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Preface

ICALP 2011, the 38th edition of the International Colloquium on Automata,
Languages and Programming, was held in Zürich, Switzerland, during July
4–8, 2011. ICALP is a series of annual conferences of the European Association
for Theoretical Computer Science (EATCS) which first took place in 1972. This
year, the ICALP program consisted of three tracks: the established Track A
(focusing on Algorithms, Complexity and Games) and Track B (focusing on
Logic, Semantics, Automata and Theory of Programming), and a Track C fo-
cusing on Foundations of Networked Computation: Models, Algorithms and
Information Management.

In response to the call for papers, the Program Committee received 398 sub-
missions: 243 for Track A (three of which were later withdrawn), 103 for Track B
and 52 for Track C. Out of these, 114 papers were selected for inclusion in the
scientific program: 68 papers for Track A, 29 for Track B, and 17 for Track C.
The selection was made by the Program Committees based on originality, qual-
ity, and relevance to theoretical computer science. The quality of the manuscripts
was very high indeed, and many deserving papers could not be selected.

The EATCS sponsored both a best paper and a best student paper (all au-
thors are students) award for each of the three tracks, to be selected by the
Program Committees. The best paper awards were given to Malte Beecken, Jo-
hannes Mittmann, and Nitin Saxena for their paper “Algebraic Independence
and Blackbox Identity Testing” (Track A), to Olivier Carton, Thomas Colcom-
bet, and Gabriele Puppis for their paper “Regular Languages of Words Over
Countable Linear Orderings” (Track B), and to Martin Hoefer for his paper “Lo-
cal Matching Dynamics in Social Networks” (Track C). The best student paper
awards were given to Shi Li for his paper “A 1.488-Approximation Algorithm
for the Uncapacitated Facility Location Problem” (Track A), to Martin Dela-
court for his paper “Rice’s Theorem for mu-Limit Sets of Cellular Automata”
(Track B), and to Shiri Chechik for her paper “Fault-Tolerant Compact Routing
Schemes for General Graphs” (Track C).

ICALP 2011 consisted of five invited lectures and the contributed papers.
This volume of the proceedings contains all contributed papers from Track A,
except for the two papers that received one of the best paper awards. These
two papers are contained in a companion volume, together with all contributed
papers from Track B and Track C, and the papers by four of the invited speakers:
Rajeev Alur (University of Pennsylvania, USA), Thore Husfeldt (IT University of
Copenhagen, Denmark), Catuscia Palamidessi (INRIA Saclay and LIX, France),
and Ronen Shaltiel (University of Haifa, Israel). The program had an additional
invited lecture by Éva Tardos (Cornell University, USA), which does not appear
in the proceedings.



VI Preface

The following workshops were held as satellite events of ICALP 2011:
GA - Graph algorithms and Applications
GT - Group Testing
DCM - 7th International Workshop on Developments of Computational Models
SDKB - 5th International Workshop on Semantics in Data and Knowledge Bases

We wish to thank all the authors who submitted extended abstracts for con-
sideration, the Program Committees for their scholarly effort, and all referees
who assisted the Program Committees in the evaluation process.

Thanks to the sponsors (Swiss National Science Foundation and Google)
for their support, and to ETH Zürich for hosting ICALP 2011. We are also
grateful to all members of the Organizing Committee and to their support staff
in the Institute of Theoretical Computer Science at ETH Zürich. The conference-
management system EasyChair was used in handling the submissions and the
electronic Program Committee meeting, as well as in assisting in the assembly
of the proceedings.

May 2011 Luca Aceto
Monika Henzinger

Jǐŕı Sgall
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András Benczúr Hungarian Academy of Sciences, Hungary
Edith Cohen AT&T Labs–Research, USA
Joan Feigenbaum Yale University, USA
Amos Fiat Tel-Aviv University, Israel
Lisa Fleischer Dartmouth College, USA
Georg Gottlob Oxford University, UK
Monika Henzinger University of Vienna (Chair), Austria
Bruce Maggs Carnegie Mellon and Duke University, USA
Massimo Merro University of Verona, Italy
Vahab Mirrokni Google Inc., USA
Alessandro Panconesi Sapienza University of Rome, Italy
Giuseppe Persiano University of Salerno, Italy
Anna Philippou University of Cyprus, Cyprus
Davide Sangiorgi University of Bologna, Italy
Vladimiro Sassone University of Southampton, UK
Andrew Tomkins Google Inc., USA
Dorothea Wagner Karlsruhe Institute of Technology, Germany
Roger Wattenhofer ETH Zürich, Switzerland
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Martin Gairing
Anna Gǎl
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Tomáš Brázdil, Václav Brožek, Kousha Etessami, and
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Jean-François Raskin, and James Worrell

Session B7: Specification and Verification

Deciding Robustness against Total Store Ordering . . . . . . . . . . . . . . . . . . . . 428
Ahmed Bouajjani, Roland Meyer, and Eike Möhlmann
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Session C4: Distributed Computation

Efficient Distributed Communication in Ad-Hoc Radio Networks . . . . . . . 613
Bogdan S. Chlebus, Dariusz R. Kowalski, Andrzej Pelc, and
Mariusz A. Rokicki

Nearly Optimal Bounds for Distributed Wireless Scheduling in the
SINR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
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Sourav Chakraborty, David Garćıa-Soriano, and Arie Matsliah



Table of Contents – Part I XXV

Efficiently Decodable Error-Correcting List Disjunct Matrices and
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

Hung Q. Ngo, Ely Porat, and Atri Rudra

Session A13: Complexity

Robust Simulations and Significant Separations . . . . . . . . . . . . . . . . . . . . . . 569
Lance Fortnow and Rahul Santhanam

A PCP Characterization of AM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
Andrew Drucker

Lower Bounds for Online Integer Multiplication and Convolution in the
Cell-Probe Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
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Abstract. We introduce nondeterministic streaming string transducers
(nssts) – a new computational model that can implement MSO-definable
relations between strings. An nsst makes a single left-to-right pass on
the input string and uses a finite set of string variables to compute the
output. In each step, it reads one input symbol, and updates its string
variables in parallel with a copyless assignment. We show that nsst

are closed under sequential composition and that their expressive power
coincides with that of nondeterministic MSO-definable transductions.
Further, we identify the class of functional nssts; such an nsst allows
nondeterministic transitions, but for every successful run on a given input
generates the same output string. We show that deciding functionality of
an arbitrary nsst is decidable with pspace complexity, while the equiv-
alence problem for functional nssts is pspace-complete. We also show
that checking if the set of outputs of an nsst is contained within the set
of outputs of a finite number of dssts is decidable in pspace.

1 Introduction

In this paper, we introduce nondeterministic streaming string transducers (nssts).
A run of such a transducer processes an input string in a single left-to-right pass
in linear time, and computes an output string. The nondeterminism of an nsst

allows it to produce different outputs for different runs on an input string. Thus,
an nsst is a natural model for implementing relations between strings.

Classical literature on string-to-string transductions largely focusses on finite-
state transducers that realize rational relations [12]. In each step, such a trans-
ducer reads an input symbol and writes zero or more symbols to the output.
These transducers and their many variations have been extensively studied in
the literature. If restricted to a single left-to-right pass over the input, i.e., to
their streaming versions, the expressive power of finite transducers is limited.
For example, they can implement transductions such as inserting a symbol in an
input string and deleting a substring of the input string, but they cannot imple-
ment transductions such as reversing an input string or swapping two substrings
within an input string.

� This research is partially supported by NSF award CCF 0905464 and by the CCC-
CRA Computing Innovation Fellows project.
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2 R. Alur and J.V. Deshmukh

Deterministic streaming string transducers (dssts), first introduced in [1,2],
in addition to all transductions implemented by deterministic finite transducers,
can implement transductions such as reversing a string and swapping substrings.
A dsst reads the input in a single left-to-right pass. In addition to a finite set of
states, it has a finite set of string variables that it uses to produce the output.
In each step, a dsst reads an input symbol, changes its state, and concurrently
updates all its string variables using a copyless assignment. The right-hand-sides
(RHS) in a copyless assignment consist of a concatenation of string variables and
output symbols, with the restriction that in a parallel assignment, a variable can
appear at most once across all right-hand-sides.

A dsst that reverses a string uses a single state and one string variable x. In
each step, if it reads the symbol a, it executes the assignment [x := a.x] (here ‘.’
is the string concatenation operator). At the end of its computation, x contains
the string that is the reverse of the input string. As another example, consider
the transformation mapping a string of the form l,m f to the string f m l (here
l, m and f respectively denote strings corresponding to some last, middle, and
first name, and ‘ ’ denotes a single space). A dsst with two variables x and y
can implement this transduction. It stores the substring till the comma (i.e., l)
in x, and stores the subsequent string (m) till it sees the space in y. It then sets
y to y. .x, resets x to the empty string, and stores the remaining substring (f)
in x. It finally outputs the string x. .y.

Compared to their deterministic counterparts that implement partial func-
tions between strings, nondeterministic finite transducers (nfts) can implement
relations between strings; for example, mapping a string to all its substrings.
However, nfts lack the expressiveness to implement transductions such as (1)
mapping a string w to all strings w′ obtained by swapping some prefix and suffix
of w, (2) mapping w to all strings w′ = p.rev(m).s, where w has the form p.m.s
(where p, m and s are substrings of w), and rev(m) denotes the reverse of m1.

In addition to all transductions realized by nfts, nssts can implement both
of these transductions. The first transduction is implemented by an nsst with
string variables x and y. It nondeterministically chooses some prefix p to store
in x and some following substring m to store in y. It then sets y to y.x, resets x,
copies the remaining input s to x, and finally outputs x.y. The nsst implement-
ing the second transduction copies some prefix p (chosen nondeterministically)
to x, and uses y to compute rev(m) for a nondeterministically chosen m. It then
sets x to x.y, appends the remaining input s to x, and finally outputs x.

The organization of the paper is as follows: After defining the nsst model
in Sec. 2, we characterize the expressive power of nssts in Sec. 3. We show
that nssts are closed under sequential composition, and prove that the expres-
sive power of nssts is equivalent to that of nondeterministic MSO-definable
transductions. We then compare both nssts and ε-nssts– an extended model
that allows ε-transitions – with classical models such as two-way nondeterminis-

1 For a given prefix p and a given suffix s, the transformation from p.m.s to p.rev(m).s
is well-known as the inversion operator for a string representation of a chromosome
[10]. Thus, this transduction generates all inversions of a string.
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tic generalized sequential machines. In Sec. 4, we explore decision problems for
nssts and their subclasses. An interesting and robust subclass of nssts is that
of functional nssts: these can have multiple runs on a given input string, but
the output produced in each run is identical. We show that checking whether an
nsst is functional is decidable in pspace, and show that checking equivalence
of functional nssts is pspace-complete.

In [2], the authors show how dssts can be viewed as natural models for a class
of sequential heap-manipulating programs, and reduce the verification problem
for such programs to decidable problems for dssts. A key application for nssts
would be in understanding the theoretical limits of verification problems for
concurrent heap-manipulating programs. Here, we wish to verify if the set of
behaviors of the concurrent program (say m1 ‖ m2) is a subset of the set of
behaviors engendered by some sequential execution of the programs m1 and m2.
For instance, checking linearizability of a set of methods often entails such a
check. With this goal in mind, we show that checking if the set of outputs of
an nsst is contained within the set of outputs generated by a fixed number of
dssts is decidable with pspace complexity.

2 Transducer Models

In this section, we introduce definitions related to transductions, review existing
models for specifying transductions, and formally define nssts. We observe the
following convention: the letters R and W denote transductions, and the letters
T , D denote the transducers implementing transductions.

Transduction. A transduction R from a finite input alphabet Σ to a finite output
alphabet Γ is a subset of Σ∗ × Γ ∗. A transduction is deterministic if for every
x ∈ Σ∗, there is at most one y such that (x, y) ∈ R, i.e., R is a partial function.
Otherwise, we say that the transduction is nondeterministic. Given an input
x ∈ Σ∗, we use R(x) to denote the set {y | (x, y) ∈ R}.

Valuedness. A transduction is called finitary if for every x ∈ Σ∗, the set R(x) is
finite. A transduction R is said to be k-valued for a given constant k, if the fol-
lowing holds: ∀x∈Σ∗ : |R(x)| ≤ k. A transduction is said to be bounded-valued
if there exists some constant k such that R is k-valued. A 1-valued transduction
is also called a functional transduction. A transduction is called bounded-length
if there exists a constant k such that for all x ∈ Σ∗ and for each y in R(x),
|y| ≤ k.|x|. Note that a bounded-valued transduction is obviously finitary, while
every bounded-length transduction is also finitary: for a constant k, and a given
input x, there are finitely many strings of length k.|x|.
Example 2.1. Consider the transduction Rcp ⊆ {a}∗ × (Γ ∪ {#})∗ defined as
the set {(an, w#w)|n ≥ 0, w ∈ Γ ∗, |w| = n}. Rcp maps an input an to a string
containing two identical copies of some output string of length n, separated by
#. As there are only finitely many strings of length n, Rcp is finitary. Further,
note that Rcp is bounded-length: for an input of length n, the output length is
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(2.n + 1). However, Rcp is not bounded-valued as the number of output strings
for an input of length n is |Γ |2n.

Example 2.2. Consider the transduction Rmult ⊆ Σ∗ × Σ∗ defined as the set
{(w, wm) |m ≥ 1, w ∈ Σ∗}. Rmult is nonfinitary, as it maps the input string w
to the set of all multiples of the string w. Clearly, Rmult is neither bounded-
valued nor bounded-length.

2.1 Background

We assume that each machine in the following discussion has finite input and
output alphabets Σ and Γ respectively. Each machine reads words from Σ∗, and
outputs words in Γ ∗. We use the notation �M� to define the semantics of M : for
an input string w ∈ Σ∗, �M�(w) defines the set of outputs of M on input w.

Finite Transducers. A finite sequential transducer (denoted as nft) is a finite-
state device that has a one-way read-only input tape and a one-way output tape.
It scans the input tape from the left to the right, and in each state it reads an
input symbol, writes a finite string to the output tape, changes its state, and
moves its reading head to the next position on the input tape. In each such step,
it can nondeterministically choose its next state and the output string that it
writes. The output of an nft is the string on the output tape if the nft finishes
scanning the input tape in some designated final state. Formally, we define an
nft T as the tuple (Q, Σ, Γ, E, q0, F ) where Q is a finite nonempty set of states,
Σ and Γ are input and output alphabets, E is a set of transitions defined as
a finite subset of Q × (Σ ∪ {ε}) × Q × Γ ∗, the state q0 ∈ Q is an initial state,
and F ⊆ Q is a set of final states. An nft may contain transitions in which
the nft writes some output string or changes state without moving its reading
head. We call such transitions as ε-transitions, and a nft in which such moves
are disallowed is called a ε-free nft or a nondeterministic generalized sequential
machine (ngsm).

Two-way Machines. A two-way nondeterministic generalized sequential machine
(denoted 2ngsm) is a finite-state device with a two-way read-only input tape
and a one-way output tape. In each step, the machine reads an input symbol,
changes its state, writes a finite string to its output tape, and moves its input
head as per its finite-state control. The input head either does not move (denoted
by 0), or is moved to the left (−) or to the right (+). In each such move, it has
a finite number of nondeterministic choices for the next state, output string
written and the direction for moving its head. The string on the input tape is
assumed to be 
w�, where 
 and � (�∈ Σ) are special symbols known as the left
and right end-markers. The ngsm halts if it moves right from �, or left from 
.
It is possible that the computation of the machine may not terminate; however,
only halting runs contribute to the output. The output of the machine is the
string on the output tape if the machine terminates in a designated final state.
Formally, a 2ngsm is specified as the tuple (Q, Σ, Γ, E, q0, F ), where Q, Σ, Γ ,
q0 and F are defined as for finite transducers, while the set of transitions E is
defined as a finite subset of (Q × Σ ∪ {
,�} × Q × {−, 0, +} × Γ ∗).
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Determinism and Valuedness. The definition of determinism is the standard
one: no two distinct transitions starting in a state q have the same input symbol
symbol a. The deterministic versions of the machines defined above are denoted
as dft, dgsm, and 2dgsm. The transductions implemented by a dft, a dgsm

and a 2dgsm are obviously 1-valued (and thus finitary). Further, these transduc-
tions can also be shown to be bounded-length, as on an input of length n, these
machines take at most n steps, and each step contributes a constant number of
symbols to the output. In an ngsm, there are only finitely many paths corre-
sponding to each input string, and the length of output along each such path
grows proportional to that of the input. Thus, the transductions implemented
by an ngsm are bounded-length (and thus finitary) as well. However, note that
the transductions implemented by an ngsm are not bounded-valued in general.
The transductions implemented by nfts and 2ngsms are neither finitary nor
bounded-length.

MSO-definable String Transductions. String transductions can be described us-
ing Monadic Second Order logic [4,6]. The input to such a transduction is a
string w = w1w2 . . . wk viewed as an input string graph Gi with k+1 vertices
v0, . . . , vk, where the label of each edge (vi, vi+1) is wi. The labels for the ver-
tices and the edges appearing in the output string graph are expressed in terms
of MSO formulas over a fixed number of copies of Gi. Formally, a determinis-
tic MSO-definable string transduction (dmsos) W is specified by2 : (1) a finite
copy set C, (2) for each c ∈ C, vertex formulas ϕc(x), which are MSO formulas
with one free first-order variable variable x, and (3) for each a ∈ (Γ ∪ {ε}),
c, d ∈ C, edge formulas ϕc,d

a (x, y), which are MSO formulas with two free first
order variables x and y. The output graph (Go) is defined as follows: for each
vertex x in Gi and c ∈ C, the vertex xc is in Go if the vertex formula ϕc(x) is
true, and for all vertices xc, yd, there is an edge (xc, yd) labeled by a if the edge
formula ϕc,d

a (x) is true. Finally, the output is defined as the string formed by the
sequence of symbols (other than ε) that are the obtained by reading the labels
of edges of the output graph Go in order. If Go is not a legal string graph the
output is undefined. In case of MSO-definable transductions, we use the notation
�W �(x) synonymously with W (x), where x is an input string.

The nondeterministic variant of MSO-definable string transductions is ob-
tained by adding free second-order variables X1, . . . ,Xn that range over sets of
vertices. The vertex and edge formulas in this case have these variables as addi-
tional arguments. To obtain the output string graph, a (global) valuation of the
second-order variables X1, . . . ,Xk is chosen, and then the output string graph is
obtained as in the deterministic case. As the valuation for X1, . . . ,Xk is chosen
nondeterministically, there can be multiple possible outputs for a given input
string.
2 We present a definition slightly modified from the one in [6]. For ease of exposition,

we omit specification of a domain formula ϕdom, as it can be included to be a part
of the vertex and edge formulas. We also allow edges in the output graph to be
labeled with the empty string ε. It can be shown that such MSO-transductions are
equivalent to MSO-transductions that do not make use of ε-labels.
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Example 2.3. Consider the transduction Rss = {(w, u#v)|u, v are subsequences
of w}, where u, v, w ∈ Σ∗, and # �∈ Σ. We define Rss as a nmsos transduc-
tion W by choosing the copy set C = {1, 2}, and two parameters X1 and
X2. We use the formula edgea(x, y) to denote that there is an edge labeled
a between vertices x and y, and the formula last(x) (resp. first(x)) to denote
that x is the last (resp. first) node in the input string graph. We now define
the edge formulas: ϕ1,2

# (x, y,X1,X2) ≡ last(x) ∧ first(y), and, ∀j ∈ C, ∀a ∈ Σ:
ϕj,j

a (x, y,X1,X2) ≡ (x ∈ Xj) ∧ edgea(x, y), and ∀j ∈ C: ϕj,j
ε (x, y,X1,X2) ≡ (x �∈

Xj)∧∨
a∈Σ edgea(x, y). Intuitively, the second order variable X1 is used to guess

which positions of the original string contribute to u, while X2 independently
guesses which positions contribute to v. ��

Hennie Machines. A two-way machine with a writable input tape and a write-
only output tape is defined in similar fashion to a 2ngsm. The instructions of
such a machine M are of the form (q, σ/α, q′, γ), which means that in state q, M
reads the symbol σ from the tape, overwrites it with the symbol α, transitions
to the state q′ and writes the finite string γ to the output tape. Here, σ, α ∈ Σ,
where Σ is the tape alphabet, and γ ∈ Γ ∗, which is the output alphabet. A
computation of M is called k-visiting, if each position of the tape is visited at
most k times. A Hennie machine is such a two-way machine with the property
that there exists a constant k such that every computation of the machine is
k-visiting. The classes of string transductions realized by nondeterministic and
deterministic Hennie machines are denoted by nhm and dhm, respectively.

Example 2.4. Consider the transduction Rcp of Ex. 2.1. In [6], it is shown that
Rcp can be realized by an nhm moving in two left-to-right passes over the tape.
In the first pass, it nondeterministically overwrites the input string an with some
output string w, and also writes w to the output. It then scans backward to the
beginning of the (overwritten) input, writes # to the output, and copies the
contents of the input tape to the output a second time. The nhm is 3-visit. ��

2.2 Streaming String Transducers

Deterministic streaming string transducers (dsst) have been proposed as an
effective machine model for MSO-definable string transductions [2,1]. A dsst

makes a single left-to-right pass over the input string mapping it to the out-
put string, while using a fixed set of string variables that can store strings over
the output alphabet. In each step, a dsst reads an input symbol a, changes
its state and updates all its string variables simultaneously using a copyless as-
signment. The right-hand-side (RHS) of any assignment to a string variable is
a concatenation of output symbols and some string variables, with the restric-
tion that in a given parallel assignment, any string variable can appear at most
once across all the right-hand-sides. For instance, let X = {x, y} be the set
of string variables, and let α, β, γ ∈ Γ ∗ be strings of output symbols. Then,
the update (x, y) = (α.x.β.y.γ, ε) is a copyless assignment, as it contains only



Nondeterministic Streaming String Transducers 7

one occurrence of x and y each. On the other hand, the assignment (x, y) =
(x.y, y.α) is not copyless as the variable y appears in the RHS twice. The two
main extensions to the dgsm model are that (1) dssts are not constrained to
add output symbols only at the end of the tape, and (2) they can compute
the output in multiple chunks that can be extended and concatenated (but not
duplicated) as needed.

We now present a nondeterministic extension of dssts: the class of nondeter-
ministic streaming string transducers (nssts). An nsst is defined as the tuple
(Q, Σ, Γ, X, E, q0, F ), where Q is a finite nonempty set of states, Σ and Γ are
respectively the input and output alphabets, X is a finite set of string vari-
ables with A as a set of copyless assignments to variables in X (mappings α
from X to (X ∪ Γ )∗ such that for any x ∈ X , x appears at most once in the set
{α(y) | y ∈ X}), E is a set of transitions that is a finite subset of (Q×Σ×A×Q),
q0 is an initial state, and F : Q → (X ∪ Γ )∗ is a partial output function such
that for every q ∈ Q and x ∈ X , there is at most one occurrence of x in F (q).

Semantics. We first make an observation: copyless assignments are closed under
sequential composition, i.e., if α1 and α2 are copyless assignments, the assign-
ment α1 ◦ α2 is also copyless. We define the semantics of an nsst in terms of
the summary of a computation of the nsst. For an nsst starting in state q
and processing the input string w, the summary is a set of pairs of the form
(α, q′), where α represents the effect of a sequence of copyless assignments to
the string variables, and q′ is a possible next state. Let id denote the iden-
tity assignment, i.e., it maps each x to x. We inductively define the sum-
mary Δ as a mapping from Q × Σ∗ to 2A×Q, where: Δ(q, ε) = {(id, q)}, and
Δ(q, w.a) = {(αw ◦ α, q′) | ∃q1, s.t. (αw, q1) ∈ Δ(q, w) ∧ (q1, a, α, q′) ∈ E}.

A valuation of a string variable is defined as the function ν : X → Γ ∗, which
maps each variable to some string in Γ ∗. Such a valuation is extended to map
strings in (X ∪ Γ )∗ to Γ ∗ in a natural fashion. Let νε be the initial valuation,
where for all x ∈ X , νε(x) = ε. We define the semantics of an nsst T as the set
of outputs �T �(w) generated by T on input string w:

�T �(w) = {νε(αw◦F (q)) | (αw , q) ∈ Δ(q0, w) and F (q) is defined}.
We now illustrate the model using a couple of examples.

Example 2.5. The nsst Tss implementing the transduction Rss from Ex. 2.3 has
a single state q and uses two string variables x and y. For each input symbol a, it
nondeterministically decides to append a to x or y or both or none. Formally, the
transitions of Tss are of the form (q, a, (x, y) := (x.γ1, y.γ2), q), where γ1, γ2 ∈
{ε, a}. The output function is defined as F (q) = x.#.y. ��
Example 2.6. The nsst Tcp implementing the transduction Rcp from Ex. 2.1 has
a single state q and uses two string variables x and y. For each input symbol it
nondeterministically chooses an output symbol γ ∈ {a, b} and appends it to both
x and y, i.e., the set of transitions E = {(q, a, (x, y) := (x.γ, y.γ), q) | γ ∈ {a, b}}.
The output function is defined as F (q) = x.#.y. ��
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Extensions and Subclasses. An nsst with ε-transitions (ε-nsst) can update its
string variables and change state without consuming an input symbol, i.e. E is
a finite subset of (Q× (Σ ∪ {ε})×A×Q). As we will see in Sec. 3, an ε-nsst is
more powerful than an nsst as it can implement nonfinitary transductions.

Lastly, we note some important subclasses of nssts, based on their valued-
ness. An nsst T is said to be k-valued, if the underlying transduction that it
implements is k-valued, i.e. for a given constant k, ∀w ∈ Σ∗, |�T �(w)| ≤ k. If
there exists some constant k such that T is k-valued, we say that T is bounded-
valued, and if k = 1, we say that the nsst is functional. In other words, all runs
of a functional nsst on the same input string, which end in a state q where F (q)
is defined, produce the same output string. Thus, the transduction realized by
such an nsst is a partial function. Functional nssts are an interesting subclass
of nssts, as their decision problems have good algorithmic properties.

3 Expressiveness Results

In this section, we first show that nssts are closed under sequential composition,
and they implement bounded-length transductions. We then compare nssts with
the class of nmsos-transductions, and show that they have the same expressive
power. Lastly, we compare the expressive power of ε-nssts with that of 2ngsms.

3.1 Properties of nssts

Sequential Composition of dssts. Let (Σ, Γ )-dsst be the shorthand for a dsst

that has Σ and Γ as its input and output alphabets respectively. Let T1 be
a (Σ1, Σ2)-dsst, with the set of states Q1, and the set of string variables X1,
and let T2 be a (Σ2, Σ3)-dsst with the set of states Q2 and the set of string
variables X2. We review the construction from [1] to construct the (Σ1, Σ3)-
dsst Ts = T1 ◦ T2, i.e., Ts is the sequential composition of T1 and T2. Let the
set of states and the set of string variables of Ts be Qs and Xs respectively.
When computing the sequential composition, the input to T2 is the output of
T1. Hence, the contents of any string variable x ∈ X1 are a possible input to
T2. Ts encodes the sequential composition as follows: (1) it simulates the action
of T1 by recording the state of T1 in its state, and, (2) at each step during the
simulation, it records maps f and g in its state, and uses these in conjunction
with its string variables to record the summary of T2 starting in each possible
state r ∈ Q2, on the contents of each string variable x ∈ X1.

We now formally define these maps. Recall that ν(x) denotes the valuation of
the variable x. We define the map f from Q2 ×X1 to Q2, such that f(r, x) = r′

if Δ2(r, ν(x)) = (α′, r′). For each state r ∈ Q2 and each string variable x ∈ X1,
Ts records the map f(r, x) in its state. A copyless assignment α in T2 maps each
y ∈ X2 to some concatenation of symbols from Σ3 (the output language of T2)
and X2. Thus the shape of α is some string of the form s1.y1.s2.y2.s3, where
the sk’s are some finite strings in Σ∗

3 and yj ’s are variables in X2. Ts uses its
string variables z ∈ Xs to store these sk chunks in such a manner that (1) no
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two variables in Xs appear consecutively, and (2) none of the variables in Xs or
X2 are repeated (in keeping with the copyless restriction on assignments). The
shape of each α(y) expression is then a string in (X2∪Xs)∗. We define the map g
from (Q2×X1×X2) to (X2∪Xs)∗, such that for each state r ∈ Q2, and for each
x ∈ X1, g(r, x, y) is the string that describes the shape of α(y). Thus, a state of
Ts is the tuple (q, f, g) ∈ (Q1× [(Q2×X1) → Q2]× [(Q2×X1×X2) → (X2∪Xs)∗].

It can be shown that the maximum number of z-variables required for each
state r ∈ Q2 and each string variable x ∈ X1 is 2.|X2|. Thus, the total number
of string variables required for Ts is 2.|X2|.|Q2|.|X1|. Further, as the z and y
variables strictly interleave and do not repeat, the number of possible shapes
is finite. This is key to ensure that the size of Ts (number of states and string
variables) is finite.

Example 3.1. Suppose that T2 contains the transitions:
t1 : (r0, a, (y1, y2) :=(c.y1.d, e.y2), r1) t2 : (r0, b, (y1, y2) :=(y1.y2.g, ε), r1)
t3 : (r1, b, (y1, y2) :=(g.y1.h, e.y2.d), r0)

The state of Ts when T1 is in state q and ν(x1) = abb encodes the effect of T2

executing transitions t1, t3 and t2 (in that order), and is of the form (q, f, g). Here
f(r0, x1) = r1, g(r0, x1, y1) = z1.y1.z2.y2.z3, and g(r0, x1, y2) = z4. The valuation
for the variables of Ts is: ν(z1) = gc, ν(z2) = dhee, ν(z3) = dg, and ν(z4) =
ε. Similarly, if ν(x2) = bbb, we encode the effect of T2 executing t2, t3, and t2,
and define f(r0, x2) = r0, g(r0, x2, y1) = v1.y1.v2.y2.v3, and g(r0, x2, y2) = v4.
The valuation of the variables is: ν(v1) = g, ν(v2) = ε, ν(v3) = ghedg, and
ν(v4) = ε. ��
Invariant. Suppose Δ1(q1

0 , w) is (α, q) (i.e., the summary of T1 after reading
w, beginning in its initial state q1

0). Suppose the state of Ts after reading the
input word w is (qs, f, g) and the valuation of its string variables is νw. Then the
following invariant holds: if Δ1(q1

0 , w) = (α, q), then qs = q, and, if Δ2(r, ν1(x)) =
(β, r′), then f(r, x) = r′, and for each y, νw(g(r, x, y)) = β(y).

Thus, to model the effect of a transition of T1 of the form (q, a, α, q′), we add
an edge of the form ((q, f, g), a, α′, (q′, f ′, g′)), where the maps f ′, g′, and the
assignment α′ to the variables of Ts are defined in a manner that satisfies the
above invariant.

Example 3.2. Consider the state in Ex. 3.1. Now suppose that T1 executes the
transition (q, a, (x1, x2) := (x2.x1, ε), q′). Suppose the resulting state of Ts is
(q′, f ′, g′). We only explain how the updates to the variable x1 are encoded. To
model the assignment x1 := x2.x1, we define f ′(r0, x1) = f(f(r0, x2), x1) which
evaluates to r1 (as seen from Ex. 3.1). Similarly, the map g′(r0, x1, y1) is obtained
by sequentially composing the maps g(r0, x2, y1) and g(r0, x1, y1) from Ex. 3.1.
The result of the composition yields the expression z1.v1.y1.v2.y2.v3.z2.v4.z3,
which is then compressed by combining adjacent zi and vi variables. Thus,
g′(r0, x1, y1) is defined to be z1.y1.v2.y2.z3 with the copyless assignments z1 :=
z1.v1 and z3 := v3.z2.v4.z3 (and no change to the other variables). Similarly,
we can compute g′(r0, x1, y2) = z4 by looking at the maps g(r0, x2, y2) and
g(r0, x1, y2). ��
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Sequential Composition of nssts. We now show that nssts are closed under
sequential composition.

Theorem 3.1. Let T1 be a (Σ1, Γ1)-nsst, T2 be a (Σ2, Σ3)-nsst, then one can
effectively construct Ts, a (Σ1, Σ3)-nsst such that for all strings w ∈ Σ∗

1 , we
have �Ts�(w) =

⋃
u∈�T1�(w)

�T2�(u).

Proof. The construction for the sequential composition of dssts extends to the
case of nssts in a straightforward fashion. We show how to compute the nsst

Ts = T1 ◦ T2. A run of Ts simulates a run of T1 on the input string w, and
simultaneously summarizes the action of some transition of T2 on the contents
of the string variables of T1. This summary is stored with the help of the maps
f and g that are part of its state, and its string variables. Thus, a state of Ts is
a finite subset of (Q1 × [f : Q2 ×X1 → Q2]× [g : Q2 ×X1 ×X2 → (X2 ∪Xs)∗]).

Unlike the deterministic case where the computation summary is a pair, the
summary Δ2(r, ν(x1)) of T2 is the set of pairs {(β1, r1), (β2, r2), . . .}. To ac-
commodate this, we define an invariant that all states of Ts satisfy: If Ts is
in the state (q, f, g) upon reading input string w, with the valuation νw for
its string variables, then for some α, (q, α) ∈ Δ1(q1

0 , w), and, if f(r, x) = r′,
and νw(g(r, x, y)) = β, then (β, r′) ∈ Δ2(r, ν1(x)). For a transition of the
form (q, a, α, q′) in T1, we add a transition ((q, f, g), a, α′, (q′, f ′, g′)) to Ts, such
that the copyless assignment α′, and the maps f ′ and g′ satisfy the invariant
(for the input w.a). We finally remark that the number of variables of Ts is
2.|X2|.|Q1|.|X1|, (the same as for dssts) and as the maps f , g are finite, the
number of states required for Ts is also finite. ��
Theorem 3.2. The transduction implemented by an nsst T is bounded-length,
i.e., there exists a constant c such that ∀w ∈ Σ∗, if u ∈ �T �(w), then |u| ≤ c.|w|.
Proof. We use the notation |α(x)| to denote the number of output symbols in
the expression α(x). We define |α| =

∑
x(|α(x)|). Now let max = maxE(|α|),

i.e., the maximum number of output symbols added by any transition in T . Let
uw be the shorthand for some output of T upon reading the string w. We prove
the result by induction on the length of the input. The base case is valid; since
if |w| = 0, the length of uw is zero. The inductive hypothesis is stated as follows:
for input w, if uw ∈ �T �(w), then |uw| ≤ max.|w|. Now consider an input of the
form w.a, and let q be the state of T after reading w. Let E′ be the subset of
E containing transitions of the form (q, a, β, q′). The number of output symbols
added by any transition in E′ is bounded by maxE′ |β|. However, by definition,
max ≥ maxE′ |β|. Thus, for any uw.a ∈ �T �(w.a), |uw.a| ≤ max.|w| + max.
Thus, |uw.a| ≤ max.|w.a|, since |w.a| = |w| + 1. ��

3.2 Comparison with Existing Models

For classes of transductions C1 and C2, we denote by C1 ⊆ C2 the fact that for
every transducer T of type C1, there is a transducer T ′ of type C2 such that
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�T � = �T ′�. We say that C1 is equi-expressive to C2 if C1 ⊆ C2 and C2 ⊆ C1.
The following relationships are known: dmsos = 2dgsm [6], dmsos = dsst [1],
nmsos �⊆ 2ngsm and 2ngsm �⊆ nmsos [6]. We now compare the expressive power
of nssts with respect to that of existing models/machines for nondeterministic
transductions such as nmsos-transductions, ngsm, and 2ngsm.

Expressive power of ngsm vs. nsst. A ngsm is a nsst with a single string
variable (say x), and every transition is of the form (q, a, x := x.γ, q′), where
a ∈ Σ, and γ ∈ Γ ∗. Thus, ngsm ⊆ nsst.

Expressive power of nmsos vs. nsst. We now show that the the class of nssts
is equi-expressive to nmsos-transductions. We first show that for every nsst

T we can define a nmsos transduction W such that �T � = �W �. In [1], the
authors shows how a sequence of states and copyless assignments of a dsst

can be encoded in the copy set of a dmsos-transduction. As a run of an nsst

T is such a sequence of states and assignments, it can also be encoded in the
copy set of a dmsos-transduction. The key ideas in this construction are: (1)
Let nx = maxE |α(x)| (i.e. the maximum number of output symbols added
by any assignment to the string variable x). Then, assignments to x can be
encoded within a copy set that has at most nx + 2 copies. In any step, for each
string variable x, we maintain a designated start vertex xb and a designated
end vertex xe for x, and the valuation of x (ν(x)) is obtained from the string
graph corresponding to the path beginning at xb and ending in xe. This graph
is linear and connected by construction. (2) Concatenation of string variables,
say x := x.y, is encoded by adding an edge between xe and yb. (3) A state of the
streaming transducer can be encoded by an MSO-formula on the input graph
(these formulas essentially capture the next-state function). (4) The output is
defined if the output graph – the sequence edges beginning in the start vertex
for the output and concluding in the end vertex – is a string graph.

Lemma 3.1. nsst ⊆ nmsos.

Proof. Recall that a nmsos transducer W has a finite copy set C, and a finite
set of parameters X = {X1, . . . ,Xm}, i.e., second order variables ranging over
sets of vertices. This proof combines two main ideas: (a) a given run of a nsst

T can be encoded in the finite copy set of a nmsos transducer W , and, (b) each
run of T can be guessed by W by guessing a valuation for its parameters. The
construction for part (a) is as discussed, for details see [1]. We focus on part (b).

As T is nondeterministic, there may be multiple transitions on a given input
symbol that are enabled in a state q. However, as the assignment in each transi-
tion is a copyless assignment over the same set of string variables, the copy set
required is the same as that for encoding a single run. However, different runs
may label an edge in the copy set with different labels.

To make the nmsos transduction W mimic a single run of T , we add param-
eters that consistently choose among the different labels available for a given set
of edges. Let the maximum number of transitions of T from any state q on any
input symbol a be d. Then, W uses the set of parameters X = {X1, . . . ,Xd}.
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Intuitively, the jth nondeterministic transition of T is chosen by W if the corre-
sponding vertex of the input graph is present in the valuation chosen for Xj by
W . Choosing the jth transition fixes a particular assignment αj to each string
variable. Now for each edge formula ϕi,j

a (x, y) that encodes the action of αj , we
define ϕi,j

a (x, y,X1, . . . ,Xd) = ϕi,j
a (x, y) ∧ (x ∈ Xj). We can similarly encode the

next state function in terms of the parameters.
We also assume that each of the vertex and edge formulas is conjoined with

a domain formula that specifies that for any vertex x ∈ Gi, x is contained in at
most one Xj in a given valuation, and the union of all Xj covers the set of all
vertices of the input graph3. In other words, using the parameters in X , W first
guesses a possible sequence of choices at each state in T , and then encodes that
sequence using the copy set and next-state relations (which are MSO-formulas as
in the deterministic case). It is obvious that the number of parameters required
is at most d, and thus finite. ��
In Lemma 3.2, we show that for every nmsos W , we can obtain a nsst T such
that �W � = �T �. The key idea is that a nmsos transduction is essentially the
sequential composition of a string relabeling with a dmsos transduction, both
of which are expressible as nssts.

Lemma 3.2. nmsos ⊆ nsst.

Proof. We recall from [6], that any nmsos transduction W can be written as the
sequential composition of a string relabeling and a dmsos transduction. A string
relabeling nondeterministically substitutes each symbol in w with a finite string
in Γ ∗. A string relabeling can be easily encoded by an nsst T1 that has one
state q, one string variable x, and for all a ∈ Σ, its transitions are of the form
(q, a, x := x.γ, q), where γ is a finite string in Γ ∗. From [1], we know that for
every dmsos W , there exists a dsst T2 that implements the same transduction.
Every dsst is an nsst, and from Theorem 3.1 we know that nssts are closed
under sequential composition; thus, T = T1 ◦ T2 is a nsst s.t. �W � = �T �. ��
From Lemmas 3.1 and 3.2, we can conclude that nssts are equi-expressive to
nmsos-transductions, formalized in Theorem 3.3 below.

Theorem 3.3. nsst = nmsos.

Comparing ε-nssts with existing models. We now investigate the expressive
power of ε-nssts, i.e., nssts that are allowed transitions without consuming
any input symbol. The expressive power of ε-nssts is greater than that of nssts:
consider an ε-nsst in which there is a state q reachable from the initial state q0

on the input string w, and q has an ε-loop (a cycle with only ε-transitions) that
adds some symbols to the output. The set of outputs for any input with w as its
prefix is infinite, as the ε-nsst can cycle through the ε-loop an infinite number
of times. Thus, the transduction realized by a general ε-nsst is nonfinitary.
3 It further ensures the technicality that if the number of outgoing transitions of T

corresponding to a particular state and input symbol is d′, where d′ < d, then in
this case, all Xj where j > d′ always evaluate to the empty set.
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If we restrict ε-nssts so that they are ε-loop-free, then we can show that the
class of such transducers coincides with nssts. The proof uses a construction
similar to the one used for eliminating ε-transitions in NFAs: a finite sequence of
transitions of the form (q1, ε, α1, q2), . . ., (qn, ε, αn, qn+1), (qn+1, a, β, q′) can be
replaced by the single transition: (q1, a, α1 ◦ . . .◦αn ◦β, q′). Since the transducer
is ε-loop-free, an infinite sequence with ε-transitions does not exist.

We now compare ε-nssts with 2ngsms. Though both classes can implement
nonfinitary transductions, we show that their expressive power is incomparable.
We first note that nmsos �⊆ 2ngsms [6], and as nsst = nmsos (Theorem 3.3),
and nsst ⊆ ε-nsst, we have that ε-nsst �⊆ 2ngsm, i.e., there are transductions
implemented by nssts and ε-nssts that cannot be implemented by 2ngsms. We
further show that 2ngsm �⊆ ε-nsst, by an example transduction that can be
realized by a 2ngsm but cannot be realized by an ε-nsst. A similar example
is used in [6] to show the incomparability of nmsos with 2ngsm; however, the
argument used therein is not applicable in our setting, as the transductions
realized by both 2ngsms and ε-nssts are nonfinitary.

Theorem 3.4. The transduction Rmult = {(w, wm) |m ≥ 1, w ∈ Σ∗} can be
realized by a 2ngsm, but cannot be realized by an ε-nsst.

Proof. The 2ngsm implementing the transduction Rmult has three states q, qb

and halt. It starts in state q scanning the input 
w� from left to right, simul-
taneously copying it to the output. Upon reaching �, it either transitions to the
state halt and moves right from �, or transitions to qb and scans the input from
right to left without producing any output. Once it reaches 
, it transitions back
to the state q.

We note that Rmult is a nonfinitary transduction. If there is a ε-nsst Tε that
implements it, it must have a ε-loop on some state q that is reachable from the
initial state q0. We denote the summary of Tε for the ε-loop by Δ(q, ε-loop).
Suppose Δ(q, ε-loop) = (β, q). Let u, v ∈ Σ∗ be substrings of w such that u.v =
w, u is the input that drives Tε from q0 to q, and v is the input that drives
Tε from q to some state q′ (possibly the same), where F (q′) is defined. Now let
Δ(q0, u) = (α1, q), Δ(q, v) = (α2, q

′). Then Δ(q, w) is the set {(α1 ◦α2, q
′), (α1 ◦

β ◦ α2, q
′), (α1 ◦ β ◦ β ◦ α2, q

′), . . .}.
Suppose the number of symbols added to the output by α1 is t1, by β is t,

and by α2 is t2. Then the lengths of the outputs of Tε in state q′ are t1 + t2,
t1 + t + t2, t1 + 2.t + t2, and so on. However, Rmult requires that for any input
w, each of the outputs have length that is a multiple of |w|. This is possible
only if t1 = t2 = 0 and t = |w|. However, t is a fixed number for a given ε-loop,
and independent of the input w. Thus, once we fix Tε, it will produce incorrect
outputs for any w where |w| �= t. ��

Functional NSSTs. It is clear that the expressive power of functional nssts is
identical to that of the class dsst, as a transduction realized by a functional
nsst is single-valued and MSO-definable, i.e., a dmsos transduction, which is
the same as that for a dsst.
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Theorem 3.5. Functional nsst = dsst.

It is also easy to show that functional nssts are closed under sequential com-
position. The results follow from the fact that nssts are closed under sequential
composition, and single-valued transductions are closed under sequential compo-
sition. Finally, the expressivity relations between the different transducer models
are as shown in Fig. 1.

2ngsm

ε-nsst

nsst = nmsos = nhm

dsst = dmsos = dhm =
2dgsm = Functional nsst

dgsm

ngsm

Fig. 1. Expressivity Results

4 Decision Problems

In this section, we discuss decision problems for nssts, with special heed to the
class of functional nssts. In what follows, we make use of 1-reversal-bounded
m-counter machines. Such a machine is an NFA augmented with m counters,
where each counter can make at most one reversal (i.e., in any computation
each counter can go from increasing to decreasing mode at most once). It has
been shown that the nonemptiness problem for such machines is in nlogspace

in the size of the machine’s description. For further details on reversal-bounded
counter machines, please see [8].

Checking functionality. We now address the problem of checking if an arbitrary
nsst is functional. We show that this problem is decidable, and present an
algorithm with pspace complexity. To a large extent, our algorithm draws upon
techniques developed for checking equivalence of dssts discussed in [2]. We use
the following intuition: An nsst is not functional if there exists some input
string w such that there are outputs y1, y2 ∈ �T �(w) and y1 �= y2. We reduce
the problem of finding such distinct outputs to the nonemptiness problem for a
1-reversal-bounded 2-counter machine.

Theorem 4.1. For an nsst T , checking if T is functional is in pspace.

Proof. We construct a 1-reversal-bounded 2-counter machine M that for a given
input string w simultaneously simulates two paths in T corresponding to w,
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and checks if the resulting outputs u1 and u2 differ because of either of these
conditions: (1) |u1| �= |u2|, i.e., the lengths of u1 and u2 are different, (2) there
exists a position p such that the pth symbol in the string u1 (denoted u1[p])
differs from u2[p]. M nondeterministically chooses one of the above conditions
to check. Checking the first condition is easier and uses similar techniques as for
checking the second condition; thus, we focus on the latter. We now explain how
the second condition is checked.

M precisely keeps track of the state of T in each of the two paths being
simulated in its state. At the beginning of the computation, M pre-loads its
counters c1 and c2 with the same number; this number is the guess for the
position p in which the outputs might differ. For path i (i = 1, 2), at some step
in the simulation, M nondeterministically guesses that the symbol γi added by a
copyless assignment in this step appears at the pth position in the corresponding
output ui, and remembers γi in its state. It also guesses where each string variable
appears with respect to p in this output. Concretely, we define the mapping �
(called the string variable class) from X to an element of ζ = {L, R, C, N}. Here,
�(x) is L, R, C or N , depending on whether x appears to the left of p, to the
right of p, contains p, or does not contribute to the output respectively. For each
output symbol added to the left of p in the first path, M decrements the counter
c1, and for each output symbol added to the left of p in the second path, M
decrements c2.

Let the symbol ⊥ denote that M has not made its guess for the symbol in
position p. Let Γ ′ = Γ ∪ {⊥}. Formally, the set of states S of M is a subset
of (Q × Q × (Γ ′ × ζX) × (Γ ′ × ζX)). To elaborate, the meaning of some state
(q, q′, γ1, �1,⊥, �2) in M is: T reaches states q and q′ from its initial state on
the same input string; M has guessed that the symbol at u1[p] is γ1, M has
not yet guessed the symbol at u2[p], and the mappings from the string variables
to classes along the two paths are �1 and �2. Except for the initial transitions
where M pre-loads c1 and c2, all transitions of M decrement the counters by
some non-negative amount. Thus, the counters of M are single-reversal.

The transitions of M are defined in a way that ensures that M consistently
guesses the classes for each string variable. We illustrate this with two examples.
Suppose (q, a, (x, y) := (x.d.y, b), r) and (q′, a, α, r′) are two transitions in T .

Suppose in state r, M guesses that the symbol d added to the string vari-
able x appears at u1[p]. In order to maintain consistency, in state q, M must
have assigned x to the class L, and y to the class R. In other words, we add
a transition from the state (q, q′,⊥, [�1(x) = L, �1(y) = R], γ2, �2) to the state
(r, r′, d, [�′1(x) = C, �′1(y)], γ2, �

′
2), with no change to the counters. The mapping

�′1(y) maps y to any string class in ζ other than C, and the mappings �2 and �′2
similarly ensure consistency with the assignment α along the second path.

Now consider the case where in state r, M guesses that the contents of x
(which are now x.d.y) appear to the left of the position p in u1. In order to
maintain consistency, in state q, M must have assigned x and y to the class
L. Thus, we add a transition between the states (q, q′, γ1, [�1(x) = L, �1(y) =
L], γ2, �2) and (r, r′, γ1, [�′1(x) = L, �′1(y)], γ2, �

′
2) in M . As the assignment adds
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one letter to the left of p, M decrements c1 by one. Here, �′1(y) maps y to any
string class in ζ, and γ1 is propagated unchanged.

Initially, no string variable is guessed to be in the class C, and at each step
at most one string variable can be guessed to be in the class C. At the end of
a computation, if c1 = c2 = 0, then it means that the symbols γ1 and γ2 in the
state of M are symbols in the same position p in u1 and u2, i.e., γ1 = u1[p]
and γ2 = u2[p]. We define a state (q, q′, γ1, �1, γ2, �2) of M as accepting if (1)
c1 = c2 = 0, (2) γ1 �= γ2, (3) if for some x ∈ X , if �1(x) = C then F (q) = x 4, and
(4) if for some y ∈ X , if �2(y) = C then F (q′) = y. M thus accepts only those
paths that are witnesses to an input string that leads to two distinct output
strings. In other words, T is functional iff M is empty. The problem of checking
nonemptiness of 1-reversal bounded m-counter machines is in nlogspace in the
size of M . As the total number of states of M is (|Q|2.(|Γ | + 1)2.|ζ|2.|X|), i.e.,
exponential in the size of X , the above technique gives us a procedure that is in
pspace. ��

Equivalence Checking. We now discuss the equivalence problem for nssts. Given
two (Σ, Γ )-nssts T1 and T2, the equivalence problem is to determine if for all
inputs w ∈ Σ∗, �T1�(w) = �T2�(w). We start with a negative result that shows
that for the general case of nssts, checking equivalence is undecidable.

Theorem 4.2. The equivalence problem for nssts is undecidable.

Proof. As mentioned in Section 3.2, an ngsm is a special case of a nsst. The
result follows from the fact that the equivalence problem for ngsms is known to
be undecidable by a reduction from the Post Correspondence problem [7]. ��
If we restrict our attention to functional nssts, the equivalence problem is decid-
able and a minor modification of the algorithm for checking equivalence of dssts
in [2] can be directly applied to give a pspace complexity procedure. Moreover,
we show that the problem is in fact pspace-complete.

Theorem 4.3. The equivalence problem for the class of functional nssts is
pspace-complete.

Proof. Membership in pspace can be shown by using an algorithm similar to
the one for checking equivalence of dssts [2].

We further show that the problem is pspace-hard by a reduction from the
equivalence problem for NFAs. We can encode an NFA as an nsst T which uses
only one string variable x and never changes the value of x from the initial value
of ε. The states of the NFA are the same as the states of T . We define the output
function F of T such that for each final state qf of the NFA, in the corresponding

4 Here, we assume that, for all q, F (q) is defined to be some string variable x. An
nsst in which F (q) is an arbitrary expression α ∈ (X ∪ Γ )∗ can be converted to
an equivalent nsst of this form as follows: add a new state qf �∈ Q; for all q where
F (q) = α, add a transition from q to qf with the copyless assignment x := α on that
transition; finally, define F (qf ) = x, and F (q) as undefined.
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state of T , F (qf ) = x, and for all other states q of the NFA, F (q) is undefined.
Clearly, �T �(w) = {ε} implies that w is accepted by the NFA. Observe that
the nsst defined thus is functional: for all inputs w, �T �(w) is either empty or
contains exactly one symbol. If two such nssts T1 and T2 are equivalent, it means
that either (1) there exist runs of T1 and T2 in which both read the same input
string w, and produce the same output ε, or (2) all runs of T1 and T2 reading
the same input string w reach some states q and q′ respectively, such that F1(q)
and F2(q′) are undefined. In other words, two such nssts are equivalent iff the
encoded NFAs are equivalent. ��

Containment. The problem of checking if the transduction realized by an nsst

is contained within the outputs of a finite set of dssts is of particular interest in
applications such as the verification of concurrent heap-manipulating methods.
Given an nsst T , and dssts D1,. . . ,Dn, we show that the problem of checking
if the set of outputs of T is contained within the set of outputs of D1, . . . , Dn is
in pspace by reducing the problem to the nonemptiness problem for 1-reversal
m-counter machines.

Theorem 4.4. Suppose D1, . . . , Dn are (Σ, Γ )-dssts, and T is a (Σ, Γ )-nsst.
Checking if �T � ⊆ ⋃n

j=1�Dj�(w) is in pspace.

Proof. We observe that �T � �⊆ ⋃n
j=1�Dj�(w), if there is a run of T on the input

string w that produces an output ut such that for all the dssts Dj , either the
output of Dj on w is undefined, or the output of Dj is different from ut. Formally,

∃w∈ Σ∗,∃ut ∈ �T �(w) :
n∧

j=1

⎛
⎜⎝

�Dj�(w) is not defined ∨
|ut| �= |�Dj�(w)| ∨
∃pj : ut[pj ] �= �Dj�(w)[pj ]

⎞
⎟⎠ (4.1)

We can expand the above condition to obtain a disjunction over different
combinations of conjunctions of the inner disjuncts. Each term in this disjunct
illustrates a way in which ut is not generated by all of the n dssts. We construct
a 1-reversal (2.n)-counter machine M that nondeterministically decides to check
one of the conjunctive terms in (4.1). In particular, we show how M checks
the conjunction:

∧n
j=1 (ut[pj ] �= �Dj�(w)[pj ])), the other conjunctions are simpler

and can be checked by similar techniques.
M simulates the action of D1, . . . , Dn, and T in parallel. It precisely keeps

track of the states of each of these transducers in its state. For each pair (Dj , T ),
M maintains a pair of counters (cjt, ctj). For each of these n pairs, M pre-loads
the counters with some number pj (the same for both), which is the guess of
M for the position pj such that ut[pj ] �= �Dj�(w)[pj ]. At some point in its
simulation of T (resp. Dj), M guesses that it has output the symbol γtj = ut[pj ]
(resp. γjt = �Dj�(w)[pj ]) and remembers it in its state. It also guesses where
each string variable of T (resp. Dj) appears with respect to the position pj , thus
mapping each string variable to a class in ζ = {L, C, R, N}. For each output
symbol added by T (resp. Dj) to the left of pj , M decrements the counter ctj

(resp. cjt) by one.
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Let Γ ′ = Γ ∪ {⊥}, where ⊥ is the symbol indicating that M has not guessed
the symbol at position pj yet. The set of states of M is a subset of ((QT ×
Q1 × . . .×Qn)× (Γ ′2 × ζXT × ζX1)× . . .× (Γ ′2 × ζXT × ζXn )). The transitions
of M preserve consistency in its guesses for the string variable classes, using
the same technique as in the proof of Theorem 4.1. Note that apart from the
initial transitions of M that pre-load the counters, all transitions decrement the
counters by some non-negative number; thus M has only one reversal.

Once M reaches the end of the input string w, it checks if the symbol guessed
for Dj and T is at the same position pj , by checking if ctj = cjt = 0. We define
a state as accepting if for all j, cjt = ctj = 0, and for each pair of symbols
recorded in the state, γjt �= γtj . In other words, M accepts a computation iff
it encodes the parallel action of T , D1,. . .,Dm on an input string w, producing
an output ut in �T �(w) such that ut is different from each of the n outputs of
the transducers D1, . . . , Dn. Thus �T � ⊆ ⋃n

i=1�Di� iff M is empty. From [8],
we know that checking the nonemptiness of a 1-reversal m-counter machine is
in nlogspace (in the size of M). For a fixed n, the number of states of M is
dominated by an exponential in the size of the largest set among XT , X1, . . . , Xn.
Thus, the above construction yields us a procedure that is in pspace. ��

5 Discussion

Checking k-valuedness. A k-valued nsst naturally extends a functional nsst.
This class is not closed under sequential composition because given two k-valued
transducers T1 and T2, the nsst T1 ◦ T2 could be k2-valued. Checking if an
arbitrary nsst T is k-valued is decidable. We skip the proof in interest of brevity.
Similar to the proof of Theorem 4.1, the basic idea is to reduce k-valuedness of an
nsst to the nonemptiness problem for a 1-reversal-bounded (k.(k + 1))-counter
machine M that detects if there is some input w on which T produces (k + 1)
distinct outputs. M simulates (k + 1) copies of T in parallel, and for each pair
of the possible (k + 1) outputs, M uses a pair of counters to check if the outputs
are different. M is empty iff T is k-valued. Our approach can be viewed as an
extension of the algorithm to check the k-valuedness of nfts [9].

Equivalence of k-valued nssts. The equivalence problem for k-valued nfts has
been shown to be decidable in [5], and more recently in [13]. We are interested in
investigating the same problem for k-valued nssts. The approach in [5] reduces
the equivalence of k-valued nfts to the solution of an infinite system of word
equations, which by the validity of Ehrenfeucht’s conjecture, is equivalent to a
finite subsystem. The authors then show how the finite subsystem can be effec-
tively characterized for nfts, which leads to a decision procedure. The proof of
[5] relies on the fact that the valuedness of an nft is at the most its maximum
edge-ambiguity5. However, as the maximum edge-ambiguity of an nsst does not

5 The edge-ambiguity of a transducer is the maximum number of transitions between
any two states q and q′ that have the same input symbol.
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place such a bound on its valuedness, this proof strategy fails for proving the
decidability of equivalence checking for k-valued nssts. In [13], the authors rely
on a procedure to decompose a k-valued nft T into k functional nfts whose
union is equivalent to T . Whether such a decomposition can be generalized to
nssts remains open.

Bounded-valued NSSTs. The class of bounded-valued nfts has been extensively
studied in the literature [14], [11]. The class of bounded-valued nssts promises to
be a robust class. Unlike the class of k-valued nssts, it is closed under sequential
composition. In both [14] and [11], it is shown that the problem of checking if an
nft is bounded-valued can be checked in polynomial time by verifying certain
conditions on the structure of its transition diagram. We believe that it may
be possible to generalize these conditions to characterize bounded-valuedness
of nssts. However, the extension is not straightforward due to the presence of
multiple string variables, and allowing output symbols to be appended to the
left as well as to the right.

In summary, some of the interesting open problems are:

– Is the equivalence problem for k-valued nssts decidable?
– Given a k-valued nsst T can it be effectively decomposed into k functional

nssts T1,. . .,Tk, such that �T � =
⋃k

i=1 �Ti�?
– Is the bounded-valuedness of nssts decidable?

Applications. One of the motivations for studying nssts is their potential as
models for verifying concurrent heap-manipulating programs. In [3], the authors
study the problem of verifying linearizability of methods that modify linked-
lists. Checking linearizability of a pair of methods m1 and m2 involves verifying
if the interleaved execution of m1 and m2 (denoted by m1 ‖ m2) finishes with
the same linked-list as executing m1 followed by m2 (denoted by m1; m2) or
m2 followed by m1 (m2; m1). The authors show that with a specific regimen for
pointer updates this problem can be algorithmically solved.

In [2], the authors have demonstrated how sequential heap-manipulating meth-
ods can be modeled as dssts. Proving linearizability of methods m1 and m2

is thus the same as verifying if the interleaved product of the corresponding
dssts D1 and D2 is contained within their union, i.e., checking if �D1 ‖ D2� ⊆
(�D1 ◦ D2� ∨ �D2 ◦ D1�). In general, it may not be possible to model the inter-
leaved product of dssts as an nsst. However, if we identify a subclass of dssts
such their interleaved product is an nsst, then checking linearizability reduces
to checking containment of this nsst in the finite union of dssts (each of which
represents a possible sequential execution of the given dssts). We have shown
that checking containment is decidable in pspace. Thus, we believe that nssts
could serve as a foundational model of concurrent heap-manipulating methods,
by helping us better understand the theoretical limits of decidability of the ver-
ification problems for such methods.
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An Introduction to Randomness Extractors

Ronen Shaltiel�

University of Haifa

Abstract. We give an introduction to the area of “randomness extrac-
tion” and survey the main concepts of this area: deterministic extractors,
seeded extractors and multiple sources extractors. For each one we briefly
discuss background, definitions, explicit constructions and applications.

1 Introduction

Randomized algorithms and protocols play an important role in many areas of
computer science. It is often the case that such algorithms and protocols are
more efficient than deterministic ones. Moreover, having access to randomness
is essential for Cryptography.

Randomized algorithms and protocols are designed under the assumption that
computers have access to a sequence of truly random bits (that is a sequence of
independent and unbiased coin tosses). In actual implementations this sequence
is generated by taking a sample from some “source of randomness”. Examples
are:

– Generating and measuring electromagnetic or radioactive noise.
– Measuring timing of past events (e.g., how much time did the last disk op-

eration take?).
– Measuring user dependent behavior (e.g., timing of the key strokes of users).

While these sources seem to “contain randomness” in the sense that they have
entropy, a sample from such sources is not of the form of truly random bits.
Randomness extractors are algorithms that when given one sample from a weak
random source, produce a sequence of truly random bits.
The motivation described above led to a wide body of research concentrating on
three main concepts:

– Deterministic extractors, which we discuss in Section 2.
– Seeded extractors, which we discuss in Section 3.
– Multiple source extractors, which we discuss in Section 4.

It turns out that extractors have many applications beyond the original mo-
tivation presented in Section 1. We present few of these applications as we go
along (and stress that there are many other applications in the literature).

Our aim is to provide a brief introduction to the area. This article does not
attempt to be comprehensive and the reader is referred to [NTS99, Sha02, Vad07,
AB09] for some other survey articles.
� The author is supported by ISF grant 686/07.
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2 Deterministic Extractors

In this section we discuss “deterministic extractors”. The term “deterministic”
is used to distinguish these extractors from “seeded extractors” that we discuss
in Section 3. We begin with some notation. Throughout this manuscript we use
the terms “source” and “distribution” interchangeably.

Definition 1 (Statistical distance). Two distributions X, Y over the same
domain are ε-close if for every event A, |Pr[X ∈ A] − Pr[Y ∈ A]| ≤ ε. The sup-
port of a distribution X is Supp(X) = {x : Pr[X = x] > 0}. The uniform distri-
bution over {0, 1}m is denoted by Um and we say that X is ε-close to uniform if
it is ε-close to Um.

Two distributions that are ε-close assign essentially the same probability to all
events. In particular, randomized algorithms and protocols retain their useful
properties when run with distributions that are close to uniform (rather than
uniform). The motivation given in Section 1 leads to the following formal defi-
nition of an extractor (we also define a weaker object called a “disperser”).

Definition 2 (deterministic extractors and dispersers). Let m ≤ n be
integers and let ε ≥ 0 be a parameter. Let E : {0, 1}n → {0, 1}m be a function
and X be a distribution over {0, 1}n.

– E is an ε-extractor for X if the distribution E(X) is ε-close to Um.
– E is an ε-disperser for X if |Supp(E(X))| ≥ (1 − ε) · 2m.

Let C be a class of probability distributions over {0, 1}n.

– E is an ε-extractor for C if E is an ε-extractor for every X in C.
– E is an ε-disperser for C if E is an ε-disperser for every X in C.

Note that every ε-extractor is in particular an ε-disperser. We plan to extract
randomness from weak random sources and use this randomness in randomized
algorithms and protocols. In the scenario described in Section 1 the “computer
designer” can choose an implementation of the weak random source. Neverthe-
less, note that in the examples given there, this does not necessarily determines
the distribution of the source (as the environment in which the computer oper-
ates may change). This leads to the following goal.

Goal: Design extractors for “large” families of “interesting” sources.

2.1 Min-entropy: Measuring the Number of Random Bits in a Source

Let us start with a simple observation. If E : {0, 1}n → {0, 1}m is a 0-extractor
for X then for every x ∈ Supp(X), Pr[X = x] ≤ 2−m. (As otherwise, for an x′

with Pr[X = x′] > 2−m, we have that Pr[E(X) = E(x′)] > 2−m contradicting
the correctness of the extractor as Pr[Um = E(x′)] = 2−m and the two dis-
tributions E(X) and Um assign different probabilities to some event). Thus, a
necessary condition for extracting m random bits from a distribution X is that
for every x ∈ Supp(X), Pr[X = x] ≤ 2−m. This leads to the following concept
of entropy.
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Definition 3 (min-entropy). Let X be a distribution. The min-entropy of X
(denoted by H∞(X)) is H∞(X) = minx∈Supp(X) log 1

Pr[X=x] .

We use min-entropy to measure the amount of random bits that can be extracted
from a source.1 Note that a distribution with min-entropy at least m has that for
every x ∈ Supp(X), Pr[X = x] ≤ 2−m. By the previous discussion having min-
entropy at least m is a necessary condition for extracting m bits of randomness.2

We could hope that it is a sufficient condition and that there exists an extractor
E : {0, 1}n → {0, 1}m for all distributions with min-entropy at least m. However,
this does not hold. In fact, for every function E : {0, 1}n → {0, 1} there exists a
distribution X over {0, 1}n such that H∞(X) ≥ n−1 and yet E(X) is completely
fixed. (For this, take X to be the uniform distribution over S = {x : E(x) = b}
for b ∈ {0, 1} which gives |S| ≥ 2n/2).

Summing up, we cannot have an extractor that extracts even a single bit
from all distributions with very large min-entropy. Furthermore, if we plan to
use function E as an extractor for C, we cannot allow distributions that are
uniform on {x : E(x) = b} to be in the family C.

2.2 Explicitness

By the previous discussion, deterministic extractors and dispersers E : {0, 1}n →
{0, 1}m only exist for classes C of sources with some “special structure” where
each X in C has H∞(X) ≥ m. By the probabilistic method it is easy to show
existence of extractors for such classes C which contain “few sources”.

Existence of deterministic extractors: Let m ≤ n be integers, let ε > 0
and let C be a class with at most 2poly(n/ε) distributions over {0, 1}n. There
exist k = m + O(log n + log(1/ε)) such that if every X in C has H∞(X) ≥ k
then there exists E : {0, 1}n → {0, 1}m that is an ε-extractor for C.

However, for our intended application (as well as other applications that we
will consider) we require extractors that can be efficiently computed. In this
article we identify efficient computation with polynomial-time and this leads to
the following definition of explicitness.
1 It is natural to compare min-entropy with the more standard Shannon entropy given

by H(X) =
∑

x∈Supp(X) Pr[X = x] · log 1
Pr[X=x]

. Note that H∞(X) ≤ H(X) and

equality holds for “flat distributions” (that are uniform over their support). Loosely
speaking, min-entropy measures the amount of information in a distribution on the
“worst case” when taking a single sample, while Shannon entropy measures the
amount of information that a distribution has “on average” when taking many in-
dependent samples. Following this intuition, min-entropy is the right choice for our
setup as we are interested in the behavior of extractors on a single sample from the
source distribution.

2 The previous discussion only considered 0-extractors. However, it is easy to check
that if E : {0, 1}n → {0, 1}m is an ε-extractor for X then X is ε-close to some
distribution Y with H∞(Y ) ≥ m. Thus, a necessary condition for extracting m
random bits from a distribution X is that X is ε-close to some distribution with
min-entropy at least m.
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Definition 4 (Explicit extractors and dispersers). Let m(·), ε(·) be func-
tions over integers. A function E from strings to strings is an explicit ε(·)-
extractor (resp. disperser) if it can be computed in polynomial time, and for ev-
ery sufficiently large n, when restricted to inputs of length n, E outputs strings
of length m(n) and is an ε(n)-extractor (resp. disperser).

In the remainder of this section we survey some of the families of sources that
are considered in the literature on deterministic extractors and dispersers.

2.3 Deterministic Extractors for von-Neumann Sources

The notion of deterministic extractors can be traced back to von-Neumann
[vN51] who considered sequences of independent tosses of a biassed coin with
unknown bias.

Definition 5. A distribution X over {0, 1}n is a vN-source with probability
threshold p0 > 0 if X1, . . . , Xn are independent, and there exists p0 ≤ p ≤ 1− p0

such that for every 1 ≤ i ≤ n, Pr[Xi = 1] = p.

In order to extract one bit from such sources, von-Neumann [vN51] divided the
n input bits into pairs. The extractor scans the pairs one by one and if it finds a
pair of bits that are different, it stops and outputs the first bit in the pair.3 The
correctness of this scheme follows from the observation that for two independent
coin tosses X1, X2 of a coin with bias p, Pr[X1 = 0∧X2 = 1] = Pr[X1 = 1∧X2 =
0] = p · (1 − p). Moreover, the probability that n/2 independent pairs do not
produce an output bit is bounded by (p2

0 + (1 − p0)2)n/2 ≤ ε if p0 ≥ log(1/ε)
n .

It is easy to extend this approach to extract many bits. There is also work
on extracting a number of bits that approaches the information theoretic limit
[Eli72, Per92].

2.4 Impossibility of Extraction from Santha-Vazirani Sources

It is natural to try and relax the assumption of independence between bits in
a vN-source. Santha and Vazirani [SV86] considered a generalization of a vN-
source in which for every 1 ≤ i ≤ n, and every “prefix” x1, . . . , xi−1 ∈ {0, 1},

p0 ≤ Pr[Xi = 1|X1 = x1, . . . , Xi−1 = xi−1] ≤ 1 − p0.

A discouraging result of [SV86] is that there does not exist a deterministic extrac-
tor that extract a single bit from such sources. In other words, there are families
of sources that are very structured and still do not allow deterministic extrac-
tion. This is bad news for the approach of simulating randomized algorithms
3 The model considered by [vN51] is slightly different in that it places no bound on

p. Instead, it allows the extractor to access an unbounded “stream” of independent
coin tosses and requires that the extractor will stop and output completely uniform
bits in expected time that depends on p. Nevertheless, the same algorithm applies
in both cases.
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and protocols with weak sources by deterministic extraction. Historically, this
led to the notion of seeded extractors that we describe in Section 3. Nevertheless,
as we discuss below, deterministic extraction has many applications beyond the
original motivation of Section 1.

2.5 Bit-Fixing Sources and Privacy Amplification

We now consider the family of bit-fixing sources. In such a source some bits are
independent unbiased coin tosses, while others are constants.

Definition 6 (bit-fixing sources). A distribution X over {0, 1}n is a k-bit-
fixing source if there exist k distinct indices i1, . . . , ik such that the distribution
(Xi1 , . . . , Xik

) is distributed like Uk and for i �∈ {i1, . . . , ik}, Xi is a fixed con-
stant.4

Bit-fixing sources do not seem to arise naturally in the scenario considered in
Section 1. Nevertheless, as we observe now, they arise naturally in Cryptography
[CGH+85]. Consider for example the following scenario. Assume that two parties
Alice and Bob share a uniformly chosen random key K ∈ {0, 1}n. The key K is
private in the sense that eavesdropper Eve has no information about it. Alice and
Bob can securely encrypt communication between them using a shared private
key. Suppose that at some stage, the privacy of K is somehow compromised and
Eve learns f(K) where f(x) = xj1 , . . . , jn/2 for some indices j1, . . . , jn/2 that are
unknown to Alice and Bob. Alice and Bob would like to recover their privacy
and come up with a new shared private key K ′.

This can be achieved as follows: Let E : {0, 1}n → {0, 1}m be an ε-extractor
for (n/2)-bit-fixing sources. Each party can compute K ′ = E(K). We claim
that K ′ is private in the sense that the distribution (K ′, f(K)) is ε-close to the
distribution (Z, f(K)) where Z is uniformly distributed and independent of K.
In order to see the meaning of thus claim, note that if ε = 0 then the claim says
that K ′ is independent of f(K). For general ε > 0 the claim implies that even
an all-powerful Eve cannot distinguish K ′ from uniform with advantage greater
than ε, given her view.

In order to prove the claim we note that for any value v ∈ Supp(f(K)), the
distribution X = (K|f(K) = v)) is an (n/2)-bit-fixing source. X captures the
view that Eve has on K conditioned on the event {f(K) = v}. It follows that
E(X) = (E(K)|f(K) = v) is ε-close to uniform (and this holds for every v ∈
Supp(f(K)). If ε = 0 then this implies that K ′ = E(K) is uniformly distributed
and independent of f(K). For general ε > 0, this implies the statement in the
claim above. (We remark that this argument can be generalized for other choices
of “allowed functions” f as explained in Section 2.6.

Note that this application requires E to be explicit. Furthermore, Alice and
Bob would like the new key to be as long as possible and this motivates extractors
4 We remark that in the literature on extractors these sources are sometimes referred

to as “oblivious bit-fixing sources” to distinguish them from “non-oblivious bit-fixing
sources” in which for i �∈ {i1, . . . , ik}, Xi is some arbitrary function of Xi1 , . . . , Xik .
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that extract as many bits as possible from the k random bits that are “present”
in a k-bit-fixing source.

It is trivial that the function E(x) = (
∑

1≤i≤n xi) mod 2 is a 0-extractor for
k-bit-fixing sources for every k ≥ 1. This simple idea does not easily extend to
extract many bits for general k, as it was shown in [CGH+85] that there are no
0-extractors with m > 1 for k < n/3. The problem of extracting many bits was
considered in [CGH+85, KZ07, GRS06, Rao09b] and the current state of the art
is that there are explicit extractors that extract m = (1 − o(1))k random bits
from k-bit-fixing sources for every k ≥ polylog(n).

2.6 Families of Sources in the Literature on Deterministic Extraction

The literature on deterministic extractors and dispersers considers many families
of sources. We briefly survey some of these families below. Our emphasis in the
discussion below is on the min-entropy threshold parameter k. This is partly be-
cause there are general techniques to increase the output length of deterministic
extractors [Sha08] and dispersers [GS08]. Using these techniques, it is often the
case that extractors and dispersers that extract Ω(log n) bits can be transformed
into ones that extract (1 − o(1)) · k bits.

Multiple independent sources: Let n =  · n′ and identify {0, 1}n with
({0, 1}n′

)�. A distribution X = (X1, . . . , X�) is an -independent source if
X1, . . . , X� are independent. There exist extractors for 2-independent sources
assuming H∞(X1), H∞(X2) ≥ Ω(log n). Most of the literature on determin-
istic extractors and dispersers focuses on multiple independent sources. We
focus on this setup in Section 4.

Affine sources: Let Fq be the finite field with q elements. Affine sources are
distributions that are uniform over some affine subspace of the vector space
Fn

q . The min-entropy of such sources coincides with the dimension of the
affine space. Most of the research on explicit constructions focuses on the
case q = 2 [BKS+10, Bou07, Rao09b, BSK09, Yeh10, Li11b, Sha11]. Explicit
constructions of extractors and dispersers for affine sources are far from
approaching the existential bounds proven using the probabilistic method.
The latter show existence of extractors for affine sources with min-entropy
at least k = O(log n). The best known explicit extractor is due to Bourgain
[Bou07] and works for affine sources with min-entropy at least k = o(n)
(slight improvements to k = n/

√
log log n were given in [Yeh10, Li11b]).

It is possible to do better for dispersers and Shaltiel [Sha11] constructs an
explicit disperser for affine sources with min-entropy at least k = no(1).
Explicit constructions do much better for “large fields” in which q = nΘ(1)

[GR08, GS08, DG10] and are able to extract from affine sources with min-
entropy O(log n).

Feasibly generated sources: This approach considers families of sources that
are specified by placing limitations on the process that generates the source.
It was initiated by Blum [Blu86] that considered sources generated by finite
Markov chains (see also [Vaz87]). A computational perspective was suggested
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by Trevisan and Vadhan [TV00] (see also [KM05, KRVZ11]) who consider
sources X = C(Ur) where C : {0, 1}r → {0, 1}n is a “computational de-
vice”. Different families of sources are obtained by placing limitations on
the complexity of C. Note that affine sources are captured if C is a degree
one polynomial. It is also natural to consider polynomials with larger degree
[DGW09].

Feasibly recognizable sources: This approach (explicitly suggested in [Sha09])
considers sources that are uniform over sets of the form {x : f(x) = v} for
functions f coming from some specified class. Note that bit-fixing sources
are captured by considering functions that are projections and affine sources
are captured (once again) by considering degree one polynomials. It is also
natural to consider polynomials with larger degrees [Dvi09]. Other families of
sources can also be captured thus way: Sources recognizable by decision trees
are convex combinations of bit-fixing sources and sources recognizable by 2-
party communication protocols are convex combinations of 2-independent
sources. (This is useful as an extractor for some family C is also an extractor
for convex combinations of sources from the family). We also remark that
the argument of Section 2.5 showing that Alice and Bob can recover their
privacy when the function f is a projection, immediately extends to any class
of functions f if one can explicitly construct an extractor for distributions
recognizable by the class. Other applications of such extractors are given in
[Sha09, KvMS09].

3 Seeded Extractors

These are extractors that in addition to one sample from the source distribu-
tion X also receive a second input Y (called “seed”) which consists of (few)
independent truly random bits.

Definition 7 (seeded extractors). [NZ96] A function E : {0, 1}n×{0, 1}d →
{0, 1}m is a (k, ε)-extractor if for every distribution X over {0, 1}n with H∞(X) ≥
k, E(X, Y ) is ε-close to uniform (where Y is distributed like Ud and is independent
of X). E is a (k, ε)-disperser if |Supp(E(X, Y ))| ≥ (1 − ε) · 2m. E is a strong
extractor if E′(x, y) = (E(x, y), y) is an extractor.

The definition above does not consider specific families C of sources. This is
because seeded extractors are able to use a logarithmic length seed to extract
from the “maximal family” of all distributions with “large” min-entropy.

In this section we survey some of the research on seeded extractors. In Section
3.1 we discuss explicit constructions and lower bounds. In Section 3.2 we explain
how seeded extractors can be used to efficiently simulate randomized algorithms
with access to a weak source. It turns out that seeded extractors have many other
applications beyond the original motivation discussed in Section 1. We discuss
some of these applications below. In Section 3.3 we point out a useful connection
between seeded extractors and list-deocdable error-correcting codes. In Section
3.4 we interpret seeded extractors as graphs with large “relative expansion”. In
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Section 3.5 we show that seeded extractors can be used to construct graphs with
expansion beating eigenvalue bounds. In Section 3.6 we point out that seeded
extractors yield optimal averaging samplers.

3.1 Explicit Constructions and Lower Bounds

By the probabilistic method it is not hard to show that for every n, k, ε there exist
(k, ε)-extractors that use a seed of length d = log(n − k) + 2 log(1/ε) + O(1),
and output m = k + d − 2 log(1/ε) − O(1) bits. There are lower bounds of
Radhakrishnan and Ta-Shma [RTS00] showing that this is optimal (except for
the constants hidden in the O(1)).

The quantity k + d − m is referred to as the “entropy loss” of the extractor
(as the input distribution (X, Y ) has min-entropy k + d). It is obvious that the
entropy loss is always non-negative. The lower bounds of [RTS00] stated above
show that the entropy loss is at least 2 log(1/ε) − O(1). This means that as ε
decreases, some randomness must be lost in the extraction process.

A long line of research attempts to match the parameters of the existential
bounds with explicit constructions.5 There are explicit constructions that achieve:

Extractors optimal up to constant factors: For every constant α > 0 there
exists a constant c such that for every n, k, ε there are explicit extractors with
seed length d = c · (log n + log(1/ε)), output length m = (1 − α)k. This was
achieved by Lu et al. [LRVW03] for constant error ε and by Guruswami,
Umans and Vadhan and [GUV09] for general error.

Extractors with sublinear entropy loss for large error: For every constant
e there is a constant c such that for every n, k there are explicit extractors
with seed length d = c · log n and output length m = (1− 1

loge n ) ·k and error
ε = 1/ log n. This was achieved by Dvir et al. [DKSS09].

We remark that it is sometimes possible to do better for specific values of k, and
that there are constructions that can push the leading constant c to 1 + o(1)
while paying a little bit in some of the other parameters. The reader is referred
to a survey article on explicit constructions of seeded extractors [Sha02].

3.2 Simulating BPP with Access to a Weak Random Source

Unlike deterministic extractors, seeded extractors expect to receive a short seed
of truly random bits. Such a seed is not available in the scenario described in
Section 1. Nevertheless, we now explain how to simulate any polynomial time
randomized algorithm in polynomial time when given access to a general weak
random source with sufficient min-entropy.
5 Explicit seeded extractors are defined in a similar fashion to deterministic extractors:

Let d(·), k(·), m(·) and ε(·) be functions over integers. A function E that takes two
strings and returns a string is an explicit (k(·), ε(·))-extractor if for every sufficiently
large n, when the first input x is of length n, E uses seed length d(n), has output
length m(n) and is a (k(n), ε(n))-extractor.
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Let A be a randomized algorithm that runs in polynomial time and solves
some decision problem with error ≤ 1/3 (meaning that for every input, the
probability that A answers incorrectly is at most 1/3 where the probability is
over choosing random coins for A). Assume that on an input x′ of length n′, A
requires m = poly(n′) truly random bits. Assume that we can sample from some
unknown distribution X over {0, 1}n where n = poly(n′) with the guarantee
that H∞(X) ≥ k for k ≥ 2m. Let E : {0, 1}n × {0, 1}O(log n) → {0, 1}m be an
explicit (k, 1

10 )-extractor (that exists by the discussion in Section 3.1).
We simulate A as follows: When given input x′ ∈ {0, 1}n′

and a sample x from
the source X , for every seed y of E, we compute a bit vy by applying A on input
x′ using E(x, y) as a sequence of “random coins”. The final output is the value
v such that vy = v for most seeds y. It is not hard to see that for every input x′

this process solves the decision problem with error less than 1/3 + 1/10 < 1/2
where the probability is over the choice of x from X .6

Note that for this application it is crucial that E is explicit. Moreover, the sim-
ulation described above goes over all 2d seeds of the extractor E. Consequently,
it is crucial that d = c log n for some constant c to obtain a polynomial time
simulation. Furthermore, the constant c determines the exponent of the poly-
nomial (which gives motivation for constructing extractors with a small leading
constant c) [TSZS06, SU05].

Inapplicability of this approach in cryptographic or distributed settings. It is
important to stress that while this approach works for simulating randomized
algorithms, it is not applicable when simulating randomized protocols in cryp-
tographic or distributed settings. This is because the approach sketched above
requires running the original protocol 2d = nO(1) times with many sequences of
random coins. In cryptographic settings this means that adversaries get to par-
ticipate in interactions in which the key is not necessarily random (which com-
promises the security of the protocol). In distributed settings, the total overhead
incurred in running the initial protocol nO(1) times, leads to protocols that are
inefficient and uninteresting. In Section 4.1 we suggest an alternative approach
to simulate randomized protocols given access to multiple independent sources.

3.3 Seeded Extractors and List-Decodable Error-Correcting Codes

List-decodable error-correcting codes have many applications in computer sci-
ence and are extensively studied. The reader is referred to [Gur07] for a survey
articles on this notion and its applications. The definition below uses a nonstan-
dard choice of letters preparing for the application below.

Definition 8 (List-decodable code). For x, y ∈ {0, 1}n, let δ(x, y) denote the
relative Hamming distance of x and y, that is δ(x, y) = |{i:xi �=yi}|

n . A function

6 In fact, the analysis can be improved and show that the error probability is bounded
by 2−Ω(k) if we set the extractor to extract from distributions with min-entropy k′

for m ≤ k′ ≤ αk for a constant α < 1. This is because of the connection between
extractors and averaging samplers that we explain later on in Section 3.6.



30 R. Shaltiel

C : {0, 1}n → {0, 1}2d

is an (, ε)-list-decodable code if for every z ∈ {0, 1}2d

,∣∣{x : δ(C(x), z) ≤ 1
2 − ε

}∣∣ ≤ .

The definition above says that if one encodes a string x ∈ {0, 1}n by C(x) and
then transmits C(x) on a “noisy channel” that is allowed to adversarially choose
1/2−ε of the indices of C(x) and flip them to obtain a string z, then the receiver
(who only sees z) knows a list of at most  messages, such that one of them is
the original message x. (The more standard notion of uniquely decodable codes
is captured by the special case where  = 1 and it is known that such codes can
only exist for ε > 1/4.)

It turns out that strong seeded extractors that extract a single bit are essen-
tially equivalent to list-decodable error correcting codes using the translation
E(x, y) = C(x)y with k ≈ log . This was first observed by Trevisan [Tre01]. A
precise statement is given below:

– If C : {0, 1}n → {0, 1}2d

is an (, ε)-error correcting code then E(x, y) =
C(x)y is a strong (k, 2ε)-extractor for k = log  + log(1/ε) + 1.

– If E : {0, 1}n×{0, 1}d → {0, 1} is a strong (k, ε)-extractor then C(x) defined
by C(x)y = E(x, y) is a (2k − 1, 2ε)-list decodable code.

Proof. (sketch) For the second item, we note that if C is not a list-deocdable
code, then there exists z which violates Definition 8 and has a list of size at
least 2k. The extractor E can be shown to fail on the distribution X that is
uniform on this set. This is because for every x ∈ Supp(X), the “predictor
function” p(y) = zy has Pr[p(Y ) = E(x, Y )] ≥ 1/2 + 2ε > 1/2 + ε. It follows that
Pr[p(Y ) = E(X, Y )] > 1/2 + ε which is a contradiction to the correctness of the
extractor.

For the first item we note that if E is not a strong extractor, then there exist
a source X and an event A such that Pr[(E(X, Y ), Y ) ∈ A] and Pr[Ud+1 ∈ A]
differ by more than 2ε. By standard arguments, such an event gives rise to
a “predictor function” p : {0, 1}d → {0, 1} that has Pr[p(Y ) = E(X, Y )] >
1/2 + 2ε. (Intuitively, this follows because Y is uniformly distributed and so A
does not gain from trying to distinguish Y from uniform, and has to be able to
predict E(X, Y ) when given Y ). By an averaging argument, there exist a set S
consisting of an ε fraction of x ∈ Supp(X) such that for every x ∈ S we have
Pr[p(Y ) = E(x, Y )] > 1/2 + ε. Function p gives rise to a string z ∈ {0, 1}2d

by
z = p(y)(y∈{0,1}d) which contradicts Definition 8 as any message in S belongs to
the list of z. ��
The translation above can be used to present a unified theory of extractors, error-
correcting codes (as well as other objects such as hash functions and expander
graphs). The reader is referred to [Vad07] for such a treatment.

Exploiting this connection in explicit constructions. The connection above imme-
diately gives excellent explicit constructions of strong extractors that extract one
bit (by using known list-decodable codes). In order to extract many bits it is nat-
ural to have E(x, y) = C(x)y1 , . . . , C(x)ym for some mapping y → y1, . . . , ym.
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This approach is used by many constructions starting with Trevisan’s break-
through construction [Tre01] (see also [RRV02]) in which the mapping used is
the Nisan-Wigderson pseudorandom generator [NW94]. A different mapping is
used by Shaltiel and Umans [SU05] which also relies on a specific choice of the
code. The aforementioned recent construction of Guruswami, Umans and Vad-
han [GUV09] exploits this connection by using recent advances in coding theory
(more specifically the Parvaresh-Vardy code [PV05]). The Parvaresh-Vardy code
is not a code with Boolean alphabet, and so the translation above does not work
directly. Nevertheless, a similar argument to the one given above can be used to
construct “unbalanced expander graphs” which in turn yield seeded extractors.

A coding theoretic interpretation of extracting many bits. It was observed by
Ta-Shma and Zuckerman [TSZ04] that strong extractors (k, ε)-extractors that
extract m > 1 bits can be viewed (by the translation above) as codes over
alphabet {0, 1}m that allow list-decoding against channels that are extremely
noisy in the following sense: When an encoding C(x) of a message x passes
through the channel, for every symbol C(x)y = E(x, y) of the encoding, the
receiver gets a set Sy ⊆ {0, 1}m of size say 2m/2 with the guarantee that C(x)y ∈
Sy for every y. “Extractor codes” allow recovery against such channels in the
sense that the receiver knows a list of size 2k of messages such that one of
them is the original message x. In fact, extractor codes are resilient even against
stronger channels that also “add errors” and are allowed adversarially choose
1/2 − ε indices y in which Sy does not satisfy C(x)y ∈ Sy.

3.4 Seeded Dispersers as Graphs with Expansion Properties

Given a function E : {0, 1}n × {0, 1}d → {0, 1}m we set N = 2n, M = 2m,
D = 2d and define a bipartite graph GE where the left hand set of vertices is
{0, 1}n, the right hand side set of vertices is {0, 1}m, and each vertex x ∈ {0, 1}n

is connected to E(x, y) for every y ∈ {0, 1}d. Thus, the degree of vertices on the
left hand side is D (and note that we allow multiple edges).

For a set S ⊆ {0, 1}n on the left hand side, we define Γ (S) to be the set of
neighbors of S. It follows that if E is a (k, ε)-disperser (which follows in case E is
a (k, ε)-extractor) then every set S of size at least K = 2k has |Γ (S)| ≥ (1−ε)·2m.
This notion resembles “vertex expansion” in so called “expander graphs”. The
reader is referred to [HLW06] for a manuscript on expander graphs and their
many applications. We give a definition of vertex expansion below.

Definition 9 (Bipartite expander graphs). A bipartite graph G is a (K, e)-
expander if any set S on the left hand side of size at most K has |Γ (S)| ≥ e · |S|.
In the definition above we consider bipartite graphs. This requirement is made to
easily compare expander graphs with “disperser graphs”. Note that standard ex-
pander graphs easily translate into bipartite ones. (Given a standard non-bipartite
graph G in which every not too large set S ⊆ V expands, we can create two
copies of the vertices and imagine that edges go from the left-hand copy to the
right-hand copy).
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size vs. volume: In bipartite expander graphs sets expand in size in the sense
that |Γ (S)| ≥ e·|S|. Disperser graphs may not expand in size and that all sets
S have |Γ (S)| < |S|. Nevertheless, in disperser graphs, the set S expands in
“volume” (the ratio of the size of the set and the size of the universe it lives
in). More precisely, the volume of S ⊆ {0, 1}n is |S|

N (that may be very small
and tend to zero), while the volume of Γ (S) ⊆ {0, 1}m is |Γ (S)|

M ≥ (1 − ε).
Balanced vs. Unbalanced graphs: In many settings (and in particular in

the setting of the application considered in Section 3.2) disperser graphs
are “unbalanced”, meaning that right had side which is of size M is much
smaller than the left hand side which is of size N . Bipartite expander graphs
are typically balanced in and the left hand side is of the same size as the right
hand side. Nevertheless, it is interesting and useful to consider unbalanced
bipartite expander graphs [TSUZ07, CRVW02, GUV09].

Constant degree vs. logarithmic degree: A useful property of expander
graphs is that it is possible to have such graphs with constant degree. In
contrast, the aforementioned lower bounds of [RTS00] imply that extractor
graphs and disperser graphs must have degree at least D ≥ Ω(log(N

K )) which
is constant for K = Ω(N) and non-constant if K = o(N). This means that
disperser graphs cannot have constant degree if K = o(N) (and the graph
is unbalanced). Nevertheless, even bipartite expanders cannot have constant
degree when the graph is sufficiently unbalanced. We perceive this obser-
vation as saying that the issue here is balanced vs. unbalanced rather than
expander vs. disperser.

Sets smaller than K vs. sets larger than K: In expander graphs every set
smaller than K expands, while in disperser graphs every set of size larger
than K expands. This difference is a consequence of the difference between
the notions of size and volume. In expander graphs, sets which are too large
do not have “room” to expand in size, while in disperser graphs, sets which
are too small cannot possibly expand to volume that is almost one unless
the degree is huge.

There are many applications of extractor and disperser graphs in the liter-
ature. In some cases, extractors and dispersers give better performance than
expander graphs. We present such examples in the next two sections.

3.5 Graphs with Expansion Beating the Eigenvalue Bound

We now present a result of Wigderson and Zuckerman [WZ99] showing that
dispersers can be used to construct expanders with very strong expansion (for a
particular parameter regime). We consider the following problem: Let A ≤ N/10
be a parameter. Design a graph with small degree on N vertices such that
every two sets of N/A vertices have an edge between them. (This is indeed a
form of vertex expansion as it means that every set of size N/A sees more than
N − N/A ≥ 9N

10 vertices).
Obviously, it is impossible to achieve this property with degree o(A). The

probabilistic method shows existence of such graphs with degree ≈ A · log(A). If
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one achieves vertex expansion by analyzing the “spectral gap” of the graph, then
the best possible degree is ≈ A2 in the sense that analysis of the spectral gap
gives degree ≈ A2, and there exist graphs with optimal spectral gap in which
the degree is ≈ A2 [Kah06].

Using optimal dispersers it is possible to almost match the probabilistic method
and obtain degree A ·polylog(A) (and such bounds can be approached using ex-
plicit constructions of dispersers for various choices of A [RVW00, SSZ98, TS02]).

The construction of [WZ99] works as follows: Let E : {0, 1}n × {0, 1}d →
{0, 1}m be a (k, 1/4)-disperser for k = log(N/A) and m = k. (Furthermore, we
need to assume that all nodes on the right hand side of the disperser graph
have degree not much larger than the average degree given by ND/M). Let
S1, S2 be two sets of size N/A = 2k. By the disperser property each of the
two sets sees more than half the vertices on the right hand side. Therefore, S1

and S2 both see a common neighbor on the right hand side. Define a graph G
on {0, 1}n in which every two vertices are connected if they share a common
neighbor in the disperser graph. By the previous argument every sets S1, S2 of
size N/A have an edge between them. Moreover, the degree of the graph is given
by D · ND

M = D2N
M which is indeed A ·polylog(A) if we use a disperser graph with

small degree D = polylog(N/K) (or equivalently short seed d = O(log(n− k))).
Another example of graphs with expansion beating the eigenvalue bound is

given by Capalbo et al. [CRVW02].

3.6 Seeded Extractors and Averaging Samplers

Let Z1, . . . , ZD be independent random variables over {0, 1}m, let A ⊆ {0, 1}m

and define indicator random variables R1, . . . , Rd by Ri = 1 if Zi ∈ A and Ri = 0
otherwise. Let Z = 2−D · ∑1≤i≤D Zi. The Chernoff bound gives that

Pr[
∣∣∣∣Z − |A|

2m

∣∣∣∣ ≥ ε] ≤ δ

for δ = 2−Ω(ε2D). We say that random variables Z1, . . . , ZD (that are not nec-
essarily independent) form an averaging sampler with estimation error ε and
sampling error δ if they satisfy the inequality above for the parameters ε, δ.

Consider graphs over the vertex set {0, 1}m. A useful property of such graphs
with “large spectral gap” is that if we choose a vertex Z1 at random and take a
random walk of length D on the graph to generate random variables Z1, . . . , ZD

then we obtain random variables which form an averaging sampler (with quality
that depends on the spectral gap) [AKS87, Gil98]. The advantage of this ap-
proach is that if the graph has constant degree then it is possible to generate
the random walk variables Z1, . . . , ZD using only m + O(D) random bits (com-
pared to the m · D bits required to generate D independent random variables).
This property has many applications in “derandomization theory” as it allows
to approximate |A| /2m with small additive error using few random bits.

It was observed by Zuckerman [Zuc97] that seeded extractors yield averaging
samplers with parameters that can beat those given by graphs with large spectral
gap. The connection works as follows:
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Extractors yield averaging samplers: Let E : {0, 1}n × {0, 1}d → {0, 1}m

be a (k, ε)-extractor. Sample x uniformly from {0, 1}n, and set Zy = E(x, y).
This gives random variables that are an averaging sampler with estimation
error ε and sampling error δ = 2k+1/2n. Moreover, sampling these variables
requires n random bits.

Proof. (sketch) For every set A ⊆ {0, 1}m we define

SA =
{

x :
∣∣∣∣Pr[E(x, Y ) ∈ A] − |A|

2m

∣∣∣∣ > ε

}

to be the set of strings with which the averaging sampler fails to estimate A
correctly. To bound the size of SA we note that w.l.o.g. at least half of its
elements have the property above without the absolute value. The distribution
X that is uniform over these elements is a source on which A distinguishes the
output of the extractor from uniform. It follows that X does not have large
min-entropy, which implies that SA is small. ��
It turns out that the connection between extractors and averaging samplers can
also be reversed. Any procedure that uses n random bits to generate D random
variables that form an averaging sampler with estimation error ε and sampling
error δ, immediately translates into a (k, 2ε)-extractor with k = n− (log(1/δ)−
log(1/ε)) by setting E(x, y) = Zy. Summing up, seeded extractors are essentially
equivalent to averaging samplers under the translation k ≈ n − log(1/δ).

A consequence of this connection is that graphs with large spectral gap yield
averaging samplers which in turn yield seeded extractors. This relationship is
useful to construct extractors for very large k (k ≥ (1 − α)n for some constant
α > 0) but breaks down for smaller values.

4 Extractors for Multiple Independent Sources

Seeded extractors receive one source X (with the guarantee that H∞(X) ≥ k
for some parameter k), and an independent short seed Y (that is uniformly dis-
tributed). The assumption that Y is uniformly distributed seems very strong,
and we can try and relax it. A natural relaxation is to replace the requirement
that Y is uniformly distributed by the weaker requirement that Y has large
min-entropy. In this setup, it is no longer necessary to require that Y is short.
A more natural setting of parameters is to have Y have the same length and
min-entropy threshold as X . This leads to the notion of extractors for two inde-
pendent sources. In fact, once we consider two independent sources, we may as
well consider  independent sources.

Definition 10 (Extractors and dispersers for multiple independent
sources). A function E : ({0, 1}n)� → {0, 1}m is a (k, ε) -source extractor if for
every  independent random variables X1, . . . , X� such that for every 1 ≤ i ≤ ,
H∞(Xi) ≥ k, it holds that E(X1, . . . , X�) is ε-close to Um. E is a (k, ε) -source
disperser if |Supp(E(X1, . . . , X�))| ≥ (1 − ε) · 2m.
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We remark that these extractors are often seen as a special case of deterministic
extraction (as explained in Section 2.6). We have seen in Section 2.1 that (n −
1, ε) 1-source extractors/dispersers do not exist for ε < 1. By the probabilistic
method, 2-source extractors exist even for k = O(log n + log(1/ε)).

In this section we survey some of the research on extractors and dispersers
for multiple independent sources. In Section 4.1 we explain that multiple source
extractors can be used to generate keys for cryptographic protocols. In Section
4.2 we show that explicit 2-source dispersers can be used to construct Ramsey
graphs. In Section 4.3 we survey some of the explicit constructions extractors
and dispersers for multiple independent sources.

4.1 Generating Keys for Cryptographic Protocols

In Section 3.2 we saw that it is possible to simulate randomized algorithms effi-
ciently given access to one source. However, as explained there, that simulation
is not applicable in cryptographic or distributed settings. Let us focus on crypto-
graphic protocols. The security of such protocols depends on the ability of honest
parties to generate uniformly distributed and private random keys. Moreover, in
such settings the computer of an honest party may be operating in a “hostile
environment” set up by an adversary that is trying to steal the secrets of the
honest party.

-source extractors enable an honest party to sample a string that is (close
to) uniform, assuming the party has access to  independent sources. Each such
source may be implemented by one of the approaches explained in Section 1. The
requirement from each individual weak source is minimal: It should contain some
min-entropy. It is plausible to assume that samples taken from sources that are
“unrelated” or “remote” are independent. If we accept this assumption then we
can generate keys for cryptographic protocols. Moreover, by the aforementioned
discussion we can hope to have  = 2 and we only require independence between
two random variables.

On a philosophical level the ability to generate independent random variables
is a pre-requisite of cryptography. This is because a world in which this is not
possible is a world in which there are no secrets (as every secret that we gen-
erate is correlated with other random variables that may become known to the
adversary when we interact with him).

4.2 2-Source Dispersers and Ramsey Graphs

An (undirected) graph G on N vertices is K-Ramsey if there are no cliques or
independent sets of size K in G. In 1947 (in the paper that introduced the cel-
ebrated probabilistic method) Erdös showed the existence of K-Ramsey graphs
for K ≈ log N . It is a longstanding challenge to explicitly construct such graphs.
Until recently, the best results were achieved by the classical work of Frankl
and Wilson [FW81] and matched by several other researchers [Alo98, Gro00]
giving K-Ramsey graphs for K ≈ 2

√
log N . Moreover, Gopalan [Gop06] showed

that some of the techniques used to attack this problem cannot beat this bound.
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We now observe that explicit errorless two-source dispersers that output one bit
yield explicit constructions of Ramsey graphs.

2-source dispersers yield Ramsey graphs: An explicit (k, 0) 2-source dis-
perser D : ({0, 1}n)2 → {0, 1} translates into an explicit construction of
2k+1-Ramsey graph on 2n vertices.

In fact, 2-source dispersers yield bipartite-Ramsey graphs (which are even
harder to construct than Ramsey graphs). We now explain this argument. Let
D : ({0, 1}n)2 → {0, 1} be a (k, 0) 2-source disperser. We can use D to define a
bipartite graph B = (L, R, E) by interpreting it as an adjacency matrix. More
formally, the left hand set of vertices is L = {0, 1}n, the right hand set is R =
{0, 1}n and two nodes v1 ∈ L, v2 ∈ R are connected iff D(v1, v2) = 1. Graph B
is a balanced bipartite graph where each of the two sides has N = 2n vertices.
Furthermore, G has the property that for every two sets A, B ⊆ {0, 1}n of size
K = 2k, D(A, B) = {0, 1} meaning that every K × K induced subgraph of
G cannot be empty nor complete. Such graphs are called “K-bipartite Ramsey
graphs”.

In particular, we have that for every set A ⊆ {0, 1}n of size K = 2k, D(A, A) =
{0, 1}. If D is symmetric (meaning that D(x, y) = D(y, x)) then we can also
interpret it as the adjacency matrix of a (non-bipartite) undirected graph over
vertex set {0, 1}n and the property above means that D is a K-Ramsey graph
(as every set A of size K is not a clique nor an independent set). We can make
D symmetric by ordering the elements in {0, 1}n in some arbitrary way and
modifying D(x, y) to D(y, x) for x > y. (We can also force D(x, x) = 0 if we
want to avoid self loops). This modification does not spoil D by much. It is easy
to see that if D is a (k, 0) 2-source disperser than following the modification it
is still a (k + 1, 0) 2-source disperser. Summing up, when given disperser D we
can symmetrize it and use it to define the adjacency matrix of a Ramsey graph.

4.3 Explicit Constructions of �-Source Extractors and Dispersers

2-source extractors and dispersers. The discussion above explains some of the
difficulty in constructing explicit 2-source extractors and dispersers for small k.
We now survey the known constructions. Chor and Goldreich [CG88] showed
that E(x, y) = (

∑
1≤i≤n xi · yi) mod 2 is a 2-source extractor with very small

error if k is sufficiently larger than n/2. (Earlier work by Santha and Vazirani
[SV86] considered two independent Santha-Vazirani sources and analyzed the
same extractor function). Bourgain [Bou05] (see also [Rao07]) improved the en-
tropy threshold to k = (1/2−α)n for some small constant α > 0. (The seemingly
small difference between n/2 and (1/2 − α)n plays a crucial role in some of the
recent developments in this area). This is the best known extractor construction
for two sources with the same min-entropy. Raz [Raz05] constructed 2-source
extractors where one source has min-entropy larger than n/2 and the other has
logarithmic entropy. Shaltiel [Sha08] used Raz’s extractor to give a 2-source ex-
tractor which for two sources with min-entropy k > n/2 extracts (2 − o(1)) · k
random bits out of the 2k bits of entropy that are available in the two sources.
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Barak et al. [BKS+10] constructed 2-source dispersers that for every δ > 0
achieve k = δn. Barak et al. [BRSW06] extended the technique of [BKS+10]
and constructed 2-source dispersers for k = 2log0.9 n = no(1). By the discus-
sion in Section 4.2 such dispersers translate into Ramsey graphs that beat the
Frankl-Wilson construction [FW81] and give the state of the art on this problem.
The constructions of [BKS+10, BRSW06] are quite involved and rely on many
components from the extractor literature.

-source extractors. Barak, Impagliazzo and Wigderson [BIW06] constructed
extractors that for every δ > 0, use poly(1/δ) sources with min-entropy k =
δn. The key was exploiting recent developments in arithmetic combinatorics
(in particular, the “sum-product theorem” of [BKT04, Kon03]) to analyze a
construction that was previously suggested by Zuckerman. The high level idea
is to show that if X, Y, Z are three independent sources with min-entropy δn,
where each source is over a finite field F that has no large subfields (which holds
vacuously if F is a prime field) then X · Y + Z is a distribution that is (close to)
having min-entropy min((δ + α)n, n) for some constant α > 0. By iteratively
increasing the entropy, this gives an extractor.

Rao [Rao09a] used machinery from seeded extractors to construct extractors
that extract randomness from O( log n

log k ) independent sources with min-entropy
k. Note that this means that only O(1/δ) sources are needed for k = nδ. Rao
starts by observing that every source X over {0, 1}n with H∞(X) ≥ k can be
transformed into a “somewhere-random” source X ′ consisting of nO(1) blocks
of length Ω(k) where at least one of them is (close to) uniformly distributed.
(Each such block By is obtained by By = E(X, y) where E is a (k, ε)-seeded
extractor with seed length O(log n) so that there are nO(1) blocks). This reduces
the task of extracting from independent general sources to that of extracting
from independent somewhere random sources, and this turns out to be easier.
In recent years there is ongoing research that aims to improve the results above.

5 Some Open Problems

Below we state some open problems related to explicit constructions of extrac-
tors. We remark that there are many other open problems that are related to
applications of extractors.

Deterministic extractors.
– Construct affine extractors for the field F2 with min-entropy k <

√
n. The

best known construction achieves k = n/
√

log log n [Bou07, Yeh10, Li11b].
– Construct affine dispersers for the field F2 with min-entropy k = polylog(n).

The best known construction achieves k = 2log0.9 n [Sha11].
– For every constant c, construct extractors for sources samplable by circuits of

size nc with min-entropy k < n/2. It is allowed to use any “plausible hardness
assumption”. A construction based on worst-case hardness against a strong
variant of nondeterministic circuits was given in [TV00]. This construction
requires k = (1 − α)n for some constant α > 0.



38 R. Shaltiel

Seeded extractors.

– Construct seeded extractors that match the lower bounds of [RTS00]. These
lower bounds and state of the art are described in Section 3.1 (see also
[Sha02]).

Multiple source extractors.

– Construct 2-source extractors for min-entropy k ≤ n/3. The best known
construction achieves k = (1/2 − α)n for some constant α > 0 [Bou05].

– Construct 2-source dispersers for min-entropy k = polylog(n). The best
known construction achieves k = 2log0.9 n [BRSW06].

– Construct -source extractors for  = O(1) and min-entropy k = polylog(n).
The best known construction achieves  = O( log n

log k ) which is constant only
for k = nΩ(1) [Rao09a].
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Invitation to Algorithmic Uses of Inclusion–Exclusion

Thore Husfeldt

IT University of Copenhagen, Denmark
Lund University, Sweden

Abstract. I give an introduction to algorithmic uses of the principle of
inclusion–exclusion. The presentation is intended to be be concrete and
accessible, at the expense of generality and comprehensiveness.

R

T
1 The principle of inclusion–exclusion. There are as
many odd-sized as even-sized subsets sandwiched be-
tween two different sets: For R ⊆ T ,∑

R⊆S⊆T

(−1)|T\S| = [R = T ] . (1)

We use Iverson notation [P ] for proposition P , mean-
ing [P ] = 1 if P and [P ] = 0 otherwise.

Proof of (1). If R = T then there is exactly one sandwiched set, namely S = T .
Otherwise we set up a bijection between the odd- and even-sized subsets as
follows. Fix t ∈ T \ R. For every odd-sized subset S1 with R ⊆ S1 ⊆ T let
S0 = S1⊕{t} denote the symmetric difference of S1 with {t}. Note that the size
of S0 is even and that S0 contains R. Furthermore, S1 can be recovered from S0

as S1 = S0 ⊕ {t}. ��

Perspective. We will see the (perhaps more familiar) formulation of the principle
of inclusion–exclusion in terms of intersecting sets in §6, and another equivalent
formulation in §11.

A
B

C

D

I1

I2

I3

2 Graph colouring. A k-colouring of a graph G = (N, E) on
n = |N | nodes assigns one of k colours to every node such that
neighbouring nodes have different colours. In any such colour-
ing, the nodes of the same colour form a nonempty independent
set, a set of nodes none of which are neighbours.

Let g(S) denote the number of nonempty independent sub-
sets in S ⊆ N . Then G can be k-coloured if and only if∑

S⊆N

(−1)n−|S|(g(S)
)k

> 0 . (2)
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Proof. For every S ⊆ N , the term g(S)k counts the number of ways to pick k
nonempty independent sets I1, . . . , Ik in S. Thus, we can express the left hand
side of (2) as∑

S

∑
I1

· · ·
∑
Ik

[ ∀i : Ii ⊆ S ](−1)|N\S| =
∑
I1

· · ·
∑
Ik

∑
S

[ ∀i : Ii ⊆ S ](−1)|N\S| .

The innermost sum has the form∑
I1∪···∪Ik⊆S⊆N

(−1)|N\S| .

By (1), the only contributions come from I1 ∪ · · · ∪ Ik = N . Every such choice
indeed corresponds to a valid colouring: For i = 1, . . . , k, let the nodes in Ii have
colour i. (This may re-colour some nodes.) Conversely, every valid k-colouring
corresponds to such a choice. (In fact, the colourings are the disjoint partitions).

��

A
B

C

D

0

1 A 1 B 1 C 1 D

2 AB 2 AC 2 BC 2 AD 3 BD 3 CD

3ABC 4ABD 4 ACD 5 BCD

6 ABCDg({A, C, D}) = 4

Fig. 1. The values of g(S) for all S for the example graph to the left. Expression (2)
evaluates an alternating sum of the cubes of these values, in this case 63 − (33 + 43 +
43 + 53) + (23 + 23 + 23 + 23 + 33 + 33) − (13 + 13 + 13 + 13) + 0 = 18.

3 Counting the number of independent sets. Expression (2) can be evaluated
in two ways:

For each S ⊆ N , the value g(S) can be computed in time O(2|S||E|) by
constructing every nonempty subset of S and testing it for independence. Thus,
the total running time for evaluating (2) is within a polynomial factor of

∑
S⊆N

2|S| =
n∑

i=1

(
n

i

)
2i = 3n .

The space requirement is polynomial.
Alternatively, we first build a table with 2n entries containing g(S) for all

S ⊆ N , after which we can evaluate (2) in time and space 2nnO(1).



44 T. Husfeldt

Such a table is easy to build given a recurrence for g(S). We have g(∅) = 0,
and

g
(
S

)
= g

(
S \ {v}) + g

(
S \ N [v]

)
+ 1 (v ∈ S) , (3)

where N [v] = {v} ∪ { u ∈ N : uv ∈ E } denotes the closed neighbourhood of v.

Proof of (3). Fix v ∈ S and consider the nonempty independent sets I ⊆ S.
They can be partitioned into two classes: either v ∈ I or v /∈ I. The latter sets
are counted in g

(
S \ {v}). It remains to argue that the sets I � v are counted in

g
(
S \N [v]

)
+ 1. We will do this by counting the equipotent family of sets I \ {v}

instead. Since I contains v and is independent, it cannot contain other nodes in
N [v]. Thus I \ {v} is disjoint from N [v] and contained in S. Now, either I is the
singleton {v} itself, accounted for by the ‘+1’ term, or I \ {v} is a nonempty
independent set and therefore counted in g

(
S \ N [v]

)
. ��

0

1 1 1 1

0

1 1 1 1

2 2 2 2 3 3

0

1 1 1
C

1

2 2

AC

2 2 3 3

3 4 4

ACD

5

Fig. 2. Three stages in the tabulation of g(S) for all S ⊆ N bottom-up. For example,
the value of g({A, C, D}) is given by (3) with v = D as g({A, C}) + g({C}) + 1 = 4.

Perspective. The brute force solution for graph colouring tries all kn assignments
of colours to the nodes, which is slower for k ≥ 4. Another approach is dynamic
programming over the subsets [15], based on the idea that G can be k-coloured if
and only if G[N\S] can be (k−1)-coloured for some nonempty independent set S.
That algorithm also runs within a polynomial factor of 3n, but uses exponential
space. In summary, the inclusion–exclusion approach is faster than brute force,
and uses less space than dynamic programming over the subsets. The insight
that this idea applies to a wide range of sequencing and packing problems goes
back to Karp [12], the application to graph colouring is from [2].

We use a space–time trade-off to reducing the exponential running time factor
from 3n to 2n, applying dynamic programming to tabulate the decrease-and-
conquer recurrence (3), based on [8]. Recurrence (3) depends heavily on the
structure of independent sets; a more general approach is shown in §10.

The two strategies for computing g(S) represent extreme cases of a space–time
tradeoff that can be balanced [4].

4 Perfect matchings in bipartite graphs. Consider a bipartite graph with bi-
partition (N, N), where N = {1, . . . , n}, and edge set E ⊆ N × N . A perfect
matching is an edge subset M ⊆ E that includes every node as an endpoint
exactly once. See Fig. 3 for some interpretations.
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1 1 1
1 1 0
0 1 1

1 1 1
1 1 0
0 1 1

1 1 1
1 1 0
0 1 1

1 1 1
1 1 0
0 1 1

1

23

1

23

1

23

1

23

VR
VR

VR

VR
VR

VR

VR
VR
VR

Fig. 3. Row 1: A bipartite
graph and its three perfect
matchings. Row 2: In the
graph’s adjacency matrix A,
every perfect matching cor-
responds to a permutation
π for which Ai,π(i) = 1
for all i ∈ [n]. Row 3: In
the directed n-node graph
defined by A, every per-
fect matching corresponds
to a directed cycle partition.
Bottom row: an equiva-
lent formulation in terms
of non-attacking rooks on a
chess board with forbidden
positions.

The Ryser formula for counting the perfect matchings in such a graph can be
given as ∑

π∈Sn

n∏
i=1

[iπ(i) ∈ E] =
∑
S⊆N

(−1)|N\S|
n∏

i=1

∑
j∈S

[ij ∈ E] , (4)

where Sn denotes the set of permutations from N to N . The left hand side
succinctly describes the problem as iterating over all permutations and checking
if the corresponding edges (namely, 1π(1), 2π(2), . . ., nπ(n)) are all in E. Direct
evaluation would require n! iterations. The right hand side provides an equivalent
expression that can be evaluated in time O(2nn2), see Fig. 4.

Proof of (4). For fixed i ∈ N , the value
∑

j∈S [ij ∈ E] counts the number of i’s
neighbours in S ⊆ N . Thus the expression

n∏
i=1

∑
j∈S

[ij ∈ E] (5)

is the number of ways every node i ∈ N can choose a neighbour from S. (This
allows some nodes to select the same neighbour.) Consider such a choice as a
mapping g : N → N , not necessarily onto, with image R = g(N). The contribu-
tion of g to (5) is 1 for every S ⊇ R, and its total contribution to the right hand
side of (4) is, using (1), ∑

R⊆S⊆N

(−1)|N\S| · 1 = [g(N) = N ] .

Thus g contributes if and only if it is a permutation. ��
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Fig. 4. Inclusion–exclusion for non-attacking rooks. The top row shows all 12 = 3 · 2 ·
2 ways to place exactly one rook in every board line. Every row shows the possible
placements in the vertical lines given by S ⊆ {1, 2, 3}. We omit the rows whose con-
tribution vanishes, namely S = {1}, S = {3} and S = ∅. Of particular interest is the
second column, which is subtracted twice and later added again. The entire calculation
is 12 − 4 − 2 − 4 + 1 + 0 + 0 − 0 = 3.

Perspective. Bipartite matching is an example of a sequencing problem, where
inclusion–exclusion replaces an enumeration over permutations,

∑
π∈Sn

by an al-
ternating enumeration over subsets

∑
S⊆N (−1)|N\S| of functions with restricted

range. Typically, this reduces a factor n! in the running time to 2n. One can
express the idea algebraically like this:∑

f : N→N
f(N)=N

[ · · · ] =
∑
R

[R = N ]
∑

f : N→N
f(N)=R

[ · · · ]

=
∑
R

∑
S

[R ⊆ S](−1)|N\S| ∑
f : N→N
f(N)=R

[ · · · ]

=
∑
S

(−1)|N\S| ∑
R

[R ⊆ S]
∑

f : N→N
f(N)=R

[ · · · ]

=
∑
S

(−1)|N\S| ∑
f : N→S

[ · · · ] .

(6)

Ryser’s formula is normally given in a more general form, for the permanent∑
π

∏
i Aiπ(i) of a matrix, where the entries can be other than just 0 and 1. The

running time can be improved to O(2nn) arithmetic operations by iterating over
N in Gray code order.

Ryser’s formula [17] is a very well-known result in combinatorics and appears
in many textbooks. However, it is easy to achieve running time O(2nn) using
dynamic programming over the subsets, at the expense of space O(2n). This is
the standard approach to sequencing problems [1,11], and appears as an exercise
in Knuth [13, pp. 515-516], but usually not in the combinatorics literature. We



Invitation to Algorithmic Uses of Inclusion–Exclusion 47

will witness the opposite methodological preferences in §7. Inclusion–exclusion-
based algorithms for the permanent of non-square matrices in semirings are
described in [5].

5 Perfect matchings in general graphs. We turn to graphs that are not nec-
essarily bipartite. In general, the number of perfect matchings in a graph with
an even number n of nodes N is

∑
S⊆N

(−1)|N\S|
(

e[S]
n/2

)
, (7)

where e[S] denotes the number of edges between nodes in S ⊆ N .

Proof. The term
(e[S]

n/2

)
counts the number of ways to select n/2 distinct edges

with endpoints in S. (The edges are distinct, but may share nodes.) Consider
such a selection F ⊆ E and let R =

⋃
uv∈F {u, v} denote the nodes covered by

the selected edges. The total contribution of F to the right hand side of (7) is

∑
R⊆S⊆N

(−1)|N\S|
(

e[S]
n/2

)
= [R = N ] ,

using (1). Thus, F contributes 1 if and only if it covers all nodes. Since F contains
n/2 edges, F it must be a perfect matching. ��

The running time is within a polynomial factor of 2n, and the space is poly-
nomial; see Fig. 5.

Perspective. Perfect matchings in general graphs is a packing or partitioning
problem, while the bipartite case was a a sequencing problem and the graph
colouring example in §2 was a covering problem. (Admittedly, the distinction
between these things is not very clear.) The application is form [2], which also
contains another space–time trade-off based on matrix multiplication.

The point of the large in example in Fig. 5 is to illustrate the intuition that
inclusion–exclusion is a sieve. We start with a large collection of easy-to-compute
objects (the top row in Fig. 5), and let the alternating sum perform a cancellation
that sifts through the objects and keeps only the interesting ones in the sieve.

6 Inclusion–exclusion for sets. If two sets A and B have no ele-
ments in common, then we have the principle of addition: |A∪B| =
|A| + |B| . In general, the equality does not hold, and all we have
is |A ∪ B| ≤ |A| + |B| . Observing that every element of A ∩ B is
counted exactly twice on the right hand side allows us subtract the error term:

|A ∪ B| = |A| + |B| − |A ∩ B| ,

often called the principle of inclusion–exclusion.
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Actually, that’s just a special case, the formula is elevated to a
principle by generalising to more sets. For three sets, the formula

|A∪B∪C| = |A|+|B|+|C|−|A∩B|−|A∩C|−|B∩C|+|A∩B∩C|
can be verified by staring at a Venn diagram. The right-hand side
contains all the possible intersections of A, B, and C, with signs
depending on how many sets intersect. Generalising this leads us to

|A1 ∪ · · · ∪ An| =
∑

∅ �=S⊆N

(−1)|S|+1
∣∣⋂
i∈S

Ai

∣∣, (8)

where N = {1, . . . , n}. Equivalently, the number of elements not in any Ai is∣∣A1 ∪ · · · ∪ An

∣∣ =
∑
S⊆N

(−1)|S|∣∣⋂
i∈S

Ai

∣∣, (9)

with the usual convention that the ‘empty’ intersection
⋂

i∈∅ Ai equals the uni-
verse from which the sets are taken.

Proof of (9). We consider the contribution of every element a.
Let T = { i ∈ N : a ∈ Ai } denote the index set of the sets containing a.

The contribution of a to the left hand side of (9) is [T = ∅]. To determine its
contribution to the right hand side, we observe that a belongs to the intersection⋂

i∈T Ai and all its sub-intersections, so it contributes 1 to all corresponding
terms. More precisely, the total contribution of a is given by∑

S⊆T

(−1)|S| = (−1)|T | ∑
S⊆T

(−1)|T\S| = (−1)|T |[T = ∅] = [T = ∅] ,

using (1) with R = ∅. ��

Perspective. Expressions (8) and (9) are the standard textbook presentation of
inclusion–exclusion. We derived them from (1) with R = ∅. Let us show the
opposite derivation to see that the two formulations are equivalent.

Let T be a nonempty, finite set and write T = {1, . . . , n}. Consider the family
of identical subsets Ai = {1} for all i ∈ T . Their union and every nonempty
intersection is {1}. Thus, from (8),

1 =
∑

∅ �=S⊆T

(−1)|S|+1 · 1 ,

which gives (1) for R = ∅ after subtracting 1 from both sides.

7 Hamiltonian paths. A walk in a graph is a sequence of neighbouring nodes
v1, . . . , vk. Such a walk is a path if every node appears at most once, and a path
is Hamiltonian if it includes every vertex in G. For ease of notation we also
assume that all Hamiltonian paths start in node v1 = 1.
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Given a graph G on n nodes N let a(X) denote the number of walks of
length n that start in 1 and ‘avoid’ the nodes in X ⊆ V , i.e., walks of the form
1 = v1, . . . , vn with vi /∈ X for all 1 ≤ i ≤ n. Then the number of Hamiltonian
paths in G is a(∅).

Let Ai denote the walks that avoid {i}. Then a(∅) = |⋃i∈N Ai| and a(X) =
|⋂i∈X Ai|. Thus, from (9), we have

a(∅) =
∑

X⊆N

(−1)|X|a(X) .

For every X , the value a(X) can be computed in polynomial time using dy-
namic programming (over the lengths and endpoints, not over the subsets). For
t ∈ V and k = 1, . . . , n let for a moment ak(X, t) denote the number of walks of
the form 1 = v1, . . . , vk = t with vi /∈ X . Then we can set a1(X, v) = [v = 1] and

ak+1(X, t) =
∑
v∈V

ak(X, v)[vt ∈ E] .

The total time to compute a(X) =
∑

t∈V a(X, t) becomes O(n2|E|), using poly-
nomial space. It follows that Hamiltonicity in an n-node graph can be decided
(in fact, counted) in time O(2nn2|E|) and linear space.

Perspective. Hamiltonicity is one of the earliest explicitly algorithmic applica-
tions of inclusion–exclusion. It appears in [12], but implicitly already in [14],
where it is described for the traveling salesman problem with bounded integer
weights. Both these papers have lived in relative obscurity until recently, for
example the TSP result has been both reproved and called ‘open’ in a number
of places.

Hamiltonicity is also the canonical application of another algorithmic tech-
nique, dynamic programming over the subsets [1,11], which yields an algorithm
with similar time bounds but exponential space. Thus, we can observe a cu-
rious cultural difference in the default approach to hard sequencing problems:
Dynamic programming is the well-known solution to Hamiltonicity, while the
inclusion–exclusion formulation is often overlooked. For the permanent (§4), the
situation is reversed.

8 Steiner tree. For a graph G = (N, E) and a subset {t1, . . . , tk} ⊆ N of
nodes called terminals, a Steiner tree is a tree in G that contains all terminals.
We want to determine the smallest size of such a tree.

We consider a related structure that is to a tree what a walk is to a path. A
willow W consists of a multiset of nodes S(W ) from N and a parent function
p : S(W ) → S(W ), such that repeated applications of p end in a specified root
node r ∈ S(W ). The size of W is the number of nodes in S(W ), counted with
repetition.

Every tree can be turned into a willow, by selecting an arbitrary root and
orienting the edges towards it, but the converse is not true. However, a minimum
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size willow over a set of nodes is a tree: Assume a node appears twice in W .
Remove one of its occurrences u ∈ S(W ), not the root node, and change the
parent p(v) of all v with p(v) = u to p(v) = p(u). The resulting willow is smaller
than W but spans the same nodes. Finally, when all repeated nodes are removed,
p defines a tree.

Thus, it suffices to look for a size-l willow W that includes all terminals, for
increasing l = k, . . . , n. Set Ai to be the set of willows of size l that avoid ti.
Then, from (9), the number of willows of size l that include all terminals is∑

X⊆K

(−1)|X|al(X) ,

where al(X) = |⋂i∈X Ai| is the number of willows of size l that avoid the
terminals in X .

Again, we can use dynamic programming to compute al(X) for given X . For
all X ⊆ V and u /∈ X let al(X, u) denote the number willows of size l that avoid
X and whose root is u /∈ X . Then a1(X, u) = 1 and

ak(X, u) =
∑

uv∈E

k−1∑
i=1

ai(X, u)ak−i(X, v) .

Perspective. This application is from [16]. The role of inclusion–exclusion is
slightly different from the Hamiltonian path construction in the previous sub-
section, because we have no control over the size of the objects we are sieving
for.

There, we sifted through all walks of length n. What was left in the sieve were
the walks of length n that visit all n nodes. Thus, every node appears exactly
once, so that sieve contained exactly the desired solutions, i.e., the Hamiltonian
paths.

Here, we sift through all willows of size l. What is left in the sieve are the
willows that visit all terminals. For given l, these are not necessarily trees. In-
stead, correctness hinges on the fact that we already sifted through willows of
smaller size. To strain the metaphor, we use increasingly fine sieves until we find
something.

9 Long paths. Consider a graph G = (N, E) and integer k ≤ n. We want to
detect if G has a path of length k. Inspired by the Hamiltonicity construction in
§7 we look at all walks (w1, . . . , wk) on k nodes. For expository reasons we again
stipulate that all walks begin in a fixed node w1 = 1. Write K = {1, . . . , k}.

For every edge e pick a random value r(e). For every vertex v and integer k ∈
K pick a random value r(v, k). With foresight, the values are chosen uniformly
at random form a finite field F of characteristic 2 and size at least 2k(k−1). All
computation is in this field. For every walk W = (w1, . . . , wk) starting in w1 = 1
and every function φ : K → K define the term

p(W, φ) =
( k−1∏

i=1

r(wiwi+1)
)( k∏

i=1

r(wi, φ(i))
)

, (10)
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u v x

u
1

v
2

x
3

r(uv) · r(vx) · r(u, 1) · r(v, 2) · r(x, 3)

u
2

v
3

x
1

r(uv) · r(vx) · r(u, 2) · r(v, 3) · r(x, 1)

Fig. 6. Left: The path W = (u, v, x). Middle: The nodes of W labelled with two per-
mutations. Right: The terms associated with W and the two permutations.

see Fig. 6.
Consider the sum over all walks W in G and all permutations π ∈ Sk,

p(G) =
∑

π∈Sk

∑
W

p(W, π) . (11)

We will show below that

Pr( p(G) = 0 )

{
< 1

2 , if G contains a k-path ;
= 0 , otherwise .

(12)

where the probability is taken over the random choices of r.
To compute (11), we first recognise a summation over a permutation and

replace it by an alternating sum over functions with restricted range, as in (6):∑
π∈Sk

∑
W

p(W, π) =
∑
S⊆K

(−1)|K\S| ∑
φ : K→S

∑
W

p(W, φ) .

For each S ⊆ K, the value of the two inner sums can be computed efficiently
using dynamic programming; we omit the details. The total running time is
within a polynomial (in n) factor of 2k.

Proof of (12). Consider the contribution of every walk W to (11).
First assume that W is non-simple and let π be a permutation. We will con-

struct anther permutation ρ such that π �= ρ but p(W, π) = −p(W, ρ). Thus,
summing over all permutations, the contribution of W is even and therefore
vanishes in F . To construct ρ, let (i, j) be the first self-intersection on W , i.e.,
the lexicographically minimal pair with wi = wj and i < j. Set ρ equal to π
except for ρ(i) = π(j) and ρ(j) = π(i).

Now assume that W is a path. It is useful to view (11) as a polynomial in
variables x(e), x(v, k), evaluated at random points x(e) = r(e), x(v, k) = r(v, k).
For every permutation π, the monomial

(k−1∏
i=1

x(wiwi+1)
)(k−1∏

i=1

x(wi, π(i))
)
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is unique. To see this, both W and π can be recovered from p(W, π) by first
reconstructing the nodes w1, . . . , wk in order, starting at w1 = 1 and following
the unique incident edge described by the terms x(e), and then reconstructing
π from the terms x(wi, π(i)). Thus, (11) can be viewed as a nonzero polynomial
of degree k(k − 1) evaluated at m + nk random points from F . By the DeMillo–
Lipton–Schwarz–Zippel lemma [9,18], it evaluates to zero with probability less
than k(k − 1)/|F | ≤ 1

2 . ��

Perspective. The construction is implicit in [6] and not optimal. Again, the
starting point is the same as for Hamiltonicity in §7: to sieve for paths among
walks, whose contribution is computed by dynamic programming.

However, instead of counting the number of walks, we define an associated
family of algebraic objects (namely, a multinomial defined by the walk and a
permutation) and work with these objects instead. Strictly speaking, we did
associate algebraic objects to walks even before, but the object was somewhat
innocent: the integer 1.

There are two filtering processes at work: The sifting for paths among walks
is performed by the the cancellation of non-simple, permutation-labelled walks
in characteristic 2, rather than the by inclusion–exclusion sieve. At the danger
of overtaxing the sieving metaphor, the permutation-labelling plays the role of
mercury in gold mining; inclusion–exclusion ensures that the ‘mercury’ can be
added and removed in time 2k instead of the straightforward k!.

10 Yates’s algorithm. Let f : 2N → {0, 1} be the the indicator function of the
nonempty independent sets in a graph. We will revisit the task of §3, computing

g(S) =
∑
R⊆S

f(R) , (13)

for all S ⊆ N .
The computation proceeds in rounds i = 1, . . . , n. Initially, set g0(S) = f(S)

for all S ⊆ N . Then we have, for i = 1, . . . , n,

gi(S) = gi−1(S) + [i ∈ S] · gi−1(S \ {i}) (S ⊆ N) . (14)

Finally, g(S) = gn(S).

Proof of (14). The intuition is that g0(S), . . . , gn(S) approach g(S) ‘coordinate-
wise’ by fixing fewer and fewer bits of S. To be precise, for i = 1, . . . , n,

gi(S) =
∑
R⊆S

[S ∩ {i + 1, . . . , n} = R ∩ {i + 1, . . . , n}] · f(R) . (15)

In particular, gn(S) =
∑

R⊆S f(R). Correctness of (14) is established by a
straightforward but tedious induction argument for (15). The base case g0 = f is
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1 1 1 1

0 0 0 0 1

BD

1 CD

0 0 0 0

0g0 = f

0

1 1 1 1

1 1 0 1 1 1

0 1 1 0

0g1
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1 1 1 1

2 1 1 1 2 1

1 2 1 1

1g2
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1 1 1 1

2 2 2 1 2 2

3 2 2 3

3g3

0
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2 2 2 2 3 3

3 4 4 5

6g = g4

Fig. 7. Yates’s algorithm on the indicator function of the nonempty independent sets of
the graph G. Arrows indicate how the value of gi(S) for i ∈ S is computed by adding
gi−1(S \ {i}) to the ‘previous’ value gi−1(S).

immediate. For the inductive step, adopt the notation S(i) for S∩{i+1, . . . , n}.
Then the right hand side of (15) can be written as∑

R⊆S

[S(i) = R(i)]f(R)

=
∑
R⊆S
i∈R

[S(i) = R(i)]f(R) +
∑
R⊆S
i/∈R

[S(i) = R(i)]f(R) .

If i /∈ S then the first sum vanishes and the second sum simplifies to∑
R⊆S

[S(i − 1) = R(i − 1)]f(R) = gi−1(S)

by induction. If i ∈ S then we can rewrite both sums to∑
R⊆S

[S(i − 1) = R(i − 1)]f(R) +
∑
R⊆S
i/∈S

[S(i − 1) = R(i − 1)]f(R)

= gi−1(S) + gi−1(S \ {i})

by induction. Finally, by (14) the entire expression equals gi(S). ��

Perspective. As before, our approach is basically dynamic programming for a
decrease-and-conquer recurrence. The time and space requirements are within
a linear factor of the ones given in §2. However, the expression (14) is more
general and does not depend on the structure of independent sets. It applies
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to any function f : 2N → R from subsets to a ring, extending the algorithm to
many other covering problems than graph colouring.

Yates’s algorithm has much in common with the fast Fourier transform. We
can illustrate its operation using a butterfly-like network, see Fig. 8.
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Fig. 8. Yates’s algorithm for the zeta transform

Here we used Yates’s algorithm to compute (13), but the method is more
general than that. For example, it computes the Möbius transform, see (17)
below, and many others. A classical treatment of the algorithm appears in [13],
recent applications and modifications are in [7] and the forthcoming journal
version of [3].

11 Möbius inversion. Let f : 2N → {0, 1} be a function of subsets of N to
{0, 1} (indeed, any ring would do). To connect to the graph colouring example
from §2, think of f as the indicator function of the nonempty independent sets
in a graph. The zeta transform of f is the function (fζ) : 2N → {0, 1} defined
point-wise by

(fζ)(T ) =
∑
S⊆T

f(S) . (16)

The brackets around (fζ) are usually omitted. The Möbius transform of f is the
function (fμ) : 2N → {0, 1} defined point-wise by

(fμ)(T ) =
∑
S⊆T

(−1)|T\S|f(S), (17)

This allows us to state the principle of inclusion–exclusion in yet another way:

fζμ = fμζ = f . (18)
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Proof. We show fζμ = f , the other argument is similar.

fζμ(T ) =
∑
S⊆T

(−1)|T\S| ∑
R⊆S

f(R)

=
∑
S

∑
R

[S ⊆ T ][R ⊆ S](−1)|T\S|f(R)

=
∑
R

f(R)
∑
S

[R ⊆ S ⊆ T ](−1)|T\S| .

By (1), the inner sum equals [R = T ], so the expression simplifies to f(T ). ��

0

1 1 1 1

0 0 0 0 1 1

0 0 0 0

0

ζ

μ

0

1 1 1 1

2 2 2 2 3 3

3 4 4 5

6

Fig. 9. Möbius inversion

Perspective. For completeness, let us also derive (1) from (18), to see that the
two claims are equivalent. Consider two sets R and T . Define f(Q) = [Q = R].
Then, expanding (18),

[R = T ] = f(T ) =
∑
S⊆T

(−1)|T\S| ∑
Q⊆S

f(Q) =
∑
S⊆T

(−1)|T\S|[R ⊆ S]

=
∑

R⊆S⊆T

(−1)|T\S| .

12 Covering by Möbius inversion. We now give alternative argument for the
graph colouring expression (2).

Let f : 2N → {0, 1} be the indicator function of the nonempty independent
sets of a graph G = (N, E). We want to count the number of ways so cover N
with k nonempty independent sets. Define g(S) to be the number of ways to
choose k nonempty independent sets whose union is S. Then we claim

gζ = (fζ)k .

To see this, for every T ⊆ V , view gζ(T ) and
(
fζ(T )

)k as two different ways
of counting the number of ways so select k nonempty independent subsets of T .
Now, by Möbius inversion (18), we have

g = (fζ)kμ ,
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x �→ x2

x �→ x3

Fig. 10. Covering by Möbius inversion for k = 2 and k = 3

which is the left hand side of (2). In fact, we can now rewrite and understand
the left hand side of (2) as

∑
S⊆N

(−1)|N\S|
( ∑

R⊆S

f(R)
)

k

μ ζ

function in the original domain

operation in the transformed domain

Perspective. The fact that f was the indicator function of the independent sets
played no role in this argument. It works for a many covering problems, and
with some work also for packing and partitioning problems.

Taxonomically, we can view inclusion–exclusion as a transform-and-conquer
technique, like the Fourier transform. This can be expressed succinctly in terms
of Möbius inversion, illustrated in Fig. 10. The zeta transform translates the
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original problem into a different domain, where the computation is often easier,
and the Möbius transform translates back. In the covering example, the opera-
tion in the transformed domain, exponentiation, is particularly simple. The idea
extends to many other operations in the transformed domain, see [3].

Concluding remarks. A comprehensive presentation of many of the ideas men-
tioned here appears in a recent monograph [10], with many additional examples.
In particular a whole chapter is devoted to subset convolution, the most glaring
omission from the present introduction.

I owe much of my understanding of this topic to illuminating conversations
with my collaborators, Andreas Björklund, Petteri Kaski, and Mikko Koivisto.
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Abstract. Differential privacy is a notion that has emerged in the com-
munity of statistical databases, as a response to the problem of protect-
ing the privacy of the database’s participants when performing statistical
queries. The idea is that a randomized query satisfies differential privacy
if the likelihood of obtaining a certain answer for a database x is not too
different from the likelihood of obtaining the same answer on adjacent
databases, i.e. databases which differ from x for only one individual.

Information flow is an area of Security concerned with the problem
of controlling the leakage of confidential information in programs and
protocols. Nowadays, one of the most established approaches to quantify
and to reason about leakage is based on the Rényi min entropy version
of information theory.

In this paper, we analyze critically the notion of differential privacy
in light of the conceptual framework provided by the Rényi min informa-
tion theory. We show that there is a close relation between differential
privacy and leakage, due to the graph symmetries induced by the adja-
cency relation. Furthermore, we consider the utility of the randomized
answer, which measures its expected degree of accuracy. We focus on
certain kinds of utility functions called “binary”, which have a close cor-
respondence with the Rényi min mutual information. Again, it turns out
that there can be a tight correspondence between differential privacy
and utility, depending on the symmetries induced by the adjacency re-
lation and by the query. Depending on these symmetries we can also
build an optimal-utility randomization mechanism while preserving the
required level of differential privacy. Our main contribution is a study
of the kind of structures that can be induced by the adjacency relation
and the query, and how to use them to derive bounds on the leakage and
achieve the optimal utility.

1 Introduction

Databases are commonly used for obtaining statistical information about their
participants. Simple examples of statistical queries are, for instance, the pre-
dominant disease of a certain population, or the average salary. The fact that
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the answer is publicly available, however, constitutes a threat for the privacy of
the individuals.

In order to illustrate the problem, consider a set of individuals Ind whose
attribute of interest1 has values in Val . A particular database is formed by a
subset of Ind , where a certain value in Val is associated to each participant. A
query is a function f : X → Y, where X is the set of all possible databases, and
Y is the domain of the answers.

For example, let Val be the set of possible salaries and let f represent the query
“what is the average salary of the participants in the database”. In principle we
would like to consider the global information relative to a database x as public,
and the individual information about a participant i as private. Namely, we
would like to be able to obtain f(x) without being able to infer the salary of i.
However, this is not always possible. In particular, if the number of participants
in x is known (say n), then the removal of i from the database would allow
to infer i’s salary by querying again the new database x′, and by applying the
formula n f(x) − (n− 1) f(x′). Using an analogous reasoning we can argue that
not only the removal, but also the addition of an individual is a threat for his
privacy.

Another kind of private information we may want to protect is whether an
individual i is participating or not in a database. In this case, if we know for
instance that i earns, say 5K Euros/month, and all the other individuals in Ind
earn less than 4K Euros/month, then knowing that f(x) > 5K Euros/month
will reveal immediately that i is in the database x.

A common solution to the above problems is to introduce some output per-
turbation mechanism based on randomization: instead of the exact answer f(x)
we report a “noisy” answer. Namely, we use some randomized function K which
produces values in some domain2 Z according to some probability distribution
that depends on the input x ∈ X . Of course for certain distributions it may still
be possible to guess the value of an individual with a high probability of success.
The notion of differential privacy, due to Dwork [10,13,11,12], is a proposal to
control the risk of violating privacy for both kinds of threats described above
(value and participation). The idea is to say that K satisfies ε-differential pri-
vacy (for some ε > 0) if the ratio between the probabilities that two adjacent
databases give the same answer is bound by eε, where by “adjacent” we mean
that the databases differ for only one individual (either for the value of an in-
dividual or for the presence/absence of an individual). Often we will abbreviate
“ε-differential privacy” as ε-d.p.

Obviously, the smaller is ε, the greater is the privacy protection. In particu-
lar, when ε is close to 0 the output of K is nearly independent from the input
(all distributions are almost equal). Unfortunately, such K is practically useless.
The utility, i.e. the capability to retrieve accurate answers from the reported

1 In general we could be interested in several attributes simultaneously, and in this
case Val would be a set of tuples.

2 The new domain Z may coincide with Y, but not necessarily. It depends on how the
randomization mechanism is defined.



62 M.S. Alvim et al.

ones, is the other important characteristic of K, and it is clear that there is a
trade-off between utility and privacy. On the other hand, these two notions are
not the complete opposite of each other, because utility concerns the relation
between the reported answer and the real answer, while privacy is concerns the
relation between the reported answer and the information in the database. This
asymmetry makes more interesting the problem of finding a good compromise
between the two.

At this point, we would like to remark an intriguing analogy between the area
of differential privacy and that of quantitative information flow (QIF), both in
the motivations and in the basic conceptual framework. Information flow is con-
cerned with the leakage of secret information through computer systems, and
the attribute “quantitative” refers to the fact that we are interested in measur-
ing the amount of leakage, not just its occurrence. One of the most established
approaches to QIF is based on information theory: the idea is that a system
is seen as a channel in the information-theoretic sense, where the secret is the
input and the observables are the output. The entropy of the input represents
its vulnerability, i.e. how easy it is for an attacher to guess the secret. We distin-
guish between the a priori entropy (before the observable) and the a posteriori
entropy (given the observable). The difference between the two gives the mutual
information and represents, intuitively, the increase in vulnerability due to the
observables produced by the system, so it is naturally considered as a measure
of the leakage. The notion of entropy is related to the kind of attack we want to
model, and in this paper we focus on the Rényi min entropy [18], which repre-
sents the so-called one-try attacks. In recent years there has been a lot of research
aimed at establishing the foundations of this framework [19,7,16,3,5]. It is worth
pointing out that the a posteriori Rényi min entropy corresponds to the concept
of Bayes risk, which has also been proposed as a measure of the effectiveness of
attacks [8,6,17].

The analogy hinted above between differential privacy and QIF is based on
the following observations: at the motivational level, the concern about privacy
is akin the concern about information leakage. At the conceptual level, the ran-
domized function K can be seen as an information-theoretic channel, and the
limit case of ε = 0, for which the privacy protection is total, corresponds to a
0-capacity channel3 (the rows of the channel matrix are all identical), which does
not allow any leakage. Another promising similarity is that the notion of utility
(in the binary case) corresponds closely to the Bayes risk.

In this paper we investigate the notion of differential privacy, and its impli-
cations, in light of the min-entropy information theoretic framework developed
for QIF. In particular, we wish to explore the following natural questions:

1. Does ε-d.p. induce a bound on the information leakage of K?
2. Does ε-d.p. induce a bound on the information leakage relative to an indi-

vidual?
3. Does ε-d.p. induce a bound on the utility?
3 The channel capacity is the maximum mutual information over all possible input

distributions.
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4. Given f and ε, can we construct a K which satisfies ε-d.p. and maximum
utility?

We will see that the answers to (1) and (2) are positive, and we provide bounds
that are tight, in the sense that for every ε there is a K whose leakage reaches
the bound. For (3) we are able to give a tight bound in some cases which depend
on the structure of the query, and for the same cases, we are able to construct
an oblivious4 K with maximum utility, as requested by (4).

Part of the above results have already appeared in [1], and are based on
techniques which exploit the graph structure that the adjacency relation induces
on the domain of all databases X , and on the domain of the correct answers Y.
The main contribution of this paper is an extension of those techniques, and a
coherent graph-theoretic framework for reasoning about the symmetries of those
domains. More specifically:

– We explore the graph-theoretic foundations of the adjacency relation, and
point out various types of symmetries which allow us to establish a strict
link between differential privacy and information leakage.

– We give a tight bound for the question (2) above, strictly smaller than the
one in [1].

– We extend the structures for which we give a positive answer to the questions
(3) and (4) above. In [1] the only case considered was the class of graphs
with single-orbit automorphisms. Here we show that the results hold also for
regular-distance graphs and a variant of vertex-transtive graphs.

In this paper we focus on the case in which X , Y and Z are finite, leaving the
more general case for future work.

2 Preliminaries

2.1 Database Domain and Differential Privacy

Let Ind be a finite set of individuals that may participate in a database and Val
a finite set of possible values for the attribute of interest of these individuals.
In order to capture in a uniform way the presence/absence of an individual in
the database, as well as its value, we enrich the set of possible values with an
element a representing the absence of the individual. Thus the set of all possible
databases is the set X = V Ind , where V = Val ∪ {a}. We will use u and v to
denote the cardinalities of Ind and V , |Ind | and |V |, respectively. Hence we have
that |X | = vu . A database x can be represented as a u-tuple v0v1 . . . vu−1 where
each vi ∈ V is the value of the corresponding individual. Two databases x, x′

are adjacent (or neighbors), written x ∼ x′, if they differ for the value of exactly
one individual. For instance, for u = 3, v0v1v2 and v0w1v2, with w1 �= v1, are
adjacent. The structure (X ,∼) forms an undirected graph.

4 A randomized function K is oblivious if its probability distribution depends only on
the answer to the query, and not on the database.
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Intuitively, differential privacy is based on the idea that a randomized query
function provides sufficient protection if the ratio between the probabilities of
two adjacent databases to give a certain answer is bound by eε, for some given
ε > 0. Formally:

Definition 1 ([12]). A randomized functionK fromX toZ satisfies ε-differential
privacy if for all pairs x, x′ ∈ X , with x ∼ x′, and all S ⊆ Z, we have that:

Pr [K(x) ∈ S] ≤ eε × Pr [K(x′) ∈ S]

The above definition takes into account the possibility that Z is a continuous
domain. In our case, since Z is finite, the probability distribution is discrete,
and we can rewrite the property of ε-d.p. more simply as (using the notation of
conditional probabilities, and considering both quotients):

1
eε

≤ Pr [Z = z|X = x]
Pr [Z = z|X = x′]

≤ eε for all x, x′ ∈ X with x ∼ x′, and all z ∈ Z

where X and Z represent the random variables associated to X and Z, respec-
tively.

2.2 Information Theory and Application to Information Flow

In the following, X, Y denote two discrete random variables with carriers X =
{x0, . . . , xn−1}, Y = {y0, . . . , ym−1}, and probability distributions pX(·), pY (·),
respectively. An information-theoretic channel is constituted by an input X ,
an output Y , and the matrix of conditional probabilities pY |X(· | ·), where
pY |X(y | x) represent the probability that Y is y given that X is x. We shall
omit the subscripts on the probabilities when they are clear from the context.

Rényi min-entropy. In [18], Rényi introduced an one-parameter family of
entropy measures, intended as a generalization of Shannon entropy. The Rényi
entropy of order α (α > 0, α �= 1) of a random variable X is defined as Hα(X) =

1
1−α log2

∑
x∈X p(x)α. We are particularly interested in the limit of Hα as α

approaches ∞. This is called min-entropy. It can be proven that H∞(X) def=
limα→∞ Hα(X) = − log2 maxx∈X p(x).

Rényi defined also the α-generalization of other information-theoretic no-
tions, like the Kullback-Leibler divergence. However, he did not define the α-
generalization of the conditional entropy, and there is no general agreement on
what it should be. For the case α = ∞, we adopt here the definition of condi-
tional entropy proposed by Smith in [19]:

H∞(X | Y ) = − log2

∑
y∈Y

p(y) max
x∈X

p(x | y) (1)

Analogously to the Shannon case, we can define the Rényi-mutual information
I∞ as H∞(X)−H∞(X | Y ), and the capacity C∞ as maxpX (·) I∞(X ; Y ). It has
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been proven in [7] that C∞ is obtained at the uniform distribution, and that it
is equal to the sum of the maxima of each column in the channel matrix, i.e.,
C∞ =

∑
y ∈Y maxx∈X p(y | x).

Interpretation in terms of attacks: Rényi min-entropy can be related to a model
of adversary who is allowed to ask exactly one question, which must be of the
form “is X = x?” (one-try attacks). More precisely, H∞(X) represents the (log-
arithm of the inverse of the) probability of success for this kind of attacks and
with the best strategy, which consists, of course, in choosing the x with the
maximum probability.

As for H∞(X | Y ), it represents the inverse of the (expected value of the)
probability that the same kind of adversary succeeds in guessing the value of X a
posteriori, i.e. after observing the result of Y . The complement of this probability
is also known as Bayes risk. Since in general X and Y are correlated, observing Y
increases the probability of success. Indeed we can prove formally that H∞(X |
Y ) ≤ H∞(X), with equality if and only if X and Y are independent. I∞(X ; Y )
corresponds to the ratio between the probabilities of success a priori and a
posteriori, which is a natural notion of leakage. Note that I∞(X ; Y ) ≥ 0, which
seems desirable for a good notion of leakage.

3 Graph Symmetries

In this section we explore some classes of graphs that allow us to derive a strict
correspondence between ε-d.p. and the a posteriori entropy of the input.

Let us first recall some basic notions. Given a graph G = (V ,∼), the distance
d(v, w) between two vertices v, w ∈ V is the number of edges in a shortest path
connecting them. The diameter of G is the maximum distance between any two
vertices in V . The degree of a vertex is the number of edges incident to it. G is
called regular if every vertex has the same degree. A regular graph with vertices
of degree k is called a k-regular graph. An authomorphism of G is a permutation
σ of the vertex set X , such that for any pair of vertices x, x′, if x ∼ x′, then
σ(x) ∼ σ(x′). If σ is an authomorphism, and v a vertex, the orbit of v under σ is
the set {v, σ(v), . . . , σk−1(v)} where k is the smallest positive integer such that
σk(v) = v. Clearly, the orbits of the vertices under σ define a partition of V .

The following two definition introduce the classes of graphs that we are inter-
ested in. The first class is well known in literature.

Definition 2. Given a graph G = (V ,∼), we say that G is distance-regular if
there exist integers bi, ci, i = 0, ..., d such that for any two vertices v, w in V
with distance i = d(v, w), there are exactly ci neighbors of w in Gi−1(x) and
bi neighbors of v in Gi+1(x), where Gi(x) is the set of vertices y of G with
d(x, y) = i.

Some examples of distance-regular graphs are illustrated in Figure 1.
The next class is a variant of the VT (vertex-transitive) class:
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(a) Tetrahedral

graph

(b) Cubical graph (c) Petersen graph

Fig. 1. Some distance-regular graphs with degree 3

Definition 3. A graph G = (V ,∼) is VT+ (vertex-transitive +) if there are
n automorphisms σ0, σ1, . . . σn−1, where n = |V|, such that, for every vertex
v ∈ V, we have that {σi(v) | 0 ≤ i ≤ n − 1} = V.

In particular, the graphs for which there exists an authomorphism σ which in-
duces only one orbit are VT+: in fact it is sufficient to define σi = σi for all i from
0 to n − 1. Figure 2 illustrates some graphs with a single-orbit automorphism.

(a) Cycle: degree 2. (b) Degree 4. (c) Clique: degree 5.

Fig. 2. Some VT+ graphs

From graph theory we know that neither of the two classes subsumes the other.
They have however a non-empty intersection, which contains in particular all the
structures of the form (V Ind ,∼), i.e. the database domains.

Proposition 1. The structure (X ,∼) = (V Ind ,∼) is both a distance-regular
graph and a VT+ graph.

Figure 3 illustrates some examples of structures (V Ind ,∼). Note that when
|Ind | = n and |V | = 2, (V Ind ,∼) is the n-dimentional hypercube.

The situation is summarized in Figure 4. We remark that in general the graphs
(V Ind ,∼) do not have a single-orbit authomorphism. The only exceptions are
the two simplest structures (|V | = 2, |Ind | ≤ 2).

The two symmetry classes defined above, distance-regular and VT+, will be
used in the next section to transform a generic channel matrix into a matrix
with a symmetric structure, while preserving the a posteriori min entropy and
the ε-d.p.. This is the core of our technique to establish the relation between
differential privacy and quantitive information flow, depending on the structure
induced by the database adjacency relation.
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bbbbbbba

(a) |Ind | = 4, V = {a, b} (4-

dimensional hypercube)
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baa
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bca

caa
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cca bcb

bccccb

ccc

(b) |Ind | = 3, V = {a, b, c} (for read-

ability sake we show only part of the

graph)

Fig. 3. Some (V Ind ,∼) graphs

Dist-regular VT++V Ind

Single-
orbit

S∗

Fig. 4. Venn diagram for the classes of graphs considered in this section. Here, S∗ =
{V Ind | |V | = 2, |Ind| ≤ 2}

4 Deriving the Relation between Differential Privacy and
QIF on the Basis of the Graph Structure

This section contains the main technical contribution of the paper: a general
technique for determining the relation between ε-differential privacy and leakage,
and between ε-differential privacy and utility, depending on the graph structure
induced by ∼ and f . The idea is to use the symmetries of the graph structure
to transform the channel matrix into an equivalent matrix with certain regular-
ities, which allow to establish the link between ε-differential privacy and the a
posteriori min entropy.

Let us illustrate briefly this transformation. Consider a channel whose matrix
M has at least as many columns as rows. First, we transform M into a matrix
M ′ in which each of the first n columns has a maximum in the diagonal, and
the remaining columns are all 0’s. Second, under the assumption that the input
domain is distance-regular or VT+, we transform M ′ into a matrix M ′′ whose
diagonal elements are all the same, and coincide with the maximum element of
M ′′, which we denote here by maxM ′′

. These steps are illustrated in Figure 5.
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M

⎡
⎢⎢⎢⎣

M0,0 M0,1 . . . M0,m−1

M1,0 M1,1 . . . M1,m−1

...
...

. . .
...

Mn−1,0 Mn−1,1 . . . Mn−1,m−1

⎤
⎥⎥⎥⎦

Lemma 1

M ′

⎡
⎢⎢⎢⎣

maxM ′
0 − . . . − 0 . . . 0

− maxM ′
1 . . . − 0 . . . 0

...
...

. . .
...

...
. . .

...
− − . . . maxM ′

n−1 0 . . . 0

⎤
⎥⎥⎥⎦

Lemma 2
(dist-reg)

Lemma 3
(VT++)

M ′′

⎡
⎢⎢⎢⎣

maxM ′′ − . . . − 0 . . . 0

− maxM ′′
. . . − 0 . . . 0

...
...

. . .
...

...
. . .

...
− − . . . maxM ′′

0 . . . 0

⎤
⎥⎥⎥⎦

Fig. 5. Matrix transformations for distance-regular and VT+ graphs

We are now going to present formally our the technique. Let us first fix some
notation: In the rest of this section we consider channels with input A and
output B, with carriers A and B respectively, and we assume that the probability
distribution of A is uniform. Furthermore, we assume that |A| = n ≤ |B| = m.
We also assume an adjacency relation ∼ on A, i.e. that (A,∼) is an undirected
graph structure. With a slight abuse of notation, we will also write i ∼ h when
i and h are associated to adjacent elements of A, and we will write d(i, h) to
denote the distance between the elements of A associated to i and h.

We note that a channel matrix M satisfies ε-d.p. if for each column j and for
each pair of rows i and h such that i ∼ h we have that:

1
eε

≤ Mi,j

Mh,j
≤ eε.

The a posteriori entropy of a channel with matrix M will be denoted by HM
∞ (A|B).

Next Lemma is relative to the first step of the transformation.

Lemma 1. Consider a channel with matrix M . Assume that M satisfies ε-d.p..
Then it is possible to transform M into a matrix M ′ such that:

– Each of the first n columns has a maximum in the diagonal, i.e. M ′
i,i =

maxM ′
i = maxh M ′

h,i for each i from 0 to n − 1.
– The rest of the columns contain only 0’s, i.e. M ′

i,j = 0 for each i from 0 to
n − 1 and each j from n to m − 1.

– M ′ satisfies ε-d.p.
– HM ′

∞ (A|B) = HM
∞ (A|B).
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Next lemma is relative to the second step of the transformation, for the case
of distance-regular graphs.

Lemma 2. Consider a channel with matrix M ′. Assume that M ′ satisfies ε-d.p.,
and the first n columns have maxima in the diagonal, and the rest of the columns
contain only 0’s. Assume that (A,∼) is distance-regular. Then it is possible to
transform M ′ into a matrix M ′′ such that:

– The elements of the diagonal are all the same, and are equal to the maximum
of the matrix, i.e. M ′′

i,i = maxM ′′
= maxh,i M ′′

h,i for each i from 0 to n − 1.
– The rest of the columns contain only 0’s.
– M ′′ satisfies ε-d.p.
– HM ′′

∞ (A|B) = HM ′
∞ (A|B).

Next lemma is relative to the second step of the transformation, for the case of
VT+ graphs.

Lemma 3. Consider a channel with matrix M ′ satisfying the assumptions of
Lemma 2, except for the assumption about distance-regularity, which we replace
by the assumption that (A,∼) is VT+. Then it is possible to transform M ′ into
a matrix M ′′ with the same properties as in Lemma 2.

Note that the fact that in M ′′ the diagonal elements are all equal to the maximum
maxM ′′

implies that HM ′′
∞ (A|B) = maxM ′′

.
Once we have a matrix with the properties of M ′′, we can use again the graph

structure of A to determine a bound on HM ′′
∞ (A|B).

First we note that the property of ε-d.p. induces a relation between the ratio
of elements at any distance:

Remark 1. Let M be a matrix satisfying ε-d.p.. Then, for any column j, and
any pair of rows i and h we have that:

1
eε d(i,h)

≤ Mi,j

Mh,j
≤ eε d(i,h)

In particular, if we know that the diagonal elements of M are equal to the
maximum element maxM , then for each element Mi,j we have that:

Mi,j ≥ maxM

eε d(i,j)
(2)

Let us fix a row, say row r. For each distance d from 0 to the diameter of
the graph, let nd be the number of elements Mr,j that are at distance d from
the corresponding diagonal element Mj,j , i.e. such that d(r, j) = d. (Clearly, nd

depends on the structure of the graph.) Since the elements of the row i represent
a probability distribution, we obtain the following dis-equation:

maxM
∑

d

nd

eε d
≤ 1

from which we derive immediately a bound on the min a-posteriori entropy.
Putting together all the steps of this section, we obtain our main result.
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Theorem 1. Consider a matrix M , and let r be a row of M . Assume that (A,∼)
is either distance-regular or VT+, and that M satisfies ε-d.p. For each distance
d from 0 to the diameter of (A,∼), let nd be the number of nodes j at distance
d from r. Then we have that:

HM
∞ (A|B) ≤ − log2

1∑
d

nd

eε d

(3)

Note that this bound is tight, in the sense that we can build a matrix for which
(3) holds with equality. It is sufficient to define each element Mi,j according to
(2) (with equality instead of dis-equality, of course).

In the next section, we will see how to use this theorem for establishing a
bound on the leakage and on the utility.

5 Application to Leakage

As already hinted in the introduction, we can regard K as a channel with input X
and output Z. From Proposition 1 we know that (X ,∼) is both distance-regular
and VT+, we can therefore apply Theorem 1. Let us fix a particular database
x ∈ X . The number of databases at distance d from x is

nd =
(

u
d

)
(v − 1)d (4)

where u = |Ind | and v = V . In fact, recall that x can be represented as a u-tuple
with values in V . We need to select d individuals in the u-tuple and then change
their values, and each of them can be changed in v − 1 different ways.

Using the nd from (4) in Theorem 1 we obtain a binomial expansion in the
denominator, namely:

HM
∞ (X |Z) ≤ − log2

1
u∑

d=0

(
u
d

)
(v − 1)d eε(u−d)

eε u

= −u log2

eε

v − 1 + eε

which gives the following result:

Theorem 2. If K satisfies ε-d.p., then for the uniform input distribution the
information leakage is bound from above as follows:

I∞(X ; Z) ≤ −u log2

v eε

v − 1 + eε

We consider now the leakage for a single individual. Let us fix a database x,
and a particular individual i in Ind . The possible ways in which we can change
the value of i in x are v − 1. All the new databases obtained in this way are
adjacent to each other, i.e. the graph structure associated to the input is a clique



On the Relation between Differential Privacy and QIF 71

K (ε-Diff. priv. randomized function)

X

Dataset

Query

f

Y

Real answer

Randomization
mechanism

H
Z

Reported answer

Utility

Leakage

Fig. 6. Schema of an oblivious randomized function

of v nodes. Therefore we obtain nd = 1 for d = 0, nd = v − 1 for d = 1, and
nd = 0 otherwise. By substituting this value of nd in Theorem 1, we get

Hind
∞ (Val |Z) ≤ − log2

1

1 +
v − 1

eε

= − log2

eε

v − 1 + eε

which leads to the following result:

Proposition 2. Assume that K satisfies ε-d.p.. Then for the uniform distribution
on V the information leakage for an individual is bound from above as follows:

Iind
∞ (Val ; B) ≤ log2

v eε

v − 1 + eε

Note that the bound on the leakage for an individual does not depend on the
size of Ind , nor on the database x that we fix.

6 Application to Utility

We turn now our attention to the issue of utility. We focus on the case in which
K is oblivious, which means that it depends only on the (exact) answer to the
query, i.e. on the value of f(x), and not on x.

An oblivious function can be decomposed in the concatenation of two chan-
nels, one representing the function f , and the other representing the randomiza-
tion mechanism H added as output perturbation. The situation is illustrated in
Figure 6.

The standard way to define utility is by means of guess and gain functions.
The functionality of the first is guess : Z → Y, and it represents the user’s
strategy to retrieve the correct answer form the reported one. The functionality
of the latter is gain : Y ×Y → R. the value gain(y, y′) represents the reward for
guessing the answer y when the correct answer is y′. The utility U can then be
defined as the expected gain:
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U(Y, Z) =
∑
y,z

p(y, z) gain(guess(z), y)

We focus here on the so-called binary gain function, which is defined as

gain(y, y′) =

{
1 if y = y′

0 otherwise

This kind of function represents the case in which there is no reason to prefer
an answer over the other, except if it is the right answer. More precisely, we get
a gain if and only if we guess the right answer.

If the gain function is binary, and the guess function represents the user’s
best strategy, i.e. it is chosen to optimize utility, then there is a well-known
correspondence between U and the Bayes risk / the a posteriori min entropy.
Such correspondence is expressed by the following proposition:

Proposition 3. Assume that gain is binary and guess is optimal. Then:

U(Y, Z) =
∑

z

max
y

(p(z|y) p(y)) = 2−H∞(Y |Z)

In order to analyze the implications of the ε-d.p. requirement on the utility, we
need to consider the structure that the adjacency relation induces on Y. Let us
define ∼ on Y as follows: y ∼ y′ if there are x, x′ ∈ X such that y = f(x),
y′ = f(x′), and x ∼ x,. Note that K satisfies ε-d.p. if and only if H satisfies
ε-d.p.

If (Y,∼) is distance-regular or VT+, then we can apply Theorem 1 to find a
bound on the utility. In the following, we assume that the distribution of Y is
uniform.

Theorem 3. Consider a randomized mechanism H, and let y be an element of
Y. Assume that (Y,∼) is either distance-regular or VT+ and that H satisfies
ε-d.p. For each distance d from 0 to the diameter of (Y,∼), let nd be the number
of nodes y′ at distance d from y. Then we have that:

U(Y, Z) ≤ 1∑
d

nd

eε d

(5)

The above bound is tight, in the sense that (provided (Y,∼) is distance-regular
or VT+) we can construct a mechanism H which satisfies (5) with equality. More
precisely, define

c =
1∑

d

nd

eε d

Then define H (here identified with its channel matrix for simplicity) as follows:

Hi,j =
c

eε d(i,j)
(6)
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Theorem 4. Assume (Y,∼) is distance-regular or VT+. Then the matrix H
defined in (6) satisfies ε-d.p. and has maximal utility:

U(Y, Z) =
1∑

d

nd

eε d

Note that we can always define H as in (6): the matrix so defined will be a legal
channel matrix, and it will satisfy ε-d.p.. However, if (Y,∼) is neither distance-
regular nor VT+, then the utility of such H is not necessarily optimal.

We end this section with an example (borrowed from [1]) to illustrate our
technique.

Example 1. Consider a database with electoral information where each row cor-
responds to a voter and contains the following three fields:

– Id : a unique (anonymized) identifier assigned to each voter;
– City: the name of the city where the user voted;
– Candidate: the name of the candidate the user voted for.

Consider the query “What is the city with the greatest number of votes for
a given candidate cand?”. For such a query the binary utility function is the
natural choice: only the right city gives some gain, and all wrong answers are
equally bad. It is easy to see that every two answers are neighbors, i.e. the graph
structure of the answers is a clique.

Let us consider the scenario where City = {A, B, C, D, E, F} and assume for
simplicity that there is a unique answer for the query, i.e., there are no two cities
with exactly the same number of individuals voting for candidate cand . Table 1
shows two alternative mechanisms providing ε-differential privacy (with ε =
log 2). The first one, M1, is based on the truncated geometric mechanism method
used in [14] for counting queries (here extended to the case where every pair of
answers is neighbor). The second mechanism, M2, is obtained by applying the
definition (6). From Theorem 4 we know that for the uniform input distribution
M2 gives optimal utility.

For the uniform input distribution, it is easy to see that U(M1) = 0.2242 <
0.2857 = U(M2). Even for non-uniform distributions, our mechanism still pro-
vides better utility. For instance, for p(A) = p(F ) = 1/10 and p(B) = p(C) =
p(D) = P (E) = 1/5, we have U(M1) = 0.2412 < 0.2857 = U(M2). This is not
too surprising: the geometric mechanism, as well as the Laplacian mechanism
proposed by Dwork, perform very well when the domain of answers is provided
with a metric and the utility function is not binary5. It also works well when
(Y,∼) has low connectivity, in particular in the cases of a ring and of a line. But
in this example, we are not in these cases, because we are considering binary
gain functions and high connectivity.
5 In the metric case the gain function can take into account the proximity of the

reported answer to the real one, the idea being that a close answer, even if wrong,
is better than a distant one.
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Table 1. Mechanisms for the city with higher number of votes for candidate cand

(a) M1: truncated geometric mechanism

In/Out A B C D E F

A 0.535 0.060 0.052 0.046 0.040 0.267

B 0.465 0.069 0.060 0.053 0.046 0.307

C 0.405 0.060 0.069 0.060 0.053 0.353

D 0.353 0.053 0.060 0.069 0.060 0.405

E 0.307 0.046 0.053 0.060 0.069 0.465

F 0.267 0.040 0.046 0.052 0.060 0.535

(b) M2: our mechanism

In/Out A B C D E F

A 2/7 1/7 1/7 1/7 1/7 1/7

B 1/7 2/7 1/7 1/7 1/7 1/7

C 1/7 1/7 2/7 1/7 1/7 1/7

D 1/7 1/7 1/7 2/7 1/7 1/7

E 1/7 1/7 1/7 1/7 2/7 1/7

F 1/7 1/7 1/7 1/7 1/7 2/7

7 Related Work

As far as we know, the first work to investigate the relation between differential
privacy and information-theoretic leakage for an individual was [2]. In this work,
a channel is relative to a given database x, and the channel inputs are all possible
databases adjacent to x. Two bounds on leakage were presented, one for teh
Rényi min entropy, and one for Shannon entropy. Our bound in Proposition 2
is an improvement with respect to the (Rényi min entropy) bound in [2].

Barthe and Köpf [4] were the first to investigates the (more challenging) con-
nection between differential privacy and the Rényi min-entropy leakage for the
entire universe of possible databases. They consider the “end-to-end differen-
tially private mechanisms”, which correspond to what we call K in our paper,
and propose, like we do, to interpret them as information-theoretic channels.
They provide a bound for the leakage, but point out that it is not tight in gen-
eral, and show that there cannot be a domain-independent bound, by proving
that for any number of individual u the optimal bound must be at least a cer-
tain expression f(u, ε). Finally, they show that the question of providing optimal
upper bounds for the leakage of ε-differentially private randomized functions in
terms of rational functions of ε is decidable, and leave the actual function as an
open question. In our work we used rather different techniques and found (inde-
pendently) the same function f(u, ε) (the bound in Theorem 1), but we actually
proved that f(u, ε) is the optimal bound6. Another difference is that [4] captures
the case in which the focus of differential privacy is on hiding participation of
individuals in a database. In our work, we consider both the participation and
the values of the participants.

Clarkson and Schneider also considered differential privacy as a case study
of their proposal for quantification of integrity [9]. There, the authors analyze
database privacy conditions from the literature (such as differential privacy, k-
anonymity, and l-diversity) using their framework for utility quantification. In
particular, they study the relationship between differential privacy and a notion
of leakage (which is different from ours - in particular their definition is based
on Shannon entropy) and they provide a tight bound on leakage.
6 When discussing our result with Barthe and Köpf, they said that they also conjec-

tured that f(u, ε) is the optimal bound.
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Heusser and Malacaria [15] were among the first to explore the application
of information-theoretic concepts to databases queries. They proposed to model
database queries as programs, which allows for statical analysis of the informa-
tion leaked by the query. However [15] did not attempt to relate information
leakage to differential privacy.

In [14] the authors aim at obtaining optimal-utility randomization mecha-
nisms while preserving differential privacy. The authors propose adding noise to
the output of the query according to the geometric mechanism. Their frame-
work is very interesting in the sense it provides a general definition of utility
for a mechanism M that captures any possible side information and preference
(defined as a loss function) the users of M may have. They prove that the ge-
ometric mechanism is optimal in the particular case of counting queries. Our
results in Section 6 do not restrict to counting queries, but on the other hand
we only consider the case of binary loss function.

8 Conclusion and Future Work

In this paper we have investigated the relation between ε-differential privacy and
leakage, and between ε-differential privacy and utility. Our main contribution is
the development of a general technique for determining these relations depending
on the graph structure induced by the adjacency relation and by the query. We
have considered two particular structures, the distance-regular graphs, and the
VT+ graphs, which allow to obtain tight bounds on the leakage and on the utility,
and to construct the optimal randomization mechanism satisfying ε-differential
privacy.

As future work, we plan to extend our result to other kinds of utility functions.
In particular, we are interested in the case in which the the answer domain is
provided with a metric, and we are interested in taking into account the degree
of accuracy of the inferred answer.

References

1. Alvim, M.S., Andrés, M.E., Chatzikokolakis, K., Degano, P., Palamidessi, C.: Dif-
ferential privacy: on the trade-off between utility and information leakage. Techni-
cal report (2011), http://hal.inria.fr/inria-00580122/en/

2. Alvim, M.S., Chatzikokolakis, K., Degano, P., Palamidessi, C.: Differential privacy
versus quantitative information flow. Technical report (2010)

3. Andrés, M.E., Palamidessi, C., van Rossum, P., Smith, G.: Computing the leakage
of information-hiding systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 373–389. Springer, Heidelberg (2010)
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16. Köpf, B., Smith, G.: Vulnerability bounds and leakage resilience of blinded cryp-
tography under timing attacks. In: Proc. of CSF, pp. 44–56. IEEE, Los Alamitos
(2010)

17. McIver, A., Meinicke, L., Morgan, C.: Compositional closure for bayes risk in prob-
abilistic noninterference. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 223–235.
Springer, Heidelberg (2010)
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Abstract. We present a 1.488 approximation algorithm for the met-
ric uncapacitated facility location (UFL) problem. Previously the best
algorithm was due to Byrka [1]. By linearly combining two algorithms
A1(γf ) for γf ≈ 1.6774 and the (1.11,1.78)-approximation algorithm A2
proposed by Jain, Mahdian and Saberi [8], Byrka gave a 1.5 approxima-
tion algorithm for the UFL problem. We show that if γf is randomly se-
lected from some distribution, the approximation ratio can be improved
to 1.488. Our algorithm cuts the gap with the 1.463 approximability
lower bound by almost 1/3.

Keywords: Approximation, Facility Location Problem, Theory.

1 Introduction

In this paper, we present an improved approximation algorithm for the (metric)
uncapacitated facility location (UFL) problem. In the UFL problem, we are given
a set of potential facility locations F , each i ∈ F with a facility cost fi, a set
of clients C, and a metric d over F ∪ C. The goal is to find a subset F ′ ⊂ F
of locations to open facilities, to minimize the sum of the total facility cost and
the connection cost. The total facility cost is

∑
i∈F ′

fi, and the connection cost is

∑
j∈C

d(j, ij), where ij is the closest facility in F ′ to j.

The UFL problem is NP-hard and has received a lot of attention in the liter-
ature. Back to 1982, Hochbaum [6] presented a greedy algorithm with O(log n)
approximation guarantee. Shmoys, Tardos, and Aardal [12] used the filtering
technique of Lin and Vitter [10] to give a 3.16 approximation algorithm, which
is the first constant approximation. After that, a large number of constant ap-
proximation algorithms were proposed([4,9,3,7,8,11]). The current best known
approximation ratio for the UFL problem is 1.50, given by Byrka [1].

On the negative side, Guha and Kuller [5] showed that there is no ρ approxi-
mation for the UFL problem if ρ < 1.463, unless NP ⊂ DTIME

(
nO(log log n)

)
.

Jain et al. [8] generalized the result to that no (λf , λc)-bifactor approximation
exists for λc < 1+2e−λf unless NP ⊂ DTIME

(
nO(log log n)

)
. Here, we say that

an algorithm is a (λf , λc)-approximation algorithm if the solution has total cost

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part II, LNCS 6756, pp. 77–88, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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at most λfF
∗+λcC

∗, where F ∗ and C∗ are the facility and the connection cost
of an optimal solution, respectively.

Built on the work of Byrka [1], we give a 1.488-approximation algorithm for
the UFL problem. Byrka presented an algorithm A1(γf ) which gives the opti-
mal bifactor approximation (γf , 1 + 2e−γf ) for γf ≥ γ0 ≈ 1.6774. By linearly
combining A1(γ0) and the (1.11, 1.78)-approximation algorithm A2 proposed by
Jain, Mahdian and Saberi [8], Byrka was able to give a 1.5 approximation algo-
rithm. We show that if γf is randomly selected from some distribution, a linear
combination of A1(γf ) and A2 can yield a 1.488 approximation.

Due to the hardness result, there is a hard instance for the algorithm A1(γf )
for every λf . Roughly speaking, we show that a fixed instance can not be hard
for two different λf ’s. Guided by this fact, we first give a bifactor approximation
ratio for A1(λf ) that depends on the input instance and then introduce a 0-sum
game that characterizes the approximation ratio of our algorithm. The game is
between an algorithm player and an adversary. The algorithm player plays a
linear combination of A1(λf ) for a random λf and A2, while the adversary plays
an instance. By giving an explicit strategy for the algorithm player, we show
that the value of the game is at most 1.488.

We first review the algorithm A1(γ) used in [1] in section 2, and then give our
improvement in section 3.

2 Review of the Algorithm A1(γ) in [1]

In this section, we review the (γ, 1 + 2e−γ)-approximation algorithm A1(γ) for
γ ≥ γ0 ≈ 1.67736 in [1].

In A1(γ) we first solve the following natural LP for the UFL problem.

min
∑

i∈F ,j∈C
d(i, j)xi,j +

∑
i∈F

fiyi s.t.

∑
i∈F

xi,j = 1 ∀j ∈ C (1)

xi,j − yi ≤ 0 ∀i ∈ F ,j ∈ C (2)
xi,j , yi ≥ 0 ∀i ∈ F ,j ∈ C (3)

If the y-variables are fixed, x-variables can be assigned greedily: each j ∈ C
is connected to 1 fraction of closest facilities. After obtaining a solution (x, y),
we modify it by scaling the y-variables up by a constant γ > 1. Let y be the
scaled y-variables. We reassign x-variables using the above greedy process to
obtain a new solution (x, y). By splitting facilities if necessary, we can assume
xi,j ∈ {0, yi}, xi,j ∈ {0, yi} and y ≤ 1, for every i ∈ C, j ∈ F .

For some F ′ ⊂ F , define vol(F ′) =
∑

i∈F ′ yi to be the volume of F ′. For a
client j, we say a facility i is one of his close facilities if it fractionally serves j
in (x, y). If xi,j = 0, but i was serving client j in solution (x, y), then we say i is
a distant facility of client j. Let FC

j ,FD
j to be the set of close facilities, distant

facilities of j, respectively. Let Fj = FC
j ∪FD

j . Define dC
av(j), dD

av(j), dav(j) to be
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the average distance from j to FC
j ,FD

j ,Fj , respectively. The average distances
are with respect to the weights y (or equivalently, y). Thus, dav(j) is the connec-
tion cost of j in the fractional solution. Define dC

max(j) to be maximum distance
from j to a facility in FC

j . It’s easy to see the following facts:

1. dC
av(j) ≤ dC

max(j) ≤ dD
av(j), dC

av(j) ≤ dav(j) ≤ dD
av(j), ∀j ∈ C;

2. dav(j) =
1
γ
dC

av(j) +
γ − 1
γ

dD
av(j), ∀j ∈ C;

3. vol(FC
j ) = 1, vol(FD

j ) = γ − 1, vol(Fj) = γ, ∀j ∈ C.

We greedily select a subset of clients C′ in the following way. Initially C′′ =
C, C′ = ∅. While C′′ is not empty, select the client j in C′′ with the minimum
dC

av(j)+dC
max(j), add j to C′ and remove j and all clients j′ satisfying FC

j ∩FC
j′ �=

∅ from C′′. C′ has the following properties :

1. FC
j ∩ FC

j′ = ∅, ∀j, j′ ∈ C, j �= j′;
2. For every j /∈ C′, there exists a j′ ∈ C′ such that FC

j ∩FC
j′ �= ∅ and dC

av(j′) +
dC

max(j′) ≤ dC
av(j) + dC

max(j). This j′ is called the cluster center of j.

We now randomly round the fractional solution. For each j ∈ C′, open exactly
one of his close facilities randomly with probabilities yi. For each facility i that is
not a close facility of any client in C′, open it independently with probability yi.
Each client j is connected to its closest open facility, and let Cj be its connection
cost.

It’s easy to see that the expected facility cost of the solution is exactly γ times
the facility cost in the fractional solution. If j ∈ C′, E[Cj ] = dC

av(j) ≤ dav(j).
Byrka in [1] showed that ∀j /∈ C′,

1. The probability that some facility in FC
j (FD

j , resp.) is open is at least

1 − e−vol(FC
j ) = 1 − e−1(1 − e−vol(FD

j ) = 1 − e−(γ−1), resp.), and under the
condition that the event happens, the expected distance between j and the
closest open facility in FC

j (FD
j , resp.) is at most dC

av(j) (dD
av(j), resp.);

2. d(j,FC
j′ \Fj) ≤ dD

av(j) + dC
max(j) + dC

av(j), where j′ is cluster center of j; or
equivalently, under the condition that there is no open facility in Fj , the
expected distance between j and the unique open facility in FC

j′ is at most
dD

av(j) + dC
max(j) + dC

av(j).

Since dC
av(j) ≤ dD

av(j) ≤ dD
av(j) + dC

max(j) + dC
av(j), we have

E[Cj ] ≤ (1 − e−1)dC
av(j) + e−1(1 − e−(γ−1))dD

av(j)

+ e−1e−(γ−1)(dD
av(j) + dC

max(j) + dC
av(j))

= (1 − e−1 + e−γ)dC
av(j) + e−1dD

av(j) + e−γdC
max(j)

≤ (1 − e−1 + e−γ)dC
av(j) + (e−1 + e−γ)dD

av(j) (4)

Notice that the connection cost of j in the fractional solution is dav(j) =
1
γ
dC

av(j) +
γ − 1
γ

dD
av(j). We compute the maximum ratio between (1 − e−1 +
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e−γ)dC
av(j)+(e−1+e−γ)dD

av(j) and
1
γ
dC

av(j)+
γ − 1
γ

dD
av(j). Since dC

av(j) ≤ dD
av(j),

the ratio is maximized when dC
av(j) = dD

av(j) > 0 or dD
av(j) > dC

av(j) = 0.
For γ ≥ γ0, the maximum ratio is achieved when dC

av(j) = dD
av(j) > 0, in

which case the maximum is 1 + 2e−γ . Thus, the algorithm A1(γ0) gives a
(γ0 ≈ 1.67736, 1 + 2e−γ0 ≈ 1.37374) bifactor approximation.1

3 A 1.488 Approximation Algorithm for the UFL
Problem

In this section, we give our approximation algorithm for the UFL problem. Our
algorithm is also based on the combination of the A1(γ) and A2. However,
instead of using A1(γ) for a fixed γ, we randomly select γ from some distribution.

To understand why this approach can reduce the approximation ratio, we list
all requirements that the upper bound in (4) is tight.

1. The facilities in Fj have tiny weights. In other words, maxi∈Fj yi tends to 0.
Moreover, all these facilities were independently sampled in the algorithm.
These conditions are necessary to tighten the 1 − e−1 (1 − e−(γ−1) resp.)
upper bound for the probability that at least 1 facility in FC

j (FD
j resp.) is

open.
2. The distances from j to all the facilities in FC

j (FD
j resp.) are the same.

Otherwise, the expected distance from j to the closest open facility in FC
j

(FD
j resp.), under the condition that it exists, is strictly smaller than dC

av(j)
(dD

av(j) resp.).
3. dC

max(j) = dD
av(j). This is also required since we used dD

av(j) as an upper
bound of dC

max(j) to get (4).

To satisfy all the above conditions, the distances from j to Fj must be dis-
tributed as follows. 1/(γ + ε) fraction of facilities in Fj have distances a to j,
and the other 1 − 1/(γ + ε) fraction have distances b ≥ a to j. For ε tending to
0, dC

av(j) = a and dC
max(j) = dD

av(j) = b.
As discussed earlier, if a = b, then E[Cj ]/dav(j) ≤ 1 + 2e−γ. Intuitively, the

bad cases should have a � b. However, if we replace γ with γ + 1.01ε (say), we
have dC

max(j) equals dC
av(j) = a, instead of dD

av(j) = b for the above distribution.
Thus, we can greatly reduce the approximation ratio if the distributions for all
j’s are of the above form.

Hence, using only two different γ’s, we are already able to make an improve-
ment. To give a better analysis, we first give a upper bound on E[Cj ], in terms
of the distribution of distances from j to Fj , not just dC

av(j) and dD
av(j), and

then give an explicit distribution for γ by introducing a 0-sum game.

1 Byrka’s analysis in [1] was a little bit different; it used some variables from the dual
LP. Later in [2], Byrka et al. gave an analysis without using the dual LP, which is
the one we cite in our paper.
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3.1 Upper-Bounding the Expected Connection Cost of a Client

We bound E[Cj ] in this subsection. It suffices to assume j /∈ C′, since we can think
of a client j ∈ C′ as a client j /∈ C′ which has a co-located client j′ ∈ C′. Similar
to [1], we give an upper bound on d(j,FC

j′ \Fj). The bound and the proof are
the same as the counterparts in [1], except that we made a slight improvement.
The improvement is not essential to the final approximation ratio; however, it
will simply the analytical proof in subsection 3.2.

Lemma 1. For some j /∈ C′, let j′ be the cluster center of j. So j′ ∈ C′,FC
j ∩

FC
j′ �= ∅ and dC

av(j′) + dC
max(j′) ≤ dC

av(j) + dC
max(j). We have, for any γ ≥ 1,

d(j,FC
j′ \Fj) ≤ (2 − γ)dC

max(j) + (γ − 1)dD
av(j) + dC

max(j′) + dC
av(j′). (5)

FC
j′ \FD

j

FC
j ∩ FC

j′

FD
j ∩ FC

j′

j j′

FC
j′ \Fj

Fig. 1. Sets of facilities used in the proof

Proof. Fig. 1 illustrates the sets of facilities we are going to use in the proof. If
the d(j, j′) ≤ (2 − γ)dC

max(j) + (γ − 1)dD
av(j) + dC

av(j′), the remaining dC
max(j′)

is enough for the distance between j′ and any facility in FC
j′ . So, we will assume

d(j, j′) ≥ (2 − γ)dC
max(j) + (γ − 1)dD

av(j) + dC
av(j′). (6)

(6) implies d(j, j′) ≥ dC
max(j) + dC

av(j′). Since d(j,FC
j ∩FC

j′ ) ≤ dC
max(j), we have

d(j′,FC
j ∩ FC

j′ ) ≥ dC
av(j′). If d(j′,FD

j ∩ FC
j′ ) ≥ dC

av(j′), then d(j′,FC
j′ \Fj) ≤

dC
av(j′) and the lemma follows from the fact that d(j, j′) ≤ dC

max(j)+dC
max(j′) ≤

(2 − γ)dC
max(j) + (γ − 1)dD

av(j) + dC
max(j′).

So, we can also assume

d(j′,FD
j ∩ FC

j′ ) = dC
av(j′) − z (7)

for some positive z. Let ŷ = vol(FD
j ∩ FC

j′ ). Notice that ŷ ≤ max {γ − 1, 1}. (7)
implies

d(j′,FC
j′ \FD

j ) = dC
av(j′) +

ŷ

1 − ŷ
z (8)

From (6) and (7), we get

d(j,FD
j ∩ FC

j′ ) ≥ (2 − γ)dC
max(j) + (γ − 1)dD

av(j) + z (9)

= dD
av(j) − (2 − γ)(dD

av(j) − dC
max(j)) + z (10)
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This further implies

dC
max(j) ≤ d(j,FD

j \FC
j′ )

≤ dD
av(j) − ŷ

γ − 1 − ŷ

(
z − (2 − γ)(dD

av(j) − dC
max(j))

)
dD

av(j) − dC
max(j) ≥ ŷ

γ − 1 − ŷ

(
z − (2 − γ)(dD

av(j) − dC
max(j))

)
dD

av(j) − dC
max(j) ≥ ŷ

γ − 1 − ŷ
z
/(

1 +
(2 − γ)ŷ
γ − 1 − ŷ

)
=

ŷz

(γ − 1)(1 − ŷ)
(11)

Notice that we used 1 +
(2 − γ)ŷ
γ − 1 − ŷ

≥ 0. From (6) and (11), we get

d(j′,FC
j ∩ FC

j′ ) ≥ d(j, j′) − d(j,FC
j ∩ FC

j′ )

≥ (2 − γ)dC
max(j) + (γ − 1)dD

av(j) + dC
av(j′) − dC

max(j)

= (γ − 1)(dD
av(j) − dC

max(j)) + dC
av(j′)

≥ ŷ

1 − ŷ
z + dC

av(j′) (12)

Combining the above inequality and (8), we have

d(j′,FC
j′ \Fj) ≤ dC

av(j′) +
ŷ

1 − ŷ
z. (13)

So,

d(j,FC
j′ \Fj) ≤ dC

max(j) + dC
max(j′) + d(j′,FC

j′ \Fj)

≤ (2 − γ)dC
max(j) + (γ − 1)

(
dD

av(j) − ŷz

(γ − 1)(1 − ŷ)

)

+ dC
max(j′) + dC

av(j′) +
ŷ

1 − ŷ

= (2 − γ)dC
max(j) + (γ − 1)dD

av(j) + dC
max(j′) + dC

av(j′)

Lemma 2
d(j,FC

j′ \Fj) ≤ γdav(j) + (3 − γ)dC
max(j). (14)

Proof. Noticing that dC
max(j′)+dC

av(j′) ≤ dC
max(j)+dC

av(j), the proof is straight-
forward.

d(j,FC
j′ \Fj) ≤ (2 − γ)dC

max(j) + (γ − 1)dD
av(j) + dC

max(j′) + dC
av(j′)

≤ (2 − γ)dC
max(j) + (γ − 1)dD

av(j) + dC
max(j) + dC

av(j)

= γ

(
1
γ
dC

av(j) +
γ − 1
γ

dD
av(j)
)

+ (3 − γ)dC
max(j)

= γdav(j) + (3 − γ)dC
max(j)
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For a client j ∈ C, define hj : [0, 1] → R∗ to be the distribution of distances
form j to Fj in the following way. Let i1, i2, · · · , im the facilities in Fj , in the non-
decreasing order of distances to j. Then hj(p) = dit,j, where t is the minimum

number such that
t∑

s=1

yis ≥ p. Notice that hj is defined using the y, not y, and

is thus independent of γ. Define h(p) =
∑

j∈C hj(p). Observe that hjs and h are
non-decreasing functions. Furthermore,

dav(j) =
∫ 1

0

hj(p)dp, dC
av(j) = γ

∫ 1/γ

0

hj(p)dp,

dC
max(j) = hj(1/γ), dD

av(j) =
γ

γ − 1

∫ 1

1/γ

hj(p)dp.

Lemma 3. For any client j,

E[Cj ] ≤
∫ 1

0

hj(p)e−γpγdp + e−γ

(
γ

∫ 1

0

hj(p)dp + (3 − γ)hj

(
1
γ

))
. (15)

Proof. Let j′ ∈ C′ be the cluster center of j. We connect j to the closest open
facility in Fj ∪ FC

j′ .
We can assume that facilities in Fj\FC

j′ are independently sampled; otherwise,
E[Cj ] can only be smaller. Indeed, consider two distributions p1 and p2 whose
only difference is the following. In p1 two facilities i and i′ are dependently
sampled (with probability yi, i is open, with probability yi′ , i′ is open, and with
probability 1−yi−yi′ , none of them are open), while in p2 they are independently
sampled. W.L.O.G, assume d(j, i) ≤ d(j, i′). We consider the distribution of the
distance from j to the closest open facility in {i, i′} (∞ if it does not exist). In
p1, the distribution is: with probability yi, we get d(j, i); with probability yi′ , we
get d(j, i′) and with the remaining 1 − yi − yi′ probability, we get ∞. In p2, the
distribution is: with probability yi, we get d(j, i), with probability (1−yi)yi′ , we
get d(j, i′) and with the remaining probability (1 − yi)(1 − yi′), we get ∞. So,
the distribution for p2 strictly dominates the distribution for p1. The expected
connection cost w.r.t p2 is at least as large as the expected connection cost w.r.t
p1. This argument can be easily extended to more than 2 facilities.

Then, we perform the following sequence of operations:

1. Split the set FC
j′ into two subsets: FC

j′ ∩ Fj , and FC
j′ \Fj;

2. Scale up ȳ values in FC
j′ \Fj so that the volume of FC

j′ \Fj becomes 1;
3. Assume FC

j′ ∩ Fj and FC
j′ \Fj are independently sampled.

We show that the sequence of operations does not change E[Cj ]. Indeed,
consider distribution of the distance between j and the closest open facility in
FC

j′ . The distribution does not change after we performed the operations, since
dmax(j,FC

j′ ∩Fj) ≤ dmin(j,FC
j′ \Fj), where dmax and dmin denotes the maximum

and the minimum distance from a client to a set of facilities, respectively.



84 S. Li

Again, we can pretend that facilities in FC
j′ ∩ Fj are independently sampled.

Now, we are in a situation where, facilities in Fj are independently sampled,
exact 1 facility in FC

j′ \Fj is open, with probabilities proportional to the y values.
We split each facility i ∈ Fj into facilities with infinitely small y values. This

can only increase E[Cj ]. Thus,

E[Cj ] ≤
∫ 1

0

hj(p)e−γpγdp + e−γd(j,FC
j′ \Fj)

≤
∫ 1

0

hj(p)e−γpγdp + e−γ

(
γ

∫ 1

0

hj(p)dp + (3 − γ)hj

(
1
γ

))
.

Lemma 4. The expected connection cost of the integral solution is

E[C] ≤
∫ 1

0

h(p)e−γpγdp + e−γ

(
γ

∫ 1

0

h(p)dp + (3 − γ)h
(

1
γ

))
. (16)

Proof. Summing up (15) over all clients j will give us the lemma.

3.2 An Explicit Distribution of γ

In this subsection, we give an explicit distribution for γ by introducing a 0-sum
game. For fixed h and γ, let’s define

α(γ, h) =
∫ 1

0

h(p)e−γpγdp + e−γ

(
γ

∫ 1

0

h(p)dp + (3 − γ)h
(

1
γ

))
. (17)

We can scale h so that
∫ 1

0

h(p)dp = 1. Then,

α(γ, h) =
∫ 1

0

h(p)e−γpγdp + e−γ

(
γ + (3 − γ)h

(
1
γ

))
. (18)

We consider a 0-sum game between an algorithm player A and an adversary
B. The strategy of player A is a pair (μ, θ), where 0 ≤ θ ≤ 1 and μ is 1 − θ

times a probability density function for γ. θ +
∫ ∞

1

μ(γ)dγ = 1. It corresponds

to running A2 with probability θ and running A1(γ) with probability μ(γ)dγ.
The strategy of player B is a monotone non-negative function h over [0, 1] such

that
∫ 1

0

h(p)dp = 1. The value of the game is

ν(μ, θ, h) = max
{∫ 2

1

γμ(γ)dγ + 1.11θ,
∫ 2

1

α(γ, h)μ(γ)dγ + 1.78θ
}
. (19)
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Then, our goal becomes finding a strategy for A that minimizes the value. For
a fixed strategy (θ, μ) of player A, the best strategy of player B is a threshold
function hq, for some 0 ≤ q < 1, where

hq(p) =

{
0 p < q

1
1−q p ≥ q

(20)

To obtain the value of this game, we discretize the domain [1,3) for μ into
many small intervals divided by points {γi = 1 + i/n : 0 ≤ i ≤ 2n}. Thus, the
value of the game is approximately characterized by the following LP.

min β s.t

1
n

2n∑
i=1

xi + θ ≥ 1 (21)

1
n

2n∑
i=1

γi−1 + γi

2
xi + 1.11θ ≤ β (22)

1
n

2n∑
i=1

α

(
γi−1 + γi

2
, hq

)
xi + 1.78θ ≤ β ∀q ∈ [0, 1) (23)

x1, x2, · · · , x2n, θ ≥ 0 (24)

We discretize the domain [0,1) for q and solve the above LP for n = 500
using Matlab. We get a mixed strategy for player A that achieves value 1.4879.
It is roughly of the following form. θ ≈ 0.2; γ ≈ 1.5 with probability 0.5; the
remaining 0.3 probability is distributed between γ ≈ 1.5 and γ ≈ 2.

Accumulated probability θ1

γ1 γ2

a

Fig. 2. The distribution of γ

In light of the program generated solution, we give a pure analytical strategy of
player A and show that the value of the game is at most 1.488. With probability
θ2, we run A2; with probability θ1, we run A1(γ) with γ = γ1; with probability
1 − θ2 − θ1, we run A1(γ) with γ randomly chosen between γ1 and γ2. So, the
function μ is

μ(γ) = θ1δ(γ − γ1) + aIγ1,γ2(γ), (25)

where δ is the Dirac-Delta function, a =
1 − θ1 − θ2

γ2 − γ1
, and Iγ1,γ2(γ) is 1 if γ1 <

γ < γ2 and 0 otherwise(See Fig. 2). The values of θ1, θ2, γ1, γ2, a is decided later.
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The scaling factor for the facility cost is

λf = θ1λ1 + a(γ2 − γ1)
γ1 + γ2

2
+ 1.11θ2. (26)

Now, we consider the scaling factor λc when h = hq.

λc(q) =
∫ ∞

1

(∫ 1

0

e−γpγhq(p)dp + e−γ(γ + (3 − γ)hq(1/γ))
)
μ(γ)dγ + 1.78θ2

=
∫ γ2

γ1

∫ 1

q

e−γpγ
1

1 − q
dpadγ +

∫ γ2

γ1

e−γγadγ +
∫ γ2

γ1

(3 − γ)hq(1/γ)adγ

+ θ1

∫ 1

q

e−γ1pγ1
1

1 − q
dp + θ1e

−γ1(γ1 + (3 − γ1)hq(1/γ1)) + 1.78θ2

= B1(q) + B2(q) + B3(q) + 1.78θ2, (27)

where

B1(q) =
∫ γ2

γ1

∫ 1

q

e−γpγ
1

1 − q
dpadγ +

∫ γ2

γ1

e−γγadγ

=
a

1 − q

∫ γ2

γ1

(e−γq − e−γ)dγ − a(γ + 1)e−γ
∣∣γ2

γ1

=
a

(1 − q)q
(e−γ1q − e−γ2q) − a

1 − q
(e−γ1 − e−γ2)

+ a((γ1 + 1)e−γ1 − (γ2 + 1)e−γ2),
(28)

B2(q) =
∫ γ2

γ1

(3 − γ)hq(1/γ)adγ

=

⎧⎪⎨
⎪⎩

a
1−q ((2 − γ1)e−γ1 − (2 − γ2)e−γ2) 0 ≤ q < 1/γ2

a
1−q

(
(2 − γ1)e−γ1 − (2 − 1/q)e−1/q

)
1/γ2 ≤ q ≤ 1/γ1

0 1/γ1 < q < 1

, (29)

B3(q) = θ1

∫ 1

q

e−γ1pγ1
1

1 − q
dp + θ1e

−γ1(γ1 + (3 − γ1)hq(1/γ1))

= θ1

(
1

1 − q
(e−γ1q − e−γ1) + e−γ1γ1 + e−γ1(3 − γ1)hq(1/γ1)

)

=

⎧⎨
⎩
θ1

(
1

1−q (e−γ1q − e−γ1) + e−γ1γ1 + e−γ1 (3−γ1)
1−q

)
0 ≤ q ≤ 1/γ1

θ1

(
1

1−q (e−γ1q − e−γ1) + e−γ1γ1

)
1/γ1 < q < 1

. (30)
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So, we have 3 cases :

1. 0 ≤ q < 1/γ2

λc(q) =
a

(1 − q)q
(e−γ1q − e−γ2q) +

A1

1 − q
+ θ1

e−γ1q

1 − q
+ A2.

where A1 = a(e−γ1 − γ1e
−γ1 − e−γ2 + γ2e

−γ2) + 2θ1e
−γ1 − θ1e

−γ1γ1

A2 = a((γ1 + 1)e−γ1 − (γ2 + 1)e−γ2) + θ1e
−γ1γ1 + 1.78θ2. (31)

2. 1/γ2 ≤ q ≤ 1/γ1

λc(q) =
a

(1 − q)q
(e−γ1q − e−γ2q) +

A1

1 − q
+ θ1

e−γ1q

1 − q
+ A2

+
a

1 − q

(
(2 − γ2)e−γ2 − (2 − 1/q)e−1/q

)
. (32)

3. 1/γ1 < q < 1

λc(q) =
a

(1 − q)q
(e−γ1q − e−γ2q) +

A3

1 − q
+ θ1

e−γ1q

1 − q
+ A2, (33)

where A3 = a(−e−γ1 + e−γ2) − θ1e
−γ1 . (34)

We set γ1 = 1.479311, γ2 = 2.016569, θ1 = 0.503357, θ2 ≈ 0.195583, a =
0.560365. We have

λf = θ1λ1 + a(γ2 − γ1)
γ1 + γ2

2
+ 1.11θ2 ≈ 1.487954. (35)

λc(q) has the maximum value about 1.487989, achieved at q = 0(see Fig. 3).

0 0.5 1
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0.5 0.55 0.6 0.65
1.4865

1.487

1.4875

1.488

Fig. 3. The function λc(q). The curve on the right-hand side is the function restricted
to the interval (1/γ2, 1/γ1).

Thus, we get a (1.488, 1.488)-bifactor approximation for the UFL problem.
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Rice’s Theorem for μ-Limit Sets of Cellular
Automata�

Martin Delacourt

Laboratoire d’Informatique Fondamentale de Marseille
Université de Provence, France

Abstract. Cellular automata are a parallel and synchronous computing
model, made of infinitely many finite automata updating according to
the same local rule. Rice’s theorem states that any nontrivial property
over computable functions is undecidable. It has been adapted by Kari
to limit sets of cellular automata [7], that is the set of configurations that
can be reached arbitrarily late. This paper proves a new Rice theorem
for μ-limit sets, which are sets of configurations often reached arbitrarily
late.

1 Introduction

In the field of decidability, a major result is the Rice theorem [10] which states
that every property over computable functions is either trivial or undecidable.
This being stated for computable functions, it is quite natural to expect a similar
result for other computational systems.

In this paper, we will focus on cellular automata, a massively parallel model of
computation introduced by von Neumann [9]. Cellular automata are composed
of infinitely many cells that evolve synchronously following the same local rule.
The dynamics of these objects have been well studied, and in particular the
notion of limit set i.e. the set of configurations that can be seen arbitrarily late.
An important step was achieved by Kari with the equivalent of Rice’s theorem
for limit sets [7].

Another point of view is to look at configurations that can appear arbitrarily
late and often. This supposes to choose the initial configuration according to
a measure μ. This approach led to μ-attractors [6] and then to μ-limit sets
introduced in [8]. Configurations of the μ-limit set are those containing only
patterns whose probability does not tend to 0, or equivalently configurations
obtained starting from a random initial configuration.

Some results on μ-limit sets are already known, such as the undecidability of
the μ-nilpotency [2]. We deal here with Rice’s theorem for μ-limit sets. With a
construction similar to the one presented in [1] to obtain complex subshifts as μ-
limit sets, we will reduce any nontrivial property to the question of μ-nilpotency.
First we give some definitions, then two sections are devoted to the construction
of an appropriate cellular automaton, and finally we will be able to prove the
reduction.
� Thanks to the project ANR EMC: ANR-09-BLAN-0164.
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2 Definitions

2.1 Words and Density

For a finite set Q called an alphabet, denote Q∗ =
⋃

n∈N Qn the set of all finite
words over Q. The length of u = u0u1 . . . un−1 is |u| = n. We denote QZ the set
of configurations over Q, which are mappings from Z to Q, and for c ∈ QZ, we
denote cz the image of z ∈ Z by c. We define semi-configurations the same way as
elements of QN. When there is no ambiguity, we will speak of configurations for
configurations or semi-configurations indistinctly. For u ∈ Q∗ and 0 ≤ i ≤ j <
|u| we define the subword u[i,j] = uiui+1 . . . uj; this definition can be extended
to a configuration c ∈ QZ as c[i,j] = cici+1 . . . cj for i, j ∈ Z with i ≤ j. The
language of S ⊂ QZ is defined by

L(S) = {u ∈ Q∗ : ∃c ∈ S, ∃i ∈ Z such that u = c[i,i+|u|−1]}.
For every u ∈ Q∗ and i ∈ Z, we define the cylinder [u]i as the set of con-

figurations containing the word u in position i that is to say [u]i = {c ∈ QZ :
c[i,i+|u|−1] = u}. If the cylinder is at the position 0, we just denote it by [u].

For all u, v ∈ Q∗ define |v|u the number of instances of u in v as:

|v|u = card{i ∈ [0, |v| − |u|] : v[i,i+|u|−1] = u}
For finite words u, v ∈ Q∗, if |u| < |v|, the density of u in v is defined as

dv(u) = |v|u
|v|−|u|+1 . For a configuration c ∈ QZ, the density dc(v) of a finite word

v is:

dc(v) = lim sup
n→+∞

|c[−n,n]|v
2n + 2 − |v| .

These definitions can be generalized for a set of words W ⊂ Q∗ (in which no
word is prefix of another one), we note |u|W and dc(W ). We can give similar
definitions for semi-configurations (indexed by N) too.

Definition 1 (Generic configuration). A configuration c is said to be generic
for an alphabet Q if there exists a constant e, such that, for any two words
|u| = |v| in Q∗, we have dc(u)

dc(v) ≤ e. If, moreover, any word of length k has
density 1

|Q|k , the configuration is said to be normal.

In this paper, we will use a particular generic configuration, that we define here.

Definition 2 (de Bruijn sequence). A de Bruijn sequence of order n ∈ N
over an alphabet Q is a word of length |Q|n + n− 1 that contains every word of
length n as a subword.

Thanks to [4], we know that there exists a specific de Bruijn sequence of order
n noted DB(n) produced with space O(n) and time O(|Q|n). We will use this
sequence in what follows.

Definition 3 (de Bruijn configuration). The de Bruijn configuration cDB

is the concatenation of de Bruijn sequences of orders n for every n ∈ N:

cDB = DB(1)DB(2)DB(3) . . . DB(n) . . .
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2.2 Cellular Automata

Definition 4 (Cellular automaton). A cellular automaton (CA) A is a triple
(QA, rA, δA) where QA is a finite set of states called the alphabet, rA is the ra-
dius of the automaton, and δA : Q2rA+1

A �→ QA is the local rule.

The configurations of a cellular automaton are the configurations over QA. A
global behavior is induced and we will note A(c) the image of a configuration c
given by: ∀z ∈ Z,A(c)z = δA(cz−r, . . . , cz, . . . , cz+r). Studying the dynamic of A
is studying the iterations of a configuration by the map A : QZ

A → QZ
A.

When there is no ambiguity, we’ll note Q, r and δ for QA, rA, δA.
A state a ∈ QA is said to be permanent for a CA A if for any u, v ∈ Qr

A,
δ(uav) = a.

2.3 μ-Limit Sets

Definition 5 (Uniform Bernoulli measure). For an alphabet Q, the uniform
Bernoulli measure μ on configurations over Q is defined by:

∀u ∈ Q∗, i ∈ Z, μ([u]i) =
1

|Q||u| .

μ will be the only considered measure through this paper, even though these
definitions can be generalized for a large set of measures.

For a CA A = (Q, r, δ) and u ∈ Q∗, we denote for all n ∈ N, Anμ([u]) =
μ (A−n([u])).

Definition 6 (Persistent set). For a CA A, we define the persistent set
Lμ(A) ⊆ Q∗ by: ∀u ∈ Q∗:

u /∈ Lμ(A) ⇐⇒ lim
n→∞Anμ([u]0) = 0.

Then the μ-limit set of A is Λμ(A) =
{
c ∈ QZ : L(c) ⊆ Lμ(A)

}
.

Remark 1. As said in [8], μ-limit sets are closed and shift-invariant. Two μ-limit
sets are therefore equal if and only if their languages are equal.

Definition 7 (μ-nilpotency). A CA A is said to be μ-nilpotent if Λμ(A) =
{aZ} for some a ∈ QA or equivalently Lμ(A) = a∗.

The question of the μ-nilpotency of a cellular automaton is proved undecidable
in [2]. The problem is still undecidable with CA of radius 1 and with a permanent
state. We will reduce all other properties to this problem.

