

Lecture Notes in Computer Science 6755
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA

Luca Aceto Monika Henzinger
Jiří Sgall (Eds.)

Automata, Languages
and Programming

38th International Colloquium, ICALP 2011
Zurich, Switzerland, July 4-8, 2011
Proceedings, Part I

13

Volume Editors

Luca Aceto
Reykjavik University, School of Computer Science
101 Reykjavík, Iceland
E-mail: luca@ru.is

Monika Henzinger
Universität Wien, Fakultät für Informatik
Universitätsstraße10/9, 1090 Wien, Österreich
E-mail: monika.henzinger@univie.ac.at

Jiří Sgall
Charles University, Department of Applied Mathematics
Malostranské nám. 25, 118 00 Praha 1, Czech Republic
E-mail: sgall@kam.mff.cuni.cz

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-22005-0 e-ISBN 978-3-642-22006-7
DOI 10.1007/978-3-642-22006-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011930001

CR Subject Classification (1998): F.2, F.1, C.2, H.3, G.2, I.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

ICALP 2011, the 38th edition of the International Colloquium on Automata,
Languages and Programming, was held in Zürich, Switzerland, during July
4–8, 2011. ICALP is a series of annual conferences of the European Association
for Theoretical Computer Science (EATCS) which first took place in 1972. This
year, the ICALP program consisted of three tracks: the established Track A
(focusing on Algorithms, Complexity and Games) and Track B (focusing on
Logic, Semantics, Automata and Theory of Programming), and a Track C fo-
cusing on Foundations of Networked Computation: Models, Algorithms and
Information Management.

In response to the call for papers, the Program Committee received 398 sub-
missions: 243 for Track A (three of which were later withdrawn), 103 for Track B
and 52 for Track C. Out of these, 114 papers were selected for inclusion in the
scientific program: 68 papers for Track A, 29 for Track B, and 17 for Track C.
The selection was made by the Program Committees based on originality, qual-
ity, and relevance to theoretical computer science. The quality of the manuscripts
was very high indeed, and many deserving papers could not be selected.

The EATCS sponsored both a best paper and a best student paper (all au-
thors are students) award for each of the three tracks, to be selected by the
Program Committees. The best paper awards were given to Malte Beecken, Jo-
hannes Mittmann, and Nitin Saxena for their paper “Algebraic Independence
and Blackbox Identity Testing” (Track A), to Olivier Carton, Thomas Colcom-
bet, and Gabriele Puppis for their paper “Regular Languages of Words Over
Countable Linear Orderings” (Track B), and to Martin Hoefer for his paper “Lo-
cal Matching Dynamics in Social Networks” (Track C). The best student paper
awards were given to Shi Li for his paper “A 1.488-Approximation Algorithm
for the Uncapacitated Facility Location Problem” (Track A), to Martin Dela-
court for his paper “Rice’s Theorem for mu-Limit Sets of Cellular Automata”
(Track B), and to Shiri Chechik for her paper “Fault-Tolerant Compact Routing
Schemes for General Graphs” (Track C).

ICALP 2011 consisted of five invited lectures and the contributed papers.
This volume of the proceedings contains all contributed papers from Track A,
except for the two papers that received one of the best paper awards. These
two papers are contained in a companion volume, together with all contributed
papers from Track B and Track C, and the papers by four of the invited speakers:
Rajeev Alur (University of Pennsylvania, USA), Thore Husfeldt (IT University of
Copenhagen, Denmark), Catuscia Palamidessi (INRIA Saclay and LIX, France),
and Ronen Shaltiel (University of Haifa, Israel). The program had an additional
invited lecture by Éva Tardos (Cornell University, USA), which does not appear
in the proceedings.

VI Preface

The following workshops were held as satellite events of ICALP 2011:
GA - Graph algorithms and Applications
GT - Group Testing
DCM - 7th International Workshop on Developments of Computational Models
SDKB - 5th International Workshop on Semantics in Data and Knowledge Bases

We wish to thank all the authors who submitted extended abstracts for con-
sideration, the Program Committees for their scholarly effort, and all referees
who assisted the Program Committees in the evaluation process.

Thanks to the sponsors (Swiss National Science Foundation and Google)
for their support, and to ETH Zürich for hosting ICALP 2011. We are also
grateful to all members of the Organizing Committee and to their support staff
in the Institute of Theoretical Computer Science at ETH Zürich. The conference-
management system EasyChair was used in handling the submissions and the
electronic Program Committee meeting, as well as in assisting in the assembly
of the proceedings.

May 2011 Luca Aceto
Monika Henzinger

Jǐŕı Sgall

Organization

Program Committee

Track A

Nikhil Bansal IBM Research, USA
Harry Buhrman University of Amsterdam, The Netherlands
Marek Chrobak University of California, Riverside, USA
Martin Dietzfelbinger Ilmenau University of Technology, Germany
Thomas Erlebach University of Leicester, UK
Fedor Fomin University of Bergen, Norway
Dimitris Fotakis National Technical University of Athens, Greece
Ricard Gavaldà UPC Barcelona, Spain
Russell Impagliazzo University of California, San Diego, USA
Juhani Karhumäki University of Turku, Finland
Howard Karloff AT&T Labs–Research, USA
Michal Koucký Academy of Sciences of the Czech Republic,

Czech Republic
Dariusz Kowalski University of Liverpool, UK
Stefano Leonardi Sapienza University of Rome, Italy
Gonzalo Navarro University of Chile, Chile
Rolf Niedermeier Technische Universität Berlin, Germany
Rafail Ostrovsky University of California, Los Angeles, USA
Günter Rote Freie Universität Berlin, Germany
Christian Scheideler University of Paderborn, Germany
Maria Serna UPC Barcelona, Spain
Jǐŕı Sgall Charles University in Prague (Chair),

Czech Republic
Gábor Tardos Simon Fraser University, Canada
Jan Vondrák IBM Research, USA
Uli Wagner ETH Zürich, Switzerland
Prudence Wong University of Liverpool, UK

Track B

Luca Aceto Reykjavik University (Chair), Iceland
Anuj Dawar University of Cambridge, UK
Rocco De Nicola University of Florence, Italy
Zoltán Ésik University of Szeged, Hungary
Wan Fokkink VU University Amsterdam, The Netherlands
Herman Geuvers Radboud University Nijmegen, The Netherlands
Radha Jagadeesan DePaul University, USA

VIII Organization

Jarkko Kari University of Turku, Finland
Joost-Pieter Katoen RWTH Aachen, Germany
Orna Kupferman Hebrew University, Israel
Francois Laroussinie LIAFA, University Paris Diderot, France
Carroll Morgan University of New South Wales, Australia
Anca Muscholl LaBRI, University of Bordeaux, France
Hanne Riis Nielson Technical University of Denmark, Denmark
Prakash Panangaden McGill University, Canada
Joachim Parrow Uppsala University, Sweden
Reinhard Pichler Vienna University of Technology, Austria
Roberto Segala University of Verona, Italy
Helmut Seidl Technische Universität München, Germany
Alex Simpson University of Edinburgh, UK
Pawel Urzyczyn University of Warsaw, Poland

Track C

Gilles Barthe IMDEA Software, Spain
András Benczúr Hungarian Academy of Sciences, Hungary
Edith Cohen AT&T Labs–Research, USA
Joan Feigenbaum Yale University, USA
Amos Fiat Tel-Aviv University, Israel
Lisa Fleischer Dartmouth College, USA
Georg Gottlob Oxford University, UK
Monika Henzinger University of Vienna (Chair), Austria
Bruce Maggs Carnegie Mellon and Duke University, USA
Massimo Merro University of Verona, Italy
Vahab Mirrokni Google Inc., USA
Alessandro Panconesi Sapienza University of Rome, Italy
Giuseppe Persiano University of Salerno, Italy
Anna Philippou University of Cyprus, Cyprus
Davide Sangiorgi University of Bologna, Italy
Vladimiro Sassone University of Southampton, UK
Andrew Tomkins Google Inc., USA
Dorothea Wagner Karlsruhe Institute of Technology, Germany
Roger Wattenhofer ETH Zürich, Switzerland
Ingmar Weber Yahoo! Research Barcelona, Spain

Conference Chairs

Michael Hoffmann ETH Zürich
Juraj Hromkovič ETH Zürich
Ueli Maurer ETH Zürich
Angelika Steger ETH Zürich
Emo Welzl ETH Zürich
Peter Widmayer ETH Zürich

Organization IX

Referees

Farid Ablayev
Lucia Acciai
Pankaj Agarwal
Jae Hyun Ahn
Saeed Alaei
Susanne Albers
Boris Alexeev
Eric Allender
Shaull Almagor
Andris Ambainis
Aris Anagnostopoulos
Alexandr Andoni
Andrea Frosini
Stefan Andrei
Aaron Archer
Argimiro Arratia
Eugene Asarin
James Aspnes
Mohamed Faouzi Atig
Albert Atserias
Jaume Baixeries
Borja Balle
Vince Bárány
Jérémy Barbay
Pablo Barceló
David Mix Barrington
Libor Barto
Mohammadhossein

Bateni
Tugkan Batu
Reinhard Bauer
Mohsen Bayati
Paul Beame
Martin Beaudry
Luca Becchetti
Nicolas Bedon
Piotr Berman
Marco Bernardo
Sandford Bessler
Nadja Betzler
René van Bevern
Umang Bhaskar
Binay Bhattacharya

Marcin Bienkowski
Henrik Björklund
Markus Bläser
Ed Blakey
Jens Blanck
Avrim Blum
Hans-Joachim

Böckenhauer
Andrej Bogdanov
Paolo Boldi
Francesco Bonchi
Marcello Bonsangue
Johannes Borgström
Glencora Borradaile
Patricia Bouyer
Julian Bradfield
Vasco Brattka
Vladimir Braverman
Robert Bredereck
Davide Bresolin
Franck van Breugel
Patrick Briest
Thomas Brihaye
Gerth Stølting Brodal
Václav Brožek
Janusz Brzozowski
Andrei Bulatov
Sebastian Burckhardt
Sergiu Bursuc
Jaroslaw Byrka
Sergio Cabello
Jin-Yi Cai
Gruia Calinescu
Cristian S. Calude
Philippe Camacho
Silvio Capobianco
Alberto Caprara
Venanzio Capretta
Ioannis Caragiannis
Arnaud Carayol
Olivier Carton
Sourav Chakraborty
Ho-Leung Chan

Joseph Chan
Witold Charatonik
Krishnendu Chatterjee
Arkadev Chattopadhyay
Prasad Chebolu
Shiri Chechik
Panagiotis Cheilaris
Jianer Chen
Jiehua Chen
Joe Cheriyan
Sherman S.M. Chow
Tobias Christ
Giorgios Christodoulou
Richard Cleve
Thomas Colcombet
Florin Constantin
Graham Cormode
José Correa
László Csirmaz
Marek Cygan
Artur Czumaj
Victor Dalmau
Peter Damaschke
Philippe Darondeau
Sanjeeb Dash
Samir Datta
Tugrul Dayar
Brian Dean
Aldric Degorre
Alberto Del Pia
Stephanie Delaune
Holger Dell
Giorgio Delzanno
Yuxin Deng
Josee Desharnais
Mariangiola Dezani
Ilias Diakonikolas
Volker Diekert
Michael Dinitz
Laurent Doyen
Feodor Dragan
Martin Dyer
Stefan Dziembowski

X Organization

Josep Dı́az
György Dósa
Jeff Egger
Pavlos Eirinakis
Christian Eisentraut
Tinaz Ekim
Khaled Elbassioni
Michael Elkin
Yuval Emek
Alina Ene
David Eppstein
Leah Epstein
Guy Even
Rolf Fagerberg
Jean Fanchon
Arash Farzan
Tomás Feder
Ingo Feinerer
Michael Fellows
Henning Fernau
Diodato Ferraioli
Esteban Feuerstein
Piotr Filipiuk
Irene Finocchi
Dario Fiore
Luca Fossati
Pierre Fraignaud
Gianmarco

De Francisci Morales
Rusins Freivalds
Tom Friedetzky
Ehud Friedgut
Hongfei Fu
Takuro Fukunaga
Stanley Fung
Joaquim Gabarro
Murdoch Gabbay
Bernd Gärtner
Martin Gairing
Anna Gǎl
Nicola Galesi
Pierre Ganty
Leszek Gasieniec
Serge Gaspers
Qi Ge

Heidi Gebauer
Ran Gelles
Blaise Genest
Chryssis Georgiou
George Giakkoupis
Panos Giannopoulos
Hugo Gimbert
Aristides Gionis
Vasilis Gkatzelis
Rob van Glabbeek
Andreas-Nikolas Gobel
Andreas Goerdt
Leslie Ann Goldberg
Paul Goldberg
Oded Goldreich
Mordecai J. Golin
Petr Golovach
Renato Gomes
Gosta Grahne
Fabrizio Grandoni
Vince Grolmusz
Jan Friso Groote
Romain Grunert
Erich Grädel
Sudipto Guha
Oktay Gunluk
Jiong Guo
Dan Gutfreund
Gregory Gutin
Robert Görke
Annegret Habel
Serge Haddad
Mohammadtaghi

Hajiaghayi
Magnús M. Halldórsson
Sean Hallgren
Nir Halman
Sardouna Hamadou
Xin Han
Chris Hankin
Kristoffer

Arnsfelt Hansen
Nicolas Hanusse
Sariel Har-Peled
Tero Harju

Tobias Harks
Sepp Hartung
Ichiro Hasuo
Pinar Heggernes
Brett Hemenway
Matthew Hennessy
Alejandro Hernandez
Timon Hertli
Jane Hillston
Edward A. Hirsch
Mika Hirvensalo
John Hitchcock
Petr Hliněný
Martin Hoefer
Frank Hoffmann
Thomas Holenstein
Lukas Holik
Wing Kai Hon
Iiro Honkala
Hendrik Jan Hoogeboom
Juraj Hromkovič
Pierre Hyvernat
Falk Hüffner
Martina Hüllmann
Nicole Immorlica
Yuval Ishai
Giuseppe F. Italiano
Szabolcs Iván
Kazuo Iwama
Andreas Jakoby
David N. Jansen
Klaus Jansen
Emmanuel Jeandel
Mark Jerrum
Ranjit Jhala
Albert Xin Jiang
David Johnson
Peter Jonsson
Hossein Jowhari
David Juedes
Joanna J ↪edrzejowicz
Valentine Kabanets
Mark Kambites
Marcin Kamiński
Ohad Kammar

Organization XI

Frank Kammer
Mong-Jen Kao
Alexis Kaporis
Michael Kapralov
George Karakostas
David Karger
Lila Kari
Juha Karkkainen
Dmitriy Katz
Telikepalli Kavitha
Ken-Ichi Kawarabayashi
Bart de Keijzer
Alexander Kesselman
Andrew King
Daniel Kirsten
Tamás Király
Hartmut Klauck
Philip Klein
Marek Klonowski
Christian Knauer
Sebastian Kniesburges
Naoki Kobayashi
Johannes Köbler
Jochen Könemann
Boris Köpf
Pascal Koiran
Stavros Kolliopoulos
Petr Kolman
Christian Komusiewicz
Stavros Konstantinidis
Spyros Kontogiannis
Eryk Kopczynski
Guy Kortsarz
Nitish Korula
Adrian Kosowski
Paraschos Koutris
Andreas Koutsopoulos
�Lukasz Kowalik
Miroslaw Kowaluk
Marcin Kozik
Jan Kraj́ıček
Dieter Kratsch
Robbert Krebbers
Klaus Kriegel

Ravishankar
Krishnaswamy

Andrei Krokhin
Marcus Krug
Piotr Krysta
Manfred Kudlek
Fabian Kuhn
Oliver Kullmann
Ravi Kumar
Gábor Kun
Alexander Kurz
Martin Kutrib
Tomi Kärki
Juha Kärkkäinen
Oded Lachish
Pascal Lafourcade
Tak-Wah Lam
Michael Lampis
Lawrence Larmore
Kasper Green Larsen
S�lawomir Lasota
Diego Latella
Silvio Lattanzi
Lap Chi Lau
Luigi Laura
Lap-Kei Lee
Troy Lee
Erik Jan van Leeuwen
Pietro Di Lena
Jérôme Leroux
Adam Letchford
Peter Leupold
Jian Li
Ugo de’Liguoro
Andrzej Lingas
Ben Lippmeier
Jiamou Liu
Ivana Ljubic
Martin Loebl
Bruno Loff
Markus Lohrey
Daniel Lokshtanov
Sylvain Lombardy
Violetta Lonati

John Longley
Michele Loreti
Antoni Lozano
Alessandro De Luca
Edward Lui
Christof Löding
Benedikt Löwe
Christoph Lüth
Klaus Madlener
Aleksander Madry
Mohammad Mahdian
Hemanta Maji
Konstantin Makarychev
Yury Makarychev
David F. Manlove
Rajsekar Manokaran
Giulio Manzonetto
Martin Mareš
Nicolas Markey
Bruno Marnette
Barnaby Martin
Russell Martin
Conrado Martinez
Dániel Marx
Mieke Massink
Monaldo Mastrolilli
Claire Mathieu
Arie Matsliah
Elvira Mayordomo
Andrew McGregor
Annabelle McIver
Pierre McKenzie
Larissa Meinicke
Daniel Meister
Páll Melsted
Wolfgang Merkle
George B. Mertzios
Stephan Merz
Julián Mestre
Roland Meyer
Tillmann Miltzow
Matteo Mio
Neeldhara Misra
Michael Mitzenmacher

XII Organization

Xavier Molinero
Ashley Montanaro
Georg Moser
Elchanan Mossel
Achour Mostefaoui
David Mount
Haiko Müller
Wolfgang Mulzer
Marcelo Mydlarz
Sebastian A Mödersheim
Rasmus Ejlers Møgelberg
Viswanath Nagarajan
Mark-Jan Nederhof
Alantha Newman
Ilan Newman
Cyril Nicaud
André Nichterlein
Dejan Nickovic
Flemming Nielson
Damian Niwinski
Martin Nöllenburg
Thomas Noll
Gethin Norman
Dirk Nowotka
Zeev Nutov
Jan Obdržálek
Alexander Okhotin
Sergi Oliva
Alexander Olshevsky
Krzysztof Onak
Adrian Onet
Luke Ong
Rotem Oshman
Friedrich Otto
Shayan Oveis Gharan
Scott Owens
Rasmus Pagh
Thomas Pajor
Katarzyna Paluch
Konstantinos

Panagiotou
Debmalya Panigrahi
Charis Papadopoulos
Vicky Papadopoulou
Srinivasan Parthasarathy

Pawel Parys
Francesco Pasquale
Balázs Patkós
Sriram Pemmaraju
Holger Petersen
Ion Petre
Cynthia Phillips
Claudine Picaronny
George Pierrakos
Giovanni Pighizzini
Marcin Pilipczuk
Adolfo Piperno
Giuseppe Pirillo
Nir Piterman
Wojciech Plandowski
Jaco van de Pol
C.K. Poon
Alexandru Popa
Viorel Preoteasa
Christian W. Probst
Kirk Pruhs
Rosario Pugliese
Dömötör Pálvölgyi
Karin Quaas
Jose Quaresma
Femke van Raamsdonk
Alexander Rabinovich
Yuri Rabinovich
Luis Rademacher
Tomasz Radzik
Vijaya Ramachandran
Rajeev Raman
Venkatesh Raman
Narad Rampersad
Julian Rathke
Dror Rawitz
Ran Raz
Igor Razgon
Oded Regev
Klaus Reinhardt
Tzachy Reinman
Michel Reniers
Pierre-Alain Reynier
Mark Reynolds
Michael Rink

Liam Roditty
Heiko Röglin
Dana Ron
Mads Rosendahl
Alexander Russell
Ignaz Rutter
Andrey Rybalchenko
Wojciech Rytter
Harald Räcke
Stefan Rümmele
Joshua Sack
Mert Saglam
Jacques Sakarovitch
Mohammad Salavatipour
Kai Salomaa
Alex Samorodnitsky
Peter Sanders
Miklos Santha
Rahul Santhanam
Rik Sarkar
Saket Saurabh
Vadim Savenkov
Nitin Saxena
Chrstian Schaffner
Dominik Scheder
Marc Scherfenberg
Saul Schleimer
Lena Schlipf
Philippe Schnoebelen
Aleksy Schubert
Warren Schudy
Daria Schymura
Géraud Sénizergues
Marco Serafini
Olivier Serre
Rocco Servedio
C. Seshadhri
Mordechai Shalom
Arpit Sharma
Sarai Sheinvald
Akiyoshi Shioura
David Shmoys
Igor Shparlinski
Amir Shpilka
Anastasios Sidiropoulos

Organization XIII

Mihaela Sighireanu
Pedro V. Silva
Riccardo Silvestri
Hans Ulrich Simon
Sebastian Skritek
Nataliya Skrypnyuk
Martin Skutella
Michael Smith
Christian Sohler
Ana Sokolova
Manuel Sorge
Paul Spirakis
Jeremy Sproston
Jǐŕı Srba
Kannan Srinathan
Juraj Stacho
Julinda Stefa
Daniel Štefankovič
Fabian Stehn
Colin Stirling
Alejandro

Strejilevich de Loma
David Steurer
Kristian Støvring
Ondřej Suchý
Ola Svensson
Maxim Sviridenko
Chaitanya Swamy
Vasilis Syrgkanis
Stefan Szeider
Nicolas Tabareau
Kunal Talwar
Till Tantau
Éva Tardos
Nina Taslaman
Orestis Telelis
Balder Ten Cate
Lidia Tendera
Micha�l Terepeta

Pascal Tesson
Nithum Thain
Dimitrios Thilikos
Mikkel Thorup
Francesco Tiezzi
Hingfung Ting
Ashish Tiwari
Szymon Toruńczyk
Mirco Tribastone
Stavros Tripakis
Rahul Tripathi
Enrico Tronci
Madhur Tulsiani
Christos Tzamos
Nikos Tzevelekos
Géza Tóth
Ryuhei Uehara
Marc Uetz
Johannes Uhlmann
Irek Ulidowski
Ugo Vaccaro
Sándor Vágvölgyi
Vasco T. Vasconcelos
Andrea Vattani
Roope Vehkalahti
Helmut Veith
Santosh S. Vempala
Betti Venneri
Carmine Ventre
Elad Verbin
Oleg Verbitsky
Nikolay Vereshchagin
Ivan Visconti
Mahesh Viswanathan
Berthold Vöcking
Markus Völker
Walter Vogler
Björn Wachter
Lei Wang

John Watrous
Mathias Weller
Daniel Werner
Matthias Westermann
Andreas Wiese
Thomas Wilke
Gerhard J. Woeginger
Ronald de Wolf
Paul Wollan
Frank Wolter
David Woodruff
James Worrell
Yi Wu
Dachuan Xu
Eran Yahav
Li Yan
Qiqi Yan
Mu Yang
Ke Yi
Neal Young
Raphael Yuster
Morteza

Zadimoghaddam
Michael Zakharyaschev
Hans Zantema
Christos Zaroliagis
Konrad Zdanowski
Marc Zeitoun
Alex Zelikovsky
Rico Zenklusen
Fuyuan Zhang
Lijun Zhang
Min Zhang
Yong Zhang
Chunlai Zhou
Stanislav Živný
Florian Zuleger

Table of Contents – Part I

Session A1: Network Design Problems

Improved Approximation for the Directed Spanner Problem 1
Piotr Berman, Arnab Bhattacharyya, Konstantin Makarychev,
Sofya Raskhodnikova, and Grigory Yaroslavtsev

An Improved Approximation Algorithm for Minimum-Cost Subset
k -Connectivity (Extended Abstract) . 13

Bundit Laekhanukit

Approximation Schemes for Capacitated Geometric Network Design 25
Anna Adamaszek, Artur Czumaj, Andrzej Lingas, and
Jakub Onufry Wojtaszczyk

An O(log n)-Competitive Algorithm for Online Constrained Forest
Problems . 37

Jiawei Qian and David P. Williamson

Session A2: Quantum Computing

On the Power of Lower Bound Methods for One-Way Quantum
Communication Complexity . 49

Shengyu Zhang

Advice Coins for Classical and Quantum Computation 61
Scott Aaronson and Andrew Drucker

Quantum Commitments from Complexity Assumptions 73
André Chailloux, Iordanis Kerenidis, and Bill Rosgen

Limitations on Quantum Dimensionality Reduction 86
Aram W. Harrow, Ashley Montanaro, and Anthony J. Short

Session A3: Graph Algorithms

On Tree-Constrained Matchings and Generalizations 98
Stefan Canzar, Khaled Elbassioni, Gunnar W. Klau, and
Julián Mestre

Tight Bounds for Linkages in Planar Graphs . 110
Isolde Adler, Stavros G. Kolliopoulos, Philipp Klaus Krause,
Daniel Lokshtanov, Saket Saurabh, and Dimitrios Thilikos

XVI Table of Contents – Part I

A Tighter Insertion-Based Approximation of the Crossing Number 122
Markus Chimani and Petr Hliněný

Linear-Space Approximate Distance Oracles for Planar, Bounded-Genus
and Minor-Free Graphs . 135

Ken-ichi Kawarabayashi, Philip N. Klein, and Christian Sommer

Session A4: Games, Approximation Schemes,
Smoothed Analysis

Stochastic Mean Payoff Games: Smoothed Analysis and Approximation
Schemes . 147

Endre Boros, Khaled Elbassioni, Mahmoud Fouz, Vladimir Gurvich,
Kazuhisa Makino, and Bodo Manthey

Pairwise-Interaction Games . 159
Martin Dyer and Velumailum Mohanaraj

Settling the Complexity of Local Max-Cut (Almost) Completely 171
Robert Elsässer and Tobias Tscheuschner

Clique Clustering Yields a PTAS for max-Coloring Interval Graphs 183
Tim Nonner

Session A5: Online Algorithms

On Variants of File Caching . 195
Leah Epstein, Csanád Imreh, Asaf Levin, and Judit Nagy-György

On the Advice Complexity of the k -Server Problem 207
Hans-Joachim Böckenhauer, Dennis Komm, Rastislav Královič, and
Richard Královič

Sleep Management on Multiple Machines for Energy and Flow Time 219
Sze-Hang Chan, Tak-Wah Lam, Lap-Kei Lee, Chi-Man Liu, and
Hing-Fung Ting

Meeting Deadlines: How Much Speed Suffices? . 232
S. Anand, Naveen Garg, and Nicole Megow

Session A6: Data Structures, Distributed Computing

Range Majority in Constant Time and Linear Space 244
Stephane Durocher, Meng He, J. Ian Munro,
Patrick K. Nicholson, and Matthew Skala

Dynamic Planar Range Maxima Queries . 256
Gerth Stølting Brodal and Konstantinos Tsakalidis

Table of Contents – Part I XVII

Compact Navigation and Distance Oracles for Graphs with Small
Treewidth . 268

Arash Farzan and Shahin Kamali

Player-Centric Byzantine Agreement . 281
Martin Hirt and Vassilis Zikas

Session A7: Complexity, Randomness

Limits on the Computational Power of Random Strings 293
Eric Allender, Luke Friedman, and William Gasarch

The Decimation Process in Random k -SAT . 305
Amin Coja-Oghlan and Angelica Y. Pachon-Pinzon

Improved Bounds for the Randomized Decision Tree Complexity of
Recursive Majority . 317

Frédéric Magniez, Ashwin Nayak, Miklos Santha, and David Xiao

The Fourier Entropy–Influence Conjecture for Certain Classes of
Boolean Functions . 330

Ryan O’Donnell, John Wright, and Yuan Zhou

Session A8: Submodular Optimization, Matroids

Nonmonotone Submodular Maximization via a Structural Continuous
Greedy Algorithm (Extended Abstract) . 342

Moran Feldman, Joseph (Seffi) Naor, and Roy Schwartz

Submodular Cost Allocation Problem and Applications 354
Chandra Chekuri and Alina Ene

Robust Independence Systems . 367
Naonori Kakimura and Kazuhisa Makino

Buyback Problem - Approximate Matroid Intersection with
Cancellation Costs . 379

Ashwinkumar Varadaraja Badanidiyuru

Session A9: Cryptography, Learning

Tamper-Proof Circuits: How to Trade Leakage for Tamper-Resilience . . . 391
Sebastian Faust, Krzysztof Pietrzak, and Daniele Venturi

New Algorithms for Learning in Presence of Errors 403
Sanjeev Arora and Rong Ge

XVIII Table of Contents – Part I

Exact Learning Algorithms, Betting Games, and Circuit Lower
Bounds . 416

Ryan C. Harkins and John M. Hitchcock

Session A10: Fixed Parameter Tractability

Constraint Satisfaction Parameterized by Solution Size 424
Andrei A. Bulatov and Dániel Marx

Preprocessing for Treewidth: A Combinatorial Analysis through
Kernelization . 437

Hans L. Bodlaender, Bart M.P. Jansen, and Stefan Kratsch

Subset Feedback Vertex Set is Fixed-Parameter Tractable 449
Marek Cygan, Marcin Pilipczuk, Micha�l Pilipczuk, and
Jakub Onufry Wojtaszczyk

Domination When the Stars Are Out . 462
Danny Hermelin, Matthias Mnich, Erik Jan van Leeuwen, and
Gerhard J. Woeginger

Session A11: Hardness of Approximation

A Simple Deterministic Reduction for the Gap Minimum Distance of
Code Problem . 474

Per Austrin and Subhash Khot

Recoverable Values for Independent Sets . 486
Uriel Feige and Daniel Reichman

Vertex Cover in Graphs with Locally Few Colors . 498
Fabian Kuhn and Monaldo Mastrolilli

Maximizing Polynomials Subject to Assignment Constraints 510
Konstantin Makarychev and Maxim Sviridenko

Session A12: Counting, Testing

A Polynomial-Time Algorithm for Estimating the Partition Function of
the Ferromagnetic Ising Model on a Regular Matroid 521

Leslie Ann Goldberg and Mark Jerrum

Rapid Mixing of Subset Glauber Dynamics on Graphs of Bounded
Tree-Width . 533

Magnus Bordewich and Ross J. Kang

Efficient Sample Extractors for Juntas with Applications 545
Sourav Chakraborty, David Garćıa-Soriano, and Arie Matsliah

Table of Contents – Part I XIX

Efficiently Decodable Error-Correcting List Disjunct Matrices and
Applications . 557

Hung Q. Ngo, Ely Porat, and Atri Rudra

Session A13: Complexity

Robust Simulations and Significant Separations . 569
Lance Fortnow and Rahul Santhanam

A PCP Characterization of AM . 581
Andrew Drucker

Lower Bounds for Online Integer Multiplication and Convolution in the
Cell-Probe Model . 593

Raphaël Clifford and Markus Jalsenius

Session A14: Proof Complexity

Automatizability and Simple Stochastic Games . 605
Lei Huang and Toniann Pitassi

Exponential Lower Bounds for AC0-Frege Imply Superpolynomial
Frege Lower Bounds . 618

Yuval Filmus, Toniann Pitassi, and Rahul Santhanam

Parameterized Bounded-Depth Frege Is Not Optimal 630
Olaf Beyersdorff, Nicola Galesi, Massimo Lauria, and
Alexander Razborov

On Minimal Unsatisfiability and Time-Space Trade-offs for k-DNF
Resolution . 642

Jakob Nordström and Alexander Razborov

Session A15: Sorting, Matchings, Paths

Sorting by Transpositions is Difficult . 654
Laurent Bulteau, Guillaume Fertin, and Irena Rusu

Popular Matchings in the Stable Marriage Problem 666
Chien-Chung Huang and Telikepalli Kavitha

Center Stable Matchings and Centers of Cover Graphs of Distributive
Lattices . 678

Christine Cheng, Eric McDermid, and Ichiro Suzuki

VC-Dimension and Shortest Path Algorithms . 690
Ittai Abraham, Daniel Delling, Amos Fiat,
Andrew V. Goldberg, and Renato F. Werneck

XX Table of Contents – Part I

Session A16: Constraint Satisfaction, Algebraic
Complexity

Characterizing Arithmetic Circuit Classes by Constraint Satisfaction
Problems (Extended Abstract) . 700

Stefan Mengel

The Complexity of Symmetric Boolean Parity Holant Problems
(Extended Abstract) . 712

Heng Guo, Pinyan Lu, and Leslie G. Valiant

Permanent Does Not Have Succinct Polynomial Size Arithmetic
Circuits of Constant Depth . 724

Maurice Jansen and Rahul Santhanam

On the Power of Algebraic Branching Programs of Width Two 736
Eric Allender and Fengming Wang

Session A17: Steiner Problems, Clustering

Primal-Dual Approximation Algorithms for Node-Weighted Steiner
Forest on Planar Graphs . 748

Carsten Moldenhauer

Steiner Transitive-Closure Spanners of Low-Dimensional Posets 760
Piotr Berman, Arnab Bhattacharyya, Elena Grigorescu,
Sofya Raskhodnikova, David P. Woodruff, and Grigory Yaroslavtsev

Solving the Chromatic Cone Clustering Problem via Minimum
Spanning Sphere . 773

Hu Ding and Jinhui Xu

Clustering with Local Restrictions . 785
Daniel Lokshtanov and Dániel Marx

Author Index . 799

Table of Contents – Part II

Invited Lectures

Nondeterministic Streaming String Transducers . 1
Rajeev Alur and Jyotirmoy V. Deshmukh

An Introduction to Randomness Extractors . 21
Ronen Shaltiel

Invitation to Algorithmic Uses of Inclusion-Exclusion 42
Thore Husfeldt

On the Relation Between Differential Privacy and Quantitative
Information Flow . 60

Mário S. Alvim, Miguel E. Andrés,
Konstantinos Chatzikokolakis, and Catuscia Palamidessi

Best Student Papers

A 1.488 Approximation Algorithm for the Uncapacitated Facility
Location Problem . 77

Shi Li

Rice’s Theorem for μ-Limit Sets of Cellular Automata 89
Martin Delacourt

Fault-Tolerant Compact Routing Schemes for General Graphs 101
Shiri Chechik

Best Papers

Local Matching Dynamics in Social Networks . 113
Martin Hoefer

Regular Languages of Words over Countable Linear Orderings 125
Olivier Carton, Thomas Colcombet, and Gabriele Puppis

Algebraic Independence and Blackbox Identity Testing 137
Malte Beecken, Johannes Mittmann, and Nitin Saxena

Session B1: Foundations of Program Semantics

A Fragment of ML Decidable by Visibly Pushdown Automata 149
David Hopkins, Andrzej S. Murawski, and C.-H. Luke Ong

XXII Table of Contents – Part II

Krivine Machines and Higher-Order Schemes . 162
Sylvain Salvati and Igor Walukiewicz

Relating Computational Effects by ��-Lifting . 174
Shin-ya Katsumata

Constructing Differential Categories and Deconstructing Categories of
Games . 186

Jim Laird, Giulio Manzonetto, and Guy McCusker

Session B2: Automata and Formal Languages

Nondeterminism is Essential in Small 2FAs with Few Reversals 198
Christos A. Kapoutsis

Isomorphism of Regular Trees and Words . 210
Markus Lohrey and Christian Mathissen

On the Capabilities of Grammars, Automata, and Transducers
Controlled by Monoids . 222

Georg Zetzsche

The Cost of Traveling Between Languages . 234
Michael Benedikt, Gabriele Puppis, and Cristian Riveros

Session B3: Model Checking

Emptiness and Universality Problems in Timed Automata with Positive
Frequency . 246

Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, and
Amélie Stainer

Büchi Automata Can Have Smaller Quotients . 258
Lorenzo Clemente

Automata-Based CSL Model Checking . 271
Lijun Zhang, David N. Jansen, Flemming Nielson, and
Holger Hermanns

A Progress Measure for Explicit-State Probabilistic Model-Checkers 283
Xin Zhang and Franck van Breugel

Session B4: Probabilistic Systems

Probabilistic Bisimulation and Simulation Algorithms by Abstract
Interpretation . 295

Silvia Crafa and Francesco Ranzato

Table of Contents – Part II XXIII

On the Semantics of Markov Automata . 307
Yuxin Deng and Matthew Hennessy

Runtime Analysis of Probabilistic Programs with Unbounded
Recursion . 319

Tomáš Brázdil, Stefan Kiefer, Antońın Kučera, and
Ivana Hutařová Vařeková

Approximating the Termination Value of One-Counter MDPs and
Stochastic Games . 332

Tomáš Brázdil, Václav Brožek, Kousha Etessami, and
Antońın Kučera

Session B5: Logic in Computer Science

Generic Expression Hardness Results for Primitive Positive Formula
Comparison . 344

Simone Bova, Hubie Chen, and Matthew Valeriote

Guarded Negation . 356
Vince Bárány, Balder ten Cate, and Luc Segoufin

Locality of Queries Definable in Invariant First-Order Logic with
Arbitrary Built-in Predicates . 368

Matthew Anderson, Dieter van Melkebeek, Nicole Schweikardt, and
Luc Segoufin

Modular Markovian Logic . 380
Luca Cardelli, Kim G. Larsen, and Radu Mardare

Session B6: Hybrid Systems

Programming with Infinitesimals: A While-Language for Hybrid
System Modeling . 392

Kohei Suenaga and Ichiro Hasuo

Model Checking the Quantitative μ-Calculus on Linear Hybrid
Systems . 404

Diana Fischer and �Lukasz Kaiser

On Reachability for Hybrid Automata over Bounded Time 416
Thomas Brihaye, Laurent Doyen, Gilles Geeraerts, Joël Ouaknine,
Jean-François Raskin, and James Worrell

Session B7: Specification and Verification

Deciding Robustness against Total Store Ordering . 428
Ahmed Bouajjani, Roland Meyer, and Eike Möhlmann

XXIV Table of Contents – Part II

Multiply-Recursive Upper Bounds with Higman’s Lemma 441
Sylvain Schmitz and Philippe Schnoebelen

Liveness-Preserving Atomicity Abstraction . 453
Alexey Gotsman and Hongseok Yang

On Stabilization in Herman’s Algorithm . 466
Stefan Kiefer, Andrzej S. Murawski, Joël Ouaknine,
James Worrell, and Lijun Zhang

Session C1: Graphs

Online Graph Exploration: New Results on Old and New Algorithms . . . 478
Nicole Megow, Kurt Mehlhorn, and Pascal Schweitzer

Distance Oracles for Vertex-Labeled Graphs . 490
Danny Hermelin, Avivit Levy, Oren Weimann, and Raphael Yuster

Asymptotically Optimal Randomized Rumor Spreading 502
Benjamin Doerr and Mahmoud Fouz

Fast Convergence for Consensus in Dynamic Networks 514
T-H. Hubert Chan and Li Ning

Session C2: Matchings and Equilibria

Linear Programming in the Semi-streaming Model with Application to
the Maximum Matching Problem . 526

Kook Jin Ahn and Sudipto Guha

Restoring Pure Equilibria to Weighted Congestion Games 539
Konstantinos Kollias and Tim Roughgarden

Existence and Uniqueness of Equilibria for Flows over Time 552
Roberto Cominetti, José R. Correa, and Omar Larré

Collusion in Atomic Splittable Routing Games . 564
Chien-Chung Huang

Session C3: Privacy and Content Search

Privacy-Preserving Access of Outsourced Data via Oblivious RAM
Simulation . 576

Michael T. Goodrich and Michael Mitzenmacher

Adaptively Secure Non-interactive Threshold Cryptosystems 588
Benôıt Libert and Moti Yung

Table of Contents – Part II XXV

Content Search through Comparisons . 601
Amin Karbasi, Stratis Ioannidis, and Laurent Massoulié

Session C4: Distributed Computation

Efficient Distributed Communication in Ad-Hoc Radio Networks 613
Bogdan S. Chlebus, Dariusz R. Kowalski, Andrzej Pelc, and
Mariusz A. Rokicki

Nearly Optimal Bounds for Distributed Wireless Scheduling in the
SINR Model . 625

Magnús M. Halldórsson and Pradipta Mitra

Convergence Time of Power-Control Dynamics . 637
Johannes Dams, Martin Hoefer, and Thomas Kesselheim

A New Approach for Analyzing Convergence Algorithms for Mobile
Robots . 650

Andreas Cord-Landwehr, Bastian Degener, Matthias Fischer,
Martina Hüllmann, Barbara Kempkes, Alexander Klaas,
Peter Kling, Sven Kurras, Marcus Märtens,
Friedhelm Meyer auf der Heide, Christoph Raupach,
Kamil Swierkot, Daniel Warner,
Christoph Weddemann, and Daniel Wonisch

Author Index . 663

Improved Approximation for the Directed

Spanner Problem

Piotr Berman1, Arnab Bhattacharyya2,�, Konstantin Makarychev3,
Sofya Raskhodnikova1,��, and Grigory Yaroslavtsev1,� � �

1 Pennsylvania State University
{berman,sofya,grigory}@cse.psu.edu
2 Massachusetts Institute of Technology

abhatt@mit.edu
3 IBM T.J. Watson Research Center

konstantin@us.ibm.com

Abstract. We give an O(
√

n log n)-approximation algorithm for the
problem of finding the sparsest spanner of a given directed graph G on n
vertices. A spanner of a graph is a sparse subgraph that approximately
preserves distances in the original graph. More precisely, given a graph
G = (V, E) with nonnegative edge lengths d : E → R

≥0 and a stretch
k ≥ 1, a subgraph H = (V, EH) is a k-spanner of G if for every edge
(u, v) ∈ E, the graph H contains a path from u to v of length at most
k · d(u, v). The previous best approximation ratio was Õ(n2/3), due to
Dinitz and Krauthgamer (STOC ’11).

We also present an improved algorithm for the important special case
of directed 3-spanners with unit edge lengths. The approximation ratio of
our algorithm is Õ(n1/3) which almost matches the lower bound shown
by Dinitz and Krauthgamer for the integrality gap of a natural linear
programming relaxation. The best previously known algorithms for this
problem, due to Berman, Raskhodnikova and Ruan (FSTTCS ’10) and
Dinitz and Krauthgamer, had approximation ratio Õ(

√
n).

1 Introduction

A spanner of a graph is a sparse subgraph that approximately preserves pairwise
distances in the original graph. This notion was first used by Awerbuch [2] and
explicitly introduced by Peleg and Schäffer [23].

Definition 1.1 (k-spanner, [2,23]). Given a graph G = (V, E) with nonnega-
tive edge lengths d : E → R

≥0 and a real number k ≥ 1, a subgraph H = (V, EH)
is a k-spanner of G if for all edges (u, v) ∈ E, the graph H contains a path
from u to v of length at most k · d(u, v). The parameter k is called the stretch.

� Supported by National Science Foundation grants CCF-1065125 and CCF-
0728645.

�� Supported by National Science Foundation (NSF/CCF CAREER award 0845701).
� � � Supported by NSF / CCF CAREER award 0845701, University Graduate Fellow-

ship and College of Engineering Fellowship.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 1–12, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 P. Berman et al.

Spanners have numerous applications, such as efficient routing [9,10,25,27,28],
simulating synchronized protocols in unsynchronized networks [24], parallel, dis-
tributed and streaming algorithms for approximating shortest paths [7,8,13,18],
algorithms for distance oracles [3,29], property testing, property reconstruction
and key management in access control hierarchies (see [6,5,20], the survey in [26]
and references therein).

We study the computational problem of finding the sparsest spanner of a given
directed graph G and stretch k, that is, a k-spanner of G with the smallest number
of edges. We refer to this problem as Directed k-Spanner and distinguish
between the case of unit edge lengths (i.e., d(e) = 1 for all e ∈ E) and arbitrary
edge lengths. The Undirected k-Spanner problem refers to the task of finding
the sparsest k-spanner of a given undirected graph. The natural reduction from
Undirected k-Spanner to Directed k-Spanner preserves approximation
ratio.

Our main results are an algorithm with approximation ratio O(
√

n log n)
for Directed k-Spanner with arbitrary edge lengths and an algorithm with
approximation ratio O(n1/3 log2 n) for Directed 3-Spanner with unit edge
lengths, where n is the number of nodes in the input graph G. Our approxima-
tion guarantee for Directed 3-Spanner almost matches the integrality gap of
Ω(n1/3−ε) of Dinitz and Krauthgamer [11] for a natural linear programming re-
laxation of the problem. Our result also directly implies the same approximation
ratio for the Undirected 3-Spanner problem with unit edge lengths.

Relation to Previous Work. Directed k-Spanner with unit edge lengths has
been extensively studied. Note that in this case, we can assume that k is a pos-
itive integer. For k = 2, the problem has been completely resolved: Kortsarz
and Peleg [21] and Elkin and Peleg [15] gave O(log n)-approximation, and Ko-
rtsarz [22] proved that the approximation cannot be improved unless P=NP.
Elkin and Peleg [14] gave Õ(n2/3)-approximation for Directed 3-Spanner.
For general k ≥ 3, Bhattacharyya et al. [6] presented Õ(n1−1/k)-approximation;
then, Berman, Raskhodnikova and Ruan [4] improved it to Õ(n1−1/�k/2�), and
recently Dinitz and Krauthgamer [11] gave Õ(n2/3)-approximation, presenting
the first algorithm with approximation ratio independent of k. For the special
cases of k = 3 and k = 4, Berman, Raskhodnikova and Ruan showed an Õ(

√
n)-

approximation. Independently, Dinitz and Krauthgamer also gave an Õ(
√

n)-
approximation for the case k = 3. Thus, our algorithms improve on [4] for all
k ≥ 3, where k �= 4, and on [11] for all k ≥ 3.

Dinitz and Krauthgamer gave the first approximation algorithm for the prob-
lem for arbitrary edge lengths. For this case, one can no longer assume that k is
an integer. Dinitz and Krauthgamer achieved Õ(n2/3)-approximation for arbi-
trary edge lengths for all k > 1. We improve this approximation to Õ(n1/2) for
all k > 1.

Spanners for undirected graphs behave somewhat differently in terms of their
approximability. For all integer k and for all undirected graphs G with arbitrary
edge lengths, it is known [23,1] that a k-spanner of G with at most n · �n2/(k+1)	
edges can be constructed in polynomial time. Since a k-spanner of a connected

Improved Approximation for the Directed Spanner Problem 3

graph must have at least n − 1 edges, an approximation ratio of O(n2/(k+1))
trivially follows. In particular, for k = 3, this argument yields an approximation
ratio of O(

√
n). Our result improves the ratio for Undirected 3-Spanner to

Õ(n1/3) in the case of unit-length edges.
Elkin and Peleg [14,17], improving on [22], showed that it is quasi-NP-hard to

approximate Directed k-Spanner, even when restricted to unit edge lengths,
with ratio better than 2log1−ε n for k ∈ (3, n1−δ) and all δ, ε ∈ (0, 1). For Undi-

rected k-Spanner with unit-length edges, such a strong hardness result does
not hold since the problem is O(1)-approximable when k = Ω(log n). However,
for constant k ≥ 3, it is still quasi-NP-hard to approximate with a ratio better
than 2log1−ε n [14,12]. When the edge lengths are arbitrary, the same inapprox-
imability also holds for k ∈ (1, 3), even for the undirected case [17].

Our Techniques. Our algorithms operate by combining two graphs: the first
obtained from randomized rounding of a fractional solution to a flow-based linear
programming relaxation of the problem and the second obtained by growing
shortest-path trees from randomly selected vertices. The idea of combining a
linear programming approach with sampling to solve Directed k-Spanner

first appeared in [6]. Dinitz and Krauthgamer [11] used the same approach,
but with a novel, flow-based linear program (LP). Our main insight is to use
randomized LP rounding schemes. We also give a new LP relaxation, slightly
simpler than that in [11]. In the case of unit edge lengths, this LP has an extra
advantage: it can be solved quickly without using the ellipsoid algorithm. We
note, however, that our method would yield the same approximation ratios with
the LP of Dinitz and Krauthgamer [11] as well.

Directed Steiner Forest. Consider the Directed Steiner Forest (DSF) prob-
lem, a basic network design problem for directed graphs: given a directed graph
G = (V, E) with edge costs and a collection D ⊆ V × V of vertex pairs, find
a minimum-cost subgraph of G that contains a path from u to v for every pair
(u, v) ∈ D. DSF is an NP-hard problem and is known [12] to be quasi-NP-
hard to approximate with ratio better than 2log1−ε n for all ε ∈ (0, 1). The best
known approximation ratio for this problem is O(nε · min(n4/5, m2/3)), due to
Feldman, Kortsarz and Nutov [19]. Their algorithm has the same structure as
the algorithms for Directed k-Spanner in [6] and [11]. Specifically, the LP
relaxation that they formulate is closely related to that developed by Dinitz
and Krauthgamer, if we replace edge costs by edge lengths. Our technique for
the spanner problem also applies to the DSF problem, yielding an improved
approximation ratio of Õ(n2/3+ε). We defer details to the full version.

2 An Õ(
√

n)-Approximation for Directed k-Spanner

Our main result is stated in the following theorem.

Theorem 2.1. There is a polynomial time randomized algorithm for Directed

k-Spanner with expected approximation ratio O(
√

n log n).

4 P. Berman et al.

We present two algorithms to prove Theorem 2.1: an algorithm for the general
case (whose description is completed in Section 2.2) and a simpler and more
efficient algorithm for the special case when all edges have unit length (whose
description is completed in Section 3).

Let G = (V, E) be a directed graph with edge lengths d : E → R
≥0, given

as input to our algorithm, and OPT be the size of its sparsest k-spanner. We
assume that G is weakly connected. Otherwise, our algorithm should be executed
for each weakly connected component separately.

Definition 2.1. For an edge (s, t) ∈ E, let Gs,t = (V s,t, Es,t) be the subgraph
of G induced by the vertices on paths from s to t of length at most k · d(s, t).

Definition 2.2 (Thick and thin edges). Let β be a parameter in [1, n]. If
|V s,t| ≥ n/β, the corresponding edge (s, t) is thick, and otherwise, it is thin.
The set of all thin edges is denoted by E. In Sections 2.1–3, we shall always
assume that β =

√
n.

Our general strategy is to solve the problem separately for thick and thin edges.
We find two sets of edges, E′ and E′′, such that for each edge (s, t) ∈ E, the
required path of length at most k ·d(s, t) from s to t is contained in E′ if (s, t) is
thick and in E′′ if (s, t) is thin. The expected size of both sets is O(β log n·OPT).

In Section 2.1, we describe how to obtain E′ using random sampling. In Sec-
tion 2.2, we describe how to obtain E′′ in the general case, using randomized
rounding of a fractional solution to an LP, thus completing the proof of Theorem
2.1. For graphs with unit edge lengths, the general method is the same, but we
use a different LP (see Section 3).

2.1 Sampling

We say that an edge (s, t) ∈ E is settled if the k-spanner property for this edge is
satisfied, i.e., the selected set of edges contains a path of length at most k ·d(s, t)
from s to t. The following procedure uses random sampling to construct E′.

Algorithm 1. Sample(β)
1. E′ ← ∅, S ← ∅;
2. for i = 1 to β ln n do
3. v ← a uniformly random element of V ;
4. T in

v ← a shortest path in-arborescence rooted at v;
5. T out

v ← a shortest path out-arborescence rooted at v;
6. E′ ← E′ ∪ T in

v ∪ T out
v , S ← S ∪ {v}; //Set S is used only in the analysis.

7. end for
8. Add all unsettled thick edges to E′;
9. return E′.

Lemma 2.1. Algorithm 1, in polynomial time, computes a set E′ that settles
all thick edges and has expected size at most 3β ln n · OPT .

Improved Approximation for the Directed Spanner Problem 5

Proof. After the execution of the for-loop in Algorithm 1, |E′| ≤ 2(n−1)β ln n ≤
2β ln n · OPT . The last inequality holds because OPT ≥ n − 1 for weakly con-
nected graphs G.

If some vertex v from a set V s,t appears in the set S of vertices selected by
Sample, then T in

v and T out
v contain shortest paths from s to v and from v to

t, respectively. Thus, both paths are contained in E′. Since v ∈ V s,t, the sum
of lengths of these two paths is at most k · d(s, t). Therefore, if S ∩ V s,t �= ∅,
then the edge (s, t) is settled. For a thick edge (s, t), the set S ∩ V s,t is empty
with probability at most (1 − 1/β)β ln n ≤ e− ln n = 1/n. Thus, the expected
number of unsettled thick edges added to E′ in Step 8 of Sample is at most
|E|/n ≤ n − 1 ≤ OPT .

Step 8 ensures that E′, returned by the algorithm, settles all thick edges.
Computing shortest path in- and out-arborescences and determining whether
an edge is thick can be done in polynomial time. �

2.2 Antispanners, LP and the Separation Oracle

In this section, we introduce antispanners, a notion used in the description of
our algorithm for Directed k-Spanner and essential in the analysis of all
algorithms. It is needed in the parts of the algorithms that settle thin edges.
Then, we formulate an LP relaxation of the problem of settling thin edges and
present our approximation algorithm, proving Theorem 2.1.

Antispanners. For a given edge (s, t), we define an antispanner to be a subset
of edges of G, such that if we remove this subset of edges from G, the length of
the shortest path from s to t becomes larger than k · d(s, t).

Definition 2.3 (Antispanners). A set C ⊆ E is an antispanner for an edge
(s, t) ∈ E if G′ = (V, E \ C) contains no path from s to t of length at most
k ·d(s, t). If no proper subset of an antispanner C is an antispanner, we say that
C is minimal.

Thus, the edge set of a k-spanner of G must intersect all antispanners for all edges
of G. In other words, it has to be a hitting set for all minimal antispanners.

We now prove that if a graph (V, E′ ∪ E′′) is not a k-spanner, then we can
efficiently find a thin edge (s, t) ∈ E and a minimal antispanner C that does not
intersect E′′.

Lemma 2.2. There exists a polynomial time algorithm that, given a set of edges
E′′ ⊂ E and a thin edge (s, t) ∈ E, outputs a minimal antispanner C ⊂ Es,t \E′′

if there is no directed path from s to t of length at most k · d(s, t) in E′′.

Proof. The algorithm first checks if there exists a directed path from s to t of
length at most k · d(s, t) in E′′. If there is no such path then Es,t \ E′′ is an
antispanner. (Note that all paths between s and t of lengths at most k · d(s, t)
in G lie in the subgraph Gs,t = (V s,t, Es,t)). The algorithm sets C = Es,t \ E′′

and then sequentially deletes all edges (u, v) ∈ C such that C \ {(u, v)} is an
antispanner. When no more such edges are left, the algorithm returns C. �

6 P. Berman et al.

Minimize
∑
e∈E

xe subject to: (1)∑
e∈C

xe ≥ 1 ∀C ∈ S (2)

xe ≥ 0 ∀e ∈ E (3)

Fig. 1. Linear program for the arbitrary-length case, LP-A

Linear Program. Since E′ from Section 2.1 already settles the thick edges, our
goal is to design a randomized procedure that finds a subset of edges E′′ ⊂ E
that intersects all minimal antispanners for all thin edges. This condition can
be expressed using linear program LP-A (see Fig. 1). This LP has a variable xe

for each edge e ∈ E and a constraint (2) for each minimal antispanner C for
thin edges. Set S is the set of all minimal antispanners for thin edges. In the
integral solution {xint

e } corresponding to a k-spanner with edge set E′′ ⊂ E,
xint

e = 1 if e ∈ E′′ and xint
e = 0 otherwise. All constraints (2) are satisfied for

{xint
e } since E′′ intersects every antispanner. The value of the objective function∑
e xint

e equals the size of E′′. Hence, the LP is a valid relaxation.
For ease of presentation, we assume that we have guessed OPT , the size of the

optimal spanner. (We can try all values in {n− 1, . . . , n2} for OPT and output
the best spanner found in all iterations). We replace the objective function (1)
with ∑

e∈E

xe ≤ OPT. (4)

Separation Oracle. Our LP has polynomially many variables and exponen-
tially many constraints. We solve it using the ellipsoid algorithm with a separa-
tion oracle. Our separation oracle receives a fractional vector {x∗

e} (satisfying (3),
(4)) and outputs either a violated constraint (2) for some antispanner C or a
set E′′ of size at most 2OPT · √n ln n such that E′ ∪ E′′ is the edge set of a
k-spanner. Specifically, if {x∗

e} is a feasible solution, then the separation oracle
returns a set E′′.

The separation oracle works as follows: it first samples a random set of edges
E′′ picking each e ∈ E with probability min(x∗

e

√
n ln n, 1):

Algorithm 2. RandomizedSelection(x∗
e)

1. E′′ ← ∅;
2. for each edge e ∈ E do
3. pe ← min(1,

√
n ln n · x∗

e);
4. Add e to E′′ with probability pe;
5. end for
6. return E′′.

Improved Approximation for the Directed Spanner Problem 7

Then if (V, E′ ∪ E′′) is a spanner and |E′′| ≤ 2OPT · √n ln n, it outputs
E′′. If |E′′| > 2OPT · √n ln n, the separation oracle fails. If (V, E′ ∪E′′) is not a
spanner, the algorithm finds a thin edge (s, t) such that there is no directed path
of length k · d(s, t) from s to t in (V, E′′), then it finds a minimal antispanner
C ⊂ Es,t \ E′′ using a greedy algorithm (see Lemma 2.2 below for details; note
that Es,t \ E′′ is an antispanner) and if

∑
e∈C xe < 1, outputs this violated

constraint. If
∑

e∈C xe ≥ 1, the separation oracle fails.
We now show that the probability that the separation oracle fails during an

execution of the ellipsoid algorithm is small.

Theorem 2.2. The probability that during an execution of the ellipsoid algo-
rithm the separation oracle fails is exponentially small in n.

Proof. As discussed above, there are two different events, which can cause the
separation oracle to fail:

1. The size of the sampled set E′′ is too large. The expected size of E′′ is at most√
n ln n

∑
e∈E xe ≤ OPT ·√n ln n. By the Chernoff bound, Pr(|E′′| > 2OPT ·√

n ln n) ≤ e−c·OPT ·√n ln n = e−Ω(n·√n ln n). Thus, the probability that the
separation oracle fails because |E′′| > 2OPT ·√n ln n is exponentially small.

2. The minimal antispanner found by the oracle doesn’t correspond to a vio-
lated constraint (see discussion below). We prove that the probability that
the separation oracle fails because

∑
e∈C x∗

e ≥ 1 is exponentially small in
Lemma 2.3.

Lemma 2.3. The probability that there exists an edge (s, t) and a minimal
antispanner C for it such that

∑
e∈C x∗

e ≥ 1, but C ⊂ Es,t \ E′′ is at most
|E| · e− 1

2
√

n lnn.

Proof. First, we bound the total number of minimal antispanners for thin edges.

Proposition 2.1. If (s, t) is a thin edge, then there are at most (n/β)n/β min-
imal antispanners for (s, t). In particular, if β =

√
n, then there are at most√

n
√

n minimal antispanners.

Proof. Fix a thin edge (s, t) and consider an arbitrary minimal antispanner C
for (s, t). Let AC be the outward shortest path tree (arborescence) rooted at s
in the graph (V s,t, Es,t \ C). Denote by fAC (u) the distance from s to u in the
tree AC . If there is no directed path from s to u in AC , we let fAC (u) = ∞.
We show that C = {(u, v) ∈ Es,t : fAC (u) + d(u, v) < fAC (v)}, and, thus AC

uniquely determines C for a given thin edge (s, t). If (u, v) ∈ C, then, since C is
a minimal antispanner, there exists a path from s to t of length at most kd(s, t)
in the graph (V, E \C ∪ {(u, v)}), this path must lie in (V s,t, Es,t \C ∪{(u, v)})
and must contain the edge (u, v). Thus, the distance from s to t in the graph
(V s,t, Es,t \ C ∪ {(u, v)}) is at most k · d(s, t) and is strictly less than fAC (t).
Hence, AC is not the shortest path tree in the graph (V s,t, Es,t \ C ∪ {(u, v)}).
Therefore, fAC (u) + d(u, v) < fAC (v). If (u, v) ∈ Es,t satisfies the condition

8 P. Berman et al.

fAC (u) + d(u, v) < fAC (v), then (u, v) /∈ Es,t \ C, otherwise AC would not be
the shortest path tree, hence (u, v) ∈ C.

We now count the number of outward trees rooted at s in (V s,t, Es,t \C). For
every vertex u ∈ V s,t we may choose the parent vertex in at most |V s,t| possible
ways (if a vertex is isolated we assume that it is its own parent), thus the total
number of trees is at most |V s,t||V s,t| ≤ (n/β)n/β . �
Proposition 2.2. For an edge (s, t) ∈ E and a minimal antispanner C for (s, t)
satisfying

∑
e∈C x∗

e ≥ 1, the probability that E′′ ∩ C = ∅ is at most e−
√

n ln n.

Proof. Suppose there exists (u, v) ∈ C such that x∗
e ≥ (

√
n ln n)−1. In this

case, (u, v) ∈ E′′ with probability 1, and we are already done. Otherwise, for
(u, v) ∈ C, the probability that (u, v) ∈ E′′ is exactly

√
n ln n·xe. The probability

that no edges of C are in E′′ is, therefore,

∏
e∈C

(1 −√
n ln n · x∗

e) < exp

(
−
∑
e∈C

√
n ln n · x∗

e

)
≤ e−

√
n ln n.

The first inequality above follows from the fact that 1− x < exp(−x) for x > 0.
The second one holds because

∑
e∈C x∗

e ≥ 1. �
The proof of Lemma 2.3 is completed by using Proposition 2.2 and Proposi-
tion 2.1 and taking a union bound over all minimal antispanners for all thin
edges. �
The proof of Theorem 2.2 is completed by using Lemma 2.3 and taking a union
bound over all iterations of the ellipsoid algorithm, the number of which is
bounded by a polynomial. �

Proof of Theorem 2.1.

Proof. The thick edges can be settled by running Sample(
√

n), according to
Lemma 2.1. The thin edges can be settled by running the ellipsoid algorithm as
described above. The ellipsoid algorithm terminates in polynomial time. With
exponentially small probability, we allow the separation oracle to fail (as shown
in Theorem 2.2), in which case we output a spanner containing all edges E.
Thus, the expected size of the set E′′ is at most 2OPT · √n ln n + o(1) and the
resulting approximation ratio of the algorithm is O(

√
n ln n).

3 LP and Rounding for Graphs with Unit-Length Edges

In this section, we describe how to settle the thin edges, and thus prove The-
orem 2.1, for the case of unit-length edges. Our motivation for presenting this
special case is two-fold. First, we show that for the unit-length case, one can
directly formulate a polynomial-sized LP relaxation, and this makes the approx-
imation algorithm more efficient. Second, the LP used here will be convenient in
presenting the improved approximation for 3-spanners in Section 4.

In order to define and analyze the LP, we need to introduce some notation.

Improved Approximation for the Directed Spanner Problem 9

Definition 3.1 (Layered expansion). Given a directed graph G = (V, E), its
layered expansion is a directed graph Ĝ = (V̂ , Ê), satisfying the following:

1. Let V̂ = {vi : v ∈ V and i ∈ Z
≥0}, where vi denotes the i-th copy of v. The

set of all the i-th copies of nodes in V is the i-th layer of V̂ .
2. Let L = {(u, u) : u ∈ V } be the set of loops. Define the i-th copy of an edge

e = (u, v) to be ei = (ui, vi+1), and the i-th copy of a loop e = (u, u) to be
ei = (ui, ui+1). Let Ê = {ei : e ∈ E ∪ L and i ∈ Z

≥0}.

We use layered expansion Ĝ to describe paths in G. Note that Ĝ contains a path
from u0 to v� if and only if G contains a path from u to v of length at most �.

Recall that E denotes the set of thin edges. For (s, t) ∈ E , we consider the
subgraph of Ĝ consisting of all paths that can be used by a k-spanner:

Definition 3.2 (Edge network). For an edge (s, t) ∈ E and k ≥ 1, the edge
network is a subgraph Ĝs,t

k = (V̂ s,t
k , Ês,t

k) of Ĝ with a source s̄ = s0 and a sink
t̄ = tk·d(s,t), such that Ĝs,t

k contains all nodes and edges on paths from s̄ to t̄.

Now, consider the linear program LP-U defined in Figure 2 below. LP-U has
variables of two types: xe, where e ∈ E, and fs,t

ei
, where (s, t) ∈ E and ei ∈ Ês,t

k .
A variable xe represents whether the edge e is included in the k-spanner. A
variable fs,t

ei
represents flow along the edge ei in Ĝs,t

k (integer flow in Ĝs,t
k with

value 1 is simply a path of length at most k). We denote the sets of incoming
and outgoing edges for a vertex vi ∈ Ĝs,t

k by In(vi) and Out(vi), respectively.

Minimize
∑
e∈E

xe subject to:

Flow requirement
∑

e0∈Out(s0)

fs,t
e0 ≥ 1 ∀(s, t) ∈ E

Flow conservation
∑

ei−1∈In(vi)

fs,t
ei−1

−
∑

ei∈Out(vi)

fs,t
ei = 0 ∀(s, t) ∈ E , ∀vi ∈ V̂ s,t

k \ {s̄, t̄}

Capacity constraints xe −
k−1∑
i=0

fs,t
ei ≥ 0 ∀(s, t) ∈ E , ∀e ∈ E

xe ≥ 0 ∀e ∈ E

fs,t
ei ≥ 0 ∀(s, t) ∈ E , ∀ei ∈ Ês,t

k

Fig. 2. Linear program for the unit-length case, LP-U

Note that to write down LP-U, we only need to know V, E, k and the set of thin
edges, E . The first three are inputs to the algorithm, and E can be computed in
polynomial time. LP-U can be written down and solved in polynomial time because
it has O(|E|2 · k) = O(n5) variables and constraints.1 Thus, unlike the case of
arbitrary lengths, one does not need to invoke the ellipsoid algorithm here.
1 More precisely, LP-U has O(|E| × |V s,t|3) = O(n3.5) variables and constraints.

10 P. Berman et al.

Given x∗
e , the fractional solution of LP-U, we construct the set E′′ by first

running Algorithm 2 and then adding all unsettled thin edges. Because sets of
fractional solutions x∗

e to LP-U and LP-A are equal, one can show that the set
E′ ∪ E′′ forms a k-spanner with high probability and the size of this spanner is
O(OPT · √n log n). We give a direct proof of this fact in the full version.

4 An Õ(n1/3)-Approximation for Directed 3-Spanner

with Unit-Length Edges

In this section, we show an improved approximation for the special case of Di-

rected 3-Spanner with unit length edges. At a high level, our analysis is a
combination of the technique we described for Directed k-Spanner with the
technique of Dinitz and Krauthgamer [11] for Directed 3-Spanner. The al-
gorithm for Directed 3-Spanner in [11] does not use sampling, which makes
their result applicable to the problem on graphs with arbitrary edge cost, where
the total edge cost is minimized rather than the total number of edges in the
spanner. By combining with sampling, we can improve the approximation ratio
for graphs with unit edge costs and lengths.

Theorem 4.1. There is a polynomial time randomized algorithm for Directed

3-Spanner for graphs with unit edge lengths with expected approximation ratio
O(n1/3 log2 n).

Proof. We define thick and thin edges as in Definition 2.2, with β = n1/3, and we
run Sample(n1/3). By Lemma 2.1, this settles all thick edges with edge set E′

that on the average has size at most 3n1/3 ln n·OPT . Then we obtain solution x∗

of the linear program LP-U from Fig. 2 and use randomized rounding to obtain
edge set E′′ that settles all thin edges with high probability. However, we need
to use a different method of rounding that takes advantage of the fact that our
spanners provides paths of length 3. We could have used Algorithm 2 from [11]
with ρ = Θ̃(n1/3), but instead we give a simplified rounding scheme.

Algorithm 3. Randomized3SpannerSelection(x∗
e)

1. E′′ ← ∅;
2. for each vertex u ∈ V do
3. Let ru be chosen i.i.d. uniformly from [0, 1];
4. end for
5. for each edge e = (u, v) ∈ E do
6. Add e to E′′ if rurv ≤ x∗

u,vα n1/3 ln n; //α is a constant less than 10
7. end for
8. return E′′.

It suffices to prove the following two lemmas. Lemma 4.1 bounds the expected
size of E′′. Lemma 4.2 shows that E′′ settles almost all thin edges

Lemma 4.1 (analog of Lemma 4.1 in [11]). E[|E′′|] = O(OPTn1/3 ln2 n).

Improved Approximation for the Directed Spanner Problem 11

Lemma 4.2 (analog of Lemma 4.2 in [11]). If (s, t) is a thin edge, E′′

contains a path from s to t of length at most 3 with probability at least 1 − 1/n.

By this lemma, the expected number of unsettled thin edges is at most |E|/n ≤
n ≤ OPT , so one can simply add the unsettled edges to the solution.

It remains to prove Lemmas 4.1 and 4.2. In the proof of Lemma 4.1, we use
the following fact whose proof we omit for space considerations:

Lemma 4.3. If q ≤ 1, Pr[rurv ≤ q] = q(1 − ln q).

Proof (of Lemma 4.1). Let A = {e ∈ E : x∗
eα n1/3 ln n ≥ 1/n} and B = E \ A.

We use two estimates for OPT : OPT1 =
∑

e x∗
e and OPT2 = |B|/n. Clearly,

E[|E′′|] = E[|E′′ ∩ A|] + E[|E′′ ∩ B|];
E[|E′′ ∩ A|] ≤ OPT1 × α n1/3 ln n(1 + ln n);
E[|E′′ ∩ B|] ≤ OPT2 × (1 + ln n).

Both inequalities follow from Lemma 4.3. �
We defer the proof of Lemma 4.2 to the full version. �

5 Conclusion

We gave approximation algorithms with ratio Õ(
√

n) for Directed k-Spanner

and with ratio Õ(n1/3) for Directed 3-Spanner with unit length edges. It re-
mains an interesting open question whether one improve the approximation ratio
to Õ(n1/3) for arbitrary lengths and larger k, thus matching the integrality gap
shown by Dinitz and Krauthgamer. Our algorithm for Directed k-Spanner

applies to the k-Transitive-Closure Spanner problem [6], which can be re-
formulated as a special case of Directed k-Spanner. It also straightforwardly
extends to the Client-Server k-Spanner problem and the k-Diameter

Spanning Subgraph problem [16].

References

1. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of
weighted graphs. Discrete & Computational Geometry 9(1), 81–100 (1993)

2. Awerbuch, B.: Communication-time trade-offs in network synchronization. In:
PODC, pp. 272–276 (1985)

3. Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in
expected Õ(n2) time. ACM Transactions on Algorithms 2(4), 557–577 (2006)

4. Berman, P., Raskhodnikova, S., Ruan, G.: Finding sparser directed spanners. In:
Lodaya, K., Mahajan, M. (eds.) FSTTCS. LIPIcs, vol. 8, pp. 424–435. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)

5. Bhattacharyya, A., Grigorescu, E., Jha, M., Jung, K., Raskhodnikova, S.,
Woodruff, D.P.: Lower bounds for local monotonicity reconstruction from
transitive-closure spanners. In: Serna, M.J., Shaltiel, R., Jansen, K., Rolim, J.D.P.
(eds.) APPROX 2010, LNCS, vol. 6302, pp. 448–461. Springer, Heidelberg (2010)

12 P. Berman et al.

6. Bhattacharyya, A., Grigorescu, E., Jung, K., Raskhodnikova, S., Woodruff, D.:
Transitive-closure spanners. In: SODA, pp. 932–941 (2009)

7. Cohen, E.: Fast algorithms for constructing t-spanners and paths with stretch t.
SIAM J. Comput. 28(1), 210–236 (1998)

8. Cohen, E.: Polylog-time and near-linear work approximation scheme for undirected
shortest paths. JACM 47(1), 132–166 (2000)

9. Cowen, L.: Compact routing with minimum stretch. J. Algorithms 38(1), 170–183
(2001)

10. Cowen, L., Wagner, C.G.: Compact roundtrip routing in directed networks. J.
Algorithms 50(1), 79–95 (2004)

11. Dinitz, M., Krauthgamer, R.: Directed spanners via flow-based linear programs.
In: Vadhan, S. (ed.) STOC. ACM, New York (to appear, 2011)

12. Dodis, Y., Khanna, S.: Designing networks with bounded pairwise distance. In:
STOC, pp. 750–759 (1999)

13. Elkin, M.: Computing almost shortest paths. In: PODC, pp. 53–62 (2001)
14. Elkin, M., Peleg, D.: Strong inapproximability of the basic k-spanner problem. In:

Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp.
636–647. Springer, Heidelberg (2000)

15. Elkin, M., Peleg, D.: The client-server 2-spanner problem with applications to
network design. In: SIROCCO, pp. 117–132 (2001)

16. Elkin, M., Peleg, D.: Approximating k-spanner problems for k ≥ 2. Theor. Comput.
Sci. 337(1-3), 249–277 (2005)

17. Elkin, M., Peleg, D.: The hardness of approximating spanner problems. Theory
Comput. Syst. 41(4), 691–729 (2007)

18. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in
the data-stream model. SIAM J. Comput. 38(5), 1709–1727 (2008)

19. Feldman, M., Kortsarz, G., Nutov, Z.: Improved approximating algorithms for
Directed Steiner Forest. In: Mathieu, C. (ed.) SODA, pp. 922–931. SIAM, Philadel-
phia (2009)

20. Jha, M., Raskhodnikova, S.: Testing and reconstruction of Lipschitz functions with
applications to data privacy. Electronic Colloquium on Computational Complexity
(ECCC) TR11-057 (2011)

21. Kortsarz, G., Peleg, D.: Generating sparse 2-spanners. J. Algorithms 17(2), 222–
236 (1994)

22. Kortsarz, G.: On the hardness of approximating spanners. Algorithmica 30(3),
432–450 (2001)

23. Peleg, D., Schäffer, A.A.: Graph spanners. J. Graph Theory 13(1), 99–116 (1989)
24. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J.

Comput. 18(4), 740–747 (1989)
25. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables.

JACM 36(3), 510–530 (1989)
26. Raskhodnikova, S.: Transitive-closure spanners: a survey. In: Goldreich, O. (ed.)

Property Testing. LNCS, vol. 6390, pp. 167–196. Springer, Heidelberg (2010)
27. Roditty, L., Thorup, M., Zwick, U.: Roundtrip spanners and roundtrip routing in

directed graphs. ACM Transactions on Algorithms 4(3) (2008)
28. Thorup, M., Zwick, U.: Compact routing schemes. In: SPAA, pp. 1–10. ACM, New

York (2001)
29. Thorup, M., Zwick, U.: Approximate distance oracles. JACM 52(1), 1–24 (2005)

An Improved Approximation Algorithm for

Minimum-Cost Subset k-Connectivity

(Extended Abstract)

Bundit Laekhanukit

School of Computer Science, McGill University
blaekh@cs.mcgill.ca

Abstract. The minimum-cost subset k-connected subgraph problem is
a cornerstone problem in the area of network design with vertex connec-
tivity requirements. In this problem, we are given a graph G = (V, E)
with costs on edges and a set of terminals T . The goal is to find a min-
imum cost subgraph such that every pair of terminals are connected by
k openly (vertex) disjoint paths. In this paper, we present an approx-
imation algorithm for the subset k-connected subgraph problem which
improves on the previous best approximation guarantee of O(k2 log k)
by Nutov (FOCS 2009). Our approximation guarantee, α(|T |), depends
upon the number of terminals:

α(|T |) =

⎧⎪⎨
⎪⎩

O(|T |2) if |T | < 2k

O(k log2 k) if 2k ≤ |T | < k2

O(k log k) if |T | ≥ k2

So, when the number of terminals is large enough, the approximation
guarantee improves significantly. Moreover, we show that, given an ap-
proximation algorithm for |T | = k, we can obtain almost the same ap-
proximation guarantee for any instances with |T | > k. This suggests that
the hardest instances of the problem are when |T | ≈ k.

1 Introduction

We present an improved approximation algorithm for the minimum cost subset
k-connected subgraph problem. In this problem (subset k-connectivity, for short),
we are given a graph G = (V, E) with edge costs and a set of terminals T ⊆ V .
The goal is to find a minimum cost subgraph such that each pair of terminals
is connected by k openly (vertex) disjoint paths. This is a fundamental problem
in network design which includes as special cases the minimum-cost Steiner tree
problem (the case k = 1) and the minimum-cost k vertex-connected spanning
subgraph problem (the case T = V). However, the subset k-connectivity prob-
lem is significantly harder than these two special cases. Specifically, an important
result of Kortsarz, Krauthgamer and Lee [12] shows that the problem does not
admit an approximation guarantee better than O(2log1−ε n) for any ε > 0 unless

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 13–24, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

14 B. Laekhanukit

NP ⊆ DTIME(nO(polylog(n))). In contrast, polylogarithmic approximation guar-
antees are known for the minimum-cost k-vertex connected spanning subgraph
problem. The first such result was obtained by Fakcharoenphol and Laekhanukit
[8] using a technique that we will call the Halo-set method. Subsequently, Nu-
tov [16] refined the algorithm and analysis of [8] to obtain the current best
approximation guarantee of O

(
log k · log n

n−k

)
.

Despite being studied for a decade, no non-trivial approximation algorithm
was known for the subset-k-connectivity problem until the ground-breaking
work of Chakraborty, Chuzhoy and Khanna [2]. They presented an f(k, |T |)-
approximation algorithm for the rooted version of our problem, namely the
rooted subset k-connectivity problem (where f(k, |T |) = O(kO(k2) · log4 |T |)).
There, given a root vertex r and a set of terminals T , the goal is to find a
minimum cost subgraph that has k openly disjoint paths from the root vertex
r to every terminal in T . Chakraborty et al. showed how to solve the subset
k-connectivity problem by applying the rooted subset k-connectivity algorithm
k times, thus obtaining an (k · f(k, |T |))-approximation algorithm. Recently, in
a series of developments [2,6,7,3,17,18], the approximation guarantee, f(k, |T |),
for the rooted subset k-connectivity has been steadily improved. This has cul-
minated in an O(k log k) guarantee due to Nutov [17]. Consequently, the current
best known approximation guarantee for the subset k-connectivity problem is
O(k2 log k).

As we will show, there is a trivial way to obtain an approximation bound
of O(|T |2). So, with the current progress on the rooted subset k-connectivity
problem, the application of the rooted subroutine is only useful when the number
of terminals is large enough, say |T | ≥ 2k. The main contribution of this paper
is to show that, in this case, only a polylogarithmic number of applications of
the rooted subset k-connectivity algorithm are required to solve the subset k-
connectivity problem. Given an approximation algorithm for the rooted subset k-
connectivity problem, we show that only O(log2 k) applications of the algorithm
are required. Moreover, as the number of terminal increases above k2, we are able
to save an additional O(log k) factor. Thus, given an approximation algorithm
for rooted subset k-connectivity problem in [17] due to Nutov (and with careful
analysis), we achieve an α(|T |)-approximation guarantee where:

α(|T |) =

⎧⎪⎨
⎪⎩

O(|T |2) if |T | < 2k

O(k log2 k) if 2k ≤ |T | < k2

O(k log k) if |T | ≥ k2

Interestingly, the key to achieving this result is a very careful application
of the Halo-set method. This method was introduced by Kortsarz and Nutov
in [13] and developed further by Fakcharoenphol and Laekhanukit in [8]. The
technique has been successfully used in [13,8,16,17,18,15]. The original method
applies only when certain subsets of vertices, called cores, are disjoint on the
set of terminals. However, for the subset k-connectivity problem, the cores are
not disjoint even on the set of terminals. Overcoming this difficulty is the main
technical contribution of this paper.

An Improved Approximation Algorithm 15

Consequently, we improve upon the current best approximation guarantee
of O(k2 log k) in all cases. In general, we obtain a significant improvement of
a factor of k. Observe, however, that for the case of |T | ≈ k our guarantee is
still quadratic. At first, this may seem paradoxical since we may hope that the
problem is easier when the number of terminals is small. Our results suggest
that this is not the case. Indeed, it appears that the hardest instances of subset
k-connectivity may have at most k terminals. Precisely, we show that, given
an α(k)-approximation algorithm for the subset k-connectivity problem with
|T | = k, there is an (α(k) + f(k))-approximation algorithm for any instance
with |T | > k, where f(k) is the best known approximation guarantee for the
rooted subset k-connectivity problem.

Related Work. Some very special cases of the subset k-connectivity prob-
lem are known to have constant factor approximation algorithms. For k = 1,
the minimum-cost Steiner tree problem, the best known approximation guar-
antee is 1.39 due to Byrka, Grandoni, Rothvoß and Sanità [1]. For k = 2, a
factor two approximation algorithm algorithm was given by Fleischer, Jain and
Williamson [9]. The subset k-connectivity problem also has an O(1)-
approximation algorithm when edge costs satisfy the triangle inequality; see
Cheriyan and Vetta [5]. The most general problem in this area is the vertex-
connectivity survivable network design problem (VC-SNDP). In VC-SNDP, the
connectivity requirement for each pair of vertices can be arbitrary. Recently,
Chuzhoy and Khanna [7] showed that there is an O(k3 log n)-approximation al-
gorithm for VC-SNDP. The problems where requirements are edge and element
connectivity (EC-SNDP and Element-SNDP) are also very well studied. Both
problems admit 2-approximation algorithms via iterative rounding. For EC-
SNDP, a 2-approximation algorithm was given by Jain [11]. For element-SNDP
a 2-approximation algorithm was given by Fleischer, Jain and Williamson [9].

2 Preliminaries and Results

We begin with some formal definitions. Let G = (V, E) denote the graph for
an instance of the problem. For a set of edges F , the graph G′ = (V, E ∪ F) is
denoted by G + F ; for a vertex v, the graph obtained from G by removing v is
denoted by G − v. For any set of vertices U ⊆ V , let Γ (U) denote the set of
neighbors of U ; that is, Γ (U) = {v ∈ V − U : ∃(u, v) ∈ E : u ∈ U}. Define a set
U∗ to be V − (U ∪ Γ (U)), which is the vertex-complement of U . For any pair
of vertices s, t ∈ V , two s, t-paths are openly disjoint if they have no vertices
except s and t in common. Let T ⊆ V be a set of vertices called terminals.
Without loss of generality, assume that no two terminals of T are adjacent in
G. This assumption can be easily justified by subdividing every edge joining
two terminals; that is, if there is an edge (s, t) joining two terminals, then we
replace (s, t) by two new edges (s, u) and (u, t) and set cost of the new edges
so that c(s, t) = c(s, u) + c(u, t), where c(.) is a cost function. The graph G is
subset k-connected on T if G has k openly disjoint s, t-paths between every pair

16 B. Laekhanukit

of terminals s, t ∈ T . Thus, by Menger-Whitney Theorem, the removal of any
set of vertices of size at most k − 1 leaves all the remaining terminals in the
same component of the remaining graph. By the subset connectivity of G on T ,
we mean the maximum integer � such that G is �-connected on T . A deficient
set is a subset of vertices U ⊆ V such that both U and U∗ contain terminals of
T and |Γ (U)| < k. Observe that the vertex-complement U∗ is also a deficient
set. Similarly, given a designated root vertex r, the graph is r-rooted subset k-
connected to T if G has k openly disjoint r, t-paths for every terminal t ∈ T (r
may or may not be in T). By the rooted connectivity of G from r to T , we mean
the maximum integer � such that G is r-rooted subset �-connected to T .

In the subset k-connectivity problem, we are given a graph G = (V, E) with a
cost c(e) on each edge e ∈ E, a set of terminals T ⊆ V , and an integer k ≥ 0.
The goal is to find a set of edges Ê ⊆ E of minimum cost such that the subgraph
Ĝ = (V, Ê) is subset k-connected on T . In the rooted subset k-connectivity problem,
our goal is to find a set of edges Ê ⊆ E of minimum cost such that the subgraph
Ĝ = (V, Ê) is r-rooted k-connected to T , for a given root r.

Nutov [17] recently gave an O(k log k)-approximation algorithm for the rooted
subset k-connectivity problem. The approximation guarantee improves by a log-
arithmic factor for the problem of increasing the rooted connectivity by one, and
the guarantee also depends on the size of deficient sets.

Theorem 1 (Nutov 2009 [17]). There is an O(k log k)-approximation
algorithm for the rooted subset k-connectivity problem. Moreover, consider the
restricted version of the problem where the goal is to increase the rooted con-
nectivity from � to � + 1. Let φ = min{|U ∩ T | : U is a deficient set}. Then the
approximation guarantee (with respect to a standard LP) is O(�/φ).

Our focus is upon the subset k-connectivity problem. Nutov’s result leads to an
O(k2 log k)-approximation algorithm for this problem. The following theorems
are our main results:

Theorem 2. For any set T of terminals, there is an α(|T |)-approximation al-
gorithm for the subset k-connectivity problem where

α(|T |) =

⎧⎪⎨
⎪⎩

O(|T |2) if |T | < 2k

O(k log2 k) if 2k ≤ |T | < k2

O(k log k) if |T | ≥ k2

Remark 1. Although we do not discuss the case k < |T | ≤ 2k in this paper,
we also have an approximation algorithm for this case. Our algorithm gives an
approximation guarantee of O(k2

|T |−k log2 k) which is strictly better than O(k2)

for |T | − k > log2 k.

Theorem 3. Consider the subset k-connectivity problem. Suppose there is an
α(k)-approximation algorithm for instances with |T | = k. Then there is an
(α(k)+f(k))-approximation algorithm for any instance with |T | > k, where f(k)
is the best known approximation guarantee for the rooted subset k-connectivity
problem.

An Improved Approximation Algorithm 17

Similar results and proofs here have appeared in previous literature. See [4,13,14].
In particular, Lemma 9 and Lemma 11 have appeared in [13] and [14], respec-
tively. Our key new contributions are Lemmas 4, 8 and 7 which allow us to
extend the results to the subset k-connectivity problem.

