u1[p]
and γ2 = u2[p]. We define a state (q, q′, γ1, 
1, γ2, 
2) of M as accepting if (1)
c1 = c2 = 0, (2) γ1 �= γ2, (3) if for some x ∈ X , if 
1(x) = C then F (q) = x 4, and
(4) if for some y ∈ X , if 
2(y) = C then F (q′) = y. M thus accepts only those
paths that are witnesses to an input string that leads to two distinct output
strings. In other words, T is functional iff M is empty. The problem of checking
nonemptiness of 1-reversal bounded m-counter machines is in nlogspace in the
size of M . As the total number of states of M is (|Q|2.(|Γ | + 1)2.|ζ|2.|X|), i.e.,
exponential in the size of X , the above technique gives us a procedure that is in
pspace. ��

Equivalence Checking. We now discuss the equivalence problem for nssts. Given
two (Σ, Γ )-nssts T1 and T2, the equivalence problem is to determine if for all
inputs w ∈ Σ∗, �T1�(w) = �T2�(w). We start with a negative result that shows
that for the general case of nssts, checking equivalence is undecidable.

Theorem 4.2. The equivalence problem for nssts is undecidable.

Proof. As mentioned in Section 3.2, an ngsm is a special case of a nsst. The
result follows from the fact that the equivalence problem for ngsms is known to
be undecidable by a reduction from the Post Correspondence problem [7]. ��
If we restrict our attention to functional nssts, the equivalence problem is decid-
able and a minor modification of the algorithm for checking equivalence of dssts
in [2] can be directly applied to give a pspace complexity procedure. Moreover,
we show that the problem is in fact pspace-complete.

Theorem 4.3. The equivalence problem for the class of functional nssts is
pspace-complete.

Proof. Membership in pspace can be shown by using an algorithm similar to
the one for checking equivalence of dssts [2].

We further show that the problem is pspace-hard by a reduction from the
equivalence problem for NFAs. We can encode an NFA as an nsst T which uses
only one string variable x and never changes the value of x from the initial value
of ε. The states of the NFA are the same as the states of T . We define the output
function F of T such that for each final state qf of the NFA, in the corresponding

4 Here, we assume that, for all q, F (q) is defined to be some string variable x. An
nsst in which F (q) is an arbitrary expression α ∈ (X ∪ Γ )∗ can be converted to
an equivalent nsst of this form as follows: add a new state qf �∈ Q; for all q where
F (q) = α, add a transition from q to qf with the copyless assignment x := α on that
transition; finally, define F (qf ) = x, and F (q) as undefined.
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state of T , F (qf ) = x, and for all other states q of the NFA, F (q) is undefined.
Clearly, �T �(w) = {ε} implies that w is accepted by the NFA. Observe that
the nsst defined thus is functional: for all inputs w, �T �(w) is either empty or
contains exactly one symbol. If two such nssts T1 and T2 are equivalent, it means
that either (1) there exist runs of T1 and T2 in which both read the same input
string w, and produce the same output ε, or (2) all runs of T1 and T2 reading
the same input string w reach some states q and q′ respectively, such that F1(q)
and F2(q′) are undefined. In other words, two such nssts are equivalent iff the
encoded NFAs are equivalent. ��

Containment. The problem of checking if the transduction realized by an nsst

is contained within the outputs of a finite set of dssts is of particular interest in
applications such as the verification of concurrent heap-manipulating methods.
Given an nsst T , and dssts D1,. . . ,Dn, we show that the problem of checking
if the set of outputs of T is contained within the set of outputs of D1, . . . , Dn is
in pspace by reducing the problem to the nonemptiness problem for 1-reversal
m-counter machines.

Theorem 4.4. Suppose D1, . . . , Dn are (Σ, Γ )-dssts, and T is a (Σ, Γ )-nsst.
Checking if �T � ⊆ ⋃n

j=1�Dj�(w) is in pspace.

Proof. We observe that �T � �⊆ ⋃n
j=1�Dj�(w), if there is a run of T on the input

string w that produces an output ut such that for all the dssts Dj , either the
output of Dj on w is undefined, or the output of Dj is different from ut. Formally,

∃w∈ Σ∗,∃ut ∈ �T �(w) :
n∧

j=1

⎛

⎜
⎝

�Dj�(w) is not defined ∨
|ut| �= |�Dj�(w)| ∨
∃pj : ut[pj ] �= �Dj�(w)[pj ]

⎞

⎟
⎠ (4.1)

We can expand the above condition to obtain a disjunction over different
combinations of conjunctions of the inner disjuncts. Each term in this disjunct
illustrates a way in which ut is not generated by all of the n dssts. We construct
a 1-reversal (2.n)-counter machine M that nondeterministically decides to check
one of the conjunctive terms in (4.1). In particular, we show how M checks
the conjunction:

∧n
j=1 (ut[pj ] �= �Dj�(w)[pj ])), the other conjunctions are simpler

and can be checked by similar techniques.
M simulates the action of D1, . . . , Dn, and T in parallel. It precisely keeps

track of the states of each of these transducers in its state. For each pair (Dj , T ),
M maintains a pair of counters (cjt, ctj). For each of these n pairs, M pre-loads
the counters with some number pj (the same for both), which is the guess of
M for the position pj such that ut[pj ] �= �Dj�(w)[pj ]. At some point in its
simulation of T (resp. Dj), M guesses that it has output the symbol γtj = ut[pj ]
(resp. γjt = �Dj�(w)[pj ]) and remembers it in its state. It also guesses where
each string variable of T (resp. Dj) appears with respect to the position pj , thus
mapping each string variable to a class in ζ = {L, C, R, N}. For each output
symbol added by T (resp. Dj) to the left of pj , M decrements the counter ctj

(resp. cjt) by one.
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Let Γ ′ = Γ ∪ {⊥}, where ⊥ is the symbol indicating that M has not guessed
the symbol at position pj yet. The set of states of M is a subset of ((QT ×
Q1 × . . .×Qn)× (Γ ′2 × ζXT × ζX1)× . . .× (Γ ′2 × ζXT × ζXn)). The transitions
of M preserve consistency in its guesses for the string variable classes, using
the same technique as in the proof of Theorem 4.1. Note that apart from the
initial transitions of M that pre-load the counters, all transitions decrement the
counters by some non-negative number; thus M has only one reversal.