Remark 2. The set of normal configurations has measure 1 in QZ. Which means
that a configuration that is randomly generated according to measure μ will be
μ-almost surely a normal configuration.
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The following lemma translates the belonging to the μ-limit set in terms of
density in images of a generic configuration.

Lemma 1. Given a CA A and a finite word u, for any generic configuration c:

u ∈ Lμ(A) ⇔ dAn(c)(u) � 0 when n → +∞
Example 1 (MAX). We consider here the “max” automaton AM : the alphabet
contains only two states 0 and 1. The radius is 1 and δAM (x, y, z) = max(x, y, z).

The probability to have a 0 at time t is the probability to have 02t+1 on the
initial configuration, which tends to 0 when t → ∞ for the uniform Bernoulli
measure, so 0 does not appear in the μ-limit set. And finally Λμ(AM ) = {∞1∞}.

The limit set of a cellular automaton is defined as Λ(A) =
⋂

i∈N Ai(QZ), so
Λ(AM ) = (∞10∗1∞) ∪ (∞0∞) ∪ (∞10∞) ∪ (∞01∞). Actually, we can prove that
this limit set is an example of limit set that cannot be a μ-limit set.

2.4 Properties of μ-Limit Sets

Through all this paper, the alphabets of CA will be finite subsets of a countably
infinite set {α0, α1, α2 . . . }. A property of μ-limit sets is a family P of μ-limit
sets of CA and any μ-limit set in P is said to have this property.
A property P is said to be nontrivial if there exist CA A0 and A1 such that
Λμ(A0) ∈ P and Λμ(A1) /∈ P . For example, μ-nilpotency or the appearance of
some state in the μ-limit set are nontrivial properties.

3 Counters

In this section and the following one we describe an automaton AS , which on
normal configurations produces finite segments, separated by a special state #,
whose sizes increase with time. First, we will show how to ensure that a normal
configuration produces segments, that are designed for computations described
in Sect. 5. This means we have to control what is written inside the segments.

We want to erase nearly all of the initial random configuration and only
remember some information. This information will be on states ∗ that can appear
only at time 0. Each ∗ state sends two counters to its left and right. And these
counters will erase everything except a younger counter. Therefore, when two
counters meet, they compare their age, and the younger erases the older. If
they have the same age, they stop and write a #. The notion of counters was
introduced in [3] and used in [1].

Counters are composed of two signals, one faster than the other, and the age
of the counter is computed between them. The whole construction (both signals
and the binary counter in it) is called a counter. Therefore, everything on the
initial configuration is erased and forgotten, except for ∗ states. Indeed, even if
some counters exist on the initial configuration, they will be older than counters
from ∗ when they meet, and hence erased.
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For what follows, we will need to have random bits on the #, so we use two
states ∗0 and ∗1 instead of the unique state ∗. And the bit i is transfered from an
∗i to the # produced on its left. We then have #0 and #1 instead of #. When
it makes no difference, we will speak of # and ∗ for #i and ∗i.

∗1∗1∗1∗0∗1∗0

#1

#1

#1
#0

#1

#0

Fig. 1. When two counters launched by a ∗ meet, a # delimiter is produced and
counters disappear. Information between ∗ states on the initial configuration is lost
when it meets a gray area..

The initialization of a configuration is illustrated in Fig. 1. Counters are
schematized by gray areas. # delimiters remain, and we will see later what
happens to them.

4 Merging Segments

We saw in Sect. 3, how a special state ∗ on the initial configuration gave birth to
counters protecting everything inside them until they meet some other counter
born the same way. In this section, we will describe the evolution of the automa-
ton AS after this time of initialization. When two counters of the same age meet,
they disappear and a # is produced.

Definition 8 (Segment). A segment u is a subword of a configuration delim-
ited by two # and containing no # inside

(
u ∈ # (Q \ {#})∗#

)
. The size of a

segment is the number of cells between both #.

We have created the segments we were looking for, and as we control what is
written inside them, we will be able to perform some computation. This will be
described in Sect. 5, we will first see how to let segments grow through time.

When a # is produced in automaton AS , it sends a signal on its right to detect
the first # on its right. If the signal catches the inside of a counter still in activity
before reaching a #, it waits until this counter produces a #. Then both # have
recognized each other and the segment between them becomes “conscious”. It
launches a computation inside itself, and this will be the concern of Sect. 5. But
as we will need arbitrarily large space for computation, we will remove small
segments and replace them by larger ones. Therefore, at some times, we will
erase some #, and the segments that were formerly separated will join their
space. We describe here mechanisms that lead to this merging process, and then
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see how it behaves with μ-limit sets. This happens inside any segment, and in
parallel with the computation from Sect. 5.

A segment is said to be well-formed if it is delimited by two # that have
themselves been created by ∗ states on the initial configuration. To construct
AS , we additionally attribute a color to each segment. There will be Red (R)
and Blue (B) segments. So we will have 4 states to replace ∗0 and ∗1: ∗r0, ∗r1,
∗b0 and ∗b1. We still use ∗ to refer to any of them indistinctly. An initial segment
has color R when produced by ∗r0 or ∗r1, and else color B. The random bit is
still transfered to the # on the left as described in Sect. 3.

We require that any segment stores and updates its age since the initial con-
figuration. We’ll add two counters (one on each side of the segment) to perform
this task. Moreover, we want to ensure that the storage of the age of a well-
formed segment does not need more than �√(n)� cells where n is the size of
the segment. This means we need to know the size of the segment. This can be
computed and stored with space log(n). To maintain the property, segments will
merge when the age becomes too large for them.

Suppose we use an alphabet of size K ≥ 3 to store the age, then the space
used in a segment becomes too large at some time Ki with i ∈ N (when i + 1 ≥
�√(n)�). Every segment has to decide whether it will need to merge, and to tell
its neighbors before time Ki. At that time, any segment that needs more space
will merge according to the following conditions:

1. if none of its neighbors want to merge, it merges with the left one,
2. if one only of its neighbors wants to merge, it merges with that one,
3. if both its neighbors want to merge, it merges with the left one except if this

neighbor has the same color, and the right one has the other color.

Remark 3. Each segment can decide in (i+ 1)2 steps, if it is larger than (i+ 1)2.
Then it can write on each side if it wants to merge at time Ki or not in less than
2(i + 1)2 steps. If a segment wants to merge, it can check its neighbors’ will on
both sides and decide its own behavior in (i + 1)2.

The # between two segments that merge together is erased with the age counters
around it. Then another cycle starts on the left side of the new segment. Many
successive # have possibly disappeared, so the merging is not necessarily two
segments becoming one but many segments becoming one. As at least one # has
been erased inside the new segment, we use the bit from the leftmost #i erased
to determine the color of the new segment. If i = 0, it will be R, and else B.

We call initial segment, a well-formed segment such that only one cell inside it
contained a ∗ on the initial configuration. That is, a segment that is well-formed
and not created from a merging. And we call successor segment, a segment well-
formed but not initial, that is, created by a merging of well-formed segments
that are its predecessors. We so define a set of predecessors at each time.

Remark 4. When two segments merge at time Ki, at least one of them wanted
to merge, which means one of them was smaller than (i + 1)2.

If three or more segments merge at time Ki, they all wanted to merge, so
they were all smaller than (i + 1)2.
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∀i ∈ N, at time t > Ki, any segment has a size greater than (i + 1)2. This is
clear since any segment smaller would have merged at time Ki.

Remark 5. Red and blue segments are initially randomly distributed according
to the uniform measure. When some segments merge, the new color is chosen
independently from the colors of predecessors or neighbors, and only according
to a random bit, so the distribution of colors remains random.

#1#0#1#1#1#1#0#1#0#0#1#0#0#1

!

! !

!

!! !

!

!

!

K
i

K
i+1

Fig. 2. A # remains until two segments merge. Blue segments are in plain gray, red ones
in hashed gray. At time Ki, small segments merge together or with their left neighbor.

The general behavior of the segments among themselves is illustrated in Fig. 2.
Thanks to the following claim, we will be able to prove the first important

result for automaton AS : Prop. 1, which says that # states tend to be sparse
enough to be left outside of Λμ(AS).

Claim. The density of cells outside well-formed segments on a normal configu-
ration tends to 0 as time passes.

Proposition 1. There is no # in the μ-limit set of AS.

This comes from the fact that well-formed segments tend to cover the image of
a normal configuration. As their growth is permanent, # states are eventually
separated by arbitrarily large words.

In Sect. 5, we will need to have an upper bound on the size of a large proportion
of segments. We will prove such a bound in the following lemma.

A segment is said to be acceptable if it is well-formed and if its size is n ≤ Ki/4

at time Ki ≤ t < Ki+1. In the sequel, we consider the automaton on a normal
configuration cN .

We will show that large segments exist with low probability. First we use the
merging protocol, and the colors to justify that a lot of segments rarely merge all
together. Then, we show that large initial segments are quite unlikely. In both
cases, we give bounds on the probability of large segments.
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We have the next lemma:

Lemma 2. The density of non acceptable segments tends to 0 as time passes.

To prove this, each non acceptable segment is seen as either initial, the product
of a merging, or a successor of some non acceptable segment. In the third case, we
consider the first predecessor that was in another case and show that it concerns
few segments only.

Denote St, t ∈ N the set of acceptable segments successors of acceptable seg-
ments at time t. This set contains all useful segments, it is finite for any time,
and it does not depend of the initial configuration.

Remark 6. The same proof as for previous lemma shows that dcN (St) →t→∞ 1.

Thanks to this, we only need to look at the behavior of the automaton inside
segments of St, the words that will remain in the μ-limit set will be the words
that appear often in these segments.

5 Rice Theorem

The idea here is to copy the principle of the proof of Rice’s theorem for limit
sets from [7]. We want to reduce any nontrivial property over μ-limit sets to the
μ-nilpotency of a CA H of radius 1 having a permanent state q.

First we construct an automaton to prove the following proposition:

Proposition 2. For any CA H of radius 1, where a state q is permanent, and
CA A, there effectively exists a CA B such that:

– if H is μ-nilpotent, Λμ(B) = Λμ(A).
– if H is not μ-nilpotent, Λμ(B) = αZ, for some chosen α ∈ QB \ (QA ∪QH).

Then, given a property P , for two automata A1 and A2, such that one exactly
of Λμ(A1) and Λμ(A2) has property P , we construct B1 and B2. If there existed
an algorithm to decide whether a μ-limit set has property P , we could use this
algorithm with B1 and B2. If only one among Λμ(B1) and Λμ(B2) has property P ,
they have different μ-limit sets and H is necessarily μ-nilpotent. In the other case,
their μ-limit sets cannot be Λμ(A1) and Λμ(A2), and H is not μ-nilpotent. This
would be a contradiction with [2], where μ-nilpotency was proved undecidable.

5.1 Construction

The automaton B is based upon AS from previous sections. The whole construc-
tion of counters and segments is exactly as described in Sect(s). 3 and 4. We now
describe the computation in a segment. We will only concern ourselves with well-
formed segments as, for a normal configuration, every cell is eventually reached
by such a segment. We partially test the μ-nilpotency of H in every segment, if
the test is successful, we simulate A, meaning we write an image of a prefix of
the de Bruijn configuration, if not, we write the uniform word αn.
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Remark 7. We will use the de Bruijn configuration cDB over the alphabet QA
defined in 2.1. Thanks to [4], a de Bruijn sequence of order k can be computed
in space O(k) and time O(|Q|k). Therefore we can fill a segment of length n with
a prefix of cDB in space O(log(n)) and time O(n).

Remark 8. As q is a permanent state in the radius 1 CA H, it behaves like a
wall, which means no information can travel through a q state. So a simulation
of H over a word u ∈ q (QH \ {q})l

q needs only space l for any l.

In any well-formed segment of size n ∈ N, the computation of a Turing machine
starts on the left of the segment at every time Ki for i ∈ N.

1. it measures and stores on each side the segment’s size.
2. it simulates H on every u ∈ q (QH \ {q})l

q for l ≤ 1
2

(
log|QH|(K

i/4)
)
− 1

during |QH|l timesteps. This is how we test the μ-nilpotency of H. If one of
the computed images is not ql, the segment does not simulate A. If all the
images are ql, the segment simulates A.

3. on the left of the segment, it computes j(i) = �log(log(i))�.
4. if the segment simulates A, the machine computes a prefix of length n of

cDB, then computes and writes its j(i)-th image by A. If the segment does
not simulate A, the head writes αn over the segment.

5. the machine stops when the whole computation and writing is over or when
it has reached time Ki+1. At that time, the machine erases itself, leaving
what was written.

Remark 9. Each cell in a segment contains a couple:

– a state for computation, storage of the age or the length of the segment,
– a state from QA.

The first state (computation) is for most cells left blank, then the couple is seen
as a state of QA.

Remark 10. The machine needs only O(j(i) + log(n)) cells to compute. There
are O(

√
(n)) additional cells used to count the age on each side, and O(1) cells

for signals moving through the segment. And only O(j(i)n) steps are required
to perform it.

When a segment is formed by a merging, the data of its cells (on the first layer)
is not removed until a new state of QA has to be written.

To prove Prop. 2, we will need two lemmas:

Lemma 3. There exists i0 such that, for i ≥ i0, the computation is finished
before Ki+1 − 1 in every segment that is acceptable at time Ki.

This is easily proved, since the length of acceptable segments is bounded.
And the second lemma, that will let us test the μ-nilpotency of H:

Lemma 4. If H is not μ-nilpotent, there exists l ∈ N and u ∈ q(QH \ {q})lq

such that H|QH|l(u) �= ql+2.

To prove it, we just use the fact that words which cannot have any permanent
state in their antecedents cannot be persistent.
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5.2 H μ-Nilpotent

In this section, we suppose H is μ-nilpotent and we will show Λμ(B) ⊆ Λμ(A).
First, we make sure that the simulation happens everywhere in this case.

Claim. If H is μ-nilpotent, every well-formed segment simulates A.

Then we prove the following lemma:

Lemma 5. If H is μ-nilpotent, then Λμ(B) ⊆ Λμ(A)

The proof needs a description of the content of a segment with computation
parts, and words computed by the simulation of A.

Remark 11. Thanks to Lemma 3, any s ∈ St with |s| = n at time Ki ≤ t < Ki+1

contains:

– O(
√

(n)) cells for computation, they will not appear in Lμ(B).
– a subword of Aj(i)(cDB[0..n−1]) computed between times Ki and t.
– a concatenation of subwords of Aj(i−1)(cDB[0..n−1]) computed before time

Ki that were not erased during the merging.

To prove the lemma, we show that any word of Lμ(B) appears often in large ac-
ceptable segments. Then we prove that if a word appears often in an acceptable
segment, thanks to the previous remark, it appears often in at least an image of
cDB by A. As cDB is generic, we can conclude.

Now we show the second inclusion:

Lemma 6. If H is μ-nilpotent, then Λμ(A) ⊆ Λμ(B)

To prove this lemma, we consider a word in Lμ(A). There exists necessarily a
sequence of images (Atx(cDB))x∈N in which the density of u does not tend to 0.
We take a sequence (τx)x∈N of times at which Bτx simulates Atx . Then, thanks
to the regularity property of cDB, we can prove that the density of u in the
images of a normal configuration by B does not tend to 0.

5.3 H Not μ-Nilpotent

In this case, we first make sure that after some time, A is not simulated in any
segment anymore.

Claim. If H is not μ-nilpotent, there exists i0 such that, for all i ≥ i0, no well-
formed segment at time Ki ≤ t < Ki+1 simulates A.

Then we conclude by saying that any letter different from α has a density that
tends to 0. Which forces αZ to be the unique configuration in Lμ(B).

Lemma 7. If H is not μ-nilpotent, then α∗ = Lμ(B).

This ends the proof of Prop. 2.
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5.4 Rice Theorem

First we need to consider two automata A1 and A2 over the same alphabet:

Lemma 8. For any nontrivial property, there exist CA A1 and A2 over the
same alphabet QA such that one among Λμ(A1) and Λμ(A2) has this property,
and the other not.

We can prove this lemma by taking multiple copies of each state of both au-
tomata, in order to get an alphabet which size is the least common multiple of
both sizes.

And finally, we complete the proof of the theorem:

Theorem 1. Any nontrivial property of μ-limit sets of cellular automata is un-
decidable.

As announced, from A1 and A2, we construct B1 and B2, then deciding a prop-
erty P leads to deciding the μ-nilpotency of H.

6 Conclusion

The result presented in this article is that no algorithmic property over μ-limit
sets can be decided, except for trivial ones. This, as [1], shows the complexity
and hence the interest of this object. We have the same restriction as in [7],
that is, we work on an unlimited set of states. One property at least becomes
decidable if we limit the set of possible states, it is having the fullshift as μ-limit
set. Which is equivalent to being surjective.

In [5], it was proved that surjectivity was the only decidable problem on limit
sets with a fixed alphabet. This extension could perhaps be adapted to μ-limit
sets and then show another parallel between limit and μ-limit sets.

This is also another use of counters and segments, showing how powerful this
tool can be for cellular automata. Especially concerning μ-limit sets.
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Abstract. This paper considers compact fault-tolerant routing schemes
for weighted general graphs, namely, routing schemes that avoid a set of
failed (or forbidden) edges. We present a compact routing scheme capable
of handling multiple edge failures. Assume a source node s contains a
message M designated to a destination target t and assume a set F
of edges crashes (unknown to s). Our scheme routes the message to t
(provided that s and t are still connected in G \ F ) over a path whose
length is proportional to the distance between s and t in G \ F , to |F |3
and to some poly-log factor. The routing table required at a node v is
of size proportional to the degree of v in G and some poly-log factor.
This improves on the previously known fault-tolerant compact routing
scheme for general graphs, which was capable of overcoming at most 2
edge failures.

1 Introduction

Routing is one of the most fundamental problems in distributed networks. A
routing scheme is a mechanism that allows delivering a message from a source
node s to a target node t. In the routing process, each node in the network
may receive packets of information and has to decide if the message already
reached its destination or not. If the message did not reach its destination then
the node has to forward the message to one of its neighbors, using only its local
information and the header of the message, containing the label of the destination
and possibly some other data. A key concern in designing a routing scheme is
to minimize the worst case multiplicative stretch, namely, the maximum ratio
between the length of a path obtained by the routing scheme and the length of the
shortest path between the source and the destination. Another important goal
is to minimize the size of the routing tables stored at the nodes. Subsequently,
the focus in designing a routing scheme is often on the tradeoff between the size
of the routing tables and the maximum stretch of the resulting routes.

The problem of designing compact and low stretch routing schemes has been
extensively studied (e.g. [17,3,5,16,9,12,15]). The first tradeoff between the size of
the routing tables and the maximum multiplicative stretch of the routing scheme
was considered by Peleg and Upfal [17]. In this paper, the total size of the routing
tables was considered (as opposed to the maximum table size of the nodes) and
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only unweighted graphs were considered. Later, weighted graphs were considered
by Awerbuch et al. [3] and a bound on the maximum table size was achieved.
The weights on the edges correspond to distances, namely, the distance of a path
is the sum of the weights of its edges. Awerbuch et al. show how to construct
a routing scheme with maximum table size of Õ(n1/k) and with multiplicative
stretch dependent on k (O(k29k)) for any integer k ≥ 1. Further improvements
were later introduced by Awerbuch and Peleg [5] for general integer k > 1, by
Cowen [9] for k = 3 and by Eilam et al. [12] for k = 5. These tradeoffs were later
improved by Thorup and Zwick [18], obtaining the best one known so far. They
present a routing scheme with table size of Õ(n1/k) and a multiplicative stretch
of 2k−1 using handshaking by which the source and target agree on an o(log2 n)
bit header that is attached to all packets, or a stretch of 4k − 5 without using
handshaking. Corresponding lower bounds were presented in [17,13,14,19].

In this paper, we consider a natural and significant extension of routing
schemes for general weighted graphs, that may better suit many network settings.
Suppose that some of the links crash from time to time and it is still required to
deliver messages between the nodes, if possible, without recomputing the routing
tables and the labels. Given a set F of edge failures, the multiplicative stretch is
with respect to the distance between the source node and the destination node
in the surviving graph G \ F . The objective is once again to minimize both the
routing table sizes and the stretch. This extension was suggested in [8,20], which
consider this problem for graphs of bounded treewidth or cliquewidth. It is shown
how to assign each node a label of size O(log2 n) (with some dependency on the
tree/clique width) such that given the labels of the source and target and the
labels of a set F of “forbidden” vertices, the scheme can route from the source
to the target on the shortest path in G \ F .

Later, in [1], the same extension was considered for unweighted graphs of
bounded doubling dimension. It is shown how to construct a labeling scheme
for a given unweighted graph of doubling dimension α such that for any desired
precision parameter ε > 0, the labeling scheme stores an O(1 + ε−1)2α log2 n-bit
label at each vertex. Given the labels of two end-vertices s and t, and the labels
of a set F of “forbidden” vertices, the scheme can route on a path of length at
most 1 + ε times the distance from s to t in G \ F .

Note that in both [8] and [1] the assumption is that the labels of the faulty
nodes are known to the source.

For weighted general graphs, the design of fault-tolerant compact routing
schemes was considered in [6]. However, the scheme of [6] only dealt with up to
2 edge failures and bounded only the total size of the routing tables at all the
nodes. It is shown how to construct a routing scheme for a given parameter k,
that in the presence of a forbidden edge set F of size at most 2 (unknown to the
source), routes the message from the source s to the destination t over a path
of length O(k · dist(s, t, G \ F )), where dist(s, t, G \ F ) is the distance from s
to t in G \ F . The total amount of information stored in the vertices of G is
O(kn1+1/k log (nW ) logn), where W is the weight of the heaviest edge in the
graph (assuming the minimal weight is 1).
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Our contributions In this paper we present a compact fault-tolerant routing
scheme for weighted undirected general graphs. We manage to design a compact
routing scheme that handles multiple edge failures. More specifically, we prove
the following theorem.1

Theorem 1. Given a graph G = (V,E) with edge weights ω such that ω(e) ∈
[1,W ] for every edge e and a parameter k, one can efficiently construct a routing
scheme that given a source node s and a target node t, in the presence of a set
of failures F (unknown to s), can route a message from s to t in a distributed
manner over a path of length at most O(|F |2 · (|F |+ log2 n) ·k ·dist(s, t, G\F )).
The scheme requires assigning to each node a label of length O(�log (nW )�·log n)
bits and the routing table of a node v is of size at most O(�log (nW )� · k · n1/k ·
deg(v) · log2 n) bits. The message passed during the routing process is of size
O(|F | · logn) bits.

2 General Framework

In this section we outline the general structure of our routing scheme. Let
G(V,E) be an n-node undirected weighted graph with edge weights ω such that
ω(e) ∈ [1,W ] for every edge e (hence nW is an upper bound on the diameter).
For a given graph H and a tree T such that V (T ) ⊆ V (H), let H |T be the
subgraph of H induced on the vertices of T .

Our results are based on the well known construction of tree cover, defined as
follows.

Tree covers: Let G(V,E) be an undirected graph with edge weights ω, and let
ρ, k be two integers. Let Bρ(v) = {u ∈ V | dist(u, v,G) ≤ ρ} be the ball of
vertices of (weighted) distance at most ρ from v. A tree cover TC(G,ω, ρ, k) is
a collection T = {T1, . . . , T�} of rooted trees in G, with V (T ) ⊆ V and a root
r(T ) for every T ∈ T , with the following properties:

(i) For every v ∈ V there exists a tree T ∈ T such that Bρ(v) ⊆ T .
(ii) For every T ∈ T and every v ∈ T , dist(v, r(T ), T ) ≤ (2k − 1) · ρ.
(iii) For every v ∈ V , the number of trees in T that contain v is O(k · n1/k).

Proposition 1 ([4,7,16]). For any ρ and k, there exists a tree cover TC(G,ω,
ρ, k) constructible in time Õ(mn1/k).

A basic building block of our routing scheme is a procedure for routing on sub-
trees of the graph. For that purpose we use the routing scheme on trees of Thorup
and Zwick [18]. That scheme uses (1+o(1)) log2 n-bit label size and no additional
information is stored in the nodes.

Let us start with a high level overview of the way our routing scheme operates.
Consider vertices s, t ∈ V and suppose that a message is to be routed from s to t.
Our routing process involves at most �log (nW )� iterations, where iteration i is

1 Notice that by setting k = log n, the term n1/k in the theorem becomes a constant.
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expected to succeed in passing the message in the case where 2i−1 < dist(s, t, G\
F ) ≤ 2i. As iteration i handles the possibility that dist(s, t, G \ F ) is at most
2i, it may ignore edges of weight greater than 2i. Formally, let Hi be the set of
G edges of weight greater than 2i and let Gi be G\Hi. Clearly, any two vertices
that are connected in G by a path of length at most 2i are still connected
in Gi by the same path. Hence the routing process may be restricted to Gi.
To facilitate each iteration i, in the preprocessing phase construct a tree cover
TCi = TC(Gi, ω, 2i, k). Now for each tree T ∈ TCi invoke our scheme for
routing on trees with failures presented in Section 3 on the tree T and the graph
Gi to assign each node v ∈ T a label L(v, T ) and a routing table Av(T ).

Each node v stores a routing table Av, containing all the routing tables Av(T )
together with some unique identifier id(T ) for each tree T such that v ∈ T and
T ∈ TCi for some 1 ≤ i ≤ �log (nW )�.

In addition, for each node t ∈ V , let Ti(t) ∈ TCi be the tree containing B2i(t).
The label L(t) of each node t ∈ V has to store enough information about each
Ti(t) in order to allow routing on the tree Ti(t) to the target t. Specifically, the
label L(t) stores L(t, T ) together with the unique identifier id(T ) for the tree
T = Ti(t), for every 1 ≤ i ≤ �log (nW )�.

The routing process is schematically done as follows. Let F denote the set
of failed edges at a given moment. In each iteration i from 1 to �log (nW )�,
an attempt is made to route the message from the source s to the target t
in the graph Gi|Ti(t) \ F using the tree Ti(t) augmented with some additional
information to be specified later on. If the routing is unsuccessful, i.e., it is not
possible to route to t in Gi|Ti(t) \ F , then s is informed by the routing scheme
that it must proceed to the next iteration. Note that in order to route from s to
t in the tree Ti(t), the node s has to be familiar with the label L(t, T ) given to
t by our scheme for the tree T = Ti(t); this information can be extracted from
t’s label L(t).

In order to complete the description of our routing scheme, it remains to
present our routing process from s to t in the graph Gi|Ti(t) \F . In what follows,
we focus on describing our routing scheme in H |T \ F for a given graph H and
a tree T , and describe the information stored in both the preprocessing phase
and the routing phase.

3 Routing on a Tree with Faults

In this section we consider a given graph H and a tree T in H , and design a
routing scheme such that when a set of edges F fails, if s and t are still connected
in H |T \F , then our routing procedure manages to deliver a message from s to t
on a path of length proportional to the depth of T , to F 3 and to some poly-log
factor. More specifically, we prove the following lemma.

Lemma 1. Consider a graph H with maximum edge weight WH and a tree T
of H (E(T ) ⊆ E(H)). There is an efficiently constructible routing scheme such
that given a source node s and a target node t, in the presence of a set of failures
F (unknown to s), if s and t are connected in H |T \ F , will deliver a message
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from s to t on a path of length O(f2(f · diam(T ) + f ·WH + log2 n · diam(T ))),
where f = |F | and diam(T ) is the diameter of T . The size of the routing labels
used by the scheme is O(log n) bits and the routing table stored at a node v is of
size O(log2 n · degH(v)) bits, where degH(v) is the degree of v in the graph H.

The routing scheme described in this section is strongly based on the result of
Duan and Pettie [11] on connectivity oracles with edge failures. We first review
that result, and later show how to implement it in a distributed setting to achieve
our fault-tolerant routing scheme. Their algorithm operates on a given spanning
tree T of G. The algorithm traverses the tree T according to some Euler tour
and constructs the list L(T ) of the vertices of V (G) in the order in which they
were encountered during this Euler tour, keeping only the first occurrence of
each vertex. For every v, let �(v) denote v’s index in L(T ). The algorithm then
considers the adjacency matrix M of G, according to the ordering L(T ), and
constructs a range reporting data structure on M (concretely, using the range
reporting data structure of Alstrup et al. [2]). Duan and Pettie [11] observe
that removing f edges from T partitions it into f + 1 connected subtrees and
splits L(T ) into at most 2f + 1 intervals, where the vertices of each connected
subtree are the union of some subset of these intervals. Hence in order to decide
connectivity in G\F , it is enough to determine, for all pairs of the 2f+1 intervals,
if there is an edge in E \F connecting them. This can be done efficiently by the
range reporting data-structure constructed on M .

For the purpose of implementing the range reporting data structure in a dis-
tributed manner, we use a less efficient range reporting data structure. We first
describe the well-known centralized range reporting data structure that is used
in our construction, and later, in Subsections 3.1 and 3.2, we show how to imple-
ment this data structure in a distributed setting (which may be of independent
interest).

Consider a boolean matrix M̃ , in which queries of the following form need
to be answered: “Given a range of rows (r1, r2) and a range of columns (c1, c2),
return all cells that contain 1 in the matrix M̃ and are in the range of rows
(r1, r2) and the range of columns (c1, c2).” The problem can be transformed to
the following planar range reporting problem. Given a set P of N points in the
plane, construct a data structure that can answer queries of the form: “return all
points in the rectangle [x1, x2]× [y1, y2]”. This can be done by creating a set of
points P (M̃) containing a point p(c) for each cell c in the matrix M̃ that contains
1 and setting its x-coordinate to be the row of the cell c and its y-coordinate
to be the column of c. Now a query of the form (r1, r2) × (c1, c2) on M̃ can
be answered by finding all points P (M̃) inside the rectangle [r1, r2]× [c1, c2]. A
data structure that can answer efficiently planar range reporting queries can be
constructed as follows (cf. [10]). Given a set P of N nodes in the plane, first
construct a main balanced binary tree M built on the x-coordinate of the points
in P . For any internal or leaf node v in M, let P (v) be the subset of points of P
corresponding to the subtree of v in M. For any internal or leaf node v in M,
store a balanced binary tree T (v) built on the y-coordinate of the points in P (v).
In addition, form a connected list chaining the leaves of T (v), namely, provide
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each leaf u with a pointer to the next leaf with the lowest y-coordinate that is
greater equal to the y-coordinate of u. Now given a query [x1, x2]× [y1, y2], the
query algorithm first selects O(log n) canonical subsets that together contain all
the points whose x-coordinate lie in [x1, x2]. Each such subset corresponds to
a node in M. In each such internal node v ∈ M, the query algorithm searches
for all nodes whose y-coordinate lie in [y1, y2] using the search tree T (v). The
search on T (v) takes O(log n + k′) time, where k′ is the number of nodes that
lie in [y1, y2] in T (v). All in all, the query time is O(log2 n + k), where k is the
number of nodes reported. Note that if we want to report only k′′ ≤ k points,
then the query can be answered in O(log2 n + k′′) time.

Next, we turn to describe how to implement this range reporting data struc-
ture on M in a distributed setting. In Subsection 3.1 we describe the prepro-
cessing phase, namely, the data that needs to be stored at the nodes in the
preprocessing phase, Subsection 3.2 describes the routing phase and finally in
Subsection 3.3 we prove the correctness of Lemma 1.

3.1 Preprocessing

In the preprocessing phase, construct the main balanced binary tree M built
on the nodes V according to their order in L(T ), i.e., their indices �(v). For an
internal node ṽ ∈ M, let P (ṽ) be the set of nodes in V corresponding to the
subtree of ṽ in M. For a set of nodes S, denote by Eout(S) the set of edges in
E \ E(T ) with exactly one endpoint in S. For an edge e = (u, v) ∈ Eout(S),
where w.l.o.g u ∈ S and v /∈ S, denote the incident node to e that is not in
S by Out(e, S) = v. Let L(S) be the set of edges Eout(S) sorted by Out(e, S)
according to the order L(T ). For each internal node ṽ ∈M, construct a balanced
binary tree T (ṽ) on Eout(P (ṽ)) according to the order L(P (ṽ)), namely, T (ṽ) is
a balanced binary tree whose nodes set is the set of edges Eout(P (ṽ)).

Our algorithm looks for ways of progressing from its currently familiar “piece”
of the network represented as an interval I = (vi, ..., vj) of the ordered list L(T )
as explained earlier, to the “piece” containing the destination, which is another
such interval I ′, disconnected from I by the faults of F . Note that in order to
find all edges connecting some interval I = (vi, ..., vj) with some other interval
I ′, we need to check a set X(I, I ′) of O(log n) internal nodes in M. Consider
some node u ∈ V , and let p be the path from the leaf representing u in M to the
root of M, each non-leaf node x on the path p has two children, one that is part
of the path p and another node y, if y is a left child, add it to SL(u), otherwise
to SR(u). The node u itself is added to both SL(u) and SR(u). Note that the
set X(I, I ′) is a subset of SR(vi) ∪ SL(vj). Every node u stores an identifier of
the internal nodes in SR(u) ∪ SL(u). As explained above, for each node ṽ in
SR(u) ∪ SL(u), a balanced search tree T (ṽ) is constructed, and the identifier
of ṽ will contain an indication of the edge represented by the root of T (ṽ). In
addition, each internal node w in T (ṽ) represents an edge e = (x, y), where one
node, say x, is inside P (v) and the other, y, is outside it. The routing table of x
stores the edges of the left and right children of w in T (ṽ) as well as the ranges
they represent.
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To summarize, the routing table Av(T ) contains the identifiers of the internal
nodes SR(v)∪SL(v), where the identifier of each internal node ũ ∈ SR(v)∪SL(v)
contains the edge represented by the root of T (ũ). In addition, for every internal
node ũ ∈ M such that v ∈ P (ũ) and every edge (v, y) ∈ Eout(P (ũ)), let w be
the internal node in T (ũ) that represents (v, y), the routing table Av(T ) stores
the edges of the left and right children of w in T (ũ) as well as the ranges they
represent (together with some identifier of the tree T (ũ)).

For a node v ∈ V , the label L(v, T ) is the concatenation of the label given to
v by the routing scheme of [18] on the tree T and the index �(v).

The routing table Av(T ) of v also stores the label L(v, T ).

3.2 The Routing Process

In this section we show how to route a message from a source s to a target t on a
single tree T with faults, allowing it to bypass the failures. After the failures of at
most f edges, the tree is divided into at most 2f + 1 intervals, and the goal is to
reconnect these intervals, if possible. In the beginning of the routing process, the
failed edges are not known to the nodes (except for their endpoints), so clearly,
the different intervals are not known, and of course the way to reconnect the
intervals is not known. During the routing process, some of this data is revealed
and is attached to the header of the message. More specifically, the message
accumulates information on the set of known intervals and the discovered edges
that reconnect these intervals. Let I be the graph obtained by representing each
discovered interval as a node and connecting two nodes if the process has already
found an edge connecting the intervals they represent. The message carries along
with it a copy of the graph I. The goal is to reach as many intervals as possible
in order to eventually reach t. As the nodes do not necessarily know all the
failures, some of the intervals are “fake”, in the sense that inside an interval
there may be a failure (which the message still does not know about) that splits
this interval, possibly into 3 intervals, where two of them are already connected.
The intuition is that as long as the message does not encounter this failure, we
do not care that the data it stores is imprecise, namely, if the message never
encounters this failure, it means that this failure does not disturb our routing
process and therefore we do not care about it. The other possibility is that
eventually the message will encounter this failure, which will force it to update
the set of intervals it carries along. Notice that the latter can happen at most f
times, where f is the number of failed edges.

We now describe the routing process more formally. For simplicity, we first
describe a solution where the message forwarded during the routing process is of
size O(|F |2 ·logn) bits, we later describe the small modifications needed to reduce
the message size to O(|F | · logn) bits. The header of the message contains the
following additional data: it stores the set of currently known intervals, and for
each pair of intervals I, I ′ it stores one of the following three items: a discovered
edge e(I, I ′) connecting them, an indication discon(I, I ′) that these two intervals
can not be connected, or an indication Unknown(I, I ′) that it is still unknown
if these two intervals can be connected. (Notice that some of the intervals are
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already connected by the original tree T .) The goal is to explore the pairs of
intervals that are not decided yet, in order to eventually reach t if possible, or
to conclude that t is not reachable from s in H |T \ F .

At the beginning of this process, the source s is unaware of the failures, hence
the set of intervals contains only one interval (which represents the entire tree
T ), and it just tries to route on T as if no failures occurred. The simplest scenario
is that the path connecting s and t in T is free from failures and the message
arrives at its destination. The more interesting case is when the routing process
encounters some failure along the way and thus can not complete the normal
routing process successfully.

In case a new failure is detected, the set of intervals is updated accordingly,
and the set of recovery edges is updated as well, where by a recovery edge we
mean an edge that reconnects two intervals that are not connected in T \ F .
Namely, assume the interval I is now split into at most three intervals I1, I2, I3,
and consider an edge e(I, I ′) that was previously believed to connect I to some
other interval I ′. This edge now connects one of the three intervals I1, I2, I3 to I ′,
and as we know the incident nodes of the edge, there is no problem to identify the
right one, say, I1, and update the information in the message header to include
e(I1, I ′). In addition, if it is already known that there is no way to reconnect I
to some other interval I ′ (i.e., the message header contains discon(I, I ′)), then
it is also impossible to reconnect I ′ to any of I1, I2, I3 and we update the data in
the message header by storing in it the indicators discon(I1, I ′), discon(I2, I ′)
and discon(I3, I ′).

At any stage during the routing process, the routing process may be in one
of three states. The first state is that the nodes can check if using the recovery
edges collected so far it is possible to reach t (for example, by running a DFS on
the graph I). In the second state, the nodes can verify if it is impossible to reach
t in H |T \ F . This case happens when it is already known that all the intervals
that are reachable from s can not be connected to any other interval and t is still
not reachable from s, where we say that an interval I is reachable from some
node v ∈ T if the interval containing v and the interval I are connected in I.
The third state is where it is still unclear if it is possible to reach t in H |T \ F .

In the first state, the message is sent to t (assuming no new failures are
detected during the remaining part of the journey). In the second state, an
indication that t is not reachable in H |T \ F is sent to s. In the third state,
pick a pair of intervals (I, I ′) that have not been decided yet (i.e., such that
the message header contains Unknown(I, I ′)) and such that I is reachable from
the current node (and therefore also from s). If no such pair exists, it can be
determined that the routing is not possible. Next, search for a recovery edge
connecting I and I ′ as follows. First, forward the message to some node in I.
Once reaching I, check the potential search balanced trees, namely, the search
trees for the interval I (this data can be extracted from the routing tables of the
first and last nodes vi and vj in the interval I, recall that the set the potential
search trees is a subset of SR(vi)∪SL(vj)). Now for each potential search tree T1

on an interval I1 ⊆ I, search for a recovery edge reconnecting to I ′. The search
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on T1 can be done as follows. First reach the node z containing the root of T1

(recall that the root of T1 represents an edge (x, y) where x is in I1 and y is
outside, so z = x and that the edge (x, y) is part of the identifier of T1). The
node z stores in its routing table the left and right children of the root of T1 as
well as the ranges they represent, so the node z knows if it supposed to continue
the search on the left or right child. This process continues until reaching the
leaves. If the leaf is not in the range I ′, then it’s not hard to see that I1 and I ′

can not be connected. Otherwise, there are two subcases. If the edge in the leaf
is not faulty, then we found a recovery edge reconnecting I and I ′. The second
subcase is that this edge is faulty. Recall that each leaf stores an identifier to
the next leaf, so we can just check the next leaf, and so on. This is repeated for
all O(log n) potential subintervals of I, until either finding the desired recovery
edge connecting I and I ′ or deciding that it is impossible to connect I to I ′.

3.3 Analysis

This section is devoted to proving Lemma 1.

Correctness. We need to prove that if s and t are connected in H |T \ F , then t
will get the message. This follows almost trivially from [11] and is proved in the
following lemma.

Lemma 2. If s and t are connected in H |T \F , then the message will reach its
destination using our routing scheme.

Proof: Assume s and t are connected in H |T \ F . Consider only final intervals,
namely, intervals that were not split any more during the routing process. Let
Ifin be the final graph I. It’s not hard to verify that there must be a path of
final intervals in Ifin connecting the final interval of s with the final interval of t.
As our algorithm checks all possible pairs of intervals, it will eventually find that
path (or some other path p reaching t). Therefore, either the algorithm manages
to reach t on p, or it detects another failure on p, but this is in contradiction
with the fact that we consider final intervals.

Stretch Analysis.

Lemma 3. If s and t are connected in H |T \ F , then the length of the path
obtained by our routing scheme on H |T \ F is at most O(f2(f · diam(T ) + f ·
WH + log2 n · diam(T ))).

Proof: As mentioned above, there are at most O(f) real intervals. Therefore,
at most O(f2) pairs of real intervals need to be examined. In the beginning, the
routing process is unaware of these intervals, so it might check “fake” intervals.
At first glance, this appears to be a waste and it seems that we might need to
check more than O(f2) pairs of intervals. But a more careful inspection reveals
that it is enough to check only O(f2) pairs of intervals. To see why this is true,
assume we have already checked the pair of intervals I and I ′ and at some point
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discover that I splits into two or three intervals, I1, I2, I3. There are two cases.
The first is that we discovered that I and I ′ can not be connected. In that case
we can determine that all I1, I2, I3 can not be connected to I ′, and actually this
works to our advantage, as in one check we saved two or three checks. The second
case is where I and I ′ were connected by an edge e = (u, v) such that u ∈ I
and v ∈ I ′. Notice that u must belongs to one of I1, I2, I3. Assume w.l.o.g. that
it belongs to I1. Then we can determine that I1 and I ′ are connected by the
edge e. In addition, each time we try to discover if two intervals are connected
or not, we either determine if this pair can be connected or not, or we discover
another failure. As mentioned earlier the latter can happen at most f times. To
conclude, there are at most O(f2) such checks.

Next we bound the maximum length of the path obtained by a single check
of two intervals. Assume we want to check the pair of intervals I and I ′. It must
be the case that one of the intervals is reachable by the edges of T together
with the recovery edges discovered so far. Therefore, the path leading to the
relevant interval is of length at most (f + 1) · diam(T ) + f ·WH , where diam(T )
is the diameter of T . To see this, note that the diameter of each of the connected
subtrees of T \ F is at most diam(T ), and in addition, the path uses at most
f recovery edges of weight at most WH each. Next, we bound the length of
the subpath used for checking the pair of intervals I and I ′ = [a, b] once we
are already in I. It’s enough to bound the maximum length assuming no new
faulty edge was encountered during the way. We know the interval I, and in
particular we know its first and last nodes and thus can easily find the id’s of
the O(log n) search trees that need to be examined. We now bound the length
of one of these search trees T1. The id of the tree T1 contains the root node of
the tree T1 and each intermediate node contains the id’s of its left and right
children and the ranges they represent. Moreover, we assume that the interval
is connected, so every two nodes in the interval are reachable using only the
edges of T . We start with the root of T1 and search for the edge e of minimum
�(Out(e, S)) that is equal to or greater than a, where the set S is the set of
nodes P (r(T1)) where r(T1) is the root of T1. Checking the ranges of children
of the root, we know if we need to move left or right, and we continue in this
way until reaching the relevant leaf. Note that a child and a parent in the tree
T1 are not necessarily adjacent in T , but their distance is at most diam(T ). The
depth of T1 is at most logn, and for each step we might need to travel a distance
at most diam(T ). Therefore the total length for reaching the relevant leaf for
a single search tree is at most logn · diam(T ). Summing over all search trees,
the total length is O(log2 n · diam(T )). Note that once reaching a leaf in one
of the search trees, this leaf might represent a faulty edge, therefore we might
need to check the next leaf and so on, until either reaching a leaf that is not
in I ′ or finding a non-faulty edge in I ′. Notice that this can happen at most f
times for all search trees (since the sets of edges of the search trees are disjoint),
and in addition, moving from one leaf to the next can be done along a path of
length at most diam(T ). All in all, the total length of the path traversed on T
is O(f2(f · diam(T ) + f ·WH + log2 n · diam(T ))).
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To see why the label sizes are O(log n), note that the label L(v, T ) of a node v
is just the concatenation of the label given to v by the routing scheme of [18] on
T and the index of v in L(T ). In addition, v participated in O(log n) search trees,
and for each such search tree, O(log n · degH(v)) bits are stored in the routing
table Av(T ) of v. We get that the routing table Av(T ) is of size O(log2 n·degH(v))
bits.

Together with Lemmas 2 and 3, Lemma 1 follows.

4 Analysis for the Entire Routing Scheme

In this section we analyze our routing scheme. Let p be a shortest path connecting
s and t in G\F , and let i be the index such that 2i−1 ≤ dist(P ) = dist(s, t, G\
F ) ≤ 2i.

The following lemmas prove Theorem 1. Due to space limitations, some of the
proofs are deferred to the full paper.

Lemma 4. The nodes s and t are connected in Gi|Ti(t) \ F .

Proof: First note that all edges in p are of weight at most 2i and thus exist in
Gi, and moreover as p is a path in G \F , all these edges are non-faulty and thus
occur also in Gi \ F . Moreover, Ti(t) contains all nodes at distance at most 2i

from t. We get that all nodes in p are in Ti(t). The lemma follows.

Lemma 5. The path obtained by our routing scheme is of length at most O(f2 ·
k · dist(s, t, G \ F )(f + log2 n)).

Lemma 6. The size of the routing table of a node v is at most �log (nW )� · k ·
n1/k · deg(v) · log2 n bits.

Lemma 7. The labels are of size �log (nW )� · logn bits.

Lemma 8. The message forwarded during the routing process is of size O(|F |2 ·
logn) bits.

In fact, the message size can be reduced to O(|F |·log n) bits. To see this, note that
in order to decide connectivity in Gi|Ti(t), there is no need to store information
on all pairs of intervals, rather it’s enough to store at most |F | recovery edges
and an indication which pairs of intervals have already been examined. This can
be done using O(|F | · logn) bits (For further discussion of this point see the full
paper.).

We note that if we care only for the total size of the routing tables at all
the nodes, then it’s possible to reduce the stretch bound by a logarithmic factor.
This can be achieved as follows. Recall that the algorithm stores for each internal
node v in M a balanced search tree T (v) in a distributed manner. Let I be the
interval of nodes corresponds to the internal node v. Instead of storing the tree
T (v) distributively on all nodes in I, the algorithm can just pick an arbitrary
node x in I and store the entire tree T (v) in x. It’s not hard to see that this will
reduce the stretch by a logarithmic factor.
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Abstract. We study stable marriage and roommates problems in graphs
with locality constraints. Each player is a node in a social network and
has an incentive to match with other players. The value of a match is
specified by an edge weight. Players explore possible matches only based
on their current neighborhood. We study convergence of natural better-
response dynamics that converge to locally stable matchings – match-
ings that allow no incentive to deviate with respect to their imposed
information structure in the social network. For every starting state we
construct in polynomial time a sequence of polynomially many better-
response moves to a locally stable matching. However, for a large class of
oblivious dynamics including random and concurrent better-response the
convergence time turns out to be exponential. In contrast, convergence
time becomes polynomial if we allow the players to have a small amount
of random memory, even for many-to-many matchings and more general
notions of neighborhood.

1 Introduction

Matching problems are at the basis of many important assignment and alloca-
tion tasks encountered in economics and computer science. A prominent model
for these scenarios are stable matching problems [13], as they capture the as-
pect of rationality and distributed control that is inherent in many assignment
problems today. A variety of allocation problems in markets can successfully be
analyzed within the context of two-sided stable matching, e.g., the assignment
of jobs to workers [5, 14], organs to patients [19], or general buyers to sellers.
In addition, stable marriage problems are an interesting approach to model a
variety of distributed resource allocation problems in networks [3, 12, 18].

In this paper, we examine a dynamic variant of stable matching for collab-
oration in (social) networks without central coordination. Players are rational
agents that are looking for partners for a joint activity or relationship, such as,
e.g., to do sports, write a research paper, share an office, exchange data etc. Such
problems are of fundamental interest in economics and sociology, and they serve
as basic coordination tasks in computer networks with distributed control. We
can capture these problems within the stable roommates problem, an extension
of stable marriage that allows arbitrary pairs of players to be matched. A crucial
aspect of ordinary stable marriage and roommates problems is that every player
� Supported by DFG grant Ho 3831/3-1.
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knows the complete player set and can match arbitrarily. In contrast, for many
of the examples above, we would not expect a player to be able to, e.g., write
a research paper with any other player instantaneously. Instead, there are often
restrictions in terms of knowledge and information that allow certain players to
match up easily, while others need to get to know each other first before they can
engage in a joint project. We incorporate this aspect by assuming that players
are nodes in a static social network of existing social links. Each player strives
to build a matching edge to another player. The network defines a dynamic in-
formation structure over the players, where we use a standard idea from social
network theory called triadic closure: If a knows b and b knows c, then a and c
are likely to meet and thus can engage in a joint project. When matching a to
the 2-hop neighbor c, both players engage in a joint project and thus become
more familiar with each other. In this case, triadic closure suggests that a learns
about all direct neighbors of c, which can allow him to find a better matching
partner among those players. More formally, at any point in time, we assume
that each player can match only to accessible players, that is, players in the
2-hop neighborhood in the graph composed of social links and currently existing
matching edges.

Traditionally, in the stable marriage problem we have sets of men and women,
and each man (woman) has a full preference list over all women (men). Each
man (woman) can be matched to exactly one woman (man), where all players
would rather be matched than unmatched. A blocking pair is a pair of a man and
a woman such that both prefer this match to their currently assigned partners
(if any), and a stable matching is a matching that allows no blocking pair. It is
well-known that in this case a stable matching always exists and can be found
in polynomial time using the classic Gale-Shapley algorithm [11]. This does not
hold for the extension to the stable roommates problem, where simple examples
without stable matching exist. In this paper, we will focus on the prominent
class of correlated [1, 2] (also called acyclic [18]) preferences. For the correlated
stable roommates problem existence of a stable matching is guaranteed [1].

Contribution For many of the assignment and matching tasks in (social) net-
works that motivate our study, there is an inherent lack of information and
coordination. Hence, we are interested in distributed dynamics that allow play-
ers with locality restrictions to reach a stable matching quickly. In particular,
we consider convergence to locally stable matchings – matchings that allow no
blocking pair of accessible players. We will focus on variants of sequential best-
response and better-response dynamics, where in each round a blocking pair of
accessible players (or local blocking pair) is allowed to deviate to establish their
joint edge. It follows directly from results in, e.g., [1, 2] that our games are po-
tential games, and thus all such dynamics are guaranteed to converge to a locally
stable matching. This holds even for more general variants, in which each player
can build up to k > 1 matching edges, or each player has access to all players
within � > 2 hops in the graph.

After a formal definition of our model in Section 2, we show in Section 3 that in
our basic game with k = 1 matching edges and lookahead � = 2 per player we can
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always achieve fast convergence – for every game and every starting state there
is a sequence of polynomially many better-response moves to a locally stable
matching. While this shows that locally stable matchings are achievable, the
sequence heavily relies on global knowledge of the graph. In contrast, oblivious
dynamics without such knowledge like random or concurrent better-response
need an exponential number of steps. When we turn to more general games with
k > 1 or � > 2, there are even games and starting states such that every sequence
of better-response moves to a locally stable matching is exponentially long. For
the special case of stable marriage, we show that for general preference relations
there are states, from which convergence might never be achieved. We also show
improved results for special cases of the problem, especially for one-sided social
networks and the job-market model of [5].

Perhaps surprisingly, instead of the usual structural aspects in social networks
such as, e.g., low diameter or power-law degree distribution, a natural aspect
resulting in polynomial time convergence is memory. In Section 5 we consider the
case that every polynomial number of rounds each player remembers (uniformly
at random) one of the players he had been matched to before. This seemingly
small but powerful adjustment allows to show polynomial-time convergence for a
variety of dynamics, for arbitrary k ≥ 1 and � ≥ 2. Finally, we also briefly touch
upon the case when memory is considered as a cache in which a bounded number
of good or recent matches are stored. Here we can again show an exponential
lower bound for standard eviction strategies such as FIFO or LRU.

Related Work. There has been an enormous research interest in stable marriage
and roommates problems over the last decades, especially in many-to-one match-
ings and preference lists with ties [6, 9, 14, 21]. For a general introduction to the
topic, see standard textbooks [13, 21].

Recent theoretical work on convergence issues in ordinary stable marriage
has focused on better-response dynamics, in which players sequentially deviate to
blocking pairs. It is known that for stable marriage these dynamics can cycle [17].
On the other hand, there is always a sequence of polynomially many moves to
a stable matching [20]. However, if the ordering of moves is chosen uniformly
at random at each step, convergence time is exponential [2]. A prominent case
with numerous applications [1, 4, 12, 18], in which fast convergence is achieved
even by random dynamics, is correlated or weighted stable matching where each
matched pair generates a benefit (or edge weight) for the incident players and
the preferences of the players are ordered with respect to edge benefit [1, 18].

Local aspects of stable matching are of interest in distributed computing, e.g.,
communication complexity of distributed algorithms [16]. A localized version
of stable marriage is analyzed in [10], where men and women are nodes in a
graph and can only match to adjacent women or men, resp. Each player can
only exchange messages with their neighbors and the goal is to design a local
algorithm that computes an “almost” stable matching. Similar approaches to
almost stable matchings in decentralized settings include, e.g., [7]. In addition,
there exist online [15] and parallel algorithms [8] for stable marriage.
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Our model of locality is similar to Arcaute and Vassilvitskii [5], who consider
locally stable matchings in a specialized case of stable marriage. In their job-
market game, there are firms that strive to hire workers. Social links exist only
among workers, and each firm can match to k workers, but each worker only to
one firm. They show that best-response dynamics converge almost surely and
show several characterization results for locally stable matchings and the number
of isolated firms after a run of a local variant of the Gale-Shapley algorithm. In
this paper we greatly extend their results on convergence of dynamics.

2 Model and Initial Results

In our model we are given a social network N = (V, L), where V is a set of n
players and L ⊆ V ×V is a set of undirected and fixed social links. In addition, we
have a set E of undirected potential matching edges, where we denote m = |E|.
Each edge e ∈ E has a benefit b(e) > 0. A state M ⊆ E of the game contains for
each player at most k incident matching edges, i.e., each player can be involved
in up to k ≥ 1 matching edges simultaneously. Unless specified otherwise we will
assume throughout that k = 1. The utility or welfare of a player u in state M
is
∑
{u,v}∈M b({u, v}) if he is matched to at least one player and 0 otherwise.

The restriction of E to a subset of all edges will be mostly for convenience and
clarity of presentation. Our lower bounds can be adjusted to allow every pair
as matching edge using minor technical adjustments that blow up the network
using dummy players and for e 	∈ E use benefits that are either extremely tiny
(to keep an edge from becoming a blocking pair) or extremely large (to “hard-
wire” an edge and thereby change the matching incentives). Details are left for
the full version of this paper.

In a state M two players u and v are accessible if there is a path of length at
most � in the access graph G = (V, L∪M). We call � the lookahead of the game
and, unless stated otherwise, focus on the case of triadic closure and � = 2. An
edge e = {u, v} ∈ E is called a local blocking pair for M if u and v are accessible,
and if for each of u and v either (a) the player has less than k matching edges
in M or (b) at least one incident edge e′ ∈ M has b(e′) < b(e). Hence, for a
local blocking pair the accessible players both strictly increase their welfare by
either adding e or replacing e′ by e. In the latter case, the replaced edges are
removed from M . We call b(e) the benefit of the local blocking pair. A locally
stable matching is a state M for which there is no local blocking pair.

We consider round-based improvement dynamics that lead to locally stable
matchings. In a local improvement move we pick a local blocking pair and allow
the involved players to deviate to their joint edge, thereby potentially removing
other edges. We consider sequential processes that in every round implement a
local improvement move. For (random) best-response dynamics, we pick in each
round deterministically (uniformly at random) a local blocking pair of maximum
benefit. As (random) better-response dynamics we term all sequential dynamics
that in each round pick one local blocking pair in a deterministic (uniformly
at random) way. Finally, for concurrent better- (best-)response dynamics we as-
sume that every player picks uniformly at random from the local blocking pairs
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he is involved in (and that are of maximum benefit among those available for
him). For every local blocking pair that is chosen by both incident players the
corresponding edge is built concurrently.

In addition, we also consider better-response dynamics with memory. For a
dynamics with random memory we assume that each player at some point recalls
a player that he had been matched to before. In particular, let Mv be the set of
players that v ∈ V has been matched with at some point during the history of
play. We assume that, in expectation, every T rounds a player v remembers a
player u chosen uniformly at random from Mv, and u and v become temporarily
accessible in this round. For dynamics with cache memory we assume that each
player has a cache in which he can keep up to r players previously matched to
him. A pair of players then is accessible if and only if they are currently at hop
distance at most � in G or one player is present in the cache of the other player.

Our games reduce to the ordinary correlated stable roommates problem for
L = V ×V . Thus, every ordinary stable matching is a locally stable matching for
every network N . Note that an ordinary stable matching can be computed in time
O(n log n) by repeated addition of an edge for a blocking pair with maximum
benefit. Hence, centralized computation of a locally stable matching is trivially
in P, for every k ≥ 1 and every � ≥ 2. For ordinary correlated stable roommates
even random best-response dynamics converge in polynomial time [2].

3 Convergence of Better-Response Dynamics

In this section we consider the duration of sequential and concurrent improve-
ment dynamics. Even when we restrict to accessible players, a new edge built
due to a local blocking pair destroys only edges of strictly smaller benefit. This
implies the existence of a lexicographical potential function. Hence, both sequen-
tial and concurrent better-response dynamics are always guaranteed to converge
to a locally stable matching. Moreover, for our standard case with k = 1 and
� = 2 the first result shows that we can always achieve fast convergence.

Theorem 1. For any state there is a sequence of O(n ·m2) local improvement
moves that lead to a locally stable matching. The sequence can be computed in
polynomial time.

Proof. Consider a game with a given network N and a state specified by a set
M of existing matching edges. A local blocking pair with edge e falls in one of
two categories (1) the players are at distance at most 2 in N or (2) the players
are connected via one existing matching edge e′ and one link from L. If e falls in
category (2), edge e′ gets destroyed, and we can think of the edge moving from
e′ to e. This is the motivation for our main tool in this proof, the edge movement
graph Gmov. This vertex set of this graph is E. Each vertex {u, v} ∈ E has a
corresponding vertex weight b({u, v}). If u and v are at distance at most 2 in
N , their vertex in Gmov is called starting point. We denote the set of all starting
points by S.

There are two kinds of edges in Gmov, movement edges and domination edges.
For every triple of players u, v, w ∈ V we introduce a directed movement edge in
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Gmov from {u, v} to {u,w} when {u, v}, {u,w} ∈ E, {v, w} ∈ L and b({u, v}) <
b({u,w}). When edge {u, v} exists, then u and w get accessible. If there is
no other matching edge in the system, {u,w} becomes a local blocking pair
which is expressed by the movement edge. Note that movement edges induce
a DAG. Domination edges describe the fact that potentially the existence of
one matching edge prohibits creation of another one. For all pairs {u, v} and
{u,w} in Gmov we introduce a directed domination edge from {u, v} to {u,w}
when b({u, v}) ≥ b({u,w}). In this case {u,w} is dominated by {u, v}. If the
b({u, v}) > b({u,w}), {u,w} is strictly dominated by {u, v}.

Consider the subgraph of Gmov that is reachable from S ∪M via movement
edges. If a pair is not in this subgraph, there is no sequence of local improvement
moves starting from M that establishes an edge between these players. We prune
the graph and consider only the subgraph reachable from S ∪M .

A state M of the game can be seen as a marking of the vertices in Gmov that
correspond to edges in M . A local improvement move from M can only happen
if some marked vertex p has an outgoing movement edge to another vertex p′ (as
k = 1, p′ must be unmarked). This represents a feasible local improvement move
only if p′ is currently undominated, i.e., has no incoming domination edge from
a marked vertex. We will describe how to migrate the markings along movement
edges to reach a locally stable matching in a polynomial number of rounds.

Phase 1: In phase 1 we move existing markings without introducing new
ones. As long as it is possible, we arbitrarily move an existing marking along a
movement edge to an undominated vertex one at a time. Note that the set of
dominated vertices changes in every round. In particular, a marking is deleted
if it becomes dominated in the next round (because a dominating neighbor with
higher benefit becomes marked). Thus, in this process the number of markings
only decreases. In addition, for each marking, the vertex weight of the location
only increases. Due to acyclicity, a particular marking can visit each node of
Gmov only once, thus the phase ends after at most O(n ·m) many rounds.

Phase 2: In phase 2 we try to improve existing markings even further by
introducing new ones and moving them via undominated paths to strictly dom-
inating vertices. In particular, for a marked vertex {u, v} in Gmov we do the
following. We drop all currently dominated vertices from consideration. Now we
try to find a path of movement edges from a starting point to a vertex that
strictly dominates {u, v}. If there is such a path, we can introduce a new match-
ing edge via a new marking at the starting point and move it along the path to
the dominating vertex. Due to the fact that none of the path vertices are dom-
inated, all the moves are local improvement moves in the game. All markings
that become dominated during this process are removed. This also includes in
the last step our original marking at {u, v}, which we can think of as moving to
the dominating vertex. After this, we try to improve all markings by a restart
of phase 1. We keep executing this procedure until this kind of improvement is
impossible for every remaining marking.

Phase 2 can be seen as an extension of phase 1. Overall, we keep decreasing
the number of markings, and each surviving marking is increased in terms of
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vertex weight. However, each such increase might now require O(m) steps, which
increases the number of rounds to at most O(n ·m2).

Phase 3: After phase 2, none of the remaining markings can be (re)moved,
neither by moving the marking along a movement edge to another undominated
vertex, nor by a sequence of moves that lead to creation of a marking at a
dominating vertex (verify that otherwise phase 2 would not have ended). Hence,
these edges are stable, and we call the incident players stabilized. They will not
become part of any local blocking pair in the remaining process. We drop all these
players from the game and adjust Gmov by dropping all vertices including at least
one stabilized player. Finally, we now iteratively construct the matching edge of
largest possible benefit until no more edge can be constructed. In particular, we
consider the reduced Gmov (which is now completely unmarked) and find a vertex
with largest benefit that is reachable from a starting point. We then establish
the corresponding edge by moving a new marking along the path. There is no
path to any edge with strictly larger benefit, and no player will get an incentive
to remove this edge. In particular, after removing edges and incident players, no
such path will become possible at a later point in the process. Hence, iterative
application of this final step completes the locally stable matching. This phase
terminates after O(n ·m) rounds in total.

The construction and adjustment of Gmov can be trivially be done in polyno-
mial time. For finding the sequences of local improvement moves we essentially
require only algorithms for DFS or BFS in DAGs. 
�
The computation of the short sequence in the previous theorem relies heavily on
identification of proper undominated paths in the edge movement graph. If we
instead consider random or concurrent dynamics that do not rely on such global
information, convergence time can become exponential.

Theorem 2. For every b ∈ N there is a game with n ∈ Θ(b), in which (random)
best-response and random and concurrent better-response dynamics starting from
the state M = ∅ need Ω(1.5b) steps in expectation to converge to a locally stable
matching.

Proof. We construct our game based on a structure we call an “edge trap”. We
concatenate b edge traps as shown in Fig. 1. In a trap i there is a starting edge
ei. We assume that initially there is no matching edge and lower bound the
number of times that ei must be created to lead to construction of ei+1. Upon
creation of ei, we assume there are exactly two local blocking pairs that both
destroy ei – either create eu or el, which implies b(ei) < min{b(eu), b(el)}. If
eu is formed, {wi, vi+1} becomes a local blocking pair with ec destroying edge
eu (i.e., b(eu) < b(ec)). At this point, both wi and vi+1 are happy with their
matching choice. Now suppose ei is created again, then player wi will not form
eu. In this case, vi matches to ui+1 via el. Now vi+1 has an incentive to drop ec

and match with ui+1, because b(ec) < b(ei+1).
By sequential concatenation of edge traps we can make the dynamics simu-

late a counter with b bits. In particular, we assume there are b traps attached
sequentially, where in the first trap players u1 and v1 are connected with a path
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ui

vi

wi

ui+1

vi+1

ei

eu

el

ei+1

ec

Fig. 1. Structure of edge traps in the lower bound of Theorem 2. Social links are
indicated in gray, possible matching edges are drawn in black.

of distance 2 using a dummy player. For the last pair of nodes ub+1 and vb+1

we assume there is also the final edge eb+1. Bit i is set if and only if edge ec in
trap i is created. We start the dynamics with the empty matching M = ∅, so
the counter is 0. Note that N is a tree with a long path and satellite nodes.

First consider best-response dynamics, for which we set b(eu) > b(el) in every
trap. Then creation of e1 implies creation of ec in the first trap, i.e., increase of
the counter by 1. At this point, the edge is trapped, and the only local improving
move is to create e1 again. This leads to destruction of ec in the first trap, creation
of ec in the second trap, and thus an increase in the bit counter of 1. Continuing
in this fashion we see that every creation of e1 leads to a state that represents an
increase of the bit counter by 1. Thus, to create eb+1, the edge of largest benefit,
the dynamics needs Ω(2b) many creations of e1. Note that in each step there is
a unique local blocking pair of maximum benefit. This proves the lower bound
for both deterministic and random best-response dynamics.

Note that for each state reached during the dynamics, only one local blocking
pair except (u1, v1) can apply their deviation. In particular, eu and el cannot be
created simultaneously. Hence, as long as the creation of eu is sufficiently likely in
every trap, we can trap enough edges that are subsequently destroyed and show
a similar lower bound. This is the case, in particular, for random and concurrent
better-response dynamics. Note that every locally stable matching must contain
the edge eb+1. We now bound the number of times we have to create e1 until
eb+1 forms. Consider the first trap, and suppose edge e1 is created. We now
follow this edge moving through the trap. With probability at most 1/2, the
edge moves directly to el and arrives at e2. With probability at least 1/2, the
edge gets stuck in ec, which implies that the edge is destroyed and the next edge
created at e1 arrives at e2 with probability 1. Thus, to create a single edge at e2

we have to create e1 an expected number of 1.5 times. The same is true for ei

and ei+1 in every trap i. Thus, due to the sequential nature of the gadget, we
need an expected number of Ω(1.5b) creations of e1 to create edge eb+1. 
�



Local Matching Dynamics in Social Networks 121

The previous theorem applies similarly to a wide variety of better-response
dynamics. The main property is that whenever ei exists and both eu and el are
available for creation, then the creation of eu is always at least as likely as that
of el. Observe that the construction allows to set b(eu) < b(el) or vice versa.
This allows to satisfy the property for many dynamics that make “oblivious”
choices by picking local blocking pairs based only on their benefits but not their
structural position or the history of the dynamics. An even stronger lower bound
applies when we increase lookahead or matching edges per player.

Theorem 3. Let k ≥ 2 or � ≥ 3, then for every b ∈ N there is a game with n ∈
Θ(b · k · �) and a starting state M such that every sequence of local improvement
moves from M to a locally stable matching has length Ω(2b).

By embedding the lower bound structures from the previous proofs into larger
graph structures of dummy vertices, we can impose a variety of additional prop-
erties on the network N that are often considered in the social network literature.
For example, to obtain a small diameter simply add a separate source and con-
nect each vertex from the gadgets via � dummy vertices to the source. As these
new vertices have no matching edges, the lower bounds hold accordingly for
graphs of diameter Θ(�). Note that for a diameter of exactly � we obtain the
ordinary correlated stable roommates problem, for which polynomial time con-
vergence is guaranteed. As mentioned earlier there also exist simple adjustments
using dummy vertices and tiny and extremely large benefits to adjust the results
to E = V × V with all possible matching edges.

Corollary 1. Theorems 2 and 3 continue to hold even if diam(N) ∈ Θ(�).

4 Two-Sided Matching and Stable Marriage

In this section we consider the bipartite case of stable marriage. In accordance
with [5] we use the interpretation of a set W of “workers” matching to a set F
of “firms”. We use nw = |W | and nf = |F |. In general, the social network N =
(F ∪W,L) can be arbitrary, and the set of possible matching edges is E = W×F .
Each worker (firm) has an arbitrary preference relation over firms (workers). In
contrast to ordinary stable marriage, in our localized variant convergence of any
better-response dynamics can be impossible.

Theorem 4. For stable marriage with general preferences, there are games and
starting states M such that no locally stable matching can be reached by any
sequence of local improvement moves from M , even if N is connected.

For weighted matching with correlated preferences, Theorem 1 applies and shows
existence of a short sequence. A central assumption of [5] is that every worker
w ∈ W has the same preference list over F , and every firm f ∈ F has the same
preference list over W . We will refer to this case as totally uniform preferences.
As a generalization we consider worker-uniform preferences, where we assume
that only the preferences of all workers are the same, while firms have arbitrary
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preferences. Firm-uniform preferences are defined accordingly. For totally uni-
form preferences we can number firms and workers increasingly from least to
most preferred in their respective global preference list. For edge eij = (wi, fj)
we define a benefit b(eij) = j · nw + i. Intuitively, here best-response dynamics
give preference to local blocking pairs of the most preferred firm, which can be
changed to worker by using b(eij) = i · nf + j throughout. For worker-uniform
preferences we let the numbering of workers be arbitrary. For eij = (wi, fj) we
define benefit b(eij) = j · nw + ij , when worker wi is ranked at the ij-th last
position in the preference list of firm fj. For firm-uniform preferences the same
idea can be used by exchanging the roles of firms and workers. This shows that
all these cases are classes of correlated stable matching problems. Our first re-
sult is that even for totally uniform preferences, convergence of best-response
dynamics can be slow.

Theorem 5. For every b ∈ N, there is a game with totally uniform preferences,
nf , nw ∈ Θ(b) and a starting state M such that (random) best-response dynamics
from M to a locally stable matching take (expected) time Ω(2b).

A case in which such preferences can still lead to quick convergence is in the
job-market game considered in [5]. Note that for the following theorem we only
need worker-uniform preferences.

Theorem 6. For every job-market game with worker-uniform preferences, in
which each firm can create up to k ≥ 1 matching edges, (random) best-response
dynamics converge to a locally stable matching from every starting state in (ex-
pected) time O(nf · nw · k).

The result directly extends to random and concurrent better-response dynamics
when spend an additional factor of nf · nw. In contrast, if we consider firm-
uniform preferences, a lower bound for best-response dynamics can be shown.

Theorem 7. For every b ∈ N and k ≥ 2, there is a job-market game with firm-
uniform preferences, nf ∈ Θ(b), nw ∈ Θ(b · k) and a starting state M such
that (random) best-response dynamics from M to a locally stable matching take
(expected) time Ω(2b).

5 Dynamics with Memory

In this section we consider sequential and concurrent better-response dynamics
with memory. Our first result is a polynomial time bound for random memory
that holds accordingly for random and concurrent better-response dynamics.

Theorem 8. For every k, � ∈ N and every game, in which each player can create
up to k matching edges and has lookahead �, (random) best-response dynamics
with random memory converge to a locally stable matching from every starting
state in (expected) time O(n2 ·m2 · k · T ).
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Proof. The main insight is that all the above mentioned dynamics can rely on
the information in the random memory to steer the convergence towards a locally
stable matching. Let us consider the dynamics in phases. Phase t begins after the
dynamics has created t mutually different matching edges at least once (including
the ones in the starting state). Let Et be the set of edges which have been created
at least once when entering phase t. During phase t no new edge is created for
the first time. The main insight is that in a phase all the dynamics converge
in polynomial time. In particular, consider an edge e ∈ Et that represents a
(global) blocking pair and has maximum benefit. A round in which such an edge
is available for creation appears in expectation at most every n ·T rounds. When
it is available for creation all the dynamics mentioned above will create it with
probability at least Ω(1/m). The deterministic best-response dynamics might
create a different edge of maximum benefit, but it has to pick e after at most m
such rounds unless e stops being a blocking pair. Thus, after an expected number
of O(n ·m · T ) rounds, e is either created or stops being a blocking pair. In the
former case, it will not get removed in phase t again, in the latter case other
incident edges from Et of maximum benefit were created that are not removed
in phase t again. Hence, at least one of the incident players has an edge that he
is not willing to remove in phase t. By repeated application of this argument, we
see that after at most n · k of these steps all blocking pairs have been removed.
Thus, after an expected number of O(n2 · m · k · T ) rounds the phase ends in
a matching that is stable with respect to Et. Finally, we note that there are at
most m many phases to be considered. 
�
With random memory no previous matching edge can be completely forgotten
during the dynamics. Can we allow players to forget some previous matches and
still obtain fast convergence with local dynamics? Towards this end, we here con-
sider two natural examples and show that delayed forgetting of previous matches
can be harmful to convergence. In particular, we consider best-response dynam-
ics with cache memory and largest-benefit, FIFO or LRU eviction strategies.

Corollary 2. If each player keeps only the r best matches in his cache, then for
every b ∈ N there is a game with n ∈ Θ(b · r), in which best-response dynamics
starting from the state M = ∅ need Ω(2b) steps to converge to a locally stable
matching.

Theorem 9. If each player keeps only the r most recent matches in his cache,
then for every b ∈ N there is a game with n ∈ Θ(b2 · r), in which best-response
dynamics starting from the state M = ∅ need Ω(2b) steps to converge to a locally
stable matching.
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Abstract. We develop an algebraic model for recognizing languages of
words indexed by countable linear orderings. This notion of recogniz-
ability is effectively equivalent to definability in monadic second-order
(MSO) logic. The proofs also imply the first known collapse result for
MSO logic over countable linear orderings.

1 Introduction

This paper continues a long line of research aiming at understanding the notions
of regularity for languages of infinite objects, i.e., of infinite words and trees. This
research results both in decision procedures for the monadic second-order (MSO)
logic and in a fine comprehension of the mechanisms involved in different models
of recognition. More specifically, the paper answers the following interrogations:

What is a good notion of regularity for languages of words indexed by
countable linear orderings? Is it equivalent to definability in MSO? What
are the correct tools for studying this notion?

Several results, in particular in terms of decidability, partially answered the
above questions (see related work below). Our study gives a deeper insight in the
phenomena, e.g. answering (positively) the following previously open question:

Does there exist a collapse result for MSO logic over countable linear
orders, as Büchi’s result shows a collapse of MSO logic to its existential
fragment for words indexed by ω?

The central objects in this paper are words indexed by countable linear orderings,
i.e., total orders over countable sets together with functions mapping elements
to letters in some finite alphabet. Languages are just sets of countable words and
MSO logic gives a formalism for describing such languages in terms of formulas
involving quantification over elements and sets of elements (a formula naturally
defines the language of all words that makes the formula true).
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Related work. Büchi initiated the study of MSO using the tools of language
theory. He established that every language of ω-words (i.e., the particular case
of words indexed by the ordinal ω) definable in MSO is effectively recognized by
a suitable form of automaton [4]. A major advance has been obtained by Rabin,
who extended this result to infinite trees [8]. One consequence of Rabin’s result
is that MSO is decidable over the class of all countable linear orderings. Indeed,
every linear ordering can be seen as a set of nodes of the infinite tree, with the
order corresponding to the infix ordering on nodes. Another proof of the decid-
ability of the MSO theory of countable orders has been given by Shelah using
the composition method [12]. This is an automaton-free approach to logic based
on syntactic operations on formulas and inspired from Feferman and Vaught [6].
The same paper of Shelah is also important for another result it contains: the
undecidability of the MSO theory of the real line (the reals with order). How-
ever, for ω-words as for infinite trees, the theory is much richer than simply the
decidability of MSO. In particular, MSO is known to be equivalent to several for-
malisms, such as automata and, in the ω-word case, regular expressions and some
forms of algebras, which give a very deep insight in the structure of languages.
The decidability proof for MSO does not provide such an understanding.

A branch of research has been pursued to raise the equivalence between logic,
automata, and algebra to infinite words beyond ω-words. In [3], Büchi introduced
ω1-automata on transfinite words to prove the decidability of MSO logic for
ordinals less than ω1. Besides the usual transitions, ω1-automata are equipped
with limit transitions of the form P → q, with P set of states, which are used in
a Muller-like way to process words indexed over ordinals. Büchi proved that his
automata have the same expressive power as MSO logic for ordinals less than
ω1. The key ingredient is the closure under complementation of ω1-automata.

In [2], ω1-automata have been extended to �-automata by introducing limit
transitions of the form q → P to process words over linear orderings. In [10], �-
automata are proven to be closed under complementation with respect to count-
able and scattered orderings. This last result implies that �-automata have the
same expressive power as MSO logic over countable and scattered orderings [1].
However, it was already noticed in [1] that �-automata are strictly weaker than
MSO logic over countable (possibly non-scattered) linear orderings: indeed, the
closure under complementation fails as there is an automaton that accepts all
words with non-scattered domains, whereas there is none for scattered words.

In this paper, we unify those branches of research. We provide an algebraic
framework and a notion of recognizability which happens to be equivalent to the
definability in MSO logic. Our approach both extends the decidability approach
of Rabin and Shelah, and provides new results concerning the expressive power
of MSO logic over countable linear orders. In preliminary versions of this work,
we devised an equivalent automaton model. This notion is less natural and it is
not presented in this short paper.

Structure of the paper. After the preliminaries in Section 2, we present ◦-
algebras and the corresponding tools and results in Section 3. In Section 4 we
translate MSO formulas to ◦-algebras and in Section 5 we establish the converse.
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2 Preliminaries

Linear orderings. A linear ordering α = (X,<) is a non-empty set X equipped
with a total order <. Two linear orderings have same order type if there is
an order-preserving bijection between their domains. We denote by ω, ω∗, ζ, η
the order types of (N, <), (−N, <), (Z, <), (Q, <), respectively. Unless strictly
necessary, we do not distinguish between a linear ordering and its order type. A
sub-ordering of α is a subset I of α equipped with the same ordering relation
(we denote it by α|I). Given two subsets I, J of α, we write I < J iff x < y for
all x ∈ I and all y ∈ J . A subset I of α is said to be convex if for all x, y ∈ I
and all z ∈ α, x < z < y implies z ∈ I. A linear ordering α is dense if for all
x < y ∈ α, there is z ∈ α such that x < z < y. It is scattered if none of its
sub-orderings is both dense and non-singleton.

The sum α1 + α2 of two linear orderings α1 = (X1, <1) and α2 = (X2, <2)
(up to renaming, assume that X1 and X2 are disjoint) is the linear ordering
(X1�X2, <), where < coincides with <1 on X1, with <2 on X2, and, furthermore,
it satisfies X1 < X2. More generally, given a linear ordering α = (X,<) and, for
each i ∈ X , a linear ordering βi = (Yi, <i) (assume that the sets Yi are pairwise
disjoint), we denote by

∑
i∈α βi the linear ordering (Y,<′), where Y =

⋃
i∈X Yi

and, for every i, j ∈ X , every x ∈ Yi, and every y ∈ Yj , x <′ y iff either i = j
and x <i y hold or i < j holds.

Additional material on linear orderings can be found in [11].

Condensations. A standard way to prove properties of linear orderings is to
decompose them into basic components (e.g., finite sequences, ω-sequences, ω∗-
sequences, and η-orderings). This can be done by exploiting the notion of con-
densation. Precisely, a condensation of a linear ordering α is an equivalence
relation ∼ over it such that for all x < y < z in α, x ∼ z implies x ∼ y ∼ z
(this is equivalent to enforcing the condition that every equivalence class of ∼
is a convex subset). The ordering relation of α induces a corresponding total
order on the quotient α/∼, which is called the condensed order. Conversely, any
partition C of α into convex subsets induces a condensation ∼C such that x ∼ y
iff x and y belong to the same convex subset I ∈ C.

Words and languages. We use a generalized notion of word, which coincides
with the notion of labeled linear ordering. Given a linear ordering α and a finite
alphabet A, a word over A with domain α is a mapping of the form w : α → A.
Hereafter, we shall always consider words up to isomorphism of the domain,
unless specifically required. Moreover, we only consider words of countable do-
mains. The set of all words (of countable domain) over an alphabet A is denoted
by A◦. Given a word w with domain α and a non-empty subset I of α, we de-
note by w|I the sub-word resulting from the restriction of the domain of w to I.
Furthermore, if I is convex, then w|I is said to be a factor of w.

Certain words will play a crucial role in the sequel. In particular, a word
w : α → A is said to be a perfect shuffle of A if (i) the domain α is isomorphic
to Q and (ii) for every symbol a ∈ A, the set w−1(a) = {x ∈ α | w(x) = a}
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is dense in α. Recall that Q is the unique, up to isomorphism, countable non-
singleton dense linear ordering with no end-points. Likewise, for every finite set
A, there is a unique, up to isomorphism, perfect shuffle of A.

Given two words u : α → A and v : β → A, we denote by uv the word
with domain α + β where each position x ∈ α (resp., x ∈ β) is labeled by u(x)
(resp., v(x)). The concatenation of words is easily generalized to the infinite
concatenation

∏
i∈α wi, where α is a linear ordering and each wi has domain βi,

the result being a word with domain
∑

i∈α βi. We also define the shuffle of a
tuple of words w1, ..., wk as the word {w1, ..., wk}η =

∏
i∈Q wf(i), where f is the

unique perfect shuffle of {1, ..., k} with domain Q.
A language is a set of words over a certain alphabet. For some technical rea-

sons, it is convenient to avoid the presence of the empty word ε in a language.
Thus, unless otherwise specified, we use the term word to mean a labeled, count-
able, non-empty linear ordering. The operations of juxtaposition, ω-iteration,
ω∗-iteration, shuffle, etc. are extended to languages in the obvious way.

3 Semigroups and Algebras for Countable Linear
Orderings

This section is devoted to the presentation of algebraic objects suitable for defin-
ing a notion of recognizable ◦-languages. As it is already the case for ω-words, our
definitions come in two flavors, ◦-semigroups (corresponding to ω-semigroups)
and ◦-algebras (corresponding to Wilke-algebras). We prove the equivalence of
the two notions when the underlying set is finite.

Countable products. The objective is to have a notion of products indexed
by countable linear orderings, and possessing several desirable properties (in
particular, generalized associativity and existence of finite presentations).

Definition 1. A (generalized) product over a set S is a function π from S◦

to S such that, for every a ∈ S, π(a) = a and, for every word u and every
condensation ∼ of its domain,

π(u) = π
(∏

I∈α/∼ π(u|I)
)

(generalized associativity)

The pair 〈S, π〉 is called a ◦-semigroup.

As an example, the operation
∏

is a generalized product over A◦. Hence, 〈A◦,∏〉
is a ◦-semigroup (in particular, it is the free ◦-semigroup generated by A).

A morphism from a ◦-semigroup (S, π) to another ◦-semigroup (S′, π′) is a
mapping ϕ : S → S′ such that, for every word w : α → S, ϕ(π(w)) =
π′(ϕ̃(w)), where ϕ̃ is the component-wise extension of ϕ to words. A ◦-language
L ⊆ A◦ is called recognizable by ◦-semigroups if there exists a morphism ϕ from
〈A◦,∏〉 to some finite semigroup 〈S, π〉 (here finite means that S is finite) such
that L = ϕ−1(F ) for some F ⊆ S (equivalently, ϕ−1(ϕ(L)) = L).

Recognizability by ◦-semigroup has the expressive power we aim at, however,
the product π requires to be represented, a priori, by an infinite table. This is not
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usable as it stands for decision procedures. That is why, given a finite ◦-semigroup
〈S, π〉, we define the following (finitely presentable) algebraic operators:
• · : S2 → S, mapping a pair of elements a, b ∈ S to the element π(ab),
• τ : S → S, mapping an element a ∈ S to the element π(aω),
• τ∗ : S → S, mapping an element a ∈ S to the element π(aω∗

),
• κ : P(S)\{∅} → S, mapping a non-empty set {a1, ..., ak} to π

({a1, ..., ak}η
)
.

One says that ·, τ, τ∗ and κ are induced by π. From now on, we shall use the
operator · with infix notation (e.g., a · b) and the operators τ , τ∗, and κ with
superscript notation (e.g., aτ , {a1, ..., ak}κ). The resulting algebraic structure
〈S, ·, τ, τ∗, κ〉 has the property of being a ◦-algebra, defined as follows:

Definition 2. A structure 〈S, ·, τ, τ∗, κ〉, with · : S2 → S, τ, τ∗ : S → S, and
κ : P(S) \ {∅} → S, is called a ◦-algebra if:
(A1) (S, ·) is a semigroup, namely, for every a, b, c ∈ S, a · (b · c) = (a · b) · c,
(A2) τ is compatible to the right, namely, for every a, b ∈ S and every n > 0,

(a · b)τ = a · (b · a)τ and (an)τ = aτ ,
(A3) τ∗ is compatible to the left, namely, for every a, b ∈ S and every n > 0,

(b · a)τ∗
= (a · b)τ∗ · a and (an)τ∗

= aτ∗
,

(A4) κ is compatible with shuffles, namely, for every non-empty subset P of S,
every element c in P , every subset Q of P , and every non-empty subset
R of {P κ, a · P κ, P κ · b, a · P κ · b : a, b ∈ P}, we have P κ = P κ · P κ =
P κ · c · P κ = (P κ)τ = (P κ · c)τ = (P κ)τ∗

= (c · P κ)τ∗
= (Q ∪R)κ .

The typical ◦-algebra is:

Lemma 1. For every alphabet A, 〈A◦, ·, ω, ω∗, η〉 is a ◦-algebra.

Proof. By a systematic analysis of Axioms A1-A4. �

Furthermore, as we mentioned above, every ◦-semigroup induces a ◦-algebra.

Lemma 2. For every ◦-semigroup 〈S, π〉, 〈S, ·, τ, τ∗, κ〉 is a ◦-algebra, where the
operators ·, τ, τ∗, and κ are those induced by π.

Extension of ◦-algebras to countable products. Here, we aim at proving
a converse to Lemma 2, namely, that every finite ◦-algebra 〈S, ·, τ, τ∗, κ〉 can be
uniquely extended into a unique ◦-semigroup 〈S, π〉 (Theorem 1). We assume all
words are over the alphabet S. The objective of the construction is to attach to
each word u over S a ‘value’ in S. Furthermore, this value needs to be unique.

The central objects in this proof are evaluation trees, i.e., infinite trees de-
scribing how a word in S◦ can be evaluated into an element of S. We begin with
condensation trees which are convenient representations for nested condensa-
tions. The nodes of a condensation tree are convex subsets of the linear ordering
and the descendant relation is the inclusion. The set of children of each node de-
fines a condensation. Furthermore, in order to provide an induction parameter,
we require that the branches of a condensation tree are finite (but their length
may not be uniformly bounded).
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Definition 3. A condensation tree over a linear ordering α is a set T of non-
empty convex subsets of α such that:
• α ∈ T ,
• for all I, J in T , either I ⊆ J or J ⊆ I or I ∩ J = ∅,
• for all I ∈ T , the union of all J ∈ T such that J � I is either I or ∅,
• every subset of T totally ordered by inclusion is finite.

Elements in T are called nodes. The node α is called the root of the tree. Nodes
minimal for ⊆ are called leaves. Given I, J ∈ T such that I � J and there exist
no K ∈ T such that I � K � J , then I is called a child of J and J the parent
of I. According to the definition, if I is an internal node, i.e., is not a leaf, then it
has a set of children childrenT (I) which forms a partition of I. This partition
consisting of convexes, it corresponds naturally to a condensation of α|I . When
the tree T is clear from the context, we will denote by children(I) the set of
all children of I in T and, by extension, the corresponding condensation and the
corresponding condensed linear ordering.

Since the branches of a condensation tree are finite, an ordinal rank, called
foundation rank, can be associated with such a tree. This is the smallest ordinal β
that enables a labeling of the nodes by ordinals less than or equal to β such that
the label of each node is strictly greater than the labels of its children. This rank
allows us to make proofs by induction (see also [7] for similar definitions).

We now introduce evaluation trees. Intuitively, these are condensation trees
where each internal node has an associated value in S that can be ‘easily com-
puted’ from the values of its children. Here we consider a word u ‘easy to com-
pute’ if the following function π0 is defined on u:

Definition 4. Let π0 be the partial function from S◦ to S such that:
• π0(ab) = a · b for all a, b ∈ S,
• π0(sω) = sτ for all s ∈ S,
• π0(sω∗

) = sτ∗
for all s ∈ S,

• π0(P η) = P κ for all non-empty sets P ⊆ S,
• in any other case π0 is undefined.

An evaluation tree over a linear ordering α is a pair T = 〈T, γ〉 in which
T is a condensation tree over α and γ is a function from T to S such that for
every internal node I ∈ T , γ(I) = π0(γ(children(I)), where γ(children(I)) de-
notes the word with domain children(I) labeling each position J ∈ children(I)
with γ(J) (note that we assume that π0(γ(children(I)) is defined). The value
of 〈T, γ〉 is γ(α), i.e., the value of the root.

An evaluation tree T = 〈T, γ〉 over a word u is an evaluation tree over the
domain of u such that the leaves of T are singletons and γ({x}) = u(x) for all x
in the domain of u.

The next propositions are central in the study of evaluation trees.

Proposition 1. For every word u, there exists an evaluation tree over u.
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The proof here resembles the construction used by Shelah in his proof of de-
cidability of the monadic second-order theory of orders from [12]. In particular,
it uses the theorem of Ramsey [9], as well as a lemma stating that every non-
trivial word indexed by a dense linear ordering has a perfect shuffle as a factor.
We remark that the above proposition does not use any of the Axioms A1-A4.

Proposition 2. Two evaluation trees over the same word have the same value.

The proof of this result is quite involved and it heavily relies on the use of
Axioms A1-A4 (each axiom can be seen as an instance of Proposition 2 in some
special cases of computation trees of height 2). The proof makes also use of
Proposition 1. Note that, as opposed to Proposition 1, Proposition 2 has no
counterpart in [12].

Using the above results, the proof of the following result is relatively easy:

Theorem 1. For every finite ◦-algebra 〈S, ·, τ, τ∗, κ〉, there exists a unique prod-
uct π that defines 〈S, ·, τ, τ∗, κ〉.
Proof. Given a word w with domain α, one defines π(w) to be the value of
some evaluation tree over w (the evaluation tree exists by Proposition 1 and the
value π(w) is unique by Proposition 2).

We prove that π is associative. Let ∼ be a condensation of the domain α.
For all I ∈ α/∼, let TI be some evaluation tree over w|I . Let also T ′ be some
evaluation tree over the word w′ =

∏
I∈α/∼ π(w|I ). One constructs an evaluation

tree T over w by first lifting T ′ from the linear ordering α/∼ to α (this is done
by replacing each node J in T ′ by

⋃
J) and then substituting each leaf of T ′

corresponding to some class I ∈ α/ ∼ with the subtree TI . The last step is
possible (i.e., respects the definition of evaluation tree) since the value of each
evaluation tree TI is π(w|I), which coincides with the value w′(I) at the leaf I of
T ′. By Proposition 2, the resulting evaluation tree T has the same value as T ′
and this witnesses that π(w) = π

(∏
I∈α/∼ π(w|I)

)
.

What remains to be done is to prove that indeed the above choice of π defines
·, τ, τ∗, κ. This requires a case by case analysis. �

Let us conclude with a decidability result.

Theorem 2. Emptiness of ◦-languages recognizable by ◦-algebras is decidable.

Proof (principle of the algorithm). It is sufficient to describe an algorithm which
given a set of elements A ⊆ S computes the set X = {π(u) : u ∈ A◦}. For this,
one just has to saturate A under the operations ·, τ, τ∗, κ yielding the set 〈A〉.
Indeed, it is easy to prove that 〈A〉 ⊆ X , since this inclusion holds for A and
is preserved under each operation of the saturation. The converse inclusion is
established using Proposition 1. �

4 From Monadic Second-Order Logic to ◦-Algebras

Let us recall that monadic second-order (MSO) logic is the extension of first-
order logic with set quantifiers. We assume the reader to have some familiarity
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with this logic as well as with the Büchi approach for translating MSO formulas
into automata. A good survey can be found in [13]. We refer to the ∀-fragment
as the set of formulas that start with a block of universal set quantifiers, followed
by a first-order formula. The ∃∀-fragment consists of formulas starting with a
block of existential set quantifiers followed by a formula of the ∀-fragment.

Here, we mimic Büchi’s technique and show a relatively direct consequence of
the above results, namely that MSO formulas can be translated to ◦-algebras:

Proposition 3. The MSO definable languages are effectively ◦-recognizable.

Let us remark that we could have equally well used the composition method of
Shelah for establishing Proposition 3. Indeed, given an MSO definable language,
a ◦-algebra recognizing it can be directly extracted from [12].

Our chosen proof for Proposition 3 follows Büchi’s approach, namely, we es-
tablish sufficiently many closure properties of ◦-recognizable language. Then,
each construction of the logic can be translated into an operation on languages.
To disjunction corresponds union, to conjunction corresponds intersection, to
negation corresponds complement, etc. We assume the reader to be familiar
with this approach (in particular the coding of the valuations of free variables).

The closure under intersection, union, and complement are, as usual, easy to
obtain. The languages corresponding to atomic predicates are also very easily
shown to be ◦-recognizable. What remains to be proved is the closure under
projection. Given a language of ◦-words L over some alphabet A, and a map-
ping h from A to another alphabet B, the projection of L by h is simply h(L) (h
being extended component-wise to ◦-words, and ◦-languages). It is classical that
this projection operation is what is necessary for obtaining the closure under
existential quantification at the logical level. Hence, we just need to prove:

Lemma 3. The ◦-recognizable languages are effectively closed under projections.

Proof (sketch). We first describe the construction for a given ◦-semigroup 〈S, π〉.
The projection is obtained, as it is usual, by a powerset construction, i.e., we aim
at providing a ◦-product over P(S). Given two words u and U over S and P(S)
respectively, we write u ∈ U when Dom(u) = Dom(U) and u(x) ∈ U(x) for
all x ∈ Dom(U). We define the mapping π̃ from (P(S))◦ to P(S) by

π̃(U) =def {π(u) : u ∈ U} for all U ∈ (P(S))◦.

Let us show that π̃ is associative. Consider a word U over P(S) and a conden-
sation ∼ of its domain. Then,

π̃(U) =
{
π(u) : u ∈ U

}
=
{
π
(∏

I∈α/∼ π(u|I)
)

: u ∈ U
}

=
{
π
(∏

I∈α/∼ aI

)
: aI ∈ π̃(U |I) for all I ∈ α/∼

}
= π̃
(∏

I∈α/∼ π̃(U |I)
)
,

where the second equality is derived from the associativity of π. Hence (P(S), π̃)
is a ◦-semigroup. It is just a matter of writing to show that 〈P(S), π̃〉 recognizes
any projection of a language recognized by 〈S, π〉.
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Thanks to Lemma 2 and Theorem 1, the above construction can be per-
formed at the level of the ◦-algebra 〈S, ·, τ, τ∗, κ〉, namely, there exists a ◦-algebra
〈P(S), ·̃, τ̃ , τ̃∗, κ̃〉 corresponding to 〈P(S), π̃〉. The problem is that this may, a
priori, be non-effective. However, using a more careful analysis, it is possible to
show the effectiveness of the construction.

Let us give some intuition on how one can compute P κ̃ = π̃(P η) given a set
P = {A1, ..., Ak}, with A1, ..., Ak ⊆ S and k ≥ 1. This is the most difficult
operator. Since P κ̃ = {π(u) : u ∈ U, u ∈ P η}, this is very similar to com-
puting {π(u) : u ∈ A◦} as done in the proof of Theorem 2. One just needs
to restrict the set of considered words u to be the ones such that u ∈ U for
some U ∈ P η. This can be achieved by performing a product of S with a ◦-
algebra which recognizes the single-word language {P η}, and then applying the
saturation process of Theorem 2 on the resulting ◦-algebra. �

5 From ◦-Algebras to Monadic Second-Order Logic

We have seen in the previous section that every MSO formula defines a ◦-
recognizable language. In this section, we sketch the proof of the converse.

Theorem 3. The ◦-recognizable languages are effectively MSO definable. Fur-
thermore, such languages are definable in the ∃∀-fragment of MSO logic.

We fix for the remaining of the section a morphism h from 〈A◦,∏〉 to a ◦-
semigroup 〈S, π〉, with S finite. Let F be some subset of S. Let also ·, τ, τ∗, κ be
defined from π. Our goal is to show that L = h−1(F ) is MSO definable. It is
sufficient for this to show that for every s ∈ S, the language

π−1(s) = {w ∈ S◦ : π(w) = s} ,

is defined by some MSO formula ϕs. This establishes that L =
⋃

s∈F h−1(s) is
defined by the disjunction

∨
s∈F ϕ′s, where ϕ′s is obtained from ϕs by replacing

every occurrence of an atom t(x), with t ∈ S, by
∨

a∈h−1(t)∩A a(x).
A good approach for defining π−1(s) is to use a formula which, given w ∈ S◦,

guesses some object ‘witnessing’ π(w) = s. The only objects that we have seen so
far and that are able to ‘witness’ π(w) = s are evaluation trees. Unfortunately,
there is no way an MSO formula can guess an evaluation tree, since their height
cannot be uniformly bounded. That is why we use another kind of object for
witnessing π(w) = a: the so-called Ramsey split, introduced just below.

Ramsey splits. Ramsey splits are not directly applied to words, but to additive
labellings. An additive labeling σ from a linear ordering α to a semigroup 〈S, ·〉
(in particular, this will be a ◦-semigroup in our case) is a function that maps
any pair of elements x < y from α to an element σ(x, y) ∈ S in such a way that
σ(x, y) · σ(y, z) = σ(x, z) for all x < y < z in α.

Given two positions x < y in a word w, denote by [x, y) the interval {z : x ≤
z < y}. Given a word w and two positions x < y in it, we define σw(x, y) ∈ S
to be π(w|[x,y)). We just mention σ whenever w is clear from the context. Quite
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naturally, σw is additive since for all x < y < z, we have σ(x, y) · σ(y, z) =
π
(
w|[x,y)

) · π(w|[y,z)

)
= π
(
w|[x,y)w|[y,z)

)
= π
(
w|[x,z)

)
= σ(x, z).

Definition 5. A split of height n of a linear ordering α is a function g : α →
[1, n]. Two elements x, y ∈ α are called (k-)neighbors iff g(x) = g(y) = k and
g(z) ≤ k for all z ∈ [x, y] ∪ [y, x] (note that neighborhood is an equivalence).
The split g is called Ramsey for some additive labeling σ iff for all equivalence
classes X ⊆ α for the neighborhood relation, there is an idempotent e ∈ S such
that σ(x, y) = e for all x < y in X.

Theorem 4 (Colcombet [5]). For every finite semigroup 〈S, ·〉, every linear
ordering α, and every additive labeling σ from α to 〈S, ·〉, there is a split of α
which is Ramsey for σ and which has height at most 2|S|.
From ◦-recognizable to MSO definable. The principle is to construct a
formula which, given a word w, guesses a split of height at most 2|S|, and uses
it for representing the function which to every convex set I associates π(w|I).
For the explanations, we assume that some word w is fixed, that its domain is α,
and that σ is the additive labeling over α derived from w. We remark, however,
that all constructions are uniform and do not depend on w.

We aim at constructing a formula evaluates, for each s ∈ S, which holds
over a word w iff π(w) = s. The starting point is to guess:
• a split g of α of height at most 2|S|, and;
• a function e mapping each position x ∈ α to an idempotent of S.
The intention is that a choice of g, e by the formula is good when the split g is
Ramsey for σ and the function e maps each x to the idempotent e(x) that arises
when the neighborhood class of x is considered in the definition of Ramseyness.
In such a case, we say that (g, e) is Ramsey. Observe that neither g nor e can
be represented by a single monadic variable. However, since both g and e are
functions from α to sets of bounded size (2|S| for g, and |S| for e), one can guess
them using a fixed number of monadic variables. This kind of coding is standard,
and from now on we shall use explicitly the mappings g and e in MSO formulas.

Knowing a Ramsey pair (g, e) is an advance toward computing the value of
a word. Indeed, Ramsey splits can be used as ‘accelerating structures’ in the
sense that every computation of some π(w|I) for a convex subset I becomes
significantly easier when a Ramsey split is known, namely, first-order definable.
This is formalized by the following lemma.

Lemma 4. For all s ∈ S, there is a first-order formula values(g, e,X), such
that for every convex subset I:
• if (g, e) is Ramsey, then values(g, e, I) holds iff π(w|I) = s,
• if both values(g, e, I) and valuet(g, e, I) hold, then s = t.

One sees those formulas as defining a partial function value mapping g, e, I to
some element s ∈ S (the second item enforces that there is no ambiguity about
the value, namely, that this is a function and not a relation). From now we
simply use the notation value(g, e, I) as if it were a function.
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One needs now to enforce that value(g, e, I) coincides with π(w|I ), even with-
out assuming that (g, e) is Ramsey. For this, one uses condensations. A priori, a
condensation is not representable by monadic variables, since it is a binary rela-
tion. However, any set X ⊆ α naturally defines the relation≈X such that x ≈X y
iff either [x, y] ⊆ X , or [x, y] ∩X = ∅. It is easy to check that this relation is a
condensation. A form of converse result also holds:

Lemma 5. For all condensations ∼, there is X such that ∼ and ≈X coincide.

Lemma 5 tells us that it is possible to work with condensations as if they were
monadic variables. In particular, we use condensation variables in the sequel,
which in fact are implemented by the set obtained from Lemma 5.

Given a convex subset I of α and some condensation ∼ of α|I , we denote by
w[I,∼] the word with domain β = (α|I)/∼ in which every ∼-equivalence class J
is labeled by value(g, e, J). One defines the formula consistency(g, e) which
checks that for all convex subsets I and all condensations ∼ of α|I (thanks to
Lemma 5), the following conditions hold:
(C1) if I is a singleton {x}, then value(g, e, I) = w(x),
(C2) if w[I,∼] = st for some s, t ∈ S, then value(g, e, I) = s · t,
(C3) if w[I,∼] = sω for some s ∈ S, then value(g, e, I) = sτ ,
(C4) if w[I,∼] = sω∗

for some s ∈ S, then value(g, e, I) = sτ∗
,

(C5) if w[I,∼] = P η for some P ⊆ S, then value(g, e, I) = P κ.
For some fixed I and ∼, the above tests require access to the elements w[I,∼](J),
where J is a ∼-equivalence class of α|I . Since ∼-equivalence of two positions
x, y ∈ α|I is first-order definable, we know that for every position x ∈ α|I , the el-
ement value(g, e, [x]∼) is first-order definable from x. This shows that the above
properties can be expressed by first-order formulas and hence consistency(g, e)
is in the ∀-fragment.

The last key argument is to propagate the ‘local consistency’ constraints C1–
C5 to a ‘global consistency’ property. This is done by the following lemma.

Lemma 6. If consistency(g, e) holds, then value(g, e, I) = π(w|I) for all con-
vex subsets I of α.

This lemma implies Theorem 3. We claim indeed that, given s ∈ S, the language
π−1(s) is defined by the following formula in the ∃∀-fragment of MSO:

evaluates =def ∃g.∃e. consistency(g, e) ∧ value(g, e, α) = s .

Let π(w) = s. One can find a Ramsey pair (g, e) using Theorem 4. Lemma 4 then
implies π(w|I) = value(g, e, I) for all convex subsets I. Since π is a product, the
constraints C1–C5 are satisfied and consistency(g, e) holds. This proves that
evaluates holds. Conversely, if evaluates holds, then consistency(g, e) holds
for some (g, e). Lemma 6 then implies π(w) = π(w|α) = value(g, e, α) = s. �
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6 Conclusion

We have introduced an algebraic notion of recognizability for languages of count-
able words and we have shown the correspondence with the family of languages
definable in MSO logic. As a byproduct of this result, it follows that MSO logic
interpreted over countable words collapses to its ∃∀-fragment (hence, since it is
closed under complementation, it also collapses to its ∀∃-fragment). This col-
lapse result is optimal, in the sense that there exist definable languages that are
not definable in the ∃-fragment, nor in the ∀-fragment. An example of such a
language is the set of all scattered words over {a} and all non-scattered words
over {b}: checking that a word is scattered requires a universal quantification
over the sub-orderings of its domain and, conversely, checking that a word is not
scattered requires an existential quantification.
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referees for their numerous comments on this work.
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[4] Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Pro-
ceedings of the International Congress for Logic, Methodology and Philosophy of
Science, pp. 1–11. Stanford University Press, Stanford (1962)

[5] Colcombet, T.: Factorisation forests for infinite words and applications to count-
able scattered linear orderings. Theoretical Computer Science 411, 751–764 (2010)

[6] Feferman, S., Vaught, R.: The first-order properties of products of algebraic sys-
tems. Fundamenta Mathematicae 47, 57–103 (1959)

[7] Kechris, A.S.: Classical Descriptive Set Theory. Graduate Texts in Mathematics.
Springer, Heidelberg (1995)

[8] Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society 141, 1–35 (1969)

[9] Ramsey, F.P.: On a problem of formal logic. Proceedings of the London Mathe-
matical Society 30, 264–286 (1929)

[10] Rispal, C., Carton, O.: Complementation of rational sets on countable scattered
linear orderings. International Journal of Foundations of Computer Science 16(4),
767–786 (2005)

[11] Rosenstein, J.G.: Linear Orderings. Academic Press, London (1982)
[12] Shelah, S.: The monadic theory of order. Annals of Mathematics 102, 379–419

(1975)
[13] Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages,

vol. 3, pp. 389–455. Springer, Heidelberg (1997)



Algebraic Independence and Blackbox Identity

Testing�

Malte Beecken, Johannes Mittmann, and Nitin Saxena

Hausdorff Center for Mathematics, Bonn, Germany
{malte.beecken,johannes.mittmann,nitin.saxena}@hcm.uni-bonn.de

Abstract. Algebraic independence is an advanced notion in commu-
tative algebra that generalizes independence of linear polynomials to
higher degree. The transcendence degree (trdeg) of a set {f1, . . . , fm} ⊂
F[x1, . . . , xn] of polynomials is the maximal size r of an algebraically in-
dependent subset. In this paper we design blackbox and efficient linear
maps ϕ that reduce the number of variables from n to r but maintain
trdeg{ϕ(fi)}i = r, assuming fi’s sparse and small r. We apply these
fundamental maps to solve several cases of blackbox identity testing:

1. Given a circuit C and sparse subcircuits f1, . . . , fm of trdeg r such
that D := C(f1, . . . , fm) has polynomial degree, we can test blackbox
D for zeroness in poly(size(D))r time.

2. Define a ΣΠΣΠδ(k, s, n) circuit C to be of the form
∑k

i=1

∏s
j=1 fi,j ,

where fi,j are sparse n-variate polynomials of degree at most δ. For

k = 2, we give a poly(δsn)δ2
time blackbox identity test.

3. For a general depth-4 circuit we define a notion of rank. Assum-
ing there is a rank bound R for minimal simple ΣΠΣΠδ(k, s, n)

identities, we give a poly(δsnR)Rkδ2
time blackbox identity test for

ΣΠΣΠδ(k, s, n) circuits. This partially generalizes the state of the
art of depth-3 to depth-4 circuits.

The notion of trdeg works best with large or zero characteristic, but we
also give versions of our results for arbitrary fields.

1 Introduction

Polynomial identity testing (PIT) is the problem of checking whether a given
n-variate arithmetic circuit computes the zero polynomial in F[x1, . . . , xn]. It is
a central question in complexity theory as circuits model computation and PIT
leads us to a better understanding of circuits. There are several classical random-
ized algorithms known [9,28,30,8,19,4] that solve PIT. The basic Schwartz-Zippel
test is: Given a circuit C(x1, . . . , xn), check C(a) = 0 for a random a ∈ F

n
. Find-

ing a deterministic polynomial time test, however, has been more difficult and
is currently open. Derandomization of PIT is well motivated by a host of algo-
rithmic applications, eg. bipartite matching [20] and matrix completion [21], and

� The first two authors are grateful to the Bonn International Graduate School in
Mathematics for research funding.
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connections to sought-after super-polynomial lower bounds [13,14]. Especially,
blackbox PIT (i.e. circuit C is given as a blackbox and we could only make oracle
queries) has direct connections to lower bounds for the permanent [2,3]. Clearly,
finding a blackbox PIT test for a family of circuits F boils down to efficiently
designing a hitting set H ⊂ F

n
such that: Given a nonzero C ∈ F , there exists

an a ∈ H that hits C, i.e. C(a) 	= 0.
The attempts to solve blackbox PIT have focused on restricted circuit fami-

lies. A natural restriction is constant depth. Agrawal & Vinay [5] showed that a
blackbox PIT algorithm for depth-4 circuits would (almost) solve PIT for general
circuits (and prove exponential circuit lower bounds for permanent). The cur-
rently known blackbox PIT algorithms work only for further restricted depth-3
and depth-4 circuits. The case of bounded top fanin depth-3 circuits has received
great attention and has blackbox PIT algorithms [27]. The analogous case for
depth-4 circuits is open. However, with the additional restriction of multilinear-
ity on all the multiplication gates, there is a blackbox PIT algorithm [24]. The
latter is somewhat subsumed by the PIT algorithms for constant-read multilin-
ear formulas [6]. To save space we would not go into the rich history of PIT and
instead refer to the survey [29].

A recurring theme in the blackbox PIT research on depth-3 circuits has been
that of rank. If we consider a ΣΠΣ(k, d, n) circuit C =

∑k
i=1

∏d
j=1 �i,j , where

�i,j are linear forms in F[x1, . . . , xn], then rk(C) is defined to be the linear rank
of the set of forms {�i,j}i,j each viewed as a vector in Fn. This raises the natural
question: Is there a generalized notion of rank for depth-4 circuits as well, and
more importantly, one that is useful in blackbox PIT? We answer this question
affirmatively in this paper. Our notion of rank is via transcendence degree (short,
trdeg), which is a basic notion in commutative algebra. To show that this notion
applies to PIT requires relatively advanced algebra and new tools that we build.

Consider polynomials {f1, . . . , fm} in F[x1, . . . , xn]. They are called alge-
braically independent (over F) if there is no nonzero polynomial F ∈ F[y1, . . . , ym]
such that F (f1, . . . , fm) = 0. When those polynomials are algebraically depen-
dent then such an F exists and is called an annihilating polynomial of f1, . . . , fm.
The transcendence degree, trdeg{f1, . . . , fm}, is the maximal number r of alge-
braically independent polynomials in the set {f1, . . . , fm}. Though intuitive, it
is nontrivial to prove that r is at most n.

The notion of trdeg has appeared in complexity theory in several contexts.
Kalorkoti [15] used it to prove an Ω(n3) formula size lower bound for n × n
determinant. In the works [10,11] studying the entropy of polynomial mappings
(f1, . . . , fm) : Fn → Fm, trdeg is a natural measure of entropy when the field
has large or zero characteristic. Finally, the complexity of the annihilating poly-
nomial is studied in [17]. However, our work is the first to study trdeg in the
context of PIT.

1.1 Our Main Results

Our first result shows that a general arithmetic circuit is sensitive to the trdeg
of its input.
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Theorem 1. Let C be an m-variate circuit. Let f1, . . . , fm be �-sparse, δ-degree,
n-variate polynomials with trdeg r. Suppose we have oracle access to the n-
variate d-degree circuit C′ := C(f1, . . . , fm). There is a blackbox poly(size(C′) ·
d�δ)r time test to check C′ = 0 (assuming a zero or larger than δr characteristic).

We also give an algorithm that works for all fields but has a worse time com-
plexity. Note that the above theorem seems nontrivial even for a constant m,
say C′ = C(f1, f2, f3), as the output of C′ may not be sparse and fi’s are of
arbitrary degree and arity. In such a case r is constant too and the theorem gives
a polynomial time test. Another example, where r is constant but both m and
n are variable, is: fi := (xi

1 + x2
2 + · · ·+ x2

n)xi
n for i ∈ [m]. (Hint: r ≤ 3.)

Our next two main results concern depth-4 circuits. We use the notation
ΣΠΣΠδ(k, s, n) to denote circuits (over a field F) of the form,

C :=
k∑

i=1

s∏
j=1

fi,j (1)

where fi,j ’s are sparse n-variate polynomials of maximal degree δ. Note that
when δ = 1 this notation agrees with that of a ΣΠΣ circuit. Currently, the PIT
methods are not even strong enough to study ΣΠΣΠδ(k, s, n) circuits with both
top fanin k and bottom fanin δ bounded. It is in this spectrum that we make
exciting progress.

Theorem 2. Let C be a ΣΠΣΠδ(2, s, n) circuit over an arbitrary field. There
is a blackbox poly(δsn)δ2

time test to check C = 0.

Finally, we define a notion of rank for depth-4 circuits and show its usefulness.
For a circuit C, as in (1), we define its rank, rk(C) := trdeg{fi,j | i ∈ [k], j ∈ [s]}.
Define Ti :=

∏s
j=1 fi,j , for all i ∈ [k], to be the multiplication terms of C. We call

C simple if {Ti|i ∈ [k]} are coprime polynomials. We call C minimal if there is
no I � [k] such that

∑
i∈I Ti = 0. Define Rδ(k, s) to be the smallest r such that:

Any ΣΠΣΠδ(k, s, n) circuit C that is simple, minimal and zero has rk(C) < r.

Theorem 3. Let r := Rδ(k, s) and the characteristic be zero or larger than δr.
There is a blackbox poly(δrsn)rkδ2

time identity test for ΣΠΣΠδ(k, s, n) circuits.

We give a lower bound of Ω(δk log s) on Rδ(k, s) and conjecture an upper bound
(better than the trivial ks).

1.2 Organization and Our Approach

A priori it is not clear whether the problem of deciding algebraic independence
of given polynomials {f1, . . . , fm}, over a field F, is even computable. Perron
[22] proved that for m = (n + 1) and any field, the annihilating polynomial has
degree only exponential in n. We generalize this to any m in Sect. 2.1, hence,
deciding algebraic independence (over any field) is computable (alternatively,
Gröbner bases can be used). When the characteristic is zero or large, there is
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a more efficient criterion due to Jacobi (Sect. 2.2). For using trdeg in PIT we
would need to relate it to the Krull dimension of algebras (Sect. 2.3).

The central concept that we develop is that of a faithful homomorphism.
This is a linear map ϕ from R := F[x1, . . . , xn] to F[z1, . . . , zr] such that for
polynomials f1, . . . , fm ∈ R of trdeg r, the images ϕ(f1), . . . , ϕ(fm) are also
of trdeg r. Additionally, to be useful, ϕ should be constructible in a blackbox
and efficient way. We give such constructions in Sects. 3.1 and 3.2. The proofs
here use Perron’s and Jacobi’s criterion, but require new techniques as well. The
reason why such a ϕ is useful in PIT is because it preserves the nonzeroness of
the circuit C(f1, . . . , fm) (Theorem 11). We prove this by an elegant application
of Krull’s principal ideal theorem.

Once the fundamental machinery is set up, we prove Theorem 1 in Sect. 4 by
designing a hitting set using the basic Schwartz-Zippel lemma.

Finally, we apply the faithful homomorphisms to depth-4 circuits. The proof
of Theorem 2 is provided in Sect. 5.2 by showing that the maps also preserve
gcd’s. The rank-based hitting set is constructed in Sect. 5.3 proving Theorem 3.

Due to space constraints most of the proofs are omitted. They can be found
in the full version of this paper [7].

2 Preliminaries: Perron, Jacobi and Krull

Let n ∈ Z+ and let K be a field of characteristic ch(K). Throughout this paper,
K[x] = K[x1, . . . , xn] is a polynomial ring in n variables over K. K denotes the
algebraic closure of the field. We denote the multiplicative group of units of an
algebra A by A∗. We use the notation [n] := {1, . . . , n}. For 0 ≤ r ≤ n,

(
[n]
r

)
denotes the set of r-subsets of [n].

2.1 Perron’s Criterion (Arbitrary Characteristic)

An effective criterion for algebraic independence can be obtained by a degree
bound for annihilating polynomials. The following theorem provides such a
bound for the case of n + 1 polynomials in n variables.

Theorem 4 (Perron’s theorem [23, Thm. 1.1]). Let fi ∈ K[x] be a polyno-
mial of degree δi ≥ 1, for i ∈ [n+1]. Then there exists a non-zero polynomial F ∈
K[y1, . . . , yn+1] such that F (f1, . . . , fn+1) = 0 and deg(F ) ≤ (

∏
i δi)/mini{δi}.

In the following corollary we give a degree bound in the general situation, where
more variables than polynomials are allowed. Moreover, the bound is in terms
of the trdeg of the polynomials instead of the number of variables. We hereby
improve [17, Theorem 11] and generalize it to arbitrary characteristic.

Corollary 5 (Degree bound for annihilating polynomials). Let f1, . . . , fm

∈ K[x] be algebraically dependent polynomials of maximal degree δ and trdeg r.
Then there exists a non-zero polynomial F ∈ K[y1, . . . , ym] of degree at most δr

such that F (f1, . . . , fm) = 0.
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2.2 Jacobi’s Criterion (Large or Zero Characteristic)

In large or zero characteristic, the well-known Jacobian criterion yields a more
efficient criterion for algebraic independence. The case of large characteristic
was dealt with in [10]. By virtue of Theorem 4 our proof could tolerate a slightly
smaller characteristic.

Theorem 6 (Jacobian criterion). Let f1, . . . , fm ∈ K[x] be polynomials of
degree at most δ and trdeg r. Assume that ch(K) = 0 or ch(K) > δr. Then
rkL(∂xjfi)i,j = r, where L = K(x).

2.3 Krull Dimension of Affine Algebras

In this section, we want to highlight the connection between transcendence de-
gree and the Krull dimension of affine algebras. This will enable us to use Krull’s
principal ideal theorem which is stated below.

In this paper, a K-algebra A is always a commutative ring containing K as
a subring. The most important example of a K-algebra is K[x]. Let A,B be
K-algebras. A map A → B is called a K-algebra homomorphism if it is a ring
homomorphism that fixes K element-wise.

We want to extend the definition of algebraic independence to algebras. Let
a1, . . . , am ∈ A and consider the K-algebra homomorphism ρ : K[y] → A, F �→
F (a1, . . . , am), where K[y] = K[y1, . . . , ym]. If ker(ρ) = {0}, then {a1, . . . , am}
is called algebraically independent over K. If ker(ρ) 	= {0}, then {a1, . . . , am} is
called algebraically dependent over K. For a subset S ⊆ A, we define trdegK S
as the supremum of |T | over all finite and algebraically independent T ⊆ S. The
image of K[y] under ρ is the subalgebra of A generated by a1, . . . , am and is
denoted by K[a1, . . . , am]. An algebra of this form is called an affine K-algebra,
and it is called an affine K-domain if it is an integral domain.

The Krull dimension of A, denoted by dim(A), is defined as the supremum
over all r ≥ 0 for which there is a chain p0 � p1 � · · · � pr of prime ideals
pi ⊂ A. It measures how far A is from a field.

Theorem 7 (Dimension and trdeg [18, Prop. 5.10]). Let A=K[a1, . . . , am]
be an affine K-algebra. Then dim(A) = trdegK A = trdegK{a1, . . . , am}.
Corollary 8. Let A,B be K-algebras and let ϕ : A → B be a K-algebra ho-
momorphism. If A is an affine algebra, then so is ϕ(A) and we have dim(ϕ(A))
≤ dim(A). If, in addition, ϕ is injective, then dim(ϕ(A)) = dim(A).

Theorem 9 (Krull’s Hauptidealsatz [12, Cor. 13.11]). Let A be an affine
K-domain and let a ∈ A \ (A∗ ∪ {0}). Then dim(A/〈a〉) = dim(A)− 1.

3 Faithful Homomorphisms: Reducing the Variables

Let f1, . . . , fm ∈ K[x] be polynomials and let r := trdeg{f1, . . . , fm}. Intuitively,
r variables should suffice to define f1, . . . , fm without changing their algebraic
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relations. So let K[z] = K[z1, . . . , zr] be a polynomial ring with 1 ≤ r ≤ n. We
want to find a homomorphism K[x] → K[z] that preserves the transcendence
degree of f1, . . . , fm. First we give this property a name.

Definition 10. Let ϕ : K[x] → K[z] be a K-algebra homomorphism. We say
ϕ is faithful to {f1, . . . , fm} if trdeg{ϕ(f1), . . . , ϕ(fm)} = trdeg{f1, . . . , fm}.
The following theorem shows that a faithful homomorphism ϕ is useful for
us. In particular, for a circuit C, we have C(f1, . . . , fm) = 0 if and only if
ϕ(C(f1, . . . , fm)) = 0.

Theorem 11 (Faithful is useful). Let A = K[f1, . . . , fm] ⊆ K[x]. Then ϕ is
faithful to {f1, . . . , fm} if and only if ϕ|A : A→ K[z] is injective.

Proof. We denote ϕA = ϕ|A and r = trdeg{f1, . . . , fm}. If ϕA is injective,
then r = dim(A) = dim(ϕA(A)) = trdeg{ϕ(f1), . . . , ϕ(fm)} by Theorem 7 and
Corollary 8. Thus ϕ is faithful to {f1, . . . , fm}.

Conversely, let ϕ be faithful to {f1, . . . , fm}. Then dim(ϕA(A)) = r. Now
assume for the sake of contradiction that ϕA is not injective. Then there exists
an f ∈ A\{0} such that ϕA(f) = 0. We have f /∈ K, because ϕ fixes K element-
wise, and hence f /∈ A∗ ∪ {0}. Since A is an affine domain, Theorem 9 implies
dim(A/〈f〉) = r − 1. Since f ∈ ker(ϕA), the K-algebra homomorphism ϕA :
A/〈f〉 → K[z], a + 〈f〉 �→ ϕA(a) is well-defined and ϕA factors as ϕA = ϕA ◦ η,
where η : A→ A/〈f〉 is the canonical surjection. But then Corollary 8 implies

r = dim(ϕA(A)) = dim(ϕA(η(A))) ≤ dim(η(A)) = dim(A/〈f〉) = r − 1 ,

a contradiction. It follows that ϕA is injective. 
�

3.1 A Kronecker-Inspired Map (Arbitrary Characteristic)

The following lemma shows that even linear faithful homomorphisms exist for
all subsets of polynomials (provided K is large enough, for eg. move to K or
a large enough field extension [1]). It is a generalization of [17, Claim 11.1] to
arbitrary characteristic.

Lemma 12 (Existence). Let K be an infinite field and let f1, . . . , fm ∈ K[x]
be polynomials of trdeg r. Then there exists a linear K-algebra homomorphism
ϕ : K[x] → K[z] which is faithful to {f1, . . . , fm}.
Below we want to make this lemma effective. This will be accomplished by substi-
tuting constants for all but r of the variables x1, . . . , xn. We define a parametrized
homomorphism Φ in three steps. First, we decide which variables we want to keep
and map them to z1, . . . , zr. To the remaining variables we apply a Kronecker
substitution using a new variable t, i.e. we map the i-th variable to tD

i

(for a
large D). In the second step, the exponents of t will be reduced modulo some
number. Finally, a constant will be substituted for t.
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Let I = {j1, . . . , jr} ∈
(
[n]
r

)
be an index set and let [n] \ I = {jr+1, . . . , jn}

be its complement such that j1 < · · · < jr and jr+1 < · · · < jn. Let D ≥ 2 and
define the K-algebra homomorphism

ΦI,D : K[x] → K[t, z], xji �→
{
zi, for i = 1, . . . , r,
tD

i−r

, for i = r + 1, . . . , n .

Now let p ≥ 1. For an integer a ∈ Z, we denote by �a�p the integer b ∈ Z
satisfying 0 ≤ b < p and a = b (mod p). We define the K-algebra homomorphism

ΦI,D,p : K[x] → K[t, z], xji �→
{
zi, for i = 1, . . . , r,
t�D

i−r�p , for i = r + 1, . . . , n .

Note that, for f ∈ K[x], ΦI,D,p(f) is a representative of the residue class ΦI,D(f)
(mod 〈tp− 1〉K[t,z]). Finally let c ∈ K and define the K-algebra homomorphism
ΦI,D,p,c : K[x] → K[z], f �→ (ΦI,D,p(f)

)
(c, z). The following lemma bounds the

number of bad choices for the parameters p and c.

Lemma 13 (Φ is faithful). Let f1, . . . , fm ∈ K[x] be polynomials of degree
at most δ and trdeg at most r. Let D > δr+1. Then there exist an index set
I ∈ ([n]

r

)
and a prime p ≤ (n + δr)8δr+1

(log2 D)2 + 1 such that any subset of K
of size δrrp contains c such that ΦI,D,p,c is faithful to {f1, . . . , fm}.
In large or zero characteristic, a more efficient version of this lemma can be
given (for the same homomorphism Φ). The reason is that we can work with
the Jacobian criterion instead of the degree bound for annihilating polynomials.
However, we omit the statement of this result here, because we can give a more
holistic construction in that case. This will be presented in the following section.

3.2 A Vandermonde-Inspired Map (Large or Zero Characteristic)

To prove Theorem 3, we will need a homomorphism that is faithful to several
sets of polynomials simultaneously. The homomorphism Φ constructed in the
previous section does not meet this requirement, because its definition depends
on a fixed subset of the variables x1, . . . , xn. In this section we will devise a
construction, that treats the variables x1, . . . , xn in a uniform manner. It is
inspired by the Vandermonde matrix, i.e. (tij)i,j .

We define a parametrized homomorphism Ψ in three steps. Let K[z] = K[z0,
z1, . . . , zr], where 1 ≤ r ≤ n. Let D1, D2 ≥ 2 and let D = (D1, D2). Define the
K-algebra homomorphism

ΨD : K[x] → K[t, z], xi �→ tD
i
1 + tD

i
2z0 +

r∑
j=1

ti(n+1)j

zj ,

where i = 1, . . . , n. This map (linear in the z’s) should be thought of as a variable
reduction from n to r + 1. The coefficients of z1, . . . , zr bear resemblance to a
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row of a Vandermonde matrix, while that of z0 (and the constant coefficient)
resembles Kronecker substitution. This definition is carefully tuned so that Ψ
finally preserves both the trdeg (proven here) and gcd of polynomials (proven in
Sect. 5.2). Next let p ≥ 1 and define the K-algebra homomorphism

ΨD,p : K[x] → K[t, z], xi �→ t�D
i
1�p + t�D

i
2�pz0 +

r∑
j=1

t�i(n+1)j�pzj ,

where i = 1, . . . , n. Note that, for f ∈ K[x], ΨD,p(f) is a representative of
the residue class ΨD(f) (mod 〈tp − 1〉K[t,z]). Finally let c ∈ K and define the
K-algebra homomorphism ΨD,p,c : K[x] → K[z], f �→ (ΨD,p(f)

)
(c, z). The

following lemma bounds the number of bad choices for the parameters p and c.
The proof uses the Jacobian criterion, therefore the lemma has a restriction on
ch(K).

Lemma 14 (Ψ is faithful). Let f1, . . . , fm ∈ K[x] be polynomials of sparsity
at most �, degree at most δ and trdeg at most r. Assume that ch(K) = 0 or
ch(K) > δr. Let D = (D1, D2) such that D1 ≥ max{δr + 1, (n + 1)r+1} and
D2 ≥ 2. Then there exists a prime p ≤ (2nr�)2(r+1)(log2 D1)2 + 1 such that any
subset of K of size δrp contains c such that ΨD,p,c is faithful to {f1, . . . , fm}.
By trying larger p and c, we can find a Ψ that is faithful to several subsets of
polynomials simultaneously. This is an advantage of Ψ over Φ, in addition to
being more efficiently constructible.

4 Circuits with Sparse Inputs of Low Transcendence
Degree (Proving Theorem 1)

We can now proceed with the first PIT application of faithful homomorphisms.
We consider arithmetic circuits of the form C(f1, . . . , fm), where C is a circuit
computing a polynomial in K[y] = K[y1, . . . , ym] and f1, . . . , fm are subcircuits
computing polynomials in K[x]. Thus, C(f1, . . . , fm) computes a polynomial in
the subalgebra K[f1, . . . , fm].

Let C(f1, . . . , fm) be of maximal degree d, and let f1, . . . , fm be of maximal
degree δ, maximal sparsity � and maximal transcendence degree r. First, we use
the faithful homomorphism Ψ from Sect. 3.2 to transform C(f1, . . . , fm) into an
r-variate circuit. Then a hitting set for r-variate degree-d polynomials, given by
the classical Schwartz-Zippel lemma, is used. The final hitting set construction
is efficient for r constant and �, d polynomial in the input size.

Let n, d, r, δ, � ≥ 1 and let K[z] = K[z0, z1, . . . , zr]. We introduce the following
parameters. Define D = (D1, D2) by D1 := (2δn)r+1 and D2 := 2, and pmax :=
(2nr�)2(r+1)�log2 D1�2+1. Pick arbitrary H1, H2 ⊂ K of sizes δrpmax resp. d+1.
Finally, denote Ψ(i)

D,p,c := ΨD,p,c(xi) ∈ K[z] for i = 1, . . . , n and define the subset

Hd,r,δ,� =
{(

Ψ(1)
D,p,c(a), . . . ,Ψ(n)

D,p,c(a)
) ∣∣ p ∈ [pmax], c ∈ H1, a ∈ Hr+1

2

}
⊂ K

n
.
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The following theorem shows that, over large or zero characteristic, this is a
hitting set for the class of circuits under consideration. A version of this theorem
for arbitrary characteristic can be found in [7].

Theorem 15. Assume that ch(K) = 0 or ch(K) > δr. Then Hd,r,δ,� is a hitting
set for the class of degree-d circuits with inputs being �-sparse, degree-δ subcir-
cuits of trdeg at most r. It can be constructed in poly(drδ�n)r time.

5 Depth-4 Circuits with Bounded Top and Bottom Fanin

The second PIT application of faithful homomorphisms is for ΣΠΣΠδ(k, s, n)
circuits. Our hitting set construction is efficient when the top fanin k and the
bottom fanin δ are both bounded. Except for top fanin 2, our hitting set will be
conditional in the sense that its efficiency depends on a good rank upper bound
for depth-4 identities.

5.1 Gcd, Simple Parts and the Rank Bounds

Let C =
∑k

i=1

∏s
j=1 fi,j be a ΣΠΣΠδ(k, s, n) circuit, as defined in Sect. 1.1. Note

that the parameters bound the circuit degree, deg(C) ≤ δs. We define S(C) :=
{fi,j | i ∈ [k] and j ∈ [s]}. It is the set of sparse polynomials of C (wlog we assume
them all to be nonzero). The following definitions are natural generalizations of
the corresponding concepts for depth-3 circuits. Recall Ti :=

∏
j fi,j, for i ∈ [k],

are the multiplication terms of C. The gcd part of C is defined as gcd(C) :=
gcd(T1, . . . , Tk) (we fix a unique representative among the associated gcds). The
simple part of C is defined as sim(C) := C/ gcd(C) ∈ ΣΠΣΠδ(k, s, n). For a
subset I ⊆ [k] we denote CI :=

∑
i∈I Ti.

Recall that if C is simple then gcd(C) = 1 and if it is minimal then CI 	= 0 for
all non-empty I � [k]. Also, recall that rk(C) is trdegK S(C), and that Rδ(k, s)
strictly upper bounds the rank of any minimal and simple ΣΠΣΠδ(k, s, n) iden-
tity. Clearly, Rδ(k, s) is at most | S(C)| ≤ ks (note: S(C) cannot all be inde-
pendent in an identity). On the other hand, we could prove a lower bound on
Rδ(k, s) by constructing identities.

From the simple and minimal ΣΠΣ identities constructed in [26], we obtain
the lower bound R1(k, s) = Ω(k) if ch(K) = 0, and R1(k, s) = Ω(k logp s) if
ch(K) = p > 0. These identities can be lifted to ΣΠΣΠδ(k, s, n) identities by
replacing each variable xi by a product xi,1 · · ·xi,δ of new variables. These ex-
amples demonstrate: Rδ(k, s) = Ω(δk) if ch(K) = 0, and Rδ(k, s) = Ω(δk logp s)
if ch(K) = p > 0. This leads us to the following natural conjecture.

Conjecture 16. We have Rδ(k, s) = poly(δk), if ch(K) = 0, and Rδ(k, s) =
poly(δk logp s), if ch(K) = p > 0.

The following lemma is a vast generalization of [16, Theorem 3.4] to depth-4
circuits. It suggests how a bound for Rδ(k, s) can be used to construct a hitting
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set for ΣΠΣΠδ(k, s, n) circuits. The ϕ in the statement below should be thought
of as a linear map that reduces the number of variables from n to Rδ(k, s) + 1.

Lemma 17 (Rank is useful). Let C be a ΣΠΣΠδ(k, s, n) circuit, let r :=
Rδ(k, s) and let ϕ : K[x] → K[z] = K[z0, z1, . . . , zr] be a linear K-algebra
homomorphism that, for all I ⊆ [k], satisfies ϕ(sim(CI)) = sim(ϕ(CI)) and
rk(ϕ(sim(CI))) ≥ min

{
rk(sim(CI)), Rδ(k, s)

}
. Then C = 0 iff ϕ(C) = 0.

5.2 Preserving the Simple Part (Towards Theorem 2)

The following lemma shows that Ψ meets the first condition of Lemma 17. This
is also the heart of PIT when k = 2. The actual hitting set, though, we provide
in the next subsection.

Lemma 18 (Ψ preserves the simple part). Let C be a ΣΠΣΠδ(k, s, n) cir-
cuit. Let D1 ≥ 2δ2 + 1, let D1 ≥ D2 ≥ δ + 1 and let D = (D1, D2). Then there
exists a prime p ≤ (2ksnδ2)8δ2+2(log2 D1)2 + 1 such that any subset S ⊂ K of
size 2δ4k2s2p contains c satisfying ΨD,p,c(sim(C)) = sim(ΨD,p,c(C)).

5.3 A Hitting Set (Proving Theorems 2 and 3)

Armed with Lemmas 17 and 18 we could now complete the construction of the
hitting set for ΣΠΣΠδ(k, s, n) circuits using the faithful homomorphism Ψ with
the right parameters.

Let n, δ, k, s ≥ 1 and let r = Rδ(k, s). We introduce the following parameters.
They are blown up so that they support 2k applications (one for each I ⊆ [k]) of
Lemmas 14 and 18. Define D = (D1, D2) by D1 := (2δn)2r and D2 := δ+1, and
pmax := 22(k+1) · (2krsnδ2)8δ2+4δr�log2 D1�2 + 1. Pick arbitrary H1, H2 ⊂ K of
sizes 2k+2k2rs2δ4pmax resp. δs + 1. Finally, denote Ψ(i)

D,p,c := ΨD,p,c(xi) ∈ K[z]
for i = 1, . . . , n and define the subset

Hδ,k,s =
{(

Ψ(1)
D,p,c(a), . . . ,Ψ(n)

D,p,c(a)
) ∣∣ p ∈ [pmax], c ∈ H1, a ∈ Hr+1

2

}
⊂ K

n
.

The following theorem shows that, over large or zero characteristic, this is a
hitting set for ΣΠΣΠδ(k, s, n) circuits.

Theorem 19. Assume that ch(K) = 0 or ch(K) > δr. Then Hδ,k,s is a hitting
set for ΣΠΣΠδ(k, s, n) circuits. It can be constructed in poly(δrsn)δ2kr time.

Since trivially Rδ(2, s) = 1, we obtain an explicit hitting set for the top fanin
2 case. Moreover, in this case we can also eliminate the dependence on the
characteristic (because Lemma 18 is field independent).

Corollary 20. Let K be of arbitrary characteristic. Then Hδ,2,s is a hitting set
for ΣΠΣΠδ(2, s, n) circuits. It can be constructed in poly(δsn)δ2

time.
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6 Conclusion

The notion of rank has been quite useful in depth-3 PIT. In this work we give
the first generalization of it to depth-4 circuits. We used trdeg and developed
fundamental maps – the faithful homomorphisms – that preserve trdeg of sparse
polynomials in a blackbox and efficient way (assuming a small trdeg). Crucially,
we showed that faithful homomorphisms preserve the nonzeroness of circuits.

Our work raises several open questions. The faithful homomorphism construc-
tion over a small characteristic has restricted efficiency, in particular, it is inter-
esting only when the sparse polynomials have very low degree. Could Lemma
13 be improved to handle larger δ? In general, the classical methods stop short
of dealing with small characteristic because the “geometric” Jacobian criterion
is not there. We have given some new tools to tackle that, for eg., Corollary 5
and Lemmas 12 and 13. But more tools are needed, for eg. a homomorphism like
that of Lemma 14 for arbitrary fields.

Currently, we do not know a better upper bound for Rδ(k, s) other than
ks. For δ = 1, it is just the rank of depth-3 identities, which is known to be
O(k2 log s) (O(k2) over R) [25]. Even for δ = 2 we leave the rank question open.
We conjecture R2(k, s) = Ok(log s) (generally, Conjecture 16). Our hope is that
understanding these small δ identities should give us more potent tools to attack
depth-4 PIT in generality.
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Abstract. The simply-typed, call-by-value language, RML, may be viewed as
a canonical restriction of Standard ML to ground-type references, augmented by
a “bad variable” construct in the sense of Reynolds. By a short type, we mean a
type of order at most 2 and arity at most 1. We consider the O-strict fragment of
(finitary) RML, RMLO-Str, consisting of terms-in-context x1 : θ1, · · · , xn : θn �
M : θ such that θ is short, and every argument type of every θi is short. RMLO-Str
is surprisingly expressive; it includes several instances of (in)equivalence in the
literature that are challenging to prove using methods based on (state-based) log-
ical relations. We show that it is decidable whether a given pair of RMLO-Str
terms-in-context is observationally equivalent. Using the fully abstract game se-
mantics of RML, our algorithm reduces the problem to the language equivalence
of visibly pushdown automata. When restricted to terms in canonical form, the
problem is EXPTIME-complete.

1 Introduction

The standard approaches to the verification of higher-order programs are type-based
program analysis on the one hand, and theorem-proving and dependent types on the
other. The former is sound, but often imprecise; the latter typically requires human
intervention. The paper is concerned with a relatively recent, game-semantics based
approach to the verification of higher-order procedural programs. We consider a call-
by-value language, RML, which has both functional and (stateful) imperative features,
mediated by Church’s simple type theory. RML may be viewed as a canonical restric-
tion of Standard ML to ground-type references, except that it includes a “bad variable”
construct [17,2].

Observational equivalence is a compelling notion of program equivalence. Two terms
M and N are observationally equivalent, written M ∼= N , if they are mutually replace-
able in every program without changing the computational outcome. Because of the
quantification over all program contexts, the theory of observational equivalence is rich
and hard to reason about, as illustrated by the following example.

Example 1. (i) let c = ref inλfunit→unit.(c := 1; f(); !c) ∼= λfunit→unit.(f(); 1)
(ii) let c = ref inλfunit→unit.(c := 0; f(); c := 1; f(); !c) ∼= λfunit→unit.(f(); f(); 1)
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(iii) let a = ref in let r = ref inλf.(r := !r+1; a := f(!r); r := !r−1; !a) 	∼= λf.f(1)
The two equivalences above, due to Pitts and Stark [16] and Thamsborg [3] respectively,
are notoriously tricky to verify using methods based on (state-based) logical relations.
The inequivalence, a somewhat surprising instance due to Stark [19], requires a rather
delicate separating context to exhibit.

Let θi and θ range over RML types. We say that observational equivalence is decid-
able at a type sequent θ1, · · · , θn � θ (or simply, θ � θ is decidable) just if the following
problem is decidable: given terms-in-context x1 : θ1, · · · , xn : θn � M,N : θ of fini-
tary RML (henceforth, written RMLf), are they observationally equivalent? This paper
is concerned with the question of classifying the decidable type sequents of RMLf .

Following Ghica and McCusker [6], we use a method based on game semantics to
decide observational equivalence of RMLf . Take a term-in-context Γ � M : θ with
Γ = x1 : θ1, · · · , xn : θn. In game semantics [9,7], the term-in-context is interpreted
as a P strategy �Γ � M : θ� for playing (against O, who takes the environment’s per-
spective) in the prearena �θ � θ�. A play between P and O is a sequence of moves in
which each non-initial move has a justification pointer to some earlier move. Thanks to
the fully abstract game semantics of RML, observational equivalence is characterised
by complete plays i.e. M ∼= N iff the P-strategies, �Γ �M� and �Γ � N�, trace out the
same set of complete plays. (A play is complete if every question in it is subsequently
answered in the play.) Strategies may be viewed as highly constrained processes, and are
amenable to concrete, automata-theoretic representations. In certain prearenas—which
we shall call bi-strict—plays may be represented simply by their underlying move se-
quence, because the justification pointers from both O- and P-moves are uniquely de-
termined. Murawski studied bi-strict sequents in [11] and identified those that are de-
cidable by reduction to the equivalence problem of deterministic FSA.

In this paper, we consider type sequents of RMLf that are O-strict. Plays over preare-
nas denoted by O-strict sequents enjoy the property that pointers from O-moves are
uniquely determined by the underlying move sequence. We first give a simple charac-
terisation of O-strict type sequents: θ1, · · · , θn � θ is O-strict iff θ is short, and every
argument type of every θi is short, where a type is said to be short if it has order at most
2 and arity at most 1. (Henceforth we write the O-strict fragment of RMLf as RMLO-Str.)
We then prove our first result: observational equivalence of RMLO-Str is decidable by re-
duction to the equivalence problem of visibly pushdown automata [4]. Our proof is by
induction over the canonical forms of RMLO-Str terms-in-contexts. For each such term-
in-context Γ �M , we construct a visibly pushdown automatonAΓM that accepts the
complete plays in the strategy denotation of the term, whereby P-questions are pushes,
O-answers pops and all other moves no-ops. The key innovation of the construction
lies in the encoding of the pointers from P-questions. Instead of trying to represent
all such pointers present, we concentrate only on representing a single pointer. Note
that for every pointer we need to represent, there must be an accepting run encoding
its location. So even though each individual word accepted by the automaton may not
have enough information to fully reconstruct the pointers, when we consider the full
language we will be able to uniquely place all justification pointers. Our second result
is that the observational equivalence of RMLO-Str terms-in-context in canonical form is
EXPTIME-complete. EXPTIME-hardness is shown by a reduction of the equivalence
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problem for nondeterministic automata on binary trees [18] to the problem of deciding
observational equivalence at the sequent unit→ int � (unit→ unit) → unit.

Example 2. Our algorithm can decide the (in)equivalence1 instances in Example 1 as
the terms belong to RMLO-Str. (i) The VPA below represents the complete plays of the
game semantics of the terms of Example 1(i). In the diagram, the edge label ‘q/n’
means ‘on reading q, push n’, and ‘a, n’ means ‘on reading a and stack top is n, pop’.

3 q1/3 3′
q1/3′

1
•

2

q0

2′

q0

a1,3

a1,3′

510 5′

10

(ii) This VPA represents the complete plays of the game semantic strategy for the terms
of Example 1(ii).

5
q1/5

3
q1/3

3′
q1/3′

1
•

2
q0

2′

q0

a1,5

a1,3

a1,5′

a1,3′

7

10

5′

q1/5′
7′

10

Our results may be viewed as the first steps towards a complete classification of the
decidable RMLf type sequents. In the case of (finitary) Idealized Algol, decidability
(and if so, the complexity) of a given type sequent depends only on its type-theoretic
order [12]. In contrast, the decidability of RMLf-sequents is not so neatly characterised
by order (see the table below): there are undecidable sequents of order as low as 2 [11],
amidst interesting classes of decidable sequents at each of orders 1 to 4. For comparison,
we also give DFA-decidable (regular) and undecidable sequents [10,11].

RMLf -Fragment Examples of Type Sequents (writing o for unit)
bi-strict, regular (o → o) → o � o → o
bi-strict, not-reg. � (o → o) → o

RMLO-Str ((o → . . . → o) → o) → o � (o → . . . → o) → o
undecidable � (o → o) → (o → o) → o, (((o → o) → o) → o) → o � o

The remaining open cases are those in which pointers from O-moves need to be
represented explicitly. At the moment we see no way of dealing with them, as they
seem to require potentially unbounded references to past computations. What we can
say is that our method of single-pointer representation cannot be extended beyond the
O-strict fragment of RMLf (as there are distinct strategies that have the same single-
pointer representation).

1 Restricted to sequents in which int ref does not occur, observational equivalence of RML
conservatively extends that of Reduced ML (because mkvar is only needed at int ref for de-
finability).
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2 RML, Game Semantics and Visibly Pushdown Automata

RML is a call-by-value functional language with state [1]. It is similar to Reduced
ML [16], the canonical restriction of Standard ML to ground-type references, except
that it includes a “bad-variable” constructor (in the absence of the “bad-variable” con-
structor the equality test is definable). Types are generated by the grammar θ ::=
unit | int | int ref | θ → θ. The type assignment rules are completely standard. The
operational semantics, which is defined as a “big-step” relation [11], is also standard.
For closed terms, we write M⇓ just if M reduces to some value. This can be used to
define a natural notion of equivalence; intuitively, two terms are observationally equiv-
alent if one can always replace the other without affecting the result of the computation.
Given two terms-in-context Γ � M1,M2 : θ, we say that M1 observationally approxi-
mates M2 (written Γ �M1

�∼M2) if for all contexts C[−] such that C[M1] and C[M2]
are closed terms of type unit, we have that if C[M1]⇓ then C[M2]⇓. We say M1 and
M2 are observationally equivalent (written Γ � M1

∼= M2) if Γ � M1
�∼M2 and

Γ � M2
�∼M1. It can be shown that every RML term is effectively convertible to an

equivalent term in canonical form, defined by the following grammar (β ∈ {unit, int}).
C ::= () | i | xβ | xβ op yβ | if xβ thenC else C | xint ref := yint | !xint ref | λxθ.C |

mkvar(λxunit.C, λyint.C) | letx = ref inC | while C do C | letxβ = C in C |
letx = zyβ in C | letx = z mkvar(λuunit.C, λvint.C) inC | letx = z(λxθ.C) in C

In order to achieve a decidability result, we consider the finitary fragment of RML,
written RMLf . That is, we restrict the type int to be a finite subset of Z.

Call-By-Value Game Semantics We present call-by-value game semantics in the style
of Honda and Yoshida [7], as opposed to Abramsky and McCusker’s isomorphic model
[1], as Honda and Yoshida’s constructions are more concrete, lead to more compact
alphabets, and so are more suited to algorithmic analysis.

An arena A is a triple (MA,�A, λA) where MA is a set of moves where IA ⊆ MA

consists of initial moves, �A⊆ MA × (MA\IA) is called the justification relation,
and λA : MA → {O,P} × {Q,A} a labelling function such that for all iA ∈ IA

we have λA(iA) = (P,A) and if m �A m′ then (π1λA)(m) 	= (π1λA)(m′) and
(π2λA)(m′) = A⇒ (π2λA)(m) = Q.

The function λA labels moves as belonging to either Opponent or Proponent and
as being either a Question or an Answer. Note that answers are always justified by
questions, but questions can be justified by either a question or an answer. We will use
arenas to model types. However, the actual games will be played over prearenas, which
are defined in the same way except that initial moves are O-questions.

Three basic arenas are 0, the empty arena, 1, the arena containing a single initial
move •, and Z, which has the integers as its set of moves, all of which are initial P-
answers.

Some constructions on arenas are described below. Here we use IA as an abbrevia-
tion for MA\IA, and λA for the O/P-complement of λA. Intuitively A⊗B is the union
of the arenas A and B, but with the initial moves combined pairwise. A⇒ B is slightly
more complex. First we add a new initial move, •. We take the O/P-complement of A,
change the initial moves into questions, and set them to now be justified by •. Finally,
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we take B and set its initial moves to be justified by A’s initial moves. The final con-
struction, A→ B, takes two arenas A and B and produces a prearena, as shown below.
This is essentially the same as A⇒ B without the initial move •.

MA⇒B = {•} � MA � MB MA⊗B = IA × IB � IA � IB

IA⇒B = {•} IA⊗B = IA × IB

λA⇒B = m �→

⎧⎪⎪⎨
⎪⎪⎩

PA if m = •
OQ if m ∈ IA

λA(m) if m ∈ IA

λB(m) if m ∈ MB

λA⊗B = m �→
⎧⎨
⎩

PA if m ∈ IA × IB

λA(m) if m ∈ IA

λB(m) if m ∈ IB

�A⇒B = {(•, iA)|iA ∈ IA} �A⊗B = {((iA, iB), m)|iA ∈ IA ∧ iB ∈ IB

∪{(iA, iB)|iA ∈ IA, iB ∈ IB} ∧(iA �A m ∨ iB �B m)}
∪ �A ∪ �B ∪(�A ∩(IA × IA))

∪(�B ∩(IB × IB))

MA→B = MA � MB λA→B(m) =

⎧⎨
⎩

OQ if m ∈ IA

λA(m) if m ∈ IA

λB(m) if m ∈ MB

IA→B = IA �A→B = {(iA, iB)|iA ∈ IA, iB ∈ IB}∪ �A ∪ �B

We intend arenas to represent types, in particular �unit� = 1, �int� = Z (or a finite
subset of Z for RMLf) and �θ1 → θ2� = �θ1� ⇒ �θ2�. A term x1 : θ1, . . . , xn : θn �
M : θ will be represented by a strategy for the prearena �θ1�⊗ . . .⊗ �θn� → �θ�.

A justified sequence in a prearena A is a sequence of moves from A in which the first
move is initial and all other moves m are equipped with a pointer to an earlier move
m′, such that m′ �A m.

A play s is a justified sequence which additionally satisfies the following conditions.

(i) Alternation: O and P take it in turns to play moves. That is if tmm′ ! s then
λOP (m) 	= λOP (m′).

(ii) Well-Bracketing: Questions asked first must be answered first. If t q t′ a ! s then
all questions in t′ must be answered in t′.

(iii) Visibility: If t m t′m′ ! s then m appears in view(tm t′), where view is defined
by, view(ε) = ε, view(o) = o if o is initial, and view(t m t′m′ ) = view(t)mm′ .

We denote the set of all valid plays over prearena A as PA.
A strategy σ for prearena A is a non-empty, even-prefix-closed set of plays from A,

satisfying the condition that if sm1, sm2 ∈ σ then sm1 = sm2.
We can think of a strategy as being a playbook telling P how to respond by mapping

odd-length plays to moves.
A play is complete if all questions have been answered. Note that (unlike in the

call-by-name case) a complete play is not necessarily maximal. We denote the set of
complete plays in strategy σ by comp(σ).

Game Semantics of RML In the game semantic model of RML, a term-in-context x1 :
θ1, . . . , xn : θn � M : θ is represented by a strategy for the prearena �θ1� ⊗ . . . ⊗
�θn� → �θ�. These strategies are built up compositionally over the syntax of the term.
Essentially, free identifiers x : θ � x : θ are interpreted as copy-cat strategies where
P always copies O’s move into the other copy of �θ�, λx.M allows multiple copies of
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�M� to be run, application MN requires a form of parallel composition plus hiding and
the other constructions can be interpreted using special strategies. The game semantic
model is fully abstract in the following sense.

Theorem 1 (Abramsky and McCusker 1997 [1,2]). For all RML-terms-in-context
Γ �M,N : θ, we have M �∼ N iff comp(�Γ �M�) ⊆ comp(�Γ � N�).

We will show decidability of observational equivalence for a fragment of RML by
representing the game semantics of terms as Visibly Pushdown Automata (VPA) [4].
VPA are a subclass of pushdown automata in which the stack action is uniquely deter-
mined by the input letter. The alphabet is partitioned into push-letters, pop-letters and
noop-letters. On reading a letter the automaton must perform the appropriate action.

(We write s
q/x−→ s′ to mean “on reading q, push x” and s

a,x−→ s′ to mean “on read-
ing a and stack top is x, pop”.) This gives them very attractive closure properties. In
particular, equivalence of deterministic VPA is decidable in polynomial time.

3 Characterising the O-Strict Fragment of RML

In order to represent strategies using automata, we need to be able to encode plays
(move sequence with pointers) as words. In some cases pointers can be uniquely recon-
structed from the underlying move sequence, thanks to the visibility or well-bracketing
conditions, which constrain the position of the justifying move. For instance, the targets
of pointers from answer-moves can always be deduced from the underlying sequence
of moves. In general, however, pointers must be encoded explicitly, and this poses a
representational challenge because the target of a pointer can be arbitrarily far back
in the history of the play. We say that a play is O-strict just if the pointer from every
O-question in the play is uniquely determined by the underlying move sequence. A
prearena is said to be O-strict if every play of the prearena is O-strict; a type sequent is
O-strict if its denotation (in the call-by-value game semantics) is an O-strict prearena.
It follows that when representing plays of an O-strict prearena, only pointers from P-
questions need to be encoded. In this section, we aim to find a simple characterisation
of the O-strict sequents.

Every RML-type θ can be written uniquely as θ1 → · · · → θn → β (by convention
→ associates to the right), where n ≥ 0 and β stands for unit, int or int ref. In what fol-
lows we shall write (θ1, · · · , θn, β) for θ. The arity, ar(θ), and order, ord(θ), of θ are

defined as follows. ar(θ) :=
{
n if β = unit or int
n + 1 if β = int ref.

ord(unit) = ord(int) = 0,

ord(int ref) = 1 and ord(A→ B) = max(ord(A) + 1, ord(B)). For clarity, we shall
assume β = unit in the argument that follows; there is no loss of generality because
essentially identical considerations work for the case of int, and int ref can be treated
as unit→ unit.

Types on the right of O-strict sequents. Consider an arena with the following enabling
chain q0 � a0 � q1 � a1 � q2. (For brevity, we shall say that the arena has a qaqaq-
branch.) Then sequences of the form q0a0(q1a1)nq2, where n ≥ 0, are all plays, re-
gardless of which occurrence of a1 is used to justify q2. Representing the pointer from
the O-question q2 would seem to require unbounded memory or an infinite alphabet.
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Observe that the prearena of the type sequent � (unit, unit, unit) has a qaqaq-
branch. In general, the same is the case for Γ � (θ1, · · · , θk, unit), where k ≥ 2. In
other words, the type on the right of an O-strict sequent has the shape (θ, unit) or is
unit. Another troublesome sequent is � (((unit, unit), unit), unit) which has a qaqqq-
branch. In general, types of the form ((θ1, · · · , θk, unit), unit) have a similar problem
in case θi is functional for some 1 ≤ i ≤ k. Thus, types on the right of an O-strict
sequent must be of type Θ2 (we shall call a type short just if it is in Θ2) where

Θ1 ::= unit | unit→ Θ1 Θ2 ::= unit | Θ1 → unit.

Equivalently, a type is in Θ2 just if it has order at most 2 and arity at most 1.

Types on the left of O-strict sequents. Type sequents that contain((unit, unit, unit), unit)
on the left are similarly problematic because the corresponding prearenas have a qqqaq-
branch. Generally, sequents of the shape · · · , (θ1, · · · , θk, unit), · · · � · · · are not O-
strict, if for some i, θi = (θ1

i , · · · , θk′
i , unit) and k′ ≥ 2.

Sequents that have the type (((unit, unit), unit), unit), unit) on the left are also not
O-strict because the corresponding prearenas have a qqqqq branch. In general, this is
the case for θ1

i = (α1
i , · · · , αk′′

i , unit), whenever some αj
i is functional. Hence, if a

sequent is O-strict, then each θ1
i must be of type Θ1, i.e. each θi must be in Θ2. This

leads us to the class Θ3 ::= unit | Θ2 → Θ3. Equivalently a type is in Θ3 just if it has
shape (θ1, · · · , θk, unit) where k ≥ 0 and θi ∈ Θ2 for each i. Note that Θ3 contains Θ1

but not Θ2.

Lemma 1. A type sequent, θ1, · · · , θn � θ, is O-strict iff θ ∈ Θ2, and each θi ∈ Θ3.

So far we have omitted int and int ref. To incorporate them into the characterisation,
we treat int in the same way as unit, and int ref in the same way as unit → unit. The
revised definition of the collections, Θ2 and Θ3, thus reads as follows.

Θ0 ::= unit | int Θ2 ::= Θ0 | Θ1 → Θ0 | int ref
Θ1 ::= Θ0 | Θ0 → Θ1 | int ref Θ3 ::= Θ0 | Θ2 → Θ3 | int ref

Definition 1. The O-strict fragment of RML, henceforth referred to as RMLO-Str, con-
sists of terms-in-context of the shape x1 : Θ3, · · · , xn : Θ3 �M : Θ2.

Since conversion to canonical form preserves types, canonical forms of RMLO-Str-terms
also belong to RMLO-Str. Consequently, they satisfy the following properties.

(i) If Γ � λx.C is in RMLO-Str, then Γ, x : Θ1 � C : Θ0.
(ii) If Γ � letx = ref inC is in RMLO-Str, then Γ, x � C : Θ2.

(iii) If Γ � letx = · · · in C is in RMLO-Str, then Γ, x : Θ3 � C : Θ2.
(iv) If Γ � letx = z(λy.C) in · · · is in RMLO-Str, then Γ, y : Θ1 � C : Θ0.

Example 3. The following are RMLO-Str terms-in-contexts.

(i)

{
f : unit→ unit→ unit � let g = f() in (leth = f() in g()) : unit
f : unit→ unit→ unit � let g = f() in (leth = f() inh()) : unit

(ii)

{
f : ((unit→ unit) → unit) → unit � f(λxunit→unit.f(λyunit→unit.x()) : unit
f : ((unit→ unit) → unit) → unit � f(λxunit→unit.f(λyunit→unit.y()) : unit

(iii) The three pairs of terms in Example 1.
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4 The O-Strict Fragment is VPA-Decidable

We shall show that the (fully abstract) game semantics of every RMLO-Str-term can be
faithfully represented using VPAs in the following sense.

Theorem 2. There is an algorithm that transforms a given RMLO-Str-term-in-context
Γ �M : θ to a VPAAΓM such that Γ �M1

∼= M2 iff L(AΓM1
) = L(AΓM2

).

Proof Outline. We wish to show that for all RMLO-Str-terms Γ � M : θ there exists
(constructively) a VPA AΓM that accepts (some representation of) �Γ �M : θ�.

(i, •)

�Γ � •z

q0

q1 a0

a1

...

qn

an

j

�Θ3�

�Θ2�

To simplify this, we define �. . .�i by �Γ � M : θ� :=∑
i∈I�Γ�

i �Γ �M : θ�i. (To save space, we write �Γ �
M : θ� simply as �M�.) That is, �M�i contains all plays
of �M� which begin with initial move i, but with i re-
moved. We will define automataAi

M which accept the un-
derlying move sequences of all complete plays in �M�i.
To complete the proof, we will need to encode justifica-
tion pointers, but for now we omit them. We partition our
alphabet so that all P-questions are pushes, all O-answers
pops and everything else noops.

Our construction proceeds inductively over the canon-
ical forms. The simpler canonical forms can be described
using regular expressions or as straightforward combina-
tions of their subautomata. The case of λ-abstraction re-
quires using the stack to nest copies of the body of the
function. The construction for letx = ref inM stores the
value of the variable in the state. The most complicated
cases are those of the form letx = zM inN and here we consider the hardest of them,
letx = z(λy.M) inN . The relevant prearena is shown in the figure on the right.

We assume the automata A(i,q0)
Γ,yM and A(i,j)

Γ,xN . To construct Ai
Γlet x=z(λy.M) in N

we take as our set of states:

Qi
Γlet x=z(λy.M) in N = {(1), (2)} �

⊎
q0∈I�θ1�

Q
(i,q0)
Γ,yM �

⊎
j∈I�θ3�

Q
(i,j)
Γ,xN

�
⊎

q0∈I�θ1�,j∈I�θ3�

(
Q

(i,q0)
Γ,yM × ̂

Q
(i,j)
Γ,xN

)

where
̂
Q

(i,j)
Γ,xN is the set of states s in A(i,j)

Γ,xN such that t
mx→ s is a transition, with mx

a P-move in �Θ3�. (1) is the initial state and the final states are those fromA(i,j)
Γ,xN . The

set of stack symbols is the disjoint union of the stack symbols used in the automata for
M and N , plus the fresh symbol (1), plus the states of each Q

(i,q0)
Γ,yM .

Large sections of the play will proceed as in �M� or �N�. In particular, when in a

Q
(i,j)
Γ,xN -state, play proceeds as inA(i,j)

Γ,xN (although we will add additional transitions).
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Similarly, when in a state with a Q
(i,q0)
Γ,yM component, play continues as in A(i,q0)

Γ,yM

(although non-�Γ �-transitions will be redirected). Hence we have that if sM
m�→ tM in

A(i,q0)
Γ,yM where m is a �Γ �-move then in our new automaton we have sM

m�→ tM and

(sM , sN ) m�→ (tM , sN) for all sN ∈ ̂
Q

(i,j)
Γ,xN . Similarly, if sN

m�→ tN in A(i,j)
Γ,xN then

we have sN
m�→ tN . Here we use

m�→ to represent that this could be a push-, pop- or a
noop-transition but whatever the case the transitions in the new automaton will perform
the same stack action as in the old one.

The initial section of the play will correspond to evaluating z(λy.M). After the initial
move, P will play •z . At this point, O can either play an initial �Θ3� move j, or play q0,
opening an M -thread. If O chooses the latter, play proceeds as in �M� until P plays in
�Θ1 → Θ0� (that is either P plays a0, closing the M -thread, or some qi). At this point
O can choose to continue the current M -thread (unless P has closed it by playing a0) or
to open a new M -thread with q0. Note that if O opens a new M -thread, while the old
one is still open, the old thread will be left in a position where the only valid move is
for O to answer the pending qi with ai. Thus bracketing ensures that we cannot revisit
an old M -thread until we have closed the current one.

The transitions needed to represent this section of the play are:

– (1)
•z/(1)→ (2).

– (2)
q0→ iq0

M where iq0
M is the initial state in A(i,q0)

Γ,yM .

– If sM
a0→ tM in A(i,q0)

Γ,yM , then sM
a0→ (2).

– If sM
qi/γ→ tM

ai,γ→ uM , i > 0, inA(i,q0)
Γ,yM (note that this must be the only transition

out of sM ), then sM
qi/(sM )→ (2) and (2)

ai,(sM )→ uM .

Eventually we may reach a point where all M -threads are closed and O plays j, for

which we have transitions (2)
j,(1)→ ijN where ijN is the initial state inA(i,j)

Γ,xN . Play then
proceeds as in �N�, except that if P ever plays in x (that is in �Θ3�), then O again gets
the chance to play q0 and open an M -thread. If this happens then as before the threads
can be stacked. Further, whenever O has the chance to open a new M -thread, O also
has the option of resuming play in N by playing in �Θ3�. If there are currently open
M -threads when O chooses to return to N , then to obey bracketing it must be a �Θ3�-
question which O plays. As before, the only way to resume an open M -thread is with an
answer, so to obey bracketing this can only happen after the �Θ3�-question is answered.

To manage this, for all sN ∈ ̂
Q

(i,j)
Γ,xN we need to have the following transitions:

– sN
q0→ (iq0

M , sN), where iq0
M is the initial state in A(i,q0)

Γ,yM .

– If sM
a0→ tM in A(i,q0)

Γ,yM , then (sM , sN ) a0→ sN .

– If sM
qi/γ→ tM

ai,γ→ uM , i > 0, in A(i,q0)
Γ,yM then (sM , sN )

qi/(sM )→ sN and

sN
ai,(sM )→ (uM , sN ).

Remark 1. It follows from the construction thatAΓM :θ is regular if types of free vari-
ables are ((unit, unit), · · · , (unit, unit), unit) and the type of M is (unit, unit) or unit.
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Pointers. We now consider how to represent pointers. Since we are concerned with
O-strict prearenas, we only try to encode pointers from P-moves. Further, instead of
describing the location of every pointer in a play, in each run of the automaton we only
give the position of a single pointer. However, for every pointer we need to represent
there must be an accepting run encoding its location. Since our strategies are determin-
istic, each P-move has a unique justifier and so when we consider the full language
accepted by the automaton this encoding scheme gives us sufficient information to re-
construct all justification pointers.

If sms′ns′′ is a sequence of moves, we will use s
•
m s′

◦
n s′′ to represent that there

is a pointer from (the P-move) n to m. We refer to moves tagged with • as target-moves
and those tagged with ◦ as source-moves. We will construct automataAi

M which accept
all strings that are either the underlying move sequence of a complete play in �M�i or
the underlying move sequence plus the encoding of a single justification pointer from a P
question. Note that as we omit the initial move, we cannot encode pointers that point to it.
However, this is not a problem since there is only ever one occurrence of the initial move
so any pointers to it are always uniquely reconstructible. All other justification pointers
from P-questions must have a representation in the automaton’s language. Note that if
L(Ai

ΓM ) = L(Ai
ΓN ) for all i ∈ I�Γ � then comp(�Γ �M�) = comp(�Γ � N�).

In the case of letx = z(λy.M) inN we must ensure we preserve all pointers from
�M� and �N�, plus that in each �M�-thread q1 can point to the q0 that opened that
thread and finally that if in �N� P plays an �x�-move justified by j, this can point at the
copy of j which started �N�. We must also take care to enforce that each accepting run
only contains the encoding of a single pointer.

Example 4. (i) Take the term let g = f() in (while b() do (leth = f() in ())); g(),
where f : unit → unit → unit and b : unit → int. The corresponding
automaton will accept the following sequences: qfaf (qb1bqfaf )∗qb0bqf ′af ′a (no

pointer information), qf
•
af (qb1bqfaf )∗qb0bqf ′af ′a and qfaf (qb1bqfaf )∗qb1bqf

•
af

(qb1bqfaf)∗qb0bqf ′af ′a (information about single possible targets), and qf
•
af

(qb1bqfaf)∗qb0b
◦
qf ′ af ′a (a single pointer is represented). Note that any occurrence

of af could be a potential target for the pointer from qf ′ . By annotating moves with •
and ◦ we avoid the need for unbounded indices that would otherwise have to be used to
represent pointers.

(ii) These automata represent the complete plays of the strategies for the terms of
Example 3(i). As the language is regular we hide the stack actions. The underlying move
sequences are identical but the encoding of pointers allows us to differentiate them.

3
q0

5
a0

7

q1

◦
q1

1
q0

2

•
a0

a0 9
a1

10
•

11

4
q0

6
a0

•
a0

8
q1

3
q0

5
a0

7 q1

1
q0
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•
a0

a0 9
a1

10
•

11

4
q0

6

a0•
a0

8

q1

◦
q1
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5 Complexity

Following [15], we define the size of a VPA to be the sum of the number of states and
the number of stack symbols. The size of the alphabet is linear in the size of the input
word and so we ignore it. The number of transitions is bounded by a polynomial in the
size of the automaton.

In each case of the construction, the set of states consists of a number of fresh states,
a number of copies of the states from sub-automata and a number of copies of pairs
of states from different sub-automata. The set of stack symbols is similar. This means,
that if automaton AM is built up from n sub-automata AM1

. . .AMn
then |AM | ≤

c ×
(

1 +
∑ |AMi

|+∑i�=j |AMi
| × |AMj

|
)

, for some constant c. Given that at each

step the size of the problem is greater than the sum of the size of the sub-problems, the
implied recursion has an exponential bound.

Now the time required to construct each automaton is polynomial in its size (so ex-
ponential in the size of the input). The time taken to check whether two deterministic
VPA are equivalent is polynomial in the size of the two VPA. Finally, the number of
VPA we will need to check is exponential in the size of the input (in the number of
int-components in the context). Altogether, this gives an exponential bound on the total
amount of time required to check two RMLO-Str-terms in canonical form for observa-
tional equivalence.

q

qgen �

agen q0

q1 a0

a1

It turns out that this bound is optimal. One can show EXPTIME-
hardness using a reduction of the EXPTIME-complete equivalence
problem for nondeterministic automata on binary trees [18]. Through
that route, we can show that observational equivalence is EXPTIME-
hard for canonical terms gen :unit→ int � C : (unit → unit)→unit.
The associated arena A is shown on the right.

In order to represent (ranked) binary trees, let us assume that val-
ues of type int are partitioned into the set of binary and nullary labels, ranged over
l2 and l0 respectively. Then any ranked binary tree T over such labels can be repre-
sented by the play q � S(T ) on A, where S(T ) is defined as S(l) := q0 qgen lgen a0;
S(n(T1, T2)) := q0 qgen ngen q1 S(T1) a1 q1 S(T2) a1 a0. Note that S(T ) can be seen
as a record of a depth-first traversal of T . The key to the hardness argument is the
construction of a term gen : unit→ int � CA : (unit→ unit) → unit for a given tree
automatonA such that comp(�gen � CA�) = {q �} ∪ {q � S(T ) |T ∈ T (A)}, where
T (A) is the set of trees accepted by A. To that end we take advantage of the term
� λf .f(); f() : (unit→ unit) → unit. Observe that it generates complete plays that

are very similar to the plays used to represent trees: they have the form q � X , where
X ::= ε | q0 q1 X a1 q1 X a1 a0 X . To construct CA we can equip the term above
with additional code that tracks possible states ofA, as the input tree is being traversed.
In order to cover all possible tree shapes the free identifier gen : unit → int is used as
a label generator.

Alternatively, one could readily adapt the EXPTIME-hardness argument for third-
order Idealized Algol [15] to the call-by-value setting. This would yield EXPTIME-
hardness of observational equivalence for canonical forms typable as

gen : unit→ int, f : ((unit→ unit) → unit) → unit � C : unit.
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Theorem 3. Observational equivalence of RMLO-Str-terms in canonical form is
EXPTIME-complete.

Further Directions Does RMLO-Str capture all the decidable sequents? (We think not.)
It would be interesting to identify (and classify) the decidable type sequents of the fol-
lowing related languages. (i) Call-by-value Idealized Algol [5,13], which can be viewed
as a fragment of RML with block-allocated storage. It is known that the order-2 frag-
ment is decidable [13] and not order-5 [10]. (ii) The case of Reduced ML [19] (i.e. RML
without mkvar) is significantly more complicated. Recently it was shown that terms-in-
contexts of the shape· · · , x : β → β, · · · � M : β → β, where β = unit, int, int ref,
can be represented with automata over infinite alphabets [14].

Another direction we intend to pursue is to implement the model checking algorithm
described, building upon the infrastructure of the call-by-name tool Homer [8].
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Krivine Machines and Higher-Order Schemes
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Abstract. We propose a new approach to analysing higher-order re-
cursive schemes. Many results in the literature use automata models
generalising pushdown automata, most notably higher-order pushdown
automata with collapse (CPDA). Instead, we propose to use the Krivine
machine model. Compared to CPDA, this model is closer to lambda-
calculus, and incorporates nicely many invariants of computations, as
for example the typing information. The usefulness of the proposed ap-
proach is demonstrated with new proofs of two central results in the
field: the decidability of the local and global model checking problems
for higher-order schemes with respect to the mu-calculus.

1 Introduction

Higher-order recursive schemes were introduced by Damm in [Dam82] as a re-
spelling of λY -calculus. Since higher-order recursive schemes were investigated
mainly in the formal language community, the tools developed were by and
large inspired by the treatment of pushdown-automata and context-free gram-
mars. Subsequent research has shown that it is very useful to have an automata
model characterising schemes. For the class of all schemes, we know only one such
model, that is higher-order pushdown automata with collapse [HMOS08]. In this
paper we propose another model based on Krivine machines [Kri07, Wan07]. The
notion of Krivine machine is actually a standard concept in the lambda-calculus
community, and it needs almost no adaptation to treat higher-order schemes.
We claim that the proposed model offers a fresh tool to analyse schemes. To
substantiate we give new proofs of two central results in the field: decidability of
local and global model-checking problems for higher-order schemes with respect
to the mu-calculus.

The interest in higher-order schemes has been renewed by the discovery by
Knapik et al.[KNU02] of the equivalence of higher-order pushdown automata of
order n with schemes of order n satisfying a syntactic constraint called safety.
The safety condition implicitly appeared in Damm’s work. Indeed, Damm consid-
ers only the so-called derived types in the definition of higher-order schemes. This
in itself does not restrict the expressive power of schemes if one permits explicit
lambda abstractions [DF80]. But then Damm studies only applicative schemes
which are equivalent to schemes satisfying the safety condition [dM06]. In re-
cent years, higher-order pushdowns have been extended with panic operation to

� This work has been supported by ANR 2010 BLAN 0202 01 FREC.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part II, LNCS 6756, pp. 162–173, 2011.
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handle all level 2 schemes [KNUW05, AdMO05], and with collapse operation for
schemes of all levels [HMOS08]. Higher-order pushdown automata with collapse
are at present the main tool to analyse schemes [HMOS08, BO09, BCOS10].

The model checking problem for schemes with respect to the mu-calculus is to
decide if a given formula holds in the root of the tree generated by a given scheme.
The problem has proved to be very stimulating, and generated many advances in
our understanding of schemes. Its decidability has been shown by Ong [Ong06],
but even afterwards the problem continued to drive interesting work. Several
different proofs of Ong’s result have been proposed [HMOS08, KO09]. In a series
of recent papers [CHM+08, BO09, BCOS10] the global version of the problem
is considered. In the last citation it is shown that the set of nodes satisfying a
given mu-calculus formula is definable in a finitary way.

In this paper, we go several steps back with respect to the usual ways of
working with higher-order recursive schemes. First, instead of using Damm’s
definition of higher-order schemes, we turn to the λY -calculus as the means of
generating infinite trees. The Y combinator, or the fixpoint combinator, has first
been considered in [CR58] and is at the core of Plotkin’s PCF [Plo77]. Second,
instead of using higher-order collapsible automata as an abstract machine, we
use Krivine abstract machine [Kri07]. This machine is much closer to λ-calculus,
it performs standard reductions and comes with typing. These features are hard
to overestimate as they allow to use standard techniques to express powerful
invariants on the computation. For example, in the main proof presented here,
we use standard models of the λY -calculus to express such invariants.

Using these tools, we reprove in a rather succinct way Ong’s result. Similarly
to a recent proof of Kobayashi and Ong [KO09], our proof gives a reduction to a
finite parity game. It seems though that our game is simpler. For example, the
paper [BCOS10] on global model checking continues to use collapsible pushdown
automata and gives an involved proof by induction on the rank of the stack. On
the other hand, we can reuse our game to give a short proof of this result. In
particular unlike op cit. we use finite trees to represent positions, and standard
automata on finite trees to represent sets of winning positions. In this context
we would like to mention a result of Kartzow [Kar10] showing that order-2
collapsible stacks can be encoded as trees in such a way that the set of stacks
reachable from the initial configuration is a regular set of trees.

Organization of the paper. In the next section we introduce λY -calculus and
Krivine machines. We also define formally the local model checking problem.
In the following section we reduce the problem to determining a winner in a
game over configurations of the Krivine machine, K(A,M). In the next section
we define a finite game G(A,M). We then show that the same player is winning
in the two games. This gives decidability of the local model checking problem.
In the following section we reuse this result to obtain the proof for the global
model checking problem. All missing proofs can be found in the long version of
the paper [SW11].
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2 Basic Notions

The set of types T is constructed from a unique basic type 0 using a binary oper-
ation→. Thus 0 is a type and if α, β are types, so is (α→ β). The order of a type
is defined by: order(0) = 1, and order (α→ β) = max(1 + order (α), order (β)).

A signature, denoted Σ, is a set of typed constants, that is symbols with
associated types from T . We will assume that for every type α ∈ T we have ωα

and Y (α→α)→α standing for the undefined value and the fixpoint operator. For
simplicity of notation we assume that all other constants are of type 0 → 0 → 0.
In general, in recursive schemes all constants of order 0 and 1 are allowed; it is
straightforward to extend our arguments to all such constants.

The set of simply typed λ-terms is defined inductively as follows. A constant of
type α is a term of type α. For each type α there is a countable set of variables
xα, yα, . . . that are also terms of type α. If M is a term of type β and xα a
variable of type α then λxα.M is a term of type α→ β. Finally, if M is of type
α → β and N is of type α then MN is a term of type β. Together with the
usual operational semantics of λ-calculus, that is β-reduction, we use δ-reduction
(→δ) giving the semantics to the fixpoint operator: YM →δ M(YM). Thus, the
operational semantics of the λY -calculus is the βδ-reduction, it is well-known
that this semantics is confluent and enjoys subject reduction (i.e. the type of
terms is invariant under computation). In this paper, we only consider terms
in η-long form [Hue76]. This makes the presentation easier as the structure of
types is reflected syntactically in terms. Later we will point out the place where
we use this assumption. We will also often omit type annotations.

A Böhm tree is an unranked ordered, and potentially infinite tree with nodes
labelled by ωα, or terms of the form λx1. . . . xn.N ; where N is a variable or a
constant, and the sequence of lambda abstractions is optional. So for example x0,
λx0.ω0 are labels, but λy0.x0→0y0 is not. A Böhm tree of a term M is obtained
as follows. If M →∗βδ λx.N0N1 . . . Nk with N0 a variable or a constant then the
root of BT (M) is labelled by λx.N0 and has BT (N1), . . . , BT (Nk) as a sequence
of its children. If M is not solvable then BT (M) = ωα, where α is the type of
M . If M is of type 0 then given our assumption on the type of constants we get
that BT (M) is a binary tree with finite branches ending in ω0. It is known that
λY -calculus allows to define the same trees as recursive schemes [DF80].

Krivine machine. A Krivine machine [Kri07], is an abstract machine that com-
putes the weak head normal form of a λ-term, using explicit substitutions, called
environments. Environments are functions assigning closures to variables, and
closures themselves are pairs consisting of a term and an environment. This
mutually recursive definition is schematically represented by the grammar:

C ::= (M,ρ) ρ ::= ∅ | ρ[x �→ C]

As in this grammar, we will use ∅ for the empty environment. We require that
in a closure (M,ρ), the environment is defined for every free variable of M .
Intuitively such a closure denotes closed λ-term: it is obtained by substituting
for every free variable x of M the lambda term denoted by the closure ρ(x).
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A configuration of the Krivine machine is a triple (M,ρ, S), where M is a
term, ρ is an environment, and S is a stack (a sequence of closures with the
topmost element on the left). The rules of the Krivine machine are as follows:

(λx.M, ρ, (N, ρ′)S) →(M,ρ[x �→ (N, ρ′)], S)
(YM, ρ, S)→(M(YM), ρ, S)
(MN, ρ, S)→(M,ρ, (N, ρ)S)

(x, ρ, S) →(M,ρ′, S) where (M,ρ′) = ρ(x)

Note that the machine is deterministic. We will be only interested in configura-
tions accessible from (M, ∅, ε) for some term M of in η-long form and of type
0. Every such configuration (N, ρ, S) enjoys very strong typing invariants. En-
vironment ρ associates to a variable xα a closure (K, ρ′) so that K has type α;
we will say that the closure is of type α too. If N has type α1 → · · · → αn → 0,
then S is a stack of n closures, with i-th closure from the top being of type αi.

For aesthetic reasons we prefer to stop the Krivine machine in configurations
of the form (bN0N1, ρ, ε), where b is a constant; since b is of type 0 → 0 → 0,
the stack must be empty. We shall write this configuration as (b(N0, N1), ρ, ε) to
make a link with the Böhm tree being constructed. (Notice that formally from
such a configuration the machine should perform two more reductions to put the
arguments on the stack.) Thus, if we start with a closed term M of type 0 we get
a sequence of reductions from (M, ∅, ε) that is either infinite or terminates in a
configuration of a form (b(N0, N1), ρ, ε), thanks to the fact that M is supposed
to be in η-long form. At that point we create a node labelled b and start reducing
both (N0, ρ, ε) and (N1, ρ, ε), that are both in η-long form as well. This process
gives at the end a tree labelled with constants that is precisely BT (M); that is
the object of our study. Notice that if (N, ρ, S) is reachable from (M, ∅, ε) then
N , and the terms that occur in ρ and in S are all subterms of M . One should be
careful with a definition of a subterm though. Since we have a fixpoint operator
we consider that N(Y N) is a subterm of Y N . Of course even with this twist,
the number of subterms of a term remains finite.

We present an execution of a Krivine machine on an example taken from
[KO09]. For clarity, in this example we suspend our convention on types of the
constants and take constants a : 0 → 0 → 0, b : 0 → 0 and c : 0. The scheme is
defined by S �→ F c and F �→ λx.a x (F (b x)) which can be represented by the
following term in the λY -calculus:

YM c where M = λfx.a x (f(b x)).

Starting from a configuration (YMc, ∅, ε), the Krivine machine produces the
following sequence of reductions

(YMc, ∅, ε)→(YM, ∅, (c, ∅)) → (M(YM), ∅, (c, ∅)) → (M, ∅, (YM, ∅)(c, ∅)) →
(λx.a x (f(b x)), [f �→ (YM, ∅)], (c, ∅))→
(a x (f(b x)), [f �→ (YM, ∅)][x �→ (c, ∅)], ε)
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At this point we have reached a final configuration and we get the constant a
that is the symbol of the root of BT (YMc). We can start reducing separately
the two arguments of a, that is reducing the configurations:

(x, [f �→ (YM, ∅)][x �→ (c, ∅)], ε) and (f(b x), [f �→ (YM, ∅)][x �→ (c, ∅)], ε).
Parity automata and the definition of the problem. Recall that Σ is a fixed set
of constants of type 0 → 0 → 0. These constants label nodes in BT (M). Since
BT (M) is an infinite binary tree we can use standard non-deterministic parity
automata to describe its properties. Such an automaton has the form

A = 〈Q,Σ, q0 ∈ Q, δ : Q×Σ → P(Q2), Ω : Q→ {1, . . . , d}〉 (1)

where Q is a finite set of states, q0 is the initial state, δ is the transition function,
and Ω is a function assigning a rank (a number between 1 and d) to every state.

In general, an infinite binary tree is a function t : {0, 1}∗ → Σ. A run of A
on t is a function r : {0, 1}∗ → Q such that r(ε) = q0 and for every sequence
w ∈ {0, 1}∗: (r(w0), r(w1)) ∈ δ(q, t(w)). The run is accepting if for every infinite
path in the tree, the sequence of states assigned to this path satisfies the parity
condition determined by Ω; this means that the maximal rank of a state seen
infinitely often should be even.

Formally, it may be the case that BT (M) contains also nodes labelled with
ω0. We will simply assume that every tree containing ω0 is rejected by the
automaton. This is frequently done in this context. Handling ω0 would not be
difficult but would require to add one more case in all the constructions. The
other, more difficult, solution is to convert a term to a term not generating ω0.

Definition 1. The (local) model checking problem is to decide if A accepts
BT (M) for given A and M .

3 Game Over Configurations of the Krivine Machine

In this section we will reduce the model checking problem to the problem of
determining a winner in a specially constructed parity game.

Given an automaton A as in (1) we construct the tree of all its possible runs
on BT (M). We define the tree of runs formally as we will make one twist to the
rules of the Krivine machine. The twist is that in the environment the value of
the variable will not be a closure, that is a pair (term, environment), but a triple
containing additionally the node of the tree where the closure has been created.
For a given M and A we define the tree of runs RT(A,M) of A on BT (M):

– The root of the tree is labelled with q0 : (M, ∅, ε).
– A node labelled q : (a(N0, N1), ρ, ε) has a successor (q0, q1) : (a(N0, N1), ρ, ε)

for every (q0, q1) ∈ δ(q, a).
– A node labelled (q0, q1) : (a(N0, N1), ρ, ε) has two successors q0 : (N0, ρ, ε)

and q1 : (N1, ρ, ε).
– A node labelled q : (λx.N, ρ, (v′, N ′, ρ′)S) has a unique successor labelled

q : (N, ρ[x �→ (v′, N ′, ρ′)], S).
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– A node q : (Y N, ρ, S) has a unique successor q : (N(Y N), ρ, S).
– A node v labelled q : (NK, ρ, S) has a unique successor q : (N, ρ, (v,K, ρ)S).

(Here the v closure is created.)
– A node v labelled q : (x, ρ, S) with ρ(x) = (v′, N, ρ′) has a unique successor

labelled q : (N, ρ′, S). (We say that the node v uses the v′ closure.)

The definition is as expected but for the fact that in the rule for the application
we store the current node in the closure that is pushed on the stack. When
we use the closure in the variable rule, the stored node does not influence the
result, but allows us to detect the exact closure that we are using. This will be
important in the proof.

Definition 2. We use the tree RT (A,M) to define a game between two play-
ers: Eve chooses a successor in nodes of the form q : (a(N0, N1), ρ, ε), and
Adam in nodes (q0, q1) : (a(N0, N1), ρ, ε). We set the rank of nodes labelled
q : (a(N0, N1), ρ, ε) to Ω(q) and the ranks of all the other nodes to 1. We can
use max parity condition to decide who wins an infinite play. Let us call the
resulting game K(A,M).

Directly from the definition it follows that Eve has a strategy from the root
position in K(A,M) iff A accepts BT (M). The only interesting point to observe
is that it is important to disallow rank 0 in the definition of the parity automaton
since we assign rank 1 to all “intermediate” positions. This is linked to our
handling of infinite sequences of reductions of the Krivine machine that do not
reach a head normal form. Such a sequence results in a node labelled ω0 in the
Böhm tree, hence the tree should not be accepted by the automaton. Indeed, in
the game K(A,M) this will give an infinite sequence of states of rank 1.

Summarizing, the model checking problem is equivalent to deciding who has
a winning strategy from the root of K(A,M). We will show decidability of the
latter problem by reducing the game to a finite game.

4 Finite Game G(A, M)

The game K(A,M) may have infinitely many positions as there may be infinitely
many closures that are created. In order to obtain a finite game we abstract these
closures to some finite set. Closures are created by the application rule, so this
is where we will concentrate our efforts. As in the construction for a pushdown
game [Wal01] we will use alternation to “disarm” the application rule. Instead
of putting a closure on the stack, Eve will make an assumption on the context
in which the closure will be used. Adam will be then given a chance to either
contest this assumption or to check what happens with the closure when it is
used under the assumptions Eve has made. Since the closure can be of higher
type, the assumptions are a bit more complicated than in a pushdown game.

Definition 3 (Residuals). Recall that Q is the set of states of A and d is the
maximal value of the rank function of A. Let [d] stand for the set {1, . . . , d}. For
every type τ = τ1 → · · · → τk → 0 the set of residuals Dτ is the set of functions
Dτ1 → · · · → Dτk

→ P(Q× [d]).
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For example, we have that D0 is P(Q×[d]) and D0→0 is P(Q×[d]) → P(Q×[d]).
The meaning of residuals will become clearer when we define the game.

A position of the game G(A,M) will be of one of the forms:

q : (N, ρ, S) or (q0, q1) : (N, ρ, S) or (q,R) : (N, ρ, S).

where q, q0, q1 are states of A, N is a term (more precisely a subterm of M), ρ is
an environment assigning a residual to every variable that has a free occurrence
in N , R is a residual, and S is a stack of residuals. Of course the types of residuals
will agree with the types of variables/arguments they are assigned too. As there
are only finitely many residuals of each type, the game G(A,M) has finitely
many positions.

We need one more operation before defining the game. Take a rank r and a
residual R : Dτ1 → · · · → Dτk

→ D0. Recall that D0 = P(Q × [d]). We define
R�r to be the function such that for every sequence of arguments S:

R�r (S) = {(q1, r1) ∈ R(S) : r1 > r} ∪ {(q1, r2) : (q1, r1) ∈ R(S), r2 ≤ r1 = r}
Intuitively, (q1, r1) ∈ R(S) means that Eve is allowed to reach a leaf labelled
with a state q1 if r1 is the maximal rank between the creation and the use
of the closure. Now suppose that with this residual at hand we see rank r. If
(q1, r1) ∈ R(S) and r1 > r then we are still waiting for r1 so we just keep the
pair. If r1 < r then such a pair is impossible and is removed. If r1 = r then
in the future we can see any rank not bigger than r. This explains the second
component of the sum. If ρ is an environment then ρ �r is an environment such
that for every x: (ρ�r)(x) = ρ(x)�r .

We have all ingredients to define transitions of the game G(A,M). Most of
the rules are just reformulation of the rules in K(A,M):

q : (λx.N, ρ,R · S) → q : (N, ρ[x �→ R], S)
q : (a(N0, N1), ρ, ε) → (q0, q1) : (a(N0, N1), ρ, ε) for (q0, q1) ∈ δ(q, a)

(q0, q1) : (a(N0, N1), ρ, ε) → qi : (Ni, ρ�Ω(qi), ε) for i = 0, 1
q : (Y N, ρ, S) → q : (N(Y N), ρ, S)

We now proceed to the rule for application. Consider q : (NK, ρ, S) with K
of type τ = τ1 → · · · → τl → 0. We have a transition

q : (NK, ρ, S) → (q,R) : (NK, ρ, S)

for every residual R : Dτ1 → . . . Dτl
→ D0. From this position we have transi-

tions

(q,R) : (NK, ρ, S) → q : (N, ρ,R�Ω(q) ·S)
(q,R) : (NK, ρ, S) → q′ : (K, ρ�r′ , R1 · · ·Rl) for every R1 ∈ Dτ1 ,. . . ,Rl ∈ Dτl

and (q′, r′) ∈ R�Ω(q) (R1, . . . , Rl).

Here R�Ω(q) is needed to “normalise” the residual, so that it satisfies the invari-
ant described below.
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Since we are defining a game we need to say who makes a choice in which
vertices. Eve chooses a successor from vertices of the form q : (NK, ρ, S) and
q : (a(N0, N1), ρ, S). It means that she can choose a residual, and a transition of
the automaton. This leaves for Adam the choices in nodes of the form (q0, q1) :
(a(N0, N1), ρ, S) and (q,R) : (NK, ρ, S). So he chooses a direction, or decides
whether to accept (by choosing a transition of the first type) or contest the
residual proposed by Eve.

Observe that we do not have a rule for nodes with a term being a variable.
This means that such a node has no successors, so we need to say who is the
winner when the node is reached. Consider a node

q : (x, ρ, S) with ρ(x) = Rx and S = R1 · · ·Rk.

Eve wins in this position if (q,Ω(q)) ∈ Rx(R1, . . . , Rk).
Finally, we define ranks. It will be much simpler to define ranks on transitions

instead of nodes. All the transitions will have rank 1 but for two cases: (i) a
transition (q,R) : (NK, ρ, S) → q′ : (K, ρ �r′ , R1 · · ·Rk) has rank r′; (ii) a
transition (q0, q1) : (a(N0, N1), ρ, S) → qi : (Ni, ρ�Ω(qi), S �Ω(qi)) has rank Ω(qi).

A play is winning for Eve iff the sequence of ranks on transitions satisfies the
parity condition: the maximal rank appearing infinitely often is even.

5 Equivalence of K(A, M) and G(A, M)

In this section we present the main technical result of the paper

Theorem 1. Eve wins in G(A,M) iff Eve wins in K(A,M).

Since G(A,M) is finite, this gives the decidability of the winner in K(A,M)
and hence also of the model-checking problem. We will show how to construct
the winning strategy for Eve in G(A,M) from her winning strategy in K(A,M).
Due to lack of space we omit a dual construction of a winning strategy for Adam
in G(A,M) from his winning strategy in K(A,M).

Let us fix a winning strategy σ of Eve in K(A,M), and consider the tree Kσ

of plays respecting this strategy. This is a subtree of K(A,M). We will define the
strategy for Eve in G(A,M) that will use σ to guess residuals in the application
rule. The first step before constructing the strategy is to calculate residuals R(v)
and res(v, v′) for all nodes in the tree Kσ.

Residuals R(v) and res(v, v′). The crucial step in the proof is the assignment
of residuals to positions of K(A,M). Thanks to typing, this can be done by
induction on the order of type. We will assign a residual R(v) to every v closure.
Before proceeding we will need two simple abbreviations. If v is an ancestor of
v1 in Kσ then we write max(v, v1) for the maximal rank appearing on the path
between v and v1, including both ends. We write res(v, v1) for R(v) �max(v,v1);
intuitively it is residual R(v) as seen from v1.

Consider an application node v in K(A,M). It means that v has a label of the
form q : (NK, ρ, S), and its unique successor has the label q : (N, ρ, (v,K, ρ)S).
That is the closure (v,K, ρ) is created in v. We will look at all the places where
this closure is used and summarize the information about them in R(v).
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When the closure is of type 0 then the residual R(v) is a subset of Q × [d].
For every node v′ in Kσ labelled q′ : (x, ρ′, ε) such that ρ′(x) = (v,K, ρ) we put

(q′,max(v, v′)) ∈ R(v)

When the closure is of type τ1 → · · · → τk → 0, then by induction we
assume that we have residuals for all closures of types τ1, . . . , τk. This time
R(v) : Dτ1 → . . . Dτk

→ P(Q × [d]). Take a node v′ using the closure. Its label
has the form q′ : (x, ρ′, S′) for some x, ρ′ and S′ such that ρ′(x) = (v,K, ρ). The
stack S′ has the form (v1, N1, ρ1) . . . (vk, Nk, ρk) with Ni of type τi. We put

(q′,max(v, v′)) ∈ R(res(v1, v
′), . . . , res(vk, v

′)) . (2)

We extend the definition of residuals to closures, environments and stacks. For
a closure (v,K, ρ) we define res((v,K, ρ), v′) = res(v, v′). For an environment
ρ, the environment ρ′ = res(ρ, v′) is obtained by setting ρ′(x) = res(ρ(x), v′)
for every variable x. Similarly, res(S, v′) is S where res(·, v′) is applied to every
element of the stack. With this notation the condition (2) can be rewritten as
(q′,max(v, v′)) ∈ R(res(S′, v′)).

The strategy in G(A,M) Now we are ready to define the strategy for Eve in
G(A,M). It will use positions in the game K(A,M) and the strategy σ as hints.
The new strategy will take a pair of positions (v1, v2) with v1 in G(A,M), and
v2 in K(A,M). It will then give a new pair of positions (v′1, v

′
2) such that v′1 is

a successor v1, and v′2 is reachable from v2 using the strategy σ. Moreover, all
visited pairs (v1, v2) will satisfy the following invariant:

v1 is labelled by q : (N, ρ1, S1) and v2 is labelled by q : (N, ρ2, S2);
where ρ1 = res(ρ2, v2) and S1 = res(S2, v2).

The initial positions in both games have the same label q0 : (M, ε, ∅), so the
invariant is satisfied. In order to define the strategy we will consider one by one
the rules defining the transitions in G(A,M).

In most of the cases the strategy in G(A,M) just copies the moves of the
strategy in K(A,M). The only complicated case is the application rule.

Suppose that the term in the label of v1 is an application, say q : (NK, ρ1, S1).
By our invariant we have a position v2 labelled by q : (NK, ρ2, S2), where ρ1 =
res(ρ2, v2) and S1 = res(S2, v2). The strategy in G(A,M) is to choose R(v2),
that is to go from v1 to the node v′1 labelled (q,R(v2)) : (NK, ρ1, S1). From this
node Adam can choose either

q :(N, ρ1, (R(v2)�Ω(q)) · S1), or (3)
q′ :(K, ρ1 �r′ , R1 . . . Rl) where (q′, r′) ∈ R(v2)�Ω(q) (R1, . . . , Rl). (4)

Suppose Adam chooses (3). By definition R(v2) �Ω(q)= res(v2, v2). Hence the
stack (R(v2) �Ω(q)) · S1 is just res((v2,K, ρ2)S2, v2). The unique successor v′2
of v2 is labelled by q : (N, ρ2, (v2,K, ρ2)S2). So the pair (v′1, v′2) satisfies the
invariant.



Krivine Machines and Higher-Order Schemes 171

Let us now examine the case when Adam chooses a node of the form (4).
By definition of R(v2) this means that in Kσ there is a node v′2 labelled q′ :
(x, ρ′2, S′2) with ρ′2(x) = (v2,K, ρ2) and res(S′2, v′2) = R1 . . . Rl. Moreover r′ =
max(v2, v

′
2). The successor v′′2 of v′2 is labelled by q′ : (K, ρ2, S

′
2). We can take it

as a companion for v′1 since by easy calculation ρ1 �r′= res(ρ2, v2) �max(v2,v′′
2 )=

res(ρ2, v
′′
2 ). Hence the strategy is able to preserve the invariant.

It is easy to check that the above strategy is winning. It remains to check
what happens when a maximal play is finite. This means that the path ends in a
pair (v1, v2) where v1 is a variable node. Such a node is labelled by q : (x, ρ1, S1).
To show that this position is winning requires a small calculation proving that
(q,Ω(q)) ∈ Rx(S1) for Rx = ρ1(x).

6 Global Model Checking

The finite game G(A,M) allows us also to compute a finite representation of
the set of winning positions of Eve in the game K(A,M). For this we represent
positions in the later game as trees and show that the set of winning positions
for Eve is regular: the tree representations of winning positions are recognizable
by a finite tree automaton.

Recall that positions of K(A,M) are of the form q : (N, ρ, S) where N is a
subterm of M , ρ is an environment assigning a closure to every free variable of
N , and S is a stack of closures. Recall also that terms from all the closures of ρ
and S are subterms of M .

We start by defining a representation of closures as trees. We take the set of
all subterms of M as the alphabet: the arity of a letter N being the number of
free variables in N . So, for example, if N does not have free variables then a node
labelled by N is a leaf in a tree. When N has free variables x1, . . . , xl; a closure
(N, ρ) is represented by a tree whose root is labelled by N and the subtree ti
rooted in i-th child represents ρ(xi); for i = 1, . . . , l. For t of this form, we write
term(t) to denote the lambda term obtained by substituting term(xi) for xi in
N , for i = 1, . . . , l. Observe that term(t) is closed: it has no free variables.

A position q : (N, ρ, S) of K(A,M) is represented as a tree whose root labelled
q : τN has the sequence of children: the tree rooted in the first child representing
(N, ρ), and the others representing the closures from S in the same order as in
S. Hence the number of children of the root depends on the size of S that in
turn is determined by the type τN of N .

Since representations of configurations are finite trees over a finite ranked
alphabet, we can use standard finite automata to recognize sets of such trees.
This gives a notion of a regular set of positions of K(A,M).

Theorem 2. For every A and M : the set of representations of positions of
K(A,M) that are winning for Eve is regular.

The proof uses reduction to finite games. Let term(N, ρ, S) be the term denoted
by the closure (N, ρ) applied to terms denoted by the closures in S. It is a
closed term of type 0. Of course the behaviours of the Krivine machine from
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(N, ρ, S) and (term(N, ρ, S), ∅, ε) are the same, that is they give the same Böhm
trees. This implies that Eve wins from q : (N, ρ, S) in K(A,M) iff she wins
from q : (term(N, ρ, S), ∅, ε) in K(A, term(N, ρ, S)). By the reduction theorem
(Theorem 1) the later is equivalent to Eve winning from q : (term(N, ρ, S), ∅, ε)
in the finite game G(A, term(N, ρ, S)). This condition can be checked by a finite
alternating automaton that essentially applies the rules of the construction of
the finite game.

7 Conclusions

We have proposed to use Krivine machines to analyse higher-order recursive
schemes. The rich structure of this formalism allows to write compact and pow-
erful invariants on computation giving a rather succinct proof of decidability
of local model checking. The result on global model checking shows that the
structure of configurations of the Krivine machine, although rich, is quite easy
to work with.

The proof of Kobayashi and Ong [KO09] is a remarkable achievement show-
ing that one can prove the result with the assumption method (in the spirit
of [Wal01]) on the level of terms instead of higher-order pushdown automata
with collapse (CPDA). Our residuals are very similar to the additional indices
in types introduced in that paper. Also handling of ranks via �Ω(q) operation is
similar in both proofs. The typing rule for application gives naturally essentially
the same rule as we use here. The finite game in that paper is rather different
though, as the typing system of Kobayashi and Ong has not been designed to
handle fixpoints or lambda-abstraction. The proof of the correctness of the re-
duction is just different since without configurations of the Krivine machine it
is very difficult to state the correspondence between nodes in the tree generated
by the scheme and nodes in the finite game.

In his original proof Ong [Ong06] constructed an infinite term, called compu-
tation tree, and then showed how to find the Böhm tree inside it. So naturally
he concentrated on lambda-abstractions and variables. To find the paths of the
Böhm tree he needed a fine description of computation offered by game seman-
tics. Here, thanks to our invariants expressed in terms of closures, we manage
to avoid the problem of finding paths of the Böhm tree inside the computation
tree. This is probably the biggest technical simplification of our approach.

In the present paper we have kept models of λY -calculus in the background.
Yet, the two proofs strongly suggest that there is a finitary model where we can
calculate the behaviour of a fixed automaton on a given term. It would be very
interesting to find a useful representation of this model.
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Abstract. We consider the problem of establishing a relationship between two
interpretations of base type terms of a λc-calculus with algebraic operations. We
show that the given relationship holds if it satisfies a set of natural conditions.
We apply this result to comparing interpretations of new name creation by two
monads: Stark’s new name creation monad [25] and a global counter monad.

1 Introduction

Suppose that two monadic semantics A1,A2 are given to a call-by-value functional
language, and each semanticsAi interprets a base type b by a set Aib and computational
effects by a monad Ti. After comparing these semantics, you find a relationship Vb ⊆
A1b × A2b between base type values, and also a relationship Cb ⊆ T1A1b × T2A2b
between base type computations. We then consider the following problem:

For any well-typed term x1 : b1, · · · , xn : bn � M : b and (vi,wi) ∈ Vbi, do we
have (A1[[M]](v1, · · · , vn),A2[[M]](w1, · · · ,wn)) ∈ Cb?

We name this problem effect simulation problem and tackle it under the situation where
1) the call-by-value functional language is the simply typed λc-calculus with products,
coproducts, effect-free constants and algebraic operations [22], and 2) the underlying
category of a semantics is a bi-CCC with a strong monad. We show that the answer of
the effect simulation problem is “yes” if I) monad units η1, η2 map pairs in V to pairs
in C, II) V is closed under effect-free constants and III) C is closed under algebraic
operations in the λc-calculus. We prove this by extending Mitchell’s representation in-
dependence proof [17] with logical relations for monads constructed by categorical
��-lifting [11], which is a semantic formulation of the leapfrog method introduced
by Lindley and Stark [14,15]. The point of this result is the generality: it holds with
any monad, algebraic operation and relation V and C. We demonstrate the flexibility
of our solution by showing a general comparison theorem of two monadic semantics
related by strong monad morphisms (Section 4), and comparing two interpretations of
new name creation by Stark’s new name creation monad [25] and a global state monad
(Section 5). In Section 6 we consider the effect simulation problem under the presence
of recursive functions.

Preliminary. A bold letter, such as x, abbreviates a sequence x1 · · · xn. The length of
the sequence is written by |x|. We regard every set as a discrete category. We write ⇒
and λ for exponentials and currying operators in a CCC. A bi-CCC is a CCC with finite
coproducts. For a monad (T, η, μ) and a morphism f : I → T J, we write f # for μJ ◦T f .

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part II, LNCS 6756, pp. 174–185, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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2 The λc-Calculus with Algebraic Operations

We adopt the simply-typed λc-calculus with effect-free constants and algebraic op-
erations [22] as an idealised call-by-value functional language. In Section 6 we add
recursive functions.

Let B be the set of base types. We use b (and its variants) to range over B. An
effect-free constant in the calculus takes a value of type b1 × . . . × bn and returns a
value of type

∑m
i=1
∏li

j=1 b′i j. We encode this type information by an element in B∗ ×
(B∗)∗. Examples of effect-free constants are the equality predicate: eqb : b × b →
1 + 1 and the division function with a reminder and error: div : nat × nat → nat ×
nat+ 1. An algebraic operation in the calculus has the form o(xb1

1 .M1, . . . , x
bn
n .Mn). The

variables xi are bound in each subterm Mi. The number of subterms of the algebraic
operation and the types of the bound variables in each subterm are specified by an
element in (B∗)∗ called arity. For instance, an algebraic operation of arity (ε, b1b2) looks
like o(M1, x

b1
1 xb2

2 .M2). The symbols of effect-free constants and algebraic operations
added to the calculus are specified by a signature Σ over B. It assigns a set of symbols
to each element in B∗ × (B∗)∗ + (B∗)∗. We assume that Σ(x) is disjoint with each other.
We write Σb→a and Σa for the sets Σ(ι1(b, a)) and Σ(ι2(a)), respectively.

We define the computational lambda calculus λc(B, Σ) over the set B of base types
and a signature Σ over B. The types and terms of λc(B, Σ) are defined as follows:

ρ ::= b | ρ⇒ ρ | 1 | ρ × ρ | 0 | ρ + ρ
M ::= x | λx ρ . M | MM | ∗ | (M,M) | πi(M) | ⊥ρ |

ιi(M) | δ(M, x.M, x.M) | let x = M in M | c M | oρ(xb.M, · · · , xb.M)

where c, o ranges over the set of symbols for effect-free constants and algebraic opera-
tions specified by Σ. The type system of λc(B, Σ) extends the one for the simply typed
lambda calculus with products and sums (see e.g. [18]). The term⊥ρ denotes the unique
term of type 0 ⇒ ρ, and the δ-term denotes the sum elimination. The typing rules for
the last three terms are the following:

Γ � M : ρ Γ, x : ρ � N : σ
Γ � let x = M in N : σ

Γ � M : b1 × · · · × bn c ∈ Σb1···bn→(b′1,··· ,b
′
m)

Γ � c M :
∑m

i=1
∏|b′i |

j=1 b′i j

Γ, xi1 : bi1, · · · , xi|bi| : bi|bi | � Mi : ρ 1 ≤ i ≤ n o ∈ Σ(b1,··· ,bn)

Γ � oρ(xb1
1 .M1, · · · , xbn

n .Mn) : ρ .

We move to the semantics of the λc(B, Σ)-calculus.

Definition 1 ([22]). Let T = (T, η, μ, θ) be a strong monad over a CCC C and Z ∈ C.
We write stZ

I,J : I × (Z ⇒ J)→ Z ⇒ (I× J) for the strength of Z ⇒ −. A Z-ary algebraic
operation for T is a natural transformation αI : Z ⇒ T I → T I such that

αI×J ◦ Z ⇒ θI,J ◦ stZ
I,J = θI,J ◦ I × αJ , μI ◦ αT I = αI ◦ Z ⇒ μI .

Let A : B→ C be a functor to a bi-CCC C. We extend A to a functor A′ : (B∗)∗ → C by
A′(b1, · · · , bn) =

∑n
i=1
∏|bi |

j=1 Abi j. Below we simply write A for A′.
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Definition 2. A λc(B, Σ)-structure is a tuple A = (C,T , A, k, α) where C is a bi-CCC,
T is a strong monad on C, A is a functor of type B → C, k assigns to each c ∈ Σb→a

a morphism kc :
∏|b|

i=1 Abi → Aa, and α assigns to each o ∈ Σa an Aa-ary algebraic
operation αo for T .