Due to the page limit, most proofs are omitted. The full version containing
all proofs is available in [15].

3 An Approximation Algorithm

Our main result in Theorem 2 breaks up into three cases where there are a small
number, a moderate number and a large number of terminals, respectively. When
there are a small number of terminals (|T | < 2k), we apply the following trivial
O(|T |2)-approximation algorithm. We find k openly disjoint paths of minimum
cost between every pair of terminals, by applying a minimum-cost flow algorithm.
Let opt denote the cost of the optimal solution to the subset k-connectivity
problem. Since any feasible solution to the subset k-connectivity problem has
k openly disjoint paths between every pair of terminals, the cost incurred by
finding a minimum cost collection of k openly disjoint paths between any pair
of terminals is at most opt. Since we have at most |T |2 pairs, this incurs a total
cost of O(|T |2 · opt).

The remaining two cases are similar. Things are slightly easier, though, when
there are large number of terminals (|T | ≥ k2), leading to a slightly better
guarantee than when there are a moderate number of terminals (2k ≤ |T |). We
devote most of this section to presenting an approximation algorithm for the
moderate case. (In Section 3.6, we show the improvement for the case of a large
number of terminals.)

Our algorithm is based on the Halo-set method, which is an effective al-
gorithmic paradigm for problems in network design with vertex connectivity
requirements; see, for example, [13,8,16,17,18].

The algorithm works by repeatedly increasing the subset connectivity of a
graph by one. We start with a graph that has no edges. Then we apply k outer
iterations. Each outer iteration increases the subset connectivity (of the current
graph) by one by adding a set of edges of approximately minimum cost. The anal-
ysis of the outer iterations applies linear programming (LP) scaling and incurs
a factor of O(log k) in the approximation guarantee for the k outer iterations.
The analysis based on LP-scaling can be seen in [19,5,13,8] and also in [10,14].

Lemma 1. Suppose there is a β(�)-approximation algorithm for the problem
of increasing the subset connectivity of a graph from � to � + 1 with respect
to a standard LP, where β(�) is a non-decreasing function.Then there is an
O(β(k) log k)-approximation algorithm for the subset k-connectivity problem.

We are left with the key problem of increasing the subset connectivity (of the
current graph) by one by adding a set of edges of approximately minimum cost.
Throughout this section, we assume that the current graph is subset �-connected
on T , and |T | ≥ 2k ≥ 2�. Also, we assume that no two terminals are adjacent in
the input graph G = (V, E).

18 B. Laekhanukit

Assumption: The current graph Ĝ = (V, Ê) is subset �-connected on T , and
|T | ≥ 2k ≥ 2�. Moreover, no two terminals are adjacent in the input graph G.

The Halo-set method solves the problem of increasing the subset connectivity
of a graph by one by applying a number of so-called inner iterations. To describe
our algorithm, we need some definitions and subroutines. Thus, we defer the
description of our algorithm to Section 3.5. In Section 3.1, we give important
definitions and structures of subset �-connected graphs called “cores” and “halo-
families”. Our algorithm requires two subroutines. The first one is the subroutine
that uses the rooted subset (�+ 1)-connectivity algorithm to cover halo-families.
This subroutine is given in Section 3.2. The second one is the subroutine for
decreasing the number of cores to O(�), which is given in Section 3.3. Then
we introduce a notion of “thickness” in Section 3.4. This notion guides us how
to use the rooted subset (� + 1)-connectivity algorithm efficiently. Finally, in
Section 3.5, we present an O(k log2 k)-approximation algorithm for |T | ≥ 2k.
By slightly modifying the algorithm and analysis, we show in Section 3.6 that
our algorithm achieves a better approximation guarantee of O(k log k) when
|T | ≥ k2.

3.1 Subset �-Connected Graphs: Deficient Sets, Cores,
Halo-Families and Halo-Sets

In this section, we discuss some key properties of deficient sets that will be
exploited by our approximation algorithm.

Assume that the graph G = (V, E) is subset �-connected on the set of terminals
T . Then G has |Γ (U)| ≥ � for all U ⊆ V such that U ∩ T
= ∅ and U∗ ∩ T
= ∅.
Moreover, by Menger-Whitney Theorem, G is subset (� + 1)-connected if and
only if G has no deficient set.

A key property of vertex neighborhoods is that the function |Γ (·)| on subsets
of V is submodular. In other words, for any subsets of vertices U, W ⊆ V ,

|Γ (U ∪ W)| + |Γ (U ∩ W)| ≤ |Γ (U)| + |Γ (W)|.
We call a deficient set U ⊆ V small if |U ∩ T | ≤ |U∗ ∩ T |.

Proposition 1. For any small deficient set U , |U ∩ T | ≤ |T |/2 and |U∗ ∩ T | ≥
(|T | − �)/2.

Lemma 2 (Uncrossing Lemma). Consider any two distinct deficient sets
U, W ⊆ V . If U ∩W ∩T
= ∅ and U∗∩W ∗ ∩T
= ∅, then both U ∩W and U ∪W
are deficient sets. Moreover, if U or W is a small deficient set, then U ∩ W is
a small deficient set.

By a core we mean a small deficient set C that is inclusionwise minimal. In other
words, C is a core if it is a small deficient set that does not contain another such
set. Note that any small deficient set U contains at least one core.

The halo-family of a core C, denoted by Halo(C), is the set of all small deficient
sets that contain C and contain no other cores; that is,

Halo(C) = {U : U is a small deficient set, C ⊆ U , U contains no core D
= C}

An Improved Approximation Algorithm 19

The halo-set of a core C, denoted by H(C), is the union of all the sets in Halo(C);
that is,

H(C) =
⋃

{U : U ∈ Halo(C)}
We remark that cores and halo-sets can be computed in polynomial-time.

See [13,8,14]. Some important properties of cores and halo-families that we will
require are stated below.

Lemma 3 (Disjointness Lemma). Consider any two distinct cores C and D.
For any deficient sets U ∈ Halo(C) and W ∈ Halo(D), either U ∩W ∩ T = ∅ or
U∗ ∩ W ∗ ∩ T = ∅.

The next result gives an upper bound on the number of halo-sets that contain
a chosen terminal. The next result gives a key bound for the design of our
algorithm.

Lemma 4 (Upper bound). For any terminal t ∈ T , the number of cores C

such that t ∈ H(C) is at most 2(|T |−1)
|T |−� .

3.2 Covering Halo-Families via Rooted Subset (� + 1)-Connectivity

We say that an edge e = (u, v) covers a deficient set U if e connects U and U∗;
that is, u ∈ U and v ∈ U∗. Clearly, e covers U if e covers U∗. Observe that if
e covers U , then after adding the edge e to the current graph, U is no longer a
deficient set. Now, consider any core C. We say that a set of edges F covers the
halo-family of C if each deficient set U in Halo(C) is covered by some edge of F .
For a terminal r ∈ T , we say that the terminal r hits the halo-family Halo(C)
if r is in C or r is in the vertex-complement of the halo-set of C; that is, r hits
Halo(C) if r ∈ C or r ∈ H(C)∗. For a set of terminals S ⊆ T , we say that S hits a
halo-family Halo(C) if there is a terminal r ∈ S that hits Halo(C). The following
lemma shows that if r hits the halo-family Halo(C), then we can find a set of
edges F that covers Halo(C) by applying the rooted subset (� + 1)-connectivity
algorithm with r as the root.

Lemma 5. Consider a set of edges F whose addition to Ĝ makes the resulting
graph Ĝ + F rooted (� + 1)-connected from a terminal r to T . Let C be any core.
If r ∈ C or r ∈ H(C)∗, then F covers all deficient sets in the halo-family of C.

3.3 Preprocessing to Decrease the Number of Cores

In this section, we describe the preprocessing algorithm that decreases the num-
ber of cores to O

(
�|T |
|T |−�

)
. We apply the following root padding algorithm in the

preprocessing step.

The root padding algorithm: The algorithm takes as an input a graph
G = (V, E) with the given edge costs, a subset of terminals R ⊆ T , and a
connectivity parameter ρ. We construct a padded graph by adding a new vertex

20 B. Laekhanukit

r̂ and new edges of zero cost from r̂ to each terminal of R. Then we apply
the rooted subset ρ-connectivity algorithm to the padded graph with the set
of terminals T and the root r̂. We denote a solution subgraph (of the padded
graph) by Ĝ = (V + r̂, F ∪ {(r̂, t) : t ∈ R}), where F ⊆ E. Then the algorithm
outputs the subgraph (of the original graph) Ĝ− r̂ = (V, F). The following result
shows that, in the resulting graph Ĝ, every deficient set contains at least one
terminal of R.

Lemma 6 (root padding). Suppose we apply the root padding algorithm as
above, and it finds a subgraph Ĝ− r̂ = (V, F). Then every deficient set of Ĝ− r̂
(with respect to subset ρ-connectivity on T) contains at least one terminal of R.

Next, recall that |T | ≥ 2�. We apply the root padding algorithm in Lemma 6 to
any subset R of (� + 1) terminals with ρ = (� + 1). By Theorem 1, this incurs a
cost of at most O((k log k) · opt) Moreover, the algorithm adds a set of edges to
the current graph such that every deficient set of the resulting graph contains at
least one terminal of R. Thus, each core of the resulting graph contains at least
one terminal of R. By Lemma 4, each terminal is in O

(
|T |

|T |−�

)
= O(1) halo-sets.

Hence, the number of cores in the resulting graph is at most O(�). This gives
the next result.

Lemma 7. Given a subset �-connected graph, where |T | ≥ 2�, there is an f(k)-
approximation algorithm that decreases the number of cores to O(�), where f(k)
is the best known approximation guarantee for the rooted subset k-connectivity
problem.

3.4 Thickness of Terminals

Consider a graph that is subset �-connected on T . We define the thickness of a
terminal t ∈ T to be the number of halo-families Halo(C) such that t ∈ Γ (H(C)).
Thus, the thickness of a terminal t is |{Halo(C) : C is a core, t ∈ Γ (H(C))}|.

The following lemmas show the existence of a terminal with low thickness.

Lemma 8. For every core C, |Γ (H(C))| ≤ �.

The following lemma shows the existence of a terminal with low thickness.

Lemma 9. Consider a subset �-connected graph. Let q denote the number of
halo-families. Then there exists a terminal t ∈ T with thickness at most �q

|T | .

3.5 An O(k log2 k)-Approximation Algorithm for |T | ≥ 2k

In this section, we describe our approximation algorithm for the case of a moder-
ate number of terminals. Recall that we solve the problem by iteratively increas-
ing the subset connectivity by one. Initially, we apply the algorithm in Section 3.3
to decrease the number of core to O(�). Then we apply inner iterations until all

An Improved Approximation Algorithm 21

the deficient sets are covered. At the beginning of each inner iteration, we com-
pute the cores and the halo-sets. Then we apply a covering-procedure to find
a set of edges that covers all the computed halo-families. This completes one
inner iteration. Note that an inner iteration may not cover all of the deficient
sets because deficient sets that contain two or more of the initial cores (those
computed at the start of the inner iteration) may not be covered. So, we have
to repeatedly apply inner iterations until no core is present. See Figure 1.

An approximation algorithm for moderate and large number of terminals:

1. For � = 0, 1, . . . , k − 1 (outer iterations):
2. (* Increase the subset connectivity of a graph by one. *)
3. Decrease the number of cores to O(�).
4. While the number of cores is greater than 0 (inner iterations):
5. Compute cores and halo-sets.
6. Apply a covering-procedure to cover all the halo-families.

Fig. 1. An approximation algorithm for moderate and larger number of terminals

We now describe the covering-procedure. The procedure first finds a set of
terminals S ⊆ T that hits all the computed halo-families. Then it applies the
rooted subset (� + 1)-connectivity algorithm (Theorem 1) from each terminal of
S. Let F be the union of all edges found by the rooted subset (�+1)-connectivity
algorithm. Then, by Lemma 5, F covers all the halo-families.

The key idea of our algorithm is to pick a terminal r̂ of minimum thickness.
Observe that a halo-family Halo(C) is not hit by r̂ only if

(1) its halo-set H(C) has r̂ as a neighbour (that is, r̂ ∈ Γ (H(C))) or
(2) its halo-set H(C) contains r̂, but its core C does not contain r̂.

The number of halo-families Halo(C) such that r̂ ∈ Γ (H(C)) may be large,
but the number of halo-families whose halo-sets contain r̂ is O(1), assuming
that |T | ≥ 2�. Hence, we only hit halo-families of the second case by picking
one terminal from each core C whose halo-set contains r̂. Thus, the number of
terminals picked is O(1). We call this a micro iteration. Then the remaining
halo-families are the halo-families whose halo-sets have r̂ as a neighbour. We
repeatedly apply micro iterations until we hit all of the halo-families computed
at the start of the inner iteration.

To be precise, initially let S = ∅. In each micro iteration, we add to S a
terminal r̂ of minimum thickness (with respect to halo-families that are not hit
by S). Then, for each core C such that r̂ ∈ H(C)−C, we add to S any terminal
in C ∩T . We repeatedly apply micro iterations until S hits all the halo-families.
At the termination, we apply the rooted subset (� + 1)-connectivity algorithm
(Theorem 1) from each terminal of S, and we return all the set of edges found
by the algorithm as an output. The covering-procedure is presented in Figure 2.

22 B. Laekhanukit

A covering-procedure:

1. S ← ∅.
2. While some halo-family is not hit by S (micro iteration):
3. Add to S a terminal r̂ of minimum thickness.
4. For each halo-family Halo(C) (not hit by S) such that r̂ ∈ H(C)− C:
5. Add to S any terminal r ∈ C.
6. For each terminals r in S:
7. Apply the rooted subset (�+ 1)-connectivity algorithm from r.

Fig. 2. A covering-procedure

Analysis: The feasibility of a solution directly follows from the condition of
the inner iteration; that is, the inner iteration terminates when a current graph
has no core. So, at the termination of the inner iteration, the resulting graph
has no deficient set. Thus, the subset connectivity of the graph becomes � + 1.
Applying the outer iteration k times, the final graph is then subset k-connected.

It remains to analyze the cost of the solution subgraph. First, we analyze the
cost incurred by the covering-procedure. Then we analyze the number of inner
iterations and the total cost incurred by solving the problem of increasing the
subset connectivity of a graph by one. Finally, we apply Theorem 1 to analyze
the final approximation guarantee.

Consider any micro iteration of the covering-procedure. By Lemma 4, r̂ is
contained in at most O(1) halo-sets, assuming that |T | ≥ 2�. Hence, we have to
apply the rooted subset (� + 1)-connectivity algorithm O(1) times.

Thus, Theorem 1 implies that the cost incurred by each micro iteration is
O(�

φ · opt), where opt is the cost of the optimal solution to the subset (� + 1)-
connectivity problem and φ = min{|U ∩ T | : U is a deficient set}.

We now analyze the number of micro iterations needed to hit all of the halo-
families. Let hi denote the number of halo-families that are not hit by S at the
beginning of the i-th micro iteration. Recall that the number of cores after the
preprocessing step is O(�). Thus, h1 = O(�). We claim that, at the i-th iteration,
the number of halo-families that are not hit by S is at most h1/2i−1.

Lemma 10. Consider the i-th micro iteration. The number of halo-families that
are not hit by terminals of S at the start of the iteration is h1/2i−1.

Lemma 10 implies that the maximum number of micro iterations (within the
covering-procedure) is O(log h1) = O(log �). So, the cost incurred by the covering-
procedure is O(�

φ log � · opt).
Lastly, we analyze the number of inner iterations by focusing on the maxi-

mum number of cores that are disjoint on T . Recall to the preprocessing step in
Section 3.3. After the preprocessing, every core contains at least one terminal
of R. This means that the maximum number of cores that are disjoint on T is
� + 1. Consider the cores at any inner iteration. We call cores at the beginning
of the iteration old cores and call cores at the end of the iteration new cores. We

An Improved Approximation Algorithm 23

claim that every new core Ĉ contains at least two old cores C and D that are
disjoint on T . This follows from the following lemma.

Lemma 11. No small deficient set contains two distinct cores C and D such
that C ∩ D ∩ T
= ∅.

Lemma 11 implies that no new cores contain two old cores that are intersecting
on T . This is because new cores are small deficient sets of the old graph. More-
over, since all small deficient sets that contain only one core have been covered,
new cores must contain at least two old cores that are disjoint on T . Thus, the
number φ of the smallest number of terminals containing in any core (and de-
ficient set) increases by a factor of two. More precisely, φ ≤ 2φ′, where φ and
φ′ denote the smallest number such that any deficient set U of the new graph
has |U ∩ T | ≥ φ and any deficient set U ′ of the old graph has |U ′ ∩ T | ≥ φ′. In
particular, the number φ at the j-th inner iteration is 2j−1.

Combining everything together, the approximation guarantee for the problem
of increasing the subset connectivity of a graph by one is

O

(
�

20
log � +

�

21
log � + . . .

)
= O(� log �).

Thus, by Theorem 1, our algorithm achieves an approximation guarantee of
O(k log2 k), assuming that |T | ≥ 2k.

3.6 An O(k log k)-Approximation Algorithm for |T | ≥ k2

To finish, we show that if the number of terminals is large, we get a slightly
better performance guarantee. Observe that if |T | ≥ k2 then, by Lemma 9, there
is a terminal r̂ with a thickness of at most q�

|T | ≤ 2�2

�2 = 2. Moreover, by Lemma 4,

each terminal is contained in at most 2|T |
|T |−� = O(1) halo-sets. Thus, the number

of halo-families that are not hit by r̂ is O(1). This means that we can hit all the
remaining halo-families by choosing O(1) terminals; that is, for each halo-family,
we choose one terminal from its core. So, we can skip the micro iterations of the
covering-procedure, and the approximation guarantee becomes O(k log k).

Acknowledgments. We thank Joseph Cheriyan for useful discussions over a
year. Also, we thank Parinya Chalermsook, Jittat Fakcharoenphol, Danupon
Nanongkai, Adrian Vetta and anonymous referees for useful comments.

References

1. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: An improved LP-based approxi-
mation for steiner tree. In: STOC, pp. 583–592 (2010)

2. Chakraborty, T., Chuzhoy, J., Khanna, S.: Network design for vertex connectivity.
In: STOC, pp. 167–176 (2008)

24 B. Laekhanukit

3. Chekuri, C., Korula, N.: A graph reduction step preserving element-connectivity
and applications. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y.,
Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 254–265.
Springer, Heidelberg (2009)

4. Cheriyan, J., Vempala, S., Vetta, A.: An approximation algorithm for the
minimum-cost k-vertex connected subgraph. SICOMP 32(4), 1050–1055 (2003);
Preliminary version in STOC

5. Cheriyan, J., Vetta, A.: Approximation algorithms for network design with metric
costs. SIDMA 21(3), 612–636 (2007); Preliminary version in STOC

6. Chuzhoy, J., Khanna, S.: Algorithms for single-source vertex connectivity. In:
FOCS, pp. 105–114 (2008)

7. Chuzhoy, J., Khanna, S.: An (O(k3logn)-approximation algorithm for vertex-
connectivity survivable network design. In: FOCS, pp. 437–441 (2009)

8. Fakcharoenphol, J., Laekhanukit, B.: An O(log2k)-approximation algorithm for the
k-vertex connected spanning subgraph problem. In: STOC, pp. 153–158 (2008)

9. Fleischer, L., Jain, K., Williamson, D.P.: Iterative rounding 2-approximation al-
gorithms for minimum-cost vertex connectivity problems. JCSS 72(5), 838–867
(2006); Preliminary versions in FOCS and IPCO

10. Goemans, M.X., Goldberg, A.V., Plotkin, S.A., Shmoys, D.B., Tardos, É.,
Williamson, D.P.: Improved approximation algorithms for network design prob-
lems. In: SODA, pp. 223–232 (1994)

11. Jain, K.: A factor 2 approximation algorithm for the generalized steiner network
problem. Combinatorica 21(1), 39–60 (2001); Preliminary version in FOCS

12. Kortsarz, G., Krauthgamer, R., Lee, J.R.: Hardness of approximation for vertex-
connectivity network design problems. SICOMP 33(3), 704–720 (2004); Prelimi-
nary version in APPROX

13. Kortsarz, G., Nutov, Z.: Approximating k-node connected subgraphs via critical
graphs. SICOMP 35(1), 247–257 (2005); Preliminary version in STOC

14. Laekhanukit, B.: Approximation algorithms for (S,T)-connectivity problems. Mas-
ter’s thesis, University of Waterloo, Canada (2010)

15. Laekhanukit, B.: An improved approximation algorithm for the minimum-cost sub-
set k-connected subgraph problem (2011) (manuscript),
http://arxiv.org/abs/1104.3923

16. Nutov, Z.: An almost O(logk)-approximation for k-connected subgraphs. In: SODA,
pp. 912–921 (2009)

17. Nutov, Z.: Approximating minimum cost connectivity problems via uncrossable
bifamilies and spider-cover decompositions. In: FOCS, pp. 417–426 (2009)

18. Nutov, Z.: A note on rooted survivable networks. IPL 109(19), 1114–1119 (2009);
Preliminary version in SODA

19. Ravi, R., Williamson, D.P.: An approximation algorithm for minimum-cost vertex-
connectivity problems. Algorithmica 18(1), 21–43 (1997); Preliminary version in
SODA. Erratum [20]

20. Ravi, R., Williamson, D.P.: Erratum: An approximation algorithm for minimum-
cost vertex-connectivity problems. Algorithmica 34(1), 98–107 (2002); Preliminary
version in SODA

http://arxiv.org/abs/1104.3923

Approximation Schemes for Capacitated Geometric
Network Design�

Anna Adamaszek1, Artur Czumaj1, Andrzej Lingas2, and Jakub Onufry Wojtaszczyk3

1 DIMAP and Department of Computer Science, University of Warwick, UK
{A.M.Adamaszek,A.Czumaj}@warwick.ac.uk

2 Department of Computer Science, Lund University, Sweden
andrzej@cs.lth.se

3 Google, Inc.
onufry@google.com

Abstract. We study a capacitated network design problem in geometric setting.
We assume that the input consists of an integral link capacity k and two sets of
points on a plane, sources and sinks, each source/sink having an associated inte-
gral demand (amount of flow to be shipped from/to). The capacitated geometric
network design problem is to construct a minimum-length network N that allows
to route the requested flow from sources to sinks, such that each link in N has
capacity k; the flow is splittable and parallel links are allowed in N .

The capacitated geometric network design problem generalizes, among others,
the geometric Steiner tree problem, and as such it is NP-hard.

We show that if the demands are polynomially bounded and the link capacity k
is not too large, the single-sink capacitated geometric network design problem ad-
mits a polynomial-time approximation scheme. If the capacity is arbitrarily large,
then we design a quasi-polynomial time approximation scheme for the capacitated
geometric network design problem allowing for arbitrary number of sinks. Our
results rely on a derivation of an upper bound on the number of vertices different
from sources and sinks (the so called Steiner vertices) in an optimal network. The
bound is polynomial in the total demand of the sources.

1 Introduction

The area of network design, problems of designing low cost networks satisfying some
predefined constraints, plays a fundamental role in operational research and graph al-
gorithms. We consider one important class of problems in this category, the capacitated
network design problem: for a given input network N , find a multiset of links in N of
minimum cost that will allow to route a predetermined amount of flow from a set of
sources to a set of sinks subject to the capacity constraints on the links.

While network design problems have been extensively studied in operational re-
search and combinatorial optimization, traditionally the main focus has been on prob-
lems modeled by arbitrary graphs. However, as it has been observed in some more
applied papers, many applications require to consider network design problems in the

� Research supported in part by the Royal Society IJP-2006/R2, the Centre for Discrete Mathe-
matics and its Applications (DIMAP), EPSRC EP/D063191/1, and VR grant 621-2005-4085.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 25–36, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

26 A. Adamaszek et al.

a) b) c)

k
2 sources k

2 sources

flow k flow k

flow k
2 flow k

2

s s s

k sources

Fig. 1. A network for which the best solution which does not allow splitting the flow (b) has a
significantly larger cost than the best solution which allows splitting the flow (c). All sources have
unit demands and the single sink s has demand 2k.

geometric setting. For example, when Salman et al. [10] initiated the graph-algorithmic
study of the buy-at-bulk network design problem (besides the underlying graph with
distinguished source and sink nodes, and their demands, there is also given a discrete
set of types of links having different capacities and costs that can be used to assemble
a network), they considered Euclidean graphs as a central case. Only recently the prob-
lem has been considered in the context of geometric network design [2], where the only
input are the locations of sources and sinks, their demands, and a set of types of links.

In this paper, we study the capacitated network design problem in geometric set-
ting. The input consists of an integral link capacity k and two sets of points on a plane,
sources and sinks, each source/sink having an associated integral demand (amount of
flow to be shipped from/to). The capacitated geometric network design problem is to
construct a minimum-length network N that allows to route the requested flow from
sources to sinks, such that each link in N has capacity k. We assume the flow is split-
table and parallel links are allowed in N . (Observe that this problem can be considered
as a special case of the geometric buy-at-bulk network design problem, in which only a
single type of links having a capacity constraint is available.)

We term the studied problem as capacitated geometric network design (CGND) or
single-sink capacitated geometric network design (SCGND) if there is only one sink.

It is not difficult to observe that even the single-sink variant is NP-hard, as it includes
as a special case the minimum Euclidean Steiner tree problem [4]1. Therefore, we focus
on the design of fast approximation schemes.

Unlike in the Steiner tree problem, a near optimal capacitated geometric network is
not necessarily a tree (see, e.g., Fig. 1). This complicates the task of deriving efficient
approximation schemes for CGND and SCGND. Another major difficulty is caused by
the so-called Steiner vertices, i.e., vertices different from the sources and sinks where
the links meet and branch. Since Steiner points can be arbitrary points on the plane,
one can consider all points in the vicinity of sources and sinks as potential candidates
for Steiner vertices. In the very special case of minimum Euclidean Steiner tree the
number of Steiner vertices in an optimal solution can be easily upper bounded by n−2,
where n is the number of input points. If the network edges are required to be vertical
or horizontal, then the Steiner points can be constrained to the quadratic number of

1 We can model the Steiner tree problem by the SCGND problem, by taking one of the input
points as sink, all other points as sources of unit demand, and set the link capacity to n− 1.

Approximation Schemes for Capacitated Geometric Network Design 27

intersections between vertical and horizontal straight-lines passing through the sources
and sinks, the so called Hanan grid [2,11]. However, in the general Euclidean case that
we consider here, the problem of bounding the number of Steiner points in terms of the
total demand of input sources has been open [2].

Our contributions. We present three results for the CGND problem. First, we study
structural properties of (near) optimal solutions for CGND. Our main result here is an
upper bound for the number of Steiner points in an optimal solution that is polynomial
in the total demand of sources; no upper bound for the number of Steiner points has
been previously known. This structural result allows us to design a quasi-polynomial
time approximation scheme (QPTAS) for CGND with polynomially bounded demands
of sources and sinks. Next, we extend this result to derive our main algorithmic result,
a polynomial-time approximation scheme (PTAS) for SCGND when the link capacity is
at most 2O(

√
log n), and the demands of sources and sinks are polynomially bounded.

The QPTAS is obtained by combining our upper bound on the number of Steiner
points with Arora’s framework [1] for geometric optimization problems. The main re-
sult of the paper, the PTAS, relies on a geometric partition of the sources combined with
a TSP-based heuristic and our QPTAS applied to a small number of points.

Related work on geometric network design. A related minimum Euclidean Steiner
tree problem has been studied extensively in the literature (cf. [7]), with a PTAS pro-
vided independently by Arora [1] and Mitchell [8].

Salman et al. [10] initiated the algorithmic study of the single-sink buy-at-bulk net-
work design problem. They argued that the problem is especially relevant in practice
in the geometric case. They provided a polynomial-time approximation algorithm for
a variant of buy-at-bulk single-sink network design on an Euclidean graph with an ap-
proximation ratio of O(log(D/c1)), where D is the total capacity of sources and c1

is the smallest link capacity. Besides allowing the use of many link types, their model
differs from ours in that they did not permit a flow to be split, and only admit a given
finite set of points in the plane to be used as vertices by the network, whereas we allow
splittable flow and we allow Steiner points to be arbitrary points in the plane. Czumaj
et al. [2] considered geometric buy-at-bulk network design allowing the entire space
to be used. They presented a QPTAS for the rectilinear variant of geometric network
design with polynomially bounded total demand, where the links have to be horizontal
or vertical. Their QPTAS relies on the observation that in this case Steiner points can
be constrained to lie on the Hanan grid. Hassin et al. [6] and Morsy et al. [9] considered
the special case of the network design problem raised in [10], where only one type of
link occurs. Since their flow is unsplittable, the result is not comparable to our model.

2 Preliminaries

Consider the Euclidean 2-dimensional space E
2. Let {s1, . . . , sns} be a given set of ns

points in E
2 (sources), and let {t1, . . . , tnt} be a given set of nt points in E

2 (sinks).
Let n = ns + nt. Each source si supplies some integral demand d(si) to the sinks, and
each sink tj is required to receive some integral demand d(tj) from the sources. We
assume that

∑
i d(si) =

∑
j d(tj) and define D =

∑
i d(si) to be the total demand.

Furthermore, there is given a single link type with positive integral capacity k.

28 A. Adamaszek et al.

A geometric network is a directed, weighted (finite) multigraph embedded in E
2.

The cost of a geometric network G, denoted c(G), is the sum of the lengths of all links
used by G, where in the sum we count all copies of parallel edges (multiedges).

A geometric network G is feasible with respect to a given set of sources and sinks
with demands, and the link type, if the following conditions hold:

– the vertex set of G contains all sources {s1, . . . , sns}, all sinks {t1, . . . , tnt}, and
potentially other vertices (called Steiner vertices),

– each copy of a multiedge in G is a link of capacity k,
– there is a flow in G from the sources to the sinks that is consistent with the directions

of used links, saturates the demands of the sources and the sinks, and never exceeds
the capacity k in a link.

If G is feasible then one can find such a flow in polynomial time using standard
algorithms for the maximum-flow problem with multiple sources and multiple sinks.
Furthermore, since the demands and the link capacity are assumed to be integral, we
can presume, without loss of generality, that the flow found is integral.

The objective of the capacitated geometric network design (CGND) problem is to
construct a feasible geometric network that minimizes the total length of all links (i.e.,
all copies of multiedges) used. If the set of sinks is a singleton then the problem is
termed as the single-sink capacitated geometric network design (SCGND) problem.

3 Bounding the Number of Steiner Points in Optimal Solution

In this section we consider the CGND problem in E
2 with sources and sinks having

positive integral demands. If multiple sources or sinks are in the same location, we
merge them to create a single source or sink. We shall show that the number of Steiner
points in an optimal solution can be upper bounded by a polynomial function of D.

For this purpose, we will consider a special class of multigraphs that are feasible
solutions to the CGND problem, which we call minimizers. We will show that for any
ε > 0 there is a minimizer that gives a (1+ε)-approximation to the CGND instance. We
then analyze geometric properties of the minimizers, and show that each minimizer has
a special geometric structure, namely it can have only three types of Steiner vertices.
We then define an operation of shifting a cycle in a minimizer. We show that this opera-
tion transforms a minimizer into another minimizer without increasing the cost, can be
performed on a minimizer only a finite number of times, and when the operation cannot
be performed any more, the resulting minimizer has a small number of Steiner vertices.
We get that for any ε > 0 there exists a minimizer that gives a (1 + ε)-approximation to
the CGND instance and has a small number of Steiner vertices. Then we can show that
there is an optimal solution which has a small number of Steiner vertices.

We will consider feasible multigraphs together with associate integral flows certify-
ing the feasibility of the multigraphs. For a multigraph M = (V, E) we define the value
of M as val(M) =

∑
v∈V (deg(v) − 2), where the degree of a vertex is counted with

multiplicities in the case of multiple edges. Among the solutions with the same cost, we
will prefer the one with a smaller value.

Without increasing the cost or the value we can modify the multigraph M and an
associated integral flow f in M to satisfy the following properties:

Approximation Schemes for Capacitated Geometric Network Design 29

– there are no isolated vertices in M ,
– all Steiner vertices in M have degree at least 3 and are contained in the small-

est square containing all sources and sinks (to satisfy this property we move each
Steiner vertex from outside the square to the closest point on the boundary),

– if two vertices of M are coincident, then there is no edge between them (otherwise
we merge them into one vertex),

– each edge of M is used by f ,
– the amount of flow entering and leaving each vertex is at most D.

For technical reasons, and without loss of generality, in this section we consider only
pairs (M, f) satisfying the above properties. We get that the degree of a vertex is upper-
bounded by 2D. The Steiner vertices have degree at least 3, and the number of non-
Steiner vertices is not greater than 2D (i.e. they contribute at least −2D to val(M)),
therefore the number of Steiner vertices in M is not greater than val(M) + 2D. Since
2|E| =

∑
v∈V deg(v), we get that |E| = 1

2 val(M) + |V | ≤ 3
2 val(M) + 4D.

For any problem instance, v ∈ N and ε, let Mε
v denote the set of all multigraphs that

together with some flow give a (1 + ε)-approximate solution with a value at most v.

Lemma 1. For any problem instance, ε > 0 and v ∈ N we can equip the set Mε
v with

a metric δ such that the metric space (Mε
v, δ) is compact, and the network cost is a

continuous function in (Mε
v, δ).

Definition 1. A multigraph M is a minimizer if it is a feasible solution to the CGND
problem and if there does not exist another feasible solution with a smaller cost and not
greater value or with the same cost and a smaller value.

Lemma 2. For any ε > 0 and any instance of the CGND problem, there is a (1 + ε)-
approximate solution which is a minimizer.

Proof. Consider any multigraph M which gives a (1 + ε)-approximate solution for the
given instance. It has some finite value v. Let (Mε

v, δ) be the metric space from Lemma
1. The metric space is compact and the cost is a continuous function in it, therefore there
exists a multigraph with a minimum cost in Mε

v. The multigraph with a minimum value
amongst all multigraphs with the minimum cost in Mε

v is the desired minimizer. �
In the remaining part of this section we will prove the following theorem.

Theorem 1. For any ε > 0 and an instance of the CGND problem there is a minimizer
M which is a (1 + ε)-approximate solution and for which |S| + |Z| ≤ 32D4 + 4D2,
where S is the set of Steiner vertices of M and Z is the set of points on the plane where
the edges of M cross without a Steiner vertex.

Theorem 1, together with Lemma 1, yields the main result of this section.

Theorem 2. Any instance of the CGND problem has an optimal solution MOPT which
satisfies the following properties: the number of Steiner vertices is at most 32D4+4D2,
there are no two coincident vertices, the degree of each vertex is at most 2D and the
edges cross only in vertices.

30 A. Adamaszek et al.

Fig. 2. A real vertex, a crossing and an optional vertex (all for c = 2)

3.1 Vertex Types of a Minimizer

We prove here that there can be only three types of Steiner vertices in a minimizer.

Definition 2. Let M = (V, E) be a multigraph with a flow f . A vertex v ∈ V is called
a real vertex if there is an integer c ≥ 0 and a direction α ∈ [0, 2π) such that:

– the edges incident with v are exactly: c edges with the direction α, c + 1 edges with
the direction α + π, and two single edges with the directions α ± π/3 (see Fig. 2),

– the group of c + 1 edges is directed in one way (out of the vertex or into the vertex),
and all the remaining edges are directed in the opposite way,

– the flow in any of the single edges is smaller than the flow in any of the c + 1 edges.

Definition 3. Let M = (V, E) be a multigraph with a flow f . A vertex v ∈ V is called
a crossing if there is integer c ≥ 1 and directions α, β ∈ [0, 2π) s.t. β
= α, α + π and:

– the edges incident with v are exactly: c edges with the direction α, c edges with the
direction α + π, and single edges with the directions β and β + π (see Fig. 2),

– all the c edges in one group are directed in one way, the directions of the two groups
of edges are opposite, the directions of the two single edges are opposite,

– if c ≥ 2 then the flow in any single edge is smaller than the flow in any of the
non-single edges with the opposite direction.

Definition 4. Let M = (V, E) be a multigraph with a flow f . A vertex v ∈ V is called
an optional vertex if there is an integer c ≥ 2 and a direction α ∈ [0, 2π) such that:

– the edges incident with v are exactly: c edges with the direction α and c edges with
the direction α + π (see Fig. 2),

– all the c edges in one group are directed in one way, the directions of the two groups
of edges are opposite.

We specify some properties which the Steiner vertices of a minimizer must fulfill.

Property 1. Let M = (V, E) be a minimizer, v ∈ V , and e1, e2 ∈ E be edges incident
with v and directed in opposite ways. Then the angle between e1 and e2 is at least 2π/3.

Property 2. Let M = (V, E) be a minimizer with a flow f . Let v ∈ V and let e1, e2 ∈
E be edges incident with v and directed in the same way. If the angle between e1 and
e2 is smaller than 2π/3, then f(e1) + f(e2) > k.

Property 3. Let M = (V, E) be a minimizer with a flow f . Let v ∈ V and let
e1, e2, e3 ∈ E be edges incident with v contained in an open halfplane with the border-
line passing through v. If e1 and e2 are directed in the same way and opposite to the
direction of e3, then f(e1)+f(e2)−f(e3) > k and, in particular, f(e3) < f(e1), f(e2).

Approximation Schemes for Capacitated Geometric Network Design 31

For a vertex v we call an edge e incident with v incoming (outgoing) if it is directed
towards v (out of v). Using Properties 1–3 we can show the following lemma:

Lemma 3. Let M = (V, E) be a minimizer. If v ∈ V is a Steiner vertex such that
both incoming and outgoing edges have multiple directions, then v is a crossing. On
the other hand, if v ∈ V is a Steiner vertex such that all outgoing (or incoming) edges
have the same direction α ∈ [0, 2π), then v is a real vertex or an optional vertex.

This immediately implies the following theorem.

Theorem 3. Each Steiner vertex in a minimizer is a real vertex, a crossing or an op-
tional vertex.

3.2 Graph Analysis and Cycle Argument

From Theorem 3 we know that a Steiner vertex in a minimizer is a real vertex, a crossing
or an optional vertex. We can easily remove optional vertices from a minimizer.

Lemma 4. For any minimizer M there is a corresponding minimizer M ′ with the same
cost, value, number of real vertices and crossings and with no optional vertices.

In this section we will prove Theorem 1. We introduce a procedure modifying minimiz-
ers to decrease the number of real vertices. We also show, that if we cannot decrease the
number of real vertices any further, the total number Steiner vertices must be small.

Definition 5. Let M be a minimizer without optional vertices. A cycle C in M is called
a Steiner cycle if:

– C passes only through Steiner vertices,
– if C passes through a crossing vertex v, then C does not change direction in v,
– if C passes through a real vertex v, then C either does not change the direction, or

changes it by π/3,
– C does not pass through an edge more than once.

Lemma 5. Let M be a minimizer without optional vertices, S the set of Steiner vertices
of M and Z the set of points on the plane where the edges of M cross without a Steiner
vertex. If M has no Steiner cycle, then |S| + |Z| ≤ 32D4 + 4D2.

We introduce an operation of shifting a Steiner cycle C by a distance Δ > 0 in a
minimizer M with no optional vertices. We orient C in one of the two possible directions
and shift each edge of C by a distance Δ to the left according to the direction chosen.
The real vertices where C changes direction are moved to the intersection points of the
shifted edges (see Fig. 3). A Steiner cycle has no repeating edges, so we never have to
shift an edge in two directions at once.

Moving the real vertices as described above requires us to make some other modifi-
cations to the graph. We do not want to shift or change directions of edges not belonging
to C — they can only become longer or shorter. To achieve this, in some cases instead
of moving a real vertex we split the vertex into a real vertex of degree 3 and a crossing,
and then only move the vertex of degree 3 to the required position. We also move the

32 A. Adamaszek et al.

or

Fig. 3. Shifting a Steiner cycle. Only the real vertices on which the cycle changes direction have
been pictured. The obtained cycle depends on the orientation of the original cycle.

real vertices and crossings of C, on which C does not change the direction, possibly after
splitting the vertices in two. The case analysis shows that shifting a Steiner cycle neither
changes the cost and the value of the minimizer nor the number of the real vertices. The
resulting graph has a feasible flow and is a minimizer.

When a vertex from C hits a vertex it is incident with, we merge the two vertices.
One can show that the shifting operation can be performed until one of the following
happens: a vertex from C gets merged with a non-Steiner vertex or two real vertices
get merged (e.g. when a cycle edge gets contracted to a single point). The resulting
multigraph has either a smaller number of real vertices, or the same number of real
vertices and a larger sum of degrees of non-Steiner vertices.

Proof (of Theorem 1). Fix an ε > 0. By Lemma 2, there is a (1 + ε)-approximate
solution which is a minimizer. Let M0 be such a minimizer that also minimizes the
number of real vertices — we cannot decrease the number of real vertices of M0 without
increasing the cost or the value of M0. Let M1 be the minimizer obtained from M0 by
removing the optional vertices, as in Lemma 4. The number of real vertices, the cost
and the value of M1 is the same as in M0.

Suppose that M1 has a Steiner cycle. We shift the cycle as far as possible. As the
result, we obtain a minimizer with the same cost and value, where the shifted cycle is
not a Steiner cycle any more, and the resulting multigraph has the same number of real
vertices and a larger sum of degrees of non-Steiner vertices (any other result of shifting
a cycle would decrease the number of real vertices, and that cannot happen for M1).

As long as M1 has some Steiner cycle left, we shift it as far as possible. We can
perform this operation only a finite number of times, as each time the sum of the degrees
of the non-Steiner vertices increases, and in a minimizer it is upper bounded by 4D2.
At some point there will be no Steiner cycle left. The graph obtained from M1 will be a
minimizer with no Steiner cycles, and from Lemma 5 we know that in such a minimizer
|S| + |Z| ≤ 32D4 + D2. �

4 Quasi-Polynomial Time Approximation Scheme

In this section we consider the CGND problem with the total demand D ≤ nC for
some constant C. We will design a quasi-polynomial time approximation scheme for
the above problem that works for any capacity k. We can assume that k ≤ D.

From Theorem 2, we know that there is an optimal network MOPT = (V, E) that
satisfies the following properties: the number of Steiner vertices is at most 32D4+4D2,
there are no two coincident vertices, the degree of each vertex is at most 2D and the

Approximation Schemes for Capacitated Geometric Network Design 33

edges cross only in vertices. We have |V | ≤ 38n4C , |E| ≤ 38n5C . These bounds make
it possible to use the Arora’s framework [1] for the TSP problem. Due to lack of space,
we give only an overview of the algorithm.

Dividing into subproblems. We can prove the following lemma.

Lemma 6. In polynomial time, we can partition the input points such that every optimal
solution consists of the disjoint solutions for the points from each partition set, and the
cost of the optimal solution for the points from any partition set Pi is at least �i

nk , where
�i is the side length of the smallest square containing all points from Pi.

We divide the original problem instance into a collection of at most n independent
instances, as given by Lemma 6. In the rest of this section we can therefore assume that
all the input points are inside some square of size � × �, and c(MOPT) ≥ �

nk .

Perturbation. We divide the square � × � into unit squares using a uniform grid of
size polynomial in n and D. We modify the problem by shifting all input points to the
nearest gridpoint (intersection of grid lines), and merging coincident sinks and sources.

Let M ′
OPT be a multigraph obtained from MOPT by this operation. Notice that the

edges in M ′
OPT cross only in Steiner vertices, similarly as the edges of MOPT . Using

the upper bounds on the number of vertices and edges in MOPT we can show:

Lemma 7. If the size of the grid is at least 80
ε ·n6C+1× 80

ε ·n6C+1, we have c(M ′
OPT) ≤

(1 + ε) · c(MOPT).

Randomized dissection and portals. We make a randomized dissection of the square
— a recursive partitioning of the square into four equal squares, performed until we
obtain the unit squares. The size of the grid is the smallest power of 2 which is at least
2 · 80

ε · n6C+1. Also, instead of starting with the original � × � square, we start with
a 2� × 2� square with the original square shifted randomly inside. A more detailed
description of the randomized dissection can be found in [1,2]. The number of levels of
the dissection is L = O(log(2 · 80

ε · n6C+1)) = O(C · log n
ε).

Similarly as in [1,2], we create m = 2L
ε = O(C

ε log n
ε) equidistant portals on the

boundary of each square in such a way that the portals are in all corners of the square,
where m is a power of 2. We modify the solutions to the CGND problem in such a
way, that the edges can cross the boundaries of the squares only in portals (i.e. we
create additional Steiner points in portals). Notice that all the input points are in portals.
We do not allow any Steiner points outside of portals, and we do not allow the edges
to cross outside of the portals. In the remaining part of this section we shall present a
quasi-polynomial time algorithm that finds an optimal solution to the modified problem.
The QPTAS follows, as the following hold:

Lemma 8. The optimal solution to the modified problem has expected cost at most
(1 + ε)2 · c(MOPT).

Lemma 9. From the optimal solution to the modified problem we can get a solution for
the original problem with an expected cost at most (1 + ε)3 · c(MOPT).

34 A. Adamaszek et al.

Dynamic programming. We want to find an optimal solution to the modified problem,
i.e., where all sinks and sources are in portals, the Steiner points can be created only in
portals and the edges do not cross outside of the portals. We can consider only solutions
(multigraphs with a specified flow) where: the flow through each portal goes in one
direction only (into or out of the square) and the amount of it is at most D.

We find the optimal solution using dynamic programming. The interface of a square
specifies the amount of flow and the direction of it (into or out of the square) for each
portal. The number of interfaces of a square is (1 + 2D)m = nO(C2ε−1·log(n/ε)), which
is quasi-polynomial in n. For each square and for each interface we want to find the
solution with the minimum cost satisfying the interface (if there is a feasible solution
for a given interface). Since we have doubled the size of the original square enclosing
the input points, we may assume that no input points are on the perimeter of this square.
Hence, the solution to the problem is the minimum cost solution for the doubled original
square with an empty interface. We start with the unit squares:

Lemma 10. The minimum cost solutions to the leaf-subproblems, i.e., to the interfaces
of the unit squares can be found in time nO(C2ε−1 log(n/ε)).

The idea of the proof is as follows. We consider only solutions where edges do not
cross inside the squares, i.e. they go along some triangulation of the square, where the
vertices of the triangulated polygon are the portals. For each triangulation we consider
multigraphs consistent with the triangulation, compute their cost and check whether the
flow required by the interface can be transferred trough the multigraph.

Lemma 11. The minimum cost solutions to the remaining subproblems, i.e., to the in-
terfaces of the non-unit squares can be found in time nO(C2ε−1 log(n/ε)).

By applying Lemmas 9–11, we obtain our main theorem in this section.

Theorem 4. For any ε > 0, there is a randomized nO(C2ε−1 log(n/ε))-time algorithm
for capacitated geometric network design with a total of n sources and sinks and total
demand upper bounded by nC , which yields a solution whose expected cost is within
(1 + ε) of the optimum. The algorithm can be derandomized similarly as those in [1,3].

Remark 1. An analogous theorem holds when instead of the requirement on the total
demand of sinks balancing the demand of sources, the sinks have unlimited demand.

5 Polynomial-Time Approximation Scheme for Single Sink

In this section we consider the SCGND problem, with the input consisting of a single
sink s and a set P of n sources with a total demand D ≤ nC . The capacity of the edges
is k, and throughout this section we will assume that k ≤ 2O(

√
log n). We will construct

a polynomial-time approximation scheme for this problem.
The idea of the algorithm is as follows. We partition the set of sources into two

subsets, depending on their distance from the sink. The ”outer” set has a total demand
upper bounded by a polynomial function of k. Using the algorithm from Section 4
we construct a near-optimal network which allows to transfer the flow from the outer

Approximation Schemes for Capacitated Geometric Network Design 35

sources to some Steiner vertices closer to the sink. The Steiner vertices now become
new sources. As the number of points and the total demand is much smaller than n,
the running time is polynomial in n. We then solve the problem for the ”inner” sources
together with the new sources. We show that for such a set of points the cost of the
minimum TSP tour is small compared to the cost of the optimal solution. That allows us
to use a simple algorithm to find a near-optimal solution. Combining the two networks
together gives a near-optimal solution to the SCGND problem.

Let L be maximum distance between a source and the sink, i.e. L = maxp∈P d(p, s).
Let OPT be an optimal solution (network) for the SCGND problem, and TSP be the
shortest traveling salesman tour for P ∪ {s}. The following lemma can be proved sim-
ilarly as Theorem 1 in [5] for the capacitated vehicle routing problem.

Lemma 12. There is a polynomial time algorithm that outputs a solution with cost at
most (1 + ε) · c(TSP) + 1

k

∑
p∈P d(p, s) · d(p). Furthermore, the following hold:

1
k

∑
p∈P

d(p, s) · d(p) ≤ c(OPT) ≤ c(TSP) +
1
k

∑
p∈P

d(p, s) · d(p) .

If c(TSP) < ε
k

∑
p∈P d(p, s)d(p), then Lemma 12 gives a polynomial-time (1 + ε)-

approximation. Therefore from now on we assume that c(TSP) ≥ ε
k

∑
p∈P d(p, s)d(p).

Working with this assumption, we use the following lemma to upper bound the sum
of the distances from the sources to the sink:

Lemma 13. If c(TSP) ≥ ε
k

∑
p∈P d(p, s) · d(p) then there is a constant c such that

∑
p∈P

d(p, s) · d(p) ≤
(

c · k
ε

)2

· L .

Consider a closed disk Q of radius αL with the center at the sink s, where we set
α = ε4

c4·k2 . Let Pout be the subset of points from P that are outside the disk Q (i.e., for
which d(p, s) > αL), and let Pin = P \Pout. By Lemma 13, we have

∑
p∈Pout

d(p, s)·
d(p) ≤ (c·k

ε)2 · L, and hence
∑

p∈Pout
d(p) ≤ (c·k

ε)2 · 1
α .

We partition the optimal network into two parts: OPTin and OPTout, which consist
of the edges lying respectively inside and outside Q (we add artificial Steiner points on
the boundary of Q to divide the edges). Then c(OPT) = c(OPTin) + c(OPTout).

Lemma 14. In time kO(ε−1 log k) we can find a set P ′
out of

∑
p∈Pout

d(p) points on the
boundary of the disk Q and a network of cost at most c(OPTout) + 3 · ε · c(OPT) that
allows sending all the flow from Pout to the unit sinks P ′

out.

The idea of the proof is as follows. We create equidistant points (portals) on the bound-
ary of the disk Q and treat them as sinks with infinite capacity. If the number of the
portals is large enough (but still smaller than the total demand of the points from Pout),
the cost of an optimal network which allows to send the flow from the sources Pout to
the created sinks is not greater than c(OPTout) + ε · c(OPT). A good approximation of
such a network can be found by the algorithm from Theorem 4 adapted to Remark 1.

36 A. Adamaszek et al.

Lemma 15. In polynomial time we can find a network which sends the flow from the
points Pin ∪ P ′

out to the sink s with cost at most c(OPTin) + 2 · ε · c(OPT).

One can prove it by showing that the algorithm from the Lemma 12 for the points Pin∪
P ′

out gives the desired approximation ratio. Combining the algorithms from Lemmas
12, 14 and 15 gives us a solution to the original SCGND problem with cost at most
(1 + 5 ε) · c(OPT) and running in time kO(ε−1 log k) + nO(1). This gives our main result.

Theorem 5. For any ε > 0, there is a deterministic algorithm for the SCGND problem
with total demand polynomial in n and edge capacity k, which runs in time kO(ε−1 log k)

+ nO(1) and yields a solution whose cost is within (1 + ε) of the optimum. For k =
2O(

√
log n), it runs in polynomial time.

6 Final Remarks

It is an intriguing question of whether or not our upper bound on the number of Steiner
points in an optimal solution to CGND could be extended to include several types of
links. Such an extension would lead to corresponding extensions of our QPTAS for
CGND and our PTAS for SCGND. Also, the questions if one can get a PTAS for
SCGND for larger k and a PTAS for CGND for some values of k are interesting.

References

1. Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and
other geometric problems. Journal of the ACM 45(5), 753–782 (1998)

2. Czumaj, A., Czyzowicz, J., Ga̧sieniec, L., Jansson, J., Lingas, A., Zylinski, P.: Approxima-
tion algorithms for buy-at-bulk geometric network design. In: Dehne, F., Gavrilova, M., Sack,
J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 168–180. Springer, Heidelberg
(2009)

3. Czumaj, A., Lingas, A.: On approximability of the minimum-cost k-connected spanning
subgraph problem. In: Proc. 10th SODA, pp. 281–290 (1999)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of
NP-completeness. W.H. Freeman and Company, New York (1979)

5. Haimovich, M., Rinnooy Kan, A.H.G.: Bounds and heuristics for capacitated routing prob-
lems. Mathematics of Operation Research 10(4), 527–542 (1985)

6. Hassin, R., Ravi, R., Salman, F.S.: Approximation algorithms for a capacitated network
design problem. Algorithmica 38, 417–431 (2004)

7. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. Annals of Discrete Math-
ematics, vol. 53. North-Holland, Amsterdam (1992)

8. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric TSP, k-MST, and related problems.
SIAM Journal on Computing 28(4), 1298–1309 (1999)

9. Morsy, E., Nagamochi, H.: Approximation to the minimum cost edge installation problem.
In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 292–303. Springer, Heidelberg
(2007)

10. Salman, F.S., Cheriyan, J., Ravi, R., Subramanian, S.: Approximating the single-sink link-
installation problem in network design. SIAM J. Optimization 11(3), 595–610 (2000)

11. Zachariasen, M.: A catalog of Hanan grid problems. Networks 38(2), 76–83 (2001)

An O(log n)-Competitive Algorithm for

Online Constrained Forest Problems

Jiawei Qian� and David P. Williamson��

School of Operations Research and Information Engineering,
Cornell University, Ithaca, NY 14853, USA
jq35@cornell.edu, dpw@cs.cornell.edu

Abstract. In the generalized Steiner tree problem, we find a minimum-
cost set of edges to connect a given set of source-sink pairs. In the
online version of this problem, the source-sink pairs arrive over time.
Agrawal, Klein, and Ravi [1] give a 2-approximation algorithm for the
offline problem; Berman and Coulston [3] give an O(log n)-competitive
algorithm for the online problem. Goemans and Williamson [4] subse-
quently generalized the offline algorithm of Agrawal et al. to handle a
large class of problems they called constrained forest problems, and other
problems, such as the prize-collecting Steiner tree problem. In this pa-
per, we show how to combine the ideas of Goemans and Williamson and
those of Berman and Coulston to give an O(log n)-competitive algorithm
for online constrained forest problems, including an online version of the
prize-collecting Steiner tree problem.

1 Introduction

Given an undirected graph G = (V, E), edge costs ce ≥ 0 for all e ∈ E, and a
set of l source-sink pairs si-ti, the goal of the generalized Steiner tree problem
(also known as the Steiner forest problem) is to find a minimum-cost set of edges
F ⊆ E such that for each i, si and ti are connected in (V, F). This problem
is (as its name implies) a generalization of the Steiner tree problem: in Steiner
tree problem, we are given an undirected graph with edge costs as above, and
also a set R ⊆ V of terminals. The goal of the Steiner tree problem is to find
a minimum-cost tree T that spans all the terminals R. If we choose one of the
terminals r ∈ R arbitrarily, and set si = r for all i and the sink vertices ti are the
remaining vertices in R, then clearly a Steiner tree instance can be expressed
as a generalized Steiner tree problem instance. In the 1990s, Agrawal, Klein,
and Ravi [1] gave a 2-approximation algorithm for the generalized Steiner tree
problem.

At about the same time, online algorithms were being proposed for online ver-
sions of the Steiner tree problem, and later, the generalized Steiner tree problem.

� Supported in part by NSF Grant CCF-0830519.
�� Part of this work was performed while the author was on sabbatical at TU Berlin,

sponsored by the Berlin Mathematical School and a von Humboldt Research Award.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 37–48, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

38 J. Qian and D.P. Williamson

In the online version of the Steiner tree problem, terminals arrive over time. At
each time step we must give a set of edges F that connects all of the terminals
that have arrived thus far; we are not allowed to remove any edges from F in
future iterations. The quality of an online algorithm for this problem is mea-
sured in terms of its competitive ratio: an α-competitive algorithm is one such
that at any time step, the set of edges constructed by the algorithm is within
a factor of α of the cost of an optimal Steiner tree on the set of terminals that
have arrived thus far. Similarly, in the online generalized Steiner tree problem,
source-sink pairs arrive in each time step, and we must find a set of edges F such
that each si-ti pair that has arrived thus far is connected in (V, F). Imase and
Waxman [7] gave a greedy O(log n)-competitive algorithm for the online Steiner
tree problem, where n = |V |; when a terminal arrives, it finds the shortest path
from the terminal to the tree already constructed, and adds that set of edges
to its solution. Imase and Waxman also show that the competitive ratio of any
online algorithm must be Ω(log n). Awerbuch, Azar, and Bartal [2] then showed
that a similar greedy algorithm for the online generalized Steiner tree problem
has competitive ratio O(log2 n). In 1997, Berman and Coulston [3] devised a
more complicated algorithm that is an O(log n)-competitive algorithm for the
online generalized Steiner tree problem, matching the lower bound of Imase and
Waxman to within constant factors.

Also in the 1990s, Goemans and Williamson [4] extended the offline algorithm
of Agrawal, Klein, and Ravi to a large class of problems they called constrained
forest problems; in doing so, they cast the algorithm of Agrawal et al. as a
primal-dual algorithm. A constrained forest problem is defined by a function
f : 2V → {0, 1}; for any set S ⊆ V such that f(S) = 1, a feasible solution
must have selected at least one edge in δ(S), the set of edges with exactly one
endpoint in S. The Goemans-Williamson algorithm works when the function f
is proper: that is, when f(S) = f(V − S) for all S ⊆ V , and for all disjoint
sets A, B ⊆ V , f(A ∪ B) ≤ max(f(A), f(B)). For instance, for the case of the
generalized Steiner tree problem f(S) = 1 if and only if there exists some i such
that |S∩{si, ti}| = 1, and this function is proper. Another example of constrained
forest problems given in [4] is the nonfixed point-to-point connection problem,
in which a subset C of the vertices are sources, a disjoint subset D of vertices
are destinations, and we must find a minimum-cost set of edges such that each
source is connected to a destination so that each connected component has the
same number of sources and destinations; this is modelled by having f(S) = 1 if
|S∩C|
= |S∩D|. Yet another example given in [4] is that of partitioning specified
vertices D into connected components such that the number of vertices of D in
each connected component C is divisible by some parameter k. This problem is
given the proper function f such that f(S) = 1 if |S ∩ D|
≡ 0(mod k).

In this paper, we show that by melding the ideas of Goemans and Williamson
with those of Berman and Coulston, we can obtain an O(log n)-competitive
algorithm for any online constrained forest problem. In an online constrained
forest problem, in each time step i we are given a proper function fi. We must
choose a set of edges F such that for all S ⊆ V , if maxj=1,...,i fj(S) = 1, then

An O(log n)-Competitive Algorithm for Online Constrained Forest Problems 39

|δ(S) ∩F | ≥ 1. This yields, for example, online algorithms for online variants of
the nonfixed point-to-point connection problem and the partitioning problems
given above.

Our techniques also extend to give an O(log n)-competitive algorithm for an
online version of the prize-collecting Steiner tree problem. In the offline version
of the problem, we are given an undirected graph G = (V, E), edge costs ce ≥ 0
for all e ∈ E, a root vertex r ∈ V , and penalties πv ≥ 0 for all v ∈ V . The goal
is to find a tree T spanning the root vertex that minimizes the cost of the edges
in the tree plus the penalties of the vertices not spanned by the tree; that is, we
want to minimize

∑
e∈T ce +

∑
v∈V −V (T) πv, where V (T) is the set of vertices

spanned by T . In the online version of the problem, initially every vertex v has
penalty πv = 0. At each step in time, for one vertex v its penalty πv is increased
from 0 to some positive value. We then must either connect the vertex to the
root by adding edges to our current solution or pay the penalty πv for each
remaining time step of the algorithm even if it is connected to the root later on.
The competitive ratio of the algorithm compares the cost of our solution in each
step with the cost of the optimal solution of the instance at that point in time.

The basic idea of the Berman-Coulston algorithm (BC) is that it constructs
many different families of nonoverlapping balls around terminals as they arrive;
in the jth family, balls are limited to have radius at most 2j . Each family of balls
is a lower bound on the cost of an optimal solution to the generalized Steiner
tree problem. When balls from two different terminals touch, the algorithm buys
the set of edges connecting the two terminals, and balls from one of the two
terminals (in some sense the ‘smaller’ one) can be charged for the cost of the
edges, leaving the balls from the other terminal (the ‘larger’ one) uncharged
and able to pay for future connections. One can show that the O(log n) largest
families are essentially all that are relevant for the charging scheme, so that
the largest of these O(log n) families is within an O(log n) factor of the cost of
the constructed solution, thereby giving the competitive ratio. Our algorithm
replaces each family of balls with an analogous solution to the dual of the linear
programming relaxation of the constrained forest problem, as used by Goemans
and Williamson. We need somewhat more complicated dual solutions than the
balls used by BC. However, we can then largely follow the outline of the BC
analysis to obtain our O(log n) competitive ratio.

The rest of the paper is structured as follows. In Section 2, we introduce the
online constrained forest problem more precisely and define some concepts we
will need for our algorithm. In Section 3, we give the algorithm and its analysis.
In Section 4, we extend the algorithm and analysis to the prize-collecting Steiner
tree problem. We mention some open problems in our conclusion in Section 5.

2 Preliminaries

Given an undirected graph G = (V, E), edges costs ce ≥ 0 and a {0, 1}-proper
function f : 2V → {0, 1}, the offine constrained forest problem studied in Goe-
mans and Williamson [4] is to find a set of edges F of minimum cost that satisfies

40 J. Qian and D.P. Williamson

a connectivity requirement function f : 2V → {0, 1}; the function is satisfied if
for each set S ⊆ V with f(S) = 1, we have |δF (S)| ≥ 1, where δ(S) is the set of
edges with exactly one endpoint in S, and δF (S) = δ(S)∩F . In the online version
of this problem, we have a sequence of connectivity functions f1, f2, ..., fi, arriving
one by one. Starting with F = ∅, for each time step i ≥ 1, function fi arrives and
we need to add edges to F to satisfy function fi. Let gi(S) = max{f1(S), ..., fi(S)}
for all S ⊆ V and i ≥ 1. Then our goal is to a find a minimum-cost set of edges
F that satisfies function gi, that is, all connectivity requirements given by f1, ..., fi

that have arrived thus far. We require that each function fi be a proper function,
as defined above. It is easy to see that function gi is also proper.

Call a vertex v a terminal if fl({v}) = 1 for some l ≤ i. Let Ri = {s ∈
V | gi({s}) = 1} be the set of terminals defined by function gi; that is, Ri

is the set of all terminals that have arrived by time i. A special case of this
problem is the online generalized Steiner tree problem where terminal pairs
(s1, t1), ..., (si, ti) arrive one at a time. In this case, fi(S) = 1 if |S ∩{si, ti}| = 1
and (si, ti) is the pair of terminals arrive in time step i; then Ri = {sj , tj : j ≤ i}.
Berman and Coulston [3] give an O(log |Ri|)-competitive algorithm for the online
generalized Steiner tree problem.

Let (IPi) be the integer program corresponding to the online proper con-
strained forest problem with set of functions f1, ..., fi that have arrived thus
far and the corresponding function gi. The integer programming formulation of
(IPi) is

Min
∑
e∈E

cexe

(IPi)
∑

e∈δ(S)

xe ≥ gi(S), ∀S ⊆ V,

xe ∈ {0, 1}, ∀e ∈ E.

We let (LPi) denote the corresponding linear programming relaxation in which
the constraints xe ∈ {0, 1} are replaced with xe ≥ 0. The dual of this linear
program, (Di), can be described as

Max
∑
S⊆V

gi(S)yS

(Di)
∑

S:e∈δ(S)

yS ≤ ce, ∀e ∈ E,

yS ≥ 0, ∀S ⊆ V.

We now define a number of terms that we will need to describe our algorithm.
We will keep an infinite number of feasible dual solutions yj to bound the cost
of edges in F over all time steps; we call this the dual solution for level j. For
each level j, we will maintain that for any terminal s that has arrived thus far,∑

S⊆V :s∈S yj
S ≤ 2j. So we say that the limit of the dual in level j is 2j , and we

say that a dual variable yj
S reaches its limit if the inequality for level j is tight

for any terminal s ∈ S. As a matter of algorithmic implementation, we don’t

An O(log n)-Competitive Algorithm for Online Constrained Forest Problems 41

need to maintain levels j < −1, or j > �log(maxu,v∈V d(u, v))�, where d(u, v) is
the distance in G between u and v using edge costs ce.

An edge e ∈ E is tight in level j for dual vector yj if the corresponding
constraint in dual problem (Di),

∑
S:e∈δ(S) yj

S ≤ ce, holds with equality. A path
p ⊆ E is tight in level j if every edge in the path is tight in level j.

Let F̄ j denote the set of edges that are tight in level j. To avoid confusion with
connected components in F , we will use the term moat to refer to a connected
component Sj in F̄ j and use yj

S to refer the dual variable associated with Sj .
A set S ⊆ V is a violated set for function gi by edges B if |δB(S)| < gi(S);

that is, if gi(S) = 1 but δB(S) = ∅. A minimal violated set is a violated set
with every strict subset not violated. The connectivity requirement function gi

is satisfied by edges B if every set S ⊆ V is not a violated set for gi by B.
During time step i, a terminal s ∈ Ri is active if for some set S, we have s ∈ S

and S is a violated set for function gi by current solution F . Let A be the set of
active terminals at any time of the algorithm. We define the set of active moats
as the moats Sj of the lowest level j that satisfy the following three conditions:
(i) Sj contains some active terminal s ∈ A; (ii) Sj is a minimum violated set for
gi by edges F̄ j ; (iii) yj

S has not yet reached its limit in level j. We denote the
current set of active moats by M. Last, we say a dual variable yj

S is active if its
corresponding moat Sj is active.

3 The Algorithm and Its Analysis

3.1 The Primal-Dual Online Algorithm

Our algorithm (see Fig. 1) is a dual ascent algorithm in which we grow active
dual variables. We say two disjoint moats Sj

1 and Sj
2 collide in level j during our

dual growing process if both of them have been active at some point and a path
connecting two terminals s1 ∈ Sj

1 and s2 ∈ Sj
2 becomes tight in level j. In order

for this to happen, at least one of Sj
1 and Sj

2 must currently be active.
Our algorithm starts with F = ∅ and yj

S = 0 for all j and all S ⊆ V . At
the beginning of each time step i, the function fi arrives and some non-terminal
nodes in V may become terminals. We will update active terminal set A and
active moat set M. In each time step i, while there are still some active terminals
in A, our algorithm will grow uniformly all active dual variables until: (1) an
active yj

S with reaches its limit in level j; (2) an edge e ∈ E becomes tight in
level j; we then add e to F̄ j ; (3) two disjoint moats Sj

1 and Sj
2 collide in level j;

we then let p be the path connecting two terminals s1 ∈ Sj
1 and s2 ∈ Sj

2 in level
j, and we build path p in F if s1 and s2 are not yet connected in F , and update
the set A of active terminals. At the end of each iteration, we update the set M
of active moats. We output F as the solution for (IPi).

3.2 The Analysis

Now, we will now state our main theorem and a few lemmas that we need to
prove it.

42 J. Qian and D.P. Williamson

Algorithm

F = ∅, F̄ j = ∅ for all j, and yj
S = 0 for all j and S ⊆ V

For each {0, 1}-proper function fi that arrives
Update active terminals A, and active moats M
While |A| > 0

Grow uniformly all active dual variables yj
S until

1) An active yj
S with reaches limit in level j

2) An edge e ∈ E becomes tight in level j, then
F̄ j = F̄ j ∪ {e}

3) Two disjoint moats Sj
1 and Sj

2 collide in level j, then
Let p ⊆ E be the corresponding path that becomes tight in level j
Let s1 and s2 be the two terminals connected by p in F̄ j

If s1 and s2 are yet connected in F
F = F ∪ {p}, i.e. build edges p− F
Update A

Update M

Fig. 1. Primal-Dual Algorithm for Online Proper Constrained Forest Problem

Theorem 1. Our algorithm gives an O(log |Ri|) competitive ratio for the online
proper constrained forest problem (IPi).

Lemma 1. At the end of time step i of our algorithm, F is a feasible solution
to (IPi) and each dual vector yj is a feasible solution to (Di).

Proof. Our algorithm terminates each time step i when there are no active termi-
nals in A. By definition of active terminals, this implies that there is no violated
set for gi for the solutions F ; that is, F is a feasible solution to (IPi).

We need to show our algorithm always terminates in each time step. Notice
that if there are no active moats in M, then there must be no active terminals
in A, since there is always a level j for sufficiently large j that conditions (ii)
and (iii) are satisfied in the definition of M. Similarly, if there is still an active
terminal, there must be an active moat that contains it. Then our algorithm
will continue to grow duals at progressively higher levels; eventually all pairs of
active terminals must be connected.

By construction of the algorithm each dual solution yj is feasible for (Di)
since we stop growing a dual yj

S if it would violate a dual constraint. �

In order to give a bound to the total cost of edges in F , we create an account
for each connected component X in F , denoted Account(X). We will define
a shadow algorithm to credit potential to accounts as dual grows and remove
potential from accounts to pay for building edges. We will show that the total
cost of edges in F plus the total unused potential remaining in all accounts is
always equal to the sum of all dual variables over all levels, i.e.

∑
j

∑
S yj

S .
We need the following lemma before we describe the shadow algorithm.

An O(log n)-Competitive Algorithm for Online Constrained Forest Problems 43

Lemma 2. Any active dual variable yj
S has a unique connected component X

in F that contains all terminals in its corresponding moat Sj.

Proof. It is sufficient to show that all terminals in an active moat Sj are con-
nected in F . Suppose not; then we have terminals s1 and s2 both in Sj and not
connected in F . Then either s1 and s2 have no path in F̄ j connecting them or
at least one of s1 and s2 was not a terminal when the path in F̄ j connecting s1

and s2 became tight. The first case contradicts the fact that yj
S is active so that

Sj must be a moat, i.e. a connected component in F̄ j . The second case cannot
happen by the construction of our algorithm since we grow duals from lowest
levels possible. When s1 and s2 became terminals, some level j′ with j′ < j
small enough will have s1 and s2 in different moats, and a path p between them
becomes tight in some level between j′ and j − 1 by our structure of limits in
each level (i.e. dual growth in one level can be no larger than two times of dual
growth in one level below). Then path p is built in F and s1 and s2 will be
connected in F before the algorithm grows dual in level j again. �

Now the shadow algorithm is as follows. First, whenever we grow an active dual
variable yj

S, we will credit the same amount of potential to Account(X), where
X is the unique connected component in F that contains all terminals in Sj .
Second, whenever the algorithm builds a path p in F connecting two terminal
s1 and s2, it must be the case that two disjoint moats Sj

1 and Sj
2 collide in some

level j with s1 ∈ Sj
1 and s2 ∈ Sj

2 not yet connected in F . Let Xk be connected
component in F that contains sk for k = 1, 2. As a result of building edges p−F ,
X3 = X1∪X2∪{p−F} will become a connected component in F . We will merge
unused potential remaining in Account(X1) and Account(X2) into Account(X3)
and remove potential from Account(X3) to pay for the cost of building edges in
p − F .

At any time of the algorithm, for each connected component X , define the
class of X to be the highest level j with a dual variable already grown that
credits X ; we denote this as as Class(X) and sometimes refer to it as the top
level of X . Define TopGrowth(X) to be the maximum total dual growth of a
terminal in X in level Class(X), i.e.

TopGrowth(X) = max
s∈X

{
∑

S⊆V :s∈S

y
Class(X)
S and s is a terminal}.

We know that TopGrowth(X) ≤ 2j by dual limit on level j.

Lemma 3. At any time of the algorithm, the following two invariants hold:

1. Every connected component X of F has

Account(X) ≥ 2Class(X) + TopGrowth(X);

2.
∑

e∈F ce +
∑

X∈F Account(X) =
∑

j

∑
S yj

S.

44 J. Qian and D.P. Williamson

Proof. Invariant 1 ensures that for a component X , Account(X) stores at least 2j

total potential for each level j < Class(X) plus the maximum total dual growth
of a terminal in X at the top level, which gives 2Class(X)−1 + 2Class(X)−2 + ... =
2Class(X) plus TopGrowth(X).

We prove the first invariant by induction on the algorithm. It is easy to see
that this invariant holds when no edges are added to F since the algorithm grows
dual variables in level j until some active dual variable reaches limit 2j; it then
grows duals in next higher level. Account(X) is credited 2j for each level below
the level Class(X) while getting TopGrowth(X) for current level.

Now, assume invariant 1 holds just before we add edges to F . The algorithm
builds a path p in F connecting two terminals s1 and s2 only if there are two
disjoint moats Sj

1 and Sj
2 that collide in some level j with s1 ∈ Sj

1 and s2 ∈ Sj
2

not yet connected in F . Let Xk be connected component in F that contains sk

for k = 1, 2. We know at least one of Sj
1 and Sj

2 must be active. Without loss of
generality, let it be Sj

1 . Then we know Class(X1) = j and Class(X2) = j′ ≥ j
since we only grow active dual variables in the top level of each component in F .
Then by assumption, Account(X1) ≥ 2j + TopGrowth(X1) and Account(X2) ≥
2j′ + TopGrowth(X2). After building edges p − F , X3 = X1 ∪ X2 ∪ {p − F}
will be a connected component in F . Our shadow algorithm merges the unused
potential remaining in Account(X1) and Account(X2) into Account(X3), and
removes potential from Account(X3) to pay for the cost of building edges p−F .
Since Class(X3) = max{j, j′} = j′, we need to show Account(X3) ≥ 2j′ +
TopGrowth(X3).

If j = j′, we know TopGrowth(X1)+TopGrowth(X2) ≥ ∑
e∈p ce ≥∑

e∈p−F ce

since Sj
1 and Sj

2 collide in level j, and the cost of the path from s1 to s2 cannot be
more than the total dual containing s1 and s2 in level j. Also, TopGrowth(X3) ≤
2j by the dual limit on level j. So we have

Account(X3) = Account(X1) + Account(X2) −∑
e∈p−F ce

≥ 2j + TopGrowth(X1) + 2j + TopGrowth(X2) −∑
e∈p−F ce

≥ 2j + 2j ≥ 2j′ + TopGrowth(X3).

If j < j′, we know TopGrowth(X1) + 2j ≥ ∑
e∈p ce ≥ ∑

e∈p−F ce since Sj
1

and Sj
2 collide in level j and the cost of the path from s1 to s2 cannot be more

than the total dual containing s1 and s2 in level j. Also, TopGrowth(X3) =
TopGrowth(X2) since j < j′. So, we have

Account(X3) = Account(X1) + Account(X2) −∑
e∈p−F ce

≥ 2j + TopGrowth(X1) + 2j′ + TopGrowth(X2) −∑
e∈p−F ce

≥ 2j′ + TopGrowth(X3).

Therefore, the invariant 1 holds at any time of the algorithm. Furthermore,
since accounts get credited for dual growth and debited exactly the cost of edges
in F , we also have that invariant 2 holds at any time of the algorithm. �
Lemma 4. Let the dual vector yj with the maximum total dual

∑
S yj

S be ymax.
At the end of time step i, we have

∑
e∈F ce ≤ (log |Ri| + 2)

∑
S ymax

S .

An O(log n)-Competitive Algorithm for Online Constrained Forest Problems 45

Proof. By invariant 2 of Lemma 3,
∑

e∈F ce =
∑

j

∑
S yj

S −∑
X∈F Account(X).

So it suffices to show
∑

j

∑
S yj

S −∑
X∈F Account(X) ≤ (log |Ri|+ 2)

∑
S ymax

S .
At the end of time step i, let X∗ be a connected component in F of high-

est class and let m = Class(X∗). We know Account(X∗) ≥ 2m by invariant 1
of Lemma 3. So the total unused potential remaining in all accounts (that is,∑

X∈F Account(X)) is at least 2m.
Let λ = �log2 |Ri|�. Each terminal s has total dual

∑
S⊆V :s∈S y−λ

S ≤ 2−λ ≤
1/|Ri| in level −λ by the dual limit, so that

∑
S y−λ

S ≤ 1. Similarly, we have∑
S ym−λ−j−1

S ≤ 2m−j−1. Consider all dual vectors of the form ym−λ−j−1 with
j ≥ 0; then we have

∑
j≥0

∑
S ym−λ−j−1

S ≤ 2m−1 + 2m−2 + 2m−3 + ... = 2m ≤∑
X∈F Account(X).
Then, if we consider the dual solutions ym−λ, . . . , ym, we have

∑
j

∑
S

yj
S −

∑
X∈F

Account(X) ≤
λ∑

k=0

∑
S

ym−λ+k
S ≤ (log |Ri| + 2)

∑
S

ymax
S .

The lemma follows. �
Now, we are ready to prove Theorem 1.
Proof of Theorem 1: By Lemma 1, at the end of time step i of the algorithm,
F is a feasible solution to (IPi). We have∑

e∈F ce =
∑

j

∑
S yj

S −∑
X∈F Account(X) by Lemma 3

≤ (log |Ri| + 2)
∑

S ymax
S by Lemma 4

≤ (log |Ri| + 2)OPTi by Lemma 1

where OPTi is the optimal value of (IPi) and the last inequality follows by the
fact that the cost of a feasible dual solution to (Di) is a lower bound on OPTi.
Therefore, our algorithms is an O(log |Ri|)-competitive algorithm for the online
proper constrained forest problem. Note that we have |Ri| = O(n), where is n is
the number of nodes in G. �

4 The Online Prize-Collecting Steiner Tree Problem

Define the online prize-collecting Steiner tree problem as follows: we are given
a root node r in G, and a penalty of zero for each non-root node. In each time
step i, a terminal si
= r arrives with a new penalty πi > 0. We have a choice
to either connect si to root r or pay a penalty πi for not connecting it (for time
step i and each future time step); in the latter case, we mark the terminal. Our
goal is to find a set of edges F that minimizes the sum of edge costs in F plus
sum of penalties for all marked terminals.

46 J. Qian and D.P. Williamson

The integer programming formulation of (IPi) is

Min
∑
e∈E

cexe +
∑

sl∈Ri

πlzl

(IPi)
∑

e∈δ(S)

xe + zl ≥ 1, ∀S ⊆ V − {r}, sl ∈ S ∩ Ri,

xe ∈ {0, 1}, ∀e ∈ E,

zl ∈ {0, 1}, ∀sl ∈ Ri.

Let (LPi) denote the corresponding linear programming relaxation in which the
constraints xe ∈ {0, 1} and zl ∈ {0, 1} are replaced with xe ≥ 0 and zl ≥ 0. The
dual of this linear program, (Di), is

Max
∑

S⊆V −{r}
yS

(Di)
∑

S:e∈δ(S)

yS ≤ ce, ∀e ∈ E,

∑
S⊆U

yS ≤
∑

sl∈U∩Ri

πl, ∀U ⊂ V, r /∈ U,

yS ≥ 0, ∀S ⊆ V − {r}.
For the each dual problem (Di), call the constraints of type

∑
S:e∈δ(S) yS ≤ ce

the edge cost constraints and call the constraints of type
∑

S⊆U yS ≤ ∑
sl∈U∩Ri

πl

the penalty constraints. A penalty constraint corresponding to a set U j is tight
in level j if the left-hand side of the inequality is equal to the right-hand side.

A terminal is active during time step i if it is unmarked and it is not yet
connected to root r in current solution F . A terminal is marked by our algorithm
if we decide to pay its penalty. A moat Sj is active during time step i, if it is
on the lowest level j that satisfies the following three conditions: (i) Sj contains
some active terminal s ∈ A; (ii) yj

S has not yet reached its limit in level j; (iii)
Sj does not contain root r. We denote the current set of active moats by M.

The rest of the definitions follow as in the main algorithm.
We extend our main algorithm to give an O(log |Ri|)-competitive algorithm

for the prize-collecting Steiner tree problem. For each time step i, a new terminal
si with penalty πi arrives. With the modified definitions of active terminals and
actives moats, we follow the same lines of main algorithm to grow dual variables,
with the same conditions (1)-(3) in that algorithm, but additionally: (4) When
a path p connecting a terminal s to root r becomes tight in level j, we buy the
path if s and r are not yet connected in F and update active terminal set A;
(5) when a penalty constraint corresponding to a set U j becomes tight in level
j, in which case we mark all terminals in U j to pay their penalties and update
active terminal set A. We let a set Q be all the vertices marked by our algorithm
in current time step and in previous time steps. At the end of time step i, our
algorithm outputs F and the set of terminals Q marked to pay penalties.

Theorem 2. Our extended algorithm gives an O(log |Ri|)-competitive algorithm
for the online prize-collecting Steiner tree problem (IPi).

An O(log n)-Competitive Algorithm for Online Constrained Forest Problems 47

Proof. To bound total edge costs and penalties, we need to bound the cost of
edges built by conditions (3), (4) and penalties paid by condition (5).

Consider edges in F . Let P be the set of paths we built in F by condition
(4) of the extended algorithm, i.e. paths that connect a component in F − P to
root r. Then F − P is the set of edges built by condition (3) of the extended
algorithm. By invariant 2 of Lemma 3, we have

∑
e∈F−P ce =

∑
j

∑
S yj

S −∑
X∈F−P Account(X). By condition (4) of the algorithm, for each path p that

connects a terminal s to root r, there must be a moat Sj such that
∑

e∈p ce ≤∑
S′⊆Sj :s∈S′ yj

S′ . Let Xp be the component in F − P that connected to root by
p. All S′ ⊆ Sj with s ∈ S′ must credit Account(Xp). Also, j must be equal
to Class(Xp) since every terminal in Xp is connected to root r after building
p in F ; after Xp connects to r, our algorithm does not grow any dual that
contains a terminal in Xp. By definition of TopGrowth, we know

∑
e∈p ce ≤

TopGrowth(Xp). Therefore, we have
∑

e∈P ce ≤ ∑
Xp:p∈P TopGrowth(Xp) so

that∑
e∈F ce =

∑
e∈F−P ce +

∑
e∈P ce

≤ ∑
j

∑
S yj

S −∑
X∈F−P Account(X) +

∑
Xp:p∈P TopGrowth(Xp)

≤ ∑
j

∑
S yj

S −∑
X∈F−P :X=Xp,p∈P (Account(Xp) − TopGrowth(Xp))

−∑
X∈F−P :X
=Xp∀p∈P Account(X)

≤ (log |Ri| + 2)
∑

S ymax
S .

The last inequality follows by same argument as Lemma 4 since for the com-
ponent X∗ in F − P with highest class, whether it has a path that connects it
to root or not, Account(X∗) − TopGrowth(X∗) ≥ 2Class(X∗) by invariant 1 of
Lemma 3.

Next, we use a new copy of dual variables to bound penalties of terminals in
Q, i.e.

∑
sl∈Q πl. For each dual solution yj, let Sj be the set of moats in F̄ j that

correspond to a tight penalty constraint. It must the case that
∑

sl∈Sj∩Q πl =∑
S′⊆Sj yj

S′ for any Sj ∈ Sj by condition (5) of the algorithm. By construction,
moats in Sj cannot overlap, so each dual variable is charged to pay a penalty
at most once. Also, since we keep growing same set of dual variables in all time
steps, our algorithm continues to pay penalties corresponding to tight penalty
constraints over all time steps. To bound the total penalty, we know that a
terminal can be marked to pay a penalty only by condition (5), so that∑

sl∈Q

πl ≤
∑

j

∑
Sj∈Sj

∑
S′⊆Sj

yj
S′ ≤

∑
j

∑
S

yj
S .

Let X∗ be a component in F of highest class and let m = Class(X∗). Consider∑
j

∑
S yj

S ≤ 2
∑

j

∑
S yj

S − ∑
j

∑
S yj

S , by invariant 1 of Lemma 3, we know∑
j

∑
S yj

S ≥ Account(X∗) ≥ 2m . By similar technique in Lemma 4, let λ =
�log2 |Ri|�, we know

∑
S ym−λ−k−2

S ≤ 2m−k−2. Consider all dual vectors of the
form ym−λ−k−2 with k ≥ 0, we have 2

∑
k≥0

∑
S ym−λ−k−2

S ≤ 2m. Then, for
dual solutions ym−λ−1, . . . , ym, we have

48 J. Qian and D.P. Williamson

2
k=λ+1∑

k=0

∑
S

ym−λ−1+k
S ≤ 2(log |Ri| + 3)

∑
S

ymax
S .

Therefore,∑
e∈F ce +

∑
sl∈Q πl ≤ [(log |Ri| + 2) + 2(log |Ri| + 3)]

∑
S ymax

S

≤ O(log |Ri|)OPTi.

�

5 Conclusion

In the online survivable network design problem, we are given as input an undi-
rected graph and nonnegative edge costs, and in the ith time step, a pair of ter-
minals (si,ti) arrives with a connectivity requirement ri. One must then augment
the current solution so that there are at least ri edge-disjoint paths between si

and ti. It is an interesting open question whether primal-dual algorithms for the
offline survivable network design problem (such as those in [8,5]) can be adapted
to the online case as we did here. If rmax = maxi ri, Gupta, Krishnaswamy,
and Ravi [6] have recently given an O(rmax log3 n)-competitive algorithm for
the online survivable network design problem, so such an adaptation might be
possible.