Once M reaches the end of the input string w, it checks if the symbol guessed
for Dj and T is at the same position pj , by checking if ctj = cjt = 0. We define
a state as accepting if for all j, cjt = ctj = 0, and for each pair of symbols
recorded in the state, γjt �= γtj . In other words, M accepts a computation iff
it encodes the parallel action of T , D1,. . .,Dm on an input string w, producing
an output ut in �T �(w) such that ut is different from each of the n outputs of
the transducers D1, . . . , Dn. Thus �T � ⊆ ⋃n

i=1�Di� iff M is empty. From [8],
we know that checking the nonemptiness of a 1-reversal m-counter machine is
in nlogspace (in the size of M). For a fixed n, the number of states of M is
dominated by an exponential in the size of the largest set among XT , X1, . . . , Xn.
Thus, the above construction yields us a procedure that is in pspace. ��

5 Discussion

Checking k-valuedness. A k-valued nsst naturally extends a functional nsst.
This class is not closed under sequential composition because given two k-valued
transducers T1 and T2, the nsst T1 ◦ T2 could be k2-valued. Checking if an
arbitrary nsst T is k-valued is decidable. We skip the proof in interest of brevity.
Similar to the proof of Theorem 4.1, the basic idea is to reduce k-valuedness of an
nsst to the nonemptiness problem for a 1-reversal-bounded (k.(k + 1))-counter
machine M that detects if there is some input w on which T produces (k + 1)
distinct outputs. M simulates (k + 1) copies of T in parallel, and for each pair
of the possible (k +1) outputs, M uses a pair of counters to check if the outputs
are different. M is empty iff T is k-valued. Our approach can be viewed as an
extension of the algorithm to check the k-valuedness of nfts [9].

Equivalence of k-valued nssts. The equivalence problem for k-valued nfts has
been shown to be decidable in [5], and more recently in [13]. We are interested in
investigating the same problem for k-valued nssts. The approach in [5] reduces
the equivalence of k-valued nfts to the solution of an infinite system of word
equations, which by the validity of Ehrenfeucht’s conjecture, is equivalent to a
finite subsystem. The authors then show how the finite subsystem can be effec-
tively characterized for nfts, which leads to a decision procedure. The proof of
[5] relies on the fact that the valuedness of an nft is at the most its maximum
edge-ambiguity5. However, as the maximum edge-ambiguity of an nsst does not

5 The edge-ambiguity of a transducer is the maximum number of transitions between
any two states q and q′ that have the same input symbol.
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place such a bound on its valuedness, this proof strategy fails for proving the
decidability of equivalence checking for k-valued nssts. In [13], the authors rely
on a procedure to decompose a k-valued nft T into k functional nfts whose
union is equivalent to T . Whether such a decomposition can be generalized to
nssts remains open.

Bounded-valued NSSTs. The class of bounded-valued nfts has been extensively
studied in the literature [14], [11]. The class of bounded-valued nssts promises to
be a robust class. Unlike the class of k-valued nssts, it is closed under sequential
composition. In both [14] and [11], it is shown that the problem of checking if an
nft is bounded-valued can be checked in polynomial time by verifying certain
conditions on the structure of its transition diagram. We believe that it may
be possible to generalize these conditions to characterize bounded-valuedness
of nssts. However, the extension is not straightforward due to the presence of
multiple string variables, and allowing output symbols to be appended to the
left as well as to the right.

In summary, some of the interesting open problems are:

– Is the equivalence problem for k-valued nssts decidable?
– Given a k-valued nsst T can it be effectively decomposed into k functional

nssts T1,. . .,Tk, such that �T � =
⋃k

i=1 �Ti�?
– Is the bounded-valuedness of nssts decidable?

Applications. One of the motivations for studying nssts is their potential as
models for verifying concurrent heap-manipulating programs. In [3], the authors
study the problem of verifying linearizability of methods that modify linked-
lists. Checking linearizability of a pair of methods m1 and m2 involves verifying
if the interleaved execution of m1 and m2 (denoted by m1 ‖ m2) finishes with
the same linked-list as executing m1 followed by m2 (denoted by m1; m2) or
m2 followed by m1 (m2; m1). The authors show that with a specific regimen for
pointer updates this problem can be algorithmically solved.

In [2], the authors have demonstrated how sequential heap-manipulating meth-
ods can be modeled as dssts. Proving linearizability of methods m1 and m2

is thus the same as verifying if the interleaved product of the corresponding
dssts D1 and D2 is contained within their union, i.e., checking if �D1 ‖ D2� ⊆
(�D1 ◦ D2� ∨ �D2 ◦ D1�). In general, it may not be possible to model the inter-
leaved product of dssts as an nsst. However, if we identify a subclass of dssts
such their interleaved product is an nsst, then checking linearizability reduces
to checking containment of this nsst in the finite union of dssts (each of which
represents a possible sequential execution of the given dssts). We have shown
that checking containment is decidable in pspace. Thus, we believe that nssts
could serve as a foundational model of concurrent heap-manipulating methods,
by helping us better understand the theoretical limits of decidability of the ver-
ification problems for such methods.
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