We writeA1 ×A2 to mean the evident product of two λc(B, Σ)-structuresA1,A2. Each
λc(B, Σ)-structureA determines a natural interpretationA[[−]] of types and well-typed
terms of λc(B, Σ) in the category of A (see e.g. CBV Translation in [1]). Effect-free
constants and algebraic operations are interpreted as follows:

A[[c M]] = T (kc) ◦ A[[M]]

A[[oρ(x1.M1, · · · , xn.Mn)]] = αoA[[ρ]] ◦ 〈λ|x1 |(A[[M1]]), · · · , λ|xn |(A[[Mn]])〉.

3 Effect Simulation Problem

The main problem we consider is the effect simulation problem. We first introduce a
set-theoretic version of it. LetA1 andA2 be λc(B, Σ)-structures over Set. A simulation
between A1 and A2 is a pair (V,C) where V and C are B-indexed families of binary
relations such that Vb ⊆ A1[[b]] × A2[[b]] and Cb ⊆ T1A1[[b]] × T2A2[[b]]; we call V
and C value simulation and computation simulation, respectively. The effect simulation
problem is the following:

Suppose that a simulation (V,C) between A1 and A2 is given. Then for any
well-typed term x1 : b1, · · · , xn : bn � M : b and (vi,wi) ∈ Vbi, do we have
(A1[[M]](v),A2[[M]](w)) ∈ Cb?

Example 1. Let B be the set of base types and Σ be the signature that specifies only
two algebraic operation symbols: null ∈ Σε and join ∈ Σ(ε,ε). We regard λc(B, Σ)
as a call-by-value functional language with constructors for nondeterministic com-
putation. The standard semantics of λc(B, Σ) is given by the λc(B, Σ)-structure A1 =

(Set,Tp, A, k, α1), where Tp is the finite powerset monad, and α1 assigns algebraic op-
erations by α1(null) = ∅ and α1(join)(x, y) = x∪y. On the other hand, one may represent
nondeterministic choices by finite lists instead of finite sets. This representation corre-
sponds to the semantics of λc(B, Σ) by the λc(B, Σ)-structure A2 = (Set,Tm, A, k, α2)
whereTm is the free monoid monad, and α2 assigns algebraic operations by α2(null) = ε
(the empty list) and α2(join)(x, y) = x · y (the concatenation of two lists).

We expect that for any well-typed term x1 : b1, · · · , xn : bn � M : b and vi ∈ Abi,
the denotationA1[[M]](v) gives the set of possible choices listed up inA2[[M]](v). That
is, we expect that the answer to the effect simulation problem with value simulation
Vb = {(v, v) | v ∈ Ab} and computation simulation Cb = {(X, l) ∈ TpAb × TmAb | X =
the set of elements in l} is yes.

We move on to the general situation where the underlying categories are other than
Set. To formulate the concept of relation between two objects from different categories,
we first formulate the concept of predicate over objects in arbitrary category in terms of
fibrational category theory, then derive the concept of relation as predicates over prod-
uct categories. Formulating logical relations in fibrational category theory is advocated
by Hermida [9], which subsumes subscone [19]; see Example 3-1.
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Here we give brief definitions of fibration and related concepts; see [10] for the
complete detail. Let p : E → B be a functor. We say that X ∈ E is above I ∈ B if
pX = I. We use the same word for morphisms in E and B. A fibre category over I ∈ B
is the subcategory of E consisting of objects above I ∈ B and morphisms above idI . We
next assume that p is faithful. One easily sees that EI is a preorder. In this situation, we
regard EI as the preorder of predicates on I. For X, Y ∈ E, by f : X→̇Y we mean that
f ∈ B(pX, pY) and there exists a (necessarily unique) morphism ḟ : X → Y above f .
We call ḟ the witness of f : X→̇Y. The statement f : X→̇Y means that f is a morphism
that sends elements satisfying X to those satisfying Y.

Definition 3. A partial order bifibration with fibrewise small products is a faithful func-
tor p : E→ B such that:

(Partial Order) Each fibre category is a partial order.
(Fibration) 1 For any I ∈ B, Y ∈ E and f ∈ B(I, pY), there exists X ∈ E above I such

that f : X→̇Y and the following property holds: for any Z ∈ E and h : pZ → I,
f ◦ h : Z→̇Y implies h : Z→̇X. This property and EI being a partial order imply
that X is unique; hence we write it by f ∗Y, and the witness of f : f ∗Y→̇Y by f Y.
Furthermore, for any f ∈ B(I, J), the mapping Y ∈ EJ �→ f ∗Y ∈ EI extends to a
functor f ∗ : EJ → EI . We call it inverse image functor. Intuitively, f ∗Y corresponds
to the predicate {i ∈ I | f (i) ∈ Y} on I.

(Bi–) Each inverse image functor has a left adjoint called direct image functor.
(Fibrewise Small Products) Each fibre category has small products and inverse image

functors (necessarily) preserve them.

Definition 4. A category for logical relations over a bi-CCC C is a partial order bifi-
bration p : E→ C with fibrewise small products2 such that E is a bi-CCC and p strictly
preserves the bi-cartesian closed structure. Notational convention: we write the bi-
cartesian closed structure on E with dots on the top, like ⇒̇, 1̇, ×̇, 0̇, +̇, ėv, λ̇, 〈̇−,−〉̇, · · · .

In [10, Section 9.2], it is discussed when a fibration becomes a category for logical
relations. Particularly, the subobject fibration of any presheaf category is a category for
logical relations. Below we see a special case: the subobject fibration of Set.

Example 2. [10, Chapter 0] We define the category Pred by the following data: an
object in Pred is a pair (X, I) where X is a subset of I and a morphism from (X, I) to (Y, J)
is a function f : I → J such that for any i ∈ X, f (i) ∈ Y. This category is equivalent
to the category of subobjects of Set. The evident forgetful functor π : Pred → Set is
a bifibration; the inverse image functor for a function f : I → J is given by f ∗(Y, J) =
({x | f (x) ∈ Y}, I), and it has a left adjoint given by f∗(X, I) = ({ f (x) | x ∈ X}, J).
The fibre category PredI is the poset (2I ,⊆), and the intersection gives small products.
Therefore π is a partial order bifibration with fibrewise small products.

The category Pred has a bi-cartesian closed structure that is strictly preserved by π
[10, Exercise 9.2.1]. The exponential is given by (X, I) ⇒̇ (Y, J) = ({ f | ∀x ∈ X . f (x) ∈
Y}, I ⇒ J). To summarise, π is a category for logical relations.

1 This definition of fibration exploits the assumption that p is faithful. The concept of fibration
is actually defined on arbitrary functor [10, Definition 1.1.3].

2 We actually only use fibrewise products up to the cardinality of the set B of base types.
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Proposition 1. Let p : E → B be a category for logical relations, C be a bi-CCC and
F : C→ B be a finite-product preserving functor. Then the pullback F∗(p) : F∗(E)→ C
of p along F is a category for logical relations.

Proof. This is a straightforward generalisation of the proof that any subscone is a CCC
[19]. We use direct image functors to construct finite coproducts in F∗(E).

Example 3. 1. A subscone [19] over a bi-CCC C is the category obtained by pulling
back π : Pred → Set along the global element functor C(1,−) : C → Set. The leg
from the subscone to C is a category for logical relations.

2. We pull-back π along the product functor − × − : Set2 → Set. This yields the
category Rel of binary relations, and the leg q : Rel → Set2 is a category for
logical relations.

Having abstracted the concept of predicates in terms of fibrational category theory, we
now generalise the effect simulation problem to the following effect property problem.
LetA = (C,T , A, k, α) be a λc(B, Σ)-structure and p : E → C be a category for logical
relations. A property over A is a pair (V,C) of functors V,C : B → E such that for all
base types b ∈ B, Vb is above Ab and Cb is above T Ab. The problem is:

Given a property (V,C) overA, does any well-typed term x1 : b1, · · · , xn : bn �
M : b satisfyA[[M]] : Vb1 ×̇ · · · ×̇ Vbn →̇ Cb?

An effect simulation problem between two λc(B, Σ)-structures A1 and A2 is nothing
but an effect property problem over A1 × A2; particularly the set-theoretic one in the
beginning of this section uses q : Rel→ Set2 as a category for logical relations.

We say that a property (V,C) over a λc(B, Σ)-structureA = (C,T , A, k, α) satisfies:

(I) if for all base types b ∈ B, we have ηAb : Vb →̇ Cb.
(C1) if for all (b, a) ∈ B∗ × (B∗)∗ and effect-free constant symbols c ∈ Σb→a, we have

kc :
∏̇|b|

i=1Vbi →̇ Va.
(C2) if for all arities a ∈ (B∗)∗, algebraic operation symbols o ∈ Σa and base types

b ∈ B, we have αoAb : Va ⇒̇Cb →̇ Cb.

Theorem 1. LetA be a λc(B, Σ)-structure and (V,C) be a property overA that satisfies
(I), (C1) and (C2). Then for any well-typed term x1 : b1, · · · , xn : bn � M : b, we have
A[[M]] : Vb1 ×̇ · · · ×̇ Vbn →̇ Cb.

The rest of this section is the proof of the above theorem. The proof extends Mitchell’s
representation independence [17] using a logical relation with a special care on monads.
LetA = (C,T , A, k, α) be a λc(B, Σ)-structure and (V,C) be a property overA that satis-
fies (I), (C1) and (C2). We aim to construct a λc(B, Σ)-structureD = (E, Ṫ ,V, k̇, α̇) such
that 1) Ṫ ḟ , η̇X , μ̇X , θ̇X,Y are respectively above T (p ḟ ), ηpX , μpX , θpX,pY , 2) k̇c is above kc,
3) α̇oX is above αopX and 4) ṪVb ≤ Cb holds in ET Ab.

We construct the strong monad Ṫ on E by categorical ��-lifting [11], which is a
semantic formulation of Lindley and Stark’s��-lifting [15,14]. Let X ∈ E be above I ∈
C. We first define the object X��(Cb) above T I to be the inverse image of (X ⇒̇Cb)⇒̇Cb
along the following morphism σT ,Ab

I : T I → (I ⇒ T Ab)⇒ T Ab:

σT ,Ab
I = λ(ev# ◦ θI⇒T Ab,I ◦ 〈π2, π1〉).
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This is the strong monad morphism (see Section 4) from T to the continuation monad
(− ⇒ T Ab)⇒ T Ab. We then define Ṫ X by the following fibrewise product:

Ṫ X =
∧
b∈B

X��(Cb)

⎛⎜⎜⎜⎜⎜⎝=
∧
b∈B

(σT ,Ab
I )∗((X ⇒̇ Cb) ⇒̇Cb)

⎞⎟⎟⎟⎟⎟⎠ . (1)

Proposition 2 ([11]). Let X, Y ∈ E.

1. For any morphism f in C, f : X →̇ Y implies T f : Ṫ X →̇ ṪY.
2. We have ηpX : X →̇ Ṫ X, μpX : Ṫ Ṫ X →̇ Ṫ X and θpX,pY : X ×̇ ṪY →̇ Ṫ (X ×̇ Y).

From this, for any morphism ḟ : X → Y in E, we define Ṫ ḟ to be the witness of
T (p ḟ ) : Ṫ X →̇ ṪY. We similarly define morphisms η̇X , μ̇X , θ̇X,Y in E to be the witnesses
of the statements in Proposition 2-2. Then the tuple Ṫ = (Ṫ , η̇, μ̇, θ̇) forms a strong
monad over E satisfying the condition 1.

From (C1), for each (b, a) ∈ B∗ × (B∗)∗ and c ∈ Σb→a, we define k̇c to be the witness
of kc :

∏̇|b|
i=1Vbi →̇ Va. This defines the component k̇ ofD satisfying the condition 2.

We construct the component α̇ of D satisfying the condition 3. We first prove a
general fact about algebraic operations for the ��-lifted monads Ṫ :

Proposition 3. Let Z ∈ C, α be an Z-ary algebraic operation for T and Ż ∈ E be above
Z. If αAb : Ż ⇒̇ Cb →̇ Cb holds for all base types b ∈ B, then for any object X ∈ E, we
have αpX : Ż ⇒̇ Ṫ X →̇ Ṫ X. 3

For any a ∈ (B∗)∗, Va is above Aa. Therefore from (C2) and Proposition 3, for any arity
a ∈ (B∗)∗, algebraic operation symbol o ∈ Σa and X ∈ E, we haveαopX : Va⇒̇Ṫ X→̇Ṫ X.
We define α̇oX to be its witness. Then α̇o is a Va-ary algebraic operation for Ṫ .

We have obtained the λc(B, Σ)-structure D satisfying the conditions 1–3. One can
easily show the basic lemma of logical relations:

Proposition 4. For any well-typed λc(B, Σ)-term x1 : ρ1, · · · , xn : ρn � M : ρ, we have
A[[M]] : D[[ρ1]] ×̇ · · · ×̇ D[[ρn]] →̇ ṪD[[ρ]]; its witness is given byD[[M]].

We finally show the condition 4.

Proposition 5. For any base type b ∈ B, we have ṪVb ≤ Cb in ET Ab.

Proof. As ṪVb =
∧

b′∈B T��(Cb′)Vb, it is sufficient to show T��(Cb)Vb ≤ Cb. Let us
write η̇b : Vb→ Cb for the witness of ηAb : Vb →̇Cb. Then in E we obtain a morphism

ėv ◦ 〈̇id, λ̇(η̇b ◦ π̇2)〉̇ ◦ σT ,Ab
Ab ((Vb ⇒̇Cb) ⇒̇ Cb) : T��(Cb)Vb→ Cb

which is above ev ◦ 〈id, λ(ηAb ◦ π2)〉 ◦ σT ,Ab
Ab = idT Ab. Therefore T��(Cb)Vb ≤ Cb.

Theorem 1 is an immediate corollary of Proposition 4 and 5. This ends the proof.

3 Though we do not use it, the converse of this statement holds: if αpX : Ż ⇒̇ Ṫ X →̇ Ṫ X holds
for all X ∈ E, then αAb : Ż ⇒̇ Cb →̇ Cb holds for any base type b ∈ B.
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4 Effect Simulation by Monad Morphism

Monadic semantics are often related by strong monad morphisms. LetTi = (Ti, ηi, μi, θi)
be strong monads (i = 1, 2) over a cartesian categoryC. A strong monad morphism from
T1 to T2 is a natural transformation σ : T1 → T2 such that

σI ◦ (η1)I = (η2)I σI ◦ (μ1)I = (μ2)I ◦ σT2I ◦ T1σI (θ2)I,J ◦ I × σJ = σI×J ◦ (θ1)I,J.

It transfers each Z-ary algebraic operation α for T1 to the following Z-ary algebraic
operation σα for T2:

(σα)I = Z ⇒ T2I
Z⇒(η1)T2 I �� Z ⇒ T1T2I

αT2 I �� T1T2I
σT2 I �� T2T2I

(μ2)I �� T2I.

We define the image of a λc(B, Σ)-structure A1 = (C,T1, A, k, α) along σ to be the
λc(B, Σ)-structure σA1 = (C,T2, A, k, σα), where σα assigns the algebraic operation
σ(αo) to each algebraic operation symbol o ∈ Σa of arity a ∈ (B∗)∗.

Theorem 2. LetA = (C,T1, A, k, α) be a λc(B, Σ)-structure such that C is small, T2 be
a strong monad over C and σ : T1 → T2 be a strong monad morphism. Then for any
well-typed term x1 : b1, · · · , xn : bn � M : b, we have σ ◦ A[[M]] = (σA)[[M]].

Proof. We pull-back the subobject fibration Sub([Cop, Set]) → [Cop, Set] along the
finite-product preserving functor D : C2 → [Cop, Set] defined by D(I, J) = yI×yJ; here
y is yoneda embedding. From Proposition 1, the leg of the pullback, say q : K → C2,
is a category for logical relations. Now the following simulation (V,C) betweenA and
σA satisfies (I), (C1) and (C2):

VbH = {( f , f ) | f ∈ C(H, Ab)} CbH = {( f , σAb ◦ f ) | f ∈ C(H, T1Ab)} (H ∈ C)

The goal is a corollary of Theorem 1 with the above simulation.

Example 4. (Continued from Example 1) There is a monad morphism σ from Tm to
Tp mapping a list l ∈ TmI to the set σI (l) ∈ TpI of elements occurring in l. Thus from
Theorem 2, for any well-typed term x1 : b1, · · · , xn : bn � M : b and value vi ∈ Abi,
A1[[M]](v) is the set of elements occurring inA2[[M]](v).

Example 5. Let A = (C,T , A, k, α) be a λc(B, Σ)-structure such that C is small. We
write CT ,⊥ for the continuation monad with respect to the monad T and a result type ⊥
(which is just an object in C). The functor part of CT ,⊥ is given by CT ,⊥I = (I ⇒ T⊥)⇒
T⊥. As we have seen in the proof of Theorem 1, there is a strong monad morphism
σT ,⊥ : T → CT ,⊥. We instantiate Theorem 2 with it, and obtain an equation σT ,⊥ ◦
A[[M]] = σT ,⊥A[[M]], particularly for any closed M. The r.h.s. of this equation is the
CPS semantics [2] of λc(B, Σ), while the l.h.s. roughly corresponds to λk . k#(A[[M]]).
This equation is indeed the monadic congruence result [2] restricted to base types.

5 Comparing Two Monadic Semantics of ν-Calculus

Dynamic name creation, such as the one in π-calculus, is often categorically modelled
in the presheaf category over the category I of finite sets and injections between them
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Table 1. Definition of two ν-calculus structures

A1 A2

Category [I,Set] Set
Monad T1F = colimQ∈I F(− + Q) T2I = N⇒ I × N

Name type object A1n = N : I ↪→ Set A2n = N

Name equality predicate (k1eq)P(i, j) =

{
ι1(∗) (i = j)
ι2(∗) (i � j)

(k2eq)(i, j) =

{
ι1(∗) (i = j)
ι2(∗) (i � j)

Name creation α1ν: see (2) below α2ν = λ f x . f (x)(x + 1)

[25,26]. On the other hand, in practical programming names are represented by natural
numbers and dynamic name creation is implemented by a hidden global counter that
keeps track of the next fresh name.

In this section, we consider Stark’s ν-calculus [25] and discuss an effect simulation
problem between presheaf semantics and global counter semantics of name creation.
The ν-calculus has only one base type n for names, one effect-free constant eq : n×n→
1 + 1 for checking name equality, and one algebraic operation ν(xn.M) whose intended
meaning is to allocate a fresh name and bind it to x, like the one in π-calculus. We write
Σν for the signature specifying only these symbols. The ν-calculus is then defined to be
λc({n}, Σν). Below we call a λc({n}, Σν)-structure ν-calculus structure.

In Table 1 we present two ν-calculus structures with which we consider an effect
simulation problem. The ν-calculus structure A1 extracts the ingredients that are used
in the categorical semantics of the ν-calculus in [25]. The monad T1 is Stark’s dynamic
name creation monad:

T1FP = colimQ∈I F(P + Q) = {(Q, x) | Q ∈ I, x ∈ F(P + Q)}/ ∼

where (Q, x) ∼ (R, y) if there are S ∈ I and two injections l : Q� S ,m : R� S such
that F(P + l)(x) = F(P + m)(y). We note T NP � N(P + 1). The object for the name
type is the inclusion functor N : I ↪→ Set; this is the standard choice for representing
names. The behaviour of the name equality predicate at a finite set P is given in Table
1; there i, j are elements in P. The algebraic operation α1ν for name creation is defined
by

((α1ν)F )P(α) = [1 + Q, F(i)(y)]∼ (where [Q, y]∼ = αP+1(ι1, ι2)) (2)

where i : (P + 1) + Q→ P + (1 + Q) is the coherence isomorphism.
The ν-calculus structure A2 is a semantic analogue of dynamic name creation by

a global state. We note that the interpretation A2[[−]] is not sound with respect to the
ν-calculus axioms in [25].

We compare the denotation of a well-typed term x1 : n, . . . , xn : n � M : n in each
ν-calculus structure. Suppose that p names have been allocated, and some of them are
supplied to the free variables of M. Then M returns either one of the allocated names
supplied to its free variables, or M allocates a new name and returns it. This behaviour
is expressed differently in each ν-calculus structure:
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– (inA1) Let P be the finite set consisting of p allocated names. We feed i1, . . . , in ∈
P to the free variables of M. When M returns an allocated name, the denotation
A1 �M�P (i) ∈ T NP � P + 1 is ι1(i) with some i ∈ P. Otherwise, M returns a new
name and the denotation is ι2(∗).

– (in A2) Natural numbers 0, . . . , p − 1 correspond to the allocated names. We thus
feed 0 ≤ i1 . . . in < p to the free variables of M. The global counter pointing
to the next fresh name is now p, so the name that M returns is given by i =
π1(A2 �M� (i)(p)). When M returns an allocated name, 0 ≤ i < p; otherwise i � p.
In fact, this behaviour of M remains the same even when the counter is increased
from p. Therefore when M returns an allocated name i, for any k ≥ p we have
π1(A2 �M� (i)(k)) = i; otherwise for any k ≥ p we have π1(A2 �M� (i)(k)) ≥ k.

Based on this analysis, we establish a correspondence between the denotation of M
in each ν-calculus structure. As names are represented differently, this relationship is
parametrised by bijective correspondences between allocated names and natural num-
bers. Below for a finite set P, by |P| we mean its cardinality. For a natural number p, we
write p for the finite set {0, · · · , p− 1}. A name enumeration is a bijection σ : P→ |P|.
Theorem 3. Let x1 : n, . . . , xn : n � M : n be a ν-calculus term. For any finite set P,
elements i1 . . . in ∈ P and a name enumeration σ : P→ |P|, either

– there is i ∈ P such that A1 �M�P (i) = ι1(i) and for all k ≥ |P|, we have π1 ◦
A2 �M� (σ(i))(k) = σ(i), or

– A1 �M�P (i) = ι2(∗) and for all k ≥ |P|, we have π1 ◦ A2 �M� (σ(i))(k) � k.

The rest of this section is the proof of this theorem. We construct a suitable category for
logical relations over [I, Set] × Set, and give a simulation (V,C) between A1 and A2

that implies the goal of the theorem. We then check that it satisfies (I), (C1) and (C2).
We observe that the theorem is parametrised by name enumerations, so we first in-

troduce the category E of name enumerations. As defined above, a name enumeration is
a bijection σ : P → |P|. A morphism h from σ to τ : Q → |Q| is a (necessarily unique)
injection h : P→ Q such that σ = τ ◦ h. We note that E is actually equivalent to (N,≤).
There is an evident projection functor π : E → I.

We next pull-back the subobject fibration Sub([E, Set]) → [E, Set] along the finite-
product preserving functor D : [I, Set]×Set→ [E, Set] defined by D(F, I) = (F◦π)×ΔI.
We obtain the category q : ERel → [I, Set] × Set for logical relations by Proposition
1. An object in ERel is a triple (X, F, I) where F ∈ [I, Set], I ∈ Set and X assigns a
binary relation Xσ ⊆ FP × I to each name enumeration σ : P → |P|. Moreover, X
should satisfy the monotonicity condition: for any h ∈ E(σ, τ) and (x, y) ∈ Xσ, we have
(Fhx, y) ∈ Xτ.

We give the simulation (V,C) between A1 and A2 that entails Theorem 3. For each
name enumeration σ : P→ |P|, we define Vnσ = {(i, σ(i)) | i ∈ P} and

Cnσ = {(ι1(i), f ) | i ∈ P ∧ ∀k ≥ |P| . π1 ◦ f (k) = σ(i)} ∪
{(ι2(∗), f ) | ∀k ≥ |P| . π1 ◦ f (k) ≥ k}.

Proposition 6. The above simulation (V,C) satisfies (I), (C1) and (C2).

Theorem 3 is an immediate corollary of Theorem 1 with the above simulation.
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Γ, f : ρ→ σ, x : ρ � M : σ
Γ � μ f x.M : ρ→ σ

A[[Γ � μ f x.M : ρ⇒ σ]]
= fixA[[Γ]]

A[[ρ⇒σ]](A[[λx . M]]# ◦ θA[[Γ]],A[[ρ⇒σ]]).

Fig. 1. Recursion: Typing Rule and Interpretation

6 Extending λc(B, Σ) with Recursive Functions

We next add the recursive function constructor μ f x.M to λc(B, Σ). This term creates a
closure that may recursively call itself inside M; see Figure 1 for its typing rule. We
call the extended calculus λfix

c (B, Σ). To interpret the recursion under the presence of
computation, we employ uniform T-fixpoint operator [24]. An equivalent, direct for-
mulation of recursion in call-by-value is also studied in [8]. Let T = (T, η, μ, θ) be a
strong monad over a cartesian category C. A uniform T-fixpoint operator for T is a
family of mappings fixI : C(T I, T I) → C(1, T I) such that fixI( f ) = f ◦ fixI( f ), and it
satisfies the uniformity principle: for any f : T I → T I, g : T J → T J and h : I → T J,
h# ◦ f = g ◦ h# implies g = h# ◦ fixI( f ). When C is a CCC, we can parametrise it as
fixX

I : C(X × T I, T I)→ C(X, T I); see [24] for the detail.

Definition 5. A λfix
c (B, Σ)-structure is a pair of a λc(B, Σ)-structure A and a uniform

T-fixpoint operator fix for the strong monad ofA.

The interpretation of a recursive function constructor is given in Figure 1.
We aim to extend Theorem 1 to λfix

c (B, Σ) and a λfix
c (B, Σ) structure A where 1) the

category ofA is ωCPO-enriched4, 2) the strong monad ofA lifts the given domain and
3) the uniform T -fixpoint operator is given by the least fixpoint. That T lifts a given
domain (as defined below) is expressed by the fact that T admits an algebraic operation
denoting the least element of T I.

Definition 6. We call a strong monad T over a Pos-enriched bi-CCC C pseudo-lifting
if it has an 0-ary algebraic operation ⊥ such that for any I ∈ C, ⊥I is the least element
in C(0⇒ T I, T I) � C(1, T I).

We note that for any pseudo-lifting monad (T1,⊥) over a Pos-enriched bi-CCC C, T2

be another strong monad over C and strong monad morphism σ : T1 → T2, the pair
(T2, σ⊥) is pseudo-lifting and σ is strict, that is, σI ◦ ⊥I = (σ⊥)I .

Definition 7. An ωCPO-enriched λc(B, Σ)-structure is a tuple (C,T , A, k, α,⊥) such
that the first five components form a λc(B, Σ)-structure, C is an ωCPO-enriched bi-
CCC and (T ,⊥) is a pseudo-lifting monad.

We can turn every ωCPO-enriched λc(B, Σ)-structure into a λfix
c (B, Σ)-structure by par-

ing it with the uniform T -fixpoint operator given by fixI( f ) =
⊔

n∈N f (n) ◦ ⊥I .
Let A = (C,T , A, k, α,⊥) be an ωCPO-enriched λc(B, Σ)-structure, and p : E → C

be a category for logical relations. Since p is faithful, we can restrict the partial order

4 We write Pos for the category of posets and monotone functions with finite products as the
symmetric monoidal structure. The category ωCPO is a subcategory of Pos where objects are
ω-complete partial orders and and morphisms are continuous functions.
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on C(pX, pY) to E(X, Y). Moreover, as p strictly preserves bi-cartesian closed structure,
E becomes a Pos-enriched bi-CCC. We call X ∈ E above T I admissible if 1) ⊥I : 1̇→̇X
and 2) for any Y ∈ E and ω-chain ḟi in E(Y, X), we have

⊔∞
i=0(p ḟi) : Y →̇ X.

Theorem 4. Let A = (C,T , A, k, α,⊥) be an ωCPO-enriched λc(B, Σ)-structure, p :
E → C be a category for logical relations, (V,C) be a property over (C,T , A, k, α)
such that it satisfies (I), (C1) and (C2) and Cb is admissible for all base types b ∈ B.
Then for any well-typed λfix

c (B, Σ)-term x1 : b1, · · · , xn : bn � M : b, we haveA[[M]] :
Vb1 ×̇ · · · ×̇ Vbn →̇ Ob.

Theorem 5. LetA = (C,T1, k, A, α,⊥) be an ωCPO-enriched λc(B, Σ)-structure such
that C is small, T2 be a strong monad over C and σ : T1 → T2 be a strong monad
morphism. Then for any well-typed λfix

c (B, Σ)-term x1 : b1, · · · , xn : bn � M : b, we have
σ ◦ A[[M]] = (σA)[[M]].

7 Related Work

Filinski is one of the pioneers in logical relations for monads [3], and developed various
techniques to establish relationships between semantics of higher-order languages with
effects [2,3,4,5,6]. He pointed out at least three methods to obtain logical relations for
monads: 1) When T is a syntactically constructed monad, such as state monad and
continuation monad, then define a logical relation Ṫ for T in the same way as T is
constructed. 2) For a logical relation Ṫ for a monad T and a strong monad morphism
σ : S → T , the inverse image σ∗Ṫ is a logical relation for S . 3) For a family of logical
relations Ṫi for a monad T , the intersection

∧
i Ṫi is again a logical relation for T . A

method based on factorisation systems is also proposed by Larrecq et al [13].
The categorical ��-lifting is technically a particular combination of the methods

1–3 (in fibrational category theory). However, what is new about ��-lifting is that we
use the simulation / property we would like to establish on computational effects to
define the logical relation Ṫ ; see definition (1). This idea is a secret recipe in the proofs
of various results by the precursors of categorical ��-lifting, such as biorthogonality
[7,16,20], ��-closure [21] and leapfrog method [14,15]; see also [12].

The advantage of logical relations for monads by ��-lifting is that it does not limit
the form of simulation / property we would like to establish on computational effects.
Furthermore, Proposition 3 gives a good characterisation of when algebraic operations
are related by the logical relations given by ��-lifting. On the other hand, it is rather
difficult to check whether non-algebraic operations that manipulate computational ef-
fects, such as Felleisen’s C- andA-operators, are related by the logical relations given
by ��-lifting; this shall be discussed in a separate paper. Extending our results with
recursive types and handlers for algebraic effects [23] is also a future work.
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Abstract. We present an abstract construction for building differential
categories useful to model resource sensitive calculi, and we apply it to
categories of games. In one instance, we recover a category previously
used to give a fully abstract model of a nondeterministic imperative lan-
guage. The construction exposes the differential structure already present
in this model. A second instance corresponds to a new Cartesian differ-
ential category of games. We give a model of a Resource PCF in this
category and show that it enjoys the finite definability property. Com-
parison with a relational semantics reveals that the latter also possesses
this property and is fully abstract.

1 Introduction

An important aim in studying higher-order computation is to understand and
control the way resources are used. One way to do this is by studying calculi de-
signed to capture resource usage, and their denotational models. Two such calculi
— the differential λ-calculus [6] of Ehrhard and Regnier and the resource calculus
introduced by Tranquilli [13] are fundamentally related at the semantic level [5]:
both may be interpreted using the notion of differential category introduced by
Blute, Cockett and Seely [3]. In this paper, we study these concepts on both
abstract and concrete levels. We give a construction of a differential category
from any symmetric monoidal category, and use it to investigate the structure of
newly discovered differential categories, relate them to existing examples, and to
prove full abstraction results for Resource PCF, a typed programming language
based on the resource calculus.

A potential source of differential categories, although not investigated hith-
erto, is game semantics : resource usage is represented rather explicitly in games
and strategies. Indeed, we show that an existing games model of Idealized Algol
with non-determinism, introduced by Harmer and McCusker [8] contains a dif-
ferential Cartesian operator [4], and may therefore be used to interpret Resource
PCF, although this interpretation contains non-definable finitary elements.

We then present the construction which we shall use to analyze differential
categories. Its key step takes a symmetric monoidal category with countable
biproducts, embeds it in its Karoubi envelope (idempotent splitting) and then
constructs the cofree cocommutative comonoid on this category and a differ-
ential operator on the Kleisli category of the corresponding comonad. Since
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biproducts may be added to any category by free constructions, we have a way
of embedding any symmetric monoidal (closed) category in a Cartesian (closed)
differential category.

Although this construction is somewhat elaborate, it provides a useful tool for
analyzing and relating more directly presented models. For example, applying
it to the terminal (one object, one morphism) SMCC yields the key example of
a differential category (and model of resource calculus [5]) based on the finite-
multiset comonad on the category of sets and relations. We also show that our
differential category of games embeds in one constructed from a simple sym-
metric monoidal category of games. By refining the strategies in these games to
eliminate history sensitive behaviour, we obtain a constraint on strategies (∼-
closure) in our directly presented model of Resource PCF which corresponds to
finite definability. Another useful observation is that any functor of symmetric
monoidal categories lifts to one between the differential categories constructed
from them. In particular, from the terminal functor we derive a functor from
our category of games and ∼-closed strategies into the relational model which is
shown to be full. From this we may deduce that the relational model of Resource
PCF is fully abstract.

2 Differential Categories and Resource PCF

Differential categories were introduced by Blute, Cockett and Seely to formalize
derivatives categorically. The authors started from monoidal categories [3], then
extended the notion to Cartesian ones [4]; a further generalization to Cartesian
closed categories has been made in [5] to model differential and resource λ-calculi.

Throughout this paper we will be working with categories whose hom-sets
are endowed with the structure of a commutative monoid (+, 0). We elide all
associativity and unit isomorphisms associated with monoidal categories.

Let C be a commutative-monoid-enriched symmetric monoidal category, i.e.
it is a symmetric monoidal category such that composition and tensor preserve
the commutative monoid structure on hom-sets, so that (f + g);h = f ;h + g;h,
k; (f + g) = k; f +k; g, f ; 0 = 0 = 0; f , (f + g)⊗h = f ⊗h+ g⊗h and f ⊗0 = 0.

A coalgebra modality on C is a comonad (!, δ, ε) such that each object !A is
equipped with a comonoid structure ΔA : !A −→ !A ⊗ !A, eA : !A −→ I. In
addition to the associativity and unit equations for the comonoid, it should be
the case that δ is a morphism of comonoids, that is, δA; e!A = eA and δA;Δ!A =
ΔA; δA ⊗ δA.

Given such a structure, a differential combinator is a family of maps DA,B :
C(!A,B) → C(A⊗ !A,B), natural in A and B and respecting the commutative
monoid structure of the hom-sets, satisfying the following four axioms.

– D(eA) = 0,
– D(Δ; f⊗g) = (A⊗Δ); (D(f)⊗g)+(A⊗Δ);∼=; (f⊗D(g)) where f : !A→ B,

g : !A→ C and ∼= is the appropriate symmetry map,
– D(εA; f) = (A⊗ eA); f ,
– D(δA; !f ; g) = (A⊗ΔA); (D(f)⊗(δA; !f));D(g) for f : !A→ B and g : !B → C.
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Λr: M, N ::= x | λx.M | MP | ifz(M, M, M) | Fix(M) | terms
| succ(M) | pred(M) | zero

Λb: P ::= [L1, . . . , L�, N
!
1, . . . , N

!
n] bags

(a) Grammar of terms, resources and bags

Evaluation contexts: E�−� ::= �−� | EP | λx.E | pred(E) | succ(E) | ifz(E,M, N)
Let contexts: F �−� ::= �−� | (λx.F )P
Linear head reduction:

E�F �λx.E′�x��(P � [N ])� → E�F �λx.E′�N��P �
E�F �λx.E′�x��(P � [N !])� → E�F �λx.E′�N��(P � [N !])�

E�F �λx.n�[N !
1, . . . , N

!
k]� → E�F �n�� for some k ≥ 0,

E�ifz(zero, M, N)� → E�M� E�ifz(succ(n), M, N)� → E�N�

E�pred(succ(n))� → E�n� E�Fix(M)� → E�M [Fix(M)!]�

(b) Operational semantics.

Fig. 1. Syntax and operational semantics of Resource PCF

A differential category is a commutative-monoid-enriched symmetric monoidal
category with a coalgebra modality and a differential combinator. When the
coalgebra modality is a linear exponential comonad, its Kleisli category is a
Cartesian differential category whose differential combinators are denoted by
D×A,B : C(A,B) → C(A×A,B). We refer to [4] for the general definition.

A Cartesian-closed differential category is a Cartesian differential category
with closed structure, such that the operation of currying preserves the commu-
tative monoid structure on hom-sets and for all f : C × A → B, D×(Λ(f)) :
C×C → (A⇒ B) is equal to Λ(〈π0×0A, π1× idA〉;D×(f)). The leading exam-
ples of such categories, studied in [5], are Ehrhard’s category of finiteness spaces,
and the category MRel of “multiset relations”, which is the Kleisli category for
the finite-multiset comonad on the category Rel of sets and relations.

We now describe a simply typed resource calculus which incorporates the
constants of PCF, making it a prototypical resource-sensitive programming lan-
guage. Resource PCF has two syntactic categories: terms, that are in functional
position, and bags, that are in argument position and represent finite multisets of
resources. Figure 1(a) gives the grammar generating the set Λr of terms and the
set Λb of bags (whose union is denoted by �) together with their typical meta-
variables. A resource can be linear (it must be used exactly once) or reusable (it
can be used ad libitum) and in the latter case is decorated with a “!” superscript.

Terms of the form succn(zero) are denoted by n.
Types are generated by A,B ::= nat | A→ A. Environments Γ are finite lists

x1 : A1; · · · ;xn : An assigning types to variables. Typing rules are straightfor-
ward to define, yielding a collection of typed terms-in-context Γ �M : A.

The operational semantics is defined in Figure 1(b) via a linear head reduction.
An equivalent presentation more in the style of [13] would also be possible. We
say that a closed term M of ground type converges, written M⇓, if M reduces to
k for some k ∈ ω. We denote by C�·� arbitrary contexts (e.g., in Theorem 13).
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Resource PCF can be interpreted in any cpo-enriched Cartesian closed dif-
ferential category having a weak natural number object. The interpretations of
the constants and constructors of PCF are standard, leaving only the applica-
tion, which is treated as follows, as in [5]. In every Cartesian closed differential
category it is possible to define an operator � on morphisms f : C × A → B,
g : C → A setting f � g := 〈〈0C , g ◦ π0〉, id〉;D×(f) : C × A → B. Intuitively,
f � g is obtained by force-feeding the 2nd argument A of f with one copy of the
result of g. The type is not modified because f � g may still depend on A.

The interpretation [[M ]]Γ : [[Γ ]] → [[A]] of Γ �M : A is defined as usual, except
for the case of application where we set:

[[M [�L, �N !]]]Γ = 〈id,∑n
i=1[[Ni]]Γ 〉; ((· · · (Λ−([[M ]]Γ ) � [[L1]]Γ ) · · · ) � [[L�]]Γ ).

3 A Cartesian Closed Differential Category of Games

In this section we recall the definition of the category of games introduced in [7,8],
and show that it is a Cartesian closed differential category.

An arena A is a finite bipartite forest over two sets of moves, MP
A and MO

A

with edge relation �. We say that a move is enabled by its parent in the forest,
and that root moves are initial. A QA-arena is an arena equipped with a map
labelling each move as a question (Q) or answer (A), such that every answer is the
child of a question. We assume the standard notions of justified sequence, views,
P- and O-visibility from the game semantics literature; see [10] for example.
Given a justified sequence s, we say that an answer-move occurrence a answers
the question occurrence q that justifies it. A justified sequence s satisfies P-well-
bracketing if, for every prefix s′a with a an answer move by P , the question that
a answers is the rightmost O-question in the view �s′�; call this the pending
question at s′. A justified sequence is complete if every question is answered
exactly once; we write comp(A) for the set of complete justified sequences of A.

Lemma 1. If s is a complete justified sequence that satisfies P-visibility (resp.
O-visibility), then s satisfies P-well-bracketing (resp. O-well-bracketing).

Proof. A simple analysis of views shows that, if q is an O-question that is an-
swered when some later O-question q′ is pending, then when q′ is answered,
again a later O-question is pending. There can therefore be no O-question that
is answered when it is not pending, because s is finite. 
�
A sequence is well-opened if it contains exactly one initial O-move. A strategy
for an arena A is a set of complete sequences in which O plays first, satisfying
P-visibility (and, by Lemma 1, P-bracketing). Given a strategy σ, wv(σ) is the
set of sequences in σ that are well-opened and satisfy O-visibility.

Given arenas A and B, we write A � B for the arena arising as the disjoint
union of A and B, and A⊥ for the arena A with O and P-moves interchanged.
We can define a category G in which objects are arenas whose roots are all O-
moves, and morphisms A→ B are strategies on the arena A⊥ �B. Composition
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of strategies is the usual “parallel composition plus hiding” construction, and
identities are copycat strategies. As proved in [7,8], this category is monoidal
closed: disjoint union of arenas gives a tensor product, and exponentials are
given by the arena A � B, which consists of the arena B with a copy of A⊥

attached below each initial move; duplication of A⊥ is required to maintain the
forest structure. Every object of G can be endowed with a comonoid structure,
and the subcategory of comonoid homomorphisms is a Cartesian closed category
G⊗. These maps are those whose choice of move at any stage depends only on
the current thread, that is, the subsequence of moves hereditarily justified by the
initial O-move currently in view; it follows that such strategies are completely
determined by the well-opened plays they contain.

Erratic Idealized Algol (EIA) is an applied typed λ-calculus with an appro-
priate stock of constants making it a higher-order imperative programming lan-
guage with local state, consisting of variables in which natural numbers can be
stored. The constants include an erratic choice operator or which encodes non-
deterministic choice. As shown in [7], this programming language can be given
denotational semantics in the category G⊗. The interpretation of the impera-
tive programming constants is as in the standard games model of Idealized Algol
from [1], and the erratic choice operator is interpreted by union of strategies.

Theorem 2 (Full abstraction [7]). The model of EIA in G⊗ is sound, and
moreover, for any type A:

– if s is a complete well-opened play of [[A]] satisfying visibility, there is a closed
term M of type A such that wv([[M ]]) = {s};

– terms M,N : A are contextually equivalent if and only if wv([[M ]]) = wv([[N ]]).

We now exhibit the differential structure that G⊗ possesses. Let s be a complete,
well-opened play in A⊥ �B which contains at least one initial A-move. Say that
a complete play s′ in A⊥ � A⊥ � B is a derivative of s if Δ; {s′} = {s} (where
Δ is the diagonal) and s′ contains one initial move in the left occurrence of A⊥.
We then define D×(σ) as the strategy whose well-opened plays are

{s′ ∈ comp(A⊥ �A⊥ �B) | s′ is a derivative of some well-opened s ∈ σ}.
We can verify directly that this makes G⊗ a Cartesian closed differential cate-
gory; later we will see that this follows from a general construction. Because of
the definability property of the model of EIA, it is reasonable to expect that the
differential operator is programmable in EIA, and indeed it is. For terms of type
A → comm (comm is the base type of commands) we can define the differential
operator as follows (using appropriate syntactic sugar).

λf : A → comm.λa : A.λa′ : A.new b := true

new y := f((if b then (b := false; a) else a′) or a′) in
if ¬b then y else diverge

In any converging execution of this code, the argument a is supplied to f exactly
once, though which call to f ’s argument receives a is chosen nondeterministically;
all other calls to f ’s argument receive a′.
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4 Constructing Differential Categories

We now describe a construction of models of intuitionistic linear logic that are
also differential categories. The main ingredient is the construction of a category
which possesses a comonad delivering cofree cocommutative comonoids.

Let C be a symmetric monoidal category enriched over sup-lattices, that is,
over idempotent commutative monoids with all sums (we continue to use (+, 0)
for this monoid structure). Any product A×B in C is necessarily a biproduct, that
is, it is also a coproduct and the canonical map [〈idA, 0〉, 〈0, idB〉] : A⊕B → A×B
is an isomorphism. Similarly, every coproduct is a biproduct. Suppose that C has
all countable biproducts, and that the monoidal structure distributes over them.
We construct a differential structure on the Karoubi envelope K(C) (idempotent
splitting) of C. Recall that this category has as its objects pairs (A, f) where A is
an object of C and f : A→ A is an idempotent, and as its maps (A, f) → (B, g),
those maps h : A→ B from C such that h = f ;h; g. This category inherits the
monoidal structure, sup-lattice enrichment and biproducts from C.

First, for any object A of C, write A⊗n to denote the n-fold tensor power
of A. The symmetric tensor power An, if it exists, is the equaliser of the diagram

A⊗n A⊗n
...n! permutations

consisting of all n! permutations from A⊗n to itself.
In K(C) we can readily construct symmetric tensor powers, as follows. Given

an object A of C, define ΘA,n : A⊗n → A⊗n to be the sum of the n! permutation
maps. Straightforward calculation establishes the following.

Lemma 3. For any object (A, f) of K(C), the following diagram is an equalizer.

(A⊗n, f⊗n) (A⊗n, f⊗n)
...n! permutations(A⊗n, f⊗n;ΘA,n)

f⊗n;ΘA,n

Moreover, these equalizer diagrams are preserved by tensor products.

One consequence of this is that there are maps (A, f)m+n → (A, f)m ⊗ (A, f)n

whose underlying maps are given by f⊗m+n;ΘA,m+n, as one might expect.
These symmetric tensor powers will allow us to construct a coalgebra modality

onK(C) as the free commutative comonoid. Recall that a commutative comonoid
in a symmetric monoidal category is an object A together with maps Δ : A →
A ⊗ A and e : A → I satisfying the obvious commutativity, associativity and
unit diagrams; morphisms of comonoids are morphisms between the underlying
objects that preserve the comonoid structure. Let K⊗(C) be the category of
commutative comonoids and comonoid morphisms in K(C).

Lemma 4. The forgetful functor U :K⊗(C) → K(C) has a right adjoint, whose
action on objects takes (A, f) to the biproduct

⊕
n∈ω(A, f)n, which we call !(A, f).

Proof. For any m and n, we have the map

πm+n; f⊗m+n;ΘA,m+n : !(A, f) −→ (A, f)m ⊗ (A, f)n.
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Tupling all these gives us a map !(A, f) → ⊕m,n(A, f)m ⊗ (A, f)n, and by
distributivity of tensor over product, this gives a map Δ : !(A, f) → !(A, f) ⊗
!(A, f). We also have the map π0 : !(A, f) → I. It can readily be verified that
these maps give !(A, f) the structure of a comonoid. Moreover, it is the free
comonoid on (A, f): if (B, g) is any commutative comonoid and α : (B, g) →
(A, f) any morphism, we construct a comonoid morphism α† : (B, g) → !(A, f) as
follows. The comultiplication Δn : (B, g) → (B, g)⊗n equalizes all permutations,
so the composition Δn;α⊗n does too, yielding a map (B, g) → (A, f)n. Tupling
all these maps gives us the required comonoid map α†, and it is easily checked
that this is the unique map such that α†;π1 = α. 
�
Composing these two adjoint functors yields a comonad (!, δ, ε) on K(C).

Lemma 5. The comonad (!, δ, ε) is a coalgebra modality. In fact, it is a linear
exponential comonad (also known as a storage modality).

The construction of this comonad along the lines given above follows the recipe
in [11], though the use of Karoubi envelope to generate a category possessing
the required equalizers seems to be new.

We are now in a position to construct a differential operator on K(C), making
it into a differential category. The differential operator is given by precomposition
with the deriving transformation d : (A, f)⊗ !(A, f) → !(A, f) defined as follows.
For each n, the map f⊗n+1;ΘA,n+1 in C gives us a morphism

f⊗n+1;ΘA,n+1 : (A, f)⊗ (A, f)n → (A, f)n+1

and hence we obtain maps ∼=;πn; f⊗n+1;ΘA,n+1 : (A, f) ⊗ !(A, f) → (A, f)n+1

where ∼= is the distributivity map. Tupling all these gives us a morphism (A, f)⊗
!(A, f) → ⊕n(A, f)n+1, and finally pairing this with 0 : (A, f) ⊗ !(A, f) → I
gives the required map.

Theorem 6. With the structure described above, K(C) is a sup-lattice-enriched
differential category, and the Kleisli category K!(C) a cpo-enriched Cartesian
differential category. If C is monoidal closed (in the sup-lattice-enriched sense)
then K!(C) is a cpo-enriched Cartesian-closed differential category.

Proof. That K(C) is a differential category is lengthy but straightforward to
check. Sup-lattice enrichment follows directly from that of C. The fact that
K!(C) is Cartesian differential follows from Proposition 3.2.1 of [4]. The Carte-
sian closure of K!(C) is a well-known fact about linear exponential comon-
ads. For the cpo-enrichment, it is enough to observe that the passage from
α : !(A, f) → (B, g) to α† : !(A, f) → !(B, g) preserves directed suprema. 
�
Even when C is not monoidal closed, it is still possible to arrive at a Carte-
sian closed differential category when there are enough exponentials: if C has
all exponentials A � R for some fixed object R, then the full subcategory of
K!(C) consisting of such R-exponentials is Cartesian closed, and also possesses a
weak distributive coproduct structure, the “lifted sum” Σi∈IAi = (

⊕
i∈I(!Ai �

R)) � R. In particular,
⊕

n∈ω R � R is a weak natural numbers object.
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To apply the construction above, we need a sup-lattice enriched symmetric
monoidal category with countable distributive biproducts. Such categories can
readily be manufactured via a series of free constructions.

Beginning with a symmetric monoidal category, one can construct its sup-
lattice-completion as the category with the same objects, but whose maps A→ B
are sets of maps in the original category (cf. [9] VIII.2 exercise 5). This is a sup-
lattice enriched category, with joins of maps given by unions, and monoidal
structure inherited from the original category; closed structure is also inherited,
if it exists. We denote the sup-lattice completion of a category C by C+.

Given a sup-lattice-enriched symmetric monoidal category, its biproduct com-
pletion (cf. [9] VIII.2 exercise 6) has as objects indexed sets {Ai | i ∈ I} of
objects in the original category, and as morphisms {Ai | i ∈ I} → {Bj | j ∈ J}
matrices of morphisms, that is, for each i, j, a morphism Ai → Bj . Composi-
tion is (potentially infinite) matrix multiplication; the infinite sums required for
composition are the reason we require sup-lattice enrichment. The biproduct of
a set of objects is given by the disjoint union of families. We write BP(C) for
the biproduct completion of a category C.

We will be interested in some categories which arise by performing these two
constructions in sequence. Given a category C, we denote by FamRel(C) the
category whose objects are families {Ai | i ∈ I} of objects of C, and whose
morphisms {Ai | i ∈ I} → {Bj | j ∈ J} are given by sets of triples (i, j, f) where
i ∈ I, j ∈ J and f : Ai → Bj in C. Note that for a given i and j there may be no
such triples in a morphism, or one, or many. It is easy to check that FamRel(C)
is isomorphic to the category BP(C+).

A simple but central example begins with the terminal category 1. FamRel(1)
is the category Rel of sets and relations. On the image of Rel in K(Rel), ! is
the finite-multiset comonad, and we therefore find MRel embedded in K!(Rel)
as a sub-Cartesian-differential-category.

5 Deconstructing Categories of Games

In this section we apply some of the constructions developed above to recon-
struct G⊗ and discover its differential structure as an instance of our construc-
tion. We begin by defining a new category EG of exhausting games, to which we
will apply our constructions, eventually arriving at a Cartesian closed differential
category containing G⊗ as a subcategory. We then introduce a refined category
of exhausting games, EG∼, and again apply our constructions to obtain a model
of Resource PCF with the finite definability property.

Given a finite arena A, a path is a non-repeating enumeration of all moves,
respecting the order given by the edge relation in the arena — that is, a traversal
of the forest — such that the first move is by O and moves alternate polarity
thereafter. Note that every move in a path has a unique justifier earlier in the
path. An exhausting strategy on A is a set of even-length paths that satisfy P-
visibility; if A has an odd number of moves, the only strategy is the empty set.
The category EG has finite O-rooted arenas as objects and exhausting strategies
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on A⊥�B as maps from A to B, with composition and identities as usual. Again,
disjoint union of arenas gives a monoidal structure; and if B has a single root,
then the arena A � B is an exponential, so EG has all R-exponentials, where
R is the arena with a single move belonging to O.

It is clear that EG is sup-lattice enriched: unions of strategies are strategies,
and composition preserves unions. We may then form its biproduct completion,
to obtain the structure we require to construct a differential category as in Sec-
tion 4. We write K(BP(EG)) for the differential category so constructed, and
K!(BP(EG)) for its Kleisli category, which is a Cartesian differential category.
The full subcategory of R-exponentials is Cartesian closed and has a weak nat-
ural numbers object. We now show how to recover G⊗ as a subcategory of this.

Let A be any QA-arena, and consider a non-repeating (justified) sequence s
of pairs (a, n) where a is a move of A and n is a natural number. Taking left
projection on such a sequence gives a justified sequence in A, which we call ŝ;
we say that s is a tagging of ŝ, and write tcomp(A) for the set of all taggings of
complete well-opened plays in A.

Let s ∈ tcomp(A) be a tagging of the complete play ŝ. We can define an arena
‖s‖ whose moves are the elements of s and whose edge relation is precisely the
justification structure of s. Thus s becomes a path of ‖s‖. If t is a tagged sequence
such that t̂ = ŝ, there is an isomorphism between the moves of ‖s‖ and ‖t‖
which maps the n-th move of s to the n-th move of t. The free monoid extension
induces an isomorphism φ between paths in ‖s‖ and those in ‖t‖, and in turn
an isomorphism in EG, given by the strategy φ‖s‖,‖t‖ = {u ∈ ‖s‖⊥ � ‖t‖ | û ∈
idA, φ(u � ‖s‖) = u � ‖t‖}. Let A∗ be the family of arenas {‖s‖ | s ∈ tcomp(A)}.
We define a morphism φA : A∗ → A∗ in the biproduct completion of EG as the
“matrix” with entries given by

(φA)s,t =
{
φ‖s‖,‖t‖, if ŝ = t̂
∅, otherwise.

Our embedding of G⊗ in K!(BP(EG)) maps an arena A to (A∗, φA). The
action on morphisms is slightly trickier to describe; we begin by analysing com-
plete, well-opened plays in A⊥ �B. Such a play consists of an interleaving of a
complete, well-opened play in B with a number of complete, well-opened plays in
A. Suppose the play s is an interleaving of plays s1, . . . , sn in A and s′ in B. Let
u be any tagging of s, yielding taggings u1, . . . , un and u′ of the projections s1,
. . . , sn and s′. This tagging induces a morphism (A∗)⊗n → B∗ in the biproduct
completion of EG, as follows.

The family (A∗)⊗n consists of arenas ‖s′1‖ ⊗ · · · ⊗ ‖s′n‖ for s′i ∈ tcomp(A). If
‖s′i‖ = ‖ui‖ for each i and ‖s′‖ = ‖u′‖, then the singleton u is a morphism

{u} : ‖s′1‖ ⊗ · · · ⊗ ‖s′n‖ → ‖s′‖
and hence, taking all such taggings and inserting empty strategies everywhere
else in the matrix, we have a morphism (A∗)⊗n → B∗.

Given a map σ : A → B in G⊗, let σn be the set of well-opened plays in σ
with n initial A-moves. Each s ∈ σn induces a morphism (A∗)⊗n → B∗ in EG
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as above, so we can define Φ(σn) : (A∗)⊗n → B∗ to be the sum of all these
morphisms. The copairing of the Φ(σn) gives us a map

[Φ(σn) | n ∈ ω] :
⊕
n∈ω

(A∗)⊗n → B∗.

By construction, for each Φ(σn) we have Φ(σn) = φ⊗n
A ;ΘA∗,n;Φ(σn);φB , so

[Φ(σn) | n ∈ ω] is a morphism from !(A∗, φA) to (B∗, φB) in K(BP(EG)).

Proposition 7. The construction defined above gives a full and faithful product-
preserving functor from G⊗ to K!(BP(EG)).

Thus the category G⊗ is rich enough to interpret Resource PCF. Indeed, it is
richer, as the model of EIA demonstrates, and the model of Resource PCF in G⊗

is far from being fully abstract. We now develop a model of Resource PCF which
possesses the finite definability property, by applying our general construction
to a refined category of exhausting games.

Let A be any arena. We define an equivalence relation ∼ on the paths of A
as the smallest equivalence relation such that s · o · p · o′ · p′ · t ∼ s · o′ · p′ · o · p · t
where o, o′ are O-moves and p, p′ are P-moves. We call a path safe if, whenever
s = s′ · o · p · o′ · p′ · t and o justifies p′, p′ justifies o′. The ∼ relation captures
a notion of causal independence similar to that of Melliès [12], and allows us to
refine our games model to obtain definability for Resource PCF.

A ∼-strategy σ on an arena A is a set of safe paths that is ∼-closed, that is,
if s ∈ σ and s ∼ t then t ∈ σ. A ∼-strategy σ is deterministic if it is non-empty,
and the longest common prefix of any s, t ∈ σ has even length.

Lemma 8. If σ is a ∼-strategy and s ∈ σ then s satisfies P-visibility.

Given a path s in an arena A, write s̃ for the equivalence class of s under ∼.
Lemma 9. For any safe path s of A, s̃ is a deterministic ∼-strategy, and any
deterministic ∼-strategy is of the form s̃ for some safe path s.

We can now build two categories: EG∼ has O-rooted arenas as objects and
deterministic ∼-strategies on A⊥ � B as maps A → B; EG+

∼ has the same
objects, but its maps A → B are arbitrary ∼-strategies on A⊥ � B. EG+

∼ is
therefore the subcategory of EG consisting of ∼-closed strategies.

We are ready to construct a Cartesian differential category, starting with
EG∼. The first step is to take its sup-lattice completion; a consequence of
Lemma 9 is that this is exactly EG+

∼, justifying our choice of nomenclature.

Lemma 10. EG+
∼ is the sup-lattice completion of EG∼.

Nevertheless, it is convenient to take the first two steps of the construction
together, working with FamRel(EG∼). Our construction gives us a comonad !
on K(FamRel(EG∼)), such that the Kleisli category K!(FamRel(EG∼)) is a
Cartesian differential category. Though EG∼ is not monoidal closed, it has all
R-exponentials, so the full subcategory of K!(FamRel(EG∼)) comprising the
arenas with a single root is a Cartesian closed differential category.

As before, we may give a direct definition of a category of games which is
a sub-Cartesian-closed-differential-category of this one. Let G∼ be the subcat-
egory of G consisting of ∼-closed strategies. Again taking the subcategory of
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comonoid homomorphisms, we arrive at a Cartesian closed differential cate-
gory G⊗∼. Just as in Sec. 5, we can define a full and faithful functor from G⊗∼ into
K!(FamRel(EG∼)) which preserves the Cartesian closed differential structure.

6 Analysing Models of Resource PCF

Our constructions show that each of K!(FamRel(EG∼)), K!(BP(EG)) and
K!(FamRel(1)) is a cpo-enriched differential Cartesian category with enough
exponentials to interpret Resource PCF; and indeed we have identified full sub-
categories G⊗, G⊗∼ and MRel which are cpo-enriched Cartesian closed differ-
ential categories containing all the objects needed to interpret Resource PCF
soundly. However, for G⊗∼ and MRel, there is more to be said.

Consider those arenas for which there exists a Q/A-labelling such that ev-
ery question enables a unique answer — this is a constraint on the shapes
of the trees, rather than additional structure. We write EGQA

∼ for the full
subcategory of EG∼ consisting of such arenas, and note that G⊗∼ embeds in
K!(FamRel(EGQA

∼ )) by construction.

Lemma 11. For every such arena, the set of safe paths is non-empty.

Proof. We construct a safe path by induction on partial paths. Begin with any
root node. Having constructed a partial path s, consider the pending question
in s. If it enables any questions that do not appear in s, extend s with one of
them. Otherwise, extend s with the unique answer of the pending question. If
there is no pending question, extend s with any question enabled by one of the
answers in the P-view of s, if one exists, or an unplayed root node, if one exists.
If no such moves exist, s is a safe path. 
�
Corollary 12. The unique functor $ : EGQA

∼ → 1 is full. (This amounts to
the fact that the set of safe paths of A⊥ �B is non-empty.)

This full functor extends through our constructions to a full functor from
K!(FamRel(EGQA

∼ )) to K!(FamRel(1)). Moreover, the only idempotents we
make use of in the Karoubi envelope have the form

∑
f∈G f where G is some

group of automorphisms. In the case of Rel, these idempotents are equivalence
relations, and an object (A,%) in K(Rel) is isomorphic to (A/ %, idA). The part
of the Karoubi envelope that is used in our constructions is therefore equivalent
to Rel itself, with the comonad being the usual finite-multiset comonad, and
the Kleisli category being MRel. We therefore obtain a full functor from G⊗∼ to
MRel which preserves all the relevant structure.

This functor may be described concretely as follows. Given a complete justified
sequence s on a QA-arena, write |s| for the underlying multiset of moves of s,
partially ordered by the justification relation. The functor sends an arena A to
the set of all such pomsets, which we call the positions of A. If s is a well-opened
complete justified sequence on A⊥ � B, |s| is a pair consisting of a multiset of
positions of A and a position of B. The functor sends a map A→ B to the set
of positions of its sequences. This is essentially the “time-forgetting” map of [2],
which here is functorial because of ∼-closure.
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Theorem 13. The models of Resource PCF in G⊗∼ and MRel have the finite
definability property, and the model in MRel is fully abstract.

Proof. For G⊗∼, a straightforward induction on the size of strategies, following
the steps in the definability proof for the innocent strategy model of PCF. ∼-
closure ensures that strategies are insensitive to the order in which O-moves are
made. Definability for MRel follows from the fullness of the positional collapse
of G⊗∼ onto MRel. For full abstraction of MRel, let M and N be closed terms
of type A. If [[M ]] 	⊆ [[N ]], there is some a ∈ [[M ]] \ [[N ]]. By finite definability, the
relation {(a, 0)} : A → nat is the denotation of some term x : A � C�x� : nat.
Therefore [[C�M�]] = [[zero]] while [[C�N�]] = ∅, so C�M� ⇓ but C�N� 	⇓. 
�
Acknowledgements. Research supported in part by NWO Project 612.000.936 CAL-

MOC and by UK EPSRC grant EP/HO23097.
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Nondeterminism Is Essential

in Small 2FAs with Few Reversals

Christos A. Kapoutsis

LIAFA – Université Paris VII

Abstract. On every n-long input, every two-way finite automaton (2fa)
can reverse its head O(n) times before halting. A 2fawith few reversals is
an automaton where this number is only o(n). For every h, we exhibit a
language that requires Ω(2h) states on every deterministic 2fa with few
reversals, but only h states on a nondeterministic 2fa with few reversals.

1 Introduction

A long-standing open question in the theory of computation, posed already in the
70s [11,10], is whether every two-way nondeterministic finite automaton (2nfa)
has a deterministic equivalent (2dfa) with at most polynomially more states.

The answer is conjectured to be negative. Indeed, this has been confirmed in
several special cases: for automata that are single-pass (halting upon reaching
an endmarker [11]) or sweeping (reversing only on endmarkers [12,9]) or almost
oblivious (exhibiting o(n) distinct trajectories on n-long inputs [5]) or moles
(exploring the implicit configuration graph [7]). However, for unary automata
a non-trivial upper bound is known: the simulating 2dfa need never be more
than quasi-polynomially larger [2]. We also know that the final answer, both
for general and for unary alphabet, may have implications for the old question
whether nondeterminism is essential in space-bounded Turing machines [1,3,8].

Here we confirm the general conjecture in yet another special case: for au-
tomata that reverse their input head (anywhere on the tape, but) only o(n) times
on every n-long input before halting. These ‘2fas with few reversals ’ stand very
naturally between sweeping 2fas, which perform only O(1) reversals and only on
the endmarkers, and general 2fas, which perform O(n) reversals (cf. Lemma 1).

Theorem 1. For every h, there is a language that requires Ω(2h) states on every
2dfa with few reversals but only h states on a 2nfa with few reversals.

Here, the family of witness languages is one-way liveness [10] (as usual [12,5,7])
and the h-state 2nfas are actually one-way (so that their ‘few’ reversals are in
fact ‘zero’). So, this can be seen as a generalization of the lower bound of [12].

Given Theorem 1, two questions arise. First, does the theorem really general-
ize [12], or can it perhaps follow from it by proving that the gap from few-reversal
� Research funded by a Marie Curie Intra-European Fellowship (pief-ga-2009-253368)

within the European Union Seventh Framework Programme (fp7/2007-2013).
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to sweeping 2dfas is only polynomial? Second, does the full conjecture really gen-
eralize the theorem, or can it perhaps follow from it by proving that the gap from
general to few-reversal 2dfas is only polynomial? We answer affirmatively.

Theorem 2. For every h, there is a language that requires 2Ω(h) states on every
sweeping 2dfa but only O(h) states on a 2dfa with 2 reversals.

Theorem 3. For every h, there is a language that requires Ω(2h) states on every
2dfa with few reversals but only O(h2) states on a general 2dfa.

Note that Theorems 1-3 answer Hromkovič’s Research Problems 2 and 3 from [4].
We consider the second half of Theorem 1 (upper bound) known, and leave

the proofs of Theorems 2 and 3 for longer versions of this report. We thus prove
only the first part of Theorem 1 (lower bound). We work as in [12]. After fix-
ing notation (Sect. 2), we define generic strings (Sect. 3.1), study their blocks
(Sect. 3.2), build a family of hard instances using such blocks (Sect. 4.1), and ap-
ply the linear algebra bound on vectors derived from these instances (Sect. 4.2).

2 Preparation

Let [n] := {0, . . . , n−1}. For A a set, A is the complement and idA : A→ A the
identity on A. For f : A ⇀ B a partial function, X ⊆ A, and b ∈ B, we define
f [X ] := {f(a) | a ∈ X & f(a) defined} and f−1(b) := {a ∈ A | f(a) = b}. If in
addition g : B ⇀ C, then the composition f ◦ g : A ⇀ C is defined on a iff both
f(a) and g(f(a)) are defined. If A = B, then fn is the n-fold composition of f
with itself, and f ≤ g means that f(a) defined =⇒ g(a) defined & g(a) = f(a).

Fact 1. The relation ≤ is a partial order on FA := {f | f : A ⇀ A}, and idA is
maximal in it. Moreover, g ≤ g′ =⇒ f ◦ g ≤ f ◦ g′ for all f,g,g′ ∈ FA.

For z a string, |z| and zj denote its length and its j-th symbol (1 ≤ j ≤ |z|). A
(promise) problem over Σ is any pair (L, L̃) of disjoint subsets of Σ∗. A machine
solves (L, L̃) if it accepts all w ∈ L but no w ∈ L̃. If L̃ = L, then L is a language.

Liveness. For h ≥ 1, the alphabet Σh := {all G ⊆ [h]× [h]} is all two-column
directed graphs with h nodes per column and only rightward arrows (Fig. 1a). An
n-long z ∈ Σ∗h is viewed as an (n+1)-column graph (without arrow directions,
for simplicity); its connectivity is ξ := {(a, b) | there is an n-arrow path from
node a of column 0 to node b of column n}; if ξ = ∅, then z is dead, otherwise
it is live. We define owlh = one-waylivenessh := {z ∈ Σ∗h | z is live} [10].

Machines. A two-way deterministic finite automaton (2dfa) is any tuple M =
(Q,Σ, δ, qs, qa, qr), where Q is a set of states, Σ an alphabet, qs,qa,qr ∈ Q are the
start, accept, and reject states, and δ : Q×(Σ∪{�,&}) → Q×{l, r} is the (total)
transition function, for �,& /∈ Σ two endmarkers and l,r the two directions. An
input w ∈ Σ∗ is presented to M endmarked, as �w&. Computation starts at qs

and on �. In each step, the next state and head move are derived from δ and
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the current state and symbol. Endmarkers are never violated, except for & if the
next state is qa or qr; i.e., δ(·,�) is always of the form (·, r), and δ(·,&) is always
(qa, r) or (qr, r) or of the form (·, l). So, the computation either loops, or falls
off& into qr, or falls off& into qa. In the last case, we say M accepts w.

In general, the computation of M from state p on the j-th symbol of string z,
denoted compM,p,j(z), is the longest sequence c = ((qt, jt))0≤t<m with 0<m≤∞,
(q0, j0) = (p, j), and every next (qt, jt) derived from the previous one via δ
and z in the natural way. We say (qt, jt) is the t-th point and m the length. If
m = ∞ then c loops ; otherwise, jm−1 = 0 or |z|+1 and c hits left or hits right,
respectively, into qm−1 (Fig. 1b). We say c′ = ((q′t, j

′
t))0≤t<m′ parallels c if it is

a ‘shifted copy’ of it: m′ = m and q′t = qt & j′t = jt + j∗ for some j∗ and all t.
The l-computation of M from p on z is lcompM,p(z) := compM,p,1(z) and is

called a lr-traversal, l-turn, or l-loop, depending on whether it hits right, hits
left, or loops. Similarly, the r-computation rcompM,p(z) := compM,p,|z|(z) is a
rl-traversal, r-turn, or r-loop. Two l-/r-computations resemble each other if
they share the same first state, type (l/r-turn/loop, lr/rl-traversal), and last
state (if it exists). The (full) computation of M on w ∈ Σ∗ is compM (w) :=
lcompM,qs(�w&). Hence, M accepts w iff compM (w) hits right into qa.

For w = uzv, the decomposition of c := compM (w) by z is the unique sequence
c0, c1, . . . of computations, called segments, derived by splitting c wherever it
enters or exits z (for each point (qt, jt) produced by crossing the u-z or z-v
boundary, replace (qt, jt) by two copies of it and split between the copies). Note
that every ci for even i (resp., odd i) is a computation on �u or v& (resp., z),
and c halts iff there exists a last segment cm and m is even and cm falls off &.

We say M is nondeterministic (2nfa) if δ maps Q×(Σ∪{�,&}) to the powerset
of Q×{l, r}. Then every compM,p,j(z) is a set of computations, and M accepts
w iff some c ∈ compM (w) hits right into qa.

A reversal in a computation c is any point (qt, jt) whose predecessor and suc-
cessor exist and lie on the same side with respect to it (Fig. 1b): t 	= 0,m−1 and
either jt−1, jt+1 < jt (backward reversal) or jt < jt−1, jt+1 (forward reversal).
We write r(c) for the total number of reversals in c. Note that 0 ≤ r(c) ≤ ∞,
and r(c) = ∞ iff c is looping. For n ≥ 0, we write rM (n) for the maximum r(c)
over all full computations c of M on n-long inputs.

Lemma 1. For every s-state 2dfa M and every length n, either rM (n) = ∞ or
rM (n) is even and at most (s− 1)(n + 2).

3 Building Hard Instances

Hard instances for 2dfas are built in three stages. We start with generic strings,
which buy us some basic stability in the machine’s behavior. We then use generic
strings to build blocks, where we draw a set of requirements for how the machine
may compute. Finally, in order to force her to meet these requirements, we iterate
the blocks into long strings, and ask her to decide correctly there. This general
strategy is from [12]. Its instantiation here for 2dfas improves on [7, §3].

From now on, we fix 2dfa M=(Q,Σ, δ, qs, qa, qr) and drop it from subscripts.
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3.1 Generic Strings

For each y ∈ Σ∗, consider all states that can be produced by lr-traversals of y
inside full computations of M (Fig. 1c), called the lr-outcomes of y:

Qlr(y) :=
{
q ∈ Q | there exist p and u,v such that

lcompp(y) appears in comp(uyv) & hits right into q
}
, (1)

where a computation on y ‘appears in comp(uyv)’ if it parallels one of the
odd-indexed segments in the decomposition of comp(uyv) by y.

We now consider any extension yz of y and compare Qlr(yz) with Qlr(y) and
Qlr(z). For the first comparison, we define a partial function αy,z : Qlr(y) ⇀ Q
as follows (Fig. 1d): for each q ∈ Qlr(y), examine compq,|y|+1(yz); if it hits right
into some state r, set αy,z(q) := r; if it hits left or loops, leave αy,z(q) undefined.

Fact 2a. For all y,z ∈ Σ∗: Qlr(yz) ⊆ αy,z[Qlr(y)] ∩Qlr(z).

Proof. Let r ∈ Qlr(yz). Then there exist p and u,v such that c := lcompp(yz)
appears in comp(uyzv) and hits right into r (Fig. 1d). We know c crosses the
y-z boundary at least once. Let q and q∗ be the states right after the first
crossing and after the last crossing, respectively. The prefix of c up to the first
crossing is c1 := lcompp(y) and hits right into q, while the remaining suffix
is c2 := compq,|y|+1(yz) and hits right into r. The suffix of c after the last
crossing is c∗ = lcompq∗(z) and hits right into r. Now, c1 is a lr-traversal of y
that appears in comp(uyzv) and produces q, so q ∈ Qlr(y). By this and c2, we
know αy,z(q) = r. Therefore, r ∈ αy,z[Qlr(y)]. Moreover, c∗ is a lr-traversal of z
that appears in comp(uyzv) and produces r. Therefore, r ∈ Qlr(z). 
�
Symmetrically, we let the set Qrl(y) of rl-outcomes of y be all states producible
by rl-traversals of y inside full computations of M . Then βz,y : Qrl(y) ⇀ Q is
introduced so that βz,y(q) is r, if compq,|z|(zy) hits left into r, or undefined, if
the computation loops or hits right. Then a fact symmetric to Fact 2a holds.

Fact 2b. For all y,z ∈ Σ∗: Qrl(zy) ⊆ βz,y[Qrl(y)] ∩Qrl(z).

By the first inclusion of Fact 2a, we know |Qlr(y)| ≥ |Qlr(yz)|. Similarly,
Fact 2b implies |Qrl(zy)| ≤ |Qrl(y)|. Hence, extending a string in either direction
can never increase the respective number of outcomes. Thus, sufficiently long
extensions will minimize this number. Such extensions are called generic strings.

Definition. Let T ⊆ Σ∗ be arbitrary. A string y ∈ T is lr-generic (for M)
over T if |Qlr(y)| = |Qlr(yz)| for all yz ∈ T . It is rl-generic if |Qrl(zy)| =
|Qrl(y)| for all zy ∈ T . It is generic if it is both lr- and rl-generic.

Lemma 2. Every ∅ 	= T ⊆ Σ∗ admits lr- and rl-generic strings. Also, if yl is
lr-generic and yr is rl-generic, then every ylxyr ∈ T is generic over T .

Alternatively, genericity can be characterized via αy,z and βz,y, as follows.
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Lemma 3. Let y ∈ T ⊆ Σ∗. Then y is lr-generic over T iff αy,z is total
and bijective from Qlr(y) to Qlr(yz) for all yz ∈ T . Similarly, y is rl-generic
over T iff βz,y is total and bijective from Qrl(y) to Qrl(zy) for all zy ∈ T .

Proof. We focus on the first equivalence (the second one follows symmetrically)
and on the ‘only if’ direction —the ‘if’ direction is immediate, since the existence
of any total bijection from Qlr(y) to Qlr(yz) implies |Qlr(y)| = |Qlr(yz)|.

Let y be lr-generic over T and pick yz ∈ T . We know αy,z partially maps
Qlr(y) to Q (by definition) and covers Qlr(yz) (Fact 2a). Namely, each r ∈
Qlr(yz) has a distinct q ∈ Qlr(y) with αy,z(q) = r. So, if there were q ∈ Qlr(y)
with αy,z(q) undefined or outside Qlr(yz) or equal to αy,z(q′) for another q′ ∈
Qlr(y), we would have |Qlr(y)| > |Qlr(yz)|, contrary to y being generic. Hence,
αy,z(q) is defined and in Qlr(yz) and distinct, for all q ∈ Qlr(y). Namely, αy,z is
a total injection from Qlr(y) to Qlr(yz). By Fact 2a, it is also a surjection. 
�

3.2 Blocks

Fix ∅ 	= T ⊆ Σ∗, fix a generic ϑ over T , and let A := Qlr(ϑ) and B := Qrl(ϑ).
Every string of the form ϑxϑ is a block (on ϑ), and x is its infix. We say the

pair (αx, βx) := (αϑ,xϑ, βϑx,ϑ) are the inner behavior of M on the block.
Recall that αx : A ⇀ Q and βx : B ⇀ Q. In the special case where each

function is the identity, the prefix ϑx and the suffix xϑ are ‘invisible’ to M .

Lemma 4. Suppose (αx, βx) = (idA, idB). Pick any u,v and let c0, c1, . . . and
d0, d1, . . . be the decompositions of comp(uϑv) and comp(uϑxϑv) by ϑ and ϑxϑ,
respectively. Then ci parallels di for all even i, and resembles di for all odd i.
Thus, M behaves (accepts, rejects, or loops) identically on uϑv and uϑxϑv.

In blocks of the form ϑ(xϑy)ϑ, where ϑ is an infix of the infix itself, the inner
behavior of M depends on its inner behaviors on the sub-blocks ϑxϑ and ϑyϑ.

Fact 3. Let z = xϑy. Then αx ◦ αy ≤ αz and βy ◦ βx ≤ βz. In addition, if αz

is total and injective, then so is αx; if βz is total and injective, then so is βy.

Proof. To prove αx ◦ αy ≤ αz, let p ∈ A and assume (αx ◦ αy)(p) is defined and
equal to some r ∈ Q. Then αx(p) is defined and equal to some q ∈ Q, and αy(q) is
defined and equal to r. By αx(p) = q, we know cx := compp,|ϑ|+1(ϑxϑ) hits right
into q. (Fig. 1e.) By αy(q) = r, we also know cy := compq,|ϑ|+1(ϑyϑ) hits right
into r. Now, concatenating cx, cy gives exactly cz := compp,|ϑ|+1(ϑxϑyϑ). Hence
cz hits right into r. Therefore αz(p) is defined and equal to (αx ◦ αy)(p).

Now suppose αz is total and injective. If αx is not total, then αx(p) is un-
defined for some p ∈ A, namely cx := compp,|ϑ|+1(ϑxϑ) hits left or loops. But
cx is a prefix of cz := compp,|ϑ|+1(ϑxϑyϑ), so cz also hits left or loops. Hence
αz(p) is undefined, and αz is not total—contradiction. If αx is not injective,
then αx(p) = αx(p′) for two distinct p, p′ ∈ A, namely cx := compp,|ϑ|+1(ϑxϑ)
and c′x := compp′,|ϑ|+1(ϑxϑ) hit right into the same state. But cx and c′x are
prefixes of cz := compp,|ϑ|+1(ϑxϑyϑ) and c′z := compp′,|ϑ|+1(ϑxϑyϑ), so cz and
c′z continue identically after the ϑxϑ-yϑ boundary, hitting right into the same
state. Hence αz(p) = αz(p′), and αz is not injective—contradiction. 
�
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We will need a variant of Fact 3 for blocks of the form ϑ(xϑxϑ · · · xϑx)ϑ,
where the infix is multiple ϑ-separated copies of x. Let x(k) := x(ϑx)k−1 for
k ≥ 1. Note that ϑx(k)ϑ = ϑ(xϑ)k = (ϑx)kϑ and (x(k))(l) = x(lk) for all k, l.

Fact 4. Let k ≥ 1. Then (αx)k ≤ αx(k) and (βx)k ≤ βx(k) . In addition, if αx(k)

is total and injective, then so is αx; if βx(k) is total and injective, then so is βx.

Proof. We prove (αx)k ≤ αx(k) inductively. Case k = 1 is trivial. For the induc-
tive step, assume (αx)k ≤ αx(k) . Then (αx)k+1 = αx ◦(αx)k ≤ αx ◦αx(k) (Fact 1)
and αx ◦ αx(k) ≤ αx(k+1) (Fact 3 for z = xϑ(x(k)) = xϑx(ϑx)k−1 = x(ϑx)k =
x(k+1)). So, (αx)k+1 ≤ αx(k+1) (by transitivity of ≤), and we are done. The ad-
ditional claim follows from that of Fact 3 when z = xϑ(x(k−1)) = x(k). 
�

If any infix x(k) causes the inner behavior of M to just permute the outcomes
of ϑ, then longer infixes force the behavior into the special case of Lemma 4.

Fact 5. If (αx(k) , βx(k)) permute (A,B), then (αx(tlk) , βx(tlk)) = (idA, idB) for
some l ≥ 1 and all t ≥ 1.

Proof. Let z := x(k) and suppose αz and βz are permutations of A and B. Pick
l ≥ 1 so that both permutations become identity after l iterations: (αz)l = idA

and (βz)l = idB. Then (αz)l ≤ αz(l) (Fact 4), where z(l) = (x(k))(l) = x(lk); i.e.,
idA ≤ αx(lk) , so αx(lk) = idA (Fact 1). Similarly, βx(lk) = idB . Now, let t ≥ 1. By
Fact 4, (αx(lk))t ≤ α(x(lk))(t) . By (αx(lk))t = (idA)t = idA and (x(lk))(t) = x(tlk),
we know idA ≤ αx(tlk) , so αx(tlk) = idA (Fact 1). Similarly, βx(tlk) = idB. 
�

We will now state a condition that forces the number of reversals to become
more than sublinear. We say (A,B) use reversals on x if some compp,|ϑ|+1(ϑxϑ)
for p ∈ A or some compp,|ϑx|(ϑxϑ) for p ∈ B contains at least one reversal.

Lemma 5. If (A,B) use reversals on x and (αx, βx) permute (A,B), then it
cannot be rM (n) = o(n).

Proof. Since (A,B) use reversals, there is a d := compq,|ϑ|+1(ϑxϑ) with q ∈ A
(or a compq,|ϑx|(ϑxϑ) with q ∈ B, and we work similarly) containing≥ 1 reversal
(Fig. 1f); in fact, d contains ≥ 1 forward reversal (because d hits right, since αx

permutes A =⇒ αx(q) is defined). Since (αx, βx) permute (A,B), there exists
l ≥ 1 such that (αx(tl) , βx(tl)) = (idA, idB) for all t ≥ 1 (by Fact 5 for k = 1).

Let z := x(l). Then z(t) = x(tl) and thus (αz(t) , βz(t)) = (idA, idB), for all t.
Using this, we show that each dt := compq,|ϑ|+1(ϑz(t)ϑ) reverses a lot (Fig. 1g).

Claim. For every t ≥ 1, computation dt contains ≥ t forward reversals.
Proof. By induction. For t = 1, d1 = compq,|ϑ|+1(ϑz(1)ϑ). By z(1) = z = x(l)

and l ≥ 1, we know ϑz(1)ϑ has ϑxϑ as prefix, hence d1 has d as prefix, and
thus contains ≥ 1 forward reversals. For t > 0, dt = compq,|ϑ|+1(ϑz(t)ϑ). Since
ϑz(t)ϑ = ϑz(t−1)ϑzϑ, the prefix of dt up to the ϑz(t−1)ϑ-zϑ boundary is dt−1,
the state after crossing this boundary is αz(t−1) (q) = idA(q) = q, and thus the
remaining suffix compq,|ϑz(t−1)ϑ|+1(ϑz(t−1)ϑzϑ) parallels d1. Hence, dt contains
the ≥ t−1 forward reversals of dt−1 plus the ≥ 1 of d1, for a total of ≥ t. �
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Since q ∈ A = Qlr(ϑ), there exist p,u,v such that c := lcompp(ϑ) appears
in ĉ := comp(uϑv) and hits right into q (Fig. 1h). Consider the family of in-
puts wt := uϑz(t)ϑv for t ≥ 1, and the respective computations ĉt := comp(wt)
(Fig. 1i). By Lemma 4 and (αz(t) , βz(t)) = (idA, idB), we know c resembles a seg-
ment ct in the decomposition of ĉt by ϑz(t)ϑ. So, ct is a l-computation on ϑz(t)ϑ
from p. Since ϑ is a prefix of ϑz(t)ϑ, the prefix of ct up to the ϑ-z(t)ϑ boundary
is c, the state after crossing the boundary is q, and the suffix compq,|ϑ|+1(ϑz(t)ϑ)
from then on parallels dt. So, ĉt also contains ≥ t forward reversals, and thus
≥ 2t reversals overall (ĉt is full, so each forward reversal follows a backward one).

Now, each ĉt works on input length nt := |wt| = |uϑx(tl)ϑv| = |uϑ(xϑ)tlv| =
l|xϑ| · t + |uϑv|. Thus rM (nt) ≥ r(ĉt) ≥ 2t = (2/l|xϑ|) · nt − 2|uϑv|/l|xϑ|. So,
rM (n) exceeds a linear function inifinitely often. Hence, rM (n) 	= o(n). 
�

Now fix T̃ ⊆ T . With respect to the problem (T, T̃ ), an infix x is positive, neg-
ative, or neutral if ϑxϑ is in T , in T̃ , or in neither. We will encounter cases which
meet the promise that either some x(k) are positive or all x(k) are negative. We
then say that ϑ,x respect (T, T̃ ); and that they select T (resp., T̃ ), if the promise
is met by its left (resp., right) disjunct. If in addition M solves (T, T̃ ), then we
can tell which disjunct is selected using a ‘local’ criterion for M on ϑxϑ. The
next fact assembles this criterion; the next lemma states it more compactly.

Fact 6. If positive x(k) exist, then (αx, βx) permute (A,B). Almost conversely,
if M solves (T, T̃ ) and (αx, βx) permute (A,B), then non-negative x(k) exist.

Proof. [⇒] Suppose z := x(k) is positive for some k ≥ 1. We shall prove that
αx : A ⇀ Q is a permutation of A (the claim for βx follows similarly). For this, it
is enough to prove two Claims: (1) αx is total and injective, and (2) αx[A] ⊆ A.

Since z is positive, namely ϑzϑ = ϑ(xϑ)k ∈ T , we know αz = αϑ,(xϑ)k is a
total bijection from A = Qlr(ϑ) to A′ := Qlr(ϑzϑ) (Lemma 3). But A′ ⊆ A
(Fact 2a, since ϑzϑ ends in ϑ) and |A′| = |A| (since αz is bijective), so A′ = A.
Thus, αz = αx(k) permutes A. By a symmetric argument, βz = βx(k) permutes B.

Since αx(k) is total and injective, Claim 1 is true (Fact 4). For Claim 2, let
r ∈ αx[A]. Then there is q ∈ A = Qlr(ϑ) with αx(q) = r. I.e., there exist p,q and
u,v such that c := lcompp(ϑ) appears in ĉ := comp(uϑv) and hits right into q
(Fig. 1h), and d := compq,|ϑ|+1(ϑxϑ) hits right into r (Fig. 1f). Note that c is an
odd-indexed segment in the decomposition of ĉ by ϑ. Now pick any t ≥ 1 with
(αz(t) , βz(t)) = (αx(tk) , βx(tk)) = (idA, idB) (Fact 5). Lemma 4 says c resembles an
odd-indexed segment ct in the decomposition of ĉt := comp(uϑz(t)ϑv) by ϑz(t)ϑ
(Fig. 1j). So, ct is also a l-computation from p, on ϑz(t)ϑ. Since ϑxϑ is a prefix
of ϑz(t)ϑ, the prefix of ct up to the first crossing of the right boundary of ϑxϑ
is c followed by a parallel of d. In particular, if q̃ is the state in d after the
last crossing of the ϑx-ϑ boundary, then d̃ := lcompq̃(ϑ) hits right into r and
appears in ĉt = comp((uϑx)ϑ(x(tk−1)ϑv)). Hence, r ∈ Qlr(ϑ) = A.

[⇐] Suppose M solves (T, T̃ ) and (αx, βx) = (αx(1) , βx(1)) permute (A,B).
Pick any t ≥ 1 with (αx(t·1) , βx(t·1)) = (idA, idB) (Fact 5). Pick k = t ·1. Then M
behaves identically on ϑ and ϑx(k)ϑ (Lemma 4 with empty u,v). Since it accepts
ϑ ∈ T , it also accepts ϑx(k)ϑ, thus ϑx(k)ϑ /∈ T̃ . So, x(k) is positive or neutral. 
�
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Lemma 6. Suppose M solves (T, T̃ ) and ϑ,x respect (T, T̃ ). Then ϑ,x select T iff
each outcome of ϑ is hit exactly once by the respective half of the inner behavior:(∀r ∈ A

)(|α−1
x (r)| = 1

)
&
(∀r ∈ B

)(|β−1
x (r)| = 1

)
. (2)

Proof. If ϑ,x select T , then positive x(k) exist, so αx permutes A (Fact 6) and
thus hits every r ∈ A exactly once; similarly for βx,B. Conversely, if αx : A ⇀ Q
hits every r ∈ A, then it is total and injective and stays in A (or else its values
are not enough to cover A), hence it bijects A into A, i.e., permutes it; similarly
for βx,B. So, nonnegative x(k) exist (Fact 6). So ϑ,x do not select T̃ , but T . 
�

If M uses sublinearly many reversals, then we can simplify (2) by replacing
α−1

x (r), β−1
x (r) by two simpler sets α∗x(r), β∗x(r), which we now introduce. Recall

that α−1
x (r) is all p ∈ A for which compp,|ϑ|+1(ϑxϑ) hits right into r. Of course,

each p may reach r after arbitrary meanders inside ϑxϑ. Now suppose we demand
computations that stay inside xϑ and cross the x-ϑ boundary only once; then
α∗x(r) is all p ∈ A that reach r via such ‘simple computations’ (Fig. 1k):

α∗x(r) = α∗ϑ,xϑ(r) := {p ∈ A | (∃q ∈ Q)(lcompp(x) hits right into q

& lcompq(ϑ) hits right into r)} . (3)

Symmetrically, β∗x(r) = β∗ϑx,ϑ(r) is all p ∈ B for which compp,|ϑx|(ϑxϑ) hits left
into r having crossed the ϑx-ϑ and ϑ-xϑ boundaries 0 and 1 times respectively.

The simplification of (2) is proved in the next lemma. Before that, the next
fact studies the new sets. The boolean functions δlr(p, x, q) and δrl(q, x, p) are 1
iff lcompp(x) hits right into q and iff rcompp(x) hits left into q, respectively.

Fact 7. For all r ∈ Q: α∗x(r) ⊆ α−1
x (r) and β∗x(r) ⊆ β−1

x (r). Moreover :

|α∗x(r)| =
∑

p∈A & lcompq(ϑ)
hits right into r

δlr(p, x, q) |β∗x(r)| =
∑

p∈B & rcompq(ϑ)
hits left into r

δrl(q, x, p) . (4)

Proof. The inclusions are easy. For the left equality, consider any p ∈ A and the
inner sum Sp :=

∑
q δlr(p, x, q) over all q for which lcompq(ϑ) hits right into r

(Fig. 1l). Since M is deterministic, Sp ≤ 1. And Sp = 1 iff one of these q is the
witness required in (3); i.e., Sp = 1 ⇐⇒ p ∈ α∗x(r). So, the number

∑
p∈A Sp of

p ∈ A for which Sp = 1, is the size of α∗x(r). Similarly for the other equality. 
�
Lemma 7. Suppose M solves (T, T̃ ) with rM (n) = o(n), and ϑ,x respect (T, T̃ ).
Then ϑ,x select T iff each outcome of ϑ is hit by exactly one ‘simple computation’ :(∀r ∈ A

)(|α∗x(r)| = 1
)

&
(∀r ∈ B

)(|β∗x(r)| = 1
)
. (5)

Proof. Suppose ϑ,x select T . Then (αx, βx) permute (A,B) (Fact 6), so (A,B) do
not use reversals (Lemma 5 and rM (n) = o(n)). Now pick any r ∈ A. Then
|α∗x(r)| ≤ 1, because α∗x(r) ⊆ α−1

x (r) (Fact 7) and |α−1
x (r)| = 1 (Lemma 6). And

|α∗x(r)| ≥ 1, because the r-hitting compp,|ϑ|+1(ϑxϑ) of the unique p ∈ α−1
x (r)

uses no reversals (because (A,B) do not use reversals), thus p ∈ α∗x(r). Overall,
|α∗x(r)| = 1. Similarly for β∗x,B. Conversely, if (5) is true, then (2) is true (since
α∗x(r) ⊆ α−1

x (r) and β∗x(r) ⊆ β−1
x (r)), and thus ϑ,x select T (Lemma 6). 
�
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4 The Proof

Fix h ≥ 1. Suppose Σ = Σh and M solves owlh with rM (n) = o(n) reversals.
We will prove that M needs exponentially many states, namely |Q| = Ω(2h).

4.1 The Hard Instances

We focus on a family of hard instances of owlh similar to that of [6, §3.2]. This
is all blocks ϑxϑ where ϑ and x are drawn from two families (ϑi)i∈I and (xi)i∈I
of generic and single-symbol strings, respectively. Here, i ranges over all pairs
of non-empty subsets of [h], namely I := {(α, β) | ∅ 	= α,β ⊆ [h]}.1 These are
totally ordered by the rule (α′, β′) < (α, β) ⇔def 〈α′〉〈β′〉 <b 〈α〉〈β〉, where 〈·〉 is
the natural h-bit encoding of subsets of [h] and <b is the natural order on 2h-bit
positive integers. For each i = (α, β) ∈ I, the string ϑi is any fixed generic string
over Ti := {z ∈ Σ∗ | z has connectivity α × β}, and xi := β × α is the 1-long
string of all arrows not in β × α. We also let T∅ := {z ∈ Σ∗ | z is dead}.

We picture these blocks on a |I| × |I| matrix. Cell (i, j) hosts block ϑixjϑi

and copies of the objects associated with it in Lemma 7: the sets Ai := Qlr(ϑi),
Bi := Qrl(ϑi) and the functions α∗i,j := α∗ϑi,xjϑi

, β∗i,j := β∗ϑixj ,ϑi
. Crucially, the

assumptions of Lemma 7 are satisfied in all cells, and its conclusions follow a
simple pattern on and below the diagonal (i.e., when i ≥ j).

Fact 8. For all i,j ∈ I, the assumptions of Lemma 7 are satisfied by M,ϑi,xj for
(Ti, T∅). Furthermore, if i > j then ϑi,xj select Ti; if i = j then ϑi,xj select T∅.

Proof. Fix any i = (α, β) and j = (α′, β′). We first check the assumptions of the
lemma. Easily, M solves (Ti, T∅) (since all of Ti is live and all of T∅ is dead) with
rM (n) = o(n) (by assumption), and ϑi is generic for M over Ti (by selection).
To show that ϑi,xj respect (Ti, T∅), we take cases. If ϑixjϑi is dead, then all
ϑi(xjϑi)k for k ≥ 1 are dead (since all extensions of a dead string are dead),
namely all (xj)(k) are negative. If ϑixjϑi is live, then some path a∗ 	 b∗ for
a∗,b∗ ∈ [h] connects its outer columns (cf. next figure, left side). If b′,a′ are the
visited nodes on the columns of xj , then the path has the form a∗	 b′→ a′	 b∗

and ϑi has paths a∗	 b′ and a′	 b∗. Hence (a∗, b′), (a′, b∗) ∈ ξ, for ξ = α×β the
connectivity of ϑi. Thus, b′∈ β and a′∈ α. Now, for any a,b ∈ [h], consider the
ath leftmost and bth rightmost nodes of ϑixjϑi. If a 	∈ α ∨ b 	∈ β, then the two
nodes do not connect, since neither can ‘see through’ ϑi; but if a ∈ α & b ∈ β,
then (a, b′), (a′, b) ∈ ξ, so the two nodes connect via a path a 	 b′→ a′ 	 b.
Hence, ϑixjϑi has connectivity ξ, namely ϑixjϑi ∈ Ti, and (xj)(1) is positive.
Overall, ϑi,xj respect (Ti, T∅). In particular, ϑi,xj select Ti iff ϑixjϑi is live.

α′ β′ α′β′ xj

α
β

ϑi ϑi

α

xj

b′

ϑi ϑi

a′
β

a∗

b∗

1 Here α,β (without subscripts) denote subsets of [h]. This causes no confusion with the
names (with subscripts) for M ’s inner behavior, and preserves notational symmetry.
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If i > j (cf. left side), then 〈α′〉〈β′〉 <b 〈α〉〈β〉. Thus α′ � α ∨ β′ � β
(otherwise α′ ⊇ α & β′ ⊇ β, thus the 1’s of 〈α′〉 and 〈β′〉 cover all 1’s of 〈α〉
and 〈β〉, hence 〈α′〉〈β′〉 ≥b 〈α〉〈β〉, a contradiction). Suppose β′ � β (if α′ � α,
apply a similar argument). Pick any a∗ ∈ α, b′ ∈ β \ β′, a′ ∈ α, and b∗ ∈ β.
Then (a∗, b′) ∈ ξ and (b′, a′) ∈ β′ × α′ and (a′, b∗) ∈ ξ, therefore ϑixjϑi contains
the path a∗	 b′→ a′	 b∗, and is live. Thus, ϑi,xj select Ti.

If i = j (cf. right side), then xj has connectivity ξ′ = β × α. If ϑi,xj do not
select T∅, then they select Ti, so ϑixjϑi is live. Pick any witnessing path, say of
the form a∗ 	 b′→ a′ 	 b∗. Then (a∗, b′) ∈ ξ and (b′, a′) ∈ ξ′ and (a′, b∗) ∈ ξ.
Therefore b′ ∈ β and (b′, a′) ∈ β × α and a′ ∈ α, a contradiction. 
�

4.2 The Bound

Now consider the following two families of experiments.
First, fix ϑi and r ∈ Q, let xj range over all possibilities, and observe how

the sizes of α∗i,j(r) and β∗i,j(r) vary with xj . The result is two 1 × |I| vectors,
ai,r := (|α∗i,j(r)|)j∈I and bi,r := (|β∗i,j(r)|)j∈I . Repeat for all ϑi and r, to obtain
the two sets of vectors A := {ai,r | i ∈ I, r ∈ Q} and B := {bi,r | i ∈ I, r ∈ Q}.

Second, fix p,q ∈ Q, let xj range over all possibilities, and observe how the
bits δlr(p, xj , q) and δrl(q, xj , p) vary. The result is two 1 × |I| binary vectors,
up,q := (δlr(p, xj , q))j∈I and vq,p := (δrl(q, xj , p))j∈I . Repeat for all p and q, to
obtain the two sets of vectors U := {up,q | p, q ∈ Q} and V := {vq,p | p, q ∈ Q}.
Fact 9a. Every vector in A∪B is a linear combination of vectors from U ∪V.

Proof. Fix i ∈ I and r ∈ Q. The left equality in Fact 7 implies that for all j ∈ I:

ai,r(j) = |α∗i,j(r)| = |α∗ϑi,xjϑi
(r)| =

∑
p∈Ai & lcompq(ϑi)

hits right into r

δlr(p, xj , q) =
∑

p∈Ai & lcompq(ϑi)
hits right into r

up,q(j)

and thus ai,r =
∑

up,q for the specific ranges of p,q. Similarly, bi,r =
∑

vq,p if
the sum ranges over all p ∈ Bi and all q for which rcompq(ϑi) hits left into r. 
�
Fact 9b. The set A∪ B contains |I| − 1 linearly independent vectors.

Proof. We will find in A∪B a vector family (ci)i∈I such that i > j =⇒ ci(j) = 1
and i = j =⇒ ci(j) = 0, for all i,j ∈ I. This will be enough. Because then the
numbers ci(j) form a |I| × |I| matrix with 0s on the diagonal and 1s below it,
which has rank |I| − 1 (easily), and thus |I| − 1 of the ci must be independent.

Pick i ∈ I. Since ϑi, xi select T∅ (Fact 8), there exist r ∈ Ai or r ∈ Bi which
are not hit by exactly 1 simple computation (Lemma 7), respectively |α∗i,i(r)| 	= 1
or |β∗i,i(r)| 	= 1. One of these r must, in fact, be hit by 0 simple computations
(otherwise, each r is hit by ≥ 1 value of αi,i or βi,i and at least one is hit by ≥ 2
values, for an absurd total of ≥ |Ai| + |Bi| + 1 values of αi,i and βi,i). If ri is
this unhit state, then ri ∈ Ai & |α∗i,i(ri)| = 0 or ri ∈ Bi & |β∗i,i(ri)| = 0. In the
former case, we let ci := ai,ri ; in the latter case, we let ci := bi,ri .

By this definition, clearly ci(i) = 0. Moreover, if i > j then ϑi,xj select Ti

(Fact 8) and thus each r ∈ Ai and r ∈ Bi is hit by exactly 1 simple computation
(Lemma 7). Hence, so is ri. Therefore, depending on the case in ci’s definition,
either ci(j) = ai,ri(j) = |α∗i,j(ri)| = 1 or ci(j) = bi,ri(j) = |β∗i,j(ri)| = 1. 
�
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So, U ∪V span a space of dimension ≥ |I| − 1. Clearly then |U ∪ V| ≥ |I| − 1,
therefore 2|Q|2 ≥ (2h−1)2−1. Hence |Q| = Ω(2h), and the proof is complete.

5 Conclusion

We confirmed the Sakoda-Sipser conjecture in the special case of 2fas performing
o(n) reversals, by proving that owl needs exponentially large 2dfas of this kind.

The large alphabet of owlh is not a problem, as binary witnesses exist, too:
Just encode the symbols of Σh into h2-bit strings. Then 2dfas still need Ω(2h)
states (same proof, as all reasoning is on cell boundaries), while 2nfas need only
O(h2). So, our title is valid even if ‘small 2fas’ means ‘2fas of small description’.

Theorem 1 says that all 2dfas for owlh satisfy rM (n) 	= o(n) ∨ |Q| = Ω(2h),
but the stronger condition rM (n) = Ω(n) ∨ |Q| ≥ 2h is probably also true. An-
other possible direction for further work is to continue with Research Problem 4
of [4] and fully analyze the trade-off between size and number of reversals.

References

1. Berman, P., Lingas, A.: On complexity of regular languages in terms of finite
automata. Report 304, Institute of Computer Science, Polish Academy of Sciences,
Warsaw (1977)

2. Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic
unary automata into simpler automata. Theoretical Computer Science 295, 189–
203 (2003)

3. Geffert, V., Pighizzini, G.: Two-way unary automata versus logarithmic space. In:
Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 197–208.
Springer, Heidelberg (2010)
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Abstract. The complexity of the isomorphism problem for regular trees, regular
linear orders, and regular words is analyzed. A tree is regular if it is isomorphic
to the prefix order on a regular language. In case regular languages are repre-
sented by NFAs (DFAs), the isomorphism problem for regular trees turns out to be
EXPTIME-complete (resp. P-complete). In case the input automata are acyclic
NFAs (acyclic DFAs), the corresponding trees are (succinctly represented) finite
trees, and the isomorphism problem turns out to be PSPACE-complete (resp. P-
complete). A linear order is regular if it is isomorphic to the lexicographic order
on a regular language. A polynomial time algorithm for the isomorphism prob-
lem for regular linear orders (and even regular words, which generalize the latter)
given by DFAs is presented. This solves an open problem by Ésik and Bloom. A
long version of this paper can be found in [18].

1 Introduction

Isomorphism problems for infinite but finitely presented structures are an active re-
search topic in algorithmic model theory [1]. It is a folklore result in computable model
theory that the isomorphism problem for computable structures (i.e., structures, where
the domain is a computable set of natural numbers and all relations are computable too)
is highly undecidable — more precisely, it is Σ1

1-complete, i.e., complete for the first
existential level of the analytical hierarchy. Khoussainov et al. proved in [15] that even
for automatic structures (i.e., structures, where the domain is a regular set of words and
all relations can be recognized by synchronous multitape automata), the isomorphism
problem is Σ1

1 -complete. In [16], this result was further improved to automatic order
trees (trees viewed as partial orders) and automatic linear orders. On the decidability
side, Courcelle proved that the isomorphism problem for equational graphs is decidable
[7]. Recall that a graph is equational if it is the least solution of a system of equations
over the HR graph operations. We remark that Courcelle’s algorithm for the isomor-
phism problem for equational graphs has very high complexity (it is not elementary),
since it uses the decidability of monadic second-order logic on equational graphs.

In this paper, we continue the investigation of isomorphism problems for infinite
but finitely presented structures at the lower end of the spectra. We focus on two very
simple classes of infinite structures: regular trees and regular words; both are particular
automatic structures. Recall that a countable tree is regular if it has only finitely many
subtrees up to isomorphism. This definition works for ordered trees (where the children
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of a node are linearly ordered) and unordered trees. An equivalent characterization in
the unordered case uses regular languages: An unordered (countable) tree T is regular if
and only if there is a regular languageL ⊆ Σ∗ which contains the empty word and such
that T is isomorphic to the tree obtained by taking the prefix order on L (ε is the root).
Hence, a regular tree can be represented by a finite deterministic or nondeterministic
automaton (DFA or NFA), and the isomorphism problem for regular trees becomes the
following computational problem: Given two DFAs (resp., NFAs) accepting both the
empty word, are the corresponding regular trees isomorphic?

It is is not difficult to prove that this problem can be solved in polynomial time if the
two input automata are assumed to be DFAs; the algorithm is very similar to the well-
known partition refinement algorithm for checking bisimilarity of finite state systems
[14]. Hence, the isomorphism problem for regular trees that are represented by NFAs
can be solved in exponential time. Our first main result states that this problem is in fact
EXPTIME-complete (Thm. 3.3). The proof of the EXPTIME lower bound uses three
main ingredients: (i) EXPTIME coincides with alternating polynomial space [5], (ii) a
construction from [13], which reduces the evaluation problem for Boolean expressions
to the isomorphism problem for (finite) trees, and (iii) a small NFA accepting all words
that do not represent an accepting computation of a polynomial space machine [23].

Our proof technique yields another result too: It is PSPACE-complete to check for
two given acyclic NFAs A1, A2 (both accepting the empty word), whether the trees
that result from the prefix orders on L(A1) and L(A2), respectively, are isomorphic.
Note that these two trees are clearly finite (since the automata are acyclic), but the size
of L(Ai) can be exponential in the number of states of Ai. In this sense, acyclic NFAs
can be seen as a succinct representation of finite trees. The PSPACE-upper bound for
acyclic NFAs follows easily from Lindell’s result [19] that isomorphism of explicitly
given trees can be checked in logarithmic space.

The second part of this paper studies the isomorphism problem for regular words,
which were introduced in [6]. A generalized word over a finite alphabetΣ is a countable
linear order together with a Σ-coloring of the elements. A generalized word is regular
if it can be obtained as the least solution (in a certain sense made precise in [6]) of
a system X1 = t1, . . . , Xn = tn. Here, every ti is a finite word over the alphabet
Σ ∪{X1, . . . , Xn}. For instance, the system X = abX defines the regular word (ab)ω.

Courcelle [6] gave an alternative characterization of regular words: A generalized
word is regular if and only if it is equal to the frontier word of a finitely-branching or-
dered regular tree, where the leaves are colored by symbols from Σ. Here, the frontier
word is obtained by ordering the leaves in the usual left-to-right order (note that the tree
is ordered). Alternatively, a regular word can be represented by a DFA A, where the
set of final states is partitioned into sets Fa (a ∈ Σ); we call such a DFA a partitioned
DFA. The corresponding regular word is obtained by ordering the language of A lexi-
cographically and coloring a word w ∈ L(A) with a if w leads from the initial state to
a state from Fa.

A third characterization of regular words was provided by Heilbrunner [12]: A gen-
eralized word is regular if it can be obtained from singleton words (i.e., symbols from
Σ) using the operations of concatenation, ω-power, ω-power and dense shuffle. For
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Fig. 1. A dag for the regular word ([abbaabba, abbaabbaabbaabba]η)ω . Nodes labeled with ◦
compute the concatenation of their successor nodes. In case the order of the successor nodes
matters, we specify it by edge labels.

a generalized word u, its ω-power (resp. ω-power) is the generalized word uuu · · ·
(resp. · · ·uuu). Moreover, the shuffle of generalized words u1, . . . , un is obtained by
choosing a dense coloring of the rationals with colors {1, . . . , n} (up to isomorphism,
there is only a single such coloring [21]) and then replacing every i-colored rational
by ui. In fact, Heilbrunner presents an algorithm which computes from a given system
of equations (or, alternatively, a partitioned DFA) an expression over the above set of
operations (called a regular expression in the following) which defines the least solution
of the system of equations. A simple analysis of Heilbrunner’s algorithm shows that the
computed regular expression in general has exponential size with respect to the input
system of equations and it is easy to see that this cannot be avoided (take for instance
the system Xi = Xi+1Xi+1 (1 ≤ i ≤ n), Xn = a, which defines the finite word a2n

).
The next step was taken by Thomas in [24], where he proved that the isomorphism

problem for regular words is decidable. For his proof, he uses the decidability of the
monadic second-order theory of linear orders; hence his proof does not yield an elemen-
tary upper bound for the isomorphism problem for regular words. Such an algorithm
was later presented by Bloom and Ésik in [2], where the authors present a polynomial
time algorithm for checking whether two given regular expressions define isomorphic
regular words. Together with Heilbrunner’s algorithm, this yields an exponential time
algorithm for checking whether the least solutions of two given systems of equations
(or, alternatively, the regular words defined by two partitioned DFAs) are isomorphic.
It was asked in [2], whether a polynomial time algorithm for this problem exists.

Our second main result answers this question affirmatively. In fact, we prove that
the problem, whether two given partitioned DFAs define isomorphic regular words, is
P-complete (Cor. 4.2 and Thm. 4.4). A large part of the long version [18] of this paper
deals with the polynomial time upper bound. The first step is simple. By reanalyzing
Heilbrunner’s algorithm, it is easily seen that from a given partitioned DFA (defining
a regular word u) one can compute in polynomial time a succinct representation of a
regular expression for u. This succinct representation consists of a dag (directed acyclic
graph), whose unfolding is a regular expression for u. Figure 1 shows an example of
such a dag. The second and main step of our proof shows that the polynomial time
algorithm of Bloom and Ésik for regular expressions can be refined in such a way that
it works (in polynomial time) for succinct regular expressions too. The main tool in
our proof is (besides the machinery from [2]) algorithms on compressed strings (see
[22] for a survey), in particular Plandowski’s result that equality of strings that are
represented by straight-line programs (i.e., context free grammars that only generate
a single word) can be checked in polynomial time [20]. It is a simple observation that
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an acyclic partitioned DFA is basically a straight-line program. Hence, we show how
to extend Plandowski’s polynomial time algorithm from acyclic partitioned DFAs to
general partitioned DFAs.

An immediate corollary of our result is that it can be checked in polynomial time
whether the lexicographic orderings on the languages defined by two given DFAs (so
called regular linear orderings) are isomorphic. For the special case that the two input
DFAs accept well-ordered languages, this was shown in [8]. Let us mention that it is
highly undecidable (Σ1

1 -complete) to check, whether the lexicographic orderings on
the languages defined by two given deterministic pushdown automata (these are the
algebraic linear orderings [3]) are isomorphic [16].

2 Preliminaries

We assume standard notions from automata theory. Let us take a finite alphabet Σ. For
u, v ∈ Σ∗, we write u ≤pref v if there exists w ∈ Σ∗ with v = uw, i.e., u is a prefix of v.
A language L ⊆ Σ∗ is prefix-closed if u ≤pref v ∈ L implies u ∈ L. For a fixed linear
order ≤ on the alphabet Σ we define the lexicographic order ≤lex on Σ∗ as follows:
u ≤lex v if u ≤pref v or there exist w, x, y ∈ Σ∗ and a, b ∈ Σ such that a < b, u = wax,
and v = wby. Let A = (Q,Σ, δ, q0, F ) be a nondeterministic finite automaton (NFA)
where Q is the set of states, Σ is the input alphabet, δ ⊆ Q × Σ × Q is the transition
relation, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states. Then, A is
called prefix-closed if Q = F (thus, L(A) is prefix-closed). For a deterministic finite
automaton (DFA), δ is a partial map from Q × Σ to Q. A partitioned DFA is a tuple
A = (Q,Σ, δ, q0, (Fa)a∈Γ ), where Γ is a finite alphabet, B := (Q,Σ, δ, q0,

⋃
a∈Γ Fa)

is an ordinary DFA and Fa ∩ Fb = ∅ for a 	= b. Since B is a DFA, it follows that the
language L(B) is partitioned by the languages L(Q,Σ, δ, q0, Fa) (a ∈ Γ ).

We assume that the reader has some basic background in complexity theory, in partic-
ular concerning the complexity classes P, PSPACE, and EXPTIME. All completeness
results in this paper refer to logspace reductions.

2.1 Trees

A tree is a partial order T = (A;≤), where ≤ has a smallest element (the root of the
tree; in particular A 	= ∅) and for every a ∈ A, the set {b ∈ A | b ≤ a} is finite and
linearly ordered by ≤. We write a � b if a < b and there does not exist c ∈ A with
a < c < b. Then (A; �) is a tree in the graph theoretical sense (sometimes, it is also
called a successor tree). For two trees T1 and T2, we write T1

∼= T2 in case T1 and
T2 are isomorphic. A tree over the finite alphabet Σ is a pair T = (L;≤pref), where
L ⊆ Σ∗ is a language with ε ∈ L. Note that T is indeed a tree in the above sense (ε is
the root). If L is prefix-closed, then, clearly, T is a finitely branching tree.

A countable tree T is called regular if T has only finitely many subtrees up to iso-
morphism, see e.g. [4,24]. Equivalently, a countable tree is regular if it is isomorphic to
a tree of the form (L;≤pref), where L is a regular language with ε ∈ L. If L is accepted
by the DFA A and all final states can be reached from the initial state, then the subtrees
of (L;≤pref) correspond to the final states of A. Note that by our definition, a regular
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tree needs not be finitely branching. A finitely branching tree is regular if and only if it
is the unfolding of a finite directed graph [4].

Our first definition of a regular tree (having only finitely many subtrees up to iso-
morphism) makes sense for other types of trees as well, e.g. for node-labeled trees or
ordered trees (where the children of a node are linearly ordered). These variants of
regular trees can be generated by finite automata as well. For instance, a node-labeled
regular tree (L;≤pref , (La)a∈Γ ), where Γ is a finite labeling alphabet and La is the set
of a-labeled nodes can be specified by a partitioned DFA (Q,Σ, δ, q0, (Fa)a∈Γ ) with
La = L(Q,Σ, δ, q0, Fa) and L =

⋃
a∈Γ La. We do not consider node labels in this

paper, since it makes no difference for the isomorphism problem (node labels can be
eliminated by adding additional children to nodes). Ordered regular trees are briefly
discussed in the long version [18] of this paper.

2.2 Linear Orders and Generalized Words

See [21] for a thorough introduction into linear orders. Let η be the order type of the
rational numbers, ω be the order type of the natural numbers, and ω be the order type
of the negative integers. With n we denote a finite linear order with n elements. Let
Λ = (L;≤) be a linear order. An interval of Λ is a subset I ⊆ L such that x < z < y
and x, y ∈ I implies z ∈ I . The predecessor (resp., successor) of x ∈ L is a largest
(resp., smallest) element of {y ∈ L | y < x} (resp., {y ∈ L | x < y}). Of course, the
predecessor (resp., successor) of x need not exist, but if it exists then it is unique. The
linear order Λ is dense if L consists of at least two elements, and for all x < y there
exists z with x < z < y. By Cantor’s theorem, every countable dense linear order,
which neither has a smallest nor largest element is isomorphic to η. Hence, if we take
symbols 0 and 1 with 0 < 1, then ({0, 1}∗1;≤lex) ∼= η. The linear order Λ is scattered
if there does not exist an injective order morphism ϕ : η → Λ. Clearly, ω, ω, as well
as every finite linear order are scattered. A linear order is regular if it is isomorphic to
a linear order (L;≤lex) for a regular language L. For instance, ω, ω, η, and every finite
linear order are regular linear orders.

Generalized words are countable colored linear orders. Let Σ be a finite alphabet. A
generalized word (or simply word) u over Σ is a triple (L;≤, τ) such that L is a finite
or countably infinite set, ≤ is a linear order on L and τ : L → Σ is a coloring of L.
The alphabet alph(u) equals the image of τ . If L is finite, we obtain a finite word in the
usual sense. Moreover, u = (L;≤, τ) is scattered if (L;≤) is scattered. We write u ∼= v
for generalized words u and v, if u and v are isomorphic.

There is a natural operation of concatenation of two generalized words. Let u1 =
(L1;≤1, τ1) and u2 = (L2;≤2, τ2) be generalized words with L1∩L2 = ∅. Then u1u2

is the generalized word (L1∪L2;≤, τ1∪τ2), where x ≤ y if and only if either x, y ∈ L1

and x ≤1 y, or x, y ∈ L2 and x ≤2 y, or x ∈ L1 and y ∈ L2. Similarly, we can define
the ω-power (resp., ω-power) of a generalized word u as the generalized word that
results from ω (resp. ω) by replacing every point by a copy of u. So, intuitively, uω =
uuu · · · and uω = · · ·uuu. Finally, we need the shuffle operator. Given generalized
words u1, . . . , un, we let [u1, . . . , un]η be the generalized word that is obtained from
η as follows: Take a coloring of η with colors 1, . . . , n such that for all x, y ∈ Q with
x < y and all 1 ≤ i ≤ n, there exists x < z < y such that z has color i (it can
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be shown that up to isomorphism there is a unique such dense coloring [21]). Then
the shuffle of u1, . . . , un, denoted by [u1, . . . , un]η, is obtained by replacing every i-
colored rational by a copy of the generalized word ui. Since [u1, . . . , un]η is invariant
under permutations of the ui, we also sometimes use the notation Xη for a finite set
X of generalized words. The least set of words which contains the singleton words a
for a ∈ Σ and is closed under concatenation, ω-power, ω-power, and shuffle is called
the set of regular words over Σ, denoted Reg(Σ). Note that this definition implies that
every regular word is non-empty, i.e., its domain is a non-empty set. Clearly, every
regular word can be described by a regular expression over the above operations, but
this regular expression is in general not unique. Given a regular expression e, we define
the corresponding regular word by val(e).

By a result of Heilbrunner [12], regular words can be characterized by partitioned
DFAs as follows: Let A = (Q,Γ, δ, q0, (Fa)a∈Σ) be a partitioned DFA, and let B =
(Q,Γ, δ, q0,

⋃
a∈Σ Fa). Let us fix a linear order on the alphabet Γ , so that the lex-

icographic order ≤lex is defined on Γ ∗. Then we denote with w(A) the generalized
word w(A) = (L(B);≤lex, τ), where τ(u) = a (a ∈ Σ, u ∈ L(B)) if and only
if u ∈ L(Q,Γ, δ, q0, Fa). It is easy to construct from a given regular expression e a
partitioned DFA A with val(e) ∼= w(A), see e.g. [24, proof of Prop. 2] for a simple
construction. The other direction is more difficult. Heilbrunner has shown in [12] how
to compute from a given partitioned DFA A (such that w(A) is non-empty) a regular
expression e with val(e) ∼= w(A).1 Unfortunately, the size of the regular expression
produced by Heilbrunner’s algorithm is exponential in the size ofA. On the other hand,
reanalyzing Heilbrunner’s algorithm shows that a succinct representation of a regular
expression for w(A) can be produced in polynomial time. This succinct representa-
tion is a dag (directed acyclic graph), where multiple occurrences of the same regular
subexpression are represented only once. We denote such dags with A,B, etc. The reg-
ular word represented by the dag A is again denoted by val(A).

3 Isomorphism Problem for Regular Trees

In this section, we investigate the isomorphism problem for (unordered) regular trees.
We consider two input representations for regular trees: DFAs and NFAs. It turns out
that while the isomorphism problem for DFA-represented regular trees is P-complete,
the same problem becomes EXPTIME-complete for NFA-represented regular trees.
Moreover, we show that for finite trees that are succinctly represented by acyclic NFAs,
isomorphism is PSPACE-complete.

Let us start with upper bounds. Our proof of the following theorem is based on an
algorithm similar to the partition refinement algorithm for checking bisimilarity of finite
state systems [14]. The statement for NFAs clearly follows from the statement for DFAs
using the powerset construction for transforming NFAs into DFAs.

Theorem 3.1. For two given DFAs (resp., NFAs)A1,A2 such that ε ∈ L(A1)∩L(A2)
one can decide in polynomial time (resp., exponential time) whether (L(A1);≤pref) ∼=
(L(A2);≤pref).

1 In fact, Heilbrunner [12] speaks about systems of equations and their least solutions instead of
partitioned DFAs. These two formalisms can be efficiently transformed into each other.
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For acyclic NFAs, we can improve the upper bound from Thm. 3.1 to PSPACE.

Theorem 3.2. For two given acyclic NFAs A1, A2 such that ε ∈ L(A1) ∩ L(A2) one
can decide in polynomial space whether (L(A1);≤pref) ∼= (L(A2);≤pref).

The proof of Thm. 3.2 is based on two facts: (i) Given an acyclic NFA A we can com-
pute an explicit representation of the finite tree (L(A);≤pref) (using e.g. adjacency lists)
by a transducer, whose working tape is polynomially bounded, and (ii) isomorphism for
explicitly given finite trees can be checked in logspace [19].

Concerning lower bounds, our main result is:

Theorem 3.3. It is EXPTIME-hard (and hence EXPTIME-complete) to decide for two
given prefix-closed NFAs A1, A2, whether (L(A1);≤pref) ∼= (L(A2);≤pref).

It is straightforward to prove PSPACE-hardness of the problem in Thm. 3.3. If Σ is the
underlying alphabet of a given NFA A, then (L(A);≤pref) is a full |Σ|-ary tree if and
only if L(A) = Σ∗. But universality for NFAs is PSPACE-complete [23]. The proof
for the EXPTIME lower bound stated in Thm. 3.3 is more involved. Here is a rough
outline: EXPTIME coincides with alternating polynomial space [5]. Checking whether
a given input is accepted by a polynomial space bounded alternating Turing machine
M amounts to evaluate a Boolean expression whose gates correspond to configurations
of M . Using a construction from [13], the evaluation problem for (finite) Boolean ex-
pressions can be reduced to the isomorphism problem for (finite) trees. In our case, the
Boolean expression will be infinite. Nevertheless, the infinite Boolean expressions we
have to deal with can be evaluated because on every infinite path that starts in the root
(the output gate) there is either an and-gate, where one of the inputs is a false-gate, or
an or-gate, where one of the inputs is a true-gate. Applying the construction from [13]
to an infinite Boolean expression (that arises from our construction) yields two infinite
trees, which are isomorphic if and only if our infinite Boolean expression evaluates to
true. Luckily, these two trees turn out to be regular, and they can be represented by
small NFAs. Using a similar construction, but starting with an alternating polynomial
time machine (instead of an alternating polynomial space machine), we can prove:

Theorem 3.4. It is PSPACE-hard (and hence PSPACE-complete) to decide for two
given prefix-closed acyclic NFAs A1, A2, whether (L(A1);≤pref) ∼= (L(A2);≤pref).

Finally, by a reduction from the P-complete monotone circuit value problem [11] (which
uses again the reduction from the evaluation problem for Boolean expressions to the
isomorphism problem for explicitly given finite trees [13]), we get the next result.

Theorem 3.5. It is P-hard (and hence P-complete) to decide for two given prefix-closed
acyclic DFAs A1 andA2, whether (L(A1);≤pref) ∼= (L(A2);≤pref).

4 Isomorphism Problem for Regular Words

In this section we study the isomorphism problem for regular words that are represented
by partitioned DFAs. We prove that this problem as well as the isomorphism problem
for regular linear orders that are represented by DFAs are P-complete. It follows that
the isomorphism problem for regular linear orders that are represented by NFAs can be
solved in exponential time. We show that this problem is also PSPACE-hard.
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4.1 Upper Bounds

In Section 2.2 we mentioned that Heilbrunner’s algorithm [12] transforms a given par-
titioned DFA A into a succinct regular expression A (in form of a dag) for the regular
word w(A). This motivates the following result:

Theorem 4.1. For two given dags A1 and A2 one can decide in polynomial time,
whether val(A1) ∼= val(A2).

The next result is an immediate corollary of Thm. 4.1 and [12].

Corollary 4.2. For two given partitioned DFAs A1 and A2 one can decide in polyno-
mial time whether w(A1) ∼= w(A2).

Our proof of Thm. 4.1 is quite long and technical. But essentially, we use the same
strategy as in [2]. Recall that Bloom and Ésik prove in [2] that for two given (non-
succinct) regular expressions e1, e2 it can be decided in polynomial time, whether they
represent the same regular word. Let us briefly explain their strategy.

A central concept in [2] is the notion of a block of a generalized word. Blocks allow
to condensate a generalized word to a coarser word (whose elements are the blocks of
the original word). Let u = (L;≤, τ) be a generalized word over the alphabet Σ. A
subword of u is an interval I of the linear order (L;≤)) together with the coloring τ
restricted to I . A uniform subword of u is a subword that is isomorphic to a shuffle
Γ η for some Γ ⊆ Σ. A uniform subword is a maximal uniform subword if it is not
properly contained in another uniform subword. Now let v be a subword such that
no point of v is contained in a uniform subword of u. Then v is successor-closed if
for each point p of v, whenever the successor and the predecessor of p exist, they are
contained in v as well. A successor-closed subword is minimal if it does not strictly
contain another successor-closed subword. Finally, a block of the generalized word u is
either a maximal uniform subword of u or a minimal successor-closed subword of u. A
regular word which consists of a single block is called primitive.2 By [2] a generalized
word u is primitive if and only if it is of one of the following forms (where x, z ∈ Σ+,
y ∈ Σ∗): A finite non-empty word, a scattered word of the form xωy, a scattered word
of the form yzω, a scattered word of the form xωyzω, or a uniform word (Γ η for some
Γ ⊆ Σ). Let D(Σ) be the set of all primitive words over Σ.

Let u be a regular word. Each point p of u belongs to some unique block Bl(p),
which induces a regular (and hence primitive) word. Moreover we can order the blocks
of u linearly by setting Bl(p) < Bl(q) if and only if p < q. The order obtained that way
is denoted (Bl(u);≤). Then we extend the order (Bl(u);≤) to a generalized word û
over the alphabet D(Σ), called the skeleton of u, by labeling each block with the corre-
sponding isomorphic word in D(Σ). Implicitly, it is shown in [2] that for every regular
word u there exists a finite subset of D(Σ) such that every block of u is isomorphic to
a generalized word from that finite subset. Moreover, û is a regular word over that finite
subset of D(Σ). Bloom and Ésik have shown that two regular words are isomorphic if
and only if their skeletons are isomorphic [2, Cor. 73].

2 In combinatorics on words, a finite word is called primitive, if it is not a proper power of a
non-empty word. Our notion of a primitive word should not be confused with this definition.
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From two given regular expression e1 and e2, Bloom and Ésik compute in polyno-
mial time two “simpler” expressions f1 and f2 (over a finite alphabet, which consists
of a finite subset of D(Σ)) such that val(fi) is the skeleton of val(ei). Here, “simpler”
means that the height of the expression fi is strictly smaller than the height of ei. The
above mentioned Cor. 73 from [2] allows to replace e1, e2 by f1, f2. This step is iterated
until one of the two expressions denotes a primitive regular word. If at that point the
other expression does not denote a primitive word, then the two initial regular words
are not isomorphic. On the other hand, if both regular expressions denote primitive reg-
ular words, then one faces the problem of checking whether two given primitive regular
words are isomorphic. It is straightforward to do this in polynomial time.

For succinct expressions (i.e., dags), we use the same strategy. Given two dags A1

and A2, we compute in polynomial time new dags B1 and B2 such that (i) val(Bi) is the
skeleton of val(Ai) and (ii) the height of Bi is strictly smaller than the height of Ai. Note
that the notion of “height” makes sense for dags as well. It is the maximal length of a
path in the dag. To obtain a polynomial time algorithm at the end, several problems have
to be addressed. First of all, the transformation of a dag A into a dag B such that val(B)
is the skeleton of val(A) must be accomplished in polynomial time. But even if we can
achieve this, an overall polynomial running time is not guaranteed, since we have to
iterate this transformation. If for instance, the size of B (let us define the size of a dag as
the number of edges) would be twice the size of A, then this would result into an overall
exponential blow-up. But fortunately, our transformation of A into B only involves an
additive blow-up, which is polynomial at each iteration. Finally, at the end, we have to
check isomorphism for two primitive regular words that are succinctly represented by
dags. It is not obvious to do this in polynomial time. In fact, our algorithm for solving
this problem makes essential use of known results for compressed words.

Let us explain this in more detail. A dag, where only the alphabet symbols and the
operation of concatenation is used (no ω- and ω-powers and no shuffles) is also known
as a straight-line program (SLP). Alternatively, it can be seen as an acyclic context-free
grammar, where each nonterminal is the left-hand side of a unique production. Such a
context-free grammar generates a single finite word. Moreover, the length of this word
can be exponential in the size of the SLP. Hence the SLP can be seen as a compressed
representation of the finite word. In recent years, a lot of effort was spent on the devel-
opment of efficient algorithms for SLP-represented finite words: Our polynomial time
algorithm for primitive regular words that are given by dags uses a seminal result from
this area: It can be checked in polynomial time, whether the word represented by a first
SLP is a factor of the word represented by a second SLP (compressed pattern match-
ing). The best algorithm for compressed pattern matching has a cubic running time [17].
Note that as a corollary, it can be checked in polynomial time, whether two given SLPs
represent the same finite word. This result was first shown by Plandowski [20].

4.2 Lower Bounds for Regular Linear Orders

Let us now turn to lower bounds for the isomorphism problem for regular words. In
fact, all these lower bounds already hold for a unary alphabet, i.e., they hold for regular
linear orders. The results in this section nicely contrast the results from Section 3, where
we studied the isomorphism problem for the prefix order trees on regular languages. In
this section, we replace the prefix order by the lexicographical order.
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Theorem 4.3. For every finite alphabet Σ, it is P-hard (and hence P-complete) to de-
cide for two given dags A1 and A2 over the alphabet Σ, whether val(A1) ∼= val(A2).

As for the proof of Thm. 3.5, the proof of Thm. 4.3 is based on a reduction from
the monotone circuit value problem. We do not know, whether the lower bound from
Thm. 4.3 holds for ordinary expressions (instead of dags) too.

Theorem 4.4. It is P-hard (and hence P-complete) to decide for two given DFAs A1

andA2, whether (L(A1);≤lex) ∼= (L(A2);≤lex).

Proof. Note that by Cor. 4.2 the problem belongs to P. For P-hardness, it suffices by
Thm. 4.3 to construct in logspace from a given dag A (over a unary terminal alphabet)
a DFA A such that the linear order val(A) is isomorphic to (L(A);≤lex). But this is
accomplished by the construction in the proof of [24, Prop. 2]. 
�
Cor. 4.2 implies that it can be checked in EXPTIME whether the lexicographical order-
ings on two regular languages, given by NFAs, are isomorphic. We do not know whether
this upper bound is sharp. Currently, we can only prove a lower bound of PSPACE:

Theorem 4.5. It is PSPACE-hard to decide for two given NFAs A1 and A2, whether
(L(A1);≤lex) ∼= (L(A2);≤lex).

Proof. We prove PSPACE-hardness by a reduction from the PSPACE-complete prob-
lem whether a given NFA A over the terminal alphabet {a, b} accepts {a, b}∗ [23].
So let A be an NFA over the terminal alphabet {a, b} and let K = L(A). Let Σ =
{0, 1, a, b, $1, $2} and fix the following order on Σ: $1 < 0 < 1 < $2 < a < b. Under
this order, ({0, 1}∗1;≤lex) ∼= ({a, b}∗b;≤lex) ∼= η.

It is straightforward to construct fromA in logspace an NFA for the language

L = ({a, b}∗b $1) ∪ (K b {0, 1}∗1) ∪ ({a, b}∗b $2). (1)

It follows that

(L;≤lex) ∼=
∑

w∈{a,b}∗b

L(w) with L(w) ∼=
{

1 + η + 1 if w ∈ K

2 else.

(the sum is taken over all words from {a, b}∗b in lexicographic order). If K 	= {a, b}∗,
then (L;≤lex) contains an interval isomorphic to 2. Hence (L;≤lex) 	∼= η. On the other
hand, if K = {a, b}∗, then (L;≤lex) ∼= (1+η+1)·η ∼= η. This proves the theorem. 
�
The proof of Thm. 4.5 shows that it is PSPACE-hard to check for a given NFA A,
whether (L(A);≤lex) ∼= η. In fact, this problem turns out to be PSPACE-complete, see
the long version [18] for details.

In [9] it is shown that the problem, whether (L;≤lex) ∼= η for a given context-free
language, is undecidable. This result is shown by a reduction from Post’s correspon-
dence problem. Note that this result can be also easily deduced using the technique
from the above proof: If we start with a pushdown automaton for A instead of an
NFA, then the language L from (1) is context-free. Hence, (L;≤lex) ∼= η if and only if
L(A) = {a, b}∗. The latter property is a well-known undecidable problem.
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Table 1. Main results for the isomorphism problem for regular trees

DFA NFA

acyclic PSPACE-complete

arbitrary
P-complete

EXPTIME-complete

Table 2. Main results for the isomorphism problem for regular linear orders

DFA NFA

acyclic C=L-complete C=P-complete

arbitrary P-complete
PSPACE-hard,
in EXPTIME

In Section 3 we also studied the isomorphism problem for finite trees that are suc-
cinctly given by the prefix order on the finite language accepted by an acyclic DFA
(resp., NFA). To complete the picture, we should also consider the isomorphism prob-
lem for linear orders that consist of a lexicographically ordered finite language, where
the latter is represented by an acyclic DFA (resp., NFA). Of course, this problem is
somehow trivial, since two finite linear orders are isomorphic if and only if they have
the same cardinality. Hence, we have to consider the problem whether two given acyclic
DFAs (resp. NFAs) accept languages of the same cardinality. The complexity of these
problems is analyzed in the long version [18]. Straightforward arguments show that
checking whether two acyclic DFAs (resp. NFAs) accept languages of the same cardi-
nality is complete for the counting class C=L (resp., C=P), see [18] for definitions.

5 Conclusion and Open Problems

Table 1 (Table 2) summarizes our complexity results for the isomorphism problem for
regular trees (regular linear orders). Let us conclude with some open problems. As
can be seen from Table 2, there is a complexity gap for the isomorphism problem for
regular linear orders that are represented by NFAs. This problem belongs to EXPTIME
and is PSPACE-hard. Another interesting problem concerns the equivalence problem
for straight-line programs (i.e., dags that generate finite words, or equivalently, acyclic
partitioned DFAs, or equivalently, context-free grammars that generate a single word).
Plandowski has shown that this problem can be solved in polynomial time. Recall that
this result is fundamental for our polynomial time algorithm for dags (Thm. 4.1). In
[10], it was conjectured that the equivalence problem for straight-line programs is P-
complete, but this is still open.
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Abstract. During recent decades, classical models in language theory
have been extended by control mechanisms defined by monoids. We study
which monoids cause the extensions of context-free grammars, finite au-
tomata, or finite state transducers to exceed the capacity of the origi-
nal model. Furthermore, we investigate when, in the extended automata
model, the nondeterministic variant differs from the deterministic one in
capacity. We show that all these conditions are in fact equivalent and
present an algebraic characterization. In particular, the open question
of whether every language generated by a valence grammar over a finite
monoid is context-free is provided with a positive answer.

1 Introduction

The idea of equipping classical models of theoretical computer science with a
monoid (or a group) as a control mechanism has been pursued in recent decades
by several authors [4,7,8,9,11,13,14]. This interest is justified by the fact that
these extensions allow for a uniform treatment of a wide range of automata
and grammar models: Suppose a storage mechanism can be regarded as a set
of states on which a set of partial transformations operates and a computation
is considered valid if the composition of the executed transformations is the
identity. Then, this storage constitutes a certain monoid control.

For example, in a pushdown storage, the operations push and pop (for each
participating stack symbol) and compositions thereof are partial transformations
on the set of words over some alphabet. In this case, a computation is considered
valid if, in the end, the stack is brought back to the initial state, i.e., the identity
transformation has been applied. As further examples, blind and partially blind
multicounter automata (see [5]) can be regarded as finite automata controlled
by a power of the integers and of the bicyclic monoid (see [13]), respectively.

Another reason for studying monoid controlled automata, especially in the
case of groups, is that the word problems of a group G are contained in a
full trio (such as the context-free or the indexed languages) if and only if the
languages accepted by valence automata over G are contained in this full trio
(see, for example, [8, Proposition 2]). Thus, valence automata offer an automata
theoretic interpretation of word problems for groups.
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A similar situation holds for context-free grammars where each production
is assigned a monoid element such that a derivation is valid as soon as the
product of the monoid elements (in the order of the application of the rules)
is the identity. Here, the integers, the multiplicative group of Q, and powers of
the bicyclic monoid lead to additive and multiplicative valence grammars and
Petri net controlled grammars, respectively. The latter are in turn equivalent
to matrix grammars (with erasing and without appearance checking, see [2] for
details). Therefore, the investigation of monoid control mechanisms promises
very general insights into a variety of models.

One of the most basic problems regarding these models is the characterization
of those monoids whose use as control mechanism actually increases the power of
the respective model. For monoid controlled automata, such a characterization
has been achieved by Mitrana and Stiebe [9] for the case of groups. The author
of this work was informed by an anonymous referee that a characterization for
arbitrary monoids had been found by Render [12]. For valence grammars, that
is, context-free grammars with monoid control, very little was known in this
respect up to date. It was an open problem whether valence grammars over
finite monoids are capable of generating languages that are not context-free1

(see [4, p. 387]).
Another important question considers for which monoids the extended au-

tomata can be determinized, that is, for which monoids the deterministic variant
is as powerful as the nondeterministic one. Mitrana and Stiebe [9] have shown
that automata controlled by a group cannot be determinized if the group con-
tains at least one element of infinite order. However, the exact class of monoids
for which automata can be determinized was not known to date.

The contribution of this work is twofold. On the one hand, the open question
of whether all languages generated by valence grammars over finite monoids
are context-free is settled affirmatively. On the other hand, we use an algebraic
dichotomy of monoids to provide a characterization for all the conditions above.
Specifically, we show that the following assertions are equivalent:

– Valence grammars over M generate only context-free languages.
– Valence automata over M accept only regular languages.
– Valence automata over M can be determinized.
– Valence transducers over M perform only rational transductions.
– In each finitely generated submonoid of M , only finitely many elements

possess a right inverse.

Note that the equivalence of the second and the last assertion has been estab-
lished independently by Render [12].

2 Basic Notions

A monoid is a set M together with an associative operation and a neutral ele-
ment. Unless defined otherwise, we will denote the neutral element of a monoid
1 Note, however, that valence grammars with target sets over finite monoids are known

to generate all matrix languages[3].
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by 1 and its operation by juxtaposition. That is, for a monoid M and a, b ∈M ,
ab ∈M is their product. The opposite monoid Mop of M has the same set of ele-
ments as M , but has the operation ◦ with a◦ b := ba, a, b ∈M . For a, b ∈M , we
write a ! b iff there are c, d ∈M such that b = ac = da. Let a ∈M . An element
b ∈ M with ab = 1 is called a right inverse of a. If b ∈ M obeys ba = 1, it is a
left inverse of a. An element that is both a left and a right inverse is said to be
a two-sided inverse. By 1, we denote the trivial monoid that consists of just one
element. M is said to be left-cancellative if ab = ac implies b = c for a, b, c ∈M .
Whenever Mop is left-cancellative, we say that M is right-cancellative.

A subset N ⊆M is said to be a submonoid of M iff 1 ∈ N and a, b ∈ N implies
ab ∈ N . For a subset N ⊆ M , let 〈N〉 be the intersection of all submonoids N ′

of M that contain N . That is, 〈N〉 is the smallest submonoid of M that contains
N . 〈N〉 is also called the submonoid generated by N . We call a monoid finitely
generated if it is generated by a finite subset. In each monoid M , we have the
following submonoids:

R(M) := {a ∈M | ∃b ∈M : ab = 1},
L(M) := {a ∈M | ∃b ∈M : ba = 1}.

The elements of R(M) and L(M) are called right invertible and left invertible,
respectively. In addition, for every element a ∈M , we define the sets

−→
I (a) := {b ∈M | ab = 1},
←−
I (a) := {b ∈M | ba = 1}.

When using a monoid M as part of a control mechanism, the subset

E(M) := {a ∈M | ∃b, c ∈M : bac = 1}
will play an important role. If in M every element has a two-sided inverse, we
call M a group.

Let Σ be a fixed countable set of abstract symbols, the finite subsets of which
are called alphabets. For an alphabet X , we will write X∗ for the set of words
over X . The empty word is denoted by λ ∈ X∗. In particular, ∅∗ = {λ}. Together
with the concatenation as its operation, X∗ is a monoid. We will regard every
x ∈ X as an element of X∗, namely the word consisting of only one occurence
of x. For a symbol x ∈ X and a word w ∈ X∗, let |w|x be the number of
occurrences of x in w. For a subset Y ⊆ X , let |w|Y :=

∑
x∈Y |w|x. By |w|,

we will refer to the length of w. By X≤n ⊆ X∗, for n ∈ N, we denote the set
of all words over X of length ≤ n. Given alphabets X,Y , subsets of X∗ and
X∗ × Y ∗ are called languages and transductions, respectively. We define the
shuffle L1 L2 of two languages L1, L2 ⊆ X∗ to be the set of all words w ∈ X∗

such that w = u1v1 · · ·unvn for some ui, vi ∈ X∗, 1 ≤ i ≤ n, with u1 · · ·un ∈ L1,
v1 · · · vn ∈ L2. When {w} is used as an operand for , we also just write w
instead of {w}. For x1, . . . , xn ∈ X , let (x1 · · ·xn)rev := xn · · ·x1.

Let M be a monoid. An automaton over M is a tuple A = (M,Q,E, q0, F ),
in which Q is a finite set of states, E is a finite subset of Q×M ×Q called the
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set of edges, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states. The
step relation ⇒A of A is a binary relation on Q×M , for which (p, a) ⇒A (q, b)
iff there is an edge (p, c, q) such that b = ac. The set generated by A is then

S(A) := {a ∈M | ∃q ∈ F : (q0, 1) ⇒∗A (q, a)}.
A valence automaton over M is an automaton A over X∗ ×M , where X is an
alphabet. A is said to be deterministic if all its edges are in Q× (X ×M)×Q
and, for each pair (q, x) ∈ Q × X , there is at most one edge (q, (x,m), p) for
m ∈M,p ∈ Q. The language accepted by A is defined as

L(A) := {w ∈ X∗ | (w, 1) ∈ S(A)}.
A finite automaton is a valence automaton over 1. For a finite automaton A =
(X∗×1, Q,E, q0, F ), we also write A = (X,Q,E, q0, F ). Languages accepted by
finite automata are called regular languages. A valence transducer over M is an
automaton A over X∗×Y ∗×M , where X and Y are alphabets. The transduction
performed by A is

T (A) := {(x, y) ∈ X∗ × Y ∗ | (x, y, 1) ∈ S(A)}.
A finite state transducer is a valence transducer over 1. For a finite state trans-
ducer A = (X∗ × Y ∗ × 1, Q,E, q0, F ), we also write A = (X,Y,Q,E, q0, F ).
Transductions performed by finite state transducers are called rational trans-
ductions.

A valence grammar over M is a tuple G = (N,T,M,P, S), where N,T are
disjoint alphabets called the nonterminal and terminal alphabet, respectively,
P ⊆ N×(N∪T )∗×M is a finite set of productions, and S ∈ N is the start symbol.
For a production (A,w,m) ∈ P , we also write (A → w;m). The derivation
relation ⇒G of G is a binary relation on (N∪T )∗×M , for which (u, a) ⇒G (v, b)
iff there is a (A → w; c) ∈ P and words r, s ∈ (N ∪ T )∗ such that u = rAs,
v = rws, and b = ac. The language generated by G is defined as

L(G) := {w ∈ T ∗ | (S, 1) ⇒∗G (w, 1)}.
Valence grammars were introduced by Păun in [11]. A thorough treatment, in-
cluding normal form results and a classification of the resulting language classes
for commutative monoids, has been carried out by Fernau and Stiebe [4]. Valence
grammars over 1 are called context-free grammars. For a context-free grammar
G = (N,T,1, P, S), we also write G = (N,T, P, S). Furthermore, a production
(A → w; 1) ∈ P in a context-free grammar is also written A → w. Languages
generated by context-free grammars are called context-free.

3 A Dichotomy of Monoids

The results in this section have been obtained by the author, but he was made
aware by an anonymous referee that they are well-known to semigroup theorists.
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See, for example, [12, Corollary 4.1.8] or [1, Chapter 2]. The proofs by the author
are included, since they are elementary and therefore accessible to a broader
audience.

An infinite ascending chain in M is an infinite sequence x1, x2, . . . of pairwise
distinct elements of M such that xi ! xi+1 for all i ∈ N.

Lemma 1. Let M be left- or right-cancellative. Then, exactly one of the follow-
ing holds:

1. M is a finite group.
2. M contains an infinite ascending chain.

Proof. Suppose M does not contain an infinite ascending chain.
First, we prove that M is a group. Let r ∈ M and consider the elements

ri ∈ M , i ∈ N. Since ri ! rj for i ≤ j, our assumption implies that there are
i, j ∈ N, i < j, with ri = rj . Since M is left- or right-cancellative, this implies
rj−i = 1, meaning that r has in rj−i−1 a two-sided inverse. Thus, M is a group.

This implies that r ! s for any r, s ∈ M . Therefore, if M were infinite, it
would contain an infinite ascending chain. 
�
Lemma 2. Let s, t ∈ M , s 	= t, and s ! t. Then,

−→
I (s) ∩ −→I (t) = ∅ and←−

I (s) ∩←−I (t) = ∅.
Proof. We only show

−→
I (s) ∩ −→I (t) = ∅ since then

←−
I (s) ∩←−I (t) = ∅ follows by

applying the former to the opposite monoid. Write t = us, u ∈M , and suppose
there were a z ∈ −→I (s) ∩ −→I (t). Then, 1 = tz = usz = u and thus t = s. 
�
Theorem 1. For every monoid M , exactly one of the following holds:

1. The subsets R(M), L(M), and E(M) coincide and constitute a finite group.
2. R(M) and L(M) each contain an infinite ascending chain. In particular,

there exist infinite sets S ⊆ R(M) and S′ ⊆ L(M) such that
−→
I (s)∩−→I (t) = ∅

for s, t ∈ S, s 	= t, and
←−
I (s′) ∩←−I (t′) = ∅ for s′, t′ ∈ S′, s′ 	= t′.

Proof. First, we claim that R(M) is infinite if and only if L(M) is infinite.
Here, it suffices that R(M) being infinite implies the infinity of L(M), since the
other direction follows by considering the opposite monoid. If R(M) is infinite,
it contains an infinite ascending chain according to Lemma 1. By Lemma 2,
the elements of the chain have pairwise disjoint sets of right inverses that are
non-empty. Since right inverses are left invertible, L(M) is infinite.

Suppose R(M) and L(M) are both finite. Since R(M) is right-cancellative, it
is a group by Lemma 1. Thus, we have R(M) ⊆ L(M) and analogously L(M) ⊆
R(M). In order to prove E(M) = R(M), we observe that R(M) ⊆ E(M) by
definition. Now, suppose a ∈ E(M) to be witnessed by bac = 1, b, c ∈ M .
By this equation, we have b ∈ R(M) and can multiply b−1 on the left and
then b on the right. We obtain acb = 1 and thus a ∈ R(M). This proves that
R(M) = L(M) = E(M) and that this is a finite group.

In case R(M) and L(M) are both infinite, the infinite ascending chains are
provided by Lemma 1. By Lemma 2, their elements form sets S ⊆ R(M) and
S′ ⊆ L(M) with the desired properties. 
�
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4 Capabilities of Valence Automata and Transducers

In this section, we show that the following conditions are equivalent:

– Valence automata over M accept only regular languages.
– Valence automata over M can be determinized.
– Valence transducers over M perform only rational transductions.
– R(N) is finite for every finitely generated submonoid N of M .

The equivalence of the first and the last condition has been obtained indepen-
dently by Render [12].

Using Theorem 1, it is not difficult to prove the following lemma. Therefore,
we omit the proof and refer the reader to [12, Theorem 4.1.10] and [4, Theorem
4.4, Lemma 4.7].

Lemma 3. Let R(N) be finite for every finitely generated submonoid N of M .
Then, valence automata over M accept only regular languages and valence trans-
ducers over M perform only rational transductions. In particular, valence au-
tomata over M can be determinized.

In [9], Mitrana and Stiebe proved that valence automata over groups with at
least one element of infinite order cannot be determinized. We can now use a
similar idea and the dichotomy of monoids to provide a characterization of those
monoids over which valence automata can be determinized.

Lemma 4. Let M be a finitely generated monoid such that R(M) is infinite.
Then, there is a valence automaton over M whose accepted language cannot
be accepted by a deterministic valence automaton over M . In particular, valence
automata over M can accept non-regular languages and valence transducers over
M can perform non-rational transductions.

Proof. Let M be generated by the finite set {a1, . . . , an} and let X={x1, . . . , xn},
Y = {y1, . . . , yn} be disjoint alphabets. Let ϕ : (X ∪ Y )∗ → M be the epimor-
phism defined by ϕ(xi) := ϕ(yi) := ai and K := X∗ ∪ {w ∈ X∗Y ∗ | ϕ(w) = 1}.
Then, K is clearly accepted by a (nondeterministic) valence automaton over M .
Suppose K were accepted by a deterministic valence automaton A over M . Let
S ⊆ R(M) be the infinite set provided by Theorem 1. The infinity of S implies
that we can find an infinite set S′ ⊆ X∗ such that ϕ(S′) = S and ϕ(u) 	= ϕ(v)
for u, v ∈ S′, u 	= v. Since A is deterministic and S′ ⊆ L(A), each word w ∈ S′

causes A to enter a configuration (q(w), 1) where q(w) is a final state. Choose
u, v ∈ S′ such that u 	= v and q(u) = q(v). Let u′ ∈ Y ∗ be a word such that
ϕ(u)ϕ(u′) = 1. This is possible since ϕ(u) ∈ R(M) and ϕ is surjective. The
word u′ causes A to go from (q(u), 1) = (q(v), 1) to (q, 1) for some final state q,
since uu′ ∈ K. Thus, vu′ is also contained in K and hence ϕ(v)ϕ(u′) = 1, but−→
I (ϕ(u)) ∩ −→I (ϕ(v)) = ∅, a contradiction.

Hence, K is not accepted by a deterministic valence automaton over M . In
particular, K is not regular. Furthermore, from the valence automaton accepting
K, a valence transducer can be constructed that maps {λ} to K. Since K is not
regular, the transduction performed by the transducer is not rational. 
�
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5 Capabilities of Valence Grammars

In this section, it is shown that the following conditions are equivalent:

– Valence grammars over M generate only context-free languages.
– R(N) is finite for every finitely generated submonoid N of M .

In one of the directions, we have to construct a context-free grammar for valence
grammars over monoids that fulfill the second condition. Because of the limited
means available in the context-free case, the constructed grammar can simulate
only a certain fragment of the derivations in the valence grammar. Thus, we
will have to make sure that every word generated by the valence grammar has
a derivation in the aforementioned fragment. These derivations are obtained by
considering the derivation tree of a given derivation and then choosing a suitable
linear extension of the tree order. The construction of these linear extensions can
already be described for a simpler kind of partial order, valence trees.

Let X be an alphabet and U ⊆ X a subset. Then, each word w ∈ X∗ has
a unique decomposition w = y0x1y1 · · ·xnyn such that y0, yn ∈ (X \ U)∗, yi ∈
(X \ U)+ for 1 ≤ i ≤ n− 1, and xi ∈ U+ for 1 ≤ i ≤ n. This decomposition is
called the U -decomposition of w and we define ρ(w,U) := n.

A tree is a finite partially ordered set (T ,≤) that has a least element and
where, for each t ∈ T , the set {t′ ∈ T | t′ ≤ t} is totally ordered by ≤. The
least element is also called the root and the maximal elements are called leaves. A
valence tree T over M is a tuple (T ,≤, ϕ), where (T ,≤) is a tree and ϕ : T ∗ →M
is a homomorphism2 assigning a valence to each node. An evaluation defines an
order in which the nodes in a valence tree can be traversed that is compatible
with the tree order. Thus, an evaluation of T is a linear extension - of (T ,≤).
Let w ∈ T ∗ correspond to -, i.e., let T = {t1, . . . , tn} such that t1 - · · · - tn
and w = t1 · · · tn. Then, the value of - is defined to be ϕ(w). An element v ∈M
is called a value of T if there exists an evaluation of (T ,≤) with value v. Given
a node t ∈ T , let Ut := {t′ ∈ T | t ≤ t′}. If w = y0x1y1 · · ·xnyn is the Ut-
decomposition of w, then ϕ(x1), . . . , ϕ(xn) is called the valence sequence of t in
w and n its length. By the excursiveness of an evaluation, we refer to the maximal
length of a valence sequence. Hence, the excursiveness of an evaluation is the
maximal number of times one has to enter any given subtree when traversing
the nodes in the order given by the evaluation. We are interested in finding
evaluations of valence trees with small excursiveness. Of course, for every valence
tree, there are evaluations with excursiveness one (take, for example, the order
induced by a preorder traversal), but these might not be able to cover all possible
values. However, we will see in Lemma 7 that, in the case of a finite group, there
exists a bound m such that every value can be attained by an evaluation of
excursiveness of at most m.

Lemma 5. For each finite group G, there is a constant m ∈ N with the following
property: For elements gi, hi ∈ G, i = 1, . . . , n, n ≥ m, there are indices k, � ∈ N,
1 ≤ k < � ≤ n, such that gkhk · · · g�h� = gk · · · g�hk · · ·h�.
2 We will often assume, without loss of generality, that T is an alphabet.
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Proof. Let m = 2(|G|3 + 1) and D ⊆ {1, . . . , n} be the set of odd indices. Define
the map α : D → G3 by α(i) := (g1 · · · gi, h1 · · ·hi, g1h1 · · · gihi) for i ∈ D.
Since |D| ≥ |G|3 + 1, there are indices i, j ∈ D, i < j, such that α(i) = α(j).
This means that gi+1 · · · gj = 1, hi+1 · · ·hj = 1, and gi+1hi+1 · · · gjhj = 1. Since
i, j are both odd, letting k = i+ 1 and � = j implies k < � and yields the desired
equality. 
�
The proof of the following technical lemma can be done using a case analysis
and is not included due to space restrictions.

Lemma 6. Let X be an alphabet and U, V ⊆ X subsets such that either U ⊆ V ,
V ⊆ U , or U ∩ V = ∅. Furthermore, let r ∈ X∗U , x ∈ U+, y ∈ (X \ U)+, and
s ∈ X∗ \ UX∗. Then, we have ρ(rxys, V ) ≤ ρ(ryxs, V ).

Lemma 7. For each finite group G, there is a constant m such that each value
of a valence tree over G has an evaluation of excursiveness of at most m.

Proof. For an alphabet X , we denote the set of multisets over X , i.e., maps
X → N, by X⊕. X⊕ carries a (commutative) monoid structure by way of (α +
β)(x) := α(x) + β(x) for x ∈ X . To every evaluation w of (T ,≤), we assign the
multiset μw ∈ T ⊕ that is defined by μw(t) := ρ(w,Ut) for every t ∈ T . That is,
μw(t) is the length of the valence sequence of t in w.

Let m be the constant provided by Lemma 5 and let w ∈ T ∗ be an evaluation
of (T ,≤) such that μw is minimal with respect to ! among all evaluations with
the value v. If we can prove that μw(t) ≤ m for all t ∈ T , the lemma follows.
Therefore, suppose that there is a t ∈ T with n := μw(t) > m. Specifically, let
w = y0x1y1 · · ·xnyn be the Ut-decomposition of w. Use Lemma 5 to find indices
1 ≤ k < � ≤ n with

ϕ(xk)ϕ(yk) · · ·ϕ(x�)ϕ(y�) = ϕ(xk) · · ·ϕ(x�)ϕ(yk) · · ·ϕ(y�). (1)

Furthermore, let

w′ := (y0x1y1 · · ·xk−1yk−1)(xk · · ·x�yk · · · y�)(x�+1y�+1 · · ·xnyn). (2)

That is, we obtain w′ from w by replacing xkyk · · ·x�y� with xk · · ·x�yk . . . y�.
Then, (1) means that ϕ(w′) = ϕ(w). We shall prove that w′ is an evaluation of
(T ,≤) and obeys μw′ � μw, which contradicts the choice of w.

First, we prove that w′ is an evaluation. Let u1, u2 ∈ T be nodes with u1 ≤ u2.
If u1 < t, then u1 appears in y0, and thus u2 is on the right side of u1 in w′. If
u1 ≥ t, then each of the nodes u1, u2 appears in some xi and therefore do not
change their relative positions. If u1 and t are incomparable, then u2 and t are
also incomparable and each of u1, u2 appears in some yi. Again, u1 and u2 do
not change their relative positions. Thus, w′ corresponds to a linear extension
of ≤.

We want to show that μw′ ! μw. To this end, we consider the words

wi := (y0x1y1 · · ·xk−1yk−1)(xk · · ·xk+iyk · · · yk+i)(xk+i+1yk+i+1 · · ·xnyn)
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for 0 ≤ i ≤ �− k. With these, we have w = w0 and w′ = w�−k. Since (T ,≤) is a
tree, we have Uu ⊆ Ut, Ut ⊆ Uu, or Uu ∩ Ut = ∅ for every u ∈ T . Therefore, we
can apply Lemma 6 to U := Ut, V := Uu, and

r := (y0x1y1 · · ·xk−1yk−1)(xk · · ·xk+i), x := xk+i+1,

y := yk · · · yk+i, s := yk+i+1(xk+i+2yk+i+2 · · ·xnyn),

which yields ρ(wi+1, Uu) ≤ ρ(wi, Uu) for 0 ≤ i < � − k. This implies μw′(u) ≤
μw(u) and therefore μw′ ! μw.

It remains to be shown that μw′ is strictly smaller than μw. In w′, the node
t has the valence sequence

ϕ(x1), . . . , ϕ(xk−1), ϕ(xk · · ·x�), ϕ(x�+1), · · ·ϕ(xn),

which has length μw′(t) = n− (�− k) < n = μw(t). 
�
We define a derivation tree for a valence grammar G = (N,T,M,P, S) to be a
tuple (T ,≤, ϕ, (≤t)t∈T , Λ), where

– (T ,≤, ϕ) is a valence tree,
– for each t ∈ T , ≤t is a total order on the set of successors of t,
– Λ : T → N ∪ T ∪ {λ} defines a label for each node,
– if t ∈ T is a node with the successors s1, . . . , sn such that s1 ≤t . . . ≤t sn,

then we either have Λ(t) ∈ T ∪{λ}, n = 0, and ϕ(t) = 1 or we have Λ(t) ∈ N
and there is a production (Λ(t) → Λ(s1) · · ·Λ(sn);ϕ(t)) in P .

The total orders ≤t, t ∈ T , induce a total order on the set of leaves (see [6,
Section 4.3] for details), which in turn defines a word w ∈ T ∗. This word is
called the yield of the derivation tree.

Each derivation tree can be regarded as a valence tree. An evaluation then
defines a derivation (A, 1) ⇒∗G (w, v), where A ∈ N is the label of the root, w is
the yield, and v ∈M is the value of the evaluation. Conversely, every derivation
induces a derivation tree and an evaluation. Thus, a word w ∈ T ∗ is in L(G)
iff there exists a derivation tree for G with yield w, a root labeled S, and an
evaluation with value 1. See [4, Section 4.2] for details.

Lemma 8. Let R(N) be finite for every finitely generated submonoid N of M .
Furthermore, let G = (N,T,M,P, S) be a valence grammar over M . Then, L(G)
is context-free.

Proof. We can assume that M is finitely generated and thus has a finite R(M).
Since productions (A → w;m) with m /∈ E(M) cannot be part of a suc-
cessful derivation, their removal does not change the generated language. Fur-
thermore, by Theorem 1, E(M) is a finite group. Thus, we can assume that
G = (N,T,H, P, S), where H = E(M) is a finite group. By a simple construc-
tion, we can further assume that in G, every production is of the form (A→ w;h)
with w ∈ N∗ or (A→ w; 1) with w ∈ T ∪ {λ}.

We shall construct a context-free grammar G′ = (N ′, T, P ′, S′) for L(G).
The basic idea is that G′ will simulate derivations of bounded excursiveness.
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This is done by letting the nonterminals in G′ consist of a nonterminal A ∈ N
and a finite sequence σ of elements from H . G′ then simulates the generation
of a nonterminal A by generating a pair (A, σ) and thereby guesses that the
corresponding node in the derivation tree of G will have σ as its valence sequence.
Lemma 7 will then guarantee that this allows G′ to derive all words in L(G) when
the sequences σ are of bounded length.

Formally, we will regard H as an alphabet and a sequence will be a word over
H . In order to be able to distinguish between the concatenation of words in H∗

and the group operation in H , we will denote the concatenation in H∗ by �.
Let N ′ = N ×H≤m, in which m ∈ N is the constant provided by Lemma 7 for
the group H . The set of sequences that can be obtained from another sequence
σ by “joining” subsequences is denoted by J(σ):

J(h1�h2�σ) := J((h1h2)�σ) ∪ {h1�σ′ | σ′ ∈ J(h2�σ)}
for h1, h2 ∈ H and σ ∈ H∗ and J(σ) := {σ} if |σ| ≤ 1. J is defined for subsets
S ⊆ H∗ by J(S) :=

⋃
σ∈S J(σ).

For each production (A → w;h) ∈ P , w = B1 · · ·Bn, Bi ∈ N for 1 ≤ i ≤ n,
we include the production

(A, σ) → (B1, σ1) · · · (Bn, σn),

for each σ ∈ H≤m\{λ} and σ1, . . . , σn ∈ H≤m such that for σ = h1�σ′, h1 ∈ H ,
σ′ ∈ H≤m−1, one of the following holds:

– (h−1h1)�σ′ ∈ J(σ1 · · · σn).
– h1 = h and σ′ ∈ J(σ1 · · · σn).

Furthermore, for every production (A→ w, 1), w ∈ T ∪{λ}, we include (A, λ) →
w. Finally, the start symbol of G′ is (S, 1).

It remains to be shown that L(G′) = L(G). In order to prove L(G′) ⊆ L(G),
one can show by induction on n that for w ∈ T ∗, (A, σ) ⇒n

G′ w implies that
there is a derivation (A, 1) ⇒∗G (w, h) for some h ∈ H using productions (A1 →
w1;h1), . . . , (Ak → wk;hk) such that σ ∈ J(h1� · · ·�hk). This implies that for
(S, 1) ⇒∗G′ w, w ∈ T ∗, we have w ∈ L(G). Thus, L(G′) ⊆ L(G).

Let w ∈ L(G) with derivation tree (T ,≤, ϕ, (≤t)t∈T , Λ). By Lemma 7, there
is an evaluation - of the tree of excursiveness ≤ m. From the tree and the
evaluation, we construct a derivation tree (T ,≤, ϕ′, (≤t)t∈T , Λ′) for w in G′ as
follows. The components T , ≤, and ≤t, t ∈ T , remain unaltered, but ϕ′ will
assign 1 to each node and Λ′ is defined by Λ′(t) := Λ(t) if Λ(t) ∈ T ∪ {λ} and
Λ′(t) := (Λ(t), h1� · · ·�hk) if Λ(t) ∈ N , where h1, . . . , hk is the valence sequence
of t in -. Now, one can see that the new tree is a derivation tree for G′ that
generates w with any evaluation. Hence, L(G) ⊆ L(G′). 
�
In order to prove the main result of this section, we need to exhibit a valence
grammar over M that generates a non-context-free language when given a finitely
generated monoid M with infinite R(M). In the proof that the generated lan-
guage is not context-free, we will use the following well-known Iteration Lemma
by Ogden [10].
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Lemma 9 (Ogden). For each context-free language L, there is an integer m
such that for any word z ∈ L and any choice of at least m distinct marked
positions in z, there is a decomposition z = uvwxy such that:

1. w contains at least one marked position.
2. Either u and v both contain marked positions, or x and y both contain marked

positions.
3. vwx contains at most m marked positions.
4. uviwxiy ∈ L for every i ≥ 0.

Lemma 10. Let R(M) be infinite for some finitely generated monoid M . Then,
there is a valence grammar over M that generates a language that is not context-
free.

Proof. Let M be generated by a1, . . . , an and let X = {x1, . . . , xn} be an alpha-
bet. Furthermore, let ϕ : X∗ → M be the surjective homomorphism defined by
ϕ(xi) = ai. The valence grammar G = (N,T,M,P, S0) is defined as follows. Let
N = {S0, S1}, T = X ∪ {c}, and let P consist of the productions

(S0 → xiS0xi, ai), (S0 → cS1c, 1), (S1 → xiS1, ai), (S1 → λ, 1)

for 1 ≤ i ≤ n. Then, clearly L(G) = K := {rcscrrev | r, s ∈ X∗, ϕ(rs) = 1}.
It remains to be shown that K is not context-free. Suppose K is context-free
and let m be the constant provided by Lemma 9. By Theorem 1, we can find an
infinite subset S ⊆ L(M) such that

←−
I (a) ∩←−I (b) = ∅ for a, b ∈ S, a 	= b. Since

ϕ is surjective, we can define �(a) for every a ∈ S to be the minimal length of
a word w ∈ X∗ such that ϕ(w)a = 1. If �(a) < m for all a ∈ S, the finite set
{ϕ(w) | w ∈ X∗, |w| < m} contains a left inverse for every a ∈ S. This, however,
contradicts the fact that the infinitely many elements of S have disjoint sets
of left inverses. Thus, there exists an a ∈ S with �(a) ≥ m. We choose words
r, s ∈ X∗ such that ϕ(s) = a and r is of minimal length among those words
satisfying ϕ(rs) = 1. Then, by the choice of a, we have |r| ≥ m.

We apply the Iteration Lemma to the word z = rcscrrev ∈ K, where we
choose the first |r| symbols to be marked. Let z = uvwxy be the decomposition
from the lemma. Condition 1 implies |uv| < |r|. Because of 4, x cannot contain
a c. Furthermore, x cannot be a subword of r, since then pumping would lead to
words with mismatching first and third segments. In particular, from condition
2, the first part holds and v is not empty. Thus, if x were a subword of s,
pumping would again lead to a mismatching first and third segment. Hence, x
is a subword of rrev. If we now pump with i = 0, we obtain a word r′cscr′′ ∈ K,
where |r′| < |r|. In particular, we have ϕ(r′s) = 1, in contradiction to the choice
of r. 
�
Theorem 2. Let M be a monoid. The following conditions are equivalent:

1. Valence grammars over M generate only context-free languages.
2. Valence automata over M accept only regular languages.
3. Valence automata over M can be determinized.
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4. Valence transducers over M perform only rational transductions.
5. R(N) is finite for every finitely generated submonoid N of M .

Proof. 1 is equivalent to 5 by Lemmas 10 and 8. Lemmas 4 and 3 prove that 2,
3, and 4 are each equivalent to 5. 
�
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Abstract. We show how to calculate the maximum number of edits per
character needed to convert any string in one regular language to a string
in another language. Our algorithm makes use of a local determinization
procedure applicable to a subclass of distance automata. We then show
how to calculate the same property when the editing needs to be done
in streaming fashion, by a finite state transducer, using a reduction to
mean-payoff games. We show that the optimal streaming editor can be
produced in PTIME.

1 Introduction

Edit distance is a well-studied metric between strings, measuring how many
operations are needed to get from one string to another. In this paper we look
for natural (asymmetric) analogs for regular languages: how many edits does it
require to get from a word in regular language R to a word in regular language T ,
in the worst case? Our notation is motivated by considering R to be a restriction
– a constraint that the input is guaranteed to satisfy – and T to be a target – a
constraint that we want to enforce.

In a prior work [1], we considered the basic question of whether one can get
from a word in R to a word in T with a finite (uniformly bounded) number of
edits. One of the main results of [1] was a characterization of the pairs (R,T )
for which such a uniform bound exists.

Example 1. Consider the languages R = a∗b∗ and T = a∗c b∗. Clearly, any string
in R can be converted to a string in T with at most 1 edit.

Such a bound, when it exists, shows that the language R is “quite close to being
a subset of T ” – the gap between strings in R and strings in T is small. However,
having a uniform bound on the number of edits is a strong requirement. In this
paper we look not at the absolute number of edits required to get from R to T ,
but rather at the percentage of letters that need to be edited.

Example 2. Consider the languages R = (a + b)∗ and T = (ab + b)∗. Roughly, for
any pair of consecutive occurrences of the letter a in the input, we will have to
perform one edit in order to ensure alternation in the output. In particular, the
number of edits required to get from a string in R to a string in T is unbounded.
On the other hand, it is clear that we need to edit approximately half of the
letters in the worst case (i.e. a2n) in order to produce a string in T .

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part II, LNCS 6756, pp. 234–245, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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We measure the gap from R to T via the worst case, over all strings w ∈ R, of
the number of edits needed to bring w into T divided by the length of w. Since
we want the definition to be robust to a finite number of outliers, we take the
limit of this quantity as the strings are of larger and larger length – this is the
asymptotic (normalized) cost in getting from R to T . This gives us a measure of
the distortion needed to get from R to T , lying always between 0 and 1.

Our first main result is that we can determine the asymptotic cost effectively.
The algorithm relies on ideas from distance automata [9], and in particular on an
application of determinization of distance automata, closely related to Mohri’s
determinization procedure [7].

We then turn to the setting where editing is required to be done in streaming
fashion, producing the edits immediately on seeing the input letter. We measure
a streaming edit processor by the number of edits per character it requires to
get from any string in R to a string in T , again looking at the limit as the string
length gets large. We define the streaming asymptotic cost to be the optimal
cost of a streaming processor. We show that this quantity can also be calculated
effectively, using techniques from mean-payoff games.

Example 3. Consider R = (a + b) c∗(a+ + b+) and T = a c∗a+ + b c∗b+. One can
get from R to T by only editing the initial letter: so the asymptotic cost is
0. However, a streaming strategy must commit to changing the initial letter or
leaving it be: if it makes the “incorrect” choice, it will have to edit an unbounded
final segment; thus the streaming asymptotic cost is 1.

The above two results give us the ability to compare the cost one should pay
in editing strings in R to strings in T with an arbitrary processor with the cost
when we are restricted to use a streaming processor. If these are the same, it
shows that streaming processors that edit strings in R to T can approximate
arbitrary processors in worst-case behavior.

In summary our contributions are:
• We present an algorithm for calculating the asymptotic cost of transforming

strings in regular language R to strings in regular language T , based on
locally determinizing a subclass of distance automata.

• We give an algorithm for calculating the optimal asymptotic cost achieved
using a streaming editing algorithm.

Related Work. The problem of finding the minimal distance of a string to a
regular language was first considered by Wagner in [10], who showed that the
problem could be solved by adapting the dynamic programming approach to edit
distance, giving a polynomial time algorithm. Several authors have extended the
definition to deal with distances between languages. Mohri [8] defines a distance
function between two sets of strings, and more generally between string distri-
butions: in the case of languages, this is the minimum distance between two
strings in the two respective languages, which is appropriate for many appli-
cations. Konstantinidis [4] focuses on the minimum distance between distinct
strings within the same language, giving tractable algorithms for computing it.
Our notion of “cost” is quite distinct from this, since it is asymmetric in the two
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languages, focusing on the maximum of the distance of a string in one language
to the other language. In our prior work [1] we have given an algorithm for de-
termining when this distance is finite; again the paper deals with the streaming
and the non-streaming setting, but the techniques used for the finiteness prob-
lem, particularly in the non-streaming case, are radically different from those
used for asymptotic cost analysis. Further related work in the database area is
overviewed in [1].
Organization. Section 2 defines the basic problems. Section 3 studies the non-
streaming case, while Section 4 deals with the streaming case. Section 5 gives
conclusions. Proofs are relegated to the full paper.

2 Problem Setting

Given two words w ∈ Σ∗ and u ∈ Δ∗, we denote by edit-dist(w,u) the Levenshtein
distance (henceforth, edit distance) between w and u, which is defined as the
length of a shortest sequence s of edit operations (e.g., deleting a single character,
modifying a single character, and inserting a single character) that transforms
w into u [11]. Following Wagner [10], we lift this to define the distance of a word
to a regular language T .

edit-dist(w,T ) =def min{ edit-dist(w,u) ∶ u ∈ T}.

We are interested in quantifying how difficult it is to edit a word in one language
to obtain a word in another. That is, we have finite alphabets Σ and Δ and
regular languages R ⊆ Σ∗ and T ⊆ Δ∗, called the restriction and target lan-
guages, respectively. We would like to edit a string that is known to belong to
the restriction language into a string in the target language.

How do we measure the cost of edits needed to get from R to T ? One method is
to look at the largest number of edit operations needed to get into T from strings
in R: that is, the supremum over w ∈ R of edit-dist(w,T ). In an earlier work [1]
we have studied for which pairs of languages (R,T ) this cost is finite. However,
many language pairs have infinite cost: the existence of a uniform bound to the
number of edits is quite a strong property (see Example 2 in the introduction).

In this work we define an alternative notion of cost that looks at the percentage
of symbols in a word that need to be edited. We define the normalized cost
for editing a word w to a word in T as the fraction edit-dist(w,T )

∣w∣
, that is, the

ratio between the cost of editing w and its length. In order to measure the
asymptotic behavior of the normalized cost, we define the asymptotic cost as the
limit superior of the normalized cost when the length of words in the restriction
tends to infinity. Formally, the asymptotic cost for two regular languages R and
T is defined as

A(R,T ) =def lim
n→∞

sup{ edit-dist(w,T )
∣w∣

∶ w ∈ R, ∣w∣ ≥ n}

For the above definition to make sense, we always assume that R is infinite. It
is easy to see that the asymptotic cost ranges over the interval [0,1] of the real
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numbers. Indeed, for large words, one can modify and delete the letters to create
shorter words in the target language and thus the resulting cost is always less
than the length of the input word. We are ideally interested in computing the
value A(R,T ), provided that this number is rational.

Streaming vs non-streaming. The notion of “how much does it cost to edit a
word in R to a word in T ” assumes that an editing process could be any mapping
from R to T (in principle, such a mapping could even fail to be computable).
However, we know from [10] that there is a dynamic programming algorithm
that, given a word w and a target language T represented by a deterministic finite
state automaton (DFA) T , computes in time O(∣w∣⋅∣T ∣) an optimal edit sequence
s such that s(w) ∈ T . In particular, this shows that optimal algorithms for editing
a word can be described by functions of fairly low complexity. Sometimes it
is desirable to have editing algorithms that are in even more limited classes.
Perhaps the ideal case is when we can edit with a one-pass algorithm, that
is, using a sequential transducer (note that we allow the transducer to have
infinitely many states). Recall that a sequential transducer defines a word-to-
word function; if this function happens to produce a word in T for every input
w ∈ R, then we say that it is a streaming edit strategy for R and T . Similarly, we
can consider k-lookahead transducers, with k ∈ N: this type of transducer outputs
words on the basis of its current state and an input (k + 1)-character window
that represents a substring of w of the form w[i] . . . w[i+k], where w[i] is either
the i-th symbol of w, if i ≤ ∣w∣, or a dummy symbol , if i > ∣w∣. Accordingly, we
talk about a k-lookahead streaming edit strategy.

Given a streaming edit strategy S for R and T and a word w, we define the
cost of S on w to be the number of edits produced by S on w. Formally, letting
q0

a1/u1�→ q1
a2/u2�→ . . . an/un�→ qn

ε/un+1�→ be the run of the transducer S on a word
w = a1 . . . an, the cost of S on w, denoted cost(w,S), is the length of the final
output un+1 plus the sum of edit-dist(ai, ui) over all indices 1 ≤ i ≤ n. Notice
that the transducer S might output an additional string un+1 at the end of its
run in order to produce a word in the target language T . We can then define the
asymptotic cost of a streaming (k-lookahead) edit strategy S:

A(R,S, T ) =def lim
n→∞

sup{ cost(w,S)
∣w∣

∶ w ∈ R, ∣w∣ ≥ n} .

Finally, the streaming (k-lookahead) asymptotic cost for two languages R and
T , denoted SA(R,T ), is the infimum of A(R,S, T ) taken over all streaming (k-
lookahead) edit strategies S for R and T . We remark that, a priori, the infimum
in the previous definition cannot be replaced by a minimum: it is conceivable that
the asymptotic costs of the streaming edit strategies for R and T are arbitrary
close to SA(R,T ), but never achieve this value. In fact, in Section 4 we will
show that this is not the case, as we can enforce, without loss of generality, a
uniform bound to the memory of streaming edit strategies.

To stress the difference between the streaming and the non-streaming settings,
we explicitly refer to the original problem as the asymptotic cost problem in the
non-streaming case.
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3 Asymptotic Cost in the Non-streaming Case

In this section, we study the problem of computing the asymptotic cost in the
non-streaming setting. We begin with some background on distance automata,
which will play a key role in the main characterization result.
Distance automata computing the edit cost. Intuitively, a distance au-
tomaton [9] is a transducer D that receives as input a finite word w and outputs
a corresponding cost D(w) in N∪{∞}. Formally, it is a tuple D = (Σ,Q,E, I,F ),
where Q is a finite set of states, E ⊆Q×Σ×N×Q is a finite transition relation, I
and F are some initial and final conditions described by partial functions from Q
to N and representing the costs of beginning and ending a run with certain states.
A run ofD on w is a sequence γ=(q0, a1, c1, q1) (q1, a2, c2, q2) . . . (qn−1, an, cn, qn)
of pairwise adjacent transitions in E that spell the input word w = a1a2 . . . an.
The cost of the run γ is naturally defined by

cost(γ) =def
∑1≤i≤n

ci.

We denote by D(w) the minimum value I(q0)+cost(γ)+F (qn) among all states
q0 in the domain Dom(I) of I, all states qn in the domain Dom(F ) of F , and
all runs γ of D on w that start in q0 and end in qn. We let D(w) = ∞ if there
are no such states q0 and qn, or if there is no run from q0 to qn.

When considering the edit distance of a word w ∈ Σ∗ to a regular language
T ⊆ Δ∗, it is fairly natural to express this value in terms of the cost computed
by a distance automaton. By default, we assume that the target language T
is recognized by a DFA T = (Δ,Q, δ, q0, F ) where Q is a finite set of states,
δ ⊆ Q ×Δ ×Q is a finite transition relation, q0 and F are the initial and final
set of states. Given two states p, q of T , we let Tp,q be the DFA obtained from
T by letting p be the new initial state and q the new unique final state. The
distance automaton that computes the edit distance of a word over Σ to the
target language L (T ) is defined as Dedit

T
= (Σ,Q,Eedit, Iedit, F edit), where

• Eedit is the set of all transitions of the form (p, a, c, q), with p, q ∈ Q, a ∈ Σ,
q reachable from p, and c =min{edit-dist(a, v) ∶ v ∈L (Tp,q)},

• Iedit is the partial function that maps a state q ∈ Q to the minimum among
the values edit-dist(ε, v), with v ∈ L (Tq0,q) (if q is not reachable from the
initial state q0, then Iedit(q) is undefined),

• F edit is the partial function that maps a state p ∈ Q to the minimum among
the values edit-dist(ε, v), with v ∈ ⋃q∈F L (Tp,q) (if p cannot reach a state in
F , then F edit(p) is undefined).

One can easily show that Dedit
T

computes exactly the edit distance between a
word w ∈ Σ∗ and L (T ).

Proposition 1. For every word w ∈ Σ∗, we have Dedit
T
(w) = edit-dist(w,L (T )).

Shortcut property and determinizable components. Distance automata
of the form Dedit

T
are a proper sub-class of all distance automata. In particular,

they satisfy the shortcut property, formalized just below. Given a symbol a ∈ Σ
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and two states p, q of a distance automaton D, we write p a
�→ q to denote the

existence in D of a transition (p, a, c, q) with some cost c ∈ N.

Definition 1. A distance automaton D satisfies the shortcut property if for all
symbols a, b and all states p, q, r, p a�→ q b�→ r implies p a�→ r and p b�→ r.

The following lemma shows that, in particular, Dedit
T

satisfies the shortcut prop-
erty.

Lemma 1. For every DFA T , Dedit
T

satisfies the shortcut property.

We call a strongly connected component (SCC) of a distance automaton D any
maximal set of mutually reachable states. Given a SCC C of D, we denote by
D∣C the sub-automaton obtained from D by restricting the set of states and
transitions to C and by letting the initial and final conditions map any state of
C to 0. Note that the transition graph of D∣C is a clique when D satisfies the
shortcut property.

A crucial property entailed by the shortcut property is the following one. Con-
sider two runs ρ and ρ′ of D∣C that spell the same word w, but end in different
states q and q′. If ρ and ρ′ have optimal cost among all runs on D∣C on w that
end in q and q′ respectively, then one can show that the difference in cost be-
tween ρ and ρ′ is uniformly bounded by a constant. This implies that we can
determinize D∣C by using a subset construction, maintaining the difference be-
tween the optimal cost of reaching each state q and the overall optimal cost; this
is exactly Mohri’s determinization procedure [7]. Since this difference is always
uniformly bounded by a constant, we get a finite-state distance automaton:

Proposition 2. For every distance automaton D that satisfies the shortcut prop-
erty and every SCC C of D, the sub-automaton D∣C can be determinized.

The above result allows us to denote by det(D∣C) some deterministic distance
automaton equivalent to D∣C, namely, such that det(D∣C)(w) = D∣C(w) for
all w ∈ Σ∗. The automaton det(D∣C) can be computed from D∣C by a direct
exponential-time algorithm [7].

Example 4. Consider the distance automaton D of Figure 1, which computes the
edit distance of any word to the target language T = (ab+ b)∗ a∗. As D satisfies
the shortcut property and consists of two SCCs C1 and C2, the two sub-automata
D∣C1 and D∣C2 can be turned into equivalent deterministic distance automata
det(D∣C1) and det(D∣C2), depicted to the right of Figure 1.

We remark that the above result does not imply that the entire distance au-
tomaton D is determinizable. Consider, for instance, a distance automaton that
computes the edit distance of a word w to the target language L (T ) = a∗ + b∗.
This distance is given by the symmetric difference between the number of oc-
currences of a and the number of occurrences of b and hence any deterministic
device that computes edit-dist(w,L (T )) must use unbounded memory.



240 M. Benedikt, G. Puppis, and C. Riveros

Fig. 1. A distance automaton with two SCCs and its determinized sub-automata

The asymptotic cost. We give an effective characterization of the asymptotic
cost A(D) of a distance automaton D satisfying the shortcut property:

A(D) =def lim
n→∞

sup{D(w)
∣w∣

∶ w ∈ Σ∗, ∣w∣ ≥ n} .

The characterization will imply that the above value is rational and computable
from D. Before turning to the characterization, we remark that computability
of asymptotic costs does not hold for arbitrary distance automata:

Proposition 3. The problem of deciding, given an arbitrary distance automaton
D, whether or not A(D) ≤ 1

2
is undecidable.

We use the undecidability of the 1
2

-threshold problem for normalized costs in-
duced by distance automata [5], which consists of deciding, given a distance
automaton D, whether D(w)

∣w∣
≤ 1

2
holds for all words w ∈ Σ∗. The reduction is

done by transforming a given distance automaton D into a new distance au-
tomaton D′ such that A(D′) = sup{D(w)

∣w∣
∶ w ∈ Σ∗}.

Next we explain how the shortcut property helps in computing the asymptotic
cost. One can show that the problem of computing A(D) for a distance automa-
ton D that is deterministic is reducible to the problem of computing normalized
costs of simple cycles. Formally, a simple cycle is any run of det(D) that is a cy-
cle (i.e., that starts and ends in the same state) but that does not contain proper
sub-cycles. It is then easy to show that for a deterministic distance automaton
D, A(D) coincides with the maximum of cost(L)

∣L∣
among all simple cycles L of

D, where cost(L) denotes the cost of the simple cycle L. Thus by Proposition
2, calculation with simple cycles suffices to compute the asymptotic cost of any
distance automaton satisfying the shortcut property and having a single SCC.

We consider now the more general case of a distance automaton D satisfying
the shortcut property and having many SCCs, say C1, . . . ,Ck. The situation in
this case is slightly more complicated, as A(D) cannot be expressed as a func-
tion of A(D∣C1), . . . ,A(D∣Ck). We define D̄ as the deterministic multi-distance
automaton obtained from the synchronous product of det(D∣C1), . . ., det(D∣Ck)
and we denote by L1, . . . ,Lm the simple cycles of D̄. Moreover, given 1 ≤ i ≤ m

D :

a/0, b/1

a/1, b/0

a/1

b/0 a/1

b/1

a/0, b/1

a/0 b/1

C1

C2

0 | 0 1 | 0

0 | 1 1 | 1

det(D|C1) :

0det(D|C2) :

a/0

a/1

b/0 b/0 a/
0

b/0

a/1

b/1

a/0, b/1
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and 1 ≤ j ≤ k, we denote by costj(Li) the cost of the projection of the simple
cycle Li into the j-th component of D̄. Assuming that D is trim, namely, all its
states are reachable from some states in Dom(I) and they can reach some states
in Dom(F ), we can characterize the asymptotic cost of D as follows:

Theorem 1. For every distance automaton D satisfying the shortcut property,

A(D) = max
α1,...,αm≥0

min
1≤j≤k

∑1≤i≤m αi ⋅ costj(Li)

∑1≤i≤m αi ⋅ ∣Li∣
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

E(D)

. (1)

The idea underlying the above characterization is that the asymptotic cost
A(D) is achieved by repetitions of simple cycles in D̄. Indeed, the parame-
ters α1, . . . , αm represent a correlation between the numbers of repetitions of the
various simple cycles, and the index j represents the SCC of D that optimizes
the normalized cost of these repetitions. The proof will consist of establishing
two inequalities. In one case, we argue that all words can be approximated in
cost by repetitions of simple cycles, and that the cost of editing these words is
at most the cost of a “homogeneous strategy” that edits all cycles in the same
component of D. For the other inequality, we present a large family of words for
which the best strategy is nearly homogeneous. The words will consist of nested
repetitions of simple cycles in such a way that any edit strategy stabilizes by
editing in the same component.

Example 5. Consider again the distance automaton D of Figure 1, with the two
SCCs C1 and C2. The determinized sub-automaton det(D∣C1) has four different
simple cycles: one spelling aa with cost 1, one spelling ab with cost 0, one spelling
b with cost 0, and one spelling aba with cost 1. Similarly, the determinized sub-
automaton det(D∣C2) has two simple cycles: one spelling a with cost 0, and
the other spelling b with cost 1. Hence (aa)n is a family of words achieving a
worst-case asymptotic cost of lim n

2n
= 1

2
for the sub-automaton D∣C1, and bn

is a family of words achieving a worst-case asymptotic cost of lim n
n
= 1 for the

sub-automaton D∣C2. However, a2n is not a worst-case for D∣C2 (as it can be
repaired with asymptotic cost 0) and, symmetrically, bn is not a worst-case for
D∣C1. This means that the worst-case asymptotic cost for D is achieved by a
suitable combination of both families, namely, (aab)n. This gives the asymptotic
cost A(D) = lim n

3n
= 1

3
.

We make a few remarks related to the effectiveness of the characterization. First
of all, we observe that the right handside term E(D) of Equation (1) can be
rewritten as the following instance of a linear programming problem:

maximize y subject to ∑1≤i≤m ci,j ⋅ xi ≥ y ∀1 ≤ j ≤ k
∑1≤i≤m xi ≤ 1, xi ≥ 0 ∀1 ≤ i ≤ k.

where, for every 1 ≤ i ≤ m and every 1 ≤ j ≤ k, ci,j =
costj(Li)

∣Li∣
. Intuitively,

the variables x1, . . . , xm represent the values α1 ⋅ ∣L1∣, . . ., αm ⋅ ∣Lm∣ normalized
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in such a way that they sum up to 1, and the variable y represents an under-
approximation of the value E(D). It is also known [6] that the optimal choices
for the parameters x1, ..., xm, y can be found at the ‘corners’ of the (m + 1)-
dimensional polyhedron that results from the intersection of the finitely many
half-spaces defined by the above linear inequalities. This explains why we put
maxα1,...,αm≥0 instead of supα1,...,αm≥0 in Equation (1). Moreover, it also implies
that the asymptotic cost A(D) is a rational number.

Regarding the complexity of the problem of computing A(D), we observe
that (i) the size ∣D̄∣ of the multi-distance automaton D̄ is exponential in ∣D∣,
(ii) each simple cycle Li has length at most linear in ∣D̄∣, (iii) the number m of
simple cycles is exponential in ∣D̄∣, and (iv) each constant ci,j =

costj(Li)

∣Li ∣
can be

computed in time polynomial in ∣D̄∣ and ∣Li∣. Overall, the problem of computing
the asymptotic cost of D is reduced, in time doubly exponential, to an instance
of a linear programming problem. The latter problem is known to be in PTIME
[3], which proves that A(D) can be computed in doubly exponential time.
From the cost of distance automata to the cost of editing. Theorem 1,
together with Proposition 1 and Lemma 1, gives a way of computing the asymp-
totic cost A(Σ∗,T ) of editing arbitrary words in Σ∗ to words in L (T ). Here
we show how to generalize to our original problem, which involves the presence
of both a restriction and a target language. We first modify the definition of
asymptotic cost for a distance automaton to include the presence of a restriction
language L (R) recognized by a DFA R:

A(R,D) =def lim
n→∞

sup{D(w)
∣w∣

∶ w ∈L (R), ∣w∣ ≥ n} .

Given a DFA R and a distance automaton D satisfying the shortcut property,
we denote by Dag(R) (resp., Dag(D)) the directed acyclic graph of the SCCs of
R (resp., D). The paths in Dag(R) (resp., Dag(D)) are the sequences of SCCs of
the form π = C1 . . . Ch, where each SCC Cl+1 is reachable from the previous SCC
Cl. Given a SCC B of R, we denote by LB,1, . . . ,LB,mB

the simple cycles of the
automaton D̄ × (R∣B) = det(D∣C1) × . . . × det(D∣Ck) × (R∣C), where C1, . . . ,Ck

are the SCCs of D and R∣B is the sub-automaton obtained from R by restricting
the set of states to B (it does not matter which state is chosen to be initial in
R∣B). Finally, given a simple cycle LB,i of D̄ × (R∣B) and a SCC C of D, we
denote by costC(LB,i) the cost of a the projection of LB,i into the component
C of D̄ × (R∣B). The generalized characterization result is as follows:

Theorem 2. For every (trim) DFA R and every distance automaton D satis-
fying the shortcut property,

A(R,D) =
max

τ=B1...Bh∈Dag(R)
α1,1,...,α1,m1≥0...
αh,1,...,αh,mh

≥0

min
π=C1...Ch∈Dag(D)

∑1≤l≤h∑1≤i≤ml
αl,i ⋅ costCl

(LBl,i)

∑1≤l≤h∑1≤i≤ml
αl,i ⋅ ∣LBl,i∣

Using arguments similar to the complexity analysis in the unrestricted case, we
obtain that the asymptotic cost A(R,T ) (= A(R,Dedit

T
)) for two DFA R and

T is computable in 2EXPTIME.
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4 Asymptotic Cost in the Streaming Case

Here we characterize the asymptotic cost in the streaming setting in terms of
the value of a mean-payoff game [2]. A mean-payoff game is an infinite, turn-
based game played over an arena M = (V,E, v0), where V is the union of two
disjoint finite sets of vertices, VAdam (owned by player Adam) and VEve (owned
by player Eve), E ⊆ V ×N × V is a finite set of weighted edges, and v0 ∈ V is an
initial vertex. The game starts at v0 and, at each round, the player who owns
the current vertex v moves along an edge (v, c, v′) ∈ E. The reward for Adam
(resp., Eve) in an infinite play π = (v0, c1, v1) (v1, c2, v2) . . . is given by the
value νπ

Adam (resp., −νπ
Eve), where

νπ
Adam =

def lim inf
n→∞

∑
n
i=1 ci

n
νπ
Eve =

def lim sup
n→∞

∑
n
i=1 ci

n

Intuitively, Adam wants to maximize νπ
Adam and Eve wants to minimize νπ

Eve.
It is known from [2] that mean-payoff games are positionally determined,

namely, to each mean-payoff game corresponds a value ν such that Adam (resp.,
Eve) has a positional strategy that guarantees νπ

Adam ≥ ν (resp., νπ
Eve ≤ ν) for all

plays π that respect his (resp., her) strategy.
Let R = (Σ,Q, δ, q0, F ) and T = (Δ,Q′, δ′, q′0, F

′) be two trim DFA. To com-
pute the streaming asymptotic cost SA(R,T ), we construct the arena Medit

R,T ,
where Adam’s vertices are pairs of the form (q, q′), with q ∈ Q and q′ ∈ Q′, and
Eve’s vertices are pairs of the form (q, q′, a), with q ∈ Q, q′ ∈ Q′, and a ∈ Σ. The
edges of the arena are triples of the form ((q, q′),0, (p, q′, a)), where p = δ(q, a),
or of the form ((q, q′, a), c, (q, p′)), where c =min{edit-dist(a, v) ∶ v ∈L (Tq′,p′)}.
The initial vertex of the arena is the pair (q0, q′0) (so Adam moves first). Observe
that the final states of R and T do not play any relevant role in this definition:
this is because R and T are assumed to be trim and the costs of moving from
non-final states to final states are irrelevant for the asymptotic behaviour. Fur-
thermore, note that the game alternates between Adam and Eve, and only the
second player can incur positive costs.

Below, we show that the value of the mean-payoff game overMedit
R,T , multiplied

by 2, coincides with the asymptotic cost in the streaming setting.

Theorem 3. Given two DFA R and T , we have SA(R,T ) = 2 ⋅ ν, where ν is
the value of the mean-payoff game overMedit

R,T . Moreover, SA(R,T ) is rational,
it can be computed in polynomial time, and it is achieved by a single streaming
edit strategy for L (R) and L (T ) – which can also be computed in PTIME.

Even if it seems natural that the value of the mean-payoff game over Medit
R,T

determines the asymptotic cost SA(R,T ), we remark that the proof of the
above theorem is not trivial. Indeed, the mean-payoff game corresponds directly
to a version of the streaming edit problem where the input to the edit strategy
is a sequence of prefixes of a single infinite word spelled by a run of R. The core
of the proof is to show a correspondence between this infinitary version of the
streaming edit problem and the original problem as stated in Section 2. This is
done by showing that (⋆) for the optimal strategy of Eve S in the mean-payoff
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Fig. 2. Two DFA and the arena for the associated mean-payoff game

game, one can construct a streaming edit processor S′ of R into T such that
A(R,S′,T )

2
does not exceed the reward of S. S′ just mimics S until the string

terminates, at which point it performs additional insertions to get to a final
state. For the other direction we take any streaming edit processor S′ of R into
T with value A(R,S′,T ) and show that no strategy S for Adam can guarantee
a reward of more than A(R,S′,T )

2
. By the result from [2] mentioned above, this

shows that Eve can guarantee a reward of at least this amount. The limit on
Adam’s ability is shown by combating his strategy S using the edit processor
S′. Putting these two directions together, we see that the optimal streaming edit
processor is produced by first computing Eve’s optimal strategy, then applying
the transformation (⋆) described above: we will argue below that this is a PTIME
procedure.

We recall that the problem of deciding whether the value of an arbitrary
mean-payoff game M = (V,E, v0) is below a certain threshold is in coNP ∩
NP; much recent work has focused on improving the exponential bounds on
deterministic algorithms; for example, it can be done in O(∣V ∣2 ⋅ ∣E∣ ⋅cmax), where
cmax is the maximum weight of an edge of M [12]. Even though the parameter
cmax is exponential when the weights are represented in binary notation, when
restricting to arenas of the formMedit

R,T , this value never exceeds the total number
of states of the DFA T . This gives the polynomial bound on the complexity of
the problem of computing the value of the mean-payoff game over Medit

R,T , and
the PTIME bound in Theorem 3 follows.

Example 6. Consider the restriction and target language R ∶ (a + b)∗ and T ∶
(ab)∗ which automata and respectively mean-payoff arena Medit

R,T are shown in
Figure 2. Here, diamond nodes are owned by Eve and square nodes are owned
by Adam. One can easily see that an optimal positional strategy for Adam is to
play (p, q) �→ (p, q, b) and (p, r) �→ (p, r, a). With this strategy we get that for
every Eve’s strategy the value ν of the mean-payoff game overMedit

R,T is equal to
1
2

and then SA(R,T ) = 1. This value definitely contrasts with the non-streaming
asymptotic cost between R and T which is equal to 1

2
.

There is a natural generalization of the above theorem for computing the asymp-
totic cost of streaming edits with k-lookahead: it is indeed sufficient to modify the

pR :

a, b

q rT :

a

b

p, q

p, r

p, q, a

p, r, a

p, q, b

p, r, b

Medit
R,T :

0

1

0

1

0

1

0

1

0 1

1 0
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definition of the arena Medit
R,T in such a way that Adam plays (k + 1)-character

windows. Note that this requires extending the set of vertices of Medit
R,T from

(Q ×Q′) ∪ (Q ×Q′ ×Σ) to (Q ×Q′ × (Σ ∪ {})k) ∪ (Q ×Q′ ×Σ × (Σ ∪ {})k).

5 Conclusions

We have addressed the problem of computing the asymptotic cost between reg-
ular languages in the non-streaming and streaming settings. It is surprising that
the asymptotic cost in both settings is rational and computable. In the stream-
ing setting this gives us optimal online algorithms for editing one language into
another, which are quite distinct from traditional edit distance algorithms based
on dynamic programming. We leave as an open problem whether the algorithms
for computing asymptotic cost in the nonstreaming setting are optimal.
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Abstract. The languages of infinite timed words accepted by timed au-
tomata are traditionally defined using Büchi-like conditions. These ac-
ceptance conditions focus on the set of locations visited infinitely often
along a run, but completely ignore quantitative timing aspects. In this
paper we propose a natural quantitative semantics for timed automata
based on the so-called frequency, which measures the proportion of time
spent in the accepting locations. We study various properties of timed
languages accepted with positive frequency, and in particular the empti-
ness and universality problems.

1 Introduction

The model of timed automata, introduced by Alur and Dill in the 90’s [2] is
commonly used to represent real-time systems. Timed automata consist of an
extension of finite automata with continuous variables, called clocks, that evolve
synchronously with time, and can be tested and reset along an execution. De-
spite their uncountable state space, checking reachability, and more generally
ω-regular properties, is decidable via the construction of a finite abstraction,
the so-called region automaton. This fundamental result made timed automata
very popular in the formal methods community, and lots of work has been done
towards their verification, including the development of dedicated tools like Kro-
nos or Uppaal.

More recently a huge effort has been made for modelling quantitative aspects
encompassing timing constraints, such as costs [3,6] or probabilities [11,5]. It is
now possible to express and check properties such as: “the minimal cost to reach
a given state is smaller than 3”, or “the probability to visit infinitely often a given
location is greater than 1/2”. As a consequence, from qualitative verification, the
emphasis is now put on quantitative verification of timed automata.

In this paper we propose a quantitative semantics for timed automata based
on the proportion of time spent in critical states (called the frequency). Contrary
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to probabilities or volume [4] that give a value to sets of behaviours of a timed
automaton (or a subset thereof), the frequency assigns a real value (in [0, 1])
to each execution of the system. It can thus be used in a language-theoretic
approach to define quantitative languages associated with a timed automaton,
or boolean languages based on quantitative criteria e.g., one can consider the
set of timed words for which there is an execution of frequency greater than a
threshold λ.

Similar notions were studied in the context of untimed systems. For finite au-
tomata, mean-payoff conditions have been investigated [10,1,9]: with each run is
associated the limit average of weights encountered along the execution. Our no-
tion of frequency extends mean-payoff conditions to timed systems by assigning
to an execution the limit average of time spent in some distinguished locations.
It can also be seen as a timed version of the asymptotic frequency considered
in quantitative fairness games [7]. Concerning probabilistic models, a similar
notion was introduced in constrained probabilistic Büchi automata yielding the
decidability of the emptiness problem under the probable semantics [14]. Last,
the work closest to ours deals with double-priced timed automata [8], where the
aim is to synthesize schedulers which optimize on-the-long-term the reward of a
system.

Adding other quantitative aspects to timed automata comes often with a cost
(in terms of decidability and complexity), and it is often required to restrict
the timing behaviours of the system to get some computability results, see for
instance [13]. The tradeoff is then to restrict to single-clock timed automata.
Beyond introducing the concept of frequency, which we believe very natural, the
main contributions of this paper are the following. First of all, using a refinement
of the region automaton abstraction, we show how to compute the infimum and
supremum values of frequencies in a given single-clock timed automaton, as
well as a way to decide whether these bounds are realizable (i.e., whether they
are minimum and maximum respectively). The computation of these bounds
together with their realizability can be used to decide the emptiness problem for
languages defined by a threshold on the frequency. Moreover, in the restricted
case of deterministic timed automata, it allows to decide the universality problem
for these languages. Last but not least we discuss the universality problem for
frequency-languages. Even under our restriction to one-clock timed automata,
this problem is non-primitive recursive, and we provide a decision algorithm in
the case of Zeno words when the threshold is 0. Our restriction to single-clock
timed automata is crucial since at several points the techniques employed do not
extend to two clocks or more. In particular, the universality problem becomes
undecidable for timed automata with several clocks.

2 Definitions and Preliminaries

In this section, we recall the model of timed automata, introduce the concept of
frequency, and show how those can be used to define timed languages. We then
compare our semantics to the standard semantics based on Büchi acceptance.
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2.1 Timed Automata and Frequencies

We start with notations and useful definitions concerning timed automata [2].
Given X a finite set of clocks, a (clock) valuation is a mapping v : X → R+.

We write RX
+ for the set of valuations. We note 0 the valuation that assigns 0 to

all clocks. If v is a valuation over X and t ∈ R+, then v+ t denotes the valuation
which assigns to every clock x ∈ X the value v(x) + t. For X ′ ⊆ X we write
v[X′←0] for the valuation equal to v on X \X ′ and to 0 on X ′.

A guard over X is a finite conjunction of constraints of the form x ∼ c where
x ∈ X, c ∈ N and ∼ ∈ {<,≤,=,≥, >}. We denote by G(X) the set of guards
over X . Given g a guard and v a valuation, we write v |= g if v satisfies g (defined
in a natural way).

Definition 1. A timed automaton is a tuple A = (L,L0, F,Σ,X,E) such that:
L is a finite set of locations, L0 ⊆ L is the set of initial locations, F ⊆ L is the
set of accepting locations, Σ is a finite alphabet, X is a finite set of clocks and
E ⊆ L×G(X)×Σ × 2X × L is a finite set of edges.

The semantics of a timed automaton A is given as a timed transition system
TA = (S, S0, SF , (R+ × Σ),→) with set of states S = L × RX

+ , initial states
S0 = {(�0, 0) | �0 ∈ L0}, final states SF = F × RX

+ and transition relation
→ ⊆ S × (R+ ×Σ) × S, composed of moves of the form (�, v)

τ,a−−→ (�′, v′) with
τ > 0 whenever there exists an edge (�, g, a,X ′, �′) ∈ E such that v + τ |= g and
v′ = (v + τ)[X′←0].

A run $ of A is an infinite sequence of moves starting in some s0 ∈ S0, i.e.,
$ = s0

τ0,a0−−−→ s1 · · · τk,ak−−−→ sk+1 · · · . A timed word over Σ is an element (ti, ai)i∈N

of (R+ ×Σ)ω such that (ti)i∈N is increasing. The timed word is said to be Zeno
if the sequence (ti)i∈N is bounded from above. The timed word associated with $

is w = (t0, a0) . . . (tk, ak) . . . where ti =
�i

j=0 τj for every i. A timed automaton
A is deterministic whenever, given two edges (�, g1, a,X

′
1, �
′) and (�, g2, a,X

′
2, �
′)

in E, g1 ∧ g2 cannot be satisfied. In this case, for every timed word w, there is
at most one run reading w. An example of a (deterministic) timed automaton is
given in Fig. 1. As a convention locations in F will be depicted in grey.

�0 �1 �2

x<1,a,x:=0

x<1,a

x=1,a,x:=0

Fig. 1. Example of a timed automaton A with L0 = {�0} and F = {�1}

Definition 2. Given A = (L,L0, F,Σ,X,E) a timed automaton and a run $ =
(�0, v0)

τ0,a0−−−→ (�1, v1)
τ1,a1−−−→ (�2, v2) · · · of A, the frequency of F along $, denoted

freqA($), is defined as lim supn→∞(
�

i≤n|�i∈F τi)/(
�

i≤n τi).

Note that the choice of lim sup is arbitrary, and the choice of lim inf would be
as relevant. Furthermore notice that the limit may not exist in general.
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A timed word w is said accepted with positive frequency by A if there exists a
run $ which reads w and such that freqA($) is positive. The positive-frequency
language of A is the set of timed words that are accepted with positive frequency
by A. Note that we could define more generally languages where the frequency
of each word should be larger than some threshold λ, but even though some of
our results apply to this more general framework we prefer focusing on languages
with positive frequency.

Example 3. We illustrate the notion of frequency on runs of the determinis-
tic timed automaton A of Fig. 1. First, the only run in A ‘reading’ the word
(1, a).((1

3 , a).(1
3 , a))∗ has frequency 1

2 because the sequence n/3
1+(2n)/3 converges to

1
2 . Second, the Zeno run reading (1, a).((( 1

2k , a).( 1
2k , a))k)k≥1 in A has frequency

1
3 since the sequence

�
k≥1

1/2k

1+
�

k≥1
1/2k−1 converges to 1

3 . Finally, the run in A reading

the word (1, a).(((1
2 , a).(1

4 , a))2
2k

.((1
4 , a).(1

2 , a))2
2k+1

)k≥1 has frequency 4
9 . Note

that the sequence under consideration does not converge, but its lim sup is 4
9 .

2.2 A Brief Comparison with Usual Semantics

The usual semantics for timed automata considers a Büchi acceptance condition.
We naturally explore differences between this usual semantics, and the one we in-
troduced based on positive frequency. The expressiveness of timed automata un-
der those acceptance conditions is not comparable, as witnessed by the automaton
represented in Fig. 2(a): on the one hand, its positive-frequency language is not
timed-regular (i.e. accepted by a timed automaton with a standard Büchi accep-
tance condition), and on the other hand, its Büchi language cannot be recognized
by a timed automaton with a positive-frequency acceptance condition.

�0 �1

x=1,a,{x}
x=1,b,{x}

x=1,a,{x}

(a) Expressiveness

�0 �1

Σ

Σ

(b) Universality (non-Zeno)

�0 �1
Σ

Σ

(c) Universality (Zeno)

Fig. 2. Automata for the comparison with the usual semantics

The contribution of this paper is to study properties of the positive-frequency
languages. We will show that we can get very fine information on the set of
frequencies of runs in single-clock timed automata, which implies the decidability
of the emptiness problem for positive-frequency languages. We also show that
our technics do not extend to multi-clock timed automata.

We will also consider the universality problem and variants thereof (restriction
to Zeno or non-Zeno timed words). On the one hand, clearly enough, a (non-
Zeno)-universal timed automaton with a positive-frequency acceptance condition
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is (non-Zeno)-universal for the classical Büchi-acceptance. The timed automaton
of Fig. 2(b) is a counterexample to the converse. On the other hand, a Zeno-
universal timed automaton under the classical semantics is necessarily Zeno-
universal under the positive-frequency acceptance condition, but the automaton
depicted in Fig. 2(c) shows that the converse does not hold.