References

1. Agrawal, A., Klein, P., Ravi, R.: When trees collide: An approximation algorithm
for the generalized Steiner problem on networks. SIAM Journal on Computing 24,
440–456 (1995)

2. Awerbuch, B., Azar, Y., Bartal, Y.: On-line generalized Steiner problem. Theoretical
Computer Science 324, 313–324 (2004)

3. Berman, P., Coulston, C.: On-line algorithms for Steiner tree problems. In:
Proceedings of the 29th Annual ACM Symposium on the Theory of Computing,
pp. 344–353 (1997)

4. Goemans, M.X., Williamson, D.P.: A general approximation technique for con-
strained forest problems. SIAM Journal on Computing 24, 296–317 (1995)

5. Goemans, M., Goldberg, A., Plotkin, S., Shmoys, D., Tardos, E., Williamson, D.:
Improved approximation algorithms for network design problems. In: Proceedings
of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 223–232
(1994)

6. Gupta, A., Krishnaswamy, R., Ravi, R.: Online and stochastic survivable network
design. In: Proceedings of the 41st Annual ACM Symposium on the Theory of
Computing, pp. 685–694 (2009)

7. Imase, M., Waxman, B.M.: Dynamic Steiner tree problem. SIAM Journal on
Discrete Mathematics 4, 369–384 (1991)

8. Williamson, D.P., Goemans, M.X., Mihail, M., Vazirani, V.V.: A primal-dual ap-
proximation algorithm for generalized Steiner network problems. Combinatorica 15,
435–454 (1995)

On the Power of Lower Bound Methods for

One-Way Quantum Communication Complexity

Shengyu Zhang

The Chinese University of Hong Kong
syzhang@cse.cuhk.edu.hk

Abstract. One of the most fundamental questions in communication
complexity is the largest gap between classical and quantum one-way
communication complexities, and it is conjectured that they are polyno-
mially related for all total Boolean functions f . One approach to proving
the conjecture is to first show a quantum lower bound L(f), and then a
classical upper bound U(f) = poly(L(f)). Note that for this approach to
be possibly successful, the quantum lower bound L(f) has to be polyno-
mially tight for all total Boolean functions f .

This paper studies all the three known lower bound methods for
one-way quantum communication complexity, namely the Partition Tree
method by Nayak, the Trace Distance method by Aaronson, and the
two-way quantum communication complexity. We deny the possibility
of using the aforementioned approach by any of these known quantum
lower bounds, by showing that each of them can be at least exponentially
weak for some total Boolean functions. In particular, for a large class of
functions generated from Erdös-Rényi random graphs G(N, p), with p in
some range of 1/poly(N), though the two-way quantum communication
complexity is linear in the size of input, the other two methods (particu-
larly for the one-way model) give only constant lower bounds. En route
of the exploration, we also discovered that though Nayak’s original argu-
ment gives a lower bound by the VC-dimension, the power of its natural
extension, the Partition Tree method, turns out to be exactly equal to
another measure in learning theory called the extended equivalence query
complexity.

1 Introduction

Communication complexity studies the minimum amount of communication
needed to compute a function of inputs distributed over two (or more) parties.
Through more than three decades of studies since its invention by Yao [30], it
has flourished into a research field with connections to numerous other computa-
tional settings such as circuit complexity, streaming algorithms, data structures,
decision tree complexity, VLSI design, algorithmic game theory, optimization,
pseudo-randomness and so on [19,28].

In the basic two-party setting, Alice and Bob are given inputs x ∈ {0, 1}n

and y ∈ {0, 1}m, respectively, and they need to compute f(x, y). In the two-way
model, Alice and Bob are allowed to send messages back and forth; in the one-way

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 49–60, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

50 S. Zhang

model, only Alice sends a message to Bob. The least amount of communication
needed for the worst-case input in a deterministic, randomized and quantum
protocol, with the latter two allowing a bounded error, is the communication
complexity in the corresponding models. We denote by D(f), R(f) and Q(f) the
deterministic, randomized and quantum communication complexities of func-
tion f in the two way model, and D1(f), R1(f) and Q1(f) the corresponding
complexities in the one-way model.

Though much weaker than the two-way model, the one-way model has also
caused much attention for various reasons: First, the model is powerful enough
to admit many efficient protocols, including both cases for specific functions
(such as Equality) and cases for general functions (such as the one with cost
in terms of the γ∞

2 -norm [20]). Second, the one-way communication complexity
has close connections to areas such as streaming algorithms [22]. Third, proving
lower bounds of the one-way communication complexity for general functions
turns out to be mathematically quite challenging.

Lower bound methods for communication complexity are of particular interest
since in most, if not all, connections to other theoretical areas, communication
complexity serves as a lower bound. Quantum lower bounds are interesting for
another important reason: One of the most fundamental questions in the field
is to pin down the largest gap between classical and quantum communication
complexities for total Boolean functions. However, the problem is notoriously
hard and our knowledge is very limited: the largest known gap between Q(f)
and R(f) for a total function is quadratic (achieved by, for example, Disjointness
[15,25,8,3,12,26,27]), while the best upper bound of R(f) in terms of Q(f) is still
exponential. The situation in the one-way model is more embarrassing: Despite a
lot of efforts [1,2,14], the best separation between classical and quantum one-way
communication complexities is a factor of 2 (for Equality function as observed
by Winter[29]), while the best upper bound of gap is exponential. Actually, it
was highly nontrivial to find even relations [6] or partial functions [10,16] with
exponential gaps. Based on this and various other facts such as Holevo’s bound,
it is reasonable to conjecture that R1(f) and Q1(f) are polynomially related for
all total Boolean functions f .

Two approaches were previously taken to understand the relation. One is try-
ing to simulate a quantum protocol directly by a randomized one. Unfortunately,
the cost of all classical simulations so far have parameters other than Q1(f), and
those parameters can be easily as large as n for some total functions. The other
natural approach is to firstly derive a general lower bound Q1(f) = Ω(L(f)), and
then prove a matching upper bound R1(f) = poly(L(f)). Recently Jain, Klauck
and Nayak proved that the one-way rectangle bound tightly characterizes R1(f)
[13], which raised the hope of proving the polynomial relation by establishing a
matching quantum lower bound. Jain and Zhang tried along this way [14], but
were only able to prove that the distributional quantum complexity is at least
the distributional rectangle bound for all product distributions.

Note that for this approach to succeed for a general total function f , the tight-
ness of the quantum lower bound L(f) is crucial: If it is not always

On the Power of Lower Bound Methods 51

polynomially tight, then any attempt on establishing a matching classical upper
bound is doomed to fail. There are two methods particularly for the quantum
one-way model. One is the trace distance method for general functions by Aaron-
son [1]. The other originates in some sense in the paper [4] by Ambainis, Nayak,
Ta-Shma, and Vazirani, and is more explicit in [23] by Nayak for the Random
Access Code (RAC) problem; we will refer to this technique as the partition tree
method (for the reason that will be clear from later discussions). Besides these
two methods, the two-way quantum communication complexity Q(f) can also
serve as a lower bound for Q1(f) by definition. In this paper, we show that

Theorem 1. None of the above three known lower bound methods for Q1(f) is
polynomially tight. Actually, they can all be at least exponentially weak.

This theorem implies that any one of the known methods does not suffice to
prove the conjecture that R1(f) = poly(Q1(f)). It can also be viewed as an
partial explanation on why the conjecture, if true, is so hard to prove. These
negative results on the tightness call for new lower bound methods for Q1(f),
and we hope that the exhibited weakness of these methods can guide us to search
for new and more powerful ones.

Next we discuss in more details about our studies of the various lower bound
methods. First, unlike the trace distance method, the partition tree method does
not have a well-defined formula for general functions. This paper starts from
cleaning up the picture of the method, leading to a robust generalization. As an
unexpected connection, its power turns out to be exactly the extended equivalence
query complexity in computational learning theory. This is interesting compared
to that Nayak’s original argument actually proves Q1(f) ≥ V C(f), the VC-
dimension of f [18].

We then analyze the power of the three lower bound techniques. Various
relations between these techniques are studied, among which the advantage of
Q(f) over the other two methods is particularly interesting. Presumably Q(f)
should not be a good lower bound for Q1(f) which in general can be much
larger; for example, for Index function Q(f) ≤ log2 n but Q1(f) = 1. However, it
turns out that for most functions induced by a random graph G(N, p) for a large
range of p = 1/poly(N), both the partition tree method and the trace distance
methods can only give a constant lower bound for Q1(f), while we can show that
Q(f) = Ω(n) by the generalized discrepancy method [20].

More related work. On the relation of R1(f) and Q1(f), if parameters other than
Q1(f) are allowed, then nontrivial classical upper bounds are known: The afore-
mentioned bound in VC-dimension and Sauer’s lemma that D1(f) = O(mV C(f))
imply the upper bound D1(f) = O(mQ1(f)). Aaronson later generalized this to
partial functions D1(f) = O(mQ1(f) log Q1(f)) [1] and R1(f) = O(mQ1(f)) [2].
Jain and Zhang [14] improved the last bound to R1(f) = O((Iμ(X ; Y)+1)V C(f))
for total functions where Iμ(X ; Y) is the mutual information of the correlated
inputs (X, Y) under a hard distribution μ. Klauck gave a variant of Nayak’s
argument in [17], which unfortunately may be weaker than the VC-dimension
(up to an logarithm), while our partition tree bound is always at least V C(f).

52 S. Zhang

There are quite a few results on separations of classical and quantum com-
munication complexities for total functions in the so-called SMP model [7] and
for partial functions or relations in various other models [8,24,11,9,16].

2 Preliminaries

Suppose Alice’s input set is X with size N = 2n and Bob’s input set is Y with
size M = 2m. The set of inputs {(x, y) : f(x, y) = b} is called b-inputs. For a
graph G = (V, E), the function fG : V ×V → {0, 1} is defined as fG(x, y) = 1 iff
(x, y) ∈ E. We assume that f(x, x) = 0. For a vertex v ∈ V , its neighbor set is
denoted by N(v). An N -node random graph in the Erdös-Rényi model G(N, p)
is obtained by connecting each pair of vertices independently with probability
p. For a graph G, its adjacency matrix is AG. For a matrix A, let σ1(A), ...,
σrank(A)(A) be the singular values of A in the decreasing order.

The trace distance method was introduced by Aaronson.

Theorem 2 (Aaronson, [1]). Let f : {0, 1}n × {0, 1}m → {0, 1} be a total
Boolean function, and μ is a probability distribution on the 1-input set {(x, y) :
f(x, y) = 1}. Let Dk be the distribution over ({0, 1}n)k formed by first choosing
y ∈ μ and then choosing k samples independently from the conditional distribu-
tion μy. Suppose that Prx←μ, y←μ[f(x, y) = 0] = Ω(1), where “x ← μ, y ← μ”
is to draw x and y independently from the two marginal distributions of μ, then
Q1(f) = Ω(log(1/‖D2 − D2

1‖)).

Definition 1. The trace distance bound for Q1(f) is TD(f) = maxμ log2
1

‖D2−D2
1‖ where the maximum is taken over all probability distributions μ on

the 1-inputs.

Linial and Shraibman introduced the following lower bound for Q(f) based on the
factorization norm. For a matrix A, define γ2(A) = minA=BC ‖B‖2→∞‖C‖1→2

where for vector norms ‖·‖X and ‖·‖Y , the operator norm ‖A‖X→Y
def= max‖x‖X=1

‖Ax‖Y . For a sign matrix A and α ≥ 1, let γα
2 (A) = minB:1≤aijbij≤α γ2(B).

Theorem 3 (Linial and Shraibman, [20]). Qε(f) ≥ log2 γ
1/(1−2ε)
2 (f)−Oε(1).

The bound is also known as the generalized discrepancy method. The bound
actually holds even for Q∗(f), the quantum communication complexity with
entanglement shared by Alice and Bob, is lower bounded by the above quantity.
Here we are mainly concerned with the case without entanglement because the
no-separation conjecture becomes trivial (due to quantum teleportation) if we
compare Q1,∗(f) and R1,∗(f).

Definition 2. The ε-factorization norm bound for Qε(f) is FNε(f) =
log2 γ

1/(1−2ε)
2 (f), and the factorization norm bound for Q∗(f) is FN(f) =

FN1/3(f).

On the Power of Lower Bound Methods 53

3 The Partition Tree Method

The partition tree bound is defined as follows. Consider a binary partition tree
T of X , where each node v = v1...vi (i is the depth of v) is associated with
an input yv of Bob. Let X be a random variable according to the distribution
p over X . This tree induces a subset Xv ⊆ X for each node v in the following
inductive way: the root corresponds to X , and suppose the set Xv is defined then
the two subsets Xv0 and Xv1 for its two children v0 and v1 is defined by Xvb =
{x ∈ Xv : f(x, yv) = b}. A note v is a leaf iff f(x, yv), for all x ∈ Xv, have the
same value. Define a sequence of random variables V1, ..., Vdepth(T) by Pr[Vi+1 =

b|V1...Vi] = p(XV1...Vib)/p(XV1...Vi). For a node v = v1...vi, define p(v) def= p(Xv)
and pv(b) def= p(Xvb|Xv) for b ∈ {0, 1} and pv(min) def= min{pv(0), pv(1)}.

Definition 3. The partition tree bound for Q1(f) is PT(f) = maxT ,p∑
v∈T p(v)pv(min).

It is not quite immediate to generalize Nayak’s argument (for RAC) to this
formulation as a lower bound of Q1(f). Please see the full version for detailed
explanations.

To study PT(f), first observe that if one can find a balanced binary subtree
of height h, then PT(f) ≥ h(1 − H(ε)) since one can put half-half probabilities
on both branches of each node of the subtree. (Note that this is at least V C(f)
but could be much larger than it, as shown in the Greater Than function in the
full version.) The following theorem says that this is actually also the best lower
bound the partition tree method can provide.

Theorem 4. There exists a subset S ⊆ X and a partition tree T ∗ for f on
(S,Y) s.t. PT(f) = the length of the shortest path of T ∗.

See the full version for the proof.
Note that the standard decision tree complexity is to minimize the the length

of the longest path, but here the best PT bound is to maximize the length of
the shortest path.

It turns out to have an interesting connection to the extended equivalence
query complexity in learning theory, which we will define using the language of
communication complexity as follows. Alice has an input x and Bob wants to
exactly learn x by making queries to Alice, who then responses with an answer.
Different query models were studied in learning theory.

1. membership query: Bob’s query is a column y, and Alice’s response is f(x, y);
2. equivalence query: Bob’s query is a string a ∈ {0, 1}M as a guess of x. If

a = x, then Alice tells Bob so and the game is over. Otherwise, Alice not
only tells Bob that his guess is wrong, but also provides a column y which
f(x, y)
= ay.

If Bob is restricted to use strings a ∈ {0, 1}M appearing as rows in the
matrix f as queries, then this is called the equivalence query; if Bob is allowed
to use any string a ∈ {0, 1}M , it is called the extended equivalence query.

54 S. Zhang

The minimal number of a particular type of queries Bob needs to make for
the worst-case input x is called the query complexity of that type. Denote by
MQ(f), EQ(f) and XEQ(f) the membership query complexity, the equivalence
query complexity and the extended equivalence query complexity of the function
f , respectively. The following theorem gives a characterization of XEQ(f) by
relating it to membership query computation.

Theorem 5 (Littlestone, [21]). XEQ(f) = maxT minx d(x, T), where T is
a membership query computation tree and d(x, T) is the depth of x in T .

A membership query computation tree is a decision tree with membership queries
in the natural way; see the survey [5] for a formal definition (as well as an
extensive review of different types of queries in learning theory). Its important
relation to our work is that the membership query computation tree is exactly
our partition tree, and thus the above theorem and Theorem 4 combined give
the following full characterization of PT.

Theorem 6. PT(f) = XEQ(f).

4 Comparisons between the Powers

In this section we will study the power of the lower bound methods, the PT bound
part of which uses the limitation result established in the previous section. We
will prove Theorem 1 by a circle of comparison results in the order of PT >>
Q >> TD >> PT. The first separation is easily exhibited by Index function.
Next we will show that though as a lower bound method merely for the two-way
complexity, the factorization norm method can be much stronger than the other
two methods for the one-way complexity. In fact, for almost all functions f in
some range (the precise meaning of which will be clear shortly) the factorization
norm gives a linear lower bound for Q(f) while the other two cannot even prove
a super constant lower bound for Q1(f). The advantage of FN over TD is given
next, and that of FN over PT is given in Section 4.3.

4.1 On the Advantage of the Factorization Norm Method over the
Trace Distance Method

In this section we will show that for a random Erdös-Rényi graph G(N, p) for
some range of p, we have FN(fG) = Ω(n) but TD(fG) = O(1).

Here we consider a random graph G(N, p) since the corresponding limitations
for TD and PT are easier to show. By studying the normalized Laplacian operator
on the graph, one can show that the factorization norm method gives a good
lower bound for most such random graphs.

Theorem 7. If ω(log4 N/N) ≤ p ≤ 1−Ω(1), then with probability 1− o(1), an
N -node random graph G(N, p) has FN(fG) − O(1) ≥ 1

2 log2(pN) − O(1).

The proof is in the full version, from which one can see that actually even the
discrepancy bound, a bound weaker than FN, is still at least Ω(log2(pN))).

On the Power of Lower Bound Methods 55

Next we show that TD can only give a constant lower bound for random graph
functions.

Theorem 8. For p = o(N−6/7), a random graph G(N, p) has TD(fG) = O(1)
with probability 1 − o(1).

Here we are not aiming to maximize the range of p, though we believe that
the result still holds for larger p. The main goal is to show the existence of a
range p = 1/poly(N). We will first show in the following Lemma 2 that with
probability 1 − o(1), a random graph G(N, p) has some good properties. The
proof uses Lemma 1 which is on the relation of the number of edges and that
of vertices with some connection requirement. After these, we will show that for
graphs with those properties, the TD bound is very low.

Lemma 1. For any constant δ > 0, there are constants c and d s.t. for all
distinct vertices Vx = {x1, ..., xc} and Vz = {z1, ..., zd}, if any xi and zk share
at least one common neighbor, and there is no vertex y connecting to all xi’s
and zk’s, then there exists Vy = {y1, ..., ye}, s.t. any pair (xi, zk) of vertices are
connected via yj for some j ∈ [e], and g/(c + d + e) ≥ 4/3 − δ, where g is the
number of edges between Vx ∪ Vz and Vy.

Proof. For each (xi, zk), there is at least one y connecting them. Collect all these
y’s to form the set Vy. (For pairs (xi, zk) with more than one connectors y, we
pick an arbitrary one.) Thus each y has degree at least 2, and therefore

g/(c + d + e) ≥ 2e/(c + d + e). (1)

Now we will give another lower bound

g/(c + d + e) ≥ 1 + (d − 2)/(e + 6). (2)

Combining the two inequalities gives the desired result.
To show the second bound, fix a setting with g/(e + 6) minimized. See Figure

1 (where every N(zk)∩Vy is the same set simply for convenience of illustration).
The way we chose Vy guarantees that N(Vy) contains the whole Vx. Pick a subset
S ⊆ Vy with the minimum size s.t. the N(S) ⊇ Vx. By definition, the number
of edges from S to Vx is at least |Vx| = c. Define e1 = |S| and e2 = e − |S|;
Condition 2 implies e1 ≥ 2. Note that for each zk, its neighbor set in Vy , i.e.

V

V

Vx

y

z

1e 2e

Fig. 1. Illustration for the proof of Lemma 1

56 S. Zhang

N(zk) ∩ Vy, also connects to all Vx, thus the number of edges from zk to Vy is
|N(xi) ∩ Vy| ≥ e1. Also note that each node in Vy − S has at least one edge to
Vx. Thus the total number of edges in this small graph Vx ∪ Vy ∪ Vz is at least

de1 + c + e2 = (d − 1)e1 + c + e ≥ 2(d − 1) + c + e = 1 + (d − 2)/(e + 6). (3)

Lemma 2. For p = o(N−6/7), a random graph G = G(N, p) has all the follow-
ing properties with probability 1 − o(1).

1. For any vertex x with (at least) three neighbors y1, y2, y3, at least one of the
two pairs (y1, y2) and (y2, y3) only has x as their common neighbor.

2. There are universal constants c and d s.t. for any c vertices x1, ..., xc that
do not share a common neighbor, there are at most d−1 vertices z1, ..., zd−1

which have distance exactly 2 to all xi’s.
3. The graph does not contain a K3,2, the (3, 2)-complete bipartite graph, as a

subgraph.

Lemma 3. Suppose there is a distribution μ on 1-inputs with Prx←μ,y←μ[f(x, y)
= 0] = Ω(1) satisfied. If there is a submatrix A s.t. μ(A) = 1 − o(1), and A
as a function has Q1,pub(A) = q, then ‖D2 − D2

1‖1 = 2Ω(−q). In particular,
‖D2 − D2

1‖1 = Ω(1) for the following two special cases

1. there is a subset S ⊆ X s.t. |S| = O(1) and μ(S) = 1 − o(1),
2. there is a submatrix A s.t. each column is monochromatic except for at most

O(1) entries, and μ(A) = 1 − o(1).

See the full version for proofs of the above two lemmas.

Proof. (of Theorem 8) We take the graphs with all good properties in Lemma 2.
It is enough to show that any distribution μ on the edge set E with the following
condition satisfied

Prx←μ, y←μ[f(x, y) = 0] = Ω(1), (4)

has that ‖D2−D2
1‖1 = Ω(1). Assuming that it is not true, i.e. ‖D2−D2

1‖1 = o(1),
we will first show that this assumption forces μ to put most mass on just one
star-shape cluster of vertices, then show that in this case, it is also unavoidable
to have ‖D2 − D2

1‖1 = Ω(1) finally.
For two vertices x and x′, we say x covers x′, denoted by x ∼ x′, if they

share a common neighbor y. Otherwise we write x � x′. For a vertex itself, we
assume x ∼ x as long as x has a non-zero degree. Define the set Cover(x) =
{x′ : x ∼ x′}. By definition,

‖D2 − D2
1‖1 =

∑
x,x′

∣∣∣∣∣∑
y

μ(y)μ(x|y)μ(x′|y) − μ(x)μ(x′)

∣∣∣∣∣
=

∑
x,x′: x∼x′

∣∣∣∣∣∑
y

μ(y)μ(x|y)μ(x′|y) − μ(x)μ(x′)

∣∣∣∣∣ +
∑

x,x′: x�x′
μ(x)μ(x′)

On the Power of Lower Bound Methods 57

Thus ∑
x

μ(x)Prx′←μ[x � x′] =
∑

x,x′: x�x′
μ(x)μ(x′) ≤ ‖D2 − D2

1‖1 = o(1) (5)

This means that an average x covers most other vertices x′ (weighted under
μ). In particular, there exists one x0 s.t. Prx′←μ[x′

� x0] = o(1). Suppose its
neighbor set is N(x0) = {y1, ..., yt}, and define clusters Si = N(yi) − {x0},
and put S = ∪iSi. Also note that Cover(x0) is nothing but S ∪ {x0}, thus
μ(S ∪ {x0}) = 1 − o(1). Note that by Lemma 3, we can assume that μ(x0) =
1−Ω(1) (otherwise the desired conclusion has already been proved). Denote by
μ¬x0 the distribution μ(x) conditioned on x
= x0.

Lemma 4. At least one of the following two statements is true:

1. There are two disjoint subsets G1 and G2 of S s.t. μ¬x0(Gb) = Ω(1) for both
b = 1, 2, and any two vertices x1 ∈ G1 and x2 ∈ G2 belong to two different
clusters.

2. There is a single cluster Si with μ¬x0(Si) = 1 − o(1).

See the full version for a proof. We continue the proof of Theorem 8. If the second
statement of the above claim is true, it means that there is a single yi ∈ N(x0)
s.t. μ(N(yi)) = 1 − o(1). (Note that N(yi) includes a cluster and x0 itself.) By
the third property of Lemma 2, each vertex y other than yi only connects to at
most two vertices in N(yi) (to avoid a (3, 2)-complete bipartite graph). Thus the
submatrix on N(yi)×Y has 1− o(1) μ-mass but has all 1’s in column yi and at
most two 1’s in all other columns. By Lemma 3, we see that ‖D2−D2

1‖1 = Ω(1).
Therefore, we can assume that the first statement of the claim is the case, so

Ex←μ¬x0
[Prx′←μ[x′

� x]] ≥
∑

b=1,2

μ¬x0(Gb)Ex←μ¬x0

[
Prx′←μ[x′

� x]
∣∣ x ∈ Gb

]
.

On the other hand, we have

Ex←μ¬x0
[Prx′←μ[x′

� x]] =

∑
x
=x0

μ(x)Prx′←μ[x′
� x]

1 − μ(x0)
=

o(1)
Ω(1)

= o(1). (6)

Since both μ¬x0(Gb) = Ω(1), we have Ex←μ¬x0

[
Prx′←μ[x′

� x]
∣∣ x ∈ Gb

]
=

o(1) for both b = 1, 2. Therefore, we can find two points xb ∈ Gb both with
Prx′←μ[x′

� xb] = o(1). This means that for both b = 1, 2, most of mass of μ
is put on Cover(xb). Combined with the same fact for x0, we see that actually
μ(∩i=0,1,2Cover(xi)) = 1−o(1). But note that both x1 and x2 are covered by x0

since they are chosen from S, and they are not in the same cluster as guaranteed
by the first statement of the above claim. Consequently, x0, x1, x2 do not share
a common neighbor.

Now define set T = {x0, x1, x2}. As long as |T | is constant, we can assume
by Lemma 3 that μ(T) = 1 − Ω(1). Then similar to Eq (6), it follows that
Ex←μ[Prx′←μ[x′

� x]|x /∈ T] = o(1). Thus there exists another point x in S −T

58 S. Zhang

s.t. Prx′←μ[x′
� x] = o(1). Add this point to T and continue this process until

|T | = c. Each point x ∈ T has the property that μ(Cover(x)) = 1 − o(1),
and consequently μ(∩x∈T Cover(x)) = 1 − o(1) by noting that |T | = c is a
constant. Also recall that the vertices in T do not share a common neighbor
since actually even x0, x1, x2 do not. By the second property of Lemma 2, the
intersection of their cover sets has only constant size, and thus using Lemma 3
we get ‖D2 − D2

1‖1 = Ω(1). This completes the proof.

4.2 On the Advantage of the Trace Distance Method over the
Partition Tree Method

We observed that the partition tree method can be much better than the fac-
torization norm method, and have shown that the factorization norm method
can be much better than the trace distance method. To finish the circle, we now
show that the trace distance method can be much better than the partition tree
method. Different than Theorem 9, this time we can give an explicit function to
show the separation.

The Coset function Coset(G) is defined as follows. For a fixed group G, Alice
is given a coset x as her input and Bob is given an element y ∈ G as his input;
the question is whether y ∈ x. Aaronson [1] studied the function for the group
Z

2
p (where p is a prime number) and proved that Q1(Coset(Z2

p)) = Θ(log p); that
is, Alice asymptotically needs to send the whole input to Bob. Here we show that
the partition tree method can only give a very small constant lower bound for
this function. The proof is in the full version.

Proposition 1. PT(Coset(Z2
p)) = 2.

4.3 Other Discussions of the Power Comparisons

The main goal of this paper is to study the ultimate power of the known lower
bound methods for Q1(f), and in particular their tightness because of the no-
separation conjecture reason mentioned in Section 1. Though it is not our goal
to thoroughly study all the six relations between the three methods, it is good
to know for more insights. This section so far showed three of them as a circle,
leaving the three other relations to discuss. First, it turns out that PT is also
weak for random graph functions.

Theorem 9. For any α = Ω(1), if p = N−α, then an N -node random graph
G(N, p) has PT(fG) = O(1) with probability 1 − o(1).

For PT over TD, we believe that actually TD(Index) = O(log n), though we can
only show it for the symmetric distribution μ, i.e. μ(x, y) = μ(x′, y′) if |x| = |x′|.

Theorem 10. For any distribution p on {0, 1, ..., n}, let μp(x, y) = p(|x|) for
all (x, y) with xy = 1. Then the trace distance bound under μp for the Index
function is only O(log n).

See the full version for both proofs.

On the Power of Lower Bound Methods 59

5 Concluding Remarks and Open Questions

The tightness results in this paper call for new lower bound methods for Q1(f).
With the light shed by comparisons in Section 4, one (vague) approach is trying
to somehow combine the advantages of the methods to get a more powerful one.

The factorization norm method appears pretty strong for lower bounding
Q(f). Can we modify it to obtain a good lower bound for Q1(f)?

Acknowledgment. We would like to thank Rahul Jain for many valuable discus-
sions during the collaboration of paper [14], and Yi-Kai Liu for pointing out the
reference [5].

The work was partially supported by China Basic Research Grant 2011C-
BA00300 (sub-project 2011CBA00301) and Hong Kong General Research Fund
419309 and 418710. The author also benefited from visiting Centre of Quantum
Technologies and Tsinghua University, the latter under the support of China
Basic Research Grant 2007CB807900 (sub-project 2007CB807901).

References

1. Aaronson, S.: Limitations of quantum advice and one-way communication. Theory
of Computing 1, 1–28 (2005)

2. Aaronson, S.: The learnability of quantum states. Proceedings of the Royal Society
A 463, 2088 (2007)

3. Aaronson, S., Ambainis, A.: Quantum search of spatial regions. Theory of Com-
puting 1, 47–79 (2005)

4. Ambainis, A., Nayak, A., Ta-Shma, A., Vazirani, U.: Dense quantum coding and
quantum finite automata. Journal of the ACM 49(4), 1–16 (2002)

5. Angluin, D.: Queries revisited. Theoretical Computer Science 313(2), 175–194
(2004)

6. Bar-Yossef, Z., Jayram, T.S., Kerenidis, I.: Exponential separation of quantum and
classical one-way communication complexity. In: Proceedings of the 36th Annual
ACM Symposium on Theory of Computing (STOC), pp. 128–137 (2004)

7. Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Physical
Review Letters 87(16) (2001)

8. Buhrman, H., Cleve, R., Wigderson, A.: Quantum vs. classical communication and
computation. In: Proceedings of the Thirtieth Annual ACM Symposium on the
Theory of Computing (STOC), pp. 63–68 (1998)

9. Gavinsky, D.: Classical interaction cannot replace a quantum message. In: Pro-
ceedings of the Fortieth Annual ACM Symposium on the Theory of Computing
(STOC), pp. 95–102 (2008)

10. Gavinsky, D., Kempe, J., Kerenidis, I., Raz, R., de Wolf, R.: Exponential separation
of quantum and classical one-way communication complexity. In: Proceedings of
the 39th Annual ACM Symposium on Theory of Computing (STOC), pp. 516–525
(2007)

11. Gavinsky, D., Pudlák, P.: Exponential separation of quantum and classical
non-interactive multi-party communication complexity. In: Proceedings of the 23rd
Annual IEEE Conference on Computational Complexity, pp. 332–339 (2008)

60 S. Zhang

12. Høyer, P., Mosca, M., de Wolf, R.: Quantum search on bounded-error inputs. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 291–299. Springer, Heidelberg (2003)

13. Jain, R., Klauck, H., Nayak, A.: Direct product theorems for classical communica-
tion complexity via subdistribution bounds. In: Proceedings of the Fortieth Annual
ACM Symposium on the Theory of Computing (STOC), pp. 599–608 (2008)

14. Jain, R., Zhang, S.: New bounds on classical and quantum one-way communication
complexity. Theoretical Computer Science 410(26), 2463–2477 (2009)

15. Kalyanasundaram, B., Schintger, G.: The probabilistic communication complexity
of set intersection. SIAM Journal on Discrete Mathematics 5(4), 545–557 (1992)

16. Klartag, B., Regev, O.: Quantum one-way communication can be exponentially
stronger than classical communication. In: Proceedings of the 44th Annual ACM
Symposium on the Theory of Computing (STOC) (to appear, 2011)

17. Klauck, H.: Quantum communication complexity. In: ICALP Satellite Workshops,
pp. 241–252 (2000)

18. Klauck, H.: Lower bounds for quantum communication complexity. SIAM Journal
on Computing 37(1), 20–46 (2007)

19. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, Cambridge (1997)

20. Linial, N., Shraibman, A.: Lower bounds in communication complexity based on
factorization norms. In: Proceedings of the Thirty-Ninth Annual ACM symposium
on Theory of Computing (STOC), pp. 699–708 (2007)

21. Littlestone, N.: Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning 2(4), 285–318 (1988)

22. Muthukrishnan, S.M.: Data streams: Algorithms and applications. Foundations
and Trends in Theoretical Computer Science 1(2) (2005)

23. Nayak, A.: Optimal lower bounds for quantum automata and random access codes.
In: Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 124–133 (1999)

24. Raz, R.: Exponential separation of quantum and classical communication com-
plexity. In: Proceedings of the 31st Annual ACM Symposium on the Theory of
Computing (STOC), pp. 358–367 (1999)

25. Razborov, A.: On the distributional complexity of disjointness. Theoretical Com-
puter Science 106, 385–390 (1992)

26. Razborov, A.: Quantum communication complexity of symmetric predicates.
Izvestiya: Mathematics 67(1), 145–159 (2003)

27. Sherstov, A.: The pattern matrix method for lower bounds on quantum commu-
nication. In: Proceedings of the 40th Annual ACM Symposium on the Theory of
Computing, pp. 85–94 (2008)

28. Wigderson, A.: Depth through breadth, or why should we attend talks in other ar-
eas? In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing
(STOC), p. 579 (2004), http://www.math.ias.edu/~avi/TALKS/STOC04.ppt

29. Winter, A.: Quantum and classical message identification via quantum channels.
Quantum Information and Computation 4(6&7), 563–578 (2004)

30. Yao, A.C.-C.: Some complexity questions related to distributive computing. In:
Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing
(STOC), pp. 209–213 (1979)

http://www.math.ias.edu/~avi/TALKS/STOC04.ppt

Advice Coins for Classical and Quantum

Computation

Scott Aaronson� and Andrew Drucker��

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139, USA
aaronson@csail.mit.edu, adrucker@mit.edu

http://www.springer.com/lncs

Abstract. We study the power of classical and quantum algorithms
equipped with nonuniform advice, in the form of a coin whose bias en-
codes useful information. This question takes on particular importance
in the quantum case, due to a surprising result that we prove: a quantum
finite automaton with just two states can be sensitive to arbitrarily small
changes in a coin’s bias. This contrasts with classical probabilistic finite
automata, whose sensitivity to changes in a coin’s bias is bounded by a
classic 1970 result of Hellman and Cover.

Despite this finding, we are able to bound the power of advice coins
for space-bounded classical and quantum computation. We define the
classes BPPSPACE/coin and BQPSPACE/coin, of languages decidable by
classical and quantum polynomial-space machines with advice coins. Our
main theorem is that both classes coincide with PSPACE/poly. Proving
this result turns out to require substantial machinery. We use an algo-
rithm due to Neff for finding roots of polynomials in NC; a result from
algebraic geometry that lower-bounds the separation of a polynomial’s
roots; and a result on fixed-points of superoperators due to Aaronson
and Watrous, originally proved in the context of quantum computing
with closed timelike curves.

Keywords: BQP, finite automata, finite-precision arithmetic, PSPACE,
Quantum Computation, root-finding.

1 Introduction

1.1 The Distinguishing Problem

The fundamental task of mathematical statistics is to learn features of a random
process from empirical data generated by that process. One of the simplest, yet
most important, examples concerns a coin with unknown bias. Say we are given
� This material is based upon work supported by the National Science Foundation

under Grant No. 0844626. Also supported by a DARPA YFA grant and a Sloan
Fellowship.

�� Supported by a DARPA YFA grant.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 61–72, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.springer.com/lncs

62 S. Aaronson and A. Drucker

a coin which lands “heads” with some unknown probability q (called the bias).
In the distinguishing problem, we assume q is equal either to p or to p + ε, for
some known p, ε, and we want to decide which holds.

A traditional focus is the sample complexity of statistical learning procedures.
For example, if p = 1/2, then t = Θ

(
log (1/δ) /ε2

)
coin flips are necessary and

sufficient to succeed with probability 1− δ on the distinguishing problem above.
This assumes, however, that we are able to count the number of heads seen,
which requires log(t) bits of memory. From the perspective of computational
efficiency, it is natural to wonder whether methods with a much smaller space
requirement are possible. This question was studied in a classic 1970 paper by
Hellman and Cover [13]. They showed that any (classical, probabilistic) finite
automaton that distinguishes with bounded error between a coin of bias p and a
coin of bias p + ε, must have Ω (p (1 − p) /ε) states. Their result holds with no
restriction on the number of coin flips performed by the automaton. This makes
the result especially interesting, as it is not immediately clear how sensitive such
machines can be to small changes in the bias.

Several variations of the distinguishing problem for space-bounded automata
were studied in related works by Hellman [12] and Cover [10]. Very recently,
Braverman, Rao, Raz, and Yehudayoff [8] and Brody and Verbin [9] studied the
power of restricted-width, read-once branching programs for this problem. The
distinguishing problem is also closely related to the approximate majority prob-
lem, in which given an n-bit string x, we want to decide whether x has Hamming
weight less than (1/2 − ε) n or more than (1/2 + ε) n. A large body of research
has addressed the ability of constant-depth circuits to solve the approximate
majority problem and its variants [1], [3], [4], [17], [20], [21].

1.2 The Quantum Case

In this paper, our first contribution is to investigate the power of quantum space-
bounded algorithms to solve the distinguishing problem. We prove the surprising
result that, in the absence of noise, quantum finite automata with a constant
number of states can be sensitive to arbitrarily small changes in bias:

Theorem 1 (Informal). For any p ∈ [0, 1] and ε > 0, there is a quantum finite
automaton Mp,ε with just two states (not counting the |Accept〉 and |Reject〉
states) that distinguishes a coin of bias p from a coin of bias p+ε; the difference
in acceptance probabilities between the two cases is at least 0.01. (This difference
can be amplified using more states.)

In other words, the lower bound of Hellman and Cover [13] has no analogue for
quantum finite automata. The upshot is that we obtain a natural example of
a task that a quantum finite automaton can solve using arbitrarily fewer states
than a probabilistic finite automaton, not merely exponentially fewer states!
Galvao and Hardy [11] gave a related example, involving an automaton that
moves continuously through a field ϕ, and needs to decide whether an inte-
gral

∫ 1

0 ϕ (x) dx is odd or even, promised that it is an integer. Here, a quan-
tum automaton needs only a single qubit, whereas a classical automaton cannot

Advice Coins for Classical and Quantum Computation 63

guarantee success with any finite number of bits. Naturally, both our quantum
automaton and that of [11] only work in the absence of noise.

In the classical case, several variations of this distinguishing task have been
explored [13], [10], which modify either the model of computation or the mode
of acceptance. We explore some of these variants, adapted to the quantum case,
in the full version of the paper.

1.3 Coins as Advice

This unexpected power of quantum finite automata invites us to think fur-
ther about what kinds of statistical learning are possible using a small num-
ber of qubits. In particular, if space-bounded quantum algorithms can detect
arbitrarily small changes in a coin’s bias, then could a p-biased coin be an
incredibly-powerful information resource for quantum computation, if the bias
p was well-chosen? A bias p ∈ (0, 1) can be viewed in its binary expansion
p = 0.p1p2 . . . as an infinite sequence of bits; by flipping a p-biased coin, we
could hope to access those bits, perhaps to help us perform computations.

This idea can be seen in “Buffon’s needle,” a probabilistic experiment that
in principle allows one to calculate the digits of π to any desired accuracy.1 It
can also be seen in the old speculation that computationally-useful information
might somehow be encoded in dimensionless physical constants, such as the
fine-structure constant α ≈ 0.0072973525377 that characterizes the strength of
the electromagnetic interaction. But leaving aside the question of which biases
p ∈ [0, 1] can be realized by actual physical processes, let us assume that coins of
any desired bias are available. We can then ask: what computational problems
can be solved efficiently using such coins? This question was raised to us by Erik
Demaine (personal communication), and was initially motivated by a problem
in computational genetics.

In the model that we use, a Turing machine receives an input x and is given
access to a sequence of bits drawn independently from an advice coin with some
arbitrary bias pn ∈ [0, 1], which may depend on the input length n = |x|. The
machine is supposed to decide (with high success probability) whether x is in
some language L. We allow pn to depend only on |x|, not on x itself, since
otherwise the bias could be set to 0 or 1 depending on whether x ∈ L, allow-
ing membership in L to be decided trivially. We let BPPSPACE/coin be the
class of languages decidable with bounded error by polynomial-space algorithms
with an advice coin. Similarly, BQPSPACE/coin is the corresponding class for
polynomial-space quantum algorithms. We impose no bound on the running
time of these algorithms.

It is natural to compare these classes with the classes BPPSPACE/poly and
BQPSPACE/poly, which consist of all languages decidable by BPPSPACE and
BQPSPACE machines respectively, with the help of an arbitrary advice string
wn ∈ {0, 1}∗ that can depend only on the input length n = |x|. Compared to
the standard advice classes, the power of the coin model is that an advice coin
bias pn can be an arbitrary real number, and so encode infinitely many bits;
1 See http://en.wikipedia.org/wiki/Buffon%27s needle

64 S. Aaronson and A. Drucker

the weakness is that this information is only accessible indirectly through the
observed outcomes of coin flips.

It is tempting to try to simulate an advice coin using a conventional advice
string, which simply specifies the coin’s bias to poly (n) bits of precision. At
least in the classical case, the effect of “rounding” the bias can then be bounded
by the Hellman-Cover Theorem. Unfortunately, that theorem (whose bound
is essentially tight) is not strong enough to make this work: if the bias p is
extremely close to 0 or 1, then a PSPACE machine really can detect extremely
small changes in p. This means that upper-bounding the power of advice coins
is a nontrivial problem even in the classical case. In the quantum case, the
situation is even worse, since as mentioned earlier, the quantum analogue of the
Hellman-Cover Theorem is false.

Despite these difficulties, we are able to show strong limits on the power
of advice coins in both the classical and quantum cases. Our main theorem
says that PSPACE machines can effectively extract only poly (n) bits of “useful
information” from an advice coin:

Theorem 2 (Main). BQPSPACE/coin = BPPSPACE/coin = PSPACE/poly.

The containment PSPACE/poly ⊆ BPPSPACE/coin is easy. On the other hand,
proving BPPSPACE/coin ⊆ PSPACE/poly appears to be no easier than the
corresponding quantum class containment. To prove that BQPSPACE/coin ⊆
PSPACE/poly, we will need to understand the behavior of a space-bounded ad-
vice coin machine M , as we vary the coin bias p. By applying a theorem of
Aaronson and Watrous [2] (which was originally developed to understand quan-
tum computing with closed timelike curves), we prove the key property that,
for each input x, the acceptance probability ax (p) of M is a rational function
in p of degree at most 2poly(n). It follows that ax (p) can “oscillate” between
high and low values no more than 2poly(n) times as we vary p. Using this fact,
we will show how to identify the “true” bias p∗ to sufficient precision with an
advice string of poly (n) bits. What makes this nontrivial is that, in our case,
“sufficient precision” sometimes means exp (n) bits! In other words, the rational
functions ax (p) really can be sensitive to doubly-exponentially-small changes to
p. Fortunately, we will show that this does not happen too often, and can be
dealt with when it does.

In order to manipulate coin biases to exponentially many bits of precision—
and to interpret our advice string—in polynomial space, we use two major tools.
The first is a space-efficient algorithm for finding roots of univariate polyno-
mials, developed by Neff [14] in the 1990s. The second is a lower bound from
algebraic geometry, on the spacing between consecutive roots of a polynomial
with bounded integer coefficients. Besides these two tools, we will also need a
space-efficient linear algebra algorithm due to Borodin, Cook, and Pippenger [7].

2 Preliminaries

We assume familiarity with basic notions of quantum computation. A detailed
treatment of space-bounded quantum Turing machines was given by

Advice Coins for Classical and Quantum Computation 65

Watrous [22]. We also assume familiarity with nonuniform polynomial-sized ad-
vice; the advice classes BPPSPACE/poly, BQPSPACE/poly consist of languages
solvable by classical (resp. quantum) nonuniform polynomial-space bounded al-
gorithms which decide membership with error probability ≤ 1/3. In this paper,
we work with an asymmetric model, in which an algorithm M accepts by halting
and entering an “Accept” state, but can reject by running forever. Watrous [22]
showed that this relaxation does not increase the power of space-bounded com-
putation, and that BQPSPACE/poly = BPPSPACE/poly = PSPACE/poly.

We will use two powerful results about polynomials. The first result bounds
the minimum spacing between zeros of integer polynomials; the second result
lets us locate the zeros of univariate polynomials to high precision using a small
amount of memory.2

Theorem 3 ([5, p. 359, Corollary 10.22]). Suppose P (x) is a polynomial of
degree at most 2poly(n), with integer coefficients with absolute values bounded by
2poly(n). Then if z, z′ ∈ C are distinct roots of P , we have |z − z′| ≥ 2−2poly(n)

.

Theorem 4 ([14], [15], [18]). There is an algorithm F that takes as input a
triple (P, i, j), where P is a degree-d univariate polynomial with rational3 coef-
ficients whose numerators and denominators are bounded in absolute value by
2m. F outputs the ith most significant bits of the real and imaginary parts of the
binary expansion of the jth zero of P (in some order independent of i, possibly
with repetitions). F uses O (polylog (d + i + m)) space.

2.1 Superoperators and Linear Algebra

We will be interested in S-state quantum finite automata that can include non-
unitary transformations such as measurements. The state of such an automaton
is given by an S × S density matrix [16]. One can transform a density matrix ρ
using a superoperator, which is any operation of the form

E (ρ) =
∑

j

EjρE†
j , with Ej ∈ C

S×S ,
∑

j

E†
j Ej = I . (1)

We will often work with a “vectorized” representation of mixed states and su-
peroperators. Given a density matrix ρ ∈ C

S×S , let vec (ρ) be a vector in
C

S2
containing the S2 entries of ρ. Similarly, given a superoperator E , let

mat (E) ∈ C
S2×S2

denote the matrix that describes the action of E on vectorized
mixed states, i.e., that satisfies mat (E) · vec (ρ) = vec (E (ρ)) . The following
theorem gives us access to the fixed-points of superoperators:

2 The algorithms of [14], [15], [18] are all stated as parallel (NC) algorithms. However,
any parallel algorithm can be converted into a space-efficient algorithm, using a
standard reduction due to Borodin [6].

3 [14] takes polynomials with integer coefficients as inputs; the result for rational
coefficients follows easily by clearing denominators.

66 S. Aaronson and A. Drucker

Theorem 5 (Aaronson-Watrous [2]). Let E (ρ) be a superoperator on an S-
dimensional system. Then there exists a second superoperator Efix (ρ) on the
same system, such that:

(i) Efix (ρ) is a fixed-point of E for every mixed state ρ: that is, E (Efix(ρ)) =
E(ρ).

(ii) Every mixed state ρ that is a fixed-point of E is also a fixed-point of Efix.
(iii) The entries of mat (Efix) can be computed from mat (E) in polylog(S) space.

2.2 Advice Coin Complexity Classes

We will describe space-bounded quantum algorithms in terms of finite automata.
A coin-flipping quantum finite automaton is defined as a pair of superoperators
E0, E1. Say that a coin has bias p if it lands heads with independent probability
p every time it is flipped. (A coin here is just a 0/1-valued random variable,
with “heads” meaning a 1 outcome.) Let $p denote a coin with bias p. When
the automaton is given $p, its state evolves according to the superoperator

Ep := pE1 + (1 − p) E0 . (2)

In our model, the superoperators E0, E1 both incorporate a “measurement step”
in which the automaton checks whether it is in a designated basis state |Accept〉,
and if so, halts and accepts. Formally, this is represented by a projective mea-
surement with observables {ΓAcc, I − ΓAcc}, where ΓAcc := |Accept〉 〈Accept|.

We model a q (n)-space quantum Turing machine M with an advice coin as a
2q(n)-state automaton, with state space {|y〉}y∈{0,1}q(n) and initial state

∣∣0q(n)
〉
.

Given input x ∈ {0, 1}n and advice coin $p, the machine’s state evolves according
to a superoperator Ep (as above), where E0, E1 depend on x and n. Individual
entries of the matrix representations of E0, E1 are required to be computable
from x in space poly (n). The machine M has a designated |Accept〉 state; we
let vAcc := vec (|Accept〉 〈Accept|).

Let ρt denote the algorithm’s state after t steps, and let vt := vec (ρt). If we
make a standard-basis measurement after t steps, then the probability ax,t (p)
of seeing |Accept〉 is given by

ax,t (p) = 〈Accept| ρt |Accept〉 = v†Accvt. (3)

Note that ax,t (p) is nondecreasing in t. Let ax (p) := limt→∞ ax,t (p). Then
BQPSPACE/coin is the class of languages L for which there exists a BQPSPACE
machine M , as well as a sequence of advice coin biases {pn}n≥1, such that for
all x ∈ {0, 1}n: if x ∈ L, then ax (pn) ≥ 2/3; while If x /∈ L, then ax (pn) ≤ 1/3.

Note, M may “reject” its input by running forever. We define BPPSPACE/coin
similarly, with classical polynomial-space algorithms in place of quantum ones.

3 Quantum Mechanics Nullifies the Hellman-Cover
Theorem

Our Theorem 1 shows that there is no quantum analogue of the Hellman-Cover
Theorem (described in the Introduction). The key idea is that, in this setting,

Advice Coins for Classical and Quantum Computation 67

a single qubit can be used as an “analog counter,” in a way that a classical
probabilistic bit cannot. Admittedly, our result would fail were the qubit subject
to noise or decoherence, as it would be in a realistic physical situation. We just
describe our construction here; the detailed proof of correctness is in the full
version. The state of our automaton M = Mp,ε will belong to the Hilbert space
spanned by {|0〉 , |1〉 , |Accept〉 , |Reject〉}. The initial state is |0〉. Let

U (θ) :=
(

cos θ − sin θ
sin θ cos θ

)
(4)

be a unitary transformation that rotates counterclockwise by θ, in the “counter
subspace” spanned by |0〉 and |1〉. Also, let A, B > 0 be large values (see the
full version). Then M runs the following procedure:

(1) If a 1 bit is encountered (i.e., the coin lands heads), apply U (ε (1 − p) /A).
(2) If a 0 bit is encountered (i.e., the coin lands tails), apply U (−εp/A).
(3) With probability α := ε2/B, “measure” (that is, send |0〉 −→ |Reject〉 and

|1〉 −→ |Accept〉); otherwise do nothing.

The idea is that the automaton performs a “random walk” in the space of angles
between |0〉 and |1〉. Under coin bias p, this walk is unbiased; under coin bias
p + ε, the walk has a bias that becomes noticeable after Θ(1/ε2) steps, when we
expect a measurement to occur. This allows us to distinguish the two cases.

4 Upper-Bounding the Power of Advice Coins

In this section we prove Theorem 2, that BQPSPACE/coin = BPPSPACE/coin =
PSPACE/poly. First, we claim PSPACE/poly ⊆ BQPSPACE/coin. This is easy to
see: any poly (n)-length advice string an can be encoded directly in the bias of an
advice coin pn, and recovered correctly with high probability using 2poly(n) coin
flips of $pn . Thus our main task is to show that BQPSPACE/coin ⊆ PSPACE/poly.
First, let M be any quantum polynomial-space advice coin algorithm, using
s (n) = poly (n) qubits of memory, and with S = 2s(n) states. Fix an input
x to M and associated superoperators E0, E1, Ep. Recalling the notation from
Section 2.2, let Bp := mat (Ep). Let ρx,t (p) be the state of M after t steps on
input x and coin bias p, and let vx,t (p) := vec (ρx,t (p)). Let

ax,t (p) := v†Accvx,t (p) (5)

be the probability that M is in the |Accept〉 state, if measured after t steps. Let
ax (p) := limt→∞ ax,t (p). As discussed in Section 2.2, the quantities ax,t (p) are
nondecreasing in t, so the limit ax (p) is well-defined.

We now show that—except possibly at a finite number of values—ax (p) is
actually a rational function of p, of bounded degree:

Lemma 1. There exist polynomials Q(p) and R(p)
= 0, of degree at most
S2 = 2poly(n) in p, such that ax (p) = Q (p) /R (p) holds whenever R (p)
= 0.
Moreover, Q and R have rational coefficients that are computable in poly (n)
space given x ∈ {0, 1}n and the index of the desired coefficient.

68 S. Aaronson and A. Drucker

Proof. Throughout, we suppress the dependence on x, so that a (p) = limt→∞
at (p) is simply the limiting acceptance probability of a finite automaton M ($p)
given a coin with bias p. Following Aaronson and Watrous [2], for z ∈ (0, 1)
define the matrix Λz,p ∈ C

S2×S2
by

Λz,p := z [I − (1 − z) Bp]−1 . (6)

The matrix I − (1 − z) Bp is invertible, since z > 0 and all eigenvalues of Bp

have absolute value at most 1.4 By Cramer’s rule, each entry of Λz,p has form
f(z,p)
g(z,p) , where f and g are polynomials of degree at most S2 in both z and p, and
g (z, p) is nonzero. Collecting terms, we can write f (z, p) = c0 (p) + c1 (p) z +
· · · + cS2 (p) zS2

, g (z, p) = d0 (p) + d1 (p) z + · · · + dS2 (p) zS2
. Now let

Λp := lim
z→0

Λz,p. (7)

Aaronson and Watrous [2] showed that Λp is precisely the matrix representation
mat (Efix) of the superoperator Efix associated to E := Ep by Theorem 5. Thus
for all v ∈ C

S2
, we have Bp (Λpv) = Λpv.

Now, the entries of Λz,p are bivariate rational functions, which have absolute
value at most 1 for all z, p. Thus the limit in Eq. (7) must exist, and the coeffients
ck, dk can be computed in polynomial space using a space-efficient algorithm due
to Borodin, Cook, and Pippenger for inversion of matrices with rational entries
([7]; see the full version of our paper).

We claim that every entry of Λp can be represented as a rational function of p
of degree at most S2 (a representation valid for all but finitely many p), and that
the coefficients of this rational function are computable in polynomial space. To
see this, note that the (i, j)th entry of Λp has the form

(Λp)ij = lim
z→0

f (z, p)
g (z, p)

= lim
z→0

c0 (p) + c1 (p) z + · · · + cS2 (p) zS2

d0 (p) + d1 (p) z + · · · + dS2 (p) zS2 . (8)

By basic calculus, the above limit (whenever it exists) equals ck (p) /dk (p), where
k is the smallest integer such that dk (p)
= 0. Now let k∗ be the smallest
integer such that dk∗ is not the identically-zero polynomial. Then dk∗ (p) has
only finitely many zeros. It follows that (Λp)ij = ck∗ (p) /dk∗ (p) except when
dk∗ (p) = 0, which is what we wanted to show. Thus in polynomial space, we
can loop through all k until we find k∗ as above, to compute ck∗ (p) and dk∗ (p).

Finally, we claim we can write A’s limiting acceptance probability a (p) as

a (p) = v†AccΛpv0 , (9)

where v0 is the vectorized initial state of A (independent of p). It will follow from
Eq. (9) that a (p) has the desired representation, since the map Λp → v†AccΛpv0

is linear in the entries of Λp and can be performed in polynomial space.

4 For the latter fact, see [19] and [2, p. 10, footnote 1].

Advice Coins for Classical and Quantum Computation 69

To establish Eq. (9), consider the Taylor series expansion for Λz,p, namely
Λz,p =

∑
t≥0 z(1− z)tBt

p, valid for z ∈ (0, 1) (see [2]). The equality
∑

t≥0 z(1−
z)t = 1, for z ∈ (0, 1), implies that v†AccΛz,pv0 is a weighted average of the t-step
acceptance probabilities at (p), for t ∈ {0, 1, 2, . . .}. Letting z → 0, the weight on
each individual step approaches 0. Since limt→∞ at(p) = a(p), we obtain Eq. (9),
proving Lemma 1.

Lemma 2. ax (p) is continuous for all p ∈ (0, 1).

Lemma 2 above is intuitive, but nontrivial to establish; the proof is in the full
version. We now complete the proof of Theorem 2. Let L be a language in
BQPSPACE/coin, decided by the quantum polynomial-space advice-coin machine
M (x, $p) on advice coin biases {pn}n≥1. We will show that L ∈ BQPSPACE/poly
= PSPACE/poly.

It may not be possible to perfectly specify the bias pn using poly (n) bits of
advice. Instead, we use our advice string to simulate access to a second bias rn

that is “almost as good” as pn. This is achieved by the following lemma.

Lemma 3. Fixing L, M, {pn} as above, there exists a classical polynomial-space
algorithm R, as well as a family {wn}n≥1 of polynomial-size advice strings, for
which the following holds. Given an index i ≤ 2poly(n), the computation R (wn, i)
outputs the ith bit of a real number rn ∈ (0, 1), such that for all x ∈ {0, 1}n,

(i) If x ∈ L, then Pr [M (x, $rn) accepts] ≥ 3/5.
(ii) If x /∈ L, then Pr [M (x, $rn) accepts] ≤ 2/5.

(iii) The binary expansion of rn is identically zero, for sufficiently large indices
j ≥ h(n) = 2poly(n).

Once Lemma 3 is proved, showing the containment L ∈ BQPSPACE/poly is
easy. First, it is not hard to see that that using the advice wn from Lemma 3,
we can generate rn-biased coin flips (see the full version). We use this to define
a BQPSPACE/poly machine M ′ that with advice family {wn}. Given an input
x ∈ {0, 1}n, the machine M ′ uses wn to simulate M (x, $rn). Then M ′ is a
BQPSPACE/poly algorithm for L by parts (i) and (ii) of Lemma 3, albeit with
error probability 2/5—easily reduced to 1/3 using independent trials. So L ∈
BQPSPACE/poly = PSPACE/poly, proving Theorem 2.

Proof (of Lemma 3). Fix an input length n > 0, and let p∗ := pn. For x ∈
{0, 1}n, recall that ax (p) denotes the acceptance probability of M (x, $p). We
are interested in the way ax (p) oscillates as we vary p. Define a transition pair to
be an ordered pair (x, p) ∈ {0, 1}n × (0, 1) such that ax (p) ∈ {2/5, 3/5}. It will
be also be convenient to define a larger set of potential transition pairs, denoted
P ⊆ {0, 1}n × [0, 1), that contains the transition pairs, and whose elements will
be easier to enumerate. We defer the precise definition of P .

The advice string wn will simply specify the number of distinct potential tran-
sition pairs (y, p) such that p ≤ p∗. We first give a high-level pseudocode
description of the algorithm R, and prove that parts (i) and (ii) of Lemma 3 are

70 S. Aaronson and A. Drucker

hold; we will then argue that R be implemented in PSPACE, and that part (iii)
of the Lemma can also be satisfied. The pseudocode for R is as follows:

given (wn, i)
for all (y, p) ∈ P

s := 0
for all (z, q) ∈ P

if q ≤ p then s := s + 1
next (z, q)
if s = wn then

let rn := p + ε (for some small ε = 2−2poly(n)
)

output the ith bit of rn

end if
next (y, p)

We now prove that parts (i) and (ii) of Lemma 3 are satisfied. We call
p ∈ [0, 1) a transition value if (y, p) is a transition pair for some y ∈ {0, 1}n, and
we call p a potential transition value if (y, p) ∈ P for some y ∈ {0, 1}n. Then by
definition of wn, the value rn produced above is equal to p0 +ε, where p0 ∈ [0, 1)
is the largest potential transition value less than or equal to p∗. (Note that 0
will always be a potential transition value, so this is well-defined.)

When we define P , we will argue that any distinct potential transition values
p1, p2 satisfy

min {|p1 − p2| , 1 − p2} ≥ 2−2poly(n)
. (10)

It follows that if ε = 2−2poly(n)
is suitably small, then rn < 1, and there are no

potential transition values lying in the range (p0, rn], or in the range (p0, p
∗).

Now fix any x ∈ {0, 1}n∩L. Since M is a BQPSPACE/coin machine for L with
bias p∗, we have ax (p∗) ≥ 2/3. If ax (rn) < 3/5, then Lemma 2 implies that there
must be a transition value in the open interval between p∗ and rn. But there
are no such transition values. Thus ax (rn) ≥ 3/5. Similarly, if x ∈ {0, 1}n \ L,
then ax (rn) ≤ 2/5. This establishes parts (i) and (ii) of Lemma 3.

Now we formally define the potential transition pairs P . We include (0n, 0) in
P , so that 0 is a potential transition value as required. Now recall, by Lemma 1,
that for each x ∈ {0, 1}n, the acceptance probability ax (p) is a rational function
Qx (p) /Rx (p) of degree 2poly(n), for all but finitely many p ∈ (0, 1). Therefore,
the function (ax (p) − 3/5) (ax (p) − 2/5) also has a rational-function represen-
tation: Ux (p) /Vx (p) = (ax (p) − 3/5) (ax (p) − 2/5) , valid for all but finitely
many p. We will include in P all pairs (x, p) for which Ux (p) = 0. It follows
from Lemmas 1 and 2 that P contains all transition pairs, as desired.

We can now establish Eq. (10). Fix any distinct potential transition values
p1 < p2. As p2 > 0, there is some x2 such that (x2, p2) ∈ P . If p1 = 0, then
p1, p2 are distinct roots of the polynomial pUx2(p), whence |p1 − p2| ≥ 2−2poly(n)

by Theorem 3. Similarly, if p1 > 0, then (x1, p1) ∈ P for some x1. Then p1, p2

are common roots of Ux1 (p) Ux2 (p), from which it again follows that |p1 − p2| ≥
2−2poly(n)

. Finally, 1− p2 ≥ 2−2poly(n)
follows since 1 and p2 are distinct roots of

(1 − p) Ux2 (p). Thus Eq. (10) holds.

Advice Coins for Classical and Quantum Computation 71

Next we show that the pseudocode can be implemented in PSPACE. First
note that the degrees of Ux, Vx are 2poly(n), whose rational coefficients have
numerator and denominator bounded by 2poly(n). Moreover, the coefficients of
Ux, Vx are computable in PSPACE from the coefficients of Qx, Rx (themselves
PSPACE-computable). To loop over the elements of P as in the pseudocode, we
can perform an outer loop over y ∈ {0, 1}n, and an inner loop over zeros of Uy

with the indexing provided by the algorithm from Theorem 4. Any duplicate
roots in this indexing can be removed, by comparing each root to all previously
visited roots to sufficient precision (2poly(n) bits suffice, by Theorem 3).

Similarly, if (y, p) , (z, q) ∈ P then we can determine in PSPACE whether q ≤ p,
as required. The only remaining implementation step is to produce the value
rn in PSPACE, in such a way that part (iii) of Lemma 3 is satisfied. For the
chosen value p, and the index i ≤ 2poly(n), we need to produce the ith bit of a
value rn ∈ (p, p + 2−2poly(n)

), such that the binary expansion of rn is identically
zero for sufficiently large j ≥ h(n) = 2poly(n). But this is easily done, since we
can compute any desired jth bit of p, for j ≤ 2poly(n), in polynomial space.

5 Open Problems

(1) Let BQPSPACE/dice (m, k) be the class of languages decidable by a
BQPSPACE machine that can sample from m distributions D1, . . . ,Dm, each of
which takes values in {1, . . . , k} (thus, these are “k-sided dice”). We conjecture
that BQPSPACE/dice (1, poly (n)) = BQPSPACE/dice (poly (n) , 2) = PSPACE/
poly. Furthermore, we are hopeful that the techniques of this paper can shed
light on these issues.5 (2) Given any degree-d rational function a (p) such that
0 ≤ a (p) ≤ 1 for all 0 ≤ p ≤ 1, does there exist a d-state (or at least poly (d)-
state) quantum finite automaton M such that Pr [M ($p) accepts] = a (p)?

Acknowledgments. We thank Erik Demaine for suggesting the advice coins
problem to us, and Piotr Indyk for pointing us to the Hellman-Cover Theorem.

References

1. Aaronson, S.: BQP and the polynomial hierarchy. In: Proc. 42nd ACM STOC
(2010)

2. Aaronson, S., Watrous, J.: Closed timelike curves make quantum and classical
computing equivalent. Proc. Roy. Soc. London A 465, 631–647 (2009)

3. Ajtai, M.: Σ1
1-formulae on finite structures. Ann. Pure Appl. Logic 24, 1–48 (1983)

4. Amano, K.: Bounds on the size of small depth circuits for approximating majority.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.E., Thomas,
W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 59–70. Springer, Heidelberg (2009)

5 Note that the distinguishing problem for k-sided dice, for k > 2, is addressed by the
more general form of the theorem of Hellman and Cover [13], while the distinguishing
problem for read-once branching programs was explored by Brody and Verbin [9].

72 S. Aaronson and A. Drucker

5. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Algo-
rithms and Computation in Mathematics. Springer-Verlag New York, Inc., Secau-
cus (2006)

6. Borodin, A.: On relating time and space to size and depth. SIAM J. Comput. 6(4),
733–744 (1977)

7. Borodin, A., Cook, S., Pippenger, N.: Parallel computation for well-endowed rings
and space-bounded probabilistic machines. Information and Control 58(1-3), 113–
136 (1983)

8. Braverman, M., Rao, A., Raz, R., Yehudayoff, A.: Pseudorandom generators for
regular branching programs. In: Proc. 51st IEEE FOCS (2010)

9. Brody, J., Verbin, E.: The coin problem, and pseudorandomness for branching
programs. In: Proc. 51st IEEE FOCS (2010)

10. Cover, T.M.: Hypothesis testing with finite statistics. Ann. Math. Stat. 40(3), 828–
835 (1969)

11. Galvao, E.F., Hardy, L.: Substituting a qubit for an arbitrarily large number of
classical bits. Phys. Rev. Lett. 90(087902) (2003)

12. Hellman, E.M.: Learning with finite memory. PhD thesis, Stanford University,
Department of Electrical Engineering (1969)

13. Hellman, E.M., Cover, T.M.: Learning with finite memory. Ann. of Math. Stat. 41,
765–782 (1970)

14. Neff, C.A.: Specified precision polynomial root isolation is in NC. J. Comput. Sys.
Sci. 48(3), 429–463 (1994)

15. Neff, C.A., Reif, J.H.: An efficient algorithm for the complex roots problem. J.
Complexity 12(2), 81–115 (1996)

16. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

17. O’Donnell, R., Wimmer, K.: Approximation by DNF: examples and counterex-
amples. In: Arge, L., Cachin, C., Jurdzinski, T., Tarlecki, A. (eds.) ICALP 2007.
LNCS, vol. 4596, pp. 195–206. Springer, Heidelberg (2007)

18. Pan, V.Y.: Optimal (up to polylog factors) sequential and parallel algorithms for
approximating complex polynomial zeros. In: Proc. 27th ACM STOC, pp. 741–750
(1995)

19. Terhal, B., DiVincenzo, D.: On the problem of equilibration and the computation
of correlation functions on a quantum computer. Phys. Rev. A 61(022301) (2000)

20. Viola, E.: On approximate majority and probabilistic time. Computational Com-
plexity 18(3), 155–168 (2009)

21. Viola., E.: Randomness buys depth for approximate counting. Electronic
Colloquium on Computational Complexity (ECCC), TR10-175 (2010)

22. Watrous., J.: Space-bounded quantum complexity. J. Comput. Sys. Sci. 59(2), 281–
326 (1999)

Quantum Commitments from Complexity Assumptions

André Chailloux1, Iordanis Kerenidis2,3, and Bill Rosgen3

1 Laboratoire de Recherche en Informatique, Université Paris-Sud
2 LIAFA, Université Paris Diderot and CNRS

3 Centre for Quantum Technologies, National University of Singapore

Abstract. We study worst-case complexity assumptions that imply quantum bit-
commitment schemes. First we show that QSZK �⊆ QMA implies a compu-
tationally hiding and statistically binding auxiliary-input quantum commitment
scheme. We then extend our result to show that the much weaker assumption
QIP �⊆ QMA (which is weaker than PSPACE �⊆ PP) implies the existence of
auxiliary-input commitment schemes with quantum advice. Finally, to strengthen
the plausibility of the separation QSZK �⊆ QMA we find a quantum oracle rela-
tive to which honest-verifier QSZK is not contained in QCMA.

1 Introduction

The goal of modern cryptography is to design protocols that remain secure under the
weakest possible complexity assumptions. Such fundamental protocols include com-
mitment schemes, authentication, one-way functions, and pseudorandom generators.
All these primitives have been shown equivalent: for example commitment schemes
imply one-way functions [10] and one-way functions imply commitments [7,8,18].

In this paper we study complexity assumptions that imply commitment schemes,
which are the basis for many cryptographic constructions, such as zero knowledge pro-
tocols for NP [3,6]. A commitment scheme is a two-phase protocol between a sender
and a receiver. In the commit phase, the sender interacts with the receiver so that by the
end of the phase, the sender is bound to a specific bit, which remains hidden from the
receiver until the reveal phase of the protocol, where the receiver learns the bit.

There are two security conditions for such schemes: binding (the sender cannot re-
veal more than one value) and hiding (the receiver has no information about the bit be-
fore the reveal phase). These conditions can hold statistically, i.e. against an unbounded
adversary, or computationally, i.e. against a polynomial-time adversary. Without further
assumptions these conditions cannot both hold statistically [15,17].

The main complexity assumptions that have been used for the construction of one-
way functions, and hence commitments, involve the classes of Computational and Sta-
tistical Zero Knowledge. Ostrovsky and Wigderson [20] proved that if Computational
Zero Knowledge (ZK) is not trivial then there exists a family of functions that are not
‘easy to invert’. The result was extended by Vadhan [24] to show that if ZK does not
equal Statistical Zero Knowledge (SZK), then there exists an auxiliary-input one-way
function, i.e. one can construct a one-way function given an auxiliary input (or else
advice). Auxiliary-input cryptographic primitives are natural when considering worst-
case complexity classes: the auxiliary input can encode a ‘hard’ instance of a problem

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 73–85, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

74 A. Chailloux, I. Kerenidis, and B. Rosgen

known only to be hard in the worst case. Last, Ostrovsky and Wigderson also showed
that if ZK contains a ‘hard-on-average’ problem, then ‘regular’ one-way functions exist.

With the advent of quantum computation and cryptography, one needs to revisit com-
putational security, since many widely-used computational assumptions, such as the
hardness of factoring or the discrete logarithm problem, become false when the adver-
sary is a polynomial-time quantum machine [22].

In this paper, we study worst-case complexity assumptions under which quantum
commitment schemes exist. As in the classical case, we obtain auxiliary-input commit-
ments: commitments that can be constructed with classical and/or quantum advice. As
our commitments are quantum, we define the computational security properties against
quantum poly-time adversaries (who also receive an arbitrary quantum auxiliary input).

Theorem 1. If QSZK
⊆ QMA there exists a non-interactive auxiliary-input quantum
commitment scheme that is statistically-binding and computationally-hiding.

It would be surprising if QSZK is actually contained in QMA. We know that QSZK ⊆
QIP[2] [28], where QIP[2] is the class of languages that have quantum interactive
proofs with two messages (note that one only needs three messages to get the whole
power of quantum interactive proofs). So far, any attempt to reduce QIP[2] or QSZK to
QMA or find any plausible assumptions that would imply it, have not been fruitful. This
seems harder than in the classical case. The main reason is that the verifier’s message
cannot be reduced to a public coin message nor to a pure quantum state. His message is
entangled with his quantum workspace and this seems inherent for the class QIP[2]. It
would be striking if one can get rid of this entanglement and reduce these classes to a
single message from the prover.

If we weaken the security condition to hold against quantum adversaries with only
classical auxiliary input, then the above assumption also becomes weaker, i.e. QSZK
⊆
QCMA, where QCMA is the class where the quantum verifier receives a single classical
message from the prover. We give (quantum) oracle evidence for this by showing that

Theorem 2. There exists a quantum oracle A such that QSZKA
HV
⊆ QCMAA.

The proof appears in the full version of the paper. Our proof of this result extends
Aaronson and Kuperberg’s result that there is a quantum oracle A such that QMAA
⊆
QCMAA [2]. Subsequent to the completion of this work, Aaronson has shown the
stronger result that there is an oracle A such that SZKA
⊆ QMAA [1]. This result
implies that our assumption that QSZK
⊆ QMA is true relative to an oracle.

We then show the existence of commitment schemes based on a much weaker com-
plexity assumption about quantum interactive proofs. More precisely, we look at the
class QIP, which was first studied in [27]. This class is believed to be much larger than
QSZK. We consider this class and its relation to QMA to show the following

Theorem 3. If QIP
⊆ QMA there exist non-interactive auxiliary-input quantum com-
mitment schemes (both statistically hiding and computationally binding as well as sta-
tistically binding and computationally hiding) with quantum advice.

Note, that QIP = PSPACE [11] and QMA ⊆ PP [16], so our assumption is extremely
weak, in fact weaker than PSPACE
⊆ PP. Of course, with such a weak assumption we

Quantum Commitments from Complexity Assumptions 75

get a weaker form of commitment: the advice is now quantum. Thus, in order for the
prover and the verifier to efficiently perform the commitment for a security parameter
n, they need to receive a classical auxiliary input as well as quantum advice of size
polynomial in n. This quantum advice is a quantum state on poly(n) qubits that is not
efficiently constructible (otherwise, we could have reduced the quantum advice to clas-
sical advice by describing the efficient circuit that produces it). Moreover, the quantum
advice we consider does not create entanglement between the players. The key point
behind this result is the structure of QIP. More precisely, we use the fact that there ex-
ists a QIP-complete problem where the protocol has only three rounds and the verifier’s
message is a single coin.

All of our commitment schemes are non-interactive. From QIP
⊆ QMA we con-
struct both statistically hiding and computationally binding commitments as well as
statistically binding and computationally hiding ones, whose constructions are concep-
tually different. In order to prove the security of the first construction, we prove a paral-
lel repetition theorem for protocols based on the swap test that may be of independent
interest. From the QSZK
⊆ QMA assumption we show here only statistically binding
and computationally hiding commitments, but computationally binding and statistically
hiding commitments can be similarly shown.

2 Definitions

In order to define the statistical distance between quantum states, we use the trace norm,
given by ‖X‖tr = tr

√
X†X = maxU |tr XU |, where the maximization is taken

over all unitaries of the appropriate size. Given one of two quantum states ρ, σ with
equal probability, the optimal measurement to distinguish them succeeds with proba-
bility 1/2 + ‖ρ − σ‖tr /4 [9]. Note that this measurement is not generally efficient.

The diamond norm is a generalization of the trace norm to quantum channels that
preserves the distinguishability characterization. Given one of two channels Q0, Q1

with equal probability, then the optimal distinguishing procedure using only use one of
the channel succeeds with probability 1/2 + ‖Q0 − Q1‖� /4.

In addition to these norms, we will also make use of the fidelity between two quan-
tum states [12], which is given by F(ρ, σ) = tr

√√
σρ

√
σ. We will use two standard

results about the fidelity: for any density matrices ρ and σ we have 1 − F(ρ, σ) ≤
‖ρ − σ‖tr /2 ≤ √

1 − F(ρ, σ)2 [5] and maxξ

(
F(ρ, ξ)2 + F(ξ, σ)2

)
= 1 + F(ρ, σ)

where the maximization is over all density matrices ξ [19,23].

2.1 Quantum Interactive Complexity Classes

The class QMA, first studied in [25], is informally the class of all problems that can be
verified by a quantum polynomial-time algorithm with access to a quantum proof.

Definition 4. A language L is in QMA if there is poly-time quantum algorithm V
(called the verifier) such that

1. if x ∈ L, then there exists a state ρ such that Pr[V (x, ρ) accepts] ≥ a,
2. if x
∈ L, then for any state ρ, Pr[V (x, ρ) accepts] ≤ b,

76 A. Chailloux, I. Kerenidis, and B. Rosgen

where a, b are any efficiently computable functions of |x| with a > b with at least an
inverse polynomial gap [13,16]. If ρ is restricted to be classical, the class is QCMA.

The class QIP, first studied in [27], consists of those problems that can be interactively
verified in quantum polynomial time. A recent result is that QIP = PSPACE [11].

Definition 5. A language L ∈ QIP if there is a poly-time quantum algorithm V ex-
changing quantum messages with an unbounded prover P such that for any input x

1. if x ∈ L there exists a P such that, (V, P) accepts with probability at least a.
2. if x
∈ L, then for any prover P , (V, P) accepts with probability at most b.

As in QMA, we require only that a > b with at least an inverse polynomial gap [14].

One key property of QIP is that any quantum interactive proof system can be simulated
by one using only three messages [14]. In what follows we consider quantum unitary
circuits C that output a state in the space O⊗G. These spaces can be different for each
circuit. O corresponds to the output space and G to the garbage space. For any circuit
C, we define |φC〉 = C|0〉 in the space O ⊗ G to be the output of the circuit before
the garbage space is traced out, and ρC = TrG(|φC〉〈φC |) to be the mixed state output
by the circuit after the garbage space is traced out. We will also consider more general
mixed-state quantum circuits C, that on an input state σ and output a quantum state,
denoted by C(σ). Unlike unitary circuits, mixed-state circuits are allowed to introduce
ancillary qubits and trace out qubits during the computation. Note that circuits of this
form can (approximately) represent any quantum channel. The size of a circuit C is
equal to the number of gates in the circuit plus the number of qubits used by the circuit,
denoted |C |. We will also use |H| to refer to the size of a Hilbert space H i.e. |H| =
�log2 dimH�. We use L(H) to refer to the set of all linear operators on H, and D(H) to
denote the subset of these operators that are density matrices. We consider two complete
problems for QIP.

Definition 6. Let μ be a negligible function. We define the promise problem QCD =
{QCDY , QCDN} with input two mixed-state quantum circuits C0, C1 of size n as

– (C0, C1) ∈ QCDY ⇔ ‖C0 − C1‖� ≥ 2 − μ(n)
– (C0, C1) ∈ QCDN ⇔ ‖C0 − C1‖� ≤ μ(n)

Definition 7. Let μ be a negligible function. We define the promise problem Π =
{ΠY , ΠN} with input two mixed-state quantum circuits C0, C1 of size n, where the
circuit Ci : D(X ⊗ Y) → {0, 1} for each i.

– (C0, C1) ∈ ΠY ⇔ ∃ρ0, ρ1 ∈ D(X ⊗ Y) with trX (ρ0) = trX (ρ1) such that

1
2
(
Pr[C0(ρ0) = 1] + Pr[C1(ρ1) = 1]

)
= 1

– (C0, C1) ∈ ΠN ⇔ ∀ρ0, ρ1 ∈ D(X ⊗ Y) with trX (ρ0) = trX (ρ1) we have

1
2
(
Pr[C0(ρ0) = 1] + Pr[C1(ρ1) = 1]

) ≤ 1
2

+ μ(n)

Quantum Commitments from Complexity Assumptions 77

QCD is QIP-complete [21] and the QIP-completeness of Π follows from a characteri-
zation of QIP due to Mariott and Watrous [16] (we prove this in the full version).

The class QSZK ([26]) is the class of all problems that can be interactively veri-
fied by a quantum verifier who learns nothing beyond the truth of the assertion being
verified. If the verifier is honest, i.e. does not deviate from the protocol, we have

Definition 8. A language L ∈ QSZKHV if

1. There is a quantum interactive proof system for L.
2. If x ∈ L, the state of the verifier after each message can be approximated, within

negligible trace distance, by a polynomial-time preparable quantum state.

If we insist that item 2 holds when the Verifier departs from the protocol, the result
is the class QSZK. Watrous has shown that QSZKHV = QSZK [28]. This class has
complete problems. We use the following QSZK-complete problem [26].

Definition 9. Let μ be a negligible function. QSD = {QSDY , QSDN} is the promise
problem on input (C0, C1), unitary circuits of size n with m output qubits, such that

– (C0, C1) ∈ QSDY ⇔ ∥∥ρC0 − ρC1
∥∥

tr
≥ 2 − μ(n)

– (C0, C1) ∈ QSDN ⇔ ∥∥ρC0 − ρC1
∥∥

tr
≤ μ(n)

2.2 Quantum Computational Distinguishability

The following definitions may be found in [28].

Definition 10. Two mixed states ρ0 and ρ1 on m qubits are (s, k, ε)-distinguishable if
there exists a mixed state σ on k qubits and a quantum circuit D of size s that performs
a binary outcome measurement on (m + k) qubits, such that |Pr[D(ρ0 ⊗ σ) = 1] −
Pr[D(ρ1 ⊗ σ) = 1]| ≥ ε. If ρ0 and ρ1 are not (s, k, ε)-distinguishable, then they are
(s, k, ε)-indistinguishable.

Let I ⊆ {0, 1}∗ and let an auxiliary-input state ensemble be a collection of mixed states
{ρx}x∈I on r(|x|) qubits for polynomial r with the property that they can be efficiently
generated given x.

Definition 11. Two auxiliary-input state ensembles {ρ0
x} and {ρ1

x} on I are quan-
tum computationally indistinguishable if for all polynomials p, s, k and for all but
finitely many x ∈ I , ρ0

x and ρ1
x are (s(|x|), k(|x|), 1/p(|x|))-indistinguishable. En-

sembles {ρ0
x} and {ρ1

x} on I are quantum computationally distinguishable if there exist
polynomials p, s, k such that for all x ∈ I , ρ0

x and ρ1
x are (s(|x|), k(|x|), 1/p(|x|))-

distinguishable.

At first glance these definitions of distinguishability and indistinguishability are not
complementary. We require distinguishability for all x ∈ I , but require indistinguisha-
bility in only all but finitely many x ∈ I . This is because |x| will be our security
parameter, and so while a polynomially-bounded adversary may be able to distinguish
the two ensembles for a finite number of (small) values of |x|, as the parameter grows
no efficient algorithm can distinguish the two ensembles.

78 A. Chailloux, I. Kerenidis, and B. Rosgen

Key to this definition is that if two ensembles are computationally distinguishable,
then for all x there exists an efficient procedure in |x| that distinguishes ρ0

x and ρ1
x with

probability at least 1/2+1/p(|x|). Note that this is not a uniform procedure: the circuit
that distinguishes the two states may depend on x.

Definition 12. Two auxiliary-input state ensembles {ρ0
x} and {ρ1

x} on I are quantum
statistically indistinguishable if for any polynomial p and for all but finitely many x ∈ I ,∥∥ρ0

x − ρ1
x

∥∥
tr
≤ 1/p(|x|).

Definition 13. Two admissible superoperators Φ0 and Φ1 from t qubits to m qubits are
(s, k, ε)-distinguishable if there exists a mixed state σ on t + k qubits and a quantum
circuit D of size s that performs a binary outcome measurement on (m + k) qubits,
such that |Pr[D((Φ0 ⊗ 1k)(σ)) = 1] − Pr[D((Φ1 ⊗ 1k)(σ)) = 1]| ≥ ε, where 1k

denotes the identity superoperator on k qubits. If the superoperators Φ0 and Φ1 are not
(s, k, ε)-distinguishable, then they are (s, k, ε)-indistinguishable.

Let I ⊆ {0, 1}∗ and let an auxiliary-input superoperator ensemble be a collection of
superoperators {Φx}x∈I from q(|x|) to r(|x|) qubits for some polynomials q, r, where
as in the case of states, given x the superoperators can be performed efficiently in |x|.

Definition 14. Two auxiliary-input superoperator ensembles {Φ0
x} and {Φ1

x} on I are
quantum computationally indistinguishable if for all polynomials p, s, k and for all
but finitely many x ∈ I , Φ0

x and Φ1
x are (s(|x|), k(|x|), 1/p(|x|))-indistinguishable.

Auxiliary-input ensembles {Φ0
x} and {Φ1

x} on I are quantum computationally distin-
guishable if there exist polynomials p, s, k such that for all x ∈ I , Φ0

x and Φ1
x are

(s(|x|), k(|x|), 1/p(|x|))-distinguishable.

If two superoperator ensembles are computationally distinguishable then there is an effi-
cient (nonuniform) procedure (in |x|) to distinguish them with probability at least 1/2+
1/p(|x|) for some polynomial p. If the property of being (s, k, ε)-indistinguishable
holds for all (unbounded) s and all polynomial k, 1/ε, then we call an ensemble statis-
tically indistinguishable. Note that these definitions provide a strong quantum analogue
of the classical non-uniform notion of computational indistinguishability, since the non-
uniformity includes an arbitrary quantum state as advice to the distinguisher.

We define a new notion that we will use later on. Intuitively, two circuits that take
input in the space X ⊗Y and output a single bit are witnessable if there exist two input
states that are identical on Y and are accepted by the two circuits with high probability.

Definition 15. Two superoperators Φ0 and Φ1 from L(X ⊗ Y) to a single bit are
(s, k, p)-witnessable if there exist two input states ρ0, ρ1 ∈ L(X ⊗ Y) such that

1. 1
2

(
Pr[Φ0(ρ0) = 1] + Pr[Φ1(ρ1) = 1]

) ≥ 1/2 + 1
p(n)

2. there exists a state σ ∈ L(W ⊗X ⊗ Y) with |W| = k and trW σ = ρ0, and
an admissible superoperator Ψ : L(W ⊗X) → L(X) of size s, such that ρ1 =
(Ψ ⊗ 1L(Y))(σ) where 1L(Y) denotes the identity on L(Y).

If Φ0 and Φ1 are not (s, k, p)-witnessable, then they are (s, k, p)-unwitnessable.