3 Set of Frequencies of Runs in One-Clock Timed
Automata

In this section, we give a precise description of the set of frequencies of runs in
single-clock timed automata. To this aim, we use the corner-point abstraction [8],
a refinement of the region abstraction, and exploit the links between frequencies
in the timed automaton and ratios in its corner-point abstraction. We fix a
single-clock timed automaton A = (L,L0, F,Σ, {x}, E).

3.1 The Corner-Point Abstraction

Even though the corner-point abstraction can be defined for general timed au-
tomata [8], we focus on the case of single-clock timed automata.

If M is the largest constant appearing in the guards of A, the usual region
abstraction of A is the partition RegA of the set of valuations R+ made of the
singletons {i} for 0 ≤ i ≤ M , the open intervals (i, i + 1) with 0 ≤ i ≤ M − 1
and the unbounded interval (M,∞) represented by ⊥. A piece of this partition
is called a region. The corner-point abstraction refines the region abstraction
by associating corner-points with regions. The singleton regions have a single
corner-point represented by • whereas the open intervals (i, i + 1) have two
corner-points •– (the left end-point of the interval) and –• (the right end-point
of the interval). Finally, the region ⊥ has a single corner-point denoted α⊥. We
write (R,α) for the region R pointed by the corner α and (R,α) + 1 denotes its
direct time successor defined by:

(R,α) + 1 =

�
��
��

((i, i + 1), •–) if (R,α) = ({i}, •) with i < M,
((i, i + 1), –•) if (R,α) = ((i, i + 1), •–),
({i + 1}, •) if (R,α) = ((i, i + 1), –•),
(⊥, α⊥) if (R,α) = ({M}, •) or (⊥, α⊥).

Using these notions, we define the corner-point abstraction as follows.

Definition 4. The (unweighted) corner-point abstraction of A is the finite au-
tomaton Acp = (Lcp, L0,cp, Fcp, Σcp, Ecp) where Lcp = L×RegA×{•, •–, –•, α⊥}
is the set of states, L0,cp = L0 × {0} × {•} is the set of initial states, Fcp =
F × RegA × {•, •–, –•, α⊥} is the set of accepting states, Σcp = Σ ∪ {ε}, and
Ecp ⊆ Lcp ×Σcp × Lcp is the finite set of edges defined as the union of discrete
transitions and idling transitions:

– discrete transitions: (�, R, α) a−→ (�′, R′, α′) if α is a corner-point of R and

there exists a transition �
g,a,X′
−−−−→ �′ in A, such that R ⊆ g and (R′, α′) =

(R,α) if X ′ = ∅, otherwise (R′, α′) = ({0}, •),
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– idling transitions: (�, R, α) ε−→ (�, R′, α′) if α (resp. α′) is a corner-point of
R (resp. R′) and (R′, α′) = (R,α) + 1.

We decorate this finite automaton with two weights for representing frequencies,
one which we call the cost, and the other which we call the reward (by analogy
with double-priced timed automata in [8]). The (weighted) corner-point abstrac-
tion AF

cp is obtained from Acp by labeling idling transitions in Acp as follows:
transitions (�, R, α) ε−→ (�, R, α′) with (R,α′) = (R,α) + 1 (α′ = α + 1 for short)
are assigned cost 1 (resp. cost 0) and reward 1 if � ∈ F (resp. � /∈ F ), and all
other transitions are assigned both cost and reward 0. To illustrate this defini-
tion, the corner-point abstraction of the timed automaton in Fig. 1 is represented
in Fig. 3.

�0,{0}, • �0,(0,1), •— �0,(0,1), —• �0,{1}, • �0,⊥, ⊥

�1,{0}, • �1,(0,1), •— �1,(0,1), —• �1,{1}, • �1,⊥, ⊥

�2,{0}, • �2,(0,1), •— �2,(0,1), —• �2,{1}, • �2,⊥, ⊥

ε,0/1

ε,1/1

ε,0/1

ε,0/0

ε,0/0 ε,0/0

ε,0/0 ε,0/0

ε,0/0 ε,0/1 ε,0/0

ε,0/0 ε,1/1

ε,0/0 ε,0/1

a,0/0 a,0/0

a,0/0

a,0/0 a,0/0

Fig. 3. The corner-point abstraction AF
cp of A represented Fig. 1

There will be a correspondence between runs in A and runs in Acp. As time
is increasing in A we forbid runs in Acp where two actions have to be made in

0-delay (this is easy to do as there should be no sequence . . .
σ−→ (�, R, α) σ′−→ . . . ,

where both σ and σ′ are actions and R is a punctual region).
Given π a run in AF

cp the ratio of π, denoted Rat(π), is defined, provided
it exists, as the lim sup of the ratio of accumulated costs divided by accumu-
lated rewards for finite prefixes. Run π is said reward-converging (resp. reward-
diverging) if the accumulated reward along π is bounded (resp. unbounded).
Reward-converging runs in AF

cp are meant to capture Zeno behaviours of A.

Given $ a run in A we denote by Projcp($) the set of all runs in AF
cp compatible

with $ in the following sense. We assume $ = (�0, v0)
τ0,a0−−−→ (�1, v1)

τ1,a1−−−→ · · · ,
where move (�i, vi)

τi,ai−−−→ (�i+1, vi+1) comes from an edge ei. A run1 π =
(�0, R1

0, α
1
0) → (�0, R2

0, α
2
0) → · · · → (�0, Rk0

0 , αk0
0 ) → (�1, R1

1, α
1
1) → · · · →

(�1, Rk1
1 , αk1

1 ) · · · of AF
cp is in Projcp($) if for all indices n ≥ 0:

– for all i ≤ kn, αi
n is a corner-point of Ri

n,
– for all i ≤ kn − 1, (Ri+1

n , αi+1
n ) = (Ri

n, α
i
n) + 1,

1 For simplicity, we omit here the transitions labels.
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– (R1
n+1, α

1
n+1) is the successor pointed-region of (Rkn

n , αkn
n ) by transition en

(that is (R1
n+1, α

1
n+1) = ({0}, •) if en resets the clock x and otherwise

(R1
n+1, α

1
n+1) = (Rkn

n , αkn
n )),

– vn ∈ R1
n and if Rkn

n 	= ⊥, vn + τn ∈ Rkn
n ,

– if Rkn
n = ⊥, the sum μn of the rewards since region {0} has been visited for

the last time has to be equal to �vn + τn� or �vn + τn�.2 Note that μn can
be seen as the abstraction of the valuation vn.

Remark 5. As defined above, the size of AF
cp is exponential in the size of A

because the number of regions is 2M (which is exponential in the binary encoding
of M). We could actually take a rougher version of the regions [12], where only
constants appearing in A should take part in the region partition. This partition,
specific to single-clock timed automata is only polynomial in the size of A. We
choose to simplify the presentation by considering the standard unit intervals.

We will now see that the corner-point abstraction is a useful tool to deduce
properties of the set of frequencies of runs in the original timed automata.

3.2 From A to AF
cp, and Vice-Versa

We first show that given a run $ of A, there exists a run in Projcp($), whose
ratio is smaller (resp. larger) than the frequency of $.

Lemma 6 (From A to AF
cp). For every run $ in A, there exist π and π′ in

AF
cp that can effectively be built and belong to Projcp($) such that:

Rat(π) ≤ freqA($) ≤ Rat(π′).

Run π (resp. π′) minimizes (resp. maximizes) the ratio among runs in Projcp($).

Such two runs of AF
cp can be effectively built from $, through the so-called

contraction (resp. dilatation) operations. Intuitively it consists in minimizing
(resp. maximizing) the time elapsed in F -locations.

Note that the notion of contraction cannot be adapted to the case of timed
automata with several clocks, as illustrated by the timed automaton in Fig. 4.
Consider indeed the run alternating delays (1

2 + 1
n ) and 1− (1

2 + 1
n ) for n ∈ N,

and switching between the left-most cycle (�1− �2− �1) and the right-most cycle
(�3− �4− �3) following the rules: in round k, take 22k times the cycle �1− �2− �1,
then switch to �3 and take 22k+1 times the cycle �3 − �4− �3 and return back to
�1 and continue with round k+1. This run cannot have any contraction since its
frequency is 1

2 , whereas all its projections in the corner-point abstraction have
ratio 2

3 , the lim sup of a non-converging sequence. This strange behavior is due
to the fact that the delays in �1 and �3 need to be smaller and smaller, and this
converging phenomenon requires at least two clocks.

We now want to know when and how runs in AF
cp can be lifted to A. To that

aim we distinguish between reward-diverging and reward-converging runs.
2 Roughly, in the unbounded region ⊥, the number of times an idling transition is

taken should reflect how ‘big’ the delay τn is.
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�1 �2 �4�3

x<1,a,x:=0

y=1,a,y:=0

x<1,a,x:=0

y=1,a,y:=0

x<1,a,x:=0

y=1,a,y:=0

Fig. 4. A counterexample with two clocks for Lemma 6

Lemma 7 (From AF
cp to A, reward-diverging case). For every reward-

diverging run π in AF
cp, there exists a non-Zeno run $ in A such that π ∈

Projcp($) and freqA($) = Rat(π).

Proof (Sketch). The key ingredient is that given a reward-diverging run π inAF
cp,

for every ε > 0, one can build a non-Zeno run $ε of A with the following strong
property: for all n ∈ N, the valuation of the n-th state along $ε is ε

2n -close to
the abstract valuation in the corresponding state in π. The accumulated reward
along π diverges, hence freqA($ε) is equal to Rat(π). �
The restriction to single-clock timed automata is crucial in Lemma 7. Indeed,
consider the two-clocks timed automaton depicted in Fig. 5(a). In its corner-point
abstraction there exists a reward-diverging run π with Rat(π) = 0, however every
run $ satisfies freqA($) > 0.

�0 �1 �2
0<x<1,a,y:=0

x>1,a,x:=0

y=1,a,y:=0

(a) A counterexample with two clocks

�0 �1 �2
x=1,a,x:=0x=1,a,x:=0

x>0,a,x:=0

(b) Zeno case

Fig. 5. Counterexamples to extensions of Lemma 7

Lemma 8 (From AF
cp to A, reward-converging case). For every reward-

converging run π in AF
cp, if Rat(π) > 0, then for every ε > 0, there exists a Zeno

run $ε in A such that π ∈ Projcp($ε) and |freqA($ε)− Rat(π)| < ε.

Proof (Sketch). A construction similar to the one used in the proof of Lemma 7
is performed. Note however that the result is slightly weaker, since in the reward-
converging case, one cannot neglect imprecisions (even the smallest) forced e.g.,
by the prohibition of the zero delays. �
Note that Lemma 8 does not hold in case Rat(π) = 0, where we can only derive
that the set of frequencies of runs $ such that π ∈ Projcp($) is either {0} or {1}
or included in (0, 1). Also an equivalent to Lemma 7 for Zeno runs (even in the
single-clock case!) is hopeless. The timed automaton A depicted in Fig. 5, where
F = {�0, �2} is a counterexample. Indeed, inAF

cp there is a reward-converging run
π with Rat(π) = 1

2 , whereas all Zeno runs in A have frequency larger than 1
2 .
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3.3 Set of Frequencies of Runs in A
We use the strong relation between frequencies in A and ratios in AF

cp proven in
the previous subsection to establish key properties of the set of frequencies.

Theorem 9. Let FA = {freqA($) | $ run of A} be the set of frequencies of runs
in A. We can compute inf FA and supFA. Moreover we can decide whether these
bounds are reached or not. Everything can be done in NLOGSPACE.

The above theorem is based on the two following lemmas dealing respectively
with the set of non-Zeno and Zeno runs in A.

Lemma 10 (non-Zeno case). Let {C1, · · · , Ck} be the set of reachable SCCs
of AF

cp. The set of frequencies of non-Zeno runs of A is then ∪1≤i≤k[mi,Mi]
where mi (resp. Mi) is the minimal (resp. maximal) ratio for a reward-diverging
cycle in Ci.

Proof (Sketch). First, the set of ratios of reward-diverging runs in AF
cp is exactly

∪1≤i≤k[mi,Mi]. Indeed, given two extremal cycles cm and cM of ratios m and
M in an SCC C of AF

cp, we show that every ratio m ≤ r ≤ M can be obtained
as the ratio of a run ending in C by combining in a proper manner cm and cM .
Then, using Lemmas 6 and 7 we derive that the set of frequencies of non-Zeno
runs in A coincides with the set of ratios of reward-diverging runs in AF

cp. �

Lemma 11 (Zeno case). Given π a reward-converging run in AF
cp, it is decid-

able whether there exists a Zeno run $ such that π is the contraction of $ and
freqA($) = Rat(π).

Proof (Sketch). Observe that every fragment of π between reset transitions can
be considered independently, since compensations cannot occur in Zeno runs:
even the smallest deviation (such as a delay ε in A instead of a cost 0 in π) will
introduce a difference between the ratio and the frequency. A careful inspection
of cases allows one to establish the result stated in the lemma. �

Using Lemmas 10 and 11, let us briefly explain how we derive Theorem 9. For
each SCC C of the corner-point abstraction AF

cp, the bounds of the set of fre-
quencies of runs whose contraction ends up in C can be computed thanks to
the above lemmas. We can also furthermore decide whether these bounds can
be obtained by a real run in A. The result for the global automaton follows.

Remark 12. The link between A and AF
cp differs in several aspects from [8].

First, a result similar to Lemma 6 was proven, but the runs π and π′ were
not in Projcp($), and more importantly it heavily relied on the reward-diverging
hypothesis. Then the counter-part of Theorem 9 was weaker in [8] as there was
no way to decide whether the bounds were reachable or not.

4 Emptiness and Universality Problems

The emptiness problem. In our context, the emptiness problem asks, given a
timed automaton A whether there is a timed word which is accepted by A with
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positive frequency. We also consider variants where we focus on non-Zeno or
Zeno timed words. As a consequence of Theorem 9, we get the following result.

Theorem 13. The emptiness problem for infinite (resp. non-Zeno, Zeno) timed
words in single-clock timed automata is decidable. It is furthermore NLOGSPACE-
Complete.

Note that the problem is open for timed automata with 2 clocks or more.

The universality problem. We now focus on the universality problem, which asks,
whether all timed words are accepted with positive frequency in a given timed
automaton. We also consider variants thereof which distinguish between Zeno
and non-Zeno timed words. Note that these variants are incomparable: there are
timed automata that, with positive frequency, recognize all Zeno timed words
but not all non-Zeno timed words, and vice-versa.

A first obvious result concerns deterministic timed automata. One can first
check syntactically whether all infinite timed words can be read (just locally
check that the automaton is complete). Then we notice that considering all
timed words exactly amounts to considering all runs. Thanks to Theorem 9, one
can decide, in this case, whether there is or not a run of frequency 0. If not, the
automaton is universal, otherwise it is not universal.

Theorem 14. The universality problem for infinite (resp. non-Zeno, Zeno) timed
words in deterministic single-clock timed automata is decidable. It is furthermore
NLOGSPACE-Complete.

Remark 15. Note that results similar to Theorems 13 and 14 hold when consid-
ering languages defined with a threshold λ on the frequency.

If we relax the determinism assumption this becomes much harder!

Theorem 16. The universality problem for infinite (resp. non-Zeno, Zeno) timed
words in a one-clock timed automaton is non-primitive recursive. If two clocks
are allowed, this problem is undecidable.

A
c

Σ∪{c} Σ

Fig. 6.

Proof (Sketch). The proof is done by reduction to
the universality problem for finite words in timed
automata (which is known to be undecidable for
timed automata with two clocks or more [2] and
non-primitive recursive for one-clock timed au-
tomata [13]). Given a timed automaton A that
accepts finite timed words, we construct a timed
automaton B with an extra letter c which will be
interpreted with positive frequency. From all ac-
cepting locations of A, we allow B to read c and
then accept everything (with positive frequency). The construction is illustrated
on Fig. 6. It is easy to check that A is universal over Σ iff B is universal over
Σ ∪ {c}. �
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Theorem 17. The universality problem for Zeno timed words with positive fre-
quency in a single-clock timed automaton is decidable.

Proof (Sketch). This decidability result is rather involved and requires some
technical developments for which there is no room here. It is based on the idea
that for a Zeno timed word to be accepted with positive frequency it is (necessary
and) sufficient to visit an accepting location once. Furthermore the sequence of
timestamps associated with a Zeno timed word is converging, and we can prove
that from some point on, in the automaton, all guards will be trivially either
verified or denied: for instance if the value of the clock is 1.4 after having read
a prefix of the word, and if the word then converges in no more than 0.3 time
units, then only the constraint 1 < x < 2 will be satisfied while reading the
suffix of the word, unless the clock is reset, in which case only the constraint
0 < x < 1 will be satisfied. Hence the algorithm is composed of two phases: first
we read the prefix of the word (and we use a now standard abstract transition
system to do so, see [13]), and then for the tail of the Zeno words, the behaviour
of the automaton can be reduced to that of a finite automaton (using the above
argument on tails of Zeno words). �

5 Conclusion

In this paper we introduced a notion of (positive-)frequency acceptance for timed
automata and studied the related emptiness and universality problems. This se-
mantics is not comparable to the classical Büchi semantics. For deterministic
single-clock timed automata, emptiness and universality are decidable by inves-
tigating the set of possible frequencies based on the corner-point abstraction.
For (non-deterministic) single-clock timed automata, the universality problem
restricted to Zeno timed words is decidable but non-primitive recursive. The
restriction to single-clock timed automata is justified on the one hand by the
undecidability of the universality problem in the general case. On the other
hand, the techniques we employ to study the set of possible frequencies do not
extend to timed automata with several clocks. A remaining open question is the
decidability status of the universality problem for non-Zeno timed words, which
is only known to be non-primitive recursive. Further investigations include a
deeper study of frequencies in timed automata with multiple clocks, and also
the extension of this work to languages accepted with a frequency larger than a
given threshold.
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Büchi Automata Can Have Smaller Quotients
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Abstract. We study novel simulation-like preorders for quotienting nondeter-
ministic Büchi automata. We define fixed-word delayed simulation, a new pre-
order coarser than delayed simulation. We argue that fixed-word simulation is
the coarsest forward simulation-like preorder which can be used for quotienting
Büchi automata, thus improving our understanding of the limits of quotienting.
Also, we show that computing fixed-word simulation is PSPACE-complete.

On the practical side, we introduce proxy simulations, which are novel
polynomial-time computable preorders sound for quotienting. In particular, de-
layed proxy simulation induce quotients that can be smaller by an arbitrarily
large factor than direct backward simulation. We derive proxy simulations as the
product of a theory of refinement transformers: A refinement transformer maps
preorders nondecreasingly, preserving certain properties. We study under which
general conditions refinement transformers are sound for quotienting.

1 Introduction

Büchi automata minimization is an important topic in automata theory, both for the
theoretical understanding of automata over infinite words and for practical applications.
Minimizing an automaton means reducing the number of its states as much as possible,
while preserving the recognized language. Minimal automata need not be unique, and
their structure does not necessarily bear any resemblance to the original model; in the
realm of infinite words, this holds even for deterministic models. This hints at why exact
minimization has high complexity: Indeed, minimality checking is PSPACE-hard for
nondeterministic models (already over finite words [13]), and NP-hard for deterministic
Büchi automata [20]. Moreover, even approximating the minimal model is hard [9].

By posing suitable restrictions on the minimization procedure, it is nonetheless pos-
sible to trade exact minimality for efficiency. In the approach of quotienting, smaller
automata are obtained by merging together equivalent states, under appropriately de-
fined equivalences. In particular, quotienting by simulation equivalence has proven to
be an effective heuristics for reducing the size of automata in cases of practical rele-
vance.

The notion of simulation preorder and equivalence [18] is a crucial tool for com-
paring the behaviour of systems. It is best described via a game between two players,
Duplicator and Spoiler, where the former tries to stepwise match the moves of the lat-
ter. But not every simulation preorder can be used for quotienting: We call a preorder
good for quotienting (GFQ) if the quotient automaton (w.r.t. the induced equivalence)
recognizes the same language as the original automaton. In particular, a necessary con-
dition for a simulation to be GFQ is to take into account the acceptance condition: For

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part II, LNCS 6756, pp. 258–270, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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example, in direct simulation [5], Duplicator has the additional requirement to visit an
accepting state whenever Spoiler does so, while in the coarser fair simulation [11], Du-
plicator has to visit infinitely many accepting states if Spoiler does so. But, while direct
simulation is GFQ [2], fair simulation is not [12].1 This prompted the development of
delayed simulation [7], a GFQ preorder intermediate between direct and fair simulation.

We study the border of GFQ preorders. In our first attempt we generalize delayed
simulation to delayed containment. While in simulation the two players take turns in
selecting transitions, in containment the game ends in one round: First Spoiler picks an
infinite path, and then Duplicator has to match it with another infinite path. The win-
ning condition is delayed-like: Every accepting state of Spoiler has to be matched by
an accepting state of Duplicator, possibly occurring later. Therefore, in delayed con-
tainment Duplicator is much stronger than in simulation; in other words, containment
is coarser than simulation. In fact, it is too coarse: We give a counterexample where
delayed containment is not GFQ. We henceforth turn our attention to finer preorders.

In our second attempt, we remedy to the deficiency above by introducing fixed-word
delayed simulation, an intermediate notion between simulation and containment. In
fixed-word simulation, Spoiler does not reveal the whole path in advance like in con-
tainment; instead, she only declares the input word beforehand. Then, the simulation
game starts, but now transitions can be taken only if they match the word fixed earlier
by Spoiler. Unlike containment, fixed-word delayed simulation is GFQ, as we show.

We proceed by looking at even coarser GFQ preorders. We enrich fixed-word simu-
lation by allowing Duplicator to use multiple pebbles, in the style of [6]. The question
arises as whether Duplicator gains more power by “hedging her bets” when she already
knows the input word in advance. By using an ordinal ranking argument (reminiscent of
[16]), we establish that this is not the case, and that the multipebble hierarchy collapses
to the 1-pebble case, i.e., to fixed-word delayed simulation itself. Incidentally, this also
shows that the whole delayed multipebble hierarchy from [6] is entirely contained in
fixed-word delayed simulation—the containment being strict.

For what concerns the complexity of computing fixed-word simulation, we establish
that it is PSPACE-complete, by a mutual reduction from Büchi automata universality.

With the aim of getting tractable preorders, we then look at a different way of ob-
taining GFQ relations, by introducing a theory of refinement transformers: A refinement
transformer maps a preorder- to a coarser preorder -′, s.t., once - is known, -′ can
be computed with only a polynomial time overhead. The idea is to play a simulation-
like game, where we allow Duplicator to “jump” to--bigger states, called proxies, after
Spoiler has selected her transition. Duplicator can then reply with a transition from the
proxy instead of the original state. We say that proxy states are dynamic in the sense
that they depend on the transition selected by Spoiler.2 Under certain conditions, we
show that refinement transformers induce GFQ preorders.

Finally, we introduce proxy simulations, which are novel polynomial time GFQ pre-
orders obtained by applying refinement transformers to a concrete preorder-, namely,
to backward direct simulation (called reverse simulation in [21]). We define two ver-
sions of proxy simulation, direct and delayed, the latter being coarser than the former,

1 In fact, for Büchi automata it is well-known that also language equivalence is not GFQ.
2 Proxies are strongly related to mediators [1]. We compare them in depth in Section 6.
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and both coarser than direct backward simulation. Moreover, we show that the delayed
variant can achieve quotients smaller than direct proxy simulation by an arbitrarily large
factor. Full proofs can be found in the technical report [3].

Related work. Delayed simulation [7] has been extended to generalized automata [14],
to multiple pebbles [6], to alternating automata [8] and to the combination of the last
two [4]. Fair simulation has been used for state space reduction in [10]. The abstract
idea of mixing forward and backward modes in quotienting can be traced back at least
to [19]; in the context of alternating automata, it has been studied in [1].

2 Preliminaries

Games. For a finite sequence π = e0e1 · · · ek−1, let |π| = k be its length, and let
last(π) = ek−1 be its last element. If π is infinite, then take |π| = ω.

A game is a tuple G = (P, P0, P1, pI , Γ, Γ0, Γ1,W ), where P is the set of positions,
partitioned into disjoint sets P0 and P1, pI ∈ P0 is the initial position, Γ = Γ0 ∪ Γ1 is
the set of moves, where Γ0 ⊆ P0×P1 and Γ1 ⊆ P1×P0 are the set of moves of Player
0 and Player 1, respectively, and W ⊆ Pω

0 is the winning condition. A path is a finite
or infinite sequence of states π = p0

0p
1
0p

0
1p

1
1 · · · starting in pI , such that, for all i < |π|,

(p0
i , p

1
i ) ∈ Γ0 and (p1

i , p
0
i+1) ∈ Γ1. Partial plays and plays are finite and infinite paths,

respectively. We assume that there are no dead ends in the game. A play is winning for
Player 1 iff p0

0p
0
1p

0
2 · · · ∈W ; otherwise, is it winning for Player 0.

A strategy for Player 0 is a partial function σ0 : (P0P1)∗P0 �→ P1 s.t., for any partial
play π ∈ (P0P1)∗P0, if σ0 is defined on π, then π · σ0(π) is again a partial play. A
play π is σ0-conform iff, for every i ≥ 0, p1

i = σ0(p0
0p

1
0 · · · p0

i ). Similarly, a strategy for
Player 1 is a partial function σ1 : (P0P1)+ �→ P0 s.t., for any partial play π ∈ (P0P1)+,
if σ1 is defined on π, then π · σ1(π) is again a partial play. A play π is σ1-conform iff,
for every i ≥ 0, p0

i+1 = σ0(p0
0p

1
0 · · · p0

i p
1
i ). While we do not require strategies to be

total functions, we do require that a strategy σ is defined on all σ-conform partial plays.
A strategy σi is a winning strategy for Player i iff all σi-conform plays are winning

for Player i. We say that Player i wins the game G if she has a winning strategy.

Automata. A nondeterministic Büchi automaton (NBA) is a tupleQ = (Q,Σ, I,Δ, F ),
where Q is a finite set of states, Σ is a finite alphabet, I ⊆ Q is the set of initial states,
F ⊆ Q is the set of final states and Δ ⊆ Q×Σ ×Q is the transition relation. We also
write q

a−→ q′ instead of (q, a, q′) ∈ Δ, and just q −→ q′ when ∃a ∈ Σ · q a−→ q′. For
two sets of states q,q′ ⊆ Q, we write q a=⇒ q′ iff ∀q′ ∈ q′ · ∃q ∈ q · q a−→ q′.3 For a
state q ∈ Q, let [q ∈ F ] = 1 if q is accepting, and 0 otherwise. We assume that every
state is reachable from some initial state, and that the transition relation is total.

For a finite or infinite sequence of states ρ = q0q1 · · · and an index i ≤ |ρ|, let
cnt-final(ρ, i) be the number of final states occuring in ρ up to (and including) the i-th
element. Formally, cnt-final(ρ, i) =

∑
0≤k<i[qk ∈ F ], with cnt-final(ρ, 0) = 0. Let

cnt-final(ρ) = cnt-final(ρ, |ρ|). If ρ is infinite, then cnt-final(ρ) = ω iff ρ contains
infinitely many accepting states.

3 This kind of backward-compatible transition had already appeared in [17].
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Fix a finite or infinite word w = a0a1 · · · . A path π over w is a sequence q0
a0−→

q1
a1−→ q2 · · · of length |w|+1. A path is initial if it starts in an initial state q0 ∈ I , it is a

run if it is initial and infinite, and it is fair if cnt-final(π) = ω. An accepting run is a run
which is fair. The languageLω(Q) of a NBAQ is the set of infinite words which admit
an accepting run, i.e., Lω(Q) = {w ∈ Σω | there exists an accepting run π over w}.
Quotients. Let Q = (Q,Σ, I,Δ, F ) be a NBA and let R be any binary relation on
Q. We say that ≈R is the equivalence induced by R if ≈R is the largest equivalence
contained in the transitive and reflexive closure of R. I.e., ≈R= R∗∩ (R∗)−1. Let the
function [·]R : Q �→ 2Q map each element q ∈ Q to the equivalence class [q]R ⊆ Q
it belongs to, i.e., [q]R := {q′ ∈ Q | q ≈R q′}. We overload [P ]R on sets P ⊆ Q by
taking the set of equivalence classes. When clear from the context, we avoid noting the
dependence of ≈ and [·] on R.

An equivalence≈ onQ induces the quotient automatonQ≈=([Q], Σ, [I], Δ≈, [F ]),
where, for any q, q′ ∈ Q and a ∈ Σ, ([q], a, [q′]) ∈ Δ≈ iff (q, a, q′) ∈ Δ. This is called
a naı̈ve quotient since both initial/final states and transitions are induced representative-
wise. When we quotient w.r.t. a relation R which is not itself an equivalence, we actually
mean quotenting w.r.t. the induced equivalence≈. We say that R is good for quotienting
(GFQ) if quotientingQ w.r.t. R preserves the language, that is, Lω(Q) = Lω(Q≈).

Lemma 1. For two equivalences ≈0,≈1, if ≈0⊆≈1, then Lω(Q≈0) ⊆ Lω(Q≈1). In
particular, by letting ≈0 be the identity, Lω(Q) ⊆ Lω(Q≈1).

3 Quotienting with Forward Simulations

In this section we study several generalizations of delayed simulation, in order to in-
vestigate the border of good for quotienting (GFQ) forward-like preorders. In our first
attempt we introduce delayed containment, which is obtained as a modification of the
usual simulation interaction between players: In the delayed containment game between
q and s there are only two rounds. Spoiler moves first and selects both an infinite word
w = a0a1 · · · and an infinite path q0

a0−→ q1
a1−→ · · · over w starting in q = q0; then,

Duplicator replies with an infinite path s0
a0−→ s1

a1−→ · · · over w starting in s = s0.
The winning condition is delayed-like: ∀i · qi ∈ F =⇒ ∃j ≥ i · sj ∈ F . If Duplica-
tor wins the delayed containment game between q and s, we write q ⊆de s. Clearly,
⊆de is a preorder implying language containment. One might wonder whether delayed-
containment is GFQ. Unfortunately, this is not the case (see Figure 5 in the tech. rep.
[3]). Therefore,⊆de is too coarse for quotienting, and we shall look at finer relations.

Lemma 2. ⊆de is not a GFQ preorder.

3.1 Fixed-Word Delayed Simulation

Our second attempt at generalizing delayed simulation still retains the flavour of con-
tainment. While in containment ⊆de Spoiler reveals both the input word w and a path
over w, in fixed-word simulation !de

fx Spoiler reveals w only. Then, after w has been
fixed, the game proceeds like in delayed simulation, with the proviso that transitions
match symbols in w.4 Formally, let w = a0a1 · · · ∈ Σω. In the w-simulation game

4 The related notion of fixed-word fair simulation clearly coincides with ω-language inclusion.
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Gde
w (q, s) the set of positions of Spoiler is P0 = Q×Q×�, the set of positions of Du-

plicator is P1 = Q×Q×Q×� and 〈q, s, 0〉 is the initial position. Transitions are deter-
mined as follows: Spoiler can select a move of the form (〈q, s, i〉, 〈q, s, q′, i〉) ∈ Γw-de

0

if q
ai−→ q′, and Duplicator can select a move of the form (〈q, s, q′, i〉, 〈q′, s′, i + 1〉) ∈

Γw-de
1 if s

ai−→ s′. Notice that the input symbol ai is fixed, and it has to match the cor-
responding symbol in w. The winning condition is W = {〈q0, s0, 0〉〈q1, s1, 1〉 · · · | ∀i ·
qi ∈ F =⇒ ∃j ≥ i · sj ∈F}. Let q !de

w s iff Duplicator wins the w-simulation game
Gde

w (q, s), and q !de
fx s iff q !de

w s for all w ∈ Σω. Clearly, fixed-word simulation is a
preorder implying containment.

Fact 1. !de
fx is a reflexive and transitive relation, and ∀q, s ∈ Q · q !de

fx s =⇒ q ⊆de s.

Unlike delayed containment, fixed-word delayed simulation is GFQ. Moreover, fixed-
word delayed simulation quotients can be more succint than (multipebble) delayed sim-
ulation quotients by an arbitrarily large factor. See Figure 6 in [3].

Theorem 1. !de
fx is good for quotienting.

Complexity of delayed fixed word simulation. Let q, s be two states in Q. We reduce
the problem of checking q !de

fx s to the universality problem of a suitable alternating
Büchi product automaton (ABA) A. We design A to accept exactly those words w s.t.
Duplicator wins Gde

w (q, s). Then, by the definition of!de
fx , it is enough to check whether

A has universal language. See [22] (or Appendix A.1 [3]) for background on ABAs.
The idea is to enrich configurations in the fixed-word simulation game by adding

an obligation bit recording whether Duplicator has any pending constraint to visit an
accepting state. Initially the bit is 0, and it is set to 1 whenever Spoiler is accepting; a
reset to 0 can occur afterwards, if and when Duplicator visits an accepting state.

Let Q = (Q,Σ, I,Δ, F ) be a NBA. We define a product ABA A = (A,Σ, δ, α)
as follows: The set of states is A = Q × Q × {0, 1}, final states are of the form α =
Q×Q× {0} and, for any 〈q, s, b〉 ∈ A and a ∈ Σ,

δ(〈q, s, b〉, a) =
∧

q
a−→q′

∨
s

a−→s′

〈q′, s′, b′〉, where b′ =

⎧⎨
⎩

0 if s ∈ F
1 if q ∈ F ∧ s 	∈ F
b otherwise

It follows directly from the definitions that q !de
fx s iff Lω(〈q, s, 0〉) = Σω. A reduction

in the other direction is immediate already for NBAs: In fact, an NBA Q is universal
iff U !de

fx Q, where U is the trivial, universal one-state automaton with an accepting
Σ-loop. It is well-known that universality is PSPACE-complete for ABAs/NBAs [15].

Theorem 2. Computing fixed-word delayed simulation is PSPACE-complete.

3.2 Multipebble Fixed-Word Delayed Simulation

Having established that fixed-word simulation is GFQ, the next question is whether we
can find other natural GFQ preorders between fixed-word and delayed containment. A
natural attempt is to add a multipebble facility on top of !de

fx . Intuitively, when Du-
plicator uses multiple pebbles she can “hedge her bets” by moving pebbles to several
successors. This allows Duplicator to delay committing to any particular choice by ar-
bitrarily many steps: In particular, she can always gain knowledge on any finite number
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of moves by Spoiler. Perhaps surprisingly, we show that Duplicator does not gain more
power by using pebbles. This is stated in Theorem 3, and it is the major technical result
of this section. It follows that, once Duplicator knows the input word in advance, there
is no difference between knowing only the next step by Spoiler, or the next l steps, for
any finite l > 1. Yet, if we allow l = ω lookahead, then we recover delayed containment
⊆de, which is not GFQ by Lemma 2. Therefore, w.r.t. to the degree of lookahead, !de

fx
is the coarsest GFQ relation included in ⊆de.

We now define the multipebble fixed-word delayed simulation. Let k ≥ 1 and w =
a0a1 · · · ∈ Σω. In the k-multipebble w-delayed simulation game Gk-de

w (q, s) the set of
positions of Spoiler is Q× 2Q ×�, the set of positions of Duplicator is Q× 2Q×Q×
�, the initial position is 〈q, {s}, 0〉, and transitions are: (〈q, s, i〉, 〈q, s, q′, i〉) ∈ Γ0 iff
q

ai−→ q′, and (〈q, s, q′, i〉, 〈q′, s′, i + 1〉) ∈ Γ1 iff s ai=⇒ s′ and |s′| ≤ k.
Before defining the winning set we need some preparation. Given an infinite se-

quence π = 〈q0, s0, 0〉〈q1, s1, 1〉 · · · over w = a0a1 · · · and a round j ≥ 0, we say
that a state s ∈ sj has been accepting since some previous round i ≤ j, written

acceptingi
j(s, π), iff either s ∈ F , or i < j and there exists ŝ ∈ sj−1 s.t. ŝ

aj−1−→ s and

acceptingi
j−1(ŝ, π). We say that sj is good since round i ≤ j, written goodi

j(sj , π),
iff at round j every state s ∈ sj has been accepting since round i, and j is the least
round for which this holds [6]. Duplicator wins a play if, whenever qi ∈ F there exists
j ≥ i s.t. goodi

j(sj , π). We write q !k-de
w s iff Duplicator wins Gk-de

w (q, s), and we write
q !k-de

fx s iff ∀w ∈ Σω · q !k-de
w s.

Clearly, pebble simulations induce a non-decreasing hierarcy: !1-de
fx ⊆ !2-de

fx ⊆ · · · .
We establish that the hierarchy actually collapses to the k = 1 level. This result is
non-trivial, since the delayed winning condition requires reasoning not only about the
possibility of Duplicator to visit accepting states in the future, but also about exactly
when such a visit occurs. Technically, our argument uses a ranking argument similar
to [16] (see Appendix A.2 [3]), with the notable difference that our ranks are ordinals
(≤ ω2), instead of natural numbers. We need ordinals to represent how long a player
can delay visiting accepting states, and how this events nest with each other. Finally,
notice that the result above implies that the multipebble delayed simulation hierarchy
of [6] is entirely contained in !de

fx , and the containment is strict (Fig. 6 [3]).

Theorem 3. For any NBAQ, k ≥ 1 and states q, s ∈ Q, q !k-de
fx s iff q !de

fx s.

4 Jumping-Safe Relations

In this section we present the general technique which is used throughout the paper
to establish that preorders are GFQ. We introduce jumping-safe relations, which are
shown to be GFQ (Theorem 4). In Section 5 we use jumping-safety as an invariant
when applying refinement transformers. We start off with an analysis of acceping runs.

Coherent sequences of paths. Fix an infinite word w ∈ Σω. Let Π := π0, π1, . . . be an
infinite sequence of longer and longer finite initial paths in Q over (prefixes of) w. We
are interested in finding a sufficient condition for the existence of an accepting run over
w. A necessary condition is that the number of final states in πi grows unboundedly as
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i goes to ω. In the case of deterministic automata this condition is also sufficient: In-
deed, in a deterministic automaton there exists a unique run over w, which is accepting
exactly when the number of accepting stated visited by its prefixes goes to infinity.

q s

a, b

a

a

Fig. 1. Automaton Q

In this case, we say that the πi’s are strongly coherent since
they next path extends the previous one. Unfortunately, in
the general case of nondeterministic automata it is quite
possible to have paths that visit arbitrarily many final states
but no accepting run exists. This occurs because final states
can appear arbitrarily late. Indeed, consider Figure 1. Take
w = aba2ba3b · · · : For every prefx wi = aba2b · · · ai

there exists a path πi = qq · · · q · si over wi visiting a final
state i times. Still, w 	∈ Lω(Q).

Therefore, we forbid accepting states to “clump away” in the tail of the path. We
ensure this by imposing the existence of an infinite sequence of indices j0, j1, · · · s.t.,
for all i, and for all ki big enough, the number of final states in πki up to the ji-th state
is at least i. In this way, we are guaranteed that at least i final states are present within
ji steps in all but finitely many paths.

Definition 1. Let Π := π0, π1, . . . be an infinite sequence of finite paths. We say that
Π is a coherent sequence of paths if the following property holds:

∀i · ∃j · ∃h · ∀k ≥ h · j < |πk| ∧ cnt-final(πk, j) ≥ i . (1)

Lemma 3. If Π is coherent, then any infinite subsequence Π ′ thereof is coherent.

We sketch below the proof that coherent sequences induce fair paths. Let Π=π0, π1, . . .
be a coherent sequence of paths in Q. Let i = 1, and let j1 be the index witnessing Π
is coherent. Since the πk’s are branches in a finitely branching tree, there are only a
finite number of different prefixes of length j1. Therefore, there exists a prefix ρ1 which
is common to infinitely many paths. Let Π ′ = π′0, π′1, . . . be the infinite subsequence
of Π containing only suffixes of ρ1. Clearly ρ1 contains at least 1 final state, and each
π′ in Π ′ extends ρ1. By Lemma 3, Π ′ is coherent. For i = 2, we can apply the rea-
soning again to Π ′, and we obtain a longer prefix ρ2 extending ρ1, and containing at
least 2 final states. Let Π ′′ be the coherent subsequence of Π ′ containing only suffixes
of ρ2. In this fashion, we obtain an infinite sequence of strongly coherent (finite) paths
ρ1, ρ2, · · · s.t. ρi extends ρi−1 and contains at least i final states. The infinite path to
which the sequence converges is the fair path we are after.

Lemma 4. Let w ∈ Σω and π0, π1, . . . as above. If π0, π1, . . . is coherent, then there
exists a fair path ρ over w. Moreover, if all πi’s are initial, then ρ is initial.

Jumping-safe relations. We established that coherent sequences induce accepting paths.
Next, we introduce jumping-safe relations, which are designed to induce coherent se-
quences (and thus accepting paths) when used in quotienting. The idea is to view a
path in the quotient automaton as a jumping path in the original automaton, where a
“jumping path” is one that can take arbitrary jumps to equivalent states. Jumping-safe
relations allows us to transform the sequence of prefixes of an accepting jumping path
into a coherent sequence of non-jumping paths; by Lemma 4, this induces a (nonjump-
ing) accepting path.
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Fix a word w = a0a1 · · · ∈ Σω, and let R be a binary relation overQ. An R-jumping
path is an infinite sequence

π = q0 R qF
0 R q̂0

a0−→ q1 R qF
1 R q̂1

a1−→ q2 · · · , (2)

and we say that π is initial if q0 ∈ I , and fair if qF
i ∈ F for infinitely many i’s.

Definition 2. A binary relation R is jumping-safe iff for any initial R-jumping path π
there exists an infinite sequence of initial finite paths π0, π1, . . . over suitable prefixes
of w s.t. last(πi) R qi and, if π is fair, then π0, π1, . . . is coherent.

Theorem 4. Jumping-safe preorders are good for quotienting.

In Section 5 we introduce refinement transformers, which are designed to preserve
jumping-safety. Then, in Section 6 we specialize the approach to backward direct sim-
ulation !di

bw [21], which provides an initial jumping-safe preorder, and which we intro-
duce next: !di

bw is the coarsest preorder s.t. q !di
bw s implies 1) ∀(q′ a−→ q) · ∃(s′ a−→

s) · q′ !di
bw s′, 2) q ∈ F =⇒ s ∈ F , and 3) q ∈ I =⇒ s ∈ I .

Fact 2. !di
bw is jumping-safe and computable in polynomial time.

5 Refinement Transformers

q0

q1 q2 q3

q4

a a
b

a b b

a

Fig. 2.

We study how to obtain GFQ preorders coarser
than forward/backward simulation. As a prelim-
inary example, notice that it is not possible to
generalize simultaneously both forward and back-
ward simulations. See the counterexample in
Fig. 2, where any relation coarser than both for-
ward and backward simulation is not GFQ. Let
≈di

bw and≈di
fw be backward and forward direct sim-

ulation equivalence, respectively. We have q1 ≈di
bw

q2 ≈di
fw q3, but “glueing together” q1, q2, q3 would

introduce the extraneous word baω. Therefore, one needs to choose whether to extend
either forward or backward simulation. The former approach has been pursued in the
mediated preorders of [1] (in the more general context of alternating automata). Here,
we extend backward refinements.

We define a refinement transformer τ0 mapping a relationR to a new, coarser relation
τ0(R). We present τ0 via a forward direct simulation-like game where Duplicator is
allowed to “jump” to R-bigger states—called proxies. Formally, in the τ0(R) simulation
game Spoiler’s positions are in Q×Q, Duplicator’s position are in Q×Q×Σ×Q and
transitions are as follows: Spoiler picks a transition (〈s, q〉, 〈s, q, a, q′〉) ∈ Γ0 simply
when q

a−→ q′, and Duplicator picks a transition (〈s, q, a, q′〉, 〈s′, q′〉) ∈ Γ1 iff there
exists a proxy ŝ s.t. s R ŝ and ŝ

a−→ s′. The winning condition is: ∀i ≥ 0 · qi ∈ F =⇒
ŝi ∈ F . If Duplicator wins starting from the initial position 〈s, q〉, we write s τ0(R) q.
(Notice that we swapped the usual order between q and s here.)
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Lemma 5. For a preorder R, R ⊆ R ◦ τ0(R) ⊆ τ0(R).

Unfortunately, τ0(R) is not necessarily a transitive relation. Therefore, it is not imme-
diately clear how to define a suitable equivalence for quotienting. Figure 2 shows that
taking the transitive closure of τ0(R) is incorrect—already when R is direct backward
simulation !di

bw: Let -= τ0(!di
bw) and let ≈=- ∩ -−1. We have q3 ≈ q2 ≈ q1 - q3,

but q3 	- q1, and forcing q1 ≈ q3 is incorrect, as noted earlier.
Thus, τ0(R) is not GFQ and we need to look at its transitive fragments. Let T ⊆

τ0(R). We say that R is F -respecting if q R s ∧ q ∈ F =⇒ s ∈ F , that T is self-
respecting if Duplicator wins by never leaving T , that T is appealing if transitive and
self-respecting, and that T improves on R if R ⊆ T .

Theorem 5. Let R a F -respecting preorder, and let T ⊆ τ0(R) be an appealing, im-
proving fragment of τ0(R). If R is jumping-safe, then T is jumping-safe.

In particular, by Theorem 4, T is GFQ. Notice that requiring that R is GFQ is not
sufficient here, and we need the stronger invariant given by jumping-safety.

Given an appealing fragment T ⊆ τ0(R), a natural question is whether τ0(T ) im-
proves on τ0(R), so that τ0 can be applied repeatedly to get bigger and bigger preorders.
We see in the next lemma that this is not the case.

Lemma 6. For any reflexive R, let T ⊆ τ0(R) be any appealing fragment of τ0(R).
Then, τ0(T ) ⊆ τ0(R).

Efficient appealing fragments. By Theorems 4 and 5, appealing fragments of τ0 are
GFQ. Yet, we have not specified any method for obtaining these. Ideally, one looks for
fragments having maximal cardinality (which yelds maximal reduction under quotient-
ing), but finding them is computationally expensive. Instead, we define a new trans-
former τ1 which is guaranteed to produce only appealing fragments,5 which, while not
maximal in general, are maximal amongst all improving fragments (Lemma 7).

The reason why τ0(R) is not transitive is that only Duplicator is allowed to make
“R-jumps”. This asymmetry is an obstacle to compose simulation games. We recover
transitivity by allowing Spoiler to jump as well, thus restoring the symmetry. For-
mally, the τ1(R) simulation game is identical to the one for τ0(R), the only differ-
ence being that also Spoiler is now allowed to “jump”, i.e., she can pick a transition
(〈s, q〉, 〈s, q, a, q′〉)∈Γ0 iff there exists q̂ s.t. q R q̂ and q̂

a−→ q′. The winning condi-
tion is: ∀i ≥ 0 · q̂i ∈ F =⇒ ŝi ∈ F . Let s τ1(R) q if Duplicator wins from position
〈s, q〉. It is immediate to see that τ1(R) is an appealing fragment of τ0(R), and that τ1
is improving on transitive relations R’s. Thus, for a preorder R, R ⊆ τ1(R) ⊆ τ0(R).
By Theorems 4 and 5, τ1(R) is GFQ (if R is F -respecting).

It turns out that τ1(R) is actually the maximal appealing, improving fragment of
τ0(R). This is non-obvious, since the class of appealing T ’s is not closed under union—
still, it admits a maximal element. Therefore, τ1 is an optimal solution to the problem
of finding appealing, improving fragments of τ0(R).

5 τ1 needs not be the only solution to this problem: Other ways of obtaining appealing fragments
of τ0 might exist. For this reason, we have given a separate treatment of τ0 in its generality,
together with the general correctness statement (Theorem 5).
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Lemma 7. For any R, let T ⊆ τ0(R) be any appealing fragment of τ0(R). If R ⊆ T
(i.e., R is improving), then T ⊆ τ1(R).

5.1 Delayed-Like Refinement Transformers

We show that the refinement transformer approach can yield relations even coarser than
τ1. Our first attempt is to generalize the direct-like winning condition of τ0 to a delayed
one. Let τde

0 be the same as τ0 except for the different winning condition, which now is:
∀i ≥ 0 · qi∈F =⇒ ∃j ≥ i · ŝj ∈F . Clearly, τde

0 inherits the same transitivity issues of
τ0. Unfortunately, the approach of taking appealing fragments is not sound here, due to
the weaker winning condition. See Figure 7 in [3] for a counterexample.

We overcome these issues by dropping τde
0 altogether, and directly generalize τ1

(instead of τ0) to a delayed-like notion. The delayed refinement transformer τde
1 is like

τ1, except for the new winning condition: ∀i ≥ 0· q̂i∈F =⇒∃j ≥ i· ŝj∈F . Notice that
τde
1 (R) is at least as coarse as τ1(R), and incomparable with τ0(R). Once R is given,
τ de
1 (R) can be computed in polynomial time. See Appendix D in the tech. rep. [3].

Lemma 8. For any R, τ de
1 (R) is transitive.

Theorem 6. If R is a jumping-safeF -respecting preorder, then τde
1 (R) is jumping-safe.

6 Proxy Simulations

We apply the theory of transformers from Section 5 to a specific F -respecting pre-
order, namely backward direct simulation, obtaining proxy simulations. Notice that
proxy simulation-equivalent states need not have the same language; yet, proxy sim-
ulations are GFQ (and computable in polynomial time).

6.1 Direct Proxy Simulation

Let direct proxy simulation, written !di
xy, be defined as !di

xy:= [τ1(!di
bw)]−1.

Theorem 7. !di
xy is a polynomial time GFQ preorder at least as coarse as (!di

bw)−1.

Proxies vs mediators. Direct proxy simulation and mediated preorder [1] are in general
incomparable. While proxy simulation is at least as coarse as backward direct simu-
lation, mediated preorder is at least as coarse as forward direct simulation. (We have
seen in Section 5 that this is somehow unavoidable, since one cannot hope to generalize
simultaneously both forward and backward simulation.)

One notable difference between the two notions is that proxies are “dynamic”, while
mediators are “static”: While Dupicator chooses the proxy only after Spoiler has se-
lected her move, mediators are chosen uniformly w.r.t. Spoiler’s move.

In Figure 3(a) we show a simple example where!di
xy achieves greater reduction. Re-

call that mediated preorder M is always a subset of !di
fw ◦(!di

bw)−1 [1]. In the example,
static mediators are just the trivial ones already present in forward simulation. Thus,
!di

fw ◦(!di
bw)−1 =!di

fw and mediated preorder M collapses to forward simulation. On the
other side, p ≈di

xy q and p′ ≈di
xy q′b. Letting s = [p, q] and s′ = [p′, q′b], we obtain the

quotient in Figure 3(b).
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p

p′

a

b, c

Σ

q

q′b q′c

a, b a, b, c

b c

p ≈di
bw q

p′ �di
bw q′b �di

bw q′c

{q′b, q′c} �di
fw p′

(a) Original automaton

s

s′ q′c

Σ

a, b a, b, c

b, c c

(b) Quotient automaton

Fig. 3. Direct proxy simulation quotients

6.2 Delayed Proxy Simulation

Another difference between the mediated preorder approach [1] and the approach
through proxies is that proxies directly enable a delayed simulation-like generaliza-
tion (see Section 5.1). Again, we fix backward delayed simulation !di

bw as a starting
refinement, and we define delayed proxy simulation as !de

xy:= [τ de
1 (!di

bw)]−1.

Theorem 8. !de
xy is a polynomial time GFQ preorder.

q0

qk-1

s

q1

q2

q3

...

b

a

a

aa

a

a, b

b

b
a
b

ab

ab
a

b

a

Fig. 4.

Notice that delayed proxy simulation is
at least as coarse as direct proxy simula-
tion. Moreover, quotients w.r.t. !de

xy can be
smaller than direct forward/backward/proxy
and delayed simulation quotients by an ar-
bitrary large factor. See Figure 4: Forward
delayed simulation is just the identity, and
no two states are direct backward or proxy
simulation equivalent. But qi !di

bw s for any
0 < i ≤ k − 1. This causes any two outer
states qi, qj to be !de

xy-equivalent. Therefore,
the !de

xy-quotient automaton has only 2 states.

7 Conclusions and Future Work

We have proposed novel refinements for quotienting Büchi automata: fixed-word de-
layed simulation and direct/delayed proxy simulation. Each one has been shown to
induce quotients smaller than previously known notions.

We outline a few directions for future work. First, we would like to study practical
algorithms for computing fixed-word delayed simulation, and to devise efficient frag-
ments thereof—one promising direction is to look at self-respecting fragments, which
usually have lower complexity. Second, we would like to exploit the general correctness
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argument developed in Section 4 in order to get efficient purely backward refinements
(coarser than backward direct simulation). Finally, experiments on cases of practical
interest are needed for an empirical evaluation of the proposed techniques.
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Abstract. For continuous-time Markov chains, the model-checking
problem with respect to continuous-time stochastic logic (CSL) has been
introduced and shown to be decidable by Aziz, Sanwal, Singhal and Bray-
ton in 1996. The presented decision procedure, however, has exponential
complexity. In this paper, we propose an effective approximation algo-
rithm for full CSL.

The key to our method is the notion of stratified CTMCs with respect
to the CSL property to be checked. We present a measure-preservation
theorem allowing us to reduce the problem to a transient analysis on
stratified CTMCs. The corresponding probability can then be approxi-
mated in polynomial time (using uniformization). This makes the present
work the centerpiece of a broadly applicable full CSL model checker.

Recently, the decision algorithm by Aziz et al. was shown to be in-
correct in general. In fact, it works only for stratified CTMCs. As an
additional contribution, our measure-preservation theorem can be used
to ensure the decidability for general CTMCs.

1 Introduction

Continuous-time Markov chains (CTMC) play an important role in performance
evaluation of networked, distributed, and recently biological systems. The con-
cept of formal verification for CTMCs was introduced by Aziz, Sanwal, Singhal
and Brayton in 1996 [1,2]. Their seminal paper defined continuous-time stochas-
tic logic (CSL) to specify properties over CTMCs. It showed that the model
checking problem for CTMCs, which asks whether the CTMC satisfies a given
CSL property, is decidable, using algebraic and transcendental number theory.

The characteristic construct of CSL is a probabilistic formula of the form
P<p(ϕ) where p ∈ [0, 1]. ϕ is a path formula; more concretely, it is a multiple
until formula f1 UI1 f2 UI2 . . . fk where k ≥ 2. The formula P<p(ϕ) expresses
a constraint on the probability to reach an fk-state by passing only through
(zero or more) f1-, f2-, . . . , fk−1-states in the given order. The key to solve
the model checking problem is to approximate this probability Prs(ϕ) exact
enough to decide whether it is < p. The decision procedure in [2] first decom-
poses the formula into (up to) exponentially many subformulas with suitable
timing constraints. For each subformula, it then exploits properties of algebraic
and transcendental numbers, but unfortunately lacks a practicable algorithm.
In 2000, Baier et al. [4] presented an approximate model checking algorithm for

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part II, LNCS 6756, pp. 271–282, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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the case k = 2. This algorithm is based on transient probability analysis for
CTMCs. More precisely, it was shown that Prs(ϕ) can be approximated, up to
a priori given precision ε, by a sum of transient probabilities in the CTMCs.
Their algorithm then led to further development of approximation algorithms
for infinite CTMCs and abstraction techniques. More importantly, several tools
support approximate model checking, including PRISM [9], MRMC [11].

Approximate and effective model checking of full CSL with multiple until
formulae (k > 2) is an open problem. This problem is gaining importance e. g.
in the field of system biology, where one is interested in oscillatory behavior of
CTMCs [5,13]. More precisely, if one intends to quantify the probability mass
oscillating between high, medium and low concentrations (or numbers) of some
species, a formula like high UI1 medium UI2 low UI3 medium UI4 high is needed,
but this is not at hand with the current state of the art.

In this paper we propose an approximate algorithm for checking CSL with
multiple until formulae. We introduce a subclass of stratified CTMCs, on which
the approximation of Prs(ϕ) can be obtained by efficient transient analysis.
Briefly, a CTMC is stratified with respect to ϕ = f1 UI1 f2 UI2 . . . fk, if the
transitions of the CTMC respect some order given by the fi. This specific order
makes it possible to express Prs(ϕ) recursively: more precisely, it is the product
of a transient vector and Prs′(ϕ′), where ϕ′ is a subformula of ϕ. Stratified
CTMCs are the key element for our analysis: In a stratified CTMC, the problem
reduces to a transient analysis. We extend the well-known result [4] for the case
of binary until. Efficient implementations using uniformization [8] exist.

For a general CTMC, we present a measure-preserving transformation to a
stratified CTMC. Our reduction is described using a deterministic finite au-
tomaton (DFA) over the alphabet 2{f1,...,fk}. The DFA accepts the finite word
w = w1w2 . . . wn if and only if the corresponding set of time-abstract paths in
the CTMC contributes to Prs(ϕ), i. e., it respects the order of the fi. The trans-
formation does not require to construct the full DFA, but only the product of
the CTMC and the DFA. We show that the product is a stratified CTMC, and
moreover, the measure Prs(ϕ) is preserved. This product can be constructed in
linear time and space. Thus our method will be useful as the centerpiece of a
full CSL model checker equipped with multiple until formulae.

Recently, the decision algorithm by Aziz et al. was shown to produce erro-
neous results on some non-stratified CTMCs [10]. Still, their algorithm is correct
on stratified CTMCs. As an additional contribution, our measure-preservation
theorem ensures the decidability of CSL model checking for general CTMCs.

Full proofs are given in [16].

Overview of the article. Section 2 sets the ground for the paper. In Sect. 3 we
introduce stratified CTMCs formally. The first main result is shown in Sect. 4:
it constructs a DFA for an until formula, and then shows that the product is a
stratified CTMC and the relevant measures are preserved. Section 5 discusses the
computations in the product CTMC. A model checking algorithm is presented in
Sect. 6. Section 7 discusses related work, and the paper is concluded in Sect. 8.
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2 Preliminaries

2.1 Markov Chains

Definition 1. A labeled discrete-time Markov chain (DTMC) is a tuple D =
(S,P, L) where S is a finite set of states, P : S × S → [0, 1] is a probability
matrix satisfying

∑
s′∈S P(s, s′) ∈ {0, 1} for all s ∈ S, and L : S → 2AP is a

labeling function.
A labeled continuous-time Markov chain (CTMC) is a tuple C = (S,R, L)

where S and L are defined as for DTMCs, and R : S × S → R≥0 is a rate
matrix.

For A ⊆ S, define R(s,A) :=
∑

s′∈A R(s, s′), and let E(s) := R(s, S) denote
the exit rate of s. A state s is called absorbing if E(s) = 0. If R(s, s′) > 0, we
say that there is a transition from s to s′.

The transition probabilities in a CTMC are exponentially distributed over
time. If s is the current state of the CTMC, the probability that some transition
will be triggered within time t is 1 − e−E(s)t. Furthermore, if R(s, s′) > 0 for
more than one state s′, the probability to take a particular transition to s′ is
R(s,s′)

E(s) · (1− e−E(s)t
)
. The labeling function L assigns to each state s a set of

atomic propositions L(s) ⊆ AP which are valid in s.
A CTMC C = (S,R, L) (and also a DTMC) is usually equipped with an

initial state sinit ∈ S or, more generally, an initial distribution αinit : S → [0, 1]
satisfying

∑
s∈S αinit(s) = 1.

Transient probability. Starting with distribution α, the transient probability vec-
tor at time t, denoted by π(α, t), is the probability distribution over states at
time t. If t = 0, we have π(α, 0)(s′) = α(s′). For t > 0, the transient probabil-
ity [14] is given by: π(α, t) = π(α, 0)eQt where Q := R−Diag(E) is the generator
matrix and Diag(E) denotes the diagonal matrix with Diag(E)(s, s) = E(s).

Paths and probabilistic measures. A (timed) infinite path is an infinite sequence
σ = s0t0s1t1 . . . satisfying R(si, si+1) > 0, and ti ∈ R>0 for all i ≥ 0. For i ∈ N,
let σS [i] = si denote the (i + 1)-th state, and σT [i] = ti denote the time spent
in si. For t ∈ R≥0, let σ@t denote1 the state si such that i is the smallest index
with t <

∑i
j=0 tj . A (timed) finite path is a finite sequence σ = s0t0s1t1 . . . sn

satisfying R(si, si+1) > 0 for all 0 ≤ i < n, and sn is absorbing. For finite paths,
the notations σS [i] and σT [i] are defined for i ≤ n, and σT [n] is defined to be ∞;
otherwise, they are defined as above. Let PathC denote the set of all (finite and
infinite) paths, and PathC(s) denote the subset of those paths starting from s.

Let s0, s1, . . . , sk be states in S with R(si, si+1) > 0 for all 0 ≤ i < k.
Moreover, let I0, I1, . . . , Ik−1 be nonempty intervals in R≥0. The cylinder set
Cyl(s0, I0, s1, I1, . . . , sk−1, Ik−1, sk) is defined by:

{σ ∈ PathC | ∀0 ≤ i ≤ k. σS [i] = si ∧ ∀0 ≤ i < k. σT [i] ∈ Ii}
1 In [4], σ@t is defined by requiring t ≤ ∑i

j=0 tj . However, the algorithm presented
there follows our definition. The difference is discussed in [16].
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Let F(PathC) denote the smallest σ-algebra on PathC containing all cylinder sets.
For initial distribution α : S → [0, 1], a probability measure (denoted PrCα) on
this σ-algebra is introduced as follows: PrCα is the unique measure that satisfies:
PrCα(Cyl(s)) equals α(s), and for k > 0,

PrCα(Cyl(s0, I0, . . . , Ik−1, sk)) = PrCα(Cyl(s0, I0, . . . , sk−1)) · R(sk−1,sk)
E(sk−1) · η(Ik−1)

where η(Ik−1) := exp(−E(sk−1) inf Ik−1)− exp(−E(sk−1) sup Ik−1) is the prob-
ability to take a transition during time interval Ik−1. If α(s) = 1 for some state
s ∈ S, we sometimes simply write PrCs instead of PrCα. We omit the superscript
C if it is clear from the context.

2.2 Deterministic Finite Automata

Definition 2. A deterministic finite automaton is a tuple B = (Σ,Q, qin, δ, F )
where Σ is a nonempty finite alphabet, Q is a finite set of states, qin ∈ Q is the
initial state, δ : Q×Σ �→ Q is the partial transition function, and F ⊆ Q is the
set of final states.

We call a finite sequence w = w1w2 . . . wn over Σ a word over Σ. w induces at
most one path σ(w) = q0q1 . . . qn in B where q0 = qin and qi = δ(qi−1, wi) for
i = 1, . . . , n. This word w, and also the corresponding path σ(w), is accepting if
σ(w) exists and qn ∈ F .

2.3 Continuous Stochastic Logic (CSL)

This section presents the branching-time temporal logic which allows us to spec-
ify properties over CTMCs. We consider the logic Continuous Stochastic Logic
(CSL) introduced by Aziz et al. [2].

Let I1, I2, . . . be non-empty intervals on R≥0. Let � ∈ {<,≤,≥, >}, 0 ≤ p ≤ 1,
and k ≥ 2. The syntax of the logic CSL is defined as follows:

Φ := true | a | ¬Φ | Φ ∧ Φ | P�p(ϕ)
ϕ := Φ1 UI1 Φ2 UI2 . . . Φk

where a ∈ AP is an atomic proposition. We use the abbreviation �IΦ = true UI

Φ. The syntax of CSL consists of state formulae and path formulae: we use
Φ,Φ1, Ψ, Ψ1, . . . for state formulae and ϕ,ϕ1, ψ, ψ1, . . . for path formulae.

Let C = (S,R, L) be a CTMC with s ∈ S. The semantics of CSL state
formulae is standard: s |= true for all s ∈ S, s |= a iff a ∈ L(s), s |= ¬Φ iff
s 	|= Φ, s |= Φ ∧ Ψ iff s |= Φ and s |= Ψ . For probabilistic formulae, we have:

s |= P�p(ϕ) iff Prs{σ ∈ Path | σ |= ϕ} � p

where Prs{σ ∈ Path | σ |= ϕ}, or Prs(ϕ) for short, denotes the probability
measure of the set of all paths which start with s and satisfy ϕ.
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The satisfaction relation for CSL path formulae is defined as follows: Let σ be
a path, and let ϕ = Φ1 UI1 Φ2 UI2 . . . Φk be a path formula. Then, σ |= ϕ if and
only if there exist real numbers 0 ≤ t1 ≤ t2 ≤ . . . ≤ tk−1 such that σ@tk−1 |= Φk,
and for each integer 0 < i < k we have (ti ∈ Ii) ∧ (∀t′ ∈ [ti−1, ti))(σ@t′ |= Φi),
where t0 is defined to be 0 for notational convenience.

Let ϕ = Φ1 UI1 Φ2 UI2 . . . Φk be a CSL path formula with ai = inf Ii and
bi = sup Ii (which can be ∞). We say that ϕ is well-formed if Ii is not empty
(for all i) and a1 ≤ a2 ≤ . . . ak−1 and b1 ≤ b2 ≤ . . . bk−1. Obviously, if some Ii

is empty, ϕ is false. If ai < ai−1 or bi > bi+1, replace ai by max{a1, . . . , ai} and
bi by min{bi, . . . , bk−1} to get an equivalent well-formed formula. Therefore, we
can assume w. l. o. g. that path formulae are well-formed.

3 Stratified CTMCs

The main challenge of model checking is the approximation of the probability
Prs(ϕ). We now introduce the class of stratified CTMCs with respect to a path
formula ϕ containing only atomic propositions as subformulas. Stratification is
the key for the computation of Prs(ϕ). Later, we shall see that the definition is
easily generalized to formulas containing more complex subformulas.

Let C = (S,R, L) be a CTMC. Let ϕ = f1 UI1 f2 UI2 . . . fk be a CSL path
formula, with F := {f1, f2, . . . , fk} the set of atomic propositions appearing in
ϕ. Moreover, we let ! be an order on F such that fi ! fj iff i ≤ j. For a
state s, if the set {1 ≤ i ≤ k | fi ∈ L(s)} is not empty, we let fs

min := fj with
j = min{1 ≤ i ≤ k | fi ∈ L(s)}. If such fj does not exist, we define fs

min := ⊥.

Definition 3 (Stratified CTMC). We say that C is stratified with respect to
ϕ iff for all s1, s2, it holds that:

– If fs1
min = ⊥ or fs1

min = fk, then R(s1, s2) = 0,
– Otherwise (i. e., fs1

min 	= ⊥ and fs1
min 	= fk), if R(s1, s2) > 0 and fs2

min 	= ⊥,
then fs1

min ! fs2
min.

A state s with fs
min = ⊥ is referred to as bad state, and with fs

min = fk as
good state. (Note that there may be other states satisfying fk as well.) Both
good and bad states are absorbing. The intuition behind Def. 3 is that paths
reaching bad states will not satisfy ϕ, while those reaching good states (or other

s0

s1 s2

s3 s4

2
1

1

1 2 1

2
f1, f4

f1, f2, f4 f4

f3 f5

Fig. 1. A non-stratified CTMC

fk-states) may satisfy ϕ (provided the time con-
straints are also satisfied).

Example 1. Consider the CTMC in Fig. 1 and
ϕ := f1 U[0,2] f2 U[2,4] f3 U[2,4] f4 U[3,5] f5.
C is not stratified with respect to ϕ: we have
R(s2, s1) > 0, however, fs2

min = f4 	! f1 = fs1
min.

Deleting this edge and the transition out of s4

would result in a stratified CTMC with respect
to ϕ. 
�
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3.1 Usefulness of Stratification

We have introduced the notion of stratified CMTCs, which is the key to present
an efficient approximation algorithm. The essential idea is that we can reduce
the problem to a similar one on stratified CTMCs: details shall be presented
later.

It is very interesting to note that our notion of stratified CTMCs solves a
semantical problem, which we recently pointed out in [10]. Very briefly, Aziz
et al. [2] gave an algorithm that did not use the ti (in the semantics of until
formulae) explicitly, which led to wrong results for non-stratified CTMCs. In
Example 1, their algorithm treated paths containing s2 → s1 → s3 (with suitable
timing) as satisfying the formula ϕ. On the other hand, it treated correct paths
that leave s4 before time 5 as not satisfying ϕ.

4 Product CTMC

Given a CTMC and a CSL path formula ϕ, in this section we construct a strat-
ified CTMC with respect to ϕ that has the same probabilities of satisfying ϕ.
We first construct a deterministic finite automaton for ϕ in Subsect. 4.1. Then,
in Subsect. 4.2 we build a product CTMC with the desired property.

4.1 Automaton for a CSL Formula

For a formula ϕ = f1 UI1 f2 UI2 . . . fk, we first construct a simple deterministic
finite automaton that describes the required order of f1-, f2-, . . . , fk-states.

Definition 4 (Formula automaton). Let ϕ = f1 UI1 f2 UI2 . . . fk be a CSL
path formula. Then, the formula automaton Bϕ = (Σ,Q, qin, δ, F ) is defined by:
Σ = 2{f1,...,fk}, Q = {q1, q2, . . . , qk−1, qk,⊥} with qin = q1 and F = {q1, . . . , qk}.
For a ∈ Σ, the transition relation δ is defined as follows:

1. δ(qi, a) = qj if i < k, i ≤ j ≤ k, fi, fi+1 . . . fj−1 	∈ a, fj ∈ a;
2. δ(qi, a) = ⊥ if i < k and the above clause does not apply;
3. ⊥ and qk are absorbing.

The words accepted by Bϕ are finite traces w ∈ Σ∗, such that they can be
extended to a trace ww′ ∈ Σω that satisfies the time-abstract (LTL) formula of
the form f1 U (f2 U (. . . (fk−1 U fk) . . .)).

We mention that in the automaton-based LTL model checking algorithm [15],
the size of a nondeterministic Büchi automaton is exponential in the size of
the formula, and determinisation requires another exponentiation [12]. The con-
structed finite automaton Bϕ for this special class of formulae is deterministic,
the number of states is linear in k. The number of transitions is (k− 1)2k; how-
ever, as we will see later, the product can be constructed in time (and size) linear
in the size of the CTMC and in k.
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q1 q2

⊥

q3

q4

¬f1∧f2

¬(f1∨f2)∧f3

¬(f1∨f2∨f3)∧f4

¬(f1∨f2∨f3∨f4)

¬f2∧f3

¬(f2∨f3)∧f4

¬(f2∨f3∨f4)

¬f3∧f4

¬(f3∨f4)

f1 f2

f3

Fig. 2. Bϕ for ϕ = f1 U f2 U f3 U f4

Example 2. In Fig. 2 the
formula automaton for k =
4 is illustrated. The initial
state is q1, final states are
marked with a double cir-
cle. The transition labels in-
dicate which subsets of AP
are acceptable. For exam-
ple, we have δ(q1, {f1}) =
δ(q1, {f1, f2}) = q1, as both
sets |= f1. 
�

4.2 Product CTMC

Below we define the product
CTMC of C and the formula
automaton Bϕ:

Definition 5 (Product CTMC). Let C = (S,R, L) be a CTMC, and ϕ =
f1 UI1 f2 UI2 . . . fk a CSL formula. Let Bϕ be as constructed above. The product
C × Bϕ is a CTMC (S′,R′, L′) where:

1. S′ = S ×Q,
2. R′((s, qi), (s′, q′)) equals R(s, s′) if s |=C

∨k−1
j=i fj and q′ = δ(qi, L(s′)), and

equals 0 otherwise,
3. the labeling function is defined by:

– L′(s, qi) = L(s) \ {f1, f2, . . . , fi−1} for 1 ≤ i ≤ k,
– L′(s,⊥) = ∅.

4. Given an initial distribution α : S → [0, 1] of C, the initial distribution of
the product α′ : S × Q → [0, 1] is defined by: α′(s, q) equals α(s) if q =
δ(qin, L(s)), and equals 0 otherwise.

The product CTMC contains two kinds of absorbing states. In general, states
(s, q) with s 	|= ∨k

i=1 fi are absorbing in the product, as well as states whose
propositions do not fit the current phase. These two kinds of states can be
considered bad states. On the other hand, good states of the form (s, qk) are
also absorbing. The behavior after absorbing states is irrelevant for determining
the probability to satisfy ϕ.

Example 3. Consider the CTMC in Fig. 1, and consider the path formula ϕ1 :=
f1 U[0,2) f2 U[0,2) f3 U[0,2) f4 U[0,2) f5. The path σ1 := s0s1s3s2s4 does, if s4

is reached before time 2, satisfy ϕ1; however, the path σ2 := s0s1s2s1s3s2s4

does not. Therefore, Prs0(ϕ1) cannot be computed by standard probabilistic
reachability analysis. The product of this CTMC with Bϕ1 is the CTMC depicted
on the left of Fig. 3. State (s4, q5) is a good state – paths reaching this state before
time 2 correspond to paths satisfying ϕ1 in Fig. 1 –, while (s3,⊥) is a bad state.

For the same CTMC in Fig. 1, consider the path formula ϕ2 := f1 U[1,3)

f2 U[1,3) f3 U[1,3) f4. The product CTMC C × Bϕ2 is depicted on the right of
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s0q1

s1q1 s2q4

s3q3 s4q5

s1q4

s3⊥

2

1
1

1

1 2
1 1

f1, f4

f1, f2, f4 f4

f3 f5

f4

s0q1

s1q1 s2q4

s3q3

2

1

1 2

f1, f4

f1, f2, f4 f4

f3

Fig. 3. The reachable part of the product CTMC C × Bϕ1 (left) and C × Bϕ2 (right)

Fig. 3. It is easy to check that the product CTMC is stratified with respect to
ϕ2. The absorbing state (s2, q4) is a good state. 
�

For a CTMC C and a state s, we use C|s = (S′,R′, L′) to denote the sub-
CTMC reachable from s, i.e., S′ ⊆ S is the states reachable from s, R′ and L′

are functions restricted to S′ × S′ and S′, respectively.

Theorem 1 (Measure-preservation theorem). Let C = (S,R, L) be a
CTMC, and ϕ = f1 UI1 f2 UI2 . . . fk a CSL path formula. Let Bϕ denote the
formula automaton. For s ∈ S, let sB = δ(qin , L(s)). Then, it holds:

1. C × Bϕ|sB is stratified with respect to ϕ;
2. PrCs (ϕ) = PrC×Bϕ|sB

sB
(ϕ) = PrC×Bϕ

sB
(ϕ).

Size of the Product CTMC. The number of states is linear in k, and the number
of transitions in Bϕ is exponential in k. It is interesting to notice, however, that
the size of the product is only inO(mk). To see this, first note that the number of
states in the product is nk, where n denotes the number of states of the CTMC.
Since the DFA is deterministic, for each state (s, q), the outgoing transitions
exactly correspond to the outgoing transitions from s, implying that the total
number of transitions is in O(mk).

5 Computing Prα(ϕ)

This section aims at computing the probability Prα(ϕ) starting from an arbitrary
initial distribution α. We fix a CSL path formula ϕ = f1 UI1 f2 UI2 . . . fk,
together with a stratified CTMC C = (S,R, L) with respect to ϕ. We first prove
a technical lemma.

Lemma 2 (Closure of Intervals). Let s ∈ S. Assume given two intervals I,
J such that inf I = inf J and sup I = supJ . Then, it holds:

1. If 0 ∈ I ⇔ 0 ∈ J , then s |= P�p(Φ UI Ψ) iff s |= P�p(Φ UJ Ψ), for
� ∈ {<,≤,≥, >}.

2. Otherwise, assume w. l. o. g. 0 ∈ I and 0 	∈ J . Then, s |= P�p(Φ UI Ψ) ∧ Φ
iff s |= P�p(Φ UJ Ψ), for � ∈ {≥, >}. Similarly, s |= P�p(Φ UI Ψ) ∨ ¬Φ iff
s |= P�p(Φ UJ Ψ), for � ∈ {<,≤}.
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s0 s1
2 2

f1 f3

Fig. 4. Does f2 U(0,1] f1 hold?

The lemma follows immediately from the def-
inition of the measure of cylinder set. To see
why we have to treat the case inf I = 0 sep-
arately (not distinguished in [4]), assume that
ϕ = f2 U(0,1] f1 and consider the CTMC de-
picted in Fig. 4: obviously we have s0 |= P≤0(ϕ)
as s0 	|= f2. However, s0 |= P≥1(f2 U[0,1] f1) as s0 satisfies f1 directly. In this
case, the first formula is equivalent to P≤0(f2 U[0,1) f1)∨¬f2. This lemma allows
us to use left-closed intervals [a, b) only in the remainder of the article.

For an interval I and x with x < sup I, we let I / x denote the set {t − x |
t ∈ I ∧ t ≥ x}. For example we have [3, 8) / 5 = [0, 3). Then, for ϕ = f1 UI1

f2 UI2 . . . fk and x < sup I1, we let ϕ/ x denote the formula f1 UI1�x f2 UI2�x

. . . fk. For 1 ≤ j′ ≤ j ≤ k, define fj′...j :=
∨j

i=j′ fi; for 1 ≤ j < k, define
ϕj := fj UIj fj+1 UIj+1 . . . fk. For Φ, we denote by C[Φ] the CTMC obtained by
C by making states satisfying Φ absorbing. Moreover, let IΦ denote the indicator
matrix defined by: IΦ(s, s) = 1 if s |= Φ, and IΦ(s, s′) = 0 otherwise.

Theorem 3. Let ϕ = f1 UI1 f2 UI2 . . . fk be a CSL path formula, and assume
all Ii = [ai, bi) are left-closed. Let C = (S,R, L) be a stratified CTMC with
respect to ϕ. We write the vector (PrCs (ψ))s∈S as PrC(·)(ψ).

1. Assume 0 < a1. Then,

PrCα(ϕ) = πC[¬f1](α, a1) · If1 · PrC(·)(ϕ/ a1) (1)

2. Assume 0 = a1 = . . . = aj−1 < aj < b1 for some j ∈ {2, . . . , k − 1}. Then,

PrCα(ϕ) = πC[¬f1...j ](α, aj) · If1...j · PrC(·)(ϕ/ aj) (2)

3. To simplify notation, let ak := ∞ and PrC[¬fk...k−1]

(·) (ϕk / b1) := (1, . . . , 1)T.
Assume 0 = a1 = . . . = aj−1 < b1 ≤ aj for some j ∈ {2, . . . , k}. Let j′ ≤ j
be the largest integer such that b1 = . . . = bj′−1. Then,

PrCα(ϕ) = πC[¬f1...j ](α, b1) · Ifj′...j
· Pr

C[¬fj′...k−1]

(·) (ϕj′ / b1) (3)

If b1 = ∞, we replace πC[¬f1...j ](α, b1) in this equation by the obvious limit.

6 Model Checking Algorithm

Let C = (S,R, L) be an CTMC with s ∈ S, and Φ be a CSL formula. The model
checking problem is to check whether s |= Φ. The standard algorithm to solve
CTL-like model checking problems recursively computes the sets Sat(Ψ) for all
state subformulae Ψ of Φ. For CSL, the cases where Ψ is an atomic proposition, a
negation or a conjunction are given by: Sat(a) = {s ∈ S | a ∈ L(s)}, Sat(¬Ψ1) =
S\Sat(Ψ1) and Sat(Ψ1 ∧ Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2).

The case that Ψ is the probabilistic operator is the challenging part. Let Ψ =
P�p(ϕ) with ϕ = Ψ1 UI1 Ψ2 UI2 . . . Ψk. By the semantics, checking Ψ is equivalent
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to check whether Prs(ϕ) meets the bound � p, i. e., whether Prs(ϕ) � p. Assume
that the sets Sat(Ψi) have been calculated recursively. We replace Ψ1, . . . , Ψk by
fresh atomic propositions f1, . . . , fk and extend the label of state s by fi if
s ∈ Sat(Ψi). The so obtained path formula is ψ := f1 UI1 f2 UI2 . . . fk, and
obviously we have Prs(ϕ) = Prs(ψ).

The steps needed to approximate Prs(ψ) are: (i) Construct the formula au-
tomaton Bψ. (ii) Build the product C × Bψ, which by Thm. 1 is a stratified
CTMC with respect to ψ. (iii) Apply Thm. 3 repeatedly to compute Prs(ψ).
Fortunately, it is possible to combine steps (i) and (ii) and construct the prod-
uct immediately, without having to construct the full automaton Bψ, because
we use the product construction only for very specific automata.

Lemma 4 (Complexity). Let m denote the number of transitions of C and
λ ∈ R>0 the uniformization rate satisfying λ = maxs∈S(E(s)−R(s, s)). For each
formula ϕ = f1 UI1 f2 UI2 . . . fk, the probability PrC×Bϕ

sB
(ϕ) can be approximated:

– in time in O(mλb · k) if b = sup Ik−1 is finite,
– in time in O(mλb ·k+(|S|k)3) if sup Ik−1 is infinite, where |S| is the number

of states in C and b = max ({inf Ik−1} ∪ {sup Ii|1 ≤ i < k} \ {∞}).
The space complexity is in O(mk).

Thus, with the notion of stratified CTMC, we achieve polynomial complexity.
Our algorithm therefore improves the work of [2], where only multiple until
formulae with suitable timing constraints can be checked polynomially. In the
worst case, [2] has to decompose a CSL formula into O(kk) formulae with suit-
able timing, thus resulting in an overall time complexity of O(mλb · kk+1) or
O((mλbk + (|S|k)3) · kk), respectively.

7 Related Work

The logic CSL was first proposed in [1], in which it is shown to be decidable. Our
paper gives a practical solution: it shows that it can be approximated efficiently.
For the case of single until path formula, Baier et al. [4] have presented an
approximate algorithm for the model checking problem. Their method can be
considered a special case of our approach.

Baier et al. [3] defined a logic asCSL that uses so-called programs as path
formulas, i. e. regular expressions over state formulas and actions. Programs can
express nested until formulas of the form ϕ1 U[0,b) ϕ2 U[0,b) · · · U[0,b) ϕk because
asCSL cannot restrict the duration of individual program phases. The model
checking algorithm translates the program to an automaton almost equal to the
one in Fig. 2. Our work generalizes the method to nested until formulas with
multiple time bounds.

More recently, Donatelli et al. [7] have extended CSL such that path properties
can be expressed via a deterministic timed automata (DTA) with a single clock.
Chen et al. [6] take this trajectory further and consider DTA specifications with
multiple clocks as well.
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In principle, one can translate a nested until formula to a DTA with a single
clock. Its basic structure would look like similar to Fig. 2, but Donatelli’s and
Chen’s DTAs also include all timing information and would have a size in O(k2).
To check whether a CTMC satisfies a DTA specification, they build the product
of the two, apply the region construction, and then solve a system of integral
equations. Chen’s method, applied directly to our specifications, would amount
to a complexity in O(k4|S|λc+k9|S|3), where c is the largest difference between
time constraints (roughly comparable to b in Lemma 4). Note that our algorithm
has only a complexity in O(mλbk) if b = sup Ik−1 < ∞ or O(mλbk + (|S|k)3)
otherwise.

8 Conclusion

In this paper we have proposed an effective approximation algorithm for CSL
with a multiple until operator. We believe that it is the centerpiece of a broadly
applicable full CSL model checker.

The technique we have developed in this paper can also be applied to a sub-
class of PCTL∗ formulae. Let ϕ = f1 UI2 f2 UI2 . . . fk be a CSL path for-
mula. As we have seen in the paper, in case of I = [0,∞), our multiple un-
til formula f1 UI f2 UI . . . fk corresponds to the LTL formula f1 U (f2 U
(. . . (fk−1 U fk) . . .)). In general, ϕ is similar to a step-bounded LTL formula
ϕ = f1 U[i1,j1] f2 U[i2,j2] . . . fk with i1, j1, . . . integers specifying the step bounds.
In the automaton-based model checking approach for DTMCs [15], such step-
bounded until LTL formulae can be first transformed into nested next-state for-
mulae, for example we have: f1 U[2,3] f2 = f1 ∧X(f1 ∧X(f2 ∨ (f1 ∧X(f2)))).

Obviously, the length of the induced LTL formula is at least jk−1, and a deter-
ministic Büchi automaton is again double exponential in jk−1, thus renders the
automaton-based approach unattractive. The approach we have established in
this paper can be adapted slightly to handle this kind of formulae in complexity
linear in jk−1 (assuming jk−1 <∞).

We conclude the paper by noting the connection of our DFA-based approach
with the classical Büchi-automaton-based LTL model checking algorithm by
Vardi and Wolper [15]. Büchi automata are shown to have exactly the same ex-
pressive power as LTL formula, and can be constructed in exponential time with
respect to the length of the LTL formula. Then, model checking LTL can be re-
duced to automata-theoretic questions in the product. Instead of Büchi automata
accepting infinite runs, we only need DFAs, which is due to the simple form of the
multiple until formula, which does not encompass full LTL expressivity. This sim-
plification, moreover, allows us to get a DFA whose number of states is only linear
in the length of the CSL formula, and the size of the product automaton is then
linear in both the size of the CTMC and the length of the CSL formula.

Acknowledgement. Lijun Zhang and Flemming Nielson are partially sup-
ported by MT-LAB, a VKR Centre of Excellence. David N. Jansen and Holger
Hermanns are partially supported by DFG/NWO Bilateral Research Programme
ROCKS and by the European Community’s Seventh Framework Programme un-
der grant agreement no. ICT-214755 (QUASIMODO).



282 L. Zhang et al.

References

1. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continuous time Markov
chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–
276. Springer, Heidelberg (1996)

2. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continous-time
Markov chains. ACM Trans. Comput. Log. 1(1), 162–170 (2000)

3. Baier, C., Cloth, L., Haverkort, B.R., Kuntz, M., Siegle, M.: Model checking
Markov chains with actions and state labels. IEEE Trans. Softw. Eng. 33(4), 209–
224 (2007)

4. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms
for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)

5. Ballarini, P., Mardare, R., Mura, I.: Analysing biochemical oscillation through
probabilistic model checking. Electr. Notes Theor. Comp. Sc. 229(1), 3–19 (2009)

6. Chen, T., Han, T., Katoen, J.P., Mereacre, A.: Quantitative model checking of
continuous-time Markov chains against timed automata specifications. In: Twenty-
fourth Annual IEEE Symposium on Logic in Computer Science, pp. 309–318. IEEE
Comp. Soc., Los Alamitos (2009)

7. Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic prop-
erties with CSLTA. IEEE Trans. Software Eng. 35(2), 224–240 (2009)

8. Grassmann, W.K.: Finding transient solutions in Markovian event systems through
randomization. In: Stewart, W.J. (ed.) Numerical Solution of Markov Chains. Prob-
ability, Pure and Applied, vol. 8, pp. 357–371. Marcel Dekker, New York (1991)

9. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: a tool for automatic
verification of probabilistic systems. In: Hermanns, H. (ed.) TACAS 2006. LNCS,
vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

10. Jansen, D.N.: Erratum to: Model-checking continuous-time Markov chains by Aziz
et al. (February 2011), http://arxiv.org/abs/1102.2079v1

11. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and
outs of the probabilistic model checker MRMC. Performance Evaluation 68(2),
90–104 (2011)

12. Safra, S.: On the complexity of ω-automata. In: 29th Ann. Symp. on Foundations
of Computer Science, pp. 319–327. IEEE Comp. Soc., Los Alamitos (1988)

13. Spieler, D.: Model checking of oscillatory and noisy periodic behavior in Marko-
vian population models. Master’s thesis, Saarland University, Saarbrücken (2009),
http://alma.cs.uni-sb.de/data/david/mt.pdf

14. Stewart, W.J.: Introduction to the numerical solution of Markov chains. Princeton
Univ. Pr., Princeton (1994)

15. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Symposium on Logic in Computer Science, pp. 332–345. IEEE
Comp. Soc., Los Alamitos (1986)

16. Zhang, L., Jansen, D.N., Nielson, F., Hermanns, H.: Automata-based CSL model
checking (April 2011), http://arxiv.org/abs/1104.4983

http://arxiv.org/abs/1102.2079v1
http://alma.cs.uni-sb.de/data/david/mt.pdf
http://arxiv.org/abs/1104.4983


A Progress Measure for

Explicit-State Probabilistic Model-Checkers�
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Abstract. Verification of the source code of a probabilistic system by
means of an explicit-state model-checker is challenging. In most cases,
the probabilistic model-checker will run out of memory due to the in-
famous state space explosion problem. As far as we know, we are the
first to introduce the notion of a progress measure for such a model-
checker. The progress measure returns a number in the interval [0, 1].
This number captures the amount of progress the model-checker has
made towards verifying a particular linear-time property. The larger the
number, the more progress the model-checker has made. We prove that
the progress measure provides a lower bound of the measure of the set
of execution paths that satisfy the property. We also show how to com-
pute the progress measure for checking a particular class of linear-time
properties, namely invariants.

Keywords: probabilistic model-checking, progress measure, linear-time
property, invariant.

1 Introduction

Model-checkers such as PRISM [5] and MRMC [3] have been successfully ex-
ploited to check properties of probabilistic systems. Such verification tools con-
sider a model of the system, rather than the actual source code of the system. A
model is usually simpler than the source code and, hence, the model is generally
easier to verify. However, the model abstracts from certain details and those de-
tails are not considered in the verification effort and, hence, violations of certain
properties might not be detected. But such violations might well be detected by
model-checkers that consider the source code of the system.

Whereas a tool that checks properties of a model is usually exploited to find
errors in algorithms, a tool that considers the source code is generally used to
detect coding errors. Hence, both types of tool play their role in the verification
process. In this paper, we consider the applicability of model-checkers to verify
the source code of probabilistic systems. In particular, we focus on explicit-state
model-checkers, that is, model-checkers in which the states of the systems are
represented explicitly.
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One may wonder if an explicit-state model-checker, such as Java PathFinder
(JPF for short) [9], is suitable for verifying the source code of probabilistic
systems. Consider the following Java snippet.

Random random = new Random();
long value = 0;
while (random.nextBoolean())

value++;

The variable value is initialized to zero and is incremented as long as the ran-
dom Boolean value returned by the method invocation random.nextBoolean()
returns true. The above snippet gives rise to a huge number of different states:
more than 264. Hence, it will come as no surprise that a model-checker such as
JPF will run out of memory when verifying the above very simple code snippet.
However, after visiting only 28 states we have already covered an important part
of the state space.

Since explicit-state model-checkers generally cannot fully verify the source
code of most probabilistic systems, it would be interesting to extend such a
model-checker such that it keeps track of the amount of progress it has made
with its verification effort. This type of information is much more valuable than
a message such as “out of memory.”

Simply counting the number of (states or) execution paths that have been
checked is not very useful for several reasons. First of all, it may be very difficult
or even impossible to determine the total number of potential execution paths.
Hence, the number of execution paths that have been checked by the model-
checker gives us very limited information about the amount of progress that has
been made towards verifying the system. Secondly, some execution paths are
more likely to happen than others. For example, the nonterminating execution
path of the above snippet occurs with probability zero. Checking this execution
path amounts to no progress of the verification effort at all.

To capture the progress made by the model-checker, instead of counting the
number of execution paths, we endow the set of potential execution paths with
a σ-algebra and a probability measure. This is done in a fairly standard way
as, for example, in [4]. In this way, we obtain a probability space of execution
paths. It assigns probabilities to sets of execution paths. We define our progress
measure in terms of the probabilities of certain sets of execution paths. The
progress measure returns a number in the interval [0, 1]. This number provides
us a quantitative measure of the amount of progress the model-checker has made.
The larger the number, the more progress the model-checker has made.

An important property of our progress measure is that it provides a lower
bound of the measure of the execution paths that satisfy the property (provided
that no counterexample to the property has been found yet). For example, as-
sume that the progress towards verifying the linear-time property φ is 0.9999.
Then, the probability that we encounter a violation of φ when we run the sys-
tem is at most 0.0001. Hence, even if the model-checker runs out of memory, our
progress measure provides useful information about the model-checker’s verifi-
cation effort.
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As mentioned earlier, JPF will run out of memory when verifying the Java
snippet presented above. However, when checking whether the code can cause
overflow, JPF makes 0.9999 progress within a couple of seconds. Note that the
code may give rise to overflow, but the probability of that happening is less than
one in a googol.

We model the source code of a probabilistic system as a probabilistic transition
system. Consider, for example, the following probabilistic transition system.

s0
1
2

����
��

��
�� 1

2

���
��

��
��

�

s1
1
2

����
��

��
�� 1

2

���
��

��
��

� s2

s3 s4

A model-checker visits the states and transitions of the source code of a proba-
bilistic system represented by a probabilistic transition system in a systematic
way. Therefore, we model the verification effort of a model-checker as a sequence
of transitions. In this example, we use the indices of the source and target states
to name the transitions. For example, the transition from state s0 to state s2

is named t02. If the model-checker uses depth-first search to traverse the proba-
bilistic transition system, then it could visit the transitions in, for example, the
order t01, t13, t14, t02. If, however, the model-checker uses breadth-first search
instead, then it could visit the transitions in, for example, the order t01, t02, t13,
t14.

Let us assume that the model-checker verifies the above system using depth-
first search. Suppose that the (atomic) proposition p is satisfied in all states.
Assume also that we are interested in the linear-time property �p, that is, we
want to check that each state of every execution path satisfies p. In the table
below, we present the amount of progress made by the depth-first search.

search progress
∅ 0
t01 0
t01, t13 1

4
t01, t13, t14 1

2
t01, t13, t14, t02 1

Initially, the search is empty, denoted by ∅. No progress has been made and,
hence, the progress is zero. After having traversed transition t01, we still have
made no progress since we cannot deduce yet whether any execution path sat-
isfies the property �p. Therefore, the progress is still zero. Once we have also
traversed transition t13, we can conclude that the execution path consisting of
the transitions t01 and t13 satisfies �p. Since the probability of this execution
path is 1

2 × 1
2 = 1

4 , the progress increases to 1
4 . After we have traversed transi-

tion t14, we can also deduce that the execution path consisting of the transitions
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t01 and t14 satisfies �p. Because the probability of this execution path is also 1
4 ,

the progress increases to 1
2 . Finally, we traverse the transition t02. At this point,

the whole system has been verified and, hence, the progress is one.
Now suppose that the (atomic) proposition q is satisfied in states s1 and s2.

This time we want to verify that the linear-time property ♦q holds, that is, each
execution path contains a state that satisfies q. In the table below, we present
the amount of progress made by the model-checker using breadth-first search.

search progress
∅ 0
t01

1
2

t01, t02 1

After we have traversed transition t01, the progress is 1
2 since all execution paths

that start with t01 satisfy the property ♦q and the measure of these execution
paths is 1

2 . Similarly, once we have also traversed transition t02, the progress
reaches one. At this point we can stop our verification effort.

In the table below, we present the amount of progress made by the model-
checker towards verifying the linear-time property ♦q, this time using depth-first
search.

search progress
∅ 0
t01

1
2

t01, t13 1
2

t01, t13, t14 1
2

t01, t13, t14, t02 1

From the above examples, we can conclude that the linear-time property of in-
terest and the order in which the model-checker traverses the transitions impact
the amount of progress made.

When verifying the source code of a (probabilistic) system, we may be inter-
ested to check properties such as the absence of uncaught exceptions and the
absence of underflow and overflow. All these properties are instances of a special
class of linear-time properties called invariants. For the case that the property
being verified is such an invariant, we present an alternative characterization
of our progress measure. We show that the amount of progress for invariants is
the measure of the set of execution paths that have been checked. We present
an algorithm that computes the progress for invariants, which is based on this
characterization. We have implemented this algorithm within JPF.

2 Probabilistic Transition Systems

We represent the probabilistic system to be verified by the explicit-state model-
checker as a probabilistic transition system. The model-checker explores the
(states and) transitions of the probabilistic transition system in a systematic
way. The set of (states and) transitions of a probabilistic transition system may
be countably infinite.



A Progress Measure for Explicit-State Probabilistic Model-Checkers 287

Definition 1. A probabilistic transition system (PTS for short) is a tuple
〈S, T,AP, s0, source, target, prob, label〉 consisting of

– a countable set S of states,
– a countable set T of transitions,
– a set AP of atomic propositions,
– an initial state s0,
– a function source : T → S,
– a function target : T → S,
– a function prob : T → (0, 1], and
– a function label : S → 2AP

such that

– s0 ∈ S and
– for all s ∈ S,

∑{ prob(t) | source(t) = s } ∈ {0, 1}.
Instead of 〈S, T,AP, s0, source, target, prob, label〉 we usually write S and we
denote, for example, its set of states by SS . Note that in a PTS, there may be
multiple transitions between a pair of states (as can happen in model-checkers
such as JPF).

A state is final in S if it has no outgoing transitions. Next, we formalize the
potential execution paths of a PTS. We classify them into two categories: infinite
execution paths and finite execution paths.

Definition 2. An infinite execution path of a PTS S is an infinite sequence of
transitions t1t2 . . . such that

– for all i ≥ 1, ti ∈ TS ,
– sourceS(t1) = s0S , and
– for all i ≥ 1, targetS(ti) = sourceS(ti+1).

The set of all infinite execution paths is denoted by Execω
S .

A finite execution path of a PTS S is either a finite sequence of transitions
t1 . . . tn for some n ≥ 1 such that

– for all 1 ≤ i ≤ n, ti ∈ TS ,
– sourceS(t1) = s0S ,
– targetS(tn) is final in S and
– for all 1 ≤ i < n, targetS(ti) = sourceS(ti+1),

or the empty sequence ε if s0S is final in S. The set of all finite execution paths
is denoted by Exec∗S .

The set of all execution paths Exec∞S is defined by Exec∞S = Execω
S ∪ Exec∗S .

As we already discussed in the introduction, we will define our progress measure
by means of a measurable space of execution paths. We assume that the reader
is familiar with some basic measure theory as can be found in, for example,
[2]. Recall that a measurable space consists of a set, in this case the set Exec∞S
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of executions paths, a σ-algebra and a measure. Our measurable space is very
similar1 to the sequence space as defined, for example, in [4, Chapter 2]. We
present only the key ingredients, which will be needed later, and refer the reader
to [4] for the details.

In this case, the σ-algebra is a set of subsets of Exec∞S . As we will see, this
σ-algebra can be generated from the cylinder sets defined next. We denote the
set of finite prefixes of execution paths in Exec∞S by pref(Exec∞S ).

Definition 3. Let e ∈ pref(Exec∞S ). Its basic cylinder set Be
S is defined by

Be
S = { e′ ∈ Exec∞S | e is a prefix of e′ }.

The set BS is defined by BS = {Be
S | e ∈ pref(Exec∞S ) }.

Note that Bε
S = Exec∞S . Next, we recall a measure on BS .

Definition 4. The function νS : BS → [0, 1] is defined by

νS(Bt1...tn

S ) =
∏

1≤i≤n

probS(ti).

As shown in, for example, [4, Chapter 2], the function νS can be uniquely ex-
tended to a probability measure on the σ-algebra generated by BS . We denote
the extended measure by μS and the σ-algebra generated by BS by ΣS .

We will exploit the probability space 〈Exec∞S , ΣS , μS〉 to capture our progress
measure. In future sections we will use the following properties of this probability
space:

– ΣS is a σ-algebra,
– BS ⊆ ΣS , and
– νS(B) = μS(B) for all B ∈ BS .

As we already discussed earlier, we represent the source code of the proba-
bilistic system to be verified by an explicit-state probabilistic model-checker as
a PTS. Since the model-checker systematically explores the (states and) transi-
tions of the system under verification, we represent the model-checking as a set
of transitions of the PTS.

Definition 5. A search of a PTS S is a finite subset of TS .

Usually, each state sourceS(ti) of a search {t1, . . . , tn} is reachable from the
initial state s0S via the transitions t1, . . . , tn. However, this fact is not used in
any of our proofs.

1 The sequence space only consists of infinite sequences whereas we consider both
finite and infinite sequences.
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3 A Progress Measure

If the model-checker has searched a part of the system, it of course is not aware
of the remainder of the system. To capture this, we formalize how a search can
be extended.

Definition 6. The PTS S′ extends the search {t1, . . . , tn} of the PTS S if for
all 1 ≤ i ≤ n,

– ti ∈ TS′ ,
– s0S = s0S′ ,
– sourceS′(ti) = sourceS(ti),
– targetS′(ti) = targetS(ti),
– probS′(ti) = probS(ti),
– labelS′(sourceS′(ti)) = labelS(sourceS(ti)),
– labelS′(targetS′(ti)) = labelS(targetS(ti)),
– targetS′(ti) is final in S′ iff targetS(ti) is final in S, and
– s0S is final in S′ iff s0S′ is final in S.

To avoid clutter, instead of s0S , we will write s0 in the remainder of this paper.
Note that the PTS S itself extends the search {t1, . . . , tn} of S.

In Definition 9, we will define the amount of progress a search has made
towards verifying a linear-time property. This amount only makes sense as long
as no violation of the property has been found. The latter is formalized next.

Definition 7. The search {t1, . . . , tn} of the PTS S has not found a violation
of the linear-time property φ if e |=S φ for all e ∈ Exec∞S ∩ {t1, . . . , tn}∞.

The above introduced notion is natural and rather weak. It suffices for all our
results apart from Theorem 2. There we use a slightly stronger notion.

Definition 8. Let the PTS S′ extend the search {t1, . . . , tn} of PTS S and let
φ be a linear-time property. The set Bφ

S′(t1, . . . , tn) is defined by

Bφ
S′(t1, . . . , tn) =

⋃
{Be

S′ | e ∈ {t1, . . . , tn}∗ ∧ ∀e′ ∈ Be
S′ : e′ |=S′ φ }.

The set Bφ
S′(t1, . . . , tn) is the union of basic cylinder sets Be

S′ whose execution
paths, that is, all extensions of e in S′, satisfy φ. In that case, Be

S′ does not
contain a counterexample of φ. The set Bφ

S′(t1, . . . , tn) is measurable, as is stated
in the following proposition.

Proposition 1. Let φ be a linear-time property, and the PTS S′ extend the
search {t1, . . . , tn} of the PTS S. Then Bφ

S′(t1, . . . , tn) ∈ ΣS′ .

Since the set Bφ
S′(t1, . . . , tn) is measurable, its measure μS′(Bφ

S′(t1, . . . , tn)) is
defined. The latter is a number in the interval [0, 1] which represents the “size” of
the basic cylinder sets that do not contain a counterexample of φ. This number
captures the amount of progress of {t1, . . . , tn} for φ, provided that the PTS
under consideration is S′. Since we have no knowledge of the transitions other
than the search, we consider that all extensions S′ of {t1, . . . , tn} and consider
the worst case in terms of progress.
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Definition 9. Assume that the search {t1, . . . , tn} of the PTS S has not found
a violation of the linear-time property φ. The progress of {t1, . . . , tn} for φ is
defined by

progS(t1, . . . , tn, φ) = inf
{
μS′
(
Bφ
S′(t1, . . . , tn)

)
| S′ extends {t1, . . . , tn} of S

}
.

Next, we prove a key property of our progress measure. We show that it is a
lower bound for the probability that the linear-time property holds in S. For
example, if the progress measure is 0.9999, we know that the probability that
the property holds is at least 0.9999. As a consequence, the probability that we
encounter a violation of the property when we run the system is at most 0.0001.

Theorem 1. Assume that the search {t1, . . . , tn} of the PTS S has not found a
violation of the linear-time property φ. Then

progS(t1, . . . , tn, φ) ≤ μS({ e ∈ Exec∞S | e |=S φ }).

Note that the above result only holds for linear-time properties φ that are mea-
surable for S, that is, { e ∈ Exec∞S | e |=S φ } ∈ ΣS . Vardi [8, Corollary 2.4] has
shown that all properties expressed in LTL are measurable.

4 Characterization of Progress for Invariants

In this section, we restrict our attention to the case that the linear-time property
is an invariant. In particular, we assume that the property is of the form �p for
some atomic proposition p. Invariants form an important class of linear-time
properties. In particular for source code, this class plays a key role. For example,
we may want to check that the code never gives rise to any uncaught exceptions,
or that it never causes overflow. These types of properties can all be expressed
as invariants.

As we already mentioned, in our progress measure we consider the worst case.
Next, we show that the best case, obtained by replacing the inf in the definition
of our progress measure with a sup, does not provide any useful information.
We consider a slightly stronger, yet still realistic, notion of a search not having
a found a violation of the invariant �p: all states explored by the search satisfy
the atomic proposition p. To avoid clutter, we use St1,...,tn

S to denote the set

{ sourceS(ti) | 1 ≤ i ≤ n } ∪ { targetS(ti) | 1 ≤ i ≤ n } ∪ {s0}.

Theorem 2. Consider the search {t1, . . . , tn} of the PTS S. Assume that
p ∈ labelS(s) for all s ∈ St1,...,tn

S . Then

sup
{
μS′
(
B�p
S′ (t1, . . . , tn)

)
| S′ extends {t1, . . . , tn} of S

}
= 1.

From the above theorem we can derive that the best upper bound for
μS({ e ∈ Exec∞S | e |=S φ }) is one in that case.
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In the remainder of this section, we provide a characterization of our progress
measure for invariants. This characterization is the basis for the algorithm to
compute the progress measure for invariants presented in Section 5. Given a
search {t1, . . . , tn} of the PTS S, we show that the progress of {t1, . . . , tn} for
an invariant for which no violation has been found yet is the measure of the set
Exec∞S ∩ {t1, . . . , tn}∞, where {t1, . . . , tn}∞ denotes the set of finite and infinite
sequences of the transition t1, . . . , tn. This set is measurable as shown in the
following proposition.

Proposition 2. Let the PTS S′ extend the search {t1, . . . , tn} of the PTS S.
Then Exec∞S′ ∩ {t1, . . . , tn}∞ ∈ ΣS′ .

We prove the characterization by showing two inequalities. In the first proof, we
construct a PTS S′ that extends search {t1, . . . , tn} of the PTS S such that

μS′
(
B�p
S′ (t1, . . . , tn)

)
≤ μS(Exec∞S ∩ {t1, . . . , tn}∞).

We construct the system S′ by

– adding an extra state s⊥ with p 	∈ labelS′(s⊥),
– adding a transition t⊥ with sourceS′(t⊥) = s⊥, targetS′(t⊥) = s⊥ and

probS′(t⊥) = 1, and
– adding an extra transition ts with sourceS′(ts) = s, targetS′(ts) = s⊥, and

probS′(ts) = 1−outS(s) for all states s ∈ St1,...,tn

S such that outS(s)<1 and
s is not final in SS′ , where

outS(s) =
∑
{ probS(ti) | 1 ≤ i ≤ n ∧ sourceS(ti) = s }.

Lemma 1. Assume that the search {t1, . . . , tn} of the PTS S has not found a
violation of the invariant �p. Then

progS(t1, . . . , tn,�p) ≤ μS(Exec∞S ∩ {t1, . . . , tn}∞).

An obvious attempt to prove the other inequality by showing

Exec∞S ∩ {t1, . . . , tn}∞ ⊆ B�p
S′ (t1, . . . , tn)

for each PTS S′ that extends the search {t1, . . . , tn} of the PTS S fails, because
the set

(Exec∞S ∩ {t1, . . . , tn}ω) \ B�p
S′ (t1, . . . , tn).

is not always empty. However, as we will show below, the above set has measure
zero.

Lemma 2. Let the PTS S′ extend the search {t1, . . . , tn} of the PTS S. Then

μS′
(

(Exec∞S′ ∩ {t1, . . . , tn}ω) \ B�p
S′ (t1, . . . , tn)

)
= 0.

By means of the above lemma we can now prove the other inequality.
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Lemma 3. Assume that the search {t1, . . . , tn} of the PTS S has not found a
violation of the invariant �p. Then

μS(Exec∞S ∩ {t1, . . . , tn}∞) ≤ progS(t1, . . . , tn,�p).

Combining the above results, we arrive at the characterization of our progress
measure for invariants.

Theorem 3. Assume that the search {t1, . . . , tn} of the PTS S has not found a
violation of the invariant �p. Then

progS(t1, . . . , tn,�p) = μS(Exec∞S ∩ {t1, . . . , tn}∞).

Note that if the search {t1, . . . , tn} of the PTS S has not found a violation of
the invariant �p, then progS(t1, . . . , tn,�p) is independent of the atomic propo-
sition p.

5 Computation of Progress for Invariants

Given the characterization of our progress measure for invariants, we are now
in a position to compute the progress measure for invariants. From a search
{t1, . . . , tn} of a PTS S we construct a PTS S′. From S we remove all transitions
different from t1, . . . , tn and we add a transition ts from state s to a new state
s⊥ for all states s which have not been fully explored yet (that is, in S such a
state s has outgoing transitions different from t1, . . . , tn).

Definition 10. Let {t1, . . . , tn} be a search of the PTS S and let p ∈ APS . Then
the PTS S′ is defined as follows. The set SS′ is defined by SS′ = St1,...,tn

S ∪{s⊥}.
The set TS′ is defined by

TS′ = {t1, . . . , tn} ∪ { ts | s ∈ SS′ is not final in S and outS(s) < 1 } ∪ {t⊥}.
The set APS′ is defined by APS′ = APS . The function sourceS′ : TS′ → SS′ is
defined by

sourceS′(t) =

⎧⎨
⎩

s⊥ if t = t⊥
s if t = ts
sourceS(t) if t ∈ {t1, . . . , tn}.

The function targetS′ : TS′ → SS′ is defined by

targetS′(t) =

⎧⎨
⎩

s⊥ if t = t⊥
s⊥ if t = ts
targetS(t) if t ∈ {t1, . . . tn}.

The function probS′ : TS′ → (0, 1] is defined by

probS′(t) =

⎧⎨
⎩

1 if t = t⊥
1− outS(s) if t = ts
probS(t) if t ∈ {t1, . . . tn}.



A Progress Measure for Explicit-State Probabilistic Model-Checkers 293

The function labelS′ : SS′ → 2APS′ is defined by

labelS′(s) =
{∅ if s = s⊥

labelS(s) otherwise.

As we show next, to compute the progress of the search {t1, . . . , tn} of the PTS
S towards verifying the invariant �p, it suffices to compute the measure of the
set of those execution paths of the PTS S′ that contain the transition t⊥.

Theorem 4. Assume that the search {t1, . . . , , tn} of the PTS S has not found a
violation of the invariant �p. Consider the PTS S′ introduced in Definition 10.
Then

progS(t1, . . . , tn,�p) = 1− μS′({ e ∈ Exec∞S′ | e contains t⊥}).

Obviously, an execution path of S′ contains the transition t⊥ iff it reaches the
state s⊥. Hence, it suffices to compute the measure of the set of those execution
paths of S′ that reach the state s⊥. Several algorithms and tools are available
to compute the probability of reaching a particular state (see, for example, [1,
Section 10.1]).

6 Conclusion

To measure the amount of progress an explicit-state probabilistic model-checker
has made towards verifying a linear-time property, we introduced the notion
of a progress measure. Although our notion is based on a probability space
that has been used by others to study probabilistic systems, as far as we know
this notion is new. We believe that the simplicity of our approach has some
advantages: the theory may be easily extensible (some directions for further
research are discussed below) and it may give rise to efficient algorithms. Another
contribution of this paper is an algorithm to compute the progress measure for
invariants. We have implemented our theoretical framework within JPF. The
implementation details and some experimental results can be found in [10].

The work most closely related to ours is the work by Pavese, Braberman and
Uchitel [6].2 In their position paper, they sketch how to provide useful feedback
when a model-checker runs out of memory. They aim to measure the probability
that a run of the system reaches a state that has not be visited by the model-
checker. They do not take the property being verified into account and limit the
depth of the search. In [7], Della Penna et al. show how, given a Markov chain
and an integer i, the probability of reaching a state s within i transitions can be
computed. We conjecture that this is closely related to computing the progress
of breadth-first search verifying the linear-time property ♦p, where the atomic
proposition p is only satisfied in state s.
2 Our work was carried out independently from theirs. A preliminary version of our

work appeared in [11]. We only became aware of a draft version of [6] while finishing
[10].
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Our framework only considers probabilistic choices. As a consequence, it is
only applicable to sequential randomized algorithms. One direction of future
work is to extend our framework so that it can handle concurrent randomized
algorithms as well. In that case, we also have to deal with nondeterministic
choices and, hence, we have to consider schedulers.

Although invariants form an important class of linear-time properties, we are
interested in developing algorithms to compute the progress measure for other
classes of linear-time properties as well. In this paper, we focused on explicit-state
probabilistic model-checkers. However, we believe that the theory we developed
can be adapted to symbolic probabilistic model-checkers. This is another direc-
tion for future research.

Acknowledgements. We thank all the referees of this paper for their construc-
tive feedback.3 We are also thankful to the members of the DisCoVeri group for
discussion.
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Probabilistic Bisimulation and Simulation Algorithms
by Abstract Interpretation
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Abstract. We show how bisimulation equivalence and simulation preorder on
probabilistic LTSs (PLTSs), namely the main behavioural relations on probabilis-
tic nondeterministic processes, can be characterized by abstract interpretation.
Both bisimulation and simulation can be obtained as completions of partitions
and preorders, viewed as abstract domains, w.r.t. a pair of concrete functions that
encode a PLTS. As a consequence, this approach provides a general framework
for designing algorithms for computing bisimulation and simulation on PLTSs.
Notably, (i) we show that the standard bisimulation algorithm by Baier et al. can
be viewed as an instance of such a framework and (ii) we design a new efficient
simulation algorithm that improves the state of the art.

1 Introduction

Randomization phenomena in concurrent systems have been widely studied in proba-
bilistic extensions of process algebras like Markov chains and probabilistic labeled tran-
sition systems (PLTSs). Most standard tools for studying nonprobabilistic processes,
like behavioural equivalences, temporal logics and model checking, have been inves-
tigated for these probabilistic models. In particular, bisimulation equivalence and sim-
ulation preorder relations, namely the main behavioural relations between concurrent
systems, have been extended and studied in a probabilistic setting [5,7,12].

Abstract interpretation [2,3] is a well-known general theory for specifying the ap-
proximation of formal semantics. Abstract domains play an essential role in any abstract
interpretation design, since they encode in an ordered structure how concrete semantic
properties are approximated. A number of behavioural relations, including bisimula-
tion, stuttering bisimulation and simulation, have been characterized in abstract inter-
pretation as complete refinements, called forward complete shells, of abstract domains
w.r.t. logical/temporal operators of suitable modal logics [11]. One notable benefit of
this approach is that it provides a general framework for designing basic algorithms
that compute behavioral relations as forward complete shells of abstract domains. As a
remarkable example, this abstract interpretation-based approach led to an efficient algo-
rithm for computing the simulation preorder [10] that features the best time complexity
among the simulation algorithms.

This paper extends the aforementioned results to a probabilistic setting. In partic-
ular, we consider probabilistic processes specified as PLTSs, a general model that ex-
hibits both non-deterministic choice (as in LTSs) and probabilistic choice (as in Markov
chains). In [11], bisimulation in LTSs has been characterized in terms of forward com-
plete shells of partitions w.r.t. the predecessor operator of LTSs. We show that this same

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part II, LNCS 6756, pp. 295–306, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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idea scales to the case of PLTSs by considering the probabilistic predecessor operator
that defines the transitions of a PLTS together with a probabilistic function that encodes
the distributions in the PLTS (this latter operator is somehow reminiscent of a proba-
bilistic connective in Parma and Segala’s [9] modal logics for probabilistic bisimulation
and simulation). Bisimulation equivalence in PLTSs is then characterized as a domain
refinement through a complete shell w.r.t. the above two operators. On the other hand,
the simulation preorder in PLTSs turns out to be the same complete shell of abstract
domains w.r.t. the same two operators, but using different underlying abstract domains:
for bisimulation, the complete shell is computed in a space of abstractions that are state
and distribution partitions, while for simulation the same complete shell is instead com-
puted over abstractions that are preorders on states and distributions.

Complete shells of abstract domains may in general be obtained through a simple
fixpoint computation. We show how such a basic procedure can be instantiated to ob-
tain two algorithms that iteratively compute bisimulation and simulation on PLTSs.
Interestingly, the standard procedure for computing bisimulations in PLTSs, namely
Baier-Engelen-Majster’s algorithm [1], can be actually viewed as an implementation
of our complete shell procedure that characterizes bisimulation. On the other hand,
we show that the corresponding complete shell for computing the simulation preorder
yields a new efficient probabilistic simulation algorithm that advances the state-of-the-
art: in fact, its time and space complexity bounds improve on the best known simulation
algorithm for PLTSs by Zhang et al. [13].

2 Bisimulation and Simulation in PLTSs

Given a set X , Distr(X) denotes the set of (stochastic) distributions on X , i.e., func-
tions d:X → [0, 1] such that

∑
x∈X d(x) = 1. The support of a distribution d is defined

by supp(d) � {x ∈ X | d(x) > 0}; also, if S ⊆ X , then d(S) �
∑

s∈S d(s).
A probabilistic LTS (PLTS) is a tuple S = 〈Σ,Act ,�〉 where Σ is a set of states,

Act is a set of actions and � ⊆ Σ × Act ×Distr(Σ) is a transition relation, where
(s, a, d) ∈ � is also denoted by s a→d. We denote by Distr � {d ∈ Distr(Σ) | ∃s ∈
Σ.∃a ∈ Act . s a→d} the set of target distributions in S. Given D ⊆ Distr, we write
s a→D when there exists d ∈ D such that s a→d. For any a ∈ Act , the predecessor
and successor operators prea : ℘(Distr) → ℘(Σ) and posta : ℘(Σ) → ℘(Distr)
are defined by prea(D) � {s ∈ Σ | s a→D} and posta(S) � {d ∈ Distr | ∃s ∈
S. s a→d}. For any d ∈ Distr and s ∈ Σ, we define in(d) � {a ∈ Act | prea(d) 	= ∅}
and out(s) � {a ∈ Act | posta(s) 	= ∅}.
Bisimulation. Let Part(X) denote the set of partitions of a finite set X . If P ∈
Part(X) and x ∈ X then P (x) denotes the unique block of P that contains x. A
partition P induces a mapping P : ℘(X) � ℘(X) defined as P (Y ) � ∪y∈Y P (y). Any
partition P ∈ Part(X) induces an equivalence relation (i.e., a partition) over distribu-
tions ≡P ∈ Part(Distr(X)) as follows: for any d, e ∈ Distr(X), d ≡P e if for any
B ∈ P , d(B) = e(B). In words, two distributions are ≡P -equivalent whenever they
give the same probability to the blocks of P .

Given a PLTS S = 〈Σ,Act ,�〉, a partitionP ∈ Part(Σ) is a bisimulation on S when
for all s, t ∈ Σ and d ∈ Distr, if P (s) = P (t) and s a→d then there exists e ∈ Distr
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such that t a→e and d ≡P e. Bisimilarity Pbis ∈ Part(Σ) is defined as: Pbis(s) � ∪
{P (s) | P is a bisimulation on S}. Pbis turns out to be the greatest bisimulation on S

which is also called the bisimulation partition on S.

Simulation. Let PreOrd(X) denote the set of preorders on X . If R ∈ PreOrd(X) and
S ⊆ X then R(S) � {x ∈ X | ∃s ∈ S.(s, x) ∈ R}. Similarly to the case of partitions,
any preorder R ∈ PreOrd(X) induces a preorder≤R on Distr(X) as follows: for any
d, e ∈ Distr(X), d ≤R e if for any S ⊆ X , d(S) ≤ e(R(S)). Such a definition of ≤R

can be equivalently stated in terms of so-called weight functions between distributions
and of maximum flows between networks. In particular, it turns out that d ≤R e iff the
maximum flow of a suitable bipartite network built over the states in supp(d)∪supp(e)
and over the relation R is 1 (see [1,13]).

A preorder R ∈ PreOrd(Σ) is a simulation on a PLTS S when for all s, t ∈ Σ
and d ∈ Distr, if t ∈ R(s) and s a→d then there exists e ∈ Distr such that t a→e
and d ≤R e. The simulation preorder Rsim ∈ PreOrd(Σ) on S is defined as follows:
Rsim(s) � ∪{R(s) | R is a simulation on S}. It turns out that Rsim is the greatest sim-
ulation preorder on S. Simulation partition Ppsim on S is the kernel of the simulation
preorder, i.e., Ppsim(s) = Ppsim(t) iff s ∈ Rsim(t) and t ∈ Rsim(s).

3 Shells

Forward Completeness. In standard abstract interpretation [2,3], approximations of
a concrete semantic domain are encoded by abstract domains (or abstractions), that
are specified by Galois insertions (GIs for short) or, equivalently, by adjunctions. A
GI of an abstract domain 〈A,≤A〉 into a concrete domain 〈C,≤C〉 is determined by
a surjective abstraction map α : C → A and a 1-1 concretization map γ : A → C
such that α(c) ≤A a ⇔ c ≤C γ(a), and is denoted by (α,C,A, γ). Recall that GIs
of a common concrete domain C are preordered w.r.t. their relative precision: G1 =
(α1, C,A1, γ1) � G2 = (α2, C,A2, γ2) — i.e. A1/A2 is a refinement/simplification
of A2/A1 — iff γ1 ◦ α1 !C�C γ2 ◦ α2. Moreover, G1 and G2 are equivalent when
G1 � G2 and G2 � G1. We denote by Abs(C) the family of abstract domains of C up to
the above equivalence. It is well known that 〈Abs(C),�〉 is a complete lattice. Given
a family of abstract domains X ⊆ Abs(C), their lub �X is the most precise domain in
Abs(C) which is a simplification of any domain in X.

Let f : C → D be some concrete semantic function, and let A ∈ Abs(C) and B ∈
Abs(D) be abstractions of the concrete domains C and D. Given an abstract function
f � : A → B, we have that 〈A,B, f �〉 is a sound abstract interpretation of f when
f ◦ γA,C !A�D γB,D ◦ f �. Forward completeness [3,4] corresponds to the following
strengthening of soundness: f ◦ γA,C = γB,D ◦ f �, meaning that the abstract function
f � is able to replicate the behaviour of f on the abstract domains A and B with no loss
of precision. It turns out that if 〈A,B, f �〉 is forward complete then the abstract function
f � indeed coincides with αD,B ◦ f ◦ γA,C , that is the best correct approximation of the
concrete function f on the pair of abstractions 〈A,B〉. Hence, the notion of forward
completeness of an abstract interpretation does not depend on the choice of the abstract
function f � but only depends on the abstract domains A and B. Accordingly, a pair
of abstract domains 〈A,B〉 ∈ Abs(C) × Abs(D) is called forward complete for f
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ShellAlgo(F,G, A,B) {
Initialize();
while ¬(F-Stable ∧ G-Stable) do

if ¬F-Stable then G-Stable := Stabilize(F,A, B); F-Stable := true;
if ¬G-Stable then F-Stable := Stabilize(G, B, A); G-Stable := true;

}
Initialize() {

F-Stable := CheckStability(F, A,B); G-Stable := CheckStability(G, B, A);
}
bool Stabilize(H, X, Y ) {

Yold := Y ;
Y := �{Y ′ ∈ Abs | Y ′ � Y, 〈X, Y ′〉 is H-complete};
return (Y = Yold);

}

Fig. 1. Basic Shell Algorithm

(or simply f -complete) iff f ◦ γA,C = γB,D ◦ (αD,B ◦ f ◦ γA,C). Equivalently, 〈A,B〉
is f -complete iff the image of f in D, that is f(γA,C(A)), is contained in γB,D(B). If
F ⊆ C → D is a set of concrete functions then 〈A,B〉 is F-complete when 〈A,B〉 is
f -complete for all f ∈ F.

Shells of Abstract Domains. Given a set of semantic functions F ⊆ C → D and
a pair of abstractions 〈A,B〉 ∈ Abs(C) × Abs(D), the notion of forward complete
shell [4] formalizes the problem of finding the most abstract pair 〈A′, B′〉 such that
A′ � A,B′ � B and 〈A′, B′〉 is F-complete, which is a particular case of abstraction
refinement. It turns out (see [4]) that any pair 〈A,B〉 can be minimally refined to its for-
ward F-complete shell ShellF(〈A,B〉) � �{〈A′, B′〉 ∈ Abs(C)×Abs(D) | 〈A′, B′〉 �
〈A,B〉, 〈A′, B′〉 is F-complete}. Thus, ShellF(〈A,B〉) encodes the least refinement of
a pair of abstractions 〈A,B〉 which is needed in order to obtain forward completeness
for F.

Let us now consider a further set of concrete semantic functions G ⊆ D → C
that operate in the opposite direction w.r.t. F, i.e., from D to C. Given A ∈ Abs(C)
and B ∈ Abs(D), it makes sense to consider both forward F-completeness of 〈A,B〉
and forward G-completeness of the reversed pair 〈B,A〉. Thus, 〈A,B〉 is defined to be
〈F,G〉-complete when 〈A,B〉 is F-complete and 〈B,A〉 is G-complete. Here again, any
pair 〈A,B〉 can be minimally refined to its 〈F,G〉-complete shell Shell〈F,G〉(〈A,B〉) �
�{〈A′, B′〉 ∈ Abs(C)×Abs(D) | 〈A′, B′〉 � 〈A,B〉, 〈A′, B′〉 is 〈F,G〉-complete}.

The combined shell Shell〈F,G〉(〈A,B〉) can be obtained through the ShellAlgo()
procedure described in Figure 1. This procedure ShellAlgo() crucially relies on the
Stabilize() function: given a set of functions H and a pair of abstractions 〈X,Y 〉,
we have that Stabilize(H, X, Y ) refines the abstraction Y to Ystable � � {Y ′ | Y ′ �
Y, 〈X,Y ′〉 is H-complete}, so that 〈X,Ystable〉 becomes H-stable (i.e., H-complete).
For instance, Stabilize(F, A,B) minimally refines B to B′ so that 〈A,B′〉 is F-com-
plete. Hence, while the abstraction B is refined, the abstraction A is left unchanged.
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Note that if B is actually refined into B′ ) B, then the G-Stable flag is set to false so
that ShellAlgo() proceeds by G-stabilizing 〈B′, A〉, i.e., by calling Stabilize(G, B,A).
Thus, ShellAlgo(F,G, A,B) works by iteratively refining the abstractions A andB sep-
arately, namely it refines B w.r.t. F while A is kept fixed and then it refines A w.r.t. G

while B is kept fixed.

Theorem 3.1. ShellAlgo(F,G, A,B) = Shell〈F,G〉(〈A,B〉).

4 Bisimulation as a Shell

Bisimulation is commonly computed by coarsest partition refinement algorithms [1,8]
that iteratively refine a current partition until it becomes the bisimulation partition.
Coarsest partition refinements can be cast as shells of partitions: given a property of
partitions P ⊆ Part(X), the P-shell of Q ∈ Part(X) corresponds to the coarsest par-
tition refinement of Q that satisfies P, when this exists. In this section we show how
bisimulation in PLTSs can be equivalently stated in terms of forward complete shells of
partitions w.r.t. suitable concrete semantic functions. We also show how the above basic
shell algorithm ShellAlgo() can be instantiated to compute bisimulations on PLTSs.

Shells of Partitions. Let us first recall that, given a finite set X , 〈Part(X),-,�,	〉
is a (finite) lattice where P1 - P2 (i.e., P2 is coarser than P1 or P1 refines P2) iff
∀x.P1(x) ⊆ P2(x), and its top element is$Part(X) = {X}. By following the approach
in [11], any partition P ∈ Part(X) can be viewed as an abstraction of ℘(X)⊆ where
any set S ⊆ X is approximated through its minimal cover in the partition P . This is
formalized by the abstract domain closed(P ) � {S ⊆ X | P (S) = S} so that S ∈
closed(P ) iff S = ∪i∈IBi for some blocks {Bi}i∈I ⊆ P . Note that ∅, X ∈ closed(P )
and that 〈closed(P ),⊆,∪,∩〉 is a lattice. It turns out that 〈closed(P ),⊆〉 is an abstrac-
tion in Abs(℘(X)⊆), where any set S ⊆ X is approximated through the blocks in P
covering S, namely by ∪{B ∈ P | B ∩ S 	= ∅} ∈ closed(P ).

The above embedding of partitions as abstract domains allows us to define a no-
tion of forward completeness for partitions. Let f : ℘(X) → ℘(Y ) be a concrete
semantic function. Then, a pair of partitions 〈P,Q〉 ∈ Part(X) × Part(Y ) is (for-
ward) f -complete when for any union U ∈ closed(P ) of blocks of P , f(U) is a
union of blocks of Q, namely f(U) ∈ closed(Q). Also, if we additionally consider
g : ℘(Y ) → ℘(X) then 〈P,Q〉 is 〈f, g〉-complete when 〈P,Q〉 is f -complete and
〈Q,P 〉 is g-complete. As in Section 3, forward complete shells of partitions exist. Given
F ⊆ ℘(X)→ ℘(Y ) and G ⊆ ℘(Y ) → ℘(X), Shell〈F,G〉(〈P,Q〉) is the coarsest pair of
partitions that (component-wise) refines the pair 〈P,Q〉 and is 〈F,G〉-complete, namely
Shell〈F,G〉(〈P,Q〉) � �{〈P ′, Q′〉 ∈ Part(X)×Part(Y ) | 〈P ′, Q′〉 - 〈P,Q〉, 〈P ′, Q′〉
is 〈F,G〉-complete}.

Bisimulation on PLTSs. In [11] it is shown that bisimulation on LTSs can be equiv-
alently defined in terms of forward complete shells of partitions w.r.t. the predecessor
operator. This same idea scales to the case of PLTSs taking into account that: (i) in a
PLTS the target of the transition relation is a set of distributions rather than a set of
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states, and (ii) bisimulation on the states of a PLTS induces an equivalence over dis-
tributions that depends on the probability that the distributions associate to the blocks
of bisimilar states. Let S = 〈Σ,Act ,�〉 be a PLTS and consider the following two
functions, where a ∈ Act and p ∈ [0, 1]:

prea : ℘(Distr) → ℘(Σ), prea(D) � {s ∈ Σ | s a→D}
probp : ℘(Σ) → ℘(Distr), probp(S) � {d ∈ Distr | d(S) ≥ p}

prea is the a-predecessor function in the PLTS S while probp(S) returns the distri-
butions whose probability on the set S is higher than p. Let pre � {prea}a∈Act and
prob � {probp}p∈[0,1]. It is worth noticing that this pair of sets of functions provides
an encoding of the PLTS S: pre encodes the transition relation �, while any distribu-
tion d in S can be encoded through prob. For instance, the support of a distribution
d ∈ Distr is given by the minimal set of states S such that d ∈ prob1(S), while, for
any s ∈ Σ, d(s) = sup{p ∈ [0, 1] | d ∈ probp({s})}.
Lemma 4.1. Consider 〈P,P〉∈ Part(Σ)×Part(Distr). 〈P,P〉 is 〈prob, pre〉-complete
if and only if the following two conditions hold: (i) if s a→d and t ∈ P (s) then t a→P(d);
(ii) if e ∈ P(d) then d ≡P e.

Consequently, a partition P ∈ Part(Σ) is a bisimulation on S if and only if 〈P,≡P 〉 is
〈prob, pre〉-complete. In turn, the coarsest bisimulation Pbis on S can be obtained as a
forward complete shell of partitions.

Theorem 4.2. 〈Pbis,≡Pbis〉 = Shell〈prob,pre〉($Part(Σ),$Part(Distr)).

Bisimulation Algorithm. By Theorem 4.2, Pbis can be computed as a partition shell
by instantiating the basic shell algorithm in Figure 1 to F = {probp}p∈[0,1] and G =
{prea}a∈Act , and by viewing partitions in Part(Σ)×Part(Distr) as abstract domains.
This leads to design a bisimulation algorithm called PBis that maintains a pair of state
and distribution partitions 〈P,P〉 ∈ Part(Σ) × Part(Distr) and whose initialization
and stabilization functions are given in Figure 2.

The function call preStabilize(〈P, P 〉) refines the state partition P into P ′ so that
〈P, P ′〉 is pre-complete. Note (cf. Lemma 4.1) that in order to get pre-completeness it
is sufficient to minimally refine P so that for any block of distributions C ∈ P, and for
any incoming label a ∈ in(C), prea(C) is a union of blocks of P . If prea(C) is not
a union of blocks of P then prea(C) ⊆ Σ is called a splitter of P , and we denote by
Split(P, prea(C)) the partition obtained from P by replacing each block B ∈ P with
the nonempty sets B ∩ prea(C) and B 	 prea(C). Notice that when some prea(C) is
already a union of blocks of P we have that Split(P, prea(C)) = P , i.e., we also allow
no splitting. Hence, preStabilize() refines P by iteratively splitting P w.r.t. prea(C), for
all C ∈ P and a ∈ in(C). On the other hand, the function call probStabilize(〈P,P〉)
refines the current distribution partition P into P′ so that 〈P,P′〉 is prob-complete. It
turns out that 〈P,P〉 is prob-complete when for any block B ∈ P and any distribution
d ∈ Distr, {e ∈ Distr | e(B) = d(B)} is a union of blocks of P. Thus, probStabilize()
iteratively splits the distribution partition P w.r.t. {e ∈ Distr | e(B) = d(B)}, for all
B ∈ P and d ∈ Distr.
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Initialize() {
forall s ∈ Σ do P (s) := Σ; forall d ∈ Distr do P(d) := Distr;
preStabilize(〈P, P 〉); preStable := probStabilize(〈P, P〉); probStable := true;

}
bool preStabilize(〈P, P 〉) {

Pold := P ;
forall C ∈ P do forall a ∈ in(C) do P := Split(P, prea(C));
return (P �= Pold)

}
bool probStabilize(〈P, P〉) {

Pold := P;
forall B∈P do forall d ∈ Distr do P : =Split(P, {e ∈ Distr |e(B) = d(B)});
return (P �= Pold)

}

Fig. 2. Bisimulation Algorithm PBis

Theorem 4.3. For a finite PLTS S, PBis(S) terminates and is correct, i.e., if 〈P,P〉 is
the output of PBis(S) then P = Pbis and P = ≡Pbis .

Implementation. Baier-Engelen-Majster’s two-phased partitioning algorithm [1] is the
standard procedure for computing the bisimulation Pbis. This bisimulation algorithm
can be essentially viewed as an implementation of the above PBis algorithm, since the
two phases of Baier et al.’s algorithm (see [1, Figure 9]) coincide with our preStabilize()
and probStabilize() functions. The only remarkable difference is that instead of using
a single partition over all the distributions in Distr, Baier et al.’s algorithm maintains a
so-called step partition, namely, a family of partitions {Ma}a∈Act such that, for any a ∈
Act , Ma is a partition of the distributions in posta(Σ), i.e., the distributions that have
an incoming edge labeled with a. As a consequence, in the phase that corresponds to
probStabilize(), any partition Ma is split w.r.t. all the splitters {e ∈ posta(Σ) | e(B) =
d(B)}, where B ∈ P and d ∈ posta(Σ). Baier et al.’s algorithm is implemented
by exploiting Hopcroft’s “process the smaller half” principle when splitting the state
partition w.r.t. a splitter prea(C) and this allows to obtain a procedure that computes
bisimulation in O(|�||Σ|(log |�|+ log |Σ|)) time and O(|�||Σ|) space.

5 Simulation as a Shell

Shells of Preorders. Recall that, given any finite set X , 〈PreOrd(X),⊆,∪t,∩〉 is a
lattice, where R1 ∪t R2 is the transitive closure of R1 ∪ R2 and the top element is
$PreOrd(X) � X × X . Analogously to partitions, any preorder R ∈ PreOrd(X) can
be viewed as an abstraction of ℘(X)⊆, where any set S ⊆ X is approximated by
its R-closure R(S). Formally, a preorder R ∈ PreOrd(X) can be viewed as the ab-
stract domain closed(R) � {S ⊆ X | R(S) = S}. Observe that S ∈ closed(R) iff
S = ∪i∈IR(xi) for some set {xi}i∈I ⊆ X and that 〈closed(R),⊆,∪,∩〉 is a lattice
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(note that ∅, X ∈ closed(R)). It turns out that closed(R) ∈ Abs(℘(X)⊆): this means
that any set S ⊆ X is approximated by its R-closure, namely by R(S) ∈ closed(R).

Given the functions 〈F,G〉 ⊆ (℘(X) → ℘(Y )) × (℘(Y ) → ℘(X)), a pair of pre-
orders 〈R,S〉 ∈ PreOrd(X) × PreOrd(Y ) is (forward) 〈F,G〉-complete when for
any f ∈ F and g ∈ G, if 〈U, V 〉 ∈ closed(R) × closed(S) then 〈f(U), g(V )〉 ∈
closed(S) × closed(R). Forward complete shells of preorders are therefore defined as
follows: Shell〈F,G〉(〈R,S〉) is the largest pair of preorders 〈R′, S′〉 ⊆ 〈R,S〉 which is
〈F,G〉-complete.

Simulation on PLTSs. Similarly to the case of bisimulation, simulation can be equiv-
alently expressed in terms of forward completeness w.r.t. prob = {probp}p∈[0,1] and
pre = {prea}a∈Act .

Lemma 5.1. Let 〈R,R〉 ∈ PreOrd(Σ)×PreOrd(Distr). Then, 〈R,R〉 is 〈prob, pre〉-
complete if and only if the following two conditions hold: (i) if t ∈ R(s) and s a→d then
there exists e such that t a→e and e ∈ R(d); (ii) if e ∈ R(d) then d ≤R e.

Thus, a preorder R ∈ PreOrd(Σ) is a simulation on S if and only if 〈R,≤R〉 is
〈prob, pre〉-complete. In turn, the greatest simulation preorder Rsim can be obtained
as a preorder shell.

Theorem 5.2. 〈Rsim,≡Rsim〉 = Shell〈prob,pre〉($PreOrd(Σ),$PreOrd(Distr)).

6 A New Efficient Probabilistic Simulation Algorithm

A new efficient algorithm for computing simulations in PLTSs, called PSim, is designed
in this section by instantiating the basic shell algorithm to F = {probp}p∈[0,1] and G =
{prea}a∈Act , and by viewing preorders in PreOrd(Σ) × PreOrd(Distr) as abstract
domains.

The high-level design of PSim is that of ShellAlgo in Figure 1, the only difference
being that the input is a PLTS S. PSim maintains a pair of state and distribution pre-
orders 〈R,R〉 ∈ PreOrd(Σ) × PreOrd(Distr), whose initialization and stabilization
functions are given in Figure 3 and 4.

The function preStabilize() makes the pair 〈R, R〉 pre-complete by refining the state
preorder R until there exists a transition s a→d such that and R(s) 	⊆ prea(R(d)). Such
a refinement can be efficiently done by following the incremental approach of Hen-
zinger et al. [6] for nonprobabilistic LTSs. On the other hand, the function probStabi-
lize() makes the pair 〈R, R〉 prob-complete by refining the distribution preorder R by
iteratively refining it until there exist e, d such that e ∈ R(d) and d 	≤R e. Here, in
order to get an efficient incremental computation, we resort to the approach of Zhang et
al.’s simulation algorithm [13], and we stabilize the distribution preorder R by comput-
ing sequences of maximum flow problems. More precisely, given a pair of distributions
(d, e), successive calls to probStabilize() might repeatedly check whether d ≤R e where
R is the current (new) state preorder. Let us recall [1] that the test d ≤R e can be im-
plemented by checking whether the maximum flow over a network built out of (d, e)
and R, here denoted by N(d, e, R), is 1. Zhang et al. [13] observe that the networks for



Probabilistic Bisimulation and Simulation Algorithms 303

Initialize() {1
// Initialize R and R

forall s ∈ Σ do R(s) := {t ∈ Σ | out(s) ⊆ out(t)};2
forall d ∈ Distr do R(d) := {e ∈ Distr | Init SMF(d, e, R) = true};3
// Initialize in
forall d ∈ Distr do in(d) := {a ∈ Act | prea(d) �= ∅};4
// Initialize Count
forall e ∈ Distr do5

forall a ∈ in(e) do6
forall x ∈ prea(Distr) do7

Count(x, a, e) := |{d ∈ Distr | x a→d, d ∈ R(e), a ∈ in(e)}|;8

// Initialize Remove
forall d ∈ Distr do9

forall a ∈ in(d) do10
Removea(d) := {s ∈ Σ | a ∈ out(s), s a�R(d)};11

// Initialize Stability Flags
probStable := true;12
if ∃e ∈ Distr, a ∈ in(e) such that Removea(e) �= ∅ then preStable := false;13
else preStable := true;14
// Initialize Listener
forall x, y ∈ Σ do Listener(x, y) := {(d, e) | x ∈ supp(d), e ∈ supp(e)};15
// Initialize Deleted Arcs
Deleted := ∅;16

}17

Fig. 3. Initialization function

a given pair (d, e) across successive iterations are very similar, since they differ only
by deletion of some edges due to the refinement of R. Therefore, in order to incremen-
tally deal with this sequence of tests, Zhang et al.’s algorithm saves after each iteration
the current network N(d, e, R) together with its maximum flow information, and this
allows us to use at the next iteration a so-called preflow algorithm which is initialized
with the previous maximum flow function. Due to lack of space, we do not discuss the
details of the preflow algorithm in [13], that is used here as a black box that efficiently
solves the sequence of maximum flow problems that arise for a same network.

PSim is designed around the following data structures. First, the two preorders
R ⊆ Σ × Σ and R ⊆ Distr×Distr, which are stored as boolean matrices and are
initialized so that they are coarser than Rsim and ≤Rsim . In particular, the initial pre-
order R is coarser than Rsim since if s a→d and t a� then t /∈ Rsim(s). Moreover, line
3 initializes R so that R = ≤R: this is done by calling the function Init SMF(d, e, R)
which in turn calls the preflow algorithm to check whether d ≤R e, and in case this
is true, stores the network N(d, e, R) to reuse it in later calls to probStabilize(). The
additional data structures used by PSim come from the efficient refinement approaches
used in [6] and [13]. Indeed, as in [6], for any distribution e and for any incoming action
a ∈ in(e), we store and maintain a set Removea(e) � {s ∈ Σ | s a→ , s a�R(e)} that is



304 S. Crafa and F. Ranzato

bool preStabilize(〈R, R〉) {1
Deleted := ∅;2
while ∃Removea(e) �= ∅ do3

Remove := Removea(e); Removea(e) := ∅;4
forall t a→e do5

forall w ∈ Remove do6
if w ∈ R(t) then Deleted := Deleted∪{(t, w)}; R(t) := R(t) \ {w};7

if (Deleted �= ∅) then probStable := false;8
return probStable;9

}10

bool probStabilize(〈R, R〉) {1
forall (t, w) ∈ Deleted do2

forall (d, e) ∈ Listener(t, w) such that e ∈ R(d) do3
if SMF(d, e, (t, w)) = false then4

R(d) := R(d) � {e};5
forall b ∈ in(e) ∩ in(d) do6

forall s b→e do7
Count(s, b, d)- -;8
if Count(s, b, d) = 0 then9

Removeb(d) := Removeb(d) ∪ {s}; preStable := false;10

return preStable;11
}12

Fig. 4. Stabilization functions

used to refine the relation R such that if t a→e then R(t) is pruned to R(t)	Removea(e)
(lines 5-7 of preStabilize()). The Count table is used to efficiently refill the remove sets
(line 10 of probStabilize()), since it allows to test whether s a�R(e) in O(1). On the
other hand, in order to get an efficient refinement also for the distribution preorder
R, as in Zhang et al. [13], for any pair of states (x, y) we compute and store a set
Listener(x, y) � {(d, e) ∈ Distr×Distr | x ∈ supp(d), y ∈ supp(e)} that contains
all the pairs of distributions (d, e) such that the network N(d, e, R) could contain the
edge (x, y), i.e., the networks that are affected when the pair (x, y) is removed from R.
Indeed, these sets are used in probStabilize() to recognize the pairs (d, e) that have been
affected by the refinement of R due to the previous call of preStabilize() (lines 2-3 of
probStabilize()).

As a result, at the end of the initialization, the probStable flag is true (due to the ini-
tialization of R as≤R), whereas the preStable flag is false if there is at least a nonempty
remove set. The main loop of PSim then proceeds by repeatedly calling the stabilization
functions until 〈R,R〉 becomes 〈prob, pre〉-complete. More precisely, a call to preSta-
bilize(): (i) empties all the Remove sets, (ii) collects all the pairs removed from R into
the set Deleted, and (iii) sets the probStable flag to false when R has changed. On the
other hand, a call to probStabilize() relies on the sets Deleted and Listener to identify
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all the networks N(d, e, R) that have been affected by the refinement ofR due to preSta-
bilize(). For any pair (t, w) that has been removed from R, the call SMF(d, e, (t, w)) at
line 4 removes the edge (t, w) from the network for (d, e) and checks whether it still
has a maximum flow equals to 1. Hence, if this is not the case, e is removed from R(d).
Notice that such a pruning may induce an update of some Removeb(d) set, which in
turn triggers a further call of preStabilize() by setting the preStable flag to false.

The correctness of PSim is a direct consequence of Theorems 3.1 and 5.2 and the
fact that the procedures in Figure 4 correctly stabilize the preorders R and R. The com-
plexity bounds of PSim are given in terms of the following sizes. Let S = 〈Σ,Act ,�〉
be the input PLTS. Then, |Distr| = |⋃a∈Act posta(Σ)| is the number of distribu-
tions appearing as target of some transition. Also, the number of edges in S is |�| ≤
|Σ||Distr||Act |. Moreover, we consider the following sizes: p �

∑
d∈Distr | supp(d)|

and m �
∑

a∈Act

∑
s∈Σ

∑
d∈posta(s)(| supp(d)| + 1). Thus, p represents the full size

of post(Σ), being the number of states that appear in the support of some distribution in
post(Σ), while m represents the number of transitions from states to states in S, where
a “state transition” (s, t) is taken into account when s a→d and t ∈ supp(d). Clearly,
|Distr| ≤ p ≤ |Distr||Σ| and |Σ| ≤ |�| ≤ m ≤ |Distr||Σ|. The key point to remark
is that p ≤ m, since the “states” of S are always less than the “state transitions” in S.

Theorem 6.1 (Correctness and Complexity). Let S be a finite PLTS. PSim(S) termi-
nates with output 〈Rsim,≤Rsim〉 and runs in O(|Σ|(p2 + |�|))-time and O(p2 +(|Σ|+
|Distr|)|�|)-space.

It is easy to observe that (|Σ| + |Distr|)|�| ≤ m2, so that PSim results to be more
efficient than the most efficient probabilistic simulation algorithm in literature, that is
Zhang et al.’s algorithm [13], that runs in O(|Σ|m2)-time and O(m2)-space. Our scal-
ing down from the factor m to p, that is from the size of the “state transitions” to
the size of the “state” space, basically depends on the fact that in Zhang et al.’s al-
gorithm the same test d 	≤R e is repeated for every pair of states (si, ti) such that
si ∈ prea(d), ti ∈ prea(e), whereas in PSim once the test d 	≤R e has been performed,
every state ti is removed from R(si). Such a difference becomes evident when the input
PLTS S degenerates to a LTS. In this case a call to the function SMF() can be executed
in O(1), so that the time complexity of [13] boils down to O(|�|2), whereas in this
case PSim runs in O(|Σ||�|)-time, essentially reducing to Henzinger et al. [6]’s non-
probabilistic simulation algorithm. As a further difference, it is worth observing that
Zhang et al.’s algorithm relies on a positive logic that at each iteration i computes the
pairs (si, ti) such that ti ∈ Ri(si), whereas PSim follows a dual, negative, strategy that
removes from Ri the pairs (si, ti) such that ti 	∈ Ri(si).

7 Future Work

We have shown how abstract interpretation can be applied in the context of behavioral
relations between probabilistic processes. We focused here on bisimulation/simulation
relations on PLTSs and we showed how efficient algorithms that compute these behav-
ioral relations can be derived. As future work, we plan to investigate how this abstract
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interpretation approach can be adapted to characterize the weak variants of bisimula-
tion/simulation and the so-called probabilistic bisimulations/simulations on PLTSs [12].
We also intend to apply a coarsest partition refinement approach to design a “symbolic”
version of our PSim simulation algorithm. Analogously to the symbolic algorithm by
Ranzato and Tapparo [10] for nonprobabilistic simulation, the basic idea is to symbol-
ically represent the relations R on states and R on distributions through partitions (of
states and distributions) and corresponding relations between their blocks. It is worth
noting that this partition refinement approach has been already applied by Zhang [14] to
design a space-efficient simulation algorithm for PLTSs. Finally, we envisage to study
how the abstract interpretation approach can be related to the logical characterizations
of behavioral relations of probabilistic processes studied e.g. in [9].
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Abstract. Markov automata describe systems in terms of events which may be
nondeterministic, may occur probabilistically, or may be subject to time delays.
We define a novel notion of weak bisimulation for such systems and prove that
this provides both a sound and complete proof methodology for a natural ex-
tensional behavioural equivalence between such systems, a generalisation of re-
duction barbed congruence, the well-known touchstone equivalence for a large
variety of process description languages.

1 Introduction

Markov Automata (MA) [8] describe system behaviour in terms of non-deterministic,
probabilistic and timed events. The first two kinds of events are well-known from Prob-
abilistic Automata (PA) [22,23] and Probabilistic Labelled Transition Systems (pLTSs)
[5], while the third are taken to be random delays, governed by negative exponential
distributions parametrised by some delay λ ∈ R+. As explained in [10], timed events
can be given a straightforward operational semantics in terms of their parametric delays.

For example, consider the MAs in Figure 1, taken from [8]. From the initial state of
the first automaton, s, there is a race between two possible timed events, denoted by
double-headed arrows, each governed by the same rate, 4λ, for some arbitrary λ ∈ R+.
If one of these events wins, the state of the automaton changes to sa, from which some
external action a can happen. If the other timed event wins, the change of state is to
s1, from which an internal unobservable action, denoted by τ, can occur. Moreover, the
effect of this internal action is probabilistic; fifty percent of the time the state change will
be to sb, where action b can occur, while with the same probability the change will be to
sc, where c can occur. Formally this probabilistic behaviour is represented as an action
from a state, such as s1, to a distribution over states, represented as a darkened circle
connected to states in the support of the distribution, labelled with their probabilities.

On the other hand the second automaton is much more straightforward. From its
initial state there is a race between three timed events, two running at the same rate and
one at double the rate. Then one of the (external) actions a, b, c occurs depending on
which event wins the race.
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Fig. 1. Timed transitions and distributions

s

s1 s2

τ
1
2

1
2

2λ
a

2λ
b

u

u1 u2

λ λ

a b

Fig. 2. Timed transitions and distributions, again

Providing a satisfactory behavioural model of MAs is necessarily a complicated un-
dertaking. But as pointed out in [8], because of the nature of their underlying distribu-
tions, the timed events can be satisfactorily explained in terms of simple probabilistic
distributions determined by their rates. They propose a translation of MAs into PAs (cf.
Section 2). Since behavioural theories have already been developed for PAs [24,6,18,4],
we therefore automatically obtain such theories for MAs, via their induced PAs.

However, if one uses a standard behavioural theory for PAs, such as weak bisim-
ulation equivalence as defined in [15,24,18,6] then the two MAs in Figure 1 are dis-
tinguished. Instead the authors of [8] propose a new bisimulation equivalence between
PAs, which enjoys standard properties such as compositionality, and which identifies
these two MAs. But as the authors point out their equivalence still distinguishes between
the MAs in Figure 2. The question naturally arises: which MAs should be distinguished,
and which be deemed equivalent. This is the topic of the current paper.

We approach the question indirectly, by giving criteria for reasonable behavioural
equivalences between MAs; this induces a touchstone extensional equivalence between
systems, namely the largest equivalence, ≈behav, which satisfies these criteria. Thus two
MAs should only be distinguished on the basis of the chosen criteria.

Having an independent notion of which systems should, and which should not, be
distinguished, one can then justify a particular notion of bisimulation by showing that it
captures precisely the touchstone equivalence, ≈behav. In other words, a particular defini-
tion of bisimulation is appropriate because ≈bis, the associated bisimulation equivalence,



On the Semantics of Markov Automata 309

(i) is sound w.r.t. the touchstone equivalence, that is s1 ≈bis s2 implies s1 ≈behav s2
(ii) provides a complete proof methodology for the touchstone equivalence, that is

s1 ≈behav s2 implies s1 ≈bis s2.

This approach originated in [13] but has now been widely used for different pro-
cess description languages; for example see [14,20] for its application to higher-order
process languages, [19] for mobile ambients and [9] for asynchronous languages. More-
over in each case the distinguishing criteria are more or less the same. The touchstone
equivalence should be

(i) compositional; that is preserved by natural operators for constructing systems
(ii) barb-preserving; barbs are simple experiments observers perform on systems

(iii) reduction-closed; this is a natural condition on the reduction semantics of systems
which ensures that nondeterministic choices are in some sense preserved.

We adapt this approach to MAs. Using natural versions of these criteria for MAs we
obtain an appropriate touchstone equivalence, reduction barbed congruence (≈rbc). We
then develop a new theory of bisimulations which is both sound and complete for ≈rbc.

The remainder of the paper is organised as follows. In the next section we give our
definition of Markov automata MA, a slight generalisation of that in [8]; in addition to
the timed events parametrised on specific delays, we have special timed events which
have indefinite, or imprecise delay times associated with them. In order to model the
delay operators probabilistically, we then show how to translate an MA into a PA, as
suggested in [8]. For this purpose we use a slight variation, called MLTSs, in which
there are distinguished actions labelled by weights. We then develop our new defini-
tion of bisimulation equivalence for MLTSs, thereby inducing bisimulation equivalence
between MAs; this construction is illustrated via examples. In Section 3 we show how
MAs can be composed, using a parallel operator based on CCS [17]. In fact this is ex-
tended to an interpretation of an Markovian extension of CCS, mCCS, as an MA. We
then show that bisimulation equivalence is preserved by this form of composition.

Section 4 contains the main theoretical results of the paper. We give a formal def-
inition of the touchstone equivalence ≈rbc, and outline the proof that this is captured
precisely by our new notion of bisimulation. The paper ends with a brief comparison
with related work in Section 5.

2 Markov Automata

A (discrete) probability subdistribution over a set S is a function Δ : S → [0, 1] with∑
s∈S Δ(s) ≤ 1; the support of such an Δ is the set �Δ� = { s ∈ S | Δ(s) > 0 }. A subdistri-

bution is a (total, or full) distribution if
∑

s∈S Δ(s) = 1. The point distribution s assigns
probability 1 to s and 0 to all other elements of S , so that �s� = s. We use Dsub(S ) to
denote the set of subdistributions over S , andD(S ) its subset of full distributions.

We write R+ for the set of all positive real numbers. Let {Δk | k ∈ K} be a set of
subdistributions, possibly infinite. Then

∑
k∈K Δk is the real-valued function in S → R+

defined by (
∑

k∈K Δk)(s) :=
∑

k∈K Δk(s). This is a partial operation on subdistributions
because for some state s the sum of Δk(s) might exceed 1. If the index set is finite, say
{1..n}, we often write Δ1+ . . .+Δn. For p a real number from [0, 1] we use p ·Δ to denote
the subdistribution given by (p · Δ)(s) := p · Δ(s). If

∑
k∈K pk = 1 for some collection of

pk ≥ 0, and the Δk are distributions, then so is
∑

k∈K pk · Δk.



310 Y. Deng and M. Hennessy

Definition 1. A Markov automaton (MA), is a quadruple 〈S ,Actτ,→, �→〉, where
(i) S is a set of states

(ii) Actτ is a set of transition labels, with distinguished element τ
(iii) the relation→ is a subset of S × Actτ ×D(S )
(iv) the relation �→ is a subset of S × (R+ ∪ {δ}) ×D(S )

satisfying (a) s
d�→Δ implies s � τ−−→, d = δ or λ, (b) s

δ�→Δ1 and s
δ�→Δ2 implies Δ1 = Δ2. The

MA is finitary if S is finite and each state has only finitely many outgoing transitions.

This is a mild generalisation of the MAs in [8]; for example we allow the residual of
a timed action to be a distribution, and maximal progress, assumption (a), is built in to
the definition. But the major extension is the introduction of the indefinite delay actions

denoted by the special action δ, s
δ�→ Δ; this can be viewed as a timed action whose

underlying rate is unknown. Such indefinite actions, often called passive when they are
external, are widely used in the literature [3,12], although their precise properties vary
between publications; see [10], page 66 for a discussion.

Following [8], we study MAs indirectly, by considering their derived structures.

Definition 2. A Markov labelled transition system (MLTS) is a triple 〈S ,Actτ,→〉, where
S and Actτ are as in Definition 1, and→ is a subset of S × (Actτ,δ ∪ R+) ×D(S ) satis-
fying s λ1−−→ Δ1 and s λ2−−→ Δ2 implies λ1 = λ2 and Δ1 = Δ2, in addition to the constraints
corresponding to (a) and (b) in Definition 1. Here Actτ,δ means Actτ ∪ {δ}. ��

A (non-probabilistic) labelled transition system (LTS) may be viewed as a degenerate
MLTS — one in which only point distributions are used, and the special actions labelled
by δ and λ ∈ R+ are vacuous. An MLTS is finitary if the state set S is finite and for each
s ∈ S the set {(μ, Δ) | s μ−−→ Δ, μ ∈ Actτ,δ ∪ R+, Δ ∈ D(S )} is finite.

Admittedly MAs and MLTSs are very similar; the difference lies in the intent. We
interpret the former in the latter, thereby modelling the passage of time probabilistically.
The essential ingredient in the interpretation is the function on the states of an MA,

defined by Rate(s) =
∑
{ λi | s

λi�→ Δi }. Given an MA M as in Definition 1 the MLTS
mlts(M) is given by 〈S ,Actτ,→〉 where:
(a) for μ ∈ Actτ the actions s μ−−→ Δ are inherited from M

(b) s δ−−→ Δ whenever s
δ�→ Δ in M

(c) for λ ∈ R+, s λ−−→ Δ if Rate(s) = λ > 0 and Δ =
∑
{ pi · Δi | s

λi�→ Δi } where
pi =

λi
Rate(s)

Example 1. The derived MLTSs of the two MAs in Figure 1 are given in Figure 3.
Note that the time dependent race between the evolution of s to sa or s1 in Figure 1 is
represented in Figure 3 by a single arrow labelled by the total rate of s to a distribution
representing the chances of s1 and s2 winning the race. Similarly in the second MA
the race from v to va, vb, vc is now represented by a single weighted arrow to a similar
distribution. The weights on these arrows will be used for compositional reasoning. ��

In an MLTS actions are only performed by states, but in general we allow distribu-
tions over states to perform an action. For this purpose, we lift these relations so that
they also apply to subdistributions [5].
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Fig. 3. Derived MLTSs of MAs in Figure 1

Definition 3. Let R ⊆ S × Dsub(S ) be a relation from states to subdistributions in an
MLTS. Then R ⊆ Dsub(S ) ×Dsub(S ) is the smallest relation that satisfies

(i) s R Θ implies s R Θ, and
(ii) Δi R Θi for i ∈ I implies (

∑
i∈I pi · Δi) R (

∑
i∈I pi · Θi) for any pi ∈ [0, 1] with∑

i∈I pi ≤ 1. ��

We apply this operation to the relations μ−−→ in the MLTS for μ ∈ Actτ,δ, where we also
write μ−−→ for μ−−→. Thus as source of a relation μ−−→ we now also allow distributions, and
even subdistributions.

Definition 4 (Hyper-derivations). In an MLTS a hyper-derivation consists of a collec-
tion of subdistributions Δ, Δ→k , Δ

×
k , for k ≥ 0, with the following properties:

Δ = Δ→0 + Δ
×
0

Δ→0
τ−−→ Δ→1 + Δ

×
1

... (1)

Δ→k
τ−−→ Δ→k+1 + Δ

×
k+1

...

Δ′ =

∞∑
k=0

Δ×k

We call Δ′ a hyper-derivative of Δ, and write Δ =⇒ Δ′. ��

We refer to [5] for more discussion about hyper-derivations.
With these concepts we can now define the appropriate notion of weak moves in a
MLTS, with which we may then use to define our concept of bisimulations. We write
Δ

τ
==⇒ Δ′ to mean Δ =⇒ Δ′ and Δ α

==⇒ Δ′, for α ∈ Actδ ∪ R+, to mean Δ =⇒ λ−−→=⇒ Δ′.
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Definition 5 (Bisimulations). For R⊆ D(S ) × D(S ), where S is the set of states in
an MLTS, let B(R) be the relation over D(S ) × D(S ) determined by letting Δ B(R) Θ
if, for each μ ∈ Actτ,δ ∪ R+ and all finite sets of probabilities { pi | i ∈ I } satisfying∑

i∈I pi = 1,

(i) whenever Δ μ
==⇒
∑

i∈I pi · Δi, for any distributions Δi, there are distributions Θi

with Θ μ
==⇒
∑

i∈I pi · Θi, such that Δi R Θi for each i ∈ I
(ii) symmetrically, whenever Θ μ

==⇒
∑

i∈I pi · Θi, for any distributions Θi, there are
distributions Δi with Δ μ

==⇒
∑

i∈I pi · Δi, such that Δi R Θi for each i ∈ I.

The largest solution to R= B(R) is denoted by ≈bis. ��

Because of the form of the functionalB it is easy to establish that ≈bis is an equivalence
relation. However, due to the use of weak arrows, and the quantification over sets of
probabilities, it is not easy to exhibit witness bisimulations. So we give an alternative
characterisation of ≈bis in terms of a relation between states and distributions.

Definition 6 (Simple bisimulations). For R⊆ S × D(S ), where again S is the set of
states in an MLTS, letSB(R) be the relation over S×D(S ) defined by letting s SB(R) Θ
if, for each μ ∈ Actτ,δ ∪ R+,

(i) whenever s μ−−→ Δ′, there is some Θ μ
==⇒ Θ′, such that Δ′ R Θ′

(ii) there exists some Δ ∈ D(S ) such that s τ
==⇒ Δ and Θ R Δ.

We use ≈sbis to denote the largest solution to R= SB(R). ��

Example 2. Consider again Figure 3. We have s ≈sbis v because the following relation
{〈s, v〉, 〈s1,

1
2 · vb +

1
2 · vc〉, 〈sa, va〉, 〈sb, vb〉, 〈sc, vc〉, 〈v, s〉, 〈va, sa〉, 〈vb, sb〉, 〈vc, sc〉}

is a simple bisimulation and therefore s ≈sbis v.
Consider the MA in Figure 4; starting from the initial state s0 an ever increasing

number of internal τ moves are performed before the eventual timed λ action, but with
ever decreasing probability. The relation

{ 〈λ.p, si〉, 〈λ.p, ti〉, 〈si, λ.p〉, 〈ti, λ.p〉 | i ≥ 0 }
is a simple bisimulation, and therefore s0 ≈sbis λ.p, where λ.p describes in an obvious
manner the MA which does a timed action at rate λ and evolves to the state p.
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Now consider the MA in Figure 2. We have s �≈sbis u because the transition s τ−−→
1
2 · s1 +

1
2 · s2 cannot be matched by any transition from u. The state u cannot enable

internal actions, so the only weak internal transition from u is u τ
==⇒ u. However, the

derivative u is not able to simulate 1
2 · s1 +

1
2 · s2 according to the lifted relation ≈sbis.

Suppose for a contradiction that ( 1
2 · s1 +

1
2 · s2) ≈sbis u. Then we must have s1 ≈sbis u and

s2 ≈sbis u; obviously neither of these hold. ��

The two relations ≈bis and ≈sbis are closely related, as stated by the theorem below.

Theorem 1. Let Δ and Θ be two distributions in a finitary MLTS.

(i) If Δ ≈bis Θ then there is some Θ′ with Θ τ
==⇒ Θ′ and Δ ≈sbis Θ

′

(ii) If Δ ≈sbis Θ then Δ ≈bis Θ. ��

For the remainder of the paper we will apply these relations, developed for MLTSs, to
the states and distributions of MAs. For example we write s ≈sbis Δ, where s is a state in
an MA M and Δ a distribution, to mean s ≈sbis Δ in the derived mlts(M).

3 Composing Markov Automata

Here we assume that the set of actions Act is equipped with a complementation function
· : Act → Act satisfying a = a; we say a is the complement of a. Then given two
MAs, Mi = 〈S 1,Actτ,→, �→, 〉 for i = 1, 2, their composition (M1 | M2) is given by
〈S 1 | S 2,Actτ,→, �→, 〉 where the set of states S 1 | S 2 = { s1 | s2 | si ∈ S i, i = 1, 2 }
and the relations are determined by the rules in Figure 5. The rules use the obvious
extension of the function | on pairs of states to pairs of distributions. To be precise Δ|Θ
is the distribution defined by: (Δ|Θ)(s) = Δ(s1) × Θ(s2) if s = s1|s2, and 0 otherwise. It
can be checked that if M1 and M2 are Markov automata, then so is (M1 | M2). We can
internalise this composition relation by saying an Markov automaton M is par-closed
if (M | M) is already a sub-MA of M.

The simplest way of constructing a par-closed MA is by interpreting a process al-
gebra as a universal Markov automaton. To this end we introduce the language mCCS
whose terms are given by:

P,Q ::= 0 | δ.P | λ.D, λ ∈ R+ | μ:D, μ ∈ Actτ | P + Q | P | Q | A

D ::= (⊕i∈I pi · Pi)

where A ranges over a set of process constants, with each of which is associated a
definition, A⇐ Def(A). mCCS is interpreted as an Markov automaton whose states are
all the terms in the language, and whose arrows are determined by the rules in Figure 6,
together with those in Figure 5; we have omitted the obvious symmetric counterparts to
the rules (ext.l), (ext.l.l) and (ext.d.l). Other operations, such as the standard hiding
Q\a, a ∈ Act, can also be easily given an interpretation. We say a process P from mCCS
is finitary if the sub-MA consisting of all states reachable from P is finitary, and we use
finitary mCCS to refer to the MA consisting of all such finitary P.

The rules (action) and (delay) use the notation �D�, where D has the form (⊕i∈I pi ·
Pi), to denote the obvious distribution over process terms, whose support consists of
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(par.l)

s μ−−→ Δ
s | t μ−−→ Δ | t

(par.r)

t μ−−→ Θ
s | t μ−−→ s | Θ

(par.i)

s a−−→ Δ, t a−−→ Θ
s | t τ−−→ Δ | Θ
(par.l.t)

s
d�→ Δ, t

δ�→Θ, s | t � τ−−→

s | t d�→ Δ | Θ

(par.r.t)

s
δ�→ Δ, t d�→ Θ, s | t � τ−−→

s | t d�→ Δ | Θ
d = δ, λ

Fig. 5. Composing Markov automata

P1, . . .Pn, each with weight pi respectively. Most of the other rules should be self-
explanatory, although the justification for the rules for λ transitions depends on non-
trivial properties of exponential distributions, as explained in detail in [10].

Nevertheless, this interpretation of mCCS is quite different than that of other Marko-
vian process calculi, such as those in [10,3]. First the actions μ : D are insistent rather
than lazy; they do not allow time to pass. For example the process (λ.Q | a:P) is stuck
with respect to time; it can not perform any timed action. This is because the paral-
lel operator requires each component to perform a timed action, which a : P can not
do, before time can pass. To obtain lazy actions one can define a.P by the declaration

A ⇐ a:P + δ.A. Then we have the transition λ.Q | a.P λ�→ Q | a.P by an application of

the rule (par.l.t) to the transitions λ.Q
λ�→ Q and a.P

δ�→ a.P.
The parallel operator is even more constraining in that at most one of its components

can perform a definite delay. Again this is reminiscent of many existing Markovian pro-
cess algebras [2,3], although these tend to have delays associated with external actions.
But in the setting of mCCS the net effect is an operational semantics very similar to
that in [8]. For example consider the process Q = (λ1.P1 | λ2.P2). This has three timed
actions:

(i) Q
λ1�→ (P1 | λ2.P2) via an application of the rule (par.l.t) to the actions λ1.P1

λ1�→ P1

and λ2.P2
δ�→ λ2.P2

(ii) Q
λ2�→ (λ1P2 | P2) via an application of (par.r.t) to the actions λ1.P1

δ�→ λ1.P and

λ2.P2
λ2�→ P2

(iii) Q
δ�→Q via an application of either of (par.l.t) or (par.r.t) to the transitions λ1.P1

δ�→
λ1.P1 and λ1.P1

δ�→ λ1.P1.

Theorem 2 (Compositionality). Let Δ, Θ and Γ be any distributions in a finitary par-
closed MA. If Δ ≈bis Θ then Δ | Γ ≈bis Θ | Γ. ��
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(action)

μ:D μ−−→ �D�

(recursion)

Def(A) α−−→ Δ
A α−−→ Δ

α = μ, λ, δ

(ext.l)

P μ−−→ Δ,
P + Q μ−−→ Δ

(ext.l.l)

P
λ�→ Δ, Q � τ−−→

P + Q
λ�→ Δ

(delay)

λ.D
λ�→ �D�,

(d.δ)

λ.D
δ�→ λ.D

(δ.e)

P μ−−→ Δ
δ.P μ−−→ Δ

(δ.d)

P � τ−−→

δ.P
δ�→ P

(ext)

P
δ�→ Δ1, Q

δ�→ Δ2

P + Q
δ�→ Δ1 + Δ2

(ext.d.l)

P
δ�→ Δ, Q � δ�→, Q � τ−−→

P + Q
δ�→ Δ

Fig. 6. Operational semantics of mCCS

4 Soundness and Completeness

Consider an arbitrary par-closed MA M = 〈S ,Actτ,→, �→〉. Experimenting on processes
in M consists in observing what communications a process can perform, as it evolves
by both internal moves and the passage of time. To make this evolution precise let
Δ ==⇒� Δ′ be the least reflexive relation satisfying:
(a) Δ ==⇒� Δ1 and Δ1

τ
==⇒ Δ′ implies Δ ==⇒� Δ′

(b) Δ ==⇒� Δ1 and Δ1
λ−−→ Δ′ implies Δ ==⇒� Δ′, where λ ∈ R+

(c) Δi ==⇒� Δ′i for each i ∈ I implies (
∑

i∈I pi · Δi) ==⇒� (
∑

i∈I pi · Δ′i) where
∑

i∈I pi = 1.

Thus Δ ==⇒� Δ′ is a relation between distributions in the mlts(M) which allows reduction
either by internal actions τ or definite delay actions λ; with the latter the reductions are
to distributions determined by the rates of the states in the support of Δ.

Definition 7 (Barbs). For Δ ∈ D(S ) and a ∈ Act, let Va(Δ) =
∑
{Δ(s) | s a−−→}. We

write Δ ⇓≥p
a whenever Δ ==⇒� Δ′, whereVa(Δ′) ≥ p. ��

Then we say a relation R is barb-preserving if Δ R Θ then Δ ⇓≥p
a iff Θ ⇓≥p

a . It is
reduction-closed if Δ R Θ implies

(i) whenever Δ ==⇒� Δ′, there is a Θ ==⇒� Θ′ such that Δ′ R Θ′
(ii) whenever Θ ==⇒� Θ′, there is a Δ ==⇒� Δ′ such that Δ′ R Θ′.

Finally, we say a relation R is compositional if Δ1 R Δ2 implies (Δ1 | Θ) R (Δ2 | Θ).

Definition 8. In a par-closed MA, let ≈rbc be the largest relation over the states which
is barb-preserving, reduction-closed and compositional. ��

Example 3. Consider the two processes P1 = λ1.Q1 and P2 = λ2.Q2 where λ1 < λ2

and Qi are two arbitrary processes. We can show that P1 �≈rbc P2 by exhibiting a testing
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process T such that the barbs of (P1 | T ) and (P2 | T ) are different. For example let
T = δ.τ. 0+λ1.succ. In (Pi | T ) there is a race between two timed events; in (P2 | T )
their rates are λ1 versus λ2 while in (P1 | T ) both events have the same rate. If the

timed event in the test wins out, the action succ will occur. Consequently (P1 | T ) ⇓≥
1
2

succ.
However (P2 | T ) does not have this barb; instead (P2 | T ) ⇓≥q

succ, where q = λ1
λ1+λ2

; q is

strictly smaller than 1
2 since λ1 < λ2.

It follows that λ1.λ2.P �≈rbc λ2.λ1.P when λ1 and λ2 are different. ��

Example 4. Consider the processes P1 = a : Q, P2 = a.Q, and P3 = λ.P2, where Q is
an arbitrary process, and we have seen that a.Q is shorthand for a recursively defined
process A = a:Q + δ.A.

Note that according to our semantics P1 does not let time pass. Let T be the testing
process λ.(ā.succ + τ. 0). The process P1 | T cannot evolve, thus (P1 | T ) �⇓>0

succ
1. How-

ever, we have P2 | T
λ�→ P2 | (ā.succ + τ. 0) τ−−→ Q | succ, thus (P2 | T ) ⇓≥1

succ. The only

comparable barb for P3 is (P3 | T ) ⇓≥
1
2

succ, because if the timed event in the test takes
place, then by maximal progress the τ action must happen before the timed event in the
process. It follows that the three processes P1, P2 and P3 can be distinguished. ��

Although by definition ≈rbc is closed w.r.t. the evolution relation ==⇒�, in fact it is also
closed w.r.t. the individual components, and indeed the definite delay operator.

Proposition 1. Suppose Δ ≈rbc Θ.
(i) If Δ μ

==⇒ Δ′ with μ ∈ Actτ then Θ μ
==⇒ Θ′ such that Δ′ ≈rbc Θ

′.
(ii) If Δ λ

==⇒ Δ′ with λ ∈ R+ then Θ λ
==⇒ Θ′ such that Δ′ ≈rbc Θ

′.
(iii) If Δ δ

==⇒ Δ′ then Θ δ
==⇒ Θ′ such that Δ′ ≈rbc Θ

′. ��

Example 5. Consider the two MAs s and u from Figure 2, discussed in the Introduction.
Suppose s ≈rbc u. Then by compositionality we have s | T ≈rbc u | T , where T is
the process τ.δ.ā.succ + τ.δ.b̄.succ. Let Δ denote the point distribution 0 | succ. Since
s | T ==⇒� Δ, we have (s | T ) ⇓≥1

succ.
However, the weak derivatives of u | T under the evolution relation are very few, and

one can easily check that none will have exactly the barbs of Δ because if (u | T ) ⇓≥p
succ

then p is at most 1
2 . It follows that s and u are indeed behaviourally different. ��

Theorem 3 (Soundness). In a finitary par-closed MA, if Δ ≈bis Θ then Δ ≈rbc Θ. ��

In order to obtain completeness, the converse of Theorem 3, we need to ensure that the
MA under consideration can provide sufficient contexts in order to probe the behaviour
of systems. For this purpose, we use the language mCCS.

Theorem 4 (Completeness). In finitary mCCS, Δ ≈rbc Θ implies Δ ≈bis Θ. ��

5 Conclusion and Related Work

The thesis underlying this paper is that bisimulations should be considered as a proof
methodology for demonstrating behavioural equivalence between systems, rather than

1 Here we use the notation P �⇓>0
a to mean that P ⇓≥p

a does not hold for any p > 0.
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providing the definition of the extensional behavioural equivalence itself. We have
adapted the well-known reduction barbed congruence used for a variety of process cal-
culi [13,19,9], to obtain a touchstone extensional behavioural equivalence for a minor
variation of the Markov automata, MAs, originally defined in [8]. Incidently there are
also minor variations on the formulation of reduction barbed congruence, often called
contextual equivalence or barbed congruence, in the literature. See [9,21] for a discus-
sion of the differences.

Then we have defined a novel notion of (weak) bisimulations which provide both a
sound and complete coinductive proof methodology for establishing the equivalence be-
tween such automata. These results were achieved within the context of a rich language,
mCCS, for defining MAs. Of particular significance is the presence of insistent actions
and a compositional operator which is sensitive to the passage of time; this combination
is reminiscent of synchronous CCS [16], although similar compositional operators have
already been used for certain varieties of Markov processes [3]. We should point out that
our interpretation of mCCS is somewhat simplistic, in that unlike IMC in [10] it does
not take into account the multiplicities of action occurrences. However, our interpreta-
tion is sufficient for the purposes of this paper. If we were interested in, for example,
developing an algebraic theory for mCCS then a more refined interpretation would be
required; this could easily be adapted from [10].

There are already quite a few variations on the theme of bisimulations for PAs which
can be used to establish behavioural equivalences between MAs [24,18,15,6,11]. A
characteristic of our formulation is that it allows bisimulations to relate states to distri-
butions rather than simply states, thus differentiating it from most of these. One excep-
tion is [8], where properties of subdistributions are also used in defining their bisimula-
tions. However, our bisimulation ≈bis is different from the bisimulation of [8], denoted
by ≈MA here, because the former is defined for full distributions while the latter is for
subdistributions. Even if we restrict ≈MA to full distributions, they are still different. For
example, we have A ≈bis 0 but A �≈MA 0, where A ⇐ τ:A. We conjecture that in general
≈bis is strictly coarser than ≈MA (restricted to full distributions), but they coincide for
non-divergent systems [7].

Our approach to Markov processes is based directly on that of [8,10], in which ex-
ternal actions are considered instantaneous, and time can only pass when no more in-
ternal activity can be performed. Moreover it is only timed actions which are subject to
Markovian behaviour. However, there is a large literature on a more general framework
in which Markovian behaviour applies to all actions. See [12] or Chapter 3 of [1] for
a representative exposition. It would be interesting to see if our notion of bisimulation
could be adapted to such a framework.

Acknowledgement. We thank Christian Eisentraut for the interesting discussion on
clarifying the relationship between ≈bis and ≈MA.
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Abstract. We study the runtime in probabilistic programs with unbounded recur-
sion. As underlying formal model for such programs we use probabilistic push-
down automata (pPDA) which exactly correspond to recursive Markov chains.
We show that every pPDA can be transformed into a stateless pPDA (called
“pBPA”) whose runtime and further properties are closely related to those of the
original pPDA. This result substantially simplifies the analysis of runtime and
other pPDA properties. We prove that for every pPDA the probability of perform-
ing a long run decreases exponentially in the length of the run, if and only if the
expected runtime in the pPDA is finite. If the expectation is infinite, then the prob-
ability decreases “polynomially”. We show that these bounds are asymptotically
tight. Our tail bounds on the runtime are generic, i.e., applicable to any proba-
bilistic program with unbounded recursion. An intuitive interpretation is that in
pPDA the runtime is exponentially unlikely to deviate from its expected value.

1 Introduction

We study the termination time in programs with unbounded recursion, which are either
randomized or operate on statistically quantified inputs. As underlying formal model
for such programs we use probabilistic pushdown automata (pPDA) [13,14,6,3] which
are equivalent to recursive Markov chains [18,16,17]. Since pushdown automata are a
standard and well-established model for programs with recursive procedure calls, our
abstract results imply generic and tight tail bounds for termination time, the main per-
formance characteristic of probabilistic recursive programs.

A pPDA consists of a finite set of control states, a finite stack alphabet, and a finite
set of rules of the form pX x

↪→ qα, where p, q are control states, X is a stack symbol, α
is a finite sequence of stack symbols (possibly empty), and x ∈ (0, 1] is the (rational)
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probability of the rule. We require that for each pX, the sum of the probabilities of
all rules of the form pX x

↪→ qα is equal to 1. Each pPDA Δ induces an infinite-state
Markov chain MΔ, where the states are configurations of the form pα (p is the current
control state and α is the current stack content), and pXβ x→ qαβ is a transition of MΔ iff
pX x
↪→ qα is a rule of Δ. We also stipulate that pε 1→ pε for every control state p, where

ε denotes the empty stack. For example, consider the pPDA Δ̂ with two control states
p, q, two stack symbols X, Y, and the rules

pX ↪
1/4
−−→ pε, pX ↪

1/4
−−→ pXX, pX ↪

1/2
−−→ qY, pY ↪

1−→ pY, qY ↪
1/2
−−→ qX, qY ↪

1/2
−−→ qε, qX ↪

1−→ qY .

The structure of Markov chain MΔ̂ is indicated below.

pε pX pXX pXXX pXXXX

qε qY qX qYX qXX qYXX qXXX qYXXX

1

1

1/4

1/2

1/4

1/2

1/4

1/2

1/4

1/2

1/4

1/4 1/4 1/4 1/4

11/211/211/211/2

1/21/21/21/2

pPDA can model programs that use unbounded “stack-like” data structures such as
stacks, counters, or even queues (in some cases, the exact ordering of items stored in
a queue is irrelevant and the queue can be safely replaced with a stack). Transition
probabilities may reflect the random choices of the program (such as “coin flips” in ran-
domized algorithms) or some statistical assumptions about the input data. In particular,
pPDA model recursive programs. The global data of such a program are stored in the
finite control, and the individual procedures and functions together with their local data
correspond to the stack symbols (a function call/return is modeled by pushing/popping
the associated stack symbol onto/from the stack). As a simple example, consider the
recursive program Tree of Figure 1, which computes the value of an And/Or-tree, i.e.,
a tree such that (i) every node has either zero or two children, (ii) every inner node is
either an And-node or an Or-node, and (iii) on any path from the root to a leaf And- and
Or-nodes alternate. We further assume that the root is either a leaf or an And-node. Tree
starts by invoking the function And on the root of a given And/Or-tree. Observe that
the program evaluates subtrees only if necessary. Now assume that the input are ran-
dom And/Or trees following the Galton-Watson distribution: a node of the tree has two
children with probability 1/2, and no children with probability 1/2. Furthermore, the
conditional probabilities that a childless node evaluates to 0 and 1 are also both equal
to 1/2. On inputs with this distribution, the algorithm corresponds to a pPDA ΔTree of
Figure 1 (the control states r0 and r1 model the return values 0 and 1).

We study the termination time of runs in a given pPDA Δ. For every pair of control
states p, q and every stack symbol X of Δ, let Run(pXq) be the set of all runs (infinite
paths) in MΔ initiated in pX which visit qε. The termination time is modeled by the
random variable TpX , which to every run w assigns either the number of steps needed
to reach a configuration with empty stack, or ∞ if there is no such configuration. The
conditional expected value E [TpX | Run(pXq)], denoted just by E[pXq] for short, then
corresponds to the average number of steps needed to reach qε from pX, computed only
for those runs initiated in pX which terminate in qε. For example, using the results of
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function And(node)

if node.leaf then
return node.value

else
v := Or(node.left)

if v = 0 then
return 0

else
return Or(node.right)

function Or(node)

if node.leaf then
return node.value

else
v := And(node.left)

if v = 1 then
return 1

else
return And(node.right)

qA 1/4
↪→ r1ε qO 1/4

↪→ r1ε

qA
1/4
↪→ r0ε qO

1/4
↪→ r0ε

qA
1/2
↪→ qOA qO

1/2
↪→ qAO

r0A
1
↪→ r0ε r1O

1
↪→ r1ε

r1A 1
↪→ qO r0O 1

↪→ qA

Fig. 1. The program Tree and its pPDA model ΔTree

[13,14,18], one can show that the functions And and Or of the program Tree terminate
with probability one, and the expected termination times can be computed by solving a
system of linear equations. Thus, we obtain the following:

E[qAr0] = 7.155113 E[qOr0] = 7.172218 E[r0Ar0] = 1.000000 E[r1Or1] = 1.000000
E[qAr1] = 7.172218 E[qOr1] = 7.155113 E[r1Ar0] = 8.172218 E[r0Or1] = 8.172218

E[r1Ar1] = 8.155113 E[r0Or0] = 8.155113

However, the mere expectation of the termination time does not provide much informa-
tion about its distribution until we analyze the associated tail bound, i.e., the probability
that the termination time deviates from its expected value by a given amount. That
is, we are interested in bounds for the conditional probability P(TpX ≥ n | Run(pXq)).
(Note this probability makes sense regardless of whether E[pXq] is finite or infi-
nite.) Assuming that the (conditional) expectation and variance of TpX are finite, one
can apply Markov’s and Chebyshev’s inequalities and thus yield bounds of the form
P(TpX ≥ n | Run(pXq)) ≤ c/n and P(TpX ≥ n | Run(pXq)) ≤ c/n2, respectively, where
c is a constant depending only on the underlying pPDA. However, these bounds are
asymptotically always worse than our exponential bound (see below). If E[pXq] is infi-
nite, these inequalities cannot be used at all.

Our contribution. The main contributions of this paper are the following:

• We show that every pPDA can be effectively transformed into a stateless pPDA
(called “pBPA”) so that all important quantitative characteristics of runs are pre-
served. This simple (but fundamental) observation was overlooked in previous works
on pPDA and related models [13,14,6,3,18,16,17], although it simplifies virtually all
of these results. Hence, we can w.l.o.g. concentrate just on the study of pBPA. More-
over, for the runtime analysis, the transformation yields a pBPA all of whose symbols
terminate with probability one, which further simplifies the analysis.

• We provide tail bounds for TpX which are asymptotically optimal for every pPDA and
are applicable also in the case when E[pXq] is infinite. More precisely, we show that
for every pair of control states p, q and every stack symbol X, there are essentially
three possibilities:

− There is a “small” k such that P(TpX ≥ n | Run(pXq)) = 0 for all n ≥ k.
− E[pXq] is finite and P(TpX ≥ n | Run(pXq)) decreases exponentially in n.
− E[pXq] is infinite and P(TpX ≥ n | Run(pXq)) decreases “polynomially” in n.
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The exact formulation of this result, including the explanation of what is meant by a
“polynomial” decrease, is given in Theorem 7 (technically, Theorem 7 is formulated
for pBPA which terminate with probability one, which is no restriction as explained
above). Observe that a direct consequence of the above theorem is that all conditional
moments E [Tk

pX | Run(pXq)] are simultaneously either finite or infinite (in particular,
if E[pXq] is finite, then so is the conditional variance of TpX ).

The characterization given in Theorem 7 is effective. In particular, it is decidable in
polynomial space whether E[pXq] is finite or infinite by using the results of [13,14,18],
and if E[pXq] is finite, we can compute concrete bounds on the probabilities. Our results
vastly improve on what was previously known on the termination time TpX . Previous
work, in particular [14,2], has focused on computing expectations and variances for a
class of random variables on pPDA runs, a class that includes TpX as prime example.
Note that our exponential bound given in Theorem 7 depends, like Markov’s inequality,
only on expectations, which can be efficiently approximated by the methods of [14,12].

An intuitive interpretation of our results is that pPDA with finite (conditional) ex-
pected termination time are well-behaved in the sense that the termination time is ex-
ponentially unlikely to deviate from its expectation. Of course, a detailed analysis of
a concrete pPDA may lead to better bounds, but these bounds will be asymptotically
equivalent to our generic bounds. Also note that the conditional expected termination
time can be finite even for pPDA that do not terminate with probability one. Hence, for
every ε > 0 we can compute a tight threshold k such that if a given pPDA terminates at
all, it terminates after at most k steps with probability 1−ε (this is useful for interrupting
programs that are supposed but not guaranteed to terminate).

Proof techniques. The main mathematical tool for establishing our results on runtime
is (basic) martingale theory and its tools such as the optional stopping theorem and
Azuma’s inequality (see Section 3.2). More precisely, we construct two different mar-
tingales corresponding to the cases when the expected termination time is finite resp.
infinite. In combination with our reduction to pBPA this establishes a powerful link
between pBPA, pPDA, and martingale theory.

Our analysis of termination time in the case when the expected termination time is
infinite builds on Perron-Frobenius theory for nonnegative matrices as well as on recent
results from [18,12]. We also use some of the observations presented in [13,14,6].

Related work. The application of Azuma’s inequality in the analysis of particular ran-
domized algorithms is also known as the method of bounded differences; see, e.g.,
[24,10] and the references therein. In contrast, we apply martingale methods not to
particular algorithms, but to the pPDA model as a whole.

Analyzing the distribution of termination time is closely related to the analysis of
multitype branching processes (MT-BPs) [19]. A MT-BP is very much like a pBPA (see
above). The stack symbols in pBPA correspond to species in MT-BPs. An ε-rule corre-
sponds to the death of an individual, whereas a rule with two or more symbols on the
right hand side corresponds to reproduction. Since in MT-BPs the symbols on the right
hand side of rules evolve concurrently, termination time in pBPA does not correspond
to extinction time in MT-BPs, but to the size of the total progeny of an individual, i.e.,
the number of direct or indirect descendants of an individual. The distribution of the
total progeny of a MT-BP has been studied mainly for the case of a single species, see,
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e.g., [19,25,26] and the references therein, but to the best of our knowledge, no tail
bounds for MT-BPs have been given. Hence, Theorem 7 can also be seen as a contribu-
tion to MT-BP theory.

Stochastic context-free grammars (SCFGs) [23] are also closely related to pBPA.
The termination time in pBPA corresponds to the number of nodes in a derivation tree
of a SCFG, so our analysis of pBPA immediately applies to SCFGs. Quasi-Birth-Death
processes (QBDs) can also be seen as a special case of pPDA. A QBD is a generalization
of a birth-death process studied in queueing theory and applied probability (see, e.g.,
[22,1,15]). Intuitively, a QBD describes an unbounded queue, using a counter to count
the number of jobs in the queue, where the queue can be in one of finitely many distinct
“modes”. Hence, a (discrete-time) QBD can be equivalently defined by a pPDA with
one stack symbol used to emulate the counter. These special pPDA are also known as
probabilistic one-counter automata (pOC) [15,5,4]. Recently, it has been shown in [7]
that every pOC induces a martingale apt for studying the properties of both terminating
and nonterminating runs in pOC. The construction is based on ideas specific to pOC
that are completely unrelated to the ones presented in this paper.

Previous work on pPDA and the equivalent model of recursive Markov chains in-
cludes [13,14,6,3,18,16,17]. In this paper we use many of the results presented in these
papers, which is explicitly acknowledged at appropriate places. Missing proofs can be
found in [8].

2 Preliminaries

In the rest of this paper, N, N0, and R denote the set of positive integers, non-negative
integers, and real numbers, respectively. The tuples of A1 ×A2 · · · ×An are often written
simply as a1a2 . . . an. The set of all finite words over a given alphabet Σ is denoted by
Σ∗, and the set of all infinite words over Σ is denoted by Σω. We write ε for the empty
word. The length of a given w ∈ Σ∗ ∪ Σω is denoted by |w|, where the length of an
infinite word is ∞. Given a word (finite or infinite) over Σ, the individual letters of w
are denoted by w(0),w(1), . . .

Definition 1 (Markov Chains). A Markov chain is a triple M = (S , → ,Prob) where S
is a finite or countably infinite set of states, → ⊆ S ×S is a transition relation, and Prob
is a function which to each transition s→ t of M assigns its probability Prob(s→ t) > 0
so that for every s ∈ S we have

∑
s→t Prob(s→ t) = 1 (as usual, we write s x→ t instead

of Prob(s→ t) = x).

A path in M is a finite or infinite word w ∈ S + ∪ S ω such that w(i−1)→w(i) for
every 1 ≤ i < |w|. A run in M is an infinite path in M. We denote by Run[M] the set
of all runs in M. The set of all runs that start with a given finite path w is denoted by
Run[M](w). When M is understood, we write just Run and Run(w) instead of Run[M]
and Run[M](w), respectively. Given s ∈ S and A ⊆ S , we say A is reachable from s if
there is a run w such that w(0) = s and w(i) ∈ A for some i ≥ 0.

To every s ∈ S we associate the probability space (Run(s),F ,P) where F is the
σ-field generated by all basic cylinders Run(w) where w is a finite path starting with s,
and P : F → [0, 1] is the unique probability measure such that P(Run(w)) = Π |w|−1

i=1 xi
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where w(i−1) xi→w(i) for every 1 ≤ i < |w|. If |w| = 1, we put P(Run(w)) = 1. Note that
only certain subsets of Run(s) are P-measurable, but in this paper we only deal with
“safe” subsets that are guaranteed to be in F .

Definition 2 (probabilistic PDA). A probabilistic pushdown automaton (pPDA) is
a tuple Δ = (Q, Γ, ↪→ ,Prob) where Q is a finite set of control states, Γ is a fi-
nite stack alphabet, ↪→ ⊆ (Q × Γ) × (Q × Γ≤2) is a transition relation (where
Γ≤2 = {α ∈ Γ∗, |α| ≤ 2}), and Prob is a function which to each transition pX ↪→ qα
assigns its probability Prob(pX ↪→ qα) > 0 so that for all p ∈ Q and X ∈ Γ we
have that

∑
pX↪→qα Prob(pX ↪→ qα) = 1. As usual, we write pX x

↪→ qα instead of
Prob(pX ↪→ qα) = x.

Elements of Q × Γ∗ are called configurations of Δ. A pPDA with just one control state
is called pBPA.1 In what follows, configurations of pBPA are usually written without
the (only) control state p (i.e., we write just α instead of pα). We define the size of a
pPDA Δ as |Δ| = |Q| + |Γ| + | ↪→ | + |Prob|, where |Prob| is the sum of sizes of binary
representations of values taken by Prob. To Δ we associate the Markov chain MΔ with
Q × Γ∗ as the set of states and transitions defined as follows:

• pε 1→ pε for each p ∈ Q;
• pXβ x→ qαβ is a transition of MΔ iff pX x

↪→ qα is a transition of Δ.

For all pXq ∈ Q × Γ × Q and rY ∈ Q × Γ, we define

• Run(pXq) = {w ∈ Run(pX) | w(i) = qε for some i ∈ N}
• Run(rY↑) = Run(rY) \

⋃
s∈Q Run(rYs).

Further, we put [pXq] = P(Run(pXq)) and [pX↑] = P(Run(pX↑)). If Δ is a pBPA, we
write [X] and [X↑] instead of [pXp] and [pX↑], where p is the only control state of Δ.

Let pα ∈ Q × Γ∗. We denote by Tpα a random variable over Run(pα) where Tpα(w)
is either the least n ∈ N0 such that w(n) = qε for some q ∈ Q, or∞ if there is no such n.
Intuitively, Tpα(w) is the number of steps (“the time”) in which the run w initiated in pα
terminates.

3 The Results

In this section we present the results outlined in Section 1. More precisely, in Section 3.1
we show how to transform a given pPDA into an equivalent pBPA, and in Section 3.2
we design the promised martingales and derive our tight tail bounds for the termination
probability.

3.1 Transforming pPDA into pBPA

Let Δ = (Q, Γ, ↪→ ,Prob) be a pPDA. We show how to construct a pBPA Δ• which is
“equivalent” to Δ in a well-defined sense. This construction is a relatively straightfor-
ward modification of the standard method for transforming a PDA into an equivalent

1 The “BPA” acronym stands for “Basic Process Algebra” and it is used mainly for historical
reasons. pBPA are closely related to stochastic context-free grammars and are also called 1-exit
recursive Markov chains (see, e.g., [18]).
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context-free grammar (see, e.g., [20]), but has so far been overlooked in the existing
literature on probabilistic PDA. The idea behind this method is to construct a BPA with
stack symbols of the form 〈pXq〉 for all p, q ∈ Q and X ∈ Γ. Roughly speaking, such
a triple corresponds to terminating paths from pX to qε. Subsequently, transitions of
the BPA are induced by transitions of the PDA in a way corresponding to this intu-
ition. For example, a transition of the form pX ↪→ rYZ induces transitions of the form
〈pXq〉 ↪→〈rYs〉〈sZq〉 for all s ∈ Q. Then each path from pX to qε maps naturally to
a path from 〈pXq〉 to ε. This construction can also be applied in the probabilistic set-
ting by assigning probabilities to transitions so that the probability of the corresponding
paths is preserved. We also deal with nonterminating runs by introducing new stack
symbols of the form 〈pX↑〉.

Formally, the stack alphabet of Δ• is defined as follows: For every pX ∈ Q × Γ such
that [pX↑] > 0 we add a stack symbol 〈pX↑〉, and for every pXq ∈ Q × Γ × Q such
that [pXq] > 0 we add a stack symbol 〈pXq〉. Note that the stack alphabet of Δ• is
effectively constructible in polynomial space by applying the results of [13,18].

Now we construct the rules ↪−→• of Δ•. For all 〈pXq〉 we have the following rules:

• if pX x
↪→ rYZ in Δ, then for all s ∈ Q such that y = x · [rYs] · [sZq] > 0 we put

〈pXq〉 ↪
y/[pXq]
−−−−−→• 〈rYs〉〈sZq〉;

• if pX x
↪→ rY in Δ, where y = x · [rYq] > 0, we put 〈pXq〉 ↪

y/[pXq]
−−−−−→• 〈rYq〉;

• if pX x
↪→ qε in Δ, we put 〈pXq〉 ↪

x/[pXq]
−−−−−−→• ε.

For all 〈pX↑〉 we have the following rules:

• if pX x
↪→ rYZ in Δ, then for every s ∈ Q where y = x · [rYs] · [sZ↑] > 0 we add

〈pX↑〉 ↪
y/[pX↑]
−−−−−→• 〈rYs〉〈sZ↑〉;

• for all qY ∈ Q × Γ where x = [qY↑] ·
∑

pX↪→qYβ Prob(pX ↪→ qYβ) > 0, we add

〈pX↑〉 ↪
x/[pX↑]
−−−−−−→• 〈qY↑〉.

Note that the transition probabilities of Δ• may take irrational values. Still, the construc-
tion of Δ• is to some extent “effective” due to the following proposition:

Proposition 3 ([13,18]). Let Δ = (Q, Γ, ↪→ ,Prob) be a pPDA. Let pXq ∈ Q × Γ × Q.
There is a formula Φ(x) of ExTh(R) (the existential theory of the reals) with one free
variable x such that the length of Φ(x) is polynomial in |Δ| and Φ(x/r) is valid iff
r = [pXq].

Using Proposition 3, one can compute formulae of ExTh(R) that “encode” transition
probabilities of Δ•. Moreover, these probabilities can be effectively approximated up to
an arbitrarily small error by employing either the decision procedure for ExTh(R) [9] or
by using Newton’s method [11,21,12].

Example 4. Consider a pPDA Δ with two control states, p, q, one stack symbol, X, and
the following transition rules:

pX ↪
a−→ qXX, pX ↪

1−a−−→ qε, qX ↪
b−→ pXX, qX ↪

1−b−−→ pε,

where both a, b are greater than 1/2. Apparently, [pXp] = [qXq] = 0. Using results
of [13] one can easily verify that [pXq] = (1 − a)/b and [qXp] = (1 − b)/a. Thus
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[pX↑] = (a + b − 1)/b and [qX↑] = (a + b − 1)/a. Thus the stack symbols of Δ• are
〈pXq〉, 〈qXp〉, 〈pX↑〉, 〈qX↑〉. The transition rules of Δ• are:

〈pXq〉 ↪1−b−−→• 〈qX p〉〈pXq〉 〈pXq〉 ↪b−→• ε 〈qX p〉 ↪1−a−−→• 〈pXq〉〈qX p〉 〈qX p〉 ↪a−→• ε
〈pX↑〉 ↪1−b−−→• 〈qX p〉〈pX↑〉 〈pX↑〉 ↪b−→• 〈qX↑〉 〈qX↑〉 ↪1−a−−→• 〈pXq〉〈qX↑〉 〈qX↑〉 ↪a−→• 〈pX↑〉

As both a, b are greater than 1/2, the resulting pBPA has a tendency to remove symbols
rather than add symbols. Thus both 〈pXq〉 and 〈qXp〉 terminate with probability 1.

When studying long-run properties of pPDA (such as ω-regular properties or limit-
average properties), one usually assumes that the runs are initiated in a configuration
p0X0 which cannot terminate, i.e., [p0X0↑] = 1. Under this assumption, the probability
spaces over Run[MΔ](p0X0) and Run[MΔ• ](〈p0X0↑〉) are “isomorphic” w.r.t. all prop-
erties that depend only on the control states and the top-of-the-stack symbols of the
configurations visited along a run. This is formalized in our next proposition.

Proposition 5. Let p0X0 ∈ Q×Γ such that [p0X0↑] = 1. Then there is a partial function
Υ : Run[MΔ](p0X0) → Run[MΔ• ](〈p0X0↑〉) such that for every w ∈ Run[MΔ](p0X0),
where Υ(w) is defined, and every n ∈ N we have the following: if w(n) = qYβ, then
Υ(w)(n) = 〈qY†〉γ, where † is either an element of Q or ↑. Further, for every measurable
set of runs R ⊆ Run[MΔ• ](〈p0X0↑〉) we have that Υ−1(R) is measurable and P(R) =
P(Υ−1(R)).

As for terminating runs, observe that the “terminating” symbols of the form 〈pXq〉 do
not depend on the “nonterminating” symbols of the form 〈pX↑〉, i.e., if we restrict Δ•
just to terminating symbols, we again obtain a pBPA. A straightforward computation
reveals the following proposition about terminating runs that is crucial for our results
presented in the next section.

Proposition 6. Let pXq ∈ Q × Γ × Q and [pXq] > 0. Then almost all runs of MΔ•
initiated in 〈pXq〉 terminate, i.e., reach ε. Further, for all n ∈ N we have that

P(TpX = n | Run(pXq)) = P(T〈pXq〉 = n | Run(〈pXq〉))

Observe that this proposition, together with a very special form of rules in Δ•, implies
that all configurations reachable from a nonterminating configuration p0X0 have the
form α〈qY↑〉, where α terminates almost surely and 〈qY↑〉 never terminates. It follows
that such a pBPA can be transformed into a finite-state Markov chain (whose states
are the nonterminating symbols) which is allowed to make recursive calls that almost
surely terminate (using rules of the form 〈pX↑〉 ↪−→ 〈rZq〉〈qY↑〉). This observation is
very useful when investigating the properties of nonterminating runs, and many of the
existing results about pPDA can be substantially simplified using this result.

3.2 Analysis of pBPA

In this section we establish the promised tight tail bounds for termination probability. By
virtue of Proposition 6, it suffices to analyze pBPA where each stack symbol terminates
with probability 1. In what follows we assume that Δ is such a pBPA, and we also fix
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an initial stack symbol X0. For X, Y ∈ Γ, we say that X depends directly on Y, if there
is a rule X ↪→ α such that Y occurs in α. Further, we say that X depends on Y, if either
X depends directly on Y, or X depends directly on a symbol Z ∈ Γ which depends
on Y. One can compute, in linear time, the directed acyclic graph (DAG) of strongly
connected components (SCCs) of the dependence relation. The height of this DAG,
denoted by h, is defined as the longest distance between a top SCC and a bottom SCC
plus 1 (i.e., h = 1 if there is only one SCC). We can safely assume that all symbols on
which X0 does not depend were removed from Δ. We abbreviate P(TX0 ≥ n | Run(X0))
to P(TX0≥n), and we use pmin to denote min{p | X p

↪→α in Δ}. Here is our main result:

Theorem 7. Let Δ be a pBPA with stack alphabet Γ where every stack symbol termi-
nates with probability one. Assume that X0 ∈ Γ depends on all X ∈ Γ \ {X0}, and let
pmin = min{p | X p

↪→ α in Δ}. Then one of the following is true:

(1) P(TX0≥2|Γ|) = 0.
(2) E

[
TX0

]
is finite and for all n ∈ N with n ≥ 2E

[
TX0

]
we have that

pn
min ≤ P(TX0≥n) ≤ exp

(
1 − n

8E2
max

)

where Emax = maxX∈Γ E [TX].
(3) E

[
TX0

]
is infinite and there is n0 ∈ N such that for all n ≥ n0 we have that

c/n ≤ P(TX0≥n) ≤ d1/nd2

where d1 = 18h|Γ|/p3|Γ|
min, and d2 = 1/(2h+1 − 2). Here, h is the height of the DAG of

SCCs of the dependence relation, and c is a suitable positive constant depending
on Δ.

More colloquially, Theorem 7 states that Δ satisfies either (1) or (2) or (3), where (1) is
when Δ does not have any long terminating runs; and (2) resp. (3) is when the expected
termination time is finite (resp. infinite) and the probability of performing a terminating
run of length n decreases exponentially (resp. polynomially) in n.

One can effectively distinguish between the three cases set out in Theorem 7. More
precisely, case (1) can be recognized in polynomial time by looking only at the structure
of the pBPA, i.e., disregarding the probabilities. Determining whether E

[
TX0

]
is finite

or infinite can be done in polynomial space by employing the decision procedure for
E
[
TX0

]
and the results of [14,2]. This holds even if the transition probabilities of Δ are

represented just symbolically by formulae of ExTh(R) (see Proposition 3).
The proof of Theorem 7 is based on designing suitable martingales that are used to

analyze the concentration of the termination probability. Recall that a martingale is an
infinite sequence of random variables m(0),m(1), . . . such that, for all i ∈ N, E [|m(i)|] <
∞, and E [m(i+1) | m(1), . . . ,m(i)] = m(i) almost surely. If |m(i) − m(i−1)| < ci for all i ∈ N,
then we have the following Azuma’s inequality (see, e.g., [27]):

P(m(n) − m(0) ≥ t) ≤ exp

⎛⎜⎜⎜⎜⎝ −t2

2
∑n

k=1 c2
k

⎞⎟⎟⎟⎟⎠
Due to space restrictions we can only sketch the proof of Theorem 7 (see [8] for details).
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Proof sketch for the upper bound of Theorem 7(2). Observe that if E
[
TX0

]
is fi-

nite, then E [TY ] is finite for every Y ∈ Γ (here we use the assumption that X0

depends on Y). Further, for every configuration βγ reachable from X0 we have that
E

[
Tβγ
]
= E
[
Tβ
]
+ E
[
Tγ
]
. Hence, E [Tα] < ∞ for every α ∈ Γ∗. Now observe that, for

every α ∈ Γ∗ such that α � ε, performing one transition from α decreases the expected
termination time by one on average (here we need that E [Tα] < ∞ and α terminates
with probability one). Let w ∈ Run(X0). We denote by I(w) the maximal number j ≥ 0
such that w( j − 1) � ε. For every i ≥ 0, we put

m(i)(w) = E
[
Tw(i)
]
+min{i, I(w)}

It is easy to see that E
[
m(i+1) | m(i)

]
= m(i), i.e., m(0),m(1), . . . is a martingale. A full

proof of this claim is given in [8].
Let Emax = maxX∈Γ E [TX], and let n ≥ 2E

[
TX0

]
. By applying Azuma’s inequality

we obtain

P(m(n)−E
[
TX0

]
≥ n−E

[
TX0

]
) ≤ exp

(
−(n − E

[
TX0

]
)2

2
∑n

k=1(2Emax)2

)
≤ exp

(
2E
[
TX0

]
− n

8E2
max

)
.

For every w ∈ Run(X0) we have that w(n) � ε implies m(n) ≥ n. It follows:

P(TX0≥n) ≤ P(m(n) ≥ n) ≤ exp

(
2E
[
TX0

]
− n

8E2
max

)
≤ exp

(
1 − n

8E2
max

)
.

Proof sketch for the upper bound of Theorem 7(3). Assume that E
[
TX0

]
is infinite.

To give some idea of the (quite involved) proof, let us first consider a simple pBPA Δ
with Γ = {X} and the rules X 1/2

↪→ XX and X 1/2
↪→ ε. In fact, Δ is closely related to a simple

random walk starting at 1, for which the time until it hits 0 can be exactly analyzed
(see, e.g., [27]). Clearly, we have h = |Γ| = 1 and pmin = 1/2. Theorem 7(3) implies
P(TX≥n) ∈ O(1/

√
n). Let us sketch why this upper bound holds.

Let θ > 0, define g(θ) := 1
2 · exp(−θ · (−1)) + 1

2 · exp(−θ · (+1)), and define for a run
w ∈ Run(X) the sequence

m(i)
θ (w) =

⎧⎪⎪⎨⎪⎪⎩
exp(−θ · |w(i)|)/g(θ)i if i = 0 or w(i − 1) � ε
m(i−1)
θ (w) otherwise.

One can show (cf. [27]) that m(0)
θ ,m

(1)
θ , . . . is a martingale, i.e., E

[
m(i)
θ | m

(i−1)
θ

]
= m(i−1)

θ

for all θ > 0. Our proof crucially depends on some analytic properties of the function
g : R→ R: It is easy to verify that 1 = g(0) < g(θ) for all θ > 0, and 0 = g′(0), and 1 =
g′′(0). One can show that Doob’s Optional-Stopping Theorem (see Theorem 10.10 (ii)
of [27]) applies, which implies m(0)

θ = E
[
m(TX )
θ

]
. It follows that for all n ∈ N and θ > 0

we have that

exp(−θ) = m(0)
θ = E

[
m(TX )
θ

]
= E
[
g(θ)−TX

]
=

∞∑
i=0

P(TX = i) · g(θ)−i

≤
n−1∑
i=0

P(TX = i) · 1 +
∞∑

i=n

P(TX = i) · g(θ)−n = 1 − P(TX ≥ n) + P(TX ≥ n) · g(θ)−n
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Rearranging this inequality yields P(TX ≥ n) ≤ 1−exp(−θ)
1−g(θ)−n , from which one obtains,

setting θ := 1/
√

n, and using the mentioned properties of g and several applications of
l’Hopital’s rule, that P(TX ≥ n) ∈ O(1/

√
n).

Next we sketch how we generalize this proof to pBPA that consist of only one SCC,
but have more than one stack symbol. In this case, the term |w(i)| in the definition
of m(i)

θ (w) needs to be replaced by the sum of weights of the symbols in w(i). Each Y ∈ Γ
has a weight which is drawn from the dominant eigenvector of a certain matrix, which
is characteristic for Δ. Perron-Frobenius theory guarantees the existence of a suitable
weight vector u ∈ RΓ+. The function g consequently needs to be replaced by a function
gY for each Y ∈ Γ. We need to keep the property that g′′Y (0) > 0. Intuitively, this means
that Δmust have, for each Y ∈ Γ, a rule Y ↪→α such that Y and α have different weights.
This can be accomplished by transforming Δ into a certain normal form.

Finally, we sketch how the proof is generalized to pBPA with more than one SCC.
For simplicity, assume that Δ has only two stack symbols, say X and Y, where X de-
pends on Y, but Y does not depend on X. Let us change the execution order of pBPA as
follows: whenever a rule with α ∈ Γ∗ on the right hand side fires, then all X-symbols
in α are added on top of the stack, but all Y-symbols are added at the bottom of the
stack. This change does not influence the termination time of pBPA, but it allows to
decompose runs into two phases: an X-phase where X-rules are executed which may
produce Y-symbols or further X-symbols; and a Y-phase where Y-rules are executed
which may produce further Y-symbols but no X-symbols, because Y does not depend
on X. Arguing only qualitatively, assume that TX is “large”. Then either (a) the X-phase
is “long” or (b) the X-phase is “short”, but the Y-phase is “long”. For the probability
of event (a) one can give an upper bound using the bound for one SCC, because the
produced Y-symbols can be ignored. For event (b), observe that if the X-phase is short,
then only few Y-symbols can be created during the X-phase. For a bound on the proba-
bility of event (b) we need a bound on the probability that a pBPA with one SCC and a
“short” initial configuration takes a “long” time to terminate. The previously sketched
proof for an initial configuration with a single stack symbol can be suitably generalized
to handle other “short” configurations. The details can be found in [8].

Finally, the following proposition shows that the upper bound in Theorem 7 (3) can-
not be substantially tightened.

Proposition 8. Let Δh be the pBPA with Γh = {X1, . . . , Xh} and the following rules:

Xh ↪
1/2
−−→ XhXh , Xh ↪

1/2
−−→ Xh−1 , . . . , X2 ↪

1/2
−−→ X2X2 , X2 ↪

1/2
−−→ X1 , X1 ↪

1/2
−−→ X1X1 , X1 ↪

1/2
−−→ ε

Then [Xh] = 1, E
[
TXh

]
= ∞, and there is ch > 0 withP(TXh≥n) ≥ ch ·n−1/2h

for all n ≥ 1.

4 Conclusions and Future Work

We have provided a reduction from stateful to stateless pPDA which gives new insights
into the theory of pPDA and at the same time simplifies it substantially. We have used
this reduction and martingale theory to exhibit a dichotomy result that precisely charac-
terizes the distribution of the termination time in terms of its expected value.

Although the bounds presented in this paper are asymptotically optimal, there is still
space for improvements. We conjecture that the lower bound of Theorem 7 (3) can be
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strengthened to Ω(1/
√

n). We also conjecture that our results can be extended to more
general reward-based models, where each configuration is assigned a nonnegative re-
ward and the total reward accumulated in a given service is considered instead of its
length. This is particularly challenging if the rewards are unbounded (for example, the
reward assigned to a given configuration may correspond to the total memory allocated
by the procedures in the current call stack). Full answers to these questions would gen-
eralize some of the existing deep results about simpler models, and probably reveal an
even richer underlying theory of pPDA which is still undiscovered.
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Abstract. One-counter MDPs (OC-MDPs) and one-counter simple stochastic
games (OC-SSGs) are 1-player, and 2-player turn-based zero-sum, stochastic
games played on the transition graph of classic one-counter automata (equiva-
lently, pushdown automata with a 1-letter stack alphabet). A key objective for
the analysis and verification of these games is the termination objective, where
the players aim to maximize (minimize, respectively) the probability of hitting
counter value 0, starting at a given control state and given counter value.

Recently [4,2], we studied qualitative decision problems (“is the optimal ter-
mination value � 1?”) for OC-MDPs (and OC-SSGs) and showed them to be
decidable in P-time (in NP�coNP, respectively). However, quantitative decision
and approximation problems (“is the optimal termination value � p”, or “approx-
imate the termination value within �”) are far more challenging. This is so in part
because optimal strategies may not exist, and because even when they do exist
they can have a highly non-trivial structure. It thus remained open even whether
any of these quantitative termination problems are computable.

In this paper we show that all quantitative approximation problems for the ter-
mination value for OC-MDPs and OC-SSGs are computable. Specifically, given
a OC-SSG, and given � � 0, we can compute a value v that approximates the
value of the OC-SSG termination game within additive error �, and furthermore
we can compute �-optimal strategies for both players in the game.

A key ingredient in our proofs is a subtle martingale, derived from solving
certain LPs that we can associate with a maximizing OC-MDP. An application
of Azuma’s inequality on these martingales yields a computable bound for the
“wealth” at which a “rich person’s strategy” becomes �-optimal for OC-MDPs.

1 Introduction

In recent years, there has been substantial research done to understand the computa-
tional complexity of analysis and verification problems for classes of finitely-presented
but infinite-state stochastic models, MDPs, and stochastic games, whose transition
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graphs arise from basic infinite-state automata-theoretic models, including: context-free
processes, one-counter processes, and pushdown processes. It turns out these models are
intimately related to important stochastic processes studied extensively in applied prob-
ability theory. In particular, one-counter probabilistic automata are basically equivalent
to (discrete-time) quasi-birth-death processes (QBDs) (see [8]), which are heavily stud-
ied in queuing theory and performance evaluation as a basic model of an unbounded
queue with multiple states (phases). It is very natural to extend these purely probabilis-
tic models to MDPs and games, to model adversarial queuing scenarios.

In this paper we continue this work by studying quantitative approximation prob-
lems for one-counter MDPs (OC-MDPs) and one-counter simple stochastic games
(OC-SSGs), which are 1-player, and turn-based zero-sum 2-player, stochastic games
on transition graphs of classic one-counter automata. In more detail, an OC-SSG has a
finite set of control states, which are partitioned into three types: a set of random states,
from where the next transition is chosen according to a given probability distribution,
and states belonging to one of two players: Max or Min, from where the respective
player chooses the next transition. Transitions can change the state and can also change
the value of the (unbounded) counter by at most 1. If there are no control states belong-
ing to Max (Min, respectively), then we call the resulting 1-player OC-SSG a minimiz-
ing (maximizing, respectively) OC-MDP. Fixing strategies for the two players yields a
countable state Markov chain and thus a probability space of infinite runs (trajectories).

A central objective for the analysis and verification of OC-SSGs, is the termination
objective: starting at a given control state and a given counter value j � 0, player Max
(Min) wishes to maximize (minimize) the probability of eventually hitting the counter
value 0 (in any control state). From well know fact, it follows that these games are
determined, meaning they have a value, �, such that for every � � 0, player Max (Min)
has a strategy that ensures the objective is satisfied with probability at least � � � (at
most � � �, respectively), regardless of what the other player does. This value can be
irrational even when the input data contains only rational probabilities, and this is so
even in the purely stochastic case of QBDs without players ([8]).

A special subclass of OC-MDPs, called solvency games, was studied in [1] as a sim-
ple model of risk-averse investment. Solvency games correspond to OC-MDPs where
there is only one control state, but there are multiple actions that change the counter
value (“wealth”), possibly by more than 1 per transition, according to a finite support
probability distribution on the integers associated with each action. The goal is to min-
imize the probability of going bankrupt, starting with a given positive wealth. It is not
hard to see that these are subsumed by minimizing OC-MDPs (see [4]). It was shown in
[1] that if the solvency game satisfies a number of restrictive assumptions (in particular,
on the eigenvalues of a matrix associated with the game), then an optimal “rich per-
son’s” strategy (which does the same action whenever the wealth is large enough) can
be computed for it (in exponential time). They showed such strategies are not optimal
for unrestricted solvency games and left the unrestricted case unresolved in [1].

We can classify analysis problems for OC-MDPs and OC-SSGs into two kinds.
Quantitative analyses, which include: “is the game value at least�at most p” for a given
p � [0� 1]; or “approximate the game value” to within a desired additive error � � 0. We



334 T. Brázdil et al.

can also restrict ourselves to qualitative analyses, which asks “is the game value � 1?
� 0?”.1 We are also interested in strategies (e.g., memoryless, etc.) that achieve these.

In recent work [4,2], we have studied qualitative termination problems for OC-SSGs.
For both maximizing and minimizing OC-MDPs, we showed that these problems are
decidable in P-time, using linear programming, connections to the theory of random
walks on integers, and other MDP objectives. For OC-SSGs, we showed the qualitative
termination problem “is the termination value � 1?” is in NP � coNP. This problem is
already as hard as Condon’s quantitative termination problem for finite-state SSGs.

However we left open, as the main open question, the computability of quantita-
tive termination problems for OC-MDPs and OC-SSGs. In this paper, we resolve pos-
itively the computability of all quantitative approximation problems associated with
OC-MDPs and OC-SSGs. Note that, in some sense, approximation of the termination
value in the setting of OC-MDPs and OC-SSGs can not be avoided. This is so not only
because the value can be irrational, but because (see [3]) for maximizing OC-MDPs
there need not exist any optimal strategy for maximizing the termination probability,
only �-optimal ones (whereas Min does have an optimal strategy in OC-SSGs). More-
over, even for minimizing OC-MDPs, where optimal strategies do exist, they can have
a very complicated structure. In particular, as already mentioned for solvency games,
there need not exist any “rich person’s” strategy that can ignore the counter value when
it is larger than some finite N � 0.

Nevertheless, we show all these diÆculties can be overcome when the goal is to
approximate the termination value of OC-SSGs and to compute �-optimal strategies.
Our main theorem is the following:

Theorem 1 (�-approximation of OC-SSG termination value). Given as input: a OC-
SSG, �, an initial control state s, an initial counter value j � 0, and a (rational)
approximation threshold � � 0, there is an algorithm that computes a rational number,
v�, such that �v� � v�� � �, where v� is the value of the OC-SSG termination game on G,
starting in configuration (s� j). Moreover, there is an algorithm that computes �-optimal
strategies for both players in the OC-SSG termination game. These algorithms run in
exponential time in the encoding size of a 1-player OC-SSG, i.e., a OC-MDP, and in
polynomial time in log(1��) and log( j). In the case of 2-player OC-SSGs, the algorithms
run in nondeterministic exponential time in the encoding size of the OC-SSG.

We now outline our basic strategy for proving this theorem. Consider the case of maxi-
mizing OC-MDPs, and suppose we would like to approximate the optimal termination
probability, starting at state q and counter value i. Intuitively, it is not hard to see that
as the counter value goes to infinity, except for some basic cases that we can detect and
eliminate in polynomial time, the optimal probability of termination starting at a state q
begins to approach the optimal probability of forcing the counter to have a lim inf value
� ��. But we can compute this optimal value, and an optimal strategy for it, based
on results in our prior work [4,2]. Of particular importance are the set of states T from
which this value is 1. For a given � � 0, we need to compute a bound N on the counter
value, such that for any state q, and all counter values N� � N, the optimal termination

1 The problem “is the termination value � 0?” is easier, and can be solved in polynomial time
without even looking at the probabilities labeling the transitions of the OC-SSG.
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probability starting at (q� N�) is at most � away from the optimal probability for the
counter to have lim inf value � ��. A priori it is not at all clear whether such a bound
N is computable, although it is clear that N exists. To show that it is computable, we
employ a subtle (sub)martingale, derived from solving a certain linear programming
problem associated with a given OC-MDP. By applying Azuma’s inequality on this
martingale, we are able to show there are computable values c � 1, and h � 0, such that
for all i � h, starting from a state q and counter value i, the optimal probability of both
terminating and not encountering any state from which with probability 1 the player can
force the lim inf counter value to go to ��, is at most ci�(1�c). Thus, the optimal termi-
nation probability approaches from above the optimal probability of forcing the lim inf
counter value to be ��, and the di�erence between these two values is exponentially
small in i, with a computable base c. This martingale argument extends to OC-MDPs an
argument recently used in [7] for analyzing purely probabilistic one-counter automata
(i.e., QBDs).

These bounds allow us to reduce the problem of approximating the termination value
to the reachability problem for an exponentially larger finite-state MDP, which we can
solve (in exponential time) using linear programming. The case for general OC-SSGs
and minimizing OC-MDPs turns out to follow a similar line of argument, reducing the
essential problem to the case of maximizing OC-MDPs. In terms of complexity, the
OC-SSG case requires “guessing” an appropriate (albeit, exponential-sized) strategy,
whereas the relevant exponential-sized strategy can be computed in deterministic expo-
nential time for OC-MDPs. So our approximation algorithms run in exponential time
for OC-MDPs and nondeterministic exponential time for OC-SSGs.

Open problems. An obvious remaining open problem is to obtain better complexity
bounds for OC-MDPs. We know of no non-trivial lower bounds for OC-MDP approxi-
mation problems. Our results also leave open the decidability of the quantitative termi-
nation decision problem for OC-MDPs and OC-SSGs, which asks: “is the termination
value � p?” for a given rational probability p. Furthermore, our results leave open
computability for approximating the value of selective termination objectives for OC-
MDPs, where the goal is to terminate (reach counter value 0) in a specific subset of the
control states. Qualitative versions of selective termination problems were studied in
[4,2].

Related work. As noted, one-counter automata with a non-negative counter are equiva-
lent to pushdown automata restricted to a 1-letter stack alphabet (see [8]), and thus OC-
SSGs with the termination objective form a subclass of pushdown stochastic games, or
equivalently, Recursive simple stochastic games (RSSGs). These more general stochas-
tic games were studied in [9], where it was shown that many interesting computational
problems, including any nontrivial approximation of the termination value for general
RSSGs and RMDPs is undecidable, as are qualitative termination problems. It was also
shown in [9] that for stochastic context-free games (1-exit RSSGs), which correspond
to pushdown stochastic games with only one state, both qualitative and quantitative
termination problems are decidable, and in fact qualitative termination problems are
decidable in NP�coNP ([10]), while quantitative termination problems are decidable
in PSPACE. Solving termination objectives is a key ingredient for many more general



336 T. Brázdil et al.

analyses and model checking problems for such stochastic games (see, e.g., [5,6]). OC-
SSGs are incompatible with stochastic context-free games. Specifically, for OC-SSGs,
the number of stack symbols is bounded by 1, instead of the number of control states.

MDP variants of QBDs, essentially equivalent to OC-MDPs, have been considered in
the queueing theory and stochastic modeling literature, see [14,12]. However, in order to
keep their analyses tractable, these works perform a naive finite-state “approximation”
by cutting o� the value of the counter at an arbitrary finite value N, and adding dead-
end absorbing states for counter values higher than N. Doing this can radically alter the
behavior of the model, even for purely probabilistic QBDs, and these authors establish
no rigorous approximation bounds for their models. In a sense, our work can be seen as
a much more careful and rigorous approach to finite approximation, employing at the
boundary other objectives like maximizing the probability that the lim inf counter value
� ��. Unlike the prior work we establish rigorous bounds on how well our finite-state
model approximates the original infinite OC-MDP.

2 Definitions

We assume familiarity with basic notions from probability theory. We call a probability
distribution f over a discrete set, A, positive if f (a) � 0 for all a � A, and Dirac if
f (a) � 1 for some a � A.

Definition 1 (SSG). A simple stochastic game (SSG) is a tuple � �

(S � (S 0� S 1� S 2)� � � Prob), consisting of a countable set of states, S , partitioned
into the set S 0 of stochastic states, and sets S 1, S 2 of states owned by Player 1 (Max)
and 2 (Min), respectively. The edge relation � � S 	 S is total, i.e., for every r � S
there is s � S such that r� s. Finally, Prob assigns to every s � S 0 a positive
probability distribution over outgoing edges. If S 2 � 
, we call the SSG a maximizing
Markov Decision Processes (MDP). If S 1 � 
 we call it a minimizing MDP.

A finite path is a sequence w � s0 s1 � � � sn of states such that si� si�1 for all i� 0 � i � n.
We write len(w) � n for the length of the path. A run, �, is an infinite sequence of states
every finite prefix of which is a path. For a finite path, w, we denote by Run(w) the set
of runs having w as a prefix. These generate the standard �-algebra on the set of runs.

Definition 2 (OC-SSG). A one-counter SSG (OC-SSG),  � (Q� (Q0� Q1� Q2)� Æ� P),
consists of a finite non-empty set of control states, Q, partitioned into stochastic and
players’ states, as in the case of SSGs, a set of transition rules Æ � Q 	 ��1� 0��1� 	 Q
such that Æ(q) � �(q� i� r) � Æ� � 
 for all q � Q, and P � �Pq�q�Q0 where Pq is a positive
rational probability distribution over Æ(q) for all q � Q0.

Purely for convenience, we assume that for each pair q� r � Q there is at most one i
such that (q� i� r) � Æ (this is clearly w.l.o.g., by adding suitable auxiliary states to Q).
By ���� � �Q�� �Æ�� ��P��we denote the encoding size of , where ��P�� is the sum of the
number of bits needed to encode the numerator and denominator of Pq(	) for all q � Q
and 	 � Æ. The set of all configurations is � � �(q� i) � q � Q� i � 0�
 Again, maximizing
and minimizing OC-MDPs are defined as analogous subclasses of OC-SSGs.
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To  we associate an infinite-state SSG � � (�� (�0��1��2)� � � Prob), where
the partition of � is defined by (q� i) � �0 i� q � Q0, and similarly for the players. The
edges are defined by (q� i)� (r� j) i� either i � 0 and (q� j � i� r) � Æ, or i � j � 0 and
q � r. The probability assignment Prob is derived naturally from P.

By forgetting the counter values, the OC-SSG  also describes a finite-state SSG
�� � (Q� (Q0� Q1� Q2)� � � Prob�). Here q� r i� (q� i� r) � Æ for some i, and Prob� is
derived in the obvious way from P by forgetting the counter changes. If  is a OC-
MDP, both �� and � are MDPs.

Strategies and Probability. Let� be a SSG. A history is a finite path in �. A strategy
for Player 1 in �, is a function assigning to each history ending in a state from S 1 a
distribution on edges leaving the last state of the history. A strategy is pure if it always
assigns a Dirac distribution, i.e., one which assigns 1 to one edge and 0 to the others.
A strategy, �, is memoryless if �(w) � �(s) where s is the last state of a history w.
Assume that � � � for some OC-SSG . Then a strategy, �, is counterless if it is
memoryless and �((q� i)) � �((q� 1)) for all i � 1. Observe that every strategy,�, for��

gives a unique strategy, ��, for �; the strategy �� just forgets the counter values in the
history and plays as �. This correspondence is bijective when restricted to memoryless
strategies in �� and counterless strategies in �. We will use this correspondence
implicitly throughout the paper. Strategies for Player 2 are defined analogously.

Fixing a pair (�� �) of strategies for Player 1 and 2, respectively, and an initial state,
s, we obtain in a standard way a probability measure ����s (�) on the subspace of runs
starting in s. For SSGs of the form � for some OC-SSG, , we consider two se-
quences of random variables, �C(i)�i�0 and �S (i)�i�0, returning the height of the counter,
and the control state after completing i transitions.

For a SSG, �, an objective, R, is for us a Borel subset of runs in �. Player 1 is
trying to maximize the probability of R, while player 2 is trying to minimize it. We say
that (��R) is determined if for every state s of � we have that sup� inf� �

���
s (R) �

inf� sup� �
���
s (R) 
 If (��R) is determined, then for every state s of �, the above equality

defines the value of s, denoted by Val(R� s). For a given � � 0, a strategy, ��, of Player 1
is �-optimal in s, if ��

� ��
s (R) � Val(R� s)�� for every strategy � of Player 2. An �-optimal

strategy for Player 2 is defined analogously. 0-optimal strategies are called optimal.
Note that (��R) is determined i� both players have �-optimal strategies for every � � 0.

Termination Objective. Let  be a OC-SSG. A run in � terminates if it contains a
configuration of the form (q� 0). The termination objective is the set of all terminating
runs, and is denoted Term. OC-SSG termination games are determined (see [2]).

3 Main Result

Theorem 1 (Main). Given an OC-SSG,, a configuration, (q� i), and a rational � � 0,
there is an algorithm that computes a rational number, �, such that �Val(Term� (q� i)) �
�� � �, and strategies �� � for both players that are �-optimal starting in (q� i). The al-
gorithm runs in nondeterministic time exponential in ���� and polynomial in log(i) and
log(1��). If  is an OC-MDP, then the algorithm runs in deterministic time exponential
in ���� and polynomial in log(1��) and log(i).
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3.1 Proof Sketch

We now sketch the main ideas in the proof of Theorem 1. First, observe that for all
q � Q and i � j we have that Val(Term� (q� i)) � Val(Term� (q� j)) � 0. Let

�q � lim
i��

Val(Term� (q� i))


Since �q � Val(Term� (q� i)) for an arbitrarily large i, Player 1 should be able to decrease
the counter by an arbitrary value with probability at least �q, no matter what Player 2
does. The objective of “decreasing the counter by an arbitrary value” cannot be formal-
ized directly on �, because the counter cannot become negative in the configurations
of �. Instead, we formalize this objective on ��, extended with rewards on tran-
sitions. These rewards are precisely the counter changes, which were left out from the
transition graph, i.e., each transition q� r generated by a rule (q� i� r) of has reward i.
This allows us to define a sequence, �R(i)�i�0, of random variables for runs in ��, where
R(i) returns the sum total of rewards accumulated during the first i steps. Note that R(i)

may be negative, unlike the r.v. C(i). The considered objective then corresponds to the
event LimInf (� ��) consisting of all runs w in �� such that lim infi�� R(i)(w) � ��


These games are determined. For every q � Q, let

�q � Val(LimInf (� ��)� q)


One intuitively expects that �q � �q, and we show that this is indeed the case. Further, it
was shown in [4,2] that �q is rational and computable in non-deterministic time polyno-
mial in ����. Moreover, both players have optimal pure memoryless strategies (��� ��)
in ��, computable in non-deterministic polynomial time. For MDPs, both the value �q

and the optimal strategies can be computed in deterministic time polynomial in ����.
Since �q � �q, there is a suÆciently large N such that Val(Term� (q� i))��q � � for all

q � Q and i � N. We show that an upper bound on N is computable, which is at most ex-
ponential in ���� and polynomial in log(1��), in Section 3.2. As we shall see, this part is
highly non-trivial. For all configurations (q� i), where i � N, the value Val(Term� (q� i))
can be approximated by �q, and both players can use the optimal strategies (��� ��)
for the LimInf (� ��) objective (which are “translated” into the corresponding coun-
terless strategies in �; cf. Section 2). For the remaining configurations (q� i), where
i � N, we consider a finite-state SSG obtained by restricting � to configurations with
counter between 0 and N, extended by two fresh stochastic states s0� s1 with self-loops.
All configurations of the form (q� 0) have only one outgoing edge leading to s0, and all
configurations of the form (q� N) can enter either s0 with probability �q, or s1 with prob-
ability 1��q. In this finite-state game, we compute the values and optimal strategies for
the reachability objective, where the set of target states is �s0�. This can be done in non-
deterministic time polynomial in the size of the game (i.e., exponential in ����). If  is
an OC-MDP, then the values and optimal strategies can be computed in deterministic
polynomial time in the size of the MDP (i.e., exponential in ����) by linear program-
ming (this applies both to the “maximizing” and the “minimizing” OC-MDP). Thus,
we obtain the required approximations of Val(Term� (q� i)) for i � N, and the associated
�-optimal strategies.
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Technically, we first consider the simpler case when  is a “maximizing” OC-MDP
(Section 3.2). The general case is then obtained simply by computing the optimal coun-
terless strategy �� for the LimInf (� ��) objective in ��, and “applying” this strategy
to resolve the choices of Player 2 in� (again, note that �� corresponds to a counterless
strategy in �). Thus, we obtain an OC-MDP � and apply the result of Section 3.2.

3.2 Bounding Counter Value N for Maximizing OC-MDPs

In this section we consider a maximizing OC-MDP  � (Q� (Q0� Q1)� Æ� P). The maxi-
mum termination value is Val(Term� (q� i)) � sup� �

�

(q�i)(Term) 

For a q � Q we set �q � sup� �

�
q (LimInf (� ��)) 
 Given , and � � 0, we

show here how to obtain a computable (exponential) bound on a number N such that���Val(Term� (q� i)) � �q

��� � � for all i � N. Thus, by the arguments described in the Sec-
tion 3, once we have such a computable bound on N, we have an algorithm for approx-
imating Val(Term� (q� i)). We denote by T the set of all states q with �q � 1.

Fact 2 (cf. [4]). The number �q is the max. probability of reaching T from q in ��:

�q � sup
�

��q (reach T ) � max
�

��q (reach T ) 


Claim. �q � Q : �i � 0 : �q � Val(Term� (q� i)) � sup� �
�

(q�i)(Term � not reach T ) � �q


Proof. The first inequality is easy. By [4, Theorem 12], Val(Term� (q� i)) � 1 for all
q � T , i � 0, proving the second inequality. ��

Lemma 1. Given a maximizing OC-MDP, , one can compute a rational con-
stant c � 1, and an integer h � 0 such that for all i � h and q � Q:
sup� �

�

(q�i)(Term � not reach T ) � ci

1�c .

Moreover, c � exp(1�2		�		O(1)
) and h � exp(����O(1)).

Observe that this allows us to compute the number N. It suÆces to set N �

max�h� �logc(� � (1 � c))��
 Based on the bounds on c and h, this allows us to conclude
that N � exp(����O(1)), see [3]. In the rest of this section we prove Lemma 1.

We start with two preprocessing steps. First, we make sure that T � 
, resulting
in Val(Term� (q� i)) � sup� �

�

(q�i)(Term � not reach T ) 
 Second, we make sure that there
are no “degenerate” states in the system which would enable a strategy to spend an
unbounded time with a bounded positive counter value. Both these reductions will be
carried out in deterministic polynomial time.

In more detail, the first reduction step takes  and outputs � given by replacing
T with a single fresh control state, qD (“D” for “diverging”), equipped with a single
outgoing rule (qD��1� qD). By results of [4], this can be done in polynomial time. Ob-
viously, for q � T the value sup� �

�

(q�i)(Term � not reach T ) is the same in both � and
��. Thus we may assume that T � 
 when proving Lemma 1.

In the second reduction step, the property we need to assure holds in  is best stated
in terms of �� and the variables R(i). We need to guarantee that under every pure mem-
oryless strategy, lim infi�� R(i)�i is almost surely positive.2

2 This value is sometimes called the mean payo�, see also [4].
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zq � �x � k � zr for all q � Q1 and (q� k� r) � Æ,

zq � �x �
�

(q�k�r)�Æ Pq((q� k� r)) � (k � zr) for all q � Q0,

x � 0�

Fig. 1. The system � of linear inequalities over x and zq, q � Q.

For runs starting in a state q, we denote by Vq the random variable giving the first time
when q is revisited, or � if it is not revisited. Let us call a pure memoryless strategy,
�, for �� idling if there is a state, q, such that ��q

�
Vq � �

�
� 1 and ��q

�
R(Vq) � 0

�
� 1.

We want to modify the OC-MDP, so that idling is not possible, without influencing the
termination value. A technique to achieve this was already developed in our previous
work [4], where we used the term “decreasing” for non-idling strategies. There we gave
a construction which preserves the property of optimal termination probability being
� 1. We in fact can establish that that construction preserves the exact termination
value. Because the idea is not new, we leave details to [3].

After performing both reduction steps, we can safely assume that T � 
 and that
there are no idling pure memoryless strategies. The next claim then follows from
Lemma 10 in [4]:

Claim. Under the assumptions above, for every pure memoryless strategy, �, for ��,
and every q � Q we have ��q

�
lim infi�� R(i)�i � 0

�
� 1


We shall now introduce a linear system of inequalities, �, which is closely related to
a standard LP that one can associate with a finite-state MDP with rewards, in order
to obtain its optimal mean payo� value. The solution to the system of inequalities �
will allow us to define a (sub)martingale that is critical for our arguments. This is an
extension, to OC-MDPs, of a method used in [7] for analysis of purely probabilistic one-
counter machines. The variables of � are x and zq, for all q � Q. The linear inequalities
are defined in Figure 1.

Lemma 2. There is a non-negative rational solution (x̄� (z̄q)q�Q) � �	Q	�1 to �, such
that x̄ � 0. (The binary encoding size of the solution is polynomial in ����.)

Proof. We first prove that there is some non-negative solution to � with x̄ � 0. The
bound on size then follows by standard facts about linear programming. To find a so-
lution, we will use optimal values of the MDP under the objective of minimizing dis-
counted total reward. For every discount factor, , 0 �  � 1, there is a pure memoryless
strategy, ��, for �� such that e�q(�) �

�
i�0 

i � ��
q

�
R(i�1) � R(i)

�
is minimized by setting

� � ��. We prove that there is some , such that setting z̄q � e�q(��) and

x̄ � min
�
�k � e�r (��) � e�q(��) � q � Q1� (q� k� r) � Æ�

� �Pq((q� k� r)) �
�
k � e�r (��) � e�q(��)

�
� q � Q0� (q� k� r) � Æ�

�
forms a non-negative solution to � with x̄ � 0.

Now we proceed in more detail. By standard results (e.g., [13]), for a fixed state, q,
and a fixed discount,  � 1, there is always a pure memoryless strategy, �q, minimizing
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e�q(�) in place of �. As we already proved in the Claim above, due to our assumptions

we have �
�q
q

�
lim infi�� R(i)�i � 0

�
� 1
 Thus

�
i�0 ��

�
q

�
R(i�1) � R(i)

�
� �� and there is a

 � 1 such that e�q(�q) � 0 for all q � Q. Finally, observe that there is a single strategy,
��, which can be used as �q for all q. This is a consequence of �q being optimal also
in successors of q. Finally, x̄ � 0, because for all q � Q0

e�q(��) �
	
i�0

i � ���

q

�
R(i�1) � R(i)

�

�
	

(q�k�r)�Æ

Pq((q� k� r)) �


�������k �  �
	
i�0

i � ���

r

�
R(i�1) � R(i)

��������
�

	
(q�k�r)�Æ

Pq((q� k� r)) �
�
k �  � e�r (��)

�

�
	

(q�k�r)�Æ

Pq((q� k� r)) �
�
k � e�r (��)

�
�

the last inequality following from e�r (��) � 0 for all r � Q; and similarly for all q � Q1

and (q� k� r) � Æ

e�q(��) �
	
i�0

i � ���

q

�
R(i�1) � R(i)

�

� k �  �
	
i�0

i � ���

r

�
R(i�1) � R(i)

�
� k �  � e�r (��) � k � e�r (��)


��

Recall the random variables �C(i)�i�0 and �S (i)�i�0, returning the height of the counter,
and the control state after completing i transitions. Given the solution (x̄� (z̄q)q�Q) �

�	Q	�1 from Lemma 2, we define a sequence of random variables �m(i)�i�0 by setting

m(i)
�

�������
C(i) � z̄S (i) � i � x̄ if C( j) � 0 for all j� 0 � j � i,

m(i�1) otherwise.

We shall now show that m(i) defines a submartingale. For relevant definitions of
(sub)martingales see, e.g., [11].

Lemma 3. Under an arbitrary strategy, �, for �, and with an arbitrary initial con-
figuration (q� n), the process �m(i)�i�0 is a submartingale.

Proof. Consider a fixed path, u, of length i � 0. For all j� 0 � j � i the values C( j)(�)
are the same for all � � Run(u). We denote these common values by C( j)(u), and simi-
larly for S ( j)(u) and m( j)(u). If C( j)(u) � 0 for some j � i, then m(i�1)(�) � m(i)(�) for
every � � Run(u). Thus ��

(q�n)

�
m(i�1) � Run(u)

�
� m(i)(u). Otherwise, consider the last

configuration, (r� l), of u. For every possible successor, (r�� l�), set

p(r��l�) �

�������
�(u)((r� l) � (r�� l�)) if r � Q1,

Prob((r� l) � (r�� l�)) if r � Q0.
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Then

��

(q�n)

�
C(i�1) �C(i) � z̄S (i�1) � x̄ � Run(u)

�
� �x̄ �

	
(r�k�r�)�Æ

p(r� �l�k) � (k � z̄r� ) � z̄r


This allows us to derive the following:

��

(q�n)

�
m(i�1) � Run(u)

�
� ��

(q�n)

�
C(i�1) � z̄S (i�1) � (i � 1) � x̄ � Run(u)

�
� C(i)(u) � ��

(q�n)

�
C(i�1) �C(i) � z̄S (i�1) � x̄ � Run(u)

�
� i � x̄

� C(i)(u) � z̄S (i)(u) � i � x̄ � m(i)(u)
 ��

Now we can finally prove Lemma 1. Denote by Term j the event of terminating after
exactly j steps. Further set z̄max � maxq�Q z̄q � minq�Q z̄q� and assume that C(0) � z̄max.
Then the event Term j implies that m( j) � m(0) � z̄S ( j) � j � x̄ � C(0) � z̄S (0) � � j � x̄

Finally, observe that we can bound the one-step change of the submartingale value by
z̄max� x̄�1
 Using the Azuma-Hoe�ding inequality for the submartingale �m(n)�n�0 (see,
e.g., Theorem 12.2.3 in [11]), we thus obtain the following bound for every strategy �

and initial configuration (q� i) with i � z̄max:

��(q�i)

�
Term j

�
� ��(q�i)

�
m( j) � m(0) � � j � x̄

�
� exp

�
�x̄2 � j2

2 j � (z̄max � x̄ � 1)

�



We choose c � exp
�

�x̄2

2
(z̄max�x̄�1)

�
� 1 and observe that

��(q�i)(Term) �
	
j�i

��(q�i)

�
Term j

�
�
	
j�i

c j �
ci

1 � c



This choice of c, together with h � �z̄max�, finishes the proof of Lemma 1. (The given
bounds on c and h are easy to check.) ��

3.3 Bounding N for General SSGs

For a control state q, let �q � sup� inf� �
���
q (LimInf (� ��)) 
 Given a OC-SSG,

 � (Q� (Q0� Q1� Q2)� Æ� P), and � � 0, we now show how to obtain a computable
bound on the number N such that

���Val(Term� (q� i)) � �q

��� � � for all i � N. Again,
by the arguments described in Section 3, once we have this, we have an algorithm for
approximating Val(Term� (q� i)).

By results in [2], there is always a counterless pure strategy, ��, for Player 2 in ��,
such that

sup
�

inf
�
����q (LimInf (� ��)) � sup

�

����
�

q (LimInf (� ��)) 


Observe that by fixing the choices of �� in  we obtain a maximizing OC-MDP, � �

(Q�� (Q�
0� Q�

1)� Æ�� P�)� where Q�
0 � Q0 � Q2, Q�

1 � Q1, Æ� � �(q� k� r) � Æ � q � Q0 �

Q1 � ��(q) � r�� and P� is the unique (for �) extension of P to states from Q2.
Slightly abusing notation, denote also by �� the strategy for � which corresponds,

in the sense explained in Section 2, to �� for ��. Then �q � �
����

q (LimInf (� ��)) �
Val(Term� (q� i)) � ����

�

(q�i) (Term) 
 Applying Lemma 1 to the OC-MDP � thus allows us
to give a computable (exponential) bound on N, given .
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5. Brázdil, T., Brožek, V., Forejt, V., Kučera, A.: Reachability in recursive Markov decision
processes. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 358–
374. Springer, Heidelberg (2006)
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Abstract. We study the expression complexity of two basic problems
involving the comparison of primitive positive formulas: equivalence and
containment. We give two generic hardness results for the studied prob-
lems, and discuss evidence that they are optimal and yield, for each of
the problems, a complexity trichotomy.

1 Introduction

Overview. A primitive positive (pp) formula is a first-order formula defined
from atomic formulas and equality of variables using conjunction and existential
quantification. The class of primitive positive formulas includes, and is essen-
tially equivalent to, the class of conjunctive queries, which is well-established in
relational database theory as a pertinent and useful class of queries, and which
has been studied complexity-theoretically from a number of perspectives (see for
example [18,17,1]). In this paper, we study the complexity of the following fun-
damental problems, each of which involves the comparison of two pp-formulas
φ, φ′ having the same free variables, over a relational structure.

– Equivalence: are the formulas φ, φ′ equivalent–that is, do they have the same
satisfying assignments–over the structure?

– Containment: are the satisfying assignments of φ contained in those of φ′,
over the structure?

We study the complexity of these computational problems with respect to
various fixed structures. That is, we parameterize each of these problems with
respect to the structure to obtain a family of problems, containing one member
for each structure, and study the resulting families of problems. To employ the
terminology of Vardi [19], we study the expression complexity of the presented
comparison tasks. The suggestion here is that various relational structures–which
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may represent databases or knowledge bases, according to use–may possess struc-
tural characteristics that affect the complexity of the resulting problems, and our
interest is in understanding this interplay. The present work focuses on relational
structures that are finite (that is, have finite universe), and we assume that the
structures under discussion are finite.

In this paper, we present two general expression hardness results on the prob-
lems of interest. In particular, each of our two main results provides a sufficient
condition on a structure so that the problems are hard for certain complexity
classes. Furthermore, we give evidence that our results are optimal, in that the
conditions that they involve in fact describe dichotomies in the complexity of
the studied problems; put together, our results indicate, for each of the studied
problems, a complexity trichotomy.

Our study utilizes universal-algebraic tools that aid in understanding the set of
primitive positive relations over a given structure. It is known that, relative to a
structure, the set of relations that are definable by a primitive positive formula
forms a robust algebraic object known as a relational clone; a known Galois
correspondence associates, in a bijective manner, each such relational clone with
a clone, a set of operations with certain closure properties. This correspondence
provides a way to pass from a relational structure B to an algebra AB whose set
of operations is the mentioned clone, in such a way that two structures having
the same algebra have the same complexity (for each of the mentioned problems).
In a previous paper by the present authors [6], we developed this correspondence
and presented some basic complexity results for the problems at hand, including
a classification of the complexity of the problems on all two-element structures.

Hardness Results. Our first hardness result yields that for any structure B
whose associated algebra AB gives rise to a variety V(AB) that admits the unary
type, both the equivalence and containment problems are Πp

2 -complete. Note
that this is the maximal complexity possible for these problems, as the prob-
lems are contained in the class Πp

2 . The condition of admitting the unary type
originates from tame congruence theory, a theory developed to understand the
structure of finite algebras [13]. We observe that this result implies a dichotomy
in the complexity of the studied problems under the G-set conjecture for the
constraint satisfaction problem (CSP), a conjecture put forth by Bulatov, Jeav-
ons, and Krokhin [7] which predicts exactly where the tractability/intractability
dichotomy lies for the CSP. In particular, under the G-set conjecture, the struc-
tures not obeying the described condition have equivalence and containment
problems in coNP. The resolution of the G-set conjecture, on which there has
been focused and steady progress over the past decade [9,14,10,3], would thus, in
combination with our hardness result, yield a coNP/Πp

2 -complete dichotomy for
the equivalence and containment problems. In fact, our hardness result already
unconditionally implies dichotomies for our problems for all classes of structures
where the G-set conjecture has already been established, including the class of
three-element structures [9], and the class of conservative structures [8].

One formulation of the G-set conjecture is that, for a structure B whose as-
sociated algebra AB is idempotent, the absence of the unary type in the variety
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generated by AB implies that CSP(B) is polynomial-time tractable. The pres-
ence of the unary type is a known sufficient condition for intractability in the
idempotent case [7,10], and this conjecture predicts exactly where the tractabil-
ity/intractability dichotomy lies for the CSP. It should be noted, however, that
the boundary that is suggested by our hardness result for the equivalence and
containment problems is not the same as the boundary suggested by the G-
set conjecture for the CSP. The G-set conjecture, which is typically phrased on
idempotent algebras, yields a prediction on the CSP complexity of all structures
via a theorem [7] showing that each structure B has the same CSP complexity
as a structure B′ whose associated algebra is idempotent. The mapping from B
to B′ does not preserve the complexity of the problems studied here, and indeed,
there are examples of two-element structures B such that our hardness result ap-
plies to B–the equivalence and containment problems on B are Πp

2 -complete–but
B′ does not admit the unary type and indeed has a polynomial-time tractable
CSP [6]. Our new result requires establishing a deeper understanding of the
identified algebras’ structure, some of which admit a tractable CSP, in order to
obtain hardness.

Our second hardness result shows that for any structure B, if the variety
V(AB) is not congruence modular, then the equivalence and containment prob-
lems are coNP-hard. Previous work identified one most general condition for the
tractability of the equivalence and containment problems: if the algebra has few
subpowers–a combinatorial condition [4,14] involving the number of subalgebras
of powers of an algebra–then these problems are polynomial-time tractable [6,
Theorem 7]. This second hardness result appears to perfectly complement this
tractability result: there are no known examples of algebras AB (of structures B
having finitely many relations) that are not covered by one of these results, and
in fact the Edinburgh conjecture predicts that none exist, stating that every such
algebra AB that generates a congruence modular variety also has few subpowers.
Concerning this conjecture, it should be pointed out that the resolution of the
Zadóri conjecture, a closely related conjecture of which the Edinburgh conjecture
is a generalization, was recently announced by Libor Barto [2]. The Edinburgh
conjecture is of current interest, with recent work presented by Ralph McKen-
zie and colleagues. We also point out that this conjecture (as with the Zadóri
conjecture) is purely algebraic, making no references to notions of computation.

In summary, up to polynomial-time computation, we completely resolve the
complexity of the studied problems on all finite structures, showing a P/coNP-
complete/Πp

2 -complete trichotomy modulo two conjectures; one is computational
and one is algebraic, and for each there is both highly non-trivial supporting
evidence and current investigation. This trichotomy follows from Theorems 4, 5,
6, and 7.

2 Preliminaries

Here, a signature is a set of relation symbols, each having an associated arity;
we assume that all signatures are of finite size. A relational structure over a
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signature σ consists of a universe B and, for each relation symbol R ∈ σ, a
relation RB ⊆ Bk where k is the arity of R. We assume that all relational
structures under discussion have universes of finite size. A primitive positive
formula (pp-formula) on σ is a first-order formula formed using equalities on
variables (x = x′), atomic formulas R(x1, . . . , xk) over σ, conjunction (∧), and
existential quantification (∃).

We now define the problems that will be studied.

Definition 1. We define the following computational problems; in each, an in-
stance consists of a relational structure B and a pair (φ, φ′) of pp-formulas over
the signature of B having the same set of free variables X.

– PPEQ: decide if φ and φ′ are equivalent, that is, whether for all f : X → B,
it holds that B, f |= φ iff B, f |= φ′.

– PPCON: decide if φ is contained in φ′, that is, whether for all f : X → B,
it holds that B, f |= φ implies B, f |= φ′.

For every relational structure B, we define PPEQ(B) to be the problem PPEQ
where the structure is fixed to be B; hence, an instance of PPEQ(B) is just a pair
(φ, φ′) of pp-formulas. We define the family of problems PPCON(B) similarly.

We now identify some basic complexity properties of these problems. First, the
PPEQ and PPCON problems are contained in Πp

2 ; this is straightforward to ver-
ify. Next, there is a direct reduction from PPCON(B) to PPEQ(B). Throughout
the paper, the notion of reduction used is polynomial-time many-one reducibility.

Proposition 1. For each structure B, the problem PPCON(B) reduces to the
problem PPEQ(B).

We now review the relevant algebraic concepts to be used. An algebra is a pair
A = (A,F ) such that A is a nonempty set, called the domain or universe of the
algebra, and F is a set of finitary operations on A.

Let B be a nonempty set, let f be an n-ary operation on B, and let R be a
k-ary relation on B. We say that f preserves R (or f is a polymorphism of R), if
for every n tuples t1, . . . , tn ∈ R, denoting the tuple ti by (ti,1, . . . , ti,k), it holds
that the tuple f(t1, . . . , tn) = (f(t1,1, . . . , tn,1), . . . , f(t1,k, . . . , tn,k)) is in R. We
say that a relation R is compatible with a set of operations if it is preserved
by all of the operations. We extend this terminology to relational structures: an
operation f is a polymorphism of a relational structure B if f is a polymorphism
of every relation of B. We use Pol(B) to denote the set of all polymorphisms of a
relational structure B, and use AB to denote the algebra (B,Pol(B)). Dually, for
an operation f , we use Inv(f) to denote the set of all relations that are preserved
by f , and for a set of operations F , we define Inv(F ) as

⋂
f∈F Inv(f). We will

make use of the following result connecting the Pol(·) and Inv(·) operators to
pp-definability.

Theorem 1. (Geiger [12], Bodcharnuk et al. [5]) Let B be a finite relational
structure. The set of relations Inv(Pol(B)) is equal to the set of relations that are
pp-definable over B.
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We associate to each algebra A = (A,F ) a set of problems PPEQ(A), namely, the
set containing all problems PPEQ(B) where B has universe A and F ⊆ Pol(B).
We define PPCON(A) similarly. For a complexity class C, we say that PPEQ(A)
is C-hard if PPEQ(A) contains a problem PPEQ(B) that is C-hard. We define
C-hardness similarly for PPCON(A).

Theorem 2. Let B be a finite relational structure, and let C be a complexity
class closed under polynomial-time many-one reductions. The problem PPEQ(B)
is C-hard if and only if PPEQ(AB) is C-hard. The same result holds for PPCON(·).
The notion of a variety is typically defined on indexed algebras; a variety is
a class of similar algebras that is closed under the formation of homomorphic
images, subalgebras, and products. For our purposes here, however, we may note
that the variety generated by an algebra A, denoted by V(A), is known to be
equal to HSP ({A}), where the operator H (for instance) is the set of algebras
derivable by taking homomorphic images of algebras in the given argument set.

Theorem 3. Suppose that B ∈ V(A). Then, for every problem PPEQ(B) ∈
PPEQ(B), there exists a problem PPEQ(B′) ∈ PPEQ(A) such that PPEQ(B)
reduces to PPEQ(B′), and likewise for PPCON(·).

3 Unary Type

In this section, we present the first hardness result described in the introduction.
Our proof makes use of the detailed information on tame congruence theory

provided in [13] and [16]. This theory associates a typeset to a non-trivial finite
algebra, which contains one or more of five types : (1) the unary type, (2) the
affine type, (3) the boolean type, (4) the lattice type, and (5) the semilattice
type. By extension, a typeset is associated to each variety, namely, the union of
all typesets of finite algebras contained in the variety. A variety is said to admit
a type if the type is contained in its typeset, and is otherwise said to omit the
type.

Theorem 4. Let B be a finite relational structure. If V(AB) admits the unary
type, then PPEQ(B) and PPCON(B) are Πp

2 -hard.

As we now show, the previous theorem implies, modulo the G-Set conjecture, a
coNP/Πp

2 -complete dichotomy for the equivalence and containment problems.

Theorem 5. Let B be a finite relational structure over a finite signature. If the
G-Set conjecture holds and V(AB) omits the unary type, then both PPEQ(B) and
PPCON(B) are contained in coNP.

Proof. Let B∗ be obtained from B by adding to it all relations of the form {b}
for b ∈ B. If B is a finite relational structure such that the variety generated by
AB omits the unary type, then the variety generated by AB∗ omits the unary
type also, and according to the G-Set conjecture, CSP(B∗) is in P. But then,
CSP(B) is in P, since it can be viewed as a case of CSP(B∗). From this it follows
that PPEQ(B) and PPCON(B) are in coNP. �	
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In order to prove Theorem 4, we will first establish the key algebraic lemma
(Lemma 1). Then, we will establish the desired hardness result (Theorem 4), by
reducing from the containment problem over a boolean structure having constant
polymorphisms, known to be Πp

2 -complete [6], to the containment problem of
interest.

3.1 Algebra

We prepare the key algebraic lemma, whose proof requires a certain amount of
the theory of tame congruences and multitraces [13,16].

Lemma 1. Let B be a finite relational structure such that V(AB) admits the
unary type, and let C = ({0, 1}, {C1, . . . , Cl}) be a relational structure whose
relations contain the constant tuples. Then, there is a finite algebra A ∈ V(AB)
and a finite set R = {D1, . . . , Dl} ∪ {E1, . . . , Ek} of finitary relations over A
(where k = |A|), compatible with the operations of A, satisfying the following.

Let A = (A,R). Let φ(x1, . . . , xm) be a pp-formula on C with quantified
variables xm+1, . . . , xn. Define the pp-formula φ′(x1, . . . , xm) over A by replac-
ing each atomic formula Ci(z1, . . . , zr) in φ by Di(z1, . . . , zr), and conjoining
En(x1, . . . , xn) if n ≤ k, and

∧
1≤i1<···<ik≤n Ek(xi1 , . . . , xik

), otherwise. Then,
(φ, ψ) ∈ PPCON(C) if and only if (φ′, ψ′) ∈ PPCON(A).

3.2 Reduction

We now prove Theorem 4.

Proof (Theorem 4). By Theorem 4 and Lemma 4 from [6] it follows that there
is some Boolean relational structure C = ({0, 1}, {C1, . . . , Cl}), whose rela-
tions contain the constant tuples, such that PPCON(C) is Πp

2 -complete. Let
A = (A, {D1, . . . , Dl, E1, . . . , Ek}) be the finite relational structure defined in
terms of Lemma 1 over the universe A of the finite algebra A ∈ V(AB). The
construction of a pp-formula φ′ over A from a pp-formula φ over C given in the
lemma provides a reduction from PPCON(C) to PPCON(A). This reduction is
polynomial-time since the number of relations Ej that are conjoined to φ′ can
be bounded by a polynomial in n. �	

4 Non-congruence Modularity

We present the second hardness result described in the introduction. An algebra
A is said to be congruence modular, if its lattice of congruences satisfies the
modular law, ∀x∀y∀z(x ≤ y → x∨ (y ∧ z) = y ∧ (x∨ z)). A variety is said to be
congruence modular if all of its members are congruence modular.

Theorem 6. Let B be a finite relational structure. If V(AB) is not congruence
modular, then PPEQ(B) and PPCON(B) are coNP-hard.

The previous theorem implies, modulo the Edinburgh conjecture, a P/coNP-hard
dichotomy for the equivalence and containment problems.
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Theorem 7. Let B be a finite relational structure over a finite signature. If the
Edinburgh conjecture holds and V(AB) is congruence modular, then PPEQ(B)
and PPCON(B) are in P.

Proof. By the Edinburgh conjecture, the congruence modularity of V(AB) im-
plies that AB has few subpowers. Then, we have from [6, Theorem 7] that
PPEQ(B) and PPCON(B) are in P. �	
In order to prove Theorem 6, we first establish the key algebraic lemma (Lemma 2).
Next, we give a sequence of reductions to establish the desired hardness result:
we first reduce from the problem of deciding whether a DNF is a tautology, a
known coNP-complete problem, to a certain comparison problem over lattices;
we then reduce to a certain entailment problem on (sorted) relational structures
which we call “pentagons”; finally, we reduce from pentagon entailment to the
containment problem (Theorem 6).

4.1 Algebra

Let A be a set. For binary relations θ, θ′ on A, the relational product θ ◦θ′ is the
binary relation defined by {(a, b) | (a, c) ∈ θ and (c, b) ∈ θ′ for some c}. We use
θk to denote the k-fold relational product of θ with itself. We let Eq(A) denote the
complete lattice of equivalence relations on A, and we let 0A = {(a, a) | a ∈ A}
and 1A = A2 denote the bottom and top elements of Eq(A), respectively.

Proposition 2. Let A be a set such that |A| = m. Let θ1, . . . , θk ∈ Eq(A). It
holds that θ1 ∨ · · · ∨ θk = (θ1 ◦ · · · ◦ θk)m.

A pentagon is a structure P over the signature {α, β, γ} containing three binary
relation symbols such that αP, βP, and γP are equivalence relations on P , and
the following conditions hold in Eq(P ): αP ≤ βP, βP ∧ γP = 0P , βP ◦ γP = 1P ,
and αP ∨ γP = 1P . We remark that in the sequence of reductions that we give,
we do not make explicit use of the last item in the definition of pentagon.

A pentagon P = (P, αP, βP, γP) can be naturally decomposed as a direct
product P = B × C in such a way that βP and γP are the kernels of the
projections of P onto B and C, respectively. Each element b ∈ B induces, via
αP, an equivalence relation αb on C, namely

αb = {(c, c′) | ((b, c), (b, c′)) ∈ αP} ∈ Eq(C). (1)

In associating together two elements b, b′ ∈ B when αb = αb′ , one naturally
obtains a partition of B into l ≥ 1 non-empty blocks B1, . . . , Bl and equivalence
relations α1, . . . , αl on C such that for all b ∈ B, it holds that αi = αb if and
only if b ∈ Bi. We say that a pentagon is interesting if the sequence α1, . . . , αl

contains equivalence relations αj and αk such that αj < αk holds in Eq(C); we
say that a set of pentagons is interesting if it contains an interesting pentagon.

Let B be a finite relational structure. If V = V(AB) is not congruence modular,
then this can be witnessed in the congruence lattice of the 4-generated free
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algebra in V . More precisely, let F4 be the V-free algebra freely generated by a,
b, c, and d and let α∗, β, and γ be the congruences of F4 generated by {(a,b)},
{(a,b), (c,d)}, and {(a, c), (b,d)} respectively. If we set α = α∗ ∨ (β ∧ γ) then
it follows that V will fail to be congruence modular if and only if α < β and that
in this case, the three congruences α, β, and γ provide a witness to the failure
of the modular law in the congruence lattice of F4 [11].

By working over a suitable quotient of the algebra F4, we establish the fol-
lowing Lemma.

Lemma 2. Let B be a finite relational structure such that V(AB) is not con-
gruence modular. There is a finite algebra A ∈ V(AB) having congruences α, β,
and γ such that α < β, γ ∧β = 0A, and α∨γ = β ∨γ. Furthermore, there exists
a finite interesting set of pentagons P, and a finite set D of finitary relations
over A compatible with the operations of A such that:

(i) If P = (P, αP, βP, γP) ∈ P, then P ⊆ A and αP = α ∩ P 2, βP = β ∩ P 2,
and γP = γ ∩ P 2.

(ii) For every k ≥ 1, there exists a k-ary relation Dk on A, such that Dk has
a pp-definition over the relations in D with size polynomial in k, and such
that for all a1, . . . , ak ∈ A, (a1, . . . , ak) ∈ Dk, if and only if a1, . . . , ak ∈ P
for some P = (P, αP, βP, γP) ∈ P.

4.2 Reductions

From DNF-TAUTOLOGY to Lattice Inequality. A propositional formula is
in disjunctive normal form (DNF) if it is a finitary disjunction (∨) of finitary
conjunctions (∧) of literals; a literal is a variable, x, or the negation of a variable,
x̄. The following problem is well-known to be coNP-complete.

Problem: DNF-TAUTOLOGY
Instance: A propositional formula φ in DNF.
Question: Is φ a tautology?

A lattice term t is an algebraic term over finitary joins and meets. The depth
of t is the height of its syntactic tree. Let L = (L,∧,∨) be a lattice. We say
that L is nontrivial if |L| > 1. Let S ⊆ L. Relative to a set of variables X , an
S-assignment is a map f : X → S.

For a set of lattices L, we define the following computational problem.

Problem: DEPTH-4-TERM-INEQ(L)
Instance: A pair (t, t′) of lattice terms of depth ≤ 4.
Question: Does t ≤ t′ hold in all lattices L ∈ L?

One has the following coNP-hardness result for this problem.

Theorem 8. [15] Let L be a finite set of finite lattices containing a nontrivial
lattice. The problem DEPTH-4-TERM-INEQ(L) is coNP-hard via a polynomial-
time many-one reduction f from DNF-TAUTOLOGY satisfying the condition: if
(t, t′) is a no instance in the image of f , then for any lattice K ∈ L having
elements a, a′ ∈ K with a < a′, there is an {a, a′}-assignment witnessing t �≤ t′

in K.
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From Lattice Inequality to Pentagon Entailment. To each pentagon P,
we associate a 2-sorted structure P2 having B and C as first and second universe,
respectively, where P = B × C according to the decomposition of P provided
by the equivalence relations βP and γP. The structure P2 is over signature {R}
and has

RP2 = {(b, c, c′) ∈ B × C × C | b ∈ Bi ⇒ (c, c′) ∈ αi}. (2)

We will be interested in sorted pp-formulas over the signature {R}. Such formulas
are required to have a sort (1 or 2) associated with each variable; the permitted
atomic formulas are equality between variables of the same sort and predicate
applications having the form R(x, y, y′) where x has sort 1, and y and y′ have sort
2. We define the following computational problem for each set P of pentagons.

Problem: 2-PENTAGON-ENTAILMENT(P)
Instance: A pair (φ, ψ) of sorted pp-formulas over the signature {R} having

the same free variables for each sort.
Question: Does φ |= ψ over all pentagons P2 with P ∈ P?

Theorem 9. Let P be a finite set of finite pentagons containing an interest-
ing pentagon. The problem 2-PENTAGON-ENTAILMENT(P) is coNP-hard via a
polynomial-time reduction f from DNF-TAUTOLOGY satisfying the condition: if
(φ, ψ) is a no instance in the image of f , then φ �|= ψ is witnessed over P2 for
any interesting pentagon P ∈ P.

Proof. For a pentagon P ∈ P , let P = B × C be its decomposition, and let
α1, . . . , αl be the equivalence relations on C associated to P. Let KP denote
the sublattice of Eq(C) generated by α1, . . . , αl. We define L = {KP | P ∈
P}. Notice that L contains a nontrivial lattice, since there exists an interesting
pentagon in P . Hence, the problem DEPTH-4-TERM-INEQ(L) is coNP-hard by
Theorem 8; let r denote the reduction given by this theorem.

Let t(x) be a lattice term of depth less than or equal to 4 with x = (x1, . . . , xn).
By induction on the structure of t, we show how to construct a pp-formula
φt(x, y, y′), where the variables of x are of sort 1 and the variables y, y′ are of
sort 2. This translation has the property (*): for all b1, . . . , bn ∈ B and for all
c, c′ ∈ C, φt(b1, . . . , bn, c, c

′) holds in P2 if and only if (c, c′) is in the equivalence
relation given by tKP(αb1 , . . . , αbn). If t = xi, then φt(x, y1, y2) = R(xi, y1, y2).
In this case, property (*) is straightforwardly verified from the definition of
RP2 . If t = t1 ∧ · · · ∧ tk, then φt(x, y1, y2) = φt1(x, y1, y2) ∧ · · · ∧ φtk

(x, y1, y2).
In this case, property (*) is straightforward to verify. If t = t1 ∨ · · · ∨ tk, let
m = max{|C| | P ∈ P , P = B × C}. Let z0,k and zi,1, . . . , zi,k for i = 1, . . . ,m
be variables such that z0,k = y1, zm,k = y2, and zi,j is a fresh variable of
sort 2 otherwise. Then, φt(x, y1, y2) is the pp-formula obtained by existentially
quantifying the fresh variables zi,j before the conjunction

m∧
i=1

⎛
⎝φt1(x, zi−1,k, zi,1) ∧

k∧
j=2

(
φtj (x, zi,j−1, zi,j)

)⎞⎠ .
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In this case, property (*) follows from Proposition 2.
The desired reduction is the composition of the reduction r given by Theo-

rem 8 with the mapping (t, t′)→ (φt, φt′). We verify that the reduction is correct.
Suppose that (t, t′) is a yes instance in the image of r. Then, t ≤ t′ holds in all lat-
tices KP with P ∈ P . It follows immediately from property (*) that φt |= φt′ over
all pentagons P2 with P ∈ P . Suppose now that (t(x1, . . . , xn), t′(x1, . . . , xn))
is a no instance in the image of r. Let P ∈ P be an interesting pentagon.
There exist b1, b2 ∈ B with αb1 < αb2 in KP. By Theorem 8, there exists an
{αb1 , αb2}-assignment g defined on {x1, . . . , xn} such that t(g) �≤ t′(g) in KP.
Let h be the {b1, b2}-assignment on {x1, . . . , xn} naturally induced by g, and let
(c, c′) ∈ C×C be such that (c, c′) ∈ t(g)\ t′(g). From property (*), we have that
φt �|= φt′ is witnessed over P2 by the assignment h, (c, c′).

It remains to show that the translation t→ φt can be computed in polynomial
time. Let s(t) denote the size |φt| of a term t. We prove that for a bounded-
depth term t, the size s(t) is polynomial in |t|, the size of t, which suffices.
By inspection of the translation t → φt, there exist natural numbers L, B, E
that are polynomial in |t| such that: for a term t = xi, it holds that s(t) ≤ L;
for a term t = t1 ∧ · · · ∧ tk or a term t = t1 ∨ · · · ∨ tk, it holds that s(t) ≤
B(s(t1) + · · ·+ s(tk)) + E.

Now, we define the function u recursively as follows: u(0, n) = Ln; and, u(d+
1, n) = Bnu(d, n) + E. We prove the following claim: For all terms t, it holds
that s(t) ≤ u(d, n), where d is the depth of t and n is the number of leaves (that
is, the number of variable occurrences) of t. This suffices, as for each fixed d, the
function u can be viewed as a polynomial in L, B, E, and n.

For a term t = xi, we have d = 0 and n = 1, and that the claim holds is clear
from our choice of L. Now, we assume that the claim is true for a depth d ≥ 0,
and we consider a term t = t1 ∧ · · · ∧ tk or a term t = t1 ∨ · · · ∨ tk having depth
d + 1. Let ni denote the number of leaves of ti, and let di denote the depth of ti;
for each i, we have di ≤ d. A direct computation shows that s(t) ≤ u(d+1, n). �	

From Pentagon Entailment to Containment of pp-Formulas. We now
prove Theorem 6.

Proof (Theorem 6). Let A = (A,α, β, γ,D) be the finite relational structure
defined by the finite algebra A ∈ V(AB) with universe A, the congruences
α, β, γ ∈ Con (A), and the finite set of relations D from Lemma 2. Notice that A
is such that PPCON(A) ∈ PPCON(A). We claim that PPCON(A) is coNP-hard,
which implies that PPCON(B) is coNP-hard by Theorem 3. The coNP-hardness
of PPEQ(B) follows from Proposition 1. Let P = {P1, . . . ,P|P|} be the finite
interesting family of pentagons in Lemma 2.

Let φ be a sorted pp-formula, and let {x1, . . . , xn} and {y1, . . . , ym} be the
variables of first and second sort in φ, respectively. We let {x1, . . . , xn′} and
{y1, . . . , ym′} be the free variables of first and second sort in φ, respectively,
where n′ ≤ n and m′ ≤ m. We construct a pp-formula φ′ on A, as follows. For
each variable z in φ, we introduce a fresh variable z′; z′ is existentially quantified
in φ′ if and only if z is existentially quantified in φ. If φ contains the constraint
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xi = xj for some 1 ≤ i, j ≤ n, then φ′ contains the conjunct β(x′i, x
′
j); if φ

contains the constraint yi = yj for some 1 ≤ i, j ≤ m, then φ′ contains the
conjunct γ(y′i, y

′
j); if φ contains the constraint R(xi, yj , yk) for some 1 ≤ i ≤ n

and 1 ≤ j, k ≤ m, then φ′ contains the conjunct

(∃w′1)(∃w′2)(β(w′1, x
′
i) ∧ β(w′2, x

′
i) ∧ γ(w′1, y

′
j) ∧ γ(w′2, y

′
k) ∧ α(w′1, w

′
2)), (3)

where w′1 and w′2 are fresh variables; finally, φ′ contains the conjunct

Δn+m+k(x′1, . . . , x
′
n, y

′
1, . . . , y

′
m, w′1, . . . , w

′
k), (4)

where Δn+m+k is the pp-definition on A of the relation Dn+m+k as in Lemma 2
and {w′1, . . . , w′k} is the set of fresh variables introduced in conjuncts of type (3).
We arrange φ′ so that the existential quantifiers introduced in conjuncts of type
(3) appear at the start of φ′.

The desired reduction is the composition of the reduction r given by Theo-
rem 9 and the mapping (φ, ψ) �→ (φ′, ψ′). The construction is feasible in polyno-
mial time by Lemma 2, and it is possible to check its correctness by appealing
to Lemma 2 and the special character of the pentagons found in P . �	
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Abstract. We consider restrictions of first-order logic and of fixpoint logic in
which all occurrences of negation are required to be guarded by an atomic pred-
icate. In terms of expressive power, the logics in question, called GNFO and
GNFP, extend the guarded fragment of first-order logic and guarded least fix-
point logic, respectively. They also extend the recently introduced unary negation
fragments of first-order logic and of least fixpoint logic.

We show that the satisfiability problem for GNFO and for GNFP is 2ExpTime-
complete, both on arbitrary structures and on finite structures. We also study the
complexity of the associated model checking problems. Finally, we show that
GNFO and GNFP are not only computationally well behaved, but also model
theoretically: we show that GNFO and GNFP have the tree-like model property
and that GNFO has the finite model property, and we characterize the expressive
power of GNFO in terms of invariance for an appropriate notion of bisimulation.

1 Introduction

Modal logic is well known for its “robust decidability”: not only are basic decision
problems such as satisfiability, validity and entailment decidable, but the decidability
of these problems is preserved under various natural variations and extensions to the
syntax and semantics of modal logic (e.g., addition of fixpoint operators, backward
modalities, nominals; restriction to finite structures). As observed by Vardi [14], this
robust decidability is intimately linked to the fact that modal logic has a combination of
three properties, namely (i) the tree model property (if a formula has a model, it has a
model which is a tree), (ii) translatability into monadic second-order logic (MSO), and
thereby into tree automata and, (iii) the finite model property (every satisfiable modal
formula is satisfied in a finite structure). The decidability of satisfiability (on arbitrary
structures and on finite structures) follows immediately from these three properties.
However, we should note here that the two way μ-calculus (the extension of modal
logic with fixpoint operators and backward modalities) lacks the finite model property,
and hence the decidability of satisfiability on finite structures for this logic involves a
separate (non trivial) argument [5].

The properties (i), (ii) and (iii) described above can be viewed as a semantic expla-
nation for the robust decidability of modal logic. Given that modal logic can be viewed
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as a syntactic fragment of first-order logic, it is also natural to ask for syntactic ex-
planations: what syntactic features of modal formulas (viewed as first-order formulas)
are responsible for their good behavior? And can we generalize modal logic, preserv-
ing these features, while at the same time dropping inessential restrictions inherent in
modal logic (such as the fact that it can only describe structures with unary and binary
relations)?

Several answers to these questions have been proposed. The first one is to consider
the two variable fragment of first-order logic, which is decidable and has the finite
model property [12]. Unfortunately, this observation does not go very far towards ex-
plaining the robust decidability of modal logic, since it seems impossible to extend the
two variable fragment with a fixpoint mechanism while maintaining decidability [9].

The second proposal is to consider logics with guarded quantifications. The guarded
fragment of first-order logic (GFO) consists of FO formulas in which all quantifiers are
“guarded” by atomic predicates. It was introduced in [1]. It has a natural extension with
fixpoint operators (GFP) that extends the two-way μ-calculus [10]. Both GFO and GFP
have the tree-like model property (if a formula has a model, it has one of bounded tree
width), they can be interpreted into MSO (each formula can be transformed into a tree
automaton recognizing tree decompositions of its models of bounded tree width) and
GFO has the finite model property [1,8]. Finite satisfiability of GFP was only recently
proved decidable in [2].

The third, and most recent proposal is based on unary negation. Unary negation first-
order logic (UNFO) restricts first-order logic by constraining the use of negation to
subformulas having at most one free variable (and viewing universal quantification as a
defined connective). Unary negation fixpoint (UNFP) is the natural extension of UNFO
using monadic fixpoints. Again, UNFO generalizes modal logic, and UNFP generalizes
the two-way μ-calculus. Both UNFO and UNFP have the tree-like model property, they
can be interpreted into MSO and UNFO has the finite model property [13]. Decidability
of finite satisfiability for UNFP was also established in [13].

The three extensions of modal logics presented above are incomparable in terms
of expressive power. In particular there are properties expressible in UNFO that are
not expressible in GFO and vice-versa. In this paper we unify the unary negation and
guarded quantification approaches by introducing guarded negation logics.

Guarded negation first-order logic (GNFO) restricts FO by requiring that all occur-
rences of negation are of the form α ∧ ¬φ where the “guard” α is an atomic formula
(possibly an equality statement) containing all the free variables of φ. We also disallow
universal quantification as a primitive connective (though a limited form of universal
quantification can be expressed using existential quantification and guarded negation).
For instance, GNFO cannot express x �= y but it can express R(x, y, z) ∧ x �= y.
Guarded negation fixpoint (GNFP) extends GNFO with a guarded fixpoint mechanism.
In terms of expressive power, GNFO forms a strict extension of both UNFO and GFO.

We show that our guarded negation logics have the same desirable properties as
modal logics, unary negation logics and guarded logics. In particular, the satisfiability
problem for GNFO and GNFP is decidable, both on arbitrary structures and on finite
structures. These problems are all 2ExpTime-complete, even for a fixed finite schema
(recall that satisfiability of GFO is in ExpTime when the schema is fixed). We also study
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the (combined) complexity of the model checking problem of GNFO and GNFP. The
problem is PNP[O(log2 n)]-complete for GNFO. In the case of GNFP, it is hard for PNP

and contained in NPNP ∩ coNPNP. Note that a similar gap between the upper bound
and the lower bound exists for GFP and the μ-calculus, where the complexity of model
checking is known to lie between PTime and NP ∩ coNP [4]. Recall that the model
checking problem of GFO is PTime-complete [4]. Our proofs are based on reductions
to the model checking problem for UNFO and UNFP. Finally, we show that GNFO
and GNFP have the tree-like model property, and that GNFO has the finite model prop-
erty, and we characterize the expressive power of GNFO in terms of invariance for an
appropriate notion of bisimulation.

The most difficult result is the decidability of satisfiability on finite structures. For
GNFO, we give a reduction to testing whether a union of conjunctive queries is implied
by a guarded formula, recently shown decidable in [3]. In the case of GNFP, we make
a reduction to the decidability of finite satisfiability of GFP, recently proved in [2].

Related work. GNFO and GNFP form decidable extensions of GFO and GFP. Other
decidable extensions of GNFO and GNFP have been considered in the past, most no-
tably the clique-guarded fragment (and the related packed fragment, as well as the
weaker loosely-guarded fragment) of first-order logic, and of least fixpoint logic [6].
The logics GNFO and GNFP we propose here are incomparable in expressive power to
the clique guarded fragments. We leave open the question whether a decidable common
generalization exists.

2 Preliminaries

Structures and formulas. We are working on relational structures. We assume given
a relational schema τ consisting of a finite set of relation symbols, each having an
associated arity. By the arity of a schema, we mean the maximal arity of its relations.
A structure (or model) M over a relational schema τ consists of a set dom(M), the
domain of M , together with an interpretation of each relation symbol R ∈ τ as a k-ary
relation over dom(M) for k the arity of R according to τ . A structure M is said to
be finite if dom(M) is finite. If a tuple of elements ā from dom(M) belongs to the
interpretation of a relation symbol R, then we say that R(ā) is a fact of M . A tuple (or
set) of elements of M is guarded if it is a singleton or all its components (elements)
occur among those in a fact of M .

We assume familiarity with first-order logic, FO, and least fixpoint logic, LFP, over
relational structures. We use classical syntax and semantics for FO and LFP. We write
φ(x̄) to denote the fact that the free variables of φ are exactly the variables in x̄. We
also write M |= φ(ū) or M, ū |= φ(x̄) for the fact that the tuple ū of elements of the
model M makes the formula φ(x̄) true in M . The size of a formula φ, denoted by |φ|,
is the number of symbols needed to write down the formula.

Conjunctive queries. A conjunctive query (CQ) is a first-order formula of the form
∃x̄α where α is a conjunction of positive atomic formulas (including equalities). A
union of conjunctive queries (UCQ) is a disjunction of CQs. A positive-existential query
is an FO formula built using disjunction, conjunction and existential quantification only.
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Every positive-existential query can be transformed in a UCQ at the cost of a possible
exponential blow-up. Positive-existential queries belong to GNFO, even to UNFO. The
width of a CQ is the number of variables occurring in it, and the width of a UCQ is the
maximum width of its CQs. The height of a UCQ is the maximum size of its CQs.

GNFO. We define GNFO, guarded negation FO, as the fragment of FO given by the
following grammar, where R ranges over predicate symbols, and α(x̄ȳ) is an atomic
formula (possibly an equality statement).

ϕ ::= R(x̄) | x = y | ∃xϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | α(x̄ȳ) ∧ ¬ϕ(ȳ) (1)

Hence the logic can only negate a subformula if all its free variables are “guarded” by
some fact, or if the subformula has at most one free variable (in which case one can use
an equality statement of the form x = x or y = y as the guard). For example, x �= y is
not a formula of GNFO but R(x, y, z) ∧ x �= y is.

We say that a formula of GNFO is in GN-normal form if, in its syntax tree, no
disjunction is directly below an existential quantifier or a conjunction, and no existential
quantifier is directly below a conjunction sign. Every GNFO formula can be brought
into GN-normal form, at the cost of an exponential increase in length and linear increase
in the number of variables, using the following equivalences as rewrite rules (where x′
is a variable not occurring in ψ):

∃x(φ ∨ ψ) � ∃xφ ∨ ∃xψ, φ ∧ (ψ ∨ χ)� (φ ∧ ψ) ∨ (φ ∧ χ), (∃xφ)∧ ψ� ∃x′(φ[x′/x] ∧ ψ)

The appeal of the GN-normal form is that it highlights the fact that GNFO formulas
can be naturally viewed as being built up from atomic formulas using guarded negation,
and unions of conjunctive queries. Indeed, the GNFO formulas in GN-normal form are
precisely generated by the following recursive definition:

ϕ ::= R(x̄) | x = y | α(x̄ȳ) ∧ ¬ϕ(ȳ) | q[ϕ1/U1, . . . , ϕs/Us] (2)

where q is a UCQ using relation symbols U1, . . . , Us, and ϕ1, . . . , ϕs are formulas (gen-
erated by the same recursive definition) with the appropriate number of free variables
corresponding to the relation symbols they replace. Here, q[ϕ1/U1, . . . , ϕs/Us] is the
result of replacing in q all subformulas of the form Ui(x̄) with i ≤ s by φi(x̄).

A formula of GNFO is said to be of width k if, when brought into GN-normal form
in the way described above, it uses at most k variables (or equivalently, is built up using
UCQs q of width at most k). We denote by GNFOk all GNFO formulas of width k.

GNFO extends GFO and UNFO. GNFO generalizes the logic UNFO, studied in [13],
which only allows the negation of formulas having at most one free variable. It also gen-
eralizes the guarded fragment of first-order logic (GFO). The logic GFO is the fragment
of FO defined by the following grammar, where, again, α(x̄ȳz̄) is an atomic formula
(possibly an equality statement):

ϕ ::= R(x̄) | x = y | ϕ ∨ ϕ|ϕ ∧ ϕ|¬ϕ | ∃x̄ α(x̄ȳz̄) ∧ ϕ(x̄ȳ) | ∀x̄ α(x̄ȳz̄)→ ϕ(x̄ȳ)

It is straightforward to check that:

Proposition 1. Every GFO sentence is equivalent to a GNFO sentence, via a polyno-
mial time transformation.1

1 This is only true for sentences, as ¬R(xy) is in GFO but not expressible in GNFO.
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Proof. Let ϕ be any GFO sentence. We may assume that ϕ does not contain universal
quantifiers, by using negation and (guarded) existential quantification instead. Since ϕ is
a sentence, every subformula ϑ(x̄) is in the scope of an (inner-most) guarded existential
quantifier ∃x̄ū(αϑ(x̄ū)∧· · · ). We replace in ϕ each negated subformula ϑ(x̄) = ¬ψ(x̄)
by αϑ(x̄ū) ∧ ¬ψ(x̄) to obtain the desired equivalent GNFO-sentence. �	
Example 1. The GNFO sentence δ = ∃xy(E(x, y) ∧ ¬∃uvw(E(x, u) ∧ E(u, v) ∧
E(v, w) ∧ E(w, y))

)
is not equivalent to any GFO sentence or to any UNFO sentence,

even on undirected graphs. This is because δ defines a property that is not invariant
under guarded bisimulation (which, incidentally, amounts to ordinary bisimulation in
case of undirected graphs), as can be easily verified, nor is it invariant under “UN-
bisimulation” as befits UNFO formulas, cf. [13].

3 The Satisfiability Problem for GNFO

We show in this section how to reduce the (finite) satisfiability problem for GNFO to
the problem of testing whether a GFO formula entails (on finite structures) a UCQ.
The latter problem is also known as the problem of query answering against a GFO
theory, and it has been solved in [3]. To streamline the presentation, we will allow the
possibility of zero-ary relation symbols.

Lemma 1. To every ϕ(x̄) ∈ GNFO[τ ] one can associate in polynomial time a compan-
ion formula ψ(x̄) ∈ GNFO[τ � σ] of the form

ψ(x̄) = S(x̄) ∧
∧
j

∀ z̄ū.Rj(z̄ū)→ qj(z̄)

︸ ︷︷ ︸
ψ+

∧
∧
i

∀ z̄ū.Ti(z̄ū)→ ¬pi(z̄)

︸ ︷︷ ︸
ψ−

(3)

where σ comprises the new relation symbols occurring as S, Rj or Ti, where the qj’s
and pi’s are positive-existential, width(ψ) = width(ϕ) and such that ϕ ↔ ∃S ∃T ψ.

Proof. Given a GNFO-formula ϕ consider an inner-most occurrence of a guarded nega-
tion R(z̄ū) ∧ ¬q(z̄) as a subformula of ϕ. Then q(z̄) is necessarily positive existential.
Let T be a new predicate symbol of the same arity as R. We substitute T (z̄ū) in the
input formula for the subformula R(z̄ū)∧¬q(z̄), and add the following as conjuncts to
ψ+ and ψ−, according to their kind.

∀ z̄ū.T (z̄ū)→ ¬q(z̄)
∀ z̄ū.T (z̄ū)→ R(z̄ū)
∀ z̄ū.R(z̄ū)→ T (z̄ū) ∨ q(z̄)

Inner-most equality-guarded negations z = u ∧ ¬q(z, u) are handled in a similar fash-
ion. Again, q(z, u) must be positive-existential. We choose a new unary relation symbol
T , replace the subformula in question by z = u ∧ T (z), and add ∀ z.T (z)→ ¬q[u/z]
and ∀ z.T (z)∨ q[u/z] as conjuncts to the normal form.

Proceeding in this manner from the inside-out we eliminate all guarded negations
until the original input formula is reduced to a single positive-existential formula p(x̄)
(in the extended signature). Finally we replace p(x̄) with S(x̄) where S is an appropriate
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new predicate symbol and add ∀ x̄.S(x̄)→ p(x̄) as conjunct to the normal form, which
is thus finalized. It is now easy to verify the correctness of this transformation. �	
We may assume wlog. that the positive-existential formulas qj of (3) are in prenex
normal form, i.e. qj(z̄) = ∃ūξj(z̄, v̄). Also note that each conjunct ∀ z̄ū.Ti(z̄ū) →
¬pi(z̄) of (3) is the negation of a positive-existential sentence ∃ z̄ū.Ti(z̄ū) ∧ pi(z̄).
Therefore, the entire ψ− of (3) can be conceived as the negation of a single positive-
existential sentence q. This leads us to the following equivalent formula.

S(x̄) ∧
∧
j

(
∀ z̄ū.Rj(z̄ū)→ ∃v̄ξj(z̄v̄)

)
︸ ︷︷ ︸

ψ+

∧ ¬
∨
i

(
∃ z̄ū.Ti(z̄ū) ∧ pi(z̄)

)
︸ ︷︷ ︸

q

(4)

Observe next that without affecting satisfiability of (4) we may introduce new atoms
guarding the existential quantifiers in ψ+ thus obtaining a GFO-formula

ψ∗ = S(x̄) ∧
∧
j

(
∀ z̄ū.Rj(z̄ū)→ ∃v̄Qj(z̄v̄) ∧ ξj(z̄v̄)

)

where the Qj’s are distinct new relation symbols of appropriate arity. Then, ψ∗ |= ψ+

and, conversely, every model of ψ+ has an expansion modeling ψ∗.
The entire transformation of an input GNFO-formula ϕ to the equi-satisfiable ψ∗ ∧

¬q, with ψ∗ in GFO and q positive existential, can be performed in polynomial time
and only results in a polynomial blowup in the signature of the latter normal form. In
a final transformation step, which may require at most exponential time, the positive-
existential sentence q can be converted to an equivalent Boolean UCQ q∗. In general q∗

may be comprised of exponentially many CQs each of size at most |q|. Summing up all
the reduction steps we obtain:

Proposition 2. For each ϕ(x̄) ∈ GNFO[τ ] one can compute in exponential time a
GFO-formula ψ∗(x̄) and UCQ q∗ =

∨
l Ql, both of signature τ � {T̄}, such that

ϕ ←→ ∃T̄ (ψ∗ ∧ ¬ q∗ ) (5)

is valid, and that |ψ∗| = O(|ϕ|) and height(q∗) = maxl|Ql| ≤ |ϕ|.
We now summarize the main results of [3]. Later we will build on key elements of the
construction of [3], stated below as Lemmas 2 and 3 and Theorem 4, from which the
following Theorem 1 can be directly derived.

Theorem 1 ([3]). Given a GFO-formula ψ and a UCQ q of height h it is decidable in
time |q| · 2(h|ψ|)O(h|ψ|)

whether or not ψ ∧ ¬q is satisfiable; and if ψ ∧ ¬q has a model

then it has a finite model of size 2(h|ψ|)O(h|ψ|)

By combining Theorem 1 with the estimates of Proposition 2 we derive the complexity
of satisfiability for GNFO, as well as its finite model property.

Theorem 2. 1. The satisfiability problem for GNFO is 2EXPTIME-complete.

2. Every satisfiable GNFO-sentence ϕ has a finite model of size 22|ϕ|O(1)

.
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The 2EXPTIME lower bound follows immediately from the fact that satisfiability for
UNFO is already hard for 2EXPTIME [13,7]. It holds even if the schema is fixed (recall
that when the schema is fixed the complexity of satisfiability for GFO is ExpTime-
complete).

4 The Satisfiability Problem for GNFP

In a nutshell, GNFP is the extension of GNFO with guarded fixpoints. We show here
that both satisfiability and finite satisfiability are decidable for GNFP.

GNFP. In order to define GNFP we introduce extra predicate variables, which will
serve for computing fixpoints. We denote the predicates given by the relational schema
by P,Q,R, S etc. and the predicate variables serving for computing the fixpoints by
X,Y, Z etc. However the fixpoint predicates are not permitted to be used as guards. For
instance R(x̄) ∧ ¬Y (x̄) is allowed but Y (x̄) ∧ ¬R(x̄) is not. Formulas of GNFP[τ ],
we omit the schema τ when it is clear from the context, pertain to the following syntax
where R is any relational symbol in τ , α(x̄ȳ) is an atomic formula (possibly an equality
statement), and σ ⊆ τ .

φ ::= R(x̄) | x=y | X(x̄) | φ1 ∧ φ2 | φ1 ∨ φ2 | ∃xφ | α(x̄ȳ) ∧ ¬φ(x̄) |
μZ,z̄ [ guardedσ(z̄) ∧ φ(Ȳ , Z, z̄) ](x̄) | νZ,z̄ [ guardedσ(z̄) ∧ φ(Ȳ , Z, z̄) ](x̄)

Here μ and ν stand for least- and greatest fixpoints, respectively, and it is further re-
quired that in the matrix φ(Ȳ , Z, z̄) of a fixpoint formula i) the fixpoint variable Z
occurs only positively (i.e. always under an even number of negations) and never as a
guard; ii) no first-order parameters (i.e., free variables other than those z̄ bound by the
fixpoint operator) are permitted; and iii) free fixpoint variables Ȳ are allowed, to enable
nesting of fixpoint declarations. The clause guardedσ(z̄) signifies the requirement that
all tuples belonging to a predicate defined by a fixpoint construct must be guarded by a
relational atom of the underlying structure. The clause guardedσ(z̄) can be understood
in either of two ways: as a syntactic element (keyword) signifying this intended seman-
tics, or as a formula defining guardedness by a disjunction of existentially quantified
relational atoms (allowing relation symbols from σ as well as equality) involving all of
the variables z̄. Note that while the definitions of least- and greatest fixpoint formulas
are symmetric, the two operators are not each others duals. This is due to the fact that
the dualization of ν may introduce negations that are not guarded.

Since GNFP can be seen as a syntactic fragment of least fixed point logic LFP, we
omit the definition of the semantics, cf. [11].

The definition of GN-normal form that we gave for GNFO formulas applies to GNFP
as well. Formulas of GNFP in GN-normal form can be naturally thought of as being
built up from atomic formulas using (i) guarded negation, (ii) unions of conjunctive
queries, and (iii) fixpoint operators. As in the case of GNFO, the width of a GNFP-
formula is the number of variables it contains after being put in GN-normal form and
we let GNFPk denote the set of GNFP-formulas of width k.

GNFP extends GFP and UNFP. Syntactically, GNFP generalizes the logic UNFP
studied in [13], which only allows the negation of formulas having at most one free
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variable, and only unary fixpoints. GNFP also generalizes the guarded fragment of fix-
point logic (GFP) [10]. The logic GFP is the fragment of LFP defined as for GNFP
but replacing the first-order part of the syntax based on GNFO by the syntax of GFO.
It is not immediate from the syntax, but it is easy to check by induction building on
Proposition 1 that GNFP generalizes GFP.

Proposition 3. Every sentence of GFP is equivalent to a sentence of GNFP, via a poly-
nomial time transformation.

The aim of this section is to establish the following main result.

Theorem 3. It is decidable whether a sentence of GNFP has a model and whether it
has a finite model. Both of these problems are 2EXPTIME-complete.

The proof of Theorem 3 is a reduction to the (finite) satisfiability of GFP: given a for-
mula of GNFP we construct a formula of GFP whose (finite) satisfiability is equivalent
to the one of the initial formula and we then apply known results on (finite) satisfiability
for GFP [10,2]. Before we describe the reduction, we start with some useful notation
and some preliminary results taken from [3].

Acyclicity and treeification. We say that a conjunctive query is acyclic if it is seman-
tically equivalent to a formula of GFO built with only conjunction and existential quan-
tification. For instance the query ∃yzw T (x, y, z)∧ T (x,w, z) ∧E(x, y) is acyclic be-
cause it is equivalent to the guarded formula ∃yzT (x, y, z)∧E(x, y)∧(∃wT (x,w, z)).
It is easy to check that this definition is equivalent to acyclicity (in the hypergraph sense)
of the hypergraph induced by the atoms of the query with its variables as vertices.

Definition 1. Given a schema τ , the τ -treeification Λτ
q (x̄) of a positive existential query

q(x̄) over τ is the UCQ consisting of the disjunction of all those acyclic CQs over τ
(modulo renaming of bound variables) that imply q and that are minimal (in the sense
that removing any atomic formula would render it non-acyclic or not implying q).

Consider for instance q(x) = ∃yzwE(x, y) ∧ E(y, z) ∧ E(z, w) ∧ E(w, x). Then

Λ
{E}
q = E(x, x) ∨ ∃y E(x, y) ∧ E(y, x). Indeed, the only acyclic queries implying

q(x) are obtained by identifying some of its variables resulting in either a reflexive
edge on x or a pair of inverse edges. If the schema is {E, T } where T is a ternary
predicate the treeification of q(x) has a number of additional disjuncts corresponding
to various triangulations of q(x), such as ∃yzwT (x, y, z) ∧ T (x,w, z) ∧ E(x, y) ∧
E(y, z) ∧ E(z, w) ∧ E(w, x). It can be shown that each disjunct in the treeification
of any CQ in whatever schema contains at most three times as many atoms as the CQ
itself [3] leading to the following observations.2

Lemma 2. Consider a schema τ having r many predicate symbols of maximal arity w.
Let q(x̄) be a UCQ of height h over τ . Then Λτ

q (x̄) has width w, length rO(h)(hw)O(hw),
heightO(h), and can be constructed in time |q|rO(h)(hw)O(hw).

2 These figures constitute a slight refinement of those offered in [3, Lemma 10].
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Guarded bisimulation and covers. Guarded bisimulations [6] are, roughly speak-
ing, strategies for Duplicator in Ehrenfeucht-Fraı̈ssé games played on structures M and
N , with positions restricted to (ā, b̄) such that ā is guarded in M and b̄ guarded in N
(cf. also Definition 3 below). Guarded bisimilarity implies GFP-indistinguishability [6].
There is an associated notion of guarded unraveling, which, given a structure M , pro-
vides an acyclic structure M∗ that is guarded bisimilar to M , thus exhibiting the tree-
like model property of GFP [6]. Note that M∗ is in general infinite and, because it is
acyclic, over M∗ every conjunctive query is equivalent to its treeification (indeed, this
is one justification for the name “treeification”). An analogue of guarded unraveling for
finite structures was provided in [3] in the form of a construction, for all n, of a finite
companion M (n) of any finite structure M such that M (n) is guarded bisimilar to M
and M (n) |= q ↔ Λτ

q for all UCQs q of width at most n.

Definition 2. A guarded bisimilar cover π: N
∼→M is an onto homomorphismπ : N →

M inducing a guarded bisimulation {(b̄, π(b̄)) | b̄ guarded in N}. The cover is weakly
n-acyclic if for every homomorphism h : Q → N from a structure Q on at most n el-
ements into N there exists an acyclic substructure M0 of M (not necessarily induced)
with π(h(Q)) ⊆M0.

The following lemma shows how covers relate to treeification.

Lemma 3. Let π : N
∼→ M be a weakly n-acyclic guarded bisimilar cover of τ -

structures, and let q(x̄) be a UCQ of width at most n. Then for every guarded tuple b̄
(of not necessarily distinct elements) in N we have N |= q(b̄)↔ Λτ

q (b̄).

Theorem 4 (Rosati cover [3]). For all n ∈ N every relational structure M of schema
τ admits a weakly n-acyclic guarded bisimilar cover π : M (n) ∼→M . If M is finite then
|M (n)| = |M |wO(n)

, where w is the arity of τ , and M (n) can be effectively constructed.
We call M (n) the n-th Rosati cover of M .

Say that a relation Z ⊆M r is guarded in M if every tuple ā ∈ Z is guarded in M . The
following is an immediate consequence of the definitions.

Fact 1. Consider a weakly n-acyclic cover π : N
∼→ M and guarded predicates

Z1, . . . , Zk over M . Then π : (N,W1, . . . ,Wk) ∼→ (M,Z1, . . . , Zk) is a weakly n-
acyclic cover, where Wi = π−1(Zi) =

⋃{π−1(ā) | ā ∈ Zi} for each 1 ≤ i ≤ k.

Reduction to (finite) satisfiability for GFP. Let ϕ be any given GNFP sentence. As a
first step, we compute its GN-normal form ϕ̃. Note that ϕ̃ has the following dimensions:
|ϕ̃| = 2O(|ϕ|), width(ϕ̃) = O(|ϕ|), and ϕ̃ is built up using only UCQs of height at most
|ϕ| (as well as guarded negations and fixpoint operators) as in (2).

Next, essentially, our reduction transforms all UCQs occurring in ϕ̃ to their treeifi-
cation. For every k ≥ 1, and for every relational schema τ consisting of at most k-ary
relations, we define a translation η from GNFPk[τ ] sentences in GN-normal form to
GFPk[τ � {Ck}] sentences, where Ck is a new symbol of arity k, by structural recur-
sion, using the following rules.
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η(R(x̄) ) = R(x̄) (a)

η(Z(x̄) ) = Z(x̄) (b)

η( α(x̄ȳ) ∧ ¬ψ(x̄) ) = α(x̄ȳ) ∧ ¬ η(ψ(x̄)) (c)

η( μZ,z̄[ guardedτ (z̄) ∧ ψ(Ȳ , Z, z̄) ] ) = μZ,z̄[ guardedτ (z̄) ∧ η(ψ(Ȳ , Z, z̄)) ] (d)

η( νZ,z̄[ guardedτ (z̄) ∧ ψ(Ȳ , Z, z̄) ] ) = νZ,z̄[ guardedτ (z̄) ∧ η(ψ(Ȳ , Z, z̄)) ] (d′)

η( q[φ1/U1, . . . , φs/Us] ) = Λ
τ�{U1,...,Us,Ck}
q [η(φ1)/U1, . . . , η(φs)/Us] (e)

where in (e) q is a UCQ of signature {U1, . . . , Us} disjoint from τ � {Ȳ , Ck} and
φ1, . . . , φs ∈ GNFPk[τ � {Ȳ }], where Ȳ enumerates the free fixpoint variables occur-
ring in any of the φi’s, each of which is of a form (a)–(d), and such that q[φ1/U1, . . . ,
φs/Us] is a subformula of ϕ̃. In particular the φi define guarded relations. It can be
readily seen that all formulas in GN-normal form can be decomposed as in (a)–(e) and
we have the following bounds and on the translation η.

Lemma 4. For all GNFPk-formula ϕ of GN-normal form ϕ̃, |η(ϕ̃)| = 2(k|ϕ|)O(1)
and

η(ϕ̃) can be computed within this time bound, and its width remains k.

The following key lemma generalizes Lemma 3 and attests to the correctness of our
reduction. It is proved by structural induction on formulas, while relying on Fact 1 and
Lemma 3 to deal with the cases (d) and (e), respectively.

Lemma 5. Let π : N ∼→M be a weakly k-acyclic guarded bisimilar cover of τ�{Ck}-
structures and φ(Ȳ , x̄) ∈ GNFPk[τ ] a formula in GN-normal form with free fixpoint
variables Ȳ . Then for every assignment of guarded relations W̄ on N to Ȳ such that
Wi = π−1(π(Wi)) for all 1 ≤ i ≤ |Ȳ | and for every guarded tuple b̄ in N we have:

(N, W̄ ) |= η(φ)(b̄)↔ φ(b̄) .

Theorem 5. A GNFPk-sentence ϕ̃ in GN-normal form is satisfiable (in the finite) if,
and only if, η(ϕ̃) ∈ GFPk is satisfiable (in the finite).

Proof. It is easy to see that for every model M of ϕ̃ its expansion (M,Ck) is a model
of η(ϕ̃), where each Ck is the complete k-ary relation on M .

Conversely, consider some M a model of η(ϕ̃) and its k-th Rosati cover M (k),
equally a model of η(ϕ̃). Lemma 5 proves that M (k) is, in fact, a model of ϕ̃, and
we know from Theorem 4 that if M is finite then so is M (k). �	
Both satisfiability [10] and finite satisfiability [2] of GFP sentences have been shown
decidable in time 2O(nww), where n is the length of the input formula and w is its width.
Starting with a GNFPk sentence ϕ whose GN-normal form is ϕ̃, we get from Lemma 4
that |η(ϕ̃)| = 2(k|ϕ|)O(1)

and that η(ϕ̃) is computable within that same time bound, but
its width remains k. Theorem 3 now follows from these bounds via Theorem 5.

5 Additional Results

Model checking In this section we study the combined complexity of the model check-
ing problem, where the input consists of a sentence and a structure and the goal is to
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decide whether the sentence is true on the structure. It was shown in [13] that the model
checking problem for UNFO is PNP[O(log2 n)]-complete, and that the model checking
problem for UNFP is in NPNP ∩ coNPNP and PNP-hard. We show that the upper-bounds
also apply to GNFO and GNFP. The proof is a reduction to formulas with unary nega-
tions by constructing an incidence structure.

Theorem 6. The model checking problem for GNFO is PNP[O(log2 n)]-complete.
For GNFP it is in NPNP ∩ coNPNP and hard for PNP.

Expressive power. We develop an appropriate notion of bisimulation for GNFO and
GNFP, and use it to characterize the expressive power of GNFO.

Recall that a tuple of elements of a structure M is said to be guarded if there is a fact
of M in which all elements from the tuple occur. We denote by guarded(M) the set of
all guarded tuples of M . If M and N are structures and ā and b̄ are tuples of elements
from dom(M) and dom(N), respectively, then we say that M, ā and N, b̄ are locally
isomorphic if there is a partial isomorphism f : M → N such that f(ā) = b̄.

Definition 3. Let M,N be two structures. A GN-bisimulation (of width k ≥ 1) is a
binary relation Z ⊆ guarded(M)× guarded(N) such that the following hold for every
pair (ā, b̄) ∈ Z , where ā = a1, . . . , am and b̄ = b1, . . . , bn

– M, ā and N, b̄ are locally isomorphic (and in particular, m = n)
– For every finite set X ⊆ dom(M) (with |X | ≤ k) there is a partial homomorphism

h : M → N whose domain is X , such that h(ai) = bi for all ai in X , and such
that every ā′ ∈ guarded(M) consisting of elements in the domain of h, the pair
(ā′, h(ā′)) belongs to Z .

– Likewise in the other direction, where X ⊆ dom(N).

Note that if X above is restricted to guarded sets then we obtain a definition of guarded
bisimulation. We write M ≈(k)

GN N if there is a non-empty GN-bisimulation (of width
k) between M and N .

Proposition 4. For k ≥ 1, if M ≈k
GN N then M and N satisfy the same GNFPk

sentences. In particular, if M ≈GN N then M and N satisfy the same GNFP sentences.

In fact, GN-bisimulation invariance can be used to characterize GNFO.

Theorem 7. GNFO is the ≈GN -invariant fragment of FO, and for all k ≥ 1, GNFOk

is the ≈k
GN -invariant fragment of FO (on arbitrary structures).

Finally, building on Theorem 7 and Theorem 5, we can show the following.

Theorem 8. GNFP has the tree-like model property.

6 Discussion

We have provided a logical framework generalizing both GFO and UNFO while pre-
serving their nice properties, in particular decidability of satisfiability. Our results on
satisfiability carry over to the validity and entailment problems for GNFO, and likewise
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for GNFP, as these problems are all reducible to each other. For instance, a GNFO en-
tailment φ(x̄ȳ) |= ψ(x̄z̄) holds if, and only if, for a fresh relation R of appropriate arity
∃x̄ȳz̄(φ(x̄ȳ) ∧R(x̄ȳz̄) ∧ ¬ψ(x̄z̄))) is not satisfiable.

Another immediate consequence of our results is that query answering for unions
of conjunctive queries with respect to guarded negation fixpoint theories (i.e., the ana-
logue of Theorem 1 replacing GFO by GNFP) is decidable and 2ExpTime-complete.
Furthermore, although our definition of GNFO does not include constant symbols, they
could be added without affecting the complexity of these problems, relying on the same
technique used in [7].

It would be tempting to further generalize by including the two variable fragment
of FO (FO2). Unfortunately this would lead to undecidability. Actually a simple com-
bination of FO2 with UNFO already yields undecidability as FO2 can express the fact
that a relation correspond to inequality (∀x, y R(x, y) ↔ x �= y) and the extension of
UNFO with inequality is undecidable [13]. Similarly, unconstrained universal quantifi-
cation leads to undecidability, since every subformula of the form¬ψ(x̄) can be trivially
guarded using a fresh relation R(x̄), adding ∀x̄ Rx̄ as a conjunct to the main formula.
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2. Bárány, V., Bojańczyk, M.: Finite satisfiability for guarded fixpoint logic. Draft available at
arXiv:1104.2262v1 [cs.LO] (2011)
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Abstract. We consider first-order formulas over relational structures which may
use arbitrary numerical predicates. We require that the validity of the formula is
independent of the particular interpretation of the numerical predicates and refer
to such formulas as Arb-invariant first-order.

Our main result shows a Gaifman locality theorem: two tuples of a struc-
ture with n elements, having the same neighborhood up to distance (log n)ω(1),
cannot be distinguished by Arb-invariant first-order formulas. When restricting
attention to word structures, we can achieve the same quantitative strength for
Hanf locality. In both cases we show that our bounds are tight.

Our proof exploits the close connection between Arb-invariant first-order for-
mulas and the complexity class AC0, and hinges on the tight lower bounds for
parity on constant-depth circuits.

1 Introduction

Definability in logics plays an important and delicate role in model checking, a central
tool in several areas of computer science such as databases and automated verification.
The problem consists in testing whether a given structure satisfies a certain property
expressed in the logic. On the one hand, wider expressibility allows for more efficient
implementations of a given property. On the other hand, limits on the expressibility keep
the model checking task tractable and may be desirable for other reasons. For example,
a database can be stored on a disk, which induces a linear order on the elements. An
implementation of a query may exploit this order for looping through all the elements of
the structure and performing all kinds of numerical computations. At the same time, the
result of the query should only depend on the database and not on the linear order that is
specific to its current representation on disk. In the database context this requirement is
known as the data independence principle. In logic we usually speak of closure under
isomorphisms.

In order to capture such requirements, we consider finite relational structures and
queries expressed using first-order (FO) formulas which also have access to a binary
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predicate that is always interpreted as a linear order on the domain of the relational
structures. We accommodate numerical computations by also allowing arbitrary nu-
merical predicates in the logic. We require that the result of a query not depend on the
actual choice of the linear order when all numerical predicates are interpreted consistent
with the linear order. We refer to this logic as Arb-invariant FO. The special case where
the query does not use any numerical predicate except for the linear order coincides
with the well-known notion of order-invariant FO (cf., e.g., [12]).

In terms of computational power, Arb-invariant FO expresses precisely the prop-
erties computable within the complexity class AC0, and when restricting to formulas
using only the numerical predicates to + and ∗ it corresponds to the uniform version
of AC0 [11]. In particular, Arb-invariant FO is for AC0 what Arb-invariant Least Fixed
Point logic (LFP) is for P/poly [14], and (+, ∗)-invariant FO is for uniform AC0 what
order-invariant (LFP) is for PTime [16,10]. Note that + and ∗ are definable in order-
invariant LFP and therefore can be omitted from the syntax, but this is no longer the case
when considering first-order logic. It should be noted, however, that Arb-invariant FO
and order-invariant LFP are “logical systems” rather than “logics” in the strict formal
sense, as their syntax is undecidable (cf., e.g., [12]).

In this paper we study the expressive power of Arb-invariant FO and therefore the
power of the complexity class AC0. More precisely, we investigate the locality of Arb-
invariant FO queries. Locality is a central notion in the study of first-order formulas. It
provides good intuition for the expressive power of such formulas, and a powerful tool
for showing inexpressibility. For instance, any non-local property such as acyclicity,
connectivity, or k-colorability can immediately be shown non-expressible in a logic
that exposes a certain amount of locality (see, e.g., [12, Chapter 4]). Locality is also
exploited in an essential way in the design of efficient algorithms for evaluating first-
order definable queries on certain classes of structures [3,5].

There are two important notions of locality, known as Gaifman locality and Hanf
locality. Both are based on the distance measure on the elements of a structure when
viewed as the vertices of the structure’s Gaifman graph (in which two elements are con-
nected by an edge whenever they appear together in a tuple of one of the structure’s
relations). In a nutshell, Gaifman locality means that a query cannot distinguish be-
tween two tuples having the same neighborhood type in a given structure, while Hanf
locality means that a query cannot distinguish between two structures having the same
(multi-)set of neighborhood types. Here, the neighborhood type of a tuple refers to the
isomorphism type of the substructure induced by the elements up to distance r from the
tuple, where r is a parameter. It is known that Hanf locality implies Gaifman locality,
modulo a constant factor loss in the distance parameter r (cf., e.g., [12, Theorem 4.11]).

A well-known result (see, e.g., [12]) shows that FO enjoys both Hanf and Gaifman
locality with a “constant” parameter r, i.e. depending only on the query. In the sequel
we refer to this property as ω(1)-locality. In the presence of an extra linear order that
is part of the structure, all neighborhoods of positive radius degenerate to the entire
domain, so all queries are trivially 1-local. Locality becomes meaningful again in order-
invariant FO, where the formulas can make use of an order, but the structure does not
contain the order and the semantics are independent of the order. It is shown in [8] that
order-invariant FO queries are Gaifman ω(1)-local. When we allow arbitrary numerical
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predicates, ω(1)-locality turns out to fail, even if we require Arb-invariance. However,
by allowing the parameter r to depend on the number n of elements of the structure, we
provide an essentially complete picture in the case of Gaifman locality.

Theorem 1. Arb-invariant FO formulas are Gaifman (log n)ω(1)-local, and for every
c ∈ N there exists an Arb-invariant FO formula that is not Gaifman (log n)c-local.

The upper bound in Theorem 1 means that for any query in Arb-invariant FO and any
large enough number n, if a structure has n elements and if two tuples of that structure
have the same neighborhood up to distance (log n)f(n) for any function f ∈ ω(1), then
they cannot be distinguished by the query.

As in the case of order-invariant FO ([8]), the Hanf locality of Arb-invariant FO
queries is still open in general. However if we restrict our attention to structures that
represent strings, we can establish Hanf locality with the same bounds as in Theorem 1.
Recall that order-invariant FO is known to be Hanf ω(1)-local over strings [2]. In the
following statement, Arb-invariant FO(Succ) refers to Arb-invariant queries over string
structures.

Theorem 2. Arb-invariant FO(Succ) sentences are Hanf (log n)ω(1)-local, and for ev-
ery c ∈ N there exists an Arb-invariant FO(Succ) sentence that is not Hanf (log n)c-
local.

Proof Techniques. The proof of the upper bound on Gaifman locality in Theorem 1
exploits the tight connection between Arb-invariant FO formulas and the complexity
class AC0. The notion of locality in logic has a similar flavor to the notion of sensitivity
in circuit complexity, and AC0 is known to have low (polylogarithmic) sensitivity [13].
The latter result is closely related to the exponential lower bounds for parity on constant-
depth circuits [9]. Rather than going through sensitivity, our argument directly uses the
circuit lower bounds, namely as follows.

Given an Arb-invariant FO formula ϕ that distinguishes two points of the universe
whose neighborhoods are of the same type up to distance r, we construct a circuit on
2m = Θ(r) inputs that distinguishes inputs with exactly m ones from inputs with
exactly m + 1 ones. In the special case of disjoint neighborhoods the circuit actually
computes parity. The depth of the circuit is a constant depending on ϕ, and its size
is polynomial in n. The known exponential circuit lower bounds then imply that r
is bounded by a polylogarithmic function in n. This argument establishes the upper
bound in Theorem 1 for the case of formulas with a single free variable and has some
similarities with the proof of [8] establishing the ω(1)-locality of order-invariant FO.
However our proof is technically simpler and hinges on circuit lower bounds while the
argument in [8] refers to Ehrenfeucht-Fraı̈ssé games.

In order to handle an arbitrary number k of free variables, we follow again the same
outline as [8]: we show how to reduce any case with k > 1 free variables to one with
fewer variables. Our reduction is conceptually harder than the one in [8]. Indeed the
reduction in [8] changes the size of the universe which can be done while preserving
order-invariance but makes the preservation of Arb-invariance impossible.

The proof of the upper bound in Theorem 2 follows from a reduction to the upper
bound in Theorem 1. This strategy differs from the one used in [2], which argues that
the expressive power of order-invariant FO on strings is the same as FO (and is hence
Hanf ω(1)-local), because Arb-invariant FO(Succ) can express non-FO properties.
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The lower bounds in Theorems 1 and 2 follow because arithmetic predicates like
addition and multiplication allow one to define a bijection between the elements of
a first-order definable subset S of the domain of polylogarithmic size and an initial
segment of the natural numbers [4]. Thus, (the binary representation of) a single element
of the entire domain can be used to represent a list of elements of S. By exploiting this,
Arb-invariant FO can express, e.g., reachability between two nodes in S by a path of
polylogarithmic length.

We defer all proofs to the full paper, which may be found on the authors’ websites.

2 Preliminaries

Arb-invariant First-Order Logic. A relational schema is a set of relation symbols
each with an associated arity. A τ -structure M over a relational schema τ is a finite set
dom(M), the domain, containing all the elements of M , together with an interpretation
RM of each relation symbol R ∈ τ . If U is a set of elements of M , then M|U denotes
the induced substructure of M on U . That is, M|U is the structure whose domain is U
and whose relations are the relations of M restricted to those tuples containing only
elements in U .

We say that two τ -structures M and M ′ are isomorphic, M ∼= M ′, if there exists a
bijection π : dom(M) → dom(M ′) such that for each k-ary relation symbol R ∈ τ ,
(a1, a2, . . . , ak) ∈ RM iff (π(a1), π(a2), . . . , π(ak)) ∈ RM ′

. We write π : M ∼= M ′

to indicate that π is an isomorphism that maps M to M ′. If a and b are tuples (of the
same length) of distinguished elements of dom(M) and dom(M ′), respectively, then
we write (M,a) ∼= (M ′, b) to indicate that there is an isomorphism π : M ∼= M ′

which maps a to b. All classes of structures considered in this paper are closed under
isomorphisms.

Fix an infinite schema σarb, containing a binary symbol < together with a symbol
for each numerical predicate. For instance σarb contains a symbol + for addition, ∗ for
multiplication, and so on. Each numerical predicate is implicitly associated, for every
n ∈ N, with a specific interpretation as a relation of the appropriate arity over the
domain [n] := {1, 2, . . . , n}. For instance + is associated with the restriction on [n] of
the classical relation of addition over N. Reciprocally for each such family of relations,
σarb contains an associated predicate symbol.

Let M be a τ -structure and n = |dom(M)|. An Arb-expansion of M is a structure
M ′ over the schema consisting of the disjoint union of τ and σarb such that dom(M) =
dom(M ′), M and M ′ agree on all relations in τ , and < is interpreted as a linear order
over dom(M). This interpretation induces a bijection between dom(M) and [n], identi-
fying each element of M ′ with its index relative to <. All the numerical predicates are
then interpreted over dom(M ′) via this bijection and their associated interpretation over
[n]. For instance, + is the ternary relation containing all tuples (a, b, c) of dom(M ′)3

such that i + j = k, where a, b, and c are respectively the ith, jth and kth elements of
dom(M ′) relative to <. Note that M ′ is completely determined by M and the choice of
the linear order < on dom(M).

We denote by FO(τ) the first-order logic with respect to the schema τ . We use the
standard syntax and semantics for FO (cf., e.g., [12]). If φ is a formula, we write φ(x)
to denote that x is a list of the free variables of φ. We write (M,a) when we want to
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emphasize the fact that a are distinguished elements of M . We also write M |= φ(a) or
(M,a) |= φ(x) to express that the tuple a of elements in dom(M) makes the formula
φ(x) true on M .

We denote by FO(τ, Arb) the set of first-order formulas using the schema τ ∪ σarb.
A formula φ(x) of FO(τ, Arb) is said to be Arb-invariant on a finite structure M over
the schema τ , if for any tuple a of elements of dom(M), and any two Arb-expansions
M ′ and M ′′ of M we have

M ′ |= φ(a) ⇐⇒ M ′′ |= φ(a). (1)

When φ(x) is Arb-invariant with respect to all finite structures M over a schema, we
simply say that φ(x) is Arb-invariant.

When φ(x) is an Arb-invariant formula of FO(τ, Arb) on M , we write M |= φ(a)
whenever there is an Arb-expansion M ′ of M such that M ′ |= φ(a). Hence Arb-
invariant formulas can be viewed as formulas over τ -structures. We denote by Arb-
invariant FO(τ) the set of Arb-invariant formulas of FO(τ, Arb), or simply Arb-invariant
FO if τ is clear from the context. When the formula uses only the predicate < of σarb,
we have the classical notion of order-invariant FO (see [8] and [12]).

Locality. To each structure M we associate an undirected graph G(M), known as the
Gaifman graph of M , whose vertices are the elements of the domain of M and whose
edges relate two elements of M whenever there exists a tuple in one of the relations of
M in which both appear. For example, consider a relational schema τ consisting of one
binary relation symbol E. Each τ -structure M is then a directed graph in the standard
sense, and G(M) coincides with M when ignoring the orientation. Given two elements
u and v of a structure M , we denote as distM (u, v) the distance between u and v in M
which is defined as their distance in the Gaifman graph G(M). If a and b are tuples
of elements of M , then distM (a, b) denotes the minimum distance between any pair of
elements (one from a and one from b).

For every r ∈ N and tuple a ∈ dom(M)k, the r-ball around a in M is the set

NM
r (a) := {v ∈ dom(M) : distM (a, v) ≤ r}.

and the r-neighborhood around a in M is the structure

NM
r (a) :=

(
M|NM

r (a) , a
)
.

NM
r (a) is the induced substructure of M on NM

r (a) with k distinguished elements a.

Gaifman Locality. Let f be a function from N to R≥0. A formula φ(x) is said to be
Gaifman f -local with respect to an infinite class of structuresM if there exists n0 ∈ N
such that for any n > n0, for any structure M ∈ M with n = |dom(M)|, and any
tuples a and b we have

NM
f(n)(a) ∼= NM

f(n)(b) =⇒ M |= φ(a) iff M |= φ(b). (2)

For a set of functions F , a formula is said to be Gaifman F -local if it is Gaifman f -local
for every f ∈ F .
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Hanf Locality. Let f be a function from N to R≥0. For any two τ -structures M,M ′ with
domain size n we write M ≡f(n) M ′ if there is a bijection h : dom(M) → dom(M ′)
such that for all elements a in the domain of M we haveNM

f(n)(a) ∼= NM ′
f(n)(h(a)).

A sentence φ is said to be Hanf f -local if there is a n0 such that for all τ -structures
M,M ′ with domain size n > n0 we have

M ≡f(n) M ′ =⇒ M |= φ iff M ′ |= φ. (3)

For a set of functions F , a sentence is said to be Hanf F -local if it is Hanf f -local for
every f ∈ F .

Circuit complexity. We assume basic familiarity with Boolean circuits. A family of
circuits is a sequence (Cm)m∈N such that for all m ∈ N, Cm is a circuit using m input
variables, hence defining a function from {0, 1}m to {0, 1}. We say that a language
L ⊆ {0, 1}∗ is accepted by a family of circuits (Cm)m∈N if for all m ∈ N and for all
binary words w of length m, Cm(w) = 1 iff w ∈ L.

When dealing with structures as inputs we need to encode the structures as strings.
The precise encoding is not relevant for us as long as it is generic enough. We denote by
Rep(M) the set of all binary encodings of M . Similarly, if a is a tuple of distinguished
elements of M , then Rep(M,a) denotes the set of all binary encodings of (M,a).

AC0 and FO(τ, Arb). A language L is in (nonuniform) AC0 if there exists a family
of circuits (Cm)m∈N accepting L, a constant d ∈ N, and a polynomial function p(m)
such that for all m ∈ N each circuit Cm has depth d and size at most p(m). There is
a strong connection between AC0 and FO(τ, Arb) [11]. We make use of the following
characterization with respect to Arb-invariant FO(τ, Arb).

Lemma 3 (Implicit in [11]). Let φ(x) be a k-ary FO(τ, Arb) formula which is Arb-
invariant on a class of τ -structures M. There exists a family of constant-depth and
polynomial-size circuits (Cm)m∈N such that for each M ∈ M, a ∈ dom(M)k, and
Γ ∈ Rep(M,a),

C|Γ |(Γ ) = 1 ⇐⇒ M |= φ(a).

Lower bounds. Our locality bounds hinge on the well-known exponential size lower
bounds for constant-depth circuits that compute parity [1,6,17,9]. In fact, we use the
following somewhat stronger promise version. For a binary word w ∈ {0, 1}∗, we let
|w|1 denote the number of 1s in w.

Lemma 4 (Implicit in [9, Theorem 5.1]). For any d ∈ N, there are constants c and m0

such that for m > m0 there is no circuit of depth d and size 2cm
1

d−1 that w ∈ {0, 1}2m

accepts all inputs w ∈ {0, 1}2m with |w|1 = m and rejects all inputs with |w|1 = m+1.

3 Gaifman Locality

We now prove the main result of the paper – the upper bound in Theorem 1. Recall,
our theorem claims that every Arb-invariant FO formula is Gaifman (log n)ω(1)-local.
In fact we prove the following slightly stronger version.
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Theorem 5. For any FO(τ, Arb) formula φ(x), and infinite classM of τ -structures, if
φ(x) is Arb-invariant onM, then φ(x) is Gaifman (log n)ω(1)-local onM.

We now briefly sketch the overall proof of Theorem 5. Suppose we have two tuples,
a and b, on a τ -structure M , with domain size n, such that their r-neighborhoods,
NM

r (a) and NM
r (b), are isomorphic (for some big enough r). Suppose that there is

a FO(τ, Arb) formula φ(x) which is able to distinguish between a and b on M while
being Arb-invariant on M . Using the link between Arb-invariant FO(τ, Arb) formulas
and AC0 circuits from Lemma 3, we can view the formula φ(x) as a constant-depth
circuit C.

We are able to show that because φ(x) is Arb-invariant and distinguishes between
a and b on M , we can construct from the circuit C and structure M another circuit C̃
that for (2m)-length binary strings w distinguishes between the cases when w contains
m occurrences of 1 and m+ 1 occurrences, for some m depending on r. This is the key
step in our argument. If this happens for infinitely many n, we get a family of circuits
computing the promise problem described in Lemma 4. We can argue that the size of
C̃ is polynomial in n and the depth of C̃ only depends on φ(x) and hence is constant.
Therefore if m ∈ (log n)ω(1) the family of circuits C̃ we construct violates Lemma 4
hence φ(x) cannot distinguish between tuples which have isomorphic r-neighborhoods.
Our construction is such that m is linearly related to r and therefore φ(x) is Gaifman
(log n)ω(1)-local.

3.1 Unary Formulas

In this subsection we consider only unary FO formulas φ(x). For didactic reasons we
first assume that the r-neighborhoods of the elements a and b are disjoint. We argue
that we can perform the key step in this setting, then consider the general unary case.
We conclude by arguing a unary version of Theorem 5.

For clarity we describe the intuition with respect to structures that are graphs. Let M
be a graph G = (V,E) and take two vertices a, b ∈ V such that π : NG

r (a) ∼= NG
r (b).

Suppose, for the sake of contradiction, that there is a unary FO formula φ(x), which
is Arb-invariant on G, such that G |= φ(a) ∧ ¬φ(b). Applying Lemma 3 to φ gives
us a circuit C which, for any vertex c ∈ V , outputs the same value for all strings in
Rep(G, c), and distinguishes Rep(G, a) from Rep(G, b).

Disjoint neighborhoods. Let us assume that NG
r (a) ∩ NG

r (b) = ∅. In this setting it
turns out we can pick r = m. The neighborhood isomorphism, π : NG

r (a) ∼= NG
r (b),

implies that the balls of radius i < r around a and b are isomorphic and disjoint in G.
Consider the following procedure, depicted in Figure 1. For some i ∈ [m] cut all the
edges linking nodes at distance i − 1 from a or b to nodes at distance i. Now, swap
the positions of the (i − 1)-neighborhoods around a and b and reconnect the edges in
a way that respects the isomorphism π. The resulting graph is isomorphic to G, but the
relative positions of a and b have swapped.

Using this intuition we construct a new graph Gw from G, a, and b that depends on a
sequence of m Boolean variables w := w1w2 · · ·wm. We construct Gw so that for each
variable wi, we swap the relative positions of the radius i − 1 balls around a and b iff
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π(v2)

π(v1)

=

Fig. 1. Diagram for swapping the neighborhoods of a and b of radius i, conditioned on wi = 1

wi is 1. The number of such swaps is |w|1. The m-neighborhood isomorphism between
a and b implies that Gw

∼= G. When |w|1 is even (Gw, a) ∼= (G, a) and when |w|1 is
odd (Gw, a) ∼= (G, b).

Using the above construction of Gw we derive a circuit C̃ from C that computes
parity on m bits. The circuit C̃ first computes a representation Γw ∈ Rep(Gw , a), and
then simulates C on input Γw. The above distinguishing property then implies that C̃
computes parity on m bits. To construct Γw we start with a fixed string in Rep(G, a) and
transform it into an element of Rep(Gw, a) by modifying the edges to switch between
the shells in the manner suggested above. Observe that the presence of each edge in Gw

depends on at most a single bit of w. This property implies that Γw consists of constants
and variables in w or their negations. This means that C̃ is no larger or deeper than C.

We formalize this intuition for general structures and obtain the following lemma.

Lemma 6. Let m ∈ N. Let M be a structure. Let a, b ∈ dom(M) such that distM (a, b) >
2m and NM

m (a) ∼= NM
m (b). Let C be a circuit that accepts all strings in Rep(M,a),

and rejects all strings in Rep(M, b). There is a circuit C̃ with the same size and depth
as C that computes parity on m bits.

General Unary Case. We now develop the transformation corresponding to Lemma 6
for the general unary case, where the r-neighborhoods around a and b may overlap. As
before, we describe the intuition in terms of structures that are graphs.

Consider the iterative application of the isomorphism π to a. We distinguish between
two cases. The first case occurs when this iteration travels far from a. That is, for some
t ∈ N, πt(a) is a point c that is far from a. We choose r large enough so that a large
neighborhood around c is isomorphic to the neighborhood around a or b. By the triangle
inequality, since a is far from c either: b is far from a, or c is far from a and b. In the latter
case C must distinguish between either a and c or b and c. Therefore, w.l.o.g., we have
a pair of vertices that are distinguished by C, and whose neighborhoods are isomorphic
and disjoint. For this pair of vertices, we are in the disjoint case and Lemma 6 can be
applied to produce a small circuit that computes parity.

The other case occurs when the iterative application of π to a stays close to a (and
b). Let S0 be the orbit of a under π, and let Si be the vertices at distance i from S0, for
i ∈ [2m]. Because π(S0) = S0 and π is a partial isomorphism on G, the shells Si are
closed under π.

We now play a game similar to the disjoint case. Consider the following procedure,
depicted in Figure 2. For some i ∈ [2m] cut all edges between the shell Si−1 and Si.
“Rotate” the radius i − 1 ball around S0 by π relative to Si, and reconnect the edges.
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π(a) = baπ−1(a)

v1π−1(v1) π(v1)

v2π−1(v2) π(v2) =
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v2π−1(v2) π(v2)

Fig. 2. Diagram for rotating the shell of radius i around S0 when wi = 1

Because the shells are closed under π, the resulting graph is isomorphic to G. Further,
the positions of a and b have shifted relative to an application of π.

As before, we encode this behavior into a modified graph Gw depending on a se-
quence of 2m Boolean variables w := w1w2 · · ·w2m. When wi = 0, we preserve the
edges between the shells Si−1 and Si. When wi = 1 we rotate the edges by π. That
is, an edge (v1, v2) ∈ (Si−1 × Si) ∩ E becomes the edge (v1, π(v2)) in Gw. The
neighborhood isomorphism between a and b implies that G ∼= Gw. We can argue that

(Gw , a) ∼= (G, π|w|1(a)). (4)

We define the circuit C̃ to simulate C on an input Γw ∈ Rep(Gw, a). The above distin-
guishing property implies that C̃ distinguishes between |w|1 ≡ 0 mod |S0| and |w|1 ≡
1 mod |S0|. This is not quite the promise problem defined in Lemma 4. For this rea-
son we modify the construction to shift a by m applications of π−1 in Γw. This means
that Γw ∈ Rep(Gw, π−m(a)) and C̃ can distinguish between |w|1 ≡ m mod |S0| and
|w|1 ≡ m + 1 mod |S0|. This is ruled out by Lemma 4, completing the argument.

For general structures, the idea is formalized in the following lemma.

Lemma 7. Let m ∈ N. Let M be a structure. Let a, b ∈ dom(M) such thatNM
12m(a) ∼=

NM
12m(b). Let C be a circuit that accepts all strings in Rep(M,a) and rejects all strings

in Rep(M, b), and for each c ∈ dom(M), C has the same output for each string in
Rep(M, c). There is a circuit C̃ with the same size and depth as C that distinguishes
|w|1 = m and |w|1 = m + 1 for w ∈ {0, 1}2m.

Proof of Theorem 5 in the case of unary formulas. Now that we know how to con-
struct the circuit C̃ as in Lemmas 6 and 7, we are ready to finish the proof of Theo-
rem 5 in the unary case. Assume that φ(x) is a unary formula of FO(τ, Arb) that is
Arb-invariant with respect to an infinite class of τ -structuresM.

Since φ(x) is FO(τ, Arb), it is computable by a family of circuits in AC0 (cf.,
Lemma 3). That is, there are a constant d, polynomials s(n) and r(n), and a circuit fam-
ily (Cr(n))n∈N with depth d and size s(n) such that, for every n ∈ N, the circuit Cr(n)

computes φ(x) on structures M ∈ M with |dom(M)| = n and r(n) bounds the length
of the binary encoding of (M,a) for any a ∈ dom(M). Since φ(x) is Arb-invariant on
M , Cr(n) has the same output for all strings in Rep(M,a) for each a ∈ dom(M).

Now, for the sake of contradiction, suppose φ(x) is not Gaifman (log n)ω(1)-local on
M. This implies that there is an infinite subclass of structuresM′ ⊆M and a function
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f(n) in (log n)ω(1), where for each M ∈M′, φ(x) distinguishes between two elements
a, b ∈ dom(M) having isomorphic f(n)-neighborhoods.

Consider some structure M ∈ M′, with n = |dom(M)|. Let m := � f(n)
12 �. By

the above, there exists a, b ∈ dom(M) such that NM
12m(a) ∼= NM

12m(b) and M |=
φ(a) ∧ ¬φ(b) without loss of generality. Let C := Cr(n); this circuit then satisfies the
assumptions of Lemma 7. From the lemma, we obtain a circuit C̃ of depth d and size
s(n) that distinguishes between |w|1 = m and |w|1 = m + 1 for w ∈ {0, 1}2m.

From Lemma 4 we obtain that s(n) > 2cm1/(d−1)
. Noting that m = (log n)ω(1),

s is polynomial, and d is constant, this yields a contradiction by choosing M ∈ M′

sufficiently large, completing the proof. �	

3.2 k-ary Formulas

To argue Theorem 5 in the case of formulas with an arbitrary number of free vari-
ables, we prove the following reduction. Given a k-ary FO(Arb) formula φ that is
Arb-invariant on the structure M and distinguishes two k-tuples a and b that have
isomorphic r-neighborhoods, we produce, for some k′ < k, a k′-ary formula FO(Arb)
φ′ that is Arb-invariant on an extended structure M ′ and distinguishes between two k′-
tuples a′ and b′ that have isomorphic r′-neighborhoods. Furthermore, r′ is only slightly
smaller than r. The formal statement of the reduction is as follows.

Lemma 8. Let k, d ∈ N, r a function from N to R≥0, and τ be a schema. Fix α ≤ 1
7k .

Let φ(x) be a k-ary FO(τ, Arb) formula of quantifier-depth d that is Arb-invariant over
an infinite class of τ -structuresM and that is not Gaifman r-local.

Then there is k′ < k, a schema τ ′ ⊇ τ , an infinite class of τ ′-structuresM′ and a
k′-ary FO(τ ′, Arb) formula φ′(y) of quantifier-depth (d+(k−k′)) that is Arb-invariant
overM′ and not Gaifman αr-local.

Repeated application of this lemma transforms a distinguishing k-ary formula into a
distinguishing unary formula with slightly weaker parameters. For large enough initial
radius this is sufficient to contradict the Gaifman locality of unary formulas.

4 Hanf Locality

The main result of this section is the upper bound in Theorem 2, which states that Arb-
invariant FO formulas over strings are Hanf (log n)ω(1)-local.

Fix a finite alphabet A and consider structures over the schema τs containing one
unary predicate per element of A and one binary predicate E. Let S be the class of
τs-structures M that interprets E as a successor relation and where each element of
M belongs to exactly one of the unary predicates in τs. Each structure in S represents
a string in the obvious way and we blur the distinction between a string w and its
actual representation as a structure. We then consider FO(τs ∪ σarb) formulas that are
Arb-invariant over S and denote the corresponding set of formulas by Arb-invariant
FO(Succ). We say that a language L ⊆ A∗ is definable in Arb-invariant FO(Succ) if
there is a sentence of Arb-invariant FO(Succ) whose set of models in S is exactly L.
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The proof of the upper bound in Theorem 2 has several steps. We first introduce a clo-
sure property of languages allowing, under certain conditions, substrings inside a word
to be swapped without affecting language membership. We then argue that languages
definable in Arb-invariant FO(Succ) have this closure property. Finally, we conclude
by proving that this closure property implies that Arb-invariant FO(Succ) sentences are
Hanf (log n)ω(1)-local. In the following, we describe these steps in some more detail.

Arb-invariant FO(Succ) is Closed Under Swaps. Let f : N → R≥0. A language L
is said to be closed under f(n)-swaps if there exists a n0 ∈ N such that for all strings
w := xuyvz ∈ A∗, with |w| = n > n0, and where i, j, i′, and j′ are, respectively,
the positions in w immediately before the substrings u, y, v, and z, and Nw

f(n)(i) ∼=
Nw

f(n)(i
′) andNw

f(n)(j) ∼= Nw
f(n)(j

′) we have: w := xuyvz ∈ L iff w′ := xvyuz ∈ L.

A language is closed under F -swaps if is it closed under f(n)-swaps for all f ∈ F .
Let φ be an Arb-invariant FO(Succ) sentence. Suppose the strings w and w′ satisfy

the initial conditions for closure under (log n)ω(1)-swaps, but are distinguished by φ.
We first consider the case when the four f(n)-neighborhoods of i, j, i′, j′ are disjoint.
In this case not only do the neighborhoods around the strings u and v look same, but
u and v are far apart. We define a FO(Arb) formula ψ derived from φ and a structure
M derived from w and w′, such that ψ on M simulates φ on either w or w′ depend-
ing on the input to ψ. Moreover, ψ is Arb-invariant on M and the input tuples that ψ
distinguishes have large isomorphic neighborhoods, implied by the neighborhood iso-
morphisms among i, j, i′, and j′. Applying our Gaifman locality theorem (Theorem 1)
to the formula ψ induces a contradiction.

When the neighborhoods are not disjoint we reduce to the disjoint case by making
two key observations. The first is that when some of the neighborhoods overlap only a
small amount there is freedom to select slightly smaller neighborhoods that are pairwise
disjoint, though still induce the same swap. The second insight is that when several of
the neighborhoods have considerable overlap, the neighborhood isomorphisms induce
periodic behavior within those neighborhoods. So much so that the substrings uyv and
vyu must be identical. This contradicts the fact that w and w′ are distinct. This intuition
is formalized in the following lemma.

Lemma 9. If L is a language definable in Arb-invariant FO(Succ) then L is closed
under (log n)ω(1)-swaps.

Arb-invariant FO(Succ) is Hanf (log n)ω(1)-local. We are now ready to prove the
upper bound of Theorem 2. Consider a pair of equal length strings w,w′ such that
w ≡f(n) w′ for some bijection h. Observe that if w = w′, we can choose h to be the
identity. The identity mapping is monotone in the sense that for each position i ∈ [n], for
all j < i, h(j) < h(i). When w �= w′, h is not the identity and not monotone. However,
h is monotone when considering only the first position. We extend the set which h is
monotone on by (log n)ω(1)-swapping substrings of w while being careful to preserve
the bijection to w′. Eventually h becomes monotone with respect to all positions and
is the identity. The final insight is this, if we only perform (log n)ω(1)-swaps language
membership is maintained by Lemma 9. Thus, we transform between w and w′ without
changing language membership, so w ∈ L iff w′ ∈ L. Hence Arb-invariant FO(Succ)
is Hanf (log n)ω(1)-local.
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5 Discussion

We have established the precise level of locality of Arb-invariant FO formulas for the
Gaifman notion of locality. We leave it as an open problem whether the same bounds
could be achieved for the Hanf notion of locality. We managed to prove Hanf locality
for the special case of strings and we believe that a similar argument also works for
trees and possibly graphs of bounded treewidth.

As pointed out in [7] “it would be interesting to see a small complexity class like uni-
form AC0 [...] can be captured by a logic” (recall from the introduction that although
Arb-invariant FO does capture AC0, it does not have an effective syntax). As a (simple)
first step towards a solution to this problem, in the journal version of this paper we will
show that over regular languages, Arb-invariant FO(Succ) has exactly the same expres-
sive power as FO(Succ, lm), where lm is the family of predicates testing the length of
a string modulo some fixed number. Note that when combining this result with the one
of [15], this shows all the numerical predicates do not bring any extra expressive power
than the one of addition over regular languages.
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Abstract. We introduce Modular Markovian Logic (MML) for compositional
continuous-time and continuous-space Markov processes. MML combines oper-
ators specific to stochastic logics with operators reflecting the modular structure
of the models, similar to those used by spatial and separation logics. We present a
complete Hilbert-style axiomatization for MML, prove the small model property
and analyze the relation between stochastic bisimulation and logical equivalence.

1 Introduction

Complex networks (e.g., embedded systems, communication networks, the Internet
etc.) and complex systems (e.g., biological, ecological, social, financial, etc.) are of-
ten modelled as stochastic processes, to encapsulate a lack of knowledge or inherent
randomness. Such systems are frequently modular in nature, consisting of parts which
are systems in their own right. Their global behaviour depends on the behaviour of their
parts and on the links which connect them. Understanding such systems requires inte-
gration of local stochastic information in a formal way, in order to address questions
such as: ”to what extent is it possible to derive global properties of the system from the
local properties of its modules?”.

This is a problem of fundamental importance in complex systems that has been usu-
ally addressed semantically: probabilistic and stochastic process algebras, for instance,
aim at describing compositionally the behaviour of a system from the behaviours of
its subsystems taking into account various types of synchronization or communication.
This approach is quite restrictive, as process algebras are not logics: one cannot ex-
press basic logical operations such as conjunction, disjunction, implication or negation
of properties. Usually, to do this, people use logics such as temporal logics, modal �-
calculus [21] or Hennessy-Milner logic [18] to express properties of transition systems.
But these are global properties only and no logical framework developed so far allows
reasoning on stochastic systems and subsystems at the same time.

In this paper we develop a logical framework called Modular Markovian Logic
(MML) that tackles this problem by organizing qualitative and quantitative properties of
stochastic systems in hierarchical, modular structures, thereby proving global properties
from the local properties of modules. Formally, denoting ”process P has the property
�” by P � � and letting ”�” be the composition operator, we aim to establish a frame-

work containing modular proof rules of the form
P1 � �1� ���� Pk � �k

P1�����Pk � �
C(�� �1� ��� �k),

where � is a logical constraint.
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To gain this level of expressivity, MML combines stochastic operators similar to
the ones of Aumann’s system [1,14] with modular operators similar to the ones used
in spatial logics [5,6] and in separation logics [30]. For an observable action a and a
positive rational r, the operator ”La

r ” of MML expresses the fact that a process can
perform an a-transition with the rate1 at least r. In addition, the composition operator
”�” joins logical terms and directly expresses properties of the combined subsystems.

On the semantic level, we introduce the modular Markov processes (MMPs) which
are (continuous-) labelled Markov processes [13,28] enriched with an algebraic struc-
ture. This algebra defines the composition of Markovian systems and establishes the
relation between a system and its subsystems. The composition of behaviours satis-
fies a general synchronization pattern which subsumes most of the classical notions of
parallel composition found in process algebras.

We define the modular Markovian logic for a semantics based on MMPs. We inves-
tigate the relation between stochastic bisimulations of MMPs and logical equivalence
induced by MML over the class of MMPs. We present a complete Hilbert style axiom-
atization of MML for the Markovian semantics and prove the small model property.

Research context. Labelled Markov process (LMPs) are introduced in [12,3,13,28] and
they generalize most of the models of Markovian systems. A similar concept, Harsanyi
type space (HTS), has been studied in the context of belief systems [15,27]. MMPs
are built on top of these, by exploiting their equivalence proved in [10]. In addition,
MMPs have inbuilt an algebraic structure that extends, for continuous space and time,
the concepts of the Markov chain algebra [4].

Probabilistic logics have been studied for LMPs (probabilistic versions of temporal
and Hennessy-Milner logics [13,11,28]), for HTSs (Aumann’s system [1,14]) and in a
more general context [9]. The first class focuses on model checking and logical char-
acterization of stochastic bisimulation, while for Aumann’s system also axiomatization
issues have been addressed [17,31]. In [8] we have proposed a completely axiomatized
stochastic logic that combines features of the two classes of logics. In this paper we ex-
tend the stochastic logic with modular operators that allow us, in addition, to investigate
the algebraic structures of the models.

Modular logics, such as spatial logics [5,6] and separation logic [30] have been de-
veloped for concurrent nondeterministic systems, but to the best of our knowledge, no
stochastic or probabilistic version of these have been studied.

The paper is organized as follows. Section 2 introduces basic concepts used in the
paper. Section 3 defines MMPs and their bisimulation. Section 4 presents MML and re-
sults concerning the relationship between logical equivalence and bisimulation. Section
5 contains the axiomatic system of MML, the soundness and completeness metatheo-
rems and the small model property. The paper also contains a conclusive section.

2 Preliminary Definitions

In this section we establish the terminology used in the paper.

1 The rate of a transition is the parameter of an exponentially distributed random variable that
characterizes, for Markovian processes, the duration of the transition.
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Given a set M, � � 2M that contains M and is closed under complement and count-
able union is a �-algebra over M; (M� �) is a measurable space and the elements of �
are measurable sets. � � 2M is a base for � if � is the closure of � under complement
and countable union; we write � � �.

A relation � � M � M is non-wellfounded if there exists �mi � M � i � �� such that
for each i � �, (mi�mi�1) � �; otherwise it is wellfounded. A subset N � M is �-closed
i� �m � M � 	n � N� (m� n) � �� � N. If (M� �) is a measurable space and � � M � M,
�(�) denotes the set of measurable �-closed subsets of M.

A measure on (M� �) is a function � : � 
 �� such that �(�) � 0 and for �Ni�i � I �
�� � � with pairwise disjoint elements, �(

�
i�I Ni) �

�
i�I �(Ni)�

Let 	(M� �) be the class of measures on (M� �). We organize it as a measurable
space by considering the �-algebra generated, for arbitrary S � � and r 
 0, by the sets
�� � 	(M� �) : �(S ) � r�.

Given two measurable spaces (M� �) and (N� �), a mapping f : M 
 N is measur-
able if for any T � �� f �1(T ) � �� We use �M 
 N� to denote the class of measurable
mappings from (M� �) to (N� �).

Central for this paper is the notion of an analytic set. We only recall the main defi-
nition and mention the properties of analytic sets used in our proofs. For detailed dis-
cussion on this topic related to Markov processes, the reader is referred to [28] (Section
7.5) or to [10] (Section 4.4).

A metric space (M� d) is complete if every Cauchy sequence converges in M.
A Polish space is the topological space underlying a complete metric space with a

countable dense subset. Note that any discrete space is Polish.
An analytic set is the image of a Polish space under a continuous function between

Polish spaces. Note that any Polish space is an analytic set.
There are some basic facts about analytic sets that we use in this paper. Firstly, an

analytic set, as measurable space, has a denumerable base with disjoint elements. Sec-
ondly, If 1�2 are analytic sets with �1� �2 the Borel algebras generated by their
topologies, then the product space  �1 �2 with the Borel algebra � generated
by the product topology is an analytic set.

3 Modular Markov Processes

For the beginning we introduce continuous Markov processes (CMPs) for a finite set
� of actions. CMPs are coalgebraic structures that encode stochastic behaviors. If m
is the current state of the system, N a measurable set of states and a � �, �(a)(m) is a
measure on the state space and �(a)(m)(N) � �� represents the rate of an exponentially
distributed random variable that characterizes the duration of an a-transition from m
to arbitrary n � N. Indeterminacy is resolved by races between events executing at
di�erent rates.

Definition 1 (Continuous Markov processes). Given an analytic set (M� �), where
� is the Borel algebra generated by the topology, an �-continuous Markov kernel is
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a tuple � � (M� �� �), where � : � 
 �M 
 	(M� �)�� If m � M, (� �m) is an
�-continuous Markov process2.

Let � be the class of �-CMKs; � ��i��
� are used to range over �-CMKs. Stochastic

bisimulation follows the line of Larsen-Skou bisimulation [23,11,28].

Definition 2 (Stochastic Bisimilarity). Given � � (M� �� �) � �, a rate-bisimulation
relation on � is a relation � � M � M such that (m� n) � � i� for any C � �(�) and
any a � �, �(a)(m)(C) � �(a)(n)(C)�
Two processes (� �m) and (� � n) are stochastic bisimilar, written m �� n, if they are
related by a rate-bisimulation relation.

Two processes (� �m) and (� ��m�) are stochastic bisimilar, written (� �m) � (� ��m�),
i� m ���� � m�, where � � � � is the disjoint union of � and � �. We call the relation
� stochastic bisimulation.

3.1 Synchronization

To define the modular Markov processes we need a general notion of synchronization
of CMPs that we introduce following the general line of [20]. For this, we assume extra
structure on the set � of actions.

Firstly, we consider a synchronisation function � that is a partial function � : � �

� 
 � which associates to some a� b � � an action a � b � � interpreted as the syn-
chronisation of a and b. In this way we can mimic various synchronisation paradigms.
For instance, the CCS-style synchronisation [26] requires that a �a � �, where � � � is
a special action; CSP-style [19] requires that a � a � a; for interleaving and ACP-style
[2] we need to assume that there exists a reflexive transition Æ � � such that for any
a � �, a � Æ � a. Similarly, most classical notions of parallel composition in process
algebras may be expressed by a suitable synchronization function.
The only formal requirement is that �, as an operation, is commutative (a � b � b � a).

Secondly, we assume a function � : �� � �� 
 �� that computes, given the rates
r and s of the actions a and b respectively, the rate r � s of the synchronisation a � b.
Examples of such function are the mass action law used with stochastic Pi-calculus [29]
and other models of bio-chemical interactions and the minimal rate law used by PEPA
[16] for applications in performance evaluation. The formal requirements are:
� : �� � �� 
 �� is a continuous function that, as an operation, is commutative

(r� s � s�r), associative ((r� s)�t � r�(s�t)) and bilinear ((r1�r2)� s � (r1� s)�(r2� s)
and s � (r1 � r2) � (s � r1) � (s � r2)).

These two functions define the synchronization of two CMPs as follows.

Definition 3. For i � 1� 2, let �i � (Mi� �i� �i) � � and 	i � �i denumerable bases with
disjoint elements. � � (M� �� �) is the product of �1 and �2, written � � �1 � �2, if
M � M1 � M2, � � 	1 � 	2 and � : � 
 [M 
 [� 
 ��]] is defined, for mi � Mi,
a � � and S �

�
k�K��

U1
k � U2

k � � for Ui
k � 	i, by

2 �(�) is a measurable mapping between (M� �) and �(M� �). This is equivalent with the con-
ditions on the two-variable rate function used in [13] to define continuous Markov processes
(see, e.g. Proposition 2.9, of [10]).
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�(a)((m1�m2))(S ) �
b�c�a�

(b�c)��2

�
k�K

�1(b)(m1)(U1
k ) � �2(c)(m2)(U2

k )�

� represents the result of the synchronization of �1 and �2: � calculates the rate
of a by summing all the possible synchronizations b � c � a between �1 and �2. The
properties of � guarantee that the previous sum is convergent and independent of the
choice of the bases. Because � is bilinear, r � 0 � 0.

Lemma 1. If �1��2 � �, then �1 � �2 � �.

If (�1�m1) and (�2�m2) are CMPs, then (�1 � �2� (m1�m2)) is a CMP called the syn-
chronization of (�1�m1) and (�2�m2).

3.2 Parallel Composition

For introducing a concept of parallel composition that is general enough to include
most of the similar concepts, we assume that the support set of the Markov kernel has
an algebraic structure called modular structure.

Definition 4 (Modular structure). A tuple (M����) is a modular structure on a set M
if �� M � M is an equivalence relation and � : M � M 
 M is a partial operation
which, with respect to �, is
– a congruence: if m0 � m1, then m0�m2 is defined i� m1�m2 is defined and

m0�m2 � m1�m2,
– associative: (m0�m1)�m2 is defined i� m0�(m1�m2) is defined and

(m0�m1)�m2 � m0�(m1�m2),
– commutative: m0�m1 is defined i� m1�m0 is defined and

m0�m1 � m1�m0,
– modular: if m0�m1 � n0�n1, then either mi � n j and m1�i � n1� j for i� j � �0� 1�, or
there exist mi

j � M for i� j � �0� 1�, such that mi � mi
0�mi

1 and ni � m0
i�m1

i for i � �0� 1�;
– wellfounded: the relation �(m� n) � 	n� � M�m � n�n�� is wellfounded.

Process algebras are examples of modular structures where � is the structural con-
gruence or some bisimulation relation, while � is, for instance, the parallel composi-
tion. In these cases well-foundedness expresses the fact that any process (modulo (Nil):
P � P�0) can be decomposed into a finite number of processes that cannot be, fur-
ther, decomposed; and modularity guarantees the uniqueness of this decomposition up
to structural congruence. In process algebras these hold, modulo (Nil), due to the in-
ductive definition of the set of processes.

For modular structures, we lift the signature to sets by defining, for arbitrary N�N� �

M, N�N�
� �m � M � m � n�n� for some n � N� n� � N��. Moreover, if � � 2M , let

��� � �N�N� � N�N� � ��.

Definition 5 (Modular Markov process). An �-modular Markov kernel is a tuple
 � (� ����), where� � (M� �� �) � � and (M����) is a modular structure such that
its algebraic structure satisfy the following properties
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1. it preserves the Borel-algebras, i.e., ��� � �,
2. it preserves the behaviours of modules and their synchronization, i.e.,

(i)� ���� (ii)� (� �m0�m1) � (� �� � (m0�m1))�
If m � M, (�m) is a modular Markov process.

Condition 2(ii) requires that (� �m0�m1) is bisimilar with the synchronization of
(� �m0) and (� �m1).

M is called the support of , denoted sup(). Let � be the class of �-modular
Markov kernels (MMKs); we use �� �i�

� to range over�.
Because MMKs preserves the synchronisation of the modules, stochastic bisimula-

tion is a congruence.

Theorem 1 (Congruence). Given (� ����) � �, if m �� m� and both m�n and m��n
are defined, then m�n �� m��n�

4 Modular Markovian Logic

In this section we introduce Modular Markovian Logic (MML).
The formulas of MML are the elements of the set � introduced by the following

grammar, for arbitrary a � � and r � ��.

� :� �
��� ��

��� � � �
��� La

r�
��� ����

The semantics is given by the satisfiability relation ” � ” defined for  � � and
m � sup(), inductively as follows.
�m � � always;
�m � �� i� it is not the case that �m � �;
�m � � � � i��m � � and �m � �;
�m � La

r� i� �(a)(m)(���	) � r, where ���	 � �m � M��m � ��;
�m � �1��2 i� m � m1�m2 and �mi � �i, 1 � 1� 2.

”�” is a polyadic modality of arity 2. The formula La
r� is interpreted as “the rate of an

a-transition from the current state to a state satisfying � is at least r”. Notice that the
semantics of La

r� is well defined only if ���	 is measurable. This is guaranteed by the
next lemma.

Lemma 2. For any � � � and any  � (M� �� �) � �, ���	 � �.

When it is not the case that �m � �, we write �m � �. A formula � is satisfiable if
there exists  � � and m � sup() such that �m � �. If �� is not satisfiable, � is
valid, denoted by � �.

In what follows we consider all the Boolean derived operators. In addition, let
�

i�1��n

�i�

i� j�
i� j�1��n

(�i 
 �� j) and � � �� and for k � �, let k � �(�����������������	
k�1

); notice that �m � k

i� m can be decomposed in maximum k modules.
In the rest of this section we focus on the logical equivalence induced by MML on

MMPs and its relation to stochastic bisimulation on MMPs. The next theorem states
that � preserves the satisfiability of � formulas.
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Theorem 2. For  � � and m� n � sup(), if m � n, then
for all � � �� �m � � i�� n � ��

Let �� � � be defined by the grammar � :� �
��� ��

��� � � �
��� La

r�� The next theorem
reproduces a similar result presented in [13,28].

Theorem 3. Given  � � and m� n � sup(),
if [for any � � ��� �m � � i�� n � �], then m � n�

5 A Complete Hilbert-Style Axiomatization for MML

Tables 1, 2 and 3 contain a Hilbert-style axiomatization for MML.
The stochastic axioms in Table 1 have been proposed in [8] where we have proved

that they form a complete axiomatization for CMPs. These axioms are similar, but more
complex due to stochasticity, than the ones proposed in [31] for Harsanyi type spaces.
As in the probabilistic case, we have infinitary rules (R2) and (R3) that encode the
Archimedean properties of �. However, a finitary axiomatization is possible on the
lines of [17] at the price of defining some complex operators, as shown in [22].

Table 1. Stochastic Axioms Table 2. Structural Axioms
(A1): � La

0�

(A2): � La
r�s�
 La

r�

(A3): � La
r (� � �) � La

s(� � ��) 
 La
r�s�

(A4): � �La
r (� � �) � �La

s (� � ��) 
 �La
r�s�

(R1): If � �
 � then � La
r�
 La

r�

(R2): If �r � s� � �
 La
r� then � �
 La

s�

(R3): If �r 
 s� � �
 La
r� then � �
 �

(A5): � (���)��
 ��(���)
(A6): � ���
 ���

(A7): � ��� 
 �

(A8): � ��(� � �) 
 (��� � ���)
(R4): If � �
 � then � ���
 ���

(R5): If � �
 ��� then � �
 �

The structural axioms in Table 2 are similar to the axioms proposed in [25] for a
spatial logic on CCS semantics. The main di�erence is rule (R5) which rejects models
that do not respect the modularity conditions. An example is the rule (Nil): P � P�0
which allows processes with (trivial) non-wellfounded structure. However, one can eas-
ily make an MMP from a process algebra term by simply taking the quotient of the
class of processes by (Nil) and similar rules.

To simplify the form of the modular axioms in Table 3, we use some additional
notations. �k is the set of permutations of �1� ��� k�. For arbitrary a � �, we assume that
the set of its �-decompositions (which is finite) is indexed and let Ia � �i � bi � ci � a�.
If �(ri� j

k ) � i � I� k � K� j � �0� 1��� �(si� j
k ) � i � I� k � K� j � �0� 1�� � ��, let rI

K � sI
K �

�
i�I

k�K�
j�
0�1�

(ri� j
k ) � (si� j

k ).

The rules (R6) and (R7) encode the well-foundedness and the modularity of the
models. The rules (R8) and (R9) are logical versions of classical expansion laws for
parallel operator. (R8) states that the rate of the a-transitions from m to ��� is at least
the sum, after k � K, of all �-products of the rates of b and c-transitions (for a � b � c)
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from m1 and m2 to ��
j
k� and ��

1� j
k � respectively ( j � 0� 1), given that m � m1�m2 and

��� covers
�
k�K

��
j
k����

1� j
k �. For instance, � (Lb

r� � Lc
u�)�(Lc

s� � Lb
v�) 
 Lb�c

(r�s)�(u�v)���

and � Lb
r��L

c
s� 
 Lb�c

r�s� are instances of (R8). Similarly, (R9) states that the rate of the
a-transitions from m to ��� is strictly bigger than the sum, after k � K, of all �-products
of the rates of b and c-transitions (for a � b � c) from m1 and m2 to ��

j
k� and ��

1� j
k �

respectively ( j � 0� 1), given that m � m1�m2 and ��� is covered by
�
k�K

��
j
k����

1� j
k �.

� (�Lb
r���Lc

u�)�(�Lc
s���Lb

v�) 
 �La
(r�s)�(u�v)(���) is an instance of (R9) given that

b� c are the only actions such that a � b � c.

Table 3. Modular axioms

(R6): If I is finite and � 1 



i�I

�i� then � k 

s�k

i j�I

�i1 ������is �

(R7): If �
j�0�1�
i�1��k

(� j
i 
 1) and � �0

1�����
0
k 
 �1

1�����
1
l � then k � l and

�


���k

�
i�1��k

�0
i � �1

�(i)

(R8): If K is finite and � (
�

k�K

�0
k) � (

�

k�K

�1
k) � (



k�K

�0
k ��

1
k 
 �)� then

�

�������
i�Ia�
k�K

�
j�0�1

Lbi

(ri� j
k )
�

j
k

�������� �
�������

i�Ia�
k�K

�
j�0�1

Lci

(si� j
k )
�

1� j
k

��������
 La
(rI

K�sI
K)
�

(R9): If K is finite and � (
�

k�K

�0
k) � (

�

k�K

�1
k) � (�




k�K

�0
k ��

1
k)� then

�

�������
i�Ia�
k�K

�
j�0�1

�Lbi

(ri� j
k )
�

j
k

�������� �
�������

i�Ia�
k�K

�
j�0�1

�Lci

(si� j
k )
�

1� j
k

��������
 �La
(rI

K�sI
K )�

As usual, we say that a formula � is provable, denoted by � �, if it can be proved
from the axioms (using also Boolean rules). � is consistent, if � 
 � is not provable.
Given a set ��� � �, � proves � if from the formulas of � and the axioms we can
prove all � � � ; we write � � � . � is consistent if it is not the case that � � �.
For a sublanguage L � �, we call � L-maximally consistent if � is consistent and
no formula of L can be added to it without making it inconsistent. For �1� �2 � �,
�1��2 � ��1��2 : �i � �i� i � 1� 2�.

Theorem 4 (Soundness). The axiomatic system of MML is sound for the Markovian
semantics, i.e., for any � � �, if � � then � �.

In what follows we prove the finite model property for MML by constructing a model
for a given consistent formula. This result will eventually prove that the axiomatic sys-
tem is also complete for the Markovian semantics, meaning that everything that is true
for all the models can be proved. Before proceeding, we fix some notations.
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For n � �, n � 0, let �n � �
p
n : p � ��. If S � � is finite, the granularity of S , gr(S ),

is the lowest common denominator of the elements of S .
The modal depth of � � � is defined by md(�) � 0, md(��) � md(�), md(La

r�) �
md(�) � 1 and md(� � �) � md(���) � max(md(�)�md(�)).

The structural depth of � � � is defined by sd(��) � sd(La
r�) � sd(�), sd(� � �) �

max(sd(�)� sd(�)) and sd(���) � sd(�) � sd(�) � 1.
The granularity of � � � is gr(�) � gr(R), where R � �� is the set of indexes r of

the operators La
r present in �; the upper bound of � is max(�) � max(R).

For arbitrary n � �, let �n be the sublanguage of � that uses only modal operators
La

r with r � �n. For � � �, let [�]n � � � �� � �n : � � ��.

Consider a consistent formula � � � with gr(�) � n and sd(�) � e.
Let �[�] � �� � �n � max(�)  max(�)�md(�)  md(�) and sd(�)  sd(�)��

In what follows we construct� � � such that each � � sup(�) is a consistent set
of formulas that contains an �[�]-maximally consistent set and each �[�]-maximally
consistent set is contained in some � � sup(�). And we prove the truth lemma stating
that for any � � �[�], � � � i��� � � �.

Let �[�] be the set of�[�]-maximally consistent sets of formulas. �[�] is finite and
any� � �[�] contains finitely many nontrivial formulas3; in the rest of this construction
we only count non-trivial formulas while ignoring the rest.

For each � � �[�], such that ��1� ���� �i� is the set of its non-trivial formulas, we
construct �� ! [�]n with the property that �� � � and a � � there exists �La

r� � �
�.

The step [�1 and �:] (R3) guarantees that 	r � �n s.t. [�]n � ��La
r�1� is consistent.

Let ya
1 � min�s � �n : [�]n���La

s�1� is consistent� and xa
1 � max�s � �n : La

s�1 � [�]n�

((R3) guarantees the existence of max). (R2) implies that 	r � � " �n s.t., xa
1 � r � ya

1
and ��La

r�1� � [�]n is consistent. Let n1 � gran�1�n� r�. Let sa
1 � min�s � �n1 : [�]n1 �

��La
s�1� is consistent�, �a

1 � � � ��La
s1
�1� and �1 �

�
a�A

�a
1.

We repeat this step of the construction for [�2 and �1],..,[�i and �i�1] and we obtain
� � �1 � ��� � �i� where �i is a consistent set containing a finite set of nontrivial
formulas. Let n� � gran�1�n1� ��� 1�ni�. We make this construction for all � � �[�]. Let
v � gran�1�n� : � � �[�]�. Let �� � [�i]v and ��[�] � ��� : � � �[�]�. Notice that
v 
 n; we call v the parameter of �[�].

Remark 1. For each � � �[�], � � � and a � �, there exist s� t � �v, s � t, such that
La

s���La
r� � �

�. Moreover, there exists f � �� such that f � ��.

Let �v be the set of �v-maximally consistent sets of formulas and � : ��[�] 
 �v

be an injection such that for any �� � ��[�], �� � �(��). Let �v[�] � �(��[�]), and
for � � �[�], let ��� � �� � �v[�] : � � ��. For an arbitrary � � �v[�], if � � �(��)
for � � �[�], we denote � by �.

Lemma 3. (1) �v[�] is finite. (2) 2	v[�]
� ���� � � � �[�]��

(3) For any �1� �2 � �[�], � �1 
 �2 i� ��1� � ��2�.
(4) For any � � �v[�], � � �[�] and a � �, there exist
x � max�r � �v : La

r� � ��� y � min�r � �v : �La
r� � �� and y � x � 1�v.

3 By nontrivial formulas we mean the formulas that are not obtained from more basic consistent
ones by boolean derivations.
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Let� be the set of�-maximally consistent sets of formulas and � : �v 
 � an injection
such that for any � � �v, � � �(�).

Lemma 4. For any � � �v[�], any � � �[�] and any a � �, there exist
x � sup�r � � : La

r� � �(�)� � in f �r � � : �La
r� � �(�)� and x  x � y.

We denote by a
� � x defined for � � �[�], � � �v[�] and a � �.

Lemma 5. � � (����� �) � �, where �� � (�v[�]� 2	v[�]� ��) with
(i). �� defined for arbitrary � � �[�], � � �v[�], a � � by ��(a)(�)(���) � a
� ,

(ii). � defined for �� ��� ��� � �v[�] by [� � ������ i� ������ � �].

Proof. This proof is rather complex. we only sketch here the main arguments.
Lemma 3(3) proves that for arbitrary � � �v[�] and a � �, ��(a)(�) is well defined.

To prove that ��(a)(�) is a measure, we show that ��(a)(�)(���) � 0 and that for
�1� �2 � �[�] with � �1 
 ��2, ��(a)(�)(��1�)���(a)(�)(��2�) � ��(a)(�)(��1��2�).
These use the stochastic and the structural axioms, especially the archimedian rules.

The modular structure of � is proved based on Rules (R5), (R6) and (R7).
It remains to prove that (�� �

�����) � (� ��� (��� ���)). This requires to prove
that ������ � � implies that for arbitrary � � �[�],

��(a)(�)(���) �
�

b�c�a

g� �g���� ��
�����g� �g���

��(b)(��)(�g��) � ��(c)(���)(�g���)�

This prove is done by involving the Rules (R8) and (R9) that approximates, from below
and from above the value of ��(a)(�)(���). Also here the archimedian rules play a
central role together with the hypothesis of the continuity of �.

Now we can prove the Truth Lemma.

Lemma 6 (Truth Lemma). If � � �[�] and � � �v[�], then [�� � � � i� � � �].

Proof. Induction on the structure of �. The Boolean cases are trivial.
The case � � La

r�
�: (�#) Suppose that �� � � La

r�
� and La

r�
� � �. Because � is

�[�]-maximally consistent, �La
r�

� � �. Let y � min�r � �p : �La
r�

� � ��. Then, from
�La

r�
� � �, we obtain r � y. But �� � � La

r�
� is equivalent with ��(a)(�)(����) � r,

i.e. a
�� � r. On the other hand, in Lemma 4 we proved that a
�� � y - contradiction.
($�) Suppose that La

r�
� � �. Then r  a
� , implying ��(a)(�)(���) � r.

The case � � �1��2: (�#) If �� � � �1��2, then � � �1��2 and �� �i � �i, i � 1� 2.
The inductive hypothesis implies that �i � �i and because �1��2 � � , �1��2 � �.
($�) If �1��2 � �, then there exist �i with �i � �i and �1��2 � �, i.e. � � �1��2.

The previous lemma implies the small model property for our logic.

Theorem 5 (Small model property). For any consistent formula �, there exists  �

� with the cardinality of sup() bound by the structure of �, and m � sup() such
that �m � �.
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The small model property proves the completeness of the axiomatic system.

Theorem 6 (Completeness). MML is complete with respect to the Markovian seman-
tics, i.e. if � �, then � �.

Proof. The proof is based on the fact that any consistent formula has a model. Indeed,
[� � implies � �] is equivalent with [� � implies � �], that is equivalent with [the
consistency of �� implies that there exists a model  such that �m � �], that is
equivalent with [the consistency of �� implies the satisfiability of ��].

6 Conclusions and Future Work

In this paper we have introduced Modular Markovian Logic, a new logic that combines
features of stochastic and modular logics. Its semantics is in terms of modular Markov
processes which are compositional continuous-time and continuous-space Markov pro-
cesses. MML is appropriate for specifying and verifying modular properties of stochas-
tic systems and to prove global properties from local properties of subsystems. For
instance modular proof rules as the ones below can be given as instances of (R9).

P � Lb
r�� P�

� Lc
s�

P�P�
� Lb�c

r�s�
and

P � Lb
r� � Lc

u�� P�
� Lc

s� � Lb
v�

P�P�
� Lb�c

(r�s)�(u�v)�
(� ���
 �).

Similarly, if b� c are unique such that a � b�c and P� P� are unique such that P�� � P�P�,
the rule below is based on an instance of (R10).

P � �Lb
r� � �Lc

u�� P�
� �Lc

s� � �Lb
v�

P��
� �La

(r�s)�(u�v)(���)

In this paper we have presented a complete Hilbert-style axiomatization for MML
and prove the small model property. For future work we intend to focus on decidability
and complexity problems following the line of [24], as well as on axiomatizations of
model checking and possible procedures to automatize the proof of modular rules.
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Programming with Infinitesimals:
A WHILE-Language for Hybrid System Modeling�

Kohei Suenaga1 and Ichiro Hasuo2

1 JSPS Research Fellow, Kyoto University, Japan
2 University of Tokyo, Japan

Abstract. We add, to the common combination of a WHILE-language and a
Hoare-style program logic, a constant dt that represents an infinitesimal (i.e. in-
finitely small) value. The outcome is a framework for modeling and verification
of hybrid systems: hybrid systems exhibit both continuous and discrete dynamics
and getting them right is a pressing challenge. We rigorously define the semantics
of programs in the language of nonstandard analysis, on the basis of which the
program logic is shown to be sound and relatively complete.

1 Introduction

Hybrid systems are systems that deal with both discrete and continuous data. They
have rapidly gained importance since more and more physical systems—cars, airplanes,
etc.—are controlled with computers. Their sensors will provide physical, continuous
data, while the behavior of controller software is governed by discrete data. Those in-
formation systems which interact with a physical ambience are more generally called
cyber-physical systems (CPS); hybrid systems are an important building block of CPSs.

Towards the goal of getting hybrid systems right, the research efforts have been
mainly from two directions. Control theory—originally focusing on continuous data
and their control e.g. via integration and differentiation—is currently extending its
realm towards hybrid systems. The de facto standard SIMULINK tool for hybrid system
modeling arises from this direction; it employs the block diagram formalism and offers
simulation functionality—aiming at testing rather than verification. The current work is
one of the attempts from the other direction—from the formal verification community—
that advance from discrete to continuous.

Hybrid systems exhibit two kinds of dynamics: continuous flow and discrete jump.
Hence for a formal verification approach to hybrid systems, the challenge is: 1) to in-
corporate flow-dynamics; and 2) to do so at the lowest possible cost, so that the discrete
framework smoothly transfers to hybrid situations. A large body of existing work in-
cludes differential equations explicitly in the syntax; see the discussion of related work
below. What we propose, instead, is to introduce a constant dt for an infinitesimal (i.e.
infinitely small) value and turn flow into jump. With dt, the continuous operation of in-
tegration can be represented by a while loop, to which existing discrete techniques like
Hoare-style program logics readily apply. For a rigorous mathematical development we
employ nonstandard analysis (NSA) beautifully formalized by Robinson.

� We are greteful to Naoki Kobayashi and Toshimitsu Ushio for helpful discussions.
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Concretely, in this paper we take the common combination of a WHILE-language,
a first-order assertion language and a Hoare logic (e.g. in the textbook [10]); and add
a constant dt to obtain a modeling and verification framework for hybrid systems. Its
three ingredients are called WHILEdt, ASSNdt and HOAREdt. These are connected by
denotational semantics defined in the language of NSA. We prove soundness and rela-
tive completeness of the logic HOAREdt. Underlying the technical development is the
idea of what we call sectionwise execution, illustrated by the following example.

Example 1.1 Let celapse be the following program;≡ denotes the syntactic equality.

celapse :≡ [
t := 0 ; while t ≤ 1 do t := t + dt

]
The value designated by dt is infinitesimal; therefore the while loop will not terminate
within finitely many steps. Nevertheless it is intuitive to expect that after an “execution”
of this program (which takes an infinitely long time), the value of t should be infinitely
close to 1. How can we turn this intuition into a mathematical argument?

Our idea is to think about sectionwise execution. For each natural number i we con-
sider the i-th section of the program celapse, denoted by celapse|i. Concretely, celapse|i is
defined by replacing the infinitesimal dt in celapse by 1

i+1 :

celapse|i :≡ [
t := 0 ; while t ≤ 1 do t := t + 1

i+1

]
.

Informally celapse|i is the “i-th approximation” of the original celapse.
A section celapse|i does terminate within finite steps and yields 1 + 1

i+1 as the value
of t. Now we collect the outcomes of sectionwise executions and obtain a sequence

( 1 + 1, 1 + 1
2 , 1 + 1

3 , . . . , 1 + 1
i , . . . )

which is thought of as an incremental approximation of the actual outcome of the origi-
nal program celapse. Indeed, in the language of NSA, the sequence represents a hyperreal
number r that is infinitely close to 1.

We note that, as is clear from this example, a program of WHILEdt is not executable
in general. We would rather regard WHILEdt as a modeling language for hybrid sys-
tems, with a merit of being close to a common programming style.

The idea of turning flow into jump with dt and NSA seems applicable to other dis-
crete modeling/verification techniques than while-language and Hoare logic. We wish
to further explore this potentiality. Adaptation of more advanced techniques for de-
ductive program verification—such as invariant generation and type systems—to the
presence of dt is another important direction of future work.

Due to the lack of space all the proofs are deferred to the extended version [9].

Related work There have been extensive research efforts towards hybrid systems from
the formal verification community. Unlike the current work where we turn flow into
jump via dt, most of them feature acute distinction between flow- and jump-dynamics.

Hybrid automaton [1] is one of the most successful approaches to verification of
hybrid systems. A number of model-checking algorithms have been invented for auto-
matic verification. The deductive approach in the current work—via theorem-proving in
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HOAREdt—has an advantage of handling parameters (i.e. universal quantifiers or free
variables that range over an infinite domain) well; model checking in such a situation
necessarily calls for some abstraction technique. Our logic HOAREdt is compositional
too: a property of a whole system is inferred from the ones of its constituent parts.

Deductive verification of hybrid systems has seen great advancement through a re-
cent series of work by Platzer and his colleagues, including [5, 6]. Their formalism is
variations of dynamic logic, augmented with differential equations to incorporate flow-
dynamics. They have also developed advanced techniques aimed at automated theorem
proving, resulting in a sophisticated tool called KeYmaera [7]. We expect our approach
(namely incorporating flow-dynamics via dt) offer a smoother transfer of existing dis-
crete verification techniques to hybrid applications. Additionally, our preliminary ob-
servations suggest that some of the techniques developed by Platzer and others can be
translated into the techniques that work in our framework.

The use of NSA as a foundation of hybrid system modeling is not proposed for
the first time; see e.g. [8, 2]. Compared to these existing work, we claim our novelty
is a clean integration of NSA and the widely-accepted programming style of while-
languages, with an accompanying verification framework by HOAREdt.

2 A Nonstandard Analysis Primer

This section is mainly for fixing notations. For more details see e.g. [4].
The type of statements “there exists i0 ∈ N such that, for each i ≥ i0, ϕ(i) holds” is

typical in analysis. It is often put as “for sufficiently large i ∈ N.” This means: the set
{i ∈ N | ϕ(i) holds} ⊆ N belongs to the family F0 := {S ⊆ N | N \ S is finite}.

In NSA, the family F0 is extended to so-called an ultrafilter F . The latter is a conve-
nient domain of “i-indexed truth values”: notably for each set S ⊆ N, exactly one out
of S and N \ S belongs to F .

Definition 2.1 (Ultrafilter) A filter is a family F ⊆ P(N) such that: 1) X ∈ F and
X ⊆ U implies U ∈ F ; 2) X ∩ Y ∈ F if X,Y ∈ F . A nonempty filter F �= ∅ is said
to be proper if it does not contain ∅ ⊆ N; equivalently, if F �= P(N). An ultrafilter is
a maximal proper filter; equivalently, it is a filter F such that for each S ⊆ N, exactly
one out of S and N \ S belongs to F .

A filter F ′ can be always extended to an ultrafilter F ⊇ F ′; this is proved using Zorn’s
lemma. Since the family F0 is easily seen to be a filter, we have:

Lemma 2.2 There is an ultrafilter F that contains F0 = {S ⊆ N | N \ S is finite}.
Throughout the rest of the paper we fix suchF . Its properties to be noted: 1)F is closed
under finite intersections and infinite unions; 2) exactly one of S or N \S belongs to F ,
for each S ⊆ N; and 3) if S is such that N \ S is finite, then S ∈ F .

We say “ϕ(i) holds for almost every i ∈ N” for the fact that the set {i | ϕ(i) holds}
belongs to F . For its negation we say “for negligibly many i.”
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Definition 2.3 (Hypernumber d ∈ ∗D) For a set D (typically it is N or R), we define
the set ∗D by ∗D := DN/ ∼F . It is the set of infinite sequences on D modulo the
following equivalence∼F : we define (d0, d1, . . . ) ∼F (d′0, d′1, . . . ) by

di = d′i “for almost every i,” that is, {i ∈ N | di = d′i} ∈ F .

An equivalence class
[
(di)i∈N

]
∼F
∈ ∗D shall be also denoted by

[
(di)i∈N

]
or (di)i∈N

when no confusion occurs. An element d ∈ ∗D is called a hypernumber; in contrast
d ∈ D is a standard number. Hypernumbers will be denoted in boldface like d.

We say that (di)i∈N is a sequence representation of d ∈ ∗D if d = [(di)i]. Note that,
given d ∈ ∗D, its sequence representation is not unique. There is a canonical embedding
D ↪→ ∗D mapping d to [(d, d, . . . )]; the latter shall also be denoted by d.

Definition 2.4 (Operations and relations on ∗D) An operation f : Dk → D of any
finite arity k (such as + : R2 → R) has a canonical “pointwise” extension f : (∗D)k →
∗D. A binary relation R ⊆ D2 (such as < on real numbers) also extends to R ⊆ (∗D)2.

f
( [

(d(0)
i )i∈N

]
, . . . ,
[

(d(k−1)
i )i∈N

] )
:=
[ (

f(d(0)
i , . . . , d

(k−1)
i )

)
i∈N

]
,[

(di)i∈N

]
R
[

(d′i)i∈N

] def.⇐⇒ di R d′i for almost every i.

These extensions are well-defined since F is closed under finite intersections.

Example 2.5 (ω and ω−1) By ω we denote the hypernumber ω = [ (1, 2, 3, . . . ) ] ∈
∗N. It is bigger than (the embedding of) any (standard) natural numbern = [ (n, n, . . . ) ],
since we have n < i for all i except for finitely many. The presence of ω shows that
N � ∗N and R � ∗R. Its inverse ω−1 = [ (1, 1

2 ,
1
3 , . . . ) ] is positive (0 < ω−1) but is

smaller than any (standard) positive real number r > 0.
These hypernumbers—infinite ω and infinitesimal ω−1—will be heavily used.

For the set B = {tt, ff} of Boolean truth values we have the following. Therefore a
“hyper Boolean value” does not make sense.

Lemma 2.6 Assume that D is a finite set D = {a1, . . . , an}. Then the canonical inclu-
sion map D ↪→ ∗D is bijective. In particular we have ∗B ∼= B for B = {tt, ff}. �	

3 Programming Language WHILEdt

3.1 Syntax

We fix a countable set Var of variables.

Definition 3.1 (WHILEdt, WHILE) The syntax of our target language WHILEdt is:

AExp � a ::= x | cr | a1 aop a2 | dt | ∞
where x ∈ Var, cr is a constant for r ∈ R, and aop ∈ {+,−, ·, ∧}

BExp � b ::= true | false | b1 ∧ b2 | ¬b | a1 < a2

Cmd � c ::= skip | x := a | c1; c2 | if b then c1 else c2 | while b do c
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An expression in AExp is said to be arithmetic; one in BExp is Boolean and one
in Cmd is a command. The operator a∧b designates “a to the power of b” and will
be denoted by ab. The operator ∧ is included as a primitive for the purpose of relative
completeness (Thm. 5.4). We will often denote the constant cr by r.

By WHILE, we denote the fragment of WHILEdt without the constants dt and∞.

The language WHILE is much like usual programming languages with a while
construct, such as IMP in the textbook [10]. Its only anomaly is a constant cr for any
real number r: although unrealistic from the implementation viewpoint, it is
fine because WHILE is meant to be a modeling language. Then our target language
WHILEdt is obtained by adding dt and∞: they designate an infinitesimal ω−1 and an
infinite ω.

The relations >,≤,≥ and = are definable in WHILEdt: x > y as y < x; ≤ as the
negation of >; and = as the conjunction of≤ and≥. So are all the Boolean connectives
such as ∨ and⇒, using ¬ and ∧. We emphasize that dt is by itself a constant and has
nothing to do with a variable t. We could have used a more neutral notation like ∂;
however the notation dt turns out to be conveniently intuitive in many examples.

Definition 3.2 (Section of WHILEdt expression) Let e be an expression of WHILEdt,
and i ∈ N. The i-th section of e, denoted by e|i, is obtained by replacing each occur-
rence of dt and∞ in e by the constants c1/(i+1) and ci+1, respectively. Obviously e|i
is an expression of WHILE.

Example 3.3 (Train control) Our first examples model small fragments of the Euro-
pean Train Control System (ETCS); this is also a leading example in [5]. The following
command caccel models a train accelerating at a constant acceleration a, until the time ε
is reached. The variable v is for the train’s velocity; and z is for its position.

caccel :≡ [ while t < ε do cdrive

]
where

cdrive :≡ [ t := t + dt ; v := v + a · dt ; z := z + v · dt ] (1)

The following command cchkAndBrake models a train that, once its distance from the
boundary m gets within the safety distance s, starts braking with the force b > 0.
However the check if the train is within the safety distance is done only every ε seconds.

cchkAndBrake :≡ [ while v > 0 do ( ccorr; caccel )
]

where
ccorr :≡ [ t := 0 ; if m − z < s then a := −b else a := 0

] (2)

Example 3.4 (Water-level monitor) Our second example is an adaptation from [1].
Compared to the above train example, it exhibits simpler flow-dynamics (the first deriva-
tive is already a constant) but more complex jump-dynamics.
There is a water tank with a constant drain (2 cm per second). When
the water level y gets lower than 5 cm the switch is turned on, which
eventually opens up the valve but only after a time lag of two seconds.
While the valve is open, the water level y rises by 1 cm per second.
Once y reaches 10 cm the switch is turned off, which will shut the
valve but again after a time lag of two seconds. drain

valve

switchy
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In the following command cwater, the variable x is a timer for a time lag. The case
construct is an obvious abbreviation of nested if . . . then . . . else . . . .

cwater :≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x := 0; y := 1; s := 1; v := 1;
while t < tmax do {

x := x + dt; t := t + dt;
if v = 0 then y := y − 2 · dt else y := y + dt;
case { s = 0 ∧ v = 0 ∧ y ≤ 5 : s := 1; x := 0;

s = 1 ∧ v = 0 ∧ x ≥ 2 : v := 1;
s = 1 ∧ v = 1 ∧ 10 ≤ y : s := 0; x := 0;
s = 0 ∧ v = 1 ∧ x ≥ 2 : v := 0;
else skip }}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3)

3.2 Denotational Semantics

We follow [10] and interpret a command of WHILEdt as a transformer on memory
states. Our state stores hyperreal numbers such as the infinitesimal ω−1=[ (1, 1

2 ,
1
3 , . . . ) ],

hence is called a hyperstate.

Definition 3.5 (Hyperstate, state) A hyperstate σ is either σ = ⊥ (“undefined”) or a
function σ : Var→ ∗R. A state is a standard version of a hyperstate: namely, a state σ
is either σ = ⊥ or a function σ : Var→ R.

We denote the collection of hyperstates by HSt; that of (standard) states by St.

The definition of (hyper)state as a total function—rather than a partial function with
a finite domain—follows [10]. This makes the denotational semantics much simpler.
Practically, one can imagine there is a fixed default value (say 0) for any variable.

The following definition is as usual.

Definition 3.6 (State update) Let σ ∈ HSt be a hyperstate, x ∈ Var and r ∈ ∗R.
We define an updated hyperstate σ[x �→ r] as follows. When σ = ⊥, we set ⊥[x �→
r] := ⊥. Otherwise:

(
σ[x �→ r]

)
(x) := r; and for y �= x,

(
σ[x �→ r]

)
(y) := σ(y).

An updated (standard) state σ[x �→ r] is defined analogously.

Definition 3.7 (Sequence representation) Let (σi)i∈N be a sequence of (standard) states.
It gives rise to a hyperstate—denoted by [(σi)i∈N] or simply by (σi)i∈N—in the follow-
ing way. We set (σi)i∈N := ⊥ if σi = ⊥ for almost all i. Otherwise [ (σi)i∈N ] �= ⊥ and
we set

[
(σi)i∈N

]
(x) :=

[
(σi(x))i∈N

]
, where the latter is the hyperreal represented

by the sequence (σi(x))i of reals. For i ∈ N such that σi = ⊥, the value σi(x) is not
defined; in this case we use an arbitrary real number (say 0) for σi(x). This does not
affect the resulting hyperstate since σi(x) is defined for almost all i.

Let σ ∈ HSt be a hyperstate, and (σi)i∈N be a sequence of states. We say (σi)i∈N is
a sequence representation of σ if it gives rise to σ, that is,

[
(σi)i∈N

]
= σ. In what fol-

lows we shall often denote a sequence representation of σ by (σ|i)i∈N. We emphasize
that given σ ∈ HSt, its sequence representation (σ|i)i is not unique.

The denotational semantics of WHILEdt is a straightforward adaptation of the usual
semantics of WHILE, except for the while clauses where we use sectionwise execution
(see Ex. 1.1). As we see later in Lem. 3.10, however, the idea of sectionwise execution
extends to the whole language WHILEdt.
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Definition 3.8 (Denotational semantics for WHILEdt) For expressions of WHILEdt,
their denotation

�a� : HSt −→ ∗R ∪ {⊥} for a ∈ AExp,
�b� : HSt −→ B ∪ {⊥} for b ∈ BExp, and
�c� : HSt −→ HSt for c ∈ Cmd

is defined as follows. Recall that ⊥ means “undefined” (cf. Def. 3.5); that B = {tt, ff}
is the set of Boolean truth values; and that ∗B ∼= B (Lem. 2.6).

If σ = ⊥, we define �e�⊥ := ⊥ for any expression e. If σ �= ⊥ we define

�x�σ := σ(x) �cr�σ := r for each r ∈ R
�a1 aop a2�σ := �a1�σ aop �a2�σ
�dt�σ := ω−1 =

[
(1, 1

2 ,
1
3 , . . . )

] �∞�σ := ω =
[

(1, 2, 3, . . . )
]

�true�σ := tt �false�σ := ff
�b1 ∧ b2�σ := �b1�σ ∧ �b2�σ �¬b�σ := ¬(�b�σ)
�a1 < a2�σ := �a1�σ < �a2�σ
�skip�σ := σ �x := a�σ := σ

[
x �→ �a�σ ] �c1; c2�σ := �c2�( �c1�σ )

�if b then c1 else c2�σ :=

{
�c1�σ if �b�σ = tt
�c2�σ if �b�σ = ff

�while b do c�σ :=
( �

(while b do c)|i
�
(σ|i)
)

i∈N
,

where (σ|i)i∈N is an arbitrary sequence representation of σ (Def. 3.7)
(4)

Here aop ∈ {+,−,×, ∧} and < are interpreted on ∗R as in Def. 2.4. For each e ∈
AExp ∪ BExp, we obviously have �e�σ = ⊥ if and only if σ = ⊥. It may happen
that �c�σ = ⊥ with σ �= ⊥, due to nontermination of while loops.

In the semantics of while clauses (4), the section (while b do c)|i is a command of
WHILE (Def. 3.2); and σ|i is a (standard) state. Thus the state

�
(while b do c)|i

�
(σ|i)

can be defined by the usual semantics of while constructs (see e.g. [10]). That is,

�while b′ do c′�σ = σ′ def.⇐⇒⎧⎪⎨
⎪⎩

– σ = σ′ = ⊥;
– there exists a finite sequence σ = σ0, σ1, . . . , σn = σ′ such that: �b′�σn =

ff; and for each j ∈ [0, n).
( �b′�σj = tt & �c′�σj = σj+1

)
; or

– such a finite sequence does not exist and σ′ = ⊥.

(5)

By bundling these up for all i, and regarding it as a hyperstate (Def. 3.7), we obtain the
right-hand side of (4). The well-definedness of (4) is proved in Lem. 3.9.

Lemma 3.9 The semantics of while clauses (4) is well-defined, being independent of
the choice of a sequence representation (σ|i)i of the hyperstate σ. �	
In proving the lemma it is crucial that: the set {x1, . . . , xn} of variables that are relevant
to the execution of the command is finite and statically known. This would not be the
case with a programming language that allows dynamical creation of fresh variables.
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We have chosen not to include the division operator / in WHILEdt; this is to avoid
handling of division by zero in the semantics, which is cumbersome but seems feasible.

Here is one of our two key lemmas. Its proof is by induction.

Lemma 3.10 (Sectionwise Execution Lemma) Let e be any expression of WHILEdt;
σ be a hyperstate; and (σ|i)i∈N be an arbitrary sequence representation of σ. We
have

�e�σ =
[ ( �e|i�(σ|i) )i∈N

]
.

Here the denotational semantics �e|i� of a WHILE expression e|i is defined in a usual
way (i.e. like in Def. 3.8; for while clauses see (5)). �	
Example 3.11 Consider caccel in Ex. 3.3. For simplicity we fix the parameters: caccel1 :≡
[ t := 0; ε := 1; a := 1; v := 0; z := 0; caccel ]. Its i-th section caccel1|i has the
obvious semantics. For any (standard) state σ �= ⊥, the real number (�caccel1|i�σ)(z)—
the traveled distance—is easily calculated as

1
i+1 · 1

i+1 + 1
i+1 · 2

i+1 + · · ·+ 1
i+1 · i+1

i+1 = (i+1)(i+2)
2(i+1)2 = 1

2 · i+2
i+1 .

Therefore by (4), for any hyperstate σ �= ⊥, the hyperreal
(�caccel1�σ)(z) is equal to[ (

1, 3
4 ,

2
3 ,

5
8 , . . . , 1

2 · i+2
i+1 , . . .

) ]
;

this is a hyperreal that is infinitely close to 1/2.

z

t

i = 0
i = 1
i = 2...

Much like Ex. 1.1, one way to look at this sectionwise semantics is as an incremental
approximation. Here it approximates the solution z = 1

2 t
2 of the differential equation

z′′ = 1, obtained via the Riemann integral. See the above figure.

Remark 3.12 (Denotation of dt) We fixed ω−1 as the denotation of dt. However there
are more infinitesimals, such as (πω)−1 = ( 1

π , 1
2π , 1

3π , . . . ) with (πω)−1 < ω−1. The
choice of dt’s denotation does affect the behavior of the following program cnonintegrable:

cnonintegrable :≡ [
x := 1 ; while x �= 0 do x := x− dt

]
.

When we replace dt by 1
i+1 the program terminates with x = 0; hence by our semantics

the program yields a non-⊥ hyperstate with x �→ 0. However, replacing dt by 1
(i+1)π

with π irrational, the program terminates for no i and it leads to the hyperstate⊥.
In fact, indifference to the choice of an infinitesimal value (violated by cnonintegrable)

is a typical condition in nonstandard analysis, found e.g. in the characterization of dif-
ferentiability or Riemann integrability (see [4]). In this sense the program cnonintegrable is
“nonintegrable”; we are yet to see if we can check integrability by syntactic
means.

The program cnonintegrable can be modified into the one with more reasonable behav-
ior, by replacing the guard x �= 0 by x > 0. One easily sees that, while different choices
of dt’s denotation (e.g. ω−1 vs. (πω)−1) still lead to different post-hyperstates, the dif-
ferences lie within infinitesimal gaps. The same is true of all the “realistic” programs
that we have looked at.
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4 Assertion Language ASSNdt

Definition 4.1 (ASSNdt, ASSN) The syntax of our assertion language ASSNdt is:

AExp � a ::= x | cr | a1 aop a2 | dt | ∞ (the same as in WHILEdt)

Fml � A ::= true | false | A1 ∧A2 | ¬A | a1 < a2 |
∀x ∈ ∗N. A | ∀x ∈ ∗R. A where x ∈ Var

An expression in the family Fml is called an (assertion) formula.
We introduce existential quantifiers as notational conventions:∃x ∈ ∗D. A :≡ ¬∀x ∈

∗D.¬A, where D ∈ {N,R}.
By ASSN we designate the language obtained from ASSNdt by: 1) dropping the

constants dt,∞; and 2) replacing the quantifiers ∀x ∈ ∗N and ∀x ∈ ∗R by ∀x ∈ N and
∀x ∈ R, respectively, i.e. by those which range over standard numbers.

Formulas of ASSNdt are the Boolean expressions of WHILEdt, augmented with quanti-
fiers. The quantifier ∀x ∈ ∗N ranging over hyper-natural numbers plays an important
role in relative completeness of HOAREdt (Thm. 5.4).

It is essential that in ASSNdt we have only hyperquantifiers like ∀x ∈ ∗R and not
standard quantifiers like ∀x ∈ R. The situation is much like with the celebrated trans-
fer principle in nonstandard analysis [4, Thm. II.4.5]. There the validity of a standard
formula ϕ is transferred to that of its ∗-transform ∗ϕ; and in ∗ϕ only hyperquantifiers,
and no standard quantifiers, are allowed to occur.

Remark 4.2 (Absence of standard quantifiers) The lack of standard quantifiers does
restrict the expressive power of ASSNdt. Notably we cannot assert that two hyper-
numbers x, y are infinitely close, that is, ∀ε ∈ R. (ε > 0 ⇒ −ε < x − y < ε).1

However this assertion is arguably unrealistic since, to check it against a physical
system, one needs measurements of arbitrarily progressive accuracy. The examples
in §6 indicate that ASSNdt is sufficiently expressive for practical verification scenarios,
too.

Definition 4.3 (Section of ASSNdt expression) Let e be an expression of ASSNdt (arith-
metic or a formula), and i ∈ N. The i-th section of e, denoted by e|i, is obtained by: 1)
replacing every occurrence of dt and∞ by the constant c1/(i+1) and ci+1, respectively;
and 2) replacing every hyperquantifier ∀x ∈ ∗D by ∀x ∈ D. Here D ∈ {N,R}.

Obviously a section e|i is an expression of ASSN.

Definition 4.4 (Semantics of ASSNdt) We define the relation σ |= A (“σ satisfies A”)
between a hyperstate σ ∈ HSt and an ASSNdt formula A ∈ Fml as usual.

1 By replacing ∀ε ∈ R by ∀ε ∈ ∗R we obtain a legitimate ASSNdt formula, but it is satisfied
only when the two hypernumbers x, y are equal.
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Namely, if σ = ⊥ we define ⊥ |= A for each A ∈ Fml. If σ �= ⊥, the definition is
by the following induction on the construction of A.

σ |= true σ �|= false

σ |= A1 ∧ A2
def.⇐⇒ σ |= A1 & σ |= A2

σ |= ¬A
def.⇐⇒ σ �|= A

σ |= a1 < a2
def.⇐⇒ �a1�σ < �a2�σ where �ai�σ is as defined in Def. 3.8

σ |= ∀x ∈ ∗D. A
def.⇐⇒ σ[x �→ d] |= A for each d ∈ ∗D (D ∈ {N, R})

Recall that σ[x �→ d] denotes an updated hyperstate (Def. 3.6).
An ASSNdt formula A ∈ Fml is said to be valid if σ |= A for any σ ∈ HSt. We

denote this by |= A. Validity of an ASSN formula is defined similarly.

Lemma 4.5 (Sectionwise Satisfaction Lemma) Let A ∈ Fml be an ASSNdt formula;
σ be a hyperstate; and (σ|i)i∈N be an arbitrary sequence representation of σ. We have

σ |= A if and only if
(
σ|i |= A|i for almost every i

)
,

where the latter relation |= between standard states and ASSN formulas is defined in
the usual way (i.e. like in Def. 4.4). �	
This is our second key lemma. We note that it fails once we allow standard quantifiers
in ASSNdt. For example, let A :≡ (∃y ∈ R. 0 < y < x) and σ be a hyperstate such
that σ(x) = ω−1. Then we have σ|i |= A|i for every i but σ �|= A.

The validity of an ASSNdt formula A, if A is (dt,∞)-free, can be reduced to that of
an ASSN formula. This is the transfer principle for ASSNdt which we now describe.

Definition 4.6 (∗-transform) Let A be an ASSN formula. We define its ∗-transform,
denoted by ∗A, to be the ASSNdt formula obtained from A by replacing every occur-
rence of a standard quantifier ∀x ∈ D by the corresponding hyperquantifier ∀x ∈ ∗D.

It is easy to see that: 1) (∗A)|i ≡ A for each ASSN formula A; 2) A ≡ ∗(A|i) for each
ASSNdt formula A that is (dt,∞)-free—that is, dt or∞ does not occur in it. Then the
following is an immediate consequence of Lem. 4.5.

Proposition 4.7 (Transfer principle) 1. For each ASSN formula A, |= A iff |= ∗A.
2. For any (dt,∞)-free ASSNdt formula A, the following are equivalent: a) |= A|i for

each i ∈ N; b) |= A|i for some i ∈ N; c) |= A. �	

5 Program Logic HOAREdt

We now introduce a Hoare-style program logic HOAREdt that is devised for the verifi-
cation of WHILEdt programs. It derives Hoare triples {A}c{B}.

Definition 5.1 (Hoare triple) A Hoare triple {A}c{B} of HOAREdt is a triple of ASSNdt

formulas A,B and a WHILEdt command c.
A Hoare triple {A}c{B} is said to be valid—we denote this by |= {A}c{B}—if,

for any hyperstate σ ∈ HSt, σ |= A implies �c�σ |= B.
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As usual a Hoare triple {A}c{B} asserts partial correctness: if the execution of c start-
ing from σ does not terminate, we have �c�σ = ⊥ hence trivially �c�σ |= B. The
formula A in {A}c{B} is called a precondition; B is a postcondition.

The rules of HOAREdt are the same as usual; see e.g. [10].

Definition 5.2 (HOAREdt) The deduction rules of HOAREdt are as follows.

{A} skip {A} (SKIP) {
A[a/x]

}
x := a {A} (ASSIGN)

{A} c1 {C} {C} c2 {B}
{A} c1; c2 {B} (SEQ)

{A ∧ b} c1 {B} {A ∧ ¬b} c2 {B}
{A} if b then c1 else c2 {B} (IF)

{A ∧ b} c {A}
{A} while b do c {A ∧ ¬b} (WHILE)

|= A ⇒ A′ {A′} c {B′} |= B′ ⇒ B

{A} c {B} (CONSEQ)

In the rule (ASSIGN), A[a/x] denotes the capture-avoiding substitution of a for x in A.
Recall that BExp of WHILEdt is a fragment of Fml of ASSNdt. Therefore in the rules
(IF) and (WHILE), an expression b is an ASSNdt formula.

We write " {A}c{B} if the triple {A}c{B} can be derived using the above rules.

Soundness is a minimal requirement of a logic for verification. The proof makes an
essential use of the key “sectionwise” lemmas (Lem. 3.10 and Lem. 4.5).

Theorem 5.3 (Soundness) " {A}c{B} implies |= {A}c{B}. �	
We also have a “completeness” result. It is called relative completeness [3] since com-
pleteness is only modulo the validity of ASSNdt formulas (namely those in the (CONSEQ)
rule); and checking such validity is easily seen to be undecidable. The proof follows the
usual method (see e.g. [10, Chap. 7]); namely via explicit description of weakest pre-
conditions.

Theorem 5.4 (Relative completeness) |= {A}c{B} implies " {A}c{B}. �	

6 Verification with HOAREdt

We present a couple of examples. Its details as well as some lemmas that aid finding
loop invariants will be presented in another venue, due to the lack of space.

Example 6.1 (Water-level monitor) For the program cwater in Ex. 3.4, we would like
to prove that the water level y stays between 1 cm and 12 cm. It is not hard to see,
after some trials, that what we can actually prove is: " {true}cwater{1− 4 · dt < y <
12 + 2 · dt}. Note that the additional infinitesimal gaps like 4 · dt have no physical
meaning. In the proof, we use the following formula A as a loop invariant.

A :≡ As ∧ A0 ∧ A1 ∧ A2 ∧ A3

As :≡ (s = 0 ∨ s = 1) ∧ (v = 0 ∨ v = 1)
A0 :≡ s = 1 ∧ v = 1 ⇒ 1 − 4 · dt < y < 10
A1 :≡ s = 0 ∧ v = 1 ⇒ 0 ≤ x < 2 ∧ 10 ≤ y < 10 + x + dt

A2 :≡ s = 0 ∧ v = 0 ⇒ 5 < y < 12 + 2 · dt
A3 :≡ s = 1 ∧ v = 0 ⇒ 0 ≤ x < 2 ∧ 5 − 2x − 2 · dt < y ≤ 5
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Example 6.2 (Train control) Take the program cchkAndBrake in Ex. 6.2; we aim at the
postcondition that the train does not travel beyond the boundary m, that is, z ≤ m. For
simplicity let us first consider cconstChkAndBrake :≡ (ε := dt ; cchkAndBrake). This is the
setting where the check is conducted constantly. Indeed we can prove that " {v2 ≤
2b(z −m)}cconstChkAndBrake{z ≤ m}, with a loop invariant v2 ≤ 2b(z −m).

The invariant (and the precondition) v2 ≤ 2b(z − m) is what is derived in [5] by
solving a differential equation and then eliminating quantifiers. Using HOAREdt we can
also derive it: roughly speaking, a differential equation in [5] becomes a recurrence
relation in our NSA framework. The details and some general lemmas that aid invariant
generation are deferred to another venue.

In the general case where ε > 0 is arbitrary, we can prove " {v2 ≤ 2b(z −m− v ·
ε)}cchkAndBrake{z ≤ m} in HOAREdt.

An obvious challenge in verification with HOAREdt is finding loop invariants. It
is tempting—especially with “flow-heavy” systems, i.e. those with predominant flow-
dynamics—to assert a differential equation’s solution as a loop invariant. This does not
work: it is a loop invariant only modulo infinitesimal gaps, a fact not expressible in
ASSNdt (Rem. 4.2). We do not consider this as a serious drawback, for two reasons.
Firstly, such “flow-heavy” systems could be studied, after all, from the control theory
perspective that is continuous in its origin. The formal verification approach is supposed
to show its strength against “jump-heavy” systems, for which differential equations are
hardly solvable. Secondly, verification goals are rarely as precise as the solution of a
differential equation: we would aim at z ≤ m in Ex. 6.2 but not at z = 1

2at
2.
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Abstract. In this work, we consider the model-checking problem for
a quantitative extension of the modal μ-calculus on a class of hybrid
systems. Qualitative model checking has been proved decidable and im-
plemented for several classes of systems, but this is not the case for
quantitative questions, which arise naturally in this context. Recently,
quantitative formalisms that subsume classical temporal logics and ad-
ditionally allow to measure interesting quantitative phenomena were in-
troduced. We show how a powerful quantitative logic, the quantitative
μ-calculus, can be model-checked with arbitrary precision on initialised
linear hybrid systems. To this end, we develop new techniques for the dis-
cretisation of continuous state spaces based on a special class of strategies
in model-checking games and show decidability of a class of counter-reset
games that may be of independent interest.

1 Introduction

Modelling discrete-continuous systems by a hybrid of a discrete transition system
and continuous variables which evolve according to a set of differential equations
is widely accepted in engineering. While model-checking techniques have been
applied to verify safety, liveness and other temporal properties of such systems
[1,8,9], it is also interesting to infer quantitative values for certain queries. For
example, one may not only check that a variable does not exceed a threshold,
but also want to compute the maximum value of the variable over all runs.

Thus far, quantitative testing of hybrid systems has only been done by simula-
tion, hence lacking the strong guarantees which can be given by model checking.
In recent years, there has been a strong interest to extend classical model-
checking techniques and logics to the quantitative setting. Several quantita-
tive temporal logics have been introduced, see e.g. [3,4,6,7,11], together with
model-checking algorithms for simple classes of systems, such as finite transi-
tion systems with discounts. Still, none of those systems allowed for dynamically
changing continuous variables. We present the first model-checking algorithm for
a quantitative temporal logic on a class of hybrid systems. The logic we consider,
the quantitative μ-calculus [6], is based on a formalism first introduced in [4]. It
properly subsumes the standard μ-calculus, thus also CTL and LTL. Therefore
� Authors were supported by DFG AlgoSyn 1298 and ANR 2010 BLAN 0202 02 FREC.
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the present result, namely that it is possible to model-check quantitative μ-
calculus on initialised linear hybrid systems, properly generalises a previous re-
sult on model-checking LTL on such systems [8,9], which is one of the strongest
model-checking results for hybrid systems.

The logic we study allows to express properties involving suprema and infima
of values of the considered variables during runs that satisfy various temporal
properties, e.g. to answer “what is the maximal temperature on a run during
which a safety condition holds”. To model-check formulae of the quantitative
μ-calculus, we follow the classical parity game-based approach and adapt some
of the methods developed in the qualitative case and for timed systems. To our
surprise, these methods turned out not to be sufficient and did not easily gener-
alise to the quantitative case. As we will show below, the quantitative systems
we study behave in a substantially different way than their qualitative counter-
parts. We overcome this problem by first working directly with a quantitative
equivalence relation, roughly similar to the region graph for timed automata,
and finally introducing and solving a new kind of counter-reset games, which
may be interesting in their own right.

Organisation. The organisation of this paper follows the reductions needed to
model-check a formula ϕ over a hybrid system K. In Section 2, we introduce the
necessary notation, the systems and the logic. Then, we present an appropriate
game model in Section 3 and show how to construct a model-checking game G
for the system and the formula. In Section 4, we transform the interval games
constructed for arbitrary initialised linear hybrid systems to flat games, where
the linear coefficients are always 1. In Section 5, we show how the strategies
can be discretised and still lead to a good approximation of the original game.
Finally, in Section 6, we solve the obtained parity games with counters.

K, ϕ � model-checking game G � flat G � counter-reset G � value.

2 Hybrid Systems and Quantitative Logics

We denote the real and rational numbers and integers extended with both ∞
and −∞ by R∞, Q∞ and Z∞ respectively. We write I(Z∞), I(Q∞) and I(R∞)
for all open or closed intervals over R∞ with endpoints in Z∞,Q∞ and R∞. For
an interval I = [i1, i2], we denote by q · I and q + I the intervals [q · i1, q · i2] and
[q + i1, q + i2], respectively, and do analogously for open intervals. We use the
standard meaning of �r� and #r$, and denote by {r} the number r− �r� and by
[r] the pair (�r�, #r$). Hence, when writing [r] = [s], we mean that r and s lie in
between the same integers. Note that if r ∈ Z then [r] = [s] implies that r = s.

Definition 1. A linear hybrid system over M variables, K=(V,E, {Pi}i∈J , λ, δ),
is based on a directed graph (V,E), consisting of a set of locations V and tran-
sitions E ⊆ V × V . The labelling function λ : E → Pfin(LM ) assigns to each
transition a finite set of labels. For each i of the finite index set J , the function
Pi : V → R∞ assigns to each location the value of the static quantitative predicate
Pi. The function δ : V → RM assigns to each location and variable xi the coef-
ficient ai such that the variable evolves in this location according to the equation
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dxi

dt = ai. The set LM of transition labels consists of triples l = (I, C,R), where
the vector C of length M represents the constraints each of the variables need to
satisfy for the transition to be allowed, the interval I ∈ I(R≥0

∞ ) represents the
possible period of time that elapses before the transition is taken and the reset
set R contains the indices of the variables that are reset during the transition,
i.e. i ∈ R means that xi is set to zero.

Note that although we do not explicitly have any invariants in locations, we can
simulate this by choosing either the time intervals or variable constraints on the
outgoing transitions accordingly. When the values of predicates and labels range
over Q∞ or Z∞ instead of R∞ we talk about LHS over Q and Z.

The state of a linear hybrid system K is a location combined with a valuation
of all M variables, S = V × RM

∞ . For a state s = (v, y1, . . . , yM ) we say that a
transition (v, v′) ∈ E is allowed by a label (I, C,R) ∈ λ((v, v′)) if y ∈ C (i.e.
if yi ∈ Ci for all i = 1, . . . ,M). We say that a state s′ = (v′, y′1, . . . , y′M ) is
a successor of s, denoted s′ ∈ succ(s), when there is a transition (v, v′) ∈ E,
allowed by label (I, C,R), such that y′i = 0 for all i ∈ R and there is a t ∈ I
such that y′i = yi + (ai · t) where ai = δi(v) for all i �∈ R ∈ λ((v, v′)). A run of a
linear hybrid system starting from location v0 is a sequence of states s0, s1, . . .
such that s0 = (v0, 0, . . . , 0) and si+1 ∈ succ(si) for all i. Given two states s and
s′ ∈ succ(s) and a reset set R �= {1, . . . ,M} we denote by s′−R s the increase of
the non-reset variables that occurred during the transition, i.e. y′

i−yi

ai
for some

i �∈ R where s = (v, y) and s′ = (v′, y′).

Definition 2. A linear hybrid system K is initialised if for each (v, w) ∈ E and
each variable xi it holds that if δi(v) �= δi(w) then i ∈ R for R ∈ λ((v, w)).

Intuitively, an initialised system cannot store the value of a variable whose evo-
lution rate changes from one location to another.

Example 3. Consider the very simple model of a leaking gas burner depicted in
Figure 1. The gas is leaking in location v0 and not leaking in v1 and the qual-
itative predicate L specifies if the leak is detected (and immediately stopped).
The system has two variables, x0 measures the time spent in the leaking location
and x1 the total elapsed time. As both variables are clocks, their coefficients are
both one everywhere, i.e. the system is initialised. The time intervals indicate
that a gas leak will be detected after at most one time unit and that once the
gas is not leaking anymore it can only start to leak again after 30 time units.

2.1 Quantitative μ-Calculus

We use a version of the quantitative μ-calculus presented in [6] but with variables.

Definition 4. Given fixpoint variables Xj, system variables yk and predicates
{Pi}i∈J , the formulae of the quantitative μ-calculus (Qμ) with variables are
given by the grammar:

ϕ ::= Pi | Xj | yk | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | ♦ϕ | μXj .ϕ | νXj .ϕ ,

and in the cases μXj .ϕ and νXj .ϕ, the variable Xj is required to appear positively
in ϕ, i.e. under an even number of negations.



Model Checking the Quantitative μ-Calculus on Linear Hybrid Systems 407

v0

L = −∞

v1

L = ∞

[0, 1]

[30, ∞)

R = {0}

Fig. 1. Leaking gas burner

Let F = {f : S → R∞}. Given an interpretation ε : X → F , a variable
X ∈ X , and a function f ∈ F , we denote by ε[X ← f ] the interpretation ε′,
such that ε′(X) = f and ε′(X ′) = ε(X ′) for all X ′ �= X .