Quantum Commitments from Complexity Assumptions 79

Let I ⊆ {0, 1}∗ and let an auxiliary-input superoperator ensemble be a collection of
superoperators {Φx}x∈I from q(|x|) to 1 bit for a polynomial q, where given x the
superoperators can be performed efficiently in |x|.
Definition 16. Auxiliary-input superoperator ensembles {Φ0

x} and {Φ1
x} on I are quan-

tum computationally witnessable if there are polynomials s, k, p such that for all x ∈ I ,
Φ0

x and Φ1
x are (s(|x|), k(|x|), p(|x|))-witnessable. Ensembles {Φ0

x} and {Φ1
x} on I are

quantum computationally unwitnessable if for all polynomials s, k, p and all but finitely
many x ∈ I , Φ0

x and Φ1
x are (s(|x|), k(|x|), p(|x|))-unwitnessable.

2.3 Quantum Commitments

Definition 17. A quantum commitment scheme (resp. with quantum advice) is an inter-
active protocol Com = (S, R) with the following properties

– The sender S and the receiver R have common input a security parameter 1n (resp.
both S and R have a copy of a quantum state |φ〉 of poly(n) qubits). The sender
has private input the bit b ∈ {0, 1} to be committed. Both S and R are quantum
algorithms that run in time poly(n) that may exchange quantum messages.

– In the commit phase, S interacts with R in order to commit to b.
– In the reveal phase, S interacts with R in order to reveal b. R decides to accept or

reject depending on the revealed value of b and his final state. We say that S reveals
b, if R accepts the revealed value. In the honest case, R always accepts.

A commitment scheme is non-interactive if the commit and the reveal phase each
consist of a single message from S to R. When the commit phase is non-interactive, we
call ρb

S the state sent by the honest sender during the commit phase when his bit is b.

Definition 18. A non-interactive auxiliary-input quantum commitment scheme (with
quantum advice) on I is a collection of non-interactive quantum commitment schemes
(with advice) C = {Comx = (Sx, Rx)}x∈I such that

– there exists a quantum circuit Q of size polynomial in |x|, that given as input x for
any x ∈ I , can apply the same maps that Sx and Rx apply during the commitment
scheme in time polynomial in |x|.

– (statistically/computationally hiding) the two auxiliary-input state ensembles sent
by the honest sender when committing to 0 or 1, which are given by {ρ0

Sx
}x∈I and

{ρ1
Sx
}x∈I , are quantum statistically/computationally indistinguishable.

– (statistically/computationally binding) for all but finitely many x ∈ I , for all poly-
nomial p and for any unbounded/polynomial dishonest senders S∗

x,0, S∗
x,1 that send

the same state in the commit phase

PS∗
x

=
1
2
(
Pr[S∗

x,0 reveals b = 0] + Pr[S∗
x,1 reveals b = 1]

) ≤ 1
2

+
1

p(|x|)
When referring to a commitment scheme, we will use the (bs, hc) and (bc, hs) to denote
schemes that are statistically binding and computationally hiding and schemes that are
computationally binding and statistically hiding, respectively.

80 A. Chailloux, I. Kerenidis, and B. Rosgen

3 Quantum Commitments Unless QSZK ⊆ QMA

The idea of the proof is to start from pairs of circuits (C0, C1) which are in QSDY

which means that their mixed state outputs ρC0 and ρC1 are statistically far from each
other. We want to use ρCb as a commitment state for the bit b. Since the states are
statistically far away, such a commitment will be statistically binding. For the hiding
property, we distinguish two cases. If the Receiver can distinguish in polynomial time
(with some quantum auxiliary input) the two states for all but finitely many such pairs
of circuits then we show that QSZK ⊆ QMA. If the Receiver cannot distinguish the two
states for an infinite set I of pairs of circuits, we show how to construct a non-interactive
auxiliary-input quantum (bs, hc)-commitment scheme on I . More formally:

Theorem 1. If QSZK
⊆ QMA, then there exists a non-interactive auxiliary-input quan-
tum (bs, hc)-commitment scheme on an infinite set I .

Proof. First, we show the following

Lemma 19. If QSZK
⊆ QMA then there exist two auxiliary-input state ensembles that
are quantum computationally indistinguishable on an infinite set I .

Proof. Let us consider the complete problem QSD = {QSDY , QSDN} for QSZKHV.
We may restrict attention to the honest verifier case, since it is known that QSZK =
QSZKHV [28]. Let n = |(C0, C1)| and define |φCb

〉 = Cb(|0〉) in the space O ⊗ G to
be the entire output state of the circuit on input |0〉 and ρCb

(C0,C1)
= TrG(|φCb

〉〈φCb
|) be

the output of circuit Cb on m(n) qubits for a polynomial m.
Recall that the set QSDY consists of pairs of circuits (C0, C1), such that the trace

norm satisfies ‖ρC0
(C0,C1)

−ρC1
(C0,C1)

‖tr ≥ 2−μ(n). We now consider the two auxiliary-

input state ensembles {ρC0
(C0,C1)

} and {ρC1
(C0,C1)

} for (C0, C1) ∈ QSDY . Assume for
contradiction that they are quantum computationally distinguishable on QSDY , i.e. for
some polynomials p, s, k and for all (C0, C1) ∈ QSDY , the states ρC0

(C0,C1)
and ρC1

(C0,C1)

are (s(n), k(n), 1/p(n))-distinguishable. In other words, for polynomials p, s, k and for
all (C0, C1) ∈ QSDY there exists a state σ on k(n) qubits and a quantum circuit Q of
size s(n) that performs a two-outcome measurement on m(n) + k(n) qubits, such that

|Pr[Q(ρC0
(C0,C1)

⊗ σ) = 1] − Pr[Q(ρC1
(C0,C1)

⊗ σ) = 1]| ≥ 1
p(n)

.

We now claim that this implies that QSZK ⊆ QMA, which is a contradiction. For any
input (C0, C1) the prover can send the classical polynomial size description of Q to
the verifier as well as the mixed state σ with polynomial number of qubits. Then, for
all (C0, C1) ∈ QSDY , the verifier with the help of Q and σ can distinguish between
the two circuits with probability higher than 1/2 + 1/(2p(n)). On the other hand, for
all (C0, C1) ∈ QSDN , no matter what Q and σ the prover sends, since ‖ρC0

(C0,C1)
−

ρC1
(C0,C1)

‖tr ≤ μ(n) the verifier can only distinguish the two circuits with probability at
most 1/2 + μ(n)/2. This implies that there is an inverse polynomial gap between the
acceptance probabilities in the two cases. By applying standard error reduction tools for
QMA [13,16], we obtain a QMA protocol to solve QSD.

Quantum Commitments from Complexity Assumptions 81

This implies that if QSZK
⊆ QCMA then there exists a non empty set I ⊆ QSDY

such that the two auxiliary-input state ensembles {ρC0
(C0,C1)

} and {ρC1
(C0,C1)

} are quan-
tum computationally indistinguishable on I . Notice that the set I is infinite. Indeed, if I
is finite, then by hard-wiring this finite number of instances into the QMA verifier (who
always accepts these instances), we have again that QSZK ⊆ QMA.

We now show how to construct a commitment scheme from these ensembles

Lemma 20. The two auxiliary-input state ensembles given by {ρC0
(C0,C1)

}(C0,C1)∈I and

{ρC1
(C0,C1)

}(C0,C1)∈I that are computationally indistinguishable on the infinite set I im-
ply a non-interactive auxiliary-input quantum (bs, hc)-commitment scheme on I .

Proof. For each (C0, C1) ∈ I we define a scheme with security parameter
n = |(C0, C1)|.
- Commit phase: To commit to bit b, the sender S runs the quantum circuit Cb with
input |0〉 to create |φCb

〉 = Cb(|0〉) and sends ρCb

(C0,C1)
to the receiver R, which is the

portion of |φCb
〉 in the space O.

- Reveal phase: To reveal bit b, the sender S sends the remaining qubits of the state |φCb
〉

to the receiver R, which lie in the space G (the honest sender sends |φ′〉 = Cb|0〉). The
receiver applies the circuit C†

b on his entire state and then measures all his qubits in the
computational basis. He accepts if and only if the outcome is |0〉.

Note that all operations of the sender and the receiver in the above protocol can be
computed in time polynomial in n given the input (C0, C1), including the receiver’s test
during the reveal phase. The protocol is computationally hiding since {ρC0

(C0,C1)
} and

{ρC1
(C0,C1)

} are quantum computationally indistinguishable.
The fact that the protocol is statistically binding follows from the fact that for the

states {ρC0
(C0,C1)

} and {ρC1
(C0,C1)

} (for (C0, C1) ∈ I ⊆ QSDY) we know that ‖ρC0
(C0,C1)

−
ρC1
(C0,C1)

‖tr ≥ 2−μ(n), for a negligible function μ. More precisely, if ξ is the total quan-
tum state sent by a dishonest sender S∗ in the commit and reveal phases of the protocol,
then the probability that ξ can be revealed as the bit b is

Pr[S∗ reveals b from ξ] = tr(|0〉〈0|C†
b ξCb) = F(Cb|0〉, ξ)2 ≤ F(ρCb

(C0,C1)
, trG ξ)2

using the monotonicity of the fidelity with respect to the partial trace. This calculation
follows the proof of Watrous that QSZK is closed under complementation [26]. In what
follows we consider a dishonest sender that, after the commit phase, sends one of two
different states in the reveal phase, so the state held by the Receiver is either ξ0 or ξ1.
Notice that in either case the Sender sends the same state in the commit phase, so that
we have trG ξ0 = trG ξ1 = γ for some γ ∈ D(O). We have

PS∗ =
1
2

(Pr[S∗ reveals b = 0 from ξ0] + Pr[S∗ reveals b = 1 from ξ1])

≤ max
γ∈D(O)

1
2

(
F(ρC0

(C0,C1)
, γ)2 + F(ρC1

(C0,C1)
, γ)2

)
=

1
2

(
1 + F(ρC0

(C0,C1)
, ρC1

(C0,C1)
)
)
≤ 1

2
+

√
μ(n)
2

.

82 A. Chailloux, I. Kerenidis, and B. Rosgen

The final inequality follows from the relationship between the fidelity and the trace
norm as well as the fact that ‖ρC0

(C0,C1)
− ρC1

(C0,C1)
‖tr ≥ 2 − μ(n). This implies that the

protocol is statistically binding.

By combining the above Lemmas: if QSZK
⊆ QMA, then there exists a non-interactive
auxiliary-input quantum (bs, hc)-commitment scheme on an infinite set I .

Notice also that we can use this commitment scheme as a subroutine to construct a
scheme that is statistically hiding and computationally binding ([4]).

4 Quantum Commitments Unless QIP ⊆ QMA

In our first construction, we start from pairs of circuits (Q0, Q1) which are in QCDY

which means that there is a common input |φ∗〉 such that their outputs ρQ0 and ρQ1 are
statistically far from each other. We use ρQb as a commitment state for b. The quantum
advice needed for the commitment is the following: the Sender receives a copy of |φ∗〉
to create the states ρQ0 and ρQ1 and the Receiver also gets a copy of |φ∗〉 to check via
a SWAP test that the Sender did not cheat. Using the fact that the states are statistically
far apart and a parallel repetition theorem for our swap-test based protocol we obtain
negligible binding error. Last, similarly to the QSZK construction, we show that if
QCD cannot be solved in QMA then our scheme is also computationally hiding.

Theorem 21. If QIP
⊆ QMA, then there exists a non-interactive auxiliary-input quan-
tum (bs, hc)-commitment scheme with quantum advice on an infinite set I .

We then use instances of the QIP-complete problem Π to construct a (bc, hs)-
commitment scheme with quantum advice under the assumption that QIP
⊆ QMA.
We start here from pairs of circuits Q0, Q1 ∈ ΠY and the corresponding input states
ρ0, ρ1 (see Definition 7) that will be given to the Sender as quantum advice. An honest
Sender commits to b by sending half of ρb to the Receiver. By definition of ρ0, ρ1, the
protocol is statistically hiding (in fact perfectly). During the reveal phase, the Sender
sends the second half of ρb. If Π
∈ QMA, we show that this protocol is also computa-
tionally binding, using our notion of computationally unwitnessable superoperators.

Theorem 22. If QIP
⊆ QMA, then there exists a non-interactive auxiliary-input quan-
tum (bc, hs)-commitment scheme with quantum advice on an infinite set I .

Proof. Recall the Complete problem Π = {ΠY , ΠN} from Definition 7 with inputs
the mixed-state circuits (Q0, Q1) from D(X ⊗ Y) to a single bit and n = |(Q0, Q1)|.
To show this Theorem, we use the following Lemma. This proof of this Lemma, which
is found in the full version of the paper, is very similar to Lemma 19.

Lemma 23. If QIP
⊆ QMA, there exist two auxiliary-input superoperator ensembles
{Q0}(Q0,Q1)∈I and {Q1}(Q0,Q1)∈I that are quantum computationally unwitnessable
on an infinite set I .

To finish the proof of the Theorem, we now need to show the following

Quantum Commitments from Complexity Assumptions 83

Lemma 24. Auxiliary-input superoperator ensembles {Q0}(Q0,Q1)∈I and
{Q1}(Q0,Q1)∈I that are quantum computationally unwitnessable on an infinite
set I ⊆ ΠY imply a non-interactive quantum (bc, hs)-commitment scheme with
quantum advice on I .

Proof. Commitment scheme Each (Q0, Q1) ∈ I ⊆ ΠY gives the following scheme

– Let n = |(Q0, Q1)| be the security parameter. The sender receives
as advice ρ0, ρ1 ∈ X i ⊗ Yi such that trX ρ0 = trX ρ1 and
1
2

(
Pr[Q0(ρ0) = 1] + Pr[Q1(ρ1) = 1]

) ≥ 1 − μ(n). For consistency with our def-
initions, we also suppose that the Receiver gets a copy of ρ0, ρ1. These states will
not be used in the honest case and they will not harm the security for a cheating
Receiver.

– (Commit phase) To commit to b, the Sender sends the state in Yb to the Receiver.
– (Reveal phase) To reveal b, the Sender sends the state in X b. The Receiver applies

Qb on the space X b ⊗ Yb and accepts if he gets 1.

Statistical hiding property. The states that the receiver gets in the commit phase satisfy
trX ρ0 = trX ρ1 and hence our scheme is perfectly hiding.

Computationally binding property. The property follows from the fact that the two
auxiliary-input superoperator ensembles {Q0}(Q0,Q1)∈I and {Q1}(Q0,Q1)∈I are quan-
tum computationally unwitnessable. Fix (Q0, Q1) ∈ I with |(Q0, Q1)| = n. After the
reveal phase, the Receiver has ρb∗ in space X ⊗Y , where b is the revealed bit. Since we
consider dishonest senders S∗

(Q0,Q1) that are quantum polynomial time machines with

quantum advice, the states ρ0∗ and ρ1∗ satisfy property 2 of Definition 15. Thus, for all
but finitely many (Q0, Q1) ∈ I they do not have property 1 of Definition 15. Then, for
such (Q0, Q1) ∈ I we have

PS∗
(Q0,Q1)

=
1
2

(
Pr[S∗

(Q0,Q1) reveals b = 0] + Pr[S∗
(Q0,Q1) reveals b = 1]

)
=

1
2
(
Pr[Q0(ρ0

∗) = 1] + Pr[Q1(ρ1
∗) = 1]

) ≤ 1
2

+
1

p(n)

for all polynomials p

From the above two Lemmas, unless QIP ⊆ QMA there exists a non-interactive
auxiliary-input quantum (bc, hs)-commitment scheme with quantum advice on infinite
set I .

This result, combined with Theorem 21 completes the proof of Theorem 3.

Acknowledgements

BR is supported by the Centre for Quantum Technologies, which is funded by the Singa-
pore Ministry of Education and the Singapore National Research Foundation. AC and
IK are supported by projects ANR-09-JCJC-0067-01, ANR-08-EMER-012 and QCS
(grant 255961) of the E.U.

84 A. Chailloux, I. Kerenidis, and B. Rosgen

References

1. Aaronson, S.: Impossibility of succinct quantum proofs for collision-freeness.
arxiv1101.0403 (2011)

2. Aaronson, S., Kuperberg, G.: Quantum versus classical proofs and advice. Theory of Com-
puting 3(7), 129–157 (2007)

3. Ben-Or, M., Goldreich, O., Goldwasser, S., Håstad, J., Kilian, J., Micali, S., Rogaway, P.:
Everything provable is provable in zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988.
LNCS, vol. 403, pp. 37–56. Springer, Heidelberg (1990)

4. Crépeau, C., Légaré, F., Salvail, L.: How to convert the flavor of a quantum bit commit-
ment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 60–77. Springer,
Heidelberg (2001)

5. Fuchs, C.A., van de Graaf, J.: Cryptographic distinguishability measures for quantum-
mechanical states. IEEE Trans. Inf. Theory 45(4), 1216–1227 (1999)

6. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all
languages in NP have zero-knowledge proof systems. J. ACM 38(3) (1991)

7. Haitner, I., Nguyen, M.H., Ong, S.J., Reingold, O., Vadhan, S.: Statistically hiding com-
mitments and statistical zero-knowledge arguments from any one-way function. SIAM J.
Comput. 39(3), 1153–1218 (2009)

8. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any
one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

9. Helstrom, C.W.: Detection theory and quantum mechanics. Inform. Control 10(3) (1967)
10. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based cryptogra-

phy. In: IEEE Symp. Found. Comput. Sci. (FOCS), pp. 230–235 (1989)
11. Jain, R., Ji, Z., Upadhyay, S., Watrous, J.: QIP = PSPACE. In: ACM STOC (2010)
12. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41(12), 2315–2323 (1994)
13. Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation. Graduate

Studies in Mathematics, vol. 47. American Mathematical Society, Providence (2002)
14. Kitaev, A., Watrous, J.: Parallelization, amplification, and exponential time simulation of

quantum interactive proof systems. In: ACM STOC, pp. 608–617 (2000)
15. Lo, H.K., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev. Lett. 78, 3410

(1997)
16. Marriott, C., Watrous, J.: Quantum Arthur-Merlin games. Comput. Complex. 14(2) (2005)
17. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev.

Lett. 78, 3414 (1997)
18. Naor, M.: Bit commitment using pseudorandomness. J. of Cryptology 4(2), 151–158 (1991)
19. Nayak, A., Shor, P.: Bit-commitment-based quantum coin flipping. Phys. Rev. A 67(1),

012304 (2003)
20. Ostrovsky, R., Wigderson, A.: One-way functions are essential for non-trivial zero-

knowledge. In: 2nd Israel Symposium on Theory and Computing Systems, pp. 3–17 (1993)
21. Rosgen, B., Watrous, J.: On the hardness of distinguishing mixed-state quantum computa-

tions. In: Conf. Comput. Compl. (CCC), pp. 344–354 (2005)
22. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a

quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)
23. Spekkens, R.W., Rudolph, T.: Degrees of concealment and bindingness in quantum bit com-

mitment protocols. Phys. Rev. A 65(1), 012310 (2001)

Quantum Commitments from Complexity Assumptions 85

24. Vadhan, S.: An unconditional study of computational zero knowledge. SIAM J.
Comput. 36(4), 1160–1214 (2006)

25. Watrous, J.: Succinct quantum proofs for properties of finite groups. In: FOCS 2000 (2000)
26. Watrous, J.: Limits on the power of quantum statistical zero-knowledge. In: FOCS 2002

(2002)
27. Watrous, J.: PSPACE has constant-round quantum interactive proof systems. Theor. Comput.

Sci. 292(3), 575–588 (2003)
28. Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39(1), 25–58 (2009)

Limitations on Quantum Dimensionality

Reduction

Aram W. Harrow1,2, Ashley Montanaro3, and Anthony J. Short3

1 Department of Computer Science & Engineering,
University of Washington, Seattle, USA

2 Department of Mathematics, University of Bristol, Bristol, UK
3 Centre for Quantum Information and Foundations, DAMTP,

University of Cambridge, Cambridge, UK

Abstract. The Johnson-Lindenstrauss Lemma is a classic result which
implies that any set of n real vectors can be compressed to O(log n)
dimensions while only distorting pairwise Euclidean distances by a con-
stant factor. Here we consider potential extensions of this result to the
compression of quantum states. We show that, by contrast with the clas-
sical case, there does not exist any distribution over quantum channels
that significantly reduces the dimension of quantum states while preserv-
ing the 2-norm distance with high probability. We discuss two tasks for
which the 2-norm distance is indeed the correct figure of merit. In the
case of the trace norm, we show that the dimension of low-rank mixed
states can be reduced by up to a square root, but that essentially no
dimensionality reduction is possible for highly mixed states.

1 Introduction

The Johnson-Lindenstrauss (JL) Lemma [16] is a dimensionality reduction result
which has found a vast array of applications in computer science and elsewhere
(see e.g. [14,15,18]). It can be stated as follows:

Theorem 1 (Johnson-Lindenstrauss Lemma [16]). For all dimensions d, e,
there is a distribution D over linear maps E : R

d → R
e such that, for all real

vectors v, w,

Pr
E∼D

[(1 − ε)‖v − w‖2 ≤ ‖E(v) − E(w)‖2 ≤ ‖v − w‖2] ≥ 1 − exp(−Ω(ε2e)),

where ‖ · ‖2 is the Euclidean (�2) distance. The lemma is usually applied via the
following corollary, which follows by taking a union bound:

Corollary 2. Given a set S of n d-dimensional real vectors, there is a linear
map E : R

d → R
O(log n/ε2) that preserves all Euclidean distances in S, up to a

multiple of 1− ε. Further, there is an efficient randomised algorithm to find and
implement E.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 86–97, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Limitations on Quantum Dimensionality Reduction 87

There are several remarkable aspects of this result. First, the target dimension
does not depend on the source dimension d at all. Second, the randomised al-
gorithm can be simply stated as: choose a random e-dimensional subspace with
e = O(log n/ε2), project each vector in S onto this subspace, and rescale the re-
sult by a constant that does not depend on S. Third, this algorithm is oblivious:
in other words, E does not depend on the vectors whose dimensionality is to be
reduced.

More generally, let �d
p be the vector space R

d equipped with the �p norm ‖ ·‖p.
A randomised embedding from �d

p to �e
p with distortion1 1/(1 − ε) and failure

probability δ is a distribution D over maps E : R
d → R

e such that, for all
v, w ∈ R

d,

Pr
E∼D

[(1 − ε)‖v − w‖p ≤ ‖E(v) − E(w)‖p ≤ ‖v − w‖p] ≥ 1 − δ.

This definition does not allow the distance between vectors to increase; such
embeddings are called contractive. The JL Lemma states that there exists a
randomised embedding from �d

2 to �e
2 with distortion 1/(1 − ε) and failure prob-

ability exp(−Ω(ε2e)). Another natural norm to consider in this context is �1.
In this case the situation is less favourable: it has been shown by Charikar and
Sahai [8] that there exist O(d) points in �d

1 such that any linear embedding
into �e

1 must incur distortion Ω(
√

d/e). Brinkman and Charikar later gave a set
of n points for which any (even non-linear) embedding achieving distortion D

requires nΩ(1/D2) dimensions [6].

1.1 The JL Lemma in Quantum Information Theory

The JL Lemma immediately gives rise to a protocol for quantum fingerprint-
ing [7], or in other words efficient equality testing. Imagine that Alice and Bob
each have an n-bit string, and are required to send quantum states of the short-
est possible length to a referee, who has to use these states to determine if their
bit strings are equal (this is the so-called SMP, or simultaneous message passing,
model of communication complexity [17]). Associate each bit string with an or-
thonormal basis vector of R

2n

. Then the JL Lemma guarantees that there exists
a map from R

2n

into R
O(n) such that the inner products between all of these

2n vectors are preserved, up to a small constant. So Alice and Bob each sim-
ply apply this map to their vectors, renormalise the output (which makes very
little difference to the inner products), and send the O(log n) qubit states corre-
sponding to the resulting O(n)-dimensional vectors to the referee, who applies
the swap test to the states [7]. Given two states |ψ〉, |φ〉, this test accepts with
probability 1

2 + 1
2 |〈ψ|φ〉|2. As the inner products are approximately preserved

by the map into R
O(n), the referee can distinguish between the two cases of the

states he receives being equal or distinct, with constant probability.
More generally, Alice and Bob can use a similar SMP protocol to solve the

following task: given quantum states |ψA〉, |ψB〉, each picked from a set of k

1 We use this somewhat clumsy definition of distortion for consistency with prior work.

88 A.W. Harrow, A. Montanaro, and A.J. Short

states, determine 〈ψA|ψB〉 up to a constant. Whatever the initial dimension of
the states, the JL Lemma (strictly speaking, an easy extension of the JL Lemma
to complex vectors) guarantees that they can be compressed to O(log k) dimen-
sions with at most constant distortion, implying that the referee can estimate
〈ψA|ψB〉 up to a constant using only O(log log k) qubits of communication.

However, there is a problem with this protocol. While it is oblivious in the
sense that it does not depend on the k states which are given as input, it is
not oblivious in the following quantum sense: Alice and Bob each need to know
what their states are in order to apply the embedding2. One would expect the
right quantum analogue of a randomised embedding to map quantum states to
quantum states in an oblivious fashion. Such an algorithm can be expressed
as a distribution over quantum channels (completely positive, trace preserving
(CPTP) maps [20,22]), which are the class of physically implementable opera-
tions in quantum theory.

Let B(d) denote the set of d-dimensional Hermitian operators. The distance
between quantum states ρ, σ ∈ B(d) can be measured using the Schatten p-
norm ‖ρ−σ‖p, which is defined as ‖X‖p = (

∑
i |λi(X)|p)1/p, where λi(X) is the

i’th eigenvalue of X . The case p = 1 is known as the trace norm, and p = 2 is
sometimes known as the Hilbert-Schmidt norm. We have the following definition.

Definition 1. A quantum embedding from S ⊆ B(d) to B(e) in the Schatten
p-norm, with distortion 1/(1 − ε) and failure probability δ, is a distribution D
over quantum channels E : B(d) → B(e) such that, for all ρ, σ ∈ S,

Pr
E∼D

[(1 − ε)‖ρ − σ‖p ≤ ‖E(ρ) − E(σ)‖p ≤ ‖ρ − σ‖p] ≥ 1 − δ.

Rather than only considering embeddings that succeed for all states in B(d), we
generalise the definition to subsets of states. An interesting such subset is the
pure states, for which one might imagine stronger embeddings can be obtained.
Indeed, a closely related notion has been studied before by Winter [23], and more
recently Hayden and Winter [13], under the name of quantum identification for
the identity channel. In this setting, the sender Alice has a pure state |ψ〉 ∈
C

d and the receiver Bob is given the description of a pure state |φ〉 ∈ C
d.

Alice encodes her state |ψ〉 as a quantum message using a quantum channel E :
B(Cd) → B(Ce) and sends it to Bob, who performs a measurement (Dφ, I −Dφ)
on the message. The goal is to obtain approximately the same measurement
statistics as if Bob had performed the measurement (|φ〉〈φ|, I − |φ〉〈φ|) on |ψ〉:

∀ |ψ〉, |φ〉, | tr[Dφ E(|ψ〉〈ψ|)] − |〈ψ|φ〉|2| ≤ ε.

Winter showed in [23] that, for constant ε, this can be achieved with e = O(
√

d);
note that the resulting states E(|ψ〉〈ψ|) are highly mixed. Winter’s result allows
the development of a one-way protocol for testing equality of n-bit strings using
1
2 log2 n + O(1) qubits of communication from Alice to Bob, which is still the

2 On the other hand, if the unphysical operation of postselection is allowed, the JL
Lemma can be applied directly.

Limitations on Quantum Dimensionality Reduction 89

best known separation between one-way quantum and classical communication
complexity for total functions [1]. In our terminology, the result of [23] shows that
there exists a quantum embedding from B(d) to B(O(

√
d)) that approximately

preserves the trace distance between (initially) pure states. But note that one
aspect of Winter’s result is stronger than we need: he showed the existence of a
channel such that the distance is approximately preserved between all pairs of
states. Here, we are interested in finding distributions D over channels E such
that, for an arbitrary pair of states, the distance is approximately preserved
with high probability; this is potentially a weaker notion. In particular, it is not
necessarily true that the individual channel obtained by averaging over D will
preserve the distance between an arbitrary pair of states.

We pause to mention that the JL Lemma has found some other uses in quan-
tum information theory. Cleve et al [9] used it to give an upper bound on the
amount of shared entanglement required to win a particular class of nonlocal
games. Gavinsky, Kempe and de Wolf [11] used it to give a simulation of arbi-
trary quantum communication protocols by quantum SMP protocols (with ex-
ponential overhead). Embeddings between norms have also been used. Aubrun,
Szarek and Werner [4,3] have used a version of Dvoretzky’s theorem on “almost-
Euclidean” subspaces of matrices under Schatten norms to give counterexamples
to the additivity conjectures of quantum information theory. And, very recently,
Fawzi, Hayden and Sen [10] have used ideas from the theory of low-distortion
embeddings of the “�1(�2)” norm to prove the existence of strong entropic un-
certainty relations.

1.2 Our Results

In this paper, we show that the dimensionality reduction that can be achieved by
quantum embeddings is very limited. We begin, in Section 2, by considering the
Schatten 2-norm (which is just the vector 2-norm on matrices). We show that, in
stark contrast to the JL Lemma, any quantum embedding which preserves the
2-norm distance between (say) orthogonal pure states with constant distortion
and constant failure probability can only achieve at most a constant reduction in
dimension. One potential criticism of this result is that the 2-norm is not usually
seen as a physically meaningful distance measure, as compared with the trace
norm. However, we argue in Section 3 that for certain problems the 2-norm is
indeed the correct distance measure. We discuss two problems – equality testing
without a reference frame and state discrimination with a random measurement
– where the 2-norm appears naturally as the figure of merit.

In Section 4 we turn to the trace norm, for which we have upper and lower
bounds. On the upper bound side, we extend the result of Winter [23] to show
that low-rank mixed states are also amenable to dimensionality reduction; roughly
speaking, d-dimensional mixed states of rank r can be embedded into O(

√
rd)

dimensions with constant distortion. On the other hand, we show using the
2-norm lower bound that highly mixed states cannot be embedded into low
dimension: there is a lower bound of Ω(

√
d‖ρ−σ‖1
‖ρ−σ‖2

) on the target dimension
of any constant distortion trace norm embedding that succeeds with constant

90 A.W. Harrow, A. Montanaro, and A.J. Short

probability for the pairs UρU †, UσU † for all unitary operators U . In particular,
this implies an Ω(

√
d) lower bound for any embedding which succeeds for a

unitarily invariant set of states. In the case that |ρ − σ| is proportional to a
projector (i.e. all non-zero eigenvalues of ρ− σ are equal in absolute value), our
upper and lower bounds coincide. Due to space limitations, many proofs are
omitted; for these, see the full version [12].

Finally, some notes on miscellaneous notation. Fd will denote the unitary op-
erator which swaps (or flips) two d-dimensional quantum systems (i.e. Fd =∑d

i,j=1 |i〉〈j| ⊗ |j〉〈i|), and Id will denote the d-dimensional identity matrix.
Whenever we say that U ∈ U(d) is a random unitary operator, we mean that U
is picked uniformly at random according to Haar measure on the unitary group
U(d).

2 Dimensionality Reduction in the 2-Norm

We now show that quantum dimensionality reduction in the 2-norm is very
limited.

Theorem 3. Let D be a distribution over quantum channels (CPTP maps) E :
B(Cd) → B(Ce) such that, for fixed quantum states ρ
= σ and for all unitary
operators U ∈ U(d),

Pr
E∼D

[‖E(UρU †) − E(UσU †)‖2 ≥ (1 − ε)‖UρU † − UσU †‖2] ≥ 1 − δ

for some 0 ≤ ε, δ ≤ 1. Then e ≥ (1 − δ)(1 − ε)2d.

Note that the above lower bound on target dimension holds for any embedding of
a unitarily invariant set of states. For example, taking ρ and σ to be orthogonal
pure states and inserting ε = δ = 0 recovers the (unsurprising) result that any
embedding that exactly preserves distances between all orthogonal pure states
with certainty must satisfy e ≥ d. More generally, if we have an embedding
which succeeds with constant probability and has constant distortion, the target
dimension can be no smaller than Ω(d). In order to prove the theorem, we will
need the following two technical lemmas.

Lemma 4. Let E : B(Cd) → B(Ce) be a quantum channel (CPTP map). Then

tr[Fe E⊗2(Fd)] ≤ de.

Lemma 5. Let ρ and σ be d-dimensional quantum states. Then∫
U⊗2(ρ − σ)⊗2(U †)⊗2dU =

‖ρ − σ‖2
2

d2 − 1

(
Fd − Id2

d

)
.

The following lemma is the key to most of the results in this paper.

Limitations on Quantum Dimensionality Reduction 91

Lemma 6. Let ρ and σ be quantum states and let E : B(Cd) → B(Ce) be a
quantum channel. Then∫

‖E(UρU †) − E(UσU †)‖2
2 dU ≤ d(e2 − 1)

e(d2 − 1)
‖ρ − σ‖2

2.

Proof. We have∫
‖E(UρU †) − E(UσU †)‖2

2 dU =
∫

‖E(U(ρ − σ)U †)‖2
2 dU

=
∫

tr[Fe E(U(ρ − σ)U †)⊗2] dU = tr
[
Fe E⊗2

(∫
U⊗2(ρ − σ)⊗2(U †)⊗2 dU

)]
=

‖ρ − σ‖2
2

d2 − 1
tr
[
Fe E⊗2

(
Fd − Id2

d

)]
≤ ‖ρ − σ‖2

2

d2 − 1
(
de − d tr[E(Id/d)2]

)
≤ d(e2 − 1)

e(d2 − 1)
‖ρ − σ‖2

2.

We use linearity of E in the first equality, and the second equality is the tensor
product trick tr[X2] = tr[FeX

⊗2] for e-dimensional operators X . The fourth
equality is Lemma 5, the first inequality is Lemma 4, and the second inequality
is simply tr ρ2 ≥ 1/e for all e-dimensional states ρ. �
We are finally ready to prove Theorem 3.

Proof (of Theorem 3). We will prove something slightly stronger: that for a
random U , the 2-norm is not approximately preserved under a map E picked
from D, unless e is almost as large as d. So assume

Pr
E∼D, U∈U(d)

[‖E(UρU †) − E(UσU †)‖2 ≥ (1 − ε)‖UρU † − UσU †‖2

] ≥ 1 − δ,

or equivalently

Pr
E∼D, U∈U(d)

[‖E(UρU †) − E(UσU †)‖2
2 ≥ (1 − ε)2‖ρ − σ‖2

2

] ≥ 1 − δ,

where we use the unitary invariance of the 2-norm. By Markov’s inequality, this
implies that∫

E∼D

∫
‖E(UρU †) − E(UσU †)‖2

2 dU ≥ (1 − δ)(1 − ε)2‖ρ − σ‖2
2,

implying in turn that there must exist some E such that∫
‖E(UρU †) − E(UσU †)‖2

2 dU ≥ (1 − δ)(1 − ε)2‖ρ − σ‖2
2.

So let E : B(Cd) → B(Ce) be a quantum channel that does satisfy this inequality.
Then we have

(1 − δ)(1 − ε)2‖ρ − σ‖2
2 ≤

∫
‖E(UρU †) − E(UσU †)‖2

2 dU ≤
(e

d

)
‖ρ− σ‖2

2,

where the second inequality follows from Lemma 6, assuming that e ≤ d. We
have shown that e ≥ (1 − δ)(1 − ε)2d, completing the proof of the theorem. �

92 A.W. Harrow, A. Montanaro, and A.J. Short

3 Operational Meaning of the 2-Norm

In this section, we discuss the meaning of the 2-norm distance between quan-
tum states. It is usually assumed that the trace norm is the “right” measure of
distance between states, and proofs going via the 2-norm usually do so only for
calculational simplicity. However, here we argue that the 2-norm is of interest in
its own right, by giving two operational interpretations of this distance measure.

3.1 Equality Testing without a Reference Frame

Consider the following equality-testing game. We are given a description of two
different states ρ and σ. An adversary prepares two systems in one of the states
ρ ⊗ ρ, σ ⊗ σ, ρ ⊗ σ or σ ⊗ ρ, with equal probability of each. He then applies an
unknown unitary U to each system (i.e. he applies U ⊗U to the joint state). Our
task is to determine whether the two systems have the same state or different
states. This models equality testing in a two-party scenario in which the preparer
and tester do not share a reference frame [5]. One protocol for solving this task is
simply to apply the swap test [7] to the two states we are given, output “same” if
the test accepts, and “different” otherwise. When applied to two states ρ, σ this
test accepts with probability 1

2 + 1
2 tr ρ σ, so for any U the overall probability of

success is

1
4

(
1
2

+
1
2

tr[ρ2]
)

+
1
4

(
1
2

+
1
2

tr[σ2]
)

+
1
2

(
1
2
− 1

2
tr[ρ σ]

)
=

1
2

+
1
8
‖ρ − σ‖2

2.

The following theorem shows that this is optimal.

Theorem 7. The maximal probability of success of the above game is
1
2 + 1

8‖ρ − σ‖2
2.

Proof. Let (M, I − M) be an arbitrary POVM3 where the operator M corre-
sponds to the answer “same”. Then the probability of success achieved by this
POVM for a given U is 1

2 + 1
2B, where B is the bias, which is equal to

tr
[
M

(
1
2

(U(ρ ⊗ ρ)U † + U(σ ⊗ σ)U † − 1
2

(U(ρ ⊗ σ)U † + U(σ ⊗ ρ)U †
)]

.

If the adversary adopts the strategy of picking U uniformly at random, the
average bias obtained is

1
2

tr
[
M

∫
U⊗2(ρ ⊗ ρ + σ ⊗ σ − ρ ⊗ σ − σ ⊗ ρ)(U †)⊗2dU

]
=

1
2

tr
[
M

∫
U⊗2(ρ − σ)⊗2(U †)⊗2

]
,

which by Lemma 5 is equal to ‖ρ−σ‖2
2

2(d2−1) tr
[
M

(
Fd − Id2

d

)]
.

3 POVMs (positive operator valued measures) are the most general class of measure-
ments in quantum theory. A POVM is defined by a set of positive operators summing
to the identity.

Limitations on Quantum Dimensionality Reduction 93

This expression is maximised by setting M equal to a projector onto the
subspace spanned by the eigenvectors of Fd − Id2

d with positive eigenvalues. As
Fd has d(d+1)/2 eigenvalues equal to 1, and d(d−1)/2 eigenvalues equal to −1,
we obtain tr

[
M

(
Fd − Id2

d

)]
= (d2 − 1)/2. This implies that the average bias is

at most 1
4‖ρ − σ‖2

2. As the worst-case bias can only be lower, this implies the
claimed result. �

3.2 Performing a Random Measurement

The second game we will discuss is state discrimination with a fixed or random
measurement. Imagine we are given a state which is promised to be either ρ or
σ, with equal probability of each, and we wish to determine which is the case.
It is well known that the largest bias achievable by choosing an appropriate
measurement is 1

2‖ρ− σ‖1 (recall from the previous section that the bias B and
the success probability p have the relationship p = 1

2 + B
2). But how well can we

do if the measurement we apply does not in fact depend on ρ and σ?
We will see that ‖ρ − σ‖2 is closely related to the optimal bias achievable by

performing one of the following two measurements, and deciding whether the
state is ρ or σ based on the outcome.

– The uniform (isotropic) POVM whose measurement elements consist of nor-
malised projectors onto all states |ψ〉;

– A projective measurement in a random basis (i.e. applying a random unitary
operator and measuring in the computational basis).

In general, the largest bias achievable by measuring a POVM M which consists
of measurement operators Mi can be written as 1

2

∑
i | tr[Mi(ρ−σ)]|. Each mea-

surement operator of the uniform POVM is given by the projector onto some
state |ψ〉, normalised by a factor of d (to check that this is right, note that

d

∫
dψ|ψ〉〈ψ| = d

(
Id

d

)
= Id

as expected). So the bias induced by the uniform POVM is d
2

∫
dψ|〈ψ|(ρ−σ)|ψ〉|.

In the case of a measurement in a random basis U ∈ U(d), we can calculate the
expected bias as follows:

1
2

EU

d∑
i=1

|〈i|U †(ρ − σ)U |i〉| =
1
2

d∑
i=1

EU |〈i|U †(ρ − σ)U |i〉|

=
1
2

d∑
i=1

EU |〈1|U †(ρ − σ)U |1〉| =
d

2

∫
dψ|〈ψ|(ρ − σ)|ψ〉|;

so these quantities are the same. They are also closely related to the 2-norm
distance, as we will now see.

94 A.W. Harrow, A. Montanaro, and A.J. Short

Theorem 8. Let ρ, σ be d-dimensional quantum states. Then

1
3
‖ρ − σ‖2 ≤ d

∫
dψ|〈ψ|(ρ − σ)|ψ〉| ≤ ‖ρ − σ‖2.

The lower bound in Theorem 8 was shown by Ambainis and Emerson [2] (see
also the proof of Matthews, Wehner and Winter [19]), and the upper bound is
not hard. However, as this result does not appear to be widely known, we include
a proof (which is essentially the same as that of [19]) in the full version [12].

In fact, the corresponding upper and lower bounds on the bias hold for any
fixed POVM whose measurement vectors form a 4-design [2], and the upper
bound even holds for any fixed POVM whose vectors form a 2-design. This result
can be useful in cases where one wishes to perform state discrimination without
necessarily being able to construct the optimal measurement efficiently [21]. See
the work [19] for much more detail on the bias achievable in state discrimination
with fixed measurements.

4 Dimensionality Reduction in the Trace Norm

In this section we consider embeddings that reduce dimension while preserving
the trace norm distance between states. As no quantum channel can increase
this distance, we first observe that any such embedding will automatically be
contractive.

4.1 Upper Bound

It was previously shown by Winter [23] that, in our language, d-dimensional pure
states can be embedded into B(O(

√
d)) with constant distortion. We now extend

this result to general mixed states, by showing that rank r mixed states can be
embedded into dimension O(

√
rd) with constant distortion.

The embedding is conceptually very simple: apply a random unitary and trace
out a subsystem. However, when the target dimension e does not divide d, we are
forced to consider random isometries V : C

d → C
e ⊗C

�d/e� instead of unitaries,
where �x� is the smallest integer y such that y ≥ x. Recall that an isometry is a
norm-preserving linear map, i.e. a map taking an orthonormal basis of one space
to an orthonormal set of vectors in another (potentially larger) space. A random
isometry is defined as a fixed isometry followed by a random unitary. Formally,
our embedding is a distribution over the following quantum channels EV .

Definition 2. Let d and e be positive integers such that e ≤ d. For any isometry
V : C

d → C
e ⊗ C

�d/e�, let EV : B(Cd) → B(Ce) be the quantum channel that
consists of performing V , then tracing out (discarding) the second subsystem.

We now analyse the performance of the embedding obtained by picking a random
V and applying this channel.

Limitations on Quantum Dimensionality Reduction 95

Theorem 9. Let d be a positive integer, and let ρ and σ be arbitrary d-
dimensional mixed states such that ρ has rank r. Fix ε such that 0 < ε < 1.
For any e such that 2

√
rd/ε ≤ e ≤ d, let D be the distribution on channels

EV : B(Cd) → B(Ce) that is uniform on isometries V : C
d → C

e ⊗ C
�d/e�. Then

Pr
EV ∼D

[‖EV (ρ) − EV (σ)‖1 ≥ (1 − ε)‖ρ − σ‖1] ≥ 1 − d exp(−Kεd),

for a universal constant K which may be taken to be (1 − ln 2)/(2 ln 2) ≈ 0.22.

Although this result is expressed in terms of the rank of the input states, a similar
result would apply to states which are very close (in trace norm) to having low
rank, but for simplicity we do not discuss this here.

4.2 Lower Bound

It turns out that Lemma 6 is also strong enough to give a bound on embeddings of
the trace norm, via a similar proof to that of Theorem 3. Charikar and Sahai [8]
showed that there exist a set of O(d) d-dimensional vectors whose dimension
cannot be significantly reduced while preserving their �1 distances. One might
expect the same to be true for the trace norm, as the trace norm on diagonal
matrices is just the �1 norm of the diagonal entries. However, note that this
does not follow immediately from Charikar and Sahai’s work, as it is conceivable
that an embedding mapping diagonal to non-diagonal matrices could do better.
Nevertheless, we now show that dimensionality reduction is impossible for some
sets of highly mixed states.

Theorem 10. Let D be a distribution over quantum channels (CPTP maps)
E : B(Cd) → B(Ce) such that, for fixed quantum states ρ
= σ and for all
unitary U ,

Pr
E∼D

[‖E(UρU †) − E(UσU †)‖1 ≥ (1 − ε)‖UρU † − UσU †‖1] ≥ 1 − δ

for some 0 ≤ ε, δ ≤ 1. Then e ≥ (1 − δ)(1 − ε)
√

d ‖ρ−σ‖1
‖ρ−σ‖2

. In particular, if ρ

and σ are orthogonal pure states, then e ≥ (1 − δ)(1 − ε)
√

2d, and if ρ and σ
are proportional to projectors onto orthogonal d/2-dimensional subspaces, e ≥
(1 − δ)(1 − ε)d.

So we see that achieving any significant dimensionality reduction for arbitrary
highly mixed states is impossible, and even for pure states the dimension can
only be reduced by a square root (a similar result for pure states was shown
in [23]).

This implies that the protocol of Theorem 9 is optimal for certain families
of states, up to constant factors. Consider the family of pairs UρU †, UσU † for
all U ∈ U(d), where ρ and σ are proportional to projectors onto orthogonal
r-dimensional subspaces of C

d. Then ‖ρ−σ‖1
‖ρ−σ‖2

=
√

rank(ρ − σ) =
√

2r, implying
that embeddings of this family with constant distortion and failure probability
have a lower bound on the target dimension of Ω(

√
rd), which is achieved by

the embedding of Theorem 9.

96 A.W. Harrow, A. Montanaro, and A.J. Short

5 Conclusions

We have shown that in the 2-norm, any constant-distortion embedding of a
unitarily invariant set of d-dimensional states must have target dimension Ω(d),
in contrast to the classical situation where an exponential reduction can be
achieved. In the trace norm, the situation is somewhat better: d-dimensional
states of rank r can be embedded in O(

√
rd) dimensions with constant distortion,

but there is a lower bound of Ω(
√

d‖ρ−σ‖1
‖ρ−σ‖2

) dimensions on any constant distortion
embedding that succeeds for the pairs of states UρU † and UσU †, for all unitary
U . Although the trace distance is often the most physically relevant distance
measure to consider, we also argued that for certain tasks, the 2-norm distance is
in fact the relevant distance measure between states. This occurs when the basis
in which the states were prepared is unknown or the measurement apparatus
does not depend on the states to be distinguished.

The alert reader will have noticed that, in the case where one is interested
in embedding a unitarily invariant set of states, the embedding might as well
start by performing a random unitary. Furthermore, as any quantum channel
can be represented as an isometry into a larger space followed by tracing out a
subsystem, this makes any embedding seem somewhat similar to the embedding
used in Theorem 9. But note that the latter embedding is subtly different, as it
can be seen as performing a fixed isometry followed by a random unitary, rather
than vice versa. Further analysis of this embedding might allow the gap between
the upper and lower bounds in the trace norm to be closed.

Another open question is whether bounds could be obtained on the possible
dimensionality reduction when multiple copies of the input state are available.
For example, if a very large number of copies are allowed, tomography can be
performed, the input state can be approximately determined, and the JL Lemma
applied. Presumably, even for a lower number of copies, stronger dimensionality
reduction is possible than in the single-copy case. One could also ask whether
stronger dimensionality reduction can be achieved by allowing some additional
classical information; for some results in this direction, see [10].

Acknowledgements

AWH was supported by the EC grant QESSENCE and the DARPA-MTO QuEST
program through a grant from AFOSR. AM was supported by an EPSRC Post-
doctoral Research Fellowship. AJS was supported by the Royal Society.

References

1. Aaronson, S.: Limitations of quantum advice and one-way communication. Theory
of Computing 1, 1–28 (2004), quant-ph/0402095

2. Ambainis, A., Emerson, J.: Quantum t-designs: t-wise independence in the quan-
tum world. In: Proc. 22nd Annual IEEE Conf. Computational Complexity, pp.
129–140 (2007), quant-ph/0701126

Limitations on Quantum Dimensionality Reduction 97

3. Aubrun, G., Szarek, S., Werner, E.: Hastings’ additivity counterexample via
Dvoretzky’s theorem (2010), arXiv:1003.4925

4. Aubrun, G., Szarek, S., Werner, E.: Non-additivity of Renyi entropy and Dvoret-
zky’s theorem. J. Math. Phys. 51, 022102 (2010), arXiv:0910.1189

5. Bartlett, S., Rudolph, T., Spekkens, R.: Classical and quantum communication
without a shared reference frame. Phys. Rev. Lett. 91(2), 027901 (2003), quant-
ph/0302111

6. Brinkman, B., Charikar, M.: On the impossibility of dimension reduction in �1. J.
ACM 52(5), 766–788 (2005)

7. Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys.
Rev. Lett. 87(16), 167902 (2001), quant-ph/0102001

8. Charikar, M., Sahai, A.: Dimension reduction in the �1 norm. In: Proc. 43rd Annual
Symp. Foundations of Computer Science, pp. 551–560 (2002)

9. Cleve, R., Høyer, P., Toner, B., Watrous, J.: Consequences and limits of nonlocal
strategies. In: Proc. 19th Annual IEEE Conf. Computational Complexity, pp. 236–
249 (2004), quant-ph/0404076

10. Fawzi, O., Hayden, P., Sen, P.: From low-distortion norm embeddings to explicit
uncertainty relations and efficient information locking (2010), arXiv:1010.3007

11. Gavinsky, D., Kempe, J., de Wolf, R.: Strengths and weaknesses of quantum fin-
gerprinting. In: Proc. 21st Annual IEEE Conf. Computational Complexity, pp.
288–298 (2006), quant-ph/0603173

12. Harrow, A.W., Montanaro, A., Short, A.J.: Limitations on quantum dimensionality
reduction (2010), arXiv:1012.2262

13. Hayden, P., Winter, A.: The fidelity alternative and quantum measurement simu-
lation (2010), arXiv:1003.4994

14. Indyk, P.: Algorithmic applications of low-distortion geometric embeddings. In:
Proc. 42nd Annual Symp. Foundations of Computer Science, pp. 10–33 (2001)

15. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proc. 30th Annual ACM Symp. Theory of Computing,
pp. 604–613 (1998)

16. Johnson, W., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert
space. Contemporary Mathematics 26, 189–206 (1984)

17. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, Cambridge (1997)

18. Kushilevitz, E., Ostrovsky, R., Rabani, Y.: Efficient search for approximate nearest
neighbor in high dimensional spaces. In: Proc. 30th Annual ACM Symp. Theory
of Computing, pp. 614–623 (1998)

19. Matthews, W., Wehner, S., Winter, A.: Distinguishability of quantum states under
restricted families of measurements with an application to quantum data hiding.
Comm. Math. Phys. 291(3), 813–843 (2009), arXiv:0810.2327

20. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information.
Cambridge University Press, Cambridge (2000)

21. Sen, P.: Random measurement bases, quantum state distinction and applications
to the hidden subgroup problem. In: Proc. 21st Annual IEEE Conf. Computational
Complexity, p. 287 (2006), quant-ph/0512085

22. Watrous, J.: Theory of quantum information lecture notes (2008),
http://www.cs.uwaterloo.ca/~watrous/quant-info/

23. Winter, A.: Quantum and classical message identification via quantum channels. In:
Hirota, O. (ed.) Festschrift “A S Holevo 60”, pp. 171–188 (2004), quant-ph/0401060

http://www.cs.uwaterloo.ca/~watrous/quant-info/

On Tree-Constrained Matchings

and Generalizations�

Stefan Canzar1, Khaled Elbassioni2, Gunnar W. Klau1, and Julián Mestre3

1 Centrum Wiskunde & Informatica, Life Sciences Group, Science Park 123,
1098 XG, Amsterdam, The Netherlands
{stefan.canzar,gunnar.klau}@cwi.nl

2 Max-Planck-Institut für Informatik, Algorithms and Complexity Dept.,
Saarbrücken, Germany

elbassio@mpi-inf.mpg.de
3 School of Information Technologies, The University of Sydney, Australia

Abstract. We consider the following Tree-Constrained Bipartite

Matching problem: Given two rooted trees T1 = (V1, E1), T2 = (V2, E2)
and a weight function w : V1×V2 → R+, find a maximum weight match-
ing M between nodes of the two trees, such that none of the matched
nodes is an ancestor of another matched node in either of the trees. This
generalization of the classical bipartite matching problem appears, for
example, in the computational analysis of live cell video data. We show
that the problem is APX -hard and thus, unless P = NP , disprove a
previous claim that it is solvable in polynomial time. Furthermore, we
give a 2-approximation algorithm based on a combination of the local ra-
tio technique and a careful use of the structure of basic feasible solutions
of a natural LP-relaxation, which we also show to have an integrality
gap of 2 − o(1). In the second part of the paper, we consider a natu-
ral generalization of the problem, where trees are replaced by partially
ordered sets (posets). We show that the local ratio technique gives a
2kρ-approximation for the k-dimensional matching generalization of the
problem, in which the maximum number of incomparable elements be-
low (or above) any given element in each poset is bounded by ρ. We
finally give an almost matching integrality gap example, and an inap-
proximability result showing that the dependence on ρ is most likely
unavoidable.

1 Introduction

This paper contains both approximation and hardness results for the Tree-

Constrained Bipartite Matching (TCBM) problem, a natural generaliza-
tion of the classical maximum matching problem in bipartite graphs. The input
of TCBM consists of a weighted bipartite graph G = (V1, V2, E) and two rooted
trees T1 and T2. The vertex set of Ti is Vi for i = 1, 2. The objective is to find a
maximum weight matching such that the matched vertices in each tree are not

� A full version of this paper is available as the technical report [5].

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 98–109, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On Tree-Constrained Matchings and Generalizations 99

T1r1 T2 r2

Fig. 1. Example of a feasible tree-constrained bipartite matching. For each matched
pair of vertices, indicated by dotted lines, neither of their descendants are matched.

comparable; that is, if u, v ∈ Vi are matched then u cannot be v’s ancestor or
vice-versa. Figure 1 illustrates the definition.

TCBM arises naturally in the computational analysis of live cell video data.
Studying cell motility using live cell video data helps understand important bi-
ological processes, such as tissue repair, the analysis of drug performance, and
immune system responses. Segmentation based methods for cell tracking typi-
cally follow a two stage approach (see [14] for a survey): The goal of the first
detection step is to identify individual cells in each frame of the video indepen-
dently. In a second step, the linkage of consecutive frames, and thus the tracking
of a cell, is achieved by assigning cells identified in one frame to cells identified
in the next frame. However, limited contrast and noise in the video sequence
often leads to over-segmentation in the first stage: a single cell is comprised of
several segments. A major challenge in this application domain is therefore the
ability to distinguish biological cell division from over-segmentation.

Mosig et al. [10] and Xiao et al. [12] address this problem by proposing a novel
approach for the linkage stage. As opposed to previous methods, they match sets
of segments between neighboring frames rather than singletons, where the seg-
ment sets correspond to the nodes of an agglomerative hierarchical clustering
tree. A subsequent bipartite matching between the nodes of the clustering trees
corresponding to neighboring frames integrates the identification of a cell as a set
of segments and the tracking of the cell between two different video frames. Since
segment sets representing different cells in the same frame must be disjoint, no
two nodes on any root-to-leaf path can be matched at the same time, leading to
an instance of TCBM . To assess the quality of such a tree-constrained match-
ing, Mosig et al. consider the relative overlap of the convex hulls of matched
segment sets. This cosegmentation via TCBM promises to be usefull also in
other bioimaging applications, for example in protein-colocalization studies [12].

To track cells not only between two consecutive frames but across a whole
video sequence, the bipartite graphs have to be concatenated to a cell connection
graph, as introduced in [13]. In [10] this is done by solving a standard maximum
weight bipartite matching problem for each frame i, which is at the intersection
between the tree-constrained alignment of frames i− 1 and i, and the alignment
of frames i and i + 1. Concluding, the authors mention post-processing the cell
connection graph as a promising improvement. Therefore, the generalization of

100 S. Canzar et al.

bipartite tree-constrained matching to a tree-constrained matching in a k-partite
k-uniform hypergraph is an important problem for this application. By linking
more than two frames at the same time, over-segmentation and cell-division can
be distinguished by taking into account the cell behavior over a larger time-scale.

Another natural generalization of the problem is obtained by replacing trees
by partially ordered sets (posets), because they permit the representation of
alternative clustering hierarchies. For example, various meaningful distance mea-
sures between (sets of) segments could make it necessary to assign them to mul-
tiple parent clusters. In particular, noise in the video data may make it difficult
to determine a unique tree.

Mosig et al. [10] present a linear programming formulation for TCBM and
claim that the constraint matrix is totally unimodular, which would imply that
the problem is solvable in polynomial time [11]. We disprove this statement by
showing an instance with a fractional vertex and proving that the problem is in
fact NP-hard and even hard to approximate within a constant. Thus, conditional
on P
= NP , there is no polynomial time algorithm for our problem.

TCBM and its generalization to k trees are special cases of the maximum
weighted independent set (MWIS) problem on 2-interval graphs and k-interval
graphs, respectively. The connection is given by ordering the leaves of the trees
by depth-first search and identifying each node with the interval of leaves below
it. In fact, TCBM captures precisely the subclass of 2-union graphs (the first
interval of a 2-interval cannot intersect the second interval of another 2-interval)
where the two interval families are laminar (any two intervals are either disjoint
or one is nested in the other). In [3] the fractional local ratio technique was
developed and applied to MWIS in k-interval graphs to get a 2k-approximation
algorithm. This result immediately implies a 4-approximation for TCBM.

1.1 Our Results

In this paper, we give a 2-approximation algorithm for TCBM, improving upon
the 4-approximation that follows from the work of Bar-Yehuda et al. [3]. Our
method is based on a combination of the local ratio technique and a careful use of
the structure of basic feasible solutions of a natural LP-relaxation. In Section 2.1
we show a 3-approximation based on fractional local ratio and prove that this
is the best guarantee the fractional local ratio technique alone can deliver when
rounding one coordinate at a time. The main difference between our approach
and that of Bar-Yehuda et al. [3] is that we round basic feasible solutions. This
allows us to exploit their structure in the analysis in order to get better approx-
imation guarantees. In Section 2.2, we show how to get a 2-approximation and
give an instance for which our LP-relaxation has an integrality gap of 2 − o(1).
In Section 2.3, we show that the problem is APX -hard. Our results imply that
the MWIS problem on 2-union graphs in which both families of intervals are
laminar, is still APX -hard, but can be approximated within a factor of 2.

In Section 3, we consider the k-dimensional generalization of the problem to
posets. In this case, the natural LP-relaxation has an exponential number of con-
straints, but admits an alternative linear-size LP-formulation. Even though the

On Tree-Constrained Matchings and Generalizations 101

result of Bar-Yehuda et al. [3] does not apply directly to the poset case, we show
that the fractional local ratio technique yields a 2

∑k
i=1 ρ(Pi)-approximation

here, where ρ(Pi) is the maximum number of incomparable elements below (or
above) any given element in poset Pi. We also give an example which shows that
the integrality gap of the LP-relaxation is tight within almost a factor of 2. Fi-
nally, Section 3.2 gives a reduction from Maximum Label Cover showing that the
2-dimensional matching problem with poset constraints is hard to approximate
within a factor of 2log1−ε ρ, for any ε > 0, where ρ = max{ρ(P1), ρ(P2)}, unless
NP ⊆ DTIME(npolylogn). Note that the k-dimensional version of TCBM in-
cludes as a special case the k-dimensional matching problem, and hence [8] is
NP-hard to approximate within a factor of O(k/ log k).

2 Matching Trees

In this section we focus on the basic TCBM problem, formally defined as follows:

Definition 1 (Tree-constrained bipartite matching problem, TCBM).
Given two rooted trees T1 = (V1, E1), T2 = (V2, E2) with roots r1 ∈ V1 and
r2 ∈ V2, and a weight function w : V1 × V2 �→ R+, find a maximum weight
matching M in the complete bipartite graph G = (V1, V2, E) with edge weights
induced by w, such that (u, v) ∈ M implies (u′, v′) /∈ M, if u′ is a descendant
of u or v′ is a descendant of v.

Consider an instance (T1, T2, w) of TCBM with T1 = (V1, E1) and T2 = (V2, E2).
Let r1 ∈ V1 and r2 ∈ V2 denote the roots and L1 ⊂ V1 and L2 ⊂ V2 denote the
set of leaves of the trees, respectively. For two vertices p and q denote by [p, q]
the path in T1 (or T2) between p and q. For each p1 ∈ V1 and p2 ∈ V2 let
xp1,p2 ∈ {0, 1} be a variable which takes value 1 if and only if p1 is matched to
p2, i.e. (p1, p2) ∈ M. Consider the following LP-relaxation of the problem.

max
∑

p1∈V1,p2∈V2

wp1,p2xp1,p2 (P)

s.t.
∑

p1∈[r1,�],p2∈V2

xp1,p2 ≤ 1 for all � ∈ L1 (1)

∑
p1∈V1,p2∈[r2,�]

xp1,p2 ≤ 1 for all � ∈ L2 (2)

xp1,p2 ≥ 0 for all p1 ∈ V1, p2 ∈ V2 .

For the purpose of the analysis of the algorithm we will consider a more general
LP formulation (Pb), in which the right hand sides of constraints (1) and (2) are
replaced by some bl, 0 ≤ b� ≤ 1, for all � ∈ L1 ∪ L2. We will use x(F) to denote∑

e∈F xe for a subset of the edges F ⊆ E in the complete bipartite graph G and
δ(p) to denote the set of edges in E incident to a vertex p.

102 S. Canzar et al.

Overview of the technique. Our main tool will be the fractional local ratio tech-
nique, applied (recursively) to an optimal basic feasible solution (BFS) x∗ of
the above LP, where the base case of the recursion involves the computation
of maximum weight independent sets in interval graphs. As long as there is a
pair (p, q) ∈ V1 × V2 with ”small fractional ratio”, that is the total contribution∑

(p′,q′) x∗
p′q′ , over all pairs (p′, q′) that are in conflict with (p, q), is at most 2,

we can take this pair (p, q) into the solution and recurse on a new instance with
reduced weights. Otherwise (if there is no such pair), we can use a structural
result about the BFS’s (Lemmas 1 and 3) to reduce the problem to computing
maximal independent sets in interval graphs. In the next subsection, we prove
this structural result, and show the fractional local ratio approach alone can give
a 3-approximation, but not more. We then extend this to a 2-approximation in
Section 2.2.

2.1 A 3-Approximation by Fractional Local Ratio

For a feasible fractional solution x to linear program (Pb) and i ∈ {1, 2} we
denote by Li(x) the set of nodes � ∈ Vi with x(δ(�)) > 0 and x(δ(p)) = 0 for all
descendants p of � in Ti.

Lemma 1. For any basic feasible solution x to linear program (Pb) one of the
following holds:

(a) there exist nodes �1 ∈ L1(x) and �2 ∈ L2(x) such that x�1,�2 > 0, or
(b) for every xp1,p2 > 0 either p1 ∈ L1(x) and xp1,p′

2
= 0, for all p′2
= p2, or

p2 ∈ L2(x) and xp′
1,p2 = 0, for all p′1
= p1.

Proof. Assume (a) does not hold, i.e. x�1,�2 = 0 for all �1 ∈ L1(x) and �2 ∈ L2(x).
For an arbitrary node p1 ∈ V1, any two constraints (1) for leaves in the subtree
rooted at p1 linearly depend on the set of non-negativity constraints for variables
xp′

1,p2 , with p2 ∈ V2 and p′1 being a descendant of p1. Thus, every �1 ∈ L1(x)
implies at most one linear independent tight constraint (1) for one of the leaves in
its subtree. Since a symmetric argument applies to nodes �2 ∈ L2(x), the number
of linearly independent tight constraints (1), (2) for a given basic feasible solution
x is at most |L1(x)| + |L2(x)|.

On the one hand, since x(δ(�)) > 0 for all � ∈ L1(x) ∪ L2(x) and since
no positive edge between two leaves exists, for every node in L1(x) ∪ L2(x)
there is at least one distinct non-zero edge incident to it. On the other hand,
in a basic feasible solution the number of non-zero variables is at most the
number of linearly independent tight constraints (1), (2), which in turn is at
most |L1(x)| + |L2(x)|. Therefore, exactly one distinct non-zero edge is incident
to every node in L1(x) ∪ L2(x) and all other edges must be 0. �
Based on this property of basic feasible solutions to (Pb) we next show that
there always exists an edge with local ratio at most 3. For this, let N [(p, q)] be
the set of edges (p′, q′) ∈ E that are in conflict with edge (p, q) (including (p, q)
itself), i.e.,

N [(p, q)] = {(p′, q′) ∈ E | p′ ∈ [r1, p] ∨ p ∈ [r1, p
′] ∨ q′ ∈ [r2, q] ∨ q ∈ [r2, q

′]} .

On Tree-Constrained Matchings and Generalizations 103

T1 T2

Fig. 2. Tight example for the fractional local ratio of an edge, k = 3

Lemma 2. Let x be a basic feasible solution to (Pb). There exists an edge
(p, q) ∈ E with xp,q > 0 such that

∑
(p′,q′)∈N [(p,q)] xp′,q′ ≤ 3.

The following lemma shows that we can apply Lemma 2 inductively in a local
ratio framework.

Lemma 3. Let x be a basic feasible solution to (Pb). For an edge (p, q) with
xp,q > 0, let b′ be such that b′� = b� − xp,q if p ∈ [r1, �], respectively q ∈ [r2, �],
and b′� = b� otherwise. Then x′ with x′

p,q = 0 and x′
e′ = xe′ for e′
= (p, q), is a

basic feasible solution to (Pb′).

Proof. Since the right hand side of constraints in (Pb′) for all root to leaf paths
through p, respectively q, are decreased by exactly xp,q, x′ is still feasible for
(Pb′). Suppose that x′ can be expressed as a convex combination of two feasible
solutions y and z (of (Pb′)). Then setting yp,q = xp,q and zp,q = xp,q would yield
a convex combination of x (in (Pb)), a contradiction. Thus, x′ must be a basic
feasible solution to (Pb′). �
Now by applying the fractional local ratio technique of [3] we immediately obtain
the following result.

Theorem 1. There is a 3-approximation algorithm for TCBM.

We next give an example instance that shows that using the fractional local ratio
method, our approximation guarantee is tight.

Lemma 4. There exists an instance of TCBM such that the optimal solution to
(P) is unique and the fractional local ratio of every edge is at least 3 − o(1).

Proof. Let T1 and T2 be trees of height two (i.e., they have three levels) where
each internal node has k − 1 children. The edges E connecting the nodes of T1

and T2 are as follows. Let x be a leaf of T1. If x is the ith child of its parent in
T1, we connect x with the ith child of the root of T2. We connect in a similar
fashion the leaves of T2 with the children of the root of T1. All edges have a
weight of 1. Figure 2 illustrates the construction for k = 3.

It can be verified that the optimal fractional solution must set the value of
every edge to 1

k . Let (u, v) be an edge where u is a leaf and v is an internal
node. Notice that (u, v) is in conflict with k − 1 edges incident on children of v,
k−2 edges incident on v and k−1 edges incident on u’s parent. Since each edge
carries a fractional contribution of 1

k their combined fractional value is 3− 4
k . �

104 S. Canzar et al.

Algorithm 1. Tree-Matching(F,w)
Require: A BFS x to (Pb), 0 ≤ b ≤ 1, edge set F , and weights on the edges w.
1: if F = ∅ then
2: return ∅
3: Define F0 = {e ∈ F | we ≤ 0}
4: if F0 �= ∅ then
5: return Tree-Matching(F \ F0, w)
6: if ∀e ∈ F : x(N [e]) > 2 then
7: I1 ← MWIS in IG(T1) w.r.t. weights w̄1

p = max(p,q)∈F wp,q

8: I2 ← MWIS in IG(T2) w.r.t. weights w̄2
q = max(p,q)∈F wp,q

9: if w̄1(I1) ≥ w̄2(I2) then
10: return

⋃
p∈I1
{argmax(p,q)∈F wp,q}

11: else
12: return

⋃
q∈I2
{argmax(p,q)∈F wp,q}

13: else
14: Let e′ ∈ F be s.t. x(N [e′]) ≤ 2

15: Decompose w by w = w1 + w2 where w1
e :=

{
we′ if e ∈ N [e′],

0 otherwise.

16: M′ ← Tree-Matching(F,w2)
17: if N [e′] ∩M′ = ∅ then
18: return M =M′ ∪ {e′}
19: else
20: return M =M′

2.2 A 2-Approximation

The algorithm requires a basic feasible solution x to (P) and is initially called
with an edge set F , in which all edges e with xe = 0 have been removed. The
idea is to recurse in a local ratio manner as long as we can find an edge with
local ratio at most two. If this is not possible anymore, we exploit the specific
structure of basic feasible solutions by computing maximum weight independent
sets (MWIS) in the interval graphs IG(T1) and IG(T2) induced by the two trees:
For i ∈ {1, 2}, IG(Ti) is the interval graph obtained by ordering the leaves of Ti

by depth-first search and identifying each node of Ti with the interval of leaves
below it. As usual, we define the maximum (in lines 7-8) over an empty set to
be 0. It is not difficult to see that the matching M returned by the algorithm is
feasible for (P). It remains to assess the quality of this solution.

Theorem 2. Let x be a basic feasible solution to linear program (Pb). The
matching M returned by Algorithm 1 satisfies w(M) ≥ 1

2 ·w · x.

Proof. The proof is by induction on the number of edges having positive weight.
In the base case either there is no edge with positive weight (lines 1-2) or no edge
e′ in line 14 exists. In the former case, the induction hypothesis clearly holds.
In the latter case, according to Lemma 1 the non-zero edges can be partitioned
into sets F1 and F2, containing edges with one endpoint in L1(x), respectively
one endpoint in L2(x). For i ∈ {1, 2}, let

On Tree-Constrained Matchings and Generalizations 105

PIG(Ti) :=

⎧⎨⎩y ∈ R
Vi
+ :

∑
p∈Vi:p∈[ri,�]

yp ≤ 1, for all � ∈ Li

⎫⎬⎭
be the fractional independent set polytope in the interval graph represented

by tree Ti. It is well-known (see e.g. [7]) that PIG(Ti) is integral. Given the
basic feasible solution x of (Pb), define yi ∈ R

Vi , for i ∈ {1, 2}, as follows: yi
p =∑

q:(p,q) xp,q, for p ∈ Vi. The feasibility of x to (Pb) implies that yi ∈ PIG(Ti),
for i ∈ {1, 2}. Let I1 and I2 be the independent sets computed in steps 7 and 8
of the algorithm, and M′ be the matching computed in step 10 or 12. Then

w · x =
∑

(p,q)∈F1

wp,qxp,q +
∑

(p,q)∈F2

wp,qxp,q

≤
∑
p∈V1

w̄1
p

∑
(p,q)∈F1

xp,q +
∑
q∈V2

w̄2
q

∑
(p,q)∈F2

xp,q (3)

=
∑
p∈V1

w̄1
pyp +

∑
q∈V2

w̄2
qyq ≤ max

y′∈PIG(T1)
w̄1 · y′ + max

y′∈PIG(T2)
w̄2 · y′ (4)

= w̄(I1) + w̄(I2) ≤ 2 · max{w̄(I1), w̄(I2)} = 2 · w(M′). (5)

Inequality (3) follows from the definition of the weights w̄1 and w̄2 in lines 7, 8;
inequalities (4) and (5) follow respectively from the fact that yi ∈ PIG(Ti), and
the integrality of PIG(Ti), for i ∈ {1, 2}; and the last equality is due to the choice
the algorithm makes in line 9. Note that the matchings constructed in lines 10
respectively 12 are feasible solutions to the TCBM problem. Indeed, due to the
structure of a basic feasible solution (Lemma 1 which will also continue to hold
inductively by Lemma 3), the edges that induce an independent set in one tree
end in leaves of the second tree and therefore do not conflict.

We next prove the inductive step (the rest of the argument is the same as in [2];
we include it for completeness). If F0 is non-empty in step 4, extending w in the
induction hypothesis by the non-positive components that were deleted in line 5
cannot make the inequality invalid. Let y′ and y be the characteristic vectors
of matchings M′ and M, obtained in lines 16 and lines 18-20, respectively.
Let e′ be the edge chosen in line 14. By the decomposition of w in line 15, w2

implies a smaller number of edges with positive weight than w. By the induction
hypothesis, w2 ·y′ ≥ 1

2 ·w2 ·x. From w2
e′ = 0 it also follows that w2 ·y ≥ 1

2 ·w2 ·x.
Since at least one edge in N [e′] is in M and x(N [e′]) ≤ 2 (line 14), it also holds
that w1 · y ≥ 1

2 · w1 · x. The claim follows. �
We conclude this section by giving an example showing that the integrality gap
of (P) matches the approximation factor attained by our algorithm.

Lemma 5. The integrality gap of (P) is 2 − o(1).

Proof. Our bad instance consists of two stars of height 1 (i.e., they have two
levels) where each internal node has k − 1 children. The leaf nodes of one star
are connected to the root node of the other star. An integral solution can pick at
most one edge. However, a fractional solution that sets the value of every edge
to 1

k is feasible and has value 2 − 2
k . �

106 S. Canzar et al.

2.3 Hardness and Inapproximability Results

In this section we prove hardness of tree-constrained bipartite matching even
if the weights in the matching are restricted to the values zero and one. Sub-
sequently, we show by an approximation-preserving reduction from a restricted
MAX SAT version that TCBM does not admit a PTAS.

Theorem 3. For an instance I = (T1, T2, w) of TCBM, with w : V1 × V2 �→
{0, 1}, and an integer k, it is NP-complete to decide whether there exists a
tree-constrained bipartite matching of weight at least k.

Proof. Clearly, the problem is in NP . To prove that it is NP-hard, we devise
a polynomial-time reduction τ from SAT, the problem of deciding whether a
Boolean formula has a satisfying assignment. Given a CNF formula φ with m
clauses over n variables, we construct a TCBM instance I = (T1, T2, w), such
that φ is satisfiable if and only if I admits a matching of weight n + m.

Tree T1 is the star Sn+m, with one leaf per variable and clause. Depth-2 tree
T2 has for each literal occurring in φ a node at level 1. Such a node, correspond-
ing to some literal lk, has a child node for each occurrence of literal lk in φ.
What remains is the definition of the weight function w. For each leaf u in T1,
representing some variable xi, we define w(u, v) := 1 and w(u, v′) := 1, where
v, v′ are level-1 nodes in T2 that correspond to literals xi and ¬xi, respectively.
For each leaf u in T1, representing some clause Ci of φ, we set, for all literals
lj occurring in Ci, w(u, v) := 1, where v is a child node of a level-1 node in T2

that corresponds to literal lj . Hereby we pick distinct child nodes v in T2, such
that each level-2 node is incident to exactly one edge of weight 1. All remaining
weights are set to 0. See Figure 3 for an illustrative example of this construction.

Finally, it can be shown that φ is satisfiable if and only if τ(φ) admits a
matching M of weight m + n. �
We next prove that TCBM is APX -hard. The reduction is made from 3-OCC-

MAX 2SAT, a restricted form of MAX SAT, where each clause contains two
literals and each variable occurs at most three times.

Theorem 4 ([4]). For any ε > 0 it is NP-hard to decide whether an instance
of 3-OCC-MAX 2SAT with 2016n′ clauses (and 1344n′ variables) has a truth
assignment that satisfies at least (2012 − ε)n′ clauses, or at most (2011 + ε)n′.

Theorem 5. For any ε > 0, it is NP-hard to approximate TCBM within factor
6044/6043− ε.

Proof. Our reduction τ ′ from 3-OCC-MAX 2SAT to TCBM differs from re-
duction τ described in the proof of Theorem 3 only in the definition of the weight
function w. For leaves u in T1 representing some variable xi and level-1 nodes
v in T2 corresponding to literal xi or ¬xi, we set w(u, v) := 3, and leave w
unchanged otherwise. Then it is easy to see that the maximum number of satis-
fiable clauses in φ is k if and only if the maximum weight of a tree-constrained
matching in τ ′(φ) is 3n + k. Since the instance constructed in [4] uses 1344n′

variables, k = (2012 − ε)n′ and k = (2011 + ε)n′ correspond to tree constrained
matchings of weight (6044 − ε)n′ and (6043 + ε)n′ respectively. �

On Tree-Constrained Matchings and Generalizations 107

x1

x2

x3

C1

C2

C3

x1

x̄1

x2

x̄2

x3

x̄3

T1 T2

(x1∨x̄2∨x̄3)∧ (x̄1∨x2∨x3)∧ (x1∨x2∨x̄3)

Fig. 3. Left: SAT instance in conjunctive normal form. Right: Transformed tree-
constrained bipartite matching instance, only edges with unit weight are shown. A
maximum weight tree-constrained bipartite matching, which corresponds to a satisfy-
ing truth assignment, is shown in bold.

3 Matching Posets

Definition 2 (Poset-constrained k-partite matching problem, k-PCM).
Given k posets Pi = (Vi,�i), 1 ≤ i ≤ k, and a weight function w : V1 ×
V2 × · · · × Vk �→ R+, find a maximum weight k-dimensional matching M in the
complete k-partite k-uniform hypergraph H = (V1, . . . , Vk, E) with hyper-edge
weights induced by w, such that (p1, . . . , pk) ∈ M implies (q1, . . . , qk) /∈ M if
there exists 1 ≤ i ≤ k with qi being comparable to pi in Pi.

3.1 A Fractional Local Ratio Algorithm

Unlike the tree case, this problem cannot be directly reduced to MWIS in k-
interval graphs, and therefore, the 2k-approximation of Bar-Yehuda et al. [3]
does not readily apply. However, we show that the fractional local ratio technique
can still be used to solve the poset case. We work with the following linear
programming formulation.

max
∑
p∈E

wpxp (MP)

s.t.
∑

p:pi∈C

xp ≤ 1 ∀ chain C in Pi, i = 1, . . . , k (6)

xp ≥ 0 ∀ p ∈ E .

We remark that even though the above linear program is exponentially large,
there is a simple separation oracle based on the polynomial time algorithm for
computing a longest path in an acyclic directed graph. In fact, there is an alter-
native linear-size LP formulation, see[5].

As we did before in the tree case, the crux of the analysis is to show that
there is an edge p ∈ E with low fractional local ratio. Our bound will depend
on the maximum upward independence number of the individual posets.

108 S. Canzar et al.

Definition 3. For a given poset P = (V,�), the maximum upward independence
number of P, denoted by ρ(P) is defined as

maximum
v∈V

size of largest antichain in ({u ∈ V : v � u},�).

We show that the fractional local ratio of any feasible solution is bounded by
the maximum upward independence number of the posets in our instance.

Lemma 6. Let x be a feasible solution to (MP). There is some p ∈ E such that∑
q :∃i • qi�ipi∨pi�iqi

xq ≤ 2
∑

i

ρ(Pi).

Notice that if we consider the poset P induced by some tree T , the maximum
upward independence number is 1. This is because for any vertex v of T , the
poset induced by {u ∈ T : v � u} is a total order; namely, the path from v to
the root of the tree. Using the fractional local ratio framework of Bar-Yehuda
et al. [3] we immediately obtain the following result.

Theorem 6. There is a 2
∑

i ρ(Pi) approximation algorithm for k-PCM.

It can be shown that the dependency on
∑

i ρ(Pi) in the approximation ratio is
necessary for any algorithm based on the linear program (MP).

Lemma 7. There are instances of k-PCM where the integrality gap of (MP) is(
1 − 1

k

)∑
i ρ(Pi) for arbitrary large k.

3.2 Hardness

In this section we show that the dependence of the approximation factor on the
maximum poset width ρ(P) is unavoidable, by showing that, under plausible
complexity assumptions, 2-PCM is hard to approximate within 2log1−ε ρ for any
ε > 0, where ρ is the maximum width of the posets.

We will use a reduction from the maximum label-cover problem [1]. For con-
venience we use the following equivalent definition [9].

Definition 4 (MAXREP). Given a bipartite graph G = (A, B, E), with a
partition of A and B into k disjoint sets A1, . . . , Ak and B1, . . . , Bk, respectively,
find subsets of vertices A′ ⊆ A and B′ ⊆ B, such that, |A′ ∩ Ai| ≤ 1 and
|B′ ∩ Bi| ≤ 1, for i = 1, . . . , k, so as to maximize the number of edges

E(A′, B′) := {{a, b} ∈ E : A′ ∩ Ai = {a} and B′ ∩ Bj = {b} for some i, j}.
Theorem 7 ([6, 9]). MAXREP on a graph with |A| = |B| = n cannot
be approximated within a factor of 2log1−ε n, for any ε > 0, unless NP ⊆
DTIME(npolylogn).

Theorem 8. For any ε > 0 and ρ := max{ρ(P1), ρ(P2)} there is no 2log1−ε ρ-
factor approximation for 2-PCM unless NP ⊆ DTIME(npolylog n).

On Tree-Constrained Matchings and Generalizations 109

Acknowledgments. We thank Axel Mosig for introducing us to the problem
and for helpful discussions. We also thank an anonymous reviewer of an earlier
version for pointing out the connection between our problem and the work of
Bar-Yehuda et al. [3]. Thanks also to Yuk Hei Chan for helpful discussions.

References

[1] Arora, S., Babai, L., Stern, J., Sweedyk, Z.: The hardness of approximate optima in
lattices, codes, and systems of linear equations. Journal of Computer and System
Sciences 54(2), 317–331 (1997)

[2] Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B.: A unified
approach to approximating resource allocation and scheduling. Journal of the
ACM 48, 1069–1090 (2001)

[3] Bar-Yehuda, R., Halldórsson, M.M., Naor, J., Shachnai, H., Shapira, I.: Scheduling
split intervals. SIAM Journal on Computing 36(1), 1–15 (2006)

[4] Berman, P., Karpinski, M.: On some tighter inapproximability results. In: Wieder-
mann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644,
pp. 200–209. Springer, Heidelberg (1999)

[5] Canzar, S., Elbassioni, K., Klau, G.W., Mestre, J.: On tree-constrained matchings
and generalizations. Technical Report MAC1102, Centrum Wiskunde & Informat-
ica (CWI), Amsterdam, the Netherlands (2011)

[6] Feige, U., Lovász, L.: Two-prover one-round proof systems: their power and their
problems. In: Proc. of STOC, pp. 733–744. ACM, New York (1992)

[7] Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combina-
torial Optimization. Springer, New York (1988)

[8] Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating k-
dimensional matching. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.)
RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 83–97. Springer, Hei-
delberg (2003)

[9] Kortsarz, G.: On the hardness of approximating spanners. Algorithmica 30(3),
432–450 (2001)

[10] Mosig, A., Jäger, S., Wang, C., Nath, S., Ersoy, I., Palaniappan, K., Chen, S.-S.:
Tracking cells in life cell imaging videos using topological alignments. Algorithms
for Molecular Biology 4, 10 (2009)

[11] Wolsey, L.A., Nemhauser, G.L.: Integer and Combinatorial Optimization. Wiley
Interscience, Hoboken (1999)

[12] Xiao, H., Li, Y., Du, J., Mosig, A.: Ct3d: Tracking Microglia Motility in 3D Using
a Novel Cosegmentation Approach. Bioinformatics 27(4), 564–571 (2011)

[13] Yang, F., Mackey, M.A., Ianzini, F., Gallardo, G., Sonka, M.: Cell segmentation,
tracking, and mitosis detection using temporal context. In: Duncan, J.S., Gerig, G.
(eds.) MICCAI 2005. LNCS, vol. 3749, pp. 302–309. Springer, Heidelberg (2005)

[14] Zimmer, C., Zhang, B., Dufour, A., Thebaud, A., Berlemont, S., Meas-Yedid,
V., Marin, J.-C.O.: On the digital trail of mobile cells. Signal Processing Maga-
zine 23(3), 54–62 (2006)

Tight Bounds for Linkages

in Planar Graphs

Isolde Adler1, Stavros G. Kolliopoulos2, Philipp Klaus Krause1,
Daniel Lokshtanov3, Saket Saurabh4, and Dimitrios Thilikos2

1 Goethe-Universität, Frankfurt am Main
2 National and Kapodistrian University of Athens

3 University of California, San Diego
4 Institute of Mathematical Sciences, Chennai

Abstract. The Disjoint-Paths Problem asks, given a graph G and
a set of pairs of terminals (s1, t1), . . . , (sk, tk), whether there is a collec-
tion of k pairwise vertex-disjoint paths linking si and ti, for i = 1, . . . , k.
In their f(k) · n3 algorithm for this problem, Robertson and Seymour
introduced the irrelevant vertex technique according to which in every
instance of treewidth greater than g(k) there is an “irrelevant” vertex
whose removal creates an equivalent instance of the problem. This fact
is based on the celebrated Unique Linkage Theorem, whose – very tech-
nical – proof gives a function g(k) that is responsible for an immense
parameter dependence in the running time of the algorithm. In this pa-
per we prove this result for planar graphs achieving g(k) = 2O(k). Our
bound is radically better than the bounds known for general graphs.
Moreover, our proof is new and self-contained, and it strongly exploits
the combinatorial properties of planar graphs. We also prove that our
result is optimal, in the sense that the function g(k) cannot become
better than exponential. Our results suggest that any algorithm for the

Disjoint-Paths Problem that runs in time better than 22o(k) ·nO(1) will
probably require drastically different ideas from those in the irrelevant
vertex technique.

1 Introduction

One of the most studied problems in graph algorithms is the Disjoint-Paths

Problem (DPP): Given a graph G, and a set of k pairs of terminals, (s1, t1), . . . ,
(sk, tk), decide whether G contains k vertex-disjoint paths P1, . . . , Pk where Pi

has endpoints si and ti, i = 1, . . . , k. In addition to its numerous applications
in areas such as network routing and VLSI layout, this problem has been the
catalyst for extensive research in algorithms and combinatorics [22]. DPP is NP-
complete, along with its edge-disjoint or directed variants, even when the input
graph is planar [23,15,12,14]. The celebrated algorithm of Roberson and Seymour
solves it however in f(k) · n3 steps, where f is some computable function [17].
This implies that when we parameterize DPP by the number k of terminals,
the problem is fixed-parameter tractable. The Robertson-Seymour algorithm is

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 110–121, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Tight Bounds for Linkages in Planar Graphs 111

the central algorithmic result of the Graph Minors series of papers, one of the
deepest and most influential bodies of work in graph theory.

The basis of the algorithm in [17] is the so called irrelevant-vertex technique
which can be summarized very roughly as follows. As long as the input graph G
violates certain structural conditions, then it is possible to find a vertex v that is
solution-irrelevant: every collection of paths certifying a solution to the problem
can be rerouted to an equivalent one, that links the same pairs of terminals,
but in which the new paths avoid v. One then iteratively removes such irrele-
vant vertices until the structural conditions are met. By that point the graph
has been simplified enough so that the problem can be attacked via dynamic
programming.

The following two structural conditions are used by the algorithm in [17]: (i)
G excludes a clique, whose size depends on k, as a minor and (ii) G has treewidth
bounded by some function of k. When it comes to enforcing Condition (ii), the
aim is to prove that in graphs without big clique-minors and with treewidth at
least g(k) there is always a solution-irrelevant vertex. This is the most compli-
cated part of the proof and it was postponed until the later papers in the series
[18,19]. The bad news is that the complicated proofs also imply an immense de-
pendence, as expressed by the function f, of the running time on the parameter
k. This puts the algorithm outside the realm of feasibility even for elementary
values of k.

The ideas above were powerful enough to be applicable also to problems out-
side the context of the Graph Minors series. During the last decade, they have
been applied to many other combinatorial problems and now they constitute
a basic paradigm in parameterized algorithm design (see, e.g., [3,4,7,8,9,11]).
However, in most applications, the need for overcoming the high parameter de-
pendence emerging from the structural theorems of the Graph Minors series,
especially those in [18,19], remains imperative. Hence two natural directions of
research are: simplify parts of the original proof for the general case or focus on
specific graph classes that may admit proofs with better parameter dependence.
An important step in the first direction was taken recently by Kawarabayashi
and Wollan in [10] who gave an easier and shorter proof of the results in [18,19].
While the parameter dependence of the new proof is certainly much better than
the previous, immense, function, it is still huge: a rough estimation from [10]

gives a lower bound for g(k) of magnitude 222Ω(k)

which in turn implies a lower

bound for f(k) of magnitude 2222
Ω(k)

.
In this paper we offer a solid advance in the second direction, focusing on

planar graphs (see also [16,21] for previous results on planar graphs). We prove
that, for planar graphs, g(k) is singly exponential. In particular we prove the
following result.

Theorem 1. There is a constant c such that every n-vertex planar graph G with
treewidth at least ck contains a vertex v such that every solution to DPP with
input G and k pairs of terminals can be replaced by an equivalent one avoiding v.

112 I. Adler et al.

Given the above result, our Theorem 6 shows how to reduce, in O(n2) time, an
instance of DPP to an an equivalent one whose graph G′ has treewidth 2O(k).
Then, using dynamic programming, a solution, if one exists, can be found in
kO(treewidth(G′)) · n = 22O(k) · n steps.

The proof of Theorem 1 deviates significantly from those in [18,19,10]. It
is self-contained and exploits extensively the combinatorics of planar graphs.
Moreover, we give strong evidence that a parameterized algorithm for DPP

with singly exponential dependence, if one exists, should require entirely different
techniques. Indeed, in that sense, the result in Theorem 1 is tight:

Theorem 2. There exists an instance of the DPP on a 2Ω(k)-treewidth planar
graph G that has a unique solution spanning all the vertices of G.

Notice that, due to the recent lower bounds in [13], the Disjoint-Paths Prob-

lem cannot be solved in 2o(w log w) · nO(1) for graphs of treewidth at most w,
unless the Exponential Time Hypothesis fails. This result, along with Theo-
rem 2, reveals the limitations of the irrelevant vertex technique: any algorithm
for the Disjoint-Paths Problem whose parameter dependence that is better
than doubly exponential, will probably require drastically different techniques.

2 Preliminaries

Graphs are finite, undirected and simple. We denote the vertex set of a graph G
by V (G) and the edge set by E(G). Every edge is a two-element subset of V (G).
A graph H is a subgraph of a graph G, denoted by H ⊆ G, if V (H) ⊆ V (G) and
E(H) ⊆ E(G). A path in a graph G is a sequence P = v1, . . . , vn of pairwise
distinct vertices of G, such that vivi+1 ∈ E(G) for all 1 ≤ i ≤ n − 1. For a
graph G with e = vw ∈ E(G) let G/e denote the graph obtained from G by
contracting e, i.e. V [G/e] := (V (G) \ {v, w}) ∪ {xe}, where xe is a new vertex,
and E(G/e) :=

(
E(G)\{uu′ | uu′∩e 	= ∅})∪{uxe | uv ∈ E(G) or uw ∈ E(G)

}
.

A graph H is a minor of a graph G, if H can be obtained from a subgraph of G
by a sequence of edge contractions. We use standard graph terminology as in [5].
The disjoint paths problem (DPP) is the following problem.

DPP

Input: A graph G, and pairs of terminals
(s1, t1), . . . , (sk, tk) ∈ V (G)2k

Question: Are there k pairwise vertex disjoint paths
P1, . . . , Pk in G such that Pi has endpoints si and ti?

We will call such a sequence P1, . . . , Pk a solution of the DPP.
Given an instance (G, (s1, t1), . . . , (sk, tk)) of DPP we say that a non-terminal

vertex v ∈ V (G) is irrelevant, if (G, (s1, t1), . . . , (sk, tk)) is a YES-instance if and
only if (G\v, (s1, t1), . . . , (sk, tk)) is a YES-instance. From now on G will always
be an instance to DPP accompanied by k terminal pairs.

Tight Bounds for Linkages in Planar Graphs 113

Definition 1 (Grid). Let m, n ≥ 1. The (m×n) grid is the Cartesian product
of a path of length m − 1 and a path of length n − 1. In case of a square grid
where m = n, then we say that n is the size of the grid.

A subdivided grid is a graph obtained from a grid by replacing some edges of the
grid by pairwise internally vertex disjoint paths of length at least one. Embed-
dings of graphs in the plane, plane graphs, planar graphs and faces are defined
in the usual way. A graph is outerplanar, if it has an embedding in the plane
where all vertices are incident to the infinite face.

A cycle in a graph G is a subgraph H ⊆ G, such that V (H) = {x0, x1, . . . ,
xk−1}, E(H) = {x0x1, x1x2, . . . , xk−2xk−1, xk−1x0} for some k ∈ N, k 	= 1, and
i 	= j ⇒ xi 	= xj . Notice that we allow cycles to consist of a single vertex.

We use the fact that a subdivided grid has a unique embedding in the plane
(up to homeomorphism). For (1 × 1) grids and subdivided (2 × 2) grids this
is clear, and for (n × n) grids with n ≥ 2 this follows from Tutte’s Theorem
stating that 3-connected graphs have unique embeddings in the plane (up to
homeomorphism). This implies that subdivisions of (n × n) grids have unique
embeddings as well. The perimeter of a subdivided grid H is the cycle in H
that is incident to the outer face (in every planar embedding of H). We refer the
reader to [2] for the definition of tree-width of a graph tw(G).

A directed graph is a pair D = (V, E) where V is a set and E ⊆ V × V. We
call the elements of E directed edges. For a directed edge (u, v) ∈ E we say that
u is the tail of (u, v), u = tail(u, v), and v is the head of (u, v), v = head(u, v).

3 Upper Bounds

The main result of this section is Theorem 6 stating that there is an O(n2)-step
algorithm that, given an instance G of DPP of treewidth 2Ω(k), can find a set
of irrelevant vertices whose removal from G creates an equivalent instance of
treewidth 2O(k).

3.1 Basic Definitions

Observation 1. Let G, (s1, t1, . . . , sk, tk) be a planar instance of DPP and
let h ∈ N. If G contains a subdivided ((h

√
2k + 1) × (h

√
2k + 1)) grid, then

G contains a subdivided h × h grid H such that in every embedding of H all
terminals lie outside the open disc bounded by the perimeter of H.

Notice that Observation 1 ensures that once we have a large grid we can also
assume that we have a large grid that does not contain any terminal vertices.
Next we define a specific kind of embedding of cycles that helps us enforce
structure in the proof.

Definition 2 (Tight concentric cycles). Let G be a plane graph and let
C0, . . . , Cn be a sequence of cycles in G such that each cycle bounds a closed disc
Di in the plane. We call C0, . . . , Cn concentric, if for all i ∈ {0, . . . , n − 1}, the

114 I. Adler et al.

cycle Ci is contained in the interior of Di+1. The concentric cycles C0, . . . , Cn

are tight, if, in addition, C0 is a single vertex and for every i ∈ {0, . . . , n − 1},
Di+1 \ Di does not contain a cycle C bounding a disc D in the plane with
Di+1 � D ⊇ Di.

Remark 1. Let G be a plane graph and let C0, . . . , Cn be tight concentric cycles
in G bounding closed discs D1, . . . , Dn, respectively, in the plane. Let P be a
path connecting vertices u and v with u, v /∈ Dn. If a vertex of P is contained
in the interior of Di (i.e. in Di \ Ci), then P has a vertex on Ci−1.

Remark 2. If a graph contains a ((2n + 1) × (2n + 1)) grid minor, it contains a
sequence C0, . . . , Cn of tight concentric cycles.

A linkage in a graph G is a family of pairwise disjoint paths in G. The endpoints
of a linkage L are the endpoints of the paths in L, and the pattern of L is
the matching on the endpoints induced by the paths, i.e. the pattern is the set{{s, t} | L contains a path from s to t

}
.

Definition 3 (Segment & Handle). Let G be a plane graph, let C be a cycle
in G bounding a closed disc D in the plane and let P be a path in G such that
its endpoints are outside of D. We say that a path P0 is a D-segment (resp.
D-handle) of P , if P0 is a non-empty maximal subpath of P whose endpoints
are on C, and P0 ⊆ D (resp. P0 ∩ D contains only the endpoints of P0). For a
linkage P in G we say that a path P0 is a D-segment (D-handle) of P, if P0 is
a D-segment (D-handle) of some path P of P.

Remark 3. Let G be a plane graph, let C be a cycle in G bounding a closed disc
D in the plane and let P = su1 . . . uqt be a path in G such that s and t are
outside D. Suppose xa, xb, xc, . . . , xj is the order in which the vertices of path
P appear on the cycle C when we traverse it from s to t. Then the subpath of
P between xa and xb is a D-segment while the subpath of P between xb and xc

is a D-handle, and D-segments and D-handles alternate.

From now on we will assume that G is a plane graph containing a sequence
C0, . . . , Cn of concentric cycles bounding closed discs D0, . . . , Dn, respectively,
in the plane. Furthermore there are no terminals contained in D and G is an
YES-instance. That is, there are paths between si and ti such that they are
mutually disjoint. These paths form a linkage that will be denoted by P . From
now onwards whenever we say linkage we mean a set of disjoint paths between
pairs (si, ti). We will often refer to the Dn-segments (Dn-handles) of P simply
as the segments (handles) of P .

Definition 4 (I(Handle) and β(Handle)). Let G be a plane graph containing
a sequence C0, . . . , Cn of concentric cycles bounding closed discs D0, . . . , Dn,
respectively, in the plane and P be a linkage. Let P be a Dn-handle and let its
endpoints be x and y. Let Cn[x, y] denote the path between x, y on the cycle Cn

such that the finite face bounded by P ∪Cn[x, y] does not contain the interior of
Dn. By I(P) we denote the subgraph of G that has boundary P ∪ Cn[x, y], and
we let β(P) := Cn[x, y].

Tight Bounds for Linkages in Planar Graphs 115

Definition 5 (Cheap solution). Let G be a plane graph containing a sequence
C0, . . . , Cn of concentric cycles bounding closed discs D0, . . . , Dn, respectively,
in the plane. For a linkage P of G, define its cost c(P) as the number of edges
of P that do not belong to

⋃n
i=0 Ci. A linkage P is called cheap, if there is no

other linkage Q, such that c(Q) < c(P).

Observe that the contribution of a Dn-handle of P to c(P) is always positive.
Edges of Dn-segments contribute to c(P) whenever they do not belong to a
concentric cycle. We assume for the remainder of Section 3 that we are given a
cheap solution P to our input instance and we explore its structure.

3.2 Simple Properties of a Cheap Solution P
Lemma 1. If P is a cheap solution to the input instance then there is no seg-
ment P of P with vertices appearing in the order . . . , v0, . . . , v1, . . . , v2, . . . where
v0 and v2 are vertices of C�, and v1 is a vertex of Cj , for n ≥ j > � ≥ 0.

Lemma 2. Let P be a cheap solution to the input instance and Q be a handle.
Then there is terminal inside I(Q).

We remark that Lemma 2 is true in more general setting. We will use the gener-
alized version in a proof later. Let D be a disc with the boundary cycle C and T
be a subpath of a path in P with endpoints x and y on the disc and no vertices
in the interior of the disc. Let C[x, y] denote the path between x, y on cycle C
such that the finite face bounded by T ∪ C[x, y] does not contain the interior
of D. By I(T) we denote the subgraph that has boundary T ∪ C[x, y]. A proof
similar to the one in Lemma 2 gives us the following.

Lemma 3. Let P be a cheap solution to the input instance and T be a subpath
of a path in P with endpoints on the disc and no points in the interior of the
disc. Then there is a terminal inside I(T).

3.3 Bounding the Number of Segment Types

In this section we define a notion of segment types and obtain an upper bound
on the number of segment types.

Definition 6 (Segment Type). Let P be a solution to the input instance. Let
R and S be two Dn-segments. Let Q and Q′ be the two paths on Cn connecting
an endpoint of R with an endpoint of S and passing through no other endpoint
of R or S. We say that R and S are equivalent, and we write R ‖ S, if no Dn-
segment of P has both endpoints on Q and no Dn-segment has both endpoints
on Q′. A type of Dn-segments is an equivalence class of Dn-segments under the
relation ‖.

Definition 7 (Segment graph). We start with the subgraph of G contained in
Dn. Retain only the edges and vertices of

⋃P ∪Cn. Choose an edge. If it is part
of Cn, contract it unless it connects endpoints of segments of different type. If

116 I. Adler et al.

it is not part of Cn, contract it unless it connects endpoints of segments. Repeat
until there are no contractable edges left. Remove duplicate edges and loops, such
that the graph becomes simple again. The resulting graph is the segment graph
of Dn (clearly, segment graphs are outerplanar graphs).

Definition 8 (Tongue tip). A Dn-segment type is called tongue tip, if it is a
single vertex in the segment graph of Dn.

Definition 9 (Segment dual graph). We take the dual graph of the segment
graph of Dn. Delete the vertex that represents the infinite face. Add the vertices
representing the tongue tips of the segment graph and connect them to the vertices
representing neighboring faces in the segment graph. The resulting graph is the
segment dual graph of Dn.

Remark 4. Since the segment graph is outerplanar, the segment dual graph is a
tree. All inner nodes of the segment dual graph have degree at least 3.

The next lemma is based on Lemmata 2 and 3.

Lemma 4 (Tongue-taming). Let P be a cheap solution to the input instance.
Then there are at most 2k − 1 tongue tips.

Theorem 3. Let P be a cheap solution to the input instance then P has at most
4k − 3 different types of Dn-segments.

3.4 Bounding the Size of Segment Types

In this section we find a bound on the size of segment types in cheap solutions
and we combine it with the bound on the number of segment types obtained
in the previous section to find irrelevant vertices. Indeed, we find that cheap
solutions only pass through a bounded number of concentric cycles.

We find the bound on the size of segment types by rerouting in the presence
of a large segment type. In a first step, we allow ourselves to freely reroute in a
disc (making sure that the graph remains planar), and we bound the number of
segments of solution paths in the disc. In a second step, we realize our rerouting
in a sufficiently large grid.

Lemma 5. Let Σ be an alphabet of size |Σ| = k. Let w ∈ Σ∗ be a word over
Σ. If |w| > 2k, then w contains an infix y with |y| ≥ 2, such that every letter
occurring in y occurs an even number of times in y.

The following lemma is essentially the main combinatorial result from [1]. The
proof is included here for the sake of completeness.

Lemma 6 (Rerouting in a disc). Let G be a plane graph with k pairs of
terminals such that the DPP has a solution P. Let G contain a cycle C bounding
a closed disc D in the plane, such that no terminal lies in D. Assume that every
D-segment of P is simply an edge and, except for vertices and edges of D-
segments, the interior of D contains no other vertices or edges of G. Then, if

Tight Bounds for Linkages in Planar Graphs 117

there is a segment type that contains more than 2k segments, then we can replace
the outerplanar graph O consisting of all D-segments of P by a new outerplanar
graph O′ such that in (G \ O) ∪ O′ the DPP (with the original terminals) has a
solution and |E(O′)| < |E(O)|.
Definition 10. Let n, m ∈ N. An untidy (n × m) grid is a graph obtained
from a set H of n pairwise vertex-disjoint (horizontal) paths and a set V =
{V1, . . . , Vm} of m pairwise vertex-disjoint (vertical) paths as follows: Every
path in V intersects every path in H in precicely one non-empty path, and each
path H ∈ H consists of m vertex-disjoint segments such that Vi intersects H
only in its ith segment (for every i ∈ {1, . . . , m}). A subdivided untidy (n× m)
grid is obtained from an untidy (n × m) grid by subdividing edges.

Let τ be a segment type in the plane graph. Recall that all the segments in
a type are “parallel” to each other. We say that segments S1, . . . , Sn ∈ τ are
consecutive, if they appear in this order (or in the reverse order) in the plane.
Segment types that go far into the concentric cycles yield subdivided untidy
grids. More precisely, we show the following lemma, that is an easy consequence
of Lemma 1.

Lemma 7. Let l, n, r ∈ N with n ≥ l − 1. Let P be a cheap solution to the
input instance. If there is a type τ of Dn-segments of P with |τ | ≥ r such that
r consecutive segments of τ each contain a vertex of Dn−l+1, then G contains a
subdivided untidy (2l× r) grid as a subgraph, with the r consecutive segments of
τ as vertical paths, and suitable subpaths of Cn, . . . , Cn−l+1, Cn−l+1, . . . , Cn (in
this order) as horizontal paths. ��
The following lemma, whose proof is based on Lemmata 6 and 7, shows that we
can reroute a sufficiently large segment type in the case that many segments of
the type go far into the concentric cycles.

Lemma 8 (Rerouting in an untidy grid). Let n, k ∈ N with n ≥ 2k−1 − 1.
Let P be a cheap solution to the input instance. Then P has no type τ of Dn-
segments with |τ | ≥ 2k + 1, such that each of 2k + 1 consecutive segments in τ
contains a vertex in Dn−2k−1+1.

The following remark says that if we have a segment type of sufficiently large
cardinality, then many segments will go far into the concentric cycles.

Lemma 9. Let n, l, r ∈ N. Let P be a cheap solution to the input instance. Let
τ be a type of Dn-segments with |τ | ≥ 2l + r. Then n ≥ l − 1 and τ contains r
consecutive segments such that each of them has a vertex in Dn−l+1.

The next theorem is based on Lemmata 8 and 9 and Theorem 3.

Theorem 4. Let P be a cheap solution to the input instance. Then there are at
most (8k − 6) · 2k + 4k − 3 Dn-segments of P.

Theorem 4 along with Lemma 1 yield the following.

118 I. Adler et al.

Theorem 5 (Irrelevant Vertex). Let G be a plane graph with k pairs of ter-
minals, n = (8k − 6) · 2k + 4k − 2, and let G contain a sequence C0, . . . , Cn of
concentric cycles bounding closed discs D0, . . . , Dn, respectively, in the plane,
such that no terminal of the DPP lies in Dn. Let C0 = {v}, and assume that
the DPP has a solution. Then the DPP has a solution that avoids v.

Given a plane graph G and a vertex v we show how to check whether a particular
vertex v satisfies the conditions of Theorem 5. We set C0 = {v} and given Ci we
construct Ci+1 by performing a depth first search from a neighbor u of a vertex
in Ci, always chosing the rightmost edge leaving the vertex we are visiting. This
search will either output an innermost cyclic walk (which then can be pruned
to a cycle) around Ci or determine that no such walk exists. In the case that
a cycle Ci+1 is output, we check whether the cyclic walk contained a terminal
si or ti. If it did, it means that this terminal lies on Ci+1 or in its interior. At
this point (or when the search outputs that no cycle around Ci exists), we have
determined that there are i tight concentric cycles around v with no terminal in
the interior of Ci. If i > (8k − 6) · 2k + 4k − 2 this implies that v satisfies the
conditions of Theorem 5. Clearly this procedure can be implemented to run in
linear time. This yields the following theorem.

Theorem 6. Let G be a plane graph with k pairs of terminals, there is an
O(|V (G)|2) time algorithm that outputs an induced subgraph G′ of G such that
tw(G′) ≤ 72

√
2k

3
2 · 2k and G is a YES-instance for DPP if and only if G′ is.

4 The Lower Bound

Let H ⊆ G be a subgraph of the plane graph G. An inner vertex of H is a vertex
that is not part of the boundary of H .

Definition 11 (Crossing). Let H ⊆ G be a subgraph of the plane graph G.
We say that a path crosses the subgraph H if it contains an inner vertex of
H and its endpoints are not inner vertices of H. For k ∈ N we say that a
path P = p0, p1, . . . , pn crosses H k times, if it can be split into k paths P0 =
p0, p1, . . . , pi1 , P1 = pi1 , pi1+1, . . . pi2 , . . . , Pk−1 = pik−1 , pik−1+1, . . . , pn with each
Pi, i = 0, . . . k − 1 crossing H. The parts of the Pi that do not lie outside of H
are called crossings of H.

Intuitively, we construct our example from a grid H of sufficient size. We add
endpoints s0 and t0 on the boundary of the grid, mark the areas opposite to the
grid as not part of the graph and connect s0 to t0 without crossing the grid.
Now we continue to mark vertices by si and ti in such a way that Pi has to
cross H as often as possible (in order to avoid crossing Pj , j < i). Once si and
ti have been added we remove the area opposite to the grid from si from the
graph. Figure 1(a) shows the situation after doing this for i up to 2. In this
construction P0 does not cross the grid at all, while P1 crosses it once and Pi+1

crosses it twice as often as Pi for i > 0: Let ki be the number of times Pi crosses

Tight Bounds for Linkages in Planar Graphs 119

(a) P0, . . . , P2 (b) P0, . . . , P3

(c) P0, . . . , P4 (d) Actual graph with grid

Fig. 1. Construction of graph and solution

the grid. k0 = 0, k1 = 1, ki+1 = 2ki, ki = 2i−1, i > 0. After the last Pi has been
added, the areas opposite to the grid from both si and ti are removed from the
graph as seen in Figure 1(c).

Formally, to construct problem and graph with k + 1 terminals, we use a
((2k + 1) × (2k + 1)) grid. Let the vertices on the left boundary of the grid be
n0, . . . , n2k . Terminals are assigned as follows: t0 is the topmost vertex on the
left boundary on the grid, t1 the middle vertices on the right boundary. For all
other terminals: si := n2k−i , ti := n3·2k−i . Then add edges going around the ti to
the graph: For i > 1, ti = nj add nj−1nj+1, nj−2nj+1, . . . , nj−2k−i−1nj+2k−i−1,
and on the right boundary of H do the analogue for t1. See Figure 1(d) for a
graph constructed this way.

Theorem 7. There is only one solution to the constructed DPP, all vertices of
the graph lie on paths of the solution and the grid is crossed 2k −1 times by such
paths.

In particular, H has no irrelevant vertex in the sense of [19].

120 I. Adler et al.

Corollary 1. There is a planar graph G with k + 1 pairs of terminals such that

– G contains a ((2k + 1) × (2k + 1)) grid as a subgraph,
– the disjoint paths problem on this input has a unique solution,
– the solution uses all vertices of G; in particular, no vertex of G is irrelevant.

Vital linkages and tree-width. We refer the reader to [2] for the definitions of
tree-width and path-width. A linkage L in a graph G is a vital linkage in G, if
V (

⋃
L) = V (G) and there is no other linkage L′ 	= L in G with the same pattern

as L.

Theorem 8 (Robertson and Seymour [20]). There are functions f and g
such that if G has a vital linkage with k components then G has tree-width at
most f(k) and path-width at most g(k).

Recall that the (n × n) grid has path-width n and tree-width n. Our example
yields a lower bound for f and g:

Corollary 2. Let f and g be as in Theorem 8. Then 2k−1 + 1 ≤ f(k) and
2k−1 + 1 ≤ g(k).

Proof. Looking at the graph G and DPP constructed above the solution to the
DPP is, due to its uniqueness, a vital linkage for the graph G. G contains a
((2k + 1)× (2k + 1)) grid as a minor. The tree-width of such a grid is 2k + 1 , its
path-width 2k + 1 [6]. Thus we get lower bounds 2k−1 + 1 ≤ f(k), g(k) for the
functions f and g. ��

Acknowledgment. We thank Ken-ichi Kawarabayashi and Paul Wollan for
providing details on the bounds in [10].

References

1. Adler, I., Kolliopoulos, S.G., Thilikos, D.: Planar disjoint paths completion.
Submitted for publication (2011)

2. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernet. 11(1-2), 1–21
(1993)

3. Dawar, A., Grohe, M., Kreutzer, S.: Locally excluding a minor. In: LICS 2007, pp.
270–279. IEEE Computer Society, Los Alamitos (2007)

4. Dawar, A., Kreutzer, S.: Domination problems in nowhere-dense classes. In: IARCS
Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS 2009), pp. 157–168 (2009)

5. Diestel, R.: Graph Theory. Springer, Heidelberg (2005)

6. Ellis, J., Warren, R.: Lower Bounds on the Pathwidth of some Grid-like Graphs.
Discrete Applied Mathematics 156(5), 545–555 (2008)

7. Golovach, P.A., Kaminski, M., Paulusma, D., Thilikos, D.M.: Induced packing of
odd cycles in a planar graph. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC
2009. LNCS, vol. 5878, pp. 514–523. Springer, Heidelberg (2009)

Tight Bounds for Linkages in Planar Graphs 121

8. Kawarabayashi, K.-i., Kobayashi, Y.: The induced disjoint paths problem. In: Lodi,
A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 47–61.
Springer, Heidelberg (2008)

9. Kawarabayashi, K.-i., Reed, B.: Odd cycle packing. In: Proceedings of the 42nd
ACM Symposium on Theory of Computing (STOC 2010), pp. 695–704. ACM, New
York (2010)

10. Kawarabayashi, K.-i., Wollan, P.: A shorter proof of the graph minor algorithm:
the unique linkage theorem. In: Proc. of the 42nd annual ACM Symposium on
Theory of Computing (STOC 2010), pp. 687–694 (2010)

11. Kobayashi, Y., Kawarabayashi, K.-i.: Algorithms for finding an induced cycle in
planar graphs and bounded genus graphs. In: Proceedings of the Twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2009), pp. 1146–1155.
ACM-SIAM (2009)

12. Kramer, M.R., van Leeuven, J.: The complexity of wire-routing and finding min-
imum area layouts for arbitrary VLSI circuits. Advances in Comp. Research 2,
129–146 (1984)

13. Lokshtanov, D., Marx, D., Saurabh, S.: Slightly superexponential parameterized
problems. In: 22st ACM–SIAM Symposium on Discrete Algorithms (SODA 2011),
pp. 760–776 (2011)

14. Lynch, J.F.: The equivalence of theorem proving and the interconnection problem.
ACM SIGDA Newsletter 5, 31–36 (1975)

15. Middendorf, M., Pfeiffer, F.: On the complexity of the disjoint paths problem.
Combinatorica 13(1), 97–107 (1993)

16. Reed, B., Robertson, N., Schrijver, A., Seymour, P.D.: Finding dsjoint trees in pla-
nar graphs in linear time. In: Robertson, N., Seymour, P.D. (eds.) Graph Structure
Theory. Contemporary Mathematics, vol. 147, pp. 295–302. American Mathemat-
ical Society, Providence (1991)

17. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J.
Combin. Theory Ser. B 63(1), 65–110 (1995)

18. Robertson, N., Seymour, P.: Graph minors. XXI. Graphs with unique linkages. J.
Combin. Theory Ser. B 99(3), 583–616 (2009)

19. Robertson, N., Seymour, P.D.: Graph Minors. XXII. Irrelevant vertices in linkage
problems. Journal of Combinatorial Theory, Series B (to appear)

20. Robertson, N., Seymour, P.D.: Graph minors. XXI. Graphs with unique linkages.
Journal of Combinatorial Theory, Series B 99(3), 583–616 (2009)

21. Schrijver, A.: Finding k disjoint paths in a directed planar graph. SIAM J.
Comput. 23(4), 780–788 (1994)

22. Schrijver, A.: Combinatorial optimization. Polyhedra and efficiency, vol. A.
Springer, Berlin (2003)

23. Vygen, J.: NP-completeness of some edge-disjoint paths problems. Discrete Appl.
Math. 61(1), 83–90 (1995)

A Tighter Insertion-Based Approximation

of the Crossing Number

Markus Chimani1,� and Petr Hliněný2,��

1 Algorithm Engineering, Friedrich-Schiller-University Jena, Germany
markus.chimani@uni-jena.de

2 Faculty of Informatics, Masaryk University Brno, Czech Republic
hlineny@fi.muni.cz

Abstract. Let G be a planar graph and F a set of additional edges not
yet in G. The multiple edge insertion problem (MEI) asks for a drawing
of G+F with the minimum number of pairwise edge crossings, such that
the subdrawing of G is plane. As an exact solution to MEI is NP-hard for
general F , we present the first approximation algorithm for MEI which
achieves an additive approximation factor (depending only on the size
of F and the maximum degree of G) in the case of connected G. Our
algorithm seems to be the first directly implementable one in that realm,
too, next to the single edge insertion.

It is also known that an (even approximate) solution to the MEI
problem would approximate the crossing number of the F -almost-planar
graph G + F , while computing the crossing number of G + F exactly
is NP-hard already when |F | = 1. Hence our algorithm induces new,
improved approximation bounds for the crossing number problem of F -
almost-planar graphs, achieving constant-factor approximation for the
large class of such graphs of bounded degrees and bounded size of F .

1 Introduction

The crossing number cr(G) of a graph G is the minimum number of pairwise
edge crossings in a drawing of G in the plane. The crossing number problem has
been vividly investigated for over 60 years, and yet only little is known about
it. See [23] for an extensive bibliography. While the problem’s approximability is
still unknown, several approximation algorithms arose for special graph classes.

The best known polynomial algorithm for the crossing number of general
graphs with bounded degree [1, 12] approximates, within a factor of log2 |V (G)|,
the quantity |V (G)| + cr(G), not directly cr(G). The known constant factor
approximations restrict themselves to graphs following one of two paradigms
(see also Section 4): they either assume that the graph is embeddable in some
higher surface [13, 18, 20], or they are based on the idea that only a small set
of graph elements has to be removed from G to make it planar: removing and
� Markus Chimani was funded by a Carl-Zeiss-Foundation juniorprofessorship.

�� Petr Hliněný has been supported by Eurocores grant GIG/11/E023 and Czech Sci-
ence Foundation grant P202/11/0196.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 122–134, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Tighter Insertion-Based Approximation of the Crossing Number 123

re-inserting them can give strong approximation bounds [3, 8, 19]. In this paper,
we follow the latter idea and first concentrate on the following problem:

Definition 1.1. Given a planar graph G and a set F of k edges (vertex pairs, in
fact) not yet in G. The multiple edge insertion problem MEI (G, F) is to find the
minimum number ins(G, F) of crossings necessary to draw G + F (G including
the edges F) such that the subdrawing restricted to G is planar. In other words,
we ask for some planar embedding of G such that we can insert the edges F into
this embedding making the least possible number of edge crossings.

For general k, the MEI problem is known to be NP-hard [24], based on a reduc-
tion from fixed linear crossing number ; for fixed k > 1 the problem complexity
is open.

The case k = 1 of MEI is known as the (single) edge insertion problem and
can be solved in linear time [17], as we will briefly summarize in Section 2.2. Let e
be the edge to insert, then denote the resulting number of crossings by ins(G, e).
Let Δ(G) denote the maximum degree in G. It was shown [3, 19] that ins(G, e)
approximates the crossing number cr(G + e) —i.e., of the graph containing this
edge e—within a multiplicative factor of � 1

2Δ(G)� achieved in [3], and this bound
is tight. Notice also that already computing cr(G + e) exactly is NP-hard [4].

Another special case of the MEI problem is when one adds a new node together
with its incident edges; this is also polynomially solvable [6] and approximates
the crossing number of the resulting apex graph [8]. These are the only two types
of insertion problems which are currently known to be in P.

Nevertheless, it has been proved in [8] (see Section 4) that a solution (even an
approximate one) to MEI (G, F) would directly imply an approximation algo-
rithm for cr(G+F) with planar G. Just recently, Chuzhoy et al. [10] have shown
the first algorithm efficiently computing an approximate solution to the crossing
number problem on G + F with a help of a multiple edge insertion solution.
Precisely, Chuzhoy et al. [10] achieve a solution with the number of crossings

craprx(G + F) ≤ O
(
Δ(G)3 · |F | · cr(G + F) + Δ(G)3 · |F |2)(1)

(without giving explicit constants). Though not mentioned explicitly in [10], it
seems that their results also give an approximation solution to MEI (G, F) with
the same ratio, at least in the case of 3-connected G+F . A further approximation
result, though not directly related to our topic, was given by Chuzhoy in [9].

In this paper, we present an alternative approach to the one proposed in [10]:
We directly give an efficient algorithm approximating a solution of MEI (G, F),
and then employ the aforementioned result of [8]. On the one hand, our approach
is algorithmically and implementationally simpler, virtually only building on top
of well-studied and experimentally evaluated sub-algorithms. On the other hand,
it gives stronger approximations, cf. (3), as well as better runtime bounds. Our
algorithm, in fact, seems to be the first directly implementable algorithm in this
area, next to the single edge insertion. We are going to show:

124 M. Chimani and P. Hliněný

Theorem 1.2. Given a connected planar graph G and an edge set F , F ∩
E(G) = ∅, Algorithm 3.1 described below finds, in O(|F | · |V (G)| + |F |2) time,
a solution to the MEI (G, F) problem with insaprx(G, F) crossings such that

insaprx(G, F) ≤ ins(G, F) +
(� 1

2Δ(G)� + 1
2

) · (|F |2 − |F |).(2)

Consequently, this gives an approximate solution to the crossing number problem

craprx(G + F) ≤ � 1
2Δ(G)�· 2|F |· cr(G + F) +

(� 1
2Δ(G)� + 1

2

)(|F |2 − |F |).(3)

Notice the constant-factor approximation ratio when the degree of G and the
size of F are bounded. Further consequences of our main result will be dis-
cussed below. We, moreover, remark that the assumption of connectivity of G
is necessary in the context of Algorithm 3.1 (if G were not connected, then the
approximation guarantee (2) of Algorithm 3.1 for insaprx(G, F) would be just
the same as for craprx(G + F) in line (3)).

2 Preliminaries

2.1 Decomposition Trees

We consider multigraphs by default. Our algorithm will use suitable tree-
structured decompositions of the given planar graph, according to its
connectivity.

Definition 2.1 (BC-tree). Let G be a connected graph. The BC-tree B =
B(G) of G is a tree that satisfies the following properties:

i. B has two different node types: B- and C-nodes.
ii. For every cut vertex in G, B contains a unique corresponding C-node.

iii. For every maximal two-connected subgraph (block) in G, B contains a unique
corresponding B-node.

iv. No two B-, and no two C-nodes are adjacent. A B-node is adjacent to a
C-node iff the corresponding block contains the corresponding cut vertex.

To further decompose the blocks, we consider SPQR-trees for each non-trivial B-
node (i.e., the block containing more than a single edge). This decomposition was
first defined in [11], based on prior work of [2, 22]. Even though more complicated
than the BC-tree, it requires also only linear size and can be constructed in linear
time [15, 21]. We are mainly interested in the property that an SPQR-tree can be
used to efficiently represent and enumerate all (potentially exponentially many)
planar embeddings of its underlying graph. For conciseness, we call our tree
SPR-tree, as we do not require nodes of type Q.

Definition 2.2 (SPR-tree, cf. [5]). Let H be a biconnected graph with at
least three vertices. The SPR-tree T = T(H) of H is the (unique) smallest tree
satisfying the following properties:

A Tighter Insertion-Based Approximation of the Crossing Number 125

i. Each node ν in T holds a specific (small) graph Sν = (Vν , Eν), Vν ⊆ V (H),
called a skeleton. Each edge f of Eν is either a real edge f ∈ E(H), or a
virtual edge f = {u, v} where {u, v} forms a 2-cut (a split pair) in G.

ii. T has only three different node types with the following skeleton structures:
S: The skeleton Sν is a simple cycle—it represents a serial component.
P: The skeleton Sν consists of two vertices and multiple edges between

them—it represents a parallel component.
R: The skeleton Sν is a simple triconnected graph.

iii. For every edge {ν, μ} in T the following holds: Sν contains a specific virtual
edge eμ which “represents” Sμ. Vice versa, eν ∈ E(Sμ) represents Sν . Both
edges eμ and eν connect the same vertices.

iv. The original graph H can be obtained by recursively applying the following
operation: For the edge {ν, μ} ∈ E(T), let eμ, eν be the virtual edges as in
(iii.) connecting the same vertices u, v. A merged graph (Sν ∪ Sμ) − eμ − eν

is obtained by gluing the skeletons together at u, v and removing eμ, eν .

We remark that SPQR-trees have also been used in the aforementioned [10],
though with a different approach. For our purpose, we are particularly interested
in the amalgamated version of both above trees, chiefly denoted by con-tree:

Definition 2.3 (Con-tree). Given a connected, planar graph G, let the con-
tree C = C(G) be formed of the BC-tree B(G) which holds SPR-trees T(H) for
all non-trivial blocks H of G.

Clearly, the linear-sized con-tree C can be obtained from G in linear time.
Observe that, for each cut vertex x (of G) incident with a block H ⊆ G,

the nodes with skeletons containing x induce a subtree TH,x ⊆ T(H). In fur-
ther considerations it will be useful to imagine that the C-node of x in B(G)
is adjacent to these corresponding nodes V (TH,x) (over all blocks H incident
with x) within C. We will loosely call this view of C the extended con-tree, while
understanding that it is not really a tree.

2.2 Single Edge Insertion with Variable Embedding

As noted before, Gutwenger et al. [17] presented an exact linear-time algorithm
to solve the single edge insertion problem. Herein, we will only outline some
central concepts of this approach. Consider a planar graph G and let v1, v2 be
the vertices we want to connect by a new edge.

First consider G embedded such that we can deal with its dual graph G∗.
We define an insertion path to be a path in G∗ connecting a face incident to
v1 with a face incident to v2. The length of this path is then the number of
edge crossings necessary to insert the edge {v1, v2} into embedded G along this
path. For a fixed embedding, we can compute the shortest insertion path via a
breath-first search (BFS). Now consider G without a fixed embedding. If v1, v2

are in two separate connected components, then we can insert the edge {v1, v2}
without any crossings, by choosing sub-embeddings of these components where
v1, v2 lie on their respective outer faces.

126 M. Chimani and P. Hliněný

Hence assume G to be connected and compute (in linear time) its con-tree
C(G). Let L be the unique shortest path in B(G) from a B-node containing v1

to a B-node containing v2. The optimal insertion path for {v1, v2} in G can be
obtained by concatenating the optimal insertion paths within the (non-trivial)
blocks on this path L; as we can always “flip” (cf. Definition 3.4, C-nodes) the
two incident blocks at the common cut vertex to avoid additional crossings. For
a block H represented by a B-node on L, let vH

i , i = 1, 2, denote vi if vi ∈ V (H),
or the cut vertex in H closest to vi otherwise. An insertion path within H then
connects any face incident to vH

1 with any face incident to vH
2 .

To find the optimal insertion path within such a block H ⊆ G, let QH be
the unique shortest path in T(H) from a skeleton containing vH

1 to a skeleton
containing vH

2 . It was shown [17] that only the embeddings of the skeletons
within QH matter. Roughly speaking, the algorithm walks along these skeletons
and fixes a suitable embedding one after another. Finally, an optimal embedding
is found and fixed, and one can use a simple BFS algorithm on the dual graph
to insert the edge {vH

1 , vH
2 } optimally.

Definition 2.4 (Con-chain). Considering the previous notation, we call a con-
chain of the edge {v1, v2} the (unique) path Q = QG({v1, v2}) resulting from L
by expanding each B-node b ∈ V (L) into the path QH where H is the block of G
represented by b.

Proposition 2.5. Let e1, e2 be two insertion edges to the same graph G. Then
their con-chains QG(e1) and QG(e2) are either disjoint, or they intersect (within
the extended con-tree of G in which they lie) in one subpath.

3 MEI Approximation Algorithm

We can now describe the main algorithm for our Theorem 1.2 (2). In the follow-
ing, we will always consider the multiple edge insertion problem MEI (G, F) for
a planar graph G = (V, E) and an edge set F , F ∩E = ∅, with k := |F | > 1. Let
Δ := Δ(G) be the maximum degree in G. We will present an algorithm giving
a solution to MEI (G, F) that approximates the optimum ins(G, F) within an
additive factor (depending only on k, Δ). Afterward, in Section 4, we will discuss
how to obtain an approximation algorithm for cr(G + F) based on this result.

On a high level, our algorithm proceeds as follows:

Algorithm 3.1. Computing an approximate solution to the multiple edge in-
sertion problem MEI (G, F) for connected planar G.

(1) Build the con-tree C = C(G).
(2) Using C, compute single-edge insertions (including the con-chains QG(e) of

Definition 2.4) for each edge e ∈ F independently, and centrally store their
embedding preferences (Definition 3.4).

(3) Fix an embedding Γ of G by suitably (see Algorithm 3.7) combining the
embedding preferences from step (2).

A Tighter Insertion-Based Approximation of the Crossing Number 127

(4) Independently compute insertion paths for each edge e ∈ F into the fixed
embedding Γ .

(5) Realize all the insertion paths computed in the prior step.
(5)a) If some insertion paths cross multiple times, exchange subpaths, such
that in the end all inserted edges cross each other at most once.

By using the aforementioned algorithms for building the decomposition tree
and the single edge insertions as black boxes, we can directly perform the steps
(1), (2), (4), and (5). We will discuss step (3) in Section 3.2. Yet, we can already
informally describe the core idea of why the value insAlg(G, F) of the outcome
of Algorithm 3.1 approximates ins(G, F).

Clearly, insΣ(G, F) :=
∑

e∈F ins(G, e) —the sum of the individual insertions
without considering interdependency—is a lower bound for ins(G, F). Moreover,
we can compute insΣ(G, F) exactly in step (2). Hence to give an approximation
guarantee for Algorithm 3.1, it is enough to bound insAlg(G, F) in terms of
insΣ(G, F) and a function of k, Δ.

Let e ∈ F be an inserted edge with the computed con-chain QG(e), and
ν ∈ V (QG(e)) be a C-,P-, or R-node of C along it. An embedding preference of
e at ν —actually respecting its neighborhood and generally denoted by a node
tuple cν —specifies what the embedding of G should locally “look like at ν” to
achieve the (independent) optimum ins(G, e). Roughly, we call such a pair (cν , e)
a dirty pass if, in the embedding Γ of step (3), the embedding preferences at ν
and its neighbors has been fixed incompatibly from those individually chosen by
e in the previous step (2), cf. Section 3.1 for details.

Theorem 3.2. Consider a run of Algorithm 3.1 on G and F , with a particular
embedding Γ fixed at step (3). Let k = |F |, Δ = Δ(G). If r is the total number of
dirty passes (over all e ∈ F) determined by this Γ , then the number of crossings
in the outcome of the algorithm is

insAlg(G, F) ≤ insΣ(G, F) +
⌊

Δ

2

⌋
· r +

(
k

2

)
.

Sketch of proof. As every node of C with an embedding preference is associated
with a 1- or 2-cut in G, any wrongly fixed preference (a dirty pass) can be
“repaired” by rerouting the inserted edge close to this cut, crossing at most
�Δ/2� edges incident with a vertex in the cut. Summing over all dirty passes
caused by Γ and taking possible crossings between edges of F into account, we
get the bound. See [7] for the full proof. �
The embedding preferences for Γ can be naturally fixed such that, at every node
ν of C, not all con-chains of inserted edges disagree with Γ . Consequently, one
can give an easy upper bound on r in terms of k as follows: For every dirty
pass (cν , e) caused by Γ , there is another f ∈ F such that ν belongs to the
con-chain of f and, for a suitable tuple c′ν , (c′ν , f) is not dirty. So, in particular,
the con-chains QG(e) and QG(f) are not routed through the completely same
neighborhood of ν (informally, they “split/merge” at ν), cf. Lemma 3.8 for the

128 M. Chimani and P. Hliněný

concise statement. Since any two con-chains can split/merge at most twice, a
coarse bound of r = O(k2) on the total number of disagreements with Γ follows.

Stated formally, the above arguments lead to the following conclusion—overall
stronger than (1) of [10], with full details in Section 3.2 and 3.3:

Theorem 3.3 (Theorem 1.2 (2)). Algorithm 3.1 computes a solution to the
MEI (G, F) problem for connected planar G with insAlg(G, F) crossings such that

insAlg(G, F) ≤ insΣ(G, F) +
(

2
⌊

Δ

2

⌋
+ 1

)
·
(

k

2

)
where k = |F |, Δ = Δ(G), and (also computed thereby) insΣ(G, F) ≤ ins(G, F)
is a lower bound on the optimal solution.

3.1 Embedding Preferences and Estimating Additional Crossings
via Dirty Passes

In order to discuss how to obtain an embedding Γ suitable for all edge insertions,
we first have to concisely define embedding preferences that record the desired
local embeddings of G from each independent single edge insertion in step (2).

Definition 3.4 (Embedding preference). Consider a single edge insertion
of an edge e ∈ F into G. As argued in Section 2.2, the required embedding of G
is fixed only for con-tree nodes along the con-chain Q = QG(e). This requirement
is encoded into the C-, P- and R-nodes along Q; for every such node ν we may
store its embedding preference πe(ν):

R-nodes: The skeleton Sν of an R-node ν allows only a unique planar embed-
ding and its mirror. We declare one of these two embeddings as the de-
fault one. The insertion algorithm then either sets πe(ν) := default or
πe(ν) := mirror, depending on which embedding it requires.

P-nodes: The skeleton of a P-node ν with p edges allows (p − 1)! planar em-
beddings given by different cyclic orderings of its edges around one of its
nodes. When the con-chain Q passes through a P-node such that one of
its neighbors is a C-node, the order of the edges is irrelevant, denoted by
πe(ν) = irrelevant. Otherwise, the insertion path leaves one of the vir-
tual edges of the skeleton Sν and enters another one. Hence, these two edges
should be neighbors in cyclic order, and the embedding preference is stored as
a pair πe(ν) := (e1, e2) which means the skeleton edge e1 is to occur clockwise
directly before e2.

C-nodes: Let B1, B2 ⊆ G be the two blocks neighboring a C-node ν on Q. The
required embedding places (already embedded) B2 into a face φ1 of B1, and
vice versa B1 into a face φ2 of B2. Unfortunately, those faces φ1, φ2 do
not have standalone definitions within G. Let μ1, μ2 be the nodes adjacent
to ν along Q, and let x be the cut vertex of G which is represented by ν.
The insertion path within the skeleton Sμi , i = 1, 2, connects x to some

A Tighter Insertion-Based Approximation of the Crossing Number 129

other element (i.e., a vertex or a virtual edge) ai. So, we set the embedding
preference to πe(ν) := {a1, a2}. This means that we will be able to deduce the
faces φ1, φ2 (by looking at the canonically computed local insertion subpaths)
whenever Sμ1 , Sμ2 get fixed, and then embed these two faces into each other.

For all C-, P-, and R-nodes not on the con-chain Q, we do not store any embed-
ding preference. Recall (e.g., from [11, 17]) that S-nodes—representing simple
cycles—do not add additional embedding possibilities, and hence the above in-
formation is sufficient to determine an embedding of G which allows to insert
the edge e with the minimum number of crossings.

Dirty pass. A central ingredient in our approach is the concept of a dirty
pass (c, e) with respect to some embedding Γ , where c is a tuple with 1–3 nodes
of C along the con-chain Q. Such structures pinpoint to places (short, possibly
overlapping, sub-chains of Q) where no optimal insertion path for e can be
realized, due to incompatibilities between Γ and the corresponding embedding
preferences for e along the nodes of c. As Γ itself is encoded in terms of embedding
preferences, recognizing a dirty pass boils down to a technical case distinction
of preference comparisons; due to space restrictions, we refer to [7].

Theorem 3.2 now immediately follows from repeated application of next
Lemma 3.5 to each e ∈ F , and the fact that Algorithm 3.1 computes optimal
individual insertion paths within fixed Γ .

Lemma 3.5. Consider a connected graph G with a plane embedding Γ and max-
imum degree Δ, and an edge e to insert. If there are altogether re dirty passes
on the con-chain of e w.r.t. Γ , then e can be inserted into Γ with at most
ins(G, e) + re · �Δ/2� crossings.

3.2 Combining All Embedding Preferences

We now want to find an embedding Γ that satisfies at least one preference per
node of C and has the property that any pair of con-chains disagrees on at
most two dirty passes. For each node in C, we will store a picked embedding
preference πpick. In the end, these picked embedding preferences will be realized,
to subsequently obtain the fixed embedding Γ of Algorithm 3.1, step (3).

Consider a chosen processing order 〈e1, e2, . . . , ek〉 of the edges of F : Initially,
we set πpick(ν) = ∅ for all nodes ν ∈ V (C). We consider the edges one by one,
setting πpick(ν) for all nodes ν along the corresponding con-chain of the edge,
and probably alter other embedding preferences along the previously considered
con-chains (see below for details). After the insertion of the i-th edge, we have
the property that each node ν along any con-chain of an edge ei′ with i′ ≤ i has
a well-defined πpick(ν) 	= ∅.

Let N<i ⊆ V (C) denote the nodes of C that have embedding preferences from
the first i−1 inserted edges (1 ≤ i ≤ k+1). The individual trees within the forest
induced by any N<i give rise to a node partition

⋃̇
�
j=1N

<i
j = N with � < i. We

call any partition set N<i
j an embedding part. Generalizing on the flipping of a

single con-chain we can observe:

130 M. Chimani and P. Hliněný

Proposition 3.6. Let N<i
j be any embedding part with the embedding prefer-

ences πpick. When all the nodes of N<i
j are flipped, we obtain new embedding

preferences π′
pick. Then, an embedding realizing π′

pick allows an insertion of the
first i−1 insertion edges with the same number of crossings as for πpick. In fact,
these insertion paths are identical to the former ones up to mirroring.

We are now ready to give the following method to obtain a merged embedding
Γ . Let πi be the embedding preferences along the con-chain Qi = QG(ei) stored
in step (2) of Algorithm 3.1.

Algorithm 3.7. Combining all embedding preferences to obtain Γ .

A. Let πpick(ν) = ∅, ∀ν ∈ V (C).
B. For all 1 ≤ i ≤ k:

(a) Traverse the con-chain Qi of ei along its predefined orientation; let ν ∈
Qi be the first node.

(b) If πpick(ν) = ∅, then choose πpick(ν) := πi(ν).
(c) Let μ be the closest non-S-node preceding ν. Skip this step if μ does not

exist or ν is a C-node. Otherwise:
Check if a flip can improve the embedding: The preference πpick is

improvable if ν can be the last element of a tuple c such that (c, ei)
is in a dirty pass w.r.t. Γ , while this tuple would not be dirty after
flipping πpick(ν) (which is equivalent to flipping ν’s predecessors).

If the embedding is improvable, let Q′ ⊂ V (Qi) be the consecutive
nodes of Qi starting from the start node up to (and including) μ. Fur-
thermore, let N ′ be all embedding parts of N<i that contain at least one
node of Q′. Flip πpick for all nodes Q′ ∪ N ′.

(d) If πpick(ν) has been newly set in (b), let ν′ := ν. Otherwise let N<i
j , for

some j, be the embedding part to which ν belonged, and set ν′ to the
last non-S-node in N<i

j that is traversed by Q.
Set ν to be the closest non-S-node succeeding ν′; if it exists, continue

with step (b), otherwise proceed with the next i in step B.

C. Choose a random embedding preference for any node ν with πpick = ∅, and
randomly complete the embedding preference of any P-node to a complete
cyclic ordering. Realize all the preferences πpick to obtain Γ .

Consider the dirty passes that arise from Algorithm 3.7. Thanks to Proposi-
tion 3.6 it is easy to see that the decision whether a pass (c, ej) would be dirty
in the final solution is made by the algorithm exactly at the step when merging
πj into πj−1

pick. Note that, due to the tree-property of C (cf. Proposition 2.5), any
two con-chains Q, Q′ can have at most one common (connected) sub-chain q.
The two non-S-nodes closest to either end of q are the two split nodes of (Q, Q′).
We say a tuple (ν, j, i), j < i, is a splitter (w.r.t. i) if ν is a split node w.r.t.
(Qj , Qi). Observe that multiple splitters may induce the split node property of
the same node in C. Our key conclusion here reads:

A Tighter Insertion-Based Approximation of the Crossing Number 131

Lemma 3.8. The above Algorithm 3.7 guarantees that there is at most one
dirty pass for each splitter (over all pairs of con-chains); this dirty pass then
also contains the corresponding split node. — Hence, the overall sum of dirty
passes in the embedding Γ (obtained by Algorithm 3.7) is at most 2

(
k
2

)
.

3.3 Runtime Analysis of Algorithm 3.1

As mentioned in Section 2, we can build the con-tree in linear time O(|V |),
based on the linear-time decomposition algorithm [21]. In step (2), we call the
O(|V |) insertion algorithm k times. In full [7], we discuss how to implement the
merge algorithm (Algorithm 3.7, called in step (3) of the main algorithm) so
that it takes at most O(k|V |) time. In step (4), we then run k BFS algorithms,
requiring O(|V |) time each. By using suitable tie-breaking, step (5)a) will not
be necessary, and since each edge has at most O(|V | + k) crossings in the end,
the realization may require up to O(k|V (G)| + k2) time, which therefore also
constitutes the overall runtime bound of the algorithm.

4 Crossing Number Approximations

Our main concept of interest is the crossing number of the graph G+F . We can
combine our above result with a result of [8], connecting the optimal crossing
number with the problem of multiple edge insertion.

Theorem 4.1 (Chimani et al. [8]). Consider a planar graph G and an edge
set F , F ∩E(G) = ∅. The value ins(G, F) of an optimal solution to MEI (G, F)
satisfies

ins(G, F) ≤ 2|F | ·
⌊

Δ(G)
2

⌋
· cr(G + F) +

(|F |
2

)
where cr(G+F) denotes the (optimal) crossing number of the graph G including
the edges F , and

(|F |
2

)
thereby accounts for crossings between the edges of F .

Notice that, when considering the crossing number problem of G + F , we may
assume G to be connected—otherwise we could “shift” some edges of F to G).
Let k = |F |, Δ = Δ(G). Plugging the estimate of Theorem 4.1 into the place of
insΣ(G, F) ≤ ins(G, F) in Theorem 3.3, and realizing that the

(
k
2

)
term in both

estimates stands for the same set of crossings, we immediately obtain

insAlg(G, F) ≤ 2k ·
⌊

Δ

2

⌋
· cr(G + F) +

(
k

2

)
+ 2

⌊
Δ

2

⌋
·
(

k

2

)
= �Δ/2� · 2k · cr(G + F) +

(�Δ/2� + 1/2
)
(k2 − k).

Hence we can give the outcome of Algorithm 3.1 as an approximate solution to
the crossing number problem on G + F , proving:

132 M. Chimani and P. Hliněný

Theorem 4.2 (Theorem 1.2 (3)). Given a planar graph G and an edge set
F , F ∩ E(G) = ∅, Algorithm 3.1 computes, in O(|F | · |V (G)| + |F |2) time, a
solution to the cr(G + F) problem with the following number of crossings

craprx(G + F) ≤ �Δ(G)/2�· 2|F |· cr(G + F) +
(�Δ(G)/2� + 1

2

)(|F |2 − |F |).
In [18], furthermore, an algorithm is presented to approximate the crossing num-
ber of graphs embeddable in any fixed higher orientable surface. This algorithm
lists the technical requirement that G has a “sufficiently dense” embedding on
the surface. Yet, as noted in [18], a result like Theorem 4.2 allows to drop this
requirement: If the embedding density is small, then the removal of the offend-
ing small set(s) of edges is sufficient to reduce the graph genus, while the re-
moved edges can be later inserted into an intermediate planar subgraph of the
algorithm.

5 A Note on the Planarization Heuristic

The currently practically strongest heuristic [16] for the crossing number problem
is the planarization heuristic which starts with a maximal planar subgraph of the
given non-planar graph, and then iteratively performs single edge insertions. The
crossings of such an insertion are then replaced by dummy nodes such that each
edge is inserted into a planar graph. Due to its practical superior performance,
often giving the optimal solution [5, 14], it was an open question if this approach
unknowingly guarantees some approximation ratio.

By investigating our strategy and proofs, it becomes clear that this approach
as such cannot directly give an approximation guarantee: by routing an edge
(in an R-node) through another virtual edge (representing a subgraph S) and
replacing the crossings with dummy nodes, you essentially fix (most of) the
embedding of S. This fix might result in O(n) embedding restrictions for further
edge insertions, without having an edge that requires this embedding. Therefore
the number of dirty passes can no longer be bounded by a function in k. Yet,
an implementation realizing the planarization heuristic already contains all the
ingredients to obtain our approximation; one “only” has to compute all insertion
paths and fix an accordingly merged embedding (Algorithm 3.7), before running
the fixed-embedding edge insertion subalgorithm for all inserted edges.

6 Conclusions

We have presented a new approximation algorithm for the multi-edge insertion
problem which is faster and simpler that the only formerly known one [10],
while at the same time giving better bounds; in fact, in contrast to the former
multiplicative approximation, it is the first one with an additive bound. Our
algorithm directly leads also to improved approximations (even constant ratio
ones over a large class of inputs) for the crossing number problem of graphs in
which a given set of edges can be removed in order to obtain a planar subgraph,
and for graphs that can be embedded on a surface of some fixed genus.

A Tighter Insertion-Based Approximation of the Crossing Number 133

We conclude with an interesting open problem. We know that multi-edge
insertion is NP-hard when the number of inserted edges is part of the input, and
it is linear time solvable for the special case of inserting a single edge. What is
the complexity of optimally inserting a constant number of edges?

References

1. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph
partitioning. J. ACM 56, 5:1–5:37 (2009)

2. Bienstock, D., Monma, C.L.: On the complexity of embedding planar graphs to
minimize certain distance measures. Algorithmica 5(1), 93–109 (1990)

3. Cabello, S., Mohar, B.: Crossing and weighted crossing number of near-planar
graphs. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 38–
49. Springer, Heidelberg (2009)

4. Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number
hard. In: Proc. SoCG 2010, pp. 68–76. ACM, New York (2010)

5. Chimani, M.: Computing Crossing Numbers. PhD thesis, TU Dortmund, Germany
(2008), http://www.ae.uni-jena.de/alenmedia/dokumente/
ComputingCrossingNumbers PhDthesis Chimani pdf.pdf

6. Chimani, M., Gutwenger, C., Mutzel, P., Wolf, C.: Inserting a vertex into a planar
graph. In: Proc. SODA 2009, pp. 375–383 (2009)

7. Chimani, M., Hliněný, P.: A tighter insertion-based approximation of the crossing
number. Full version. arXiv:1104.5039 (2011)

8. Chimani, M., Hliněný, P., Mutzel, P.: Approximating the crossing number of apex
graphs. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 432–
434. Springer, Heidelberg (2009)

9. Chuzhoy, J.: An algorithm for the graph crossing number problem. In: Proc. STOC
2011 (to appear, 2011)

10. Chuzhoy, J., Makarychev, Y., Sidiropoulos, A.: On graph crossing number and
edge planarization. In: Proc. SODA 2011, pp. 1050–1069. ACM Press, New York
(2011)

11. Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM Journal on Com-
puting 25, 956–997 (1996)

12. Even, G., Guha, S., Schieber, B.: Improved approximations of crossings in graph
drawings and vlsi layout areas. SIAM J. Comput. 32(1), 231–252 (2002)

13. Gitler, I., Hliněný, P., Leanos, J., Salazar, G.: The crossing number of a projective
graph is quadratic in the face-width. Electronic Notes in Discrete Mathematics 29,
219–223 (2007)

14. Gutwenger, C.: Application of SPQR-Trees in the Planarization Approach for
Drawing Graphs. PhD thesis, TU Dortmund, Germany (2010)

15. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks,
J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)

16. Gutwenger, C., Mutzel, P.: An experimental study of crossing minimization heuris-
tics. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 13–24. Springer, Heidelberg
(2004)

17. Gutwenger, C., Mutzel, P., Weiskircher, R.: Inserting an edge into a planar graph.
Algorithmica 41(4), 289–308 (2005)

18. Hliněný, P., Chimani, M.: Approximating the crossing number of graphs embed-
dable in any orientable surface. In: Proc. SODA 2010, pp. 918–927 (2010)

http://www.ae.uni-jena.de/alenmedia/dokumente/ComputingCrossingNumbers_PhDthesis_Chimani_pdf.pdf
http://www.ae.uni-jena.de/alenmedia/dokumente/ComputingCrossingNumbers_PhDthesis_Chimani_pdf.pdf

134 M. Chimani and P. Hliněný

19. Hliněný, P., Salazar, G.: On the crossing number of almost planar graphs. In:
Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 162–173.
Springer, Heidelberg (2007)

20. Hliněný, P., Salazar, G.: Approximating the crossing number of toroidal graphs.
In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 148–159. Springer,
Heidelberg (2007)

21. Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM
Journal on Computing 2(3), 135–158 (1973)

22. Tutte, W.T.: Connectivity in graphs. Mathematical Expositions, vol. 15. University
of Toronto Press (1966)

23. Vrt’o, I.: Crossing numbers of graphs: A bibliography (2011),
ftp://ftp.ifi.savba.sk/pub/imrich/crobib.pdf

24. Ziegler, T.: Crossing Minimization in Automatic Graph Drawing. PhD thesis,
Saarland University, Germany (2001)

ftp://ftp.ifi.savba.sk/pub/imrich/crobib.pdf

Linear-Space Approximate Distance Oracles for

Planar, Bounded-Genus and Minor-Free Graphs�

Ken-ichi Kawarabayashi1,��, Philip N. Klein2,���, and Christian Sommer3

1 NII, Tokyo, Japan
2 Brown U, Providence RI

3 MIT, Cambridge MA

Abstract. A (1 + ε)–approximate distance oracle for a graph is a data
structure that supports approximate point-to-point shortest-path-
distance queries. The most relevant measures for a distance-oracle con-
struction are: space, query time, and preprocessing time.

There are strong distance-oracle constructions known for planar
graphs (Thorup, JACM’04) and, subsequently, minor-excluded graphs
(Abraham and Gavoille, PODC’06). However, these require Ω(ε−1n lg n)
space for n–node graphs.

In this paper, for planar graphs, bounded-genus graphs, and minor-
excluded graphs we give distance-oracle constructions that require only
O(n) space. The big O hides only a fixed constant, independent of ε and
independent of genus or size of an excluded minor. The preprocessing
times for our distance oracle are also faster than those for the previ-
ously known constructions. For planar graphs, the preprocessing time
is O(n lg2 n). However, our constructions have slower query times. For
planar graphs, the query time is O(ε−2 lg2 n).

For all our linear-space results, we can in fact ensure, for any δ > 0,
that the space required is only 1 + δ times the space required just to
represent the graph itself.

1 Introduction

A (1+ε)–approximate distance oracle for a graph is a data structure that supports
point-to-point approximate distance queries. A distance-oracle construction for
a family of graphs has three complexity measures:

– preprocessing time: time to build the data structure,
– space: how much space is occupied by the data structure, and
– query time: how long does it take for a query to be answered.

� An extended version can be found online [KKS11].
�� Research partly supported by Japan Society for the Promotion of Science, Grant-

in-Aid for Scientific Research, by C & C Foundation, by Kayamori Foundation and
by Inoue Research Award for Young Scientists.

��� Supported in part by National Science Foundation Grant CCF-0964037.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 135–146, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

136 K.-i. Kawarabayashi, P.N. Klein, and C. Sommer

Each of these quantities might depend on the stretch parameter 1 + ε (which is
defined as the maximum ratio over all pairs of nodes of the query output divided
by the length of a shortest path) as well as the size of the graph.

For general graphs, for stretch less than 2, no approximate distance oracle is
known that achieves subquadratic space and sublinear query time.

The only known constructions that achieve (1 + ε) stretch are for restricted
families of graphs: planar graphs [Tho04], minor-excluded graphs [AG06], and
graphs of low doubling dimension [Tal04, HPM06, Sli07, BGK+10].

One obstacle to the widespread adoption of this technique may have been the
space requirements of known distance oracles. Even the most compact distance
oracle of Thorup [Tho04] requires Ω(ε−1n lg n) space for n–node graphs. Even
though the constant is quite modest, the storage required is rather large [MZ07].

Our Contribution

In this paper, for every family of graphs for which a nontrivial (1+ε)–approximate
distance oracle is known (planar, bounded genus, H–minor-free, bounded dou-
bling dimension), we give such a distance oracle that in addition requires only
linear space1. In fact, for any δ > 0, there is such a distance oracle whose space
requirement is only 1 + δ times the space required just to store the graph itself;
thus the overhead due to the distance oracle is in essence negligible.

We achieve this while increasing the query time by a factor that is almost
proportional to the decrease in space2. For planar graphs, the query time of our
oracle is O(ε−2 lg2 n). Although the query time for our constructions is slower
than that for the superlinear-space constructions, the increase may be partly
made up for by the decrease in actual time due to better memory performance
(because of the memory hierarchy). The space/query-time tradeoff is tunable,
so the construction can be adapted to a particular architecture.

For bounded-genus graphs, there was previously no distance-oracle construc-
tion known other than that implied by the minor-excluded construction, for
which the constant is enormous and the preprocessing time is a high-degree
polynomial. We give a more efficient construction tailored to graphs of genus g.

A summary of our results is given in Table 1.

2 Previous Work on Approximate Distance Oracles

General and sparse graphs. Thorup and Zwick [TZ05] gave asymptotically al-
most optimal trade-offs for distance oracles for general undirected graphs, prov-
ing that for any graph and for any integer k there is a (2k − 1)–approximate
distance oracle using space O(kn1+1/k) and query time O(k). They also prove
that, if stretch strictly less than 2k + 1 is desired, then Ω(n1+1/k) bits of space
are necessary. A slightly weaker lower bound holds for sparse graphs: Sommer,
1 Our results for bounded-doubling-dimension graphs hold only for unit lengths.
2 The product of space times query time for our oracle is O(nε−2 lg2 n) while that

same product is O(nε−2 lg n) for [Tho04].

Linear-Space Approximate Distance Oracles 137

Table 1. Time complexities of our linear-space (1 + ε)–approximate distance oracles.
N denotes the largest integer weight. Due to space restrictions, some are in [KKS11].

Graph Class Preprocessing Query

Planar Undirected O(n lg2 n) O(ε−2(lg n)2) Theorem 1
Planar Directed O(n(lg(nN))(lg n)3ε−2) O((ε−1(lg n)(lg(nN)))2) [KKS11]

Reachability Oracle O(n lg n) O(lg2 n) [KKS11]
Genus g O(n(lg n)(g3 + lg n)) O(ε−2(lg n + g)2) Theorem 2
H–minor-free O(poly(n, ε)) O(ε−2(lg n)2) [KKS11]

α–doubling, unit lengths ε−O(α)O(poly(n)) ε−O(α2) · (lg n)O(α) [KKS11]

Verbin, and Yu [SVY09] prove that a distance oracle with stretch k and query
time t requires space n1+Ω(1/(kt)) (up to poly-logarithmic factors). The ora-
cle with the best stretch factor is by Pǎtraşcu and Roditty [PR10], who recently
gave a 2–approximate distance oracle using space O(n5/3) on sparse graphs. Dis-
tance oracles with stretch strictly less than 2 have not been achieved for general
graphs.

Restricted graph classes. For restricted classes of graphs, better distance oracles
are known and stretch 1 + ε can be achieved.

Thorup [Tho04] presents efficient (1 + ε)–approximate distance oracles for
planar digraphs. (There is a slight improvement [Kle05] to the preprocessing
time for one case.) Table 2 lists these results.

There are also many results on exact distance oracles for planar graphs. The
best is that of Fakcharoenphol and Rao [FR06] and its subsequent improve-
ments [Kle05, KMW10, MWN10] and variants [MS10, Nus10]. Faster per-query
time can be achieved by using more space [Cab06, MS10]. However, all these
results require polynomial (but sublinear) query time. There are also results on
special cases of planar graphs and special kinds of queries [DPZ00, CX00, KK06].

Abraham and Gavoille [AG06] extend Thorup’s result to minor-free graphs.
After a polynomial-time preprocessing step, point-to-point queries can be an-
swered in time O(ε−1 lg n) using a data structure of size O(nε−1 lg n).

Table 2. Time and space complexities of (1 + ε)–approximate distance oracles for
planar graphs on n nodes. In this table, the largest integer weight is assumed to be
polynomial in n. The upper part lists results for directed, the lower part lists results
for undirected planar graphs.

Preprocessing Space Query Reference

O(n lg4 nε−2) O(nε−1 lg2 n) O(lg lg(n) + ε−1) [Tho04, Thm. 3.16]
O(n lg3 nε−1) O(nε−1 lg2 n) O(lg n(lg lg n + ε−1)) [Tho04, Prop. 3.14]
O(n lg2 n(lg n + ε−1)) O(nε−1 lg2 n) O(lg n(lg lg n + ε−1)) [Kle05, Sec. 7]

O(n(lg n)3ε−2) O(nε−1 lg n) O(ε−1) [Tho04, Thm. 3.19]
O(n(lg n)2ε−1) O(nε−1 lg n) O(ε−1 lg n) [Tho04, Implicit]

138 K.-i. Kawarabayashi, P.N. Klein, and C. Sommer

3 Tunable Approximate Distance Oracle for Planar
Graphs

We prove our main theorem. The description of the improved preprocessing
algorithm can be found in its own section (Section 4).

Theorem 1. For any undirected planar graph G with non-negative edge weights
there exists a (1 + ε)–approximate distance oracle with query time O(ε−2 lg2 n),
linear space, and preprocessing time O(n lg2 n).

3.1 Review of Thorup’s Distance Oracle

We briefly review a variant of Thorup’s distance oracle for undirected graphs
(using somewhat different terminology)3.

There are two core ideas. The first is approximately representing shortest paths
that intersect a shortest path. Let P be a shortest path in a graph G. A pair (p, v)
of nodes where p is in P and v is in G is a connection for v with respect to P . A
set C of such connections covers v in G with respect to P if, for every node p of
P , there is a connection (p′, v) in C such that

dist(p, p′) + dist(p′, v) ≤ (1 + ε) dist(p, v) (1)

Let u, v be nodes of the input graph. Let Q be the shortest u-to-v path that
intersects P . Suppose C is a set of connections that covers u and v with respect
to P . Then it contains connections (p, u), (p′, v) such that

dist(u, p) + dist(p, p′) + dist(p′, v) ≤ (1 + ε)length(Q) (2)

Thorup gives an algorithm that, given a (mostly) planar graph G and a shortest
path P , computes a set C of connections that covers all nodes of G and that
has O(ε−1) connections per node v. In Section 4, we give an algorithm that
achieves a faster4 running time by covering only a subset of the nodes of G. The
distance oracle involves storing with each node v the connections that cover v
with respect to several shortest paths (and the distances associated with these
connections). The storage required for v thus has size O(ε−1) times the number
of such paths.

The second idea is recursively decomposing a planar graph with shortest-path
separators. This idea is based on a lemma in [LT79] stating that, for any spanning
tree T in a planar graph in which every face is a triangle, there is a nontree edge
e such that the unique simple cycle in T ∪{e} is a balanced separator. The nodes
of this separator comprise two paths in T .
3 This variant does not appear in [Tho04] but is an obvious simplification, analogous

to that of [Tho04, Proposition 3.14] (which applies to directed graphs) resulting in
slower query times. Since our query time is slower anyway, this simplified variant
suffices.

4 Our algorithm depends on G being wholly planar (as opposed to mostly planar as
in [Tho04], which is the case for the variant we address.

Linear-Space Approximate Distance Oracles 139

The distance-oracle construction uses this lemma with T being a shortest-path
tree to recursively decompose the input graph. The recursive decomposition
defines a binary decomposition tree in which each node x is labeled by (i) a
subgraph G(x) of the input graph and (ii) the separator S(x) used to decompose
G(x), if x is not a leaf. If x is the root, G(x) is the input graph. If x has
children y and z, removing the separator S(x) from G(x) results in two separated
subgraphs, G(y) and G(z). If x is a leaf, G(x) consists of one node.

Each input-graph node v is associated with some decomposition-tree node,
namely, the leafmost node x whose subgraph includes v. We say that the ances-
tors of x are relevant to v. Thus each input-graph node v has O(lg n) relevant
tree-nodes. The distance oracle assigns a label to v that consists of a set of
connections; for each tree-node x relevant to v, for each of the two paths P
comprising the separator S(x), the distance oracle stores a set of connections
that cover v in G(x) with respect to P . It follows that the label of v has size
O(ε−1 lg n).

Next we show that these labels suffice to estimate point-to-point distances.
We say that a tree-node x is relevant to a path Q if S(x) contains a node of
Q, and is the most relevant if x is the rootmost relevant tree node. If x is the
tree-node most relevant to Q then G(x) contains Q. Let u, v be any pair of
input-graph nodes, and let Q be the shortest u-to-v path. Let x be the tree-
node most relevant to Q. Then G(x) contains Q, and at least one of the paths
comprising the separator S(x), say P , intersects Q. It follows from (2) that the
u-to-v distance is approximately

dist(u, p) + dist(p, p′) + dist(p′, v) (3)

for two nodes p, p′ on P . To estimate the u-to-v distance, therefore, the following
procedure suffices: for every tree-node x that is relevant to u and v, compute
the minimum of (3) over connections (p, u) and connections (p′, v) where p and
p′ belong to one of the two paths comprising S(x). This takes time proportional
to the number of such connections.

3.2 Our Compact Distance Oracle

Our linear-space construction draws on another kind of recursive decomposition
using separators. Frederickson [Fre87] introduced the notion of an r–division,
which is a partition of the edges into edge-induced subgraphs (called regions)
such that each region contains O(r) edges and the number of boundary nodes in
each region is at most O(

√
r). An r–division can be computed in time O(n lg n).

Before carrying out the recursive decomposition with shortest-path separators,
our preprocessing algorithm computes an r–division for r = �2 (where � is a pa-
rameter). Subsequently, connections (v, w) are only stored for those nodes v that
are boundary nodes of the r–division. Since there are O(n/

√
r) boundary nodes,

the connections and associated distances require storage O((nε−1 lg n)/
√

r). We
choose � = Θ(ε−1 lg n) so the total storage is O(n).

An s-to-t query is handled as follows. First, compute shortest-path distances
from s to all the nodes in s’s region Rs. This takes O(�2) time [HKRS97].

140 K.-i. Kawarabayashi, P.N. Klein, and C. Sommer

At this point, the query algorithm has distances in the subgraph Rs from s
to all the boundary nodes of Rs (and to t, if t is in Rs). There are O(�) such
boundary nodes. Similarly, compute shortest-path distances to t from all the
nodes in t’s region Rt, obtaining distances in the subgraph Rt to t from all the
boundary nodes of Rt.

Let A, B be, respectively, the set of connections for boundary nodes of Rs, Rt.
For each separator path P that has connections in A and B, the procedure de-
scribed in Section 3.2 finds the shortest s-to-t path that enters P via a connection
of A and leaves P via a connection of B. The time is linear in the number of
such connections (see also [Tho04, Section 3.2.2] and [Tho04, Lemma 3.6]). Since
each of the O(�) boundary nodes of Rs and Rt has O(ε−1 lg n) connections, the
total time for these computations is O(�ε−1 lg n).

Finally, return the minimum overall path-length (including the s-to-t distance
within Rs, if t belongs to Rs). The total time for handling the query is O(�2 +
�ε−1 lg n).

We now explain how we find the shortest s-to-t path that enters P via a con-
nection of A and leaves P via a connection of B. The method is a generalization
of that in [Tho04, Sections 3.2.1 and 3.2.2].

For each connection (b, p) in A, b is a boundary node of Rs and we have
dist(s, b). For each connection (b, p) in B, b is a boundary node of Rt and we
have dist(t, b). Let C be the sequence of all connections (s, p) and (t, p) in A∪P ,
sorted according to the position of p on P . We use the following procedure.

initialize ms, mt, d := ∞
initialize p̂ := p0

for each connection (p, b) in C in order,
ms := ms + dist(p̂, p)
mt := mt + dist(p̂, p)
p̂ := p
if b is a boundary node of Rs,

ms := min{ms, dist(s, b) + dist(b, p)}
if b is a boundary node of Rt

mt := min{mt, dist(t, b) + dist(b, p)}
d := min{d, ms + mt}

return d

The procedure requires time O(number of connections considered). The proce-
dure maintains the invariant that, after a node p̂ of P has been considered in
the loop, ms is the length of the shortest s-to-p̂ path of the form that goes via
a boundary node b of Rs and a connection (b, p) and then travels along P from
p to p̂, where p appears before p̂ on P . A similar statement holds for mt. It
follows that the value d returned by the procedure is the length of the shortest
s-to-t path that travels in Rs to a boundary node b of Rs, then goes to P via
a connection for b, then travels along P then leaves P via a connection for a
boundary node b′ of Rt then travels to t within Rt.

Linear-Space Approximate Distance Oracles 141

4 Improved Preprocessing Algorithm

Thorup’s preprocessing algorithm for his undirected construction takes time
O(nε−2 lg3 n) (as stated in [Tho04, Theorem 3.19]). We give a preprocessing
scheme for our construction that takes time O(n lg2 n), independent of ε. We
give details later, but here we observe that the factor O(ε−2 lg n) speedup has
three sources.

First, since we are not aiming for a query time of O(ε−1), we can use a simpler
preprocessing approach than the one underlying [Tho04, Theorem 3.19]; we use
the approach that for directed graphs underlies [Tho04, Proposition 3.14]. The
corresponding bound for undirected graphs is listed in Table 2 as “implicit.”

Second, we only need to compute connections for a small subset of the nodes
(the boundary nodes of the r–division). That in itself does not seem to permit
an additional speedup using Thorup’s method since his algorithm depends not
on the number of connections stored but on the sizes of the graphs searched.
Therefore, third, in addition we use another approach to finding connections, one
based on the multiple-source shortest-path (MSSP) algorithm of Klein [Kle05]
or that of Cabello and Chambers [CC07].

Preprocess(G0)
let B0 be the set of boundary nodes of an r–division [Fre87]
let T be a shortest-path tree
compute recursive decomposition based on cycle separators T ∪ {e}
for each nonroot node x of recursive-decomposition tree,

for each path Pi (i = 1, 2) comprising S(x),
compute connections for nodes of B0 in G(x) with respect to Pi

The last step, computing the connections for nodes of B0 in G(x) with re-
spect to Pi, works on a graph G′(x) obtained from G(x) by cutting along Pi,
duplicating the nodes and edges of Pi and creating a new face whose boundary
consists of the two copies of Pi. This modification destroys paths that cross Pi

but such paths are not needed since Pi is a shortest path. It has the advantage
that, for each copy P of Pi, in G′(x) all nodes of P lie on a common face.

For each copy P , there is a computation that selects connections (p, v) for
specified nodes v with respect to that copy. The computation uses an algorithm
called Path(G, B, P) that takes time O((|G|+number of connections) lg |G|) and
selects O(ε−1) connections per node v ∈ B. Since there are two copies of two
paths comprising S(x), the last step of Preprocess selects O(ε−1) connections
per node of B0 in G(x). Therefore the total number of connections for B0 is
O(ε−1 lg n), and the total time is O(n lg2 n + |B0| ε−1 lg n), which is O(n lg2 n).

Now we describe Path(G, B, P). Let the nodes of P be p0 . . . ps. First the
algorithm computes i(v) = argminidist(pi, v) and dv = mini dist(pi, v). These
can be computed using a single-source shortest-path computation in the graph
obtained by zeroing out the lengths of the edges of P .

For i = 0, 1, . . . , s, let Ti denote the shortest-path tree rooted at pi. For i > 0,
let T ′

i be the tree obtained from Ti−1 by removing the parent edge of pi and

142 K.-i. Kawarabayashi, P.N. Klein, and C. Sommer

adding the edge pipi−1, obtaining a pi–rooted tree (not a shortest-path tree).
For i > 0, let σi denote a sequence of edges whose insertion into T ′

i (followed by
the ejection of each corresponding parent edge) result in Ti. Klein [Kle05] shows
that each edge is inserted at most once, and gives an O(|G| lg |G|) algorithm (the
multiple-source shortest-path algorithm) to compute these sequences. For each
such inserted edge uv, the algorithm also computes the resulting change Δuv in
the length of the root-to-v path in the tree. Cabello and Chambers [CC07] give
a simplification of the multiple-source shortest-path algorithm and generalize
it to bounded-genus in O(g2 |G| lg |G|) time. The algorithm Path uses one of
these algorithms to compute the sequences σi and the corresponding length
changes Δuv.

The remainder of Path consists of two phases, Forward and Backward. A
connection (pi, v) might be added by Forward if i > i(x) and by Backward

if i < i(x). We describe Forward. Backward is symmetric.
The algorithm Forward iterates through the nodes p0, . . . , ps of P , main-

taining a tree T that is, in turn, T0, T1, . . . , Ts. The tree T is represented using a
dynamic-tree data structure [ABH+04, AHdLT05, Fre97, ST83, TW05]. A node-
labeling is maintained: μ(v) is a quantity (discussed later) that is used to decide
whether v needs a new connection. This labeling is represented implicitly, as is
typical in dynamic trees, so as to support bulk updates. In this case (somewhat
atypically), an update takes the form “add a quantity Δ to the label of every
tree in the subtree rooted at u.” Each update takes O(lg n) amortized time. In
addition, searching for a node v that has μ(v) ≤ 0 takes O(lg n) time.

Forward(G, B, P):
initialize T := T0

for every node v, initialize μ(v) := ∞
for i = 0, 1, 2, . . . , s:

comment: T is rooted at pi

� for each node v ∈ B such that either i(v) = i or μ(v) ≤ 0 ,
create a connection (pi, v)
set μ(v) := ε dv

if i < s,
comment: now change the root...
remove parent edge of pi+1 and add edge pi+1pi

comment: now make the tree a shortest-path tree
† for each edge uv in the sequence σi+1,

remove the current parent edge of v in T , and add uv
‡ for every active node w in the v–rooted subtree of T ,

μ(w) := μ(w) + Δuv

The overall number of iterations of the loop in Step � is the number of con-
nections added. The overall number of iterations of the loop in Step † is at
most the number of edges, which is O(|G|). Step ‡ can be done using a sin-
gle bulk update in O(lg |G|) time. Consequently, the algorithm runs in time
O((|G| + number of connections) lg |G|).

Linear-Space Approximate Distance Oracles 143

Now we show that the algorithm selects a covering set of connections (and
that the set is small). At each moment in the execution of the algorithm, for
each node v such that μ(v) is finite, let last(v) denote the node p of P such that
(p, v) was the most recently selected connection for v.

The μ invariant is: for every node v for which μ(v) is finite,

μ(v) = εdv − (dist(pi, last(v)) + dist(last(v), v) − distT (pi, v)) (4)

Note that dist(pi, last(v)) + dist(last(v), v) is the length of the path that goes
from the current root pi to v via last(v). When this length becomes significantly
longer than dist(p, v) (longer by εdv), μ(v) ≤ 0 so the node v is included in the
loop in Step �, so the connection (pi, v) is added. This shows that the connections
added by Forward and Backward cover each node v ∈ B.

To bound the number of connections, we follow Thorup in using the potential
function Φv = dist(ps, last(v))+dist(last(v), v). Suppose that, at some execution
of Step �, μ(v) ≤ 0, so dist(pi, last(v))+dist(last(v), v)−distT (pi, v) ≥ εdv. When
a connection (pi, v) is then added, last(v) becomes pi, so the potential function
Φv is reduced by at least εdv.