Definition 5. Given a linear hybrid system K = (V,E, λ, {Pi}i∈J , δ) and an
interpretation ε, a Qμ-formula yields a valuation function �ϕ�Kε : S → R∞
defined in the following standard way for a state s = (vs, ys

1, . . . , y
s
M ).

– �Pi�Kε (s) = Pi(vs), �X�Kε (s) = ε(X)(s), and �yi�Kε (s) = ys
i , �¬ϕ�Kε = −�ϕ�Kε

– �ϕ1 ∧ ϕ2�Kε = min{�ϕ1�Kε , �ϕ2�Kε } and �ϕ1 ∨ ϕ2�Kε = max{�ϕ1�Kε , �ϕ2�K},
– �♦ϕ�Kε (s) = sups′∈succ(s)�ϕ�Kε (s′) and ��ϕ�Kε (s) = infs′∈succ(s)�ϕ�Kε (s′),
– �μX.ϕ�Kε = inf{f ∈ F : f = �ϕ�Kε[X←f ]},

�νX.ϕ�Kε = sup{f ∈ F : f = �ϕ�Kε[X←f ]}.

Example 6. The formula μX.(♦X ∨x1) evaluates to the supremum of the values
of x1 on all runs from some initial state: e.g. to ∞ if evaluated on the simple
leaking gas burner model. To determine the longest time period of time during
which the gas is leaking undetected we use the formula μX.(♦X ∨ (x0 ∧ L)),
which evaluates to 1 on the initial state (v0, 0) in our example.

For formulae without free variables we write �ϕ�K rather than �ϕ�Kε . The remain-
der of this paper is dedicated to the proof of our following main result which
shows that �ϕ�K can be approximated with arbitrary precision on initialised
linear hybrid systems.

Theorem 7. Given an initialised linear hybrid system K, a quantitative μ-
calculus formula ϕ and an integer n > 0, it is decidable whether �ϕ�K = ∞,
�ϕ�K = −∞, and else a number r ∈ Q can be computed such that |�ϕ�K−r| < 1

n .

3 Interval Games

In this section, we define a variant of quantitative parity games suited for model
checking Qμ on linear hybrid systems. This definition is a natural extension of
parity games and can be viewed as a compact, finite description for a class of
infinite quantitative parity games, which were introduced in [6].
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Definition 8. An interval parity game (IPG) G = (V0, V1, E, λ, δ, ι, Ω), is played
on a LHS (V,E, λ, δ) and V = V0 ∪̇V1 is divided into positions of either Player 0
or 1. The transition relation E ⊆ V × V describes possible moves in the game
which are labelled by the function λ : E → Pfin(L) The function ι : V →
M × R∞ × R∞ assigns to each position the index of a variable and a multi-
plicative and additive factor, which are used to calculate the payoff if a play ends
in this position. The priority function Ω : V → {0, . . . , d} assigns a priority to
every position.

We say that the interval game is over Q or Z if both the underlying LHS and all
constants in ι(v) are of the respective kind. Please note that this does not mean
that the players have to choose their values from Q or Z, just that the endpoints
of the intervals and constants in the payoffs are in those sets.

A state s = (v, y) ∈ V × RM∞ of an interval game is a position in the game
graph together with a variable assignment for all M variables. A state s′ is a
successor of s if it is a successor in the underlying LHS, i.e. if s′ ∈ succ(s). We use
the functions loc(s) = v and var(s) = y, vari(s) = yi to access the components of
a state. For a real number r, we denote by r ·s = (v, r ·var0(s), . . . r ·varM (s)) and
r+s = (v, r+var0(s), . . . r+varM (s)). We call Si the state set {s = (v, y) : v ∈ Vi}
where player i has to move and S = S0 ∪̇ S1.

Intuitively, in a play of an interval parity game, the players choose successors
of the current state as long as possible. The outcome p(s0, . . . , sk) of a finite play
ending in sk = (v, y1, . . . , yM ) if ι(v) = (i, a, b) is a·yi+b. To improve readability,
from now on we will simply write ι(v) = a · yi + b instead of ι(v) = (i, a, b). The
outcome of an infinite play depends only on the lowest priority seen infinitely
often in positions on the play. We will assign the value −∞ to every infinite play
in which the lowest priority seen infinitely often is odd, and ∞ to those, where
it is even.

Formally, we use the notion from [6] and define, for an IPG with M variables
G = (V0, V1, E, λ, δ, ι, Ω), the corresponding infinite quantitative parity game
without discounts G∗ = (V1 × RM

∞, V1 × RM
∞, E∗, λ∗, Ω∗) with (s, s′) ∈ E∗ iff

s′ is a successor of s as above, Ω∗(v, z) = Ω(v) and λ∗(v, z) = α · zi + β iff
ι(v) = α ·yi +β. The notions of plays, strategies, values and determinacy for the
IPG G are defined exactly as the ones for the QPG G∗ in [6].

3.1 Model Checking Games for Qμ

A game (G, v) is a model checking game for a formula ϕ and a system K, v′, if the
value of the game starting from v is exactly the value of the formula evaluated
on K at v′. In the qualitative case, that means, that ϕ holds in K, v′ if Player 0
wins in G from v. For a linear hybrid system K and a Qμ-formula ϕ, we construct
an IPG MC[K, ϕ] which is the model-checking game for ϕ on K

The full definition of MC[K, ϕ] closely follows the construction presented in [6].
Intuitively, the positions are pairs consisting of a sub formula of ϕ and a

location of K. Which player moves at which position depends on the top operator
of sub formula. Player 0 moves at disjunctions to a position corresponding to
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one of the disjuncts and from (♦ϕ, v) to (ϕ,w) where (v, w) ∈ EK, and Player 1
makes analogous moves for conjunctions and �. From fixed-point variables the
play moves back to the defining formula and the priorities of positions depends
on the alternation level of fixed points, assigning odd priorities to least fixed
points and even priorities to greatest fixed points.

Example 9. We continue our example of the leaking gas burner and present in
Figure 2 the model checking game for the previously introduced system and
formula. In this interval parity game, ellipses depict positions of Player 0 and
rectangles those of Player 1. In this game, all priorities are odd (and therefore
omitted), i.e. infinite plays are bad for Player 0. As in the underlying system,
there are no constraints on the variables and only in two moves a time unit can
be picked by Player 0. In terminal nodes, either the variable x0 or the predicate
L is evaluated for the payoff. The value of the game is 1 (as is the value of the
formula on the system starting from either node) and an optimal strategy for
Player 0 is picking 1 from [0, 1] and then leaving the cycle where Player 1 is
forced to choose between the evaluation of x0 or L at v1. Since he is minimising,
he will choose to evaluate x0.

μX.(♦X∨(x0∧L)),v0

♦X∨((x0∧L),v0x0∧L,v0

x0,v0ι=x0

L,v0ι=−∞ ♦X,v0

X,v1

[0,1]

μX.(♦X∨(x0∧L)),v1

♦X∨((x0∧L),v1

♦X,v1

X,v0

x0∧L,v1

x0,v1 ι=x0

L,v1 ι=∞

R={0},[30,∞)

Fig. 2. Model checking game for μX.(♦X ∨ (x0 ∧ L)) on leaking gas burner

It has been shown in [6] that quantitative parity games of any size are deter-
mined and that they are model checking games for Qμ. These results translate
to interval parity games and we can conclude the following.

Theorem 10. Every interval parity game is determined and for every formula
ϕ in Qμ, linear hybrid system K, and a location v of K, it holds that

valMC[K, ϕ]((ϕ, v), 0) = �ϕ�K(v, 0).

4 Basic Properties of Interval Games

At first sight, interval games seem to be very similar to timed games. Simple
timed games are solved by playing on the region graph and can thus be discre-
tised. To stress that quantitative payoffs indeed make a difference, we present
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v0

v1v2

ι(v2) = x0 − 1

v3

ι(v3) = −x0

[0, 1]

[0, 0] [0, 0]

Fig. 3. Game with integer coefficients and non-integer value

in Figure 3 an initialised interval parity game with the interesting property that
it is not enough to play integer values, even though the underlying system is
over Z∞. This simple game contains only one variable (a clock) and has no con-
straints on the variables in any of the transitions so only the time intervals are
shown. Also, as infinite plays are not possible, the priorities are omitted, as well
as the indices of non-terminal positions.This game illustrates that it may not be
optimal to play integer values since choosing time 1

2 in the first move is optimal
for Player 0. This move guarantees an outcome of − 1

2 which is equal to the value
of the game.

4.1 Flattening Initialised Interval Games

So far, we have considered games where the values of variables can change at
different rates during the time spent in locations. In this section, we show that
for initialised games it is sufficient to look at easier games where all rates are one,
similar to timed games but with more complex payoff rules. We call these games
flat and show that for every initialised IPG we can construct a flat IPG with the
same value. To do so, we have to consider the regions where the coefficients do
not change and rescale the constraints and payoffs accordingly.

Definition 11. An interval parity game G = (V0, V1, E, λ, δ, ι, Ω) is flat if and
only if δi(v, x) = 1 for all v ∈ V and i = 1 . . .M .

Lemma 12. For each initialised interval parity game G there exists a flat game
G′ with the same value.

Consequently, from now on we only consider flat interval parity games and there-
fore omit the coefficients, as they are all equal to one.

4.2 Multiplying Interval Games

Definition 13. For a flat IPG G = (V0, V1, E, λ, ι, Ω) and a value q ∈ Q, we
denote by q·G = (V,E, λ′, ι′, Ω) the IPG where ι′(v) = a·xi+q·b iff ι(v) = a·xi+b
for all v ∈ V , and (I ′, C′, R) ∈ λ′((v, w)) iff (I, C,R) ∈ λ((v, w)) with I ′ = q · I
and C′i = q · Ci for all (v, w) ∈ E.

Intuitively, this means that all endpoints in the time intervals (open and closed),
in the constraints, and all additive values in the payoff function ι are multiplied
by q. The values of q · G are also equal to the values of G multiplied by q.
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Lemma 14. For every IPG G over Q∞ and q ∈ Q, q �= 0 it holds in all states s
that q · valG(s) = val q · G(q · s).

Note that all multiplicative factors in ι are the same in G and in q · G. Moreover,
if we multiply all constants in ι in a game G (both the multiplicative and the
additive ones) by a positive value r, then the value of G will be multiplied by
r, by an analogous argument as above. Thus, if we first take r as the least
common multiple of all denominators of multiplicative factors in ι and multiply
all ι constants as above, and then take q as the least common multiple of all
denominators of endpoints in the intervals and additive factors in the resulting
game G and build q · G, we can conclude the following.

Corollary 15. For every finite IPG G over Q∞, there exists an IPG G′ over
Z∞ and q, r ∈ Z such that valG(s) = valG′(q·s)

q·r .

From now on we assume that every IPG we investigate is a flat game over Z∞
when not explicitly stated otherwise.

5 Discrete Strategies

Our goal in this section is to show that it suffices to use a simple kind of (al-
most) discrete strategies to approximate the value of flat interval parity games
over Z∞. To this end, we define an equivalence relation between states whose
variables belong to the same Z intervals. This equivalence, resembling the stan-
dard methods used to build the region graph from timed automata, is a technical
tool needed to compare the values of the game in similar states.

Definition 16. We say that two states s and t in an IPG are equivalent, s ∼ t,
if they are in the same location (loc(s) = loc(t)) and for all i, j ∈ {1, . . . ,K}:
– [vari(s)] = [vari(t)], and
– if {vari(s)} ≤ {varj(s)} then {vari(t)} ≤ {varj(t)}.

Intuitively, all variables lie in the same integer intervals and the order of frac-
tional parts is preserved. In particular, it follows that all integer variables are
equal. The following technical lemma allows to shift moves between ∼-states.

Lemma 17. Let s and t be two states in a flat IPG over Z such that s ∼ t. If
a move from s to s′ is allowed by a label l = (I, C,R), then there exists a state
t′, denoted s′[s/t], the move to which from t is allowed by the same label l and

(1) t′ ∼ s′, and
(2) there is no state s′′ �= s′ with (s, s′′) allowed by l for which s′′[s/t] = t′.

Using the lemma above, we can define the notion of shifting play histories. Let
h = t0t1 . . . tk be a play history such that (ti, ti+1) is allowed by label li and let
s0 be a state, s0 ∼ t0. We say that s0s1 . . . sk is a shifted history for h, from the
view of player i, if the following conditions are satisfied. For every i if ti ∈ Vi
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then we require that ti+1 = si+1[si/ti]. Note that if there is such a si+1 then it
is unique by condition (2) of the previous Lemma. If ti ∈ V1−i then we require
that si+1 = ti+1[ti/si]. Note that if there exists a shifted history for h then it is
uniquely determined by s0, and we will denote it (for player i) by hi[t0/s0].

Having defined shifted histories we can shift entire strategies. Given a strategy
σ of player i and a state s0, we define

σ[s0/t0](t0 . . . tn) =

{
σ(s0 . . . sn)[sn/tn] if s0 . . . sn = (t0 . . . tn)i[s0/t0] exists,
σ(t0 . . . tn) otherwise.

This allows to shift whole strategies as stated below.

Lemma 18. Let G be a flat IPG over Z∞ and let s0 ∼ t0 be two states of
G. For any strategies σ of Player 0 and ρ of Player 1 we consider the plays
π(σ, ρ1[t0/s0], s0) = s0s1 . . . = πs and π(σ0[s0/t0], ρ, t0) = t0t1 . . . = πt. It holds
that either both πs and πt are infinite and p(πs) = p(πt), or both are finite and of
the same length n+1 and the last states of these plays sn and tn satisfy sn ∼ tn.

Using the property established above we can finally prove the following.

Lemma 19. Let G be a flat IPG over Z∞ with the maximal absolute value of
the multiplicative factor in payoff functions m, and let s0 ∼ t0. Then |valG(s0)−
valG(t0)| ≤ m · |s0 − t0|.

5.1 Choosing Discrete Moves

We show that for IPGs over Z∞, fully general strategies are not necessary. In
fact, we can restrict ourselves to discrete strategies and, using this, reduce the
games to discrete systems. Intuitively, a discrete strategy keeps the maximal
distance of all variable valuations to the closest integer small.

For the proof that there exist good discrete strategies it is convenient to work
with the following notion of distance for a state. For r ∈ R, define

d(r) =
{

r − #r$ if |r − #r$| ≤ |r − �r�|;
r − �r� otherwise.

This function gives the distance to the closest integer, except that it is negative
if the closest integer is greater than r, i.e. if the fractional part of r is > 1

2 .
For a state s, we use the abbreviation di(s) = d(vari(s)). We denote by

dl(s) = mini=1...k{di(s)} and dr(s) = maxi=1...k{di(s)} the smallest and biggest
of all values di(s), and additionally we define the total distance as follows.

d∗(s) =

⎧⎨
⎩
|dl(s)| if di(s) ≤ 0 for all i ∈ {1, . . . , k},
dr(s) if di(s) ≥ 0 for all i ∈ {1, . . . , k},
|dl(s)|+ dr(s) otherwise.

First, we will prove that we can always correct a strategy that makes one step
which is not ε-discrete. By doing so, we will guarantee that we reach a state with
the same location that is allowed by the labelling and the values of the variables
only change within the same intervals.
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Lemma 20. Let t be a state with d∗(t) ≤ 1
4 and s be a successor of t, where

(t, s) is allowed by l. Then, for every 0 < ε < d∗(t), there exists a successor s′+
of t such that s ∼ s′+, (t, s′+) is allowed by l, and d∗(s′+) ≤ d∗(t) + ε.

Knowing that in one step, the move can always preserve small total distance, we
can finally define discrete strategies.

Definition 21. We call a strategy σ ε-discrete if for every sn+1 = σ(s0 . . . sn)
it holds that if d∗(sn) ≤ ε then d∗(sn+1) ≤ d∗(sn) + ε

2 .

Observe that it follows directly from the definition that if d∗(s0) ≤ ε
2 and both

players play discrete strategies, then d∗(sn) ≤ ε(1− 1
2n+1 ).

Example 22. To see that decreasing ε in each step is sometimes crucial, consider
the game with one variable depicted in Figure 4. In each move Player 0 has to
choose a positive value in (0, 1). Player 1 can then decide to continue the play
or leave the cycle and end the play with the negative accumulated value, i.e.
−x0, as payoff. He cannot infinitely often decide to stay in the cycle as then the
payoff would be ∞ as the priority is 0. An ε-optimal strategy for Player 0 as the
maximising player is thus to start with ε

2 and decrease in each step.

Ω(v0) = 0

v0

Ω(v1) = 0

v1 v2

ι(v2) = −x0(0, 1)

[0, 0]

[0, 0]

Fig. 4. Game in which the values played must decrease

We now extend the previous lemma to one that allows to shift a whole move.

Lemma 23. Let s be a state and s′ a successor of s, where (s, s′) is allowed by
l Let t be a state with d∗(t) ≤ 1

4 , such that s ∼ t. Then for every ε > 0 there
exists a successor t′ of t allowed by l such that t ∼ t′ and d∗(t′) ≤ d∗(t) + ε.

We can conclude that discrete strategies allow to approximate game values.

Lemma 24. For every strategy σ of Player i in G, there is a discrete strategy
σd, such that for any starting state s0 and discrete strategy ρ of the other player,
if π(σ, ρ, s0) = s0, s1, . . . and π(σd, ρ, s0) = s′0, s′1, . . ., then si ∼ s′i for all i.

Proposition 25. Let G be a flat interval parity game. Let Γi be the set of all
strategies for player i and Δi the set of all discrete strategies for player i and m
be the highest value that occurs as a multiplicative factor in ι. Then it holds, for
every starting state s, that

| sup
σ∈Γ0

inf
ρ∈Γ1

p(π(σ, ρ, s)) − sup
σ∈Δ0

inf
ρ∈Δ1

p(π(σ, ρ, s))| ≤ m.
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6 Counter-Reset Games

By the above Proposition 25, we can restrict both players to use ε-discrete strate-
gies to approximate the value of a flat interval game up to the maximal mul-
tiplicative factor m. Multiplying the game by any number q does not change
the multiplicative factors in ι but multiplies the value of the game by q. Thus,
to approximate the value of G up to 1

n it suffices to play ε-discrete strategies in
n·m·G. When players use only discrete strategies, the chosen values remain close
to integers (possibly being up to ε bigger or smaller). The fact whether the value
is bigger, equal or smaller than an integer can be stored in the state, as well as
whether the value of a variable is smaller than any of the (non-infinite) bounds
in constraint intervals or bigger than all of them. This way, we can eliminate
both ε’s and constraints and are left with the following games.

Definition 26. A counter-reset game is a flat interval parity game in which in
each label l = (I, C,R) the constraints C are trivially true and the interval I is
either [0, 0] or [1, 1], i.e. either all variables are incremented by 1 or all are left
intact. A generalised counter-reset game is one in which each variable separately
is assigned to be incremented or to be left intact in each move.

Lemma 27. Let G be an IPG over Z∞ with maximal absolute value of the mul-
tiplicative factor in ι equal to m. For each n ∈ N there exists a counter-reset
game G′n such that for all states s in which all variables are integers:

|valG(s)− valG′n(n ·m · s)
n ·m | ≤ 1

n
.

We solve (even the generalised) counter-reset games in a similar way as classical
parity games. We start with games of finite duration and observe that there is
a simple symbolic representation for the payoffs, in terms of min-max functions,
which can be achieved by the players. Then, we use the unfolding theorem from
[6] and compute fixed-points over this representation to solve these parity games.
To exploit this fixed-point computation algorithmically, it is necessary to show
that a fixed-point in the chosen symbolic representation will be reached in a
finite number of steps. To this end, we use a form of Dickson’s Lemma applied
to linearly controlled functions [10,5]. This allows us to show convergence of the
fixed-points and thus exactly calculate the value of a counter-reset game.

Proposition 28. Given a generalised counter-reset game G and a state s in
which all counters are integers, one can compute valG(s).

7 Conclusions and Future Work

We conclude by completing the proof of our main Theorem 7. We first observe
that, by Theorem 10, evaluating a Qμ-formula on a system is equivalent to
calculating the value of the corresponding model-checking game. We can then
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turn this game into a flat one by Lemma 12 and then into one over Z∞ by
Corollary 15. By Lemma 27 the value of such a game can be approximated
arbitrarily precise by counter-reset games, which we can solve by Proposition 28.

All together, we proved that it is possible to approximate the values of quan-
titative μ-calculus formulae on initialised linear hybrid systems with arbitrary
precision. Unfortunately, we cannot give complexity bounds for our procedure,
even though we believe that the algorithm we presented is elementary (and re-
lated to questions about cost-MSO, a recently studied logic [2]). Two immediate
problems remain open: (1) can the exact value of �ϕ�K be computed? (2) what is
the complexity of such a computation or its approximation? Even with further
research needed to answer these questions, our result lays the foundation for
using temporal logics for the quantitative verification of hybrid systems.
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2. Colcombet, T., Löding, C.: Regular cost functions over finite trees. In: LICS, pp.
70–79. IEEE Computer Society, Los Alamitos (2010)

3. de Alfaro, L.: Quantitative verification and control via the mu-calculus. In: Amadio,
R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 103–127. Springer,
Heidelberg (2003)

4. de Alfaro, L., Faella, M., Stoelinga, M.: Linear and Branching Metrics for Quan-
titative Transition Systems. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D.
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Abstract. This paper investigates the time-bounded version of the reachability
problem for hybrid automata. This problem asks whether a given hybrid automa-
ton can reach a given target location within T time units, where T is a constant
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automata (such as linear hybrid automata [1]), the decidability frontier of this problem
is sharply understood [7,8]. For example, the reachability problem is decidable for the
class of initialized rectangular automata where (i) the flow constraints, guards, invari-
ants and discrete updates are defined by rectangular constraints of the form a ≤ ẋ ≤ b
or c ≤ x ≤ d (where a, b, c, d are rational constants), and (ii) whenever the flow con-
straint of a variable x changes between two locations � and �′, then x is reset along the
transition from � to �′. Of particular interest is the class of timed automata which is a
special class of initialized rectangular automata [2].

In recent years, it has been observed that new decidability results can be obtained
in the setting of time-bounded verification of real-time systems [10,11]. Given a time
bound T ∈ N, the time-bounded verification problems consider only traces with dura-
tion at most T. Note that due to the density of time, the number of discrete transitions
may still be unbounded. Several verification problems for timed automata and real-time
temporal logics turn out to be decidable in the time-bounded framework (such as the
language-inclusion problem for timed automata [10]), or to be of lower complexity
(such as the model-checking problem for MTL [11]). The theory of time-bounded veri-
fication is therefore expected to be more robust and better-behaved in the case of hybrid
automata as well.

Following this line of research, we revisit the reachability problem for hybrid au-
tomata with time-bounded traces. The time-bounded reachability problem for hybrid
automata is to decide, given a time bound T ∈ N, if there exists an execution of du-
ration less than T from a given initial location � to a given goal location �′. We study
the frontier between decidability and undecidability for this problem and show how
bounding time alters matters with respect to the classical reachability problem. In this
paper, we establish the following results. First, we show that the time-bounded reacha-
bility problem is decidable for non-initialized rectangular automata when only positive
rates are allowed1. The proof of this fact is technical and, contrary to most decidabil-
ity results in the field, does not rely on showing the existence of an underlying finite
(bi)simulation quotient. We study the properties of time-bounded runs and show that if
a location is reachable within T time units, then it is reachable by a timed run in which
the number of discrete transitions can be bounded. This in turn allows us to reduce the
time-bounded reachability problem to the satisfiability of a formula in the first-order
theory of real addition, decidable in EXPSPACE [4].

Second, we show that the time-bounded reachability problem is undecidable for non-
initialized rectangular hybrid automata if both positive and negative rates are allowed.
Third, we show that the time-bounded reachability problem is undecidable for initial-
ized rectangular hybrid automata with positive singular flows if diagonal constraints in
guards are allowed. These two undecidability results allow to precisely characterize the
boundary between decidability and undecidability.

The undecidability results are obtained by reductions from the halting problem for
two-counter machines. We present novel encodings of the execution of two-counter
machines that fit into time-bounded executions of hybrid automata with either negative
rates, or diagonal constraints.

1 This class is interesting from a practical point of view as it includes, among others, the class
of stopwatch automata [3], for which unbounded reachability is undecidable.
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Remark Due to lack of space, most of the proofs are omitted or sketched in the
present version. A complete version with all the proofs is available for download on
arxiv.org.

2 Definitions

Let I be the set of intervals of real numbers with endpoints in Z ∪ {−∞,+∞}. Let X
be a set of continuous variables, and let X ′ = {x′ | x ∈ X} and Ẋ = {ẋ | x ∈ X} be
the set of primed and dotted variables, corresponding respectively to variable updates
and first derivatives. A rectangular constraint over X is an expression of the form x ∈ I
where x belongs to X and I to I. A diagonal constraint over X is a constraint of the
form x − y ∼ c where x, y belong to X , c to Z, and ∼ is in {<,≤,=,≥, >}. Finite
conjunctions of diagonal and rectangular constraints over X are called guards, over Ẋ
they are called rate constraints, and over X ∪X ′ they are called update constraints. A
guard or rate constraint is rectangular if all its constraints are rectangular. An update
constraint is rectangular if all its constraints are either rectangular or of the form x = x′.
We denote by G (X),R (X), U (X) respectively the sets of guards, rate constraints, and
update constraints over X .

Linear hybrid automata. A linear hybrid automaton (LHA) is a tuple H = (X,Loc,
Edges,Rates, Inv, Init) where X = {x1, . . . , x|X|} is a finite set of continuous vari-
ables; Loc is a finite set of locations; Edges ⊆ Loc × G (X) × U (X) × Loc is a
finite set of edges; Rates : Loc �→ R (X) assigns to each location a constraint on the
possible variable rates; Inv : Loc �→ G (X) assigns an invariant to each location; and
Init ∈ Loc is an initial location. For an edge e = (�, g, r, �′), we denote by src (e) and
trg (e) the location � and �′ respectively, g is called the guard of e and r is the update
(or reset) of e. In the sequel, we denote by rmax the maximal constant occurring in the
constraints of {Rates(�) | � ∈ Loc}

A LHA H is singular if for all locations � and for all variables x of H, the only
constraint over ẋ in Rates(�) is of the form ẋ ∈ I where I is a singular interval; it is
fixed rate if for all variables x ofH there exists Ix ∈ I such that for all locations � ofH,
the only constraint on ẋ in Rates(�) is the constraint ẋ ∈ Ix. It is multirate if it is not
fixed rate. It is non-negative rate if for all variables x, for all locations �, the constraint
Rates(�) implies that ẋ must be non-negative.

Rectangular hybrid automata. A rectangular hybrid automaton (RHA) is a linear hy-
brid automaton in which all guards, rates, and invariants are rectangular. In this case, we
view each reset r as a function X ′ �→ I ∪ {⊥} that associates to each variable x ∈ X
either an interval of possible reset values r(x), or ⊥ when the value of the variable x
remains unchanged along the transition. When it is the case that r(x) is either ⊥ or a
singular interval for each x, we say that r is deterministic. In the case of RHA, we can
also view rate constraints as functions Rates : Loc × X → I that associate to each
location � and each variable x an interval of possible rates Rates(�)(x). A rectangular
hybrid automatonH is initialized if for every edge (�, g, r, �′) ofH, for every x ∈ X , if
Rates(�)(x) �= Rates(�′)(x) then r(x) �= ⊥, i.e., every variable whose rate constraint
is changed must be reset.
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LHA semantics. A valuation of a set of variables X is a function ν : X �→ R. We
further denote by 0 the valuation that assigns 0 to each variable.

Given an LHA H = (X,Loc,Edges,Rates, Inv, Init, X), a state of H is a pair
(�, ν), where � ∈ Loc and ν is a valuation of X . The semantics of H is defined as
follows. Given a state s = (�, ν) of H, an edge step (�, ν) e−→ (�′, ν′) can occur and
change the state to (�′, ν′) if e = (�, g, r, �′) ∈ Edges, ν |= g, ν′(x) = ν(x) for all x
s.t. r(x) = ⊥, and ν′(x) ∈ r(x) for all x s.t. r(x) �= ⊥; given a time delay t ∈ R+,

a continuous time step (�, ν) t−→ (�, ν′) can occur and change the state to (�, ν′) if
there exists a vector r = (r1, . . . r|X|) such that r |= Rates(�), ν′ = ν + (r · t), and
ν + (r · t′) |= Inv(�) for all 0 ≤ t′ ≤ t.

A path inH is a finite sequence e1, e2, . . . , en of edges such that trg (ei) = src (ei+1)
for all 1 ≤ i ≤ n − 1. A cycle is a path e1, e2, . . . , en such that trg (en) = src (e1). A
cycle e1, e2, . . . , en is simple if src (ei) �= src (ej) for all i �= j. A timed path ofH is a
finite sequence of the form π = (t1, e1), (t2, e2), . . . , (tn, en), such that e1, . . . , en is a
path in H and ti ∈ R+ for all 0 ≤ i ≤ n. We lift the notions of cycle and simple cycle
to the timed case accordingly. Given a timed path π = (t1, e1), (t2, e2), . . . , (tn, en),
we denote by π[i : j] (with 1 ≤ i ≤ j ≤ n) the timed path (ti, ei), . . . , (tj , ej).

A run inH is a sequence s0, (t0, e0), s1, (t1, e1), . . . , (tn−1, en−1), sn such that:

– (t0, e0), (t1, e1), . . . , (tn−1, en−1) is a timed path inH, and

– for all 1 ≤ i < n, there exists a state s′i ofH with si
ti−→ s′i

ei−→ si+1.

Given a run ρ = s0, (t0, e0), . . . , sn, let first (ρ) = s0 = (�0, ν0), last (ρ) = sn,
duration (ρ) =

∑n−1
i=1 ti, and |ρ| = n + 1. We say that ρ is (i) strict if ti > 0 for all

1 ≤ i ≤ n − 1; (ii) k-variable-bounded (for k ∈ N) if ν0(x) ≤ k for all x ∈ X , and

si
ti−→ (�i, νi) implies that νi(x) ≤ k for all 0 ≤ i ≤ n; (iii) T-time-bounded (for

T ∈ N) if duration (ρ) ≤ T.
Note that a unique timed path TPath (ρ) = (t0, e0), (t1, e1), . . . , (tn−1, en−1), is

associated to each run ρ = s0, (t0, e0), s1, . . . , (tn−1, en−1), sn. Hence, we sometimes
abuse notation and denote a run ρ with first (ρ) = s0, last (ρ) = s and TPath (ρ) = π

by s0
π−→ s. The converse however is not true: given a timed path π and an initial

state s0, it could be impossible to build a run starting from s0 and following π because
some guards or invariants along π might be violated. However, if such a run exists it is
necessarily unique when the automaton is singular and all resets are deterministic. In
that case, we denote by Run (s0, π) the function that returns the unique run ρ such that
first (ρ) = s0 and TPath (ρ) = π if it exists, and ⊥ otherwise.

Time-bounded reachability problem for LHA. While the reachability problem asks to
decide the existence of any timed run that reaches a given goal location, we are only
interested in runs having bounded duration.

Problem 1 (Time-bounded reachability problem). Given an LHAH = (X,Loc,Edges,
Rates, Inv, Init), a location Goal ∈ Loc and a time bound T ∈ N, the time-bounded
reachability problem is to decide whether there exists a finite run ρ = (Init,0) π−→
(Goal, ·) ofH with duration (ρ) ≤ T.
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In the following table, we summarize the known facts regarding decidability of the
reachability problem for LHA, along with the results on time-bounded reachability that
we prove in the rest of this paper. Note that decidability for initialized rectangular hybrid
automata (IHRA) follows directly from [7]. We show decidability for (non-initialized)
RHA that only have non-negative rates in Section 3. The undecidability of the time-
bounded reachability problem for RHA and LHA is not a consequence of the known
results from the literature and require new proofs that are given in Section 4.

HA classes Reachability Time-Bounded Reachability
LHA U [1] U (see Section 4)
RHA U [7] U (see Section 4)

non-negative rates RHA U [7] D (see Section 3)
IRHA D [7] D [7]

3 Decidability for RHA with Non-negative Rates

In this section, we prove that the time-bounded reachability problem is decidable for
the class of (non-initialized) rectangular hybrid automata having non-negative rates,
while it is undecidable for this class in the classical (unbounded) case [7]. Note that this
class is interesting in practice since it contains, among others, the important class of
stopwatch automata, a significant subset of LHA that has several useful applications [3].
We obtain decidability by showing that for RHA with non-negative rates, a goal location
is reachable within T time units iff there exists a witness run of that automaton which
reaches the goal (within T time units) by a run ρ of length |ρ| ≤ KH

T where KH
T

is a parameter that depends on T and on the size of the automaton H. Time-bounded
reachability can thus be reduced to the satisfiability of a formula in the first order theory
of the reals encoding the existence of runs of length at most KH

T and reaching Goal.
For simplicity of the proofs, we consider RHA with the following restrictions: (i) the

guards do not contain strict inequalities, and (ii) the rates are singular. We argue at the
end of this section that these restrictions can be made without loss of generality. Then,
in order to further simplify the presentation, we show how to syntactically simplify the
automaton while preserving the time-bounded reachability properties. The details of the
constructions can be found in the appendix.

Proposition 1. Let H be a singular RHA with non-negative rates and without strict
inequalities, and let Goal be a location ofH. We can build a hybrid automatonH′ with
the following the properties:

H1 H′ is a singular RHA with non-negative rates
H2 H′ contains only deterministic resets
H3 for every edge (�, g, r, �′) of H′, g is either true or of the form x1 = 1 ∧ x2 =

1 ∧ · · · ∧ xk = 1, and r ≡ x′1 = 0 ∧ · · · ∧ x′k = 0.

and a set of locations S ofH′ such thatH admits a T-time bounded run reaching Goal
iffH′ admits a strict 1-variable-bounded, and T-time bounded run reaching S.
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Proof (Sketch). The proof exposes three transformations that we apply toH in order to
obtain H′. The first transformation turns H into DetReset (H), containing determinis-
tic resets only. The idea is to replace (non-deterministic) resets in H with resets to 0 in
DetReset (H) and to compensate by suitably altering the guards of subsequent transi-
tions in DetReset (H). To achieve this, locations in DetReset (H) are elements of the
form (�, ρ), where � is a location of H and ρ associates an interval to each variable,
where ρ(j) represents the interval in which variable xj was last reset.

With the second transformation, we can restrict our analysis to runs where the vari-
ables are bounded by 1. The idea is to encode the integer parts of the variables in the
locations, and to adapt the guards and the resets. Let H′ be an RHA obtained from the
first step, with maximal constant cmax. We build CBound (H′) whose locations are of
the form (�, i), where � is a location of H′, and i is a function that associates a value
from {0, . . . , cmax} to each variable. Intuitively, i(j) represents the integer part of xj

in the original run of H′, whereas the fractional part is tracked by xj (hence all the
variables stay in the interval [0, 1]). Guards and resets are adapted consequently.

The third and last construction allows to consider only runs where time is strictly in-
creasing. We describe it briefly assuming all the invariants are true to avoid technicali-
ties. Consider a sequence of edges and null time delays of the form e1, 0, e2, 0, . . . , 0, en

(remark that this sequence ends and starts with an edge). Since all time delays are null,
the only effect of firing such as sequence is to reset (to zero by the first construction) all
the variables that are reset by one of the ei’s. Thus, this sequence can be replaced by a
single edge e = (�, g, r, �′) with the same effect, that is, where � is the origin of e1, �′ is
the destination of en, r resets to zero all the variables that are reset by one of the ei’s and
g summarizes the guards of all the ei’s (taking the resets into account). Moreover, we
only need to consider sequences where e1, e2, . . . , en is a path where each simple loop
appears at most once (traversing a second time a simple loop would only reset variables
that are already equal to zero because the time delays are null). Thus, the construction
amounts to enumerate all the possible paths π where each simple loop appears at most
once, and to add to the automaton an edge eπ that summarizes π as described above.
Since there are finitely many such π the construction is effective.

As a consequence, to prove decidability of time-bounded reachability of RHA with non-
negative rates, we only need to prove that we can decide whether an RHA respecting
H1 through H3 admits a strict run ρ reaching the goal within T time units, and where
all variables are bounded by 1 along ρ.

Bounding the number of equalities. As a first step to obtain a witness of time-bounded
reachability, we bound the number of transitions guarded by equalities along a run of
bounded duration:

Proposition 2. LetH be an LHA, with set of variables X and respecting hypothesis H1

through H3. Let ρ be a T-time bounded run ofH. Then, ρ contains at most |X |·rmax·T
transitions guarded by an equality.

Bounding runs without equalities. Unfortunately, it is not possible to bound the number
of transitions that do not contain equalities, even along a time-bounded run. However,
we will show that, given a time-bounded run ρ without equality guards, we can build a
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run ρ′ that is equivalent to ρ (in a sense that its initial and target states are the same),
and whose length is bounded by a parameter depending on the size of the automaton.
More precisely:

Proposition 3. LetH be an RHA with non-negative rates. For any 1-variable bounded
and 1

rmax+1 -time bounded run ρ = s0
π−→ s of H that contains no equalities in the

guards, H admits a 1-variable bounded and 1
rmax+1 -time bounded run ρ′ = s0

π′
−→ s

such that |ρ′| ≤ 2|X |+ (2|X |+ 1) · |Loc| · (2(|Edges|+1) + 1).

Note that Proposition 3 applies only to runs of duration at most 1
rmax+1 . However,

this is not restrictive, since any T-time-bounded run can always be split into at most
T·(rmax+1) subruns of duration at most 1

rmax+1 , provided that we add a self-loop with
guard true and no reset on every location (this can be done without loss of generality
as far as reachability is concerned).

To prove Proposition 3, we rely on a contraction operation that receives a timed path
and returns another one of smaller length. Let π = (t1, e1), (t2, e2), . . . , (tn, en) be a
timed path. We define Cnt (π) by considering two cases. Let j, k, j′, k′ be four positions
such that 1 ≤ j ≤ k < j′ ≤ k′ ≤ n and ej . . . ek = e′j . . . e′k is a simple cycle. If such
j, k, j′, k′ exist, then let:

Cnt (π) = π[1 : j − 1] · (ej, tj + tj′) · · · (ek, tk + tk′) · π[k + 1 : j′ − 1] · π[k′ + 1 : n]

Otherwise, we let Cnt (π) = π. Observe that π and Cnt (π) share the same source and
target locations, even when π[k′ + 1 : n] is empty.

Then, given a timed path π, we let Cnt0 (π) = π, Cnti (π) = Cnt
(
Cnti−1 (π)

)
for

any i ≥ 1, and Cnt∗ (π) = Cntn (π) where n is the least value such that Cntn (π) =
Cntn+1 (π). Clearly, since π is finite, and since |Cnt (π)| < |π| or Cnt (π) = π for
any π, Cnt∗ (π) always exists. Moreover, we can always bound the length of Cnt∗ (π).
This stems from the fact that Cnt∗ (π) is a timed path that contains at most one occur-
rence of each simple cycle. The length of such paths can be bounded using classical
combinatorial arguments.

Lemma 1. For any timed path π of an LHAH with |Loc| locations and |Edges| edges:
|Cnt∗ (π)| ≤ |Loc| · (2(|Edges|+1) + 1).

Note that the contraction operation is purely syntactic and works on the timed path
only. Hence, given a run s0

π−→ s, we have no guarantee that Run (s0,Cnt∗ (π)) �=
⊥. Moreover, even in the alternative, the resulting run might be s0

Cnt∗(π)−−−−−→ s′ with
s �= s′. Nevertheless, we can show that Cnt∗ (π) preserves some properties of π. For
a timed path π = (t1, e1), . . . , (tn, en) of an LHA H with rate function Rates, we let
Effect (π, x) =

∑n
i=1 Rates(�i)(x) · ti, where �i is the initial location of ei for any

1 ≤ i ≤ n. Note thus that, for any run (�, ν) π−→ (�′, ν′), for any variable x which is not
reset along π, ν′(x) = ν(x) + Effect (π, x). It is easy to see that Cnt∗ (π) preserves the
effect of π. Moreover, the duration of Cnt∗ (π) and π are equal.

Lemma 2. For any timed path π: (i) duration (π) = duration (Cnt∗ (π)) and (ii) for
any variable x: Effect (π, x) = Effect (Cnt∗ (π) , x).
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We are now ready to show, given a timed path π (with duration (π) ≤ 1
rmax+1 and

without equality tests in the guards), how to build a timed path Contraction (π) that
fully preserves the values of the variable, as stated in Proposition 3. The key ingredient
to obtain Contraction (π) is to apply Cnt∗ to selected portions of π, in such a way that
for each edge e that resets a variable for the first or the last time along π, the time
distance between the occurrence of e and the beginning of the timed path is the same in
both π and Contraction (π).

The precise construction goes as follows. Let π = (t1, e1), . . . , (tn, en) be a timed
path. For each variable x, we denote by Sπ

x the set of positions i such that ei is either
the first or the last edge in π to reset x (hence |Sπ

x | ∈ {0, 1, 2} for any x). Then, we
decompose π as: π1 · (ti1 , ei1) · π2 · (ti2 , ei2) · · · (tik

, eik
) · πk+1 with {i1, . . . , ik} =

∪xS
π
x . From this decomposition of π, we let Contraction (π) = Cnt∗ (π1) · (ti1 , ei1) ·

Cnt∗ (π2) · (ti2 , ei2) · · · (tik
, eik

) · Cnt∗ (πk+1).
We first note that, thanks to Lemma 1, |Contraction (π)| is bounded.

Lemma 3. Let H be an LHA with set of variable X , set of edges Edges and set of
location Loc, and let π be a timed path of H. Then |Contraction (π)| ≤ 2 · |X |+ (2 ·
|X |+ 1) · |Loc| · (2(|Edges|+1) + 1).

We can now prove Proposition 3.

Proof (Sketch – Proposition 3). Let π = TPath (ρ) and let π′ denote Contraction (π).

We let ρ′ = s0
π′−→ (�′, ν′), and prove (i) that firing π′ from s0 will always keep all the

variable values ≤ 1, which implies Run (s0, π
′) �= ⊥, and (ii) that ρ = s0

π−→ (�, ν)
implies �′ = � and ν = ν′. These two points hold because duration (Cnt∗ (πj)) =
duration (πj) for any j. Hence, the first and last resets of each variable happen at the
same time (relatively to the beginning of the timed path) in both π and Contraction (π).
Intuitively, preserving the time of occurrence of the first reset (of some variable x) guar-
antees thatxwill never exceed 1 along Contraction(π), as duration (Contraction (π)) =
duration (π) ≤ 1

rmax+1 . Symmetrically, preserving the last reset of some variable x
guarantees that the final value of x will be the same in bothπ and Contraction (π). More-
over, the contraction preserves the value of the variables that are not reset, by Lemma 2.

Handling ‘<’ and non-singular rates. Let us now briefly explain how we can adapt the
construction of this section to cope with strict guards and non-singular rates. First, when
the RHAH contains strict guards, the RHAH′ of Proposition 1 will also contain guards
with atoms of the form x < 1. Thus, when building a ‘contracted path’ ρ′ starting from
a path ρ (as in the proof of Proposition 3), we need to ensure that these strict guards
will also be satisfied along ρ′. It is easy to use similar arguments to establish this: if
some guard x < 1 is not satisfied in ρ′, this is necessarily before the first reset of x,
which means that the guard was not satisfied in ρ either. On the other hand, to take
non-singular rates into account, we need to adapt the definition of timed path. A timed
path is now of the form (t0, r0, e0) · · · (tn, rn, en), where each ri is a vector of reals
of size |X |, indicating the actual rate that was chosen for each variable when the i-th
continuous step has been taken. It is then straightforward to adapt the definitions of Cnt,
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Effect and Contraction to take those rates into account and still keep the properties
stated in Lemma 1 and 3 and in Proposition 3 (note that we need to rely on the con-
vexity of the invariants in RHA to ensure that proper rates can be found when building
Cnt (π)).

Theorem 1. The time-bounded reachability problem is decidable for the class of rect-
angular hybrid automata with non-negative rates.

Proof (Sketch). Given an RHA H , a bound K , and a goal Goal, we can build a for-
mula ϕ of FO(R,≤,+) that is satisfiable iff H admits a run of length ≤ K reaching
Goal. By Proposition 1 (and taking into account the above remarks to cope with strict
guards and rectangular rates), this is sufficient to decide time-bounded reachability on
RHA with non-negative rates. The required result now follows from the decidability of
satisfiability for FO(R,≤,+). �	

4 Undecidability Results

In this section, we show that the time-bounded reachability problem for linear hybrid
automata becomes undecidable if either both positive and negative rates are allowed,
or diagonal constraints are allowed in the guards. Along with the decidability result of
Section 3, these facts imply that the class of rectangular hybrid automata having positive
rates only and no diagonal constraints forms a maximal decidable class. Our proofs rely
on reductions from the halting problem for Minsky two-counters machines.

A two-counter machine M consists of a finite set of control states Q, an initial state
qI ∈ Q, a final state qF ∈ Q, a set C of counters (|C| = 2) and a finite set δM of
instructions manipulating two integer-valued counters. Instructions are of the form:

q : c := c + 1 goto q′, or
q : if c = 0 then goto q′ else c := c− 1 goto q′′.

Formally, instructions are tuples (q, α, c, q′) where q, q′ ∈ Q are source and target states
respectively, the action α ∈ {inc, dec, 0?} applies to the counter c ∈ C.

A configuration of M is a pair (q, v) where q ∈ Q and v : C → N is a valuation of
the counters. An accepting run of M is a finite sequence π = (q0, v0)δ0(q1, v1)δ1 . . .
δn−1(qn, vn) where δi = (qi, αi, ci, qi+1) ∈ δM are instructions and (qi, vi) are con-
figurations of M such that q0 = qI , v0(c) = 0 for all c ∈ C, qn = qF , and for
all 0 ≤ i < n, we have vi+1(c) = vi(c) for c �= ci, and (i) if α = inc, then
vi+1(ci) = vi(ci) + 1, (ii) if α = dec, then vi(ci) �= 0 and vi+1(ci) = vi(ci) − 1,
and (iii) if α = 0?, then vi+1(ci) = vi(ci) = 0. The halting problem asks, given a two-
counter machine M , whether M has an accepting run. This problem is undecidable [9].

Undecidability for RHA with negative rates. Given a two-counter machine M , we
construct an RHAHM (thus without diagonal constraints) such that M has an accepting
run if and only if the answer to the time-bounded reachability problem for (HM ,Goal)
with time bound 1 is YES. The construction ofHM crucially makes use of both positive
and negative rates.
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ẋ =−k
ẏ =1

ẋ=1
ẏ =−k

x/k2

y = 0 x = 0 y = 0
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ν(x)

ν(x)/k2

time

Fig. 1. Gadget for division of a variable x by k2. The variable y is internal to the gadget. The
duration of the division is v · ( 1

k
+ 1

k2 ) where v is the value of x before division.

Theorem 2. The time-bounded reachability problem is undecidable for rectangular hy-
brid automata even if restricted to singular rates.

Proof (Sketch). First, remark that the main difficulty of the reduction is to encode un-
bounded computations of M within a bounded time slot. The execution steps of M are
simulated in HM by a (possibly infinite) sequence of ticks within one time unit. The
ticks occur at time t0 = 0, t1 = 1 − 1

4 , t2 = 1 − 1
16 , etc. The counters are encoded as

follows. If the value of counter c ∈ C after i execution steps of M is v(c), then the vari-
able xc in HM has value 1

4i+v(c) at time ti. Note that this encoding is time-dependent
and that the value of xc at time ti is always smaller than 1 − ti = 1

4i , and equal to 1
4i

if the counter value is 0. To maintain this encoding (if a counter c is not modified in
an execution step), we need to divide xc by 4 before the next tick occurs. We use the
divisor gadget in Fig. 1 to do this. Using the diagram in the figure, it is easy to check
that the value of variable xc is divided by k2 where k is a constant used to define the
variable rates. Note also that the division of ν(xc) by k2 takes ν(xc) · ( 1

k + 1
k2 ) time

units, which is less than 3·ν(xc)
4 for k ≥ 2. Since ν(xc) ≤ 1

4i at step ti, the duration of
the division is at most 3

4i = ti+1 − ti, the duration of the next tick.
The divisor gadget can also be used to construct an automaton Atick that generates

the ticks. Finally, we obtainHM by taking the product of Atick with an automaton that
encodes the instructions of the machine. For example, assuming the set of counters is
C = {c, d} the instruction (q, inc, c, q′) is encoded by connecting a location �q to a
location �q′ , synchronized with divisor gadgets that divide xc by 16 and xd by 4 (details
omitted).

Undecidability with diagonal constraints. We now show that diagonal constraints
also leads to undecidability. The result holds even if every variable has a positive, sin-
gular, fixed rate.

Theorem 3. The time-bounded reachability problem is undecidable for LHA that use
only singular, strictly positive, and fixed-rate variables.

Proof. The proof is again by reduction from the halting problem for two-counter ma-
chines. We describe the encoding of the counters and the simulation of the instructions.

Given a counter c, we represent c via two auxiliary counters cbot and ctop such that
v(c) = v(ctop)− v(cbot).
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Incrementing and decrementing c are achieved by incrementing either ctop or cbot.
Zero-testing for c corresponds to checking whether the two auxiliary counters have the
same value. Therefore, we do not need to simulate decrementation of a counter.

We encode the value of counter cbot using two real-valued variables x and y, by
postulating that |x − y| = 1

2v(cbot)
. Both x and y have rate ẋ = ẏ = 1 at all times and

in all locations of the hybrid automaton. Incrementing cbot now simply corresponds to
halving the value of |x − y|. In order to achieve this, we use two real-valued variables
z and w with rate ż = 2 and ẇ = 3.

All operations are simulated in ‘rounds’. At the beginning of a round, we require that
the variables x, y, z, w have respective value 1

2v(cbot)
, 0, 0, 0. We first explain how we

merely maintain the value of cbot throughout a round:

1. Starting from the beginning of the round, let all variables evolve until x = z, which
we detect via a diagonal constraint. Recall that z evolves at twice the rate of x.

2. At that point, x = 2
2v(cbot)

and y = 1
2v(cbot)

. Reset x and z to zero.
3. Now let all variables evolve until y = z, and reset y, z and w to zero. It is easy to

see that all variables now have exactly the same values as they had at the beginning
of the round. Moreover, the invariant |x− y| = 1

2v(cbot)
is maintained throughout.

Note that the total duration of the above round is 2
2v(cbot)

. To increment cbot, we proceed
as follows:

1′. Starting from the beginning of the round, let all variables evolve until x = w. Recall
that the rate of w is three times that of x.

2′. At that point, x = 1.5
2v(cbot)

and y = 0.5
2v(cbot)

= 1
2v(cbot)+1 . Reset x, z, and w to zero.

3′. Now let all variables evolve until y = z, and reset y, z and w to zero. We now have
x = 1

2v(cbot)+1 , and thus the value of |x− y| has indeed been halved as required.

Note that the total duration of this incrementation round is 1
2v(cbot)

, where v(cbot) de-
notes the value of counter cbot prior to incrementation.

Clearly, the same operations can be simulated for counter ctop (using further auxil-
iary real-valued variables). Note that the durations of the rounds for cbot and ctop are
in general different—in fact cbot-rounds are never faster than ctop-rounds. But because
they are powers of 1

2 , it is always possible to synchronize them, simply by repeating
maintain-rounds for cbot until the round for ctop has completed.

Finally, zero-testing the original counter c (which corresponds to checking whether
cbot = ctop) is achieved by checking whether the corresponding variables have the
same value at the very beginning of a cbot-round (since the cbot- and ctop-rounds are
then synchronized).

We simulate the second counter d of the machine using further auxiliary counters
dbot and dtop. It is clear that the time required to simulate one instruction of a two-
counter machine is exactly the duration of the slowest round. Note however that since
counters cbot, ctop, dbot, and dtop are never decremented, the duration of the slowest
round is at most 2

2p , where p is the smallest of the initial values of cbot and dbot. If a
two-counter machine has an accepting run of length m, then the total duration of the
simulation is at most 2m

2p .
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In order to bound this value, it is necessary before commencing the simulation to
initialize the counters cbot, ctop, dbot, and dtop to a sufficiently large value, for example
any number greater than log2(m) + 1. In this way, the duration of the simulation is at
most 1.

Initializing the counters in this way is straightforward. Starting with zero counters
(all relevant variables are zero) we repeatedly increment cbot, ctop, dbot, and dtop a
nondeterministic number of times, via a self-loop. When each of these counters has
value k, we can increment all four counters in a single round of duration 1

2k as explained
above. So over a time period of duration at most

∑∞
k=0

1
2k = 2 the counters can be

initialized to #log2(m) + 1$.
Let us now combine these ingredients. Given a two-counter machine M , we con-

struct a hybrid automaton HM such that M has an accepting run iff HM has a run of
duration at most 3 that reaches the final state Goal.
HM uses the real-valued variables described above to encode the counters of M . In

the initialization phase, HM nondeterministically assigns values to the auxiliary coun-
ters, hence guessing the length of an accepting run of M , and then proceeds with the
simulation of M . This ensures a correspondence between an accepting run of M and a
time-bounded run ofHM that reaches Goal.
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1 LIAFA, University Paris 7
abou@liafa.jussieu.fr

2 University of Kaiserslautern
meyer@cs.uni-kl.de

3 University of Oldenburg
eike.moehlmann@informatik.uni-oldenburg.de

Abstract. We address the problem of deciding robustness of a program against
the total store ordering (TSO) relaxed memory model, i.e., of checking whether
the behaviour under TSO coincides with the expected sequential consistency (SC)
semantics. We prove that this problem is PSPACE-complete. The key insight is
that violations to robustness can be detected on pairs of SC computations.

1 Introduction

Sequential consistency (SC) is the classical memory model for concurrent programs
with a shared memory [Lam79]. It interleaves the parallel computations but keeps the
order of actions issued by a same component. The model is intuitive and programmers
usually assume the execution environment adheres to it. However, to reduce the latency
of memory accesses, modern processors and compilers adopt relaxed memory models
that can reorder certain accesses [AG96]. Due to the unexpected behaviours they may
introduce, program order relaxations make reasoning about concurrent programs highly
complex. For instance, known concurrent algorithms like Dekker’s protocol for mutual
exclusion turn out incorrect in presence of the write-to-read relaxations discussed in this
paper. Indeed, data race freedom (DRF) guarantees sequential consistency. But the DRF
assumption is not valid for many performance-critical services such as implementations
of synchronisation operations, transactional memories, or concurrency libraries.

Therefore, an important problem is to check that a program P is robust against a
relaxed memory model M: running P under M does not introduce computations that
are impossible under SC. More precisely, P is robust against M if for every sequence of
actions σ in P the following holds. If there is a computation τ under M that corresponds
to σ, then σ is necessarily executable under SC.

We settle decidability and complexity of the robustness problem against the total
store ordering (TSO) memory model [OSS09, WG94]. TSO applies write-to-read re-
laxations that let reads overtake earlier write actions, a core feature in many common
relaxed memory models [BM08]. The operational intuition is that of write buffers. TSO
architectures provide FIFO buffers that hold the write actions for later execution. A
read, say on variable x, then fetches the last write to x from the buffer. If there is no
such write, the read consults the memory, thereby overtaking the pending writes in the

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part II, LNCS 6756, pp. 428–440, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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buffer. Although write buffers are necessarily finite in actual machines, no fixed bound
on their size must be assumed to reason about the correctness of general algorithms.

Deciding robustness against TSO is non-trivial due to the unboundedness of the FIFO
buffers and, as far as we know, has not been addressed. We prove the problem decidable
and PSPACE-complete. Our result is based on a deep investigation of the properties of
TSO computations. We establish the surprising fact that TSO violations to robustness
can already be found in the SC computations: there is a TSO computation without an
SC counterpart if and only if there is a pair of conflicting SC computations. Roughly,
these computations employ cyclic data races. Bounds on their sizes then yield a decision
procedure that requires space linear in the number of states and the number of variables.
PSPACE-hardness follows from the hardness of SC reachability [SC85].

Technically, we take a language-theoretic view that captures TSO by a closure of
the computations under the reorderings explained above. The tool that facilititates the
proofs are minimal violating computations with the least number of reorderings. From
this minimality, we first deduce that only a single program has performed reorderings.
In this sense, minimal violating computations apply reorderings locally. We then draw
conclusions about the shape of the TSO computation in order to construct the pair of
conflicting SC computations. The arguments have some combinatorial flavour.

Related work. A computation is not SC iff it accesses variables in a cyclic manner
[SS88]. Shasha and Snir proved this result without reference to a specific environment.
We adopt their formalism and extend the study in an algorithmic direction. For TSO,
existence of computations with cyclic dependencies is decidable.

There are algorithms and tools for monitoring TSO computations [BM08, BSS11].
They detect non-robustness by enumerating bounded executions, but do not provide
a decision procedure. Beyond verifications, algorithms exist that insert commands to
ensure robustness of a program against some memory model. While [SS88] use a static
analysis, [AMSS10, Alg10, BAM07] rely on testing. A state based variant of robustness
is considered in [KVY10]. These authors achieve decidability by bounding the buffers.
As the complexity depends on this bound, our decision procedure for unbounded buffers
improves even over this finite state approach.

Owens considers a notion of robustness based on memory equivalence, and gives a
characterisation of non-robust programs via triangular data races in SC [Owe10]. The
trace equivalence [SS88] considered here is more liberal than memory equivalence, with
the advantage of tolerating harmless triangular data races and thus permitting additional
relaxed executions. Therefore, our main result strengthens triangular data races to pairs
of data races in two SC computations. We settle the complexity of finding such pairs.

There are only few results on decidability and complexity of relaxed memory mod-
els. Recently, reachability under TSO has been shown to be decidable but non-primitive
recursive [ABBM10]. This is in sharp contrast to our result. Being PSPACE-complete,
robustness turns out more tractable. Alur et al. showed model checking of an imple-
mentation wrt. an SC specification undecidable [AMP96]. This does not contradict our
findings since we fix the implementation to be the TSO semantics of the specification. In
[GK97], the problem of deciding whether a given computation is SC feasible has been
proved NP-complete. Robustness is concerned with all TSO computations, instead.
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Structure of the paper. We introduce the formal framework in Section 2. Section 3 is
devoted to minimal violating computations and their reduction to pairs of conflicting
SC computations. This is our main result. In Section 4, we asses the complexity of the
resulting decision procedure for robustness, before concluding in Section 5.

2 Programs, Memory Models, and Robustness

2.1 Concurrent Programs

We study concurrent programs that operate on a shared memory. A concurrent program
P consists of several component programs P = {p1, . . . , pn}. The shared memory is
modelled by a set of variables V that take values from the Boolean domain B := {1,0}.
The component programs either write to (w) or read from (r) variables. The overall set
of commands is C := {w,r, f}, where the additional fence instruction ( f ) restricts the
behaviour of the TSO model. We discuss its semantics below.

Component programs access variables with actions in A := C ×V ×B × P . For
example, using action a = (w,x,1, p) component p sets variable x to 1. Since variable
and value are unimportant for fence actions, we denote them ( f , p). By com(a) := w,
var(a) := x, val(a) := 1, and prog(a) := p we extract the command, the variable, the
value, and the program in action a. We use a, b, c for actions, x, y, z for variables, and
v for an arbitrary value. We overload w and r to also stand for write and read actions.

The components p ∈ P are represented by finite automata (Q,q0,→) with states Q,
initial state q0, and transition relation → ⊆ Q×A ×Q. We typically write q1

a→ q2

instead of (q1,a,q2) ∈→ and expect program p to have actions in C ×V ×B×{p}.
Example 1 (Dekker). Under SC, the following algorithm guarantees mutual exclusion
between two components. By setting a variable x to 1, action wx, the first program
signals its wish to enter the critical section. If it then finds variable y of the partner
0, read ry, it enters. With wy and rx, the second program behaves similarly. We insert
further actions to explain our formalism. The resulting program is D = {p1, p2} where

p1 : q0
wx−→ q1

wz−→ q2
rz−→ q3

ry−→ cs p2 : q̃0
wz−→ q̃1

wy−→ q̃2
f−→ q̃3

rx−→ c̃s

wx := (w,x,1, p1) rz := (r,z,1, p1) wz := (w,z,0, p2) f := ( f , p2)
wz := (w,z,1, p1) ry := (r,y,0, p1) wy := (w,y,1, p2) rx := (r,x,0, p2).

As we shall see, mutual exclusion fails under TSO.

2.2 Sequential Consistency and Total Store Ordering Semantics

In a sequentially consistent (SC) environment, the component programs directly write
to the memory. So the ordering of actions issued by one component is preserved, but the
computations of several components may be interleaved. With this, σ = wx.wz.wz.rz.wy
is a feasible SC computation of Dekker’s algorithm but τ = ry.wz.wy.f.rx.wx.wz is not.

Total store ordering (TSO) memories provide, for each component, a FIFO buffer
that holds the write actions, Figure 1. A read (r,x,v, p) then prefetches the last write to
x from the buffer of p. If no such write is found, the read receives the value from the
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Fig. 1. Feasible computation of the algorithm in Example 1 on a TSO memory. Program p1 adds
writes wx and wz to its buffer. Then it prefetches rz (a). When p1 executes the read on y, there
is no corresponding write in its buffer: ry is the first command to interact with the memory (b).
Afterwards p2 issues its commands where the fence forbids overtakes of rx (c) and (d). Only as
a last step, the memory executes the writes to x and z from p1 (e). The resulting feasible TSO
computation is τ = ry.wz.wy.f.rx.wx.wz. Since the memory does not see rz the read does not occur
in τ. Both components have entered their critical sections and mutual exclusion fails.

memory. We say the read has overtaken the writes in the buffer: it was issued later than
the pending writes but executed earlier. In this sense, our formalism takes a view from
the memory. A fence ensures that a read is executed only when the buffer is empty.

To formalise the above behaviour, we extend the transition relation to computations,
sequences of actions σ = a1 . . .an in A∗. Syntax q

σ→ means there are states q1, . . . ,qn

so that q
a1→ q1

a2→ . . .
an→ qn. The language L(p) of a component p ∈ P contains all

computations from the initial state, L(p) := {σ ∈ A∗ | q0
σ→}.

Prefetching and overtaking of reads in TSO is reflected by a closure operator on the
languages L(p) of the components. It allows for the following rewritings:

(w,x,∗, p).(r,y,∗, p) �re (r,y,∗, p).(w,x,∗, p) with x �= y, (Reorder)

(w,x,v, p).(r,x,v, p) �pf (w,x,v, p). (Prefetch)

Fence instructions are never reordered and so act blocking. We call TSO rewriting the
smallest relation �⊆A∗×A∗ that includes �re, �pf and is closed under composition,
α � β implies γ1.α.γ2 � γ1.β.γ2. Given L ⊆ A∗, we denote its closure under TSO
rewriting by cl(L) := {τ ∈ A∗ | σ �∗ τ for σ ∈ L}. We use α, β, γ for computations
but reserve τ for TSO computations in cl(L) and σ for SC computations in L .

Example 2. TSO rewriting turns wx.wz.rz.ry ∈ L(p1) into ry.wx.wz ∈ cl(L(p1)). Note
that cl(L(p2)) = L(p2) due to the fence and the fact that wz and wy cannot be swapped.

The SC and TSO computations of P interleave the corresponding computations in the
components p ∈ P . This interleaving is formalised by shuffling, defined in the standard
way a.α b.β := a.(α b.β)∪b.(a.α β).

Shuffling may yield computations (w,y,1, p2).(r,y,0, p1) that are not feasible on
memory. We formalise memory valuations as vectors m∈BV that assign a value m(x) in
B to every variable. Actions then define a partial transition function [〉 ⊆ BV ×A×BV

between valuations as follows. Writes update their variable, m[(w,x,v, p)〉m{v/x} with
m{v/x}(x) = v and m{v/x}(y) = m(y) for y �= x. Reads have a blocking behaviour,
m[(r,x,v, p)〉m only if m(x) = v. The function is undefined otherwise. Fences do not
influence the computation, m[( f , p)〉m. We again extend [〉 to computations in A∗.

The initial valuation m0 sets all variables to zero, m0(x) = 0 for all x∈V . We denote
the restriction of L ⊆ A∗ to the feasible computations by L� := {σ ∈ L | m0[σ〉}.
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Fig. 2. Traces T (τ) with τ = ry.wz.wy.f.rx.wx.wz and T (τ′) = T (σ) with τ′ = wx.wz.wz.wy and
σ = wx.wz.wz.rz.wy. Dashed lines represent the conflict relations defined in Section 2.4.

Example 3. Computation τ = ry.wz.wy.f.rx.wx.wz is in (cl(L(p1)) cl(L(p2)))�.

2.3 Traces

Shasha and Snir proposed traces T (σ) and T (τ) that abstract from computations [SS88].
Figure 2 contains two examples that illustrate the following definition. Traces consist
of three relations that are derived from the computation and keep information about the
data and control dependencies. First, they represent the ordering of commands issued by
one component, known as program ordering. Furthermore, they preserve the ordering
of write accesses to each variable, the store ordering. Finally, traces indicate the write
command that a read receives its value from, the source relation from writes to reads.

To formalise traces, we need some syntax. Consider computation α = a1 . . .an. We
refer to its actions by A(α) := {a1, . . . ,an}, assuming an index that keeps them distinct.
We write α ↑ p for the projection of α to the actions of program p ∈ P , and α ↑ (w,x)
for the projection of α to the writes to x. Every computation defines an ordering≤α on
its actions with a≤α b if α = α1.a.α2.b.α3. We say that a is earlier and b is later in α.
While≤α is transitive, the successor relation→α is not. We set a→α b if α = α1.a.b.α2.

Let τ ∈ ( p∈P τp)� be a feasible TSO computation that is derived from σp �∗ τp.
The program order of component p in τ, denoted by→p

po, is the ordering the actions of p
had in the SC computation σp, before rewriting. Formally, we use the successor relation
of σp and set→p

po :=→σp . The program order relation of τ is→po :=
⋃

p∈P →p
po.

The ordering of stores to variable x, denoted by →x
st, gives the ordering of write

actions to variable x in τ. More formally, it is the successor relation of τ ↑ (w,x). The
ordering of stores in τ is again the union→st :=

⋃
x∈V →x

st.
The source relation →src requires a case distinction. If read b = (r,x,v, p) in σp =

σ1.b.σ2 is not among the actions of τ then it prefetched its value from the latest write to
x in the buffer. We therefore set a→src b with a the latest action in σ1 ↑ (w,x). Read rz

in Figure 2 serves as an example. If τ = τ1.b.τ2, then b reads the latest write a to x in τ1

and we again set a→src b. If there is no such write, the read receives the initial value.
With these relations, the trace of τ is T (τ) := (

⋃
p∈P A(σp),→po,→st,→src). We

denote by TTSO(P ) the set of all TSO traces of P , traces that belong to feasible TSO
computations. Similarly, TSC(P ) is the subset of all SC traces T (σ) obtained from SC
computations σ ∈ ( p∈P σp)�. Robustness checks whether the two sets coincide:

Rob Given a program P , the robustness problem asks for TTSO(P )⊆ TSC(P ).

We say that τ violates robustness if T (τ) ∈ TTSO(P )\TSC(P ). We also call τ violating.
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2.4 Happens Before

Shasha and Snir observed that violating computations use cyclic accesses to variables
that SC is unable to serialise. To make them visible in traces, they suggested to add a
conflict relation from reads to writes. Intuitively, r→cf w means that w overwrites the
value that r intends to read. In Figure 2, T (τ) has two conflicting accesses. Lemma 1
shows that the trace is violating as the conflicts close a cycle.

Consider τ ∈ ( p∈P τp)� with σp �∗ τp. Technically, its conflict relation →cf is
derived from the store ordering→st and source relation→src. We have r→cf w if there
is a write action w̃ ∈ A(τ) with w̃→src r and w̃→st w. If r reads the initial value of
a variable and w overwrites it, i.e., var(r) = var(w) and there is no w1 →src r and no
w2 →st w, we also have r →cf w. Figure 2 illustrates the situation on x and y. The
union of all relations we defined is commonly called happens before relation of the
computation→hb :=→po ∪→st ∪→src ∪→cf .

Lemma 1 ([SS88]). Trace T (τ) is in TSC(P ) if and only if→hb is acyclic.

We often need information about the actions on a happens before path. Let τ = α.a.β.b.γ.
By definition, c1 . . .cn is a subword of β if β = β1.c1β2 . . .βn.cn.βn+1. We say a happens
before b through β if there is a subword c1 . . .cn of β that yields a happens before path
from a to b. More precisely, with c0 := a and cn+1 := b we require that either ci→hb ci+1

directly or ci→+
po ci+1 for all 0 ≤ i ≤ n. Note that a happens before b through β holds

as soon as both actions access the same variable (no fences) and one is a write.

Lemma 2. Consider a computation α.a.β.b.γ ∈ ( p∈P τp)�. If var(a) = var(b) and
com(a) �= f �= com(b) and com(a) = w or com(b) = w then a→+

hb b through β.

As a consequence, if a→+
hb b through a subword of β then there is a happens before

path through β as well.

Lemma 3. Consider τ1 = α1.a.β1.b.γ1 and τ2 = α2.a.β2.b.γ2 with τ1,τ2 ∈ ( p∈P τp)�.
Let β1 be a subword of β2. If a→+

hb b through β1 then a→+
hb b through β2.

3 SC Characterisation of Violating TSO Computations

We develop a characterisation of violating TSO computations, i.e., computations whose
traces are not sequentially consistent. Surprisingly, the characterisation is independent
of the total store ordering model. Instead, it makes use of pairs of SC computations that
conflict in their accesses to variables.

We obtain the result by a close examination of violating TSO computations. The key
idea is to select a violating computation with the least possible number of reorderings.
From this minimality, we deduce information about the shape of the computation. The
proofs have a combinatorial flavour in that we derive the results by contradiction to the
minimality assumption.

The structure of the argumentation is as follows. We formalise minimal violating
computations and show that they use TSO rewriting in a restricted way: only a single
component employs reorderings, the remaining programs have SC computations. Even
more, we show that essentially a single write needs to be overtaken to obtain a violation,
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Section 3.2. We then split up the violating TSO computation into two SC computations,
our main result in Section 3.3. To argue for feasibility of the new computations, we
observe that certain parts of the TSO computation access distinct variables.

3.1 Minimal Violating Computations

We focus on TSO computations that have few reorderings (this notion of minimality is
not related to the shortest happens before cycles in [SS88]). For a single program p∈ P ,
the number of reorderings in τp ∈ cl(L(p)) is the length of its shortest � derivation:

#(τp) := min{n ∈N | σp �n τp for σp ∈ L(p)}.
For a computation τ ∈ ( p∈P τp)� of the parallel program, we sum up the values #(τp)
for the components’ computations: #(τ) := Σp∈P #(τp). We call τ a minimal violating
computation if its number of reorderings is minimal among the violating computations.
There is no violation τ′ with #(τ′) < #(τ). It is convenient to always keep a shortest
derivation σp �n τp for the computations of the components that satisfies n = #(τp).

Example 4. We have ry.wz.wy.f.rx.wx.wz as minimal violation with three reorderings.
If the fence in p2 is omitted, wz.rx.wx.wz.rz.ry.wy with a single reordering is minimal.

In a minimal violation, every prefetch (w,x,v, p).(r,x,v, p) �pf (w,x,v, p) is justified
by a later reordering (w,x,v, p).(r,y,v′, p) �re (r,y,v′, p).(w,x,v, p). Computation τ′ in
Figure 2 explains the intuition. Since a later reordering over wz is missing, the prefetch
by rz can be avoided to reduce #(τ′). Computation σ shows how to place the read.

Lemma 4. Consider a minimal violation τ ∈ ( p∈P τp)�. If the shortest derivation
σp �∗ τp contains a prefetch α.w.r1.β �pf α.w.β, then there is a read r2 ∈ A(τp) so
that r1 ≤σp r2 and r2 ≤τp w.

Consider a minimal violation α.r.β.w.γ where read r has overtaken write w. The next
lemma provides a happens before path from r to w through β. Otherwise, the reordering
could have been avoided without changing the trace — a contradiction to minimality.

Lemma 5. Consider a minimal violating computation α.a.β.b.γ in ( p∈P τp)� with
shortest derivations σp �∗ τp. Then a→+

hb b through β or there is α.β1.b.a.β2.γ in
( p∈P τp)� with T (α.a.β.b.γ) = T (α.β1.b.a.β2.γ) and β1 a subword of β.

The induction step exploits Lemma 3. We illustrate the lemma on an example.

Example 5. For τ = ry.wz.wy.f.rx.wx.wz, we have ry→+
hb wx through wz.wy.f.rx. As ry

and wx both belong to program p1, there is no alternative shuffle. But T (τ) = T (τ̃) with
τ̃ = wz.ry.wy.f.rx.wx.wz.

3.2 From Many to Few: Locality of Reorderings

Reconsider the minimal violation α.r.β.w.γ where read r has overtaken write w. The
following argumentation appears in variants several times. Lemma 5 gives r →+

hb w
through β. But as r has overtaken w, we also have the program order w→+

po r and
thus w→+

hb r. This means we found the happens before cycle r →+
hb w→+

hb r. The
computation violates robustness by Lemma 1. A first consequence of this reasoning is
Lemma 6. In a minimal violation, only a single program employs reorderings.
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Lemma 6. Consider the minimal violating computation τ ∈ ( p∈P τp)� with shortest
derivations σp �∗ τp. There is precisely one component with τp �= σp.

Proof. Assume there are at least two computations τp �= σp. By Lemma 4, all these
computations contain a write wp and a read rp that overtook it, wp≤σp rp and rp≤τp wp.
For the sake of readability, we use i, j as indices instead of programs p, p′. We single
out the latest writes of distinct programs in τ that have been overtaken. Let them be
wi ∈ A(τi) and wj ∈ A(τ j) with i �= j. For each of the writes, we find the latest read
ri ∈ A(τi) and r j ∈ A(τ j) that overtook it. There are three possible interactions:

α1.ri. α2.wi. α3.r j. α4.wj. α5 α1.r j. α2.ri. α3.wi. α4.wj. α5 α1.r j. α2.ri. α3.wj. α4.wi. α5

Consider τ = α1.r j.α2.ri.α3.wj.α4.wi.α5. The two cases left are simpler. By maximality
of wi, no write of α5 has been overtaken. Similarly, by maximality of wj no write of α4,
except for those of pi, has been overtaken. We delete α5 and the α4 actions outside pi:

τ′ = α1.r j.α2.ri.α3.wj.(α4 ↑ pi).wi.

The result is a TSO computation. It is feasible as ri has overtaken α4 ↑ pi and thus
α4 ↑ pi only contains write actions. To see that τ′ is violating, note that Lemma 5 gives
r j →+

hb wj through α2.ri.α3 of τ. Computation α2.ri.α3 does not change in τ′ and so
r j →+

hb wj carries over to τ′. With wj →+
po r j and Lemma 1, the trace of τ′ is not SC.

As the reorderings of τ and τ′ coincide, also τ′ is a minimal violating computation.
By Lemma 5, ri →+

hb wi through α3.wj.(α4 ↑ pi). By the overtake of r j , α3.wj only
contains writes of p j. A program order c→+

po d between such writes only reaches reads
originally located between them. So r j is not on the path through α3.wj.(α4 ↑ pi). By
maximality, r j is the last action in σ j after removal of α4 and α5. We delete r j and get

τ′′ = α1.α2.ri.α3.wj.(α4 ↑ pi).wi.

This TSO computation is feasible. It is violating by ri→+
hb wi→+

hb ri. As the reordering
of r j over wj is missing, τ′′ is smaller than τ. A contradiction to minimality. �	
With Lemma 6, a minimal violation has the form τ ∈ (τp ( p′∈P\{p}σp′))� where
σp �+ τp. We argue that reorderings are applied only locally in τp. There is an earliest
write w0 that is overtaken. This write determines the remaining reorderings as follows.
In front of w0, there is a block of reads ranging from the earliest read r1 that overtook
w0 to the latest such read rn+1. Action w0 starts a block of writes w0 . . .wn+1 so that ri

was originally located behind wi. Minimality of τ forbids further reorderings.

Lemma 7. Let τ∈ (τp ( p′∈P\{p}σp′))� a minimal violation with shortest derivation
σp �+ τp. Then σp = σ1.σ2.σ3 and τp = σ1.ρp.ωp.σ3 where ρp consists of reads and
ωp of writes. The last element r of ρp overtook the last element w of ωp, w≤σ2 r.

With ρp = r1 . . . rn+1 and ωp = w0 . . .wn+1, the minimal violation has the form

τ = α.ρ.β.ω.γ where ρ = r1.ρ′.rn+1 and ω = w0.ω′.wn+1. (1)

The cycle rn+1→+
hb w0→+

po rn+1 through β, however, yields an even simpler violation.
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Proposition 1. If there is a violating computation, then there also is a minimal viola-
tion α.ρ.β.ωp ∈ (τp ( p′∈P\{p}σp′))� with ρ and ωp as defined in (1).

Example 6. Computation ry.wz.wy.f.rx.wx.wz is a minimal violation of the above shape:
α = ε, ρ = ρp = ry, β = wz.wy.f.rx, and ωp = wx.wz.

3.3 From Few to SC: Variable Accesses and Main Result

We focus on violations α.ρ.β.ωp of the form in Proposition 1. Our goal is to establish
happens before relations through β and ρ. With these relations, we conclude disjointness
of certain variable accesses in ωp and ρ. As a consequence, we decompose the violating
TSO computation into two feasible SC computations — our main result.

To begin with, note that rn+1→+
hb w0 through β. We manipulate the computation to

let β start and end with actions on this path. For example, we change ry.wz.wy.f.rx.wx.wz

to wz.ry.wy.f.rx.wx.wz where β = wy.f.rx directly connects ry and wx.

Lemma 8. If there is a violation, there is a minimal violation α.ρ.β.ωp with β = a.β′.b
so that rn+1→hb a→+

hb b→hb w0.

The idea is to shuffle all actions not in happens before with rn+1 to the front. Lemma 9
shows this does not change the trace. Set HB(a,β) := {b∈A(β) | a→+

hb b through β}.
Lemma 9. Let τ1 = α.a.β.γ a minimal violation in ( p∈P τp)�. There is an alternative
shuffle τ2 = α.β1.a.β2.γ in ( p∈P τp)� with T (τ1) = T (τ2) so that A(β2) = HB(a,β).

Consider a minimal violation α.ρ.β.ωp from Lemma 8 with

ρ = r1.ρ1 . . .rn.ρn.rn+1 ωp = w0.ω1.w1 . . .ωn+1.wn+1. (2)

Here, ri are the reordered reads of program p, and wi is the first write that ri overtook.
The sequences ρi contain actions from components different from p. With Lemma 9,
we can assume that for every 1 ≤ i ≤ n and every c ∈ A(ρi) we have ri →+

hb c. These
relations allow for precise statements about the variables accessed within the ρi.

Lemma 10. Consider a minimal violating computation α.ρ.β.ωp of the form (2) above.
For every c ∈ A(ρi) and w ∈ A(ω j.wj) with j ≤ i, we have var(c) �= var(w).

We now state our first main result. A violating TSO computation leads to a pair of
conflicting SC computations

σ1 = α.ρ1 . . .ρn.a.β.b σ2 = α.w.ω1.ρ1 . . .ωn.ρn.ωn+1.r

that obey four constraints. (Prog) Computation w.ω1 . . .ωn+1.r belongs to a program
p ∈ P , the actions in ρ1 . . .ρn.a.β.b belong to programs different from p. (Shuffle) The
actions in ρi do not access variables written in ω j or w with j ≤ i. (Hb) There is a path
a→+

hb b through β, var(a) = var(r), var(b) = var(w), com(a) = w = com(w). (Reorder)
There is a reordering of r over w.

Theorem 1. There is a violating TSO computation if and only if there is a pair of
conflicting SC computations.

Example 7. The minimal violation wz.ry.wy.f.rx.wx.wz computed above is of the form
in Lemma 10. We set σ1 = wz.wy.f.rx and σ2 = wz.wx.wz.rz.ry.
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It is known that data race freedom guarantees robustness. Theorem 1 strengthens
this: a program is robust if and only if there are no SC computations with crossing data
races.

4 Complexity of Robustness

To prove Rob in PSPACE, we find bounds on the length of the conflicting computations.
The idea is to augment computations by information about the states of the components.
This leads to a notion of configuration, and we prune a computation when it repeats con-
figurations. The analysis reveals the data structures required in the decision procedure.

A configuration is a pair (s,m) consisting of a vector s = (q1, . . . ,qn) of states of
the components and a memory valuation m. An SC computation σ ∈ ( p∈P σp)� with
σ = a1.a2 . . . defines transitions (s0,m0).a1.(s1,m1).a2 . . . between configurations in the
expected way. Let the union of the states of all components be Q = Q1 ∪ . . .∪Qn. As
the number of configurations is bounded by 2|Q |+|V |, a computation α in σ1 and σ2

that is longer repeats configurations (si,mi) = (s j,m j). We cut out ai+1 . . .a j and get
α′ = a1 . . .ai.a j+1 . . . The computation is feasible as (si,mi) = (s j,m j) hold the states.

Lemma 11. If there is a pair of conflicting SC computations, then there is one where
the length |α| is bounded by 2|Q |+|V |.

For ω1.ρ1 . . .ωn.ρn.ωn+1 in σ2 pruning is more delicate. We have to ensure the result
of pruning ρ1 . . .ρn still enables a.β.b in σ1. To this end, we guarantee that the con-
figuration reached with the instructions in ρ1 . . .ρn remains unchanged. Moreover, we
need to ensure that, after pruning, the reads in ω1 . . .ωn+1 can still perform prefetches.
Otherwise (Reorder) may fail for the short computation.

To respect these two constraints, we define extended configurations (s,m,m �=p,mp).
Valuation m �=p is updated only by ρ1 . . .ρn or, equivalently, by instructions in programs
different from p. Valuation mp gives the last write of p to each variable. It is there-
fore three valued. Besides 0 and 1, mp assigns ⊥ if the variable has not been written.
The valuation ensures that pruning preserves the prefetching and reordering capabil-
ities. In fact, read r = (r,x,v, p) in σ.r can prefetch a write in σ iff mp(x) = v with
mp obtained from executing σ. The read can overtake σ iff mp(x) = ⊥, no write in σ
accessed x.

We start with configuration (s,m,m,m⊥) where (s,m) is reached by α and m⊥(x) =⊥
for all x∈V . To define transitions (s,m,m �=p,mp).a.(s′,m′,m′�=p,m

′
p) between extended

configurations, consider state s(p′) = q and transition q.a.q′. We update s and m like
standard configurations. The valuations m �=p and mp only react to writes a = (w,x,v, p′).
We set m′�=p = m �=p if p′ = p and set m′�=p = m �=p{v/x} otherwise. For mp, we set m′p =
mp if p′ �= p. In case p′ = p, we get m′p = mp{v/x}. Reads and fences do not change
the additional valuations.

Example 8. Consider σ2 = wz.wx.wz.rz.ry. After execution of α = wz, we start with
((q0, q̃1),m,m,m⊥) where m(x) = m(y) = m(z) = 0. Write wx yields the transition
((q0, q̃1),m,m,m⊥).wx.((q1, q̃1),m′,m,m′p) where the resulting extended configuration
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has memory valuations m′(x) = 1, m′(y) = m′(z) = 0 and m′p(x) = 1, m′p(y) = m′p(z) =⊥.

If computation ω1.ρ1 . . .ωn.ρn.ωn+1 repeats two configurations (si,mi,m �=p,i,mp,i) =
cf = (s j,m j,m �=p, j,mp, j) in

(s,m,m,m⊥).w.ω1 . . .ωi1.cf .ωi2 . . .ω j1.cf .ω j2 . . .

we cut out the intermediary actions ωi2 . . .ω j1. We argue that this results in a pair of
conflicting computations. By m �=p,i = m �=p, j, also ρ1 . . .ρi−1.ρ j . . .ρn enables β. For
(Reorder), the critical point is that a read ω j2 . . . (r,x,v, p) . . . may prefetch a write
ωi2 . . . (w,x,v, p) . . .ω j1 that is cut out. By definition of TSO rewriting, (w,x,v, p) . . .ω j1

does not contain another write to x. Hence, we have mp, j(x) = v. Since mp, j = mp,i, also
mp,i(x) = v. This means the last write to x in ω1 . . .ωi1 also gave v. Hence, (r,x,v, p) can
still prefetch v in the shorter sequence. If the prefetches are preserved, a read that can
overtake all writes in the original computation, can do so in the pruned one.

Lemma 12. If there is a pair of conflicting computations, then there is one where the
length |ω1.ρ1 . . .ωn.ρn.ωn+1| is bounded by 2|Q |+4|V |.

When we prune β in a.β.b, we have to preserve the happens before path a→+
hb b. Fix a

path a→hb a1→hb . . .→hb an→hb b. If it is longer than 2|Q |+|V ||A |, two actions ai = a j

as well as their predecessor configurations (si,mi) = (s j,m j) coincide:

. . . (si,mi).ai.(si+1,mi+1) . . . (s j,m j).a j . . .

Cutting out (si+1,mi+1) . . . (s j,m j).a j gives a new computation β′. It is feasible as the
configurations coincide. A happens before path a→+

hb b exists, because a j →hb a j+1

entails ai→hb a j+1.

Lemma 13. If there is a pair of conflicting computations, then there is one where the
length |β| is bounded by 22(|Q |+|V |)|A | with |A | ≤ 6|Q ||V |.
We roughly overapproximated the number of components by the number of states. The
additional factor in the exponent stems from the fact that between ak →hb ak+1 there
may be at most 2|Q |+|V | instructions. The reasoning is like in the case of α.

Theorem 2. Rob is in PSPACE.

The following non-deterministic algorithm checks for violations in space linear in |Q |
and |V |. It first finds computation σ2. When it guesses the occurrence of w, the extended
configurations (s,m,m �=p,mp) above keep track of the effect of ρi actions. They further
allow us to check the reordering capabilities (Reorder) and disjointnesss between ρi

and ω j as required by (Shuffle). Eventually, the algorithm ends σ2. As α and ρ1 . . .ρn

coincide for σ1 and σ2, the states of the component programs are correct for σ1. The
state of prog(w) is unimportant as a.β.b does not use this program. The valuation for
σ1 is stored in m �=p. To find a.β.b with a→+

hb b, we safe the last action c on the happens
before path. If we guess that a next action d should be on the path, we compare it with
c. If the programs coincide or the condition in Lemma 2 is met, we conclude c→+

hb d.
Binary counters stop the algorithm when it exceeds the necessary length for σ1 and σ2.
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For PSPACE-hardness of robustness, we reduce the problem of whether a state q∈Q
is reachable in a program p = (Q,q0,→) [SC85]. Let the variables x and y be fresh for
p. The idea is to append Dekker’s protocol in Example 1 to the state q of interest in a
way that a violation happens only in this gadget. To this end, we add one component of
the protocol to q, the second component yields a new program p2:

add to p q
wx→ q1

ry→ cs add as new program p2 : q̃0
wy→ q̃1

rx→ c̃s.

We then append a fence to every action in the modified program p. Let the result be p′.
State q is reachable in p if and only if {p′, p2} admits a violating computation.

Theorem 3. Rob is PSPACE-complete.

5 Conclusion and Future Work

This paper provides the theoretical foundations for checking robustness against TSO.
We proved the problem PSPACE-complete, thereby discovering surprising facts about
TSO. There are always minimal violating computations that use reorderings only in a
single component. They can be reflected by pairs of conflicting SC computations.

We believe these findings have a high practical impact. We intend to reduce the
search for conflicting computations to reachability in SC. Then the techniques and tools
for SC verification can be reused for robustness analysis. A second application of our
results is monitoring. Instead of simulating buffers with high memory requirements,
these algorithms should look for conflicts already in SC. Our results may also be ex-
ploited for program repair. Minimal violations reveal the fences that ensure robustness.
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Abstract. We develop a new analysis for the length of controlled bad
sequences in well-quasi-orderings based on Higman’s Lemma. This leads
to tight multiply-recursive upper bounds that readily apply to several
verification algorithms for well-structured systems.

1 Introduction

Well-quasi-orderings (wqo’s) are an important tool in logic and computer sci-
ence [13]. They are the key ingredient to a large number of decidability (or
finiteness, regularity, . . . ) results. In constraint solving, automated deduction,
program analysis, and many more fields, wqo’s usually appear under the guise
of specific tools, like Dickson’s Lemma (for tuples of integers), Higman’s Lemma
(for words and their subwords), Kruskal’s Tree Theorem and its variants (for
finite trees with embeddings), and recently the Robertson-Seymour Theorem
(for graphs and their minors). In program verification, wqo’s are the basis for
well-structured systems [1, 10, 11], a generic framework for infinite-state systems.

Complexity. Wqo’s are seldom used in complexity analysis. In order to extract
complexity upper bounds for an algorithm whose termination proof rests on
Dickson’s or Higman’s Lemma, one must be able to bound the length of so-
called “controlled bad sequences” (see Def. 2.4). Here the available results are
not very well known in computer science, and their current packaging does not
make them easy to read and apply. For applications like the complexity of lossy
channel systems [4] that rely on Higman’s Lemma over Γ∗p (the words over a
p-letter alphabet), what we really need is something like:

Length Function Theorem. Let LΓ∗
p
(n) be the maximal length of bad sequences

w0, w1, w2, . . . over Γ∗p with p ≥ 2 s.t. |wi| < gi(n) for i = 0, 1, 2, . . . If the control
function g is primitive-recursive, then the length function LΓ∗

p
is bounded by a

function in Fωp−1 .1

Unfortunately, the literature contains no such clear statement (see the compar-
ison with existing work below).
1 Here the functions Fα are the ordinal-indexed levels of the Fast-Growing Hierar-

chy [14], with multiply-recursive complexity starting at level α = ω, i.e., Ackerman-
nian complexity, and stopping just before level α = ωω, i.e., hyper-Ackermannian
complexity. The function classes Fα denote their elementary-recursive closure.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part II, LNCS 6756, pp. 441–452, 2011.
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Our Contribution. We provide a new and self-contained proof of the Length
Function Theorem, a fundamental result that (we think) deserves a wide au-
dience. The exact statement we prove, Thm. 5.3 below, is rather general: it is
parameterized by the control function g and accomodates various combinations
of Γ∗p sets without losing precision. For this we significantly extend the setting
we developed for Dickson’s Lemma [9]: We rely on iterated residuations with
a simple but explicit algebraic framework for handling wqo’s and their residu-
als in a compositional way. Our computations can be kept relatively simple by
means of a fully explicit notion of “normed reflection” that captures the over-
approximations we use, all the while enjoying good algebraic properties. We also
show how to apply the Length Function Theorem by deriving precise multiply-
recursive upper bounds, parameterized by the alphabet size, for the complexity
of lossy channel systems and the Regular Post Embedding Problem (see Sec. 6).

Comparison with Existing Work. (Here, and for easier comparison, we assume
that the control function g is the successor function.)

For Nk (i.e., Dickson’s Lemma), Clote gives an explicit upper bound at level
Fk+6 extracted from complex Ramsey-theoretical results, hence hardly self-
contained [8]. This is a simplification over an earlier analysis by McAloon, which
leads to a uniform upper bound at level Fk+1, but gives no explicit statement
nor asymptotic analysis [15]. Both analyses are based on large intervals and ex-
tractions, and McAloon’s is technically quite involved. With D. and S. Figueira,
we improved this to an explicit and tight Fk [9].

For Γ∗p (Higman’s Lemma), Cichoń and Tahhan Bittar exhibit a reduction
method, deducing bounds (for tuples of) words on Γp from bounds on the Γp−1

case [7]. Their decomposition is clear and self-contained, with the control func-
tion made explicit. It ends up with some inequalities, collected in [7, Sec. 8],
from which it is not clear what precisely are the upper bounds one can extract.
Following this, Touzet claims a bound of Fωp [19, Thm. 1.2] with an analysis
based on iterated residuations but the proof (given in [18]) is incomplete.

Finally, Weiermann gives an Fωp−1-like bound for Γ∗p [20, Coro. 6.3] for se-
quences produced by term rewriting systems, but his analysis is considerably
more involved (as can be expected since it applies to the more general Kruskal
Theorem) and one cannot easily extract an explicit proof for his Coro. 6.3.

Regarding lower bounds, it is known that Fωp−1 is essentially tight [6].

Outline of the Paper. All basic notions are recalled in Sec. 2, leading to the
Descent Equation (3). Reflections in an algebraic setting are defined in Sec. 3,
then transfered in an ordinal-arithmetic setting in Sec. 4. We prove the Main
Theorem in Sec. 5, before illustrating its uses in Sec. 6. All the proofs missing
from this extended abstract can be found at http://arxiv.org/abs/1103.4399.

2 Normed Wqo’s and Controlled Bad Sequences

We recall some basic notions of wqo-theory [see e.g. 13]. A quasi-ordering (a
“qo”) is a relation (A;≤) that is reflexive and transitive. As usual, we write

http://arxiv.org/abs/1103.4399
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x < y when x ≤ y and y �≤ x, and we denote structures (A;P1, . . . , Pm) with
just the support set A when this does not lead to ambiguities. Classically, the
substructure induced by a subset X ⊆ A is (X ;P1|X , . . . , Pm|X) where, for a
predicate P over A, P|X is its trace over X .

A qo A is a well-quasi-ordering (a “wqo”) if every infinite sequence x0, x1, x2, . . .
contains an infinite increasing subsequence xi0 ≤ xi1 ≤ xi2 · · · Equivalently, a
qo is a wqo if it is well-founded (has no infinite strictly decreasing sequences)
and contains no infinite antichains (i.e., set of pairwise incomparable elements).
Every induced substructure of a wqo is a wqo.

Wqo’s With Norms. A norm function over a set A is a mapping |.|A : A → N
that provides every element of A with a positive integer, its norm, capturing a
notion of size. For n ∈ N, we let A<n

def= {x ∈ A | |x|A < n} denote the subset
of elements with norm below n. The norm function is said to be proper if A<n

is finite for every n.

Definition 2.1. A normed wqo (a “nwqo”) is a wqo (A;≤A, |.|A) equipped with
a proper norm function.

There are no special conditions on norms, except being proper. In particular
no connection is required between the ordering of elements and their norms. In
applications, norms are related to natural complexity measures.

Example 2.2 (Some Basic Wqo’s). The set of natural numbers N with the usual
ordering is the smallest infinite wqo. For every p ∈ N, we single out two p-element
wqo’s: 	p is the p-element initial segment of N, i.e., the set {0, 1, 2, . . . , p − 1}
ordered linearly, while Γp is the p-letter alphabet {a1, . . . , ap} where distinct
letters are unordered. We turn them into nwqo’s by fixing the following:

|k|N = |k|�p

def= k , |ai|Γp

def= 0 . (1)

We write A ≡ B when the two nwqo’s A and B are isomorphic structures.
For all practical purposes, isomorphic nwqo’s can be identified, following a stan-
dard practice that significantly simplifies the notational apparatus we develop in
Sec. 3. For the moment, we only want to stress that, in particular, norm functions
must be preserved by nwqo isomorphisms.

Example 2.3 (Isomorphism Between Basic Nwqo’s). On the positive side, 	0 ≡
Γ0 and also 	1 ≡ Γ1 since |a1|Γ1 = 0 = |0|�1 . By contrast 	2 �≡ Γ2: not only these
two have non-isomorphic order relations, they also have different norm functions.

Good, Bad, and Controlled Sequences. A sequence x = x0, x1, x2, . . . over a qo
is good if xi ≤ xj for some positions i < j. It is bad otherwise. Over a wqo, all
infinite sequences are good (equivalently, all bad sequences are finite).

We are interested in the maximal length of bad sequences for a given wqo.
Here, a difficulty is that, in general, bad sequences can be arbitrarily long and
there is no finite maximal length. However, in our applications we are only
interested in bad sequences generated by some algorithmic method, i.e., bad
sequences whose complexity is controlled in some way.
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Definition 2.4 (Control Functions and Controlled Sequences)
A control function is a mapping g : N → N. For a size n ∈ N, a sequence
x = x0, x1, x2, . . . over a nwqo A is (g, n)-controlled def⇔

∀i = 0, 1, 2, . . . : |xi|A < gi(n) =

i times︷ ︸︸ ︷
g(g(. . . g(n))) .

Why n is called a “size” appears with Prop. 2.8 and its proof. A pair (g, n) is
just called a control for short. We say that a sequence x is n-controlled (or just
controlled), when g (resp. g and n) is clear from the context. Observe that the
empty sequence is always a controlled sequence.

Proposition 2.5. Let A be a nwqo and (g, n) a control. There exists a finite
maximal length L ∈ N for (g, n)-controlled bad sequences over A.

We write LA,g(n) for this maximal length, a number that depends on all three
parameters: A, g and n. However, for complexity analysis, the relevant infor-
mation is how, for given A and g, the length function LA,g : N → N behaves
asymptotically, hence our choice of notation. Furthermore, g is a parameter that
remains fixed in our analysis and applications, hence it is usually left implicit.
From now on we assume a fixed control function g and just write LA(n)
for LA,g(n). We further assume that g is smooth (def⇔ g(x+ 1) ≥ g(x) + 1 ≥ x+ 2
for all x), which is harmless for applications but simplifies computations like (4).

Residuals Wqo’s and a Descent Equation. Via residuals one expresses the length
function by induction over nwqo’s.

Definition 2.6 (Residuals). For a nwqo A and an element x ∈ A, the residual
A/x is the substructure (a nwqo) induced by the subset A/x

def= {y ∈ A | x �≤ y}
of elements that are not above x.

Example 2.7 (Residuals of Basic Nwqo’s). For all k < p and i = 1, . . . , p:

N/k = 	p/k = 	k , Γp/ai ≡ Γp−1 . (2)

Proposition 2.8 (Descent Equation)

LA(n) = max
x∈A<n

{
1 + LA/x(g(n))

}
. (3)

This reduces the LA function to a finite combination of LAi ’s where the Ai’s
are residuals of A, hence “smaller” sets. Residuation is well-founded for wqo’s:
a sequence of successive residuals A � A/x0 � A/x0/x1 � A/x0/x1/x2 � · · · is
necessarily finite since x0, x1, x2, . . . must be a bad sequence. Hence the recursion
in the Descent Equation is well-founded and can be used to evaluate LA(n). This
is our starting point for analyzing the behaviour of length functions.

For example, using induction and Eq. (2), the Descent Equation leads to:

LΓp(n) = p , LN(n) = n , L�p(n) = min(n, p) . (4)
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3 An Algebra of Normed Wqo’s

The algebraic framework we now develop has two main goals. First it provides a
notation for denoting the wqo’s encountered in algorithmic applications. These
wqo’s and their norm functions abstract data structures that are built inductively
by combining some basic wqo’s. Second, it supports a calculus for the kind of
compositional computations, based on the Descent Equation, we develop next.

The constructions we use in this paper are disjoint sums, cartesian products,
and Kleene stars (with Higman’s order). These constructions are classic. Here
we also have to define how they combine the norm functions:

Definition 3.1 (Sums, Products, Stars Nwqo’s) The disjoint sum A1 +A2

of two nwqos A1 and A2 is the nwqo given by

A1 + A2 = {〈i, x〉 | i ∈ {1, 2} and x ∈ Ai} , (5)

〈i, x〉 ≤A1+A2 〈j, y〉 def⇔ i = j and x ≤Ai y , (6)

|〈i, x〉|A1+A2

def= |x|Ai . (7)
The cartesian product A1 ×A2 of two nwqos A1 and A2 is the nwqo given by

A1 ×A2 = {〈x1, x2〉 | x1 ∈ A1, x2 ∈ A2} , (8)

〈x1, x2〉 ≤A1×A2 〈y1, y2〉 def⇔ x1 ≤A1 y1 and x2 ≤A2 y2 , (9)

|〈x1, x2〉|A1×A2

def= max(|x1|A1 , |x2|A2) . (10)
The Kleene star A∗ of a nwqo A is the nwqo given by

A∗ def= all finite lists (x1 . . . xn) of elements of A , (11)

(x1 . . . xn) ≤A∗ (y1 . . . ym) def⇔
{

x1 ≤A yi1 ∧ · · · ∧ xn ≤A yin

for some 1 ≤ i1 < i2 < · · · < in ≤ m
, (12)

|(x1 . . . xn)|A∗
def= max(n, |x1|A, . . . , |xn|A) . (13)

It is well-known (and plain) that A1 + A2 and A1 × A2 are indeed wqo’s when
A1 and A2 are. The fact that A∗ is a wqo when A is, is a classical result called
Higman’s Lemma. We let the reader check that the norm functions defined in
Equations (7), (10), and (13), are proper and turn A1 + A2, A1 × A2 and A∗

into nwqo’s. Finally, we note that nwqo isomorphism is a congruence for sum,
product and Kleene star.

Notation (0 and 1) We let 0 and 1 be short-hand notations for, respectively,
Γ0 (the empty nwqo) and Γ1 (the singleton nwqo with the 0 norm).

This is convenient for writing down the following algebraic properties:

Proposition 3.2 The following isomorphisms hold:
A + B ≡ B + A , A + (B + C) ≡ (A + B) + C ,

A×B ≡ B ×A , A× (B × C) ≡ (A×B)× C ,

0 + A ≡ A , 1×A ≡ A ,

0×A ≡ 0 , (A + A′)×B ≡ (A×B) + (A′ ×B) ,

0∗ ≡ 1 , 1∗ ≡ N .
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In view of these properties, we freely write A · k and Ak for the k-fold sums and
products A + · · ·+ A and A× · · · ×A. Observe that A · k ≡ A× Γk.

Reflecting Normed Wqo’s. Reflections are the main comparison/abstraction tool
we shall use. They let us simplify instances of the Descent Equation by replacing
all A/x for x ∈ A<n by a single (or a few) A′ that is smaller than A but large
enough to reflect all considered A/x’s.

Definition 3.3 A nwqo reflection is a mapping h : A→ B between two nwqo’s
that satisfies the two following properties:

∀x, y ∈ A : h(x) ≤B h(y) implies x ≤A y ,

∀x ∈ A : |h(x)|B ≤ |x|A .

In other words, a nwqo reflection is an order reflection that is also norm-decreasing
(not necessarily strictly).

We write h : A ↪→ B when h is a nwqo reflection and say that B reflects A.
This induces a relation between nwqos, written A ↪→ B.

Reflection is transitive since h : A ↪→ B and h′ : B ↪→ C entails h′◦h : A ↪→ C.
It is also reflexive, hence reflection is a quasi-ordering. Any nwqo reflects its
substructures since Id : X ↪→ A when X is a substructure of A. Thus 0 ↪→ A for
any A, and 1 ↪→ A for any non-empty A.

Example 3.4 Among the basic nwqos from Example 2.2, we note the following
relations (or absences thereof). For any p ∈ N, 	p ↪→ Γp, while Γp �↪→ 	p when
p ≥ 2. The reflection of substructures yields 	p ↪→ N and Γp ↪→ Γp+1. Obviously,
N �↪→ 	p and Γp+1 �↪→ Γp.

Reflections preserve controlled bad sequences. Let h : A ↪→ B, consider a se-
quence x = x0, x1, . . . , xl over A, and write h(x) for h(x0), h(x1), . . . , h(xl), a
sequence over B. Then h(x) is bad when x is, and n-controlled when x is. Hence:

A ↪→ B implies LA(n) ≤ LB(n) for all n . (14)

Reflections are compatible with product, sum, and Kleene star.

Proposition 3.5 (Reflection is a Preconguence)

A ↪→ A′ and B ↪→ B′ imply A + B ↪→ A′ + B′ and A×B ↪→ A′ ×B′ , (15)
A ↪→ A′ implies A∗ ↪→ A′∗ . (16)

Computing and Reflecting Residuals. We may now tackle our first main problem:
computing residuals A/x. This is done by induction over the structure of A.

Proposition 3.6 (Inductive Rules For Residuals)

(A + B)/〈1, x〉 = (A/x) + B , (A + B)/〈2, x〉 = A + (B/x) , (17)

(A×B)/〈x, y〉 ↪→ [(A/x) ×B
]

+
[
A× (B/y)

]
, (18)

A∗/(x1 . . . xn) ↪→ Γn ×An × (A/x1)∗ × · · · × (A/xn)∗ , (19)
Γ∗p+1/(x1 . . . xn) ↪→ Γn × (Γ∗p )n . (20)

Equation (20) is a refinement of (19) in the case of finite alphabets.
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Since it provides reflections instead of isomorphisms, Prop. 3.6 is not meant to
support exact computations of A/x by induction over the structure of A. More
to the point, it yields over-approximations that are sufficiently precise for our
purposes while bringing important simplifications when we have to reflect (the
max of) all A/x for all x ∈ A<n.

4 Reflecting Residuals in Ordinal Arithmetic

We now introduce an ordinal notation for nwqo’s. The purpose is twofold. Firstly,
the ad-hoc techniques we use for evaluating, reflecting, and comparing residual
nwqo’s are more naturally stated within the language of ordinal arithmetic. Sec-
ondly, these ordinals will be essential for bounding LA using functions in subre-
cursive hierarchies. For these developments, we restrict ourselves to exponential
nwqo’s, i.e., nwqo’s obtained from finite Γp’s with sums, products, and Kleene
star restricted to the Γp’s. Modulo isomorphism, Nk ≡∏k

i=1 Γ∗1 is exponential.

Ordinal Terms. We use Greek letters like α, β, . . . to denote ordinal terms in
Cantor Normal Form (CNF) built using 0, addition, and ω-exponentiation (we
restrict ourselves to ordinals < ε0). A term α has the general form α = ωβ1 +
ωβ2 + · · · + ωβm

with β1 ≥ β2 ≥ · · · ≥ βm (ordering defined below) and where
we distinguish between three cases: α is 0 if m = 0, α is a successor if (m > 0
and) βm = 0, α is a limit if βm �= 0 (in the following, λ will always denote a
limit, and we write α + 1 rather than α + ω0 for a successor). We say that α is
principal (additive) if m = 1.

Ordering among our ordinals is defined inductively by

α < α′ def⇔
⎧⎨
⎩

α = 0 and α′ �= 0, or

α = ωβ + γ, α′ = ωβ′
+ γ′ and

{
β < β′, or
β = β′ and γ < γ′.

(21)

We let CNF(α) denote the set of ordinal terms <α.
For c ∈ N, ωβ · c denotes the c-fold addition ωβ + · · · + ωβ. We sometimes

write terms under a “strict” form α = ωβ1 · c1 + ωβ2 · c2 + · · · + ωβm · cm with
β1 > β2 > · · · > βm, where the ci’s, called coefficients, must be > 0.

Recall the definitions of the natural sum α⊕α′ and natural product α⊗α′ of
two terms in CNF(ε0):

m∑
i=1

ωβi ⊕
n∑

j=1

ωβ′
j

def=
m+n∑
k=1

ωγk ,

m∑
i=1

ωβi ⊗
n∑

j=1

ωβ′
j

def=
m⊕

i=1

n⊕
j=1

ωβi⊕β′
j ,

where γ1 ≥ · · · ≥ γm+n is a rearrangement of β1, . . . , βm, β′1, . . . , β
′
n. For α ∈

CNF(ωωω

), the decomposition α =
∑m

i=1 ωβi uses βi’s that are in CNF(ωω), i.e.,
of the form βi =

∑ki

j=1 ωpi,j (with each pi,j < ω) so that ωβi is
⊗ki

j=1 ωωpi,j . A
term ωωp

is called a principal multiplicative.
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We map exponential nwqo’s to ordinals in CNF(ωωω

) using their maximal
order type [12]. Formally o(A) is defined by

o(Γp) def= p , o(Γ∗0 ) def= ω0 , o(Γ∗p+1) def= ωωp

, (22)

o(A + B) def= o(A)⊕ o(B) , o(A×B) def= o(A) ⊗ o(B) . (23)

Conversely, there is a canonical exponential nwqo C(α) for each α in CNF(ωωω

):

C
(
ωβ1 + · · ·+ ωβm

)
= C
( m⊕

i=1

ki⊗
j=1

ωωpi,j
)

def=
m∑

i=1

ki∏
j=1

Γ∗(pi,j+1) . (24)

Then, o and C are bijective inverses (modulo isomorphism of nwqo’s), compatible
with sums and products. This correspondence equates between terms that, on
one side, denote partial orderings with norms, and on the other side, ordinals in
CNF(ωωω

).

Derivatives. We aim to replace the “all A/x for x ∈ A<n” by a computation of
“some derived α′ ∈ ∂nα” where α = o(A), see Thm. 4.1 below. For this purpose,
the definition of derivatives is based on the inductive rules in Prop. 3.6.

Let n > 0 be some norm. We start with principal ordinals and define

Dn

(
ωωp
)

def=

{
n− 1 if p = 0,
ω(ωp−1·(n−1)) · (n− 1) otherwise.

(25)

Dn

(
ωωp1+···+ωpk

)
def=

k⊕
j=1

⎛
⎝Dn

(
ωωpj
)
⊗
⊗
� �=j

ωωp�

⎞
⎠ . (26)

Now, with any α ∈ CNF(ωωω

), we associate the set of its derivatives ∂nα with

∂n

( m∑
i=1

ωβi

)
def=
{
Dn

(
ωβi
)⊕∑

� �=i

ωβ�

∣∣∣ i = 1, . . . ,m
}

. (27)

This yields, for example, and assuming p, k > 0:

Dn(1) = 0, Dn(ω) = n− 1, Dn

(
ωωp·k) = ω[ωp·(k−1)+ωp−1·(n−1)] · k(n− 1) , (28)

∂n0 = ∅, ∂n1 = {0}, ∂nω = {n− 1}, ∂n(ωβ · (k + 1)) = {ωβ · k ⊕Dn(ωβ)}. (29)

Thus ∂nα can be a singleton even when α is not principal, e.g., ∂n(p+ 1) = {p}.
We sometimes write α ∂n α′ instead of α′ ∈ ∂nα, seeing ∂n as a relation. Note
that ∂nα ⊆ CNF(α), hence ∂

def=
⋃

n<ω ∂n is well-founded.

Theorem 4.1 (Reflection by Derivatives). Let x ∈ A<n for some expo-
nential A. Then there exists α′ ∈ ∂no(A) s.t. A/x ↪→ C(α′).

Combining with equations (3) and (14), we obtain:

LC(α)(n) ≤ max
α′∈∂nα

{
1 + LC(α′)(g(n))

}
. (30)
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5 Classifying L Using Subrecursive Hierarchies

For α in CNF(ωωω

), define

Mα(n) def= max
α′∈∂nα

{1 + Mα′(g(n))} . (31)

(Recall that ∂ is well-founded, thus (31) is well-defined). Comparing with (30),
we see that Mα bounds the length function: Mα(n) ≥ LC(α)(n).

This defines an ordinal-indexed family of functions (Mα)α∈CNF(ωωω ) simi-
lar to some classical subrecursive hierarchies, with the added twist of the max
operation—see [2, 16] for somewhat similar hierarchies. This is a real issue and
one cannot replace a “maxα∈...{Mα(x)}” with “Msup{α∈...}(x)” since Mα is not
always bounded by Mα′ when α < α′. E.g., Mn+2(n) = n + 2 > Mω(n) = n + 1.

Subrecursive Hierarchies have been introduced as generators of classes of func-
tions. For instance, writing Fα for the class of functions elementary-recursive
in the function Fα of the fast growing hierarchy, we can characterize the set of
primitive-recursive functions as

⋃
k<ω Fk, or that of multiply-recursive functions

as
⋃

β<ωω Fβ [14].
Let us introduce (slight generalizations of) several classical hierarchies from

[14, 7]. Those hierarchies are defined through assignments of fundamental se-
quences (λx)x<ω for limit ordinals λ < ε0, verifying λx < λ for all x and
λ = supx λx. A standard assignment is defined by:

(γ + ωβ+1)x
def= γ + ωβ · (x + 1) , (γ + ωλ)x

def= γ + ωλx , (32)

where γ can be 0. Note that, in particular, ωx = x + 1. Given an assignment of
fundamental sequences, one can define the (x-indexed) predecessor Px(α) < α
of an ordinal α �= 0 as

Px(α + 1) def= α , Px(λ) def= Px(λx) . (33)

Given a fixed smooth control function h, the Hardy hierarchy (hα)α<ε0 is then
defined by

h0(x) def= x, hα+1(x) def= hα(h(x)), hλ(x) def= hλx(x) . (34)
A closely related hierarchy is the length hierarchy (hα)α<ε0 defined by

h0(x) def= 0, hα+1(x) def= 1 + hα(h(x)), hλ(x) def= hλx(x) . (35)
Last of all, the fast growing hierarchy (fα)α<ε0 is defined through

f0(x) def= h(x), fα+1(x) def= fωx
α (x), fλ

def= fλx(x) . (36)

Standard versions of these hierarchies are usually defined by setting h as the
successor function, in which case they are denoted Hα, Hα, and Fα resp.

Lemma 5.1. For all α ∈ CNF(ωωω

) and x ∈ N,

1. hα(x) = 1 + hPx(α)(h(x)) when α > 0,
2. hα(x) ≤ hα(x)− x,
3. hωα·r(x) = f r

α(x) for all r < ω,
4. if h is eventually bounded by Fγ , then fα is eventually bounded by Fγ+α.
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Bounding the Length Function. Item 1 of Lem. 5.1 shows that Mα and hα have
rather similar expressions, based on derivatives for Mα and predecessors for hα;
they are in fact closely related:

Proposition 5.2. For all α in CNF(ωωω

), there is a constant k s.t. for all
n > 0, Mα,g(n) ≤ hα(kn) where h(x) def= x · g(x).

Proposition 5.2 translates for n, p > 0 into an

LΓ∗
p ,g(n) ≤ hωωp−1 ((p− 1)n) for h(x) def= x · g(x) (37)

upper bound on bad (g, n)-controlled sequences in Γ∗p . We believe (37) answers a
wish expressed by Cichoń and Tahhan Bittar in their conclusion [7]: “an appro-
priate bound should be given by the function hωωp−1 , for some reasonable h.”

It remains to translate the bound of Prop. 5.2 into a more intuitive and readily
usable one. Combined with items 2–4 of Lem. 5.1, Prop. 5.2 allows us to state a
fairly general result in terms of the (Fα)α classes in the two most relevant cases
(of which both the Length Function Theorem given in the introduction and, if
γ ≥ 2, the Fγ+k bound given for Nk in [9], are consequences):

Theorem 5.3 (Main Theorem). Let g be a smooth control function eventually
bounded by a function in Fγ, and let A be an exponential nwqo with maximal
order type < ωβ+1. Then LA,g is bounded by a function in

– Fβ if γ < ω (e.g. if g is primitive-recursive) and β ≥ ω,
– Fγ+β if γ ≥ 2 and β < ω.

6 Refined Complexity Bounds for Verification Problems

This section provides two examples where our Main Theorem leads to precise
multiply-recursive complexity upper bounds for problems that were known to
be decidable but not primitive-recursive. Our choice of examples is guided by
our close familiarity with these problems (in fact, they have been our initial
motivation for looking at subrecursive hierarchies) and by their current role
as master problems for showing Ackermann complexity lower bounds in several
areas of verification. (A more explicit vademecum for potential users of the Main
Theorem can be found in [9].)

Lossy Channel Systems. The wqo associated with a lossy channel system S =
(Q,M,C,Δ) is the set AS

def= Q× (M∗)C of its configurations, ordered with em-
bedding (see details in [4]). Here Q is a set of q control locations, M is a size-m
message alphabet and C is a set of c channels. Hence, we obtain AS ≡ q · (Γ∗m)c.
For such lossy systems [17], reachability, safety and termination can be decided
by algorithms that only need to explore bad sequences over AS . In particular,
S has a non-terminating run from configuration sinit iff it has a run of length
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LAS (|sinit|), and the shortest run (if one exists) reaching sfinal from sinit has
length at most LAS (|sfinal|). Here the sequences (runs of S, forward or backward)
are controlled with g = Succ. Now, since o(AS) = ω(ωm−1·c) · q, Thm. 5.3 gives
an overall complexity at level Fω(m−1)·c, which is the most precise upper bound
so far for lossy channel systems.

Regarding lower bounds, the construction in [4] proves a FωK lower bound for
systems using m = K + 2 different symbols, c = 2 channels, and a quadratic q ∈
O(K2) number of states. If emptiness tests are allowed (an harmless extension
for lossy systems, see [17]) one can even get rid of the # separator symbol in that
construction (using more channels instead) and we end up with m = K + 1 and
c = 4. Thus the demonstrated upper and lower bounds are very close, and tight
when considering the recursivity-multiplicity level.

PEPreg, the Regular Post Embedding Problem, is an abstract problem that relaxes
Post’s Correspondence Problem by replacing the equality “ui1 . . . uin = vi1 . . . vin”
with embedding “ui1 . . . uin ≤Γ∗ vi1 . . . vin ” (all this under a “∃i1, . . . , in in some
regular R” quantification). It was introduced in [3] where decidability was shown
thanks to Higman’s Lemma. Non-trivial reductions between PEPreg and lossy
channel systems exist. Due to its abstract nature, PEPreg is a potentially in-
teresting master problem for proving hardness at multiply-recursive and hyper-
Ackermannian, i.e., Fωω , levels (see refs in [5]).

A pumping lemma was proven in [5], which relies on the LA function, and
from which we can now derive more precise complexity upper bounds. Precisely,
the proof of Lem. 7.3 in [5] shows that if a PEPreg instance admits a solution
σ = i1 . . . in longer than some bound H then that solution is not the short-
est. Here H is defined as 2 · L(Γ∗·n)(0) for a n that is at most exponential in
the size of the instance. Since the control function is linear, Thm. 5.3 yields an
Fωp−1 complexity upper bound for PEPreg on a p-letter alphabet (and a hyper-
Ackermannian Fωω when the alphabet is not fixed). This motivates a closer
consideration of lower bounds (left as future work, e.g., by adapting [4]).

7 Concluding Remarks

We proved a general version of the Main Theorem promised in the introduction.
Our proof relies on two main components: an algebraic framework for normed
wqo’s and normed reflections on the one hand, leading on the other hand to
descending relations between ordinals that can be captured in subrecursive hi-
erarchies. This setting accommodates all “exponential” wqo’s, i.e., finite combi-
nations of Γ∗p ’s. This lets us derive upper bounds for controlled bad sequences
when using Higman’s Lemma on finite alphabets.

We hope that our framework will extend smoothly beyond exponential wqo’s
and may also accept additional wqo constructions like powersets, multisets, and
perhaps trees.
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Abstract. Modern concurrent algorithms are usually encapsulated in libraries,
and complex algorithms are often constructed using libraries of simpler ones. We
present the first theorem that allows harnessing this structure to give composi-
tional liveness proofs to concurrent algorithms and their clients. We show that,
while proving a liveness property of a client using a concurrent library, we can
soundly replace the library by another one related to the original library by a gen-
eralisation of a well-known notion of linearizability. We apply this result to show
formally that lock-freedom, an often-used liveness property of non-blocking al-
gorithms, is compositional for linearizable libraries, and provide an example il-
lustrating our proof technique.

1 Introduction

Concurrent systems are usually expected to satisfy liveness properties [1], which, infor-
mally, guarantee that certain good events eventually happen. Reasoning about liveness
in modern concurrent programs is difficult. Fortunately, the task can be simplified using
reasoning methods that are able to exploit program structure. For example, concurrent
algorithms are usually encapsulated in libraries and complex algorithms are often con-
structed using libraries of simpler ones. Thus, in reasoning about liveness of client code
of a concurrent library, we would like to abstract from the details of a particular library
implementation. This requires a notion of library abstraction that is able to specify the
relevant liveness properties of the library.

Sound abstractions of concurrent libraries are commonly formalised by the notion
of linearizability [11], which fixes a certain correspondence between the library and its
abstract specification (the latter usually sequential, with its methods implemented atom-
ically). However, linearizability is not suitable for liveness. It takes into account finite
computations only and does not restrict the termination behaviour of library methods
when relating them to methods of an abstract specification. As a result, the linearizing
specification loses most of the liveness properties of the library. For example, no lin-
earizing specifications can specify that library methods always terminate or a method
meant to acquire a resource may not always return a value signifying that the resource
is busy. In this paper we propose a generalisation of linearizability that lifts the above
limitations and allows specifying such properties (§3).

Building on our generalized notion of linearizability, we present a theorem that al-
lows giving liveness proofs to concurrent algorithms that are compositional in their
structure (Theorem 4, §4). Namely, we show that, while proving a liveness property of
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a client of a concurrent library, we can soundly replace the library by a simpler one
related to the original library by our generalisation of linearizability. To our knowledge,
this is the first result, both for safety and liveness, that allows exploiting linearizability
in verifying concurrent programs. In particular, it enables liveness-preserving atomicity
abstraction. When proving a liveness property of a client using a concurrent library, we
can replace the library by its atomic abstract specification, and prove the liveness of the
client with respect to this specification instead.

We further show that we can use existing tools for proving classical linearizabil-
ity (e.g., [16,2]) to establish our generalisation. To this end, we identify a class of
linearization-closed properties that, when satisfied by a library, are also satisfied by any
other library linearizing it. This allows us to perform atomicity abstraction in two stages.
We first use existing tools to establish the linearizability of a library to a coarse specifi-
cation, sufficient only for proving safety properties of a client. We can then strengthen
the specification for free with any linearization-closed liveness properties proved of the
library implementation (Corollary 7, §5).

Finally, we demonstrate how our results can be used to give compositional proofs of
lock-freedom, a liveness property often required of modern concurrent algorithms. In
particular, we show that lock-freedom is a compositional property for linearizable li-
braries (Theorem 9, §6): when proving it of an algorithm using a linearizable lock-free
library, we can replace library methods by their atomic always-terminating specifica-
tions. Our formalisation also highlights a (perhaps surprising) fact that compositionality
does not hold for a variant of lock-freedom that assumes fair scheduling. We demon-
strate the resulting proof technique on a non-blocking stack by Hendler et al. [9] (§7).

For space reasons, proofs are omitted in the paper. They can be found in [7].

2 Preliminaries

Programming language. We consider a simple language for heap-manipulating con-
current programs, where a program consists of a library implementing several methods
and its client, given by a parallel composition of threads. Let Var be a set of variables,
ranged over by x, y, . . ., and Method a set of method names, ranged over by m. For
simplicity, all methods take one argument. The syntax of the language is given below:

E ::= Z | x | E + E | −E | . . . C ::= c | m(E) | C;C | C + C | C�

D ::= C; return(E) (where C does not include method calls m(E))
A ::= {m = D, . . . ,m = D}
C(A) ::= let A in C ‖ . . . ‖C (where all the methods called are defined in A)

The language includes primitive commands c, method call m(E), sequential compo-
sition C;C′, nondeterministic choice C+C′, and iteration C�. We use a notation C�

here (instead of the usual Kleene star C∗), so as to emphasise that C� describes not
just finite, but also infinite iterations of C. Both primitive commands and method calls
m(E) are assumed atomic. The primitive commands form the set PComm, and they in-
clude standard instructions, such as skip, variable assignment x=E, the update [E]=E′
of the heap cell E by E′, the read x=[E] of the heap cell E into the variable x, and the
assume statement assume(E), filtering out states making E=0. We point out that the
standard constructs, such as loops and conditionals, can be defined in our language as
syntactic sugar, with conditions translated using assume (see also [7, §A]).
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Let us fix a program C(A) = let A in C1 ‖ . . . ‖ Cn with the library definition
A = {m = Dm | m ∈ M}. We let the signature of the library A be the set of the
implemented methods: sig(A) = M . In the following we index threads in programs
using the set of identifiers ThreadID = N.

We restrict programs to ensure that the state of the client is disjoint from that
of the library, and that this state separation is respected by client operations and li-
brary routines. We note that this restriction is assumed by the standard notion of lin-
earizability [11]; we intend to relax it in our future work. Technically, we assume
PComm = ClientPComm � LibPComm for some sets ClientPComm and LibPComm
and require that all primitive commands in the client be from ClientPComm and those
in the library from LibPComm. As formalised below, the commands in ClientPComm
and LibPComm can access only variables and heap locations belonging to the client
and the library, respectively.

We also assume special variables retvalt ∈ Var for each thread t and param ∈ Var.
The variable retvalt contains the result of the most recent method call by thread t and is
implicitly updated by the return command. No commands in the program are allowed to
modify retvalt explicitly, and the variable can only be read by Ct. The variable param
keeps the values of parameters passed upon method calls and is implicitly updated by
the call command. We assume that the variables occurring in the expression E of a call
command m(E) are accessed only by the thread executing the command.

State model. Let CLoc and LLoc be disjoint sets representing heap locations that belong
to the address spaces of the client and the library, respectively. We also assume Var =
CVar�LVar for some sets CVar and LVar representing variables that belong to the client
and the library, respectively. Let param ∈ LVar and retvalt ∈ CVar, t = 1..n. We then
define the set of program states State as follows:

Loc = CLoc � LLoc Val = Z � Loc
Stack = Var→ Val Heap = Loc→ Val State = Stack× Heap

A state in this model consists of a stack and a heap, both of which are total maps from
variables or locations to values. Every location or variable is owned either by the library
or by the client. We make this ownership explicit by defining two sets, CState for client
states and LState for library states: CState = (CVar → Val) × (CLoc → Val) and
LState = (LVar → Val) × (LLoc → Val). Also, we define three operations relating
these sets to State: client : State → CState, lib : State → LState and ◦ : CState ×
LState → State. The first two project states to client and library states by restricting
the domains of the stack and the heap: e.g., for (s, h) ∈ State we have lib(s, h) =
(s|LVar, h|LLoc). The ◦ operator combines client and library states into program states:
(s1, h1) ◦ (s2, h2) = (s1 � s2, h1 � h2). We lift ◦ to sets of states pointwise.

Control-flow graphs. In the definition of program semantics, it is technically conve-
nient for us to abstract from a particular syntax of programming language and repre-
sent commands by their control-flow graphs. A control-flow graph (CFG) is a tuple
(N,T, start, end), consisting of the set of program positions N , the control-flow rela-
tion T ⊆ N ×Comm×N , and the initial and final positions start, end ∈ N . The edges
are annotated with commands from Comm, which are primitive commands, calls m(E)
or returns return(E). Every command C in our language can be translated to a CFG in
a standard manner [7, §A]. Hence, we can represent a program C(A) by a collection of
CFGs: the client command Ct for a thread t is represented by (Nt, Tt, startt, endt), and
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the body Dm of a method m by (Nm, Tm, startm, endm). We often view this collection
of CFGs for C(A) as a single graph consisting of two node sets CNode =

⊎n
t=1 Nt and

LNode =
⊎

m∈sig(A) Nm, and the edge set T =
⊎n

t=1 Tt �
⊎

m∈sig(A) Tm. Finally, we
define method : LNode→M as follows: method(v) = m if and only if v ∈ Nm.

Program semantics. Programs in our semantics denote sets of traces, which are finite
or infinite sequences of actions of the form

ϕ ∈ Act ::= (t,Client(c)) | (t, Lib(c)) | (t, call m(k)) | (t, ret m(k))
where t ∈ ThreadID, c ∈ PComm, k ∈ Val and m ∈ Method. Each action corre-
sponds to a primitive command c executed by the client or the library (in which case
we tag c with Client or Lib), a call to or a return from the library. We denote the sets of
each kind of actions with ClientAct, LibAct, CallAct and RetAct, respectively, and let
CallRetAct = CallAct∪RetAct. Also, we write Trace for the set of all traces and adopt
the standard notation: ε is the empty trace, τ(i) is the i-th action in the trace τ , and |τ |
is the length of the trace τ (|τ | = ω if τ is infinite).

Our semantics assumes an interpretation of every primitive command c as a trans-
former fc of type LState → P(LState), if c ∈ LibPComm, or of type CState →
P(CState), if c ∈ ClientPComm. In both cases, we lift it to a function fc : State →
P(State) by transforming only the client or the library part of the input state:

∀θ ∈ State. fc(θ) def=
{{client(θ)} ◦ fc(lib(θ)), if c ∈ LibPComm;
fc(client(θ)) ◦ {lib(θ)}, if c ∈ ClientPComm.

For the transformers of sample primitive commands see [7, §A].
Let the set of thread positions be defined as follows: Pos = CNode∪(Val×CNode×

LNode). Elements in Pos describe the runtime status of a thread. A node v ∈ CNode
indicates that the thread is about to execute the client code coming right after the node
v in its CFG. A triple 〈u, v, v′〉 means that the thread is at the program point v′ in the
code of a library method, u is the current value of the param variable for this method
and v the return program point in the client code.

The semantics of the program C(A) with threads {1, . . . , n} is defined using a tran-
sition relation −→C(A): Config × Act× Config, which transforms program configura-
tions Config = ({1, . . . , n} → Pos) × State. The configurations are pairs of program
counters and states, where a program counter defines the position of each thread in the
program. The relation is defined by the rules in Figure 1. Note that, upon a method call,
the actual parameter and the return point are saved as components in the new program
position, and the method starts executing from the corresponding starting node of its
CFG. The saved actual parameter is accessed whenever the library code reads the vari-
able param, as modelled in the third rule for the library action. Upon a return, the return
point is read from the current program counter, and the return value is written into the
retvalt variable for the thread t executing the return command.

Our operational semantics induces a trace interpretation of programs C(A). For a
finite trace τ and σ, σ′ ∈ Config we write σ

τ−→ ∗
C(A)σ

′ if there exists a corresponding
derivation of τ using −→. Similarly, for an infinite trace τ and σ ∈ Config we write
σ

τ−→ ω
C(A)− to mean the existence of infinite τ -labelled computation from σ according

to our semantics. Let us denote with pc0 the initial program counter [1 : start1, . . . , n :
startn]. The trace semantics of C(A) is defined as follows:

�C(A)� = {τ | ∃θ ∈ State. (pc0, θ) τ−→ ω
C(A)− ∨ ∃σ ∈ Config. (pc0, θ) τ−→ ∗

C(A)σ}.
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(v, c, v′) ∈ T θ′ ∈ fc(θ)

pc[t : v], θ
(t, Client(c))−−−−−−−→C(A) pc[t : v′], θ′

(v, m(E), v′) ∈ T �E�s = u

pc[t : v], θ
(t, call m(u))−−−−−−−−→C(A) pc[t : 〈u, v′, startm〉], θ

(v, c, v′) ∈ T (s′, h′) ∈ fc(s[param : u], h)

pc[t : 〈u, v0, v〉], (s, h)
(t, Lib(c))−−−−−−→C(A) pc[t : 〈s′(param), v0, v

′〉], (s′, h′)

(v, return(E), v′) ∈ T �E�(s[param : u]) = u′

pc[t : 〈u, v0, v〉], (s, h)
(t, ret (method(v))(u′))−−−−−−−−−−−−−−→C(A) pc[t : v0], (s[retvalt : u′], h)

Fig. 1. Operational semantics of programs. �E�s ∈ Val is the value of the expression E in the
stack s. We denote with g[x : y] the function that has the same value as g everywhere except x,
where it has the value y. We remind the reader that T is the control-flow relation of C(A).

Note that �C(A)� includes all finite or infinite traces (including non-maximal ones).

Client and library traces. In this paper we consider two special kinds of traces: client
traces, which include only actions from CallRetAct ∪ ClientAct, and library traces,
which include only actions from CallRetAct∪LibAct. Given a trace τ ∈ Trace, we can
obtain the corresponding client client(τ) and library lib(τ) traces by projecting τ to the
appropriate subsets of actions. We consider two further projections: visible(τ) projects
τ to actions in ClientAct, and τ |t to actions of thread t. We let CTrace be the set of all
client traces and LTrace the set of all library traces.

Histories. We record interactions between the client and the library using histories,
which are sequences of actions from CallRetAct ∪ BlockAct, where BlockAct =
{(t, starve) | t ∈ ThreadID}. An action (t, starve) means that thread t is suspended
by the scheduler and is never scheduled again (is ‘starved’). We record starve events
because the liveness properties we are dealing with in this paper, such as lock-freedom
(§6), need to distinguish between method non-termination due to divergence and the
one due to being starved by the scheduler. Let History be the set of all histories.

Given a trace τ ∈ Trace, we can construct a corresponding history history(τ) in
two steps. First, for every thread t, if the last action of the thread in τ exists and is an
action in CallAct ∪ LibAct, we insert (t, starve) right after this action in τ , obtaining
a sequence of actions τ ′. The history history(τ) is then obtained by projecting τ ′ to
actions in CallRetAct ∪ BlockAct.

3 Concurrent Library Semantics and Linearizability

The correctness of concurrent libraries is usually defined using the notion of lineariz-
ability [11], which fixes a particular correspondence between the implementation and
the specification of a library. We now define an analogue of this notion in our setting.

Definition 1. The linearizability relation is a binary relation . on histories defined
as follows: H . H ′ if ∀t ∈ ThreadID. H |t = H ′|t and there is a bijection
π : {1, . . . , |H |}→{1, . . . , |H ′|} such that ∀i.H(i) = H ′(π(i)) and

∀i, j. (i < j ∧H(i) ∈ RetAct ∧H(j) ∈ CallAct)⇒ π(i) < π(j).

That is, the history H ′ linearizes the history H when it is a permutation of the latter
preserving the order of actions within threads and non-overlapping method invocations.
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The duration of a method invocation is defined by the interval from the method call
action to the corresponding return action (or to infinity if there is none). Our definition
allows H and H ′ to be infinite, in contrast to the standard notion of linearizability which
considers only finite histories (we provide a more detailed comparison below).

To check if one library linearizes another, we need to define the set of histories a li-
brary can generate. We do this using the most general client of the library. As we show
in [7, §B, Decomposition Lemma], the client we define here is indeed most general in
the sense that its semantics includes all library behaviours generated by any other client
in our programming language. Formally, consider a library A = {m = Dm | m ∈M}.
For a given n, the most general client MGCn(A) is the combination of CFGs for the li-
brary A and those for the client with n threads that repeatedly invoke library methods in
any order and with all possible parameters: the CFG for thread t is (Nt, Tt, v

t
mgc, v

t
mgc)

with Nt = {vt
mgc} and Tt = {(vt

mgc,m(u), vt
mgc) | m ∈ sig(A), u ∈ Val}. One can

understand MGCn(A) as “let A in C1
mgc ‖ . . . ‖ Cn

mgc” where Ct
mgc repeatedly makes

all possible method calls. Let Nmgc =
⊎n

t=1 Nt.
We define the denotation of MGCn(A) in a library-local semantics, where the

program executes only on the library part of state. Namely, we consider a rela-
tion −→MGCn(A): LConfig × Act × LConfig transforming configurations LConfig =
({1, . . . , n} → LPos) × LState, where LPos = Nmgc ∪ (Val × Nmgc × LNode). The
relation is defined as in Figure 1, but with the rule for return commands replaced by the
one that does not write the return value into retvalt (since this variable is not part of
library states in LState):

(v, return(E), v′) ∈ T �E�(s[param : u]) = u′

pc[t : 〈u, v0, v〉], (s, h)
(t, ret (method(v))(u′))−−−−−−−−−−−−−−→MGCn(A) pc[t : v0], (s, h)

Let �MGCn(A)�lib ⊆ LTrace be the set of all traces generated by the program
MGCn(A) in this semantics from any initial state in LState. We then define the set of all
possible behaviours of the library A as the set of its traces �A� =

⋃
n≥1�MGCn(A)�lib.

This lets us lift the notion of linearizability to libraries as follows.

Definition 2. For libraries A1 and A2 with sig(A1) = sig(A2) we say that A2 lin-
earizes A1, written A1.A2, if ∀H1 ∈ history(�A1�). ∃H2 ∈ history(�A2�). H1.H2.

Thus, A2 linearizes A1 if every behaviour of the latter under the most general client
may be reproduced in a linearized form by the former.

It is instructive to compare our definition of linearizability with the classical
one [11]. The original definition of linearizability between an implementation A1 of a
concurrent library and its specification A2 considers only finite histories without starve
actions. It assumes that the specification A2 is sequential, meaning that every method
in it is implemented by an atomic terminating command. To deal with non-terminating
method calls in A1 when comparing the sets of histories generated by the two libraries,
the original definition completes the histories of A1 before the comparison: for every
call action in the history without a corresponding return action, either the action is
discarded or a corresponding return action with an arbitrary return value is added in the
history. Such an arbitrary completion of pending calls does not allow making any state-
ments about the termination behaviour of the library in its specification. Furthermore,
the fact that the definition considers only finite histories makes it impossible to specify
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trace-based liveness properties satisfied by the library, e.g., that a method meant to
acquire a resource may not always return a value signifying that the resource is busy.

Our definition lifts these limitations in a bid to enable compositional reasoning about
liveness properties of concurrent libraries. Definitions 1 and 2 take into account infinite
computations and do not require the specification A2 to be sequential. Thus, they allow
method calls in A2 to diverge and the execution of such methods to overlap with the
executions of others. Our definitions require any method divergence in the implemen-
tation to be reproducible in the specification. As we show in §5, by restricting the set
of histories of the specification with fairness constraints, we can specify trace-based
liveness properties. As we discuss in §8, our definition is more flexible than previous
attempts at generalising linearizability to deal with method non-termination.

The classical notion of linearizability can also be expressed in our setting. We use
this in §5 to harness existing linearizability checkers in reasoning about liveness prop-
erties. The linearizability of concurrent libraries according to the classical definition
can be established using several logics and tools, e.g., based on separation logic [16,15]
or TVLA [2]. These logics and tools reduce showing linearizability to proving an in-
variant relating the states of the implementation and the sequential specification. They
establish the validity of the invariant both on finite and infinite computations. Hence, it
can be shown that they also establish linearizability in the sense of Definition 1. More
precisely, assume a specification of the effect of every method m in a library A1 given
as a command cm; return(Em) for some cm ∈ PComm. Then the tools in [16,15,2] es-
tablish A1 . A2, where A2 = {m = (skip�; cm; skip�; return(Em)) | m ∈ sig(A1)}.
It is easy to show that this linearizability relation, when restricted to finite histories, is
equivalent to the classical notion of linearizability [11].

Since the classical notion of linearizability does not specify the termination be-
haviour of the library, methods in the library A2 above may diverge. The divergence
can happen either before the method makes a change to the library state using cm or
after, as modelled by the two skip� statements. In fact, both of these cases are exhibited
by practical concurrent algorithms. For example, the classical Treiber’s stack [14] and
its variations [9] do not modify the state in the case of divergence, but Harris’s non-
blocking linked list [8] does. History completion in the classical definition of lineariz-
ability corresponds to divergence at one of the skip� statements in our formalisation:
discarding a pending call models the divergence at the first one, and completing a pend-
ing call with an arbitrary return the divergence at the second. We are able to express the
classical notion of linearizability in a uniform way because the specification A2 above
is not sequential. Namely, we allow non-terminating method invocations to overlap with
others in the specification and, hence, do not need to complete them.

4 Atomicity Abstraction

We now show how our notion of linearizability can be used to abstract an implemen-
tation of a library while reasoning about liveness properties of its client. Namely, we
prove that replacing a library used by a client with its linearization leaves all the original
client behaviours reproducible modulo the following notion of trace equivalence:

Definition 3. Client traces τ, τ ′ ∈ CTrace are equivalent, written τ ∼ τ ′, if ∀t ∈
ThreadID. τ |t = τ ′|t and there exists a bijection π : {1, . . . , |τ |} → {1, . . . , |τ ′|} such
that ∀i. τ(i) = τ ′(π(i)) and
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∀i, j. (i < j ∧ τ(i), τ(j) ∈ ClientAct)⇒ π(i) < π(j)

Two traces are equivalent if they are permutations of each other preserving the order
of actions within threads and all client actions. Note that visible(τ) = visible(τ ′) when
τ ∼ τ ′. Hence, trace equivalence preserves any linear-time temporal property over trace
projections to client actions. The following theorem states the desired abstraction result.

Theorem 4 (Abstraction). Consider C(A1) and C(A2) such that A1 . A2. Then

∀τ1 ∈ �C(A1)�. ∃τ2 ∈ �C(A2)�. client(τ1) ∼ client(τ2) ∧ history(τ1) . history(τ2).

Corollary 5. If A1 . A2, then visible(�C(A1)�) ⊆ visible(�C(A2)�).

According to Corollary 5, while reasoning about a client C(A1) of a library A1, we
can soundly replace A1 with a simpler library A2 linearizing A1: if a linear-time live-
ness property over client actions holds over C(A2), it will also hold over C(A1). In
practice, we are usually interested in atomicity abstraction (see, e.g., [12]), a special
case of the above transformation when methods in A2 are implemented using atomic
commands. In §6 we apply this technique to proving liveness properties of modern
concurrent algorithms. Before this, however, we need to explain how to establish the
required linearizability relation A1 . A2. This is the subject of the next section.

5 Linearization-Closed Properties

As we explained in §3, existing tools can only prove linearizability relations A1 . A2

such that A2 has the form {m = (skip�; cm; skip�; return(Em)) | m ∈ sig(A1)} for
some atomic commands cm and expressions Em. The specification A2 of the library
A1 is too coarse to prove a non-trivial liveness property of a client, as it allows methods
to diverge and does not permit specifying liveness properties. If the library A1 satisfies
some liveness property (e.g., its method invocations not starved by the scheduler always
terminate), we would like to carry it over to A2 to use in the proof of the client. This is,
in fact, possible for a certain class of properties.

Definition 6. A property P ⊆ History over histories is linearization-closed if
∀H,H ′. (H ∈ P ∧H . H ′)⇒ H ′ ∈ P .

Intuitively, linearization-closed properties should be formulated in terms of pairs of
call and return actions and not in terms of individual actions, as the latter can be re-
arranged during linearization. For example, the property “methods that are not starved
by the scheduler always terminate” is linearization-closed. In contrast, the property “a
(t, ret m(0)) action is always followed by a (t′, ret m(1)) action” is not.

Corollary 7. Let P ⊆ History be linearization-closed, A1 . A2, and history(�A1�) ⊆
P . Then visible(�C(A1)�) ⊆ visible(�C(A2)� ∩ {τ | history(τ) ∈ P}).

This corollary of Theorem 4, improving on Corollary 5, allows us to perform atomicity
abstraction in two stages. We start with the coarse refinement A1 . A2 established
by tools for classical linearizability. If a liveness property P over histories holds of
the implementation A1 and is linearization-closed, the trace set of the specification A2

can be shrunk by removing those violating P . To convert C(A2) into a program with the
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trace set �C(A2)� ∩ {τ | history(τ) ∈ P} we can use standard automata-theoretic
techniques from model checking: we represent P by an automaton and construct a
synchronous product of C(A2) and the automaton. See [17,4,6] for more details.

6 Compositional Liveness Proofs for Concurrent Algorithms

Lock-freedom. We now illustrate how Corollary 7 can be used to perform composi-
tional proofs of liveness properties of non-blocking concurrent algorithms [10]. These
complicated algorithms employ synchronisation techniques alternative to the usual
lock-based mutual exclusion and typically provide high-performance concurrent im-
plementations of data structures, such as stacks, queues, linked lists and hash tables
(see, for example, the java.util.concurrent library).

Out of all properties used to formulate progress guarantees for such algorithms, we
concentrate on lock-freedom, as the one most often used and most difficult to prove.
Informally, an algorithm implementing operations on a concurrent data structure is con-
sidered lock-free if from any point in a program’s execution, some thread is guaranteed
to complete its operation. Thus, lock-freedom ensures the absence of livelock, but not
starvation. The formal definition is as follows.

Definition 8. A library A is lock-free if for any t ∈ ThreadID, the set of its histories
history(�A�) satisfies LF = ��( , ret ) ∨ �((t, call )⇒ �((t, starve) ∨ (t, ret ))).

Here we use linear temporal logic (LTL) over histories, with predicates over actions
as atomic propositions; � and � are the standard operators “always” and “eventually”
and stands for an irrelevant existentially quantified value. The property formalises
the informal condition that some operation always complete by requiring that either
some operation return infinitely often (for the case when the client calls infinitely many
operations), or every operation that has not been starved by the scheduler return (for the
case when the client calls only finitely many operations).

Note that the semantics of §2 allows for unfair schedulers that starve some threads.
A crucial requirement in the definition of lock-freedom is that the property has to be
satisfied under such schedulers: the threads that do get scheduled have to make progress
even if others are starved. In Definition 8 we formalise it using starve actions.

Example. Consider the algorithm in Figure 2, ignoring the elim function and calls to
it for now. For readability, the example is presented in C, rather than in our minimalis-
tic language. It is a simple non-blocking implementation of a concurrent stack due to
Treiber [14]. A client using the implementation can call several push or pop operations
concurrently. To ensure the correctness of the algorithm, we assume that pop does not
reclaim the memory taken by the deleted node [10]. The stack is stored as a linked list,
and is updated by compare-and-swap (CAS) instructions. CAS takes three arguments:
a memory address addr, an expected value v1, and a new value v2. It atomically reads
the memory address and updates it with the new value when the address contains the
expected value; otherwise, it does nothing. In C syntax this might be written as follows:

atomic { if (*addr==v1) {*addr=v2; return 1;} else {return 0;} }

In most architectures an efficient CAS (or an equivalent operation) is provided natively
by the processor. The operations on the stack are implemented as follows. The function
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struct Node {
value_t data;
Node *next;

};
Node *S;
int collision[SIZE];

void init() { S = NULL; }
void push(value_t v) {
Node *t, *x;
x = new Node();
x->data = v;
while (1) {
t = S; x->next = t;
if (CAS(&S,t,x)) return;
elim(); } }

void elim() { // Elimination scheme
// ...
int pos = GetPos(); // 0 ≤ pos ≤ SIZE-1
int hisId = collision[pos];
while (!CAS(&collision[pos],hisId,MYID))
hisId = collision[pos];

// ...
}
value_t pop() {
Node *t, *x;
while (1) {
t = S;
if (t == NULL) return EMPTY;
x = t->next;
if (CAS(&S,t,x)) return t->data;
elim(); } }

Fig. 2. A non-blocking stack implementation

init initialises the data structure. The push operation (i) allocates a new node x; (ii)
reads the current value of the top-of-the-stack pointer S; (iii) makes the next field of
the newly created node point to the read value of S; and (iv) atomically updates the
top-of-the-stack pointer with the new value x. If the pointer has changed between (ii)
and (iv) and has not been restored to its initial value, the CAS fails and the operation is
restarted. The pop operation is implemented in a similar way.

Note that a push or pop operation of Treiber’s stack may diverge if other threads are
continually modifying S: in this case the CAS instruction may always fail, which will
cause the operation to restart continually. However, the algorithm is lock-free: if push
and pop execute concurrently, some operation will always terminate.

Lock-freedom of some algorithms, including Treiber’s stack, can be proved automat-
ically [6].

Compositionality of lock-freedom. It is easy to check that the property LF in Defi-
nition 8 is linearization-closed. Thus, if A is a lock-free library and is linearized by a
specification {m = (skip�; cm; skip�; return(Em)) | m ∈ sig(A)}, proving a liveness
property of a client of A can be simplified if we replace A by the specification and
consider only traces τ of the client such that history(τ) satisfies LF. As we now show,
in the case when the client is itself a concurrent algorithm being proved lock-free, we
can strengthen this result: we can assume a specification of A where every method ter-
minates in all cases. We thus prove that lock-freedom is a compositional property of
linearizable libraries.

To simplify presentation, we have not considered nested libraries, which makes the
direct formulation of this result impossible. Instead, we rely on the reduction in [6],
which says that an algorithm is lock-free if and only if any number of its operations
running in parallel do not have infinite traces, i.e., terminate if not starved. Thus, it
suffices to prove the result for the termination of the client.

Theorem 9. Let M be a set of method names. Consider libraries

A1 = {m = Dm | m ∈M}, A2 = {m = (cm; return(Em)) | m ∈M},
A3 = {m = (skip�; cm; skip�; return(Em)) | m ∈M},
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where cm are atomic commands, A1 is lock-free, and A1 . A3. If �C(A2)� does not
have infinite traces, then neither does �C(A1)�.

Given the above reduction, the theorem implies that a concurrent algorithm using A1 is
lock-free if it is lock-free when it uses A2 instead.

We note that some concurrent algorithms rely on locks, while satisfying lock-
freedom under the assumption that the scheduler is fair [10]. Perhaps surprisingly, The-
orem 9 does not hold in this case: lock-freedom under fair scheduling is not a com-
positional property. The intuitive reason is as follows: we can replace A3 with A2 in
Theorem 9 because the effect of operations of A3 diverging at one of the skip� state-
ments is already covered by the possible unfairness of the scheduler. This reasoning
becomes invalid once the scheduler is fair. We provide a counterexample in [7, §C].

7 Example

Theorem 9 allows giving proofs of lock-freedom to non-blocking concurrent algorithms
that are compositional in the structure of the algorithms, as we now illustrate. As an ex-
ample, we consider an improvement of Treiber’s stack proposed by Hendler, Shavit,
and Yerushalmi (HSY), which performs better in the case of higher contention among
threads [9]. Figure 2 shows an adapted and abridged version of the algorithm. The
implementation combines Treiber’s stack with a so-called elimination scheme, imple-
mented by the function elim (partially elided). A push or a pop operation first tries
to modify the stack as in Treiber’s algorithm, by doing a CAS to change the shared
top-of-the-stack pointer. If the CAS succeeds, the operation terminates. If the CAS fails
(because of interference from another thread), the operation backs off to the elimination
scheme. If this scheme fails, the whole operation is restarted.

The elimination scheme works on data structures that are separate from the list im-
plementing the stack and, hence, can be considered as a library used by the HSY stack
with the only method elim. The idea behind the scheme is that two contending push
and pop operations can eliminate each other without modifying the stack if pop returns
the value that push is trying to insert. An operation determines the existence of another
operation it could eliminate itself with by selecting a random slot pos in the collision
array, and atomically reading that slot and overwriting it with its thread identifier MYID.
The algorithm implements the atomic read-and-write operation on the collision ar-
ray in a lock-free fashion using CAS. The identifier of another thread read from the
array can be subsequently used to perform elimination. The corresponding code does
not affect the lock-freedom of the algorithm and is elided in Figure 2.

According to Theorem 9, to prove the lock-freedom of the HSY stack, it is sufficient
to prove (i) the lock-freedom of the push and pop with a call to elim replaced by its
atomic always-terminating specification; and (ii) the lock-freedom and linearizability
of the elim method. The former is virtually identical to the proof of lock-freedom of
Treiber’s stack, since elim acts on data structures disjoint from those of the stack.
Informally, this proof is done as follows (see [6] for a detailed formal proof). It is
sufficient to check the termination of the program consisting of a parallel composition
of an arbitrary number of threads each executing one push or pop operation. For such
a program, we have two facts. First, no thread executes a successful CAS in push or pop
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infinitely often. This is because once the CAS succeeds, the corresponding while-loop
terminates. Second, the while-loop in an operation terminates if no other thread executes
a successful CAS in push or pop infinitely often. This is because the operation does not
terminate only when its CAS always fails, which requires the other threads to execute
the CASes infinitely often. From these two facts, the termination of each thread follows.

The lock-freedom of the elim method can be proved in the same way and its lin-
earizability can be proved using existing methods [15,16]. This completes the proof of
lock-freedom of the HSY stack. We have thus decomposed the proof of a complicated
non-blocking algorithm with two nested loops into proofs of two simple algorithms.

8 Related Work

Filipović et al. [5] have previously characterised linearizability in terms of observa-
tional refinement (technically, their result is similar to our Rearrangement Lemma in [7,
§B]). They did not consider infinite computations and treated non-terminating methods
approximately; thus, they could not handle liveness properties. Besides, the work of
Filipović et al. did not justify any compositional proof methods, as we have done in
Theorem 4.

Petrank et al. [13] were the first to observe that lock-freedom is compositional, as
we prove in Theorem 9. However, their formulation and ‘proof’ of this property are
presented as a piece of informal text talking about artefacts without a clear semantics.
As a consequence, their compositionality theorem misses an important requirement that
library methods be linearizable.

Burckhardt et al. [3] have attempted to generalise linearizability on finite histories
to the case of non-terminating method calls. However, their definition is too restrictive,
as it requires any non-termination in the library implementation to be reproducible in
the sequential specification of the library. This requirement is not satisfied on infinite
traces by common lock-free algorithms, where some methods may diverge while others
make progress. Additionally, their definition considers any library where methods may
modify the library state before diverging (e.g., [8]) as non-linearizable. We provide a
more flexible definition.

Atomicity refinement is a well-known method for formal development of concurrent
programs [12], which allows refining an atomic specification to a concurrent implemen-
tation. As atomicity refinement and abstractions are duals of each other, our results can
also be used in the context of formal program development.
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Abstract. Herman’s algorithm is a synchronous randomized protocol
for achieving self-stabilization in a token ring consisting of N processes.
The interaction of tokens makes the dynamics of the protocol very diffi-
cult to analyze. In this paper we study the expected time to stabilization
in terms of the initial configuration.

It is straightforward that the algorithm achieves stabilization almost
surely from any initial configuration, and it is known that the worst-case
expected time to stabilization (with respect to the initial configuration)
is Θ(N2). Our first contribution is to give an upper bound of 0.64N2

on the expected stabilization time, improving on previous upper bounds
and reducing the gap with the best existing lower bound. We also intro-
duce an asynchronous version of the protocol, showing a similar O(N2)
convergence bound in this case.

Assuming that errors arise from the corruption of some number k of
bits, where k is fixed independently of the size of the ring, we show that
the expected time to stabilization is O(N). This reveals a hitherto un-
known and highly desirable property of Herman’s algorithm: it recovers
quickly from bounded errors. We also show that if the initial configura-
tion arises by resetting each bit independently and uniformly at random,
then stabilization is significantly faster than in the worst case.

1 Introduction

Self-stabilization is a concept of fault-tolerance in distributed computing. A sys-
tem is self-stabilizing if, starting in an arbitrary state, it reaches a correct or le-
gitimate state and remains in a legitimate state thereafter. Thus a self-stabilizing
system is able to recover from transient errors such as state-corrupting faults.
The study of self-stabilizing algorithms originated in an influential paper of
Dijkstra [4]. By now there is a considerable body of work in the area, see [18,5].

In this paper we consider self-stabilization in a classical context that was also
treated in Dijkstra’s original paper—a token ring, i.e., a ring of N identical
processes, exactly one of which is meant to hold a token at any given time. If,
through some error, the ring enters a configuration with multiple tokens, self-
stabilization requires that the system be guaranteed to reach a configuration with
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only one token. In particular, we are interested in analyzing a self-stabilization
algorithm proposed by Herman [11].

Herman’s algorithm is a randomized procedure by which a ring of processes
connected uni-directionally can achieve self-stabilization almost surely. The algo-
rithm works by having each process synchronously execute the following action
at each time step: if the process possesses a token then it passes the token to
its clockwise neighbor with probability 1/2 and keeps the token with probabil-
ity 1/2. If such a process decides to keep its token and if it receives a token
from its neighbor then the two tokens are annihilated. Due to the way the al-
gorithm is implemented we can assume that an error state always has an odd
number of tokens, thus this process of pairwise annihilation eventually leads to
a configuration with a single token.

While the almost-sure termination of Herman’s algorithm is straightforward,
computing the time to termination is a challenging problem. This is characteris-
tic of systems of interacting particles under random motion, which are ubiquitous
in the physical and medical sciences, including statistical mechanics, neural net-
works and epidemiology [15]. The analysis of such systems typically requires
delicate combinatorial arguments [6]. Our case is no exception, and we heavily
exploit work of Balding [1], which was motivated by a scenario from physical
chemistry.

Given some initial configuration, let T be the time until the token ring sta-
bilizes under Herman’s algorithm. We analyze the expectation of T in three
natural cases: the worst case (over all initial configurations); the case in which
the initial configuration is chosen uniformly at random; the case in which the
initial configuration arises from a legitimate configuration by a bounded number
of bit errors. In addition we introduce and analyze an asynchronous variant of
Herman’s algorithm. The latter dispenses with the successive time steps required
in the synchronous algorithm, and instead has each process pass its token after
an exponentially distributed time delay.

Herman’s original paper [11] showed that ET ≤ (N2 log N)/2 in the worst
case (i.e., over all initial configurations with N processes). It also mentions an
improved upper bound of O(N2) due to Dolev, Israeli, and Moran, without giving
a proof or a further reference. In 2005, three papers [9,16,17] were published,
largely independently, all of them giving improved O(N2) bounds. The paper [16]
also gives a lower bound of 4N2/27, which is the expected stabilization time
starting from a configuration with three equally spaced tokens. It was conjectured
in [16] that this is the worst case among all starting configurations, including
those with more than three tokens. This intriguing conjecture is supported by
experimental evidence [2].

Our first result, Theorem 2, gives an upper bound of 0.64N2 for the expected
stabilization time in the synchronous version of Herman’s protocol (improving
the constant in the hitherto best bound by a third). We also give an upper bound
in the asynchronous case. To the best of our knowledge this is the first analysis
of an asynchronous version of Herman’s algorithm.
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To understand the other main results of the paper requires some detail of the
implementation of Herman’s algorithm. We assume that each process has a bit
that it can read and write, and that each process can read the bit of its counter-
clockwise neighbor. A process’s bit does not directly indicate the presence of a
token, rather a process has a token if it has the same bit as its counterclockwise
neighbor. Token passing is then implemented by having processes flip their bits.

In Theorem 7 we provide an upper bound on the expected time to stabilize
starting from the random initial configuration, that is, the configuration in which
each process’s bit is reset independently and uniformly at random. Herman’s
algorithm is such that the random configuration is obtained in one step from
the full configuration, i.e., the configuration in which every process has a token.
The upper bound for the random configuration is far better than the worst-case
bound in Theorem 2; in particular, there are three-token configurations for which
ET is provably larger than the upper bound for the random configuration.

In Theorem 8 we show that for configurations that are obtained from a le-
gitimate configuration by flipping a constant number of process bits, we have
ET = O(N); i.e., the expected restabilization time is linear in N . This contrasts
with the fact that there are configurations, even with only three tokens, that
need Ω(N2) expected time for self-stabilization. Intuitively, our result points at
a highly desirable—and, to the best of our knowledge, previously unknown—
feature of Herman’s protocol: it recovers quickly from bounded errors. This is
related to the notion of a time adaptive protocol from [14], which refers to a
protocol whose recovery time depends on the number of state-corrupted nodes
rather than the total number of nodes.

Full proofs are given in [13].

Related Work. One parameter in the design of self-stabilizing algorithms is the
number of states per machine. In [8], three different self-stabilizing algorithms
with two states per machine are investigated. Only one of those algorithms works
in a unidirectional ring, the other algorithms need more connections. The ring
algorithm is probabilistic, but it is not symmetric: it requires an “exceptional
machine” which executes different code. Herman’s algorithm is mentioned in [8]
as another two-state algorithm, but it is criticized by saying “it requires that all
machines make moves synchronously which is not easily done”. In this paper,
we suggest and analyze an asynchronous variant of Herman’s algorithm, which
is symmetric and has only two states per machine.

The protocol of [12], also described in [2], is similar to Herman’s protocol in
that tokens are passed on a ring of processors. A scheduler selects a processor
among those with a token; the selected processor passes the token to left or right
neighbor, with probability 0.5, respectively. Two colliding tokens are merged to
a single token. Our analysis of the asynchronous version of Herman’s protocol
could possibly be adapted to this protocol, by assuming that a processor passes
its token after an exponentially distributed holding time. Of course, the fact
that meeting tokens are merged and not annihilated would have to be taken into
account.
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2 Preliminaries

We assume N processors, with N odd, organized in a ring topology. Each pro-
cessor may or may not have a token. Herman’s protocol in the traditional syn-
chronous variant [11] works as follows: in each time step, each processor that
has a token passes its token to its clockwise neighbor with probability r (where
0 < r < 1 is a fixed parameter), and keeps it with probability 1−r; if a processor
keeps its token and receives another token from its counterclockwise neighbor,
then both of those tokens are annihilated. Notice that the number of tokens
never increases, and can decrease only by even numbers.

Herman’s protocol can be implemented as follows. Each processor possesses
a bit, which the processor can read and write. Each processor can also read the
bit of its counterclockwise neighbor. In this representation having the same bit
as one’s counterclockwise neighbor means having a token. In each time step,
each processor compares its bit with the bit of its counterclockwise neighbor;
if the bits are different, the processor keeps its bit; if the bits are equal, the
processor flips its bit with probability r and keeps it with probability 1 − r. It
is straightforward to verify that this procedure implements Herman’s protocol:
in particular a processor flipping its bit corresponds to passing its token to its
clockwise neighbor.1

We denote the number of initial tokens by M , where 1 ≤M ≤ N . The token
representation described above enforces that M be odd. A configuration with
only one token is called legitimate. The protocol can be viewed as a Markov chain
with a single bottom SCC in which all states are legitimate configurations. So
a legitimate configuration is reached with probability 1, regardless of the initial
configuration, that is, the system self-stabilizes with probability 1.

In this paper we also propose and analyze an asynchronous variant of
Herman’s protocol which works similarly to the synchronous version. The asyn-
chronous variant gives rise to a continuous-time Markov chain. Each processor
with a token passes the token to its clockwise neighbor with rate λ, i.e., a proces-
sor keeps its token for a time that is distributed exponentially with parameter λ,
before passing the token to its clockwise neighbor (i.e., flipping its bit). The
advantage of this variant is that it does not require processor synchronization.
Note that a processor can approximate an exponential distribution by a geomet-
ric distribution, that is, it can execute a loop which it leaves with a small fixed
probability at each iteration. A more precise approximation can be obtained us-
ing a random number generator and precise clocks. For our performance analyses
we assume an exact exponential distribution.

Let T denote the time until only one token is left, i.e., until self-stabilization
has occurred. In this paper we analyze the random variable T, focusing mainly

1 Notice that flipping all bits in a given configuration keeps all tokens in place. In fact,
in the original formulation [11], in each iteration each bit is effectively flipped once
more, so that flipping the bit means keeping the token, and keeping the bit means
passing the token. The two formulations are equivalent in the synchronous version,
but our formulation allows for an asynchronous version.
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on its expectation ET. Many of our results hold for both the synchronous and
the asynchronous protocol version.

To aid our analysis we think of the processors as numbered from 1 to N ,
clockwise, according to their position in the ring. We write m := (M − 1)/2.
Let z : {1, . . . ,M} → {1, . . . , N} be such that z(1) < · · · < z(M) and for all
i ∈ {1, . . . ,M}, the processor z(i) initially has a token; in other words, z(i) is
the position of the i-th token. We often write zuv for z(v)− z(u).

3 Bounds on ET for Arbitrary Configurations

The following proposition gives a precise formula for ET in both the synchronous
and asynchronous protocols in case the number of tokens is M = 3.

Proposition 1 (cf. [16]). Let N denote the number of processors and let a, b, c
denote the distances between neighboring tokens, so that a + b + c = N . For the
synchronous protocol with parameter r let D = r(1−r), and for the asynchronous
protocol with parameter λ let D = λ. Then the expected time to stabilization is

ET =
abc

DN
.

Proposition 1 is shown in [16] for the synchronous case with r = 1
2 . Essentially

the same proof works for 0 < r < 1, and also in the asynchronous case.
We call a configuration with M = 3 equally spaced tokens an equilateral con-

figuration. If N is an odd multiple of 3 then a = b = c = N/3 for the equilateral
configuration. If N is not a multiple of 3 then we ask that a, b, c equal either
�N/3� or #N/3$ . By Proposition 1 the expected stabilization time for a equilat-
eral configuration is ET = N2

27D . It follows that for configurations with M = 3 the
worst case is ET = Ω(N2) and this case arises for the equilateral configuration.
In fact it has been conjectured in [16] that, for all N , the equilateral configu-
ration is the worst case, not only among the configurations with M = 3, but
among all configurations. This conjecture is supported by experiments carried
out using the probabilistic model checker PRISM—see [2].

Finding upper bounds on ET in the synchronous case goes back to Herman’s
original work [11]. He does not analyze ET in the journal version, but in his
technical report [11], where he proves ET ≤ N2#log N$/2. He also mentions an
improvement to O(N2) due to Dolev, Israeli, and Moran, without giving a proof
or a further reference. In 2005, three papers [9,16,17] were published, largely
independently, all of them giving improved O(N2) bounds. In [9] path-coupling
methods are applied to self-stabilizing protocols, which lead in the case of
Herman’s protocol to the bound ET ≤ 2N2 for the case r = 1

2 . Independently,
the authors of [16] claimed O(N2). Their proof is elementary and also shows
ET ≤ 2N2 for the case r = 1

2 . Finally, the author of [17] (being aware of
the conference version of [9]) applied the theory of coalescing random walks
to Herman’s protocol to obtain ET ≤

(
π2

8 − 1
)
· N2

r(1−r) , which is about 0.93N2 for
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the case r = 1
2 . By combining results from [17] and [16], we further improve the

constant in this bound (by 8/27, which is about 32%), and at the same time
generalize it to the asynchronous protocol.

Theorem 2. For the synchronous protocol with parameter r let D = r(1 − r),
and for the asynchronous protocol with parameter λ let D = λ. Then, for all N
and for all initial configurations, we have

ET ≤
(

π2

8
− 29

27

)
· N

2

D
.

Hence, ET ≤ 0.64N2 in the synchronous case with r = 1
2 .

4 Expressions for ET

Our analysis of Herman’s protocol exploits the work of Balding [1] on annihi-
lating particle systems. Such systems are a special case of interacting particle
systems, which model finitely or infinitely many particles, which, in the absence
of interaction, would be modeled as independent Markov chains. Due to particle
interaction, the evolution of a single particle is no longer Markovian. Interacting
particle systems have applications in many fields, including statistical mechan-
ics, neural networks, tumor growth and spread of infections, see [15]. Balding’s
paper [1] is motivated by a scenario from physical chemistry, where particles can
be viewed as vanishing on contact, because once two particles have met, they
react and are no longer available for reactions afterwards. We refer the reader to
[10] and the references therein for more information on such chemical reaction
systems.

We transfer results from [1] to Herman’s protocol. The setup is slightly differ-
ent because, unlike chemical particles, the tokens in Herman’s protocol move only
in one direction. This difference is inconsequential, as the state of a system can be
captured using only relative token (or particle) distances. Care must be taken
though, because Balding does not consider “synchronous” particle movement
(this would make no sense in chemistry), but particles moving “asynchronously”
or continuously in a Brownian motion.

Given two tokens u and v with 1 ≤ u < v ≤ M , we define a random vari-
able Tuv and events A(uv)↓ and A(uv)↑ in terms of a system in which collisions
between tokens u and v cause u and v to be annihilated, but the movement of
the other tokens and their possible collisions are ignored. In that system, Tuv

denotes the time until u and v have collided. Further, let A(uv)↓ and A(uv)↑ de-
note the events that tokens u and v eventually collide down and up, respectively.
By colliding down (resp. up) we mean that, upon colliding, the token u (resp. v)
has caught up with v (resp. u) in clockwise direction; more formally, if du, dv ≥ 0
denote the distances travelled in clockwise direction by the tokens until collision,
then the collision is said to be down (resp. up) if z(u) + du = z(v) + d(v) (resp.
z(u) + du + N = z(v) + dv). The behavior of two such tokens is equivalent to
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that of a one-dimensional random walk on {0, . . . , N}, started at zuv, with ab-
sorbing barriers at 0 and N : the position in the random walk corresponds to the
distance between the tokens, and colliding down (resp. up) corresponds to being
absorbed at 0 (resp. N). By this equivalence we have P (A(uv)↓

)
= 1 − zuv/N

and P (A(uv)↑
)

= zuv/N (see, e.g., [7]).
Proposition 3 below allows to express the distribution of T in terms of the

distribution of Tuv, conditioned under A(uv)↓ and A(uv)↑, respectively. Those
distributions are well-known [7,3]. For the statement we need to define the
set WM of all pairings. A pairing is a set w = {(u1, v1), . . . , (um, vm)} with
1 ≤ ui < vi ≤ M for all i, such that there is w0 ∈ {1, . . . ,M} with
{u1, v1, . . . , um, vm, w0} = {1, . . . ,M}. Define s(w) = 1 if the permutation
(u1v1 · · ·umvmw0) is even, and s(w) = −1 otherwise. (This is well-defined: it
is easy to see that s(w) does not depend on the order of the (ui, vi).) We have
the following proposition:

Proposition 3 (cf. [1, Theorem 2.1]). Let M ≥ 3. For all t ≥ 0:

P (T ≤ t) =
∑

w∈WM

s(w)
∏

(u,v)∈w

(P (Tuv ≤ t ∩ A(uv)↓
)−P (Tuv ≤ t ∩ A(uv)↑

))
.

Balding’s Theorem 2.1 in [1] is more general in that it gives a generating function
for the number of remaining tokens at time t. Strictly speaking, Balding’s theo-
rem is not applicable to the synchronous version of Herman’s protocol, because
he only considers tokens that move according to the asynchronous version (in
our terms), and tokens in a Brownian motion. In addition, his proof omits many
details, so we give a self-contained proof for Proposition 3 in [13].

Theorem 4 below yields an expression for ET. We define the set
−−→
WM of all

directed pairings as the set of all sets −→w = {(u1, v1, d1), . . . , (um, vm, dm)} such
that {(u1, v1), . . . , (um, vm)} ∈ WM and di ∈ {↓, ↑} for all i ∈ {1, . . . ,m}. For a
directed pairing −→w = {(u1, v1, d1), . . . , (um, vm, dm)} we define

−→s (−→w ) := s({(u1, v1), . . . , (um, vm)}) · (−1)|{i|1≤i≤m, di=↑}|

and the event A−→w :=
⋂m

i=1 A(uivi)di
. Notice that P (A−→w ) =

∏m
i=1 P
(
A(uivi)di

)
.

Further, we set T−→w := max{Tuivi | 1 ≤ i ≤ m}. We have the following theorem:

Theorem 4. For M ≥ 3:

ET =
∑

−→w∈−−→WM

−→s (−→w ) · E [T−→w | A−→w ] · P (A−→w ) .

A Finite Expression for ET. In the rest of the section we focus on the syn-
chronous protocol. We obtain a closed formula for ET in Proposition 5 below.

For 1 ≤ u < v < M , we define zuv↓ := zuv and zuv↑ := N − zuv. For
sets ∅ �= −→x ⊆ −→w ∈ −−→WM with −→x = {(u1, v1, d1), . . . , (uk, vk, dk)} and −→w =
{(u1, v1, d1), . . . , (um, vm, dm)} we write
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yF (−→x ,−→w ) :=
(zu1v1d1

N
, . . . ,

zukvkdk

N

)
and

yG(−→x ,−→w ) :=
(zuk+1vk+1dk+1

N
, . . . ,

zumvmdm

N

)
.

Let

g(j, y;u) :=
sin(jπy) · sin(jπu)

1− cos(jπu)
and h(j;u) :=1−2r(1−r) (1− cos(jπu)) ,

and define, for k ∈ N+ and � ∈ N+,

F
(N)
k (y1, . . . , yk) := −

(−1
N

)k

·
∑

j∈{1,...,N−1}k

∏k
i=1 g(j(i), yi; 1/N)

1−∏k
i=1 h(j(i); 1/N)

and

G�(y1, . . . , y�) :=
�∏

i=1

(1− yi) .

We drop the subscripts of F
(N)
k and G�, if they are understood. Observe that

F (N) and G are continuous and do not depend on the order of their arguments.
The following proposition gives, for the synchronous protocol, a concrete expres-
sion for ET.

Proposition 5. Consider the synchronous protocol. For M ≥ 3:

ET =
∑

−→w∈−−→WM

−→s (−→w )
∑

∅�=−→x⊆−→w
F (N)(yF (−→x ,−→w )) ·G(yG(−→x ,−→w )) .

An Approximation for ET. The function F (N) in Proposition 5 depends on N ,
and also on r. This prohibits a deeper analysis as needed in Section 6. Propo-
sition 6 gives an approximation of ET without those dependencies. To state it,
we define, for k ∈ N+, a function F̃k : [0, 1]k → R with

F̃k(y1, . . . , yk) =
−1
π2

(−2
π

)k ∑
j∈Nk

+

∏k
i=1 sin(yij(i)π)(∏k

i=1 j(i)
)(∑k

i=1 j(i)2
) .

We drop the subscript of F̃k, if it is understood. It is shown in [13] that the series
in F̃k converges. We have the following proposition.

Proposition 6. Consider the synchronous protocol. Let

Ẽ :=
N2

r(1 − r)

∑
−→w∈−−→WM

−→s (−→w )
∑

∅�=−→x⊆−→w
F̃ (yF (−→x ,−→w )) ·G(yG(−→x ,−→w )) .

Then, for each fixed M ≥ 3 and r ∈
(

1
2 −

4√27
6 , 1

2 +
4√27
6

)
≈ (0.12, 0.88) and

ε > 0,
ET = Ẽ + O(Nε) .

The proof of Proposition 6 is elementary but involved.
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5 The Full Configuration

In this section we consider the initial configuration in which every processor has
a token, i.e., N = M . We call this configuration full. Notice that in the full
configuration, with all bits set to 0, in the successor configuration each bit is
independently set to 1 with probability r. Thus we study the full configuration
in lieu of the random configuration. We have the following theorem:

Theorem 7. For the synchronous protocol with parameter r let D = r(1 − r).
For the asynchronous protocol with parameter λ > 0 let D = λ. For almost all
odd N ∈ N+, we have for the full configuration:

ET ≤ 0.0285N2/D and P (T ≥ 0.02N2/D
)
< 0.5 .

Recall from Proposition 1 that, for N an odd multiple of 3, we have ET =
1
27

N2

D ≈ 0.0370N2

D if we start from the equilateral configuration. It follows that,
for large N , the full configuration (with M = N) stabilizes faster than the equi-
lateral configuration (with M = 3). This is consistent with the aforementioned
conjecture of McIver and Morgan that the equilateral configuration with M = 3
is the worst case among all configurations for a fixed N .

6 Restabilization

In this section we restrict attention to the synchronous version of Herman’s al-
gorithm and consider the standard bit-array implementation. Theorem 2 shows
that the worst-case expected time to termination, considering all initial configu-
rations, is ET = O(N2). We imagine that an initial configuration represents the
state of the system immediately after an error, that is, the ring of tokens has
become illegitimate because some of positions in the bit array were corrupted. In
this light a natural restriction on initial configurations is to consider those that
arise from a one-token configuration by corrupting some fixed number m of bits.
We call these flip-m configurations. Notice that, by the token representation in
Herman’s protocol, a single bit error can lead to the creation of two neighboring
tokens. So, m bit errors could lead to the creation of m new pairs of neighboring
tokens. It could also happen that two bit errors affect neighboring bits, leading
to a new pair of tokens at distance 2. To account for this, we characterize flip-m
configuration as those with at most 2m + 1 tokens such that the tokens can be
arranged into pairs, each pair at distance at most m, with one token left over.

Fixing the number of bit errors we show that the expected time to restabi-
lization improves to O(N). Formally we show:

Theorem 8. Consider the synchronous protocol. Fix any m ∈ N+ and r ∈(
1
2 −

4√27
6 , 1

2 +
4√27
6

)
≈ (0.12, 0.88). Then for any flip-m configuration we have

ET = O(N).
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Proof. It suffices to consider flip-m configurations with M = 2m + 1 tokens.
Without loss of generality, we assume that, when removing token 2m + 1, the
token pairs (1, 2), (3, 4), . . . , (2m − 1, 2m) have distances at most m; i.e., we
assume z(u + 1)− z(u) ≤ m for all odd u between 1 and 2m− 1.

For each directed pairing −→w ∈ −−→WM , we define its class Cl(−→w ) and its com-
panion pairing −→w ′ ∈ −−→WM . For the following definition, we define ũ := u + 1, if u
is odd, and ũ := u− 1, if u is even.

– If (u,M, d) ∈ −→w for some u, then Cl(−→w ) = 0. Its companion pairing is
obtained, roughly speaking, by u and ũ switching partners. More precisely:
• If (ũ, v, d′) (resp. (v, ũ, d′)) for some (v, d′), then the companion pairing

of w is obtained by replacing (u,M, d) and (ũ, v, d′) with (ũ,M, d) and
(u, v, d′) (resp. (v, u, d′)).
• Otherwise (i.e., ũ does not have a partner), the companion pairing of w

is obtained by replacing (u,M, d) with (ũ,M, d).
– If −→w = {(1, 2, d1), (3, 4, d2), . . . , (M − 2,M − 1, dm)} for some d1, . . . , dm,

then Cl(−→w ) = m. In this case, −→w does not have a companion pairing.
– Otherwise, Cl(−→w ) is the greatest number i such that for all 1 ≤ j ≤ i − 1,

the tokens 2j− 1 and 2j are partners (i.e., (2j− 1, 2j, d) for some d). Notice
that 0 < Cl (−→w ) < m. The companion pairing of −→w is obtained by 2i−1 and
2i switching partners.

It is easy to see that, for any −→w ∈ −−→WM with Cl(−→w ) < m, we have Cl (−→w ) =
Cl(−→w ′), and the companion pairing of−→w ′ is −→w , and −→s (−→w ) = −−→s (−→w ′). Partition−−→
WM into the following sets:

−−→
WM

(+) := {−→w ∈ −−→WM | Cl(−→w ) < m and −→s (−→w ) = +1} and
−−→
WM

(−) := {−→w ∈ −−→WM | Cl(−→w ) < m and −→s (−→w ) = −1} and
−−→
WM

(m) := {−→w ∈ −−→WM | Cl(−→w ) = m} .
The idea of this proof is that, in the sum of Proposition 6, the terms from−−→
WM

(+) ∪ −−→WM
(−) cancel each other “almost” out, and the terms from

−−→
WM

(m)

are small. To simplify the notation in the rest of the proof, let y(−→x ,−→w ) :=
(yF (−→x ,−→w ), yG(−→x ,−→w )) and H(y(−→x ,−→w )) := F̃ (yF (−→x ,−→w )) ·G(yG(−→x ,−→w )). Since
F̃ and G are continuous and bounded, so is H .

– Let (−→x ,−→w ) with −→x ⊆ −→w ∈ −−→WM
(+) ∪ −−→WM

(−). To any such (−→x ,−→w ) we
associate a companion (−→x ′,−→w ′) such that −→w ′ is the companion pairing of −→w ,
and −→x ′ ⊆ −→w ′ is obtained from −→x in the following way: if −→w ′ is obtained
from −→w by replacing one or two triples (u, v, d), then −→x ′ is obtained by
performing the same replacements on −→x (of course, only if (u, v, d) ∈ −→x ).
Note that y(−→x ,−→w ) and y(−→x ′,−→w ′) are equal in all components, except for
one or two components, where they differ by at most m

N . Hence we have (for
constant m) that

y(−→x ′,−→w ′) = y(−→x ,−→w ) + O(1/N) · (1, . . . , 1) .
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Since H is continuous, it follows

H(y(−→x ′,−→w ′)) = H(y(−→x ,−→w )) + O(1/N) .

– Let (−→x ,−→w ) with −→x ⊆ −→w ∈ −−→WM
(m). Note that all components of yF (−→x ,−→w )

are at most m
N or at least 1− m

N . Also note that for any vector e ∈ {0, 1}|−→x |
it holds H(e, yG(−→x ,−→w )) = 0. Since H is continuous, it follows

H(y(−→x ,−→w )) = O(1/N) .

Take 0 < ε < 1. By Proposition 6 and the above considerations, we have:

ET = O(Nε) +
N2

r(1 − r)

∑
−→w∈−−→WM

−→s (−→w )
∑

∅�=−→x⊆−→w
H(y(−→x ,−→w ))

= O(Nε) +
N2

r(1 − r)
·
⎛
⎝ ∑
−→w∈−−→WM

(+)

∑
∅�=−→x⊆−→w

H(y(−→x ,−→w ))

−
∑

∅�=−→x ′⊆−→w ′
H(y(−→x ′,−→w ′))

+
∑

−→w∈−−→WM
(m)

∑
∅�=−→x⊆−→w

H(y(−→x ,−→w ))

⎞
⎠

= O(Nε) +
N2

r(1 − r)
·
⎛
⎝ ∑
−→w∈−−→WM

(+)

∑
∅�=−→x⊆−→w

O(1/N)

+
∑

−→w∈−−→WM
(m)

∑
∅�=−→x⊆−→w

O(1/N)

⎞
⎠

= O(Nε) + O(N) = O(N) . �	

7 Conclusions and Future Work

We have obtained several results on the expected self-stabilization time ET in
Herman’s algorithm. We have improved the best-known upper bound for arbi-
trary configurations, and we have given new and significantly better bounds for
special classes of configurations: the full configuration, the random configura-
tion, and, in particular, for configurations that arise from a fixed number of bit
errors. For the latter class, ET reduces to O(N), pointing to a previously un-
known feature that Herman’s algorithm recovers quickly from bounded errors.
We have also shown that an asynchronous version of Herman’s algorithm not re-
quiring synchronization behaves similarly. For our analysis, we have transferred
techniques that were designed for the analysis of chemical reactions.
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The conjecture of [16], saying that the equilateral configuration with three
tokens constitutes the worst-case, remains open. We hope to exploit our closed-
form expression for ET to resolve this intriguing problem. While we have already
shown that many relevant initial configurations provably converge faster, solving
this conjecture would close the gap between the lower and upper bounds for
stabilization time for arbitrary configurations. We would also like to investigate
the performance of the algorithm in case the number of bit errors is not fixed,
but is small (e.g., logarithmic) in the number of processes.
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Abstract. We study the problem of exploring an unknown undirected connected
graph. Beginning in some start vertex, a searcher must visit each node of the graph
by traversing edges. Upon visiting a vertex for the first time, the searcher learns
all incident edges and their respective traversal costs. The goal is to find a tour of
minimum total cost. Kalyanasundaram and Pruhs [23] proposed a sophisticated
generalization of a Depth First Search that is 16-competitive on planar graphs.
While the algorithm is feasible on arbitrary graphs, the question whether it has
constant competitive ratio in general has remained open. Our main result is an
involved lower bound construction that answers this question negatively. On the
positive side, we prove that the algorithm has constant competitive ratio on any
class of graphs with bounded genus. Furthermore, we provide a constant compet-
itive algorithm for general graphs with a bounded number of distinct weights.

1 Introduction

In an exploration problem an agent, or searcher, has to construct a complete map of
an environment without any a priori knowledge of its topology. The searcher makes
all its decisions based on partial local knowledge and gathers new information on its
exploration tour. Exploration problems appear in various contexts, such as robot motion
planning in hazardous or inaccessible terrain, maintaining security of large networks,
and searching, indexing, and analyzing digital data in the internet [7,20,28].

We study the online graph exploration problem on undirected connected graphs G =
(V,E). We assume that the vertices are labeled so that the searcher is able to distin-
guish them. Each edge e = (u, v) ∈ E has a non-negative real weight |e|, also called
the length or the cost of the edge. Beginning in a distinguished start vertex s ∈ V ,
the searcher learns G according to the following online paradigm, also known as fixed
graph scenario [23]: whenever the searcher visits a vertex, it learns all incident edges,
their weights, and the labels of their end vertices. To explore a new vertex, the searcher
traverses previously learned edges in the graph. For traversing an edge, the searcher has
to pay the respective edge cost. The task is to find a tour that visits all vertices V and
returns to the start vertex. The goal is to find a tour of minimum total length. An illus-
tration of this model (see [23]) is the scenario where vertices correspond to cities and
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upon arrival in a city the searcher sees the road signs of routes to other cities including
distance information.

A standard technique to measure the quality of online algorithms is competitive anal-
ysis [9], which compares the outcome of an algorithm with an optimal offline solution.
For our graph exploration problem, the corresponding offline problem is the fundamen-
tal Traveling Salesman Problem (TSP), one of the most studied optimization problems
which is in general even NP-hard to approximate [21]. It asks for a shortest tour that
visits every vertex of a graph known in advance. For a positive number c, we call an
online exploration algorithm c-competitive, if it computes for any instance a tour of to-
tal length at most c times the optimal offline tour through all vertices. The competitive
ratio of an algorithm is the infimum over all c such that it is c-competitive.

The greedy algorithm Nearest Neighbor (NN) is a simple and fast heuristic that
has been studied intensively in the traditional offline TSP environment. It repeatedly
chooses the next vertex to be visited as an unexplored vertex closest to the current loca-
tion. The worst case ratio for this greedy algorithm, Θ(log n) [29], also applies to our
online scenario. It is tight even on planar unit-weight graphs, which follows from a nice
and simple lower bound construction of particular graphical instances [22].

In case all edges have equal weight, a Depth First Search (DFS) is 2-competitive. It
yields a total tour not larger than twice the size of a minimum spanning tree (MST ), a
lower bound on the optimal tour. This is optimal in the unit-weight case [25].

For general graphs with arbitrary weights no constant competitive algorithm is
known. A promising candidate was introduced by Kalyanasundaram and Pruhs [23].
Their algorithm ShortCut is a sophisticated generalization of DFS obtained by intro-
ducing a parameterized blocking condition that determines when to diverge from DFS.
They prove an upper bound of 16 on its competitive ratio in planar graphs. The algo-
rithm itself is defined for general graphs. However, since its introduction almost two
decades ago, it has been open if ShortCut has constant competitive ratio in general.
There has been no progress on this question since then, and in fact, all subsequent re-
sults concerned with our graph exploration setting only apply to simple cycles: In [2],
it is shown that NN yields a competitive ratio of 3/2 on simple cycles. Additionally, a
lower bound of 5/4 for any deterministic online algorithm is proven. Both lower and up-
per bound are improved in [25]. There, the authors give a more sophisticated algorithm
which takes additionally the current total tour length into account. They prove that, on
simple cycles, this algorithm achieves the best possible competitive ratio of 1 +

√
3. It

is not clear how the algorithm can be generalized and applied to more complex graphs.

Our contribution. We revisit algorithm ShortCut proposed by Kalyanasundaram and
Pruhs [23]. We elaborate on the sophistication of the underlying idea, but report also
a precarious issue in the given formal implementation. We propose a reformulation,
which we call Blocking, highlighting the elaborate idea from [23], and adapt the proof
of [23] to assure that the reformulation has constant competitive ratio for planar graphs.
Here, a concise observation allows us to simplify the proof and to generalize it to graphs
of bounded genus. More precisely, we generalize the upper bound on the competitive
ratio of 16 for planar graphs to a bound of 16(1 + 2g) for graphs of genus at most g.

As further contribution we give a constant competitive algorithm for general graphs
with a bounded number of distinct weights. Our online algorithm generalizes DFS to
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an algorithm that hierarchically performs depth first searches on subgraphs induced by
restricted weights. For arbitrary graphs with arbitrary weights we round weights up
to the nearest power of 2 and apply the same algorithm. With this modification the
algorithm has a competitive ratio of Θ(log n) in general.

As our main result we show that Blocking does not have constant competitive ratio
on general graphs. We use a classical construction of Erdős [15] of graphs with large
girth and large minimum degree to construct complex graphs for which Blocking has
arbitrarily large competitive ratio. Considering the fact that we have shown that Blocking
is constant competitive for classes of graphs that have bounded genus, it seems plausible
that similarly heavy machinery is indeed necessary for the lower bound construction.

Related work. Exploration problems have been studied extensively; see the surveys [7,
28]. In the sixties, such problems were addressed mainly from a game-theoretic per-
spective [19]. More recent research on online motion planning, aiming explicitly for
worst-case performance guarantees on the total travel distance, was initiated in [5].

Generally, the geometry of the search environment can be arbitrary — a bounded or
unbounded space, with or without obstacles, two, three, or higher dimensional. How-
ever, in many particular applications, it is possible to abstract from the geometry of the
real environment and model the unknown search space as a graph, in which the searcher
may only move along edges. First formal models for exploring an unknown graph were
proposed in [27] in the context of finding a shortest path between two given points.
Research on fully exploring a graph was initiated in [10]. In contrast to our problem,
they consider the task of exploring all edges in a directed labeled unknown graph (with
unit-weight edges). At any time, the searcher is given the number of unexplored edges
leaving the vertex, but not their endpoints. Notice that the corresponding offline problem
is the polynomially solvable Chinese postman problem, in contrast to the TSP in our
setting. This exploration problem has been studied extensively in directed [1,16,24] and
undirected graphs [11,26]. Numerous variants were considered, e.g., routing multiple
searchers [6,14,17], models that impose additional constraints on the searcher, such as
being tethered [12], or having a tank of limited capacity [4,8], and exploration problems
in graphs without unique labeling but with some other additional information [18,20].

Our problem of exploring all vertices of a labeled undirected graph is in some sense
also a variant of the initial problem in [10]. In particular, on trees the problem of ex-
ploring all vertices is equivalent to exploring all edges. Apart from the aforementioned
previous work on our problem in planar graphs [23] and cycles [2,25], it has been stud-
ied on un-weighted trees also for multiple synchronously moving searchers [13,14,17].

Even though our online graph exploration problem has the classical TSP as cor-
responding offline problem, another class of online problems is typically regarded as
Online TSP in the literature. In [3] a model is introduced in which the graph is given
in advance and the vertices to be visited appear online over time. This means that new
vertices appear as the salesman proceeds, in contrast to our model, independently of his
current position. The corresponding offline problem is a TSP with release dates.

2 The Exploration Algorithm of Kalyanasundaram and Pruhs

We discuss the algorithm ShortCut, that was proposed and analyzed in [23].
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Algorithm 1. The exploration algorithm Blockingδ(G, y)
Input: A partially explored graph G, and a vertex y of G that is explored for the first time.

1: while there is an unblocked boundary edge e = (u, v), with u explored and v unexplored,
such that u = y or such that e had previously been blocked by some edge (u′, y) do

2: walk a shortest known path from y to u
3: traverse e = (u, v)
4: Blockingδ(G, v)
5: walk a shortest known path from v to y
6: end while

Definition 1. A vertex is explored once it has been visited by the searcher. An edge is
explored once both endpoints are explored. A boundary edge (u, v) is an edge with an
explored end vertex u and an unexplored end vertex v.

We adopt the convention that for a boundary edge, the first entry is always vertex that
has already been explored. For a set of edges E′ we let |E′| =∑e∈E′ |e|.

Algorithm ShortCut can be seen as a sophisticated variant of DFS. The crucial ingre-
dient is a blocking condition depending on a fixed parameter δ > 0, which determines
when to diverge from DFS.

Definition 2. At any point in time during the exploration of the graph, a boundary
edge e = (u, v) is said to be blocked, if there is a boundary edge e′ = (u′, v′) with u′

explored and v′ unexplored which is shorter than e (i.e, |e′| < |e| ) and for which the
length of any shortest known path from u to v′ is at most (1 + δ) · |e|.
Intuitively, the exploration algorithm ShortCut performs a standard DFS but traverses
a boundary edge only if it is not blocked. Suppose the searcher is at a vertex u and
considers traversing a boundary edge (u, v). If (u, v) is blocked then its traversal is
postponed, possibly forever; otherwise the searcher traverses (u, v). Traversing (u, v)
and exploring v may cause another edge (x, y), whose traversal was delayed earlier, to
become unblocked. Then the shortest path from v to y is added as virtual edge (called
jump edge in [23]) to the DFS-tree and can be traversed virtually like any real edge.

It is important to carefully update the blocking-state of edges as the algorithm pro-
ceeds. In particular, an edge which has become unblocked, after having previously been
blocked, may become blocked again. This may be the case if a new shorter path from
an unblocked edge to another boundary edge is revealed. In this case, the virtual edge
must be removed again. Disregarding reblocking will cause an unbounded worst case
ratio, even for planar graphs. This important issue is not explicitly addressed in the algo-
rithm description in [23]. In particular, no means of removing virtual edges are provided
therein.

In Algorithm 1, we formalize our interpretation of the algorithmic idea by Kalyana-
sundaram and Pruhs. To distinguish it from [23] and since the (parameterized) blocking
condition is a very subtle and a key ingredient, we choose the name Blockingδ.

To explore the entire graph starting in vertex s, we call Algorithm 1 as
Blockingδ(Gs, s), where Gs is the partially explored graph in which only s has been
visited so far.
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We prove that Blockingδ has constant competitive ratio on graphs of bounded genus.
Our proof not only extends the one in [23] for planar graphs (genus 0), but also differs
in using an additional argument which allows an easier handling of the recurrence.

Theorem 1. Blockingδ is 2(2 + δ)(1 + 2/δ)(1 + 2g)-competitive on graphs of genus g.

Proof. Since in every iteration of the while loop a new vertex is explored, the algorithm
terminates. It is easy to see that all vertices are eventually explored.

We let P be the set of edges that are traversed during some execution of Line 3.
For each iteration of the while loop, we charge all costs that occur in Lines 2, 3 and 5

to the edge in P traversed in Line 3. Since any execution of Line 3 explores a new
vertex, every edge is charged in at most one while-loop iteration.

The cost charged to any edge e is at most 2(2 + δ)|e|: Indeed, either the edge had
previously not been blocked, in which case the cost is simply 2|e|, or the edge e had
previously been blocked by some edge ending in y, and therefore (by the definition of
blocking) the distance from y to the starting point of e is at most (1 + δ) · |e|. Thus
Lines 2, 3 and 5 provoke costs of at most (1 + δ) · |e|, |e|, and (2 + δ) · |e|, respectively.

Let MST be a minimum spanning trees that shares a maximum number of edges
with P . It suffices now to show that |P | ≤ (1 + 2/δ)(1 + 2g)|MST | in order to get an
overall cost of at most 2(1 + δ)(1 + 2/δ)(1 + 2g)|MST |.
Claim. If an edge e ∈ P \MST is contained in a cycle C in P ∪MST , then the cycle C
has length at least (2 + δ)|e|.
Proof. Suppose otherwise. On the cycle C, consider the edge e′ = (u, v) ∈ P \MST
with |e′| ≥ |e| that is charged the latest. W.l.o.g. suppose e′ is traversed from u to v at
the time it is charged. Due to the choice of MST , the edge e′ is strictly larger than any
edge in C ∩ MST : Otherwise we could replace e′ with an edge in MST to obtain a
smaller minimum spanning tree or to obtain a minimum spanning tree that shares more
edges with P . At the time e′ is charged, e′ is a boundary edge, and therefore not the
whole cycle has been explored. Thus there is a boundary edge different from e′ on the
cycle. Moreover at this point in time e′ is not blocked. Let e′′ be the first boundary edge
encountered when traversing C − e′ starting from u towards v. Since we assume the
cycle has length less than (2 + δ)|e| ≤ (2 + δ)|e′| and e′ is not blocked, we conclude
that e′′ is not smaller than e′ and thus not in MST . This contradicts the fact that e′ is
the edge in P \MST with |e′| ≥ |e| that is charged the latest and shows the claim. �	
Consider an embedding of G on a surface of genus g. We choose MST ′ ⊆ MST ∪P to
be a maximal superset of MST obtained by repeatedly adding edges that do not separate
two faces, i.e., are incident with only one face. (Topologically this can be viewed as
adding a set of non-separating cycles, after contracting MST to a single point.) Since
adding a non-separating edge increases the Euler characteristic of the surface bounded
by the edges, and a surface of genus g has Euler characteristic 2 − 2g, there are at
most 2g edges in MST ′ \MST . In case MST ′ does not bound a topological disk, we
artificially add non-separating edges each of weight |MST | to the graph induced by P ,
to obtain a superset MST ′′ of MST ′ that bounds a topological disk. These edges are
artificial in the sense that they do not need to be edges of G. By the Euler characteristic
argument above, there are at most 2g edges in MST ′′ \MST in total.
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All edges in P , and thus, all edges in MST ′′ \ MST have a weight not larger
than |MST |, since otherwise they would be blocked until the whole minimum span-
ning tree has been explored. This implies |MST ′′| ≤ |MST | + 2g|MST |. Since ev-
ery edge e ∈ P \ MST ′′ is contained in a cycle of length at most |e| + |MST |
and edges in MST ′′ \ MST ′ are of length |MST |, we can extend the claim: If an
edge e ∈ P \ MST ′′ is contained in a cycle C in P ∪ MST ′′, then the cycle C
has length at least (2 + δ)|e|. We iteratively define for every edge e ∈ P \ MST ′′

a cycle Ce in the following way: In each step we choose an edge that together with
edges in MST ′′ and edges to which a cycle has already been assigned closes a face
cycle. Note that for two distinct edges e, e′ ∈ P \ MST ′′ the associated cycles Ce

and Ce′ are different. Every edge in MST ′′ ∪ P is contained in at most two such cy-
cles, since they form a set of distinct face cycles. For an edge in P \ MST ′′ one of
these cycles is Ce. In fact these cycles are exactly all face boundaries apart from the
boundary of the outer face. Therefore, |P \ MST ′′| ≤ 1

1+δ

∑
e∈P\MST ′′ |Ce − e| ≤

1
1+δ (2|MST ′′|+ |P \MST ′′|), and thus |P \ (MST ′′)| ≤ (2/δ)|MST ′′|. We conclude
that |P | ≤ (1 + 2/δ)|MST ′′| ≤ (1 + 2/δ)(1 + 2g)|MST |. Overall, we conclude that
Blockingδ is 2(2 + δ)(1 + 2/δ)(1 + 2g)-competitive on graphs of genus g. �	
Corollary 1. Algorithm Blocking2 is 16(1 + 2g)-competitive on graphs of genus g.

3 A Lower Bound Construction

Our lower bound construction for Algorithm Blockingδ relies on a base graph H with
specific bounds on girth and degree. Its existence is guaranteed by the following lemma
which extends a classical construction of Erdős [15].

Lemma 1. For all d̄, δ ∈ N there exists a connected bipartite graph H with minimum
degree at least d̄, maximum degree at most 2d̄, and a girth of g ≥ δ + 2.

Let H be a connected bipartite n-vertex graph with average degree at least d̄, maximum
degree at most 2d̄, and girth at least δ + 2 as given by Lemma 1. Suppose the partition
classes have size n1 and n2. We fix orders (u1, . . . , un1) and (v1, . . . , vn2) for the
vertices in each of the bipartition classes. We call the vertices in the bipartition classes
in-vertices and out-vertices, respectively. We order the edges by the lexicographical
ordering satisfying {u, v} < {u′, v′} if v < v′ or (v = v′ and u < u′).

In H we now replace each in-vertex and each out-vertex by a release gadget and
collection gadget, respectively. Our final construction will have edges with two types of
weights, namely 1 and w > 1. We call edges of weight w heavy edges.

Description of the release gadgets: Figure 1 depicts a release gadget of degree 4. In
general a release gadget consists of two parts, which we call left and right part. A gadget
replacing a vertex of degree d consists in the left part of d vertices forming a path. Each
of these vertices is attached to a heavy (red) edge of weight w that has an endpoint in
some collection gadget. The right part contains d vertices forming a path. Each of these
vertices is incident with an attached release path of length d−1. The endpoints of these
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Fig. 1. Release gadget of a degree 4 vertex Fig. 2. Collection gadget of a degree 5 vertex

paths are incident with a (blue) edge that ends in a collection gadget. The two parts are
joined by a center path of length (δ + 1)w − d (depicted by a double edge) with unit-
weight edges. Finally, each part has a blocking path (depicted as triple edges) of length
(δ + 1)w with unit-weight edges, by which it is connected to other release gadgets.

The crucial property of a release gadget is the following: The length of the center
path is chosen such that the i-th heavy edge may be blocked by the first edge of the i-th
release path, but not by the (i + 1)-st release path (both times counting from the left to
right). Once the exploration of a release path has begun, the algorithm will finish the
exploration of the entire release path before exploring any other edges.

Thus, the i-th heavy edge of the gadget is blocked, if one of the release paths 1, . . . , i
has not yet been explored. If a release path has been completely explored, we also say
that the release has been triggered. Suppose in some release gadget all releases 1, . . . , i
have been triggered, but the i-th heavy edge is still blocked. This situation implies that
there is a path to some unit-weight boundary edge which exits the gadget via another
heavy edge: Indeed, the blocking paths are sufficiently long to prevent other release
gadgets from interfering with this fact. We will show later that at the moment release i
is triggered such paths exiting via heavy edges do not exist.

It will be clear later that when a release gadget is entered for the first time, this
happens via the blocking path to the right of the gadget. Assuming this for now, we can
require that the online algorithm traverses the gadget from right to left, without entering
the release paths: Indeed, whenever there is a choice among edges of equal weight, we
can adversarially choose the edge that is traversed next.

Description of the collection gadgets: Figure 2 depicts a collection gadget of degree 5.
In general a collection gadget consists of a left and a right part. For a gadget replacing
a vertex of degree d, the left part has one vertex of degree d incident with d paths of
length 2. The ends of these paths are incident with heavy (red) edges emanating from
release gadgets. The right part of a collection gadget contains d vertices inducing a path.
Each vertex on the path is adjacent to another vertex which itself is incident with a (blue)
edge emanating from a right part of a release gadget. Three blocking paths (triple edges)
of length (δ + 1)w join the parts with each other and with other collection gadgets.

We will see that when a collection gadget is first entered, this happens via the block-
ing path to the left. We can then require adversarially that the online algorithm traverses
from the left part directly to the right without exploring the left part. Then, on entering
a vertex in the right, it deviates from the main path to explore the respective blue edge.
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Fig. 3. The assembly of the gadgets: A base graph H (left), and the resulting graph with linked
replacement gadgets (right) showing release gadgets on top and collection gadget at the bottom

We will argue that the algorithm will then return via a corresponding heavy edge. It
then backtracks and subsequently explores the next vertex of the right part, and so on.
Before leaving the gadget to the right, the gadget has been completely explored.

Assembly of the gadgets according to the base graph H: To assemble the gadgets
using the base graph H (see Figure 3), we join the release gadgets according to the
order of in-vertices along the blocking paths (triple lines). The same is done with the
collection gadgets, with respect to the order of out-vertices. The right blocking path of
the last (rightmost) release gadget is connected to a single vertex, the starting vertex,
that we add to the graph. The left blocking path of the first (leftmost) release gadget and
the first (leftmost) collection gadget are joined by two added, adjacent vertices.

The (red and blue) edges that run between the gadgets correspond to the edges in H .
Heavy (red) edges of weight w run from a left part of a release gadget to a left part of a
collection gadget. Blue edges of weight 1 run from a right part of a release gadget to a
right part of a collection gadget.

In the lexicographical order of the edges defined above, we insert for each edge
of H a heavy (red) edge and a blue edge. To insert a heavy edge corresponding to
the edge (u, v) of H , we connect the leftmost unused vertex in the left part of the
release gadget corresponding to u with the leftmost unused vertex in the left part of the
collection gadget of v. To insert the blue edge, we connect the leftmost unused vertex in
the right part of the release gadget corresponding to u with the leftmost unused vertex
of the right part of the collection gadget of v.

Inserting the heavy edges in this ordering has the consequence that the ordering of
the edges is exactly the ordering of their end vertices in the collection gadgets from left
to right. Furthermore, within each release gadget, the heavy edges from left to right are
also in the lexicographic order.

The tour traversed by the algorithm: Beginning at the starting vertex, we may require
adversarially that the algorithm first traverses all release gadgets without exploring any
release path. Then, via the two additional vertices on the left, the leftmost collection
gadget is entered from the left, and the exploration continues into its right part. Sub-
sequently release paths are triggered, one at a time. In the following we prove that the
algorithm traverses all heavy edges of H . The lexicographic order defined on the edges
is the order in which these edges are traversed. All of them are traversed from a release
gadget to a collection gadget. The blue edges, each used to trigger a traversal of a heavy
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edge, are traversed from a collection gadget to a release gadget. Recall that due to the
length of the center path connecting the right and left part of a release gadget, a heavy
edge is blocked, unless its corresponding release has been triggered.

Lemma 2. The heavy (red) edges are traversed in the lexicographic order of the edges
of the base graph. Whenever a release is triggered, the corresponding heavy edge er

becomes unblocked and is explored subsequently.

Proof. Inductively we assume that all release paths that correspond to edges that appear
earlier than er in the ordering of edges have been completely explored, and all release
paths that appear later than er are completely unexplored.

A heavy weight edge can only be blocked by an edge of weight 1. Thus, for a heavy
edge to be blocked, there has to be a path of length at most (δ + 1)w− 1 to a boundary
edge of weight 1. To show the claim, we show that no such path exists for edge er.

To do so, we analyze where a hypothetical boundary edge of such a path may be
situated in the graph. Observe that the length of blocking paths (triple edge) is chosen
such that they cannot be traversed to reach a boundary edge within a distance of (δ +
1)w − 1. Thus, only two possibilities have to be ruled out:

1. There is a path to a boundary edge that can be reached by a path of length (1 +
δ)w − 1, which traverses a center path (double edge).

2. There is a path to a boundary edge that uses heavy edges, but otherwise is com-
pletely contained in left parts of gadgets.

To rule out Possibility 1, observe that any path that uses a double line to cross from
a left part of a release gadget to a right part, and then uses a complete release path is
longer than (δ+1)w−1. Moreover, since release paths are either completely explored or
the corresponding heavy edge has by induction not been triggered, for every unexplored
edge in the right part of a release gadget, all explored heavy edges in the left part are
further away than (δ + 1)w − 1.

To rule out possibility 2, note that the only boundary edges of weight 1 situated in
the left part of a gadget are contained in the currently used collection gadget. All other
left parts of gadgets have been completely explored or not explored at all. Thus, any
path staying in the left parts of the gadgets that leads to a boundary edge in the left part
of the currently used collection gadget will, together with er, project to a cycle in the
graph H . Since the girth of H is at least δ + 2, the path has to use at least δ + 1 heavy
edges and is thus of length more than (δ + 1) · w.

We have shown that the heavy edge er becomes unblocked when its release is trig-
gered. The algorithm thus explores er, returns to the release path of to er, backtracks,
and continues to trigger the release corresponding to the next heavy edge. �	
Theorem 2. For no δ ∈ R does Blockingδ have constant competitive ratio.

Proof. Consider a graph that is obtained from the replacement construction from a base
graph H on n vertices with minimum degree d̄, maximum degree at most 2d̄, and girth
at least δ + 2 (Lemma 1). Including blocking paths, the number of unit-weight edges
in a release gadget corresponding to a vertex v of degree d(v) is O(d(v)2) +O(δw) ⊆
O(d̄2) + O(δw). This bound also holds for collection gadgets. Thus, for fixed δ, the
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Algorithm 2. Exploration algorithm hDFS(G, u,w)
Input: A partially explored graph G, a vertex u of G that is visited for the first time, and a

weight w ∈ R≥0 ∪ {∞}.