Initially Φv = dist(ps, pi(v)) + dist(pi(v), v). Throughout the phase, by the
triangle inequality , Φv ≥ dist(ps, v). Again using the triangle inequality (and the
fact that the graph is undirected), dist(ps, pi(v)) ≤ dist(ps, v) + dist(pi(v), v), so
Φv ≥ dist(ps, v) ≥ dist(ps, pi(v))−dist(ps, v). Thus the total amount of reduction
in Φv is at most 2 dist(ps, v). Since each reduction is by at least ε dist(ri(v), v),
the total number of reductions (number of connections added by Forward after
the initial one) is at most �2ε−1�.

5 Approximate Distance Oracles for Genus g Graphs

Theorem 2. For any undirected graph G embedded in a surface of Euler genus g,
there exists a (1 + ε)–approximate distance oracle with query time O(ε−2(lg n +
g)2), linear space, and preprocessing time O(n(lg n)(g3 + lg n)). The oracle can
also be constructed in time O(n(lg n)(g/ε + lg n)).

Our distance oracle for genus g graphs is based on separating shortest paths, as
for planar graphs (see Section 3.1). Thorup [Tho04] proves that any planar graph
can be recursively separated by three shortest paths. In the following, we prove
that genus g graphs can be recursively separated using at most O(g) shortest
paths. In fact, only the first separator consists of at most 2g paths, while lower
levels can be separated using 3 paths. These smaller separators allow us to derive
approximate oracles and labeling schemes with a dependency on g that is much
lower than the corresponding dependency in the more general construction by
Abraham and Gavoille [AG06]. More formally, we also prove the following.

Theorem 3 (fast distance queries for genus g graphs). For any undirected
graph G embedded in a surface of Euler genus g, there exists a (1+ε)–approximate
distance oracle with query time O(g/ε), space O(n(g+lg n)/ε), and preprocessing
time O(n(lg n)3ε−2 + n(lg n)g/ε). The oracle can be distributed as a labeling
scheme using O((g + lg n)/ε) bits per node.

144 K.-i. Kawarabayashi, P.N. Klein, and C. Sommer

Overview. In the first step, we “cut” the genus g graph into planar subgraphs
using the tree-cotree decomposition of Eppstein [Epp03], which decomposes a
graph of genus g into planar graphs, separated by 2g paths from a tree T . We
choose T to be a shortest-path tree. At a high level, the theorems follow by
combining Eppstein’s lemma [Epp03, Proof of Lemma 3.2] with the distance
oracles for planar graphs (Thorup [Tho04] and Sections 3 and 4). Within the
planar subgraphs, we use the distance oracles for planar graphs. In addition to
computing the connections to the separator paths within each planar subgraph,
we also need to compute the connections to the O(g) tree-cotree decomposi-
tion paths. Note that the latter set of connections consists of paths that may
pass through non-planar parts. To compute these, we may use either [CC07]
or [Tho04, Lemma 3.12], depending on the values of g and ε.

Preprocessing Algorithm. To obtain the preprocessing and space bounds in The-
orem 2, we use the preprocessing algorithm described in Section 4 with r := �2,
where � = O(ε−1(lg n + g)). Since the number of connections per node is pro-
portional to � and since a 1/

√
r–fraction of the nodes per subgraph lies on the

boundary, the overall space consumption is linear. To obtain the preprocessing
and space bounds in Theorem 3, we use Thorup’s algorithm [Tho04, Thm. 3.19]
for O(1/ε) query time.

There are two options to compute connections to the tree-cotree separator:
(1) We may use [Tho04, Lemma 3.12] (which internally uses Thorup’s O(m)
SSSP algorithm [Tho99, Tho00]). The lemma states that, for a path Q, we
can compute an ε–covering set C(v, Q) for all nodes v in time O(ε−1n(lg n)).
(2) We may use the MSSP data structure for genus g graphs by Cabello and
Chambers [CC07], which requires O(g2n lg n) preprocessing and then answers
queries in time O(lg n). See planar preprocessing (Section 4) for details. The
time required is O(g2n lg n + number of connections · lg n) = O(g2n lg n). We
apply either lemma for the at most 2g paths of the tree-cotree decomposition.
(For Theorem 3, the first option gives faster asymptotic preprocessing time; for
Theorem 2, the optimal choice depends on ε and g.)

Query Algorithm. At query time, we can essentially use the same algorithm as
for the planar case (Section 3.2 and [Tho04, Thm. 3.19]). The only difference to
the planar case is that we also need to include the at most 2g paths separating
the genus graph into planar subgraphs. To obtain the bound on the query time
in Theorem 2, note that computing connections through these ≤ 2g separating
paths can be done in time O(�g/ε) and that exploring both regions took time
O(�2) (where � = O(ε−1(lg n + g))).

References

[ABH+04] Acar, U.A., Blelloch, G.E., Harper, R., Vittes, J.L., Woo, S.L.M.:
Dynamizing static algorithms, with applications to dynamic trees and
history independence. In: Proceedings of the Fifteenth ACM-SIAM
Symposium on Discrete Algorithms, pp. 531–540 (2004)

Linear-Space Approximate Distance Oracles 145

[AG06] Abraham, I., Gavoille, C.: Object location using path separators. In:
Proceedings of the Twenty-Fifth Annual ACM Symposium on Princi-
ples of Distributed Computing (PODC), pp. 188–197 (2006); Details
in LaBRI Research Report RR-1394-06

[AHdLT05] Alstrup, S., Holm, J., de Lichtenberg, K., Thorup, M.: Maintaining
information in fully dynamic trees with top trees. ACM Transactions
on Algorithms 1(2), 243–264 (2005)

[BGK+10] Bartal, Y., Gottlieb, L.-A., Kopelowitz, T., Lewenstein, M., Roditty,
L.: Fast, precise and dynamic distance queries. CoRR, abs/1008.1480
(2010) (to appear in SODA 2011)

[Cab06] Cabello, S.: Many distances in planar graphs. In: Proceedings of the
Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 1213–1220 (2006); a preprint of the journal version is
available in the University of Ljubljana preprint series, vol. 47, p. 1089
(2009)

[CC07] Cabello, S., Chambers, E.W.: Multiple source shortest paths in a
genus g graph. In: Proceedings of the Eighteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans,
Louisiana, USA, pp. 89–97 (2007)

[CX00] Chen, D.Z., Xu, J.: Shortest path queries in planar graphs. In:
Proceedings of the ACM Symposium on Theory of Computing
(STOC), pp. 469–478 (2000)

[DPZ00] Djidjev, H., Pantziou, G.E., Zaroliagis, C.D.: Improved algorithms for
dynamic shortest paths. Algorithmica 28(4), 367–389 (2000)

[Epp03] Eppstein, D.: Dynamic generators of topologically embedded graphs.
In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 599–608 (2003)

[FR06] Fakcharoenphol, J., Rao, S.: Planar graphs, negative weight edges,
shortest paths, and near linear time. Journal of Computer and System
Sciences 72(5), 868–889 (2006), announced at FOCS 2001

[Fre87] Frederickson, G.N.: Fast algorithms for shortest paths in planar
graphs, with applications. SIAM Journal on Computing 16(6), 1004–
1022 (1987)

[Fre97] Frederickson, G.N.: A data structure for dynamically maintaining
rooted trees. Journal of Algorithms 24, 37–65 (1997), announced at
SODA 1993

[HKRS97] Henzinger, M.R., Klein, P.N., Rao, S., Subramanian, S.: Faster
shortest-path algorithms for planar graphs. Journal of Computer and
System Sciences 55(1), 3–23 (1997), announced at STOC 1994

[HPM06] Har-Peled, S., Mendel, M.: Fast construction of nets in low dimen-
sional metrics, and their applications. SIAM J. Comput. 35(5), 1148–
1184 (2006), announced at SOCG 2005

[KK06] Kowalik, L., Kurowski, M.: Oracles for bounded-length shortest paths
in planar graphs. ACM Transactions on Algorithms 2(3), 335–363
(2006), announced at STOC 2003

[KKS11] Kawarabayashi, K., Klein, P.N., Sommer, C.: Linear-space approx-
imate distance oracles for planar, bounded-genus, and minor-free
graphs. CoRR, abs/1104.5214 (2011)

[Kle05] Klein, P.N.: Multiple-source shortest paths in planar graphs. In:
Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pp. 146–155 (2005)

146 K.-i. Kawarabayashi, P.N. Klein, and C. Sommer

[KMW10] Klein, P.N., Mozes, S., Weimann, O.: Shortest paths in directed pla-
nar graphs with negative lengths: A linear-space O(nlog2n)-time al-
gorithm. ACM Transactions on Algorithms 6(2) (2010), announced
at SODA 2009

[LT79] Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs.
SIAM Journal on Applied Mathematics 36(2), 177–189 (1979)

[MS10] Mozes, S., Sommer, C.: Exact distance oracles for planar graphs.
CoRR, abs/1011.5549 (2010)

[MWN10] Mozes, S., Wulff-Nilsen, C.: Shortest paths in planar graphs with real
lengths in O(n log2 n/ log log n) time. In: de Berg, M., Meyer, U. (eds.)
ESA 2010. LNCS, vol. 6347, pp. 206–217. Springer, Heidelberg (2010)

[MZ07] Muller, L.F., Zachariasen, M.: Fast and compact oracles for approxi-
mate distances in planar graphs. In: Proceedings of the 15th Annual
European Conference on Algorithms, pp. 657–668 (2007)

[Nus10] Nussbaum, Y.: Improved distance queries in planar graphs. CoRR,
abs/1012.2825 (2010)

[PR10] Patrascu, M., Roditty, L.: Distance oracles beyond the Thorup–Zwick
bound. In: 51st Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS (2010)

[Sli07] Slivkins, A.: Distance estimation and object location via rings of
neighbors. Distributed Computing 19(4), 313–333 (2007), announced
at PODC 2005

[ST83] Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. Jour-
nal of Computer and System Sciences 26(3), 362–391 (1983), an-
nounced at STOC 1981

[SVY09] Sommer, C., Verbin, E., Yu, W.: Distance oracles for sparse graphs.
In: 50th Annual IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), pp. 703–712 (2009)

[Tal04] Talwar, K.: Bypassing the embedding: algorithms for low dimensional
metrics. In: Proceedings of the 36th Annual ACM Symposium on
Theory of Computing (STOC), pp. 281–290 (2004)

[Tho99] Thorup, M.: Undirected single-source shortest paths with positive
integer weights in linear time. Journal of the ACM 46(3), 362–394
(1999), announced at FOCS 1997

[Tho00] Thorup, M.: Floats, integers, and single source shortest paths. Journal
of Algorithms 35(2), 189–201 (2000), announced at STACS 1998

[Tho04] Thorup, M.: Compact oracles for reachability and approximate dis-
tances in planar digraphs. Journal of the ACM 51(6), 993–1024
(2004), announced at FOCS 2001

[TW05] Tarjan, R.E., Werneck, R.F.F.: Self-adjusting top trees. In: Proceed-
ings of the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 813–822 (2005)

[TZ05] Thorup, M., Zwick, U.: Approximate distance oracles. Journal of the
ACM 52(1), 1–24 (2005), announced at STOC 2001

Stochastic Mean Payoff Games:

Smoothed Analysis and Approximation Schemes�

Endre Boros1, Khaled Elbassioni2, Mahmoud Fouz3, Vladimir Gurvich1,
Kazuhisa Makino4, and Bodo Manthey5

1 RUTCOR, Rutgers University
2 Max-Planck-Institut für Informatik, Saarbrücken, Germany

3 Universität des Saarlandes, Fachrichtung Informatik, Germany
4 University of Tokyo, Graduate School of Information Science and Technology

5 University of Twente, Department of Applied Mathematics

Abstract. In this paper, we consider two-player zero-sum stochastic
mean payoff games with perfect information modeled by a digraph with
black, white, and random vertices. These BWR-games games are polyno-
mially equivalent with the classical Gillette games, which include many
well-known subclasses, such as cyclic games, simple stochastic games,
stochastic parity games, and Markov decision processes. They can also
be used to model parlor games such as Chess or Backgammon.

It is a long-standing open question if a polynomial algorithm exists
that solves BWR-games. In fact, a pseudo-polynomial algorithm for these
games with an arbitrary number of random nodes would already im-
ply their polynomial solvability. Currently, only two classes are known
to have such a pseudo-polynomial algorithm: BW-games (the case with
no random nodes) and ergodic BWR-games (in which the game’s value
does not depend on the initial position) with constant number of random
nodes. In this paper, we show that the existence of a pseudo-polynomial
algorithm for BWR-games with constant number of random vertices im-
plies smoothed polynomial complexity and the existence of absolute and
relative polynomial-time approximation schemes. In particular, we ob-
tain smoothed polynomial complexity and derive absolute and relative
approximation schemes for BW-games and ergodic BWR-games (assum-
ing a technical requirement about the probabilities at the random nodes).

1 Introduction

The rise of the Internet has led to an explosion in research in game theory: the
mathematical modeling of competing agents in strategic situations. The central
concept in such models is that of a Nash equilibrium, defining a state where

� The first author is grateful for the partial support of the National Science Founda-
tion (CMMI-0856663, “Discrete Moment Problems and Applications”), and the first,
second, fourth and fifth authors are thankful to the Mathematisches Forschungsin-
stitut Oberwolfach for providing a stimulating research environment with an RIP
award in March 2010.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 147–158, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

148 E. Boros et al.

no agent gains an advantage by changing her current strategy; it serves as a
prediction for the outcome of strategic situations in which selfish agents compete.

A fundamental result in game theory shows that if the agents can choose a
mixed strategy (i.e., probability distributions of deterministic strategies), a Nash
equilibrium is guaranteed to exist in finite games. Often, however, already pure
(i.e., deterministic) strategies already lead to a Nash equilibrium. Still, the exis-
tence of Nash equilibria might be irrelevant in practice, since their computation
would take too long. Thus, algorithmic aspects of game theory have gained a lot
of interest. Following the dogma that only polynomial time algorithms are feasi-
ble in practice, it is desirable to show polynomial time complexity for the com-
putation of Nash equilibria. On the other hand, in cases where such an efficient
algorithm is not known to exist an approximate notion of Nash equilibria has
been suggested, in which no agent can gain a substantial advantage by changing
her current strategy. In this paper, we advocate another notion of tractability
by considering the smoothed complexity of a well-known two-player stochastic
game for which the existence of a polynomial algorithm is a long-standing open
question. In contrast to the usual worst-case complexity, smoothed complexity
analyzes the running time of algorithms on typical instances. By establishing
smoothed polynomial complexity, we argue that the computation of a Nash
equilibrium is feasible in all, but artificially constructed worst-case instances.

The model that we consider is mean stochastic payoff games or BWR-games :
we are given a directed graph G = (V, E) whose vertex set V is partitioned into
three subsets V = VB ∪ VW ∪ VR that correspond to black, white, and random
positions, respectively. The arcs stand for moves. The black and white vertices
are owned by two players: Black – the minimizer – owns the black vertices in
VB, and White – the maximizer – owns the white vertices in VW . The vertices
in VR are owned by nature. We have a local reward re ∈ R for each arc e ∈ E
and a probability pvu for each arc (v, u) going out of v ∈ VR. Starting from some
vertex v0 ∈ V , a token is moved along one arc e in every round of the game. If
the token is on a black vertex, Black selects an outgoing arc e and moves the
token along e. If the token is on a white vertex, White selects an outgoing arc
e. In a random position v ∈ VR, a move e = (v, u) is chosen according to the
probabilities pvu of the outgoing arcs of v. In all cases, Black pays White the
reward re on the selected arc e. A strategy of a player is a mapping that assign
a move (u, v) ∈ E to each position u he owns.

Starting from a given initial position v0 ∈ V , the game produces for a pair of
fixed strategies (i.e., one for each player) an infinite walk {v0, v1, v2, . . .} (called a
play). Let bi denote the reward rvivi+1 received by White in step i ∈ {0, 1, . . .}.
The undiscounted limit average effective payoff is defined as the Cesàro average
c = lim infn→∞

∑n
i=0 E[bi]

n+1 . White’s objective is to maximize c, while Black’s
objective is to minimize c. Every such game is known to have a pair of uniformly
optimal strategies that result in a Nash equilibrium (called a saddle point) from
any initial position [4,8]. All optimal pairs of strategies, from a given initial
position v result in a unique payoff μ(v), called the value of the game at v. An
algorithm is said to solve the game if it computes an optimal pair of strategies.

Stochastic Mean Payoff Games 149

BWR-games are an equivalent formulation [5] of the stochastic games with
perfect information and mean payoff that were introduced in 1957 by Gillette [4].
They generalize many important problems. The special case of BWR-games
without random vertices (VR = ∅) is known as cyclic or mean payoff games
(see, e.g., [5]); we call these BW-games. If one of the sets VB or VW is empty,
we obtain a Markov decision process for which polynomial-time algorithms are
known [9]. If both are empty (VB = VW = ∅), we get a weighted Markov chain.

Besides their many applications, all these games are of interest to complexity
theory: Karzanov and Lebedev [7] proved that the decision problem “whether
the value of a BW-game is positive” is in the intersection of NP and co-NP.
Yet, no polynomial algorithm is known even in this special case, see, e.g., the
recent survey by Vorobyov [14]. A similar complexity claim can be shown to
hold for BWR-games. On the other hand, there exist algorithms (see, e.g., [5])
that solve BW-games in practice very fast. The situation for these games is thus
comparable to linear programming before the seminal discovery of the ellipsoid
method, where the problem was also known to lie in the intersection of NP and
co-NP and where the simplex algorithm proved to be a fast algorithm in practice.
Spielman and Teng [12,13] introduced smoothed analysis to explain the practical
performance of the simplex method. We further enforce this analogy by showing
a smoothed polynomial complexity for a large class of BWR-games.

While there are numerous pseudo-polynomial algorithms known for the BW-
case [5,15], pseudo-polynomiality for BWR-games (with no restriction on the
number of random nodes) is in fact equivalent to polynomiality [1]. Recently, a
pseudo-polynomial algorithm was given in [3] for BWR-games with a constant
number of random vertices and polynomial common denominator of transition
probabilities, but under the assumption that the game is ergodic, i.e., the game
value does not depend on the initial position. However, the existence of a sim-
ilar algorithm for the non-ergodic or non-constant number of random vertices
remains open, as the approach in [3] does not seem to generalize to these cases.

1.1 Our Results and Some Related Work

Approximation Schemes. The only result that we are aware of regarding approx-
imation schemes is the observation made by Roth et al. [11] that the values of
BW-games can be approximated within an absolute error of ε in polynomial-
time, if all rewards are in the range [−1, 1]. This follows immediately from trun-
cating the rewards and using any of the known pseudo-polynomial algorithms.

In this paper, we generalize this result to BWR-games in two directions.
Throughout the paper, we write G for any class of digraphs G = (VB ∪ VW ∪
VR, E) that admit a pseudo-polynomial algorithm A, i.e., A solves any BWR-
game G on G ∈ G, with integral rewards and rational transition probabilities, in
time polynomial in n, D, and R, where n = n(G) is the total number of vertices,
R = R(G) is the size of the range of the rewards, and D = D(G) is the com-
mon denominator of the transition probabilities. E.g., digraphs without random
vertices are known to belong to G. The same holds for digraphs that have a
constant number of random nodes and are structurally ergodic [6], i.e., for any

150 E. Boros et al.

set of rewards, all positions have the same game value. Note that the dependence
on D is inherent in all known pseudo-polynomial algorithms for BWR-games.

Let pmin = pmin(G) be the minimum positive transition probability in the
game G. Throughout the paper, we will assume that k := |VR| is constant.

Theorem 1. For any ε > 0, there exists for each of the following two cases an
algorithm that returns a pair of strategies that approximates the value of any
BWR-game on G ∈ G from any starting position:

i. With rewards in the interval [−1, 1], within an absolute error of ε, in time
poly(n, 1

pmin
, 1

ε).
ii. With non-negative integral rewards, within a relative error of ε, in time

poly(n, log R, 1
pmin

, 1
ε).

Our reduction in case (i), unlike case (ii), has the property that if the pseudo-
polynomial algorithm returns uniformly optimal strategies, i.e., that are inde-
pendent of the starting position, then so does the approximation scheme (in an
approximate sense). With some more work, we can show that the same is also
true in case (ii) of Theorem 1 for BW-games.

In deriving these approximation schemes from a pseudo-polynomial algorithm
as defined above, we face two main technical challenges that distinguish the
computation of approximate equilibria of BWR-games from similar standard
techniques used in optimization: (i) the running time of the pseudo-polynomial
algorithm depends polynomially both on the maximum reward and the common
denominator D of the transition probabilities; thus to obtain a fully polynomial-
time approximation scheme (FPTAS) with an absolute guarantee whose running
time is independent of D, we need to truncate the probabilities and bound the
change in the game value, which is a non-linear function of D, (ii) to obtain an
FPTAS with a relative guarantee, one usually exploits a (trivial) lower/upper
bound on the optimum value; this is not possible in the case of BWR-games, since
the game value can be arbitrarily small; the situation becomes even more compli-
cated, if we look for uniformly ε-optimal strategies, since we have to output one
pair of strategies which guarantees ε-optimality from any starting position. In
order to solve the first issue, we analyze the change in the game values and opti-
mal strategies if the rewards or transition probabilities are changed. The second
issue is solved through repeated applications of the pseudo-polynomial algorithm
on a truncated game; after each such application we show that either the value
of the game has already been approximated within the required accuracy, or
the range of the rewards can be shrunk by a constant factor without changing
the value of the game (Sections 3.2 and 3.3).Since BW-games and structurally
ergodic BWR-games with constant k admit pseudo-polynomial algorithms, we
obtain the following results.

Corollary 1. There is an FPTAS that solves,

i. within a relative error, in uniformly ε-optimal strategies, any BW-game with
non-negative (rational) rewards;

Stochastic Mean Payoff Games 151

ii. within an absolute error, in uniformly ε-optimal strategies, any structurally
ergodic BWR-game with rewards in [−1, 1] and 1

pmin
= poly(n);

iii. within a relative error, in uniformly ε-optimal strategies, any structurally
ergodic BWR-game with non-negative rational rewards and 1

pmin
= poly(n).

Note that (i) strengthens the absolute FPTAS for BW-games [11], and (ii) and
(iii) enlarge the class of games for which an FPTAS exists.

Smoothed Analysis for BWR-games. We further show that typical instances of
digraphs that admit a pseudo-polynomial algorithm can be solved in polynomial
time. Towards this end, we do a smoothed analysis using the one-step model
introduced by Beier and Vöcking [2]: an adversary specifies a BWR-game G and
for each arc a density function. These functions are bounded from above by a
parameter φ. Then the rewards for all arcs are drawn independently according
to their respective density functions. We prove that in this setting, independent
of the actual choices of the adversary, the resulting game can be solved in poly-
nomial time with high probability; there exists a polynomial P (n, φ, 1/ε) such
that the probability that the algorithm exceeds a running-time of P (n, φ, 1/ε) is
at most ε. This shows that such BWR-games with a constant number of random
vertices have smoothed polynomial complexity.

Theorem 2. There is an algorithm solving any BWR-game on any G ∈ G with
rational transition probabilities and D = poly(n) in smoothed polynomial time.

Theorem 2 is similar to the result by Beier and Vöcking [2] who showed that a
binary optimization problem defined by linear constraints and a linear objective
function has smoothed polynomial complexity if it admits a pseudo-polynomial
algorithm. Our proof of Theorem 2 has a similar structure like their analysis.
However, in the case of BWR-games, the situation becomes more complicated:
First, we have to deal with two conflicting objectives (of the two players). Second,
the coefficients of the objective functions are not given explicitly. In consequence,
our proof requires a novel isolation lemma that deals with two players who
optimize the same objective function in two different directions. Furthermore,
our procedure for certifying that the solution found is indeed the optimal solution
is considerably more involved and requires careful rounding of the coefficients in
order to certify optimality.

Corollary 2. (i) BW-games and (ii) structurally ergodic BWR-games with D =
poly(n) can be solved in smoothed polynomial time.

Let us remark finally that removing the assumption that k is constant in the
above results remains a challenging open problem.

2 Preliminaries, Notation and Basic Properties

BWR-games and Markov Chains. A BWR-game is defined by a triple G =
(G, P, r), where G = (V = VW ∪VB∪VR, E) is a digraph that may have loops and

152 E. Boros et al.

multiple arcs, but no terminal vertices, i.e., vertices of out-degree 0; P ∈ [0, 1]E

is the vector of probability distributions for all v ∈ VR specifying the probability
pvu of a move from v to u; r ∈ R

E is a local reward function. It is assumed that∑
u:(v,u)∈E pvu = 1 for all v ∈ VR and pv,u > 0 whenever (v, u) ∈ E and v ∈ VR.
Standardly, we define a strategy sW ∈ SW for White as a mapping that

assigns a move (v, u) ∈ E to each position v ∈ VW . For simplicity, we may write
sW (v) = u for sW (v) = (v, u). Strategies sB ∈ SB for Black are analogously
defined. A pair of strategies s = (sW , sB) is called a situation. Given a BWR-
game G = (G, P, r) and a situation s = (sB, sW), we obtain a weighted Markov
chain G(s) = (G(s) = (V, E(s)), P (s), r) with transition matrix P (s) defined by:

pvu(s) =

⎧⎪⎨⎪⎩
1 if (v ∈ VW and u = sW (v)) or (v ∈ VB and u = sB(v));
0 if (v ∈ VW and u 	= sW (v)) or (v ∈ VB and u 	= sB(v));
pvu if v ∈ VR.

Here, E(s) = {e ∈ E | pe(s) > 0} is the set of arcs with positive probability.
Given an initial position v0 ∈ V from which the play starts, we define the limiting
(mean) effective payoff cv0(s) in G(s) as cv0(s) = ρ(s)T r =

∑
e∈E ρe(s)re, where

ρ(s) = ρ(s, v0) ∈ [0, 1]E is the arc-limiting distribution for G(s) starting from v0.
This means that for (v, u) ∈ E, ρvu(s) = πv(s)pvu(s), where π ∈ [0, 1]V is the
limiting distribution in the Markov chain G(s) starting from v0. In what follows,
we use (G, v0) to denote the game starting from v0. We write ρ(s) for ρ(s, v0),
when v0 is clear from the context. For rewards r : E → R, let r− = mine re and
r+ = maxe re. Let [r] = [r−, r+] be the range of r. Let R = R(G) = r+ − r−.

Strategies and Saddle Points. If we consider cv0(s) for all possible situations,
we obtain a matrix game Cv0 : SW × SB → R, with entries Cv0(sW , sB) =
cv0(sW , sB). Every such game has a Nash equilibrium in pure strategies [4,8];
a corresponding pair of strategies is said to be optimal. Moreover, there exists
optimal strategies (s∗W , s∗B) that do not depend on the starting position v0; such
strategies are called uniformly optimal. Although there might be several optimal
strategies, it is easy to see that they all lead to the same value. We define this
to be the value of the game and write μv0(G) := Cv0(s∗W , s∗B) where (s∗W , s∗B)
is any pair of optimal strategies. Note that μv0(G) may depend on the starting
node v0.

3 Approximation Schemes

Given a BWR-game G = (G = (V, E), P, r), a constant ε > 0, and a starting po-
sition v ∈ V , an ε-relative approximation of the value of the game is determined
by a situation (s∗W , s∗B) such that

max
sW

μv(G(sW , s∗B)) ≤ (1 + ε)μv(G) and min
sB

μv(G(s∗W , sB)) ≥ (1− ε)μv(G). (1)

An alternative to relative approximations is to look for an approximation with
absolute error of ε. This is achieved by a situation (s∗W , s∗B) such that

max
sW

μv(G(sW , s∗B)) ≤ μv(G) + ε and min
sB

μv(G(s∗W , sB)) ≥ μv(G)− ε. (2)

Stochastic Mean Payoff Games 153

A situation (s∗W , s∗B) satisfying (1) (resp., (2)) is called relative (resp., absolute)
ε-optimal. If the pair (s∗W , s∗B) is ε-optimal for any starting position, it is called
uniformly ε-optimal.

3.1 Absolute Approximation

Let G = (V, E) be a graph in G and G = (G, P, r) be a BWR-game on G.
In this section, we assume that r− = −1 and r+ = 1, i.e., all rewards are
from the interval [−1, 1]. We apply the pseudo-polynomial algorithm A on a
truncated game G̃ = (G = (V, E), P̃ , r̃) defined by rounding the rewards to the
nearest integer multiple of ε/4 (denoted r̃ := �r� ε

4
), and truncating the vector

of probabilities (pvu : u ∈ V) for each random node v ∈ VR as follows.

Lemma 1. Let α ∈ [0, 1]n with ‖α‖1 = 1. Let B ∈ Z
+ be an integer such that

mini:αi>0{αi} > 2−B. Then there exists α′ ∈ [0, 1]n such that (i) ‖α′‖1 = 1;
(ii) for all i = 1, . . . , n, α′

i = ci/2B where ci ∈ Z
+ is an integer; (iii) for all

i = 1, . . . , n, α′
i > 0 if and only αi > 0, and (iv) ‖α − α′‖∞ ≤ 2−B.

Lemma 2. Let A be a pseudo-polynomial algorithm that solves, in (uniformly)
optimal strategies, any BWR-game G = (G, P, r) with G ∈ G in time τ(n, D, R).
Then for any ε > 0, there is an algorithm that solves, in (uniformly) absolute
ε-optimal strategies, any BWR-game G = (G, P, r) with G ∈ G in time bounded
by τ(n, 22k+5n3k2

εp2k
min

, 4
ε), where pmin = pmin(G).

3.2 Relative Approximation

Let G = (V, E) be a graph in G and G = (G, P, r) be a BWR-game on G with
non-negative rational rewards (i.e., r− = 0). Without loss of generality, we may
assume that the rewards are integral with mine:re>0 re = 1. The algorithm is
given as Algorithm 1. The main idea is to truncate the rewards, scaled by a
certain factor 1/K, and use the pseudo-polynomial algorithm on the truncated
game Ĝ. If the value in the truncated game μw(Ĝ), from the starting node w, is
large enough (step 5) then we get a good relative approximation of the original
value and we are done. Otherwise, the information that μw(Ĝ) is small allows us
to reduce the maximum reward by a factor of 2 in the original game (step 8).
Thus the algorithm terminates in polynomial time (in the bit length of R(G)).
To remove the dependence on D in the running time, we need also to truncate
the transition probabilities. In the algorithm, we denote by P̃ the transition
probabilities obtained from P by applying Lemma 1 with B = �log 1/ε′�, where
we select ε′ = p2k

min
22k+3n3k2θ , where θ = θ(G) := 2(1+ε)(3+2ε)n

εp2k+1
min

, so that 2δ(G, ε′) ≤
r+(G)
θ(G) := K(G), where δ(G, ε) :=

(
ε
2n2

(
1
2pmin

)−k[
εnk(k + 1)

(
1
2pmin

)−k + 3k +

1
]

+ εn
)
r∗ with r∗ = r∗(G) := max{|r+(G)|, |r−(G)|}.

Lemma 3. Let A be a pseudo-polynomial algorithm that solves any BWR-game
G = (G, P, r) with G ∈ G in time τ(n, D, R). Then for any ε ∈ (0, 1), there

154 E. Boros et al.

Algorithm 1. FPTAS-BWR(G, w, ε)
Input: a BWR-game G = (G = (V, E), P, r), a starting vertex w ∈ V , an accuracy ε.
Output: an ε-optimal pair (s̃W , s̃B) for the game (G, w).
1: if r+(G) = 1 then
2: Ĝ := (G, P̃ , r); return A(Ĝ, v)

3: K := r+(G)
θ(G)

; r̂e = � re
K
� for e ∈ E; Ĝ = (G, P̃ , r̂)

4: (s̃W , s̃B) := A(Ĝ, w)
5: if μw(Ĝ) ≥ 3

ε
then

6: return (s̃W , s̃B)
7: else

8: for all e ∈ E, let r̃e =

{
� r+

2
� if re > r+

2(1+ε)

re otherwise

9: G̃ := (G, P, r̃); return FPTAS-BWR(G̃, w, ε)

Algorithm 2. FPTAS-BW(G, ε)
Input: a BW-game G = (G = (V = VB ∪ VW , E), r), and accuracy ε.
Output: a uniformly ε-optimal pair (s̃W , s̃B) for G.
1: if r+(G) = 1 then
2: return A(G)
3: K := ε′r+

2(1+ε′)2n
; r̂e = � re

K
� for e ∈ E; Ĝ = (G, r̂)

4: (ŝW , ŝB) := A(Ĝ); U := {u ∈ V | μu(Ĝ) ≥ 1
ε′ }

5: if U = V then
6: return (s̃W , s̃B) = (ŝW , ŝB)
7: else
8: G̃ := G[V \ U]

9: for all e ∈ E(G̃), let r̃e =

{
� r+

2
� if re > r+

2(1+ε′)
re otherwise

10: G̃ := (G̃, r̃)
11: (s̃W , s̃B) :=FPTAS-BW(G̃, ε)
12: s̃(w) := ŝ(w) for all w ∈ U ; s̃ = (s̃W , s̃B)

is an algorithm that solves, in relative ε-optimal strategies, any BWR-game
(G = (G, P, r), w) with G ∈ G, from any given starting position w, in time(
τ
(
n, 4k+2n4k2(1+ε)(3+2ε)

εp2k
min

, 2(1+ε)(3+2ε)n

εp2k+1
min

)
+ poly(n)

)
(�log R� + 1).

Remark 1. It is easy to see that, for structurally ergodic BWR-games, one can
modify the above procedure to return uniformly ε-optimal strategies.

3.3 Uniformly Relative ε-Approximation for BW-Games

Note that the FPTAS in Lemma 3 does not necessarily return a uniformly ε-
optimal situation, even if the pseudo-polynomial algorithm A provides a uni-
formly optimal situation. In case of BW-games, we can modify this FPTAS to

Stochastic Mean Payoff Games 155

return a situation which is ε-optimal for all v ∈ V . The algorithm is given as Al-
gorithm 2. The main difference is that when we recurse on a game with reduced
rewards (step 11), we have also to delete all nodes that have large values μ(G̃, v)
in the truncated game. This is similar to the approach used to decompose a
BW-game into ergodic classes [5]. However, the main technical difficulty is that,
with approximate equilibria, White (resp., Black) might still have some in-
centive to move from a higher-value (resp., lower-value) class to a lower-value
(resp., higher-value) class, since the values are just estimated approximately. We
show that such a move will not be very profitable for White (resp., Black).
As before, we assume that the rewards are integral with mine:re>0 re = 1.

Lemma 4. Let A be a pseudo-polynomial algorithm that solves, in uniformly op-
timal strategies, any BWR-game G = (G, P, r) with G ∈ G in time τ(n, R). Then
for any ε > 0, there is an algorithm that solves, in uniformly relative ε-optimal
strategies, any BW-game G = (G, P, r) with G ∈ G, in time (τ(n, 2(1+ε′)2n

ε′) +
poly(n))h, where h = �log R� + 1, and ε′ = ln(1+ε)

4h−2 .

4 Smoothed Analysis

We use the following notion of polynomial smoothed complexity introduced by
Beier and Vöcking [2]. A problem is said to have smoothed polynomial complex-
ity if and only if there exists an algorithm A with running-time T and a constant
α such that

∀φ ≥ 1, ∀n ∈ N : max
f∈Dn(φ)

EX∼f (T (X)α) = O(nφ) . (3)

Here, Dn(φ) denotes all possible vectors of density functions bounded by φ for
instances of size n, and X is an instance drawn according to f . Equivalently,
there exists a polynomial P (n, φ, 1/ε) such that with probability at most ε, A
exceeds a running-time of P (n, φ, 1/ε).

Let A be a pseudo-polynomial algorithm that solves any BWR-game G =
(G, P, r) with G = (V, E) ∈ G. In this section, we show that any such game
can be solved in smoothed polynomial time. For this, we assume that an adver-
sary specifies a game together with density functions for the rewards (one for
each arc), and these density functions are bounded by φ, and show a bound as
in (3). One (technical) issue is that the perturbed rewards are of course real,
non-rational numbers with probability 1. Thus, we cannot really use existing
algorithms as sub-routine, and we cannot even compute anything with these
numbers on an ordinary RAM. To cope with this problem, we use Beier and
Vöcking’s [2] approach and assume that the rewards are in [−1, 1] and that we
can access the bits of the rewards one-by-one.

To state our results in a bit more general setting, we will assume that A solves
any BWR-game G in uniformly optimal strategies. If this was not the case, then
it is easy to modify the procedure and analysis in this section to solve the game
starting from a given vertex.

156 E. Boros et al.

Algorithm 3. Solve(G)
Input: a BWR-game G = (G = (V, E), P, r).
Output: an optimal pair (s̃W , s̃B) for the game G.
1: �0 ← log((nD)c0φ); i← 0 {c0 is a constant to be specified later}
2: repeat
3: � := �0 + i; ε← 2−�; i := i + 1
4: r̃ := �r��; G̃ := (G, P, r̃); G̃′ := (G, P, 2�r̃)
5: (s̃W , s̃B) := A(G̃′)
6: until s̃ is optimal in G̃e,ε for all e ∈ E

Before describing the procedure (Algorithm 3), we need to introduce some
notation. Let us write �x�b for the largest integer smaller than or equal to x that
has b bits (i.e., we basically cut off all bits after the b-th bit). Let γ = γ(G) :=
(kn)−2(2D)−2(k+2) and ε > 0. Given the game G = (G = (V, E), P, r), define,
for each e ∈ E, the game Ge,ε = (G, P, r(e)), where

re′(e) =

{
re + 2γ−1ε if e′ = e,

re′ otherwise.
(4)

The basic idea behind our smoothed analysis is as follows: We use a certain
number of bits for each reward. Then we run the pseudo-polynomial algorithm to
solve the resulting game with the rewards rounded down (and scaled to integers)
because we do not have more bits at that point (Step 4). This can be done in
polynomial-time as long as we have O(log n) bits. Then we try to certify that the
solution obtained is also a solution for the true rewards (Step 6). If this succeeds,
then we are done. If this fails, then we use one more bit and repeat the process.

To prove a smoothed polynomial running time, we need to show that with
high probability a logarithmic number of bits suffices to compute an equilibrium
for the original (untruncated) game. Furthermore, we have to devise a certificate
proving that the computed equilibrium is indeed an equilibrium for the original
game (we will show that such a certificate is given in Step 6). Both results are
based on a sensitivity analysis of the game: we show that by changing the rewards
slightly, an optimal strategy remains optimal for the changed game.

A key ingredient for our smoothed analysis is an adaption of the isolation
lemma [10] to our setting. An adaption of the isolation lemma has already been
used successfully in smoothed analysis of integer programs [2]. It basically says
the following: Of course, there are exponentially many alternative strategies for
each player. But if a player replaces the optimal strategy with an alternative
strategy, the payoff for the respective player gets worse significantly.

Lemma 5 (Isolation Lemma). Let E be a finite set, and F ⊂ R
E
+ be a fam-

ily of (distinct) vectors, such that for any distinct ρ, ρ′ ∈ F , there exists an
e ∈ E with |ρe − ρ′e| ≥ γ. Let {we}e∈E be independent continuous random
variables with maximum density φ. Define gap(w) := wT ρ∗ − wT ρ∗∗, where
ρ∗ = argmaxρ∈F wT ρ and ρ∗∗ = argmaxρ∈F , ρ
=ρ∗ wT ρ. Then Pr(gap(w) ≤ ε) ≤
|E|εφκ2

γ , where κ = maxe∈E |Fe|, and Fe = {x | ρe = x for some ρ ∈ F}.

Stochastic Mean Payoff Games 157

We use the above lemma with the set F representing a set of arc-limiting distri-
butions, corresponding to a set of situations in the game starting from a certain
vertex. For that we need bounds for κ and γ.

Lemma 6. Let G = (G = (V, E), P, r) be a BWR-game, u ∈ V be any vertex,
and s be an arbitrary situation. Then (i) every entry of the arc-limiting distribu-
tion ρ(s) for the Markov chain (G(s), u) can be written as rational numbers of the
form a

b , where a, b ∈ Z+ and a, b ≤ kn(2D)k+2. Hence, (ii) the number of possi-
ble entries in ρ(s) is bounded by κ = (kn)2(2D)2(k+2), and (iii) for any situation
s′ such that ρ(s′) 	= ρ(s), there is an arc e such that ρe(s) − ρe(s′) ≥ γ = γ(G).

To use the given pseudo-polynomial algorithm, we have to truncate the (per-
turbed) rewards after a certain number of bits. The following lemma assures that
this is possible (with high probability) without changing the optimal strategies,
as long as the rounded rewards and the true rewards are close enough. Before
we state the lemma, it is useful to observe that, if the rewards are continuous,
independently distributed random variables, then, for any two distinct situations
s and s′, we have Pr(μu(G(s)) = μu(G(s′))) = 0 if and only if ρ(s) 	= ρ(s′). Thus
for the structurally ergodic case, with probability one, two distinct situations re-
sult in two distinct values. On the other hand, in the general case, there might be
many optimal situations, but all of them lead to the same limiting distribution.

Given a strategy sW ∈ SW of White we call a uniform best response (UBR)
of Black any strategy s∗B ∈ SB, such that μu(G(sW , s∗B)) ≤ μu(G(sW , sB)) for
all sB ∈ SB. Similarly, a UBR of White is defined. (Note that the existence
of such a UBR is an immediate corollary of the existence of uniformly optimal
situations in BWR-games.) We denote by UBRG(sW) and UBRG(sB) the sets of
uniform best responses in G, corresponding to strategies sW and sB, respectively.

Lemma 7. Let G = (G = (V, E), P, r), G′ = (G = (V, E), P, r′) be two BWR-
games such that r = (re)e∈E is a vector of independent continuous random
variables with maximum density φ, and ‖r′ − r‖∞ ≤ ε, for some given ε > 0.
Let θ := 2n3εφ

γ(G)3 . Then, the following holds for any situation s:

i. Pr(s is not uniformly optimal in G′ | s is uniformly optimal in G) ≤ 2θ;
ii. Pr(s is not uniformly optimal in G | s is uniformly optimal in G′) ≤ 2θ.

Still, it can happen that rounding results in different optimal strategies. How
can we be sure that the solution obtained from the rounded rewards is also
optimal for the game with the true rewards? Step 6 in Algorithm 3 is one way
to do this. The basic idea is as follows: Let s̃ be a uniformly optimal situation
in the rounded game. Lemma 7 says that with high probability s̃ is a uniformly
optimal situation in G, and hence it is also uniformly optimal in any game on
the same graph and transition matrix, but with rewards lying in a small interval
around the rounded rewards. Thus, we create |E| copies of the truncated game;
in each copy the reward on a single arc is perturbed by a certain amount within
this small interval. If s̃ is uniformly optimal in all these games, then it is also
uniformly optimal for all rewards from that small interval. The following lemma
justifies the correctness of this certificate.

158 E. Boros et al.

Lemma 8. Let G̃ = (G = (V, E), P, r̃) be a BWR-game and u be an arbitrary
vertex. Consider a situation s̃ = (s̃W , s̃B) such that, for all e ∈ E, s̃ is optimal in
the game (G̃e,ε, u) (defined in (4)). Then s̃ is also optimal in (G = (G, P, r), u),
for any r such that ‖r − r̃‖∞ ≤ ε.

Now, we have all ingredients to prove that Algorithm 3 solves, in uniformly
optimal strategies and in smoothed polynomial time, any BWR-game on a graph
which admits a pseudo-polynomial algorithm and have a constant number of
random vertices. This establishes Theorem 2.

References

1. Andersson, D., Miltersen, P.B.: The complexity of solving stochastic games on
graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878,
pp. 112–121. Springer, Heidelberg (2009)

2. Beier, R., Vöcking, B.: Typical properties of winners and losers in discrete opti-
mization. SIAM J. Comput. 35(4), 855–881 (2006)

3. Boros, E., Elbassioni, K.M., Gurvich, V., Makino, K.: A pumping algorithm for
ergodic stochastic mean payoff games with perfect information. In: Eisenbrand,
F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 341–354. Springer,
Heidelberg (2010)

4. Gillette, D.: Stochastic games with zero stop probabilities. In: Dresher, M., Tucker,
A.W., Wolfe, P. (eds.) Contribution to the Theory of Games III. Annals of Mathe-
matics Studies, vol. 39, pp. 179–187. Princeton University Press, Princeton (1957)

5. Gurvich, V., Karzanov, A., Khachiyan, L.: Cyclic games and an algorithm to find
minimax cycle means in directed graphs. USSR Computational Mathematics and
Mathematical Physics 28, 85–91 (1988)

6. Hoffman, A.J., Karp, R.M.: On nonterminating stochastic games. Management
Science, Series A 12(5), 359–370 (1966)

7. Karzanov, A.V., Lebedev, V.N.: Cyclical games with prohibition. Mathematical
Programming 60, 277–293 (1993)

8. Liggett, T.M., Lippman, S.A.: Stochastic games with perfect information and time-
average payoff. SIAM Review 4, 604–607 (1969)

9. Mine, H., Osaki, S.: Markovian decision process. Elsevier, Amsterdam (1970)
10. Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inver-

sion. Combinatorica 7(1), 105–113 (1987)
11. Roth, A., Balcan, M.-F., Kalai, A., Mansour, Y.: On the equilibria of alternating

move games. In: SODA, pp. 805–816 (2010)
12. Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: Why the simplex

algorithm usually takes polynomial time. J. ACM 51(3), 385–463 (2004)
13. Spielman, D.A., Teng, S.-H.: Smoothed analysis: An attempt to explain the be-

havior of algorithms in practice. C. ACM 52(10), 76–84 (2009)
14. Vorobyov, S.: Cyclic games and linear programming. Discrete Appl. Math. 156(11),

2195–2231 (2008)
15. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theoret.

Comput. Sci. 158(1-2), 343–359 (1996)

Pairwise-Interaction Games

Martin Dyer and Velumailum Mohanaraj

School of Computing, University of Leeds
Leeds LS2 9AS, United Kingdom
http://www.comp.leeds.ac.uk

Abstract. We study the complexity of computing Nash equilibria in
games where players arranged as the vertices of a graph play a sym-
metric 2-player game against their neighbours. We call this a pairwise-
interaction game. We analyse this game for n players with a fixed number
of actions and show that (1) a mixed Nash equilibrium can be com-
puted in constant time for any game, (2) a pure Nash equilibrium can
be computed through Nash dynamics in polynomial time for games with
a symmetrisable payoff matrix, (3) determining whether a pure Nash
equilibrium exists for zero-sum games is NP-complete, and (4) counting
pure Nash equilibria is #P-complete even for 2-strategy games. In prov-
ing (3), we define a new defective graph colouring problem called Nash
colouring, which is of independent interest, and prove that its decision
version is NP-complete. Finally, we show that pairwise-interaction games
form a proper subclass of the usual graphical games.

Keywords: Nash equilibrium, graphical game, computational complex-
ity, pairwise interaction.

1 Introduction

1.1 Overview

The Nash equilibrium [21] is the central solution concept in game theory. Plau-
sibility of an equilibrium concept like the Nash equilibrium is partly determined
by the complexity of computing equilibria [14]. As a result, many recent studies
have focused on the complexity of finding Nash equilibria (e.g. [1,4,5,7,11,12,13]).
For the complexity problem to be meaningful, however, the game, particularly
its payoffs, should allow a compact representation [23].

Many succinctly representable games have been studied in the literature of
which graphical games, proposed by Kearns et al. [18], have received much at-
tention (see [5] and the references therein). In these games, players are arranged
as the vertices of a graph and can play the game only with their immediate
neighbours. In effect, a vertex k of degree dk plays a (dk + 1)-player game. If the
number of pure strategies available to k is r, payoffs for k can be specified using
rdk+1 numbers. Thus, an n-player game with r strategies can be represented by
an n-vertex graph and nrΔ+1 numbers, where Δ is the maximum vertex degree.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 159–170, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.comp.leeds.ac.uk

160 M. Dyer and V. Mohanaraj

The representation can be further simplified using symmetries in games. A
game is symmetric if every player has the same payoff matrix and a player’s
payoff depends only on the player’s strategy and the number of other players
playing each pure strategy available. Hence, a symmetric graphical game (see
[5] for a formal definition) with the neighbourhood size of d can be described
by a d-regular graph with n vertices and r

(
d+r−1

r−1

)
numbers. It must be noted

that a symmetric graphical game cannot be considered symmetric by definition
unless the graph is highly regular like the complete graph. In these games, each
player plays the game with a different group of players and largely ignores what
happens outside the group, whereas symmetry is defined globally.

The idea of playing games on graphs predates the idea of graphical games.
Nearly a decade before graphical games were introduced by [18], Nowak and
May [22] empirically studied the impact on the emergence of cooperation of
placing players at the vertices of a grid graph. Their investigations stimulated
research in this area, and a spate of new work followed, studying the impact of
many other types of graph (see [24] and the references therein). In this setting,
players are arranged as the vertices of a graph. Each vertex chooses a single
pure or mixed strategy from a common strategy space and plays an identical,
but independent, symmetric 2-player game with its immediate neighbours using
this strategy. The payoff for a vertex is the sum of the payoffs it receives from
playing the 2-player game with all its neighbours. This captures the natural
tendency of players to treat each interaction as a separate 2-player game when
the interactions are pairwise. This game, which we call a pairwise-interaction
game, is the subject of this paper. Pairwise-interaction games are not necessarily
symmetric, due to the reason stated above for symmetric graphical games, even
though the 2-player games are assumed to be symmetric. Moreover, in pairwise
interaction games, neighbourhoods of players can even be of different sizes.

Predictably, pairwise-interaction games can be represented even more suc-
cinctly than symmetric graphical games. More precisely, an n-player pairwise-
interaction game with r strategies can be described by an n-vertex graph and a
single r × r matrix. Strategic interactions in political, social, biological and eco-
nomic situations are often pairwise [3]. Hence, pairwise-interaction games have
many applications while admitting an extremely compact representation.

Surprisingly though, to the best of our knowledge, a systematic study of
pairwise-interaction games has not been carried out from the computational
game theory perspective. That is the main purpose of this paper. Perhaps un-
surprisingly, it turns out that the set of pairwise-interaction games is in fact a
proper subclass of graphical games. What makes our study even more interest-
ing, but surely disappointing from a game-theoretic point of view, is the fact
that even for this simple subclass, the problem of deciding whether a pure Nash
equilibrium exists is hard for zero-sum games with more than two strategies.

1.2 Our Results

In this paper, we study n-player pairwise-interaction games with a fixed number
of strategies r. Clearly, Nash’s theorem [21] that there exists a mixed Nash

Pairwise-Interaction Games 161

equilibrium in all finite games holds for pairwise-interaction games. Thus, we
have the following easy theorem about mixed strategies. Many detailed proofs
including that of Theorem 1 are omitted for brevity.

Theorem 1. For any pairwise-interaction game with a fixed number of pure
strategies, a symmetric mixed Nash equilibrium can be computed in constant
time. This strategy corresponds to all players playing the symmetric mixed Nash
equilibrium strategy for the 2-player game.

Although mixed Nash equilibria exist in any game, there is no convincing justi-
fication for players deliberately randomising their actions. Hence, the pure Nash
equilibrium is considered a better solution concept for games where one exists.
This gives rise to two computational problems: (1) does a given game have any
pure Nash equilibrium? (2) if it has, can that be computed in polynomial time?
We address these questions for pairwise-interaction games. We first prove the
following theorem that the Nash dynamics converges for games with symmetric
matrices. This is the simple dynamics in which, at every iteration, some player
switches to the best response to the current strategies of their neighbours. Its
convergence implies the existence of a pure Nash equilibrium.

Theorem 2. For any pairwise-interaction game with r strategies and a symmet-
ric payoff matrix, the Nash dynamics converges in at most n2K/2(2Δ + 1)K+1

steps, where K = r(r + 1)/2 − 2 and Δ is the maximum vertex degree.

We show further that adding a constant to any column of the payoff matrix
does not affect the Nash equilibria. So, the above result applies to games with
payoff matrices that can be symmetrised using this operation. This, in particular,
means that the above result applies to all 2-strategy games.

Perhaps more significantly, in Section 4 we prove the following theorem for
zero-sum games.

Theorem 3. For all r ≥ 3, and all antisymmetric r× r payoff matrices A such
that the 2-player game has a unique mixed strategy which is not a pure strategy,
deciding whether there is a pure Nash equilibrium in the pairwise-interaction
game with payoff matrix A on a Δ-regular graph is NP-complete.

That the mixed strategy cannot be a pure strategy is clear, since otherwise all
players playing this strategy would give a pure Nash equilibrium by Theorem 1.
The condition of having a unique mixed strategy is made for technical reasons,
and we believe the theorem to be true without this assumption. However, we
note that having a unique mixed strategy is generic, and we will show this in
Lemma 5.

In Section 5 we show that even for some 2-strategy pairwise-interaction games
for which the problem of finding a pure Nash equilibrium is in FP, the problem
of exactly counting them is #P-hard. Surprisingly, it turns out that even ap-
proximately counting them in polynomial time is not possible unless NP=RP.
Finally, we have the following theorem that pairwise-interaction games form a
(small) proper subset of symmetric graphical games. Thus our hardness results
are much stronger than those previously known for graphical games.

162 M. Dyer and V. Mohanaraj

Theorem 4. For given r > 2 and Δ = Ω(r), pairwise-interaction games form an
exponentially small fraction of symmetric graphical games on Δ-regular graphs.

1.3 Related Work

Two-strategy games. The parity affiliation game [12] with all edge weights
−1 and the cut game [4] with all edge weights +1 correspond to the pairwise-
interaction game with payoff matrix P =

(
0 1
1 0

)
. Any pure Nash equilibrium in

these games is a STABLE-CONFIGURATION and a MAX-CUT, in the sense
of Schäffer and Yannakakis [25]. Thus, finding a pure Nash equilibrium for these
games is P-complete [25].

We also note that some 2-strategy games considered here are essentially equiv-
alent to the defective 2-colouring problem [10]. Similar results to those we give
are known for the defective 2-colouring problem.

Our convergence proof in Theorem 2 employs a potential function similar to
that used in the convergence of Hopfield’s neural networks [16] and other related
problems. However, our proof applies to more than two strategies. In addition,
due to the simplified nature of pairwise-interaction games, we are able to show
that a pure Nash equilibrium can be computed in polynomial time.

Complexity of games. The problem of computing mixed Nash equilibria of
n-player normal-form games is PPAD-complete for all n ≥ 2 [7,11]. When n ≥
4, this problem is equivalent to the problem of computing Nash equilibria in
graphical games of maximum degree Δ ≥ 3, with two strategies per player.
Hence, the latter is also PPAD-complete [11]. Some positive results are known
when these games are symmetric. A mixed Nash equilibrium of a symmetric n-
player normal-form game with r strategies can be computed in polynomial time
if r = O(log n/ log log n) [23]. Using this result, it is shown in [5] that for the
symmetric graphical games with degree Δ, an equilibrium can be computed in
polynomial time if r = O(log Δ/ log log Δ).

For symmetric n-player normal-form games with a constant number of strate-
gies, r, the problem of determining the existence of a pure Nash equilibrium is
in AC0 [2,6]. It is known that these games are guaranteed to have a pure Nash
equilibrium when r = 2 [8]. For graphical games, the problem of determining
whether there exist a pure Nash equilibrium is NP-complete, in general, even if
all players have only two strategies and neighbourhoods of size 2 [13].

The problem of counting Nash equilibria is generally hard. Counting the num-
ber of (mixed) Nash equilibria is #P-hard even for symmetric 2-player games [9].
For graphical games, counting the number of pure Nash equilibria is #P-hard
even for symmetric games with neighbourhood size of 2 [5].

As we will see later, pairwise-interaction games with symmetrisable payoff
matrices are in fact general potential games [12]. By definition, every potential
game has a pure Nash equilibrium. Congestion games [12] are a special class of
potential games. Computing a pure Nash equilibrium for these games is PLS-
complete [12].

Pairwise-Interaction Games 163

2 Preliminaries

2.1 Notations

If all elements of a matrix A or a vector n are positive, we write A ≥ 0 or n ≥ 0
respectively. Here and elsewhere, matrices and column vectors with all 1’s and 0’s
are denoted by 1 and 0 respectively. By AT and nT , we denote the transpose of
A and n respectively. We write column vectors as row vectors with the transpose
operation, e.g. (n0, . . . , nr−1)T . An integer set {0, . . . , x − 1} is denoted by [x].
Interchangeably, we refer to a participant in a pairwise-interaction game as a
player or vertex, since each participant is represented by a graph vertex.

2.2 Strategic Games

Definition 1. A normal-form game is given by a set of players Q, and for
each player k ∈ Q a finite set of pure strategies Sk and a payoff function uk :
×k∈QSk → R.

A pure strategy of player k is an element of Sk. A mixed strategy for player k is
a probability distribution Σk over Sk, so is a nonnegative vector of length |Sk|.
A set of strategies s = (s1, . . . , sk, . . . , sn) (sk ∈ Sk) is called a pure strategy
profile, and σ = (σ1, . . . , σk, . . . , σn) (σk ∈ Σk) is called a mixed strategy profile.

A 2-player normal-form game can be conveniently represented by two real
matrices A = (aij) and B = (bij). The game is symmetric if B = AT , and is zero-
sum if A + B = 0. Hence for a symmetric zero-sum game, A is antisymmetric.
Thus, one payoff matrix A is sufficient to describe any symmetric 2-player game.

Let G = (V, E) be a graph. Let N (k) = {v ∈ V | (k, v) ∈ E}, and dk = |N (k)|.
By s−k and σ−k we denote the pure and mixed strategies of all neighbours of k
respectively. Then, the pairwise-interaction game is defined as follows.

Definition 2. A pairwise-interaction game G is defined by:

– An undirected graph G = (V, E), where the vertices V = [n] represent play-
ers. Without loss of generality, we may assume G is connected.

– A symmetric 2-player game 〈S,A〉, where S = [r] is the set of pure strategies
available to each vertex and A = (aij) (i, j ∈ [r]) is the payoff matrix.

– The payoff for any player k (k ∈ [n]) is

u
(
σk; σ−k

)
=

∑
p∈N (k)

σT
k Aσp . (1)

We will regard r as being a constant. We show later that the numbers in A can
be taken as being polynomially bounded in n, so the size of these numbers does
not need be included in the input size. Thus, for complexity purposes, the input
size is measured only by n.

We shall denote the set of mixed strategies over S by Σ. To avoid trivialities,
we will always assume r ≥ 2. If the 2-player game is zero-sum, we refer to the
pairwise-interaction game as zero-sum.

164 M. Dyer and V. Mohanaraj

Let B(σ−k) be the set of mixed strategy best responses of vertex k to the
neighbour strategies σ−k. Then we have

B(σ−k) = {σk ∈ Σ | u(σk; σ−k) ≥ u(σ′
k; σ−k) ∀σ′

k ∈ Σ } . (2)

Definition 3. A strategy profile σ∗ =
{
σ∗

0 , . . . , σ∗
k, . . . , σ∗

n−1

}
(σ∗

k ∈ Σ) is a
mixed Nash equilibrium if σ∗

k ∈ B(σ−k) ∀k ∈ V . We say σ∗ is a pure Nash
equilibrium if it is a pure strategy profile.

Let n
(k)
j denote the number of neighbours of k playing strategy j ∈ S. We shall

call a combination of neighbour strategies a neighbourhood. Then, instead of
using s−k to denote it, for symmetric games, it is convenient to use a column
vector of n

(k)
j with one entry for each j ∈ [r], e.g. nk =

(
n

(k)
0 , . . . , n

(k)
r−1

)T where∑r−1
j=0 n

(k)
j = dk. Using this notation, for pure strategies, (1) could be rewritten

as
u
(
sk; n(k)

0 , . . . , n
(k)
r−1

)
=

∑
j∈S

n
(k)
j askj . (3)

Similarly, (2) could be written as B(n(k)
0 , . . . , n

(k)
r−1). We will use this notation in

the analysis of pure Nash equilibria, and (1) and (2) in the analysis of mixed
Nash equilibria.

Now the following proposition is easy to prove.

Proposition 1. Adding an arbitrary constant to all entries of any column of A
does not affect the Nash equilibria of pairwise-interaction games.

We next define Nash dynamics and provide a proposition that links its conver-
gence and the existence of a pure Nash equilibrium (e.g. [12]).

Definition 4. Nash Dynamics: In this dynamics, at every step, some player
playing a suboptimal strategy improves their payoff by switching to the best re-
sponse to the current strategies of their neighbours.

Proposition 2. If the Nash dynamics converges, then there is a pure Nash equi-
librium.

We use the following notion of equivalence of games throughout the paper.

Definition 5. Two games are equivalent if they have identical best responses
to every combination of opponents’ strategies.

3 Symmetric Payoff Matrices

In this section we prove Theorem 2 about pairwise interaction games with sym-
metrisable payoff matrix A. The following lemma shows that there always exists
a pure Nash equilibrium for these games.

Lemma 1. An r-strategy pairwise-interaction game with symmetric payoff ma-
trix A has a pure Nash equilibrium.

Pairwise-Interaction Games 165

Proof. We prove this using a potential function ψ : Sn → R. Let s = (s1, . . . , sk,
. . . , sn) ∈ Sn be a pure strategy profile. Then ψ(s) is defined as

ψ(s) =
∑
k∈V

u
(
sk; n(k)

0 , . . . , n
(k)
r−1

)
=

∑
k∈V

∑
j∈S

n
(k)
j askj . (4)

Now suppose, at some point in the Nash dynamics, vertex k switches from its
current strategy sk to its best response s̄k, taking the strategy profile from s to
s̄ = (s1, . . . , s̄k, . . . , sn). Then the payoff of k increases by θk =

∑
j∈S as̄kjn

(k)
j −∑

j∈S askjn
(k)
j > 0, while the total payoff of the neighbours of k increases by

θN =
∑

j∈S ajs̄k
n

(k)
j − ∑

j∈S ajsk
n

(k)
j . By symmetry of A, we have θk = θN.

Hence we get ψ(s̄)−ψ(s) = θk + θN = 2θk > 0 . So, at every step of the Nash
dynamics, the potential function increases by a positive value. Thus, the Nash
dynamics converges. ��
Remark 1. The above proof shows that pairwise-interaction games with a sym-
metric payoff matrix belong to the class of weighted potential games [20]. The
weight for each player is 1/2: when a player improves his payoff by x, the potential
function increases by 2x.

The Nash dynamics converges for these games, but how long does this take? The-
orem 2 states that the convergence is fast for the games considered in Lemma 1.
To prove this, we need the following lemma.

Lemma 2. Any r × r payoff matrix A can be rescaled such that the minimum
difference between any two payoffs is one, and at least one payoff is zero. This
can be done without affecting the Nash equilibria or the symmetry of A. The
rescaling requires only constant time for fixed r.

Proof sketch of Theorem 2: We first rescale the payoff matrix using Lemma 2.
Then, there is at least one payoff 0 and another 1. We consider the remaining
payoffs as variables. Let v = (v1, . . . , vK)T denote the vector containing these
variables, where K is the total number of variables. As A is symmetric, we have
K = r(r+1)/2−2. Consider a vertex k with degree d. Let P (r, d) =

(
d+r−1

r−1

)
be

the number different neighbourhood configurations for k. Let ai (i ∈ [r]) denote
the rows of the payoff matrix. For each configuration of the neighbour strategies
np (p ∈ [

P]), the best response is determined by the ordering of ainp (i ∈ [r]).
Now, for each neighbourhood np (p ∈ [

P]), and each distinct pair of strategies i
and j (0 ≤ i, j ≤ r−1), we add the inequality (ai−aj)T np ≥ 1 if i yields a higher
payoff than j, and we add (ai − aj)T np = 0 if both strategies yield the same
payoff. These inequalities form a convex nonempty polyhedron in K-dimensional
space. It is nonempty because the original payoffs satisfy all these inequalities.
This polyhedron defines a class of games that are equivalent to A and have the
property that every best response move improves the player’s payoff by at least
1. Let Nv = b be the set of K inequalities that are tight at a vertex of the
polyhedron. Applying Cramer’s rule on this, we can find the coordinates of this

166 M. Dyer and V. Mohanaraj

vertex in terms of the elements of np’s. Then, Hadamard’s inequality can be used
to bound these coordinates in terms of Δ and r, which actually are the payoffs
of an equivalent game. In this context, we may allow exponential dependence on
r, since this is assumed to be constant. For the new, equivalent game, ψ(s) is
polynomially bounded and its value increases by at least 2 at every step. It can
then be shown that the Nash dynamics converges as claimed. �
Note that the computation of an equivalent game in the above proof is valid even
if A is not symmetric, except that K will now be r2 − 2. Hence, the following
holds by a similar proof to the one above.

Corollary 1. For any pairwise-interaction game with a fixed number of strate-
gies, there is an equivalent game with a payoff matrix whose entries are polyno-
mially bounded in n.

As mentioned before, the payoff matrix of any 2-strategy game can be sym-
metrised. Let A =

(
P T
S R

)
be the original payoff matrix. This can be symmetrised

to give P =
(

α 0
0 β

)
, where α = P − S and β = R − T (see Proposition 1). So,

Theorem 2 applies to these games. However, in the following theorem, we get
tighter results than that of Theorem 2 for regular graphs by exploiting the unique
properties of the game, albeit using essentially similar techniques.

Theorem 5. For any 2-strategy pairwise-interaction game on a Δ-regular graph
G = (V, E) with n vertices and m edges, starting from an arbitrary initial state,
the Nash dynamics converges in at most 3n/2 steps if α+β and β are of opposite
signs and m steps if they are of the same sign.

It might be possible to extend the above result to non-regular graphs. For ex-
ample, consider the unweighted cut game where α = β = −1. In this game, we
have 0 ≥ ψ(s) ≥∑

k∈V −dk = −2m, so it takes only m steps for convergence on
any graph. However, we have an alternative proof for general graphs.

Theorem 6. For any 2-strategy pairwise-interaction game with payoff matrix
A =

(
P T
S R

)
on a graph with n vertices and m edges, starting from an arbitrary

initial state, the Nash dynamics converges in at most (i) 3m− n steps if T > R
and S > P , (ii) 3m steps if T < R and S < P , (iii) n steps, otherwise.

Proof (Sketch). The proof is similar to the proofs of Lemma 1 and Theorem 5,
but uses an algorithm similar to the graph partitioning algorithm of [15].

4 Zero-Sum Games

In this section, we study pairwise interaction zero-sum games with r ≥ 3 strate-
gies and prove Theorem 3. The main tool of the proof is the following proposition.

Proposition 3. In a zero-sum pairwise-interaction game, the best response to
any neighbourhood configuration yields a nonnegative payoff. Furthermore, in
Nash equilibrium, every player earns zero payoff.

Pairwise-Interaction Games 167

The neighbourhoods in a Nash equilibrium can be characterised using the propo-
sition above.

Definition 6. In a zero-sum pairwise-interaction game, a neighbourhood will be
called a Nash Equilibrium neighbourhood (NE neighbourhood) if the best response
to the neighbourhood yields zero payoff.

Corollary 2. If n = (n0, . . . , nr−1)T is a NE neighbourhood, then An ≤ 0.

We now show that a highly nontrivial elimination of strategies is possible for
zero-sum games, which, in a sense, is much stronger than the usual iterated
elimination of dominated strategies. That is, if a strategy earns a negative payoff
in any NE neighbourhood, it can be eliminated, implying that any surviving
strategy is a best response to any NE neighbourhood.

Lemma 3. If a strategy earns a negative payoff when played against a NE neigh-
bourhood, no player will play it in any pure Nash equilibrium.

We now consider the question of the existence of NE neighbourhoods for rational
payoff matrices. But, as we shall see, this does not imply that a pure Nash
equilibrium exists in a d-regular graph.

Lemma 4. If A has rational entries then, for some integer d, there exists a NE
neighbourhood for a vertex of degree d.

The proof, which is omitted here, reveals a remarkable connection between a NE
neighbourhood in a zero-sum pairwise interaction game and the optimal mixed
strategy of the 2-player game. This suggests a heuristic approach to pairwise-
interaction games: from each player’s point of view, their neighbourhood can be
viewed as a single opponent playing a mixed strategy. For a general pairwise-
interaction game, this approach has no real validity. Since individual players are
not able to play mixed strategies, the above view is asymmetric. But, surpris-
ingly, for zero-sum games it is actually valid.

In this context, Lemma 4 can be linked to some well-known mixed strategy
results. Consider games with a unique mixed strategy, by which we mean the
games with a unique NE neighbourhood. These are games for which the surviving
strategies are completely mixed [17]. (A completely mixed strategy is one for
which every pure strategy has a positive probability.) Kaplansky [17] showed
that a symmetric two-player zero-sum game can be completely mixed only if the
number of strategies is odd. Thus, for games with a unique NE neighbourhood,
the number of surviving strategies must be odd. For the remainder of this section
we consider only payoff matrices A which have unique mixed strategies. But we
note that there is always a matrix arbitrarily close to A for which this is true.

Lemma 5. Let A = (aij) be an antisymmetric payoff matrix. Then, there al-
ways exists an antisymmetric payoff matrix B = (bij) that has a unique mixed
strategy and satisfies |aij − bij | ≤ 1/M (i, j ∈ [r]), for any M > 0.

Next, let us define an interesting computational problem related to improper
vertex colouring that will be used in the proof of Theorem 3.

168 M. Dyer and V. Mohanaraj

Definition 7. NASH-COLOURABLE is a decision problem whose instance is
a graph G = (V, E), a set of colours [r] and, for each vertex degree d in G, a set
of r nonnegative integers (cd

0, c
d
1 . . . , cd

r−1) such that d =
∑r−1

i=0 cd
i . The question

is whether there is an improper vertex colouring of G with r colours such that a
vertex with degree d has exactly cd

i neighbours with colour i ∈ [r].
If the answer is positive, the graph G will be said to be Nash colourable and

the particular assignment of colours will be called a Nash colouring of the graph.

Definition 8. (c0, c1, . . . , cr−1)Δ-NASH-COLOURABLE will mean the Nash
colouring problem for Δ-regular graphs. In this case we will write (cΔ

0 ,

cΔ
1 , . . . , cΔ

r−1) = (c0, c1, . . . , cr−1), so Δ =
∑r−1

i=0 cr. Since there is only one vertex
degree, we will specify (c0, c1, . . . , cr−1) in the prefix.

Proof sketch of Theorem 3: A Nash equilibrium in the zero-sum pairwise-
interaction game corresponds to a Nash colouring of the graph. The result then
following from Theorem 7 that NASH-COLOURABLE is NP-complete. �

Theorem 7. If r ≥ 3, and c0, c1, . . . , cr−1 are any positive integers such that∑r−1
i=0 ci = Δ, then (c0, c1, . . . , cr−1)Δ-NASH-COLOURABLE is NP-complete.

Proof (Sketch). The problem is clearly in NP. To prove that it is NP-hard, we
use a gadget-based reduction from CHROMATIC-INDEX of r-regular graphs to
(c0, c1, . . . , cr−1)Δ-NASH-COLOURABLE. The hardness then follows from the
result of [19] that CHROMATIC-INDEX is NP-complete for Δ-regular graphs
with degree Δ ≥ 3. ��

5 Some Further Results

The following two theorems consider some games whose Nash equilibria cor-
respond to maximal independent sets in the corresponding graphs. For these
games, Theorem 8 shows that exactly counting the Nash equilibria is hard while
Theorem 9 proves that even counting them approximately is hard.

Theorem 8. Suppose a 2-strategy pairwise-interaction game with payoff matrix
A =

(
P T
S R

)
is played on a graph of maximum degree 4. Then, if the payoffs

are such that T > R, S > P and 0 < γ < 1/4 or 3/4 < γ < 1, where γ =
(S − P)/(T + S − R − P), the problem of counting the pure Nash equilibria is
#P-complete.

Theorem 9. For the same game considered in Theorem 8 except that the game
is played on a graph of maximum degree 7 and the payoffs are such that 0 < γ <
1/7 or 6/7 < γ < 1, there does not exist a fully polynomial time approximation
scheme (FPTAS) to count the pure Nash equilibria unless RP=NP.

For some 2-strategy pairwise interaction games, computation of a pure Nash
equilibrium is inherently sequential, and the following theorem holds.

Pairwise-Interaction Games 169

Theorem 10. The problem of computing pure Nash equilibria is P-complete for
some 2-strategy pairwise-interaction games.

Thus finding a pure Nash equilibrium almost certainly cannot be done in con-
stant time, in sharp contrast to Theorem 1 for mixed Nash equilibria.

6 Open Problems

We have initiated a systematic study of pairwise-interaction games and presented
results for the games with symmetric or antisymmetric payoff matrix. A natural
extension of our work is to investigate the remaining case, i.e. the games with
asymmetric payoff matrices that are not antisymmetric. We have examples of
matrices of this kind for which it is easy to compute a pure Nash equilibrium.
Hence, we know that there are easy cases left to study, and we believe there are
also hard cases. But, we conjecture that there is a dichotomy: the problem of
deciding whether a pure Nash equilibrium exists is either in P or is NP-complete.
Similarly, we believe that for the problem of counting Nash equilibria there is a
dichotomy, thus the problem is in FP or is #P-complete. We leave finding the
dichotomy conditions as open problems. For the approximate counting problem,
we showed that there does not exist an FPTAS even for some 2-strategy games.
Classifying the complexity of approximately counting Nash equilibria for these
games we leave as another open question. In addition, considering our hardness
results, another topic of interest would be to explore approximate Nash equilibria
for these games.

Two-strategy pairwise-interaction games on the complete graph can be mod-
elled as congestion games [8]. In [1], the combinatorial structures in congestion
games that ensure that the Nash dynamics converges in polynomial time are
studied. It would be interesting to explore if there is any connection between
the congestion games with a polynomial time convergence and other pairwise-
interaction games with a polynomial time convergence.

References

1. Ackermann, H., Roglin, H., Vocking, B.: On the impact of combinatorial structure
on congestion games. In: Proceedings of the 47th IEEE Symposium on Foundations
of Computer Science (FOCS 2006), pp. 613–622 (2006)

2. Àlvarez, C., Gabarró, J., Serna, M.: Pure Nash equilibria in games with a large
number of actions. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS,
vol. 3618, pp. 95–106. Springer, Heidelberg (2005)

3. Berninghaus, S.K., Haller, H.: Pairwise interaction on random graphs, Tech. Report
06–16, Sonderforschungsbereich 504, University of Mannheim (February 2007)

4. Bhalgat, A., Chakraborty, T., Khanna, S.: Approximating pure Nash equilibrium
in cut, party affiliation, and satisfiability games. In: Proceedings of the 11th ACM
Conference on Electronic Commerce (EC 2010), pp. 73–82 (2010)

5. Brandt, F., Fischer, F., Holzer, M.: Equilibria of graphical games with symmetries.
In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 198–209.
Springer, Heidelberg (2008)

170 M. Dyer and V. Mohanaraj

6. Brandt, F., Fischer, F., Holzer, M.: Symmetries and the complexity of pure Nash
equilibrium. Journal of Computer and System Sciences 75, 163–177 (2009)

7. Chen, X., Deng, X.: Settling the complexity of two-player Nash equilibrium. In:
Proceedings of the 47th IEEE Symposium on Foundations of Computer Science
(FOCS 2006), pp. 261–272 (2006)

8. Cheng, S., Reeves, D.M., Vorobeychik, Y., Wellman, M.P.: Notes on the equilibria
in symmetric games. In: Proceedings of the 6th International Workshop on Game
Theoretic and Decision Theoretic Agents (GTDT 2004), pp. 71–78 (2004)

9. Conitzer, V., Sandholm, T.: New complexity results about Nash equilibria. Games
and Economic Behavior 63, 621–641 (2008)

10. Cowen, L.J., Goddard, W., Jesurum, C.E.: Defective coloring revisited. J. Graph
Theory 24, 205–219 (1995)

11. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a Nash equilibrium. Commun. ACM 52, 89–97 (2009)

12. Fabrikant, A., Papadimitriou, C.H., Talwar, K.: The complexity of pure Nash equi-
libria. In: Proceedings of the 36th ACM Symposium on Theory of Computing
(STOC 2004), pp. 604–612 (2004)

13. Fischer, F., Holzer, M., Katzenbeisser, S.: The influence of neighbourhood and
choice on the complexity of finding pure Nash equilibria. Information Processing
Letters 99, 239–245 (2006)

14. Gilboa, I., Zemel, E.: Nash and correlated equilibria: Some complexity considera-
tions. Games and Economic Behavior 1, 80–93 (1989)

15. Halldórsson, M.M., Lau, H.C.: Low-degree graph partitioning via local search with
applications to constraint satisfaction, max cut, and coloring. Journal of Graph
Algorithms and Applications 1, 1–13 (1997)

16. Hopfield, J.J.: Neural networks and physical systems with emergent collective com-
putational abilities. Proceedings of the National Academy of Sciences of the United
States of America 79, 2554–2558 (1982)

17. Kaplansky, I.: A contribution to von Neumann’s theory of games. The Annals of
Mathematics 46, 474–479 (1945)

18. Kearns, M.J., Littman, M.L., Singh, S.P.: Graphical models for game theory, Pro-
ceedings of the 17th Conference in Uncertainty in Artificial Intelligence (UAI 2001),
pp. 253–260 (2001)

19. Leven, D., Galil, Z.: NP-completeness of finding the chromatic index of regular
graphs. Journal of Algorithms 4, 35–44 (1983)

20. Monderer, D., Shapley, L.S.: Potential games. Games and Economic Behavior 14,
124–143 (1996)

21. Nash, J.: Non-cooperative games. The Annals of Mathematics 54, 286–295 (1951)
22. Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359, 826–

829 (1992)
23. Papadimitriou, C.H., Roughgarden, T.: Computing equilibria in multi-player

games. In: Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms
(SODA 2005), pp. 82–91 (2005)

24. Santos, F.C., Rodrigues, J.F., Pacheco, J.M.: Graph topology plays a determinant
role in the evolution of cooperation. Proceedings of the Royal Society B: Biological
Sciences 273, 51–55 (2006)

25. Schäffer, A.A., Yannakakis, M.: Simple local search problems that are hard to solve.
SIAM J. Comput. 20, 56–87 (1991)

Settling the Complexity of Local Max-Cut
(Almost) Completely�

Robert Elsässer and Tobias Tscheuschner

University of Paderborn
Faculty of Computer Science, Electrical Engineering and Mathematics

{elsa,chessy}@upb.de

Abstract. We consider the problem of finding a local optimum for the
Max-Cut problem with FLIP-neighborhood, in which exactly one node
changes the partition. Schäffer and Yannakakis (SICOMP, 1991) showed
PLS-completeness of this problem on graphs with unbounded degree.
On the other side, Poljak (SICOMP, 1995) showed that in cubic graphs
every FLIP local search takes O(n2) steps, where n is the number of
nodes. Due to the huge gap between degree three and unbounded degree,
Ackermann, Röglin, and Vöcking (JACM, 2008) asked for the smallest d
such that on graphs with maximum degree d the local Max-Cut problem
with FLIP-neighborhood is PLS-complete. In this paper, we prove that
the computation of a local optimum on graphs with maximum degree
five is PLS-complete. Thus, we solve the problem posed by Ackermann
et al. almost completely by showing that d is either four or five (unless
PLS ⊆ P).

On the other side, we also prove that on graphs with degree O(log n)
every FLIP local search has probably polynomial smoothed complex-
ity. Roughly speaking, for any instance, in which the edge weights are
perturbated by a (Gaussian) random noise with variance σ2, every FLIP
local search terminates in time polynomial in n and σ−1, with probability
1−n−Ω(1). Putting both results together, we may conclude that although
local Max-Cut is likely to be hard on graphs with bounded degree, it
can be solved in polynomial time for slightly perturbated instances with
high probability.

Keywords: Max-Cut, PLS, graphs, local search, smoothed complexity.

1 Introduction

For an undirected graph G = (V, E) with weighted edges w : E → N a cut is a
partition of V into two sets V1, V2. The weight of the cut is the sum of the weights
of the edges connecting nodes between V1 and V2. The Max-Cut problem asks
for a cut of maximum weight. Computing a maximum cut is one of the most
famous problems in computer science and is known to be NP-complete even
� Partially supported by the German Research Foundation (DFG) Priority Programme

1307 “Algorithm Engineering”.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 171–182, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

172 R. Elsässer and T. Tscheuschner

on graphs with maximum degree three [8]. For a survey of Max-Cut including
applications see [16].

A frequently used approach of dealing with hard combinatorial optimization
problems is local search. In local search, to every solution there is assigned
a set of neighbor solutions, i. e. a neighborhood. The search begins with an
initial solution and iteratively moves to better neighbors until no better neighbor
can be found. For a survey of local search, we refer to [13]. To encapsulate
many local search problems, Johnson et al. [9] introduced the complexity class
PLS (polynomial local search) and initially showed PLS-completeness for the
Circuit-Flip problem. Schäffer and Yannakakis [21] showed PLS-completeness
for many popular local search problems including the local Max-Cut problem
with FLIP-neighborhood – albeit their reduction builds graphs with linear degree
in the worst case. Moreover, they introduced the notion of so called tight PLS-
reductions which preserve not only the existence of instances and initial solutions
that are exponentially many improving steps away from any local optimum but
also the PSPACE-completeness of the computation of a local optimum reachable
by improving steps from a given solution.

In a recent paper Monien and Tscheuschner [14] showed the two properties
that are preserved by tight PLS-completeness proofs for the local Max-Cut
problem on graphs with maximum degree four. However, their proof did not use
a PLS-reduction; they left open whether the local Max-Cut problem is PLS-
complete on graphs with maximum degree four. For cubic graphs, Poljak [15]
showed that any FLIP-local search takes O(n2) improving steps, where Loebl
[12] earlier showed that a local optimum can be found in polynomial time using
an approach different from local search. Thus, it is unlikely that computing a
local optimum is PLS-complete on graphs with maximum degree three.

Due to the huge gap between degree three and unbounded degree, Ackermann
et al. [2] asked for the smallest d such that on graphs with maximum degree d
the computation of a local optimum is PLS-complete. In this paper, we show
that d is either four or five (unless PLS ⊆ P), and thus solve the above problem
almost completely. A related problem has been considered by Krentel [10]. He
showed PLS-completeness for a satisfiability problem with trivalent variables, a
clause length of at most four, and maximum occurrence of the variables of three.

Our result has impact on many other problems, since the local Max-Cut
has been the basis for many PLS-reductions in the literature. Some of these
reductions directly carry over the property of maximum degree five in some
sense and result in PLS-completeness of the corresponding problem even for
very restricted sets of feasible inputs. In particular, PLS-completeness follows
for the Max-2Sat problem [21] with FLIP-neighborhood, in which exactly one
variable changes its value, even if every variable occurs at most ten times. PLS-
completeness also follows for the problem of computing a Nash Equilibrium in
Congestion Games (cf. [6], [2]) in which each strategy contains at most five
resources. The problem to Partition [21] a graph into two equally sized sets of
nodes by minimizing or maximizing the weight of the cut, where the maximum
degree is six and the neighborhood consists of all solutions in which two nodes of

Settling the Complexity of Local Max-Cut (Almost) Completely 173

different partitions are exchanged, is also PLS-complete. Moreover, our PLS-
completeness proof was already helpful showing a complexity result in hedonic
games [7].

In this paper, we also consider the smoothed complexity of any FLIP local
search on graphs in which the degrees are bounded by O(log n). This performance
measure has been introduced by Spielman and Teng in their seminal paper on the
smoothed analysis of the Simplex algorithm [19]1. Since then, a large number
of papers deal with the smoothed complexity of different algorithms. In most
cases, smoothed analysis is used to explain the speed of certain algorithms in
practice, which have an unsatisfactory running time according to their worst
case complexity.

The smoothed measure of an algorithm on some input instance is its expected
performance over random perturbations of that instance, and the smoothed com-
plexity of an algorithm is the maximum smoothed measure over all input in-
stances. In the case of an LP, the goal is to maximize zT x subject to Ax ≤ b,
for given vectors z, b, and matrix A, where the entries of A are perturbated by
Gaussian random variables with mean 0 and variance σ2. That is, we add to each
entry ai,j some value maxi,j ai,j · yi,j , where yi,j is a Gaussian random variable
with mean 0 and standard deviation σ. Spielman and Teng showed that an LP,
which is perturbated by some random noise as described before, has expected
running time polynomial in n, m, and σ. This result has further been improved
by Vershynin [22]. The smoothed complexity of other linear programming al-
gorithms has been considered in e.g. [3], and quasi-concave minimization was
studied in [11].

Several other algorithms from different areas have been analyzed w. r. t. their
smoothed complexity (see [20] for a comprehensive description). Two prominent
examples of local search algorithms with polynomial smoothed complexity are
2-opt TSP [5] and k-means [1]. We also mention here the papers of Beier, Röglin,
and Vöcking [4,18] on the smoothed analysis of integer linear programming. They
showed that if Π is a certain class of integer linear programs, then Π has an
algorithm of probably polynomial smoothed complexity2 iff Πu ∈ ZPP , where
Πu is the unary representation of Π , and ZPP denotes the class of decision
problems solvable by a randomized algorithm with polynomial expected running
time that always returns the correct answer. The results of [4,18] imply that
e.g. 0/1-knapsack, constrained shortest path, and constrained minimum weighted
matching have probably polynomial smoothed complexity. Unfortunately, the
results of these papers cannot be used to settle the smoothed complexity of local
Max-Cut.