1: while there is a w′ < w such that w′ occurs in comp(G≤w′ , u) but comp(G≤w′ , u) is not
completely explored do

2: hDFS(G, u, w′)
3: end while
4: choose a minimal spanning tree of comp(G<w, u) and order all vertices according to a depth

first search in this spanning tree
5: while there is a boundary edge (u′, y′) of weight w with u′ ∈ comp(G<w, u) do
6: let (u′, y′) be a boundary edge of weight w with u′ ∈ comp(G<w, u) such that u′ is

minimal with respect to the ordering of comp(G<w, u)
7: traverse a shortest path to y′

8: hDFS(G, y′, w)
9: end while

10: traverse a shortest path to u

resulting graph has a minimum spanning tree of sizeO(nd̄2)+O(nw). Since Blockingδ

traverses all heavy edges (Lemma 2), it incurs a cost of Ω(d̄nw). By choosing d̄ large
in comparison to all constants involved and then choosing w large in comparison to the
constants and d̄2 the competitive ratio becomes arbitrarily large. �	

4 Graphs with a Bounded Number of Distinct Weights

We describe a constant competitive algorithm for a bounded number of distinct weights.

Definition 3. For any graph G, weight w, and vertex u, let comp(G≤w, u) be the con-
nected component of the subgraph of G comprised of all edges of weight at most w
containing u. The graph comp(G<w, u) is defined similarly.

Our algorithm hierarchical depth first search (hDFS), defined in Algorithm 2, explores
comp(G≤w, u) for any weight w ∈ R≥0 ∪{∞}, which is provided as a parameter. The
algorithm is based on a DFS in the graph comp(G≤w, u). However, whenever a new
vertex of this component is encountered, it first explores comp(G<w, u). The algorithm
then intuitively simulates DFS in the graph G/comp(G<w, u). Here G/H denotes the
graph obtained from G by contracting the subgraph H of G to a single point. To ensure
that the total length traversed within H = comp(G<w , u) is not too large, the boundary
edges leaving H are explored according to a specific order. This order is obtained by
computing a depth first search on a minimum spanning tree of comp(G<w, u).

The computation of comp(G<w, u) can be reduced to recursive calls of the algorithm
itself with parameters smaller than w due to the following basic observation:

Lemma 3. The component comp(G<w, u) is completely explored if and only if there
is no boundary edge of weight smaller than w with an end-vertex in comp(G<w, u).

To explore the entire graph starting in vertex s, we call Algorithm 2 as hDFS(Gs, s,∞),
where Gs is the partially explored graph in which only s has been visited so far.
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Theorem 3. hDFS is 2k-competitive on graphs with at most k distinct weights.

Proof. We first prove that all vertices are explored. To prove this it suffices to show
that hDFS(G, s, w) explores comp(G≤w , s). We show this by induction. Suppose there
remains a boundary edge (u, v) with v unexplored after the call hDFS(G, s, w), and
suppose this boundary edge is contained in comp(G≤w, s). By induction (u, v) has
weight w. But u has been explored, thus there is a vertex y which was explored in
a call with parameter w, such that this call caused u to be explored. But then the
call hDFS(G, y, w) causes v to be explored, which gives a contradiction.

Let MST be a minimum spanning tree of G. To show 2k-competitiveness, we show
that for each w < ∞ the sum of all traversals made in calls with parameter w is at
most 2|MST |. For this it suffices to show: If F is a sub-forest of G that contains edges
of weight at most w such that for each vertex u the graph comp(F<w, u) is a minimum
spanning tree of comp(G<w , u), then F is contained in a minimum spanning tree of G.
Finally note that the outer call with parameter w =∞ does not incur any costs. �	

For graphs with arbitrary weights, we adapt the algorithm by rounding each edge
weight to the nearest power of 2 and simulating the exploration on this altered graph.
This yields a competitive ratio of Θ(log(n)) for graphs with n vertices.

5 Concluding Remarks

Our main result is a non-trivial graph construction which proves that Algorithm
Blocking does not have constant competitive ratio on arbitrary graphs. This answers a
longstanding open question. Nevertheless, the result does not generally rule out online
algorithms with constant competitive ratio. In particular, our construction involves only
two distinct types of weights, and thus, our new Algorithm hDFS has constant competi-
tive ratio. However, at present, there is no candidate for an algorithm that may achieve a
constant competitive ratio on general graphs. Of course showing that no such algorithm
exists might require a construction even more complicated than the one presented in
this paper. For such result it might be helpful to use the fact that one can equivalently
consider the exploration model in which the label of a vertex is only revealed upon ar-
rival at the vertex. This can be seen by replacing each vertex by a star with edges of
small weight, and linking the previous neighbors to the outer vertices of the star.
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15. Erdős, P.: Graph theory and probability. Canad. J. Math. 11, 34–38 (1959)
16. Fleischer, R., Trippen, G.: Exploring an unknown graph efficiently. In: Brodal, G.S.,

Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 11–22. Springer, Heidelberg (2005)
17. Fraigniaud, P., Ga̧sieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration. Netw. 48,

166–177 (2006)
18. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Impact of memory size on graph exploration capability.

Discrete Applied Mathematics 156(12), 2310–2319 (2008)
19. Gal, S.: Search Games. Academic Press, London (1980)
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Abstract. Given a graph G = (V, E) with non-negative edge lengths
whose vertices are assigned a label from L = {λ1, . . . , λ�}, we construct
a compact distance oracle that answers queries of the form: “What is
δ(v, λ)?”, where v ∈ V is a vertex in the graph, λ ∈ L a vertex label, and
δ(v, λ) is the distance (length of a shortest path) between v and the clos-
est vertex labeled λ in G. We formalize this natural problem and provide
a hierarchy of approximate distance oracles that require subquadratic
space and return a distance of constant stretch. We also extend our so-
lution to dynamic oracles that handle label changes in sublinear time.

1 Introduction

In this paper we consider an all-pairs shortest paths variant on vertex-labeled
graphs: We are given an undirected graph G = (V,E) with m = |E| edges and
n = |V | vertices. Each edge is assigned a nonnegative length and each vertex
is assigned a label, given as a function λ : V → L, where L = {λ1, . . . , λ�} is
a set of � ≤ n distinct labels. The goal is to preprocess G in order to answer
vertex-label distance queries, i.e. queries of the form: “What is δ(v, λ)?”, where
v ∈ V is a vertex in the graph, λ ∈ L a label, and δ(v, λ) is the distance (length
of a shortest path) between v and the closest vertex labeled λ in G.

Vertex-labeled graphs are commonly used to analyze behaviors and structures
of networks. Typically, labels specify a common functionality of a set of nodes
in the network. Often in such networks we are not interested in shortest paths
between two specific vertices, but rather from a specific vertex to any vertex that
can provide a specific function. For instance, in a computer network labels might
indicate different types of servers in the network, while in an automotive network
they can indicate different services provided for drivers on the road. Common
type of queries in these types of networks include queries such as “What is the
closest FTP server?” or “Where is the closest McDonald’s?”

A simple solution for the above problem is to construct a table indexed by
vertex-label pairs, storing at entry (v, λ) the distance δ(v, λ), thus allowing
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c© Springer-Verlag Berlin Heidelberg 2011
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queries to be answered in O(1) time. Such a table can be constructed with �
calls to a standard single-source shortest-paths algorithm such as Dijkstra’s Al-
gorithm. This is done by constructing for each label λ ∈ L, an auxiliary graph
Gλ, created by removing all vertices labeled λ from G and adding a new vertex
vλ which is adjacent to all neighbors of the removed vertices (using appropriate
minimum edge-lengths). Running Dijkstra’s Algorithm in Gλ from vλ gives all
distances in G to vertices labeled λ. The total running time of this construction
is O(m�) and the space required for the table is O(n�).

There are two problems with this solution. First, the O(n�) space requirement
is unacceptable in many cases, especially when the number of labels � in the graph
is quite large. It is therefore beneficial in these cases to replace this solution by a
more compact data structure, perhaps at the cost of providing only approximate
distances. Such data structures have been coined approximate distance oracles
in the literature. The second problem with the data structure is its inability so
support efficient changes of labels. A change of a label can reflect a change in its
functionality or in availability of services in the network. Indeed, even a single
label change may incur Ω(n) changes in the data structure.

Distance oracles for unlabeled graphs have been studied quite extensively. A
seminal result of Thorup and Zwick [9] achieves for any given integer k ≥ 2, an
O(kn1+1/k) space oracle which returns distances with at most (2k − 1) stretch
in O(k) time. That is, given an input pair of vertices (u, v), the oracle outputs
a distance dist(u, v) with δ(u, v) ≤ dist(u, v) ≤ (2k − 1) · δ(u, v), where δ(u, v)
is the actual distance between u and v. An earlier observation by Matoušek [4]
shows that this is essentially optimal for any k, assuming a conjecture of Erdős [3]
concerning the girth of undirected graphs. A derandomization of the oracle was
presented in [6], and faster construction times where presented in [2] and [1]
with a slight increase of the promised stretch. Recently, Pǎtraşcu and Roditty [5]
showed how to construct, for unweighted graphs, an oracle of size O(n5/3) that,
when queried about a pair of vertices (u, v), returns in O(1)-time a distance
dist(u, v) bounded by δ(u, v) ≤ dist(u, v) ≤ 2δ(u, v) + 1. For further results see
also [5,9].

Applying the existing approximate distance oracles to labeled graphs faces
several obstacles. First of all, one might be tempted to construct an oracle for
the complete bipartite graph B(G) formed on the vertex sets V and L, where
the length of the edge {v, λ} is set to δ(v, λ). However, the oracle constructed for
this graph might output false distances, as paths in B(G) using an intermediate
vertex λ ∈ L do not occur in G. Similarly, the solution that adds a new vertex
for each label, connecting it with zero weight edges to all vertices with the same
label, fails. Another option is to build � different oracles, one per each label. This
unfortunately yields a solution that requires more space than the naive O(n�)
solution described above, even when using the optimal construction of Thorup
and Zwick. Thus, “black-box” solutions such as these are destined for failure.

The next obvious approach is to hack and modify the existing oracles, adapt-
ing them to support vertex-label queries. However, this has difficulties as well.
All known oracles achieving close to optimal stretch are highly dependent on
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knowing both the source and the target vertex. For instance, Thorup and Zwick’s
(2k − 1)-stretch oracles find the path between the pair of query vertices by ad-
vancing from both of them simultaneously. This obviously cannot be applied to
vertex-label queries, as we only know the identity of the source vertex in our
query. There is, however, another oracle scheme by Thorup and Zwick [8] de-
signed for routing that does not switch between query vertices. Oracles produced
by this scheme require O(kn1+1/k) space, and answer queries with 4k−5 stretch
in O(k) time. We show in Section 2 how to adapt this scheme to vertex-label
oracles achieving the same performance.

Theorem 1 (Thorup-Zwick Vertex-Label Distance Oracles). A vertex-
label distance oracle of expected size O(kn1+1/k) with stretch (4k− 5) and query
time O(k) can be constructed in O(kmn1/k) time.

There are two problems with the oracles given by Theorem 1. First, the expected
space of the oracles depends only on the number of vertices in the graph, and
not on the number of labels. This might be too much when � is significantly
smaller than n. For instance, when say � = O(

√
n), the trivial O(n�) solution

discussed above gives an O(n3/2)-space oracle which produces exact distances,
as opposed to the stretch-3 distances returned by the oracle of Theorem 1. This
problem becomes even more apparent when � = polylog(n). The second problem
is that the oracles given in Theorem 1 cannot be adapted to support dynamic
labels efficiently. Indeed, even a single label change requires in the worst case
reconstruction of almost the entire oracle from scratch.

In Section 3, we address the first issue raised above, and give a first step
towards the second issue as well. We show how to construct an alternative scheme
of vertex-label distance oracles which have expected space bounds depending on
both � and n, thereby achieving better bounds than the scheme of Theorem 1.
While the stretch of this scheme grows exponentially in k, we are able to obtain
the same stretch as in Theorem 1 for the cases of k = 2 and k = 3. Furthermore,
for the case of � = polylog(n), our scheme gives an O(n lg n)-space oracle with
constant stretch, while Theorem 1 cannot achieve even poly-logarithmic stretch
within comparable space bounds.

Theorem 2 (Compact Vertex-Label Distance Oracles). A vertex-label
distance oracle of expected size O(kn�1/k) with stretch (2k − 1) and query time
O(k) can be constructed in O(kmnk/(2k−1)) time.

The oracle schemes given by both theorems above still do not support label
changes. Nevertheless, in Section 4 we show how the scheme of Theorem 2 can
be modified in a way that allows oracles supporting such updates in sublinear
time. This results in oracles with size asymptotically the same as the ones given
by Theorem 1, and with stretch slightly bigger then the stretch of the oracles
given in Theorem 2.

Theorem 3 (Dynamic Vertex-Label Distance Oracles). A vertex-label
distance oracle of expected size O(kn1+1/k) with stretch (2 ·3k−1 +1) can support
label changes in O(kn1/k lg n) time and queries in O(k) time.
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We also remark that it is possible to combine our construction with the ideas of
Pǎtraşcu and Roditty [5] to obtain a stretch-3 oracle of expected size O(n5/3),
supporting label changes in in O(n2/3 lg n) time (see Section 4).

2 Adaptation of Thorup-Zwick Oracles

In this section we outline a simple adaptation of Thorup and Zwick’s [9] result
that supports vertex-label distance queries, thus providing a proof for Theorem 1.
Our adaptation is based on an alternative query algorithm given by Thorup and
Zwick in [8]. We will use the following notation throughout the section, and the
remainder of the paper. For a pair of vertices u and v, we let δ(u, v) denote the
distance between u to v, where δ(u, v) =∞ if there is no path connecting them.
For a non-empty vertex-subset S ⊆ V , we let δ(v, S) := minu∈S δ(u, v), and we
set δ(v, ∅) := ∞. For a label λ ∈ L, we denote by δ(v, λ) the distance δ(v, Vλ),
where Vλ := {v ∈ V : λ(v) = λ}.

The data structure. For a given positive integer k, the preprocessing algorithm
of Thorup and Zwick constructs the sets V = A0 ⊇ A1 ⊇ · · · ⊇ Ak−1 ⊇ Ak = ∅.
These sets are referred to as the levels of G, and a vertex v is said to be in
level i if v ∈ Ai. The i-th level Ai is constructed by sampling vertices of Ai−1

independently at random, taking a vertex v ∈ Ai−1 to Ai with probability n−1/k.
For i ∈ {1, . . . , k− 1}, the i-th pivot of a vertex v ∈ V , denoted pi(v), is defined
to be the vertex closest to v in the i-th level of G. That is, δ(v, pi(v)) = δ(v,Ai).
We also set p0(v) := v. The oracle stores for each vertex v, the identity of each
of its k pivots, along with the k distances δ(v, pi(v)). In addition, v stores the
distances to all vertices in its bunch B(v), where

B(v) :=
k−1⋃
i=0

{
u ∈ Ai \Ai+1 : δ(v, u) < δ(v,Ai+1)

}
.

We next describe the additional information that our adaptation requires. For
a label λ ∈ L, define the bunch B(λ) by B(λ) :=

⋃
v∈Vλ

B(v). Now for every
vertex u ∈ B(λ), we define uλ to be the λ-labeled vertex closest to u and that
satisfies u ∈ B(uλ). For each λ ∈ L and u ∈ B(λ), we store the distance δ(u, uλ).
Note that each one of these distances is computed by the original Thorup-Zwick
construction. Furthermore, the additional space required by our construction
does not change the asymptotic size of the original oracles, since∑

λ∈L

|B(λ)| =
∑
λ∈L

∣∣∣ ⋃
v∈Vλ

B(v)
∣∣∣ ≤∑

λ∈L

∑
v∈Vλ

|B(v)| =
∑
v∈V

|B(v)|.

Adapted query algorithm. Our adapted query algorithm examines each of the
k vertices pi(v) for 0 ≤ i < k, starting with p0(v) := v. For each such vertex
w := pi(v), we check if w ∈ B(λ). If so, we declare i to be a valid index and we
compute the distance δ(v, w) + δ(w,wλ) in O(1) time (via hash tables). After
Θ(k) time, our query algorithm returns the distance
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dist(v, λ) := min{δ(v, w) + δ(w,wλ) : w = pi(v) and i is valid }.
The important difference between our query algorithm and that of [8] is that

we need to check all valid indices while [8] can stop when it reaches the first
valid index. In other words, the query algorithm of [8] upon query (v, u) returns
dist(v, u) = δ(v, w) + δ(w, u) where w = pi(v) for the smallest i such that w =
pi(v) ∈ B(u). They show (Lemma A.1 in [8]) that the stretch is then bounded by
dist(v, u) ≤ (4k − 3) · δ(v, u). In our settings, let u be the (unknown) λ-labeled
vertex such that δ(v, u) = δ(v, λ). When we discover the first w = pi(v) ∈ B(λ),
we cannot promise that δ(w,wλ) ≤ δ(w, u) since maybe w �∈ B(u). We can
however guarantee, from the definition of B(λ), that for some i we will have
w = pi(v) ∈ B(u). We therefore have that dist(v, λ) ≤ (4k− 3) · δ(v, λ). Finally,
the same argument used in [8] (Lemma A.2) shows how the stretch bound can
be reduced from (4k − 3) to (4k − 5), thus proving Theorem 1.

3 More Compact Oracles

In what follows we describe our vertex-label distance oracles for vertex-labeled
graphs. In particular, we provide a complete proof of Theorem 2.

3.1 The Data Structure

The first step in constructing our (2k−1)-stretch oracle is similar to the Thorup-
Zwick adaptation of Section 2. For a given positive integer k, we first construct
the sets V = A0 ⊇ A1 ⊇ · · · ⊇ Ak−1 ⊇ Ak = ∅ which will form the levels of G.
However, unlike the construction of Section 2, we select the vertices into levels
with probability depending on �. That is, the i-th level Ai is constructed by
sampling vertices of Ai−1 independently at random, taking a vertex v ∈ Ai−1 to
Ai with probability �−1/k. Thus, for any v ∈ V , the probability that v ∈ Ai for
some i ∈ {0, . . . , k − 1}, is exactly �−i/k. The following bound on the expected
size of Ai follows immediately:

Lemma 1. E[|Ai|] = n�−i/k for each i ∈ {0, . . . , k − 1}.
The idea of sampling vertices with probability independent of n was already
suggested by Roditty, Thorup, and Zwick in [6]. The problem they considered
was a distance oracle that answers δ(u, v) queries where u can be any vertex but
v is known to belong to some subset S ⊂ V . For this problem, they showed that
if we sample vertices with probability |S|−1/k then the original Thorup-Zwick
oracle works and requires only O(n|S|−1/k) space. For our problem however,
the original Thorup-Zwick oracle can not be made to work if we sample with
probability �−1/k. This is because we are not dealing with a set of vertices but
rather with a set of sets (the set of labels where each label is a set of vertices). We
now show how to overcome this by presenting a different oracle that in particular
uses balls instead of bunches.

For a vertex v ∈ Ai\Ai+1, we define the ball of v to be the set of labels B(v) of
all vertices in G that are closer to v than Ai+1. That is, B(v) = {λ(u) : δ(u, v) <
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δ(v,Ai+1)}. Notice the difference between our balls and Thorup-Zwick’s bunches.
Each vertex stores all the labels in its ball in an appropriate hash table which
allows us to determine in O(1) time whether λ ∈ B(v), for any label λ ∈ L.
Furthermore, we store the distances δ(v, λ) to each label λ ∈ B(v), allowing
O(1) answers to vertex-label queries for labels appearing inside the ball of the
query vertex. Note that as Ak = ∅, we have δ(v,Ak) = ∞ for all v ∈ V , and so
B(v) = L for any vertex v ∈ Ak−1. Nevertheless, the following lemma shows that
the expected number of labels is not big at vertices appearing in lower levels.

Lemma 2. E[|B(v)|] ≤ �(i+1)/k for any vertex v ∈ Ai \Ai+1, i ∈ {0, . . . , k− 1}.
To complete the description of our distance oracle, we assign routers to the
vertices in our graph. For a vertex v ∈ Ai \ Ai+1, i ∈ {0, . . . , k − 2}, we let the
router of v, denoted r(v), be a vertex for which δ(v, r(v)) = δ(v,Ai+1). That is,
r(v) is the closest vertex to v at the next level of G. Since vertices at level k− 1
have no vertices at the next level, we set r(v) = v for all v ∈ Ak−1. Along with
the ball of labels B(v) stored at each vertex v ∈ V , our distance oracle also stores
at v the identity of its router r(v), together with the distance δ(v, r(v)). Thus,
the total space required by our data structure is (asymptotically) the total sizes
of the balls B(v), which can easily be bounded using Lemma 1 and Lemma 2.

Lemma 3. The expected space of our data structure is O(kn�1/k).

3.2 Vertex-Label Queries

We next proceed to describe how a vertex-label query is processed. Let (v ∈
V, λ ∈ L) denote an input vertex-label pair. The query algorithm starts by
determining whether λ is in the ball of v. If so, the exact distance δ(v, λ) is
retrieved immediately. Otherwise, it hops to the router of v, and continues the
search there. If λ /∈ B(r(v)), the algorithm hops to the router of r(v), and so
forth.

To be more precise, let us introduce the following notation: For i ∈ {0, . . . , k−
1}, we let ri denote the vertex r(i)(v), where r(i) is the function resulting in
concatenating r with itself i times. That is, ri = r(ri−1) for i ∈ {1, . . . , k − 1},
and r0 = v. (Again, notice the difference between these routers and the pivots of
Section 2.) The query algorithm determines the smallest integer i0 ∈ {0, . . . , k−
1} for which λ ∈ B(ri0 ), and returns the distance

dist(v, λ) :=
∑

0≤i<i0

δ(ri, ri+1) + δ(ri0 , λ).

See Figure 1 for an example. Note that as rk−1 ∈ Ak−1, we have λ ∈ B(rk−1),
and so i0 is well-defined. Furthermore, the path from v to ri0 , and then from ri0

to a vertex labeled λ, gives a path from v to a vertex labeled λ as required.
Determining the smallest integer i0 for which λ ∈ B(ri0 ) takes O(k) time, by

iteratively hopping through the ri’s. Furthermore, as the distances δ(ri, ri+1),
for i ∈ {0, . . . , i0 − 1}, have been stored by our data-structure, along with the
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Fig. 1. An example of the query procedure for k = 4. The input to the query is (v, 1),
and the arrows depict the output path. The dashed circles around v, r1, r2, and r3

represent the balls around them. The gray colored vertices are the vertices which are
stored at each ball (the distances are assumed to be Euclidean).

distance δ(ri0 , λ), we can report the resulting distance dist(v, λ) in O(k) time
as well. This gives us the promised O(k) query time of Theorem 2. The next
lemma shows that the stretch of our query is also as stated in Theorem 2:

Lemma 4. δ(v, λ) ≤ dist(v, λ) ≤ (2k − 1) · δ(v, λ) for all (v, λ) ∈ V × L.

Proof. Let (v, λ) ∈ V × L, and let i0 ∈ {0, . . . , k − 1} denote the smallest
integer for which λ ∈ B(ri0 ). Then dist(v, λ) :=

∑
0≤i<i0

δ(ri, ri+1) + δ(ri0 , λ),
where r0 := v and ri := r(ri−1) for all i ∈ {1, . . . , k − 1}. The lower bound
δ(v, λ) ≤ dist(v, λ) in the lemma follows from the fact that dist(v, λ) is the
length of an actual path from v to a vertex labeled λ. The proof of the upper
bound relies on the following crucial inequality which follows from our definition
of the balls B(v), and from the fact that λ /∈ B(ri) for all i ∈ {0, . . . , i0 − 1}:

δ(ri, ri+1) ≤ δ(ri, λ) for all i ∈ {0, . . . , i0 − 1}. (1)

As an intermediate step in proving the upper bound, we use (1) to prove
inequality (2) below by induction on i:

δ(ri, λ) ≤ 2i · δ(v, λ) for all i ∈ {0, . . . , i0}. (2)

For i = 0, we have δ(r0, λ) = δ(v, λ) so (2) holds. Assume therefore that i > 0,
and that (2) holds for all j < i. By the triangle-inequality, we get the following
bound δ(ri, λ) ≤ ∑0≤j<i δ(rj , rj+1) + δ(v, λ). Thus, by (1) and our inductive
hypothesis we have:

δ(ri, λ) ≤∑0≤j<i δ(rj , rj+1) + δ(v, λ)
≤∑0≤j<i δ(rj , λ) + δ(v, λ)
≤∑0≤j<i 2j · δ(v, λ) + δ(v, λ)
= 2i · δ(v, λ).
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Inequality (2) therefore holds. Now, using (1) and (2) the upper bound easily
follows as

dist(v, λ) =
∑

0≤i<i0
δ(ri, ri+1) + δ(ri0 , λ)

≤∑0≤i<i0
δ(ri, λ) + δ(ri0 , λ)

≤∑0≤i<i0
2i · δ(v, λ) + 2i0 · δ(v, λ)

= (2i0+1 − 1) · δ(v, λ).

This proves the upper bound in the lemma, since i0 ≤ k − 1. �	

3.3 Construction

The time to construct the data structure is composed of two parts. The first is
the time to find for every vertex v the distance from v to all vertices B̂(v) =
{u : δ(u, v) < δ(v,Ai+1)}. Observe that B(v) can be immediately obtained
from B̂(v). A simple modification of Dijkstra’s Algorithm starting from source v

computes B̂(v) by inspecting only |B̂(v)| vertices. The inspected edges are only
edges (u,w) where u ∈ B̂(v) or w ∈ B̂(v). There are at most n · |B̂(v)| such
edges so the total expected time complexity is∑

i

∑
v∈Ai\Ai+1

n · E[|B̂(v)|] = kn2�1/k = O(kn2+1/k).

The second (and dominating) term of the construction time is to find δ(v, λ)
for every v ∈ Ak−1 and every λ ∈ L. This can either be done by running (the
standard version of) Dijkstra’s Algorithm from � sources in total O(m�) time, or
from |Ak−1| sources in total O(m · |Ak−1 |) time. The value O(m ·min{�, |Ak−1|})
is maximized when � = |Ak−1| = n/�1−1/k and amounts to O(mnk/(2k−1)). This
concludes the proof of Theorem 2.

4 Oracles Supporting Dynamic Labels

In this section we consider the situation where the labels may change dynami-
cally. That is, we want a distance oracle that not only supports the usual vertex-
label distance queries, but also supports updates of the form change(v, λ), for
v ∈ V and λ ∈ L, which sets the label of v to be λ and leaves all labels of
vertices in V \ {v} unchanged. We will show how to modify the oracle scheme
of Section 3 so that it supports such queries, at an increase to the stretch and
space of the constructed oracles. The main difficulty in achieving this comes
from the fact that a vertex may be present in Ω(n) balls, and thus a change in
its label may require updating Ω(n) hash-tables. The following describes how to
overcome this.

4.1 The Data Structure

The construction of our dynamic distance oracle scheme is similar to the con-
struction of Section 3. Below we focus on the main changes. As in Section 3, we
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first select the sets of vertices V = A0 ⊇ A1 ⊇ . . . ⊇ Ak−1 ⊇ Ak = ∅. However,
here we select the vertices in the levels with probability depending on n, as in
Section 2. That is, we select Ai by sampling vertices of Ai−1 independently at
random with probability n−1/k. Thus, the probability that an arbitrary vertex
v ∈ V is in Ai is exactly n−i/k, and the expected-size of Ai is n1−i/k. Again, the
sets Ai are referred to as the levels of G, and we designate for each vertex v ∈ V
a router r(v) ∈ V , defined identically as in Section 3.

The main difference between our static and dynamic schemes lies in the def-
inition of balls. Here our balls will be sets of vertices instead of sets of labels.
Moreover, we store half-balls rather than balls. For a vertex v ∈ Ai\Ai+1, we de-
fine the half-ball of v as the set of vertices B

1
2 (v) := {u : δ(u, v) < 1

2 · δ(v, r(v))}.
That is, a vertex u is in B

1
2 (v) if it is closer to v than half the distance from v

to its router. We also define the cluster C(v) of a vertex v ∈ V to be the set of
all vertices for which v is in their half-ball. That is, C(v) := {u : v ∈ B

1
2 (u)}.

Let us next describe the exact information stored for each vertex v ∈ V . First,
we store the cluster C(v) of v, along with all distances δ(v, u) for u ∈ C(v).
Second, we store all distances to vertices u in the half-ball B

1
2 (v) of v. The

distances to vertices in the half-ball are organized into heaps, one per each label
appearing in B

1
2 (v), that support the following three generic operations:

– insert(δ): insert a new distance δ into the heap.
– remove(δ): remove an existing distance δ from the heap.
– minimum(): return the minimum distance in the heap.

A standard construction of a heap supports the first two operations above in
O(lg n) time (even O(lg lg n) time if the edge lengths are integral [10]), while
minimum() requires constant time. Apart from the cluster C(v), the heaps, the
router r(v) and the distance δ(v, r(v)), we also store a hash table at v which
allows us to determine in O(1) time whether there exists a vertex labeled λ in
B

1
2 (v), given any label λ ∈ L. In Section 4.2 below we show that the expected

size of C(v) is O(kn1/k) for every vertex v ∈ V . All other information stored at
v is asymptotically at most |B 1

2 (v)|, which by similar arguments as those used
in Section 3, can also be bounded by O(kn1/k) in expectation. Thus, the total
size of our data structure can be bounded as in the lemma below.

Lemma 5. The expected size of our data structure is O(kn1+1/k).

4.2 Label Changes

We next turn to describe how our oracle supports updates of the form
change(v, λ). The key idea is to use the information stored at the cluster C(v)
of v. We begin by bounding the size of C(v) in expectation.

Lemma 6. E[|C(v)|] ≤ kn1/k for any vertex v ∈ V .

Proof. For i ∈ {0, . . . , k − 1}, let Ci(v) denote the set of vertices u ∈ Ai \ Ai+1

for which v ∈ B
1
2 (u). To prove the lemma, we show that the expected size of
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Ci(v) is bounded by n1/k. This indeed proves the lemma, since C(v) =
⋃

i Ci(v),
and so by linearity of expectation we get

E[|C(v)|] =
∑

i

E[|Ci(v)|] ≤
∑

i

n1/k = kn1/k.

For this, let Bi+1(v) denote the set of all vertices u ∈ Ai \ Ai+1 closer to
v than Ai+1, i.e. Bi+1(v) := {u ∈ Ai \ Ai+1 : δ(v, u) < δ(v,Ai+1)}. We first
argue that the expected size of Bi+1(v) is at most n1/k using a similar argument
as the one used in Lemma 2. Indeed, the size of Bi+1(v) can be bounded by
the first location of a vertex from Ai+1 in the list of all vertices in Ai sorted
in increasing distance from u. Thus, E[|Bi+1(v)|] is bounded from above by a
geometric random variable with rate n−1/k, and so E[|Bi+1(v)|] ≤ n1/k.

To complete the proof of the lemma, we argue that Ci(v) ⊆ Bi(v). Consider
an arbitrary vertex u ∈ Ai \Ai+1, and suppose that u /∈ Bi+1(v). Let w ∈ V be a
vertex satisfying δ(v, w) = δ(v,Ai+1). Then δ(u, r(u)) ≤ δ(u,w), since w ∈ Ai+1

and δ(u, r(u)) = δ(u,Ai+1) by definition. Furthermore, as u /∈ Bi+1(v), we have
δ(v, w) ≤ δ(v, u). Thus,

δ(u, r(u)) ≤ δ(u,w) ≤ δ(u, v) + δ(v, w) ≤ 2δ(u, v),

and so v /∈ B
1
2 (u) by definition. It follows that u /∈ Ci(v), and so Ci(v) ⊆ Bi(v).

�	
The idea behind our label changing procedure is simple: Given an update request
of the form change(v, λ), we check which half-balls v belongs to using C(v),
and update the corresponding heaps at each half-ball. More precisely, for each
vertex u for which v ∈ B

1
2 (u), we perform a remove(δ) operation on the λ(v)-

heap of u with δ := δ(u, v), and perform an insert(δ) operation on the λ-heap
with the same δ. This requires O(lg n) time for each vertex u with v ∈ B

1
2 (u),

i.e. u ∈ C(v), since the distance δ(u, v) is stored in C(v). Thus, according to
Lemma 6, we get the following processing time for each label update.

Lemma 7. The time required for computing change(v, λ) is O(kn1/k lg n).

4.3 Vertex-Label Queries

The query procedure of our oracle is similar to the algorithm in Section 3.2.
Again the routers r0, . . . , rk−1 are defined by r0 := v and ri := r(ri−1) for i ∈
{1, . . . , k− 1}. The algorithm determines the smallest integer i0 ∈ {0, . . . , k− 1}
for which λ ∈ B

1
2 (ri0 ), and returns the distance

dist(v, λ) :=
∑

0≤i<i0

δ(ri, ri+1) + δ(ri0 , λ).

The distance δ(ri0 , λ) is retrieved via a single minimum() query to the λ-heap
stored at B

1
2 (ri0 ). The total running-time of our query algorithm is thus O(k).

The next lemma bounds the stretch of the output dist(v, λ), completing the
proof of Theorem 3.
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Lemma 8. δ(v, λ) ≤ dist(v, λ) ≤ (2 · 3k−1 − 1) · δ(v, λ) for any (v, λ) ∈ V × L.

Proof. Let (v, λ) ∈ V ×L, and let i0 ∈ {0, . . . , k−1} denote the smallest integer
for which λ ∈ B

1
2 (ri0 ). We use the following inequality which follows from our

definition of the half balls B
1
2 (v), and from the fact that λ /∈ B

1
2 (ri) for all

i ∈ {0, . . . , i0 − 1}:
δ(ri, ri+1) ≤ 2 · δ(ri, λ) for all i ∈ {0, . . . , i0 − 1}. (3)

Using induction on i and (3), one can show the following inequality holds in a
similar manner as was done in the proof of Lemma 4:

δ(ri, λ) ≤ 3i · δ(v, λ) for all i ∈ {0, . . . , i0}. (4)

Thus, we get

dist(v, λ) =
∑

0≤i<i0
δ(ri, ri+1) + δ(ri0 , λ)

≤∑0≤i<i0
2 · δ(ri, λ) + δ(ri0 , λ)

≤∑0≤i<i0
2 · 3i · δ(v, λ) + 3i0 · δ(v, λ)

= (2 · 3i0 − 1) · δ(v, λ),

which proves the lemma since i0 ≤ k − 1. �	
This completes the proof of the first part of Theorem 3.

4.4 Small Stretch vs. Efficient Update/Space

We conclude this section by showing that by combining our construction with
some of the ideas in [5], it is possible to achieve a stretch-3 oracle with space
O(n5/3) and label-update time O(n2/3 lg n). Thus, this oracle gives a better
stretch than the stretch-5 given by the oracle of Theorem 3, but requires sub-
stantially more space and label-update time.

Consider our construction for k = 2. Then G has three levels V := A0 ⊇
A1 ⊇ A2 := ∅, with only A1 non-trivial. In contrast to our original construction,
we consider balls, rather than half-balls, around vertices of G. That is, the set
B(v) := {u ∈ V : δ(v, u) < δ(v, r(v))} for v ∈ V . Pǎtraşcu and Roditty [5] show
how to randomly select the set A1 such that the following three properties hold:

– E[|A1|] ≤ n2/3.
– E[|B(v)|] ≤ n1/3 for any v ∈ A0 \A1.
– E[|C(v)|] ≤ 2n2/3 for any v ∈ V .

The first two properties imply that our oracle requires O(n5/3) space since
we store all O(n4/3) distances δ(u, v) for which u ∈ V and v ∈ A0 \A1, and all
O(n5/3) distances δ(u, v) for which u ∈ V and v ∈ A1. The last property implies
that, as in Section 4.2, we can support label updates for any v ∈ V in O(n2/3 lg n)
time. Moreover, since we store distances in balls, rather than half-balls, the
stretch analysis of Lemma 4 applies for this construction. Plugging k := 2 in
Lemma 4, we get an O(n5/3)-space oracle with stretch 3 and O(n2/3 lg n) label
update time.
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5 Discussion

In this paper we defined the natural generalization of distance oracles to vertex-
labeled graphs and provided small space and stretch approximate distance or-
acles. Observe that the known lower bounds [5,7,9] for unlabeled graphs apply
for the generalization when all vertices are uniquely labeled. These lower bounds
imply that for any fixed k ≥ 1, any oracle with stretch 2k−1 requires Ω(n1+1/k)
space. Thus, our O(n�1/2)-space oracle with stretch 3 is optimal up to a loga-
rithmic factor. However, we do not know of any better lower bounds, even more
so for the dynamic case. Considering this, we list below the important open
questions that remain from our work:

1. Is there a vertex-label (2k− 1)-stretch oracle scheme with O(kn1+1/k) space
and O(k) query time?

2. Is it possible to get a general scheme of space O(kn�1/k), with poly(k) stretch
and O(k) query time?

3. Can one get a scheme as in (2) that also supports efficient label updates?
4. Are there O(kn�1/k)-space oracles supporting efficient label updates?
5. Are there O(n3/2)-space oracles with stretch-3 constant-time queries and

O(n1/2) label updates?
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Abstract. We propose a new protocol for the fundamental problem
of disseminating a piece of information to all members of a group of n
players. It builds upon the classical randomized rumor spreading protocol
and several extensions. The main achievements are the following:

Our protocol spreads a rumor from one node to all other nodes in the
asymptotically optimal time of (1 + o(1)) log2 n. The whole process can
be implemented in a way such that only O(nf(n)) calls are made, where
f(n) = ω(1) can be arbitrary.

In spite of these quantities being close to the theoretical optima,
the protocol remains relatively robust against failures; for random node
failures, our algorithm again comes arbitrarily close to the theoretical
optima.

The protocol can be extended to also deal with adversarial node fail-
ures. The price for that is only a constant factor increase in the run-time,
where the constant factor depends on the fraction of failing nodes the
protocol is supposed to cope with. It can easily be implemented such
that only O(n) calls to properly working nodes are made.

In contrast to the push-pull protocol by Karp et al. [FOCS 2000],
our algorithm only uses push operations, i.e., only informed nodes take
active actions in the network. On the other hand, we discard address-
obliviousness. To the best of our knowledge, this is the first randomized
push algorithm that achieves an asymptotically optimal running time.

1 Introduction

Broadcasting a piece of information (“rumor”) from one node (“source”) to all
nodes of a network is a classical problem in computer science. The standard
model assumes that each node calls at most one node per unit of time. In con-
sequence, if only informed nodes place a call at least #log2 n$ rounds are needed
to spread a rumor to n nodes. Using a broadcast tree that spans the network
this bound can be achieved. Such deterministic protocols, however, are vulner-
able against failures. In addition, the broadcast tree depends on the source; for
each source, each node has to compute or store which neighbors to contact upon
receiving the rumor from that source. In consequence, when the network grows,
the broadcast tree has to be recomputed.
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A protocol surprisingly powerful that overcomes these problems is called ran-
domized rumor spreading, see, e.g., Feige, Peleg, Raghavan, and Upfal [11], Frieze
and Grimmett [13], Karp, Schindelhauer, Shenker, and Vöcking [14]. It proceeds
in rounds as follows: in each round, each node that already knows the rumor
chooses a communication partner uniformly at random and sends her a copy of
this rumor. Thus, each node runs the same randomized process independent of
the source node.

In spite of being that simple, this protocol succeeds in spreading the rumor
to all nodes of a complete graph in (1 + o(1))(log2 n + lnn) rounds with high
probability, i.e., with probability 1−o(1). Due to its randomized nature, it is also
highly robust against different types of transmission or node failures. Finally, it
can handle changes in the size of the network easily.

Feige et al. [11] therefore argue that randomized broadcast algorithms have
at least three advantages: simplicity, scalability and robustness.

A clear disadvantage of this simplest version of randomized rumor spread-
ing, however, is the large number of Θ(n log n) calls that are necessary. This
was overcome in the seminal work by Karp et al. [14]. They present two varia-
tions of the randomized rumor spreading protocol which spread the rumor with
O(n log log n) messages only while still using O(log n) rounds. Their second pro-
tocol is also robust against node failures. A central ingredient are pull operations,
which allow nodes not yet informed to call random nodes and ask for news. Pull
operations, however, have the disadvantage that they create network traffic even
if there is no news to be spread. Hence, the assumption underlying the model
by Karp et al. [14] is that new rumors are constantly injected into the network.

In this work, we present an alternative solution to the problem. It completely
avoids the problematic pull operations. It achieves a broadcast time of (1 +
o(1)) log2 n and it uses a total number O(nf(n)) calls, where f = ω(1) can be any
function tending to infinity arbitrarily slow. This is very close to the theoretically
optimal values of #log2 n$ rounds and n−1 calls. Still the protocol is very simple;
every node follows the same (randomized) process. Due to its randomized nature,
we still have reasonable robustness. For example, if a constant fraction of the
nodes chosen uniformly at random crashes at arbitrary times, the time needed to
inform all properly working nodes increases by at most a constant factor. Also,
if the network size changes, no significant changes are necessary.

The only point in which we assume the protocol to be more powerful com-
pared to previous works is that we discard the address-obliviousness. That is, we
assume that each node has a unique label chosen arbitrarily from some ordered
set (e.g., the integers). This seems to be reasonable in many settings.

1.1 The Protocol by Karp et al. [14]

As described above, Karp et al. [14] showed how to modify the simple random-
ized rumor spreading protocol such that instead of Θ(n log n) messages only
O(n log log n) are sufficient to spread a rumor. Roughly speaking, their protocol
proceeds as follows. The rumor is equipped with a time stamp (or age counter) in
such a way that all nodes that receive the rumor also know for how many rounds
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it has been in the network. In each round, each node chooses a random other
node as a communication partner. The communication then proceeds in both
directions, that is, any partner who knows the rumor forwards it to the other
partner. In particular, it is shown that after only log3 n + Θ(log log n) rounds
of this protocol, all nodes know the rumor with high probability. In addition, a
rumor is transmitted in this time interval at most O(n log log n) times.

Note that this way of counting ignores all communication effort which does
not result in a rumor to be sent. In particular, all calls between two uninformed
nodes that arise due to pull operations are not counted. The way this is usually
justified is by assuming that there is sufficient traffic in the network due to regular
insertions of new rumors. Still, we feel that this is slightly dissatisfying. Note
that when using pull operations, there is no way to avoid such communication
overhead—a node that did not receive a rumor recently has no way of finding
out whether there are rumors around that justify starting pull operations or not.
Even nodes that did receive a rumor recently cannot be sure that there is no
new rumor that would justify starting pull operations again.

Karp et al. [14] further extend the protocol just sketched to improve its ro-
bustness. The one above greatly relies on a very precise estimate of the time
when to stop sending on the rumor (here, log3 n + Θ(log log n)). With transmis-
sion failures present, the initial phase of exponential growth might take longer. If
this time span is not correctly guessed by the protocol, either nodes remain unin-
formed, or for too long a time Θ(n) nodes keep sending out the rumor, leading to
too many messages sent. This problem is overcome by a clever median-counting
trick. Here, very roughly speaking, nodes average their estimation on how well-
known the rumor is with the estimations of their communication partners. This
allows the following robustness result. An adversary may specify a set F of nodes
together with arbitrary times at which each of them drops out the game. Never-
theless, within O(log n) rounds and using O(n log log n) messages, all but O(|F|)
nodes are informed. Note that this does allow that up to O(|F|) ‘innocent’ nodes
(that work properly) remain uninformed.

Karp et al. [14] also prove lower bounds, which show that if in each round
all communication is restricted to random matchings of communication partners
(i) any address-oblivious algorithm has to make Ω(n log log n) calls and (ii) that
any algorithm informing all but a o(1) fraction of the vertices in logarithmic
time has to make ω(n) calls.

1.2 Our Results

The first lower bound stated in the previous paragraph suggests that asking
for an address-oblivious protocol may result in only a limited performance be-
ing achievable. In addition, one might also wonder if really many broadcasting
problems ask for address-oblivious protocols, or if not rather in the majority of
settings each participant naturally has a unique address, simply to organize the
transport of a message to an addressee.

In this work, we shall drop the requirement of address-obliviousness. How-
ever, we shall keep the concept of contacting random neighbors without any
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preference, as this seems to be the key to obtaining good broadcasting times,
robustness, scalability and small number of calls in all previous works.

Contrary to the model by Karp et al. [14], we do not perform pull operations;
all transmissions are initiated by nodes that know the rumor. In consequence,
the only direction of informing is from the initiator of the transmission to its
addressee, which is chosen uniformly at random, but not always independently.

We do allow, however, two-way communication, in that the addressee ac-
knowledges his readiness to receive the rumor or his knowledge of the rumor.
Such a mechanism makes sense anyway, because it allows to reduce the amount
of data sent through the network (if the addressee cannot receive the rumor or
already knows it, we do not need to send it). In practice, most communication
protocols (e.g., the standard network protocol FTP) allow some kind of two-way
communication to ensure an error-free transmission.

In this, as we think, natural setting, we propose a protocol that needs only
(1+o(1)) log2 n rounds and nf(n) calls, where f = ω(1) can be chosen arbitrarily.
Note that no protocol that only uses push operations can work in less than
#log2 n$ rounds or using less than n− 1 calls.

More precisely, we have the following trade-off between rounds and mes-
sages. For all f : N → N, we give a protocol that needs only log2(n) + f(n) +
O(f(n)−1 log n) rounds with high probability and O(nf(n)) calls. In terms of
run-time, this is optimal for f(n) = Θ(

√
log n), leading to log2 n + O(

√
log n)

rounds and O(n
√

log n) calls.
The protocol in its basic version is very simple. For the presentation, let us

assume that the nodes are numbered from 1 to n, even though what we really
need is only that nodes are able (i) to compute the label of a node chosen
uniformly at random and (ii) given a label of a node, to compute a uniquely
defined successor along a cyclic order of the labels (label plus one, modulo n).

Let f : N → N be given (to formulate the tradeoff scenario). Then the basic
protocol works as follows. Each newly informed node sends its first message to
another node chosen uniformly at random. From then on, it does the following. If
the previous message was sent to a node that was not informed yet, then the next
message is sent to the successor of that node in the cyclic order. Otherwise, the
next message is sent again to a node chosen uniformly at random. After having
encountered f(n) nodes that were already informed, the node stops and does
not transmit the rumor anymore. This protocol can be interpreted as a variant
of the quasirandom rumor spreading protocol investigated in [5, 6]. In contrast
to the latter, all nodes have the same cyclic permutation and can re-start at a
random position when they call a node that is already informed.

Despite its simplicity, this protocol shows a good robustness against random
node failures. When a randomly chosen fraction of 1− p of all nodes fails at ar-
bitrary times, where p ∈ (0, 1], we still have a running time of (1 + o(1)) log1+p n
with high probability. Similar arguments as for the #log2 n$ lower bound in the
error-free case show that #log1+p n$ is a valid lower bound on the expected num-
ber of rounds needed to distribute the rumor. Thus, we achieve an asymptotically
optimal running time even under the presence of random node failures.
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Similar to the basic protocol by Karp et al. [14], however, this protocol is not
very robust against adversarial node failures. If an adversary chooses a large
consecutive segment of the nodes to be out of order (say � nodes), then there
is a reasonable chance (of �

2n ) that the first transmission ever sent hits the first
half of this ‘failed’ segment, and no progress is made for the next �/2 rounds.

We develop a number of enhancements to cope with such problems. Together,
they yield the following. For a given security parameter p ∈ (0, 1], we have a
protocol that is robust against adversarial node destruction of up to (1 − p)n
nodes, i.e., an adversary may destruct arbitrary nodes (excluding the initially
informed node) at the beginning of each round such that in total up to (1− p)n
nodes are destructed. Such failed nodes do not answer calls directed to them,
nor do callers get a feedback if other nodes tried to call a failed node before (this
is what causes most of the difficulties). In spite of this strong adversarial setting,
we do inform all non-destructed nodes in (1 + ε)(log1+p n + 1−p

p lnn) rounds
for any constant ε > 0, while using O(n) calls to properly-working nodes. The
main difficulty in designing such a protocol lies in balancing out the following
two effects: on the one hand, a node should not fall back to sending a random
message after encountering failed nodes too early, as this would destroy the
advantage of following the given order of nodes. On the other hand, in order to
be able to cope with long segments of failed nodes, in particular in the early
stages of the protocol, such random restarts are necessary.

The main technical difficulty in the analysis of the proposed protocols is that
the transmission of messages at each node is not independent, and thus, many
classical tools cannot be employed. The key to the solution here is to exploit
the existing independence stemming from communications started with random
partners. Due to lack of space, most proofs are deferred to the appendix.

In summary, we show that considerable improvements over the fully indepen-
dent rumor spreading protocol are possible if we do not require the protocol to be
address-oblivious. It is thus worth questioning whether the address-obliviousness
assumption is really needed in previous applications of the protocol. From the
methodological side, our results again show that spicing up randomized algo-
rithms with well-chosen dependencies can yield additional gains. The theoretical
analysis might become more complicated, but not so much the algorithm itself.

1.3 Disclaimers

Applications: For reasons of space, we do not give extensive details on ran-
domized rumor spreading and its applications. The seminal papers Feige et al.
[11] and Karp et al. [14] contain great discussions of this, better than we could
possibly do here. For reports on the actual use of such protocols, see Demers,
Greene, Hauser, Irish, Larson, Shenker, Sturgis, Swinehart, and Terry [4] and
Kempe, Dobra, and Gehrke [15].

Other network topologies: Randomized rumor spreading can be used on
all types of network topologies. Nodes then choose their communication part-
ners at random from the set of their neighbors. For many network topologies,
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broadcast times logarithmic in the number of nodes have been shown. Besides
the complete graph, they include hypercubes [11], random graphs G(n, p) with
p ≥ (1+ε) ln(n)/n [11] and certain expander graphs [16]. Recently, Chierichetti,
Lattanzi, and Panconesi [3] showed that rumor spreading is doable in logarith-
mic time for graphs of bounded conductance. Doerr, Fouz, and Friedrich [7]
showed that a sublogarithmic time can be achieved for social networks modelled
by preferential attachment graphs. For Cayley graphs [9] and random geometric
graphs [2], the bounds of O(diam(G)+log n) are known. In spite of these results,
we focussed on the setting where each node has a direct way to communicate with
each other node. The reason is that we feel that this is a sufficiently interesting
and useful case on its own. Also, of course, it is the setting in which it is easiest
to experiment with new ideas. Recall that the concept of reducing the number
of messages was also first demonstrated on complete graphs by Karp et al. [14].
Only much later, similar results were obtained for other graph classes [1, 8, 10].

2 The Basic Protocol

Let G = (V,E) be the complete, undirected graph on n nodes. We assume that
the nodes of the complete graph are ordered and denote by i the i-th node
according to that order. Our goal is to spread a rumor known initially to one
node to all nodes in V . We call the node initiating the rumor the starting node. A
rumor can be transmitted along each edge of the graph in both directions. Every
transmission is always initiated by a node that knows the rumor. We count every
contact of a node to another node as a call. For simplicity, we assume that two
nodes never call a node exactly simultaneously even if they both call the same
node in the same round; thus, a node is only informed by a single node.

We introduce a simple algorithm that for a certain instantiation achieves, up
to lower order terms, an optimal running time. The algorithm is related to the
quasirandom protocol by Doerr et al. [5]. There, every node v is equipped with
a cyclic permutation πv : V → V of all nodes in V . Once a node v becomes
informed, it chooses one position on its list uniformly at random and contacts
the corresponding node in the next round. In each following round, v proceeds
according to its permutation πv, i.e, if v contacted u in the previous round, it
now contacts πv(u). Note that different nodes can have different permutations.

Our basic protocol differs from this quasirandom protocol in two main as-
pects. First, the permutations of all nodes are identical. Second, we introduce
the notion of a restart : if a node calls an already informed node, it chooses a
random communication partner in the next round instead of choosing the next
one according to the permutation. Each node performs R such restarts, where
R is a parameter of the protocol that can be a function of n, and then termi-
nates its rumor spreading. Thus, once a node has called R + 1 informed nodes,
it stops. This rule allows us to bound the total number of calls made. Note that
the aspect of keeping the number of calls small was not discussed in [5].

A detailed description of the basic protocol is given in Algorithm 1, where we
denote by j + 1 the successor of j according to the chosen permutation.
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The only exception is the starting node. Since there are no other informed
nodes yet, there is no need for the starting node to select a random communica-
tion partner at the beginning. Thus, it starts informing its own successor node
(according to the given permutation) immediately. Only after it encounters the
first informed node does it then proceed according to Algorithm 1.

Algorithm 1. Procedure started by newly informed node

let R ∈ Z+ be the number of random calls per node
for i = 1 to R do

select node j uniformly at random;
while j not informed // iteration counts as call even if j informed

do
inform j; j ← j + 1;

2.1 Running Time and Number of Calls

We give an upper bound and an almost matching lower bound on the number
of rounds and calls needed by the protocol to spread a rumor from an arbitrary
starting node to all nodes of the complete graph.

Theorem 1. Let ε > 0 be an arbitrarily small constant. With probability 1 −
o(1), the protocol with R random calls per node informs all nodes in

log2(n) + (1 + ε) ln(n)/R + R + h(n), if R ≤
√

lnn

log2(n) + (2 + ε)
√

ln(n), if R ≥
√

lnn

rounds and n(R + 1) calls, where h(n) is a function of arbitrarily slow growth.

Note that by adjusting the stopping parameter R, we get a tradeoff between the
number of rounds needed to inform all nodes and the number of calls.

Before analyzing the protocol for general R, we describe two special cases
that achieve an (almost) optimal number of rounds and calls, respectively. For
R =

√
ln n, we achieve, up to a lower order term, an optimal running time

while using only O(n
√

lnn) calls. For R = 1, we get a very simple broadcasting
protocol that, up to constant factors, is both optimal in terms of rounds needed
as well as the number of calls.

Corollary 1. Let ε > 0 be an arbitrarily small constant. With probability 1 −
o(1), the protocol with

– R =
√

lnn informs all nodes in log2(n) + (2 + ε)
√

lnn rounds using 2(1 +
2ε)n
√

lnn calls,
– R = 1 informs all nodes in log2(n) + (1 + ε) lnn rounds using 2n calls.

Before we prove Theorem 1, we make two useful observations for any R ≥ 1.

Fact 1. The protocol is always at least as fast as the quasirandom model imple-
mented with identical lists.
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This observation follows from the fact that every node acts as in the quasirandom
model until it encounters an informed node. In this case, since we assumed all
lists to be the same, the node becomes useless in the quasirandom model as all
successive nodes on its list will have also been informed once it tries to call them.
In our protocol, however, the node might still call uninformed nodes.

Fact 2. If a node is delayed, i.e., halted for a number of rounds, then the pro-
tocol can only become slower.

To see why this holds, fix for each vertex the R random addressees. Then, a
simple induction over time shows that for any set of delays the following holds.
No vertex in the delayed model is informed earlier than in the original model.
Since this is true for any choice of the R random addressees, the fact follows.
This allows us to delay a node for any number of rounds in our analysis.

Proof (of Theorem 1). We distinguish three phases of the process.
The first phase lasts for log2 n + h(n) rounds where h(n) is a function that

is growing arbitrarily slowly. By Fact 2, we assume that every node is delayed
to the second phase once it contacts an informed node. Note that this delayed
protocol remains at least as fast as the protocol with R = 1 and thus, by Fact 1,
also at least as fast as the quasirandom model implemented with identical lists.
Fountoulakis and Huber [12] showed that for any arbitrarily small constant ε > 0
the quasirandom model informs (1− ε)n nodes with probability 1− o(1) in this
phase. Thus, we get the same result for our delayed protocol.

The second phase lasts for R rounds. By our delaying assumption, every node
that is informed in the first phase will remain active for at least R − 1 rounds
before the second phase ends. The crucial observation is that every informed
node that is still active either informs an uninformed node in a single round or
calls a random node in the next round. The former happens at most εn times in
total. We conclude that at the end of the second phase the number of random
calls made is at least (1 − ε)nR − εn ≥ (1− 2ε)nR (including the random calls
made in the first phase). We use this to bound the largest interval of uninformed
nodes by (1 + 3ε) ln(n)/R.

Let I be an interval of length (1 + 3ε) ln(n)/R. Then, the probability that
no node in I becomes informed in the second phase by these random calls is
at most

(
1 − (1+3ε) ln n

nR

)(1−2ε)nR ≤ exp (−(1− 2ε)(1 + 3ε) lnn) = n−1−ε+6ε2
=

n−1−ε′
, for some constant ε′ > 0 (when ε is sufficiently small). By a union bound

argument, we conclude that there is no completely uninformed interval of length
(1 + 3ε) ln(n)/R after the second phase with probability at least 1 − n−ε′

for
some constant ε′ > 0.

In the last phase, all the remaining uninformed intervals are ‘processed’. This
takes at most the length of the largest uninformed interval, which is at most
(1 + 3ε) ln(n)/R. Note that here we exploit the exceptional behavior of the
starting node at the beginning; if the starting node were to choose a random
communication partner from the beginning, there could be an uninformed inter-
val on the cyclic list after the starting node that is not further processed.



510 B. Doerr and M. Fouz

Using a simple union bound, we bound the total failure probability by o(1).
It remains to bound the number of calls. Note that each node calls at most R

informed nodes in total. Hence, we use at most n calls to inform all nodes and,
in addition, at most nR calls until all nodes stop informing.

We can also show that the upper bound is essentially sharp.

Theorem 2. Let ε > 0. If the protocol with R random calls per node is run for
less than

log2(n) + (1 − ε) ln(n)/R + 1
2R, if R ≤

√
2(1− ε) lnn,

log2(n) +
√

2(1− ε) lnn, if R ≥
√

2(1− ε) lnn

rounds, then with probability 1− exp(−nΘ(ε)) not all nodes are informed.

2.2 Robustness against Random Node Failures

Despite its simplicity, our protocol offers reasonable robustness. We consider the
following natural node failure model: each node apart from the starting node
independently sampled with probability p ∈ (0, 1] works properly. Nodes that
do not work properly are called failed. These nodes may stop answering calls or
sending out messages at arbitrary times (specified by an adversary). If a node
contacts one that has stopped working, it does not get a feedback and continues
with the successor of the failed node in the next round (hence a failed node
does not pretend to be informed). Not surprisingly, we cannot hope to achieve
robustness in such a situation without any sacrifices. For example, when we
are confronted with a linear number of randomly distributed failed nodes, it is
unreasonable to assume that it is possible to inform all properly working nodes
in (1 + o(1)) log2 n rounds. It is easy to see that any such algorithm needs, in
expectation, at least (1 − o(1)) log1+p n rounds to inform all properly working
nodes. It turns out that in this case the basic protocol can be instantiated to
have a running time of at most (1 + o(1)) log1+p n.

Lemma 1. If nodes fail independently with probability 1 − p ∈ (0, 1], then all
properly working nodes are informed in

(1 + o(1))(log1+p n + 1
Rp2 lnn) + R, if R < 1

p

√
lnn,

(1 + o(1))(log1+p n + 2
p

√
lnn), if R ≥ 1

p

√
ln n

rounds using (1 + o(1))(R + 1)n/p calls, with probability 1− o(1).

3 Making the Protocol Robust against an Adversary

The main disadvantage of the basic protocol is its lack of robustness in the face
of general, non-random transmission failures. Assume for example that a large
segment of nodes that come consecutively in the permutation is not working.
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Then there is a reasonable chance that the first transmission sent by the starting
node ends up in this faulty segment and hence the protocol needs time linear in
the length of that segment to get out of it again. Thus, if we assume to have a
linear number of such failed nodes, then with constant probability the protocol
will take a linear number of steps until all nodes are informed.

We now describe a modification of the algorithm that overcomes this problem,
still achieves a logarithmic running time and performs a linear number of calls
to properly working nodes. We assume that an adversary specifies a set of failed
nodes. In contrast to the previously studied model, we distinguish between a
successful call, i.e., a call to a properly working node, and an unsuccessful call,
i.e., a call to a failed node.

This setting turns out to be much more difficult to analyse. Even the more
complex median-counter algorithm by Karp et al. [14], which relies on pull oper-
ations by uninformed nodes, only achieves a running time of Θ(ln n) while using
Θ(n ln lnn) calls. Moreover, their algorithm only guarantees to inform all but
O(|F |) nodes, where F is the set of failed nodes.

On the other hand, our algorithm informs all properly working nodes in
O(ln n) rounds, relies only on push operations, needs only O(n) successful calls
and overall O(n ln n) calls. The reason why the total number of calls can be much
larger than the number of successful calls lies in the end phase of the protocol.
Just as in the basic protocol, the end phase is characterized by having informed
almost all properly working nodes. An adversary could have distributed the re-
maining properly working nodes in a large bunch of such failed nodes. Since an
informed node that is processing the list in such a segment of failed nodes can-
not decide whether another node already passed by these nodes, we could end
up spending a linear number of useless calls per node. To bound the number of
calls, we introduce a security parameter p that the user can set for the fraction
of properly working nodes. As long as p is a valid lower bound, we guarantee
that at most 1+ε

p n ln(n)
(
2 + logp(ε/12)

)
calls are made for any constant ε > 0.

The protocol is very similar to the basic protocol. When a node receives the
rumor, it starts the procedure described in Algorithm 2. As before the starting
node begins by selecting its own successor node instead of a random node. It
then proceeds just as in Algorithm 2, i.e., we only replace its first random se-
lection by its successor node. The main difference to the basic protocol is that
a newly informed node first performs random calls until it has found a properly
working node. It then proceeds just as in the basic protocol. Intuitively, this
modification prevents the bad scenario described above where the first call goes
to a large segment of failed nodes and is then stuck there for a long time. For
the stopping rule, we introduce three counters for each node. All these counters
log the behavior of the node after it found a properly working node.

– The restart counter of a node counts how many informed nodes it has called
in total.

– The global failure counter of a node counts how many failed nodes it has
called in total.
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Algorithm 2. Procedure started by newly informed node

r ← 0, lfc ← 0, gfc ← 0, R ← logp(ε/12), L ← (1 + ε) ln(n)/p,
G ← (1 + ε) ln(n)/p;
repeat

select node j uniformly at random;
until j properly working node ;
while r < R and gfc < G do

while j not informed and lfc < L do
if j failed then

lfc ← lfc + 1; gfc ← gfc + 1;
else

inform j; j ← j + 1; lfc ← 0;

r ← r + 1; select node j uniformly at random;

– The local failure counter of a node i counts the number of failed nodes i has
encountered in a row since the last random call of i.

The stopping rule is as follows. A node stops informing immediately if either
the restart counter reaches R = logp(ε/12) or the local failure counter reaches
L = (1 + ε) ln(n)/p. Furthermore, if the global failure counter reaches G =
(1 + ε) ln(n)/p, then the node stops informing the next time it calls an informed
node. Whereas the restart counter fulfills the same role as in the basic protocol,
the global failure counter makes sure that not too many calls are wasted on
failed nodes. The local failure counter ensures that all properly working nodes
are informed, even those that might be ‘hidden’ in a segment of failed nodes.

Theorem 3. Let ε ∈ (0, 1) and p ≤ (n − |F |)/n, where F is the set of failed
nodes in a graph. Then, the protocol with a random start-up phase informs, with
probability 1−O(n−pε/32), all properly working nodes in at most (1+ε)

(
log1+p n+

1−p
p lnn

)
rounds using O(n) successful calls and 1+ε

p n lnn + O(n) calls in total.

Acknowledgments

We thank Carola Winzen for valuable comments on the manuscript.

References

[1] Berenbrink, P., Elsässer, R., Friedetzky, T.: Efficient randomized broadcasting in
random regular networks with applications in peer-to-peer systems. In: Proc. of
27th ACM Symposium on Principles of Distributed Computation (PODC), pp.
155–164 (2008)
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[9] Elsässer, R., Sauerwald, T.: Broadcasting vs. Mixing and information dissemi-
nation on cayley graphs. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS,
vol. 4393, pp. 163–174. Springer, Heidelberg (2007)
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Fast Convergence for Consensus in Dynamic

Networks

T.-H. Hubert Chan and Li Ning

The University of Hong Kong

Abstract We study the convergence time required to achieve consen-
sus in dynamic networks. In each time step, a node’s value is updated
to some weighted average of its neighbors’ and its old values. We study
the case when the underlying network is dynamic, and investigate dif-
ferent averaging models. Both our analysis and experiments show that
dynamic networks exhibit fast convergence behavior, even under very
mild connectivity assumptions.

1 Introduction

Natural group behavior is exhibited in many dynamic systems. Typically, each
individual or node in the set V has some number in R, which can represent one’s
opinion. In every time step, an individual observes the opinions of a subset of
other individuals and updates one’s opinions accordingly. It is observed that in
many such systems[17,18,6], the values of all nodes converge to the same value
(or opinions of individuals reach consensus) after a small number of iterations,
even though each node only interacts with a small number of other nodes in each
time step.

The weighted averaging model [7], used by DeGroot to model consensus of
opinions, has been widely studied to explain convergent behavior in such net-
works. The value vt[i] of an individual at time step t is updated by taking some
weighted average of all individuals’ values: vt+1[i] :=

∑
j pt[i, j] · vt[j], where

each pt[i, j] is non-negative and
∑

j pt[i, j] = 1. Typically, for each i, there is
only a small number of j’s such that pt[i, j] is non-zero; those correspond to the
individuals whose values can be observed by i. The interactions of individuals
in a time step can be represented by a network Gt = (V,Et), where an edge
{i, j} ∈ Et means the individuals can observe each other’s values at time t.
Besides its simplicity, the weighted averaging model has applications in parallel
computation [1], control theory [9,3,2,8,5,12] and ad hoc networks [11].

In this paper, we study what weighting strategies and what kind of networks
can enable fast convergence to achieve consensus. In particular, for different
weighting strategies and network properties, we analyze the number of time steps
that is sufficient for all nodes’ values to be close to one another. The uniform
averaging model is the case when given a network Gt, an individual updates its
value to the average of its neighbors’ and its old values. We consider the case
when the underlying network topology is dynamic, i.e. the networks Gt’s change

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part II, LNCS 6756, pp. 514–525, 2011.
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over time. To keep our analysis as general as possible, we do not specify how
the networks Gt’s evolve (which may or may not depend on the nodes’ values);
we only assume general structural properties of the networks such as degree
distribution and connectivity.

Related Work. The special case of the uniform averaging model with time-
invariant network topology is well-understood [7]. Using the theory of stochastic
matrices and spectral graph theory, it is known that the convergence time is
related to the eigenvalue gap [10] of the transition matrix P involved. If the
underlying network is time-invariant and connected, Olshevsky and Tsitsiklis [16]
showed that the convergence time for the uniform averaging model is O(n3).

Relatively little is known about the convergence time when the underlying
network is dynamic. Assuming some special structure in the network in each
time step, Cao et. al [3] showed that the convergence time is nO(n). Olshevsky
and Tsitsiklis [16] also considered weak connectivity assumptions: in the given
sequence, the union of any k consecutive networks is connected. In this case, they
showed that the convergence time under the uniform averaging model is O(knkn)
and a lower bound of Ω(n)k. Using a “load balancing” algorithm, they can
achieve O(n3) convergence time. They also showed a convergence time of O(n3)
for the uniform averaging model with the fixed degree assumption [15]. With the
same weak connectivity assumption, Netić et. al [14] showed convergence time of
O(kn2

α ), for the special case where the transition matrices are doubly stochastic
and α > 0 is a a lower bound on the non-zero entries.

Vicsek et. al [19] used the weighted averaging model to study interaction
between particles, which influence one another’s velocities. Two particles can
influence each other if their distance is close enough. The system reaches a
convergent state when all particles are traveling in nearly the same direction.
Jadbabaie et. al [9] gave a theoretical explanation to such convergent behavior.
Recently, Chazelle [4] considered a discrete version of the model and showed that
the convergence time is O(2 � n).

Other interaction models have also been studied. In [2], directed networks and
asynchronous updates were considered. In [8,5,12], convergence under non-linear
update rules were studied.

Our Contribution and Results. In this paper, we give a quantitative anal-
ysis between the convergence time and the connectivity of the networks in the
given sequence. If convergent behavior is observed at all in real systems, then
the number of time steps taken certainly cannot be O(nn) or even O(2 � n).
Typically, the networks concerned are well-connected and convergence time of
O(log n) is observed.

For static network, this can be easily explained by the theory of stochastic
matrices and spectral graph theory. The update process in each time step corre-
sponds to multiplication by a stochastic matrix P . Although P is in general not
symmetric (and hence the eigenvectors are not mutually orthogonal), for all pos-
itive integers t, the powers P t all have the same eigenvectors, and any eigenvalue
gap in P will be magnified in P t. However, if the underlying network is dynamic,
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then the corresponding transition matrices will not have the same eigenvectors
anymore (apart from the all one’s vector), and hence the above argument does
not work.

In Section 3, we overcome this technical hurdle by choosing the weights care-
fully such that in the transformed space the eigenvectors are mutually orthogo-
nal. Assuming that each node has limited degree variation in the given network
sequence, and each network is well-connected (as measured by conductance), we
can obtain an eigenvalue gap in the transition matrix in each time step. Com-
bining these techniques, we show that convergence time is O(log n). If we just
assume that each network is well-connected (without the assumption on lim-
ited degree variation), we have O(n) convergence time. As far as we know, the
previous best known convergence time under any weighted averaging model for
dynamic connected networks is O(n3) [14].

Under the uniform averaging model, we analyze in Section 4 the conditions
on the given network sequence such that fast convergence can be obtained. As-
suming that each network is degree bounded and for some integer k, the union
of every k consecutive networks is a vertex expander, we show that the conver-
gence time is polynomial by using the expansion property directly. Furthermore,
our techniques can be extended to the probabilistic case where the connectivity
condition for each union of k networks only needs to hold with some positive
probability.

On the other hand, our simulations in Section 5 show that for well-connected
graphs such as Gn,p, the convergence time under the uniform averaging model
grows logarithmically with the network size, suggesting that there is a lot of
room for improvement. It would be an interesting open problem to determine
the most general conditions on the networks under which the uniform averaging
model has fast convergence time.

2 Preliminary

Suppose there is a set V of n individuals and each one of them holds an opinion
which can be represented by a number from R. An opinion configuration at some
time t is an n-dimensional vector from Rn. We denote the configuration at time
t by vt, and the opinion of individual i by vt[i].

At each time step, the individuals form a network (in this document we use the
terms “network” or “undirected graph” interchangeably) Gt = (V (Gt), E(Gt)),
in which the nodes represent the individuals and an edge between two nodes
means they can potentially communicate their opinions to each other. We assume
all Gt’s have the same set of nodes, i.e. V (Gt) = V for all t. Moreover, we
assume that the sequence {Gt} of networks is generated by some process that
is, in general, independent of the individuals’ opinions vt’s.

We use the maximum difference between two individual’s numbers to measure
how close a configuration reaches consensus.

Definition 1 (τ-Measure). Given a configuration vector v ∈ Rn, the τ-measure
of v is τ(v) = maxi,j |v[i]− v[j]|.



Fast Convergence for Consensus in Dynamic Networks 517

We say that the vector v achieves consensus when τ(v) = 0; and for ε > 0,
the vector v achieves ε-consensus when τ(v) ≤ ε.

We next describe the models we use to analyze the convergent behavior for
dynamic systems.

2.1 Convergence Model for Dynamic Networks

Given a sequence {Gt : t ≥ 0} of networks and some initial configuration v0 ∈ Rn,
we describe the update rule for each time step. At time step t, the nodes are
connected by the network Gt; we denote the degree of node i by dt[i]. Moreover,
each node i has some positive integral weight wt[i] ≥ dt[i]+1, which indicates how
resistant the individual is to others’ opinions, with a higher weight indicating
higher resistance. The update rule for each node i at time t is given by the
following equation.

vt+1[i] = (1− dt[i]
wt[i]

) · vt[i] +
1

wt[i]

∑
j:{i,j}∈E(Gt)

vt[j]. (1)

Matrix Notation. The update rule can be expressed succinctly using matrix
notation. We treat wt, vt, and dt as n× 1 column vectors. Given a network Gt,
recall its Laplacian Lt is defined as the n × n matrix such that Lt[i, j] is dt[i]
when i = j, −1 when {i, j} ∈ E(Gt), and 0 otherwise.

Given a square matrix A, we denote its trace by tr(A), i.e., the sum of its
diagonal entries. Given a vector w ∈ Rn, we use Diag(w) to denote the diagonal
matrix such that Diag(w)[i, i] = w[i]. Given a weight vector wt ∈ Rn, let Wt =
Diag(wt) and the transition matrix Pt = In −W−1

t Lt, where In is the n × n
identity matrix. Then, equation (1) can be rewritten as:

vt+1 = Ptvt. (2)

Special Cases. We describe some special cases for the weights wt.
• Static Weight Model. In this case, there is some fixed weight vector w ∈

Rn such that for all time steps t, wt = w. Observe that in this case, we
need to restrict the networks such that for all t and all nodes i, the degree
dt[i] ≤ w[i]− 1. To ensure that each node is still influenced by its neighbors,
we normally also assume w[i] = O(n) for all t.
• Uniform Averaging Model. In this case, for each time step t and each

node i, wt[i] = dt[i] + 1. Observe that in this case, the new opinion of a node
is simply the average of the sum of its and its neighbors’ opinions. Hence,
equation (1) reduces to vt+1[i] = 1

dt[i]+1 (vt[i] +
∑

j:{i,j}∈E(Gt)
vt[j]).

Convergence Time. Given some initial configuration v0 ∈ Rn, and some con-
vergence process, for ε > 0, the convergence time to achieve ε-consensus is the
minimum T such that for all t ≥ T , τ(vt) ≤ ε.



518 T.-H. Hubert Chan and L. Ning

Union Network. We do not always require each network Gt to be connected.
We can still prove convergence results as long as the union of the networks over
a certain period of time is well-connected. Formally, suppose I is a set of time
indices for the collection of networks {Gt = (V,Et) : t ∈ I}. Then, the union
network is defined as ∪t∈IGt := (V,∪t∈IEt).

2.2 Stochastic Matrices

We mention some useful results about stochastic matrices. Recall that an n× n
matrix M is row stochastic (or simply stochastic) if all its entries are non-negative
and the entries of each row sum to 1. Observe that the transition matrix Pt in (2)
is stochastic. Recall that the product of two stochastic matrices is still stochastic.
We define two measures for matrices, which describe how different the rows of a
matrix are.

Definition 2 (τ1- and τ2-Measures). Given a matrix P , the τ1-measure of
P is defined as τ1(P ) = 1

2 maxi,j{
∑

k |P [i, k]− P [j, k]|}; the τ2-measure of P is
defined as τ2(P ) = maxi,j{(

∑
k |P [i, k]− P [j, k]|2)

1
2 }.

Observe that for a column vector v, τ(v) = 2τ1(v) = τ2(v).
Fact 1 states an important relationship between the τ2-measure of the product

of two matrices and product of the measures of the corresponding matrices. Its
proof is given in [4,13]. Fact 2 relates the τ1-measure of a stochastic matrix with
its smallest entry.

Fact 1. For any stochastic matrix A and any matrix B, whose dimensions are
compatible with A such that AB is well-defined, we have τ2(AB) ≤ τ1(A)τ2(B).

Observe that any stochastic matrix P has the property that τ1(P ) ≤ 1. Hence,
it follows that for all t, τ(vt+1) = τ2(Ptvt) ≤ τ(vt).

Fact 2. Suppose P is a stochastic matrix such that all its entries are at least
some number α > 0. Then, τ1(P ) ≤ 1− nα.

3 Static Weight Model: Limited Degree Variation and
Well-Connected Dynamic Networks

In this section, we show that fast convergence for the static weight model is
achieved if in the given sequence {Gt} of networks, each Gt is well-connected,
and for each node i, the degree dt[i] does not vary too much with respect to t. In
particular, we explore a quantitative relationship between the convergence time
and the connectivity of the given networks.

The concept conductance can be used to measure how connected a graph is.

Definition 3 (Conductance). Given a network G = (V,E), and a subset S ∈
V , the edge border set of S is defined as ∂(S) = {{u, v} ∈ E|u ∈ S, v ∈ S =
V \ S}. The conductance of G is defined as Ψ(G) = sup{ϕ > 0| ∂(S)

min{d(S),d(S)} ≥
ϕ, ∀S ⊂ V }, where d(S) =

∑
i∈S d[i].
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Given any stochastic matrix P , we sort and label its eigenvalues in the de-
scending order of the eigenvalues’ magnitude, i.e., |λ0(P )| ≥ |λ1(P )| ≥ · · · ≥
|λn−1(P )|, where λ0(P ) = 1. The following lemma, which is an extension of the
Cheeger’s Inequality, relates the spectral properties of a transition matrix P and
the conductance of the underlying network. We defer its proof to the full version.

Lemma 1 (Conductance Implies Eigenvalue Gap). Suppose G is a net-
work with conductance Ψ , and w ∈ Zn is a positive weight vector such that for
each i, its degree d[i] satisfies 2d[i] ≤ w[i] ≤ K ·d[i]. Define the transition matrix
P := In − W−1L, where W = Diag(w) and L is the Laplacian of G. Then,
|λ1(P )| ≤ 1− η, where η = Ψ2

2K .

Theorem 1 (Static Weight Model). Given a positive weight vector w ∈ Zn,
and a sequence {Gt : t ≥ 0} of networks, let the transition matrix Pt :=
In − W−1Lt, where W = Diag(w) and Lt is the Laplacian of Gt. Suppose
there is some 0 < η < 1 such that for all t, |λ1(Pt)| ≤ 1 − η. Then, for any
initial configuration vector v0, the convergence time to achieve ε-consensus is

O( 1
η log ‖W

1
2 v0‖2
ε ), which is O( 1

η log n‖v0‖2
ε ), if for each i, w[i] = O(n). For the

special case when all nodes i have the same w[i], the convergence time can be
improved to O( 1

η log ‖v0‖2
ε ).

Proof. Let λ := 1 − η. Suppose P := In −W−1L is the transition matrix cor-
responding to some network with Laplacian L such that |λ1(P )| ≤ λ. Consider
M := W

1
2 PW− 1

2 and observe that M is symmetric and has exactly the same
eigenvalues as P . In particular, M has eigenvalue 1 with the corresponding eigen-
vector u0 = tr(W )−

1
2 W

1
2 1, where 1 is the all one’s vector. Moreover, since the

eigenvectors of a symmetric matrix are mutually orthogonal, we have for each
vector z that is orthogonal to u0, the vector Mz is still orthogonal to u0 and
||Mz||2 ≤ λ||z||2. For each t, we define Mt := W

1
2 PtW

− 1
2 .

Given an initial configuration vector v0, we write W
1
2 v0 = x + y, where x is

parallel to u0 and y is orthogonal to u0. According to our convergence model,
we have

vt = Pt−1 · · ·P0v0 = W− 1
2 Mt−1 · · ·M0W

1
2 v0 = W− 1

2 x + W− 1
2 Mt−1 · · ·M0y.

We next observe that all entries of W− 1
2 x are identical, and hence τ(vt) =

τ(W− 1
2 Mt−1 · · ·M0y), which is at most 2||W− 1

2 Mt−1 · · ·M0y||2, because for any
vector v, τ(v) ≤ 2||v||2.

Observing that W− 1
2 is a diagonal matrix such that each entry is at most 1, we

have ||W− 1
2 Mt−1 · · ·M0y||2 ≤ ||Mt−1 · · ·M0y||2 ≤ λt||y||2 ≤ λt||W 1

2 v0||2, where
the last inequality holds because x and y are orthogonal, and the penultimate
inequality holds because for each 0 ≤ k ≤ t, the vector Mk−1 · · ·M0y remains
orthogonal to u0, and hence is spanned by eigenvectors (of each Mi) whose
eigenvalues have absolute values at most λ.

Hence,we have τ(vt) ≤ 2λt‖W 1
2 v0‖2, which is at most ε, for t =

Ω( 1
η log ‖W

1
2 v0‖2
ε ), where η = 1− λ.
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Finally, observing that for the special case when for all i, w[i] = ω is the
same, we have W = ωIn. Hence, in the above argument the W

1
2 and W− 1

2

cancel with each other, and we can conclude instead that τ(vt) ≤ 2λt‖v0‖2, and
so the convergence time becomes O( 1

η log ‖v0‖2
ε ). �	

Hence, from Lemma 1 and Theorem 1, we have the following corollary.

Corollary 1 (Logarithmic Convergence Time for Limited Degree Vari-
ation). Given a positive weight vector w ∈ Zn, and a sequence {Gt : t ≥ 0} of
networks, let the transition matrix Pt := In −W−1Lt, where W = Diag(w) and
Lt is the Laplacian of Gt. Suppose there is some Ψ > 0 and some K > 0, such
that for all t, Gt has conductance at least Ψ and for each node i, its degree dt[i]
satisfies 2dt[i] ≤ w[i] ≤ Kdt[i]. Then, for any initial configuration vector v0,
the convergence time to achieve ε-consensus is O( K

Ψ2 log n‖v0‖2
ε ), if for each i,

w[i] = O(n).

For the special case when w[i] = 2n for all nodes i, we have the following
corollary, also using Lemma 1 and the identical weight case in Theorem 1.

Corollary 2 (Linear Convergence Time). Given a sequence {Gt : t ≥ 0},
suppose that there is some Ψ > 0 such that for all t, Gt has conductance at least
Ψ . We set the weight vector w ∈ Zn such that for all i, w[i] = 2n, and consider
the transition matrix Pt := In −W−1Lt as before. Then, given ε > 0 and initial
configuration vector v0 ∈ Rn, the convergence time to achieve ε-consensus is
O( n

Ψ2 log ‖v0‖2
ε ).

4 Analysis of the Uniform Averaging Model

In this section, we analyze the convergence time for the uniform averaging model.
Given a network Gt, we consider the weight vector wt such that wt[i] = dt[i] +
1, the degree of node i plus 1. The transition matrix is given by Pt = In −
Diag(wt)−1Lt, where Lt is the Laplacian of Gt.

We also assume that each network in the sequence {Gt} has degree bounded
by some d, i.e., for all t and all i, dt[i] ≤ d. However, we only need weak connectiv-
ity assumptions on the given sequence of networks. We do not even require each
network to be connected. All we need is that there is some integer k such that
the union of the networks in every k consecutive time steps is well-connected.
Although we only prove convergence time polynomial in n, experiments in Sec-
tion 5 suggest that the convergence time for the uniform averaging model is
O(log n) for well-connected networks.

4.1 Weakly Connected Networks

Given a network, the standard notion of vertex expansion can measure its
connectivity.
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Definition 4 (Vertex Expansion). Given a network (undirected graph) G =
(V,E) and a subset S ⊆ V , the vertex border set of S is defined as δ(S) = {v ∈
V (G) \ V (S)|∃u ∈ S, s.t.{u, v} ∈ E}. The vertex expansion of G is defined as
Φ(G) = sup{φ > 0| δ(S)

|S| ≥ φ, ∀S ⊂ G, |S| ≤ |V |
2 }.

Definition 5 (Union Vertex Expansion). Given a sequence {Gt : t ≥ 0}
of networks, and an integer k ≥ 1, we say the sequence has k-union vertex
expansion at least φ if for any t ≥ 0, Φ(∪t+k−1

j=t Gj) ≥ φ.

The main result of this section is given in the following theorem, which is a direct
consequence of Lemmas 2 and 3

Theorem 2 (Convergence Time for Union Vertex Expanders). Suppose
the network sequence {Gt} with bounded degree d has k-union vertex expansion at
least φ > 0. Then, given an initial vector v0 ∈ Rn and ε > 0, the convergence time
to achieve ε-consensus under the uniform averaging model is nO( k

φ log d) log τ(v0)
ε .

We introduce the idea of hitting diameter of a network sequence, which intu-
itively measures the number of time steps required for any person’s opinion to
have some influence over everyone else’s.

Definition 6 (μ-Hitting Diameter). Given a network sequence G = {Gt :
t ≥ 0}, let Pt be the transition matrix associated with Gt under the uniform
averaging model. Let 0 < μ < 1

n . The μ-hitting diameter of the sequence, denoted
by HDiamμ(G), is at most T , if for every t ≥ 0, every entry of the product
Pt+T−1Pt+T−2 · · ·Pt is at least μ.

Lemma 2 (Hitting Diameter and Convergence Time). Given a sequence
G of networks with HDiamμ(G) ≤ T , an initial configuration v0 ∈ Rn and ε > 0,
the convergence time to achieve ε-consensus is O( T

nμ log τ(v0)
ε ).

Proof. By Definition 6 and Fact 2, we have for all t ≥ 0, τ1(
∏t

j=t+T−1 Pj) ≤
1− nμ ≤ exp(−nμ), where we have used the inequality 1 + x ≤ ex for all real x.

Therefore, by Fact 1 described in the preliminary τ2(vt) ≤ exp(−nμ� t
T �) ·

τ(v0), which is at most ε, when t ≥ T
nμ log τ(v0)

ε . �	
Next, we show how to use this lemma to derive the convergence time for a
specified class of networks.

Lemma 3 (Hitting Diameter for Union Vertex Expanders). Suppose a
network sequence G = {Gt : t ≥ 0} has bounded degree d and k-union vertex
expansion at least φ. Then, for μ = ( 1

d+1)O( k log n
φ ), HDiamμ(G) = O(k log n

φ ).

Proof. We show that for T = O(k log n
φ ) and μ = ( 1

d+1)T , HDiamμ(G) ≤ T .
Hence, it suffices to show that for any t ≥ T − 1, every entry of the product
PT

t := PtPt−1 · · ·Pt−T+1 is at least μ.
For 1 ≤ i ≤ j, we use the notation Pt,k[i..j] to denote the product



522 T.-H. Hubert Chan and L. Ning

Pt−(i−1)kPt−(i−1)k−1 · · ·Pt−jk+1. Observe that if T is a multiple of k, then
PT

t = Pt,k[1..T
k ].

Observe that for each t, the transition matrix Pt obtained from Gt through
the uniform averaging model has the following properties.

• For each i, Pt[i, i] = 1
dt[i]+1 .

• For i �= j, Pt[i, j] > 0 iff {i, j} ∈ Gt.
• Since Gt has bounded degree d, every non-zero entry of Pt is at least 1

d+1 .

Observe that we can view a matrix P as a directed graph G(P ), where (u, v) ∈
G(P ) iff P [u, v] > 0. Hence, G(Pt) is a directed version of Gt with self-loop at
every node added.

Given square matrices A1, A2, . . . , Al, observe that the (u, v)-th entry of the
product A1A2 . . . Al is non-zero iff node v can be reached from node u in exactly
l steps such that for every 1 ≤ i ≤ l, only an edge from G(Ai) can be used in
step i.

Hence, it follows that for every i, G(Pt,k[i]) is a directed version of ∪t−ik+1
r=t−(i−1)k

Gr with self-loops added, which from the hypothesis has vertex expansion at
least φ.

Fix some nodes u and v. It follows from the vertex expansion property that
there are at least (1 + φ) nodes w such that the (u,w)-th entry of Pt,k[1] is
non-zero. Repeating this argument T0 := #log1+φ

n
2 $ times, it follows there are

more than n
2 nodes w such that the (u,w)-th entry of Pt,k[1..T0] is non-zero.

By a reverse argument, it follows that there are more than n
2 nodes w such that

the (w, v)-th entry of Pt,k[T0 + 1, 2T0] is non-zero. Hence, by taking T = 2T0k =
O(k log n

φ ), we have shown that the (u, v)-th entry of the product PT
t = Pt,k[1..T

k ]
is non-zero. Observe that PT

t is a product of T matrices, each of whose non-zero
entry is at least 1

d+1 . Hence, we conclude that every entry of PT
t is at least

μ := ( 1
d+1)T , as required. �	

The connectivity of a network can also be measured by its eigenvalue gap, whose
relationship with vertex expansion is given by the following lemma, which is a
variation of the Cheeger’s Inequality. We defer its proof to the full version.

Lemma 4 (Eigenvalue Gap Implies Vertex Expansion). For a network
G with bounded degree d, define the weight vector w ∈ Zn by w[i] = d[i] + 1 for
each i. Let P := In −W−1L, where W = Diag(w) and L is the Laplacian of G.
Suppose there exists 0 < η < 1, such that |λ1(P )| ≤ 1− η. Then, Φ(G) = Ω(η

d ).

Combining Lemma 4 and Theorem 2 gives the following corollary.

Corollary 3 (Convergence Time for Networks with Eigenvalue Gap).
Given a network sequence {Gt} with bounded degree d, define the weight vector
wt ∈ Zn by wt[i] = dt[i] + 1 for each i. Let P := In − W−1

t L, where Wt =
Diag(wt) and Lt is the Laplacian of Gt. Suppose there exists 0 < η < 1, such
that |λ1(P )| ≤ 1 − η. Then, given an initial vector v0 ∈ Rn and ε > 0, the
convergence time to achieve ε-consensus under the uniform averaging model is
nO( d

η log d) log τ(v0)
ε .
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4.2 Random Networks

Our analysis for union networks can be easily extended for random networks.
Specifically, we only require that the union vertex expansion property holds with
some positive probability. Hence, our results also hold for random graphs with
expansion property, such as Gn,p.

Definition 7 (Union Vertex Expansion with Probability ξ). Given a se-
quence {Gt : t ≥ 0} of networks, and an integer k ≥ 1, we say the sequence
has k-union vertex expansion at least φ with probability ξ > 0, if for any t ≥ 0,
Φ(∪t+k−1

r=t Gr) ≥ φ holds with probability at least ξ > 0; moreover, the events
involving different t’s are independent, as long as the underlying Gr’s involved
are different.

Theorem 3. Suppose a network sequence {Gt} has bounded degree d and there
exist φ > 0 and ξ > 0, such that the sequence has k-union vertex expansion at
least φ with probability ξ. Then, given an initial vector v0 ∈ Rn and ε > 0, with
all but negligible probability exp(−nΘ( k log d

φξ )), the convergence time to achieve
ε-consensus is nO( k log d

φξ ) log τ(v0)
ε .

Proof. The theorem is obtained by proving probabilistic versions of Lemmas 3
and 2. We first argue that for T = O(k log n

ξφ ), for every t ≥ T−1, with probability
at least 1

2 , every entry of the product PT
t := PtPt−1 · · ·Pt−T+1 is at least μ :=

( 1
d+1 )T .

Consider a block of networks from the sequence of size k. By the hypothesis,
the union graph over k networks has vertex expansion at least φ with probability
at least ξ. From the proof of Lemma 3, we need l := O( log n

φ ) such blocks in order
to argue that every entry of the corresponding product of transition matrices
is non-zero. Hence, by Chernoff Bound, if we have 2l

ξ such blocks, then with
probability at least 1 − e−Θ(l) ≥ 1

2 , at least l blocks will have the expansion
property. Since each block contains k networks, it follows that the 2l

ξ blocks
contain T = 2l

ξ · k = O(k log n
ξφ ) networks, as required.

Let P (T ) denote the product of a block of T transition matrices derived from
the given sequence. We have just proved that with probability at least 1

2 , each
entry in P (T ) is at least μ. Hence, from Fact 2, we can conclude that with
probability at least 1

2 , τ1(P (T )) ≤ 1− nμ ≤ e−nμ.
Finally, if we are given an initial configuration vector v0 and ε > 0, the

τ2-measure of the configuration vector after multiplying by M such blocks of
matrices (each block is a product coming from T transition matrices and each
entry of the product is at least μ) is at most τ(v0) · e−Mnμ, which is at most ε

for M = Ω( 1
nμ log τ(v0)

ε ).
Hence, using Chernoff Bound again, with probability at least 1 − e−Θ(M) ≥

1− exp(−nΘ( k log d
φξ )), given 4M blocks of size T transition matrices, at least M

such blocks will have a product such that every entry is at least μ.
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Therefore, we conclude with all but negligible probability exp(−nΘ( k log d
φξ )),

the convergence time to achieve ε-consensus is O(MT ) = nO( k log d
φξ ) log τ(v0)

ε . �	

5 Experiments

In this section, we design experiments to simulate the behavior of our conver-
gence models. In each simulation, we choose ε = 0.001 and record the average
convergence time to achieve ε-consensus. We observe in each case how the con-
vergence time varies with n, the size of the network.

(1) Gn,p under the Uniform Averaging Model. At time t, the network Gt

is sampled independently from Gn,p, where p = d
n (d = 5, 10, 20). The result is

in Figure 1.
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Fig. 1. Gn,p : p = d
n

under the Uniform
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Fig. 2. k-Union Gn,p (with p = 10
n

) under
the Uniform Averaging Model

(2) k-Union Gn,p under the Uniform Averaging Model. We fix p = 10
n and

use the Gn,p as the union network over k consecutive time steps. In particular,
we sample a Gn,p graph as before and divide the edge set (randomly) into k
different sets (k = 1, 2, 5), each of which forms the edge set of a network in one
time step. The result is in Figure 2.

In all the experiments, we see that the convergence time grows logarithmically
with the size of the networks. As a visual aid, the circles in each graph give a
reference for logarithmic growth.
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Abstract. In this paper, we study linear programming based approaches
to the maximum matching problem in the semi-streaming model. The
semi-streaming model has gained attention as a model for processing
massive graphs as the importance of such graphs has increased. This is
a model where edges are streamed-in in an adversarial order and we are
allowed a space proportional to the number of vertices in a graph.

In recent years, there has been several new results in this semi-
streaming model. However broad techniques such as linear programming
have not been adapted to this model. We present several techniques to
adapt and optimize linear programming based approaches in the semi-
streaming model with an application to the maximum matching prob-
lem. As a consequence, we improve (almost) all previous results on this
problem, and also prove new results on interesting variants.

1 Introduction

Analyzing massive data sets has been one of the key motivations for studying
streaming algorithms. The streaming model is a computing model where we
have random accessible memory sublinear in the input size and only sequential
access to the input data is allowed. In recent years there has been significant
interest in processing graph data, which arise in a number of scientific experi-
mental setting, call records of telecoms etc., in the streaming model. In many
emerging data analysis applications, large graphs are created based on implicit
relationship between objects [5,20]. Subsequently, the goal is to find suitable
combinatorial structure in this large implicit graph, e.g., maximum b-matchings
were considered in [20]. The implicitly defined edges are often generated through
“black box” transducers which have ill understood structure (or are based on
domain specific information), but are prohibitive to store. A natural question in
this regard is: Can we solve the combinatorial optimization problems without
storing the edges explicitly? The reader would immediately observe the connec-
tion to “in place algorithms”, which also poses the question of solving a problem
� Research supported in part by an NSF Award CCF-0644119, IIS-0713267 and a gift
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using as small a space as possible excluding the input. In many massive data
settings, or when the input is implicitly defined, we are faced with “in place
algorithm with no random access or writes to the input”. Multipass streaming
algorithms seem well placed to answer these types of questions; concretely, can
we solve maximum matching using small additional (to the input) space where
we only make a few passes over the list of edges?

Graph problems were one of the early problems considered in the streaming
model, and it was shown that even simple problems such as determining the
connectedness of a graph requires Ω(n) space [18] (throughout this paper n will
denote the number of vertices and m will denote the number of edges). This re-
sult holds even if a constant number of passes were allowed. The semi-streaming
model [10,24] has emerged to be a model of choice in the context of graph pro-
cessing – by allowing Õ(n) space, which can be sublinear in the size of the input
stream (of m edges) arriving in any (including adversarial) order. In recent years
there has been several new results in this semi-streaming model, for example see
[10,11,22,1,8]. Several of these papers address fundamental graph problems in-
cluding matchings. These papers demonstrate a rich multidimensional tradeoff
between the quality of the solution, the space required and the number of passes
over the data (and of course, the running time). Yet, it is natural to ask: are
there broad techniques that can be adapted to this model?

Our results: In this paper we answer both the questions posed above in the
affirmative. We investigate primal–dual based algorithms for solving a subclass
of linear programming problems on graphs. The maximum weighted matching
(MWM) is a classic example of this – and although augmentation based tech-
niques exist for matching problems, they become significantly difficult in the
presence of weights (since we need to find shortest augmenting paths to avoid
creating negative cycles) and the best previous result for this problem is a 1

2 − ε
approximation using O( 1

ε3 ) passes. The use of linear programming relaxation
improves both the number of passes as well as the approximation factor, see
Table 1. We also improve the number of passes for finding the maximum cardi-
nality matching (MCM) in bipartite graphs by a significant amount.

Our Techniques: The matching problem has a rich literature, see [7,16,19,23],
as well as fast, near linear time approximation algorithms [21,27,28,25,6]. How-
ever, these results use random access significantly and do not translate to results
in the semi-streaming model, and newer ideas were used in [10,22,8] to achieve
results in the semi-streaming model. We use the multiplicative-weights update
meta-method surveyed in [4]. Over many years there has been a significant thrust
in designing fast approximate schemes (have a (1 + ε) approximation for any
given ε > 0) for linear programming problems [26,29,13,17,12,4], to name a few.
The meta-method uses the oracle to progressively improve a solution, but uses
a (guessed) value of the optimal solution. The failure of the oracle either vio-
lates that guess or provides a proof of near-optimality. While the key intuition
is to design a “streaming separation oracle”, it is not clear how to implement
(or define) such an oracle since there are number of conditions that need to be



528 K.J. Ahn and S. Guha

Table 1. Summary of results: The required time is Õε(m) = O(m poly( 1
ε
, log n))

for all results, unless otherwise noted. The space bounds of results presented else-
where were not always obvious, and we have omitted reporting them. Note n′ =
min{n, |OPT | log 1

ε
} and B = n for the uncapacitated case; otherwise B =

∑
i bi.

Please note that the result in [2] is subsequent to this paper and builds on the results
herein.

Problem Approx. No. of Passes τ space paper notes

Bipartite MCM

(see all below)

2
3 (1− ε) O(ε−1 log ε−1) [10]

1− ε O(ε−8) [8]

1− ε O( 1
ε2

log log 1
ε ) O

(
n′(τ + log n′)

)
here Sec. 5

MCM

(see MWM below)

1/2 1 trivial

1− ε
( 1

ε

)1/ε [22]

Bipartite MWM 1− ε O(ε−2 log ε−1) O
(

n
(

τ + log n
ε

))
here Sec. 5

Bipartite

b-Matching
1− ε O(ε−3 log n) Õ

(
B
ε3

)
here

MWM

1/4.91 1 [9]
1
2 (1− ε) O(ε−3) [22]
2
3 (1− ε) O(ε−2 log ε−1) O

(
n
(

τ + log n
ε

))
here from bipartite MWM

1− ε O(ε−4 log n) O
(

n
(

τ + log n
ε

))
here not Õε(m) time

1− ε O(ε−7 log ε−1 log n) O( nτ
ε ) [2]

b-Matching 1− ε O(ε−4 log n) Õ
(

B
ε4

)
here not Õε(m) time

satisfied and they mandate random access and the overall scheme to obtain a
good semi-streaming algorithm faces a number of roadblocks. First, the multi-
plicative update method typically requires super constant number of rounds (to
prove feasibility) – this translates to superconstant number of passes. Reducing
the number of passes to a constant requires that we recursively identify small
and critical subgraphs. Second, for the weighted variants, it is non-trivial to si-
multaneously ensure that enough global progress is being made per pass, yet the
computation in a pass is local and uses small space.

Roadmap: We revisit the multiplicative weights update method in Section 2.
We then present a simple (but suboptimal in passes) application of this frame-
work in Section 3. We reduce the number of passes by “simulating” multiple
iterations of the multiplicative weights update method in a single pass in Sec-
tion 4. We finally show how to remove the dependency on n in Section 5. We also
present some extensions of the maximum matching problem in the full version
of the paper [3]. Due to space constraints, all proofs are relegated to the full
version as well.

2 The Multiplicative Weights Update Meta-method

In this section, we briefly explain the multiplicative weights update method; we
follow the discussion presented by Arora, Hazan, and Kale [4]. Although the
method can be applied to generalizations of linear programs (LPs), we restrict
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our attention to LPs (primarily to reduce the number of parameters and nuances
that need to be discussed). Suppose that we are given the following LP, its dual
LP, and a guess of the optimal solution α, where A ∈ Rm×n,b ∈ Rn, c ∈ Rm:

LP:
{

min bTx
s.t ATx ≥ c, x ≥ 0 Dual LP:

{
max cTy

s.t Ay ≤ b, y ≥ 0

The framework consists of multiple iterations of two-party game between the
algorithm and an oracle. In each iteration, the algorithm provides weight ut

i for
each dual constraint (these weights correspond to a possibly infeasible primal
solution). The oracle returns a dual feasible witness yt which reduces the duality
gap (see the definition of admissibility below). The failure to return a witness
implies that the duality gap is small, or in other words the primal solution is
(near) optimal. The framework is given in Algorithm 1. Note that the algorithm
constructs a dual feasible solution 1

T

∑
t y

t and proof of (near) optimality based
on the proof of a small dual gap.

Algorithm 1. The Multiplicative Weights Update Meta-Method [4]
1: u1

i = 1 for all i ∈ [n].
2: for t = 1 to T do
3: Given ut, the oracle returns an admissible dual witness yt. Note that yt is not

required to be feasible.
4: Let M(i, yt) = Aiy

t − bi (for all i).
5: Assert −� ≤ M(i, yt) ≤ ρ.

6: ut+1
i =

{
ut

i(1 + ε)M(i,yt)/ρ if M(i, yt) ≥ 0

ut
i(1 − ε)−M(i,yt)/ρ if M(i, yt) < 0

7: end for
8: Output 1

T

∑
t y

t (along with any correction induced by failure of the oracle).

Definition 1. We define M(i,yt) = Aiyt − bi to be the violation for dual
constraint i. The expected violation M(Dt,yt) is the expected value of M(i,yt)
when choosing i with probability proportional to ut

i, i.e.,
∑

i
ut

i∑
j ut

j
M(i,yt). The

dual witness is defined to be admissible if it satisfies

M(Dt,yt) ≤ δ, cTyt ≥ α, and M(i,yt) ∈ [−�, ρ] with � ≤ ρ

ρ is defined as the width parameter of the oracle. The parameters ε and T depend
on ρ, �, and the desired error bound δ. Note that admissibility does not imply
feasibility.

Theorem 1. [4] Let δ > 0 be an error parameter. Suppose that M(i,yt) ∈
[−�, ρ] with � ≤ ρ. Then, after T = 2ρ ln(n)

δε rounds and using ε = min{ δ
4� ,

1
2}, for

any constraint i we have: (1− ε)
∑

t M(i,yt) ≤ δT +
∑

t M(Dt,yt).

Since 1
T

∑
t M(i,yt) = M(i, 1

T

∑
t y

t) and M(Dtyt) ≤ δ for all t, the above
theorem implies that M(i, 1

T

∑
t y

t) ≤ (1− ε)−1(2δ) ≤ 4δ (dividing both the left
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and right side of the inequality by T ). This translates to the fact that the dual
constraints have a small violation.

The lnn term arises from the slack in the initial weights – which is analyzed
by a potential function Φt

i = ut
i/(
∑

j ut
j) and its upperbound Ψi; and the number

of iterations depends on ln Ψi

Φ1
i
. The proof uses the following inequalities:

ut
i ≤

∑
j

ut
j ≤
(

eε
∑

t′<t M(Dt′ ,yt′ )/ρ

)∑
j

u1
j , u1

i =

∑
j u1

j

n
, ut

i ≈ u1
i e

ε
∑

t′<t M(i,yt′ )/ρ

Eliminating the dependence on n requires modifying the potential function (or
the starting point or both), which we do in Section 5. The oracle is the problem-
specific part of the framework and the overall efficiency of the algorithm depends
on the oracle. Moreover, note that the multiplicative weights update method
produces an explicit dual solution (and only verifies primal feasibility).

3 Warming Up: O( 1
ε3

log n)-Pass Algorithms

In this section, we provide an (1 − ε)-approximation algorithm for (bipartite)
MCM and MWM that runs in O( 1

ε3 log n) passes. Recall that the multiplicative
update problem solves the dual. We formulate the primal LP (LP1 and LP3) to
be the dual of the actual LP for MCM and MWM(LP2 and LP4). The integrality
gap of LP2(and LP4) is one. We first present an algorithm for MCM and then
generalize the algorithm for MWM.

min
∑

i xi

s.t xi + xj ≥ 1 ∀(i, j) ∈ E
xi ≥ 0

(LP1)

max
∑

(i,j)∈E yij

s.t
∑

j:(i,j)∈E yij ≤ 1 ∀i

yij ≥ 0

(LP2)

min
∑

i xi

s.t xi + xj ≥ wij ∀(i, j) ∈ E
xi ≥ 0

(LP3)

max
∑

(i,j)∈E wijyij

s.t
∑

j:(i,j)∈E yij ≤ 1 ∀i

yij ≥ 0

(LP4)

The simple case of MCM: We apply the multiplicative weights method [4]
with the oracle provided in Algorithm 2. Recall that the algorithm returns a
(approximately) feasible solution for LP2 after T rounds. We can compute a
maximal matching in one pass in the semi-streaming model in O(m) time.

The intuition behind the oracle will be used for all the algorithms. Since
we are trying to find a solution for LP2, the oracle must choose a subset S of
edges. The critical properties and actions that need to be determined then are
(i) admissibility and (ii) verification of near optimality (or that the guess of α is
wrong). If S satisfies the following conditions, we achieve those goals.
(Admissibility): Each node i is adjacent to at most one edge in S (defines �, ρ).
(Verification): For each edge (i, j), we pick at least one edge adjacent to it.

Any maximal matching in Eviolate satisfies both conditions. Since we consider
the violated edges only, we improve the dual gap and the algorithm is natural.
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Algorithm 2. Oracle for LP1
1: Let xi = α∑

j ut
j
ut

i. Let Eviolated = {(i, j)|xi + xj < 1}.
2: Find a maximal matching S in Eviolated. Let Δ = |S|.
3: if Δ < δα then
4: The oracle reports failure. We indicate the verification step: For each (i, j) ∈ S,

increase xi and xj by 1 and return {xi} as the overall primal solution.
5: else
6: Return yij = α/Δ for (i, j) ∈ S and yij = 0 otherwise.
7: end if

Lemma 1. The oracle for LP1 returns an admissible solution with � = 1 and
ρ = 1/δ.

Lemma 2. If Δ < δα, a feasible solution for LP1 with value at most (1 + 2δ)α
is returned.

Theorem 2. In T = O( 1
ε3 log n) passes, we find either a feasible solution for

LP1 with value at most (1 + ε)α or a feasible solution for LP2 with value at
least (1 − ε)α. This uses O(nT ) space and O(mT ) time. This gives us a T + 1
pass O(S

ε ) space algorithm for (1 + ε) approximation to maximum cardinality
matching in bipartite graphs (computing only the size requires less space).

The not so simple case of MWM: We generalize Algorithm 2 to construct
an oracle for LP3. In the weighted graph, the verification condition must be
strengthened to handle the complication introduced by the edge weight. In LP2,
if we increase xi by 1, all the edges adjacent to i are satisfied. It is not true in
LP4. However, trying to fix the verification condition by itself does not help, any
change also has to ensure the admissibility condition. For a set of edges S, let
w(S) =

∑
(i,j)∈S wij denote the total weight for that set.

(Weighted Admissibility of S): There exists a matching S′ contained in S such
that w(S′) = Ω(w(S)). We use S′ to update the primal variables.
(Weighted Verification of S): For each violated edge (i, j), we pick at least one
edge adjacent to it whose weight is Ω(wij). We need all of S in this case.

The above two conditions are the conditions modified for LP4. If the oracle
satisfies the above two conditions, we can use S for the verification step and use
S′ for constructing a dual witness. In order to satisfy the modified conditions,
we partition edges depending on their weights.

Definition 2. An edge (i, j) is in tier k if α/2k < wij ≤ α/2k−1.

We ignore edges with tier greater than log n
δ . The ignored edges contribute at

most δ fraction of the optimal solution. Algorithm 3 is the oracle for LP3.

Lemma 3. For every violated edge (i, j), we pick at least one edge adjacent to
it whose weight is Ω(wij).
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Algorithm 3. Oracle for LP3
1: Let xi = α∑

j ut
j
ut

i.

2: Let Eviolated,k = {(i, j)|xi + xj < wij , α/2k < wij ≤ α/2k−1}.
3: Find a maximal matching Sk in Eviolated,k for each k = 1, · · · , �log n

δ
� = O(log n).

4: Let S = ∪kSk, Δ = w(S).
5: if Δ < δα then
6: For each (i, j) ∈ S, increase xi and xj by 2wij . Return {xi}.
7: else
8: repeat
9: Pick a heaviest edge (i, j) from S and add it to S′

10: Eliminate all edges adjacent to i or j from S.
11: until S = ∅
12: Return yij = α/w(S′) for (i, j) ∈ S′ and yij = 0 otherwise.
13: end if

Lemma 4. There exists a matching S′ ⊆ S such that w(S′) = Ω(w(S)).

The rest of the argument is almost identical to MCM and proof of Theorem 2 (ρ
increases by a constant factor) with the exception of the final rounding scheme
for we use the recent result of [6]. The space bound increases due to running
O(1

ε ) copies of the oracle, each of which uses O(n log n) space. Note that our
algorithm did not use bipartiteness (except in the proof of the integrality gap of
the MWM formulation).

Theorem 3. In T = O( 1
ε3 log n) passes, and O(nT

ε + n
ε log n) space we can

compute a (1 + ε) approximation for maximum weighted matching in bipartite
graphs (again the size can be computed in less space). This implies a 2

3 (1 − ε)
result for general graphs using the integrality gap results of [14,15].

4 Reducing Passes and Space Requirement

In the previous section, the algorithm executes the oracle in one pass and con-
sequently, the number of passes is equal to the number of iterations (except the
first pass to guess α). In this section, we first reduce the number of passes by
executing multiple iterations of the algorithm in one pass – this can be viewed
as making a “step” which is significantly larger than what is provided by the
basic analysis in the last section. Subsequently we address the space required.

Consider the two conditions for the oracle given in the previous section, and
for the sake of exposition, only consider the cardinality case. Suppose that we
just performed an update based on a dual witness y. The admissibility condi-
tion remains satisfied as long as the edges (i, j) in y satisfy xi + xj < 1. The
verification condition is not used as long as we have such a matching. In other
words, we can use the same matching until one of its edge becomes tight, that is,
satisfies the corresponding constraint xi + xj ≥ 1. One caveat of this argument
is that the “progress” (say, measured in the number of iterations of the meta
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method that can be simulated in a single pass) could be small when xi + xj is
close to 1. We have to adjust yij in order to guarantee a minimum progress per
pass. Observe that this idea automatically brings up the notion of weights. The
high-level idea for the oracle is similar to the construction in Section 3 – but
there are significant differences and two major issues arise.

– First, we cannot use the uniform growth of the entries y as in Section 3.
Suppose that S contains (i, j) and (i′, j′) where 1− xi′ − xj′ is greater than
1−xi−xj . If we assign large values to yij and yi′j′ , it decreases the number
of iterations per pass (due to normalization). If we assign small values to
yij and yi′j′ , it increases the total number of iterations and it may result in
inadmissible y, i.e., cTy < α.

– Second, we have to modify the verification condition in Section 3 so that
the condition handles the values of wij − xi − xj and keep the increase of
the solution minimal. For example, (again using the cardinality case as an
example) increasing the value of xi and xj less than 1 in the verification step
can result in an infeasible primal solution. On the other hand, increasing xi

and xj by 1 can result in a larger approximation factor.

In what follows, we avoid both the issues using “layers” of violations.

Definition 3. We define ṽij = (wij−xi−xj)/wij to be a fractional violation
and vij = ṽijwij = wij − xi − xj be a (weighted) violation of an edge (i, j).
An edge (i, j) is in tier k if α/2k < vij ≤ α/2k−1. For any set S, we define
V (S) =

∑
(i,j)∈S vij. The fractional violation will be used in increasing y and

the weighted violation will be used in the verification step.

We now use relaxed conditions of (weighted) Admissibility and Verification of
a witness S as in Section 3, i.e., we choose a set of edges S such that (i) there
exists a matching S′ ⊆ S with V (S′) = Ω(V (S)) and (ii) for each violated edge
(i, j), we pick at least one edge adjacent to it in S whose violation weight is
Ω(vij). We can now prove the following:

Theorem 4. Theorem 3 holds with T = O( 1
ε2 log n).

4.1 Reducing Space Required to Run Parallel Guesses

The basic intuition is to treat the admissibility and verification conditions differ-
ently. Note that the verification condition is applied only at the terminal step of
an oracle. In what follows we show how to preserve the admissibility condition
across different values of the guessed parameter α, and run the O(1

ε ) guesses (in
Theorem 4) in parallel. We begin with the following definition:

Definition 4. A sequence y1,y2, · · · ,yt is admissible if all y are admissible
when we apply y1,y2, · · · ,yt in the given order.

Lemma 5. Let α, α′ be guesses of the optimal solution with α > α′. If a sequence
y1,y2, · · · ,yt is admissible for α, the sequence is also admissible for α′.
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Algorithm 4. Improved Oracle for LP3(and LP1)
1: Let xi = α∑

j ut
j
ut

i.

2: Let Eviolated,k = {(i, j)|(i, j) is in tier k}. for k = 1, · · · , K = �log2
nα
δ
�

3: Find a maximal matching Sk in each Eviolated,k.
4: Let S = ∪kSkand Δ = V (S).
5: if Δ < δα then
6: The oracle reports failure. We indicate the verification step: For each (i, j) ∈ S,

increase xi and xj by 2vij . Increase all xi by δα
n

and return {xi} as the overall
primal solution.

7: else
8: S′ ← ∅.
9: for k = 1 to K do

10: S′ ← S′ ∪ Sk.
11: For k′ > k, eliminate all edges in S′

k that are adjacent to an edge in Sk.
12: end for
13: Let Δ′ = V (S′).
14: Return yij = ṽijα/Δ′ for (i, j) ∈ S′ and yij = 0 otherwise.
15: end if

Algorithm 5. Overall Algorithm for MWM. Note that the update rule corre-
sponds to 1/δ iterations of the original method (Algorithm 1) and the witness
(and the violations) are not updated in between.
1: u1

i = 1 for all i ∈ [n].
2: for t = 1 to δT do
3: Given ut

i, the oracle (for LP3) returns a dual witness yt.
4: Let M(i, yt) = Aiy

t − bi.
5: Assert −1 ≤ M(i,yt) ≤ 5/δ.

6: ut+1
i =

{
ut

i(1 + ε)M(i,yt)/5 if M(i, yt) ≥ 0

ut
i(1 − ε)−M(i,yt)/5 if M(i, yt) < 0

7: end for
8: Output 1

T

∑
t y

t (along with any correction induced by failure of the oracle).

The algorithm: We start with α being the upperbound of the maximum match-
ing. Each time the oracle fails, we reduce α by (1 − δ) factor while keeping the
weights of constraints and {yt} fixed. This is possible since the sequence of y
remains admissible with the same width parameter. The total number of suc-
cessful iterations remains the same but we need additional iterations for oracle
failures which is at most O(1

ε ).

Theorem 5. Theorem 4 holds with space O(n(T + log n)).

5 Removing the Dependency on n

In this section, we present an algorithm for MCM where the number of passes
does not depend on the number of nodes. We use the same algorithm as in
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Section 4 but we use a subgraph of the input graph and apply a different analysis.
Recall the analysis of the multiplicative weight update method and the discussion
regarding the proof of Theorem 1. The number of iterations is proportional to
ln Ψi

Φ1
i

where Φt
i = (
∑

j ut
j)/ut

i and Ψi is the upperbound of Φt
i. By the definition

of u1
i , Φ1

i = 1/n. xi increases upto 1 +O(δ) while the sum of xi is maintained as
α. Hence Ψi = O(1/α).

The simpler case of cardinality matching: The above implies that if we
can identify a small subgraph (in the number of vertices) then we can remove
the dependency on n. Indeed, this very simple approach works for maximum
cardinality matching. Consider the Algorithm 6 and the following lemma:

Algorithm 6. Constant-pass Algorithm for MCM
1: Find a maximal matching and find a 2 approximation of OPT .
2: Let S0 be the set of vertices that are matched.
3: for t = 1 to O(log 1

δ
) do

4: Find a maximal matching between St−1 and V − St−1. Let Tt be the set of
vertices in the maximal matching.

5: St = St−1 ∪ Tt.
6: end for
7: Let G′ be a subgraph induced by ST . This can be achieved by filtering the stream.

8: Run Algorithm 5 on G′ (with modification of Section 4.1).

Lemma 6. Let OPTS denote the maximum matching in the subgraph induced
by the vertex set S ⊆ V , then (using the notation of Algorithm 6), we have
OPTV −OPTSt+2 ≤ 2

3 (OPT −OPTSt). (This proof does not use bipartiteness.)

If Lemma 6 is repeated O(log 1
δ ) times (as in Algorithm 6), the difference between

the optimal solution in G and the optimal solution in the subgraph G′ is at most
δOPT . The size of each maximal matching is O(α) and we repeat O(log 1

δ ), the
subgraph contains at most O(α log 1

δ ) vertices. The number of passes to find the
subgraph is O(log 1

δ ) since we can find a maximal matching in one pass. Using
δ = O(ε), and Theorem 5, we obtain the following theorem:

Theorem 6. In T = O( 1
ε2 log log 1

ε ) passes, and O(n′(T + log n′)) space we
can compute a (1 + ε) approximation for the maximum cardinality matching in
bipartite graphs where n′ = min{n, |OPT | log 1

ε}.
The case of Maximum Weighted Matching. This case is significantly more
difficult and we cannot in general find a small subgraph. The subgraph will now
be expressed implicitly using the vertex weights ui as proxy. Intuitively, instead
of staring from an uniform random sample of the constraints, we will start from
a weighted sample. Before proceeding further, for the rest of this section we
assume that the weights are discrete, i.e., wij ∈ {1, (1 + δ), · · · , (1 + δ)L} where
L = O(1

δ log n) to simplify the analysis. The discretization of the weights reduces
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the optimal solution by at most (1 − δ) factor. This can be achieved with one
extra pass and a (constant factor) estimate of the maximum weighted matching
(denoted henceforth as M), and then we ignore the edge weights which are
smaller than δ/n times w(M). We ensure that:

C1:
∑

i u
1
i = γw(M).

C2: Let G′ = (V,E′) be a subgraph that consists of edges (i, j) such that wij ≤
u1

i , u
1
j . Then, G′ contains a matching with weight at least (1− δ)w(M).

By the definition of u1
i , Φ1

i = Ω(u1
i /γα). Since wij ≤ u1

i for all (i, j) ∈ E, xi

increases upto O(u1
i ) while the sum of xi is maintained as α. So Ψi = O(u1

i /α).
Hence, we obtain an (1− ε)-approximation in O( 1

ε2 log γ) passes. The Algorithm
7 that computes the weights of the vertices is similar to Algorithm 6, but is
significantly non-trivial. The next two lemmas are the crux of the argument.

Algorithm 7. Finding a subgraph G′. q is a parameter which will be defined
later.
1: (i, j) is in level k if wij = (1 + δ)k

2: for each level k = 0, 1, · · · , L in parallel do
3: Find a maximal matching.
4: Let Ck be the set of nodes matched in the maximal matching.
5: Let S1

k = Ck

6: for t = 1 to q do
7: Find a maximal matching between Ck and V − St

k.
8: Let T t

k be the set of nodes matched in the maximal matching.
9: St+1

k = St
k ∪ T t

k.
10: end for
11: end for
12: Let u1

i = (1 + δ)k for the maximum k with i ∈ Sq
k

13: Let G′ = (V, E′) where E′ = {(i, j) : wij ≤ u1
i , u

1
j}.

14: Run Algorithm 5 on G′ with initial weights u1
i and return its result.

Lemma 7.
∑

i u
1
i = O( q

δ )w(M). (Bipartiteness is not used in this proof.)

Lemma 8. G′ contains a matching with weight at least
(

1− O(δ−1 log δ−1)
q

)
w(M).

With q = O( 1
δ2 log 1

δ ) and γ = O( 1
δ3 log 1

δ ), we satisfy both C1 and C2 and
obtain an O( 1

δ2 log 1
δ )-pass algorithm for testing the linear program MWM. We

set δ = O(ε) and note, it takes q passes and O(nL) = O(n log n
ε ) space to find

the subgraph G′. Using Theorem 5 and summarizing,

Theorem 7. In T = O( 1
ε2 log 1

ε ) passes, and O(n(T + log n
ε )) space we can com-

pute a (1 + ε) approximation for the maximum weighted matching in bipartite
graphs. This translates to a 2

3 (1− ε) approximation for general graphs.
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Abstract. Congestion games model several interesting applications, in-
cluding routing and network formation games, and also possess attrac-
tive theoretical properties, including the existence of and convergence of
natural dynamics to a pure Nash equilibrium. Weighted variants of con-
gestion games that rely on sharing costs proportional to players’ weights
do not generally have pure-strategy Nash equilibria. We propose a new
way of assigning costs to players with weights in congestion games that
recovers the important properties of the unweighted model. This method
is derived from the Shapley value, and it always induces a game with a
(weighted) potential function. For the special cases of weighted network
cost-sharing and atomic selfish routing games (with Shapley value-based
cost shares), we prove tight bounds on the price of stability and price of
anarchy, respectively.

Keywords: congestion games, network design, Shapley value.

1 Introduction

Congestion games are a well-studied generalization of several game-theoretic
models, including some fundamental network formation games and routing games.
In the standard model [19], there is a ground set of resources, and each player has
a set of allowable strategies, each of which is a subset of resources. For example,
the strategies of a player could correspond to the paths of a network with a given
source and sink. Each resource has a per-user cost that depends on the number
of players that use it, and the goal of each player is to minimize the sum of the
resources’ costs in its strategy, given the strategies chosen by the other players.
In atomic selfish routing games [20,22], strategies correspond to paths and re-
source cost functions ce(·) are nondecreasing. In network cost-sharing games [2],
strategies correspond to paths and the (decreasing) cost functions have the form
ce(fe) = γe/fe, where γe is the fixed installation cost of an edge e and fe is the
number of players that share it.

A pure Nash equilibrium (PNE) is a strategy profile such that no player can
decrease its cost via a unilateral deviation. Many games, such as “Rock-Paper-
Scissors”, have no PNE. Rosenthal [19] used a potential function argument to
show that every congestion game — and thus every atomic selfish routing and
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network cost-sharing game — has at least one PNE. Moreover, several natural
dynamics are guaranteed to converge to a PNE in congestion games [14,15].

Every player of a congestion game imposes the same load on a resource. There
are many motivations for relaxing this assumption and allowing non-uniform
resource consumption: for example, in a network context, players could have dif-
ferent durations of resource usage, different bandwidth requirements, or different
contracts with the network provider. Almost all research to date has modeled
non-uniform players in congestion-type games through proportional cost shar-
ing [1,2,3,5,8,10,13,15]. The first assumption in proportional cost sharing is that
each player i has a positive weight wi, with larger weights indicating larger re-
source usage. To explain the second assumption in a general way, let Ce(Se)
denote the joint cost incurred by the subset Se of users of the resource e.
For example, in a network cost-sharing game, Ce(Se) is the fixed cost γe pro-
vided Se is non-empty (and is 0 otherwise). In (weighted) atomic selfish routing,
Ce(Se) is fe · ce(fe), where ce(·) is the per-flow unit resource cost function and
fe =
∑

i∈Se
wi is the total weight of the players using e. Proportional cost shar-

ing dictates that each player i ∈ Se pays a wi/
∑

j∈Se
wj fraction of Ce(Se) for

the resource e.
Unfortunately, most of the attractive theoretical properties of congestion

games do not carry over to their weighted counterparts with proportional cost
sharing. Network cost-sharing games with at least three players need not have
a PNE [5]. Even when PNE do exist in such games, they can be much costlier
(relative to an optimal solution) than in the unweighted case [2,5]. Atomic self-
ish routing games with weighted players do not generally have PNE [9,10,20],
except when all cost functions are affine [7] and in some other isolated special
cases [10].

Guaranteed existence of PNE is an important property. There are, of course,
more general equilibrium concepts like the mixed-strategy Nash equilibrium that
are guaranteed to exist in every finite game, but randomized solution concepts
suffer from well-known drawbacks in interpretation and implementation (see
e.g. [18, §3.2]). Particularly when designing or influencing the game being played
— the standard interpretation of network cost-sharing games [2,5,6] and also a
well-motivated one for routing games [16,17,24] — there is good reason to make
design decisions (e.g., queueing policies [24]) that guarantee the existence of and
convergence of natural dynamics to a PNE.

We propose a new way of assigning costs to players with weights in congestion-
type games, which is derived from the Shapley value. We call the resulting
class of games SV weighted congestion games. Extending work of Hart and Mas-
Colell [11], we show that every SV weighted congestion game admits a (weighted)
potential function. The existence of and convergence of natural dynamics to a
PNE in every such game follow immediately.

For example, for the special case of atomic selfish routing games, we derive
the cost shares for the users Se of edge e by applying the standard Shapley
value (defined in the next section) to the cost function Ce above with the player
set Se. Since the incremental effect of a player on the joint cost is increasing in
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its weight, so is its cost share. These Shapley value-based cost shares coincide
with proportional shares when all per-user cost functions are affine, but not
otherwise. These observations explain the previously mysterious fact that the
traditional proportional cost shares always yield a potential game if and only if
all cost functions are affine [7,10].

For the special case of network cost-sharing games, the joint cost function Ce

is insensitive to players’ weights. To introduce weight-dependent cost shares,
we use the weighted Shapley value [12,23], which averages over orderings of the
players in a non-uniform way (see the next section for a definition). The resulting
cost shares are increasing in weight, and coincide with proportional shares (for
all weight vectors) if and only if there are at most two players. Again, these
facts demystify the previously observed phase transition between the cases of
two players [2] and three or more players [5] for proportional cost shares.

We also provide tight bounds on the inefficiency of equilibria in SV weighted
network cost-sharing and atomic selfish routing games. For network cost-sharing
games our results are tight in a strong sense: for every number k of players and
every weight vector w, we characterize the worst-case price of stability (POS)
— the ratio between the cost of the best PNE and of an optimal solution —
in games with player weight vector w. For each w, we give an explicit lower
bound and prove a matching upper bound for all networks. The special case of
w = (1, 1, . . . , 1) — where the worst-case POS is the kth Harmonic number —
is one of the main results in Anshelevich et al. [2]. Similarly, for atomic selfish
routing games, we give tight bounds on the worst-case price of anarchy (POA)
— the ratio between the cost of the worst PNE and of an optimal outcome
— with respect to every set of convex cost functions (for a worst-case set of
player weights). This worst-case POA is larger, but only slightly, than the one
in weighted congestion games with proportional cost sharing that have PNE.

2 Preliminaries

We first explain the weighted Shapley value in general [12,23]. Consider a set S
of players and a cost function C : 2S → R. (For us, S is the users of a resource
and C(T ) is the joint cost that would be incurred if the players of T ⊆ S
were its sole users.) For a given ordering π of the players, let Δi(π) denote
C(Si(π) ∪ {i})− C(Si(π)), where Si(π) denotes the players preceding i in π.

Each player has a weight wi and a sampling probability λi. Traditionally,
[12,23] λi is set to 1/wi. We use the λi’s to define a distribution over orderings
of players, as follows. (When all λi’s are equal, we get the uniform distribution
and recover the usual Shapley value.) We first choose the final player in the
ordering, with probabilities proportional to the λi’s; given this choice, we choose
the penultimate player randomly from the remaining ones, again with probabil-
ities proportional to the λi’s; and so on. The weighted Shapley value of player i
is defined as the expected value of Δi(π) with respect to this distribution over
orderings π.
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2.1 Weighted Network Cost-Sharing

In weighted network cost-sharing, each player i = 1, 2, . . . , k has a weight wi ≥ 1
and a sampling weight λi = 1/wi. Player i aims to construct a path Pi from a
given node si to a given node ti in a directed graph G = (V,E), where every e ∈ E
has a fixed nonnegative cost γe. We next give a probabilistic representation
of weighted Shapley cost shares and the corresponding potential function, in
terms of independent random variables X1, . . . , Xk, where Xi is exponentially
distributed with rate λi. With Se the players on edge e, the weighted Shapley
value of player i ∈ Se is defined as ξi(Se) ·γe, where ξi(Se) is the probability that
Xi ≥ Xj for every j ∈ Se. Some thought shows that this definition is equivalent
to the one given at the start of the section (for our joint cost function that
equals 1 for every non-empty set).

A network cost-sharing game with these cost shares admits the following
(weighted) potential function. For every path vector P , we define Φe(P ) =
γe · E[maxj∈Se Xj ], where Se is the set of players that use e in the profile P ,
and Φ(P ) =

∑
e∈E Φe(P ). The fact that Φ is a weighted potential function can

be derived easily assuming results of Hart and Mas-Colell [11] about cooperative
games; but for the present cost function we can give a direct proof.

Proposition 1. Given a path vector P , suppose player i deviates from Pi to P ′i .
Let ΔΦ be the resulting change in the potential function and ΔCi the resulting
change in the cost of player i. Then ΔΦ = wi ·ΔCi.

Proof. We prove the equality for each e ∈ E. By symmetry we can assume that
e ∈ P ′i \Pi. The cost share of player i on edge e increases from 0 to γe ·ξi(Se∪{i}).
Let ΔΦe be the change in the potential on edge e. We have

ΔΦe = γe · E
[(

Xi −max
j∈Se

Xj

) ∣∣∣Xi ≥ max
j∈Se

Xj

]
·Pr
[
Xi ≥ max

j∈Se

Xj

]
.

From the facts that the exponential distribution is memoryless and wi = 1/λi

we get that the above is equal to γe · wi · ξi(Se ∪ {i}). �	

2.2 Atomic Selfish Routing

In atomic selfish routing, each player i = 1, 2, . . . , k has weight wi and selects a
path Pi from a node si to a node ti in a given graph G = (V,E). For every e ∈ E,
the cost function ce(·) is nonnegative and nondecreasing and the players in Se

have to pay Ce(Se) = fe · ce(fe), where fe is their total weight. In atomic
selfish routing, the usual (unweighted) Shapley value already gives good weight-
dependent cost shares, because the joint cost function Ce is asymmetric. Let Xi,e

be a random variable with value equal to the total weight of those that appear
before i in a uniformly random ordering of the players on edge e. Then the
Shapley value of i for e is ci,e(Se) = E[(Xi,e +wi) · ce(Xi,e +wi)−Xi,e · ce(Xi,e)].

We now present the potential function of the game. With P the selected
path vector and π an arbitrary ordering of the players on e, the edge potential is
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Φe(P ) =
∑

i∈Se
ci,e(Si

e(π)), where Si
e(π) is the set of players preceding i in π.

The (exact) potential function is Φ(P ) =
∑

e∈E Φe(P ). The fact that this is a
potential function can be derived from Hart and Mas-Colell [11].

3 Weighted Network Cost-Sharing

3.1 Lower Bounding the Price of Stability

Given the weight vector w, which we assume is sorted in nondecreasing order, we
construct the following network. Each player i = 1, 2, . . . , k starts from node si

and they all have a common terminal node t. The network offers two possible
paths to each i. The first path consists of the edge {si, v} with γ{si,v} = 0 and
the edge {v, t} with γ{v,t} = 1 + ε for ε > 0 a very small number. The second
path consists of a single edge from si to t with γ{si,t} = ξi({1, 2, . . . , i}). The
largest player that uses its two-hop path always has an incentive to deviate to
its one-hop path. Hence, in the unique PNE all players are using their one-hop
paths. This implies that the worst-case POS in all games with weight vector w
is lower bounded by

∑
i ξi({1, 2, . . . , i}). If we take w = (1, 1, ..., 1), we recover

the well-known unweighted lower bound example of Anshelevich et al. [2].

3.2 Upper Bounding the Price of Stability

We prove that for every weight vector w, the example of Section 3.1 is the worst
case among all possible networks.

Theorem 1. Given k players with weights w1 ≤ w2 ≤ . . . ≤ wk, the worst case
POS among all games with these player weights is

∑
i ξi({1, 2, . . . , i}).

Consider a game with player set S = {1, 2, . . . , k} and weight vector w on G =
(V,E). Let P ∗ be the path vector that minimizes the total cost and let P be the
vector of paths that minimizes the potential function and is, therefore, a PNE.
We observe the changes in the total cost as players deviate one by one from their
paths in P ∗ to their paths in P , in the order k, k − 1, . . . , 1. Our proof follows
the main idea and steps outlined below.

Main idea and steps of the proof. As player i deviates from path P ∗i to Pi the
cost of i changes, as does the cost of each j that was or is sharing edges with i.
We will prove that the sum of these changes over the k deviations will be at
most C∗ · (∑i ξi({1, 2, . . . , i})− 1), where C∗ is the total cost of path vector P ∗.

The first step focuses on the impact that the deviation of each i has on every
j �= i. The worst case for these changes is when all deviating players depart all
edges shared with others and join new unused edges. We show this in a reverse
order, starting from player 1 (the last to deviate) and going to player k.

The second step also focuses on the same cost changes as the first step. We
show that in the worst case, every edge used in P ∗ is shared by all players. By
the end of this step, we get that the total cost increase of non-deviating players
is at most C∗ · (∑i ξi({1, 2, . . . , i})− 1).
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The third and final step focuses on the change in the cost of the deviating
player during each round. We prove that the sum over all k rounds is nonpositive.

Proof. We define the following sets of edges in the graph. For every Se ⊆ S
we will write κ(Se) for the edges that initially (i.e., in P ∗) are shared by the
players in Se. For every Se ⊆ S and for every i ∈ Se, we will write δi(Se) for the
edges that are shared by the players in Se after the deviation of i − 1 and by
the players in Se \ {i} after the deviation of i (these are the edges that i departs
from). Similarly, for every Se ⊆ S and for every i ∈ Se, we will write σi(Se) for
the edges that are shared by the players in Se \ {i} after the deviation of i− 1
and by the players in Se after the deviation of i (these are the edges that i joins).
We will write γ(F ) for the total cost of the edges in F ⊆ E. We will also denote
the change in the potential function due to the deviation of player i as ΔΦi.

Consider the deviation of player i. The change in i’s cost is tracked by the
change in the potential function scaled by 1/wi, while the change that this
deviation causes to the costs of other players is tracked by the portion of γ(δi(Se))
that i pays (the other players have to pay for it after i departs) and by the portion
of γ(σi(Se)) that i pays (the other players no longer have to pay for it after i
joins the edges) for all Se ⊆ S. So the difference between the optimal cost and
the total cost of the potential function minimizer can be written as

ΔC =
∑

i

ΔΦi

wi
+
∑

i

∑
Se!i,|Se|≥2

γ(δi(Se)) · ξi(Se)− γ(σi(Se)) · ξi(Se). (1)

At the moment i is about to deviate, the set of edges that are shared by the
players in Se ⊆ S has been shaped by the deviations of k, k − 1, k − 2, . . . , i + 1
and is

τi(Se) =

⎡
⎣κ(Se) ∪

⎛
⎝ ⋃

j∈Se,j>i

σj(Se)

⎞
⎠ ∪
⎛
⎝ ⋃

j /∈Se,j>i

δj(Se ∪ {j})
⎞
⎠
⎤
⎦

\
⎡
⎣
⎛
⎝ ⋃

j∈Se,j>i

δj(Se)

⎞
⎠ ∪
⎛
⎝ ⋃

j /∈Se,j>i

σj(Se ∪ {j})
⎞
⎠
⎤
⎦ . (2)

It is clear that δi(Se) ⊆ τi(Se). We proceed with the following proposition.

Proposition 2. We can obtain an upper bound for the expression in (1) by
setting δi(Se) = τi(Se) and σi(Se) = ∅ for every Se ⊆ S and every i ∈ S.

Proof. We will prove this by induction. Our base case is player 1, the last one
to deviate from P ∗1 to P1. It is obvious that once everyone else has deviated,
the worst case for the expression in (1) is if for every Se ⊆ S with |Se| ≥
2, δ1(Se) is as large as possible, which means equal to τ1(Se), while σ1(Se) is
empty. Our inductive hypothesis assumes the worst case is when every player j =
1, . . . , n sets for every Se ⊆ S with |Se| ≥ 2, δi(Se) = τi(Se) and σi(Se) = ∅.
We will prove that in the worst case, for every Se ⊆ S with |Se| ≥ 2, we
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have δn+1(Se) = τn+1(Se) and σn+1(Se) = ∅. After plugging the worst case
deviations for players 1, 2, . . . , n into (1) using (2), we look at the coefficient
of γ(δn+1(Se)) and the coefficient of γ(σn+1(Se)), for which we write α(δn+1(Se))
and α(σn+1(Se)) respectively. So, from (1), (2), and the inductive hypothesis,
we get that for every Se ⊆ S,

α(δn+1(Se)) = −α(σn+1(Se))

= ξn+1(Se) +
∑

j∈Se,j<n+1

α(δj(Se \ {n + 1}))− α(δj(Se)).

To complete the proof of the proposition, it suffices to show that this is nonneg-
ative. Assume Se = {i1, i2, . . . , im} in nondecreasing weight order. The solution
of this recurrence is as follows.

α(δim(Se)) =
m∑

j=2

ξj({i1, . . . , ij})−
m−1∑
j=1

ξj({i1, . . . , ij , im}) ≥ 0, and for l < m,

α(δil
(Se))=

l∑
j=1

ξj({i1, . . . , ij , il+1, . . . , im})−
l−1∑
j=1

ξj({i1, . . . , ij , il, . . . , im})≥0.

�	
From (1) and Proposition 2, we get that

ΔC ≤
∑

i

ΔΦi

wi
+
∑

i

∑
Se!i,|Se|≥2

γ(τi(S)) · ξi(S).

We order the players in Se ⊆ S in nondecreasing weight order as i1, i2, . . . , im and
we denote Ξ(Se) =

∑m
j=1 ξj({i1, i2, . . . , ij}). Then, we can see that the inequality

above becomes

ΔC ≤
∑

i

ΔΦi

wi
+
∑

Se⊆S

γ(κ(Se)) · [Ξ(Se)− 1]. (3)

We can see this as follows. The cost γ(κ(Se)) appears with coefficient ξm(Se)
when im departs from all these edges, then with coefficient ξm−1(Se \ {im})
when im−1 departs from all these edges, etc. We proceed with the following
proposition.

Proposition 3. For any set of players S we have maxSe⊆S Ξ(Se) = Ξ(S).

Proof. It suffices to show that for any player j ∈ S it is the case that Ξ(S) ≥
Ξ(S\{j}). Recall that Xi is an exponential random variable with parameter λi =
1/wi and that the players in S are such that 1 ≥ λ1 ≥ λ2 ≥ . . . ≥ λk. We will
write Bi(Se) for the event that Xi is larger than Xj for every j ∈ Se. We can
see that Ξ(S) = 1 +

∑k
i=2 Pr[Bi({1, 2, . . . , i})] and

Ξ(S \ {j}) = 1 +
j−1∑
i=2

Pr[Bi({1, 2, . . . , i− 1})]
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+
k∑

i=j+1

Pr[Bi({1, 2, . . . , i− 1} \ {j})].

Hence, we get

Ξ(S)− Ξ(S \ {j})

= Pr[Bj({1, 2, . . . , j − 1})]−
k∑

i=j+1

Pr[Bi({1, 2, . . . , i− 1} \ {j}) ∧Bj({i})]

=
∫ ∞

0

λje
−λjx

j−1∏
l=1

(1− e−λlx)−
k∑

i=j+1

λie
−λixe−λjx

i−1∏
l=1,l �=j

(1− e−λlx)dx

≥
∫ ∞

0

λje
−λjx

j−1∏
l=1

(1− e−λlx)−
k∑

i=j+1

λje
−λjxe−λjx

i−1∏
l=1,l �=j

(1− e−λlx)dx

≥
∫ ∞

0

λje
−λjx

j−1∏
l=1

(1− e−λlx)

⎡
⎣1− k∑

i=j+1

e−λjx(1 − e−λlx)i−j−1

⎤
⎦ dx ≥ 0. �	

From (3) and Proposition 3, we get

ΔC ≤
∑

i

ΔΦi

wi
+ C∗ · [Ξ(S)− 1], (4)

with C∗ the optimal total cost. At this point, to complete the proof of the
theorem, we only need to show that the following proposition holds.

Proposition 4. It is the case that
∑k

i=1 ΔΦi/wi ≤ 0.

Proof. We will prove by induction that for every j = 2, 3, . . . , k− 1 it is the case
that

j∑
i=1

ΔΦi

wi
≤
∑j

i=1 ΔΦi

wj
.

Our base is the case with j = 2. Note that ΔΦ1 is the difference in the potential
function when moving from some path vector to the potential function minimizer,
so it is nonpositive. We get

ΔΦ1

w1
+

ΔΦ1

w2
≤ ΔΦ1 + ΔΦ2

w2
.

Our inductive hypothesis assumes the statement is true for j = n and we will
prove it is true for j = n + 1. We have

n+1∑
i=1

ΔΦi

wi
≤ ΔΦn+1

wn+1
+
∑n

i=1 ΔΦi

wn
≤
∑n+1

i=1 ΔΦi

wn+1
.
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The last step follows from the fact that
∑n

i=1 ΔΦi is the change in the value
of the potential function while moving from some path vector to the potential
function minimizer and is, therefore, nonpositive. Now we have

k∑
i=1

ΔΦi

wi
≤
∑k

i=1 ΔΦi

wk
≤ 0,

which proves the proposition. �	
Combining Proposition 4 with (4) proves the theorem. �	
This result implies that as long as all players’ weights lie in a bounded range, the
price of stability remains O(log k) (unlike with proportional cost sharing [5]).

3.3 Further Analysis of the Price of Stability

In this subsection we focus on the expression
∑

i ξi({1, 2, . . . , i}), which is the
worst case POS for a game with weight vector w. We first prove the following
useful lemma.

Lemma 1. The value ξi({1, 2, . . . , i}) does not decrease if we replace the weights
of players 1, 2, . . . , i− 1 with their average.

Proof. We can assume that wi−1 > w1, and show that the cost share of player i
increases if we replace wi−1 with wi−1− ε and w1 with w1 + ε for a very small ε.
Recall from Section 2 our probabilistic representation of the weighted Shapley
cost shares. Suppose that the maximum of X2, X3, . . . , Xi−2 is y. Consider the
following experiment to determine the values of X1, Xi−1. Numbers η1 and ηi−1

are picked uniformly and independently at random from [0, 1]. The value of X1

is F−1
λ1

(η1) = −w1 ln(1− η1), which is the inverse of the cumulative distribution
function of the exponential distribution with parameter λ1 = 1/w1. This does not
change the distribution of X1. Similarly the value of Xi−1 is −wi−1 ln(1− ηi−1).

For the same η1 and ηi−1, after we have changed the weights, the values be-
come −(w1+ε) ln(1−η1) and−(wi−1−ε) ln(1−η1). We know that ξi({1, 2, . . . , i})
is the probability that Xi is larger than all Xj for j = 1, 2, . . . , i− 1. Hence, to
prove the lemma, it suffices to show that this probability increases with the
updated weights. The (η1, ηi−1) pairs which make it harder for Xi to be the
largest with the updated weights compared to the original weights, are the ones
where X1 is larger than Xi−1 and also larger than y. We assume ε is small enough
to keep the relative ordering of X1, X2, . . . , Xi−1 intact even after the change of
the weights. It is clear that such ε exists. We prove that for every pair (η, η′) that
decreases the probability of Xi being the largest by Δp, the pair (η′, η) increases
the same probability by Δp′ ≥ Δp. We have

Δp = eλiw1 ln(1−η) − eλi(w1+ε) ln(1−η) =
[
(1− η)λi

]w1 − [(1− η)λi
]w1+ε

.

Since X1, which has a distribution with larger rate, is bigger than Xi−1 and y
when the pair (η, η′) is picked, it follows that Xi−1 is larger than X1 and y when
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the pair (η′, η) is picked. We then have

Δp′ = eλi(wi−1−ε) ln(1−η) − eλiwi−1 ln(1−η) =
[
(1 − η)λi

]wi−1−ε − [(1− η)λi
]wi−1

.

Since [
(
1− η)λi

]x is decreasing and convex for x > 0, we get Δp′ ≥ Δp, which
completes the proof. �	

We can now prove the following upper bound for ξi({1, 2, . . . , i}).
Lemma 2. Let Se = {1, 2, . . . , i}. It is the case that

ξi(Se) ≤
(

w′i + 1
w′ii + 1

)1/w′
i

where w′i is the ratio of wi to the average weight of payers 1, 2, . . . , i− 1.

Proof. From Lemma 1 we get that we can obtain an upper bound on ξi(Se)
by substituting every wi for i = 1, 2, . . . , i − 1 with their average, which we
denote w̄−i. This would be equivalent to having a weight w′i = wi/w̄−i for
player i and weight 1 for all other i− 1 players. Then using the definition of the
weighted Shapley value from the start of Section 2, we get

ξi(Se) ≤
i−1∏
j=1

jw′i
jw′i + 1

=
i−1∏
j=1

(
1− 1

jw′i + 1

)
≤

i−1∏
j=1

e−1/(jw′
i+1)

= exp

⎛
⎝− i−1∑

j=1

1
jw′i + 1

⎞
⎠ ≤ exp

(
−
∫ i

1

dx

xw′i + 1

)
=
(

w′i + 1
w′ii + 1

)1/w′
i

.

This completes the proof. �	

Combining Lemma 2 with Theorem 1, provides an expression that upper bounds
the POS for a given weight vector. An example is the case with equal weights,
where we get the tight Hk = O(log(k)) bound shown in [2]. Another interesting
case is that with weight wi = i for i = 1, 2, . . . , k, for which we get that the POS
is O(

√
k).

4 Atomic Selfish Routing

Let C be a set of nonnegative nondecreasing cost functions and suppose all
resource cost functions of our atomic selfish routing game are picked from C.
We make the following assumptions for every c ∈ C and w ≥ 0. It is the case
that (x+w) · c(x+w)−x · c(x) is a convex and nondecreasing function of x (this
is true, for example, for twice differentiable functions with nondecreasing first
and second derivatives). Also, if c̄(x) = w ·c(x), then c̄ ∈ C (i.e., C is closed under
scaling). Finally, if c̄(x) = c(w · x), then c̄ ∈ C (i.e., C is closed under dilation).
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4.1 Upper Bounding the Price of Anarchy

We define

A(C) =
{

(λ, μ) : μ < 1, for all x, x∗ ≥ 0 and for all c ∈ C(
λ− 1

2

)
x∗ · c(x∗) +

(
μ +

1
2

)
x · c(x) − 1

2
(x + x∗) · c(x + x∗) ≥ 0

}
.

The following proposition gives an upper bound on the POA.

Proposition 5. If (λ, μ) ∈ A(C), then the POA of an atomic selfish routing
game with Shapley cost shares and cost functions from C is at most λ/(1 − μ).

Using the above proposition we derive the upper bound ζ(C) = inf{λ/(1 − μ) :
(λ, μ) ∈ A(C)}. This bound is robust in the sense of [21], and thus applies also
to more general equilibrium concepts, like coarse correlated equilibria. If A(C)
is empty, then we define ζ(C) =∞.

Upper Bound for Polynomials. Suppose C is the class of polynomials with
nonnegative coefficients and maximum degree d. Also let χd be the number that
satisfies 3χd+1

d = 1 + (χd + 1)d+1. We get the following theorem.

Theorem 2. If C is the set of polynomials with nonnegative coefficients and
maximum degree d, then the POA of an atomic selfish routing game with Shapley
cost shares and cost functions in C is at most χd+1

d = (Θ(d))d+1.

For comparison, the worst-case POA with proportional sharing, in such games
that happen to possess PNE, is the slightly smaller quantity Θ((d/ ln d)d+1).

4.2 Lower Bounding the Price of Anarchy

The upper bounds presented in Subsection 4.1 are tight. The analysis that proves
this is similar to the one for weighted congestion games with proportional cost
sharing [4].

Lower Bound for Polynomials. We now present the lower bound construc-
tion for the case when C is the set of polynomials with nonnegative coeffi-
cients and maximum degree d. Consider a game with the set of players be-
ing S = {1, 2, . . . , k} and the set of edges being E = {1, . . . , k + 1}. The weight
of player i ∈ S is wi = χi

d, the cost function of edge k + 1 is ck+1(x) = xd, and
the cost function of every other e ∈ E is ce(x) = χ

(d+1)(k−e)
d xd. Each player i

has to select between using edge i and edge i + 1. The fact that the outcome
where every player i picks edge i is a PNE gives the following theorem.

Theorem 3. The POA of an atomic selfish routing game with Shapley cost
shares and cost functions that are polynomials with nonnegative coefficients and
maximum degree d can be arbitrarily close to χd+1

d .
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Existence and Uniqueness of Equilibria
for Flows over Time�

Roberto Cominetti, José R. Correa, and Omar Larré
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Abstract. Network flows that vary over time arise naturally when modeling
rapidly evolving systems such as the Internet. In this paper, we continue the study
of equilibria for flows over time in the single-source single-sink deterministic
queuing model proposed by Koch and Skutella. We give a constructive proof for
the existence and uniqueness of equilibria for the case of a piecewise constant
inflow rate, through a detailed analysis of the static flows obtained as derivatives
of a dynamic equilibrium.

Keywords: Flows Over Time, Network Equilibrium.

1 Introduction

Understanding time varying flows in a network is fundamental in contexts where a
steady state is rarely attained, including traffic networks and the Internet. Furthermore,
these systems are usually characterized by the lack of coordination among participating
agents and therefore need to be considered from a game theoretic perspective.

Research in flows over time has mainly focused in optimization. The first to con-
sider this model in a discrete time setting were Ford and Fulkerson [6,7] who designed
an algorithm to find a flow over time carrying the maximum possible total flow in a
given time horizon. Gale [8] then showed the existence of a flow pattern that achieves
this optimum simultaneously for all time horizons. These results were extended to a
continuous time setting by Fleischer and Tardos [5] and by Anderson and Philpott [1]
respectively. We refer the reader to Skutella [12] for an excellent survey.

The study of network flows over time when different flow particles act selfishly has
mostly been considered in the transportation science literature. The book of Ran and
Boyce [11] describes a very general model of equilibria, for which unfortunately very
little is known. More recently, Koch and Skutella [9] considered a simpler model in
which there is an inflow rate at a single source node that travels across the network
towards a single sink node through edges that are characterized by their travel time (or
latency) and their per-time-unit capacity. The model can be interpreted as a fluid re-
laxation of a deterministic queuing model, and is a special case of Ran and Boyce’s
general framework. Very recently this model was also considered by Macko, Larson,
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Our Contribution. Building upon the work of Koch and Skutella, in this paper we give a
constructive (algorithmic) proof for the existence and uniqueness of equilibria for flows
over time. Our work is based on the key concept of thin flow with resetting introduced
by Koch and Skutella. This concept defines a static flow together with an associated la-
beling which coincides with the derivatives of the distance labels of an equilibrium. We
actually consider a slightly more restrictive definition by adding an additional technical
constraint, and show how to transform any thin flow with resetting into a flow and label-
ing satisfying this extra property. Then we prove that such a flow always exists using an
equivalent nonlinear complementarity problem which is shown to admit a solution by
proving that an associated variational inequality has an interior solution. Furthermore,
we prove that a thin flow with resetting with our additional condition is also unique. By
integrating these thin flows with resetting, the results allow us to prove the existence
and uniqueness (among a natural family) of equilibria for flows over time when the
inflow rate is piecewise constant. Finally, we give a non-constructive existence proof
when the inflow rate function is measurable and its value raised to the p-th power has
finite integral, for some 1 < p <∞ (i.e., belongs to Lp).

As a by-product of our existence result for thin flows with resetting, we obtain that
the problem of finding such a flow and labeling belongs to TFNP (since a solution is
guaranteed to exist). Furthermore our proof strategy shows that the problem belongs to
PPAD as it reduces to finding a fixed point. In any case, we conjecture that the problem
is actually solvable in polynomial time.

Organization of the paper. In §2, we describe the equilibrium model for flows over time
introduced by Koch and Skutella [9]: First, we present the dynamic flow model, and
then we define the routing game and its equilibria. In §3 we prove our main results
concerning the existence and uniqueness of our refined definition of thin flow with
resetting. Finally, in §4 we discuss how the latter results apply to equilibria for flows
over time. Due to space limitations, several proofs are deferred to the full version.

2 A Model for Dynamic Routing Games

We consider a network (G, u, τ, s, t) consisting of a directed graph G = (V,E) with
node set V and edge set E, a vector u = (ue)e∈E of strictly positive real numbers
representing edges capacities, a vector τ = (τe)e∈E of nonnegative real numbers repre-
senting free flow transit times, a source s ∈ V , and a sink t ∈ V . An edge e ∈ E from
node v to node w is denoted (v, w) or just vw. To avoid confusion, we assume without
loss of generality that there is at most one edge between any pair of nodes in G and that
there are no loops. We also assume that for every cycle C of G, the sum of the free flow
transit times along C is not zero, i.e.,∑

e∈C

τe > 0, for every cycle C of G. (1)

2.1 Flows over Time

A flow over time is a pair of arrays f := (f+, f−) of Lebesgue-integrable functions
whose components f+

e : R+ → R+ and f−e : R+ → R+ for each e ∈ E represent
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respectively the rate at which flow enters the tail of e and the rate of flow leaving the
head of e at each time θ. For every edge e ∈ E we define the cumulative inflow F+

e (θ),
the cumulative outflow F−e (θ), and the queue size ze(θ) at time θ ≥ 0 as

F+
e (θ) :=

∫ θ

0

f+
e (ξ)dξ, F−e (θ) :=

∫ θ

0

f−e (ξ)dξ, ze(θ) := F+
e (θ)− F−e (θ + τe).

Definition 1. A flow over time f = (f+, f−) is said to be feasible if and only if it
satisfies for almost all θ ≥ 0:

1. the capacity constraints f−e (θ) ≤ ue for each e ∈ E
2. the non-deficit constraints ze(θ) ≥ 0 for each e ∈ E
3. the flow conservation constraints∑

e∈δ−(v)

f−e (θ) =
∑

e∈δ+(v)

f+
e (θ) for each v ∈ V \ {s, t}. (2)

We also define the network inflow rate (at node s) as

u0(θ) =
∑

e∈δ+(s)

f+
e (θ)−

∑
e∈δ−(s)

f−e (θ),

and the waiting time at edge e at time θ by

qe(θ) :=
ze(θ)
ue

=
F+

e (θ)− F−(θ + τe)
ue

(3)

so that the mapping θ �→ θ + qe(θ) represents the time at which a flow particle entering
e at time θ exits from the queue. Koch and Skutella [9] showed the following.

Proposition 1. The function θ �→ θ + qe(θ) is nondecreasing and continuous.

2.2 Label Functions for Flows over Time

For each w ∈ V let Pw denote the set of all s-w paths (not necessarily simple) in G.
Given an s-t flow over time, a node w ∈ V and a path P = (e1, e2, ..., ek) ∈ Pw, with
a corresponding sequence of nodes (v1, v2, ..., vk+1) (i.e., ei = vivi+1, v1 = s and
vk+1 = w), we define �w,P : R+ → R+, the label function of node w using path P , by

�s,P (θ) := θ,

�vi+1,P (θ) := �vi,P (θ) + τei + qe(�vi,P (θ)), for all i ∈ {1, ..., k}.

Thus �w,P (θ) represents the time a flow particle reaches w traveling through P , starting
from s at time θ. Note that these label functions depend on the full flow over time f
through the waiting time functions qe. We may then define the minimum time at which
a flow particle can reach a node as follows (as we shall see, this definition is consistent
with that of Koch and Skutella [9]).
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Definition 2 (Label functions). Given a feasible s-t flow over time f we define for
every node v ∈ V the label functions �v : R+ → R+ as

�v(θ) := min
P∈Pv

�v,P (θ). (4)

Naturally, a particle traveling from s to w in the shortest possible time will not use a path
containing a cycle. This is indeed a consequence of the non-decreasing monotonicity of
the mapping θ �→ θ + qe(θ), qe ≥ 0 and τe ≥ 0, for all e ∈ E, so that the minimum
�w,P (θ) for P ∈ Pw is attained over simple paths. Also, as a consequence of the non-
decreasing monotonicity and continuity of the map θ �→ θ + qe(θ), we have that for
each node v ∈ V , the label function �v is non-decreasing and continuous. In addition,
the functions (�v)v∈V satisfy the definition in [9], which states that

�w(θ) =

{
θ for w = s

min
e=vw∈δ−(w)

{�v(θ) + τe + qe(�v(θ))} for w ∈ V \ {s}.

2.3 Equilibria

A feasible s-t flow over time f = (f+, f−) on a network (G, u, τ, s, t), can be seen as
a dynamic equilibrium if we identify each flow particle that travels from s to t at a time
θ ∈ R+ as players. In a dynamic equilibrium, all flow particles travel on s-t paths that
yield the shortest possible total travel time, taking into account the aggregate congestion
generated within the network due to other particles. For a formal definition we refer to
[9]. In what follows we rely on an equivalent characterization given in Theorem 1 below.

Definition 3. We say that edge e ∈ E is contained in a shortest path at time θ ≥ 0
if and only if �w(θ) = �v(θ) + τe + qe(�v(θ)). We denote Eθ the set of all such arcs
and we consider the induced acyclic graph Gθ = (V,Eθ) which we call the current
shortest paths network . We also say that flow is sent along currently shortest paths if,
for each edge e = vw ∈ E, the following holds for almost all θ ≥ 0

f+
e (�v(θ)) > 0 =⇒ e ∈ Eθ.

In other words, a flow that is sent along currently shortest paths is such that at time
�v(θ) there is no flow assigned to any edge e = vw ∈ E not lying in a shortest path at
time θ. Note that there are edges in G not contained in a current shortest path network.
Also, since (G, u, τ, s, t) satisfies Condition (1), Gθ is acyclic for every θ ≥ 0.

Following Koch and Skutella, let us consider a particle at s at time θ, x+
e (θ) the

amount of flow assigned to e = vw before this particle can reach v, and x−e (θ) the flow
leaving e = vw before this particle can reach w, that is:

x+
e (θ) := F+

e (�v(θ)), x−e (θ) := F−e (�w(θ)).

Theorem 1 ([9]). For a feasible s-t flow over time, the following are equivalent:

(i) The given flow over time is an equilibrium.
(ii) Flow is only sent along currently shortest paths.

(iii) For each edge e ∈ E and at all times θ ≥ 0, it holds that x+
e (θ) = x−e (θ).

Whenever any of the three statements above is satisfied, then x+ = x−. In that case, we
define xe(θ) := x+

e (θ) for all θ ≥ 0 and each e ∈ E. From now on, we call (xe(θ))e∈E

the underlying static flow at time θ.
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3 Derivative of an Equilibrium Flow: A Special Labeling

In this section we study a key node labeling for flows over time, proving its existence
and uniqueness. This labeling arises from the derivative of the distance label functions
of a flow over time at equilibrium, and can be used in order to construct such an equi-
librium from its derivatives.

Definition 4 (Thin Flow with Resetting). Let (G, u, s, t) be a network, E1 ⊂ E(G)
a subset of edges and F ≥ 0. A labeling (�′v)v∈V (G) is a thin flow of value F with
resetting on E1 if there exists a static s-t F -flow (x′e)e∈E(G) ≥ 0 (i.e., a nonnegative
and conservative static flow sending an amount F from s to t) such that:

�′s = 1, (5)

�′w ≤ �′v for all e = vw ∈ E(G) \ E1, x
′
e = 0, (6)

�′w = max{�′v,
x′e
ue
} for all e = vw ∈ E(G) \ E1, x

′
e > 0, (7)

�′w =
x′e
ue

for all e = vw ∈ E1, (8)

�′w ≥ min
vw∈δ−

G(w)
�′v if δ−G(w) ∩ E1 = ∅. (9)

The original definition of thin flow with resetting, due to Koch and Skutella [9], does
not consider Condition (9). They showed that the derivatives of the label functions of a
dynamic equilibrium, restricted to the current shortest paths network, satisfy Conditions
(5)-(8). We introduce Condition (9), to guarantee uniqueness of thin flows with reset-
ting, as illustrated in Example 1 below. The following theorem shows that the deriva-
tives of the label functions of a dynamic equilibrium, restricted to the current shortest
paths network, are a thin flow with resetting. This result is applicable if the derivatives
of the label and the underlying static flow functions exist. Interestingly, both the la-
bel functions and the underlying static flow functions are monotonically nondecreasing
implying that both families of functions are differentiable almost everywhere.

Theorem 2. Consider a feasible s-t flow over time f which is an equilibrium on a
network (G, u, τ, s, t) with corresponding label functions (�v)v∈V , network inflow rate
u0, edge waiting time functions (qe)e∈E and underlying static flow (xe)e∈E . Then for
almost all θ ≥ 0, dxe

dθ (θ) and d�v

dθ (θ) exist for each e ∈ E and v ∈ V . Moreover, for
almost all θ ≥ 0, on the current shortest paths network Gθ , the derivatives

(
d�v

dθ (θ)
)

v∈V

form a thin flow of value u0(θ) with resetting on the waiting edges E1 := {e = vw ∈
E | qe(�v(θ)) > 0}. A corresponding static flow fulfilling (5) to (9) is given by the
derivatives

(
dxe

dθ (θ)
)

e∈E
.

The proof, found in the full version of the paper, follows closely that of Koch and
Skutella though we need to be careful when dealing with Condition (9).

Example 1. To illustrate the role of Condition (9) in the construction of an equilibrium,
consider a network composed of three nodes {s, v, t} and three edges: one from s to t,
another from s to v, and the last one from v to t. Every edge e has capacity ue = 1, and
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the travel times are τst = τvt = 0 and τsv = 1. Suppose that the network inflow rate is
u0(θ) = 2 if θ ∈ [0, 1) and u0(θ) = 1/2 if θ ∈ [1,∞). At equilibrium, in the beginning
flow is sent over the edge st only, so that a queue begins to build up on edge st until
time θ = 1, when the waiting time is qst(1) = 1, the shortest network path becomes the
complete network and the network inflow rate changes in value to u0 = 1/2. After time
θ = 1 flow is only sent over edge st again. It is easy to check that the label functions
from θ = 1 (and at least for a while) are �v(θ) = 1 + θ and �t(θ) = 3/2 + θ/2, so that
the derivatives (from the right) at time θ = 1 are d�v

dθ (1) = 1 and d�t

dθ (1) = 1/2. Indeed,
for the shortest path network at time θ = 1 (the complete network), the corresponding
thin flow of value 1/2 with resetting on E1 = {st} is �′v = 1 and �′t = 1/2, but without
Condition (9), the label �′v could take any value between 1/2 and 1.

3.1 Existence of Thin Flows with Resetting

In this section we prove the existence of thin flows with resetting when the underlying
graph is acyclic. This result will then be used to conclude the existence of equilibria for
flows over time. To prove the existence of thin flows with resetting we show that this is
equivalent to the existence of solutions of a nonlinear complementarity problem, which
in turn is equivalent to finding an interior solution of a certain variational inequality.

We start with a basic result that will be needed later. Given a subset K of the Eu-
clidean n-dimensional space Rn and a mapping Φ : K → Rn, the variational inequality,
denoted VI(K,Φ), is to find a vector x ∈ K such that

(y − x)tΦ(x) ≥ 0, ∀y ∈ K.

The solution set to this problem is denoted SOL(K,Φ). When K = Rn
+, then VI admits

an equivalent form known as a nonlinear complementarity problem . Given a mapping
Φ : Rn

+ → Rn, the nonlinear complementarity problem, denoted NCP(Φ), is to find a
vector x ∈ Rn

+ satisfying

Φ(x) ≥ 0 and xtΦ(x) = 0.

The equivalence between NCP(Φ) and VI(Rn
+, Φ) is easy (see e.g. [4]). Also, we have

the following result, whose proof follows from Brouwer’s fixed point theorem [4].

Theorem 3. Let K ⊂ Rn be compact convex and let Φ : K → Rn be continuous. Then
the set SOL(K,Φ) is nonempty and compact.

The first step to show existence of a thin flow with resetting is to get rid of Condition
(9), which is done in the next lemma.

Lemma 1. Let (G, u, s, t) be an acyclic network, E1 ⊂ E(G) and F ≥ 0. Suppose that
there exists an F -flow x′ on G and a nonnegative node labeling �′ satisfying conditions
(5) to (8). Then �′ can be modified in at most O(|V (G)|2) operations so that the new �′

is a thin flow of value F with resetting on E1 and x′ is an associated static flow.

Proof. We only need to modify the labeling �′ so that (9) holds. Suppose that (9) fails
at a certain w ∈ V so that δ−G(w) ∩ E1 = ∅ and �′w < minvw∈δ−

G(w) �
′
v. From (7) it
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follows that for every edge e = vw ∈ δ−G(w) we must have x′e = 0. Hence, redefining
�′w := minvw∈δ−

G(w) �
′
v, the modified labels �′ still satisfy (5)-(8) while (9) now holds

at an additional node w. Repeating this procedure with all the nodes w that violate (9),
we get an �′ satisfying (5)-(9) in O(|V (G)|2). �	
The following lemma relates a thin flow with resetting to the solutions of an appropriate
nonlinear complementarity problem.

Lemma 2. Let (G, u, s, t) be a network, E1 ⊂ E(G) and F ≥ 0. Consider the map-

ping Φ : RE(G)∪V (G)
+ → RE(G)∪V (G) defined as

Φi(x′, �′) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max{�′v, x′e/ue} − �′w if i = e = vw ∈ E(G)\E1

x′e/ue − �′w if i = e = vw ∈ E1

�′s − 1 if i = s∑
e∈δ−(v) x

′
e −
∑

e∈δ+(v) x
′
e if i = v ∈ V (G) \ {s, t}∑

e∈δ−(t) x
′
e −
∑

e∈δ+(t) x
′
e−F if i = t .

(10)

Then, every solution (x′, �′) of NCP(Φ) satisfies conditions (5) to (8) and induces a
feasible static flow of value F . Reciprocally, every thin flow of value F with resetting
on E1 is a solution of NCP(Φ).

Proof. Let (x′, �′) be a solution of NCP(Φ). Let us check that conditions (5)-(8), and
the flow constraints are verified. For this we study each of the following cases:

(i) e ∈ E(G) \ E1. If x′e > 0 then �′w = max{�′v, x′e/ue}. Also, if x′e = 0, since
max{�′v, x′e/ue}− �′w ≥ 0 then �′w ≤ max{�′v, x′e/ue} = �′v. Thus, conditions (6)
and (7) are satisfied.

(ii) e ∈ E1. If x′e > 0 then �′w = x′e/ue, while if x′e = 0, since x′e/ue − �′w ≥ 0 and
�′w ≥ 0 then �′w = x′e/ue = 0. Thus, (8) is satisfied.

(iii) If �′s > 0 then �′s = 1. The case �′s = 0 is not possible because �′s − 1 ≥ 0. Thus,
(5) is satisfied.

(iv) v ∈ V (G) \ {s, t}. Assume �′v = 0 and
∑

e∈δ−(v) x
′
e −
∑

e∈δ+(v) x
′
e > 0, then

there exists e ∈ δ−(v) such that x′e > 0, which implies (by (7) or (8)) that
�′v > 0, a contradiction. If �′v > 0 then

∑
e∈δ−(v) x

′
e −
∑

e∈δ+(v) x
′
e = 0. Thus,∑

e∈δ−(v) x
′
e −
∑

e∈δ+(v) x
′
e = 0 for all v ∈ V (G) \ {s, t}. Similarly, for t we

have
(∑

e∈δ−(t) x
′
e −
∑

e∈δ+(t) x
′
e

)
− F = 0. We conclude that (x′e)e∈E(G) is a

conservative F -flow.

The reciprocal assertion is verified directly. �	

Theorem 4. Let (G, u, s, t) an acyclic network, E1 ⊂ E(G) and F ≥ 0. Then, there
exists a thin flow of value F with resetting on E1.

Proof. Let Φ as in (10). By Lemmas 1 and 2, and since VI(RE(G)∪V (G)
+ , Φ) is equiva-

lent to NCP(Φ), we need to prove that VI(RE(G)∪V (G)
+ , Φ) has a solution.
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Let δ and ε positive numbers such that ε > δ. Define umin := mine∈E(G) ue, M :=
max{1, F/umin} and K ⊂ RE(G)∪V (G)

+ as the compact convex set

K :=
{

(x′, �′) ∈ RE(G)∪V (G)
+ : ∀e ∈ E(G), 0 ≤ x′e ≤ (M + ε)ue,

∀v ∈ V (G), 0 ≤ �′v ≤M + δ} .
By Theorem 3 there exist a solution (x′, �′) ∈ K of VI(K,Φ). Unfortunately, this
solution may not coincide with a solution to NCP(Φ) since it can lie in the frontier of
K . However, if there is an interior solution in K of VI(K,Φ), it is easily proven that

such solution also solves VI(RE(G)∪V (G)
+ , Φ). The rest of the proof is technical and is

devoted to prove that there is an interior solution of VI(K,Φ), i.e., a solution satisfying:

∀e ∈ E(G), x′e < (M + ε)ue and ∀v ∈ V (G), �′v < M + δ. (P)

Suppose for a contradiction that there exists e = vw ∈ E(G) such that x′e = (M +
ε)ue. Define (y, h) ∈ K such that ye := 0, ya := x′a for every a ∈ E(G) \ {e} and
h := �′. Because (x′, �′) is solution of VI(K,Φ) we have that

−(M + ε)ue (M + ε− �′w) ≥ 0.

Therefore (M + ε− �′w) ≤ 0, so that M + ε ≤ �′w ≤M + δ < M + ε, a contradiction.
Thus, we have that for every e ∈ E(G), x′e < (M + ε)ue,which together with the fact
that (x′, �′) solves VI(K,Φ), implies the complementarity condition

x′e[Φ(x′, �′)]e = 0 for every e = vw ∈ E(G). (CC)

Therefore for every e = vw ∈ E1, x′e = �′wue. Indeed, if x′e > 0 this follows directly
form (CC). Otherwise, if x′e = 0, this follows by taking an element in K which equals
(x′, �′) in every coordinate except in e = vw, where it takes some positive value. The
variational inequality then says that �′w ≤ x′e/ue = 0.

Note that �′s = 1. Define b(v) = 0 for every v ∈ V \ {s, t} and b(t) = −F . Then, if
(y, h) ∈ K we have,

((
y
h

)
−
(

x′

�′

))t

Φ(x′, �′)

=
∑

e=vw∈E\E1

(ye − x′e)(max{�′v, x′e/ue} − �′w) +
∑

e=vw∈E1

(ye − x′e)(x′e/ue − �′w)

+
∑

v∈V \{s}
(hv − �′v)(

∑
e∈δ−(v)

x′e −
∑

e∈δ+(v)

x′e + b(v))

=
∑

e=vw∈E\E1:x′
e=0

ye(�′v − �′w) +
∑

v∈V \{s}
(hv − �′v)(

∑
e∈δ−(v)

x′e −
∑

e∈δ+(v)

x′e + b(v)),

where the last equality follows from (CC).
Now we show that for every v ∈ V (G), �′v < M + δ. Since G is acyclic, consider a

topological ordering v1, v2, ..., v|V (G)| of V (G) and let w := v|V (G)|. By contradiction,
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suppose that �′w = M + δ, and define the minimal k ∈ {1, ..., |V (G)|} such that every
node label in T := {vk, ..., v|V (G)|} equals �′w. Note that �′s = 1, then T �= V (G),
then there exists a = uv ∈ δ−(T ) such that �′u < �′v. Observe that if a �∈ E1 then
x′a > 0. Indeed, suppose that x′a = 0 and define (y, h) ∈ K such that hv := �′v for
every v ∈ V (G), ye = x′e if e �= a, and ya > 0. Then, because �′u < �′w, we have that

((
y
h

)
−
(

x′

�′

))t

Φ(x′, �′) = ya(�′u − �′w) < 0,

a contradiction. Thus, x′a = �′vua, since if a �∈ E1 we have just shown that x′a > 0 so
that from (CC) �′v = max{�′u, x′a/ua} = x′a/ua, and if a ∈ E1 this was shown above.

Define (y, h) ∈ K such that hv := �′v for every v ∈ V (G) \ T , hv := 0 for every
v ∈ T and y = x′. Then, we obtain a contradiction since

((
y
h

)
−
(

x′

�′

))t

Φ(x′, �′) = −�′w(
∑

e∈δ−(T )

x′e −
∑

e∈δ+(T )

x′e +
∑
v∈T

b(v))

= −�′w(
∑

e∈δ−(T )

x′e +
∑
v∈T

b(v)) = −�′w(�′w
∑

e∈δ−(T )

ue − F )

< −(�′w
∑

e∈δ−(T )

ue − F ) < −((max{1, F/umin}ua + δua)− F ) < 0.

Then, �′v < M + δ for every v ∈ T , which implies the complementarity condition

�′v[Φ(x′, �′)]v = 0, for every v ∈ T.

Therefore, if �′w > 0, for every v ∈ T we have
∑

e∈δ−(v) x
′
e−
∑

e∈δ+(v) x
′
e +b(v) = 0.

In other words either x′ satisfies flow conservation in every node in T or �′w = 0 (and
also �′v = 0 for all v ∈ T ), and in the latter case x′(δ−(T )) = 0.

If T∪{s} �= V (G), we consider the graph G′ obtained by deleting the node set T and
the edge set ∪v∈T δ−(v)∪δ+(v), and redefine b(v) := b(v)−x′(δ+

G(v)∩δ−(T )). Thus∑
v∈V (G) b(v) = −F , so that we can repeat the argument until V (G′) = {s}. Because

in each repetition at least one node is removed, this procedure finishes, concluding that
�′v < M + δ for every v ∈ V (G). �	

3.2 Uniqueness of Thin Flows with Resetting

We now show that thin flows with resetting are unique on acyclic networks. This means
that the labeling (�′v)v∈V is unique, but not necessarily the static flow (x′e)e∈E .

Theorem 5. Let (G, u, s, t) be an acyclic network, E1 ⊂ E(G) and F ≥ 0. Then,
there exists a unique thin flow of value F with resetting on E1.

Proof. Let �′ and h′ two thin flows of value F with resetting on E1, and let x′ and y′

be corresponding static flows. We define the node set

S := {v ∈ V (G) | �′v ≥ h′v}.
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We first show the following property:

e = vw ∈ δ−G(S) =⇒ x′e ≥ y′e. (P1)

In order to prove (P1), given an edge e = vw ∈ δ−G(S), we consider three cases:

– Case e ∈ E1: in this case x′e = �′wue ≥ h′wue = y′e.
– Case e /∈ E1 and �′v ≥ �′w: since v /∈ S we have h′v > �′v ≥ �′w ≥ h′w, then

h′v > h′w and therefore y′e = 0, which implies x′e ≥ y′e.
– Case e /∈ E1 and �′v < �′w: in this case x′e = �′wue ≥ h′wue ≥ y′e.

Similarly, we can show the following:

e = vw ∈ δ+
G(S) =⇒ y′e ≥ x′e. (P2)

Indeed, given an edge e = vw ∈ δ+
G(S), we consider three cases:

– Case 1, e ∈ E1: Since w /∈ S then h′w > �′w. Since e ∈ E1, we have x′e = �′wue

and y′e = h′wue, thus y′e > x′e.
– Case 2, e /∈ E1 and h′v ≥ h′w: Since w /∈ S then h′w > �′w. Since v ∈ S, we have

�′v ≥ h′v. Thus �′v > �′w and therefore x′e = 0, which implies y′e ≥ x′e.
– Case 3, e /∈ E1 and h′v < h′w: Clearly y′e = h′wue > �′wue ≥ x′e. Thus, y′e > x′e.

Consider x′(δG(S)) :=
∑

e∈δ+
G(S) x

′
e−
∑

e∈δ−
G(S) x

′
e. It follows from (P1) and (P2)

that x′(δG(S)) ≤ y′(δG(S)). On the other hand, we know that x′(δG(S)) = y′(δG(S))
because both flows are conservative. Then, for every e ∈ δ+

G(S), Case 1 and Case 3
(where y′e > x′e) cannot hold, and therefore the only possible scenario is Case 2, so that

for all e ∈ δ+
G(S), x′e = 0 and e /∈ E1. (P3)

To finish the proof we study two cases, depending whether F > 0 or F = 0.
Case F > 0: From (P3) we have

x′(δG(S)) =
∑

e∈δ+
G(S)

x′e −
∑

e∈δ−
G(S)

x′e = −
∑

e∈δ−
G(S)

x′e. (11)

On the other hand, we know that s ∈ S. This implies that if t /∈ S, then (since F > 0)
there exists e ∈ δ+

G(S) such that x′e > 0, contradicting P3. Thus s, t ∈ S, and therefore
x′(δG(S)) = 0, which together with equation (11) implies that

for all e ∈ δ−G(S), x′e = 0. (P4)

From properties (P1) and (P4) we conclude that, for all e ∈ δ−G(S), y′e = 0, and
therefore, from the conservation constraints of the static flow y′, we have that for all
e ∈ δ+

G(S), y′e = 0. We have proved that

for all e ∈ δ+
G(S), x′e = y′e = 0 and e /∈ E1. (P5)

Suppose there exists w ∈ V (G) \ S, i.e., �′w < h′w. Since G is acyclic, we can choose
w such that δ−G(w) ⊂ δ+

G(S), and therefore, from (P5), every e ∈ δ−G(w) satisfies
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x′e = y′e = 0 and e /∈ E1. It follows from (9) that �′w = minvw∈δ−
G(w) �

′
v and h′w =

minvw∈δ−
G(w) h

′
v. However, since any e = vw ∈ δ−G(w) satisfies v ∈ S, we have

�′w = min
vw∈δ−

G(w)
�′v ≥ min

vw∈δ−
G(w)

h′v = h′w,

contradicting that w ∈ V (G) \ S. We conclude that S = V (G), i.e., for all v ∈ V (G),
�′v ≥ h′v. Because the result is symmetric with respect to �′ and h′, we have that �′ = h′.
Case F = 0: We have that e ∈ δ+

G(S), x′e = y′e = 0 and e /∈ E1. Repeating the
argument of the case F > 0 yields the desired result. �	

4 Existence and Uniqueness of Equilibria for Flows over Time

4.1 Existence for Piecewise Constant Inflow Rate

Koch and Skutella [9] showed a method to extend an equilibrium in case the network
inflow rate function u0 is constant, say u0 = F . Given a feasible flow over time f
which satisfies the equilibrium conditions in [0, T ] (i.e., flow is only sent along currently
shortest paths), the method to extend this equilibrium is as follows:

1. Define the edge set E1 := {e = vw | qe(�v(T )) > 0} ⊂ E(GT ) and find a thin
flow of value F with resetting on E1 on the network GT , say (�′, x′).

2. Find the largest α > 0 such that:

�w(T ) + α�′w − �v(T )− α�′v ≤ τe for all e = vw ∈ E \ E(GT ), (12)

�w(T ) + α�′w − �v(T )− α�′v ≥ τe for all e = vw ∈ E1. (13)

3. Update the flow over time parameters in this order for all θ ∈ [T, T + α]

�v(θ) := �v(T ) + (θ − T )�′v for all v ∈ V,

f+
e (�v(θ)) := x′e/�

′
v for all e = vw ∈ E(GT ),

f−e (�w(θ)) := x′e/�
′
w for all e = vw ∈ E(GT ).

From Theorem 4 we know that there exists a thin flow with resetting on Step 1, thus
we can always extend an equilibrium. Because the label functions are non-decreasing
and bounded in every set of the form [0, T ], that extension can be repeated as many
times as wanted. Thus, starting from the interval [0, 0], we can iterate this method to
find a new αi > 0 and a new extension at every iteration i. Eventually,

∑n
i=1 αi can

have a limit point: in this case, since the label functions are non-decreasing and bounded
in every set of the form [0, T ], we can define the equilibrium at point

∑∞
i=1 αi as the

limit point of the label functions �, and continue with the extension method. Note that,
with Condition (9) at hand, this extension method works even if the inflow rate function
is piecewise constant (by Theorem 2). So we have the following existence result.

Theorem 6. Suppose that u0 is piecewise constant, i.e, there exists a sequence (ξk)k∈N

such that ξ0 = 0,
∑

k ξk = ∞ and u0 restricted to the interval [ξk, ξk+1) is constant.
Then, there exists a flow over time f which is an equilibrium whose network inflow rate
is u0 and whose label functions � are piecewise linear.
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4.2 Uniqueness for Piecewise Constant Inflow Rate

Theorems 2 and 5, imply that there is a unique equilibria for flows over time (in the
sense of labels) that can be constructed by the previous extension method. However,
other type of bizarrely behaving equilibria might exist. To rule out this possibility it
would be enough to show that at every iteration of the extension method αi > ε > 0.

Theorem 7. Suppose that u0 is piecewise constant. Then, there exists a unique array
of label function (�v)v∈V for every equilibrium in the family of flows over time which
satisfy that for every v ∈ V and every θ ∈ R+, there exists ε > 0 such that �v restricted
to [θ, θ + ε] is an affine function.

4.3 Existence for General Inflow Rate

In the previous sections, we showed existence in the case of the network inflow rate
function u0 is piecewise constant. We can show existence of equilibria for much more
general inflow rate functions, namely when u0 ∈ Lp(R+), with 1 < p <∞ (i.e., u0 is
measurable and

∫∞
0 |u0(t)|pdt <∞, see e.g. [3] ). The proof, found in the full version

of the paper, is neither algorithmic nor constructive, it is based on functional analysis
techniques and on finding solutions to an appropriate variational problem.

Theorem 8. Let p be such that 1 < p <∞. Let u0 ∈ Lp(R+) be a network inflow rate
function of the network (G, u, τ, s, t). Then, there is an equilibrium s-t flow over time.

Acknowledgements. We thank Martin Skutella for many stimulating discussions.
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Abstract. We investigate how collusion affects the social cost in atomic
splittable routing games. Suppose that players form coalitions and each
coalition behaves as if it were a single player controlling all the flows of
its participants. It may be tempting to conjecture that the social cost
would be lower after collusion, since there would be more coordination
among the players. We construct examples to show that this conjecture is
not true. These examples motivates the question: under what conditions
would the social cost of the post-collusion equilibrium be bounded by the
social cost of the pre-collusion equilibrium?

We show that if (i) the network is “well-designed” (satisfying a natural
condition), and (ii) the delay functions are affine, then collusion is always
beneficial for the social cost in the Nash equilibria. On the other hand,
if either of the above conditions is unsatisfied, collusion can worsen the
social cost. Our main technique is a novel flow-augmenting algorithm to
build Nash equilibria.

1 Introduction

In an atomic splittable routing game, each player controls a non-negligible amount
of flow and he can route his flow fractionally over the network. His strategy space
consists of all possible ways of routing his flow. Each edge of the network is as-
sociated with a delay function of the flow value. A player routing his flow on an
edge incurs a cost, which is the product of his flow value on that edge and the
delay of that edge, determined by the total flow value on that edge. A player’s
total cost is the sum of his cost on all edges. Players are selfish. They aim for
minimizing their own total costs while disregarding the cost of others. The social
cost is the sum of all players’ costs.

Atomic splittable routing games abstract real world situations such as com-
munication networks and transportation, where a player can be an ISP or a
freight/logistic company and he would try to minimize the delay experienced
by his customers. A special case of this setting, mentioned as early as 1952 by
Wardrop [15], is where each player controls an infinitesimal amount of flow. In the
scenarios above, these players could be individual messages or drivers. A player
controlling an infinitesimal amount of flow is conventionally called a nonatomic
player. Furthermore, a Nash equilibrium in which all players are nonatomic is
often called a Wardrop equilibrium.
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We are interested in the social cost of a Nash equilibrium, a situation where
no player can change his strategy unilaterally to decrease his cost. It can be
expected that, given the selfishness of the players, the social cost of a Nash
equilibrium would be sub-optimal. The degree of the worsening of the social
cost in Nash equilibria is measured by the price of anarchy [10], and it has been
intensively studied in recent years [5, 7, 11–13].

Life can be a bit more complex. Players form coalitions; companies merge
or cooperate. So we are concerned about the social cost of the Nash equilib-
rium after the collusion. There can be different models to describe the colluding
behavior among the players. The one we adopt is introduced by Hayrapetyan,
Tardos, and Wexler [8]. In this model, once a coalition is formed, its participants
care about their collective welfare. Thus this coalition would behave as if it were
just a single player controlling all the flows of its participants.

It may be tempting to conjecture that the social cost will decrease after the
collusion, since the colluding players have better coordination among themselves.
In the extreme case where all players join in a single coalition, then the resultant
equilibrium would become optimal. However, this conjecture has been shown to
be false in several types of games [8].

For atomic splittable flow games, in this paper, we construct examples to show
that even in very simple single-source-single-destination networks, collusion can
worsen the social cost in the post-collusion equilibrium. These examples prompt
us to investigate the following question:

In an atomic splittable routing game, suppose that all players share a
common source and destination. Under what conditions would the social
cost of the post-collusion equilibrium be bounded by the social cost of
the pre-collusion equilibrium?

Our Contribution

We first introduce a class of networks, which is a main focus of this work. Let
the optimal flow be the flow that minimizes the social cost.

Definition 1. A single-source-single-destination network is well-designed, if as
the value of the optimal flow is being increased, its flow value is monotonically
non-decreasing on all edges. Precisely, let O(t) denote an optimal flow of value
t, indexed over all edges e ∈ E. A single-source-single-destination network is
well-designed, if t > t′, then Oe(t) ≥ Oe(t′) for all edges e ∈ E.

A well-designed network thus conforms to the intuition that as the total flow
becomes larger, we expect each edge to be more heavily used. In general, whether
a network is well-designed depends on both the underlying graph topology and
the delay functions. But there is an exception.

Proposition 1. Suppose that the underlying graph of the network is series-
parallel and all delay functions are convex. Then such a network is always well-
designed, independent of the convex delay functions.
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The proof of this proposition and all other missing proofs can be found in the
full version [9].

We now state our main result.

Theorem 1. Suppose that the given network has a single source and a single
destination and all delay functions are convex. If

(i) the network is well-designed, and
(ii) all delay functions are affine,

then the social cost of the post-collusion equilibrium is bounded by that of the
pre-collusion equilibrium.

On the other hand, if either of the two conditions is unsatisfied, then the
social cost of the post-collusion equilibrium can be strictly larger than that of the
pre-collusion equilibrium.

Our Technique. Let σ = (v1, v2, · · · , vk) be a profile, where v1 ≥ v2 ≥ · · · ≥ vk

and each vi represents the flow value of the i-th player. Note that if there are
k′ < k players, we still can regard the game as one of k players with the last
k − k′ players having zero flow values, i.e., the last k − k′ entries of σ are 0.

Definition 2. Let σ = (v1, v2, · · · , vk) and σ′ = (v′1, v
′
2, · · · , v′k) be two profiles

and
∑k

i=1 vi =
∑k

i=1 v′i = 1. σ majorizes σ′ if, for all 1 ≤ i ≤ k,
∑i

j=1 vj ≥∑i
j=1 v′j .

We establish the first part of Theorem 1 via the following lemma.

Lemma 1. Let σ and σ′ be two profiles where the former majorizes the latter. In
a well-designed network with affine delays, the social cost of the Nash equilibrium
for σ is bounded by the social cost of the Nash equilibrium for σ′.

Proof of the First Part of Theorem 1. Let σ′ be the profile of the given game,
and let σ be the profile after some players form coalitions. Observe that σ must
majorize σ′. Hence Lemma 1 gives the proof. �	
The main bulk of this paper (Section 3) is devoted to proving Lemma 1. Here
we present the high-level idea.

We first characterize a well-designed network and show that the optimal flow is
updated according to certain rate equations when its flow value is being increased
in such a network. Exploiting these rate equations, we design a flow-augmenting
algorithm to build a Nash equilibrium. Then we apply this algorithm to the
input profiles σ and σ′ simultaneously. We show that the derivative of the social
cost for the flow based on σ is always no larger than that for the flow based on
σ′, thereby proving Lemma 1.

Counter-Examples. Our positive result for collusion is tight: dropping either
of the two conditions may cause collusion to become detrimental for the social
cost. We carefully construct two counter-examples in which after some players
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form coalitions, the social cost in the post-collusion equilibrium is strictly higher
than in the pre-collusion equilibrium. We briefly summarize the two examples
(see the full version for details):

– When the network has affine delays but is not well-designed : in the Braess
graph, which is known to be the smallest non-series-parallel graph, we build
a not well-designed network with affine delays.

– When the network is well-designed but the delay functions are not affine: we
use a network of just 3 parallel links (a special case of a series-parallel graph,
hence well-designed). This network has polynomials as delay functions.

Computational Result. Given Theorem 1, it would be of practical interest to
test whether a network is well-designed.

Theorem 2. Suppose that all delay functions are affine and the coefficients of
the delays are rational. There is a polynomial time algorithm to test whether a
network is well-designed. Moreover, if it is, we can find the exact Nash equilib-
rium and the exact Wardrop equilibrium in polynomial time.

When all delay functions are affine, it is known that one can use convex program-
ming to approximate the Nash equilibrium [5] or to approximate the Wardrop
equilibrium [14]. To our knowledge, our algorithm is the first to find the exact
equilibria for a nontrivial sub-class of atomic splittable routing games. See the
full version for details about how to test a network is well-designed.

Related Work. Atomic splittable routing games are the least understood
among various versions of selfish routing games. The exact price of anarchy in
such games was only recently obtained by Roughgarden and Schoppmann [13].

Hayrapetyan, Tardos, and Wexler [8] investigated the effect of collusion in var-
ious games by measuring the price of collusion, which is the worst ratio between
the social cost of a post-collusion equilibrium against that of a pre-collusion
equilibrium. Using their terminology, our results can be rephrased as identifying
the conditions in atomic splittable routing games for the price of collusion to be
bounded by 1. Fotakis, Kontogiannis, and Spirakis [6] investigated algorithmic
questions about the Nash equilibrium after collusion in atomic congestion games.

When collusion is among non-atomic players. A closely related scenario
about collusion is that initially each player is nonatomic, i.e., he controls an
infinitesimal amount of flow. The players may form themselves into coalitions
and each coalition cares about its collective welfare. Thus, each coalition would
behave as if it were an atomic player controlling a splittable flow. In this scenario,
the comparison between the social costs of the post-collusion equilibrium and
of the pre-collusion Wardrop equilibrium is studied in [4, 5, 8]. In particular,
these works investigate under what conditions would the social cost of the pre-
collusion Wardrop equilibrium (with non-atomic players) be bounded by that of
the post-collusion Nash equilibrium (with atomic players). Our work is the first
to study the effect of collusion among the atomic players themselves.
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In [8], it is shown that in a parallel-link graph with convex delays, the post-
collusion Nash equilibrium has its social cost bounded by the social cost of
the pre-collusion Wardrop equilibrium. The same result has been generalized
to series-parallel graphs with convex delays in [4]. Our second counter-example
offers an interesting contrast: even in a graph of just 3 links, if the collusion is
among the atomic players themselves, collusion can worsen the social cost.

In the case that the network is well-designed with affine delays, [4] shows that
the post-collusion Nash equilibrium has its social cost bounded by the social cost
of the pre-collusion Wardrop equilibrium. Lemma 1 can establish the same fact.

Other models of collusion. Another line of investigation about collusion is
the strong price of anarchy [2] introduced by Andelman, Feldman, and Mansour,
which is the worst ratio of the social cost in a strong Nash equilibrium [3] against
that of the optimal solution. In a strong Nash equilibrium, no coalition of players
can change their strategies so that every one of them improves his cost.

2 Preliminaries

Let G = (V,E) be a directed graph, with two special vertices s and d called
source and destination respectively. The vector f , indexed by edges e ∈ E, is
defined as a flow of value v if the following conditions are satisfied.∑

w:(u,w)∈E

fuw −
∑

w:(w,u)∈E

fwu = 0, ∀u ∈ V \{s, d}. (1)

∑
w:(s,w)∈E

fsw −
∑

w:(w,s)∈E

fws = v. (2)

fe ≥ 0, ∀e ∈ E. (3)

A flow is a circulation if its value is 0. If f satisfies only conditions (1) and
(2), f is a pseudo flow of value v. If there are several flows {f1, f2, · · · , fk}, the
total flow f is defined as f :=

∑k
i=1 f i. We define f−i :=

∑
j �=i f

j = f − f i.
Each edge e is associated with a delay function le : R+ → R+. A delay

function is affine, if le(x) = aex + be, where ae > 0 and be ≥ 0. For a flow f ,
player i incurs a cost f i

ele(fe) on edge e. His total cost is the sum of his cost
over all edges Ci(f) =

∑
e∈E f i

ele(fe). The total cost of a flow f is defined as
C(f) =

∑
e∈E fele(fe), which is also the sum of the costs of all players

∑
i C

i(f).
A flow O(t) of value t is optimal if it minimizes the social cost among all flows
f of value t, that is

∑
e∈E Oe(t)le(Oe(t)) ≤∑e∈E fele(fe).

An atomic splittable routing game is a tuple (σ, (G, l, s, d)) where σ = (v1, · · · ,
vk) is a profile indicating the flow values of the players from 1 to k, ordered non-
increasingly, and (G, l, s, d) a network and l its vector of delay functions for edges
in G. A s-d path is a directed simple path from s to d. P denotes the set of all s-d
paths. We often abuse notation by writing e ∈ P ′ ⊆ P if e belongs to any path
p ∈ P ′. An edge e is used if fe > 0 and is used by player i if f i

e > 0. Similarly, a
path p is used (by player i) if on every edge e ∈ p, fe > 0 (f i

e > 0).
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Each player i has a strategy space consisting of all possible s-d flows of value
vi. His objective is to minimize his delay Ci(f). A set of players are said to be
symmetric if each of them has the same flow value.

A flow is defined as a Nash equilibrium if no player can unilaterally alter his
flow to reduce his cost.

Definition 3 (Nash Equilibrium). In an atomic splittable flow game
(σ, (G, l, s, d)), flow f is a Nash equilibrium if and only if, for every player i and
every s-d flow g of value vi, Ci(f i, f−i) ≤ Ci(g, f−i).

For a player i and a path p, his marginal cost on path p is the rate of change of his
cost when he adds flow along path p:

∑
e∈p le(fe)+f i

el
′
e(fe). The following lemma

follows from Karush-Kuhn-Tucker optimality conditions for convex programs
applied to player i’s minimization problem.

Lemma 2. Flow f is a Nash equilibrium if and only if for any player i and any
two directed paths p and q between the same pair of vertices such that player i
uses path p,

∑
e∈p

le(fe) + f i
el
′
e(fe) ≤

∑
e∈q

le(fe) + f i
el
′
e(fe).

Note that the Nash equilibrium of just one player is exactly the optimal flow.

Lemma 3. [1, 11] In an atomic splittable routing game (σ, (G, l, s, d)), if all
functions in l are affine, or if the underlying graph of G is parallel-link and all
functions in l are convex, then there exists a Nash equilibrium and it is unique.

When All Delay Functions are Affine. We introduce the notion of φ-delay,
which plays a prominent role in our algorithms and analysis. Let the φ-delay of an
edge e be Le(f, φ) = φaefe + be and along a path p be Lp(f, φ) =

∑
e∈p Le(f, φ).

Definition 4. A flow f is φ-optimal for some φ > 0 if and only if, given any
two directed paths p and q between the same pair of vertices and f uses path p,

Lp(f, φ) ≤ Lq(f, φ).

By Definition 4, a 2-optimal flow is exactly the optimal flow; 1-optimal flow
is a Wardrop equilibrium1; and a Nash equilibrium of k symmetric players is
k+1

k -optimal2.
1 A Wardrop equilibrium f has the following characterization [15]: if p and q are

directed paths between the same pair of vertices and f uses p,
∑

e∈p le(fe) ≤∑
e∈q le(fe).

2 This follows from the fact that in a Nash equilibrium of symmetric players, the flows
of all players are identical [5].
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3 Proof of Lemma 1

In this section, we assume that all delay functions are affine. We prove Lemma 1
through the following three steps: (1) we characterize well-designed networks
(Section 3.1); (2) using this characterization, we design an algorithm to construct
a Nash equilibrium based on the given profile (Section 3.2); (3) we apply this
algorithm to two different profiles and observe their relative growing speeds of
the social cost while the flow values are being increased (Section 3.3).

3.1 Characterizing Well-Designed Networks

A well-designed network is associated with several sets of items, whose exact
properties will be captured by Lemma 4 below. Here we summarize them. A
well-designed network (G, l, s, d) has

– a sequence of nested sets of paths P0 = ∅ ⊂ P1 ⊂ P2 ⊂ · · · Px ⊆ P , which
are the sets of s-d paths that the optimal flow uses when its flow value is
increased;

– a sequence of flow values t0 = 0 < t1 < · · · < tx−1 < tx =∞, which are the
values by which the optimal flow begins to use a different set of paths3;

– a sequence of vectors α1, α2, · · · , αx, which are vectors indexed over the
edges in E. Each of these vectors indicates how the optimal flow updates
itself when its flow value is increased;

– a sequence of φ-delay thresholds Ψ0 = minq∈P
∑

e∈q be < Ψ1 < Ψ2 < · · · <
Ψx−1, each of which indicates the 2-delay of a path in P1 when the flow value
is ti.

Before explaining the details about these items, we need a fact from linear
algebra. Assume that Pi ⊆ P is a subset of s-d paths used by a flow f of value
t. Consider the following linear system.∑

e∈p

aefe −
∑
e∈q

aefe =
1
2

(
∑
e∈q

be −
∑
e∈p

be) ∀p, q ∈ Pi (4)

∑
u:(s,u)∈E

fsu = t (5)

∑
v:(u,v)∈E

fuv −
∑

v:(v,u)∈E

fvu = 0 ∀u �∈ {s, d} (6)

fe = 0 ∀e �∈ Pi (7)

Proposition 2. If the system (4)-(7) has a unique solution, then the flow value
on each edge e ∈ E can be expressed as fe = αi

et + βi
e, where αi

e and βi
e depend

on Pi and {ae, be}e∈Pi .

Lemma 4. Suppose that (G, l, s, d) is well-designed.
3 To simplify our presentation, we slightly abuse notation by writing a value that goes

to infinity as a fixed value tx.
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(i) There exists a sequence of nested sets of paths P0 = ∅ ⊂ P1 ⊂ P2 ⊂ · · · ⊂
Px ⊆ P, and a set of values t0 = 0 < t1 < · · · < tx−1 < tx = ∞ so that
when t ∈ (ti−1, ti], ∀1 ≤ i ≤ x, O(t) uses the set of edges in Pi.

(ii) There exists a sequence of vectors αi, 1 ≤ i ≤ x, which has the following
properties:
(iia) if ti−1 ≤ t < t′ ≤ ti, then O(t′)−O(t) = αi(t′ − t);
(iib) αi, by itself, is also a flow of value 1; specifically, αi

e ≥ 0, ∀i, e, and
αi

e = 0 if e �∈ Pi;
(iic) For every two paths p,q ∈ Pi,

∑
e∈p aeα

i
e =
∑

e∈q aeα
i
e.

(iii) There exists a sequence of φ-delay thresholds Ψ0 = minq∈P
∑

e∈q be <
Ψ1 < Ψ2 < · · · < Ψx−1 so that when t = ti, 1 ≤ i ≤ x− 1, all paths q ∈ Pi+1

(including those in Pi+1\Pi) have the same 2-delay Ψi = Lp(O(ti), 2).
In the following, we assume that the nested sets of paths Pi, the vectors αi, and
the φ-delay thresholds Ψi are known. See the full version for about finding them
in polynomial time if all coefficients {ae, be}e∈E are rational.

The Vectors αi as “Accelerators” and φ-Delay Thresholds Ψi as “Land-
marks”. The vectors αi and the φ-delay thresholds Ψi play a pivotal role in our
algorithm in Section 3.2. Here we explain why they are useful.

Lemma 4(ii) suggests an algorithmic view on an optimal flow when its value is
increased: when its value is increased from t to t+ ε so that ti−1 ≤ t ≤ t+ ε ≤ ti,
the optimal flow is increased in the speed of αi in the following sense

O(t + ε) := O(t) + αiε.

In other words, the vector αi serves as an accelerator to tell the optimal flow
how it should update itself when the flow value increases. Lemma 4(iii) implies
that once the flow value reaches ti, the 2-delay of all paths in Pi+1 will become
exactly Ψi. And after this point, the optimal flow begins to use the paths in
Pi+1, instead of Pi. This suggests that we can view these thresholds Ψi as a sort
of “landmarks”: pick any path p ∈ P1 (and note that then p ∈ Pi for any i).
Once its 2-delay becomes Ψi, it is time to change gear: the optimal flow thence
increases in the speed of αi+1, instead of αi.

Our main algorithm in Section 3.2 is inspired by these observations. Initially,
the flow value is 0 and we increase it gradually up to 1. In this process, the flow
is updated based on these accelerators αi, and each time the φ-delay of a path
in P1 reaches a landmark Ψi, we use a different accelerator αi+1 to update the
flow.

To better illustrate our idea, we first present a simpler algorithm, which we
call Algorithm A, in Figure 1. It constructs a Nash equilibrium for k symmetric
players. Note that when k→∞, the Nash equilibrium would just be a Wardrop
equilibrium.

Algorithm A maintains a k+1
k -optimal flow f(t) of value t when t is increased

from 0 to 1. The index h records the set of paths Ph that f(t) uses. f(t) is
increased in the speed of αh (see Lines 5-6). Each time the k+1

k -delay of a path
p ∈ P1 reaches Ψh, f(t) is then increased in the speed of αh+1 (see Lines 2 and
4). Line 3 records the value th(k) by which f(t) shifts from using Ph to Ph+1.
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Input: k // the number of symmetric players;
Initialization: t := 0; fe(t) := 0, ∀e ∈ E; h = 1; ε > 0 is an infinitesimal amount;
// f(t) is the current flow of value t; h is the index of the set of paths Ph that f(t) uses;
0. pick p ∈ P1;
1. While t < 1
2. if Lp(f(t),

k+1

k
) = Ψh then

3. th(k) := t;
4. h := h+ 1;

5. f(t+ ε) := f(t) + αhε;
6. t := t+ ε;
7. End

8. th(k) := 1;

Fig. 1. Algorithm A

Lemma 5. Let t0(k) = 0 and tz(k) = 1. (So when Algorithm A terminates
h = z). Then for 0 ≤ i ≤ z, f(ti(k)) is an equilibrium flow with total value ti(k)
for k symmetric players, and it uses the same set of paths Pi as O(ti).

3.2 Constructing Nash Equilibria in Well-Designed Networks

The nice thing about a well-designed network is that it guarantees its Nash
equilibria satisfy the nesting property.

Definition 5 (Nesting Property). A flow f satisfies the nesting property, if
when players i and j have flow values vi > vj , then f i

e > f j
e on any edge e ∈ E

used by player j, and when vi = vj, then f i = f j.

We give an alternative characterization of Nash equilibria if they satisfy the
nesting property. Let

br
e := ae(

k∑
i=r+1

f i
e) + be.

Lemma 6. Suppose that flow f satisfies the nesting property. If given any two
directed paths p and q between the same pair of vertices and p is used by player
r, and the following holds:

∑
e∈p

aef
r
e +

1
r + 1

br
e ≤
∑
e∈q

aef
r
e +

1
r + 1

br
e,

then the flow f is a Nash equilibrium.

High-Level Ideas of Algorithm B. Let σ = (v1, · · · , vk) be the input profile.
Our algorithm maintains a φ-optimal flow when the total flow value is increased
from 0 to 1. But unlike the previous algorithm, φ is dynamically changing.
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We maintain two indices h and r, where h indicates the set of paths Ph the
current flow uses and r the index of the player whose flow is about to be created
(we will explain how). Initially, let h := 1 and r := k.

While maintaining the invariant the current flow is r+1
r -optimal, our algo-

rithm increases the flow in the speed of αh. Two things may happen in this
process.

– The r+1
r -delay of a path p ∈ P1 attains Ψh. Then we increase the flow thence

in the speed of αh+1 (so we increment the index h).
– The current flow value attains rvr. Then we “freeze” 1

r fraction of the current
flow, give it to the r-th player, treat the remaining unfrozen r−1

r fraction as
the current flow, and “update” the network (to be explained shortly).
We will prove that the unfrozen r−1

r fraction of the flow is r
r−1 -optimal

in the updated network. This is a crucial point of our algorithm. After the
freezing, we decrement the index r.

In the end, we can show that the k frozen flows that are assigned to the
players satisfy the condition in (6) and hence by Lemma 6 they constitute a
Nash equilibrium in the original network.

We now explain how the “freezing” is done and how the network is updated.
Let f(σ, t) denote the current flow and we will maintain the invariant that
its flow value is t −∑k

j=r+1 vj . Assume that in the current network the delay
function of each edge e is le(x) = aex + bre and the flow value of f(σ, t) is rvr.
We freeze a fraction of the current flow as follows:

fr :=
1
r
f(σ, t), f(σ, t) :=

r− 1
r

f(σ, t).

Thus f(σ, t) is split into two parts: the frozen part, fr, which is given to the
r-th player; the unfrozen part r−1

r f(σ, t), which is now treated as the current
flow of value (r− 1)vr.

We also update the network in the process of freezing as follows.

le(x) := aex + (br + aef
r
e ) = aex + br−1

e , ∀e ∈ E.

In words, the newly frozen flow fr adds a constant term to the delay function
on each edge e. Finally, we decrement the index r.

Now let Le,r(f(σ, t), r+1
r ) denote the r+1

r -delay of edge e in the current net-
work (which has been updated k − r times because of those frozen flows), i.e.,

Le,r(f(σ, t),
r + 1
r

) =
r + 1
r

aefe(σ, t) + bre ,

and in the following discussion we refer to Le,r(f(σ, t), r+1
r ) as the φ-delay of

the current flow on edge e.
We make a crucial observation about the consequence of the freezing: The

φ-delay of the current flow on each edge remains unchanged after the freezing.
To be precise, assume that after the freezing, the decremented index r = r − 1.
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Input: A profile σ = (v1, · · · , vk), where
∑

k

j=1
vj = 1;

Initialization: t := 0; r := k; h := 1; fe(σ, t) := 0, ∀e ∈ E; ε > 0 an infinitesimal amount;
// f(σ, t) is the current flow, h is the index of the set of paths Ph that f(σ, t) uses;
// r is the index of the player whose flow is about to be created;
0. pick p ∈ P1;
1. While t ≤ 1 and r ≥ 1
2. if Lp,r(f(σ, t),

r+1

r ) = Ψh then // the φ-delay of p reaches a φ-delay threshold
3. th(σ) := t;
4. h := h+ 1;

5. else if t−
∑

k

j=r+1
vj = rvr then // the current flow value reaches rvr

6 tr(σ) := t;
7. fr := 1

rf(σ, t);
8. f(σ, t) := r−1

r f(σ, t);
9. ∀e ∈ E, le(x) := aex+ aef

r
e + bre = aex+ br−1

e ;
10. r := r− 1;
11. else

12. f(σ, t+ ε) := f(σ, t) + αhε;
13. t := t+ ε;
14. End

15. th(σ) := 1;

Fig. 2. Algorithm B

Then the r
r−1 -delay of each edge (path) in the new network with the remain-

ing unfrozen flow r−1
r f(σ, t) would be identical to its r+1

r -delay in the previous
network with its entire flow f(σ, t).

Claim. For each edge e ∈ E, Le,r−1( r−1
r f(σ, t), r

r−1 ) = Le,r(f(σ, t), r+1
r ).

By this claim, if we can show that immediately before the freezing, the current
flow is r+1

r -optimal in the previous network, then the unfrozen remaining flow
will be r

r−1 -optimal in the updated network.
We now present our main algorithm, Algorithm B, in Figure 2. We record

the values th(σ) and tr(σ) (see Lines 3 and 6) as the total flow values by which
the current flow shifts to a larger set of paths and by which the flow of the r-th
player is created.

Lemma 7. f i is a flow of value vi for all 1 ≤ i ≤ k. Furthermore, f1,· · · ,fk

satisfy the nesting property and they constitute a Nash equilibrium in the original
network.

3.3 Comparing the Social Cost of Two Different Profiles

We prove Lemma 1 by applying Algorithm B to two different profiles σ and σ′

simultaneously.
Let r(σ, t) denote the values of the indices h and r in the execution of Algo-

rithm B for σ at time t. More precisely,

r(σ, t) = r if t ∈ (tr+1(σ), tr(σ)] (tk+1(σ) is understood to be 0)
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Let C(σ, t) be the social cost of the accumulated flow at time t, which is the
sum of the current flow f(σ, t) and those frozen flows, in the original network:

C(σ, t) =
∑
e∈E

⎡
⎣fe(σ, t) +

k∑
j=r(σ,t)+1

f j
e

⎤
⎦
⎡
⎣ae(fe(σ, t) +

k∑
j=r(σ,t)+1

f j
e ) + be

⎤
⎦ .

Proof of Lemma 1: We show that

dC(σ, t)
dt

|t=t∗ ≤ dC(σ′, t)
dt

|t=t∗ for all 0 ≤ t∗ ≤ 1, t∗ �∈ {ti(σ), ti(σ′)}∀i.

Since C(σ, t) and C(σ′, t) are both continuous, the comparison of their deriva-
tives in the intervals suffices to establish Lemma 1. �	
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Privacy-Preserving Access of Outsourced Data
via Oblivious RAM Simulation
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Abstract. We describe schemes for the oblivious RAM simulation problem with
a small logarithmic or polylogarithmic amortized increase in access times, with a
very high probability of success, while keeping the external storage to be of size
O(n).

1 Introduction

Suppose Alice owns a large data set, which she outsources to an honest-but-curious
server, Bob. For the sake of privacy, Alice can, of course, encrypt the cells of the
data she stores with Bob. But encryption is not enough, as Alice can inadvertently
reveal information about her data based on how she accesses it. Thus, we desire that
Alice’s access sequence (of memory reads and writes) is data-oblivious, that is, the
probability distribution for Alice’s access sequence should depend only on the size, n,
of the data set and the number of memory accesses. Formally, we say a computation
is data-oblivious if Pr(S |M), the probability that Bob sees an access sequence, S,
conditioned on a specific configuration of his memory (Alice’s outsourced memory),
M, satisfies Pr(S |M) = Pr(S |M′), for any memory configuration M′ �= M such
that |M′| = |M|. In particular, Alice’s access sequence should not depend on the values
of any set of memory cells in the outsourced memory that Bob maintains for Alice. To
provide for full application generality, we assume outsourced data is indexed and we
allow Alice to make arbitrary indexed accesses to this data for queries and updates.
That is, let us assume this outsourced data model is as general as the random-access
machine (RAM) model.

Most computations that Alice would be likely to perform on her outsourced data
are not naturally data-oblivious. We are therefore interested in this paper in simulation
schemes that would allow Alice to make her access sequence data-oblivious with low
overhead. For this problem, which is known as oblivious RAM simulation [5], we are
primarily interested in the case where Alice has a relatively small private memory, say,
of constant size or size that is O(n1/r), for a given constant r > 1.

Our Results. In this paper, we show how Alice can perform an oblivious RAM simu-
lation, with very high probability1, with an amortized time overhead of O(log n) and

1 We show that our simulation fails to be oblivious with negligible probability; that is, the
probability that the algorithm fails can be shown to be O

(
1

nα

)
for any α > 0. We say an

event holds with very high probability if it fails with negligible probability.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part II, LNCS 6756, pp. 576–587, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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with O(n) storage overhead purchased from Bob, while using a private memory of size
O(n1/r), for a given constant r > 1. With a constant-sized memory, we show that she
can do this simulation with overhead O(log2 n), with a similarly high probability of
success. At a high level, our result shows that Alice can leverage the privacy of her
small memory to achieve privacy in her much larger outsourced data set of size n.
Interestingly, our techniques involve the interplay of some seemingly unrelated new re-
sults, which may be of independent interest, including an efficient MapReduce parallel
algorithm for cuckoo hashing and a novel deterministic data-oblivious external-memory
sorting algorithm.

Previous Related Results. Goldreich and Ostrovsky [5] introduce the oblivious RAM
simulation problem and show that it requires an overhead of Ω(log n) under some
reasonable assumptions about the nature of such simulations. For the case where Al-
ice has only a constant-size private memory, they show how Alice can easily achieve
an overhead of O(n1/2 log n), with O(n) storage at Bob’s server, and, with a more
complicated scheme, how Alice can achieve an overhead of O(log3 n) with O(n log n)
storage at Bob’s server.

Williams and Sion [15] study the oblivious RAM simulation problem for the case
when the data owner, Alice, has a private memory of size O(n1/2), achieving an ex-
pected amortized time overhead of O(log2 n) using O(n log n) memory at the data
provider. Incidentally, Williams et al. [16] claim an alternative method that uses an
O(n1/2)-sized private memory and achieves O(log n log log n) amortized time over-
head with a linear-sized outsourced storage, but some researchers (e.g., see [14]) have
raised concerns with the assumptions and analysis of this result.

The results of this paper were posted by the authors in preliminary form as [7].
Independently, Pinkas and Reinman [14] published an oblivious RAM simulation result
for the case where Alice maintains a constant-size private memory, claiming that Alice
can achieve an expected amortized overhead of O(log2 n) while using O(n) storage
space at the data outsourcer, Bob. Unfortunately, their construction contains a flaw that
allows Bob to learn Alice’s access sequence, with high probability, in some cases, which
our construction avoids.

Ajtai [1] shows how oblivious RAM simulation can be done with a polylogarithmic
factor overhead without cryptographic assumptions about the existence of random hash
functions, as is done in previous papers [5,14,15,16], as well as any paper that derives
its security or privacy from the random oracle model (including this paper). A similar
result is also given by Damgård et al. [2]. Although these results address interesting
theoretical limits of what is achievable without random hash functions, we feel that
the assumption about the existence of random hash functions is actually not a major
obstacle in practice, given the ubiquitous use of cryptographic hash functions.

2 Preliminaries

A Review of Cuckoo Hashing. Pagh and Rodler [13] introduce cuckoo hashing, which
is a hashing scheme using two tables, each with m cells, and two hash functions, h1

and h2, one for each table, where we assume h1 and h2 can be modeled as random hash
functions for the sake of analysis. The tables store n = (1 − ε)m keys, where one key
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can be held in each cell, for a constant ε < 1. Keys can be inserted or deleted over
time; the requirement is that at most n = (1 − ε)m distinct keys are stored at any time.
A stored key x should be located at either h1(x) or h2(x), and, hence, lookups take
constant time. On insertion of a new key x, cell h1(x) is examined. If this cell is empty,
x is placed in this cell and the operation is complete. Otherwise, x is placed in this cell
and the key y already in the cell is moved to h2(y). This may in turn cause another key
to be moved, and so on. We say that a failure occurs if, for an appropriate constant c0,
after c0 log n steps this process has not successfully terminated with all keys located in
an appropriate cell. Suppose we insert an nth key into the system. Well-known attributes
of cuckoo hashing include:

– The expected time to insert a new key is bounded above by a constant.
– The probability a new key causes a failure is Θ(1/n2).

Kirsch, Mitzenmacher, and Wieder introduce the idea of utilizing a stash [10]. A
stash can be thought of as an additional memory where keys that would otherwise
cause a failure can be placed. In such a setting, a failure occurs only if the stash
itself overflows. For n items inserted in a two-table cuckoo hash table, the total failure
probability can be reduced to O(1/nk+1) for any constant k using a stash that can hold
k keys. For our results, we require a generalization of this result to stashes that are larger
than constant sized.

3 MapReduce Cuckoo Hashing

The MapReduce Paradigm. In the MapReduce paradigm (e.g., see [4,9]), a parallel
computation is defined on a set of values, {x1, x2, . . . , xn}, and consists of a series of
map, shuffle, and reduce steps:

– A map step applies a mapping function, μ, to each value, xi, to produce a key-value
pair, (ki, vi). To allow for parallel execution, the function, μ(xi) → (ki, vi), must
depend only on xi.

– A shuffle step takes all the key-value pairs produced in the previous map step, and
produces a set of lists, Lk = (k; vi1 , vi2 , . . .), where each such list consists of all
the values, vij , such that kij = k for a key k assigned in the map step.

– A reduce step applies a reduction function, ρ, to each list, Lk = (k; vi1 , vi2 , . . .),
formed in the shuffle step, to produce a set of values, w1, w2, . . . . The reduction
function, ρ, is allowed to be defined sequentially on Lk, but should be independent
of other lists Lk′ where k′ �= k.

Since we are using a MapReduce algorithm as a means to an end, rather than as an end
in itself, we allow values produced at the end of a reduce step to be of two types: final
values, which should be included in the output of such an algorithm when it completes
and are not included in the set of values given as input to the next map step, and non-final
values, which are to be used as the input to the next map step. Thus, for our purposes, a
MapReduce computation continues performing map, shuffle, and reduce steps until the
last reduce step is executed, at which point we output all the final values produced over
the course of the algorithm.
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In the MUD version of this model [4], which we call the streaming-MapReduce
model, the computation of ρ is restricted to be a streaming algorithm that uses only
O(logc n) working storage, for a constant c ≥ 0. Given our interest in applications to
data-oblivious computations, we define a version that further restricts the computation
of ρ to be a streaming algorithm that uses only O(1) working storage. That is, we focus
on a streaming-MapReduce model where c = 0, which we call the sparse-streaming-
MapReduce model. In applying this paradigm to solve some problem, we assume we
are initially given a set of n values as input, for which we then perform t steps of map-
shuffle-reduce, as specified by a sparse-streaming-MapReduce algorithm, A.

Let us define the message complexity of a MapReduce to be the total size of all the
inputs and outputs to all the map, shuffle, and reduce steps in a MapReduce algorithm.
That is, if we let ni denote the total size of the input and output sets for the ith phase of
map, shuffle, and reduce steps, then the message complexity of a MapReduce algorithm
is
∑

i ni.
Suppose we have a function, f(i, n), such that ni ≤ f(i, n), for each phase i, over

all possible executions of a MapReduce algorithm, A, that begins with an input of size
n. In this case, let us say that f is a ceiling function for A. Such a function is useful for
bounding the worst-case performance overhead for a MapReduce computation.

A MapReduce Algorithm for Cuckoo Hashing. Let us now describe an efficient algo-
rithm for setting up a cuckoo hashing scheme for a given set, X = {x1, x2, . . . , xn},
of items, which we assume come from a universe that can be linearly ordered in some
arbitrary fashion. Let T1 and T2 be the two tables that we are to use for cuckoo hashing
and let h1 and h2 be two candidate hash functions that we are intending to use as well.

For each xi in X , recall that h1(xi) and h2(xi) are the two possible locations for xi

in T1 and T2. We can define a bipartite graph, G, commonly called the cuckoo graph,
with vertex sets U = {h1(xi) : xi ∈ X} and W = {h2(xi) : xi ∈ X} and edge
set E = {(h1(xi), h2(xi)) : xi ∈ X}. That is, for each edge (u, v) in E, there is an
associated value xi such that (u, v) = (h1(xi), h2(xi)), with parallel edges allowed.
Imagine for a moment that an oracle identifies for us each connected component in G
and labels each node v in G with the smallest item belonging to an edge of v’s connected
component. Then we could initiate a breadth-first search from the node u in U such that
h1(xi) = u and xi is the smallest item in u’s connected component, to define a BFS
tree T rooted at u. For each non-root node v in T , we can store the item xj at v, where
xj defines the edge from v to its parent in T .

If a connected component C in G is in fact a tree, then this breadth-first scheme
will accommodate all the items associated with edges of C. Otherwise, if C contains
some non-tree edges with respect to its BFS tree, then we pick one such edge, e. All
other non-tree edges belong to items that are going to have to be stored in the stash.
For the one chosen non-tree edge, e, we assign e’s item to one of e’s endvertices,
w, and we perform a “cuckoo” action along the path, π, from w up to the root of
its BFS tree, moving each item on π from its current node to the parent of this node
on π. Therefore, we can completely accommodate all items associated with unicyclic
subgraphs or tree subgraphs for their connected components. All other items are stored
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in the stash. For cuckoo graphs corresponding to hash tables with load less than 1/2,
with high probability there are no components with two or more non-tree edges, and the
stash further increases the probability that, when such edges exist, they can be handled.

Unfortunately, we don’t have an oracle to initiate the above algorithm. Instead, we
essentially perform the above algorithm in parallel, starting from all nodes in U , as-
suming they are the root of a BFS tree. Whenever we discover a node should belong
to a different BFS tree, we simply ignore all the work we did previously for this node
and continue the computation for the “winning” BFS tree (based on the smallest item in
that connected component). Consider an efficient MapReduce algorithm for performing
n simultaneous breadth-first searches such that, any time two searches “collide,” the
search that started from a lower-numbered vertex is the one that succeeds. We can easily
convert this into an algorithm for cuckoo hashing by adding steps that process non-
tree edges in a BFS search. For the first such edge we encounter, we initiate a reverse
cuckoo operation, to allocate items in the induced cycle. For all other non-tree edges,
we allocate their associated items to the stash.

Intuitively, the BFS initiated from the minimum-numbered vertex, v, in a connected
component propagates out in a wave, bounces at the leaves of this BFS tree, returns back
to v to confirm it as the root, and then propagates back down the BFS tree to finalize all
the members of this BFS tree. Thus, in time proportional to the depth of this BFS tree
(which, in turn, is at most the size of this BFS tree), we will finalize all the members of
this BFS tree. And once these vertices are finalized, we no longer need to process them
any more. Moreover, this same argument applies to the modified BFS that performs the
cuckoo actions. Therefore, we process each connected component in the cuckoo graph
in a number of iterations that is, in the worst-case, equal to three times the size of each
such component (since the waves of the BFS move down-up-down, passing over each
vertex three times).

To bound both the time for the parallel BFS algorithm to run and to bound its
total work, we require bounds on the component sizes that arise in the cuckoo graph.
Such bounds naturally appear in previous analyses of cuckoo hashing. In particular, the
following result is proven in [10][Lemma 2.4].

Lemma 1. Let v be any fixed vertex in the cuckoo graph and let Cv be its component.
Then there exists a constant β ∈ (0, 1) such that for any integer k ≥ 0,

Pr(|Cv| ≥ k) ≤ βk.

More detailed results concerning the asymptotics of the distribution of component sizes
for cuckoo hash tables can be found in, for example [3], although the above result is
sufficient to prove linear message-complexity overhead.

Lemma 1 immediately implies that the MapReduce BFS algorithm (and the exten-
sion to cuckoo hashing) takes O(log n) time to complete with high probability.

Lemma 2. The message complexity of the MapReduce BFS algorithm is O(n) with
very high probability.

Proof. The message complexity is bounded by a constant times
∑

v |Cv|, which in
expectation is



Privacy-Preserving Access of Outsourced Data via Oblivious RAM Simulation 581

E

[∑
v

|Cv|
]

=
∑

v

E[|Cv|] ≤ 2m
∑
k≥0

Pr(Cv ≥ k) ≤ 2m
∑
k≥0

βk = O(m).

To prove a very high probability bound, we use a variant of Azuma’s inequality
specific to this situation. If all component sizes were bounded by say O(log2 n), then a
change in any single edge in the cuckoo graph could affect

∑
v |Cv| by only O(log4 n),

and we could directly apply Azuma’s inequality to the Doob martingale obtained by
exposing the edges of the cuckoo graph one at a time. Unfortunately, all component
sizes are O(log2 n) only with very high probability. However, standard results yield
that one can simply add in the probability of a “bad event” to a suitable tail bound, in
this case the bad event being that some component size is larger than c1 log2 n for some
suitable constant c1. Specifically, we directly utilize Theorem 3.7 from [12], which
allows us to conclude that if the probability of a bad event is a superpolynomially small
δ, then

Pr

(∑
v

|Cv| ≥
∑

v

E[|Cv|] + λ

)
≤ e−(2λ2)/(nc2 log4 n) + δ,

where c2 is again a suitably chosen constant. Now choosing λ = n2/3, for example,
suffices. ��

4 Simulating a MapReduce Algorithm Obliviously

Our simulation is based on a reduction to oblivious sorting.

Theorem 1. Suppose A is a sparse-streaming-MapReduce algorithm that runs in at
most t map-shuffle-reduce steps, and suppose further that we have a ceiling function,
f , for A. Then we can simulate A in a data-oblivious fashion in the RAM model in
time O(

∑t
i=1 o-sort(f(i, n))), where o-sort(n) is the time needed to sort n items in a

data-oblivious fashion.

Proof. Let us consider how we can simulate the map, shuffle, and reduce steps in phase
i of algorithm A in a data-oblivious way. We assume inductively that we store the input
values for phase i in an array, Xi. Let us also assume inductively that Xi can store values
that were created as final values the step i − 1. A single scan through the first f(i, n)
values of Xi, applying the map function, μ, as we go, produces all the key-value pairs
for the map step in phase i (where we output a dummy value for each input value that is
final or is itself a dummy value). We can store each computed value, one by one, in an
oblivious fashion using an output array Y . We then obliviously sort Y by keys to bring
together all key-value pairs with the same key as consecutive cells in Y (with dummy
values taken to be larger than all real keys). This takes time O(o-sort(f(i, n)). Let us
then do a scan of the first f(i, n) cells in Y to simulate the reduce step. As we consider
each item z in Y , we can keep a constant number of state variables as registers in our
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RAM, which collectively maintain the key value, k, we are considering, the internal
state of registers needed to compute ρ on z, and the output values produced by ρ on z.
This size bound is due to the fact that A is a sparse-streaming-MapReduce algorithm.
Since the total size of this state is constant, the total number of output values that could
possibly be produced by ρ on an input z can be determined a priori and bounded by a
constant, d. So, for each value z in Y , we write d values to an output array Z , according
to the function ρ, padding with dummy values if needed. The total size of Z is therefore
O(d f(i, n)), which is O(f(i, n)). Still, we cannot simply make Z the input for the
next map-shuffle-reduce step at this point, since we need the input array to have at most
f(i, n) values. Otherwise, we would have an input array that is a factor of d too large
for the next phase of the algorithm A. So we perform a data-oblivious sorting of Z ,
with dummy values taken to be larger than all real values, and then we copy the first
f(i, n) values of Z to Xi+1 to serve as the input array for the next step to continue
the inductive argument. The total time needed to perform step i is O(o-sort(f(i, n)).
When we have completed processing of step t, we concatenate all the Xi’s together,
flagging all the final values as being the output values for the algorithm A, which can
be done in a single data-oblivious scan. Therefore, we can simulate each step of A in
a data-oblivious fashion and produce the output from A, as well, at the end. Since we
do two sorts on arrays of size O(f(i, n)) in each map-shuffle-reduce step, i, of A, this
simulation takes time O(

∑t
i=1 o-sort(f(i, n))). ��

We can show that by combining this result with Lemma 2 we get the following:

Theorem 2. Given a set of n distinct items and corresponding hash values, there is a
data-oblivious algorithm for constructing a two-table cuckoo hashing scheme of size
O(n) with a stash of size s, whenever this stash size is sufficient, in O(o-sort(n + s))
time.

External-Memory Data-Oblivious Sorting. In this section, we give our efficient external-
memory oblivious sorting algorithm. Recall that in this model memory is divided be-
tween an internal memory of size M and an external memory (like a disk), which
initially stores an input of size N , and that the external memory is divided into blocks
of size B, for which we can read or write any block in an atomic action called an I/O. In
this context, we say that an external-memory sorting algorithm is data-oblivious if the
sequence of I/Os that it performs is independent of the values of the data it is processing.
So suppose we are given an unsorted array A of N comparable items stored in external
memory. If N ≤ M , then we copy A into our internal memory, sort it, and copy it
back to disk. Otherwise, we divide A into k = 	(M/B)1/3
 subarrays of size N/k and
recursively sort each subarray. Thus, the remaining task is to merge these subarrays into
a single sorted array.

Let us therefore focus on the task of merging k sorted arrays of size n = N/k each.
If nk ≤ M , then we copy all the lists into internal memory, merge them, and copy them
back to disk. Otherwise, let A[i, j] denote the jth element in the ith array. We form a
set of m new subproblems, where the pth subproblem involves merging the k sorted
subarrays defined by A[i, j] elements such that j mod m = p, for m = 	(M/B)1/3
.
We form these subproblems by processing each input subarray and filling in the portions
of the output subarrays from the input, sending full blocks to disk when they fill up
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(which will happen at deterministic moments independent of data values), all of which
uses O(N/B) I/Os. Then we recursively solve all the subproblems. Let D[i, j] denote
the jth element in the output of the ith subproblem. That is, we can view D as a two-
dimensional array, with each row corresponding to the solution to a recursive merge.

Lemma 3. Each row and column of D is in sorted order and all the elements in column
j are less than or equal to every element in column j + k.

Proof. The lemma follows from Theorem 1 of Lee and Batcher [11]. ��
To complete the k-way merge, then, we imagine that we slide an m×k rectangle across
D, from left to right. We begin by reading into internal memory the first 2k columns
of D. Next, we sort this set of elements in internal memory and we output the ordered
list of the km smallest elements (holding back a small buffer of elements if we don’t
fill up the last block). Then we read in the next k columns of D (possibly reading
in k additional blocks for columns beyond this, depending on the block boundaries),
and repeat the sorting of the items in internal memory and outputting the smallest km
elements in order. At any point in this algorithm, we may need to have up to 2km +
(m+2)B elements in internal memory, which, under a reasonable tall cache assumption
(say M > 3B4), will indeed fit in internal memory. We continue in this way until we
process all the elements in D. Note that, since we process the items in D from left to
right in a block fashion, for all possible data values, the algorithm is data-oblivious with
respect to I/Os.

Consider the correctness of this method. Let D1, D2, . . . , Dl denote the subarrays
of D of size m × k used in our algorithm. By a slight abuse of notation, we have that
D1 ≤ D3, by Lemma 3. Thus, the smallest mk items in D1 ∪ D2 are less than or
equal to the items in D3. Likewise, these mk items are obviously less than the largest
mk items in D1 ∪ D2. Therefore, the first mk items output by our algorithm are the
smallest mk items in D. Inductively, then, we can now ignore these smallest mk items
and repeat this argument with the remaining items in D. Thus, we have the following.

Theorem 3. Given an array A of size N comparable items, we can sort A with a data-
oblivious external-memory algorithm that uses O((N/B) log2

M/B(N/B)) I/Os, under
a tall-cache assumption (M > 3B4).

Theorem 4. Given a set of n distinct items and corresponding hash values, there is a
data-oblivious algorithm for constructing a two-table cuckoo hashing scheme of size
O(n) with a stash of size s = O(log n) whenever this stash size is sufficient, using a
private memory of size O(n1/r), for a given fixed constant r > 1, in O(n + s) time.

Proof. Combine Theorems 2 and 3, with N = n + s, B = 1, and M ∈ O(n1/r). ��

5 Oblivious RAM Simulations

Our data-oblivious simulation of a non-oblivious algorithm on a RAM follows the
general approach of Goldreich and Ostrovsky [5], but differs from it in some important
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ways, most particularly in our use of cuckoo hashing. We assume throughout that Alice
encrypts the data she outsources to Bob using a probabilistic encryption scheme, so
that multiple encryptions of the same value are extremely likely to be different. Thus,
each time she stores an encrypted value, there is no way for Bob to correlate this value
to other values or previous values. So the only remaining information that needs to be
protected is the sequence of accesses that Alice makes to her data.

Our description simultaneously covers two separate cases: the constant-sized private
memory case with very high probability amortized time bounds, and the case of private
memory of size O(n1/r) for some constant r > 1. The essential description is the
same for these settings, with slight differences in how the hash tables are structured as
described below.

We store the n data items in a hierarchy of hash tables, Hk, Hk+1, . . ., HL, where k
is an initial starting point for our hierarchy and L = log n. Each table, Hi, has capacity
for 2i items, which are distributed between “real” items, which correspond to memory
cells of the RAM, plus “dummy” items, which are added for the sake of obliviousness
to make the number of items stored in Hi be the appropriate value. The starting table,
Hk, is simply an array that we access exhaustively with each RAM memory read or
write. The lower-level tables, Hk+1 to Hl, for l determined in the analysis, are standard
hash tables with Hi having 2i+1 buckets of size O(log n), whereas higher-level tables,
Hl+1 to HL, are cuckoo hash tables, with Hi having (1 + ε)2i+2 cells and a stash of
size s, where s is determined in the analysis and ε > 0 is a constant. The sizes of the
hash tables in this hierarchy increase geometrically; hence the total size of all the hash
tables is proportional to the size of HL, which is O(n). Our two settings will differ in
the starting points for the various types of hash tables in the hierarchy as well as the
size of the stash associated with the hash tables.

For each Hi with i < L we keep a count, di, of the number of times that Hi has been
accessed since first being constructed as an “empty” hash table containing 2i dummy
values, numbered consecutively from −1 to −2i. For convenience, in what follows, let
us think of each hash table Hi with i > l as being a standard cuckoo hash table, with
a stash of size s = Θ(log n) chosen for the sake of a desired superpolynomially-small
error probability. Initially, every Hi is an empty cuckoo hash table, except for HL,
which contains all n = 2L initial values plus 2L dummy values.

We note that there is, unfortunately, some subtlety in the geometric construction of
hash tables in the setting of constant-sized private memory with very high probability
bounds. A problem arises in that for small hash tables, of size say polylogarithmic in
n, it is not clear that appropriate very high probability bounds, which required failures
to occur with probability inverse superpolynomial in n, hold with logarithmic sized
stashes. Such results do not follow from previous work [10], which focused on constant-
sized stashes. However, to keep the simulation time small, we cannot have larger than a
logarithmic-sized stash (if we are searching it exhaustively), and we require small initial
levels to keep the simulation time small.

We can show that we can cope with the problem by extending results from [10]
that logarithmic sized stashes are sufficient to obtain the necessary probability bounds
for hash tables of size that are polylogarithmic in n. In order to start our hierarchy with



Privacy-Preserving Access of Outsourced Data via Oblivious RAM Simulation 585

small, logarithmic-sized hash tables, we simply use standard hash tables as described
above for levels k +1 to l = O(log log n) and use cuckoo hash tables, each with a stash
of size s = O(log n), for levels l + 1 to L.

Access Phase. When we wish to make an access for a data cell at index x, for a read
or write, we first look in Hk exhaustively to see if it contains an item with key x.
Then, we initialize a flag, “found,” to false iff we have not found x yet. We continue
by performing an access2 to each hash table Hk+1 to HL, which is either to x or to a
dummy value (if we have already found x).

Our privacy guarantee depends on us never repeating a search. That is, we never
perform a lookup for the same index, x or d, in the same table, that we have in the
past. Thus, after we have performed the above lookup for x, we add x to the table Hk,
possibly with a new data value if the access action we wanted to perform was a write.

Rebuild Phase. With every table Hi, we associate a potential, pi. Initially, every table
has zero potential. When we add an element to Hk, we increment its potential. When a
table Hi has its potential, pi, reach 2i, we reset pi = 0 and empty the unused values in
Hi into Hi+1 and add 2i to pi+1. There are at most 2i such unused values, so we pad
this set with dummy values to make it be of size exactly 2i; these dummy values are
included for the sake of obliviousness and can be ignored after they are added to Hi+1.
Of course, this could cause a cascade of emptyings in some cases, which is fine.

Once we have performed all necessary emptyings, then for any j < L,
∑j

i=1 pi is
equal to the number of accesses made to Hj since it was last emptied. Thus, we rehash
each Hi after it has been accessed 2i times. Moreover, we don’t need to explicitly store
pi with its associated hash table, Hi, as di can be used to infer the value of pi.

The first time we empty Hi into an empty Hi+1, there must have been exactly 2i

accesses made to Hi+1 since it was created. Moreover, the first emptying of Hi into
Hi+1 involves the addition of 2i values to Hi+1, some of which may be dummy values.

When we empty Hi into Hi+1 for the second time it will actually be time to empty
Hi+1 into Hi+2, as Hi+1 would have been accessed 2i+1 times by this point—so we can
simply union the current (possibly padded) contents of Hi and Hi+1 together to empty
both of them into Hi+2 (possibly with further cascaded emptyings). Since the sizes
of hash tables in our hierarchy increase geometrically, the size of our final rehashing
problem will always be proportional to the size of the final hash table that we want to
construct. Every n = 2L accesses we reconstruct the entire hierarchy, placing all the
current values into HL. Thus, the schedule of table emptyings follows a data-oblivious
pattern depending only on n.

Correctness and Analysis. To the adversary, Bob, each lookup in a hash table, Hi, is to
one random location (if the table is a standard hash table) or to two random locations
and the s elements in the stash (if the table is a cuckoo hash table), which can be

1. a search for a real item, x, that is not in Hi,
2. a search for a real item, x, that is in Hi,
3. a search for a dummy item, di.

2 This access is actually two accesses if the table is a cuckoo hash table.
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Moreover, as we search through the levels from k to L we go through these cases in
this order (although for any access, we might not ever enter case 1 or case 3, depending
on when we find x). In addition, if we search for x and don’t find it in Hi, we will
eventually find x in some Hj for j > i and then insert x in Hk; hence, if ever after
this point in time we perform a future search for x, it will be found prior to Hi. In
other words, we will never repeat a search for x in a table Hi. Moreover, we continue
performing dummy lookups in tables Hj , for j > i, even after we have found the
item for cell x in Hi, which are to random locations based on a value of di that is
also not repeated. Thus, the accesses we make to any table Hi are to locations that are
chosen independently at random. In addition, so long as our accesses don’t violate the
possibility of our tables being used in a valid cuckoo hashing scheme (which our scheme
guarantees with very high probability ) then all accesses are to independent random
locations that also happen to correspond to locations that are consistent with a valid
cuckoo scheme. Finally, note that we rebuild each hash table Hi after we have made
2i accesses to it. Of course, some of these 2i accesses may have successfully found
their search key, while others could have been for dummy values or for unsuccessful
searches. Nevertheless, the collection of 2i distinct keys used to perform accesses to Hi

will either form a standard hash table or a cuckoo graph that supports a cuckoo hash
table, with a stash of size s, w.v.h.p. Therefore, with very high probability, the adversary
will not be able to determine which among the search keys resulted in values that were
found in Hi, which were to keys not found in Hi, and which were to dummy values.

Each memory access involves at most O(s log n) reads and writes, to the tables Hk

to HL. In addition, note that each time an item is moved into Hk, either it or a surrogate
dummy value may eventually be moved from Hk all the way to HL, participating in
O(log n) rehashings, with very high probability. In the constant-memory case, by The-
orem 2, each data-oblivious rehashing of ni items takes O((ni +s) log(ni +s)) time. In
addition, in this case, we use a stash of size s ∈ O(log n) and set l = k + O(log log n).
In the case of a private memory of size O(n1/r), each data-oblivious rehashing of
ni items takes O(ni) time, by Theorem 4. In addition, in this case, we can use a
constant-size stash (i.e., s = O(1)), but start with k = (1/r) log n, so that Hk fits
in private memory (with all the other Hi’s being in the outsourced memory). The use
of a constant-sized stash, however, limits us to a result that holds with high probability,
instead of with very high probability.

To achieve very high probability in this latter case, we utilize a technique suggested
in [6]. Instead of using a constant-sized stash in each level, we combine them into a
single logarithmic-sized stash, used for all levels. This allows the stash at any single
level to possibly be larger than any fixed constant, giving bounds that hold with very
high probability. Instead of searching the stash at each level, Alice must load the entire
stash into private memory and rewrite it on each memory access. Therefore, we have
the following.

Theorem 5. Data-oblivious RAM simulation of a memory of size n can be done in the
constant-size private-memory case with an amortized time overhead of O(log2 n), with
very high probability. Such a simulation can be done in the case of a private memory of
size O(n1/r) with an amortized time overhead of O(log n), with very high probability,
for a constant r > 1. The space needed at the server in all cases is O(n).
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Abstract. Threshold cryptography aims at enhancing the availability
and security of decryption and signature schemes by splitting private
keys into several (say n) shares (typically, each of size comparable to the
original secret key). In these schemes, a quorum of at least (t ≤ n) servers
needs to act upon a message to produce the result (decrypted value or
signature), while corrupting less than t servers maintains the scheme’s
security. For about two decades, extensive study was dedicated to this
subject, which created a number of notable results. So far, most practi-
cal threshold signatures, where servers act non-interactively, were ana-
lyzed in the limited static corruption model (where the adversary chooses
which servers will be corrupted at the system’s initialization stage). Ex-
isting threshold encryption schemes that withstand the strongest com-
bination of adaptive malicious corruptions (allowing the adversary to
corrupt servers at any time based on its complete view), and chosen-
ciphertext attacks (CCA) all require interaction (in the non-idealized
model) and attempts to remedy this problem resulted only in relaxed
schemes. The same is true for threshold signatures secure under chosen-
message attacks (CMA).

To date (for about 10 years), it has been open whether there are
non-interactive threshold schemes providing the highest security (namely,
CCA-secure encryption and CMA-secure signature) with scalable shares
(i.e., as short as the original key) and adaptive security. This paper
answers this question affirmatively by presenting such efficient decryption
and signature schemes within a unified algebraic framework.

Keywords: Threshold cryptography, encryption schemes, digital signa-
tures, adaptive corruptions, non-interactivity.

1 Introduction

Threshold cryptography [17,18,7] avoids single points of failure by splitting cryp-
tographic keys into n > 1 shares which are stored by servers in distinct locations.
Cryptographic schemes are then designed in such a way that at least t out of
n servers should contribute to private key operations in order for these to suc-
ceed. In (t, n)-threshold cryptosystems (resp. signature schemes), an adversary
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breaking into up to t − 1 servers should be unable to decrypt ciphertexts (resp.
generate signatures) on her own.

Designing secure threshold public key schemes has proved to be a highly non-
trivial task. For example, the random oracle model [2] was needed to analyze
the first chosen-ciphertext secure (or CCA-secure for short) threshold encryp-
tion systems put forth by Shoup and Gennaro [35]. Canetti and Goldwasser [11]
gave a standard model implementation (based on the Cramer-Shoup encryption
scheme [12]) at the expense of using interaction between decryption servers to
obtain robustness (i.e., ensure that no dishonest minority deviating from the
protocol can prevent uncorrupted servers from successfully decrypting). Other
CCA-secure threshold cryptosystems were suggested in [31, 19, 4].

Non-Interactive Schemes. Using the innovative Canetti-Halevi-Katz (CHK)
methodology [13], Boneh, Boyen and Halevi [4] showed the first non-interactive
robust CCA-secure threshold cryptosystem with a security proof in the standard
model (i.e., without the random oracle idealization): in their scheme, decryption
servers can compute their partial decryption result (termed “decryption share”)
without having to talk to each other and decryption shares contain built-in proofs
of their validity, which guarantees robustness. Similar applications of the CHK
methodology were studied in [8, 27].

In the context of digital signatures, Shoup [36] described non-interactive
threshold signatures based on RSA and providing robustness.

Adaptive Corruptions. Historically, threshold primitives (including [35, 11,
19, 23, 4]) have been mostly studied in a static corruption model, where the ad-
versary chooses which servers she wants to corrupt before the scheme is set up.
Unfortunately, adaptive adversaries – who can choose whom to corrupt at any
time and depending on the previously collected information – are known (see,
e.g., [14]) to be strictly stronger and substantially harder to deal with.

To address the above concerns, Canetti et al. [10] proposed a method to cope
with adaptive corruptions assuming reliable erasures (i.e., players must be able
to safely erase their local data when they no longer need them). Their techniques
were used in [1] to build adaptively secure proactive RSA signatures. As a disad-
vantage, this approach requires all servers to refresh their shares in a proactive
manner [32] (by jointly computing a sharing of zero) after each distributed pri-
vate key operation (effectively making schemes n-out-of-n rather than t-out-of-n
for any t ≤ n). At the same time, Frankel, MacKenzie and Yung [24,25] showed
how to avoid the latter limitation while still using erasures.

Later on, Jarecki and Lysyanskaya [26] eliminated the need for erasures and
gave an adaptively secure variant of the Canetti-Goldwasser CCA-secure thresh-
old cryptosystem [11]. Unfortunately, their scheme – which is also designed to
remain secure in concurrent environments – requires a lot of interaction between
decryption servers (at least in the standard model1).

1 In the random oracle model, decryption servers can non-interactively prove the va-
lidity of their decryption shares using the Fiat-Shamir heuristic but only heuristic
arguments are then possible in terms of security (see [9], for instance).
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Recently, Qin et al. [33] suggested a non-interactive threshold cryptosystem
(more precisely, a threshold broadcast encryption scheme whose syntax is similar
to [15, 16]) with adaptive security. Its downside is its lack of scalability since
private key shares consist of O(n) elements, where n is the number of servers
(while, in prior schemes, the share size only depends on the security parameter).

Our contribution. We give the first robust threshold cryptosystem which is
simultaneously chosen-ciphertext secure under adaptive corruptions and non-
interactive while being scalable (i.e., providing short private keys). Unlike [33],
our scheme features constant-size private key shares (where “constant” means in-
dependent of t and n) for public keys of comparable size. In addition, it is concep-
tually simple and relies on assumptions of constant-size whereas [33] relies on a
“q-type” assumption where the input is a sequence of the form (g, gα, . . . , g(αq)),
for some secret α ∈ Zp. Unlike [10], we do not have to perform proactive
refreshes of private key shares after each decryption operation.

Our starting point is the identity-based encryption (IBE) system [5, 34] pro-
posed by Lewko and Waters [29] and the elegant dual system approach intro-
duced by Waters [37]. The latter has proved useful to demonstrate full security
in identity and attribute-based encryption [37, 28, 29] but, to the best of our
knowledge, it has not been applied to threshold cryptosystems so far. It is worth
noting that the security proof of our scheme is not simply a direct consequence of
applying the CHK paradigm to the Lewko-Waters results [29] as the treatment
of adaptive corruptions does not follow from [13,29]. Like [29], our proof uses a
sequence of games. While we also use so-called semi-functional decryption shares
and ciphertexts as in the IBE setting [29], we have to consider two distinct kinds
of semi-functional ciphertexts and an additional step (which aims at making all
private key shares semi-functional) is needed in the proof to end up in a game
where proving the security is made simple.

We also describe a non-interactive threshold signature that follows the same
line of development and which can be proven secure in the standard model under
adaptive corruptions. This appears to be the first security result under adaptive
corruptions for non-interactive threshold signatures in the standard model.

Technically speaking, the encryption scheme can be visualized as a variant of
the Boneh-Boyen-Halevi threshold system [4] in groups whose order is a product
N = p1p2p3 of three primes, which are chosen at key generation. Interestingly, if
the factorization of N is somehow leaked, the proof of security under static cor-
ruptions implied by [4] still applies and only the proof of adaptive security ceases
to go through. We also believe the semantically-secure variant of our scheme
(which is obtained by removing the appropriate “checksum values” allowing to
hedge against chosen-ciphertext attacks) to be of interest in its own right since
it is multiplicatively homomorphic (like the ElGamal encryption scheme [20])
and retains security under adaptive corruptions in the threshold setting. It can
thus find applications in important protocols such as e-voting for example.

Organization. Section 2 recalls the definitions of threshold cryptosystems. The
scheme and its CCA-security are analyzed in sections 3.1 and 3.2, respectively.
Our threshold signature is presented in the full version of the paper.
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2 Background and Definitions

2.1 Definitions for Threshold Public Key Encryption

Definition 1. A non-interactive (t, n)-threshold encryption scheme is a set of
algorithms with the following specifications.

Setup(λ, t, n): takes as input a security parameter λ and integers t, n ∈ poly(λ)
(with 1 ≤ t ≤ n) denoting the number of decryption servers n and the
decryption threshold t. It outputs a triple (PK,VK,SK), where PK is
the public key, SK = (SK1, . . . , SKn) is a vector of n private-key shares
and VK = (V K1, . . . , V Kn) is the corresponding vector of verification keys.
Decryption server i is given the share (i, SKi) that allows deriving decryption
shares for any ciphertext. For each i ∈ {1, . . . , n}, the verification key V Ki

will be used to check the validity of decryption shares generated using SKi.
Encrypt(PK, M): is a randomized algorithm that, given a public key PK and

a plaintext M , outputs a ciphertext C.
Ciphertext-Verify(PK, C): takes as input a public key PK and a ciphertext

C. It outputs 1 if C is deemed valid w.r.t. PK and 0 otherwise.
Share-Decrypt(PK, i, SKi, C): on input of a public key PK, a ciphertext C

and a private-key share (i, SKi), this (possibly randomized) algorithm out-
puts a special symbol (i,⊥) if Ciphertext-Verify(PK, C) = 0. Otherwise,
it outputs a decryption share μi = (i, μ̂i).

Share-Verify(PK, V Ki, C, μi): takes as input PK, the verification key V Ki, a
ciphertext C and a purported decryption share μi = (i, μ̂i). It outputs either
1 or 0. In the former case, μi is said to be a valid decryption share. We adopt
the convention that (i,⊥) is an invalid decryption share.

Combine(PK,VK, C, {μi}i∈S): given PK, VK, C and a subset S ⊂ {1, . . . , n}
of size t = |S| with decryption shares {μi}i∈S , this algorithm outputs either
a plaintext M or ⊥ if the set contains invalid decryption shares.

Chosen-ciphertext security. We use a definition of chosen-ciphertext secu-
rity which is identical to the one of [35,4] with the difference that the adversary
can adaptively choose which parties she wants to corrupt.

Definition 2. A non-interactive (t, n)-Threshold Public Key Encryption scheme
is secure against chosen-ciphertext attacks (or IND-CCA2 secure) and adaptive
corruptions if no PPT adversary has non-negligible advantage in this game:

1. The challenger runs Setup(λ, t, n) to obtain PK, SK = (SK1, . . . , SKn)
and VK = (V K1, . . . , V Kn). It gives PK and VK to the adversary A and
keeps SK to itself.

2 The adversary A adaptively makes the following kinds of queries:

- Corruption query: A chooses i ∈ {1, . . . , n} and obtains SKi.
- Decryption query: A chooses an index i ∈ {1, . . . , n} and a ciphertext C.

The challenger replies with μi = Share-Decrypt(PK, i, SKi, C).
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3. A chooses two equal-length messages M0, M1. The challenger flips a fair coin
β R← {0, 1} and computes C� = Encrypt(PK, Mβ).

4. A makes further queries as in step 2 but she is not allowed to make decryption
queries on the challenge ciphertext C�.

5. A outputs a bit β′ and is deemed successful if (i) β′ = β; (ii) no more than
t − 1 private key shares were obtained by A (via corruption queries) in the
whole game. As usual, A’s advantage is Adv(A) = |Pr[A wins ] − 1

2 |.
Consistency. A (t, n)-Threshold Encryption scheme provides decryption con-
sistency if no PPT adversary has non-negligible advantage in a three-stage game
where stages 1 and 2 are identical to those of definition 2. In stage 3, the adver-
sary outputs a ciphertext C and two t-sets of decryption shares Φ = {μ1, . . . , μt}
and Φ′ = {μ′

1, . . . , μ
′
t}. The adversary A is declared successful if

1. Ciphertext-Verify(PK, C) = 1.
2. Φ and Φ′ only consist of valid decryption shares.
3. Combine(PK,VK, C, Φ) �= Combine(PK,VK, C, Φ′).

We note that condition 1 aims at preventing an adversary from trivially winning
by outputting an invalid ciphertext, for which distinct sets of key shares may give
different results. This definition of consistency is identical to the one of [35, 4]
with the difference that A can adaptively corrupt decryption servers.

2.2 Bilinear Maps and Hardness Assumptions

We use groups (G, GT ) of composite order N = p1p2p3 endowed with an effi-
ciently computable map e : G × G → GT such that: (1) e(ga, hb) = e(g, h)ab for
any (g, h) ∈ G×G and a, b ∈ Z; (2) if e(g, h) = 1GT for each h ∈ G, then g = 1G.
An important property of composite order groups is that pairing two elements
of order pi and pj , with i �= j, always gives the identity element 1GT .

In the following, for each i ∈ {1, 2, 3}, we denote by Gpi the subgroup of order
pi. For all distinct i, j ∈ {1, 2, 3}, we call Gpipj the subgroup of order pipj. In
this setting, we rely on the following assumptions introduced in [29].

Assumption 1. Given a description of (G, GT ) as well as g R← Gp1 , X3
R← Gp3

and T ∈ G, it is infeasible to efficiently decide if T ∈ Gp1p2 or T ∈ Gp1 .
Assumption 2. Let g, X1

R← Gp1 , X2, Y2
R← Gp2 , Y3, Z3

R← Gp3 . Given a de-
scription of (G, GT ), a set of group elements (g, X1X2, Z3, Y2Y3) and T , it is
hard to decide if T ∈R Gp1p3 or T ∈R G.

Assumption 3. Let g R← Gp1 , X2, Y2, Z2
R← Gp2 , X3

R← Gp3 and α, s R← ZN .
Given a description of (G, GT ), group elements (g, gαX2, X3, g

sY2, Z2) and
T , it is infeasible to decide if T = e(g, g)αs or T ∈R GT .

3 A Non-interactive CCA2-Secure Threshold
Cryptosystem with Adaptive Corruptions

Our starting point is applying the Canetti-Halevi-Katz [13] transform to a (con-
ceptually equivalent) variant of the Lewko-Waters IBE [29] in the same way as [4]
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derives a CCA2-secure threshold cryptosystem from the Boneh-Boyen IBE [3].
We show that composite order groups and the techniques of [29] make it possible
to handle adaptive corruptions in a relatively simple way and without having to
refresh private key shares after each private key operation.

To this end, we apply a modification to the IBE scheme [29][Section 3]. The
latter encrypts M under the identity ID ∈ ZN as (M · e(g, g)α·s, gs, (uID · v)s) for
a random exponent s ∈ ZN and where the public key is

(
g, u, v, e(g, g)α

)
, with

g, u, v ∈ Gp1 . We implicitly use an IBE scheme where messages are encrypted as
(M · e(g, h)α·s, gs, (uID · v)s), where h �= g and e(g, h)α is part of the public key.

Another difference is that, in order to ensure the consistency of these scheme
(as defined in section 2.1), the ciphertext validation algorithm has to reject all
ciphertexts containing components in the subgroup Gp3 .

3.1 Description

In the description hereafter, the verification key of the one-time signature is
interpreted as an element of ZN . In practice, longer keys can be hashed into ZN

using a collision-resistant hash function.

Setup(λ, t, n): given a security parameter λ ∈ N and integers t, n ∈ poly(λ)
(with 1 ≤ t ≤ n), the algorithm does the following.

1. Choose bilinear groups (G, GT ) of order N = p1p2p3, with p1, p2, p3 > 2λ.
2. Choose α R← ZN , g, h, u, v R← Gp1 , Xp3

R← Gp3 and compute e(g, h)α.
3. Choose a strongly unforgeable one-time signature Σ = (G,S,V).
4. Choose a polynomial P [X ] = α + α1X + · · · + αt−1X

t−1 ∈ ZN [X ], for
random coefficients α1, . . . , αt−1

R← ZN . Define the public key to be

PK =
(

(G, GT ), N, g, e(g, h)α, u, v, Xp3 , Σ
)

and set private key shares SK = (SK1, . . . , SKn) as SKi = hP (i) · Z3,i,
for i = 1 to n, with Z3,1, . . . , Z3,n

R← Gp3 . Verification keys are then set
as VK = (V K1, . . . , V Kn) with V Ki = e(g, h)P (i) for i = 1 to n.

The public key PK and the verification key VK are made publicly available
while, for each i ∈ {1, . . . , n}, SKi is given to decryption server i.

Encrypt(PK, m): to encrypt m ∈ GT , generate a one-time signature key pair
(SSK, SVK) ← G(λ). Choose s R← ZN and compute

C =
(
SVK, C0, C1, C2, σ

)
=
(
SVK, m · e(g, h)α·s, gs, (uSVK · v)s, σ

)
,

where σ = S(SSK, (C0, C1, C2)).
Ciphertext-Verify

(
PK, C

)
: parse the ciphertext C as (SVK, C0, C1, C2, σ).

Return 1 if V(SVK, (C0, C1, C2), σ) = 1, e(Cj , Xp3) = 1GT for j ∈ {1, 2}
and e(g, C2) = e(C1, u

SVK · v). Otherwise, return 0.
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Share-Decrypt(i, SKi, C): Parse C as
(
SVK, C0, C1, C2, σ

)
and SKi as an el-

ement of G. Return (i,⊥) if Ciphertext-Verify
(
PK, C

)
= 0. Otherwise,

choose r R← ZN , W3, W
′
3

R← Gp3 , compute and return μi = (i, μ̂i), where

μ̂i = (Di,1, Di,2) =
(
SKi · (uSVK · v)r · W3, gr · W ′

3

)
. (1)

Share-Verify
(
PK, C, (i, μ̂i)

)
: parse C as (SVK, C0, C1, C2, σ). If μ̂i = ⊥ or

μ̂i �∈ G2, return 0. Otherwise, parse μ̂i as a pair (Di,1, Di,2) ∈ G2 and return
1 if e(Di,1, g) = V Ki · e(uSVK · v, Di,2). In any other situation, return 0.

Combine(PK, C, {(i, μ̂i)}i∈S): for each i ∈ S, parse the share μ̂i as (Di,1, Di,2)
and return ⊥ if Share-Verify

(
PK, C, (i, μ̂i)

)
= 0. Otherwise, compute

(D1, D2) =
(∏

i∈S D
Δi,S(0)
i,1 ,

∏
i∈S D

Δi,S(0)
i,2

)
, which equals

(D1, D2) =
(
hα · (uSVK · v)r̃ · W̃3, gr̃ · W̃ ′

3

)
,

for some W̃3, W̃
′
3 ∈ Gp3 and r̃ ∈ Zp1 . Using (D1, D2), compute and output

the plaintext m = C0 · e(C1, D1)−1 · e(C2, D2).

As far as efficiency goes, the ciphertext-validity check can be optimized by
choosing ω1, ω2

R← ZN and checking that e(g ·Xω1
p3

, C2) = e(C1, (uSVK · v) ·Xω2
p3

),
which rejects ill-formed ciphertexts with overwhelming probability and saves two
pairing evaluations. Similar batch verification techniques apply to simultaneously
test t or more decryption shares using only two pairing evaluations2.

We observe that, as in [4], decryption shares can be seen as signature shares
(for a message consisting of the verification key SVK) calculated by decryption
servers. In the full version, we show that the underlying threshold signature is
secure against chosen-message attacks in the adaptive corruption scenario.

3.2 Security

The security proof departs from approaches that were previously used in thresh-
old cryptography in that we do not construct an adversary against the cen-
tralized version of the scheme out of a CCA2 adversary against its threshold
implementation. Instead, we directly prove the security of the latter using the
dual encryption paradigm [37,29].

Our proof proceeds with a sequence of games and uses semi-functional cipher-
texts as in [29], and decryption shares. Still, there are two differences. First, two
kinds of semi-functional ciphertexts (that differ in the presence of a component
of order p2 in the target group GT ) have to be involved. The second difference
is that we need to introduce semi-functional private key shares at some step
of the proof and argue that they cannot be distinguished from real key shares.
The proof takes advantage of the fact that, at each step of the sequence, the
simulator knows either the Gp1 components of private key shares {hP (i)}n

i=1 or
a “blinded” version {hP (i) ·Z2,i}n

i=1 of those shares, for some Z2,i ∈R Gp2 , which
suffices to consistently answer adaptive corruption queries.
2 Namely, t shares {μi = (Di,1, Di,2)}t

i=1 can be batch-verified by drawing

ω1, . . . , ωt
R← ZN and testing if e

(
g,
∏t

i=1 Dωi
i,1

)
=
∏t

i=1 V Kωi
i ·e(uSVK ·v,

∏t
i=1 Dωi

i,2

)
.
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Theorem 1. The scheme is IND-CCA2 against adaptive corruptions assuming
that Assumption 1, Assumption 2 and Assumption 3 all hold and that Σ is a
strongly unforgeable3 one-time signature.

Proof. The proof proceeds using a sequence of games including steps similar
to [29] and additional steps. As in [37,29], the proof makes use of semi-functional
ciphertexts and decryption shares (which are actually private keys in [29]). In
addition, we also have to consider semi-functional private key shares. Another
difference is that we need two kinds of semi-functional ciphertexts.

◦ Semi-functional ciphertexts of Type I are generated from a normal ciphertext
(C′

0, C
′
1, C

′
2) and some g2 ∈ Gp2 , by choosing random τ, zc

R← ZN and setting

C0 = C′
0, C1 = C′

1 · gτ
2 , C2 = C′

2 · gτzc
2 .

◦ Semi-functional ciphertexts of Type II are generated from a normal cipher-
text (C′

0, C
′
1, C

′
2) by choosing random τ, zc, θ

R← ZN and setting

C0 = C′
0 · e(g2, g2)θ, C1 = C′

1 · gτ
2 , C2 = C′

2 · gτzc
2 .

◦ Semi-functional decryption shares are obtained from a normal decryption
share (D′

i,1, D
′
i,2) by picking γ, zk

R← ZN , W3, W
′
3

R← Gp3 and setting

Di,1 = D′
i,1 · gγzk

2 · W3, Di,2 = D′
i,2 · gγ

2 · W ′
3.

◦ Semi-functional private key shares {SKi}n
i=1 are obtained from normal shares

{SK ′
i}n

i=1 by setting SKi = SK ′
i · Z2,i, where Z2,i

R← Gp2 , for i = 1 to n.

The proof considers a sequence of q + 6 games. It starts with the real game
Gamereal followed by Gamerestricted, Game∗restricted Game0, Game1, . . . , Gameq and
finally Game∗q and Gamefinal.

Gamerestricted: is identical to Gamereal with the difference that the challenger
B rejects all post-challenge decryption queries (SVK, C0, C1, C2, σ) for which
SVK = SVK�, where SVK� denotes the one-time verification key included in
the challenge ciphertext.

Game∗restricted: is identical to Gamerestricted with the difference that the adver-
sary A is not allowed to make decryption queries (SVK, C0, C1, C2, σ) for
which SVK = SVK� mod p2.

Game0: is identical to Game∗restricted but the normal challenge ciphertext is re-
placed by a semi-functional ciphertext of Type I.

Gamek (1 ≤ k ≤ q): in this game, the challenge ciphertext is a semi-functional
ciphertext of Type I and the challenger B answers the first k decryption
queries by returning semi-functional decryption shares. As for the last q − k
decryption queries, they are answered using normal decryption shares.

3 Strong unforgeability refers to the infeasibility, after having obtained a message-
signature pair (M, σ), of computing a new pair (M�, σ�) �= (M, σ).
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Game∗q: is identical to Gameq with the following two differences.

- All private key shares are made semi-functional and thus contain a ran-
dom Gp2 component.

- The Type I semi-functional challenge ciphertext is traded for a semi-
functional ciphertext of Type II.

Gamefinal: is as Game∗q but the Type II semi-functional challenge ciphertext is
replaced by a semi-functional encryption of a random plaintext (instead of
Mβ). In this game, A has no information on the challenger’s bit β ∈ {0, 1}
and cannot guess it with better probability than 1/2.

As in [29], when a semi-functional decryption share is used (in combination with
t− 1 normal decryption shares) to decrypt a semi-functional ciphertext, decryp-
tion only works when zk = zc, in which case the decryption share is called nomi-
nally semi-functional. For each k ∈ {1, . . . , q}, the transitions between Gamek−1

and Gamek is done in such a way that the distinguisher cannot directly decide
(i.e., without interacting with A) whether the kth decryption share is normal or
semi-functional by generating this share for the challenge verification key SVK�.
Indeed, in such an attempt, the generated decryption share is necessarily either
normal or nominally semi-functional, so that decryption succeeds either way.

Moreover, during the transition between Gameq and Game∗q , we have to make
sure that the distinguisher cannot bypass its interaction with the adversary and
try to distinguish the two games by itself either. Should it attempt to decrypt
the challenge ciphertext using the private key shares, the transition is orga-
nized in such a way that decryption succeeds regardless of whether the private
key shares (resp. the challenge ciphertext) are normal or semi-functional (resp.
semi-functional of Type I or II).

The proof is completed by lemma 1 to 6, which show that all games are
computationally indistinguishable as long as the one-time signature is strongly
unforgeable and Assumptions 1, 2, 3 hold. ��
Lemma 1. If the one-time signature Σ is strongly unforgeable, Gamereal and
Gamerestricted are indistinguishable.

Proof. The proof uses the classical argument saying that the only way for the
adversary to create a legal decryption query (SVK�, C0, C1, C2, σ) after the chal-
lenge phase is to break the strong unforgeability of Σ. Moreover, the challenge
one-time verification key can be defined at the very beginning of the game.
Hence, computing a valid pre-challenge decryption query involving SVK� would
require the adversary to compute a valid signature without having seen a single
signature (or even the verification key) and a fortiori break the security of Σ. ��
Lemma 2. Provided Assumption 1 and Assumption 2 both hold, Gamerestricted

and Game∗restricted are indistinguishable.

Proof. The proof is identical to the one of lemma 5 in [29]. Namely, the only situ-
ation where the two games are distinguishable is when the adversary A manages
to come up with a ciphertext for which SVK� �= SVK but SVK� = SVK mod p2.
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In this case, the challenger B can compute gcd(SVK−SVK�, N), which is neces-
sarily a non-trivial factor of N . Depending on which factor is found, B can break
either Assumption 1 or Assumption 2. ��
The proofs of lemma 3 and 4 proceed exactly as in [29] and we give them in the
full version of the paper.

Lemma 3. Under Assumption 1, no PPT adversary can distinguish
Game∗restricted and Game0.

Lemma 4. Under Assumption 2, no PPT adversary can distinguish Gamek

from Gamek−1 for 1 ≤ k ≤ q.

In comparison with the security proof of [29], the novelty is the transition from
Gameq to Game∗q , which is addressed in lemma 5. This transition allows turning
all private key shares into semi-functional shares in one step.

Lemma 5. Under Assumption 2, Gameq and Game∗q are indistinguishable.

Proof. Towards a contradiction, we assume that a PPT adversary A can tell
apart Gameq and Game∗q . We construct an algorithm B that, given elements
(g, X3, X1X2, Y2Y3, T ), decides if T ∈R Gp1p3 or T ∈R G.

Algorithm B prepares PK by setting Xp3 = X3, u = ga and v = gb with
a, b R← ZN . It also picks α R← ZN and defines e(g, h)α = e(g, T )α. In addition, B
chooses a random polynomial P [X ] of degree t−1 such that P (0) = α. To prepare
SK = (SK1, . . . , SKn) and VK = (V K1, . . . , V Kn), B sets SKi = T P (i) · Z3,i,
with Z3,i

R← Gp3 , and V Ki = e(g, SKi) for i = 1 to n.
In the challenge phase, A outputs M0, M1 and B flips a coin β R← {0, 1}. It

generates (SSK�, SVK�) ← G(λ) and computes

C�
0 = Mβ · e(X1X2, T )α, C�

1 = X1X2, C�
2 = (X1X2)a·SVK+b (2)

In order to generate a decryption share on behalf of decryption server i for a
ciphertext (SVK, C0, C1, C2, σ), B chooses r, w, w′ R← ZN and generates a semi-
functional decryption share

(Di,1, Di,2) = (SKi · (uSVK · v)r · (Y2Y3)w, gr · (Y2Y3)w′
). (3)

Whenever A decides to corrupt decryption server i, B simply reveals SKi.
We note that, in the situation where T ∈ Gp1p3 , B is clearly playing Gameq.

Now, let us consider what happens when T ∈R G. In this case, T can be written
as T = gγ1gγ2

2 gγ3
3 for some random γ1 ∈ Zp1 , γ2 ∈ Zp2 , γ3 ∈ Zp3 and h is

implicitly set as h = gγ1 . From the simulator’s standpoint, the Gp2 components
of private key shares {SKi}n

i=1 are not independent since a polynomial of degree
t−1 goes through them in the exponent: for each index i ∈ {1, . . . , n}, we indeed
have SKi = gγ1·P (i) · gγ2·P (i)

2 · Z̃3,i, for some Z̃3,i ∈R Gp3 . In addition, if we write
X1X2 = gs · gτ

2 , for some s ∈ Zp1 , τ ∈ Zp2 , the components
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(C�
0 , C�

1 , C�
2 ) =
(
Mβ · e(g, h)α·s · e(g2, g2)γ2·τ ·α, gs · gτ

2 , (uSVK · v)s · gτzc

2

)
of the challenge ciphertext information-theoretically reveal e(g2, g2)γ2·τ ·P (0).

However, the public key does not reveal anything about α mod p2 and the
distribution of VK is uncorrelated to {P (i) mod p2}n

i=1. Moreover, as decryption
shares are generated as per (3), they perfectly hide P (i) mod p2 in the first term
SKi of the product Di,1. Hence, since the adversary A cannot obtain more
than t − 1 private key shares throughout the game, the correlation between the
Gp2 components of {SKi}n

i=1 is information-theoretically hidden to A. Indeed,
given that P [X ] ∈ ZN [X ] is chosen as a random polynomial of degree t − 1, its
evaluations P (i) mod p2 are t-wise independent. In other words, for any (t− 1)-
subset C ⊂ {1, . . . , n} chosen by A, the values {gγ2·P (i)

2 }i∈C∪{0} are statistically
indistinguishable from a set of t random elements of Gp2 . This means that,
from A’s view, (C�

0 , C�
1 , C�

2 ) and {SKi}i∈C look like a Type II semi-functional
ciphertext and a set of t− 1 semi-functional private key shares, respectively. We
conclude that, if T ∈R G, the simulator B is actually playing Game∗q with A. ��
In the proof of lemma 5, we note that B cannot distinguish T ∈R Gp1p3 from
T ∈R G by itself: if B tries to decrypt the challenge ciphertext (given by (2))
using the decryption shares {SKi}n

i=1, decryption recovers Mβ in either case.

Lemma 6. Under Assumption 3, no PPT adversary can distinguish Game∗q
from Gamefinal (the proof is deferred to the full version of the paper).

Unlike [35, 4], where consistency holds statistically, we demonstrate consistency
in the computational sense and prove the next result in the full version.

Theorem 2. The scheme provides consistency if Assumption 1 holds.
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Abstract. We study the problem of navigating through a database of
similar objects using comparisons under heterogeneous demand, a prob-
lem closely related to small-world network design. We show that, under
heterogeneous demand, the small-world network design problem is NP-
hard. Given the above negative result, we propose a novel mechanism for
small-world network design and provide an upper bound on its perfor-
mance under heterogeneous demand. The above mechanism has a natural
equivalent in the context of content search through comparisons, again
under heterogeneous demand; we use this to establish both upper and
lower bounds on content search through comparisons.

1 Introduction

The problem we study in this paper is content search through comparisons. In
short, a user searching for a target object navigates through a database in the
following manner. The user is asked to select the object most similar to her target
from small list of objects. A new object list is then presented to the user based
on her earlier selection. This process is repeated until the target is included in
the list presented, at which point the search terminates.

Searching through comparisons is typical example of exploratory search [14],
the need for which arises when users are unable to state and submit explicit
queries to the database. Exploratory search has several important real-life ap-
plications. An often-cited example [13, 12] is navigating through a database
of pictures of humans in which subjects are photographed under diverse un-
controlled conditions. For example, the pictures may be taken outdoors, from
different angles or distances, while the subjects assume different poses, are par-
tially obscured, etc. Automated methods may fail to extract meaningful features
from such photos, so the database cannot be queried in the traditional fashion.
On the other hand, a human searching for a particular person can easily select
from a list of pictures the subject most similar to the person she has in mind.

Users may also be unable to state queries because, e.g., the are unfamiliar
with the search domain, or do not have a clear target in mind. For example,
a novice classical music listener may not be able to express that she is, e.g.,
looking for a fugue or a sonata. She might however identify among samples of
different musical pieces the closest to the one she has in mind. Alternatively,
a user surfing the web may not know a priori which post she wishes to read;
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presenting a list of blog posts and letting the surfer identify which one she likes
best can steer her in the right direction.

In all the above applications, the problem of content search through compar-
isons amounts to determining which objects to present to the user in order to
find the target object as quickly as possible. Formally, the behavior of a human
user can be modeled by a so-called comparison oracle [5]: given a target and
a choice between two objects, the oracle outputs the one closest to the target.
The goal is thus to find a sequence of proposed pairs of objects that leads to the
target object with as few oracle queries as possible. This problem was introduced
in [5] and has recently received considerable attention [11, 12, 13].

Content search through comparisons is also naturally related to the following
problem: given a graph embedded in a metric space, how should one augment
this graph by adding edges in order to minimize the expected cost of greedy
forwarding over this graph? This is known as the small-world network design
problem [4, 3] and has a variety of applications as, e.g., in network routing. In this
paper, we consider both problems under the scenario of heterogeneous demand.
This is very interesting in practice: objects in a database are indeed unlikely to
be requested with the same frequency. Our contributions are as follows:

– We show that the small-world network design problem under general het-
erogeneous demand is NP-hard. Given earlier work on this problem under
homogeneous demand [3, 4], this result is interesting in its own right.

– We propose a novel mechanism for edge addition in the small-world design
problem, and provide an upper bound on its performance.

– The above mechanism has a natural equivalent in the context of content
search through comparisons, and we provide a matching upper bound for
the performance of this mechanism.

– Finally, we also establish a lower bound on any mechanism solving the con-
tent search through comparisons problem.

To the best of our knowledge, we are the first to study the above two prob-
lems in a setting of heterogeneous demand. Our analysis is intuitively appealing
because our upper and lower bounds relate the cost of content search to two
important properties of the demand distribution, namely its entropy and its
doubling constant. We thus provide performance guarantees in terms of the bias
of the distribution of targets, captured by the entropy, as well as the topology of
their embedding, captured by the doubling constant.

The remainder of this paper is organized as follows. In Section 2 we provide
an overview of the related work in this area. In Sections 3 and 4 we introduce
our notation and formally state the two problems that are the focus of this work,
namely content search through comparisons and small-world network design. We
present our main results in Section 5 and our conclusions in Section 6.

2 Related Work

Content search through comparisons is a special case of nearest neighbour search
(NNS) [1, 6], where it is typical to assume that database objects are embedded
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in a metric space with a small intrinsic dimension. Krauthgamer and Lee [10]
introduce navigating nets, a data structure for NNS in doubling metric spaces.
Clarkson [1] considers a similar structure for objects embedded in a space sat-
isfying a sphere-packing property, while Karger and Ruhl [8] study NNS under
growth-restricted metrics. All three assumptions have formal connections to the
doubling constant we consider in this paper. However, in these works, the under-
lying metric space is fully observable by the search mechanism, and the demand
over target objects is homogeneous. Our work assumes access only to a compar-
ison oracle while also dealing with heterogeneous demand.

NNS with access to a comparison oracle was first introduced by Lifshits et
al. [5], and further explored by Lifshits and Zhang [11] and Tshopp and Dig-
gavi [12, 13]. In contrast to [8, 10, 1], the above authors do not assume that
objects are necessarily embedded in a metric space; instead, they only require
that a comparison oracle can rank any two objects in terms of their similarity to
a given target. To provide performance guarantees on the search cost, Lifshits
et al. introduce a disorder constant [5], capturing the degree to which object
rankings violate the triangle inequality. This disorder constant plays roughly the
same role in their analysis as the doubling constant does in ours. Nevertheless,
these works also assume homogeneous demand. Our work introduces the notion
of heterogeneity while assuming that a metric embedding exists.

Small-world networks (also called navigable networks) have received a lot of
attention since Kleinberg’s seminal paper [9]. Our work is closest to Fraigneaud
et al. [4], [3], who identify conditions under which graphs embedded in a doubling
metric space are navigable. Again, our approach to small-world network design
differs by considering heterogeneous demand, an aspect absent from earlier work.

3 Definitions and Notation

Comparison Oracle. Consider a set of objects N , where |N | = n, and a metric
space (M,d), where d(x, y) denotes the distance between x, y ∈ M. Assume that
objects in N are embedded in (M,d), i.e., there exists a 1-to-1 mapping from
N to a subset of M. The objects in N may represent, for example, pictures
in a database. The metric embedding is a mapping from the pictures to a set
of attributes (e.g., the person’s age, her eye color, etc.). The distance d then
represents how “similar” objects are w.r.t. these attributes. In what follows, we
abuse notation and write N ⊆ M, keeping in mind that database objects (the
pictures) are in fact distinct from their embedding (their attributes).

Given an object z ∈ N , we write x �z y if d(x, z) ≤ d(y, z), ordering thus
objects according to their distance from z. Moreover, we write x ∼z y if d(x, z) =
d(y, z) and x ≺z y if x �z y but not x ∼z y. For a non-empty A ⊆ N , let min�z A
be the set of objects in A closest to z, i.e., w∈min�zA⊆A if w�z v for all v∈A.

A comparison oracle [5] is an oracle that, given two objects x, y and a target
t, returns the closest object to t. More formally,

Oracle(x, y, t) =

⎧⎨
⎩

x if x ≺t y,
y if x �t y,
x or y if x ∼t y.

(1)
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This oracle “models” human users: a user interested in locating, e.g., a target
picture t within the database, can compare two pictures with respect to their
similarity to this target but cannot associate a numerical value to this similarity.
When the two pictures are equidistant from t the user’s decision is arbitrary.

Entropy and Doubling Constant. For any ordered pair (s, t) ∈ N × N ,
we call s the source and t the target of the pair. We consider a probability
distribution λ over all ordered pairs of objects in N which we call the demand.
We refer to the marginal distributions ν(s) =

∑
t λ(s, t) and μ(t) =

∑
s λ(s, t),

as the source and target distributions, respectively. Moreover, we refer to the
support of the target distribution T = supp(μ) = {x ∈ N : s.t. μ(x) > 0} as
the target set of the demand.

Let σ be a probability distribution over N . We define the entropy and max-
entropy of σ, respectively, as

H(σ) =
∑

x∈supp(σ)

σ(x) log σ−1(x), Hmax(σ) = max
x∈supp(σ)

log σ−1(x). (2)

The entropy has strong connections with content search. More specifically, sup-
pose that we have access to a so-called membership oracle [2] that answers queries
of the following form: “Given a target t and a subset A ⊆ N , does t belong to
A?”Let t be a random target selected with distribution μ. To identify t one
needs to submit at least H(μ) queries, in expectation, to a membership ora-
cle, and there exists an algorithm (Huffman coding) that identifies t with only
H(μ)+1 queries, in expectation (see, e.g., [2]). In the worst case, which occurs
when the target is the least frequently selected object, the algorithm requires
Hmax(μ)+1 queries to identify t. Our work identifies similar bounds assuming
that one only has access to a comparison oracle, as defined in (1). Not surpris-
ingly, the entropy H(μ) also shows up in our performance bounds (Theorems 3
and 4).

For x ∈ N , we denote by Bx(r) = {y ∈ M : d(x, y) ≤ r} the closed ball
of radius r ≥ 0 around x. Given a probability distribution σ over N and a set
A ⊂ N let σ(A) =

∑
x∈A σ(x). We define the doubling constant c(σ) to be the

minimum c > 0 for which σ(Bx(2r)) ≤ c · σ(Bx(r)), for any x ∈ supp(σ) and
any r ≥ 0. As we will see, search trough comparisons depends not only on the
entropy H(μ) but also on the topology of μ, as captured by c(μ).

4 Problem Statement

We now formally define the two problems we study. The first is content search
through comparisons and the second is the small-world network design problem.

4.1 Content Search Through Comparisons

Consider the object set N . Although its embedding in (M, d) exists, we are
constrained by not being able to directly compute object distances; instead, we
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only have access to a comparison oracle. In particular, we define greedy content
search as follows. Let t be a target and s an object serving as a starting point.
The greedy content search algorithm proposes an object w and asks the oracle to
select among s and w the object closest to t, i.e., it evokes Oracle(s, w, t). This
is repeated until the oracle returns something other than s, say w′. If w′ �= t,
the algorithm repeats these steps, now from w′. If w′ = t, the search terminates.

Formally, for k = 1, 2, . . . , let xk, yk be the k-th pair of objects submitted
to the oracle: xk is the current object, which greedy content search is trying to
improve upon, and yk is the proposed object, submitted to the oracle for com-
parison with xk. Let ok = Oracle(xk, yk, t) ∈ {xk, yk} be the oracle’s response,
and define the history of the search up to and including the k-th access as
Hk = {(xi, yi, oi)}k

i=1.
The source object is always one of the first two objects submitted to the oracle,

i.e., x1 = s. Moreover, xk+1 = ok, i.e., the current object is always the closest to
the target so far. The selection of the proposed object yk+1 is determined by the
history Hk and the object xk. In particular, given Hk and the current object xk

there exists a mapping (Hk, xk) �→ F(Hk, xk) ∈ N such that yk+1 = F(Hk, xk),
where here we take x0 = s ∈ N (the source/starting object) and H0 = ∅ (i.e.,
before any comparison takes place, there is no history).

We call the mapping F the selection policy of the greedy content search. In
general, we allow the selection policy to be randomized; in this case, the object
returned by F(Hk, xk) is a random variable, whose distribution Pr(F(Hk, xk) =
w) for w ∈ N is fully determined by (Hk, xk). Observe that F depends on the
target t only indirectly, through Hk and xk; this is because t is only “revealed”
when the search terminates. We say that a selection policy is memoryless if it
depends on xk but not on the history Hk.

Our goal is to select an F that minimizes the number of accesses to the oracle.
In particular, given a source object s, a target t and a selection policy F , we
define the search cost CF (s, t) = inf{k : yk = t} to be the number of proposals
to the oracle until t is found. This is a random variable, as F is randomized; let
�[CF (s, t)] be its expectation. We thus define the following problem.

Content Search Through Comparisons (CSTC): Given an em-
bedding of N into (M, d) and a demand distribution λ(s, t), select F that
minimizes the expected search cost C̄F =

∑
(s,t)∈N×N λ(s, t)�[CF (s, t)].

Note that, as F is randomized, the free variable in the above optimization prob-
lem is the distribution Pr(F(Hk, xk) = w).

4.2 Small-World Network Design

In the small-world network design problem the objects in N , embedded in
(M, d), are connected to each other. The network formed by such connections
is represented by a directed graph G(N ,L∪S), where L∩S = ∅, L is the set of
local edges and S is the set of shortcut edges. The edges in L satisfy the following
property:
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Property 1. For every pair of distinct objects x, t ∈ N there exists an object u
such that (x, u) ∈ L and u ≺t x.

I.e., for any x and t, x has a local edge leading to an object closer to t.
A comparison oracle can be used to route a message from s to t over the edges

in graph G. In particular, given graph G, we define greedy forwarding [9] over G
as follows. Let Γ (s) be the neighborhood of s, i.e., Γ (s) = {u ∈ N s.t. (s, u) ∈
L ∪ S}. Given a source s and a target t, greedy forwarding sends a message to
neighbor w of s that is as close to t as possible, i.e., w ∈ min�tΓ (s). If w �= t,
the above process is repeated at w; if w = t, greedy forwarding terminates.
Property 1 guarantees that greedy forwarding from any source s will eventually
reach t: there is always a neighbor closer to t than the object/node forwarding
the message. Moreover, if the message is at x, the closest neighbor w can be
found using |Γ (x)| queries to a comparison oracle.

The edges in L are called “local” because they are typically determined by
object proximity. For example, in the classic paper by Kleinberg [9], objects are
arranged uniformly in a rectangular k-dimensional grid—with no gaps—and d is
taken to be the Manhattan distance on the grid. Moreover, there exists an r ≥ 1
such that

L = {(x, y) ∈ N ×N s.t. d(x, y) ≤ r}. (3)

Assuming every position in the rectangular grid is occupied, such edges indeed
satisfy Property 1. In this work, we do not require that edges in L are given by
any locality-based definition like (3); our only assumption is that they satisfy
Property 1. Nevertheless, for consistency, we also refer to edges in L as “local”.

Our goal is to select the shortcut edges in S so that greedy forwarding is as
efficient as possible. In particular, assume that we can select no more than β
shortcut edges, where β is a positive integer. For S a subset of N ×N such that
|S| ≤ β, we denote by CS(s, t) the cost of greedy forwarding, in message hops,
for forwarding a message from s to t given that S = S. We allow the selection
of shortcut edges to be random: the set S can be a random variable over all
subsets S of N × N such that |S| ≤ β. We denote the distribution of S by
Pr(S = S) for S ⊆ N × N such that |S| ≤ β. Given a source s and a target
t, let �[CS(s, t)] =

∑
S⊆N×N :|S|≤β CS(s, t) · Pr(S = S) be the expected cost of

forwarding a message from s to t with greedy forwarding, in message hops.
We consider again a heterogeneous demand: a source and target object are

selected at random from N ×N according to a demand probability distribution
λ. The small-world network design problem can then be formulated as follows.

Small-World Network Design (SWND): Given an embedding of
N into (M, d), a set of local edges L, a demand distribution λ, and an
integer β > 0, select a r.v. S ⊂ N ×N , where |S| ≤ β, that minimizes
C̄S =

∑
(s,t)∈N×N λ(s, t)�[CS(s, t)].

In other words, we wish to select S so that the cost of greedy forwarding is
minimized. Note again that the free variable of SWND is the distribution of S.
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5 Main Results

We now present our main results with respect to SWND and CSTC. Our first
result is negative: optimizing greedy forwarding is a hard problem.

Theorem 1. SWND is NP-hard.

The proof of this theorem can be found in our technical report [7]. In short, the
proof reduces DominatingSet to the decision version of SWND. Interestingly,
the reduction is to a SWND instance in which (a) the metric space is a 2-
dimensional grid, (b) the distance metric is the Manhattan distance on the grid
and (c) the local edges are given by (3). Thus, SWND remains NP-hard even
in the original setup considered by Kleinberg [9].

The NP-hardness of SWND suggests that this problem cannot be solved
in its full generality. Motivated by this, as well as its relationship to content
search through comparisons, we focus our attention to the following version of
the SWND problem, in which we place additional restrictions to the shortcut
edge set S. First, |S| = |N |, and for every x ∈ N there exists exactly one
shortcut edge (x, y) ∈ S. Second, the object y to which x connects is selected
independently at each x, according to a probability distribution �x(y). I.e., for
N = {x1, x2, . . . , xn}, the joint distribution of shortcut edges has the form:

Pr(S = {(x1, y1), . . . (xn, yn)}) =
n∏

i=1

�xi(yi). (4)

We call this version of the SWND problem the one edge per object version,
and denote it by 1-SWND. Note that, in 1-SWND, the free variables are the
distributions �x, x ∈ N .

For a given demand λ, recall that μ is the marginal distribution of the demand
λ over the target set T , and that for A ⊂ N , μ(A) =

∑
x∈A μ(x). Then, for any

two objects x, y ∈ N , we define the rank of object y w.r.t. object x as follows:

rx(y) ≡ μ(Bx(d(x, y))) (5)

where Bx(r) is the closed ball with radius r centered at x.
Suppose now that shortcut edges are generated according to the joint distri-

bution (4), where the outgoing link from an object x ∈ N is selected according
to the following probability:

�x(y) ∝ μ(y)
rx(y)

, (6)

for y ∈ supp(μ), while for y /∈ supp(μ) we define �x(y) to be zero. Eq. (6)
implies the following appealing properties. For two objects y, z that have
the same distance from x, if μ(y) > μ(z) then �x(y) > �x(z), i.e., y has a
higher probability of being connected to x. When two objects y, z are equally
likely to be targets, if y ≺x z then �x(y) > �x(z). The distribution (6) thus biases
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both towards objects close to x as well as towards objects that are likely to
be targets. Finally, if the metric space (M, d) is a k-dimensional grid and the
targets are uniformly distributed over N then �x(y) ∝ (d(x, y))−k. This is the
shortcut distribution used by Kleinberg in [9]; (6) is thus a generalization of this
distribution to heterogeneous targets as well as to more general metric spaces.

Our next theorem, whose proof is in Section 5.1, relates the cost of greedy
forwarding under (6) to the entropy H , the max-entropy Hmax and the doubling
parameter c of the target distribution μ.

Theorem 2. Given a demand λ, consider the set of shortcut edges S sampled
according to (4), where �x(y), x, y ∈ N , are given by (6). Then

C̄S ≤ 6c3(μ) · H(μ) · Hmax(μ).

Note that the bound in Theorem 2 depends on λ only through the target dis-
tribution μ. In particular, it holds for any source distribution ν, and does not
require that sources are selected independently of the targets t. Moreover, if N is
a k-dimensional grid and μ is the uniform distribution over N , the above bound
becomes O(log2 n), retrieving thus Kleinberg’s result [9].

Exploiting an underlying relationship between 1-SWND and CSTC, we can
obtain an efficient selection policy for greedy content search. In particular,

Theorem 3. Given a demand λ, consider the memoryless selection policy
Pr(F(Hk, xk) = w) = �xk

(w) where �x is given by (6). Then

C̄F ≤ 6c3(μ) · H(μ) · Hmax(μ).

The proof of this theorem is almost identical, mutatis mutandis, to the proof
of Theorem 2, and can be found in our technical report [7]. Like Theorem 2,
Theorem 3 characterises the search cost in terms of the doubling constant, the
entropy and the max-entropy of μ. This is very appealing, given (a) the rela-
tionship between c(μ) and the topology of the target set and (b) the classic
result regarding the entropy and accesses to a membership oracle, as outlined in
Section 3.

The distributions �x are defined in terms of the embedding of N in (M, d) and
the target distribution μ. Interestingly, however, the bounds of Theorem 3 can
be achieved if neither the embedding in (M, d) nor the target distribution μ are
a priori known. In our technical report [7] we propose an adaptive algorithm that
asymptotically achieves the performance guarantees of Theorem 3 only through
access to a comparison oracle. In short, the algorithm learns the ranks rx(y) and
the target distribution μ as searches through comparisons take place.

A question arising from Theorems 2 and 3 is how tight these bounds are.
Intuitively, we expect that the optimal shortcut set S and the optimal selection
policy F depend both on the entropy of the target distribution and on its dou-
bling constant. Our next theorem, whose proof is in Section 5.2, establishes that
this is the case for F .



Content Search through Comparisons 609

Theorem 4. For any integer K and D, there exists a metric space (M, d) and a
target measure μ with entropy H(μ) = K log(D) and doubling constant c(μ) = D
such that the average search cost of any selection policy F satisfies

C̄F ≥ H(μ)
c(μ) − 1

2 log(c(μ))
· (7)

Hence, the bound in Theorem 3 is tight within a c2(μ) log(c(μ))Hmax factor.

5.1 Proof of Theorem 2

According to (6), the probability that object x links to y is given by �x(y) =
1

Zx

μ(y)
rx(y) , where Zx =

∑
y∈T

μ(y)
rx(y) is a normalization factor bounded as follows.

Lemma 1. For any x ∈ N , let x∗ ∈ min�x T be any object in T among the
closest targets to x. Then Zx ≤ 1 + ln(1/μ(x∗)) ≤ 3Hmax.

Proof. Sort the target set T from the closest to furthest object from x and index
objects in an increasing sequence i = 1, . . . , k, so the objects at the same distance
from x receive the same index. Let Ai, i = 1, . . . , k, be the set containing objects
indexed by i, and let μi = μ(Ai) and μ0 = μ(x). Furthermore, let Qi =

∑i
j=0 μj .

Then Zx =
∑k

i=1
μi

Qi
. Define fx(r) : R+ → R as fx(r) = 1

r − μ(x). Clearly,

fx( 1
Qi

) =
∑i

j=1 μj , for i ∈ {1, 2 . . . , k}. This means that we can rewrite Zx as

Zx =
∑k

i=1(fx(1/Qi) − fx(1/Qi−1))/Qi. By reordering the terms involved in
the sum above, we get Zx = fx( 1

Qk
)/Qk +

∑k−1
i=1 fx(1/Qi)( 1

Qi
− 1

Qi+1
). First

note that Qk = 1, and second that since fx(r) is a decreasing function, Zx ≤
1 − μ0 +

∫ 1/Q1

1/Qk
fx(r)dr = 1 − μ0

Q1
+ ln 1

Q1
. This shows that if μ0 = 0 then

Zx ≤ 1 + ln 1
μ1

or otherwise Zx ≤ 1 + ln 1
μ0

. ��
Given the set S, recall that CS(s, t) is the number of steps required by the greedy
forwarding to reach t ∈ N from s ∈ N . We say that a message at object v is in
phase j if 2jμ(t) ≤ rt(v) ≤ 2j+1μ(t). Notice that the number of different phases
is at most log2 1/μ(t). We can write CS(s, t) as

CS(s, t) = X1 + X2 + · · · + Xlog 1
μ(t)

, (8)

where Xj are the hops occurring in phase j.Assume that j > 1, and let I ={
w ∈ N : rt(w) ≤ rt(v)

2

}
. The probability that v links to an object in the set I,

and hence moving to phase j − 1, is
∑

w∈I �v,w = 1
Zv

∑
w∈I

μ(w)
rv(w) . Let μt(r) =

μ(Bt(r)) and ρ > 0 be the smallest radius such that μt(ρ) ≥ rt(v)/2. Since
we assumed that j > 1 such a ρ > 0 exists. Clearly, for any r < ρ we have
μt(r) < rt(v)/2. In particular, μt(ρ/2) < 1

2rt(v). On the other hand, since the
doubling parameter is c(μ) we have μt(ρ/2) > 1

c(μ)μt(ρ) ≥ 1
2c(μ)rt(v). Therefore,

1
2c(μ)

rt(v) < μt(ρ/2) <
1
2
rt(v). (9)
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Let Iρ = Bt(ρ) be the set of objects within radius ρ/2 from t. Then Iρ ⊂ I,
so
∑

w∈I �v,w ≥ 1
Zv

∑
w∈Iρ

μ(w)
rv(w) . By triangle inequality, for any w ∈ Iρ

and y such that d(y, v) ≤ d(v, w) we have d(t, y) ≤ 5
2d(v, t). This means

that rv(w) ≤ μt(5
2d(v, t)), and consequently, rv(w) ≤ c2(μ)rt(v). Therefore,∑

w∈I �v,w ≥ 1
Zv

∑
w∈Iρ

μ(w)

c2(μ)rt(v) = 1
Zv

μt(ρ/2)
c2(μ)rt(v) . By (9), the probability of terminat-

ing phase j is uniformly bounded by

∑
w∈I

�v,w ≥ min
v

1
2c3(μ)Zv

Lem. 1≥ 1
6c3(μ)Hmax(μ)

(10)

As a result, the probability of terminating phase j is stochastically dominated by
a geometric random variable with the parameter given in (10). This is because
(a) if the current object does not have a shortcut edge which lies in the set I, by
Property 1, greedy forwarding sends the message to one of the neighbours that is
closer to t and (b) shortcut edges are sampled independently across neighbours.
Hence, given that t is the target object and s is the source object,

E[Xj |s, t] ≤ 6c3(μ)Hmax(μ). (11)

Suppose now that j = 1. By the triangle inequality, Bv(d(v, t)) ⊆ Bt(2d(v, t))
and rv(t) ≤ c(μ)rt(v). Hence, �v,t ≥ 1

Zv

μ(t)
c(μ)rt(v) ≥ 1

2c(μ)Zv
≥ 1

6c(μ)Hmax(μ) since
object v is in the first phase and thus μ(t) ≤ rt(v) ≤ 2μ(t). Consequently,

E[X1|s, t] ≤ 6c(μ)Hmax(μ). (12)

Combining (8), (11), (12) and using the linearity of expectation, we get
E[CS(s, t)] ≤ 6c3(μ)Hmax(μ) log 1

μ(t) and, thus, C̄S ≤ 6c3(μ)Hmax(μ)H(μ). ��

5.2 Proof of Theorem 4

Our proof amounts to constructing a metric space and a target distribution μ for
which the bound holds. Our construction will be as follows. For some integers
D, K, the target set N is taken as N = {1, . . . , D}K . The distance d(x, y)
between two distinct elements x, y of N is defined as d(x, y) = 2m, where

m = max {i ∈ {1, . . . , K} : x(K − i) �= y(K − i)} .

We then have the following

Lemma 2. Let μ be the uniform distribution over N . Then (i) c(μ) = D, and
(ii) if the target distribution is μ, the optimal average search cost C∗ based on a
comparison oracle satisfies C∗ ≥ K D−1

2 .

Before proving Lemma 2, we note that Thm. 4 immediately follows as a corollary.

Proof (of Lemma 2). Part (i): Let x = (x(1), . . . x(K)) ∈ N , and fix r > 0.
Assume first that r < 2; then, the ball B(x, r) contains only x, while the ball
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B(x, 2r) contains either only x if r < 1, or precisely those y ∈ N such that
(y(1), . . . , y(K − 1)) = (x(1), . . . , x(K − 1)) if r ≥ 1. In the latter case B(x, 2r)
contains precisely D elements. Hence, for such r < 2, and for the uniform measure
on N , the inequality

μ(B(x, 2r)) ≤ Dμ(B(x, r)) (13)

holds, and with equality if in addition r ≥ 1.
Consider now the case where r ≥ 2. Let the integer m ≥ 1 be such that

r ∈ [2m, 2m+1). By definition of the metric d on N , the ball B(x, r) consists of
all y ∈ N such that (y(1), . . . , y(K − m)) = (x(1), . . . , x(K − m)), and hence
contains Dmin(K,m) points. Similarly, the ball B(x, 2r) contains Dmin(K,m+1)

points. Hence (13) also holds when r ≥ 2.
Part (ii): We assume that the comparison oracle, in addition to returning one

of the two proposals that is closer to the target, also reveals the distance of the
proposal it returns to the target. We further assume that upon selection of the
initial search candidate x0, its distance to the unknown target is also revealed. We
now establish that the lower bound on C∗ holds when this additional information
is available; it holds a fortiori for our more resticted comparison oracle.

We decompose the search procedure into phases, depending on the current
distance to the destination. Let L0 be the integer such that the initial proposal
x0 is at distance 2L0 of the target t, i.e. (x0(1), . . . , x0(K−L0)) = (t(1), . . . , t(K−
L0)), x0(K − L0 + 1) �= t(K − L0 + 1). No information on t can be obtained by
submitting proposals x such that d(x, x0) �= 2L0 . Thus, to be useful, the next
proposal x must share its (K − L0) first components with x0, and differ from
x0 in its (K − L0 + 1)-th entry. Now, keeping track of previous proposals made
for which the distance to t remained equal to 2L0 , the best choice for the next
proposal consists in picking it again at distance 2L0 from x0, but choosing for
its (K −L0 + 1)-th entry one that has not been proposed so far. It is easy to see
that, with this strategy, the number of additional proposals after x0 needed to
leave this phase is uniformly distributed on {1, . . .D−1}, the number of options
for the (K − L0 + 1)-th entry of the target.

A similar argument entails that the number of proposals made in each phase
equals 1 plus a uniform random variable on {1, . . . , D−1}. It remains to control
the number of phases. We argue that it admits a Binomial distribution, with
parameters (K, (D − 1)/D). Indeed, as we make a proposal which takes us into
a new phase, no information is available on the next entries of the target, and
for each such entry, the new proposal makes a correct guess with probability
1/D. This yields the announced Binomial distribution for the numbers of phases
(when it equals 0, the initial proposal x0 coincided with the target).

Thus the optimal number of search steps C verifies C ≥∑X
i=1(1 + Yi), where

the Yi are i.i.d., uniformly distributed on {1, . . . , D − 1}, and independent of
the random variable X , which admits a Binomial distribution with parameters
(K, (D − 1)/D). Thus using Wald’s identity, we obtain that �[C] ≥ �[X ]�[Y1],
which readily implies (ii). ��
Note that the lower bound in (ii) has been established for search strategies that
utilize the entire search history. Hence, it is not restricted to memoryless search.
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6 Conclusions

In this work, we initiated a study of CTSC and SWND under heterogeneous
demands, tying performance to the topology and the entropy of the target distri-
bution. Our study leaves several open problems, including improving upper and
lower bounds for both CSTC and SWND. Given the relationship between these
two, and the NP-hardness of SWND, characterizing the complexity of CSTC

is also interesting. Also, rather than considering restricted versions of SWND,
as we did here, devising approximation algorithms for the original problem is
another possible direction.

Earlier work on comparison oracles eschewed metric spaces altogether, ex-
ploiting what where referred to as disorder inequalities [5, 11, 12]. Applying
these under heterogeneity is also a promising research direction. Finally, trade-
offs between space complexity and the cost of the learning phase vs. the costs of
answering database queries are investigated in the above works, and the same
trade-offs could be studied in the context of heterogeneity.
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Abstract. We present new distributed deterministic solutions to two
communication problems in n-node ad-hoc radio networks: rumor gath-
ering and multi-broadcast. In these problems, some or all nodes of the
network initially contain input data called rumors, which have to be
learned by other nodes. In rumor gathering, there are k rumors ini-
tially distributed arbitrarily among the nodes, and the goal is to col-
lect all the rumors at one node. Our rumor gathering algorithm works
in O((k + n) log n) time and our multi-broadcast algorithm works in
O(k log3 n +n log4 n) time, for any n-node networks and k rumors (with
arbitrary k), which is a substantial improvement over the best previously
known deterministic solutions to these problems.

As a consequence, we exponentially decrease the gap between upper
and lower bounds on the deterministic time complexity of four com-
munication problems: rumor gathering, multi-broadcast, gossiping and
routing, in the important case when every node has initially at most one
rumor (this is the scenario for gossiping and for the usual formulation of
routing). Indeed, for k = O(n), our results simultaneously decrease the
complexity gaps for these four problems from polynomial to polyloga-
rithmic in the size of the graph. Moreover, our deterministic gathering
algorithm applied for k = O(n) rumors, improves over the best previ-
ously known randomized algorithm of time O(k log n + n log2 n).

Keywords: radio network, distributed algorithm, gossiping, gathering,
multi-broadcast, routing.

1 Introduction

Radio networks are defined by the property that one wave frequency is used for
wireless communication. Multiple messages arriving at a node in the same round
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interfere with one another so that none can be heard. We use simple undirected
graphs to represent network topologies. Each of our algorithms works for any
network topology on n nodes. The performance bounds we develop hold for all
networks of a given size. Nodes are not aware of the topology of the network.

We present distributed deterministic algorithms for two communication tasks:
rumor gathering and multi-broadcast. In these problems, some or all nodes of
the network initially contain input data called rumors, which have to be learned
by other nodes. Messages are small: each of them carries at most one rumor
and O(log n) additional control bits. For rumor gathering, there are k rumors,
where k is an arbitrary positive integer (independent on n), initially distributed
arbitrarily among the nodes, and the goal is to collect all the rumors at one
node. Multi-broadcast is related to two fundamental communication problems:
gossiping and routing. In gossiping, every node is initialized with a rumor and
the goal is for all nodes to learn all rumors. In routing, k rumors distributed
arbitrarily among the nodes must be delivered each to its designated destination.
The problem of multi-broadcast, considered in this work, is defined as follows:
some k rumors are distributed arbitrarily among the nodes and the goal is for
all the nodes to learn every rumor. This is a generalization of gossiping (initially
not all nodes need to have a rumor) and a strengthening of routing (all nodes
need to learn each rumor, not only the destination node for a given rumor).

The challenge of the considered problems is due to the combination of two
features of the model of ad-hoc radio networks. On the one hand, nodes do
not know the topology of the network, and on the other hand communication
algorithms are hard to design due to possible collisions that prevent nodes from
hearing messages. In unknown topologies collisions are unavoidable, and nodes
need not even be aware of their occurrence, as they do not have the collision
detection capability.

Our approach to overcome these problems builds on two main algorithmic
techniques introduced in this paper, both of them being deterministic and fully
distributed. First, we build a tree to gather and spread rumors (c.f., Section 3.1).
This tree, called a Breadth-Then-Depth tree, has the property that it can be clus-
tered into a logarithmic number of forests, and in each forest messages can be
propagated in parallel without causing any collision except possibly in roots of
the forest. Moreover, each path of this tree from a node to the root is split into
an at most logarithmic number of sub-paths, each belonging to a different forest
(c.f., Section 4). Note that a DFS tree could cause a large number of collisions
while propagating rumors within a path to the root, due to possible shortcut
edges, which disallows any parallelism in the general case. A BFS tree, in turn,
could cause a problem with a potentially large number of collisions when trans-
mitting from one layer to another, and it is not even known how to construct it
deterministically and in a distributed way in a sub-quadratic number of rounds
in general radio networks. The second crucial technique is to efficiently propa-
gate rumors between different forests of the constructed clustering, which we do
by computing (again, in a deterministic and distributed way) short transmission
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schedules between the roots and leaves of neighboring forests (c.f., Section 5). We
also resolve a number of technical obstacles, such as how to propagate rumors
on paths and how to deal with potential collisions in roots of the forests.

Our Results. Building on novel algorithmic techniques introduced in this work
we develop efficient deterministic distributed algorithms for gathering rumors
and for multi-broadcast.

Our rumor gathering algorithm works in O((k + n) log n) time and our multi-
broadcast algorithm works in O(k log3 n + n log4 n) time, for any n-node net-
works and k rumors (with arbitrary k), which is a substantial improvement over
the best previously known deterministic solutions to these problems. Indeed,
the best previously known deterministic algorithms for the problems of gather-
ing, multi-broadcast and routing worked in time O(min{(k + n)n1/2 log3 n, (k +
n5/2) log3 n}) [6, 9]. In the case of the gossiping problem, using our multi-
broadcast algorithm (for k = n) we accomplish gossiping in O(n log4 n) time,
while the best algorithm for this problem worked in time O(n3/2 log3 n) [6]. On
the other hand, the best known deterministic lower bound for the first three
problems was Ω(k + n log n) [5, 8, 10, 12], while the best lower bound for gos-
siping was Ω(n log n) [10].

As a consequence, we decrease exponentially the gap between upper and lower
bounds on the deterministic time complexity of four communication problems:
rumor gathering, multi-broadcast, gossiping and routing, in the important case
when every node has initially at most one rumor (this is the scenario for gossip-
ing and for the usual formulation of routing). Indeed, for k = O(n), our results
simultaneously decrease the complexity gaps for these four problems from poly-
nomial to polylogarithmic in the size of the graph.

Moreover, our deterministic gathering algorithm applied for k = O(n) ru-
mors, improves over the best previously known randomized algorithm [3] of time
O(k log n + n log2 n).

Relying on our multi-broadcast algorithm, every node can learn the whole
network topology in time O(m log3 n + n log4 n), where m is the number of
edges in the network; learning topology is a possible preparation to switching
from ad-hoc algorithms to centralized ones. The best previous algorithm for this
task, based on gossip from [6], guaranteed only O((m + n)n1/2 log3 n) time.

Related Work. Algorithmic aspects of radio communication have been widely
studied in the last two decades. Both the directed graph model [4, 7, 11] and
the undirected (symmetric) graph model [2, 12] of this paper have been used.
Broadcasting [1, 2, 4, 8] and various variants of many-to-many communication
primitives [3, 5–7, 10] were considered for radio networks.

Below we give the best previously known results for four communication
problems in ad hoc radio networks with which we are concerned in this paper:
gathering, gossiping, routing and multi-broadcast.

The best previously known deterministic algorithm for the problems of gather-
ing, routing and multi-broadcast worked in time O(min{(k + n)n1/2 log3 n, (k +
n5/2) log3 n}) [6, 9], where the first part of the formula follows from a direct
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application of the gossip algorithm from [6] to consecutive batches of rumors,
while the second part of the formula comes from learning the network topology
(i.e., O(n2) edges) by gossiping from [6] and then applying multi-broadcast tech-
niques for known topology graphs as in [9]. The best randomized algorithm used
expected time O((k + n log n) log n) [3]. The best deterministic lower bound for
these problems was Ω(k + n log n) [5, 8, 10, 12].

For gossiping, the best previously known deterministic algorithm worked in
time O(n3/2 log3 n) [6] and the best randomized algorithm used expected time
O(n log2 n) [3]. The best deterministic lower bound was Ω(n log n) [10].

2 Preliminaries

We model a radio network as a simple undirected connected graph G = (V, E), in
which nodes represent stations and an edge connects two nodes that can directly
transmit to each other. There are n nodes. Each node has a unique integer label
assigned to it from the range [1, N ], for some positive integer N . We assume
that N = O(nγ) for a constant γ > 1, so that log N = O(log n), and that both
n and N are powers of 2. (The latter assumption is for convenience only and
can be easily removed.) All logarithms are to the base 2. We may assume that
the nodes know only an upper bound on the number of nodes that is O(n).
Here ‘knowledge’ means that the respective information can be part of code
of an algorithm. We consider distributed algorithms for ad hoc networks, i.e.,
algorithms are not supplied with any a priori information about the topology of
the underlying network. Also the number k of rumors is not initially known.

Communication proceeds in synchronous rounds. A node can transmit or re-
ceive one message per round. A message transmitted by a node reaches all its
neighbors in the round of the transmission. A message is said to be heard when
it has been received successfully. Radio networks are defined by the property
that a node hears a message in a round precisely when the node acts as a re-
ceiver and exactly one of its neighbors transmits in this round. If at least two
neighbors of a node u transmit simultaneously in a given round, then none of
the messages is heard by u and we say that a collision occurred at u. We do not
assume that a node can distinguish between collision and ‘silence’ which occurs
when no neighbor transmits.

The inputs initially available to nodes are called rumors. We assume that all
rumors are of equal size, and also that all messages are of equal size (otherwise we
could pad a default sequence of bits to make them equal). In this paper we work
in the model of small messages, in which it takes one whole message to carry a
rumor. A message is capable of carrying up to O(log n) additional control bits.

All procedures and algorithms, as well as their analysis, are given assuming an
upper bound polynomial in n on the number k of rumors known to the nodes.
This assumption is only for the sake of simplicity, and can be easily removed
without increasing asymptotic complexity. The missing details and proofs are
deferred to the full version of the paper.

For an integer m > 0, the notation [m] denotes the set {1, . . . , m}. A trans-
mission schedule F = (F0, . . . , F−1) is a sequence of subsets of [N ]. We say that



Efficient Distributed Communication in Ad-Hoc Radio Networks 617

F is executed in a sequence of consecutive rounds when the nodes transmitting
in round i are precisely those whose labels are in Fk, where k and i are congruent
modulo �.

A sequence F(m, k) = (F0, . . . , F−1) of subsets Fi ⊆ [m] is a (m, k)-selective
family of length � if, for each subset S ⊆ [m] of at most k elements, there exists
Fj ∈ F(m, k) such that |Fj ∩ S| = 1. Selective families are used to produce
efficient transmission schedules. It was proved in [8] that for any positive integers
m ≥ k there exists an (m, k)-selective family of length O(k log(m/k)). Note that
the round-robin transmission sequence, where all sets Fj are singletons, is a
selective family but it is not efficient, since N is polynomial in n.

3 Building Blocks

We begin by developing building blocks for our target algorithms.

3.1 Breadth-Then-Depth Search (BTD)

We design a new token traversal of the network. The token is propagated through
neighboring nodes, starting from the root. The goal of the token is to visit all the
nodes and return to the root. We call the traversal breadth-then-depth (BTD)
and the resulting tree is called a BTD tree. The concept of a BTD traversal is
similar to that of DFS. The difference is that in an instance of passing the token
from the token’s holder to its unvisited neighbor only one edge is added to the
DFS tree (i.e., the edge connecting both these nodes), while in the construction
of BTD all neighbors of the token’s holder that are outside of the current BTD
tree get connected by an edge to the token’s holder, and thus to the tree.

In order to implement the BTD traversal in a radio network, we rely on a
construction to assign to any node v one of its neighbors; such a neighbor of
v will be referred to as the offshoot of v. Given a node v and its designated
neighbor w, it is possible to find an offshoot of v distinct from w, if there is at
least one such neighbor, by a collaboration between v and w that terminates in
O(log N) time. It was shown in [12] how to accomplish locating an offshoot. The
node w is called the witness of v in such a context.

BTD search from a designated root can be accomplished by the following
procedure BTD Search. Nodes have status either visited or unvisited. Once a
node becomes visited, its status never changes. In the beginning all nodes except
the root are unvisited, while the root is visited and holds the token.

Let F be a (N, n)-selective family of length cn log N ⊆ O(n log n), for some
constant c > 0, which exists by [8]. BTD Search proceeds as follows.

In the first cn log N rounds, the family F is executed by all nodes except the
root, with each node transmitting its own label. After that, the root transmits the
first label w it heard, in order to notify this neighbor w that it has just become a
witness of the root. Next, the following procedure is repeated until termination.
Suppose that node v holds a token and w is its (neighbor) witness; we assume
that v is visited. If v is not the root then v also has a designated parent.
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– Node v holding the token transmits a control message in order to let all its
unvisited neighbors that have not yet heard a control message select v as
their parent. From the moment when a node receives a control message for
the first time and selects its parent we call this node joined. All nodes that
selected v as their parent did it in the same time — just after v had received
the token for the first time and sent the control message.

– Node v holding the token cooperates with its witness w to find an offshoot
among the unvisited children of v in the constructed BTD tree. This process
takes a fixed time O(log N). If there is no unvisited child of v, in which case
an offshoot is not selected, and v is the root then the procedure terminates.

– If an offshoot v∗ has been selected then node v passes the token to v∗; oth-
erwise v passes the token to its parent in the constructed BTD tree.

– If a joined node v∗, selected as an offshoot, receives a token, then v∗ becomes
visited, and v becomes its witness. The node v is also a parent of v∗ in the
constructed BTD tree.

Analysis. The following property follows from the design of the procedure, from
the logarithmic time bound on locating an offshoot [12], and from the O(n log n)
length of the selective family [8] used for choosing a witness of the root.

Lemma 1. Procedure BTD Search performs a BTD search on the whole network
and spans a BTD tree rooted at the initiating node in O(n log n) rounds.

It can be shown that a BTD tree can be clustered into paths so that no collisions
are caused by processes propagating messages on “parallel” paths, and there is
an at most logarithmic number of paths on any branch from the root to a leaf.

3.2 Computing Weights on a Tree

Given a rooted tree D, with rumors located at nodes of this tree, we define the
weight of node v as the sum of two numbers: the number of nodes in the subtree
rooted at v and the number of rumors located in nodes of this subtree. The
weight of the root of tree D is called the weight of tree D. The following procedure
Compute Weights(D) computes the weight of each node of D locally at this node.
The input tree D is given locally: each node knows only its parent and children
(if any) in the tree. The procedure is initiated by the root of tree D: a token is
issued by the root and travels along the tree in a DFS manner, eventually coming
back to the root. The token carries two counters. The first counter is initialized
to 0 and is incremented by r + 1 at each first visit of a node carrying r rumors.
Each node computes its weight by subtracting the value of the counter of the
first visit of the token from the value of the last visit. The second counter is
initialized to 0 and incremented by one each time a node is visited by the token
for the first time in this run. This counter is used for enumerating all nodes from
0 to n − 1.

Lemma 2. Algorithm Compute Weights(D) terminates in time 2k, where k is
the number of nodes of D.
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3.3 Rumor Spreading on a Path

For a simple path P , let its length |P | be equal the number of edges, so that
there are |P | + 1 nodes on the path. Let x be an upper bound on the weight of
P interpreted as a tree, which means that there are at most x − |P | − 1 rumors
in the nodes of P . We assume that each node of path P knows x, that P is given
locally in the sense that each node in path P knows its neighbors in P , and that
one end point of path P is designated to be a root. It is also assumed that there
are no links connecting any two nodes in path P that are not neighbors in P .
We develop a procedure called Spread on Path(P, x) whose execution results in
every node in path P receiving all rumors originally located in the nodes on P .

The procedure consists of three parts. In the first part the root initiates a
token that traverses all the nodes in path P and carries a tally of the already
visited nodes. This allows each node in P to learn its distance from the root of P .
The first part takes up to x rounds, but if less than x then the nodes wait idle
through round x so that all nodes in P know when part one ends. Immediately
afterwards the up-propagation part starts to take the next 4x rounds; again the
nodes wait idle through round 4x if needed. The goal of this part is to deliver
all rumors in P to the root of P . In round i of this part, each node with the
distance from the root congruent to 3 − i modulo 3 transmits the first packet
in its transmission queue. In this queue there are packets that have not been
transmitted by this node in the previous rounds of this procedure; the queue
operates as a stack (LIFO queue). If there is no pending packet, then a node
pauses and does not transmit any messages. Nodes that are not scheduled to
transmit in a round automatically listen in this round to hear transmissions
of neighbors. If a node receives a packet from a neighbor that is further away
from the root then the recipient node enqueues the new packet to be eventually
transmitted in due order. When the second part is concluded then the root has
gathered all rumors. In the third part the other end of the path becomes a new
root. The third part follows: it proceeds similarly as the second part with the
modification that only the rumors stored in the original root are propagated
towards the new root. This third part is called down-propagation also takes
precisely 4x rounds, with nodes idling through round 4x if needed.

Lemma 3. Consider an execution of procedure Spread on Path(P, x). If the sum
of the number of nodes in path P and the number of rumors is at most x, then
all rumors initially located in nodes of path P are delivered to all nodes of P
within 9x rounds.

4 Gathering Rumors

In the problem of gathering, there are k different rumors distributed arbitrarily
among n nodes of the network and the goal is to gather all the rumors in one
designated node called the sink. The gathering problem is handled by introduc-
ing and exploring a clustering based on newly defined BTD search trees and a
weighing method. The key underlying property of this approach is that we can
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quickly and locally identify sufficiently long and disjoint paths, and then pipeline
the rumors along these paths without causing interference. We also show that
only a logarithmic number of changes between paths is sufficient to transmit a
rumor from its source to the root of the tree.

We start with describing the clustering procedure Cluster to Gather. Next we
give the main procedure Tree Gather to gather rumors in the root of a given
BTD tree known locally, exploring the computed clustering. We conclude with
the final description of algorithm Radio Gather.

In the specification of the procedures Cluster to Gather and Tree Gather we
assume that there is an exact number of rounds dedicated to each part, and
even though the activity in some part may be finished earlier, nodes wait until
the end of the specified period before starting the next part. This assumption
allows to synchronize parts of these procedures and simplify the analysis.

Clustering Procedure. We introduce a procedure Cluster to Gather(D, x), which
has input parameters with the following properties:
G1: A rooted BTD tree D spanning V with each node knowing only its parent

and children, if any, in the tree; in particular, a node knows whether it is the
root or not;

G2: An upper bound x on the sum of the number of rumors and of |V |; x is
known to every node; there is an initial allocation of at most x − |V | ≥ 1
rumors among the nodes in V .

The procedure computes a clustering of a given BTD tree D in network G. This
clustering is a generalization of heavy path decomposition (c.f., [13]) to weighted
trees in the radio network model. Together with some properties of BTD tree, the
clustering allows an efficient parallelization of gathering and spreading rumors in
radio networks. Assume that the properties G1-G2 are satisfied by D and by the
initial rumor allocation. To simplify the exposition, we can assume without loss
of generality that x is a power of 2. Define Si, for an integer 0 ≤ i ≤ log x, to be
the set of nodes in V weighing more than 2i−1 and at most 2i in tree D. (Nodes
in S0 do not have any rumor in the beginning.) Let Di be the sub-forest of the
considered component induced by the nodes in Si; we will show later that it is a
collection of paths of tree D. For each connected component of Di we define its
root as the (only) node that does not have its parent in this component, and its
second-in-charge node as the (only) child of the root in the component (if the
component has more than one node).

Lemma 4. Consider an execution of the procedure Cluster to Gather(D, x).
Upon its termination, which happens after 6x rounds, each node knows to which
set Si it belongs, and whether it is a root or a second-in-charge node. Moreover,
for any 0 ≤ i ≤ log x, the set Si and the corresponding forest Di satisfy the
following properties:

(i) Di consists of paths, each being a sub-path of some path from the root to
some leaf in the initial tree D; moreover, the sub-graph of G induced by the nodes
on such a single path forms the same path (i.e., there are no shortcuts between
nodes in the path in the underlying network G);
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(ii) for every two path-components of forest Di, if two nodes from different
components are connected by an edge in graph G, at least one of them must be
the root of one component.

Procedure. Cluster to Gather(D, x)

Part 1: The root in D calls procedure Compute Weights(D). Upon completion
of this part each node in V locally computes its weight, which is in the range
[x], and its number in the traversal route, which is in the range [n]. This
part takes 2x rounds.

Part 2: The root in D initiates a token to traverse the tree D in a DFS manner.
The token propagates the weight of the current owner of the token computed
during Part 1. Upon completion of this part each node knows in which sets
Si are its children and its parent in tree D. This part takes 2x rounds.

Part 3: The root in D initiates a token to traverse the tree D in a DFS manner. It
carries the information whether the parent of the current owner of the token
is in the same set Si — this was computed by the sender during Part 2. Upon
completion of this part each node knows whether it is second-in-charge in
some tree-component of the corresponding forest Di or not. This part takes
2x rounds.

Gathering Procedure. Given a rooted tree D, we design the gathering procedure
along this tree as follows:

Procedure. Tree Gather(D, x)

Part 1: Procedure Cluster to Gather(D, x) is executed.
Part 2: for i = 1 to log x do: perform the stages

Stage (a): Each node v second-in-charge in Si initiates Spread on Path(P, x)
as the root of path P which is defined as follows. A node is in P , if it is in
Si and is a descendant of v in the tree D. This stage takes 9x rounds.

Stage (b): The root of D initiates the token, which is sent along tree D in a
DFS manner. A node whose parent in D is in a set Sj for j �= i is a root of
the forest Di. Whenever a root of the forest Di receives a traversing token
for the first time, it keeps forwarding all its gathered rumors towards its
grandparent in D, one after another. Each such forwarding operation takes
two rounds and goes through the parent of the token holder. After the last
rumor is delivered, the token is passed to the next node in the DFS traversal
of D. This stage takes 4x rounds.

Part 3: The root of D initiates procedure Spread on Path(Slogx, x). This part
takes 9x rounds.

Lemma 5. An execution of procedure Tree Gather(D, x) results in gathering all
the rumors stored in the nodes of the tree D in the root of D, which takes
O(x log n) rounds, if x is an upper bound on the sum of the number of nodes
|V | and the number of rumors initially stored in S.
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Algorithm. Finally we specify an algorithm for the gathering problem, with a
designated sink node w:

Algorithm. Radio Gather(w)

Part 1: Node w calls procedure BTD Search to create a BTD tree D spanning
the network G and rooted at w.

Part 2: Node w calls procedure Compute Weights(D), and then computes its
weight x.

Part 3: Procedure Tree Gather(D, x) is executed.

Theorem 1. Algorithm Radio Gather solves the gathering problem for any dis-
tribution of k rumors in a n-node network, using O((k + n) log n) rounds.

5 Multi-Broadcast

Multi-broadcast is a generalization of gossiping: there are k rumors distributed
arbitrarily among nodes and the goal is for all the nodes to learn every rumor.

Graph Clustering. Procedure Cluster to Spread(S, D) is similar to procedure
Cluster to Gather(S, D) from Section 4. The differences are as follows: (i) while
pre-computing a partitioning of the nodes and a BTD tree D into sets Si and
forests Di, for 0 ≤ i ≤ log n, the weight is defined only in terms of the num-
ber of nodes, that is, we do not account for any rumors in the nodes; (ii) apart
from computing by each node its weight and the weight of all its neighbors in
the network, and thus being able to recognize to which set Si the node and its
neighbors belong, each node v computes a specific subset Rv of its neighbors.

Dense Broadcast Schedules. Define a (n, a, ε)-ultra-selector to be a family of sets
such that for any set A ⊆ [n] of size at most a and more than a/2 there is at
least a ε fraction of the sets in the family that intersect A on a single element,
for a given 1 ≤ a ≤ n and 0 < ε ≤ 1.

Lemma 6. For any given constant 0 < ε ≤ 1/32 and sufficiently large param-
eter n, there is a constant β > 1, which depends only on ε, such that for every
1 ≤ a ≤ n there exists a (n, a, ε)-ultra-selector of length at most β · a log(2n/a).

Procedure Partial Ultra Broadcast is composed of log n interleaved threads, where
in the i-th thread the (n, 2i, 1/32)-ultra-selector is executed in a cyclic way, for
0 ≤ i ≤ log n − 1; in thread log n the round robin procedure on range [n] is run
(observe that the round robin transmission scheme corresponds to a (n, n, 1/32)-
ultra-selector). The length of each thread is bounded by β · n, where β and
the ultra-selectors are as specified in Lemma 6. Therefore, the whole length of
procedure Partial Ultra Broadcast is β · n log n. It follows from Lemma 6, when
applied to the neighborhood of a node, that for any node there is at least a
fraction 1

32 log n of the rounds of Partial Ultra Broadcast that are successful from
the point of view of this node, in the sense that in each of these rounds there is
exactly one neighbor of this node scheduled to transmit.



Efficient Distributed Communication in Ad-Hoc Radio Networks 623

Computing Short Broadcast Schedules for Pipelining Rumors. This is the most
involved technical part of our multi-broadcast algorithm. Suppose that we are
given a set S∗ ⊆ V and the spanning tree D of network G. We assume that
each node locally knows D and can locally check whether itself and some of its
neighbors in G are in set S∗. The aim is to construct a family {Bv}v∈S∗ that
is a broadcast schedule from set S∗ to set S′ of children of S∗ in the tree D.
By a broadcast schedule we understand a set of transmission schedules such
that each node in S′ eventually receives a message from some node in S∗, if
nodes in S∗ follow the schedule. The following Procedure Down Hop(S∗, D),
for any subset S∗ ⊆ S, outputs in each node v a subset of round-numbers
Bv ⊆ {1, 2, . . . , 64 log2 n}.

The procedure is recursive with respect to the set S′ of uninformed children of
nodes in S∗ in tree D. Additionally, nodes maintain the depth of recursion, called
depth. In the very beginning of the procedure, each node w ∈ S′ of some node in
set S∗ simulates locally procedure Partial Ultra Broadcast with respect to all its
neighbors in S∗ in network G; based on this, node w computes the set of rounds
Rw in which it would successfully receive a message from some of its neighbors in
S∗. The first 2n log(βn log2 n) communication rounds are split into log(βn log2 n)
consecutive parts, each consisting of 2n communication rounds in which a token
traverses the whole tree D in a DFS manner, computing and updating local
values. The goal of these parts is to find a round b ∈ {1, . . . , βn log2 n} in the
locally simulated execution of procedure Partial Ultra Broadcast in which at least

|S′|
32 log n nodes in S′ would receive a message from some of their neighbors in S∗.

Consequently, all nodes in S∗ that were scheduled to transmit in round b
during procedure Partial Ultra Broadcast are set as transmitters in round depth
of the schedules {Bv}v∈S∗ output by procedure Down Hop(S∗, D), i.e., depth ∈
Bv for any v ∈ S∗ that was scheduled to transmit in round b of the (locally
simulated) execution of procedure Partial Ultra Broadcast. By the properties of
procedure Partial Ultra Broadcast, set S′ shrinks by the fraction 1

32 log n . After
that, we increase depth by one and call recursively Down Hop(S∗, D) with respect
to the new set S′ of uninformed children of S∗ in D. It follows that after at most
64 log2 n recursive calls, set S′ becomes empty, and therefore the output schedules
{Bv}v∈S∗ are well defined. The length of the procedure is O(log2 n · n log n) ⊆
O(n log3 n).

Pipelining Rumors from a Source. We specify procedure Tree Spread(D, k) which,
given a BTD spanning tree D and k rumors gathered in the root of the tree, deliv-
ers the rumors to all nodes in the network. The procedure is initiated by the root.
First, all nodes in path Dlog n execute procedure Spread on Path(Slogn, n + k),
so that all of them get all k rumors from the root. Then log n stages are exe-
cuted sequentially. The goal of stage i, for i = log n, log n− 1, . . . , 1, is to deliver
rumors gathered by each node of forest Di to every node in forest Di−1. This is
achieved by applying twice procedure Down Hop and procedure Spread on Path.
The whole propagation of rumors from nodes in Di to all nodes in Di−1 takes
O(n log3 n + k log2 n) rounds. There are log n forests, due to clustering, and
therefore the whole cost of procedure Tree Spread(D, k) is O(n log4 n+k log3 n).
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Multi-Broadcast Algorithm. We use the leader election algorithm described in [7]
(Radio Leader), to find a leader in time O(n log3 n) using O(log n)-bit messages.

Algorithm. Radio Multi Broadcast

Part 1: Run algorithm Radio Leader to elect a leader w.
Part 2: Gather all the rumors in w by calling algorithm Radio Gather(w). Create

a BTD tree D, spanning network G and rooted at w, and distribute the number
k of rumors gathered in w.

Part 3: Node w calls procedure Tree Spread(V, D, k).

Theorem 2. Algorithm Radio Multi Broadcast completes multi-broadcast for any
distribution of k rumors in a n-node radio network in time O(k log3 n + n log4 n).

Corollary 1. Routing k rumors in a n-node network can be accomplished in
time O(k log3 n+n log4 n), and gossiping can be accomplished in time O(n log4 n).
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Abstract. We study the wireless scheduling problem in the physically
realistic SINR model. More specifically: we are given a set of n links,
each a sender-receiver pair. We would like to schedule the links using the
minimum number of slots, using the SINR model of interference among
simultaneously transmitting links. In the basic problem, all senders trans-
mit with the same uniform power.

In this work, we provide a distributed O(log n)-approximation for the
scheduling problem, matching the best ratio known for centralized al-
gorithms. This is based on an algorithm studied by Kesselheim and
Vöcking, improving their analysis by a logarithmic factor. We show this
to be best possible for any such distributed algorithm.

Our analysis extends also to linear power assignments, and as well
as for more general assignments, modulo assumptions about message
acknowledgement mechanisms.

Keywords: Distributed Scheduling, Wireless Networks, SINR Model.

1 Introduction

Given a set of n wireless links, each a sender-receiver pair, what is the minimum
number of slots needed to schedule all the links, given interference constraints?
This is the canonical scheduling problem in wireless communication that we
study here in a distributed setting.

In a wireless network, communication occurring simultaneously in the same
channel interfere with each other. Algorithmic questions for wireless networks
depend crucially on the model of interference considered. In this work, we use the
physical model or “SINR model” of interference, precisely defined in Section 2.
It is known to capture reality more faithfully than the graph-based models most
common in the theory literature, as shown theoretically as well as experimen-
tally [8,15,17]. Early work on scheduling in the SINR model focused on heuristics
and/or non-algorithmic average-case analysis (e.g. [9]). In seminal work, Mosci-
broda and Wattenhofer [16] proposed the study of the scheduling complexity of
arbitrary set of wireless links. Numerous works on various problems in the SINR
setting have appeared since ([5,7,12,3,11], to point out just a few).
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The scheduling problem has primarily been studied in a centralized setting. In
many realistic scenarios, however, it is imperative that a distributed solution be
found, since a centralized controller may not exist, and individual nodes in the
link may not be aware of the overall topology of the network. For the scheduling
problem, the only known rigorous result is due to Kesselheim and Vöcking [14],
who show that a simple and natural distributed algorithm provides O(log2 n)
approximation to the scheduling problem.

In this work, we adopt the same algorithm as Kesselheim and Vöcking, but
provide an improved analysis of O(log n)-approximation. Moreover, we show that
this is essentially the best result obtainable by a distributed algorithm.

2 Preliminaries and Contributions

Given is a set L = {�1, �2, . . . , �n} of links, where each link �v represents a
communication request from a sender sv to a receiver rv. The distance between
two points x and y is denoted d(x, y). The asymmetric distance from link �v to
link �w is the distance from v’s sender to w’s receiver, denoted dvw = d(sv, rw).
The length d(sv, rv) of link �v is simply denoted by �v.

Let Pv denote the power assigned to link �v, or, in other words, sv transmits
with power Pv. We adopt the physical model (or SINR model) of interference, in
which a receiver rv successfully receives a message from a sender sv if and only
if the following condition holds:

Pv/�α
v∑

w∈S\{v} Pw/dα
wv + N

≥ β, (1)

where N is a universal constant denoting the ambient noise, α > 0 denotes the
path loss exponent, β ≥ 1 denotes the minimum SINR (signal-to-interference-
noise-ratio) required for a message to be successfully received, and S is the set
of concurrently scheduled links in the same slot. We say that S is SINR-feasible
(or simply feasible) if (1) is satisfied for each link in S.

Given a set of links L, the scheduling problem is to find a partition of L of
minimum size such that each subset in the partition is feasible. The size of the
partition equals the minimum number of slots required to schedule all links. We
will call this number the scheduling number of L, and denote it by T (L) (or
T when clear from context).

The above defines the physical model for uni-directional links. In the bi-
directional setting [5], the asymmetry between senders and receivers disappear.
The SINR constraint (1) changes only in that the definition of distance between
links changes to dwv = min(d(sw, rv), d(sv, rw), d(sw , sv), d(rw , rv)). With this
new definition of inter-link distances, all other definitions and conditions remain
unchanged. We will focus on the uni-directional model, but our proofs easily
extend to the bi-directional case.

A power assignment P is length-monotone if Pv ≥ Pw whenever �v ≥
�w and sub-linear if Pv

α
v

≤ Pw

α
w

whenever �v ≥ �w. Two widely used power
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assignments in this class are the uniform power assignment, where every link
transmits with the same power; and the linear power assignment, where Pv is
proportional to �α

v .

Distributed algorithms. In the traditional distributed setting, a communi-
cation infrastructure exists which can be used to run distributed algorithms.
The current setting is different, where the goal is to construct such an infras-
tructure. Thus our algorithm will work with very little global knowledge and
minimal external input. We assume that the senders and receivers have a rough
estimate of the network size n, have synchronized clocks, and are given fixed
length-monotone, sub-linear power assignments that they must use.

The algorithm works by having the senders repeatedly transmitting until they
succeed, necessitating an acknowledgement from receivers to the senders, so that
the sender would know when to stop. We assume that these acknowledgements
are the only external information that the senders receive. Any algorithm that
works under these constraints will be referred to as an ack-only algorithm. We
study the scheduling problem under two separate assumptions about acknowl-
edgements. In the first model, we require the algorithm to generate explicit
acknowledgements. In the second model, we assume that acknowledgements are
“free” or much cheaper than data packets, thus do not have to be explicitly
realized by the algorithm.

Affectance. We will use the notion of affectance, introduced in [7,12] and
refined in [14] to the thresholded form used here, which has a number of technical
advantages. The affectance aP

w(v) on link �v from another link �w, with a given
power assignment P , is the interference of �w on �v relative to the power received,
or

aP
w(v) = min

{
1, cv

Pw/dα
wv

Pv/�α
v

}
= min

{
1, cv

Pw

Pv
·
(

�v

dwv

)α}
,

where cv = β/(1 − βN�α
v /Pv) is a constant depending only on the length

and power of the link �v. We will drop P when it is clear from context. Let
av(v) = 0. For a set S of links and a link �v, let av(S) =

∑
w∈S av(w) and

aS(v) =
∑

w∈S aw(v). For sets S and R, aR(S) =
∑

v∈R

∑
u∈S av(u). Using

such notation, Eqn. 1 can be rewritten as aS(v) ≤ 1, and this is the form we
will use.

Signal-strength and robustness. A δ-signal set is one where the affectance
on any link is at most 1/δ. A set is SINR-feasible iff it is a 1-signal set. We know:

Lemma 1 ([10]). Let �u, �v be links in a qα-signal set. Then, duv ·dvu ≥ q2 ·�u�v.

2.1 Our Contributions and Related Work

We achieve the following results:

Theorem 1. There is a O(log n)-approximate ack-only distributed algorithm for
the scheduling problem for uniform and linear power assignments, as well as for
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all length-monotone sub-linear power assignments for bi-directional links. If we
additionally assume free (or cheap) acknowledgements the same result holds for
all length-monotone sub-linear power assignments for uni-directional links.

Theorem 2. Assuming that all senders use an identical algorithm, no distributed
ack-only algorithm can approximate the scheduling problem by a factor better than
Ω(log n), even with free acknowledgements.

As in [14], our results hold in arbitrary distance metrics (and do not require the
common assumption that α > 2).

The scheduling problem has been profitably studied in the centralized set-
ting by a number of works. The problem is known to be NP-hard [7]. For
length-monotone, sub-linear power assignments, a O(log n) approximation for
general metrics has been achieved recently [11] following up on earlier work
[7,12]. In the birectional setting with power control, Fanghänel et al. [5] pro-
vided a O(log3.5+α n) approximation algorithm, recently improved to O(log n)
[10,11]. For linear power on the plane, [6] provides an additive approximation
algorithm of O(T +log2 n). On the plane, O(log n) approximation for power con-
trol for uni-directional links has been recently achieved [13]. Chafekar et al. [3]
provide a O(log2 Δ log2 Γ log n) approximation to the joint multi-hop scheduling
and routing problem.

In the distributed setting, the related capacity problem (where one wants to
find the maximum subset of L that can be transmitted in a single slot) has been
studied a series of papers [1,4,2], and have culminated in a O(1)-approximation
algorithm for uniform power [2]. However, these game-theoretic algorithms take
time polynomial in n to converge, thus can be seen more appropriately to deter-
mine capacity, instead of realizing it in “real time”.

For distributed scheduling, the only work we are aware of remains the inter-
esting paper by Kesselheim and Vöcking [14], who give a O(log2 n) distributed
approximation algorithm for the scheduling problem with any fixed length-
monotone and sub-linear power assignment. They consider the model with no
free acknowledgements, however their results do not improve if free acknowl-
edgements are assumed. Thus in all cases considered, our results constitute a
Ω(log n) factor improvement.

In [14], the authors introduce a versatile measure, the maximum average af-
fectance Ā, defined by

Ā = max
R⊆L

avgu∈R

∑
v∈R

av(u) = max
R⊆L

1
|R|
∑

u∈R

∑
v∈R

av(u) .

The authors then show two results. On the one hand, they show that Ā =
O(T log n) where T = T (L). On the other hand, they present a natural algorithm
(we use the same algorithm in this work) which schedules all links in O(Ā log n)
slots, thus achieving a O(log2 n) approximation. We can show (omitted in this
version of the paper) that both of these bounds are tight. Thus it is not possible
to obtain improved approximation using the measure Ā.
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Our main technical insight is to devise a different measure that avoids bound-
ing the global average, instead looks at the average over a large fraction of the
linkset. This allows us to shave off a log n factor. The measure Λ(L) (or Λ when
clear from the context) can be defined as follows:

Λ(L) = arg min
t

s.t.∀R ⊆ L, |{� ∈ R : aR(�) ≤ 4t}| ≥ |R|/4 .

To get an intuitive feel for this measure, consider any given R. Since we only
insist that a large fraction of R have affectance bounded by t, the value of t may
be significantly smaller than the average affectance in R (and as a consequence
Λ(L) may be much smaller than Ā). Indeed, we show that Λ = O(T ) and that
the algorithm schedules all links in time O(Λ log n), achieving the claimed ap-
proximation factor. We can give instances where T (L) = θ(Λ(L) log n), and thus
the performance of the algorithm is best possible in that respect.

3 O(log n)-Approximate Distributed Scheduling
Algorithm

The algorithm from [14] is listed below as Distributed. It is a very natural
algorithm, in the same tradition of backoff schemes as ALOHA [18], or more
recent algorithms in the SINR model [4,2].

Algorithm 1. Distributed
1: k ← 0
2: while transmission not successful do
3: q = 1

4·2k

4: for 8c3 ln n
q

slots do
5: transmit with i.i.d. probability q
6: end for
7: k ← k + 1
8: end while

The algorithm is mostly self-descriptive. One point to note is that Line 2
necessitates some sort of acknowledgement mechanism for the distributed algo-
rithm to stop. For simplicity, we will defer the issue of acknowledgements to
Section 3.2 and simply assume their existence for now. Theorem 3 below implies
our main positive result.

Theorem 3. If all links of set L run Distributed, then each link will be sched-
uled by time O(Λ(L) log n) with high probability.

To prove Theorem 3, we claim the following.

Lemma 2. Given is a request set R with measure Λ = Λ(R). Consider a time
slot in which each sender of the requests in R transmits with probability q ≤ 1

8Λ .
Then at least q·|R|

8 transmissions are successful in expectation.
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Proof. Let M = {�u ∈ R : aR(u) ≤ 4Λ}. By definition of Λ, M ≥ |R|/4. It
suffices to show that at least q|M |/2 transmissions are successful in expectation.

For �u ∈ R, let Tu be indicator random variable that link �u transmits, and Su

the indicator r.v. that �u succeeds. Now, E(Su) = P(Su = 1) = P(Tu = 1)P(Su =
1|Tu = 1) = qP(Su = 1|Tu = 1) = q(1 − P(Su = 0|Tu = 1)). For �u ∈ M ,

P(Su = 0|Tu = 1) ≤ P

(∑
v∈R

av(u)Tv ≥ 1

)
≤ E

(∑
v∈R

av(u)Tv

)

=
∑
v∈R

av(u)E(Tv) = q
∑

v∈R

av(u) ≤ q · 4Λ ≤ 1/2 .

for q ≤ 1
8Λ . Therefore, E(Su) ≥ q

2 .
The expected number of successful links is thus

E

(∑
u∈R

Su

)
=
∑

u∈R

E(Su) ≥
∑

u∈M

E(Su) ≥ |M | · q/2 ≥ |R| · q/8 ,

as desired. ��

Proof (of Thm. 3). Given Lemma 2, the proof of the Theorem essentially follows
the arguments in Thms. 2 and 3 of [14].

First consider the running time of the algorithm when in Line 3, q is set to the
“right” value 1

8Λ stipulated in Lemma 2. (Note that since the algorithm increases
the probabilities by a factor of 2, it will select the right probability within that
factor). Let nt be the random variable indicating the number of requests that
have not been successfully scheduled in the first t time slots.

Lemma 2 implies that E(nt+1|nt = k) ≤ k − q
8k and thus

E(nt+1) ≤
∞∑

k=0

P(nt = k) · (1 − q/8)k = (1 − q/8)E(nt) .

Setting n0 = n, this yields E(nt) ≤ (1− q/8)tn. Now, after 8c3 log n/q time slots
for a large enough c3, the expected number of remaining requests is

E(n8c3 log n/q) ≤ (1 − q/8)8c3 log n/qn ≤
(

1
e

)c3 log n

n = n1−c3 .

By Markov inequality P(n8c3 log n/q �= 0) = P(n8c3 log n/q ≥ 1) ≤ E(n8c3 log n/q) ≤
n1−c3 . So we need O(log n/q) = O(Λ log n) time, with high probability.

Now we need to show that running the algorithm with the “wrong” values of
q doesn’t cost too much. This holds because the costs of all previous executions
form a geometric series increasing the overall time required by no more than a
constant factor (see Thm. 3 of [14] for the argument, which is fairly simple). ��
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3.1 Bounding the Measure

We will assume that the implicit power assignment is length-monotone and sub-
linear. We need two related Lemmas to get a handle on affectances. The first of
these Lemmas is known.

Lemma 3 (Lemma 7, [14]). If L is a feasible set, and �u is a link such that
�u ≤ �v for all �v ∈ L, then aL(u) = O(1).

Now we prove the following.

Lemma 4. If L is a feasible set such that au(L) ≤ 2 for all �u ∈ L, and �v is a
link such that �v ≤ �u for all �u ∈ L, then av(L) = O(1).

Before we prove this below, note that this Lemma can be contrasted with Lemma
9 of [14], which only gives a O(log n) bound (without the extra condition au(L) ≤
2). Intuitively, the power of this Lemma is that while au(L) can be as large as
O(log n) for feasible L, for a large subset of L the extra condition au(L) ≤ 2
holds (as will be easily shown in Lemma 5), for which the stronger O(1) upper
bound will apply.

Proof. [of Lemma 4] We use the signal strengthening technique of [12]. For this,
we decompose the set L to 	2 · 3α/β
2 sets, each a 3α-signal set. We prove the
claim for one such set; since there are only constantly many such sets, the overall
claim holds. Let us reuse the notation L to be such a 3α-signal set.

Consider the link �u = (su, ru) ∈ L such that d(sv, su) is minimum. Also
consider the link �w = (sw, rw) ∈ L such that d(rw, sv) is minimum. Let D =
d(sv, su). We claim that for all links, �x = (sx, rx) ∈ L, �x �= �w,

d(sv, rx) ≥ 1
2
D . (2)

To prove this, assume, for contradiction, that d(sv, rx) < 1
2D. Then, d(sv, rw) <

1
2D, by definition of �w. Now, again by the definition of �u, d(sx, sv) ≥ D and
d(sw, sv) ≥ D. Thus �w ≥ d(sv, sw) − d(sv, rw) > D

2 and similarly �x > D
2 . On

the other hand d(rw, rx) < D
2 + D

2 < D. Now, dwx · dxw ≤ (�w + d(rw, rx))(�x +
d(rw , rx)) < (�w + D)(�x + D) < 9�w�x, contradicting Lemma 1.

By the triangle inquality and Eqn. 2, dux = d(su, rx) ≤ d(su, sv)+d(sv , rx) ≤
3d(sv, rx) = 3dvx. Now av(x) ≤ cx

Pv

dα
vx

α
x

Px
. Since �v ≤ �u, by length-monotonicity

Pv ≤ Pu. Thus,

av(x) ≤ cx
Pu

dα
vx

�α
x

Px
≤ cx

3αPu

dα
ux

�α
x

Px
= 3αau(x)

where the last equality holds because au(x) = cx
Pu

dα
ux

α
x

Px
as L is feasible. Finally,

summing over all links in L

av(L) =
∑
x∈L

av(x) = av(w) +
∑

x∈L\{w}
av(x)

≤ 1 +
∑

x∈L\{w}
av(x) ≤ 1 + 3α

∑
x∈L\{w}

au(x) ≤ 1 + 3α · 2 = O(1) ,
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since
∑

x∈L\{w} au(x) ≤ au(L) ≤ 2 by assumption. ��
We can now derive the needed bound on the measure.

Lemma 5. For any linkset R, Λ(R) ≤ c2T (R) for a fixed constant c2.

Proof. It suffices to prove that for every R̂ ⊆ R, |{� ∈ R̂ : aR̂(�) ≤ 4c2T }| ≥ R̂/4.
To prove this, the only property we will use of R̂ is that T (R̂) ≤ T (R), which is
obviously true for all R̂. Thus, for simplicity we simply prove it for R and the
proof will easily carry over to all R̂ ⊆ R.

Consider a partition of R into T feasible subsets S1 . . . ST . For each i, define
S′

i = {�v ∈ Si : av(Si) ≤ 2}.

Claim. For all i, |S′
i| ≥ |Si|

2 .

Proof. Since Si is feasible, the incoming affectance aSi(v) ≤ 1 for every link �v ∈
Si. Let Ŝi = Si \ S′

i. Now,
∑

v∈Ŝi
av(Si) ≤

∑
v∈Si

av(Si) =
∑

v∈Si
aSi(v) ≤ |Si|.

But,
∑

v∈Ŝi
av(Si) ≥ 2 · |Ŝi| by definition of Ŝi. Thus, Ŝi ≤ |Si|/2, proving the

claim. ��
Let R′ = ∪iS

′
i. By the above claim, |R′| ≥ |R|/2. Let M = {�u ∈ R′ :∑

v∈R av(u) ≤ 4c2T } for some constant c2. We shall show that |M | ≥ |R′|/2 ≥
|R|/4.

We will prove the claim

aR(R′) = c2|R| · |T | . (3)

From this, we get that the average of aR(�u) over the links �u ∈ R′ is c2|R|·|T |
|R′| ≤

2c2|T |. At least half of the links in R′ have at most double affectance of this
average, hence the claim |M | ≥ |R|/4 and the lemma follow.

Thus our goal becomes to prove Eqn. 3. To prove this note that,

aR(R′) =
T∑

i=1

∑
u∈S′

i

T∑
j=1

∑
v∈Sj

av(u) =
T∑

i=1

T∑
j=1

aSj (S′
i) . (4)

To tackle this sum, we first prove that for any i, j ≤ T ,

aSj (S′
i) ≤ O(|Sj | + |Si|) . (5)

This holds because,

aSj (S
′
i) =
∑

�u∈S′
i

∑
�v∈Sj,�v≥�u

av(u) +
∑

�u∈S′
i

∑
�v∈Sj,�v≤�u

av(u)

1≤
∑

�u∈S′
i

O(1) +
∑

�u∈S′
i

∑
�v∈Sj,�v≤�u

av(u) ≤ O(|S′
i|) +
∑
�∈S′

i

∑
�v∈Sj,�v≤�u

av(u)

2≤ O(|Si|)+
∑

�v∈Sj

∑
�u∈S′

j,�u≥�v

av(u)
3≤ O(|Si|)+

∑
�v∈Sj

O(1) ≤ O(|Si|) + O(|Sj |) .

Explanation for numbered inequalities:
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1. The bound with O(1) follows from Lemma 3.
2. Noting |S′

i| ≤ |Si| for the first term and reorganization of the second term.
3. The O(1) bound is from Lemma 4.

Now we can continue with Eqn. 4 to obtain that

aR(R′) =
T∑

i=1

T∑
j=1

aSj (S
′
i)

1≤
T∑

i=1

T∑
j=1

O(|Si|+ |Sj |) 2
=

T∑
i=1

O(|T | · |Si|+ |R|) = O(|T | · |R|) .

Explanations for numbered (in)equalities:

1. Due to Eqn. 5.
2. As

∑T
j=1 |Sj | = |R|.

This completes the proof by setting c2 to be the implicit constant hidden in the
Big-O notation. ��

3.2 Duality and Acknowledgements

In the above exposition, we ignored the issue of sending acknowledgements from
receivers to senders after the communication has succeeded. It is useful to be able
to guarantee that acknowledgements would arrive in time O(T log n), with high
probability. Note that for bi-directional links, there is no dichotomy between
sender and receiver, so we get our result for all length-monotone, sub-linear
power assignments automatically. What follows thus concerns the case of uni-
directional links.

The link set L∗ associated with the required acknowledgement packets is the
“dual” of the original link set L, with the sender and receiver of each link swap-
ping places. Let the dual link associated with a link �u ∈ L be �∗u. Now, accom-
modating the acknowledgements in the same algorithm is not difficult. This can
be done, for example, by using the odd numbered slots for the original transmis-
sions, and the even numbered slots for the acknowledgement. It is not obvious,
however, that L∗ admits a short schedule using a oblivious power assignment.

For uniform power, it was observed in [14] that:

Claim (Observation 12, [14]). Assume both the original and dual link sets use
uniform power. Also assume �u, �v ∈ L can transmit simultaneously. Then,
au∗(v∗) = Θ(au(v)), where au∗(v∗) is the affectance from �∗u on �∗v.

Thus the feasibility of Si implies the near-feasibility of S∗
i . With this observation

in hand, the bound follows from arguments of the previous section in a straight-
forward manner.

For other power assignments, it is easy to show that one cannot in general use
the same assignment for the dual. In [14] an elegant approach to this problem
was proposed. The authors introduced the notion of dual power, where dual
link �∗u uses power P ∗

u = γ
α

u

Pu
(the global normalization factor γ is chosen so that

c∗u is no worse than cu, for all �u). In [14] the following is shown:
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Claim (Observation 4, [14]). aP
u (v) = Θ(aP∗

v∗ (u∗)), for any �u, �v in L .

In other words, the incoming affectance of a link �u in L is close to the outgoing
affectance of �∗u in the “dual” setting (and vice-versa). Using this claim, it is easy
to see that the measure Ā (maximum average affectance) is invariant (modulo
constants) when switching the problem from L to L∗. Since the authors claim
a bound in terms of Ā, essentially the same bound can be claimed for both L
and L∗.

The situation for our argument is more delicate, since we seek a bound in
terms of T , not Ā. Unfortunately, T ∗ (the scheduling number of L∗) cannot be
bounded by anything better than O(T log n), thus a naive application of Thm.
3 only results in a O(log2 n) approximation.

However, we can achieve the O(log n) approximation for linear power, whose
dual is uniform power. We define “anti-feasibility” to be: A link set R is anti-
feasible if au(R) ≤ c4; ∀�u ∈ R for some appropriate constant c4. Consider now
a partition of L into feasible sets S1, S2 . . . ST . By the claim above, it is clear
that the sets S∗

i are anti-feasible. Define, S′∗
i = {�∗v ∈ S∗

i : aS∗
i
(v∗) ≤ 4c4},

R∗ = ∪T
i=1S

∗
i and R′∗ = ∪T

i=1S
′∗
i . As in the previous section, it is clear that

|R′∗| ≥ |R∗|/2.
We claim that a Lemma similar to Lemma 5 holds, after which O(T log n)

algorithm for the dual set follows the same argument as the rest of the proof of
Thm. 3.

Lemma 6. The following holds for linear power (thus, uniform power for the
dual). Let M∗ = {�v ∈ R′∗ : aR∗(v) ≤ 2c2T }, for some constant c2. Then,
|M∗| ≥ |R′∗|/8 ≥ |R∗|/16.

The crucial thing to notice is that the bound is in terms of T , not the possibly
larger T ∗.

Proof (Sketch). For uniform power, the following strong result can be proven.

Lemma 7. If L is an anti-feasible set using uniform power such that aL(u) ≤
4c4 for �u, and �v some other link, also using uniform power, then av(L) = O(1).

This can be proven using techniques we have seen, and has essentially been
proven in [2] (Lemma 11). Note that this lemma has no condition on �v (in
terms of being smaller/larger than links of L, unlike Lemmas 3 and 4). Thus
this single Lemma suffices in bounding aS∗

j
(S′∗

i ) à la Eqn. 5, from which the
whole argument follows (details omitted). ��
Finally, if we assume free or cheap acknowledgments, then by Thm. 3, our
O(log n) bound holds for all sub-linear, length-monotone assignments for both
uni and bi-directional links. The assumption can be valid in many realistic sce-
narios, or indeed can guide design decisions. For example, if the size of the ac-
knowledgement packets are smaller than the data packets by a factor of Ω(log n),
the larger value of T ∗ is subsumed by having smaller slots for acknowledgement



Nearly Optimal Bounds for Distributed Wireless Scheduling 635

packets. For illustration, a realistic example of data packet sizes and acknowl-
edgement packet sizes is 1500 bytes and 50 bytes, respectively, and in such a case
our bound would hold for networks with up to 230 nodes. Note here that the
analysis of [14] is no better than O(log2 n) even assuming free acknowledgements.

4 Ω(log n)-Factor Lower Bound for Distributed
Scheduling

We give a construction of 2n links on the line that can be scheduled in 2 slots
while no distributed algorithm can schedule them in less than Ω(log n) slots.

We assume that the distributed algorithm is an ack-only algorithm, and
that each sender starts at the same time in the same state and uses an identical
(randomized) algorithm. Note that the algorithm presented works within these
assumptions.

Our construction uses links of equal length, thus the only possible power
assignment is uniform. Let α > 1, β = 2 and noise N = 0. For the construction,
we start with a gadget g with two identical links of length 1. Place n such
gadgets gi, i = 1 . . . n on the line as follows. The two senders of gi are placed at
point 2ni and the two receivers of gi are placed at 2ni + 1. Now since β = 2,
it is clear that if the two links in the gadget transmit together, neither succeed.
On the other hand, links from other gadgets have negligible affectance on a link.
To see this, consider the affectance on a link �u ∈ gi from all links of other
gadgets, i.e., from all links �v ∈ Ĝ = ∪j �=igj. There are 2n − 2 links in Ĝ. The
distance dvu ≥ min{2n(i + 1)− 2ni− 1, 2ni + 1−2n(i− 1)} = 2n− 1. Therefore,∑

Ĝ av(u) ≤ (2n− 2) 1
(2n−1)α < 1, for large enough n and α > 1. Thus, behavior

of links in other gadgets is immaterial to the success of a link. This also implies
that the scheduling number of all these links is 2.

To prove the lower bound, let us consider a gadget gi to be “active” at time t
if neither link of gi succeeded by time t− 1. Let Tu(t) denote the event that link
�u transmits at time t, and let Ai(t) denote the event that gadget gi is active at
time t.

Lemma 8. Let �u and �v be the identical links in gadget gi. Then P(Tu(t)|Ai(t)) =
P(Tv(t)|Ai(t)). Moreover, these two probabilities are independent. In other words,
the transmission probabilities of two links in a gadget at time t are identical and
independent, conditioned on the gadget being active at time t.

Proof is omitted.
Let this i.i.d. probability be p. Now P(Ai(t + 1)|Ai(t)) = p2 + (1 − p)2, which

is minimized for p = 1
2 with value 1

2 . Thus, P(Ai(t + 1)|Ai(t)) ≥ 1
2 .

Theorem 4. E(I(n)) = Ω(log n) where I(n) is the smallest time at which none
of the gadgets are active.

The full proof is omitted, but intuitively, the bound P(Ai(t+1)|Ai(t)) ≥ 1
2 implies

that on average, no more than half the active gadgets become inactive in a single
round, thus it would take Ω(log n) rounds for all gadgets to become inactive.
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Note that bounding E(I(n)) suffices to lower bound the expected time be-
fore all links successfully transmit, since a link cannot succeed as long as the
corresponding gadget is active, by definition.
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Abstract. We study two (classes of) distributed algorithms for power
control in a general model of wireless networks. There are n wireless com-
munication requests or links that experience interference and noise. To
be successful a link must satisfy an SINR constraint. The goal is to find
a set of powers such that all links are successful simultaneously. A classic
algorithm for this problem is the fixed-point iteration due to Foschini and
Miljanic [8], for which we prove the first bounds on worst-case running
times – after roughly O(n log n) rounds all SINR constraints are nearly
satisfied. When we try to satisfy each constraint exactly, however, con-
vergence time is infinite. For this case, we design a novel framework for
power control using regret learning algorithms and iterative discretiza-
tion. While the exact convergence times must rely on a variety of pa-
rameters, we show that roughly a polynomial number of rounds suffices
to make every link successful during at least a constant fraction of all
previous rounds.

1 Introduction

A key ingredient to the operation of wireless networks is successful transmis-
sion in spite of interference and noise. Usually, a transmission is successful if the
received signal strength is significantly stronger than the disturbance due to de-
cayed signals of simultaneous transmissions and ambient noise. This condition is
frequently expressed by the signal-to-interference-plus-noise ratio (SINR). Over
the last decade, a large amount of research work has studied the problem of
throughput or capacity maximization, i.e., determining the maximum number of
wireless transmissions that can be executed successfully in a network in parallel.
Very recently, algorithms for capacity maximization are starting to receive inter-
est also from an analytical and theoretical point of view. Most of the algorithms
proposed and analyzed so far require a strong central authority managing the
access of all devices to the spectrum. In addition, most works neglect power con-
trol, i.e., the ability of modern wireless devices to allow their transmission powers
to be set by software. Power control has two main advantages. On the one hand,
battery life can be increased by using only minimal powers that are necessary
to guarantee reception. On the other hand, reduced transmission power causes
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less interference, and thereby the throughput of a wireless network can increase
significantly when using power control.

In this paper, we study spectrum access with power control in a network of
wireless devices. We consider a network consisting of n links, i.e., sender/receiver
pairs. Each sender attempts a successful transmission to its corresponding re-
ceiver using a transmission power. The chosen power has to be large enough to
compensate the interference and ambient noise. In contrast, choosing a smaller
transmission power is desirable as it results in less energy consumption. We in-
vestigate distributed algorithms to find transmission powers in order to make
links successful as quickly possible. A standard assumption in the analysis of
power-control problems of this kind is the existence of a solution, in which all
transmissions are successful. For networks, in which this assumption does not
hold, it is possible to combine the algorithms with approaches that solve the
additional scheduling problem [13].

A simple and beautiful distributed algorithm for the power-control problem
is the fixed-point iteration due to Foschini and Miljanic [8]. In each step every
sender sets his power to the minimum power that was required to overcome
interference and noise in the last round. It can be shown that powers converge
to a feasible assignment, even if updates are not simultaneous [17]. The obtained
power assignment is minimal in the sense that it is component-wise smaller than
all other feasible assignments. It is known that this algorithm converges at a
geometric rate [12] in a numerical sense. However, to the best of our knowledge,
no convergence results in the sense of quantitative worst-case running times have
been shown, neither for this nor for other distributed algorithms.

In this paper, we investigate two classes of distributed algorithms for power
control and analyze the dependencies of running time and solution quality on
several parameters of the structure of the instance. For example, our analysis of
the Foschini-Miljanic fixed-point iteration in Section 2 uses the largest eigenval-
ues of the normalized gain matrix and the degree, to which the SINR constraint
is fulfilled. Assuming that both these parameters are constant, our first main re-
sult (Theorem 1) shows that the FM iteration achieves polynomial convergence
time. In particular, starting from all powers set to 0, for any constant δ > 0 we
reach in O(n log n) steps a power assignment that satisfies the SINR constraint
of every link by a factor of at least 1− δ.

It is easy to see that the FM iteration might never reach the fixed point
if we start with all powers set to 0. Thus, if we insist on links satisfying the
SINR constraint exactly, we get an infinite convergence time during which all
links remain unsuccessful. To overcome this problem, in Section 3 we introduce
a novel technique to compute power assignments employing distributed regret-
learning algorithms. For algorithms that guarantee no swap regret [4], we can
also guarantee convergence to the fixed point. The convergence properties rely
on our analysis of the FM iteration and depend additionally on the position of
the fixed point compared to noise vector and maximum allowed power. Assum-
ing these ratios are bounded by a constant, our second main result (Theorem 5)
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is that for every constant ε > 0 after a polynomial number of steps, we can
reach a situation in which every request has been successful with respect to the
exact SINR constraint during at least a (1−ε) fraction of the previous steps. Our
regret learning technique has the advantage of being applicable also to instances,
in which not all links can be successful simultaneously.

1.1 Formal Problem Statement

We consider transmissions in general interference models based on SINR. If the
sender of link j emits a signal at power pj , then it is received by the receiver of
link i with strength gi,j · pj , where gi,j is called the gain. This includes the well-
known special case of the physical model, where the gain depends polynomially
on the distance between sender and receiver. The transmission within link i is
successful if the SINR constraint

gi,i · pi∑
j �=i gi,j · pj + ν

≥ β

is fulfilled, i.e., the SINR is above some threshold β. In the power control prob-
lem, our task is to compute a feasible power assignment such that the SINR
constraint is fulfilled for each link. Furthermore, each link should use the min-
imal possible power. More formally, let the normalized gain matrix C be the
n × n matrix defined by Ci,i = 0 for all i ∈ [n] and Ci,j = βgi,j/gi,i for i �= j.
The normalized noise vector η is defined by ηi = βν/gi,i. The task is to find a
vector p such that p ≥ C · p+ η. Note that throughout this paper, we use ≤ and
≥ to denote the respective component-wise inequality.

The set of all feasible power assignments is a convex polytope. If it is non-
empty, there is a unique vector p∗ satisfying p∗ = C ·p∗+ η. In a full-knowledge,
centralized setting, the optimal power vector p∗ can simply be computed by
solving the linear equation system p∗ = C · p∗ + η. However, a wireless network
consists of independent devices with distributed control and the matrix C is
not known. We assume the devices can only make communication attempts at
different powers and they receive feedback in the form of the achieved SINR
or (in an advanced scenario) only whether the transmission has been successful
or not.

For the scenario in which the achieved SINR is known after each transmission
attempt, the FM iteration is p(t+1) = C · p(t) + η, where the achieved and the
target SINR are needed to run this iteration. Foschini and Miljanic showed that
the sequence of vectors p(t) converges to p∗ as t goes to infinity. One can show
that the existence of p∗ ≥ 0 with p∗ ≤ C · p∗ implies that the modulus of all
eigenvalues of C must be strictly less than 1. In our analyses, we will refer to
the maximal modulus of an eigenvalue as λmax.

For the regret-learning technique we assume that each link i uses a no-regret
learning algorithm to select from a suitably defined discrete subset power val-
ues in an interval [0, pmax

i ]. So pmax
i is the maximal power level user i might
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choose. Let Φ be a set of measurable functions such that each φ ∈ Φ is a map
φ : [0, pmax

i ] → [0, pmax
i ]. Given a sequence of power vectors p(1), . . . , p(T ), the

Φ-regret link i encounters is

RΦi (T ) = sup
φ∈Φ

T∑

t=1
ui(φ(p(t)i ), p(t)−i)− ui(p(t)i , p(t)−i) ,

where ui is a suitable utility function defined below. For our analyses, we con-
sider two cases for the set Φ. For external regret each φ ∈ Φ maps every power
value to a single power pφ. In contrast, to define swap regret, Φ contains all mea-
surable functions. An infinite sequence is called no Φ-regret if RΦi (T ) = o(T ).
An algorithm that produces a no Φ-regret sequence is a no-Φ-regret algorithm.

We will see that under the utility functions we assume, there are distributed
no-Φ-regret algorithms. It suffices for each user to only know after each trans-
mission attempt if it has been successful.

1.2 Related Work

For about two decades, wireless networks with power control have been exten-
sively studied. While at first research focused on engineering aspects, recently
the topic has attracted interest among computer scientists. Algorithmic research
so far focused on scheduling problems, where for a given network of senders and
receivers the goal is to select a maximum feasible subset (the “independent set”
problem) or to partition the links into the minimal number of feasible subsets
(the “coloring” problem). Allowing a scheduling algorithm to choose powers has
a significant impact on size and structure of links scheduled simultaneously in
practice, as was shown by [15].

As a consequence, much effort has been put into finding algorithms for schedul-
ing with power control. More recently, theoretical insights on the problem are
starting to develop [9,14,6]. In particular, the independent set problem with
power control has been shown to be NP-hard [1]. In most related work, however,
the algorithmic power control problem is neglected by setting powers according
to some “oblivious” schemes, e.g., using some polynomial depending on distance
between sender and receiver. For independent set and coloring problems in metric
spaces, usually the mean or square-root function achieves best results [7,10,11].
In addition, there are distributed approaches for the independent set problem
using no-regret learning and uniform power [5,3]. In general, there are strong
lower bounds when using oblivious power, as algorithms provide only trivial
Ω(n)-approximations in instances with n links of greatly varying length [7].
Power control can significantly improve this condition as exemplified by the re-
cent centralized constant-factor approximation algorithm for the independent
set problem by Kesselheim [13]. Being a centralized combination of scheduling
and power control, this algorithm is rather of fundamental analytical interest
and of minor relevance in heavily distributed systems like wireless networks.

Distributed algorithms exist especially for the power control problem with-
out the scheduling aspect. In this case, a feasible power assignment is assumed to
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exist that makes all links feasible. The goal is to find feasible power levels with
minimal power consumption. This problem can be seen as a second step after
scheduling and can be solved in a centralized fashion by solving a system of
linear equations as noted above. Foschini and Miljanic [8] solved the problem
using a simple iterative distributed algorithm. They showed that their iteration
converges from each starting point to a fixed point if it exists. Extending this,
Yates [17] proved convergence for a general class of iterative algorithms including
also a variant for limited transmission powers and an iteration, in which users
update powers asynchronously. Besides this, Huang and Yates [12] proved that
all these algorithms converge geometrically. This means that the norm distance
to the fixed point in time step t is given by at for some constant a < 1. However,
this is only a bound on the convergence rate in the numerical sense and does not
imply a bound on the time until links actually become successful.

In addition, more complex iterative schemes have been proposed in the litera-
ture. For a general survey about these algorithms and the power control problem,
see Singh and Kumar [16].

2 Convergence Time of the Foschini-Miljanic Iteration

In this section, we analyze the convergence time of the Foschini-Miljanic iteration
with p(t) = C · p(t−1) + η. It will turn out to be helpful to consider the closed
form variant

p(t) = Ct · p(0) +
t−1∑

k=0
Ckη . (1)

The iteration will never actually reach the fixed point, although getting arbi-
trarily close to it. However, during the iteration the SINR will converge to the
threshold β. For each δ > 0, there is some round T from which the SINR will
never be below (1−δ)β. Since maximizing the SINR is the main target, we strive
to bound the time T until each transmission is “almost” feasible. That is, the
SINR is above (1 − δ)β. For this purpose, it is sufficent that the current vector
p satisfies (1− δ)p∗ ≤ p ≤ (1 + δ)p∗.

As a first result, we bound the convergence time in terms of n when starting
from 0. We will see, that the time is independent of the values of p∗ or η. The
only parameter related to the instance is λmax the maximum eigenvalue of C,
which has to occur as for λmax = 1 no fixed point can exist at all. Assuming it to
be constant, we show that after O(n log n) rounds we reach a power assignment
that satisfies the SINR constraint of every link by a factor of at least 1− δ.
Theorem 1. Starting from p(0) = 0 after t ≥ log δ

log λmax
· n · log(3n) rounds, for

all p(t) we have (1 − δ)p∗ ≤ p(t) ≤ p∗.
Proof. Define the following auxiliary matrix M = Cm, where m =⌈
log 1

3n/ logλmax
⌉
. As we can see, the modulus of all eigenvalues ofM is bounded

by 1
3n . Furthermore, defining η′ =

∑m−1
k=0 C

kη, we have p(mt′) =
∑t′−1
k=0 M

kη′.
This also implies p∗ =

∑∞
k=0M

kη′.
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Now we consider the characteristical polynomial of M in expanded as well as
in factored form:

χM (x) = xn +
n−1∑

i=0
aix
i =

n∏

j=1
(x− bj) .

The (possibly complex) bj values correspond to the eigenvalues. Therefore, we
have |bj | ≤ 1

3n for all j ∈ [n]. The ai values can be computed from the bi values
using

ai =
∑

S⊆[n]
|S|=n−i

∏

j∈S
(−bj) .

For the modulus this gives us

|ai| ≤
∑

S⊆[n]
|S|=n−i

∏

j∈S
|bj | ≤

(
n

n− i
)(

1
3n

)n−i
.

This yields the following bound for their sum

n−1∑

i=0
|ai| ≤

n∑

k=0

(
n

k

)(
1

3n

)k
− 1 =

(

1 + 1
3n

)n
− 1 ≤ 1

2
.

We now use the fact that χM (M) = 0. This is, Mn = −∑n−1
i=0 aiM

i. Since
all Mkη′ are non-negative, the following inequality holds

Mnp∗ =
∞∑

k=n
Mkη′ =

n−1∑

k=0
Mkη′

(

−
k∑

i=0
ai

)

+
∞∑

k=n
Mkη′

(

−
n−1∑

i=0
ai

)

≤
(
n−1∑

i=0
|ai|
) ∞∑

k=0
Mkη′ ≤ 1

2

∞∑

k=0
Mkη′ = 1

2
p∗ .

Now consider t ≥ m · n · log 1
δ . We have p∗ − p(t) = Ctp∗ ≤Mn log 1

δ p∗ ≤ δp∗.
This proves the theorem. ��

One can see that this bound is almost tight as there are instances where Ω(n)
rounds are needed. A simple example can be given as follows. Let C be defined by
Ci+1,i = 1 for all i and all other entries 0, η = (1, 0, . . . , 0). The only eigenvalue
of this matrix is 0. However, it takes n rounds until the 1 of the first component
has propagated to the nth component and the fixed point is reached.

These instances require a certain structure in the values of p∗ and η. As a
second result, we would like to present a bound independent of n and for every
possible starting point p(0) that takes p∗ and η into consideration.
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Theorem 2. Starting from an arbitrary p(0), we have (1−δ)p∗ ≤ p(t) ≤ (1+δ)p∗
for all t ≥ T with

T =
log δ − log maxi∈[n]

∣
∣
∣
∣
p

(0)
i

p∗
i
− 1
∣
∣
∣
∣

log maxi∈[n]

∣
∣
∣1− ηip∗

i

∣
∣
∣

.

In order to prove this bound, it is useful to consider the weighted maximum norm,
which has been used by Huang and Yates [12] before. Due to space constraints,
this and some further proofs have to be omitted and can be found in the full
version.

As assumed for the original FM iteration, we also focused on the case that
powers can be chosen arbitrarily high so far. However, our bounds directly trans-
fer to the case where there is some vector of maximum powers pmax. In this
setting, all powers are projected to the respective interval [0, pmax

i ] in each round
[17]. One can see that this can only have a positive effect on the convergence
time since the resulting sequence is component-wise dominated by the sequence
on unlimited powers.

3 Power Control via Regret Learning

The fixed-point approach analyzed above has some major drawbacks. For ex-
ample, in many sequences – in particular the ones starting from 0 – the target
SINR is never reached, because all powers increase in each step and therefore
they are always too small. Another drawback is that, in order to adapt the power
correctly, the currently achieved SINR has to be known. A last disadvantage to
be mentioned is its lacking robustness. We assumed the fixed-point to exist. If
for some reason this does not hold the iteration might end up where some powers
are 0 or pmax even if the transmission is not successful.

In order to overcome these drawbacks, we design a different approach based on
regret learning. Here, each link is a user, striving to have a successful transmission
but using the least power possible. The user is assumed to decide which power
pi ∈ [0, pmax

i ] to use based on an utility function. In particular, we assume that
each user gets zero utility if the SINR is below the threshold and a positive one
otherwise. However, this utility increases when using a smaller power. Formally,
we assume utility functions of the following form:

ui(p) =

{
fi(pi) if user i is successful with pi against p−i
0 otherwise

where fi : [0, pmax
i ] → [0, pmax

i ] is a continuous and strictly decreasing function
for each i ∈ [n]. With p−i we denote the powers chosen by all users but user i.

The utility functions have to be considered this way in order to capture the
SINR constraint appropriately. On the one hand, each user’s maximum is at the
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point where the SINR condition is exactly met. On the other hand and at least
as important, for each user having a successful transmission is always better than
an unsuccessful one. This property cannot be modeled by a continuous function.

As a consequence, we can ensure that all no-swap-regret sequences converge
to the optimal power vector p∗. Furthermore, the fraction of successful trans-
missions converges to 1. This is in contrast to the FM iteration, where starting
from p(0) = 0 all transmissions stay unsuccessful during the entire iteration.

As a first result, we can see that the only possibility that all links encounter
zero swap regret is the sequence only consisting of p∗.

Theorem 3. Given any sequence p(1), . . . , p(T ) such that the swap regret for
each user is 0, then p(t) = p∗ for all t.

Proof. For each user i let p̂i = maxt∈[T ] p
(t)
i . Now assume that p̂ ≤ p∗ does not

hold. This means there is some user i for which p̂′i := (C · p̂+ η)i < p̂i. This user
encounters non-zero swap regret because he could always use p̂′i instead of p̂i.
The user would still be successful in the same steps as before but get a higher
utility each time he chose p̂i. Since this is a contradiction we have p̂ ≤ p∗.

Now let p̌i = mint∈[T ] p
(t)
i . Assume that p̌ ≥ p∗ does not hold. This implies

that for some user p̌i < (C · p̌ + η)i. So user i is never successful when using
power p̌i but would always be with p∗i (since p̂ ≤ p∗). This is again a contradiction
because user i would encounter a non-zero swap regret.

In total, we have that both p̂ ≤ p∗ and p̌ ≥ p∗, yielding p̂ = p̌ = p∗. ��
In contrast, zero external regret does not suffice. One can construct instances
of the following kind. There are two “central” links, using power pmax

i in even
rounds and pmax

i /2 in odd rounds. Both have zero external regret because all
allowed switching operations would yield the same power p′ being used in even as
well as in odd rounds, losing all utility from even rounds. However, by these two
links using the maximal power, all n− 2 remaining links are blocked. Although
there might be a fixed point p∗ at which all links are successful, the sequence
can stay in a state where only 2 of the n links are successful at all.

4 Computing No-Swap-Regret Sequences

Observe that in our case, the users are given an infinite number of possible
choices. Furthermore, in order to capture the SINR threshold appropriately the
utility functions have to be modeled as non-continuous. Unfortunately, this yields
standard no-swap-regret algorithms cannot be used in this scenario because, to
the best of our knowledge, they require a finite number of actions [2] or convex
action spaces and continuous and concave utility functions [18].

Luckily, no-regret sequences can be computed in a distributed way never-
theless. In order to achieve swap regret ε · T , we execute an arbitrary existing
no-swap-regret algorithm on a finite subset of the available powers, which is
chosen depending on ε. This finite subset is constructed by dividing the set of
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powers into intervals of equal length and using the right borders as the input
action set for the algorithm. Bounding the loss due to the restriction on the right
borders, we can prove the following theorem.

Theorem 4. Let Algorithm A be a no-swap-regret algorithm for finite action
spaces achieving swap regret at most O(T a · N b) after T rounds in case of N
actions for suitable constants 0 ≤ a < 1, b ≥ 0. Then A can be used to com-
pute a no-swap-regret sequence for power control, achieving swap-regret at most
O(T

a+b
1+b ) in T steps.

In particular, if each link knows after each step which powers would have made
it successful, we can use the O(

√
TN logN) full-information algorithm proposed

by Blum and Mansour [4] for the following result.

Corollary 1. There is an algorithm achieving swap regret O(T 3
4 ).

If each link only gets to know if the transmission at the actually chosen power
suffices, it can nevertheless compute the value of the utility function for the
chosen power. Therefore, in this case we are in the partial-feedback model. Here,
we can apply the O(N

√
T logN) algorithm by Blum and Mansour [4] to build

the following algorithm.

Corollary 2. There is an algorithm achieving swap regret O(T 4
5 ) that only

needs to know if the transmissions carried out were successful.

5 Convergence of No-Swap-Regret Sequences

So far, we have seen how to compute no-swap-regret sequences. In this section,
the result is complemented by a quantitative analysis of a no-swap-regret se-
quence. We see that not only convergence to the optimal power vector p∗ is
guaranteed but also the fraction of rounds in which each link is successful con-
verges to 1. In contrast, starting from certain vectors in the FM iteration no
transmission is ever successful at all.

Theorem 5. For every sequence p(0), · · · , p(T ) with swap regret at most ε · T
and for every δ > 0 the fraction of steps in which user i sends successfully is at
least

Q · fi ((1 + δ)p∗i )
fi ((1 − δ)p∗i )

− ε

fi ((1− δ)p∗i )
,

where Q denotes the fraction of rounds in which a power vector p with (1−δ)p∗ ≤
p ≤ (1 + δ)p∗ is chosen.

Given a sequence with swap regret at most ε ·T , Theorem 5 gives a lower bound
for the number of steps in which a user can send successfully. The bound depends
on the utility function and the fraction of rounds in which a power vector between
(1 − δ)p∗ and (1 + δ)p∗ is chosen. For this we give a bound in Lemma 1 and
Lemma 3 later on. Altogether Theorem 5, Lemma 1, and Lemma 3 yield a bound
converging to 1 as the swap regret per step approaches 0.
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In order to prove this theorem, we will switch to a more convenient notation
from game theory, namely correlated equilibria. Similar to a mixed Nash equi-
librium, an ε-correlated equilibrium is a probability distribution over strategy
vectors (in our case power vectors) such that no user can unilaterally increase his
expected utility by more than ε. In contrast to mixed Nash equilibria the choices
of the different users do not need to be independent. Formally, an ε-correlated
equilibrium is defined as follows.

Definition 1. An ε-correlated equilibrium is a joint probability distribution π
over the set of power vectors P1 × · · · × Pn, where Pi = [0, pmax

i ], such that for
any user i and measurable function φi : Pi → Pi, we have

Es∼π [ui(φi(pi), p−i)]−Es∼π [ui(pi, p−i)] ≤ ε .
This is, in an ε-correlated equilibrium no user can increase his expected utility
by operations such as “each time π says I play A, I play B instead”. These
kinds of operations are exactly the ones considered in the definition of no-swap-
regret sequences. Therefore each sequence p(1), . . . , p(T ) of swap regret at most
R corresponds to an R/T -correlated equilibrium.

Using this notion, we can rewrite Theorem 5 to the following proposition.

Proposition 1. For every ε-correlated equilibrium π and for every δ > 0 the
probability that user i sends successfully is at least

Prp∼π [(1− δ)p∗ ≤ p ≤ (1 + δ)p∗] fi ((1 + δ)p∗i )
fi ((1− δ)p∗i )

− ε

fi ((1 − δ)p∗i )
.

To prove the proposition, we consider the switching operation where powers in
the interval [(1 − δ)p∗i , (1 + δ)p∗i ] are exchanged by (1 + δ)p∗i . We then use the
fact that after switching the user would always be successful unless the other
users choose powers p−i > (1+δ)p∗−i. Since π is an ε-correlated equilibrium, this
operation can increase the expected utility by at most ε. Therefore the expected
utility before the switch and this way also the success probablity cannot be too
small.

It remains to bound the probability Prp∼π [(1− δ)p∗ ≤ p ≤ (1 + δ)p∗]. For
this purpose, we bound the probability mass of states p with p �≤ (1 + δ)p∗ in
Lemma 1 and of the ones with p �≥ (1− δ)p∗ in Lemma 3. This way, we get the
desired bound by

Prp∼π [(1− δ)p∗ ≤ p ≤ (1 + δ)p∗]
= 1−Prp∼π [p �≥ (1− δ)p∗]−Prp∼π [p �≤ (1 + δ)p∗] .

The general proof ideas work as follows. In order to bound Prp∼π [p �≤ (1 + δ)p∗],
we consider which probability mass can at most lie on vectors p such that
for some user i, we have pi > (C · pmax + (1 + δ/2) · η)i. This probability mass
is bounded, because user i could instead always use power (C · pmax + η)i, as this
is the maximum power needed to compensate the interference in the case that
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p−i = pmax
−i . We then proceed in a similar way always using the bound obtained

before until we reach a point component-wise smaller than (1+ δ)p∗. The bound
on Prp∼π [p �≥ (1− δ)p∗] works in a similar way.

To see which probability mass lies on states by a factor δ away from the fixed
point p∗, we will now consider how much probability mass can at most lie on
states p �≤ (1 + δ)p∗. Afterwards, we will do the same for p �≥ (1 − δ)p∗.
Lemma 1. Let π be an ε-correlated equilibrium for some ε ≥ 0. Then for all
δ > 0, we can bound the probability that p �≤ (1 + δ)p∗ is chosen by

Prp∼π [p �≤ (1 + δ)p∗] ≤ ε
(
n

δ
max
i∈[n]

2
siηi

+ 2
)T+1

where T =
log δ4 − log maxi∈[n]

∣
∣
∣
∣
pmaxi

(1+ δ2 )p∗i

∣
∣
∣
∣

log maxi∈[n]

∣
∣
∣1− ηip∗

i

∣
∣
∣

,

where si denotes the minimal absolute value of the difference quotient of fi at
any point pi and pi + δ

2ηi.

The probability that vectors below (1− δ) p∗ are chosen can be bounded in
similiar ways. For this, we define r = mini ri, and ri is a lower bound on the
utility of user i at (1 + δ)p∗, i.e., r ≤ mini∈[n] fi((1 + δ)p∗i ).

Lemma 2. Let π be an ε-correlated equilibrium for some ε ≥ 0. Then for all
δ > 0, we can bound the probability that p �≥ (1− δ)p∗ is chosen by

Prp∼π [p �≥ (1− δ)p∗] ≤
(
ε

1− r + Prp∼π [p �≤ (1 + δ)p∗]
)(n

r

)T ′+1

where T ′ = log δ

log maxi∈[n]

∣
∣
∣1− ηip∗

i

∣
∣
∣
.

Having already found a bound for Prp∼π [p �≤ (1 + δ)p∗] in Lemma 1, we can
directly conclude the following.

Lemma 3. Given an ε-correlated equilibrium and ui(pmax) ≥ r = 1
2 for all

i ∈ [n]. Then for every δ > 0 the probability that a vector p �≥ (1− δ)p∗ is chosen
is at most

Prp∼π [p �≥ (1− δ)p∗] ≤ ε
(

2 +
(
n

δ
max
i∈[n]

2
siηi

+ 2
)T+1

)

(2n)T
′+1

with T ′ = log δ

log maxi∈[n]

∣
∣
∣1− ηip∗

i

∣
∣
∣

and T =
log δ4 − log maxi∈[n]

∣
∣
∣
∣
pmaxi

(1+ δ2 )p∗i

∣
∣
∣
∣

log maxi∈[n]

∣
∣
∣1− ηip∗

i

∣
∣
∣

.
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Combining Lemma 1 and 3, we get an upper bound on
Prp∼π [(1− δ)p∗ ≤ p ≤ (1 + δ)p∗]. For appropriately chosen δ, this bound and
Proposition 1 yield that the success probability converges to 1 as ε approaches
0. This also yields that in each no-swap-regret sequence for each user the limit
of the fraction of successful steps is 1. Furthermore, the chosen powers also have
to converge to p∗.

6 Discussion and Open Problems

In this paper, we studied two distributed power control algorithms. We obtained
the first quantitative bounds on how long it takes in the FM iteration until
the SINR is close to its target value. Furthermore a novel approach based on
regret learning was presented. It overcomes some major drawbacks of the FM
iteration. It is robust against users that deviate from the protocol and it still
converges in a partial-information model, where the achieved SINR is not known.
For no-swap-regret algorithms the convergence of the regret-learning approach
is guaranteed.

Considering general no-swap-regret sequences is only a weak assumption and
therefore the obtained bounds are not as good as the ones of the FM iteration.
This yields a perspective for possible future work. An algorithm particular for
power control could be designed based on the regret-learning approach presented
in this paper.

Another aspect to be considered in future work could be discretization of the
power levels. The standard assumption is that users can choose arbitrary real
numbers as powers. In realistic devices this assumption might not be applicable.
To the best of our knowledge, the additional challenges arising in this case have
not been considered so far.
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Abstract. Given a set of n mobile robots in the d-dimensional Eu-
clidean space, the goal is to let them converge to a single not predefined
point. The challenge is that the robots are limited in their capabilities.
Robots can, upon activation, compute the positions of all other robots
using an individual affine coordinate system. The robots are indistin-
guishable, oblivious and may have different affine coordinate systems.
A very general discrete time model assumes that robots are activated
in arbitrary order. Further, the computation of a new target point may
happen much earlier than the movement, so that the movement is based
on outdated information about other robot’s positions. Time is measured
as the number of rounds, where a round ends as soon as each robot has
moved at least once. In [6], the Center of Gravity is considered as target
function, convergence was proven, and the number of rounds needed for
halving the diameter of the convex hull of the robot’s positions was shown
to be O(n2) and Ω(n). We present an easy-to-check property of target
functions that guarantee convergence and yields upper time bounds. This
property intuitively says that when a robot computes a new target point,
this point is significantly within the current axes aligned minimal box
containing all robots. This property holds, e.g., for the above-mentioned
target function, and improves the above O(n2) to an asymptotically opti-
mal O(n) upper bound. Our technique also yields a constant time bound
for a target function that requires all robots having identical coordinate
axes.

1 Introduction

Over the last decade there has been a growing interest in problems related to the
creation of formations by autonomous robots. Given n robots in the Euclidean
space Rd, one of the most intuitive problems is to consider their goal to converge
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to a common point. This convergence problem is widely examined under various
assumptions about the capabilities of the robots and the time model. In this pa-
per, we assume the Look-Compute-Move model (LCM model) [6,15,19,18].
Therein, each robot performs a sequence of cycles, where each cycle consists of
three distinct instantaneous operations, namely Look (observe the current posi-
tions of all robots), Compute (use some target function to compute a new target
point from the observed robot positions) and Move (move towards the target
point) in this order. We use the most general time model (the asynchronous
model), which does not assume any coupling of the LCM steps of different
robots. As a consequence of this asynchronism, many operations of other robots
can take place between the Look- and the Move-operation of the same cycle of
a robot so that the current positions may have substantially changed, compared
to the formerly observed positions that were used as input to the target function.
Runtime is measured in terms of rounds. A round ends as soon as all robots have
executed at least one complete LCM cycle since the end of the previous round.

This convergence problem is widely considered in literature. The main known
results use the robots’ Center of Gravity (CoG) as target function. We sub-
classify the models by their movement details: In the LCM∞ model, the robots
always exactly reach their target points during the Move operation. In the
LCMS model, the movement towards the target might alternatively stop but
covers at least some fixed distance S > 0. Cohen and Peleg [6] showed upper
bounds of O(n2) for the LCM∞ model, and O(n2 + n h

S ) for the LCMS model,
bounding the number of rounds needed for halving the diameter of the set con-
taining the robot positions and target points, assuming an initial diameter h. In
addition, they present an Ω(n) lower bound for both models.

1.1 Our Contribution

We present a general upper bound for a parametrized class of target functions.
The key characteristic of the robots’ target function, which we introduce and
analyze in this paper, is the δ-inner property for a parameter δ ∈ (0, 1

2 ]: For
a time step t, consider the minimal axes aligned box B(t) := minbox(P (t))
containing all current robot positions. The δ-inner of B(t) is the axes aligned
box included in B(t) with distance δ · Dk(t) to the two boundaries of B(t) in
dimension k, 1 ≤ k ≤ d. D1(t), . . . , Dk(t) denote the side lengths of B(t).

Definition 1. A robot’s target function has the δ-inner property, if the target
point computed by the robot at time t always lies in the δ-inner of minbox(P (t)).

We provide proofs of convergence and runtime bounds depending on δ for all
target functions that fulfill the δ-inner property. For different robots and even
different time steps, the target functions may be different. For the LCM∞ model
we prove an upper bound of O(1

δ ) and for the LCMS model of O(1
δ + Dmax

Sδ ),
where Dmax denotes the maximum diameter of the set of all robot positions
and target points. Since the Center of Gravity has the 1/n-inner property, this
yields an optimal O(n) upper bound for the LCM∞ model, and an improved
O(n+n h

S ) upper bound for the LCMS model, with h as the initial diameter. As
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Fig. 1. Exemplary scenario at a time t: • marks robot positions, × target points

a further simple application, we present the Center-of-Minbox target function,
prove that it has the 1/2-inner property, and conclude a constant runtime bound.
Note that this strategy assumes equally aligned coordinate axes at all robots
(however, orientation and order may vary).

1.2 Ours and Other’s Models

For our analysis we use the initially mentioned LCM model in which each robot
operates individually by repeating the same three step algorithm, consisting of
a Look-, a Compute-, and a Move-operation (LCM) like in [6]. The time
model for our analysis is the asynchronous time model (ASYNC) [4,6], which
allows the different operations of a robot to be arbitrarily nested with other
robots’ operations. That is, at time t ∈ N, each robot out of an arbitrary subset
performs an operation (Look, Compute, or Move), where different robots may
perform different operations at the same time. This model also includes the more
specific semi-synchronous (SSYNC) [6,18] and full-synchronous (FSYNC) [19]
time models in which some or all robots execute equal operations synchronously.
As an optional restriction to LCM, one can terminate a robot’s motion before it
actually reaches its target point in the Move-operation. For this, we introduce
a sub-classification of the LCM model into two LCM movement models:

– LCM∞: Each robot reaches the target point at the end of its Move-operation.
(This is known as undisturbed-motion in the ASYNC time model in [6].)

– LCMS: Each robot moves on a straight line towards its target point. It either
reaches this point or moves at least a constant distance S. (This is known
as restriction (A2) in [3] and asynchronous sudden-stop model in [6].)

We group the robot activations into cycles and rounds: If a robot completes a
Look-, Compute-, and Move-operation we call this a cycle. We assume that
two consecutive cycles of a robot take place within finite time. (Note that this
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also implies that no robot crashes.) Starting at any time we call a sequence of
cycles a round at the earliest point in time when all robots have performed at
least one complete cycle. We count the number of rounds to state the runtime
bounds. Note that, as long as the target function solely depends on the data
observed in the previous Look operation, it does not make any difference when
exactly the Compute operation takes place. We will therefore usually assume
that the Compute-operation is performed directly after the Look-operation,
and we will refer to this combined operation by the update of a robot’s target
point. This unification simplifies the terminology and notation, but it does not
alter the behavior of the algorithm and yields the same results.

Notations. For a robot i ∈ R from the set of robots R := {1, . . . , n} and a time
t ∈ N, we denote its position in the d-dimensional Euclidean space by pi(t) ∈ Rd

and its target point from its last Compute-operation by ci(t) ∈ Rd, both after
applying any current operations. Further, the set of all robots’ positions at time
t is denoted by P (t) and the set of all target points by C(t).

In our analysis, we fix some arbitrary coordinate system. For a given fi-
nite point set A ⊂ Rd, we denote by minbox(A) the minimum bounding d-
dimensional hyperbox that is axis-parallel to our chosen coordinate system and
contains A. Note that the convex hull conv(A) is always contained inside the usu-
ally significantly larger minbox. In particular, we are interested in minbox(P (t)∪
C(t)). Its side length in dimension k is Dk(t), 1 ≤ k ≤ d.

The crucial notion for our following analysis is the term of the δ-inner of a
minbox for some fixed δ ∈ (0, 1

2 ]. Here, for a minbox M its δ-inner denotes the
box’ subset that is retrieved by scaling M down to factor (1 − 2δ) with fixed
center. This also defines the δ-border as the boundary region that is created by
subtracting the δ-inner from M . In the projection onto some coordinate axis k,
this yields a lower and an upper δ-border of length δ · Dk, each.

Recall that a target function of a robot i has the δ-inner property if a target
computed by i at time t lies in the δ-inner of minbox(P (t)). Our analysis will be
based on the δ/2-inner of minbox(P (t)∪C(t)). We use the following notations for
the outer half of the δ-border, corresponding to the individual dimensions. For
minbox(P (t)∪C(t)) =: [a1(t), b1(t)]× . . .× [ad(t), bd(t)] we denote the lower δ/2-
border of dimension k by ΔL,k(t) =

[
ak(t), ak(t) + δ

2 · Dk(t)
)

and analogously
the upper δ/2-border of dimension k by ΔU,k(t) =

(
bk(t) − δ

2 · bk(t), bk(t)
]
. We

call a subset of Rd to be empty if it contains neither a robot nor any target point.
For any time t, RLook(t) consists of the robots that are currently performing their
Look-operations, alike RMove(t) the robots performing their Move-operations.

1.3 Related Work

Our work closes the convergence speed gap of the Center of Gravity algorithm by
Cohen and Peleg [5,6]. There, the authors analyze an algorithm where each robot
computes the Center of Gravity of all robot positions as its target point. This
algorithm is analyzed in the asynchronous time model (ASYNC) and results are
upper bounds of O(n2) rounds in the LCM∞ model and of O(n2 + nh

S ) rounds
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in the LCMS model, with S as the minimal step length and h as the initial
diameter of the set of robots. Counted is the number of rounds until the convex
hull of the robot positions is halved in each dimension. This is one of the rare
examples with stated runtime bounds for a formation problem.

An also well studied but harder variant of the convergence problem is the
gathering problem. There, the robots do not only need to converge to a point,
but actually reach this point. For the gathering as well as for the convergence
problem, most available work investigates which robot capabilities are crucial in
which time model to achieve convergence or gathering [2,6,7] or that are handy
to simplify a problem’s instance ([12] uses a common coordinate system). Those
capabilities are for example memory in contrast to obliviousness, orientation
to have common coordinate systems, identities to enable robot distinctions, or
multiplicity-detection to discover whether several robots occupy a used position.

Concerning results without runtime bounds, [11] states that anonymous robots,
which are disoriented, oblivious, and cannot communicate with each other can
gather in SSYNC if and only if the number of robots is odd. The problem of hav-
ing inaccurate compasses as a challenge for two robots is discussed in [17]. [14] in-
vestigates local compasses that vary over time. Another focus are negative results
for gathering, e.g. see [16]. If at least one robot behaves maliciously, gathering is
only possible with at least three robots in total [1]. In [9] the authors equip robots
with an extent and face the challenge that robots’ views can be blocked by other
robots. All these results are stated without runtime bounds.

A recent result with stated runtime bounds for the gathering problem with
robots that have an extent was given in [8]. For gathering with limited visibility,
a recent algorithm with runtime bounds is due to Degener et al. [10]. Further,
the authors in [13] point out that having an algorithm without any assumptions
on the robots leads to an exponential lower bound for randomized algorithms
for gathering; also they propose a linear time gathering algorithm on the base of
multiplicity detection. However, in contrast to our work, randomization is used.

1.4 Organization of the Paper

At first we present insights into the progress achieved during one round by using
a δ-inner target function. These insights bring out runtime bounds for LCM∞
and LCMS in Sections 2.1 and 2.2. Applications in Sections 3 and 4 then yield
runtime bounds for the Center of Gravity and the Center of Minbox algorithms.

2 Convergence Speed of δ-inner Target Functions

By convergence speed we denote the number of rounds that are needed for halv-
ing the diameter along each dimension of the minbox around all robot positions
and target points. In this section, we present bounds for the worst-case conver-
gence speed for algorithms that fulfill the δ-inner property. Here, we handle each
LCM movement model separately, since it turns out that LCM∞ can directly
be managed by our technique, whereas LCMS needs more geometric arguments.
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Lemma 1 (Monotonicity). Let M(t) := minbox(P (t) ∪ C(t)) and t < t′ be
two points in time. Then it holds: M(t) ⊇ M(t′)

Proof. Let t′ be the first time when some robot i becomes active after time t.
If i computes a new target point c, this c lies in the δ-inner of minbox(P (t)),
which is included in M(t). If i moves, then it moves towards ci(t) ∈ C(t). By
convexity of a minbox, i never leaves M(t). ��
The following lemma carries out the essential idea for our proof. We fix a dimen-
sion and analyze the projection of the robot positions and target points onto
it. Whenever there is some robot calculating a target point in one of the two
δ/2-border segments for this dimension, and later there is some further robot
calculating a target point in the other δ/2-border segment, then the previous
segment can no longer contain any robot or target point, i.e., it is empty; this
is the previously mentioned migration process. Let t0 be a fixed time, we define
ΔL := ΔL,k(t0) and ΔU := ΔU,k(t0). Remember that this corresponds to the
respective outer half of the δ-border.

Lemma 2 (Migration). Let R = {1, . . . , n} be a set of robots in the asyn-
chronous LCM∞ model with δ-inner target functions. For a fixed dimension k
consider the scenario’s projection onto the k’th coordinate axis. Let t0 ≤ tL ≤ tU
be points in time and assume diam(minbox(P (t0) ∪ C(t0))) > 0. If there is

1. a robot i ∈ R that updates its target point at time tL to ci(tL) ∈ ΔL and
2. a robot j ∈ R that updates its target point at time tU to cj(tU ) ∈ ΔU

then ΔL is empty at time tU . The same holds for ΔL,k(t0) and ΔU,k(t0) swapped.

Proof. Consider the projection of all robot positions and target points at time t0
onto coordinate axis k. Their smallest enclosing interval at this axis is denoted
by [a, b]. Further, we define HL as the lower half and HU as the upper half of
this interval, both excluding the center position.

Since i updates its target point at time tL to ci(tL) ∈ ΔL, we get by the
δ-inner property that the δ-inner of all current robot positions at time tL must
intersect ΔL. As the robots cannot leave [a, b] by geometric argument all robots
are in HL at time tL. Alike, at time tU all robots are in HU and by HL∩HU = ∅
we get tU > tL.

Our claim is that after period [tL, tU ] the interval ΔL contains neither any
robot position nor any target point. For any time t we define the set L(t) :=
{i ∈ R | ci(t) ∈ ΔL}. As ΔL ∩ HU = ∅ and hence no robot is in ΔL at time tU ,
it remains to show that L(tU ) is empty.

Let t̂ ∈ (tL, tU ] be the earliest point in time such that for all t ∈ [t̂, tU ] at
least one robot is in HU . (Note that tU fulfills this constraint and hence t̂ is
well-defined.) We have that in period [t̂, tU ] the δ-inner of the robot positions is
disjoint to ΔL and hence no robot’s update at any time t ∈ [t̂, tU ] can result in
a target point in ΔL. Thus it is for all t ∈ [t̂, tU ] : L(t) ⊆ L(t̂).

Finally, consider L(t̂): Since by choice t̂ is minimal, no robot is in HU at time
t̂ − 1. Further, a robot that enters HU at time t̂ must come from outside of HU
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and has a target point c(t̂) in HU . So it cannot be contained in L(t). By this we
characterize all robots r ∈ L(t̂) to have pr(t̂) /∈ HU and cr(t̂) ∈ ΔL.

Since each robot from L(tU ) moves to HU in period (t̂, tU ]—which is the so
called migration process—each robot from L(t̂) recalculates its target point to
a point in HU and by this to a point outside of ΔL. With the former monotony
argument of L(t) we get L(tU ) = ∅ and thus, ΔL is empty at time tU . ��
We conclude the following Main Lemma which shows that the minbox of robot
positions and target points shrinks in every round. It says that after one round,
either one of the δ/2-borders is empty (in each dimension), or the robots from
one of the borders compute a target point in the δ/2-inner of the box and move
towards it. Both cases reduce the size of the minbox.

Main Lemma 1. In the asynchronous LCM model, after any round starting
at time t0 it holds for any dimension k with Dk(t0) > 0: Either ΔL or ΔU is
empty or, for at least one of both intervals, no target point is computed in this
interval during the entire round.

Proof. If for one of the two intervals ΔL and ΔU it holds that no target point is
computed in the interval during the entire round, the lemma follows. Otherwise,
we can apply Lemma 2: At the time where the target point is computed in the
second interval, the first interval is empty. Because of the monotonicity of the
minbox of target points and robot positions (Lemma 1), no target point will ever
be computed in this interval again. ��
Fact 1. Let a function f : N → R≥0 satisfy the following recursion for some
fixed c ∈ (0, 1]: f(k + 1) ≤ (1 − c) · f(k), for k > 0 and arbitrary f(0) ∈ R≥0.

Then, for all k ∈ N : f(k + α) ≤ 1
2 · f(k) for α :=

⌈
1

c·log2(e)

⌉
∈ O(1

c ).

Our strategy is to show the recursion Dk(tend) ≤ (1 − c) · Dk(tstart) for each
round [tstart, tend] and c ∈ (0, 1] separately in each dimension k, from which we
can derive the convergence speed O(1

c ) for halving along this dimension.

2.1 Convergence Speed in the Asynchronous LCM∞ Model

We first consider the number of rounds needed until one of the minbox’ δ/2-
borders is empty. Second, by this number we bound the total convergence time.

Lemma 3. In the asynchronous LCM∞ model with δ-inner target functions,
after any round in the time interval [tstart, tend] it holds for any dimension k
with Dk(tstart) > 0 that ΔL := ΔL,k(tstart) or ΔU := ΔU,k(tstart) is empty.

Proof. Assume ΔL and ΔU both being not empty at time tend. The Main Lemma
gives us that in one of both intervals, w.l.o.g. assume in ΔL, no target point is
calculated during the complete round. Since all robots perform at least one cycle,
they calculate a target point outside of ΔL and then have to leave ΔL to reach
it in the subsequent Move-operation. Further, they cannot re-enter ΔL until
the end of the round without recalculating a target point in ΔL. Hence, ΔL is
empty at the end of the round. ��
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Theorem 1. In the asynchronous LCM∞ model with δ-inner target functions,
after each round the diameter of the minbox around all robot positions and target
points is halved in each dimension separately after O(1/δ) rounds.

Proof. Fix any dimension k and any round at time interval [tstart, tend]. By
Lemma 3, ΔL or ΔU is empty at time tend. Since it is |ΔL| = |ΔU | = δ

2 ·Dk(tstart)
we get: Dk(tend) ≤ (1 − δ

2 ) · Dk(tstart). According to Fact 1, Dk is halved after
O(1/δ) rounds. ��
Remark 1. The given worst-case runtime bound from Theorem 1 is even tight:
By application of a similar construction as in [6] for δ-inner target functions, we
can get scenarios for which Ω(1/δ) rounds are needed for halving the diameter
in the worst-case. This leads to the tight worst-case runtime bound of Θ(1/δ) in
the LCM∞ model.

2.2 Convergence Speed in Asynchronous LCMS Model

A similar construction can be used to prove the convergence speed in the LCMS

model. Here, let S > 0 denote the fixed minimum distance that any robot moves
during its Move-operation, if it does not reach its target point. Dmax denotes
the maximum distance between any two robot positions and target points at any
time. We have for δ-inner target functions, Dmax ≤ diam(minbox(P (0) ∪ C(0)).

Lemma 4. In the asynchronous LCMS model with δ-inner target functions,
after any round at time interval [tstart, tend], it holds for every dimension k
with Dk(tstart) > 0 that at least one of the following two intervals is empty:
ΓL := [ak(tstart), ak(tstart) + β) or ΓU := (bk(tstart) − β, bk(tstart)] with β :=
min{1, S

Dmax
} · |ΔL,k(tstart)|.

Proof. Set ΔL := ΔL,k(tstart) and ΔU := ΔU,k(tstart). By Lemma 2 we get that
if during this round some target points are calculated in ΔL and ΔU , then one
of both intervals is empty at the end. The claim follows with ΔL ⊇ ΓL and
ΔU ⊇ ΓU .

Now assume that in one of the intervals, w.l.o.g. assume this to be ΔL, no
target point is calculated during the whole round. So it holds for all time points
t ∈ [tstart, tend] and for all robots r ∈ RLook(t) that cr,k(t) /∈ ΔL. Since all
robots perform at least one update during this round, at time tend no robot’s
target point is in ΔL. Hence, at time tend the interval ΔL is either empty or it
contains robot positions only but no target points.

Set E := {r ∈ R | pr,k(tend) ∈ ΔL}. We already know that cr,k(tend) /∈ ΔL.
Thus, all robots in E performed their last movement inside ΔL towards an
unreached target point outside ΔL, thus, by a distance of at least S.

Next, we analyze these movements in their projection onto coordinate axis k,
where we are interested in lower-bounding the minimum final position ak(tend) =
min{pi,k(tend) | i ∈ E} = ak(tstart) + γ for some γ > 0, by determining the
minimal possible increasement γ. Although the movement was by a distance
of at least S, in the projection onto this coordinate axis it might be γ � S.
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However, γ cannot be arbitrary small. In fact, by geometric arguments, γ is
minimal in the following scenario: Let the robot i perform the update of its last
cycle in this round at time t0 at position pi(t0) := (a1(tstart), . . . , ad(tstart)) and
let it calculate the target point ci(t0) := (z1, . . . , zd) /∈ ΔL with:

zl =

{
bl − δ · Dk+1(tstart) k �= l

ak(tstart) + |ΔL| k = l

This zl is along dimension k the lowest possible target point outside of ΔL, while
yielding the lowest possible increasement along this dimension during the next
move. Here most of the contribution of its move distance S is hidden in the other
d − 1 dimensions. By this, pi(tend) is minimal. The Intercept Theorem gives:

γ

|ΔL| =
S

|ci(t0) − pi(t0)| ⇒ γ =
|ΔL| · S

|ci(t0) − pi(t0)| >
|ΔL| · S
Dmax

In case of γ < |ΔL| we get for all robots r ∈ R that pr,k(tend) ≥ pi,k(tend) ≥
ak(tstart) + γ > ak(tstart) + |ΔL|·S

Dmax
and for the target points cr,k(tend) /∈ ΔL.

Thus, ΓL is empty at time tend.
In case of γ ≥ |ΔL| we get for all robots r ∈ R that pr,k(tend) ≥ ak(tstart) +

|ΔL| and again cr,k(tend) /∈ ΔL. Thus, ΔL ⊇ ΓL is empty at time tend. ��
Theorem 2. During each round in the asynchronous LCMS model with δ-inner
target functions, the diameter of the minbox around all target points and robot
positions is halved in all dimensions separately after O(1

δ + Dmax

δ·S ) rounds.

Proof. For any fixed round, consider the time interval [tstart, tend] that exactly
limits this round. Lemma 4 gives:

Dk(tend) ≤
{

(1 − δ
2 ) · Dk(tstart) , ΔL or ΔU is empty at time tend

(1 − δ·S
2·Dmax

) · Dk(tstart) , otherwise

Hence, hk is halved after at most O(1
δ + Dmax

δ·S ) rounds. ��

3 Runtime of the Center of Gravity Algorithm

In this section we apply our analysis to a specific δ-inner target function, namely
the Center of Gravity. This is a straight-forward approach for solving the con-
vergence problem by computing the average point of the robot positions as next
target point: c = 1

n

∑
r∈R pr. Its previously best known runtime bound in asyn-

chronous LCM∞ is O(n2), in LCMS it is O(n2 + n h
S ), where h is the initial

diameter of the convex hull of the robot positions and target points [6]. Its
definition implicitly claims that the robots have the ability of multiplicity detec-
tion, i.e., they can distinguish multiple robots that currently stay at the same
position. A similar formulation is available without multiplicity detection as
c = 1

|P (t)|
∑

p∈P (t) p. In contrast to [6] our results apply for both alternatives.
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For calculating this target function, robots need only very weak capabilities:
They may be oblivious, indistinguishable, have no communication, and we even
allow any individual affine local coordinate systems for their local views.

Lemma 5. For n robots in Rd with any affine individual robots’ coordinate sys-
tems, the Center of Gravity with/without multiplicity detection is 1/n-inner.

Proof. Since the Center of Gravity c = 1
n

∑n
i=1 pi is globally unique, it is suf-

ficient to show the 1/n-innerness for any arbitrary fixed dimension k of some
global coordinate system. For such a k let interval [ak, bk] denote the minbox’
expanse along dimension k and ck the Center of Gravity’s projection onto di-
mension k. With a robot j at position bk, we have for the lower δ-border:

ck − ak =
1
n

n∑
i=1

(pi,k − ak) ≥ 1
n

(pj,k − ak) =
1
n

(bk − ak)

Note that the 1/n-innerness also holds without multiplicity detection, since only
one robot at the minbox’ borders is needed, each. ��
By having proven the 1/n-inner property of the Center of Gravity algorithm we
now may apply the former convergence and runtime results.
Theorem 3. Consider n robots with the Center of Gravity target function and h
as the diameter of the initial convex hull of the robot positions and target points.

1. In the LCM∞ model, diam(P ∪ C) is halved within O(n) rounds.
2. In the LCMS model, diam(P ∪ C) is halved within O(n + n · h

S ) rounds.

Proof. Having the 1/n-inner property for the Center of Gravity target function
from the previous lemma, we get the convergence speed from Section 2. In par-
ticular, we get a runtime of O(n) rounds for the LCM∞ model from Theorem 1.
For the LCMS model with minimum movement S we get O(n+n · Dmax

S ) rounds
(Theorem 2). Further, for the Center of Gravity it holds Dmax ≤ h. ��
In [6] a scenario construction was presented for which Center of Gravity in
asynchronous LCM∞ requires Ω(n) rounds for halving the diameter. By that
lower bound and our upper bound we close the gap to a tight worst-case bound.
This lower-bound construction also applies to SSYNC and LCMS .

4 The Center of Minbox Algorithm

A second target function that fulfills the δ-inner property is the Center of Minbox.
For this, we fix coordinate system axes that are used by all robots. We also use
these axes for the definition of the minboxes. For the Center of Minbox algorithm,
a robot always chooses the center of minbox(P (t)) as target point. Obviously,
this target function is 1/2-inner. By our techniques we obtain:

Theorem 4. Consider n robots with the Center of Minbox target function. Let
h be the diameter of the minbox of robot positions and target points at time 0.

1. In the LCM∞ model, the diameter of P ∪ C is halved within O(1) rounds.
2. In the LCMS model, the diameter of P ∪C is halved within O(1+ h

S ) rounds.
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5 Conclusion and Outlook

We introduced a novel method to analyze the convergence property and speed
of target functions that fulfill the δ-inner property. By this method, we changed
the perspective from the analysis of specific algorithms and robot interactions
to the properties of a target function itself. This enabled us to handle a whole
class of various models and combinations of robot capabilities at once, where we
even allow the robots to be inhomogeneous. Besides a broader application and
a simpler analysis this enabled us to improve runtime estimations and to state
a tight worst-case runtime bound for the Center of Gravity algorithm of Θ(n).

Convergence of mobile robots with δ-inner target functions can even be shown
in a very general setting, when exchanging the minimal movement distance S by
a simple fairness assumption: A robot that wants to move a finite distance must
be able to do this in a finite number of steps. Although it is not possible to give
runtime bounds in this setting (minimal robot movements are not guaranteed),
our technique can still be used to show that the robots converge to one point.

One can think of various other properties than the δ-inner property, which are
also worthwhile to be studied by our approach. For example, let the lower/upper
replace-bounds describe the sensitivity of the target point when a single robot is
displaced by some distance ε > 0. For the Center of Gravity it holds that lower
replace bound = upper replace bound = ε/n, which seems to be a very special
characteristic compared to other target points, and which is implicitly used for
the convergence proof in [6]. Any proof for the Center of Gravity that makes use
of this specific characteristic cannot simply be transferred to other target func-
tions, or to the Center of Gravity without multiplicity detection, since its lower
replace-bound is zero. An exhaustive classification of target points according to
various properties might lead to deeper insights into their characteristics, and
allow to intentionally choose appropriate properties for the analysis.
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Elsässer, Robert I-171
Ene, Alina I-354
Epstein, Leah I-195
Etessami, Kousha II-332

Farzan, Arash I-268
Faust, Sebastian I-391
Feige, Uriel I-486
Feldman, Moran I-342
Fertin, Guillaume I-654
Fiat, Amos I-690
Filmus, Yuval I-618



664 Author Index

Fischer, Diana II-404
Fischer, Matthias II-650
Fortnow, Lance I-569
Fouz, Mahmoud I-147, II-502
Friedman, Luke I-293

Galesi, Nicola I-630
Garćıa-Soriano, David I-545
Garg, Naveen I-232
Gasarch, William I-293
Ge, Rong I-403
Geeraerts, Gilles II-416
Goldberg, Andrew V. I-690
Goldberg, Leslie Ann I-521
Goodrich, Michael T. II-576
Gotsman, Alexey II-453
Grigorescu, Elena I-760
Guha, Sudipto II-526
Guo, Heng I-712
Gurvich, Vladimir I-147
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