Overview. In section 3, we introduce a technique by which we substitute graphs
whose nodes of degree greater than five have a certain type – we will call these
nodes comparing – by graphs of maximum degree five. In particular, we show
that certain local optima in the former graphs induce unique local optima in

1 For this work, Spielman and Teng was awarded the Gödel Prize in 2008.
2 For the definition of probably polynomial smoothed complexity see Section 5.

174 R. Elsässer and T. Tscheuschner

the latter ones. In section 4 we show an overview of the proof of the PLS-
completeness of computing a local optimum of Max-Cut on graphs with maxi-
mum degree five by reducing from the PLS-complete problem CircuitFlip. In
a nutshell, we map instances of CircuitFlip to graphs whose nodes of degree
greater than five are comparing. Some parts of the graphs are adjustments of
subgraphs of the PLS-completeness proof of [21]. Then, using our technique, we
show that local optima for these graphs induce local optima in the corresponding
instances of CircuitFlip.

In section 5 we show that on graphs with degree O(log n) local Max-Cut has
probably polynomial smoothed complexity. To obtain this result, we basically
prove that every improving step w. r. t. the FLIP-neighborhood increases the
cut by at least a polynomial value in n and/or σ, with high probability.

2 Preliminaries

A graph G together with a 2-partition P of V is denoted by GP . We let cGP :
V → {0, 1} with cGP (u) = 1 if and only if u ∈ V1 in GP . We let cGP (u) be the
color of u in GP , where u is white if cGP (u) = 0 and black otherwise. If the
considered graph is clear from the context then we also just write cP (v) and if
even the partition is clear then we omit the whole subscript. For convenience we
treat the colors of the nodes also as truth values, i. e. black corresponds to true
and white to false. For a vector v of nodes we let c(v) be the vector of colors
induced by c. We say that an edge {u, v} is in the cut in P if cP (u) 	= cP (v).
For a node u we say that u flips if it changes the partition. A node u is happy in
GP if a flip of u does not increase the weight of the cut, and unhappy otherwise.
Since we consider weighted graphs, we also say that a flip increases the cut if it
increases the weight of the cut. A partition P is a local optimum if all nodes
in GP are happy.

A local search problem Π consists of a set of instances I, a set of feasible
solutions F(I) for every instance I ∈ I, and an objective function f : F(I) → Z.
In addition, every solution s ∈ F(I) has a neighborhood N (s, I) ⊆ F(I). For
an instance I ∈ I, the problem is to find a solution s ∈ F(I) such that for all
s′ ∈ N (s, I) solution s′ does not have a greater value than s with respect to f
in case of maximization and not a lower value in case of minimization.

A local search problem Π is in the class PLS [9] if the following three poly-
nomial time algorithms exist: algorithm A computes for every instance I ∈ I a
feasible solution s ∈ F(I), algorithm B computes for every I ∈ I and s ∈ F(I)
the value f(s), and algorithm C returns for every I ∈ I and s ∈ F(I) a better
neighbor solution s′ ∈ N (s, I) if there is one and “locally optimal” otherwise. A
problem Π ∈ PLS is PLS-reducible to a problem Π ′ ∈ PLS if there are the
following polynomial time computable functions Φ and Ψ . The function Φ maps
instances I of Π to instances of Π ′ and Ψ maps pairs (s, I), where s is a solution
of Φ(I), to solutions of I, such that for all instances I of Π and local optima
s∗ of Φ(I) the solution Ψ(s∗, I) is a local optimum of I. Finally, a problem Π ∈
PLS is PLS-complete if every problem in PLS is PLS-reducible to Π.

Settling the Complexity of Local Max-Cut (Almost) Completely 175

In our technique, as well as in the PLS-completeness proof, we make use of
a result of Monien and Tscheuschner [14]. They showed a property for a set of
graphs containing two certain types of nodes of degree four.

Since we do not need their types in this paper, we omit the restrictions on the
nodes and use the following weaker proposition.

Lemma 1 ([14]). Let Cf be a boolean circuit with N gates which computes a
function f : {0, 1}n → {0, 1}m. Then, using O(logN) space, one can compute
a graph Gf = (Vf , Ef) with maximum degree four containing nodes s1, . . . , sn,
t1, . . . , tm ∈ Vf of degree one such that for the vectors s := (s1, . . . , sn), t :=
(t1, . . . , tn) we have f(cP (s)) = cP (t) in every local optimum P of Gf .

Definition 1. For a polynomial time computable function f we say that Gf =
(Vf , Ef) as constructed in Lemma 1 is the graph that looks at the input nodes
si ∈ Vf and biases the output nodes ti ∈ Vf to have the colors induced by f .

Usage of Lemma 1. Notice first that Gf can be constructed in logarithmic
space and thus polynomial time for any polynomial time computable function
f . In the rest of the paper we use the graph Gf for several functions f and
we will scale the weights of its edges. Then, the edges of Gf give incentives of
appropriate weight to certain nodes of those graphs to which we add Gf . The
incentives bias the nodes to take the colors induced by f . We already point
out that for any node v we will introduce at most one subgraph that biases v.
Moreover, the unique edge e = {u, v} incident to a biased node v that is an edge
of the subgraph that biases v will in many cases have the lowest weight among
the edges incident to v. In particular, the weight of e will then be chosen small
enough such that the color of v, in local optima, depends on the color of u if and
only if v is indifferent with respect to the colors of the other nodes adjacent to
v. Note that in local optima the node u has the opposite color as the color to
which v is biased according to f .

3 Substituting Certain Nodes of Unbounded Degree

Definition 2. Let G = (V, E) be a graph. A node v ∈ V is called comparing
if there is an m ∈ N such that

(i) v is adjacent to exactly 2m + 1 nodes u1
1, u

2
1, u

1
2, u

2
2, . . . , u

1
m, u2

m, u ∈ V \ {v}
with edge weights a1, . . . , am, δ, as shown in Figure 1,

(ii) u is a node of a subgraph G′ = (V ′, E′) of G that looks at a subset of
V \ {u, v} and biases v,

(iii) ai ≥ 2ai+1 for all 1 ≤ i < m and am ≥ 2δ.

The subgraph G′ is called the biaser of v. For uj
i with 1 ≤ i ≤ m, 1 ≤ j ≤ 2

we call the node uk
i with 1 ≤ k ≤ 2 and k 	= j adjacent to v via the unique edge

with the same weight as {uj
i , v} the counterpart of uj

i with respect to v.

176 R. Elsässer and T. Tscheuschner

Fig. 1. Node v is a comparing node

The name of the comparing node stems from its behaviour in local optima. If
we treat the colors of the neighbors u1

1, . . . , u
1
m of v as a binary number a, with

u1
1 being the most significant bit, and the colors of u2

1, . . . , u
2
m as the bitwise

complement of a binary number b then, in a local optimum, the comparing node
v is white if a > b, it is black if a < b, and if a = b then v has the color to which
it is biased by its biaser. In this way, the color of v “compares” a and b in local
optima.

Fig. 2. The gadget that substitutes a comparing node v

In the following, we let G = (V, E) be a graph and v ∈ V be a comparing
node with adjacent nodes and incident edges as in Figure 1. We say that we
degrade v if we remove v and its incident edges and add the following nodes
and edges. We introduce nodes vk

i,j for 1 ≤ i < m, 1 ≤ j ≤ 2, 1 ≤ k ≤ 2, nodes
vk

m,1 for 1 ≤ k ≤ 2, and v1
m,2 with edges and weights as depicted in Figure 2 – the

nodes uj
i in Figure 2 have gray circumcircles to indicate that they, in contrast

to the other nodes, also occur in G. Furthermore, we add a subgraph G′′ that
looks at u and biases all nodes vk

i,1 to the opposite of the color of u (this is
illustrated by short gray edges in Figure 2) and the nodes vk

i,2 to the color of u
(short gray dashed edges). The weights of the edges of G′′ are scaled such that
each of them is strictly smaller than δ. Note that due to the scaling the color of
the unique node of G′′ adjacent to u does not affect the happiness of u – node

Settling the Complexity of Local Max-Cut (Almost) Completely 177

u is therefore not depicted in Figure 2 anymore. We let G(G,v) be the graph
obtained from G by degrading v and we call v weakly indifferent in a partition
P if cP (u1

i) 	= cP (u2
i) for all 1 ≤ i ≤ m. If v is not weakly indifferent then we call

the two nodes u1
i , u

2
i adjacent to v via the edges with highest weight for which

cP (u1
i) = cP (u2

i) the decisive neighbors of v in P . We let Vcom ⊆ V be the
set of comparing nodes of V , and for a partition P of the nodes of G(G, v) we
let colP : Vcom → {0, 1} be the partial function defined by

colP (v) =

{
0, if for all i, j : cP (vj

i,1) = 0 and cP (vj
i,2) = 1,

1, if for all i, j : cP (vj
i,1) = 1 and cP (vj

i,2) = 0.

We say that a comparing node v has the color κ ∈ {0, 1} in a partition P if
colP (v) = κ.

Theorem 1. Let G = (V, E) be a graph, v ∈ V a comparing node, its adjacent
nodes and incident edges as in Figure 1, P be a local optimum of G such that in
P the biaser of v biases v to cP (v), i. e. cP (u) 	= cP (v). Let P ′ be a partition of
the nodes of G(G, v) such that cP (w) = cP ′(w) for all w ∈ V \ {v}. Then, P ′ is
a local optimum if and only if cP (v) = colP ′(v).

Note the restriction that in the local optimum P the biaser of v biases v to the
color that v in fact has in P and not to the opposite. In the PLS-completeness
proof in section 4 the biaser of any comparing node v is designed to bias v to
the color that v has in a local optimum due the colors of its neighbors. Then,
we can use Theorem 1 to argue about the color of v.

Proof. Let κ ∈ {0, 1} be the color to which v is biased by its biaser in P , i. e.
κ := cP (v). For all i, j we call the color of vj

i,1 correct if cP ′(vj
i,1) = κ and we

call the color of vj
i,2 correct if cP ′(vj

i,2) = κ. Moreover, we call vk
i,j correct for

any i, j, k if it has its correct color.
“⇒”: Let P ′ be a local optimum. Note that each node vk

i,j is biased by an edge
with weight lower than δ to its correct color. Therefore, to show that it is correct
in the local optimum P ′, it suffices to show that it gains at least half of the sum
of weights of the incident edges with weight greater than δ if it is correct. We
prove the Theorem by means of the following Lemmas which are each proven
via straightforward inductive arguments.

Lemma 2. Let q ≤ m and cP (u1
i) = κ for all i ≤ q. Then, v1

i,1 and v1
i,2 are

correct for all i ≤ q.

Lemma 3. Let q ≤ m, node v1
i,1 and v1

i,2 be correct for all i ≤ q, and v2
q,1 be

correct. Then, v2
i,1 and v2

i,2 are correct for all i < q.

Lemma 4. Let q ≤ m. If v1
q,1 and v2

q,1 are correct then vk
i,j is correct for any

j, k, and q ≤ i ≤ m.

We first consider the case that v is weakly indifferent. Then, for each i at least
one of the nodes u1

i and u2
i has the color κ. Due to the symmetry between the

178 R. Elsässer and T. Tscheuschner

nodes v1
i,j and v2

i,j we may assume w. l. o. g. that cP (u1
i) = κ for all i. Then,

Lemma 2 implies that v1
i,1 and v1

i,2 are correct for all i. Then, the correctness of
v1

m,2 and v1
m−1,2 together imply the correctness of v2

m,1. Then, Lemma 3 implies
the correctness of v2

i,1 and v2
i,2 for all i < m.

Now assume that v is not weakly indifferent and let u1
q and u2

q be the decisive
neighbors of v. As in the previous case we assume w. l. o. g. that cP (u1

i) = κ for
all i ≤ q. Then, due to Lemma 2 node v1

i,1 and v1
i,2 are correct for all i ≤ q. If

q = 1 then c(u2
1) = κ implies the correctness of v2

1,1 – recall that by assumption
v is biased to the opposite color of the color of the decisive nodes. On the other
hand, if q > 1 then the correctness of v1

q−1,2 and c(u2
q) = κ together imply the

correctness of v2
q,1. Then, Lemma 3 implies the correctness of v2

i,1 and v2
i,2 for all

i < q. Finally, Lemma 4 implies the correctness of vk
i,j for all j, k, and q ≤ i ≤ m.

“⇐”: Assume, that every node vk
i,j is correct. As we have seen in “⇒” vk

i,j

is happy then. Moreover, each uj
i is also happy since its neighbors have the

same colors as in the local optimum P – recall that if vj
i,1 is correct it has the

same color in P ′ as v in P . The colors of the remaining nodes are unchanged.
Therefore, P ′ is a local optimum. This finishes the proof of Theorem 1. ��

4 Proof of PLS-Completeness

Our reduction bases on the following PLS-complete problem CircuitFlip (in
[9] it is called Flip, which we avoid in this paper since the neighborhood of
Max-Cut has the same name).

Definition 3 ([9]). An instance of CircuitFlip is a boolean circuit C with
n input bits and m output bits. A feasible solution of CircuitFlip is a vector
v ∈ {0, 1}n of input bits for C and the value of a solution is the output of C
treated as a binary number. Two solutions are neighbors if they differ in exactly
one bit. The objective is to maximize the output of C.

Theorem 2. The problem of computing a local optimum of the Max-Cut prob-
lem on graphs with maximum degree five is PLS-complete.

Proof Sketch: Let C be a boolean circuit with n inputs. W. l. o. g. we make
the following two assumptions. First, C only consists of NOR-gates GN , . . . , G1,
where Gm, . . . , G1 return the output. Second, the gates Gm+n, . . . , Gm+1 return
an improving solution for the given input if there is one and return the input
if it is a local optimum. From C we construct a graph GC consisting of two
isomorphic subgraphs G0

C , G1
C representing copies of C – the overall structure of

our proof is inspired by [10]. For each gate Gi in C there is a subgraph Sκ
i for

κ ∈ {0, 1} in GC . The subgraphs Sκ
i are taken from [21] and adjusted such that

they have maximum degree five without changing local optima. In particular,
each Sκ

i contains a comparing node gκ
i whose color represents the output of

Gi. To maintain a maximum degree of five we assume that gκ
i is degraded in

GC and argue via Theorem 1 about its color in local optima. Then, the colors

Settling the Complexity of Local Max-Cut (Almost) Completely 179

of the nodes of Sκ
i , in local optima, either behave as a NOR-gate or have a

reset state, i. e. a state in which each input node of Sκ
i is indifferent w. r. t. its

neighbors in Sκ
i . For each κ ∈ {0, 1} we have a subgraph T κ that looks at gκ

i for
m+1 ≤ i ≤ m+n, i. e. at the improving solution, and biases each input node of
Gκ

C to the color of its corresponding gκ
i . Finally, we have a subgraph that looks

at the input nodes of G0
C , G1

C , decides whose input results in a greater output
w. r. t. C – this subgraph is called winner as opposed to the loser which is
the other subgraph – and biases the subgraphs Sκ

i of the winner to behave like
NOR-gates and the subgraphs of the loser to take the reset state.

Then, we show that the colors of the subgraphs Sκ
i of the winner in fact reflect

the correct outputs w. r. t their inputs and that the input nodes of the loser in
fact are indifferent w. r. t. their neighbors in the subgraphs Sκ

i . Then, due to the
bias of T κ, the input nodes of the loser take the colors of the improving neighbor
computed by the winner whereafter the loser becomes the new winner. Hence,
the improving solutions switch back and forth between the two copies until the
colors of the input nodes of both copies are local optima and the copies return
their input as improving solution. Then, the colors of the input nodes induce a
local optimum of C. �

5 Smoothed Complexity of Local Max-Cut

We consider the smoothed complexity of local Max-Cut for graphs with de-
gree O(log n). Smoothed analysis, as introduced by Spielman and Teng [19], is
motivated by the observation that practical data is often subject to some small
random noise. Formally, let Ωn,m be the set of all weighted graphs with n ver-
tices and m edges, in which each graph has maximum degree O(log n). In this
paper, if A is an algorithm on graphs with maximum degree O(log n), then the
smoothed complexity of A with σ-Gaussian perturbation is

Smoothedσ
A(n) = max

m
max

G∈Ωn,m

Exm
[TA(Gwmax·xm)],

where xm = (x1, . . . , xm) is a vector of length m, in which each entry is an
independent Gaussian random variable of standard deviation σ and mean 0.
Exm

indicates that the expectation is taken over vectors xm according to the
distribution described before, TA(G) is the running time of A on G, and Gwmax·xm

is the graph obtained from G by adding wmax · xi to the weight of the i-th edge
in G, where wmax is the largest weight in the graph. We assume that the edges
are considered according to some arbitrary but fixed ordering.

According to Spielman and Teng, an algorithm A has polynomial smoothed
complexity if there exist positive constants c′, n0, σ0, k1, and k2 such that for
all n > n0 and 0 ≤ σ < σ0 we have

Smoothedσ
A(n) < c′nk1 · σ−k2 .

In this paper, we use a relaxation of polynomial smoothed complexity [20], which
builds up on Blum and Dungan [3] (see also Beier and Vöcking [4]). According to

180 R. Elsässer and T. Tscheuschner

this relaxation, an algorithm A has probably polynomial smoothed complexity
if there exist positive constants c′, n0, σ0, and α such that for all n > n0 and
0 ≤ σ < σ0 we have

max
m

max
G∈Ωn,m

Exm
[T α

A(Gwmax·xm)] <
c′n
σ

.

Theorem 3. Let A be some FLIP local search algorithm for local Max-Cut.
Then, A has probably polynomial smoothed complexity on any graph with maxi-
mum degree O(log n).

Proof. Let V = {v1, . . . , vn}, and denote by di the degree of vi. Furthermore, let
wi,j be the weight of egde (vi, vj). Let m = |E|, and xm = (x1, . . . , xm) a vector
of Gaussian random variables of standard deviation σ and mean 0. Alternatively,
we denote by xi,j the Gaussian random variable which perturbates edge (vi, vj),
i. e., w̃i,j = wi,j + wmax · xi,j represents the weight of (vi, vj) in the perturbated
graph Gwmax·xm .

In the following, G is an arbitrary graph in Ωn,m where m = O(n log n). We
show that for any δ ∈ (0, 1) there are constants c′, n0, σ0, k1, and k2 such that
for all n > n0 and 0 ≤ σ < σ0 we obtain

Prxm
[TA(Gwmax·xm) < δ−2c′nk1 · σ−k2] > 1 − δ. (1)

Then, (1) implies the statement of the theorem (cf. [4]).
In order to show the inequality above, we make use of the fact that the sum of

k Gaussian random variables with variance σ2 and mean 0 is a Gaussian random
variable with variance kσ2 and mean 0. Let X1, . . . , Xk be k Gaussian random
variables with variance σ2 and mean 0. Furthermore, let a be some real number,
and S ⊂ {1, . . . , k}. Then, for some large constant c and any δ′ ∈ (0, 1) we have

Pr

⎡⎣∣∣∣∣∣∣
∑
j∈S

Xj −
∑
j
∈S

Xj − a

∣∣∣∣∣∣ ≤ δ′σ
c · 2k

⎤⎦ ≤ δ′ · 2−k. (2)

In order to show the theorem, we normalize the weights by setting the largest
weight to 1, and dividing all other weights by wmax. That is, we obtain some
graph G′ with weights w′

i,j = wi,j/wmax. The edge weights of G′ are perturbated
accordingly by Gaussian random variables with variance σ2 and mean 0. Clearly,
TA(G′) = TA(G) and Pr[TA(G′xm) < δ−1c′nk1 · σ−k2] = Pr[TA(Gwmax·xm) <
δ−1c′nk1 · σ−k2]. Therefore, we consider G′ instead of G in the rest of the proof.

In the next step, we show that for an arbitrary but fixed partition P of G′ and
node vi, flipping vi increases (or decreases) the cut by Ω

(
δσ

n2di

)
, with probability

1− δ/2 ·n−12−di . This is easily obtained from Equation (2) in the following way.
Define S′ to be the set of the neighbors of vi, which are in the same partition
as vi according to P . Let e1, . . . , edi be the edges incident to vi, and denote
by w1, . . . , wdi the weights of these edges in G′. We assume w. l. o. g. that
e1, . . . , e|S′| have both ends in the same partition as vi, and S = {1, . . . , |S′|}.

Settling the Complexity of Local Max-Cut (Almost) Completely 181

Furthermore, let a =
∑

j
∈S wj −∑
j∈S wj , k = di, and δ′ = δ/(2n). Applying

now Equation (2) we obtain the desired result.
For a node vi, there are at most

∑di

i=0

(
di

i

)
= 2di possibilities to partition the

edges into two parts, one subset in the same partition as vi and the other subset
in the other partition. Therefore, by applying the union bound we conclude that
any flip of an unhappy vi increases the cut by Ω

(
δσ

n2di

)
, with probability at least

1 − δ/2 · n−1. Since there are n nodes in total, we may apply the union bound
again, and obtain that every flip (carried out by some unhappy node) increases
the cut by Ω

(
δσ

n2di

)
, with probability at least 1 − δ/2. Since di = O(log n) and

the largest weight in G′ is 1, we conclude that the largest cut in G′ may have
weight O(n log n). Furthermore, for each i we have |xi| ≤ l

√
ln n with probability

1 − O(n−l) whenever l is large enough (remember that σ < 1). Let A1 be the
event that there is some xi with |xi| = ω(log n), and A2 is the event that there
is a node vi and a partition P such that flipping vi increases the cut by at most
τ
(

δσ
n2di

)
, where τ is a very small constant. We know that Pr[A1] = n−ω(1) and

Pr[A2] < δ/2. Thus, as long as δ = n−O(1), the total number of steps needed by
A is at most

TA(G′xm) = O

(
n2 log2 n2di

δσ

)
=

nO(1)

δσ

with probability 1 − (Pr[A1] + Pr[A2]) > 1 − δ. The case δ = n−Ω(1) is omitted
due to space limitations. ��

6 Conclusion and Open Problems

In this paper, we introduced a technique by which we can substitute graphs
with certain nodes of unbounded degree, namely so called comparing nodes, by
graphs with nodes of maximum degree five such that local optima of the former
graphs induce unique local optima of the latter ones. Using this technique, we
show that the problem of computing a local optimum of the Max-Cut problem
is PLS-complete even on graphs with maximum degree five. We do not show
that our PLS-reduction is tight, but the tightness of our reduction would not
result in the typical knowledge gain anyway since the properties that come along
with the tightness of PLS-reductions, namely the PSPACE-completeness of the
standard algorithm problem and the existence of instances that are exponentially
many improving steps away from any local optimum, are already known for the
maximum degree four [14]. The obvious remaining question is to ask for the
complexity of local Max-Cut on graphs with maximum degree four. Is it in
P? Is it PLS-complete? Another important question is whether local Max-
Cut has in general probably polynomial smoothed complexity. Unfortunately,
the methods used so far seem not to be applicable to show that in graphs with
super-logarithmic degree the local Max-Cut problem has probably polynomial
smoothed complexity (cf. also [17]).

Acknowledgement. We thank Dominic Dumrauf, Martin Gairing, Martina
Hüllmann, Burkhard Monien, and Rahul Savani for helpful suggestions.

182 R. Elsässer and T. Tscheuschner

References

1. Arthur, D., Manthey, B., Röglin, H.: k-Means has polynomial smoothed complexity.
In: FOCS 2009, pp. 405–414 (2009)

2. Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure
on congestion games. Journal of the ACM (JACM) 55(6), art. 25 (2008)

3. Blum, A., Dunagan, J.: Smoothed analysis of the perceptron algorithm for linear
programming. In: SODA, pp. 905–914 (2002)

4. Beier, R., Vöcking, B.: Typical properties of winners and losers in discrete opti-
mization. In: STOC, pp. 343–352 (2004)

5. Englert, M., Röglin, H., Vöcking, B.: Worst case and probabilistic analysis of the
2-Opt algorithm for the TSP. In: SODA, pp. 1295–1304 (2006)

6. Fabrikant, A., Papadimitriou, C.H., Talwar, K.: The complexity of pure Nash Equi-
libria. In: STOC, pp. 604–612 (2004)

7. Gairing, M., Savani, R.: Computing stable outcomes in hedonic games. In: Kon-
togiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) Algorithmic Game Theory.
LNCS, vol. 6386, pp. 174–185. Springer, Heidelberg (2010)

8. Garey, M.R., Johnson, D.S.: Computers and intractability, a guide to the theory
of NP-completeness. Freeman, New York (1979)

9. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search?
Journal of Computer and System Sciences 37(1), 79–100 (1988)

10. Krentel, M.W.: Structure in locally optimal solutions. In: FOCS, pp. 216–221
(1989)

11. Kelner, J.A., Nikolova, E.: On the hardness and smoothed complexity of quasi-
concave minimization. In: FOCS, pp. 472–482 (2007)

12. Loebl, M.: Efficient maximal cubic graph cuts. In: Leach Albert, J., Monien, B.,
Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 351–362. Springer,
Heidelberg (1991)

13. Monien, B., Dumrauf, D., Tscheuschner, T.: Local search: Simple, successful, but
sometimes sluggish. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der
Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 1–17. Springer,
Heidelberg (2010)

14. Monien, B., Tscheuschner, T.: On the power of nodes of degree four in the local
max-cut problem. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol. 6078,
pp. 264–275. Springer, Heidelberg (2010)

15. Poljak, S.: Integer linear programs and local search for max-cut. SIAM Journal on
Computing 21(3), 450–465 (1995)

16. Poljak, S., Tuza, Z.: Maximum cuts and largest bipartite subgraphs. Combinatorial
Optimization, pp. 181–244. American Mathematical Society, Providence (1995)

17. Röglin, H.: Personal communication (2010)
18. Röglin, H., Vöcking, B.: Smoothed analysis of integer programming. Math. Pro-

gram. 110(1), 21–56 (2007)
19. Spielmann, D., Teng, S.-H.: Smoothed analysis of algorithms: Why the simplex

algorithm usually takes polynomial time. Journal of the ACM (JACM) 51(3), 385–
463 (2004)

20. Spielmann, D., Teng, S.-H.: Smoothed analysis: an attempt to explain the behavior
of algorithms in practice. Commun. ACM 52(10), 76–84 (2009)

21. Schäffer, A.A., Yannakakis, M.: Simple local search problems that are hard to solve.
SIAM Journal on Computing 20(1), 56–87 (1991)

22. Vershynin, R.: Beyond Hirsch Conjecture: Walks on Random Polytopes and
Smoothed Complexity of the Simplex Method. In: FOCS, pp. 133–142 (2006)

Clique Clustering Yields a PTAS for

max-Coloring Interval Graphs

Tim Nonner

IBM Research - Zurich
tno@zurich.ibm.com

Abstract. We are given an interval graph G = (V, E) where each in-
terval I ∈ V has a weight wI ∈ R

+. The goal is to color the intervals
V with an arbitrary number of color classes C1, C2, . . . , Ck such that∑k

i=1 maxI∈Ci wI is minimized. This problem, called max-coloring inter-
val graphs, contains the classical problem of coloring interval graphs as a
special case for uniform weights, and it arises in many practical scenar-
ios such as memory management. Pemmaraju, Raman, and Varadarajan
showed that max-coloring interval graphs is NP-hard (SODA’04) and
presented a 2-approximation algorithm. Closing a gap which has been
open for years, we settle the approximation complexity of this problem
by giving a polynomial-time approximation scheme (PTAS), that is, we
show that there is an (1+ ε)-approximation algorithm for any ε > 0. Be-
sides using standard preprocessing techniques such as geometric rounding
and shifting, our main building block is a general technique for trading
the overlap structure of an interval graph for accuracy, which we call
clique clustering.

1 Introduction

Coloring a given graph G = (V, E) is a classical NP-hard problem in combinato-
rial optimization. One reason why graph coloring has been studied so extensively
is the fact that many practical problems in scheduling and planning can be for-
mulated in such a way. The arguably simplest example is that the nodes V
represent tasks which need to be partitioned into color classes of pairwise non-
conflicting tasks, where a conflict between two tasks is indicated by an edge in
E connecting them. All tasks in one color class may share a common resource,
and hence minimizing the number of color classes also minimizes the number
of needed resources. It is natural to assume that each task requires a resource
during a given time interval, and thus two tasks conflict if their time intervals
intersect. This results in an interval graph, and, in this case, we may think of the
nodes in V as intervals, of color classes as sets of pairwise disjoint intervals, and
of cliques as sets of intervals with non-empty intersection. It is folklore that an
optimal coloring of a given interval graph can be found in polynomial time using
the first-fit strategy: sort the intervals according to their left endpoints, and then
iteratively assign colors according to this ordering. For example, in the sample
instance in Figure 1, where I2 overlaps exactly with I1 and I3 and I3 overlaps

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 183–194, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

184 T. Nonner

exactly with I2 and I4, this gives the color classes {I1, I3} and {I2, I4}. In con-
strast, finding an optimal coloring of a general graph is hard to approximate
even within n1−ε for any ε > 0, unless NP ⊆ ZPP [7].

However, coloring interval graphs fails to express non-uniform resource re-
quirements. For instance, a resource might be a buffer and the tasks memory
requests of different size that need to be buffered during a given time inter-
val [18]. In this case, a buffer used by different non-conflicting requests needs
to be large enough to hold any such request. We can model this extension by
assigning a weight wI ∈ R

+ to each interval I ∈ V that represents the size of
the corresponding request, and hence the buffer assigned to a color class C of
requests needs to have at least size maxI∈C wI . Thus, finding an optimal coloring
in this context is called max-coloring interval graphs : partition a given interval
graph G = (V, E) into an arbitrary number of color classes C1, C2, . . . , Ck such
that

∑k
i=1 maxI∈Ci wI is minimized. The classical problem of coloring interval

graphs is contained as a special case by using uniform weights.

weight

1
3

I1
I2 I3

I4

Fig. 1. Sample intervals

Previous work. Unfortunately, the first-fit strategy does not work for max-
coloring interval graphs. For example, assume that the y-axis in Figure 1 repre-
sents the interval weights. Therefore, wI1 = wI4 = 3 and wI2 = wI3 = 1. The
coloring of the first-fit strategy listed above gives cost 3 + 3 = 6, whereas an
optimal max-coloring with color classes {I1, I4}, {I2}, and {I3} only gives cost
3 + 1 + 1 = 5. Indeed, it has been shown by Pemmaraju, Raman, and Varadara-
jan [18] that max-coloring interval graphs is NP-hard. A simplified proof was
given by the same authors in [17] by a reduction from coloring circular arc graphs,
a superclass of interval graphs. They also conjectured APX-hardness [18], but
this conjecture is no longer valid [19]. Finally, they presented an 2-approximation
algorithm for max-coloring interval graphs [18], and Pemmaraju and Raman [16]
showed later on that any graph class that admits an α-approximation algorithm
for coloring also admits a 4α-approximation algorithm for max-coloring. Recall
here than an α-approximation algorithm yields a solution in polynomial time
whose cost is at most α times the cost of an optimal solution. Hence, since it
is a well-known fact that perfect graphs, a superclass of interval graphs, can
be colored in polynomial time [9], this yields a 4-approximation algorithm for
max-coloring perfect graphs. Epstein and Levin [5] improved this factor from
4 to e. On the other hand, after a line of improvements [10,6,11], Kavitha and
Mestre [14] presented an algorithm for max-coloring paths, a subclass of inter-
val graphs, which requires only time O(n + S(n)), where S(n) is the time to
sort the weights. A polynomial-time approximation scheme (PTAS) for trees is

Clique Clustering Yields a PTAS for max-Coloring Interval Graphs 185

known [2], that is, there is a (1 + ε)-approximation algorithm for any ε > 0, but
max-coloring bipartite graphs is APX-hard [4], i.e., there is no PTAS unless P =
NP. However, in the context of the original motivation of this problem in buffer
management, interval graphs remain the most relevant graph class, since they
are easy to describe, but powerful enough to model temporal conflicts.

Contributions and outline. Closing a gap that has been open for years, we
settle the approximation complexity of max-coloring interval graphs by present-
ing a PTAS in Section 3. From the very beginning [13] to more recent celebrated
results [1], the arguably most successful scheme to obtain PTASs is to trade the
size of the search space for accuracy in order to make it treatable by a dynamic
program running in polynomial time. The problem-specific challenge is to do
this in a way such that there is still a solution in the restricted search space
which is (1 + ε)-close to an optimal solution. We do this in two steps. In the
main step, called clique clustering, we argue that we can partition the intervals
V into cliques, here called clusters to distinguish them from other cliques, such
that we are allowed to treat every cluster as a single interval during a dynamic
programming procedure. The surprising insight (Lemma 2) is that we are able
to find such a partition with the properties that (1) we are only losing an (1+ε)-
factor in the approximation ratio and (2) the maximum overlap of clusters is
logarithmic in the number of intervals n. Note that this is an exponential drop
compared to the maximum overlap of intervals, which might be as large as n.
Initially, in a minor preprocessing step using the shifting technique of Hochbaum
and Maass [12], we trade the number of different interval weights for accuracy
such that we may assume that there are only constantly many. Formally, we use
the following lemma (proof in full version of this paper). This lemma holds for
any graph class, which, to the best of our knowledge, has not been observed
before.

Lemma 1. For any ε > 0, by losing an (1 + ε)-factor in the approximation
ratio, we may assume that the number of different interval weights and the ratio
between the maximum and the minimum interval weight are both constants.

Lemma 1 has already been applied by the author [15] to obtain a PTAS for the
inverse problem of max-coloring co-interval graphs with constant capacities, i.e.,
there is a constant bound k such that we additionally require that |C| ≤ k for
any color class C. Note that finding a max-coloring of a co-interval graph G is
equivalent to finding a max-clique partition of the co-graph of G, which is again
an interval graph. Despite the similarity in name, it is worth mentioning here that
max-coloring interval graphs and max-coloring co-interval graphs have a quite
different structure. For instance, max-coloring co-interval graphs is polynomially
solvable [8,3], and only the capacitated case described above is NP-hard [15].
However, except for this preprocessing step, all arguments in this paper differ
completely from [15]. Bambis et al. [2] gave some results for the max-coloring
problem with capacities.

186 T. Nonner

2 Preliminaries

Some intervals I ∈ V might have the same weight wI . Let then w1 < w2 <
. . . < wm with m ≤ n := |V | be an ordering of the different interval weights
{wI | I ∈ V }. Hence, m is the number of different interval weights and wm/w1 is
the ratio between the maximum and the minimum interval weight. Recall that
Lemma 1 allows us to assume that these parameters are both constant. We also
refer to an index 1 ≤ i ≤ m as a level. Moreover, we refer to the level iI with
wiI = wI as the level of an interval I ∈ V , and to iC := maxI∈C iI as the level of a
color class C ⊆ V . For simplicity, we write coloring for max-coloring throughout
this paper, and we use σ to denote a coloring. Hence, the goal is to find a coloring
σ that minimizes

∑
C∈σ wiC =

∑m
i=1 wiσi, where σi := |{C ∈ σ | iC = i}|

denotes the number of color classes in σ with level i. Assume that each coloring
σ additionally defines a level iC(σ) ≥ iC for each color class C ∈ σ. Using this,
to simplify the arguments to follow, we slightly relax the problem formulation as
follows: find a coloring σ such that cost(σ) :=

∑
C∈σ wiC(σ) is minimized. Note

that it holds for an optimal coloring σ∗ with cost(σ∗) = OPT that iC(σ∗) = iC
for each color class C ∈ σ∗, which shows that this is indeed a relaxation. Finally,
define iI(σ) := iC(σ) for any interval I ∈ C in a color class C ∈ σ.

2.1 Overlap Structure

Assume that the endpoints of all intervals are distinct, which can be easily
ensured by rearranging the intervals without modifying the overlap structure.
Let then lI ∈ R and rI ∈ R denote the left and right endpoint of an interval
I ∈ V , respectively. For two intervals I, I ′ ∈ V , we write I < I ′ iff rI < lI′ , and
I > I ′ iff lI > rI′ . On the other hand, we write I ≺ I ′ iff lI < lI′ , and I � I ′ iff
rI > rI′ . Moreover, for two interval sets B, B′ ⊆ V , we write B ≺ B′ iff I ≺ I ′

for any pair I ∈ B and I ′ ∈ B′, and B � B′ iff I � I ′ for any pair I ∈ B and
I ′ ∈ B′.

For a position t ∈ R and a set of intervals B ⊆ V , let B(t) := {I ∈ B | t ∈ I}
denote the subset of intervals in B that overlap with t. Using this, for a set of
cliques P , let P (t) := {B ∈ P | B(t) 	= ∅} denote the subset of cliques in P that
overlap with t, and define ωP := maxt∈R |P (t)|. Recall that a clique B ⊆ V is a
set of intervals with ∩I∈BI 	= ∅, and also recall that a clique partition P of V is
a set of pairwise disjoint cliques with ∪B∈P B = V . Finally, define ω := ωP for
the trivial clique partition P = {{I} | I ∈ V }. Hence, ω denotes the maximum
overlap of all intervals. Observe that the maximum clique size is exactly ω, and
this is also the minimum number of colors needed to color all intervals V . We can
find such a coloring σ using the first-fit strategy: let I1, I2, . . . , In be an ordering
of the intervals V with lI1 < lI2 < . . . < lIn . Then, for s = 1, . . . , n, if there is
already a color class C ∈ σ with I < Is for any interval I ∈ C, add Is to C, and
otherwise, add the new color class C := {Is} that only contains Is to σ. Note
that a (max-)coloring with a minimum number of colors is optimal in case of
uniform interval weights.

Clique Clustering Yields a PTAS for max-Coloring Interval Graphs 187

2.2 Respecting Cliques

We say that a coloring σ respects a clique B ⊆ V iff iI(σ) = iI′(σ) for any pair
I, I ′ ∈ B. Consequently, we may define iB(σ) := iI(σ) for an arbitrary interval
I ∈ B in such a case. We extend this by saying that a coloring σ respects a set of
pairwise disjoint cliques P iff σ respects all cliques in P . Furthermore, a partial
coloring σ is a coloring that only partitions a subset of intervals V ′ ⊆ V into
color classes. For all intervals I ∈ V \V ′, we define then iI(σ) := ∞ to indicate
that I is not contained in a color class. Now note that we can turn any function
f : V ′ → {1, 2, . . . , m} with f(I) ≥ iI for each interval I ∈ V ′ into a partial
coloring σf as follows: for each level i, use the first-fit strategy to compute a
coloring σi for the intervals {I ∈ V ′ | f(I) = i} with a minimum number of
colors. Finally, combine all these colorings to a coloring σf := ∪m

i=1σ
i where,

for each level i and color class C ∈ σi, we set iC(σ) := i. We say that such a
function f respects a set of cliques P iff σf respects P .

3 PTAS via Dynamic Programming

Recall the interval ordering I1, I2, . . . , In from Section 2 with lI1 < lI2 < . . . <
lIn . Moreover, recall that, for any 1 ≤ s ≤ n, V (lIs) denotes the set of all
intervals which overlap with the left endpoint of Is, and observe that V (lIs) ⊆
{I1, I2, . . . , Is}.

3.1 DP Array

Consider a dynamic programming array Π with boolean entries of the form
Π(s, f, g), where 1 ≤ s ≤ n is an integer, f : V (lIs) → {1, 2, . . . , m} with
f(I) ≥ iI for each interval I ∈ V (lIs), and g : {1, 2, . . . , m} → {0, 1, . . . , n}. We
want to fill this array such that Π(s, f, g) is true if and only if there is a function
f : {I1, I2, . . . , Is} → {1, 2, . . . , m} with

(1) f(I) ≥ iI for each interval I ∈ {I1, I2, . . . , Is},
(2) f(I) = f(I) for each interval I ∈ V (lIs),
(3) σf

i = g(i) for each level i.

In words, f extends f from V (lIs) to {I1, I2, . . . , Is} and, for each level i, g counts
the number of color classes in σf with level i. As soon as Π is filled correctly, we
can find an optimal coloring by enumerating all colorings σ that realize an entry
of the form Π(n, f, g) in order to find one that minimizes cost(σ) =

∑m
i=1 wig(i).

To see this, note that cost(σf) = OPT for the function f with f(I) = iI(σ∗) for
each interval I ∈ {I1, I2, . . . , In} = V .

3.2 Recurrence Relation

For some integer s, assume that we have already successfully filled all entries of
the form Π(s − 1, f, g). Now consider an entry of the form Π(s, f, g), and let
i′ := f(Is). There are exactly two possibilities why Π(s, f, g) could be true.

188 T. Nonner

Case 1: There is a true entry Π(s − 1, f ′, g′) with
(1) f ′(I) = f(I) for each interval I ∈ V (lIs−1) ∩ V (lIs),
(2) g′(i) = g(i) for each level i,
(3) |{I ∈ V (lIs−1) ∩ V (lIs) | f ′(I) = i′}| < g′(i′).
Case 2: There is a true entry Π(s − 1, f ′, g′) with
(1) f ′(I) = f(I) for each interval I ∈ V (lIs−1) ∩ V (lIs),
(2) g′(i′) = g(i′) − 1 and g′(i) = g(i) for each level i 	= i′,
(3) |{I ∈ V (lIs−1) ∩ V (lIs) | f ′(I) = i′}| = g′(i′).

These two cases correspond to the two cases in the first-fit strategy. Specifically,
to see why Case 1 causes Π(s, f, g) to be true, consider a partial coloring σ that
realizes the true entry Π(s − 1, f ′, g′) from Case 1. Note that it is possible to
add Is to an already existing color class C ∈ σ with iC(σ) = i′ if and only if
g′(i′), the number of such color classes that already exist, is strictly larger than
|{I ∈ V (lIs−1)∩V (lIs) | f ′(I) = i′}|, the number of intervals which compete with
Is for a place in such a color class. In this case, we may hence set g(i′) = g′(i′).
On the other hand, Case 2 considers the opposite case where we need to add
another color class, and thus we have g(i′) = g′(i′)+1. Consequently, combining
both cases yields a recurrence relation which can be implemented in polynomial
time given that the size of Π is polynomial. Observe that it is easy to initially fill
all entries of the form Π(1, f, g), since then we only need to consider the single
interval I1.

3.3 Approximate DP

By Lemma 1, we may assume that m, the number of levels, and wm/w1, the
ratio between the maximum and minimal interval weight, are both constants.
However, since we only have the upper bound V (lIs) ≤ ω for each integer 1 ≤
s ≤ n, the size of Π could be as large as n ·mω ·(n+1)m, which is not polynomial
for ω = Ω(n), even for a constant m. Therefore, we need to restrict the set of
functions f to consider. To this end, we use the following critical lemma which
trades the size of ωP for accuracy (proof in Section 4).

Lemma 2. Given that m and wm/w1 are constants, for any ε > 0, we can
compute a clique partition P of V in polynomial time such that there exists a
coloring σ with the following properties: (1) σ respects P , (2) cost(σ) ≤ (1 +
O(ε))OPT, and (3) ωP = O(log(n)).

Note that setting P = {{I} | I ∈ V } does clearly satisfy Property (2) in
Lemma 2. However, we do not gain anything in this case, since then still ωP = ω.
The astonishing fact about Lemma 2 is that by losing an arbitrary small factor
in accuracy, we immediately get an exponential drop in ωP . This allows us to
prove our final result.

Theorem 1. There is a PTAS for max-coloring interval graphs.

Proof. Let P be a clique partition as proposed by Lemma 2. Note that restricting
the search space to functions f that respect P decreases the size of Π to n ·

Clique Clustering Yields a PTAS for max-Coloring Interval Graphs 189

mωP · (n + 1)m, which is polynomial due to Property (3) in Lemma 2 if m is
constant. To see this, note that, for any integer 1 ≤ s ≤ n, there are at most
mωP many functions f : V (lIs) → {1, 2, . . . , m} that respect P . This restricted
dynamic program yields an optimal coloring σ subject to the constraint that σ
respects P . However, by Properties (1) and (2), we still obtain the upper bound
cost(σ) ≤ (1 + O(ε))OPT. The claim of the theorem follows. ��

4 Proof of Lemma 2

We assume throughout this section that m and wm/w1 are both constants.
Consider then an arbitrary small but fixed ε > 0, and assume that 1/ε is integral.
Assume moreover that log(n) is integral1. In order to construct the claimed clique
partition P , we proceed in two steps. First, in Subsection 4.1, we introduce the
notion of a hierarchical clique partition PV which already satisfies Property (3) in
Lemma 2. However, this clique partition is not fine-grained enough to also satisfy
Property (2). Therefore, in Subsection 4.2, we show how to additionally partition
each clique A ∈ PV , yielding P . We refer to the cliques in P as clusters, and these
clusters will have size κ := ε2ω/ log(n). Moreover, define κ̂ := κ/ε = εω/ log(n).

Lemma 3. We may assume that κ and κ̂ are both integral.

Proof. If ω < log(n)/ε3, then the claim of Lemma 2 is trivially satisfied, since
we can then simply use P = V . Therefore, we may assume that ω ≥ log(n)/ε3.
Consequently, it suffices to add at most εω many dummy intervals with the
lowest weight w1 and the form [−∞, +∞], i.e., intervals that overlap with all
other intervals, in order to increase ω such that this parameter is a multiple of
the integer log(n)/ε2. Because of the trivial lower bound OPT ≥ w1ω, observe
that this increases OPT by at most ε ·OPT. Consequently, we may assume that
κ is integral, and hence also κ̂. The claim follows. ��

4.1 Hierarchical Clique Partition

Before constructing PV , we first construct an intermediate clique partition P ′
V .

To this end, observe that any position t ∈ R partitions V into a clique V (t), a
left part VL(t) := {I ∈ V | I < t}, and a right part VR(t) := {I ∈ V | I > t}, as
depicted in Subfigure 2(a). Using two positions tL, tR ∈ R with tL < t < tR, we
can then partition VL(t) and VR(t) in the same way, and so on. This gives us a
binary tree whose nodes are cliques in V , as depicted in Subfigure 2(b). Now note
that there is always a position that splits an interval set into two parts of at most
half the size. Therefore, we can choose the positions during this process such that
the resulting binary tree has logarithmic depth log(n), as schematically depicted
in Subfigure 2(b). Let P ′

V be the clique partition of V containing all cliques
constructed during this process, namely V (t), V (tL)\V (t), V (tR)\V (t), For
instance, the clique partition depicted in Subfigure 2(b) consists of 7 cliques.

1 All logarithms have base 2.

190 T. Nonner

VL(t)

V(t)

VR(t)

t

(a) the first partition

ttL tR

log(n)

(b) one possible final result

Fig. 2. The intermediate partition P ′
V

Note that |P ′
V (t)| ≤ log(n) for any position t ∈ R. To finally obtain PV , we

further partition each cliques A ∈ P ′
V into the cliques A1, A2, . . . , Am, where,

for each level i, Ai := {I ∈ A | iI = i} are the intervals in A with level i. Hence,
PV := {Ai | A ∈ P ′

V , 1 ≤ i ≤ m}. For each clique A ∈ PV , we may hence define
iA := iI for an arbitrary interval I ∈ A. We refer to PV as a hierarchical clique
partition, and we immediatly obtain the following simple but critical observation.

Observation 2 For any position t ∈ R, |PV (t)| ≤ m log(n).

The following lemma will simplify some arguments.

Lemma 4. For each clique A ∈ PV , we may assume that κ̂ divides |A|.

Proof. For each clique A ∈ PV , let tA ∈ R be the position with tA ∈ ∩I∈AI
from the construction of P ′

V , i.e., the position used to construct the clique in
P ′

V whose partition resulted in A. Hence, there are exactly m cliques A ∈ PV

with the same position tA. Observe now that, for each clique A ∈ PV , we need
to add at most κ̂ many dummy intervals I = [tA, tA] with iI = iA to A in order
to ensure that κ̂ divides |A|. Since these intervals are disjoint for two cliques
A, A′ ∈ PV with tA 	= tA′ , we find that we always need at most mκ̂ additional
color classes C with wC ≤ wm to partition these intervals. Therefore, because of
the trivial lower bound OPT ≥ w1ω and the fact that wm/w1 is constant, this
increases OPT by at most wmmκ̂ = O(ε)OPT, which proves the claim. ��

4.2 Clique Clustering for a Single Clique

We partition a clique A ∈ PV into clusters in two steps.

Step 1: First, we inductively partition A into cliques, called superclusters, as
follows: let B̂1, B̂2, . . . , B̂s be the so far generated superclusters of A. Now, if
still ∪s

j=1B̂j 	= A, then generate another supercluster B̂s+1 by distinguishing
two cases: if s + 1 is odd, then B̂s+1 contains the κ̂ intervals in A\ ∪s

j=1 B̂j with
leftmost left endpoints, and otherwise, if s + 1 is even, then B̂s+1 contains the
κ̂ intervals in A\ ∪s

j=1 B̂j with rightmost right endpoints. Recall here that we
assume that all endpoints of intervals are distinct, and hence we never have to

Clique Clustering Yields a PTAS for max-Coloring Interval Graphs 191

break ties. Moreover, recall the assumption from Lemma 4 that κ̂ divides |A|.
Note that B̂1 ≺ B̂3 ≺ B̂5 ≺ . . . and B̂2 � B̂4 � B̂6 �

Step 2: Next, we apply a similar scheme to inductively partition each superclus-
ter B̂j of A into cliques, called clusters, as follows: let B1, B2, . . . , Bs be the so
far generated clusters of B̂j . If still ∪s

l=1Bl 	= B̂j , then generate another cluster
Bs+1 by distinguishing two cases: if j is odd, then Bs+1 contains the κ intervals
in B̂j\ ∪s

l=1 Bl with rightmost right endpoints, and otherwise, if j is even, then
Bs+1 contains the κ intervals in B̂j\ ∪s

l=1 Bl with leftmost left endpoints. Note
that each supercluster contains exactly 1/ε clusters. Moreover, if j is odd, then
B1 � B2 � B3 � . . . � B1/ε, and if j is even, then B1 ≺ B2 ≺ B3 ≺ . . . ≺ B1/ε.

Example. Assume that A consists of the intervals depicted in Subfigure 3(a)
and that κ̂ = 4 and κ = 2. In this case, as depicted in Subfigure 3(b), the first
supercluster B̂1 consists of the intervals I8, I1, I3, I6, since these are the intervals
with the leftmost left endpoints. The next supercluster B̂2 then consists of the
intervals I5, I2, I7, I4, since these are the intervals with rightmost right endpoints
in A\B̂1. The clusters of B̂1 are then B1 = {I8, I6} and B2 = {I1, I3}, and the
clusters of B̂2 are B1 = {I2, I5} and B2 = {I4, I7}.

I1 I2I3 I4 I5I6I7 I8

(a) clique A

I1

I2

I3

I4

I5
I6

I7

I8
B̂1

B̂2

(b) superclusters B̂1, B̂2

Fig. 3. Clustering a clique A ∈ PV

Let then P̂A and PA be the sets of all superclusters and clusters generated
by the procedure above, respectively. Therefore, P̂A and PA are both clique
partitions of A, but PA is more fine-grained. We obtain the following lemma.

Lemma 5. For each position t ∈ R, |P̂A(t)| ≤ 2(1 + |A(t)|/κ̂).

Proof. Consider an arbitrary t′ ∈ ∩I∈AI, and let B̂1, B̂2, . . . , B̂s be the superclus-
ters in P̂A in the order they have been created. Moreover, let j be the maximal
index such that still B̂j ∈ P̂A(t). We distinguish two cases:

Case t′ ≤ t: Consider an arbitrary supercluster B̂j′ with j′ < j and j′ even.
Hence, we have that B̂j′ � B̂j , since we picked some rightmost intervals with
respect to their right endpoints to form B̂j′ . Consequently, since there is at
least one interval in B̂j that overlaps with t, we find that all intervals in B̂j′

must overlap with t, and thus B̂j′ ⊆ A(t).
Case t′ > t: The same arguments as in the last case show that B̂j′ ⊆ A(t)
for each supercluster B̂j′ with j′ < j and j′ odd.

192 T. Nonner

Combining both cases gives that that there are �(j − 2)/2� many superclusters
B̂j′ with j′ < j and B̂j′ ⊆ A(t). Therefore, since each supercluster has size κ̂,
we obtain |A(t)| ≥ κ̂(j − 2)/2. On the other hand, since j is maximal, we have
that |P̂A(t)| ≤ j. The claim follows by combining these facts. ��
This gives us the following lemma (proof in full version of this paper).

Lemma 6. Consider some clique A ∈ PV . Then, for any partial coloring σ with
iI(σ) < ∞ for all intervals I ∈ A, there is a partial coloring σ′ with the following
properties: (1) σ′ respects PA, (2) cost(σ′) ≤ cost(σ), (3) iI(σ) = iI(σ′) for each
interval I ∈ V \A, and (4) for each position t ∈ R, |{B ∈ PA(t) | iB(σ′) = ∞}| ≤
2m(1/ε + 1 + |A(t)|/κ̂).

In words, Lemma 6 says that we may replace any coloring σ by a coloring σ′

that is identical for all intervals not contained in A, respects all clusters in PA,
but is still not ’much more’ partial than σ, as quantified in Property (4). Now
we are finally ready to define the claimed clique partition P for Lemma 4 as
P := ∪A∈PV PA.

Lemma 7. For each position t ∈ R, |P (t)| = O(log(n)).

Proof. Observe that

|P (t)| =
∑

A∈PV

|PA(t)| =
∑

A∈PV :A(t)
=∅
|PA(t)| ≤ 1

ε

∑
A∈PV :A(t)
=∅

|P̂A(t)|

≤ 2
ε

⎛⎝ ∑
A∈PV :A(t)
=∅

1 +
1
κ̂

∑
A∈PV :A(t)
=∅

|A(t)|
⎞⎠

≤ 2
ε

(
m log(n) +

ω

κ̂

)
=

2
ε

(
m log(n) +

log(n)
ε

)
= O(log(n)),

which proves the claim. The inequality in the first line is due to the fact that each
supercluster contains exactly 1/ε clusters. Moreover, the second line is due to
Lemma 5 and a simple rearrangement, and the third line is due to Observation 2.

��
Lemma 8. There is a non-partial coloring σ with cost(σ) ≤ (1 + O(ε))OPT
that respects P .

Proof. Consider some optimal non-partial coloring σ∗ for V with cost(σ∗) =
OPT. Now, for each clique A ∈ PV , iteratively apply Lemma 6 in order to
transform σ∗ into a partial coloring σ that respects PA for each clique A ∈
PV . Consequently, σ also respects P = ∪A∈PV PA. This iterative application is
possible because of Property (3) in Lemma 6, since this property ensures that
the levels of the intervals outside of A are not modified. Moreover, Property (1)
ensures that finally cost(σ) ≤ OPT. However, the coloring σ computed in this
way is partial, i.e., there are some intervals I ∈ V with iI(σ) = ∞. Let V ∞ :=

Clique Clustering Yields a PTAS for max-Coloring Interval Graphs 193

{I ∈ V | iI(σ) = ∞} be the subinstance of these intervals, and let σ∞ be a
coloring for these intervals with a minimum number of colors using the first-fit
strategy. We can then turn σ into a non-partial coloring by adding all color
classes C ∈ σ∞ to σ with iC(σ) := m. This setting of iC(σ) is feasible, since m
is the maximal level, and this does also not affect the fact that σ respects P .

To bound the cost increase of σ due to the additional color classes from σ∞,
note that the number of color classes in σ∞ is the maximum clique size in V ∞,
which is the maximal overlap of intervals maxt∈R |V ∞(t)|. However, for any
position t ∈ R, we obtain the bound

|V ∞(t)| =
∑

A∈PV

|{I ∈ A(t) | iI(σ) = ∞}| =
∑

A∈PV :A(t)
=∅
|{I ∈ A(t) | iI(σ) = ∞}|

= κ
∑

A∈PV :A(t)
=∅
|{B ∈ PA(t) | iB(σ) = ∞}|

≤ κ2m

⎛⎝ ∑
A∈PV :A(t)
=0

(
1
ε

+ 1
)

+
1
κ̂

∑
A∈PV :A(t)
=0

|A(t)|
⎞⎠

≤ κ2m

(
2m log(n)

ε
+

ω

κ̂

)
= ε(4m2 + 2m)ω.

The second line is due to the fact that each cluster contains exactly κ intervals.
The third line is due to Property (4) in Lemma 6 and a simple rearrangment.
Moreover, the inequality in the fourth line is due to Observation 2. Therefore,
the cost of the additional color classes from σ∞ is at most wmε(4m2 + 2m)ω =
O(ε)OPT, since wm/w1 is constant and we have the trivial lower bound OPT ≥
w1ω. We conclude that cost(σ) ≤ (1 + O(ε))OPT, which proves the claim. ��
Proof (Lemma 2). Combine Lemmas 7 and 8. ��

References

1. Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman
and other geometric problems. Journal of the ACM 45(5), 753–782 (1998)

2. Bampis, E., Kononov, A., Lucarelli, G., Milis, I.: Bounded max-colorings of graphs.
In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp.
353–365. Springer, Heidelberg (2010)

3. Becchetti, L., Korteweg, P., Marchetti-Spaccamela, A., Skutella, M., Stougie, L.,
Vitaletti, A.: Latency constrained aggregation in sensor networks. In: Azar, Y.,
Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 88–99. Springer, Heidelberg
(2006)

4. de Werra, D., Demange, M., Escoffier, B., Monnot, J., Paschos, V.T.: Weighted
coloring on planar, bipartite and split graphs: Complexity and approximation.
Discrete Applied Mathematics 157(4), 819–832 (2009)

5. Epstein, L., Levin, A.: On the max coloring problem. In: Kaklamanis, C., Skutella,
M. (eds.) WAOA 2007. LNCS, vol. 4927, pp. 142–155. Springer, Heidelberg (2008)

6. Escoffier, B., Monnot, J., Paschos, V.T.: Weighted coloring: further complexity and
approximability results. Inf. Process. Lett. 97(3), 98–103 (2006)

194 T. Nonner

7. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. J. Comput. Syst.
Sci. 57(2), 187–199 (1998)

8. Finke, G., Jost, V., Queyranne, M., Sebö, A.: Batch processing with interval
graph compatibilities between tasks. Discrete Applied Mathematics 156(5), 556–
568 (2008)

9. Gröschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Springer, Heidelberg (1988)

10. Guan, D.J., Zhu, X.: A coloring problem for weighted graphs. Inf. Process.
Lett. 61(2), 77–81 (1997)

11. Halldórsson, M.M., Shachnai, H.: Batch coloring flat graphs and thin. In: Gud-
mundsson, J. (ed.) SWAT 2008. LNCS, vol. SWAT, pp. 198–209. Springer,
Heidelberg (2008)

12. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing
problems in image processing and VLSI. Journal of the ACM 32(1), 130–136 (1985)

13. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum
of subset problems. J. ACM 22, 463–468 (1975)

14. Kavitha, T., Mestre, J.: Max-coloring paths: Tight bounds and extensions. In:
Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 87–96.
Springer, Heidelberg (2009)

15. Nonner, T.: Capacitated max -batching with interval graph compatibilities. In:
Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 176–187. Springer, Heidelberg
(2010)

16. Pemmaraju, S.V., Raman, R.: Approximation algorithms for the max-coloring
problem. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M.
(eds.) ICALP 2005. LNCS, vol. 3580, pp. 1064–1075. Springer, Heidelberg (2005)

17. Pemmaraju, S.V., Raman, R., Varadarajan, K.: Max-coloring and online coloring
with bandwidths on interval graphs. ACM Transactions on Algorithms (accepted
for publication)

18. Pemmaraju, S.V., Raman, R., Varadarajan, K.: Buffer minimization using max-
coloring. In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2004), pp. 562–571 (2004)

19. Raman, R.: Personal communication (2010)

On Variants of File Caching�

Leah Epstein1, Csanád Imreh2,��, Asaf Levin3, and Judit Nagy-György4

1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel
lea@math.haifa.ac.il

2 Department of Informatics, University of Szeged, 6720 Szeged, Hungary
cimreh@inf.u-szeged.hu

3 Faculty of Industrial Engineering and Management,
The Technion, 32000 Haifa, Israel
levinas@ie.technion.ac.il

4 Department of Mathematics, University of Szeged, Aradi Vértanúk tere 1,
H-6720 Szeged, Hungary

Nagy-Gyorgy@math.u-szeged.hu.

Abstract. In the file caching problem, the input is a sequence of re-
quests for files out of a slow memory. A file has two attributes, a re-
trieval cost and an integer size. It is required to maintain a cache of size
k, bringing each file, which is not present in the cache at the time of
request, from the slow memory into the cache. This incurs a cost equal
to the retrieval cost of the file. Well-known special cases include paging
(all costs and sizes are equal to 1), the cost model which is also known
as weighted paging (all sizes are equal to 1), the fault model (all costs
are equal to 1) and the bit model (the cost of a file is equal to its size).

We study two online variants of the problem, caching with bypassing
and caching with rejection. If bypassing is allowed, a miss for a file still
results in an access to this file in the slow memory, but its subsequent
insertion into the cache is optional. In the model with rejection, together
with each request for a file, the algorithm is informed with a rejection
penalty of the request. When a file which is not present in the cache is
requested, the algorithm must either bring the file into the cache, paying
the retrieval cost of the file, or reject the file, paying the rejection penalty
of the request. The goal function is the sum of total rejection penalty
and the total retrieval cost.

We design deterministic and randomized algorithms for both prob-
lems. The competitive ratios of these randomized algorithms match the
best known results for caching. In the deterministic case, it is known that
a (k + 1)-competitive algorithm for caching with bypassing exists, and
this is best possible. In contrast, we present a lower bound of 2k+1 on the
competitive ratio of any deterministic algorithm for the variant with re-
jection, which holds already for paging. We design a (2k+2)-competitive
algorithm for caching with rejection, and a different (2k+1)-competitive
algorithm , which is applicable for paging, the bit model and the cost
model.

� This research was partially supported by the TÁMOP-4.2.2/08/1/2008-0008 pro-
gram of the Hungarian National Development Agency.

�� Supported by the Bolyai Scholarship of the Hungarian Academy of Sciences.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 195–206, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

196 L. Epstein et al.

1 Introduction

Paging and caching problems [26,11,20,28] are fundamental optimization prob-
lems, with multiple applications such as operating systems and the Internet.
Such problems deal with page replacement policies in two-level memory sys-
tems, which consist of a small and fast memory, typically referred to as cache,
and a large and slow main memory. Both memory levels are partitioned into
slots of size 1, which can accommodate pages. The cache consists of k such slots.
The general problem, which is called file caching, is defined as follows. Files are
bundles of pages. A file f has two attributes, which are its (integer) size size(f)
(number of pages), and its cost cost(f) (the cost of accessing it in the main
memory). In most applications, this cost is proportional to the time which is
required to access it, while the cost of accessing a file residing in the cache is
seen as zero, since this time is negligible compared to the time required to access
the main memory.

The input is a sequence of requests for files. On a request for a file which the
algorithm stored in the cache, the algorithm does nothing. However, a request for
a file f which is not present in the cache requires an access to the main memory,
resulting in a cost of cost(f) for the algorithm. This situation is called a miss. In
the standard model (also called the forced model), the algorithm must insert the
file into the cache, possibly evicting other files to create sufficient space for the
requested file. An additional model was studied, called caching with bypassing,
or the Optional model [2,13], where the algorithm must read the requested file
f from the main memory for a cost of cost(f), but it does not necessarily needs
to insert it into the cache, though it may do so.

A number of important special cases were studied. The first study was the
paging variant. In this case a file is referred to as a page. For every page f ,
size(f) = cost(f) = 1. That is, the sequence consists of single pages, and the
system is uniform in the sense that reading any page from the main memory
results in the same cost. Three common models which generalize paging and are
special cases of caching are the bit model, the fault model and cost model (also
called weighted paging) (see [2]). In the first two models, files may have arbitrary
sizes, while in the third model, all files have size 1 (but arbitrary costs). In the
bit model, each file f has cost(f) = size(f), while in the fault model, each file f
satisfies cost(f) = 1. That is, the fault model assumes that the cost of accessing
the main memory multiple times is determined by the number of accesses, while
the bit model assumes that what determines the cost is the total size of files
read from the main memory.

We study online variants of the problem and use competitive analysis. For
caching problems, it is common to use the asymptotic competitive ratio. For
an online problem, we let opt denote an optimal offline algorithm which knows
the entire input. For an algorithm A, we let A(I) (or A, if I is clear from
the context) denote the cost of A on an input I. An online algorithm alg is
R-competitive, if there exists a constant c (independent of I) which satisfies
alg(I) ≤ R · opt(I) + c for any input I. If R is the smallest value for which
this inequality can be satisfied for all inputs and some value c, then R is the

On Variants of File Caching 197

competitive ratio of alg. For a randomized algorithm alg we have a similar
definition where alg(I) is replaced with its expected value E(alg(I)).

In this paper, we initiate the study of caching with rejection. In this variant
of caching, each miss can be treated in two ways. The first way is the traditional
way, where the file is brought from the main memory. The second one is by
declining the request, notifying the user that the request cannot be carried out,
and paying a rejection penalty. In this variant, if the i-th request is for file
f , then this request is a pair (f, ri), where ri is the rejection penalty of this
request. Note that ri is not a property of f , and the rejection penalty of one
file can differ for different requests for this file. The cost of an algorithm is
the sum of the total rejection penalty of rejected requests, and the total cost of
served requests. Caching with rejection generalizes caching, since the latter is the
special case where the rejection penalty is infinite. Caching with rejection also
generalizes caching with bypassing as the later problem is the special case where
the rejection penalty for every request (f, ri) satisfies ri = cost(f). Similarly, for
each one of the specific models, we can define caching (or paging) with rejection
in this model, which generalizes caching in this model with or without bypassing.

Previous caching models assume that every request must be fulfilled. This
does not describe many of the applications properly, since in practice, requests
are often declined. In operating systems, when the system is busy running other
processes and as a result a request made by a user to open a file is denied. In web
caching, the situation where some requests are not served is often encountered.
Browsers deny requests for web pages which are hard to contact at that time.

The offline paging problem is polynomially solvable [8], and caching in the
cost model can be solved using network flow methods [11]. We note that these
techniques can be extended for the cost model with bypassing or with rejection.
The other variants are strongly NP-hard [12] with or without bypassing, implying
NP-hardness for the cases with rejection. Though caching problems come from
real-time applications, offline approximation algorithms are of interest [20,2,6].

Notation. Throughout the paper, we assume that a cache is empty at the
beginning of the input. For a set of files S, let size(S) =

∑
g∈S size(g). Let n

denote the number of files in the slow memory. An input for caching with bypass-
ing can be represented in two alternative ways which are used interchangeably
in the paper. The first option is a sequence of pairs, which are file names and
arrival times of the requests. The second option is a sequence of file names, and
indices. A pair (f, j) corresponds to the j-th request of file f in the sequence.
Similarly, an input for caching with rejection can be represented in two ways,
and the only difference is the additional attribute of each request, which is the
rejection penalty of this request. For an input I, which consists of a list of re-
quests for one of the variants, we use opts(I) (or opts) to denote the cost of
an optimal offline algorithm which does not use bypassing and similarly optb(I)
(or optb) denotes this cost if bypassing is allowed.

Previous work. Sleator and Tarjan [26] were the first to consider online paging
and showed that the two natural paging algorithms, namely, Lru and Fifo have

198 L. Epstein et al.

competitive ratios of at most k, which is best possible for any deterministic online
algorithm (see also [22]). A class of algorithms, called Marking Algorithms,
was later shown by Karlin et al. [21] to achieve the same bound.

The study of randomized algorithms for paging was started by Fiat et. al
[18], where an algorithm, called Randomized Marking was shown to perform
much better than the deterministic algorithms, and its competitive ratio is at
most 2Hk, where Hk is the k-th harmonic number (later it was shown [1] that its
tight competitive ratio is 2Hk−1). A lower bound of Hk on the competitive ratio
of any randomized algorithm was shown in [18] as well, which makes the order
of growth of the competitive ratio logarithmic in k. Several different algorithms
of competitive ratio Hk are known [23,1].

For the variant with bypassing, the results for paging are similar. A simple
reduction shows that for paging, optb(I) ≤ opts(I) ≤ 2·optb(I). This reduction
does not hold for any of the more general variants (see below). Thus, in the
deterministic case, the best competitive ratio is Θ(k) and in the randomized
case, the best competitive ratio is Θ(log k). In fact, as mentioned in [20], the
best deterministic competitive ratio is k + 1, and it is achieved by the same
algorithms that give the upper bound of k for paging without bypassing.

Once these results were known, it was an intriguing question to find which
generalizations of paging allow similar results. In the deterministic variant, the
tight bound of k on the competitive ratio holds for all generalizations without
bypassing. The result for weighted paging was shown by Chrobak et al. [11] (see
also [27]). The result for caching was proved by Young [28] (see also [10]). If
bypassing is allowed, Irani [20] mentioned that Lru has a competitive ratio of
k+1 for the bit and fault models. Cohen and Kaplan [13] adapted the Landlord

algorithm of Young [28] for the case with bypassing and showed that it is (k+1)-
competitive. Thus, for both variants, with and without bypassing, the general
variant of caching admits the same competitive ratio as the basic paging problem.

On the other hand, for the randomized variant, the progress was slower. Irani
[20] designed algorithms of competitive ratio O(log2 k) for the bit model and the
fault model, which are valid both with and without bypassing. Recently, Bansal,
Buchbinder, and Naor, applying a novel usage of the online primal-dual method,
designed an algorithm of competitive ratio O(log k) for weighted paging [4], and
algorithms with similar upper bounds on the competitive ratio for the bit model
and the fault model [5]. For the most general case, the upper bound of [5] is
O(log2 k). The papers [4,5] exploit clever techniques, however these techniques
fail to work in the case with bypassing (see below).

In finely competitive paging, an optimal offline algorithm can either serve a new
request by fetching its page into the cache, or rent (reject, in our terminology)
it for a cost of 1

r , where r ≥ 1 is a given parameter. The online algorithm which
is compared to this offline algorithm cannot rent the page and must fetch it into
the cache. Blum et al. [9] showed an O(r + log k)-competitive algorithm for this
case. Bansal et al. [3] improved this result and showed a r+O(log k)-competitive
algorithm for the case where the online algorithm is allowed to rent the page for
a unit cost (whereas the offline algorithm can rent it for a cost of 1

r). Note that

On Variants of File Caching 199

in our model (unlike finely competitive paging), the cost of not serving a request
is the same for both the offline algorithm and the online algorithm, and that for
r = 1 the result of [3] is for paging with bypassing.

Many online problems were studied with rejection. This includes scheduling
[7,25,17,24], bin packing [14,15] and coloring [16]. Problems with rejection are
frequently studied in offline scenarios, where they are sometimes called prize-
collecting problems. The primal-dual method for obtaining offline approximation
algorithms for a problem extends naturally to the corresponding prize-collecting
problem (the approximation guarantee may degrade). For example, Goemans
and Williamson in their seminal work [19] considered the prize-collecting TSP
and the prize collecting Steiner tree problem.

Our results. Recall that the best possible competitive ratio for the determin-
istic variant of caching with bypassing is k + 1 [20,13]. We prove a lower bound
of 2k + 1 on the competitive ratio of any deterministic algorithm for paging
with rejection and design two deterministic algorithms. The first one is (2k +2)-
competitive, and works for the most general setting. Using methods related to
the Ski-Rental problem [21], we develop a general reduction of the problem
with rejection to the problem with bypassing, showing that an αk-competitive
algorithm for the case of bypassing can be converted (using this algorithm as
a black box) into a (4αk + 1)-competitive algorithm for the problem with re-
jection. Our deterministic algorithm for the general problem with rejection uses
this reduction. This algorithm Landlord with rejection (LLR) uses the variant
of Landlord with bypassing (LLB). In order to get an upper bound of 2k + 2
rather than the bound 4k + 5 implied by the reduction, we compare the cost
of the algorithm directly to an optimal algorithm for caching with rejection.
The second deterministic algorithm is different and it is valid for paging, the bit
model and the cost model. This algorithm has an optimal competitive ratio of
2k + 1, and it generalizes the Flush when Full (FWF) algorithm.

In addition, we consider randomized algorithms for both variants. We design
O(log k)-competitive algorithms for paging, the fault model, the cost model, and
the bit model and an O(log2 k)-competitive algorithm for caching. The results
for the variant with rejection use the reduction above. To solve the case with
bypassing, we build on the methods of [4,5], however, the ratio between the
optimal costs without and with bypassing opts(I)

optb(I) can be infinite for caching
even for large inputs (this gap is smaller for paging, but linear for the bit model
and the fault model). The linear programming formulation of [4,5] cannot be
used for the variant with bypassing since it requires having each request in the
cache. Instead, we use a linear programming formulation for the variant with
bypassing (see [13]), and find a fractional solution for it. In order to be able to
use the methods of [4,5] of converting a fractional solution into a randomized one,
we modify our fractional solution to the problem with bypassing to a solution of
the linear programming formulation without bypassing of [4,5]. To do that, our
algorithm decides which requests are bypassed based on the fractional solution to
our linear program, and the remaining requests which are not bypassed are those

200 L. Epstein et al.

that are seen to be the input of the linear programming formulation without
bypassing.

2 Reducing the Problem with Rejection to the Problem
with Bypassing

We present a general reduction from the problem with rejection to the problem
with bypassing. In this reduction, we convert an input for the problem with
rejection into an input for the problem with bypassing. Assume that alg is a
randomized or deterministic αk-competitive algorithm for caching with bypass-
ing, we present a randomized or deterministic, respectively, 4αk + 1-competitive
algorithm for caching with rejection. We denote by F(alg) the new algorithm
which we design for caching with rejection.

Algorithm. F(alg) For every file g, in the slow memory, maintain a non-
negative value counter(g) (which satisfies counter(g) ≤ cost(g) at all time, ex-
cept for possibly the case that g had just been requested and F(alg) is dealing
with this request), which is initialized by zero.

Given a new request for a file f , with the rejection penalty p, if p > cost(f),
replace the request with t(f, p) = � p

cost(f)� requests for f , each one with the
penalty p

t(f,p) . Each of these requests is treated as a separate request below. To
give an output for the original input, where there is a single request, instead of
t(f, p) identical requests, consider first the case where alg is deterministic. If
the file is inserted into the cache by the algorithm for one of these requests, then
the file should be inserted into the cache, and otherwise the request is rejected.
Now assume that alg is randomized, then the algorithm moves to a distribution
over the cache states which is the distribution at the end of this subsequence of
t(f, p) identical requests.

Given a request for a file f , with a rejection penalty p ≤ cost(f), do the
following:

1. If the probability of the cache states for which f is in the cache is 1 (or in
case alg is deterministic if f is in the cache), then we do nothing. Otherwise
we continue as follows.

2. Let counter(f) = counter(f) + p.
3. If counter(f) < cost(f), then do not change the (distribution of the) state

of the cache.
4. If counter(f) ≥ cost(f), then present f as an input to alg, and set

counter(f) = 0.
5. If alg changes the cache state (or the distribution of the cache states), we

change the state (distribution) in the same way.

End of Algorithm F(alg)
Note that F(alg) rejects a request at any situation that the requested file is not
in the cache.

On Variants of File Caching 201

Theorem 1. Given an online (deterministic or randomized) algorithm alg for
caching with bypassing, with a competitive ratio of at most αk, the online al-
gorithm F(alg) for caching with rejection has a competitive ratio of at most
4αk + 1.

3 Deterministic Algorithms

We prove a lower bound, showing that the deterministic bounds of caching with
bypassing cannot be achieved already for paging with rejection.

Theorem 2. The competitive ratio of any deterministic algorithm for paging
with rejection is at least 2k + 1.

3.1 Caching with Rejection

We design an algorithm for caching with rejection. Our algorithm Landlord

with Rejection (llr) is exactly F(llb). Using Theorem 1, we get an upper
bound of 4k + 5 on the competitive ratio of llr. We present a more careful
analysis of llr to show the following.

Theorem 3. The competitive ratio of llr is at most 2k + 2.

3.2 An Improved Algorithm for Several Cases

We design the following phase-based algorithm. We define the algorithm for
arbitrarily sized files since we use this algorithm not only for paging, but also
for caching in the bit model and fault models.

Algorithm. Flush when full with rejection (FWFR)

Maintain a non-negative value counter(g) for every file g in the slow memory,
which is initialized by zero. Let λ be the total size of the files in the cache, which
is initialized by zero.

Given a request for a file f , (f, r), if f is not in the cache, let counter(f) =
counter(f) + r and do the following:

1. If counter(f) ≤ 1 then reject f .
2. If counter(f) > 1, and size(f) + λ ≤ k, then insert f into the cache and let

λ = λ + size(f).
3. If counter(f) > 1, and size(f) +λ > k, then empty the cache and set λ = 0,

for each g �= f let counter(g) = 0, and let counter(f) = counter(f)− 1. Go
to step 1.

End of Algorithm. FWFR

Theorem 4. FWFR is (2k + 1)-competitive for paging, and caching in the bit
and in the fault models.

202 L. Epstein et al.

4 Randomized Algorithms

In this section, we use the online primal-dual method and obtain an O(log k)-
competitive algorithm for caching with bypassing in the bit model, in the cost
model and in the fault model. We also obtain an O(log2 k)-competitive algo-
rithm for the weighted caching with bypassing. Using Theorem 1, we will obtain
algorithms with these competitive ratios for the problems with rejection. We fo-
cus on the problem with bypassing and formulate a linear program which guides
our algorithm. Our linear program mimics the linear program of [5,4], with the
required modifications to allow bypassing requests.

Instead of charging a file for fetching it into the cache we will charge for
evicting files from the cache. Let x(f, j) be an indicator variable for the event
that file f is evicted from the cache between the j-th time it is requested and
the next time it is requested, or the event that in the j-th time file f is requested
it is bypassed. For a file f , denote by t(f, j) the index of the request in which it
is requested for the j-th time, and by r(f, t) the number of times it is requested
in subsequence of the first t requests. For a time t, we denote by B(t) the set
of files which were requested until time t (including time t), and by ft the file
which is requested at time t. Let S(t) = {S ⊆ B(t)|size(S) > k, ft ∈ S}. Let T
denote the number of requests in the input. Then, the following integer program
formulates our (offline) problem, where each constraint represents the property
that at each time, the cache cannot contain files with a total size larger than k:

min
n∑

f=1

r(f,T)∑
j=1

cost(f) · x(f, j)

s.t.
∑

f∈S

size(f) · x(f, r(f, t)) ≥ size(S)− k ∀1 ≤ t ≤ T, ∀S ∈ S(t)

x(f, j) ∈ {0, 1} ∀f, j.

We first strengthen the formulation of the linear programming relaxation by
replacing size(f) with min{size(S)−k, size(f)} in the constraints. We consider
the resulting linear programming relaxation denoted by (LP-bypassing). We say
that a set of files S is a small set at time t if for all f ∈ S we have x(f, r(f, t)) < 1.
In order to ensure feasibility of the primal solution x after the new request of
time t arrives, only small sets need to be considered at time t. The dual linear
program of (LP-bypassing) has a variable y(t, S) for all time t and S ∈ S(t).
The dual program denoted as (LP-dual) is as follows.

max
∑
t

∑
S∈S(t)

(size(S)− k) · y(t, S)

s.t.
t(f,j+1)−1∑

t=t(f,j)

∑
S∈S(t):f∈S

min{size(S)− k, size(f)} · y(t, S) ≤ cost(f) ∀f, j

y(t, S) ≥ 0 ∀t, S.

The main difference between our linear program and the linear program of [5]
is the fact that in our linear program the current request contributes towards

On Variants of File Caching 203

satisfying the constraints corresponding to the current value of t. This is essential
since in our problem the algorithm does not necessarily need to insert ft to the
cache.

Denote the input sequence by I. Each item of I is a pair consisting of a time in
{1, 2, . . . , T} and a file in the slow memory. In our algorithm we will identify (in
an online deterministic fashion) a subsequence of the requests I ′ ⊆ I for which
the contribution of x(f, r(f, t)) to satisfying the constraints of time t is crucial.
These requests will be either bypassed or cause the algorithm to evict the files
from the cache. We use τ to denote the subset of {1, 2, . . . , T}, such that the
requests of these times of the subset are not in I ′. That is, we do not re-index the
requests, but allow the times of the requests to be not necessarily consecutive.
The set of the remaining requests I ′′ = I \ I ′ need to be inserted into the cache,
so it will be an input sequence for the caching problem (without bypassing) for
which [5] considered the following linear programming formulation denoted as
(LP-caching).

min
∑
f∈I′′

rI′′ (f,T)∑
j=1

cost(f) · x(f, j) s.t.

∑
f∈S\{ft}

min{size(S)− k, size(f)} · x(f, rI′′(f, t)) ≥ size(S)− k ∀t ∈ τ,

∀S ∈ SI′′ (t)
x(f, j) ≥ 0 ∀f, j,

where rI′′(f, t) and SI′′(t) are the values of r(f, t) and S(t), respectively, in
the instance I ′′. That is, we consider only the subset of requests {1, 2, . . . , t} ∩
τ in the computation of rI′′(f, t) and BI′′(t), and we define SI′′(t) = {S ⊆
BI′′(t)|size(S) > k, ft ∈ S}. Note that we define rI′′(f, t) and SI′′(t) only for
t ∈ τ , so in the definition of SI′′(t), ft ∈ BI′′(t) always holds.

In Section 4 of [5], it is shown that in order to obtain a randomized algorithm
whose competitive ratio for the bit and fault models is O(log k) and for the gen-
eral case the competitive ratio is O(log2 k), it suffices to construct a solution X
to (LP-caching) whose cost is bounded by O(log k) times the cost of a feasible
solution to problem (LP-dual). Similarly, by [4], such a solution X will imply
an online randomized O(log k)-competitive algorithm for the cost model. Specif-
ically, Bansal, Buchbinder and Naor [4,5] showed that presenting an algorithm
which returns a fractional solution which is an O(log k)-competitive is sufficient
in order to get the desired competitive ratio for the randomized algorithm (which
is fractional with respect to cache states and not specific files).

Our online algorithm constructs a feasible solution x to (LP-bypassing), and
a dual feasible solution y to (LP-dual). Moreover, we will identify the set I ′′

and a feasible solution X to (LP-caching) whose cost is at most twice the cost
of x. This will be done in an online fashion. That is, at each time t, a new set
of constraints of (LP-bypassing) is revealed to the algorithm. We will increase
both dual variables and primal variables until all primal constraints are satisfied.
At this stage, if x(ft, r(ft, t)) ≥ 1

2 then we reset its value to 1 and decide that

204 L. Epstein et al.

this request for ft belongs to I ′ and hence not to I ′′. In this case the online
algorithm decides to either evict the file from its cache or to bypass it (i.e., with
probability 1, it will not have ft in its cache). Otherwise (if x(ft, r(ft, t)) < 1

2), we
set x(ft, r(ft, t)) = 0 and in this case this request will belong to I ′′. In addition
to the partition, a subset of I ′′, called A is maintained. Consider a request for a
file f which is bypassed. If the previous request for f in I is not bypassed, then
after this request, the cache cannot contain f anymore (and the previous request
for f which belongs to I ′′ is added to A). Therefore, the algorithm should be
forced to remove f from the cache, and the values of the corresponding variables
are set accordingly.

We note that all the primal variables increase as we consider the new request.
The unique step of the algorithm in which a primal variable is decreased, is
when we reset the value of x(ft, r(ft, t)) to 0. However, this variable correspond
to the current request, and hence it was set to 0 when the request is revealed.
Therefore, when we consider the change to the primal variables between con-
secutive requests, this variable does not decrease. Clearly, the dual variables are
only increased throughout the iterations of the algorithm. We define Algorithm
Fractional Caching with Bypassing (fcb).

Lemma 1. The solution X is a feasible solution to (LP-caching) whose cost is
at most twice the cost of x (for (LP-bypassing)).

Lemma 2. The dual solution y violates the constraints of (LP-dual) by a factor
of at most 1 + ln k. That is, the vector y

1+ln k is a feasible solution to (LP-dual).

Lemma 3. The cost of x is at most four times the objective function value of y.

We summarize the above three lemmas by concluding that X is a feasible solution
to (LP-caching) whose cost is at most 8(1 + ln k) times the cost of a feasible
solution to (LP-dual), and by weak-duality of linear programming this is at most
8(1 + ln k) · optb(I). The cost of bypassing the requests which do not belong to
I ′′ is at most the cost of x, and hence this cost is at most 4(1 + ln k) · optb(I).
We change the distribution of the states of the cache only in iterations which
belong to I ′′, and this incurs a cost which is either a constant times the cost of
X (in the bit model, fault model, and the cost model) or a factor of O(log k)
times the cost of X in the general case. Thus, we established the following.

Theorem 5. There is a randomized O(log k)-competitive algorithm for caching
with bypassing in the cost model, in the bit model and in the fault model, and a
randomized O(log2 k)-competitive algorithm for the weighted caching with bypass-
ing. Moreover, there is a randomized O(log k)-competitive algorithm for caching
with rejection in the cost model, in the bit model and in the fault model, and a ran-
domized O(log2 k)-competitive algorithm for the weighted caching with
rejection.

On Variants of File Caching 205

Algorithm. Fractional Caching with Bypassing (fcb)

Maintain a set of requests A ⊆ I ′′ ⊆ I. Initially I ′′ = A = ∅.
The solution X to (LP-caching) is always defined to be X(f, rI′′(ft, t)) = 1 if

(f, rI′′(ft, t)) ∈ A, and otherwise X(f, rI′′(ft, t)) = 2x(f, r(ft, t)).
Given a request for a file ft at time t do the following:

1. Set x(ft, r(ft, t)) = 0. Implicitly set y(t, S) = 0 for all S ∈ S(t).
2. Until all primal constraints of (LP-bypassing) corresponding to time t are

satisfied do the following.
(a) Pick a small set S whose primal constraint (for time t) is not satisfied

by the current solution x.
(b) Increase the dual variable y(t, S) continuously and for each primal vari-

able x(f, j) such that f ∈ S do:
(c) If x(f, j) = 1 then remove f from S and continue (letting S = S \ {f}).
(d) If x(f, j) = 0 and

t(f,j+1)−1∑
t=t(f,j)

∑
S∈S(t):f∈S

min{size(S)−k, size(f)}·y(t, S) =

cost(f) then increase x(f, j) to be 1
k .

(e) Otherwise (that is if 1
k ≤ x(f, j) < 1) increase x(f, j) to be equal to

1
k
· e

1
cost(f) ·

([
t(f,j+1)−1∑

t=t(f,j)

∑
S∈S(t):f∈S

min{size(S)−k,size(f)}·y(t,S)

]
−cost(f)

)
.

3. If x(ft, r(ft, t)) < 1
2 , then set x(ft, r(ft, t)) = 0 and add (ft, r(ft, t)) to I ′′.

4. Otherwise, set x(ft, r(ft, t)) = 1, and add (ft, rI′′(ft, t)) to A.

End of Algorithm. fcb

References

1. Achlioptas, D., Chrobak, M., Noga, J.: Competitive analysis of randomized paging
algorithms. Theoretical Computer Science 234(1-2), 203–218 (2000)

2. Albers, S., Arora, S., Khanna, S.: Page replacement for general caching prob-
lems. In: Proc. of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 1999), pp. 31–40 (1999)

3. Bansal, N., Buchbinder, N., Naor, J.: Towards the randomized k-server conjecture:
A primal-dual approach. In: Proc. of the 21st Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2010), pp. 40–55 (2010)

4. Bansal, N., Buchbinder, N., Naor, S.: A primal-dual randomized algorithm for
weighted paging. In: Proc. of the 48th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2007), pp. 507–517 (2007)

5. Bansal, N., Buchbinder, N., Naor, S.: Randomized competitive algorithms for gen-
eralized caching. In: Proc. of the 40th Annual ACM Symposium on Theory of
Computing, STOC 2008 (2008)

6. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B.: A unified approach
to approximating resource allocation and scheduling. Journal of the ACM 48(5),
1069–1090 (2001)

206 L. Epstein et al.

7. Bartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J., Stougie, L.: Multi-
processor scheduling with rejection. SIAM Journal on Discrete Mathematics 13(1),
64–78 (2000)

8. Belady, L.A.: A study of replacement algorithms for a virtual-storage computer.
IBM Systems Journal 5(2), 78–101 (1966)

9. Blum, A., Burch, C., Kalai, A.: Finely-competitive paging. In: Proc. of the 40th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 1999), pp.
450–458 (1999)

10. Cao, P., Irani, S.: Cost-aware www proxy caching algorithms. In: Proc. of the
USENIX Symposium on Internet Technologies and Systems, pp. 193–206 (1997)

11. Chrobak, M., Karloff, H.J., Payne, T.H., Vishwanathan, S.: New results on server
problems. SIAM Journal on Discrete Mathematics 4(2), 172–181 (1991)

12. Chrobak, M., Woeginger, G.J., Makino, K., Xu, H.: Caching is hard – even in the
fault model. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp.
195–206. Springer, Heidelberg (2010)

13. Cohen, E., Kaplan, H.: Caching documents with variable sizes and fetching costs:
An LP-based spproach. Algorithmica 32(3), 459–466 (2002)

14. Dósa, G., He, Y.: Bin packing problems with rejection penalties and their dual
problems. Information and Computation 204(5), 795–815 (2006)

15. Epstein, L.: Bin packing with rejection revisited. Algorithmica 56(4), 505–528
(2010)

16. Epstein, L., Levin, A., Woeginger, G.J.: Graph coloring with rejection. Journal of
Computer and System Sciences 77(2), 439–447 (2011)

17. Epstein, L., Noga, J., Woeginger, G.J.: On-line scheduling of unit time jobs with
rejection: minimizing the total completion time. Operetions Research Letters 30(6),
415–420 (2002)

18. Fiat, A., Karp, R.M., Luby, M., McGeoch, L.A., Sleator, D.D., Young, N.:
Competitive paging algorithms. Journal of Algorithms 12, 685–699 (1991)

19. Goemans, M.X., Williamson, D.P.: A general approximation technique for con-
strained forest problems. SIAM Journal on Computing 24(2), 296–317 (1995)

20. Irani, S.: Page replacement with multi-size pages and applications to web caching.
Algorithmica 33(3), 384–409 (2002)

21. Karlin, A., Manasse, M., Rudolph, L., Sleator, D.D.: Competitive snoopy caching.
Algorithmica 3, 79–119 (1988)

22. Manasse, M.S., McGeoch, L.A., Sleator, D.D.: Competitive algorithms for server
problems. Journal of Algorithms 11(2), 208–230 (1990)

23. McGeoch, L.A., Sleator, D.D.: A strongly competitive randomized paging algo-
rithm. Algorithmica 6(6), 816–825 (1991)

24. Nagy-György, J., Imreh, C.: Online scheduling with machine cost and rejection.
Discrete Applied Mathematics 155(18), 2546–2554 (2007)

25. Seiden, S.S.: Preemptive multiprocessor scheduling with rejection. Theoretical
Computer Science 262(1), 437–458 (2001)

26. Sleator, D.D., Tarjan, R.E.: Amoritzed efficiency of list update and paging rules.
Communications of the ACM 28, 202–208 (1985)

27. Young, N.E.: The k-server dual and loose competitiveness for paging. Algorith-
mica 11(6), 525–541 (1994)

28. Young, N.E.: On-line file caching. Algorithmica 33(3), 371–383 (2002)

On the Advice Complexity of the

k-Server Problem�

Hans-Joachim Böckenhauer1, Dennis Komm1,
Rastislav Královič2, and Richard Královič1

1 Department of Computer Science, ETH Zurich,
Universitätstrasse 6, 8092 Zurich, Switzerland

{hjb,dennis.komm,richard.kralovic}@inf.ethz.ch
2 Department of Computer Science, Comenius University,

Mlynská dolina, 84248 Bratislava, Slovakia
kralovic@dcs.fmph.uniba.sk

Abstract. Competitive analysis is the established tool for measuring
the output quality of algorithms that work in an online environment.
Recently, the model of advice complexity has been introduced as an al-
ternative measurement which allows for a more fine-grained analysis of
the hardness of online problems. In this model, one tries to measure the
amount of information an online algorithm is lacking about the future
parts of the input. This concept was investigated for a number of well-
known online problems including the k-server problem.

In this paper, we first extend the analysis of the k-server problem by
giving both a lower bound on the advice needed to obtain an optimal
solution, and upper bounds on algorithms for the general k-server prob-
lem on metric graphs and the special case of dealing with the Euclidean
plane. In the general case, we improve the previously known results by an
exponential factor, in the Euclidean case we design an algorithm which
achieves a constant competitive ratio for a very small (i. e., constant)
number of advice bits per request.

Furthermore, we investigate the relation between advice complexity
and randomized online computations by showing how lower bounds on
the advice complexity can be used for proving lower bounds for the com-
petitive ratio of randomized online algorithms.

1 Introduction

Although the concept of information processing lies at the heart of computer
science, we lack a satisfactory precise definition of the term “information”. Both
the concepts of entropy due to Shannon [11] and of Kolmogorov complexity [4,9],
while being extremely valuable research instruments, cannot be used to estimate
the information content of particular objects.

Computing a solution for an instance of a computing problem can be seen as
extracting some desired information about this instance that is somehow hidden
� This work was partially supported by ETH grant TH 18 07-3, SNF grant 200020-

120073, and VEGA grant 1/0671/11.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 207–218, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

208 H.-J. Böckenhauer et al.

in its description. In other words, information processing aims for extracting
some part of information that is contained in the given input. In this way, com-
puting means to transform one representation of information into another. This
suggests that understanding what information really is could be crucial for a
better understanding of the nature of computing. One possible way to capture
the meaning of the notion information is the concept of the information content
of computing problems as proposed by Hromkovič et al. [8].

Here, we apply this the concept of information content to online problems.
In an online setting, we deal with an environment where algorithms are needed
which have to permanently produce chunks of output depending on an input
they read continuously. These so-called online algorithms aim at having a high
output quality without knowing the whole input at specific time steps, i. e., they
may merely base their computations on the input they have read so far.

At first, we formally define the terms of an online algorithm and its compet-
itive ratio which is usually used to measure the algorithm’s output quality on
some input.

Definition 1. Consider an input sequence I = (x1, . . . , xn) for some minimiza-
tion problem U . An online algorithm A computes the output sequence A(I) =
(y1, . . . , yn), where yi = fi(x1, . . . , xi) for some sequence of functions f1, . . . , fn.
The cost of the solution is given by cost(A(I)). By SolA = A(I) we denote a
solution computed by A on I. An algorithm A is c-competitive, for some c ≥ 1,
if there exists a constant α such that, for every input sequence I, cost(A(I)) ≤
c · cost(Opt(I)) + α, where Opt is an optimal offline algorithm for the problem.
If α = 0, then A is called strictly c-competitive. Finally, A is optimal if it is
strictly 1-competitive.

Note that Definition 1 can be easily adapted to include the case of maximization
problems. The concept of the competitive analysis was introduced in [12] by
Sleator and Tarjan. For a more detailed introduction to it and online algorithms
in general, we refer to the standard literature, e. g., [3,7].

However, comparing online algorithms to optimal solutions, which may only
be constructed if the whole input is known in advance, does not seem very
realistic because, by the nature of many real-world online scenarios, optimal
results can never be reached. We want to get a deeper understanding of what
online algorithms really lack. We do this by analyzing the information content of
the given online problem [8], i. e., we investigate what additional information we
need to supply these algorithms with to increase their performance. The idea of
online algorithms with advice was proposed in [5]. However, the original model
used advice over a two letter alphabet {0, 1} and an additional delimiter $. In [2],
a new model was introduced to prevent the hidden encoding of information by
implicitly using the delimiter symbol. In this new model, such online algorithms
are considered that are allowed to access an advice tape φ, which has an infinite
number of bits written on it. These advice bits are calculated by an oracle which
has access to the whole input before the online algorithm gets the first part of
it. At any time step, an online algorithm A may then read, together with the

On the Advice Complexity of the k-Server Problem 209

chunk of input it gets, as many advice bits as needed. We use the same model
in this paper.

Definition 2. An online algorithm A with advice computes the output sequence
SolφA = Aφ(I) = (y1, . . . , yn) such that yi is computed from φ, x1, . . . , xi, where
φ is the content of the advice tape, i. e., an infinite binary sequence. A is c-
competitive with advice complexity s(n) if there exists a constant α such that,
for every n and for each input sequence I of length at most n, there exists some
φ such that cost(Aφ(I)) ≤ c · cost(Opt(I)) + α and at most the first s(n) bits of
φ have been accessed during the computation of Aφ(I).

Emek et al. [6] proposed a different way to fix the model from [5] by restricting the
online algorithm to read a fixed number of advice bits in every time step. With
such an approach, it is not possible to analyze sublinear advice complexity, what
is a serious issue for many online problems [2]. It is easy to simulate the model
from [6] with our model, which is more general in this sense, and all lower bounds
in our model directly carry over to the model from [6]. On the other hand, the
upper bounds carry over from the model from [6] to our model. Furthermore,
the model presented in [6] captures the idea that the advice is not available
from the start, but comes gradually as more and more of the input is revealed.
Although it seems that for concrete problems some bootstrapping techniques
may be used to transform upper bounds from our model to the model from [6],
the two models seem to be incomparable in general. Our interest focuses on the
number of advice bits s(n) that are necessary [sufficient] to achieve optimality
or a specific competitive ratio.

In this paper, we consider the problem k-server in which k agents (so-called
servers) move in a metric space satisfying requests which appear in an online
fashion. More formally, we look at the following problem.

Definition 3. Let G = (V, E, d) be a complete undirected weighted graph, where
V is a (not necessarily finite) set of vertices, E = {{v, w} | v, w ∈ V, v �= w}
is the set of edges, and d : E → � is a metric cost function, that is, d satisfies
the triangle inequality d({v, u}) ≤ d({v, w}) + d({w, u}) for every u, v, w ∈ V .
Furthermore, we are given a set of k servers, residing in some vertices of the
graph. Let Ci ⊆ V be the multiset of vertices occupied by servers at time step
i: A vertex occupied by j servers occurs j-times in Ci. We also call Ci the
configuration at time step i. Then, a vertex vi is requested and some servers
may be moved yielding a new configuration Ci+1. The request vi is satisfied if,
after this movement of servers, some server resides in vi, i. e., if vi ∈ Ci+1. The
distance between two configurations C1 and C2 is given by the unique cost of a
minimum-weight matching between C1 and C2.

The k-server problem is the problem to satisfy all requests while minimizing
the sum of the distances of all consecutive configurations.

Although Definition 3 allows to place several servers to the same point, it is easy
to see that this is not necessary; it is easy to modify any algorithm for k-server

such that it never places more than one server to one vertex and such that this
modification do not increase costs of any solution produced by the algorithm.

210 H.-J. Böckenhauer et al.

The solution of k-server is a sequence of configurations, and between two
configurations, arbitrary number of servers can be moved. However, sometimes
it is convenient to restrict ourselves to so-called lazy algorithms, which move
exactly one server in response to each yet uncovered request. This can be done
without loss of generality, as any algorithm for k-server can be transformed
to a lazy one without any increase in the costs of produced solutions [3]. It is
easy to see that, for the case of lazy algorithms, the produced solutions can be
uniquely described as a sequence of servers used to satisfy individual requests.

This paper is organized as follows: In Section 2, we give a lower bound on the
number of advice bits needed to achieve optimality. Section 3 is devoted to de-
signing an algorithm for the special case where the servers move on the Euclidean
plane. The main result is presented in Section 4 where we give an algorithm for
the general case which performs very well using only a constant number of bits
per request. This algorithm is also valid in the restricted model from [6] and ex-
ponentially improves over the k-server algorithm presented there. In Section 5,
we relate the advice complexity to the model of randomized online algorithms
and show how the advice complexity can be used to prove lower bounds on the
competitive ratio achievable by randomized online algorithms. Some proofs are
omitted due to space restrictions and can be found in the technical report [1].

For the ease of presentation, throughout this paper, we denote log2 by log.

2 A Lower Bound on the Optimality

In this section, we focus on the number of bits needed to obtain an optimal
solution. Hence, we show that, if an online algorithm with advice A is optimal,
there exist instances in which A needs to read large advice together with every
request. First, we give a bound for inputs of fixed length k which we extend
afterwards to instances of arbitrary length. Note that any graph with a cost
function d that maps edges from V × V to values of 1 and 2 only, trivially
respects the triangle inequality and is therefore a metric.

Lemma 1. For any k ∈ �, there exists an instance of the k-server problem
with k requests in total, for which any online algorithm A with advice needs at
least k(log k − c) bits of advice to be optimal for some constant c < 1.443.

Proof. Let k ∈ � and let G = (U ∪W, E) be a complete bipartite graph with
a metric cost function d : E → {1, 2}, where U = {u1, u2, . . . , uk} and W =
{w1, w2, . . . , w2k}. Since |W | = 2k, we can define a bijective mapping Set : W →
2U which maps every vertex from W to a unique subset of vertices in U . We
define the edge costs in G as follows: for v ∈ U and w ∈ W , let

d({v, w}) =

{
2, if v ∈ Set(w)
1, otherwise.

Additionally, since formally the instance for the k-server problem has to contain
a complete weighted graph, we define the cost for all edges from (U×U)∪(W×W)

On the Advice Complexity of the k-Server Problem 211

to be 2. A schematic view of the constructed graph for k = 4 is shown in Figure 1.
Let Gi ⊆ W denote the vertices from W corresponding to subsets of U with
exactly i elements, i. e., Gi = {w ∈ W | |Set(w)| = i}. Clearly,

|Gi| =
(

k

i

)
.

We construct a class of instances I′ in the following way. An instance I ∈ I′
consists of a graph G as above, where each vertex of U is covered by a single
server, and a sequence (x0, x1, x2, . . . , xk−1) of requests such that

1. xj ∈ Gj and
2. Set(xj) ⊆ Set(xj+1).

Intuitively, the first requested vertex is the unique vertex from W with only
cheap edges to U . Every following request has exactly one more expensive edge,
chosen in such a way that the set of expensively connected vertices from U is
extended by one vertex in each time step.

Clearly, we may represent I as a permutation πI of {1, 2, . . . , k} in the follow-
ing way:

πI(j) = Set(xj) \ Set(xj−1) for j = 1, 2, . . . , k − 1, i. e., πI(j) = yj ∈ U,

πI(k) = U \ {πI(j) | j = 1, 2, . . . , k − 1}.

In other words, πI(j) denotes the index of that vertex from U which is connected
to the requested vertex via an expensive edge from request xj on. The unique
optimal solution SolI for I with cost of exactly k can also be described by πI

in the following way. For every j, SolI satisfies the j-th request xj−1 by moving
one server from some vertex from U , in particular the one in vertex πI(j), to the
requested vertex from W , over a cheap edge. It is easy to see that there is no
solution with cost of less than k, since all the servers start in U , all requests are
unique vertices from W , and every edge has a cost of at least 1. To see why SolI
is indeed the unique optimal solution, consider an offline environment where an
optimal offline algorithm Opt receives the whole input at once and may satisfy
the requests in an arbitrary order. It does so in the opposite order the requests
are made: the last vertex requested is from the group Gk−1 and there is one
unique vertex vπI (k) connected to it with a cheap edge. The vertex that was
requested before is from Gk−2. Due to the construction, it also has a cheap edge
to vπI (k) and to a second vertex vπI (k−1), so that Opt now uses this second edge.
Following this strategy, it is immediately clear that Opt uses exactly k edges of
cost 1 and that its strategy is the only one being no more expensive than k.

Since we may represent every instance from I ′ by a unique permutation of
{1, 2, . . . , k}, we need to distinguish k! different cases. It remains to show that
we also need a unique advice string for every input to be solved optimally by
any online algorithm A with advice. Towards contradiction, let I1 and I2 be
two different inputs from I′. Suppose that A is optimal for both of these inputs.
However, for the same advice string φ, the algorithm A behaves deterministically.

212 H.-J. Böckenhauer et al.

s1 s2 s3 s4

u1 u2 u3 u4

G1

G2

G3

G0

G4

Edge of cost 2
Edge of cost 1

Fig. 1. A sample instance for 4-server as used in the proof of Lemma 1. Note that, for
the ease of presentation, not all edges are shown completely.

Let us take the algorithm’s point of view: In time step 1, the only vertex from
G0 is requested and A uses some server to satisfy this request. Then, in time step
2 it is revealed whether this was a good choice, i. e., if the server at πI(1) was
used to serve the first request. After that, the algorithm chooses a second server
to move and again, in time step 3, it is revealed whether this was a good choice,
and so on. Suppose that the corresponding permutations of I1 and I2 differ at
position j for the first time. This means that, in time step j − 1, the algorithm
has to make two different choices for the different inputs. But since it reads the
same prefix of the input up to this point and furthermore uses the same advice
string, it has to act the same way. But this directly implies that A cannot be
optimal for both I1 and I2. We conclude that we need a different advice string
for every instance and therefore log (k!) advice bits. Using Stirling’s Formula, we
get

log (k!) ≥ log

(√
2πk

(
k

e

)k
)
≥ k(log k − c),

where c = log e < 1.443, which concludes our proof. ��
We generalize this statement in the following theorem to an arbitrary number of
requests. The idea is to use two instances as in the proof of Lemma 1, which are
connected together. The optimal solution is forced to perform optimally within
these two instances in an alternating way and any wrong step within any instance
cannot be compensated later. Due to space restrictions the proof is omitted.

Theorem 1. The number of bits necessary to enable A to be optimal can be
bounded from beneath by n

(
1
2 log k − 1

2c
)

for some c < 1.443, where n is the
number of requests.

Note that, if we allow the graph to have unbounded size, it is easy to construct
a lower bound of n(log k − log e) by branching the graph infinitely often.

Note that all lower bounds presented in this chapter directly carry over to the
model of [6]. Furthermore, [6] presents a very simple upper bound of log k bits
per request. Hence, the lower bound in Theorem 1 is tight up to a factor of 2.

On the Advice Complexity of the k-Server Problem 213

3 An Upper Bound for the Euclidean Case

In this section, we restrict the k-server problem to the case where the un-
derlying metric space is the two-dimensional Euclidean plane. For this case, we
propose a simple algorithm that achieves a constant competitive ratio with an
advice of linear size (in particular, the algorithm reads a constant number of bits
with every request).

Let us fix a parameter b such that the algorithm uses b bits of advice per
request. The algorithm A works as follows: if the requested point is r = (rx, ry),
it divides the plane into 2b disjoint segments S1, . . . , S2b with their origin in r,
and angle 2π

2b each. Then it reads b bits of advice that identify a segment Si, and
serves the request greedily with the closest server from Si. We show that A has
a constant competitive ratio with linear advice.

Theorem 2. For a fixed b ≥ 3, A uses b bits of advice per request, and achieves
a competitive ratio of at most 1/

(
1− 2 sin

(
π
2b

))
.

Before proving Theorem 2, let us first show the following technical lemma which
we need in the analysis.

Lemma 2. For 0 < α ≤ π
4 , let C(α, R) be the region of the Euclidean plane

C(α, R) = {[r cos ϕ, r sin ϕ] | 0 < ϕ ≤ α, 0 < r ≤ R}. For any point p ∈ C(α, R)
let

f(p) =
‖p‖

R− ‖[R, 0]− p‖ ,

where ‖v‖ is the Euclidean length of v. Then f(p) is maximized over region
C(α, R) for pmax = R · [cos α, sin α] and f(pmax) = 1

1−2 sin(α
2) .

The situation described by the Lemma is illustrated in Figure 2(a). The proof
of the Lemma is straightforward and omitted due to space restrictions.

Now we are ready to analyze the competitive ratio of A. Let us adopt the
following notation: a configuration C is a multiset of k points that are occupied
by the servers. A configuration Cp1 �→p2 is obtained from C by moving a server
from p1 ∈ C to p2. An instance of the problem is a configuration, and a sequence
of requests (points); the length of the instance is the number of requests. We
restrict ourselves to lazy algorithms, hence, as already noted, a solution of an
instance is a sequence of servers. To describe a server used to satisfy certain
request, it is sufficient to specify the point occupied by this server, hence the
solution can be described by a sequence of points as well. We prove the following
theorem:

Theorem 3. For any instance I = (C, r1, r2, . . . , rn), and a solution SolI , the
cost of A on I is at most q · cost(SolI) where q = 1

1−2 sin(π

2b) .

Proof. Let SolI serve the i-th request ri by a server located at si, with a cost
of di = ‖si − ri‖. In the first request, A uses b bits to specify the segment of
angle α = 2π

2b around r1 in which s1 is located, and moves the closest server in

214 H.-J. Böckenhauer et al.

‖p‖

p

‖[R, 0]− p‖
α

R

(a)

s1

s′
d1

b

a

di

r1

(b)

Fig. 2. (a) Illustration of Lemma 2. (b) Illustration of the algorithm.

this segment, s′ to r1 incurring distance a ≤ d1. Hence, after the first request,
SolI lead to configuration Cs1 �→r1 , whereas A is in configuration Cs′ �→r1 . This
situation is illustrated in Figure 2(b).

The proof is done by induction on n. If n = 1, the cost of A is a ≤ d1 =
cost(SolI). Let n > 1, and let ri be the first request that is served by s′ in SolI .
Consider the instance I ′ = (Cs′ �→r1 , r2, . . . , rn); the sequence (s2, . . . , si−1, s1,
si+1, . . . , sn) is a solution of I ′ with cost at most b +

∑n
i=2 di. By induction, the

cost of A on I ′ is at most q · (b +
∑n

i=2 di), hence the cost of A on I is at most

a + q ·
(

b +
n∑

i=2

di

)
.

Due to Lemma 2, a ≤ q(d1 − b) and the result follows. ��
Theorem 3 immediately implies that A reaches competitive ratio q using b advice
bits per request. For 3, 4, and 5 bits per request, the corresponding ratios are
4.261972632, 1.639829878, and 1.243834129. With b �→ ∞, the competitive ratio
converges to 1.

4 An Upper Bound for the General Case

We now focus on the trade-off between the advice size and the competitive ratio
achievable in general metric spaces.

Theorem 4. For every b ≥ 2, there is an online algorithm solving the k-server

problem that uses b · n advice bits for inputs with n requests and achieves com-
petitive ratio 2

⌈
�log k�

b−1

⌉
≤ 4 + 2

b−1 log k.

On the Advice Complexity of the k-Server Problem 215

Proof (idea). At first, we describe the algorithm A. With each request, A reads
one bit of advice called a control bit. If this bit is zero, A satisfies the request
greedily with the nearest server. Afterwards, the used server is returned to its
original position before the next request. If the control bit is one, A reads the
next log k bits. These bits specify which server should be used to satisfy the
request. After the request is satisfied, the server is left at its new position.

It is possible to prove that, for every input instance, there exists an advice
such that A has a competitive ratio as claimed and such that A uses at most bi
bits of advice while processing the first i requests.

The intuition behind our algorithm is as follows: In the first step, a greedy
move (obviously) has cost smaller than or equal to the move of the optimal
solution. Hence, doing the greedy move and returning the server back incurs at
most twice the cost of the first step of the optimal solution. On the other hand,
the configuration of the server stays the same. Thus, we have not disrupted the
configuration too much, i. e., if we follow the optimal solution in the future, the
price for doing the first step in a (non-optimal) greedy way is not too high.
Indeed, assume that the greedy solution satisfies the first request r1 by using a
server located at r0, incurring cost 2d({r0, r1}) and that the optimal algorithm
should continue from this configuration. If there is a request satisfied by a server
not located at r1, there is no change in comparison to the original optimal
solution. If a server from r1 is used in the original optimal solution, the optimal
algorithm could use the server located at r0 instead, incurring an extra cost
of d({r0, r1}). Thus, the greedy move of the first step caused an extra cost
2d({r0, r1}) immediately and an extra cost d({r0, r1}) that propagates further.

These arguments can be generalized for a greedy step in any configuration:
The greedy step incurs some extra cost immediately and some extra cost that
is propagated. The algorithm A can, however, receive a full specification of the
optimal move after some cost has been propagated q :=

⌈
�log k�

b−1

⌉
times. To do

that, it is sufficient to set the control bit to 0 for q times, and then to 1, thus
stopping the error propagation. Doing so, we amortize the �log k� non-control
bits of advice over q steps, giving at most b amortized bits of advice per request.
Because every cost contributing to the original optimal solution is propagated at
most q times and, for every propagation, contributes to the constructed solution
at most twice, the competitive ratio of A is at most 2q.

The full proof can be found in the technical report. ��
We have proven Theorem 4 in the model of an advice tape. Nevertheless, the
result of this theorem can be easily adapted to the model with fixed number
of advice bits received with each request, as used in [6]. In this case, consider
the advice tape created in the proof of Theorem 4. Separate this tape into two
bit sequences, one containing only control bits, the other containing non-control
bits only. Afterwards, interleave these bits, always taking b− 1 non-control bits
followed by a single control bit to create a single b-bit advice message. Algorithm
A then reads b − 1 non-control bits with every message and stores them into a
FIFO data structure. Afterwards, it reads the control bit; if this bit is 1, �log k�

216 H.-J. Böckenhauer et al.

bits are extracted from the FIFO. The proof of Theorem 4 ensures that there
are always enough bits stored in the FIFO when a control bit 1 arrives.

Note that Theorem 4 improves the result of [6] exponentially: With b bits
per request, a feasibility of competitive ratio of kΘ(1

b) was proven in [6], while
Theorem 4 proves competitive ratio of log

(
kΘ(1

b)
)

.
Furthermore, note that, while we did not impose any restriction on the way

the advice string is generated in our definition, the advice strings used for our
upper bounds are always efficiently computable from an optimal offline solution.

5 Relation between Randomization and Advice

One intriguing aspect of the advice-based analysis of online problems is the re-
lationship of advice and randomization. Specifically, one can ask if there is some
connection between the existence of an efficient randomized algorithm and the
existence of an efficient algorithm with small advice. One can view the random-
ized algorithm as randomly selecting one witness object from a universe of possi-
ble witnesses. To achieve a good performance, the universe must be constructed
in such a way that, for any input, there are many reasonably good witnesses. On
the other hand, the advice can be interpreted as selecting a particular witness
from a given universe. Hence, for algorithms with advice it is necessary to have
a small universe such that for any input at least one good witness exists.

From Yao’s minimax principle [13] it follows that, if there is a randomized
algorithm with a given expected cost, then there is a small universe of witnesses
such that for each input there is a reasonably good witness, as stated in the
following theorem.

Theorem 5. Consider a minimization online problem P such that there are
|I(n)| = I(n) possible inputs of length n, where I(n) is the set of all possible
inputs of length n. Furthermore, let us suppose that there is a randomized algo-
rithm R with worst-case expected competitive ratio at most E(n). Then, for any
fixed ε > 0, it is possible to construct a deterministic algorithm A with advice
log n + 2 log log n + log

(
log I(n)
log (1+ε)

)
with competitive ratio E(n)(1 + ε).

Proof. Let us suppose that R uses r(n) random bits, so there are R(n) = 2r(n)

possibilities for a random string, which is the only source of randomness used
by R. Let us construct a matrix A with I(n) rows and R(n) columns such that
Ax,q is the competitive ratio of R on input x with random string q. We show
how to construct a set of strings W containing log I(n)

log (1+ε) elements such that, for
each input x, there is a string w ∈ W such that the competitive ratio of R on
input x with random string w is at most (1+ε)E(n). The first part of the advice
used by A is the number of requests n encoded in a self-delimited form using
log n + 2 log log n bits. Such an encoding can be achieved by writing the value of
log log n in unary base, extending it by the value of log n in binary base, which
uses log log n digits, and finally extending it by the value of n in binary base,

On the Advice Complexity of the k-Server Problem 217

which uses log n digits. Algorithm A knows a-priori the set W , since it depends
on n only. The second part of the advice for a given input is the index of the
particular string w ∈ W .

Since the expected competitive ratio of R for any input is at most E(n), we
have ∀x ∈ I(n) : 1

R(n)

∑
q Ax,q ≤ E(n). Hence, the overall sum in the matrix is

at most R(n) · I(n) ·E(n), and

∃w :
∑
x∈I

Ax,w ≤ I(n) ·E(n). (1)

This w will be included in W , and will be used as advice for any input x where
Ax,w ≤ (1 + ε)E(n); let us call such x a hit for w. We argue that w has many
hits: for a given number s of hits we have∑

x∈I
Ax,w > (I(n)− s) (1 + ε)E(n). (2)

From (1) and (2) we get s > I(n) ε
1+ε . Now we have covered I(n) ε

1+ε inputs by
one string w. Consider the sub-matrix of A obtained by removing the column w
and the rows corresponding to the already covered inputs. Since, for all remaining
I(n) 1

1+ε inputs, the string w contributed more than E(n) to the row-sum, the
average of any row in the sub-matrix is still at most E(n).

We can repeat the above argument, every time covering a fraction of ε
ε+1 of

the inputs. Hence, after log I(n)/ log(1 + ε) steps, all possible inputs are covered
by some w ∈ W . ��
Please note that the algorithm constructed in the previous example is not polyno-
mial: in order to decode the advice, the algorithm has to construct the dictionary
W by simulating the randomized algorithm on all inputs of length n.

In general, this bound cannot be extended to the case ε = 0, as can be seen
by the following (rather artificial) “winner-takes-all” problem:

Definition 4 (Winner-takes-all problem). The input consists of a sequence
of requests x1 = 0, x2, . . . , xn+1, where xi ∈ {0, 1}. The solution is a sequence
yi ∈ {0, 1}. The cost of a given solution is 1, if yi = xi+1 for all i ∈ {1, . . . , n},
and 2 otherwise. Hence, the optimal solution has cost 1 and all other solutions
pay an extra penalty of 1.

It is easy to show that the best possible randomized algorithm is to guess each bit
with equal probability, so the expected cost is 2− 1

2n . Obviously, any algorithm
with advice less than n bits has worst-case performance 2, so n bits are needed
to be on par with randomization.

Theorem 5 relates the advice and randomization in such a way that lower
bounds on advice complexity can be used to deliver lower bounds on random-
ization. Specifically, for the k-server problem, the famous “randomized k-server”
conjecture (RKSC) (for a survey see, e. g., [10]) states that, for any metrical
space, there is a randomized online algorithm with competitive ratio O(log k).
This would imply that for a (discrete) metric space with M elements, there is an

218 H.-J. Böckenhauer et al.

algorithm with advice O(log n+ log log log M) that is O(log k)-competitive. Our
results, however, grant the O(log k) competitive ratio only by using O(n) advice
bits. Hence, if one believes the RKSC, the upper bound is still exponentially far
from the optimum. On the other hand, any lower bound of the form ω(log n)
would disprove the RKSC. Compare this to the specific case of k-server [2] in
a space where all distances are 1 (i. e., the paging problem) where it is known
that linear advice is needed for optimality, and constant (i. e., independent of n)
advice is sufficient for being O(log k)-competitive.

References

1. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R.: On the advice complex-
ity of the k-server problem. Technical Report 703, ETH Zürich (2010)

2. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the
advice complexity of online problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)

3. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

4. Chaitin, G.J.: On the length of programs for computing finite binary sequences.
Journal of the ACM 13(4), 547–569 (1966)

5. Dobrev, S., Královič, R., Pardubská, D.: How much information about the fu-
ture is needed? In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat,
P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 247–258. Springer,
Heidelberg (2008)

6. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. LNCS, vol. 5555, pp. 427–438. Springer, Heidelberg (2009)

7. Hromkovič, J.: Design and Analysis of Randomized Algorithms: Introduction to
Design Paradigms. Texts in Theoretical Computer Science. An EATCS Series.
Springer, New York (2005)

8. Hromkovič, J., Královič, R., Královič, R.: Information complexity of online prob-
lems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 24–36.
Springer, Heidelberg (2010)

9. Kolmogorov, A.N.: Three approaches to the definition of the concept “quantity of
information”. Problemy Peredachi Informatsii 1, 3–11 (1965)

10. Koutsoupias, E.: The k-server problem. Computer Science Review 3(2), 105–118
(2009)

11. Shannon, C.E.: A mathematical theory of communication. Mobile Computing and
Communications Review 5(1), 3–55 (2001)

12. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2), 202–208 (1985)

13. Yao, A.C.-C.: Probabilistic computations: Toward a unified measure of complexity
(extended abstract). In: FOCS, pp. 222–227. IEEE, Los Alamitos (1977)

Sleep Management on Multiple Machines

for Energy and Flow Time

Sze-Hang Chan1, Tak-Wah Lam1, Lap-Kei Lee2,
Chi-Man Liu1, and Hing-Fung Ting1

1 Department of Computer Science, University of Hong Kong, Hong Kong
2 MADALGO Center for Massive Data Algorithmics, Aarhus University, Denmark

Abstract. In large data centers, determining the right number of oper-
ating machines is often non-trivial, especially when the workload is un-
predictable. Using too many machines would waste energy, while using
too few would affect the performance. This paper extends the traditional
study of online flow-time scheduling on multiple machines to take sleep
management and energy into consideration. Specifically, we study online
algorithms that can determine dynamically when and which subset of
machines should wake up (or sleep), and how jobs are dispatched and
scheduled. We consider schedules whose objective is to minimize the sum
of flow time and energy, and obtain O(1)-competitive algorithms for two
settings: one assumes machines running at a fixed speed, and the other
allows dynamic speed scaling to further optimize energy usage.

Like the previous work on the tradeoff between flow time and energy,
the analysis of our algorithms is based on potential functions. What is
new here is that the online and offline algorithms would use different sub-
sets of machines at different times, and we need a more general potential
analysis that can consider different match-up of machines.

1 Introduction

Energy consumption is a major concern for large-scale data centers. It has been
reported that the energy consumption of the data centers in US costs more than
$4.5 billion a year and accounts for more than 1.5% of the total electricity usage
in US [15]. When a machine (or server) is on, the power consumption is divided
into dynamic power and static power ; the former is consumed only when the
machine is processing a job, while the latter is consumed constantly (due to
leakage current) even when the machine is idle (e.g., an Intel Xeon E5320 server
requires 150W when idling and 240W when working [7]). The static power con-
sumption is cut off only when a machine is sleeping. From the energy viewpoint,
a data center should let machines sleep whenever they are idle, yet waking up a
machine later requires extra energy. It is energy inefficient to frequently switch a
machine on and off. It is challenging to determine dynamically the appropriate
number of working machines so as to strike a balance between energy usage and
quality of service (QoS), especially when the workload is unpredictable. This
paper initiates a theoretical study of online job scheduling on a pool of identical

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 219–231, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

220 S.-H. Chan et al.

machines that takes sleep management, energy and QoS into consideration. We
consider both models where machines are running at a fixed speed and machines
can each scale their speed to control their power, respectively.

Flow time scheduling. A well-studied QoS measurement for job scheduling is
the total flow time. The flow time (or simply the flow) of a job is the time
elapsed since the job is released until it is completed. Without energy concern,
there is already considerable amount of research on minimizing total flow time
alone (see the survey [14]). It is well-known that the online algorithm SRPT
(shortest remaining processing time) minimizes total flow time on a single ma-
chine. For scheduling on m > 1 identical machines, no online algorithm can be
O(1)-competitive even if job migration is allowed; nevertheless, Chekuri et al.
[6] showed that the non-migratory algorithm IMD [4] is O(1 + 1

ε)-competitive
for any ε > 0 when using (1 + ε) times faster machines.

Sleep management and energy. The above results assume that all machines
are always on. This paper extends the study of multi-machine scheduling to
consider sleep management and the tradeoff between flow time and energy. When
a job arrives, we need to determine whether to wake up a sleeping machine to
process it or assign it to an awake machine. We also have to decide when to put
machines to sleep to save static power. Waking up machines too aggressively
wastes a lot of energy, while an over-conservative wake-up policy accumulates
excessive flow time. The objective is to minimize the flow plus energy. Lam et
al. [11] studied this problem in the single-machine setting and gave an O(1)-
competitive algorithm for flow time plus energy. In the multi-machine setting,
sleep management gets complicated and cannot be considered separately on each
machine; for instance, a scheduler may overload some machines to put others to
sleep earlier. No online algorithm has been known for the multi-machine setting.
A relevant work is by Khuller et al. [10] who considered an offline problem of
minimizing makespan subject to a wake-up budget for jobs all released at time 0.

Speed scaling. All the results above assume that machines run at a fixed speed.
Another energy saving technology is dynamic speed scaling, which allows a pro-
cessor to scale its speed dynamically. Running a job slower can reduce energy
usage, but it leads to longer flow time. There are several online results that take
speed scaling into consideration and attempts to minimize the total flow plus en-
ergy (see the survey [1]). Most results are based on a model in which the proces-
sor, when running at speed s ∈ [0,∞), consumes dynamic power sα, where α > 1
and is typically 3 [16]. Here a scheduler needs a speed scaling policy to determine
the speed of each processor. When there is only one processor which is assumed
to be always on, the best algorithm uses the job selection algorithm SRPT and
the speed scaling algorithm AJC, which sets its speed based on the number of
active jobs [13]. This algorithm is 2-competitive for flow plus energy [5,3]. Lam
et al. [11] have also studied single-processor scheduling that exploits both sleep
management and speed scaling, and gave an O(α

log α)-competitive algorithm for
flow plus energy.

Sleep Management on Multiple Machines for Energy and Flow Time 221

Existing online results on speed scaling for multiple machines do not consider
sleep management [12,9,8]. The best result in the non-migratory model is by
Gupta et al. [8]. They assume each machine runs the best single-machine speed
scaling algorithm as mentioned above, and consider a job dispatching algorithm
which assigns each new job to the machine that would result in the least in-
crease in the future flow plus energy. The algorithm is O(α)-competitive for flow
plus energy. It remains open whether there exists a competitive algorithm when
machines can exploit both speed scaling and sleep management.

Note that speed scaling and sleep management might work in opposite direc-
tions; the former prefers load balancing and working slowly, while the latter could
overload some machines (and make them run faster) so as to let other machines
sleep. Furthermore, speed scaling can be optimized separately within individual
machine, but sleep management often requires considering all machines together.

Our contribution. This paper gives the first sleep management algorithm on
multiple machines for minimizing total flow plus energy. Our results cover both
the fixed speed and speed scaling models. We only consider non-migratory sched-
ules since migration requires overheads in practice. In the fixed speed model, it
is easy to show that any online algorithm is Ω(m)-competitive even if all jobs
have unit size. In view of the lower bound, we give the online algorithm (1 + ε)-
speedup processors, which run (1 + ε) times faster but does not consume more
power. We show an online algorithm POOL that is O(1 + 1

ε)-competitive for to-
tal flow plus energy when using (1 + ε)-speedup processors. (Our result remains
valid even if a machine when running at speed (1+ ε) is charged for more power,
say, (1 + λ) times of the original power. The competitive ratio would increase
by a factor of (1 + λ).) We can adapt POOL to the speed scaling model using
AJC; it is O(α)-competitive for flow plus energy. Our new algorithm has compa-
rable performance with the best speed scaling results on multiple machines that
assume all machines are always on [12,9,8].

The core idea of our algorithm is to keep a pool of “dispatchable” machines,
which are either all asleep or all awake. A new job is dispatched only to a machine
currently in the pool. We separate the management of the pool from the job
dispatching policy; the former depends on the history of the workload while the
latter depends on the size of the current job. We exploit three simple ideas to
manage the pool: (1) uses the total flow to trigger all machines in the pool to
wake up; (2) uses the total working flow plus energy to decide when to include
more machines; and (3) uses the total idling energy to decide when to remove
a machine from the pool. Like many online algorithms, POOL is conservative in
committing resources (i.e., waking up machines). Yet POOL can keep its flow
under control even if there are many occasions when it uses too few machines.

We also face new challenge when analyzing the competitiveness. As in pre-
vious work, we need to discover the “right” potential function to account for
the difference in the progress of the online algorithm and the optimal offline
algoithm OPT. With different sleep management, POOL and OPT may indeed
operate with a different subset of machines, and it is possible that POOL makes
machine i heavily loaded while OPT puts machine i to sleep. It makes no sense

222 S.-H. Chan et al.

to compare their progress of machine i in POOL and OPT. We should match
the machines of POOL and OPT with the same state and measure the progress
of each pair. This paper gives a new potential analysis that allows us to dy-
namically change the matching of the machines so as to minimize the number
of state mismatch. One might think that changing the matching might require
us to “restart” the potential analysis. Yet we observe that such change cannot
increase the potential. Another important observation is that we can restrict our
attention to those offline algorithms that at any time have at most one machine
that is sleeping and has unfinished jobs.

Definitions and notations. The input is a sequence of jobs arriving online, to
be scheduled on m ≥ 1 machines. The job’s size is arbitrary and only known at
release time. Jobs are sequential in nature (i.e., each job can be processed by one
machine at a time). We consider only non-migratory schedules, in which each job
is dispatched to one machine and is run entirely on that machine. Preemption
is allowed, and a preempted job can resume at the point of preemption.

Sleep, awake, and static power. At any time, a machine is in either the awake
state or the sleep state. It can process a job only when it is awake, and the energy
is consumed at the rate μ > 0, which includes both static and dynamic power.
An awake machine can be idle (i.e., speed = 0) and only requires the static
power σ (0 < σ < μ). It can enter the sleep state to further reduce the power
to zero. Initially, all machines are in the sleep state. Following the literature,
we assume that state transition is immediate but requires energy. A wake-up
from the sleep state to the awake state requires an amount ω of energy, and
the reverse takes zero energy. It is useful to differentiate two types of awake
state, namely, with zero speed and with positive speed, which are referred to
respectively as the awake-idle and awake-working state, or simply the idle and
working state. Furthermore, we call a sleeping machine in the procrastinating
state if the machine has jobs not yet finished.

Fixed-speed and speed scaling models. In the fixed-speed model, a working
machine runs at speed 1 (i.e., processing x units of work in x units of time) and
the power required is μ. In the speed scaling model, a working machine can run
at any speed s > 0 at any time but at different power. We assume that the power
function or the rate of energy usage is P (s) = sα +σ, where α > 1 is a constant.

Flow and energy. Consider a schedule of jobs. At any time t, a job j is said to
be active if j has been released but not yet completed. Its flow time or simply
flow F (j) is the time elapsed since it arrives and until it is completed. The total
flow is F =

∑
j F (j). Let nt be the number of active jobs at time t. We can also

view the total flow as a quantity incurring at a rate equal to the number of active
jobs, i.e., F =

∫∞
0 nt dt. Energy is consumed by awake machines continuously

over time and by discrete wake-up transitions. Denote the total energy as E.
The cost G of a schedule is defined to be F + E. And the objective is to find a
schedule that minimizes G. Furthermore, suppose that each job is dispatched to
some machine immediately at release time. Then we can consider the flow and
energy machine by machine. For each machine, we are particularly interested
in the flow and energy incurred over the time when it is in the working state.

Sleep Management on Multiple Machines for Energy and Flow Time 223

We define the working cost Gw of a schedule to be the sum over all machines of
the flow and energy incurred when the machine is in the working state. Obviously,
Gw < G as the latter includes the flow incurred when a machine is sleeping, the
energy when idle, and the wake-up energy.

2 Sleep Management for Fixed-Speed Machines

This section focuses on fixed-speed machines and gives our algorithm POOL that
handles sleep management, job dispatching and scheduling in an integrated way.
POOL is using m > 1 machines that are (1 + ε) times faster than the offline
optimal algorithm OPT, while using the same power. (Recall that without extra
speed, any online algorithm is Ω(m)-competitive.) Following is our main result.

Theorem 1. For any ε > 0, POOL is O(1 + 1
ε)-competitive for flow plus energy

when using (1 + ε)-speedup machines.

Remaining working cost (rwc). As to be shown, POOL schedules jobs using
SRPT. It is useful to compute the remaining working cost (rwc) required to
serve the remaining jobs on any machine i that runs SRPT at a speed s ≥ 1. For
any time t and any q ≥ 0, let ni,t(q) be the number of active jobs in machine
i with remaining work at least q. Then at any time t, the rwc of machine i
equals

∫∞
q=0

∑ni,t(q)
k=1 (k+μ

s) dq. Moreover, if a job j of size p(j) arrives at time t
and is dispatched to machine i immediately, the increase in rwc due to j equals∫ p(j)

q=0(ni,t(q)+1+μ
s) dq (note that ni,t(q) refers to the number before j arrives).

Obviously, for a sequence of jobs J , the sum of the increases in rwc at their
release times equals the total working cost of serving J .

2.1 Algorithm POOL

The core idea is to maintain a small pool P of dispatchable machines. P contains
one sleeping machine initially and is always non-empty. At any time, machines
in P are either all asleep or all awake, and P is said to be asleep and awake,
respectively. Machines not in P are all asleep and do not have active jobs. POOL

would gradually include more machines into P as jobs arrive, and they are put
into the same state as P . POOL exploits three simple concepts to manage P : (1)
total flow for triggering all machines in P to wake up; (2) total working cost for
determining when to include more machines into P ; and (3) total idling energy
for determining when to put an idle machine to sleep and remove it from P .

To this end, POOL maintains three (real-value) counters B, C and D to keep
track of the accumulated flow (when P is asleep), increase in working cost and
idling energy, respectively. Initially, all counters equal 0. C only increases when a
job arrives. When P is asleep, B increases (continuously) at rate of the number
of active jobs. When P is awake, D increases at rate of σ times the number of
idle machine, but once D reaches ω, its value is capped there. Intuitively, when
D reaches ω, we could remove one idle machine from P . But this turns out to

224 S.-H. Chan et al.

be too aggressive. Let Pidle be the set of idle machines in P . Indeed POOL never
sleeps an idle machine if it is the only idle machine in P (i.e., |Pidle| = 1) but
|P | ≥ 2; it does so only if there are two or more idle machines or |P | = 1.

When a job j arrives, POOL first assumes that j is dispatched to a machine
with no active jobs and calculates the increase in rwc. Denote this amount of
increase as null Inc rwc(j). If null Inc rwc(j) can compensate the wake-up
energy, POOL will include one machine into P and dispatch j to this machine
(even if P already has an idle machine). Otherwise, POOL dispatches j to a
machine i in P that minimizes the increase in rwc; below we denote machine i
as �(j, P) and the amount of increase in rwc as min Inc rwc(j, P). Note that
min Inc rwc(j, P) ≥ null Inc rwc(j), and the total rwc also increases by the
same amount in both cases. C keeps track of the increase in rwc; whenever it
reaches a multiple of ω, we include one more machine into P .

Job dispatching (& expand P): When a job j arrives,
If ((|P | < m) & (C + null Inc rwc(j) ≥ ω)),

add a machine to P ; dispatch j to this machine; C=C+null Inc rwc(j)−ω;
else dispatch j to �(j, P); C = C +min Inc rwc(j, P);
While ((C ≥ ω) & (|P | < m)) do { add a machine to P ; C = C − ω. }
If C > ω then C = ω.

Wake up P : If (P is asleep) & (B = ω), wake up all P ’s machines; reset B = 0.
Sleep a machine (& shrink P): When D = ω,
• if |Pidle| ≥ 2, remove one idle machine from P and put it to sleep; resetD = 0;
• if |Pidle| = |P | = 1, put P to sleep; reset C = D = 0.

Job scheduling in each machine of P : When awake, use SRPT policy.

Intuitively, scheduling for a small job (say, null Inc rwc(j) < ω) is not ob-
vious. It is too small to justify waking up a machine, yet dispatching it to an
awake machine may preempt other jobs there (due to SRPT policy) and sud-
denly cause a huge increase of rwc. Interestingly, POOL can maintain a useful
property that it always has at least one awake machine with a small workload
and dispatching j to it cannot increase the rwc too much (say, ≤ 2ω).

Property 1. Every time after POOL executes the job dispatching procedure, it
maintains the invariant that if |P | < m, there exists a machine with rwc < ω.

POOL never lets an awake machine idle if that machine has active jobs. Thus,
a machine can accumulate flow only when it is working or sleeping. Consider a
schedule of POOL. We divide POOL’s total flow F into two parts: the working flow
Fw and the sleeping flow Fs, which refer to the total flow incurred by the machines
when they are working and sleeping, respectively. We also divide POOL’s energy
usage E into three parts: Ei is the idling energy (static energy usage during the
idle state), Ew the working energy, and U the wake-up energy. Note that POOL’s
working cost Gw = Fw + Ew, and its total cost G = Fw + Fs + Ew + Ei + U .

The analysis of POOL centers on a rather complicated potential analysis of
Fw, which gives Lemma 1(i) below. Note that we will bound Fw by OPT’s
total cost G∗ together with the sleeping flow Fs, because the sleep management

Sleep Management on Multiple Machines for Energy and Flow Time 225

of POOL sometimes delays jobs and increases their flow. Such excess in flow is
related to Fs but not OPT. To upper bound the other components of G, we show
Lemma 1(ii). Lemmas 1(i) and (ii) would imply that POOL is O(1)-competitive.

Lemma 1. (i) Fw ≤ (9 + 10
ε)G∗ + 1

εFs; (ii) G ≤ 4Fw + 7G∗.

Proof (Sketch of Lemma 1(ii)). We derive three properties of POOL: (a) Fs ≤
G∗; (b) U ≤ Gw +G∗; (c) Ei ≤ U+Ew. As POOL uses (1+ε)-speedup machines,
Ew is less than OPT’s working energy and thus G∗. Thus, Lemma 1(ii) follows.

It is useful to partition the timeline into intervals called P -intervals, each of
which consists of a maximal asleep period of P , followed by a maximal awake
period of P . For a P -interval I, we can show that the total cost incurred by OPT
within I (denoted by G∗(I)) is at least ω. For (a), the sleeping flow accumulated
by POOL in the asleep period of I is ω ≤ G∗(I). Summing over all I’s gives
Fs ≤ G∗. For (b), within I, except for the first machine added to P , a machine
is added to P when the accumulated increase of rwc (i.e., counter C) reaches
a multiple of ω. When I ends, this accumulated increase in rwc would be fully
reflected in the working costG∗ incurred within I. Thus, within I, the total wake-
up energy (including that for the first added machine) is at most the working
cost plus ω (at most G∗(I)). Summing over all I’s gives U ≤ Gw +G∗. For (c),
Ei can be incurred when D < ω and when D = ω. The first type increases at the
same rate as D and is at most U . The second type is incurred when |Pidle| = 1
but |P | ≥ 2, i.e., a working machine exists in P , which is thus at most Ew. ��

2.2 Potential Analysis of Fw

One might think that POOL is rather conservative in waking up machines and
might sacrifice flow for energy. Indeed POOL can always catch up in time its
number of machines and keep its flow under control. In particular, we can upper
bound POOL’s increase of flow even when it is using fewer machines than OPT.
The analysis is complicated because POOL and OPT may use different subsets
of (awake) machines. The rest of this section shows Lemma 1(i) using a potential
function that allows different match-up between machines of POOL and OPT.

Restricting OPT. In analyzing Fw, we restrict OPT to be the optimal offline
algorithm that always uses SRPT for job selection and has at most one procras-
tinating machine at any time. In Section 4, we show that such OPT incurs at
most three times the total cost of an unrestricted one. Henceforth, we focus on
the restricted OPT and show that POOL is O(1)-competitive against it.

Let Fw(t) denote the working flow Fw incurred up to time t by POOL. Sim-
ilarly, define G∗(t) for OPT’s total cost G∗. Assume that machines are labeled
with integers from 1 to n. At any time, we match each machine in POOL with
a certain machine in OPT. Below we denote x(i) as the machine in OPT cur-
rently matched with machine i in POOL. This matching is only for the purpose
of analysis and not known to the algorithms. Initially x(i) = i for all i. To show
Lemma 1(i), we define a potential function Φ(t) that reflects POOL’s remaining

226 S.-H. Chan et al.

working cost discounted in view of OPT’s workload in the corresponding ma-
chines. Technically, we want Φ(t) to satisfy the following conditions: (i) Boundary
condition: Φ = 0 before any job is released and after all jobs are completed. (ii)
Job completion and state transition condition: Φ does not increase when a job
is completed or a machine changes its state in POOL or OPT. (iii) Job arrival
condition: After a job arrives and gets dispatched, we re-match the machines.
Φ may increase, yet the total increase due to all job arrivals is upped bounded
by O(G∗) (precisely, (8 + 9

ε) ·G∗). (iv) Running condition: At any other time t,
dFw(t)

dt + dΦ(t)
dt ≤ (1 + 1

ε) · dG∗(t)
dt + 1

ε · dFs

dt . By integrating the above conditions
over time, we have Fw ≤ (8 + 9

ε + 1 + 1
ε)G∗ + 1

εFs. Then Lemma 1(i) follows.

Potential function Φ. For any machine i of POOL, for any q ≥ 0, recall that
ni,t(q) denotes the number of active jobs with remaining work at least q at
time t. Define n∗i,t(q) similarly for OPT. We will drop the parameter t when t
refers clearly to the current time. Let (·)+ = max(·, 0). The potential function is

Φ(t) =
∑m

i=1 Φi(t) where Φi(t) = 1
ε

∫∞
0

∑ni(q)
k=1 (k − n∗x(i)(q) + μ)+ dq .

Machine re-matching. x(1), . . . , x(m) form a permutation of 1, 2, · · · ,m. At any
time once a new job has been dispatched to a machine by ALG and OPT, we
keep swapping x(i) and x(j) as long as we find machines i and j satisfying:
• POOL has i not in P and OPT has x(i) awake or procrastinating; and
• POOL has j in P and OPT has x(j) sleeping.

Note that Φi, Φj and Φ may change after a swapping. Interestingly, we can verify
that this change must be non-increasing.

Lemma 2. After some x(i) and x(j) are swapped, Φi and Φj does not increase.

We can easily show the boundary, job completion and state transition conditions.
The running condition depends solely on the job scheduling policy (SRPT) and
can be analyzed independently for each matched pair of machines using tech-
niques for the single-machine analysis [5,11]; details will be given in full paper.

The core of the potential analysis is the arrival condition, which depends on
both sleep management and job dispatching policies. Below we show that when
a job arrives, after a special re-matching of machines, the increase of flow or
technically Φ can be bounded in terms of some non-overlapping cost of OPT.

Lemma 3. The sum over all jobs of the increase in Φ due to a job arrival (and
machine re-matching) is at most (8 + 9

ε) ·G∗.

At the point after a job j arrives and gets dispatched by POOL and OPT,
we re-match their machines (i.e., compute a new matching function x(i)) be-
fore we re-calculate Φ. This re-matching process is for analysis sake and can
make reference to any information in the POOL and OPT’s schedule in the
past or future. To formally define the inputs to the re-matching process, we
need to first construct a list of “interesting” events ordered by time. There
are 6 types of events: JobArrive(j)—a new job arrives and is dispatched by

Sleep Management on Multiple Machines for Energy and Flow Time 227

POOL and OPT; POOL In(j)—POOL adds a machine into the pool P due to
job j; POOL Out—removes a machine from P ; OPT Wake—OPT wakes up a
machine; OPT Sleep—OPT sleeps a machine; and Rematch—execute the re-
matching procedure based on POOL and OPT’s status as defined up to the pre-
vious event. When there are multiple events at the same time, they are arranged
in the following order: POOL Out, all OPT Wake, JobArrive(j), Rematch, all
POOL In(j), JobArrive(j′), Rematch, all POOL In(j′), · · · , all OPT Sleep. Let
A = (e1, e2, . . . ec) be the list of events. For each event e, we define he to be
the number of machines in P immediately after e, and h∗e the number of awake
machines in OPT. We omit e when it is clear that we refer to the current event.
Notice that before the first event of A, h = 1 and h∗ = 0.

Lazy intervals. A lazy interval is a maximal sequence of events in A containing
at least one JobArrive, in which all events e have he ≤ h∗e. By definition, a lazy
interval must start with a POOL Out or OPT Wake event and end before a
POOL In or OPT Sleep event. For any lazy interval �, excluding the first event,
let I
, O
, W ∗

 and S∗

 be respectively the number of POOL In, POOL Out,

OPT Wake and OPT Sleep events in �. W.r.t. the first and the last event of a
lazy interval, h = h∗. This implies the following useful property of a lazy interval.

Property 2. For a lazy interval �, I
 + S∗

 = W ∗

 +O
.

Type-0, Type-1 and Type-2 jobs. Define Type-0 jobs to be jobs which POOL

dispatches to a zero-rwc machine (i.e., no active jobs). For any other job, it is
Type-1 if its JobArrive event e is in a lazy interval and he < m; otherwise, it is
Type-2. Type-0 jobs are easy to analyze. Roughly speaking, Type-2 jobs arrive
when POOL is using more machines than the OPT (or is using all m machines);
after re-matching the machines, it is relatively easy to show that Φ has limited
increase (see Lemma 4; proof will be given in the full paper). For Type-1 jobs,
POOL might be using very few machines and POOL’s increase in rwc can be way
larger than OPT’s. We analyze Type-1 jobs interval by interval (instead of job
by job) and show that POOL’s increase in rwc is bounded by the static energy
and wakeup energy of OPT (see Lemma 5(b)). Then Lemma 3 follows.

Lemma 4. The total increase in Φ due to Type-2 jobs is at most 1
ε ·G∗.

For Type-0 and Type-1 jobs, it is relatively easy to see that the total increase
in Φ is at most (1 + 1

ε) times the total increase in rwc of POOL. Thus, Lemma 5
implies that the increase in Φ due to Type-0 and Type-1 jobs is most 8(1+ 1

ε)·G∗.

Lemma 5. (a) POOL’s total increase in rwc due to Type-0 jobs is at most G∗.
(b) POOL’s total increase in rwc due to Type-1 jobs is at most 7G∗.

Lemma 5(a) is obvious: when a Type-0 job arrives, POOL’s increase in rwc
cannot exceed that of OPT. To show Lemma 5(b), let ΔG′

 and ΔG′ be the
increase in rwc to POOL due to Type-1 jobs in a lazy interval � and all Type-1
jobs, respectively. Let L be the set of all lazy intervals and let |L| be the size
of L. Define IL =

∑

∈L I
 and similarly for OL,W

∗
L and S∗

L. It is useful to define

228 S.-H. Chan et al.

E∗

 to be the total wake-up energy used by OPT during � plus the static energy

used by OPT during � (precisely, during the time period enclosing all events in
�), and E∗

L to be the sum of E∗

 over all � ∈ L. Obviously, E∗

L ≤ G∗. We can
show Lemma 6 below; details will be given in the full paper. Roughly speaking,
Lemma 6(i) and (ii) show respectively that POOL can wake up more machines
in react to a large increase in working cost, and POOL does not put machines
to sleep too frequently. Thus, POOL is not over-conservative when having fewer
awake machines than OPT. Together with Property 2, Lemma 5(b) follows.

Lemma 6. (i) ΔG′ < (IL + 2|L|)ω; (ii) (W ∗
L +OL)ω ≤ E∗

L; |L|ω ≤ 3E∗
L.

3 Sleep Management and Speed Scaling

In this section, we consider the speed scaling model, where each processor can
scale its speed s in [0,∞) and consumes energy at rate P (s) = sα + σ, where
α > 1. We adapt the algorithm POOL presented in Section 2 such that each
awake processor in P scales its speed by AJC (active job count) [11], as follows.
For machine i, define ni,t and ni,t(q) similarly as before.

Speed scaling in each machine of P : When awake, if machine i has
active jobs (ni,t > 0), set its speed to (ni,t + σ)1/α; else its speed is 0.

We can verify that the rwc of a machine i becomes 2
∫∞
q=0

∑ni,t(q)
k=1 (k+σ)1−1/α dq.

Theorem 2. With speed scaling, POOL is O(α)-competitive for flow plus energy.

To prove Theorem 2, our main idea is similar to that in Section 2, as most
properties of POOL do not depend on the power function and remains valid.
In particular, we compare POOL with a restricted optimal algorithm OPT that
keeps at most one machine procrastinating and follows SPRT and AJC. Such
restriction allows us to calculate the rwc of OPT. In Section 4, we show that
this only increases the competitive ratio by six times. We show Lemma 7 below
which is analogous to Lemma 1 in Section 2. The sleeping flow Fs, idling energy
Ei and wake-up energy U can be bounded using the same techniques, which gives
Lemma 7 (ii). Yet in the speed scaling model, we can no longer bound Ew by E∗

w

easily. Even though we restrict OPT to use AJC as the speed scaling policy, there
is no simple relation between Ew and E∗

w
. Thus, we will consider Ew and Fw

together and analyze Gw, the working cost. Using a modified potential function,
the potential analysis framework used in the fixed speed model is adaptable to
the speed scaling model, allowing us to show Lemma 7(i).

Lemma 7. In the speed scaling model, (i) Gw ≤ 11α · G∗ + (2α − 2) · Fs; (ii)
G ≤ 4Gw + 4G∗.

We now define the potential function Φ for proving Lemma 7(i). As shown in
Section 2, we want Φ to capture POOL’s remaining working cost in discounted in
view of OPT’s workload in the corresponding machines. We modify Φ in view of

Sleep Management on Multiple Machines for Energy and Flow Time 229

the new rwc of POOL. At any time, let x(i) to be the machine in OPT currently
matched with machine i in POOL. Then we define

Φ(t) =
∑m

i=1 Φi(t) where Φi(t) = 2α
∫∞
0

∑ni,t(q)
k=1 (k − n∗x(i),t(q) + σ)1−1/α

+ dq .

We will follow a similar framework in analyzing Φ. It is easy to show the
boundary, job completion and state transition conditions. The arrival and run-
ning conditions can be proven using similar ideas but requires some modification
mostly due to the new definition of rwc. We only state the arrival and running
conditions and leave the detailed proofs in the full paper.

Lemma 8. (i) The sum over all jobs of the increase in Φ due to a job arrival
(and machine re-matching) is at most 9α ·G∗. (ii) Consider any time t without
job arrival, completion, machine reordering and state transition in both POOL

and OPT. dGw

dt + dΦ
dt ≤ 2α · dG∗

dt + (2α− 2)dFs

dt .

4 Transformation of Offline Schedule

This section describes the transformation for getting the suitable offline schedule.

Theorem 3. Given any schedule S that uses speed scaling, we can transform
S into another schedule S′ that also uses speed scaling, and (i) S′ has at most
one procrastinating machine at any time, (ii) it uses SRPT for job selection and
AJC for speed scaling, and (iii) the total cost of S′ is at most 6 times that of S.

We first transform S into a schedule S0 with the following invariants: (1) If a
job j is assigned to some machine i, then j is completed before i goes to sleep
for the first time after the release of j (this invariant is mainly for simplifying
analysis); and (2) it has at most one procrastinating machine at any time. The
total cost of S0 is at most 3 times that of S. Then, we show how to transform
S0 to S′ that uses SRPT and AJC, and this will further blow up the cost by a
factor of at most 2. Observe that we have a similar transformation for the fixed
speed model, which blows up the total cost by a factor of 3 instead of 6: we
transform S0 to S′ that uses SRPT, which does not further increase the cost.

We now give the essential ideas for proving Theorem 3; details will be given in
the full paper. The construction of S0 from S starts by copying the wakeup and
sleeping times of each machine from S into S0 (i.e., each machine has the same
sequence of awake periods in both schedules). Then, we schedule each job into
S0 in order of release times; a job may be assigned to a different machine and
different time slots than it is in S. Suppose we are considering job j, whose “ex-
ecution profile” in S is 〈i, (t1, �1, s1), (t2, �2, s2) . . . , (tm, �m, sm)〉, meaning that
j is assigned to i, running at time t1 for �1 time units at speed s1, and so on.
Then, we copy this execution profile to S0. If the resulting schedule violates an
invariant, we do the following before moving on to schedule the next job.

Suppose Invariant (1) is violated, i.e., [t1, tm + �m] covers several awake pe-
riods of i. Then we “leftpack” the schedule as follows: Let u be the time ma-
chine i goes to sleep for the first time after the release of j. Then u < tm + �m.

230 S.-H. Chan et al.

We extend the awake period that ends at u as much as possible by executing
j in this period. If j still cannot be completed before the next sleep time, we
repeat this process. For example, suppose that j is released at time 8 and its
execution profile in S is 〈i, (12, 1, 1), (17, 6, 3), (30, 1, 1)〉, and i’s awake periods
after 8 is [10, 13], [17, 23], [29, 32]. After leftpacking, the schedule for j in S0

becomes 〈i, (12, 1, 1), (13, 4, 3), (17, 2, 3), (23, 1, 1)〉, and the awake periods of i
after 8 is [10, 24] and [29, 32]. The extra cost for executing j during [13, 17]
equals the cost saved by not executing j during [19, 23], and during this period,
i becomes idle and costs static energy; but this will at most double the original
energy cost.

Now we briefly describe how to maintain Invariant (2). Before scheduling j,
Invariant (2) ensures that S0 has at most one procrastinating machine p at the
release time u of job j. If p = i, the new schedule still satisfies Invariant (2).
Suppose p �= i, and after leftpacking, there is a period [u, v] during which both p
and i are procrastinating. If j’s length (i.e. total execution time) is larger than
|[u, v]|, we can wake up p earlier at u so that it becomes awake during [u, v].
Note that the extra static energy cost during this idle period is no greater than
that for processing j and thus we double the energy at most. If the length of j is
smaller than |[u, v]|, we re-assign j to p and execute it during [v− �, v] where � is
the length of j. Now machine i no longer procrastinates during [u, v] and hence
Invariant (2) is satisfied. But there is a subtle problem here: it is possible that j
completes before v in S, so in the new schedule j has an increased flow time. In
such case, we employ a different strategy which involves moving multiple jobs
from i to p, and the analysis becomes rather complicated (see the full paper).

Finally, we describe how to transform S0 to S′, which uses SRPT and AJC.
Consider any machine i. Whenever i is awake in S0, i is also awake in S′, pro-
cessing jobs using SRPT and AJC (or idles if no job remains). If i goes to sleep
in S0 at some time t, i also goes to sleep in S at time t only if it has no active
jobs; otherwise it stays awake and processes the jobs using SRPT and AJC until
there are no more active jobs, say at time t′. Then it copies the status of i at
time t′ in S0, i.e., it goes to sleep in S′ if and only if i is asleep in S0 at time t′.

References

1. Albers, S.: Energy-efficient algorithms. CACM 53(5), 86–96 (2010)
2. Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization.

ACM Transactions on Algorithms 3(4), 49 (2007)
3. Andrew, L., Wierman, A., Tang, A.: Optimal speed scaling under arbitrary

power functions. ACM SIGMETRICS Performance Evaluation Review 37(2), 39–
41 (2009)

4. Avrahami, N., Azar, Y.: Minimizing total flow time and total completion time with
immediate dispatching. In: Proc. SPAA, pp. 11–18 (2003)

5. Bansal, N., Chan, H.L., Pruhs, K.: Speed scaling with an arbitrary power function.
In: Proc. SODA, pp. 693–701 (2009)

6. Chekuri, C., Goel, A., Khanna, S., Kumar, A.: Multi-processor scheduling to mini-
mize flow time with ε resource augmentation. In: Proc. STOC, pp. 363–372 (2004)

Sleep Management on Multiple Machines for Energy and Flow Time 231

7. Gandhi, A., Gupta, V., Harchol-Balter, M., Kozuch, M.: Optimality analysis of
energy-performance trade-off for server farm management. Performance Evalua-
tion 67(11), 1155–1171 (2010)

8. Gupta, A., Krishnaswamy, R., Pruhs, K.: Scalably scheduling power-heterogeneous
processors. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide,
F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 312–323. Springer,
Heidelberg (2010)

9. Greiner, G., Nonner, T., Souza, A.: The bell is ringing in speed-scaled multipro-
cessor scheduling. In: Proc. SPAA, pp. 11–18 (2009)

10. Khuller, S., Li, J., Saha, B.: Energy efficient scheduling via partial shutdown. In:
Proc. SODA, pp. 1360–1372 (2010)

11. Lam, T.W., Lee, L.K., Ting, H.F., To, I., Wong, P.: Sleep with guilt and work faster
to minimize flow plus energy. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y.,
Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 665–676.
Springer, Heidelberg (2009)

12. Lam, T.W., Lee, L.K., To, I., Wong, P.: Competitive non-migratory scheduling for
flow time and energy. In: Proc. SPAA, pp. 256–264 (2008)

13. Lam, T.W., Lee, L.K., To, I., Wong, P.: Speed scaling functions for flow time
scheduling based on active job count. In: Halperin, D., Mehlhorn, K. (eds.) Esa
2008. LNCS, vol. 5193, pp. 647–659. Springer, Heidelberg (2008)

14. Pruhs, K., Sgall, J., Torng, E.: Online scheduling. In: Handbook of Scheduling:
Algorithms, Models and Performance Analysis, pp. 15-1–15-41. CRC Press, Boca
Raton (2004)

15. U.S. Environmental Protection Agency. EPA Report on server and data center
energy efficiency (2007)

16. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In:
Proc. FOCS, pp. 374–382 (1995)

Meeting Deadlines: How Much Speed Suffices?�

S. Anand1, Naveen Garg1, and Nicole Megow2

1 Indian Institute of Technology Delhi, India
anand.42@gmail.com, naveen@cse.iitd.ac.in

2 Max-Planck-Institut für Informatik, Saarbrücken, Germany
nmegow@mpi-inf.mpg.de

Abstract. We consider the online problem of scheduling real-time jobs with hard
deadlines on m parallel machines. Each job has a processing time and a deadline,
and the objective is to schedule jobs so that they complete before their deadline.
It is known that even when the instance is feasible it may not be possible to meet
all deadlines when jobs arrive online over time. We therefore consider the setting
when the algorithm has available machines with speed s > 1.

We present a new online algorithm that finds a feasible schedule on machines
of speed e/(e− 1) ≈ 1.58 for any instance that is feasible on unit speed machines.
This improves on the previously best known result which requires a speed of 2 −
2/(m + 1). Our algorithm only uses the relative order of job deadlines and is
oblivious of the actual deadline values. It was shown earlier that the minimum
speed required for such algorithms is e/(e− 1), and thus, our analysis is tight. We
also show that our new algorithm outperforms two other well-known algorithms
by giving the first lower bounds on their minimum speed requirement.

1 Introduction

We consider the problem of scheduling real-time jobs with hard deadlines on multiple
machines. In this problem, a set of jobs J = {1, . . . , n}must be scheduled on m identical
parallel machines, each of which can process at most one job at the time. A job j ∈ J
arrives at its release date r j ∈ N, has processing time p j ∈ N, and deadline d j ∈ N. It can
be processed on any of the m machines. It can also be preempted and restarted, either on
the same machine or a different machine. An instance is called feasible, if there exists a
schedule such that no job misses its deadline. An algorithm is optimal if it can schedule
every feasible instance so that all deadlines are met. Given a feasible instance, a feasible
schedule can be computed by solving a maximum flow problem [4].

In this paper, we consider the online model, in which an algorithm learns about
a job j only at its release date r j. Several algorithms are known to be optimal on a
single machine [3]. But on multiple machines, the online problem is much more difficult
than its offline counterpart. In fact, for m ≥ 2, there does not exist any optimal online
algorithm [3]. To overcome this hardness, Phillips, Stein, Torng, and Wein [8] proposed
the use of resource augmentation [5]: Given an online algorithm A we determine the
speed s ≥ 1 such that A is optimal on m speed-s processors for any instance that is
feasible for m processors of unit speed. We are interested in the smallest s for which

� Research supported by the Indo-German Max Planck Center for Computer Science (IMPECS).

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 232–243, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Meeting Deadlines: How Much Speed Suffices? 233

there is an optimal online algorithm. It is known, that any optimal online algorithm
needs speed at least 6/5 [8].

An algorithm is deadline ordered if the schedule it yields depends only on the relative
ordering of the deadlines of the jobs and not on the actual deadline values. A well-
known example of a deadline ordered algorithm is Earliest Deadline First (EDF) which
at any time schedules the m jobs with the earliest deadline. EDF is optimal on a single
machine [2]. On m machines, speed s = 2−1/m is necessary and sufficient to guarantee
its optimality [8]. Since its introduction more than a decade ago, this upper bound on the
speed requirement for online algorithms has been improved only marginally. Lam and
To [6] proposed a more complex deadline ordered algorithm with a speed requirement
of 2 − 2/(m + 1). They also showed that any deadline ordered online algorithm for m
machines needs a speed of at least

αm :=
1

1 −
(
1 − 1

m

)m .

For m = 2 this quantity equals 4/3, matching the currently best known upper bound [6],
and for arbitrary m it is at most e/(e − 1) ≈ 1.58.

Our main result (Section 3) is a new deadline ordered online algorithm which is op-
timal with speed αm. Both, the algorithm and its analysis, build on a simple and elegant
online estimate of an optimal schedule (Section 2), proposed in [6]. The matching lower
bound in [6] proves that αm is the exact speed requirement for our algorithm.

We also consider two well-known non-deadline ordered algorithms and provide lower
bounds on the speed necessary for them to schedule a feasible instance. Let p j(t) denote
the remaining processing time of job j at time t ≥ r j. The laxity of j at time t is defined
as � j(t) = d j − t − p j(t). The algorithm Least Laxity First (LLF) schedules at any point
in time m jobs with minimum laxity among the available jobs. LLF is also optimal on
a single machine [3], and more generally, it is optimal on m machines when running at
speed 2 − 1/m [8]. In this paper we provide a lower bound on the speed required (Sec-
tion 4) by demonstrating a feasible instance for which LLF requires a speed

s ≥ 1 +
√

1 + 4x2

2x
with x =

m
m − 1

.

This quantity is (1 +
√

17)/4 ≈ 1.281, for m = 2, and approaches the golden ratio (1 +√
5)/2 ≈ 1.618, when m goes to infinity. To the best of our knowledge, this is the first

lower bound (beyond the general one) on the speed necessary for LLF. It also shows
that our new deadline ordered algorithm outperforms LLF: Indeed, for m ≥ 7 the lower
bound for LLF exceeds the upper bound on the speed required by our new algorithm.

An algorithm that tries to combine features of EDF and LLF is Earliest Deadline
until Zero Laxity (EDZL) introduced in [1]. At any point in time, EDZL gives highest
priority to jobs which cannot be delayed further, i.e, have zero laxity, and other jobs are
scheduled in EDF order. This algorithm dominates EDF in the sense that any instance
that is schedulable by EDF, is also schedulable by EDZL, whereas the opposite is not
true [1,7]. However, it remained open if EDZL is optimal for speed less than 2−1/m, the
speed necessary for EDF. In Section 5, we answer this question negatively by providing
a feasible instance on which EDZL fails for speed less than 2 − 1/m.

234 S. Anand, N. Garg, and N. Megow

2 The Yardstick Schedule

A key challenge in designing an online algorithm for the deadline scheduling problem
is to obtain an estimate of an optimal schedule. Clearly, at any time, we can compute
an optimal schedule for the currently known partial instance by solving a maximum
flow problem [4]. However, these optimal schedules may differ fundamentally, and it
is unclear how an online algorithm can use this information as it cannot change the
decisions from the past. Intuitively, we need a less powerful algorithm that computes a
simpler optimal solution under some relaxed assumptions. Lam and To [6] proposed a
simple and elegant schedule called yardstick, which can be constructed online. It has the
property that all jobs meet their deadlines but it may not be feasible as it processes a job
sometimes simultaneously on multiple machines. The main idea of yardstick is to allow
parallelization of a job only if it is underworked, i.e., the total amount of processing
done on it is smaller than the time period since it was released. We will use yardstick as
a reference in the design and analysis of our feasible online algorithm.

The yardstick schedule is constructed as follows. Whenever a new job is released, we
consider all unfinished available jobs in increasing order of deadlines and schedule their
remaining processing time on the m machines of unit speed. When scheduling job j, we
consider the earliest time at which some machine is available and schedule the job on all
available machines till it is not underworked any more. Once the total processing done
on j equals the time it has been available, we schedule the job on the lowest numbered
machine (assuming an arbitrary numbering on the machines) that is available.

Since the yardstick schedule may run a job simultaneously on multiple machines, it
does not give a feasible schedule. However, it has the following crucial property.

Lemma 1 ([6]). If a scheduling instance is feasible, the yardstick schedule completes
all jobs before their deadlines.

In general, it is not necessary to specify for each job the particular machine by which
it is processed, but in our case it makes the analysis simpler. In particular, yardstick
distributes processing volume in a staircase profile: in any time slot, machine i′ > i is
used only if machine i is also occupied, and between any two release dates the number
of machines used is not increasing over time; see Figure 1.

The online algorithm that we present in the following section will at any release
time t make reference to the part of the yardstick schedule after time t. This part has a
non-increasing staircase profile. Given some (release) time t, let all jobs that have been
released by t be indexed in increasing order of deadlines. Recall that this is the order in
which yardstick considers jobs. Let Y j denote the yardstick schedule for jobs 1, 2, . . . , j
starting at time t. Let y j

1, y
j
2, . . . , y

j
i , . . . be the time points at which there is a step (the

total work assigned to the m machines changes) in Y j. In particular, let y j
1 ≥ t be the first

point in time when not all machines are used to their full capacity. Further, let x j denote
the last point in time at which job j is running on multiple machines simultaneously in
the yardstick schedule, and let f j (f j > x j) denote the time that it finishes processing (see
Figure 1). For the sake of readibility we omit in our notation the parameter t since it
will always be clear from the context.

Meeting Deadlines: How Much Speed Suffices? 235

f2 f3 f5f1f4 f6x1 = x2
= x3 = x4

x5 x6

3

4

3

32

1 5 6

3

4

3

32

1

4 5

5 6

6

54

6

x5 x6

Fig. 1. The yardstick schedule (top) and our schedule (bottom)

The yardstick schedule for jobs released by time t has the following properties.

(i) If j < k, then x j < xk although f j may be greater than fk.
(ii) Since yardstick runs a job j on multiple machines simultaneously only if it is

underworked, we have f j ≥ r j + p j.
(iii) Since all machines are occupied for all times before x j, we have y j

1 ≥ x j.
(iv) In going from Y j−1 to Y j, all steps before x j disappear and new steps get created

at x j and f j (if they do not exist).

3 A Best Possible Deadline Ordered Online Algorithm

We propose a new deadline ordered online algorithm and determine the speed that is
sufficient to guarantee that it is optimal.

3.1 Description of the Algorithm

Our algorithm mimics the yardstick schedule to a large extent. In particular, it will
finish every job by the same time as in the yardstick schedule, which is by Lemma 1
before its deadline. Moreover, our algorithm will have processed at any time at least as
much work of any job as the yardstick schedule. Our algorithm will keep up with the
yardstick schedule by using faster machines instead of parallelizing jobs. The key idea
is that in time periods, in which yardstick schedules a job for some positive amount, our
algorithm does not process more than that. In particular when yardstick processes a job
which is not underworked and hence uses only one machine, our schedule too processes
only one unit of the job in one time unit even though the additional speed would allow
for more.

236 S. Anand, N. Garg, and N. Megow

The algorithm works as follows: At any time t when a job is released, we recom-
pute the yardstick schedule. (This is done completely independent of our current online
schedule.) Then we consider the set of available unfinished jobs, Jt, in our schedule.
We consider jobs in Jt in increasing order of deadlines and assign for each job j ∈ Jt its
remaining processing time p j(t) at time t in our schedule as follows:

– We schedule one unit of work in each unit-length time slot between x j and f j.
– We assign the remaining processing time, p j(t) − (f j − x j), to the slots before x j

with α units assigned to each slot between s j := x j − (p j(t) − f j + x j)/α and x j,
where α ∈ R, 1 ≤ α < 2, is a the full speed of the machines.

In this manner we determine for each time slot (after t, as we prove below) the set of
jobs to be processed and the extent to which they have to be processed. Notice that we
do not allocate particular machines to the jobs. However, the algorithm never assigns
more work of an individual job to a time slot than can be processed sequentially. Thus,
when assuming integral job parameters and allowing preemption at any time, a round
robin like processing yields a schedule with each job using at most one machine at the
time and no two jobs using the same machine simultaneously.

Consider the workload profile computed by our algorithm. For the analysis we desire
that it has a staircase profile. However the procedure described so far may not satisfy
this. In the following we show how to correct this.

At any (release) time t, let the jobs in Jt be indexed in increasing order of dead-
lines. Note that for both online schedules, yardstick and our schedule, we consider only
the part of the schedules after time t, and that both schedules are built by consider-
ing jobs (not necessarily the same ones) in the order of increasing deadlines. Similarly
as for yardstick we define A j to be our schedule for jobs 1, 2, . . . , j ∈ Jt after time t.
Let a j

1, a
j
2, . . . , a

j
i , . . . be the time points at which there is a step in A j. Let a j

1 ≥ t be the
first point in time when not all machines are used to their full capacity after time t.

Our schedule may not have a staircase profile after the reassignment at some time t,
because s j for some job j may lie between a j−1

i and a j−1
i+1 . In that case we distribute

the part of j scheduled in the interval [s j, a
j−1
i+1] uniformly over the interval [a j−1

i , a
j−1
i+1].

This however, may not suffice since the height of the profile in the interval [a j−1
i+1 , a

j−1
i+2]

might exceed the height of the profile in some of the preceding intervals. If this is the
case, we move a suitable amount of job j from [a j−1

i+1 , a
j−1
i+2] to the interval preceding it

so that these two intervals have the same height in A j. This process is repeated until we
get a staircase profile for A j. Note that as a consequence of this operation we will be
scheduling at most α units of job j in each time slot preceding a j−1

i+2 .

3.2 Analysis of the Algorithm

In this section we show the following main result.

Theorem 1. The speed αm = (1 − (1 − 1/m)m)−1 is necessary and sufficient for our
algorithm to schedule each job feasibly before its deadline.

We first show the correctness of our algorithm with respect to time feasibility.

Meeting Deadlines: How Much Speed Suffices? 237

Lemma 2. If an instance is feasible, then for any job j our algorithm assigns p j units
to feasible time slots between r j and d j. In particular, at any time t ≥ r j it (re-)assigns
the remaining processing requirement p j(t) to time slots not earlier than t.

Proof. First, consider our algorithm without the correction step achieving a staircase
profile. At time r j our algorithm assigns job j to time slots between s j and f j. By
Lemma 1, f j ≤ d j. The starting time s j = x j − (p j − f j + x j)/α is at least f j − p j ≥ r j

for α ≥ 1.
Consider some release time t > r j and the yardstick schedule with the last moments

of parallelization x j (resp. x′j) and the finishing times f j (resp. f ′j) of j before (resp. after)
rescheduling. Observe that x′j ≥ x j and f ′j ≥ f j. The reason is that yardstick has to
schedule more jobs than before and maintains the same scheduling order depending
only on deadlines. Our algorithm reassigns the remaining work p j(t) of j to [s′j, f ′j].
Since this amount has been scheduled in [t, f j] before, with at most α units per time
slot in [t, f j] and one unit per time slot in [x j, f j], our algorithm reassigns it now to later
time slots if f ′j > f j and to a larger amount per time slot if x′j > x j. Thus, the start time
does not decrease, i.e., s′j ≥ t. Finally by Lemma 1, we have again f ′j ≤ d j since the
instance is feasible.

We have shown that s j ≥ t before the correction step. Now suppose that we must
start a job earlier than s j to obtain a staircase profile. Since a j−1

i ≥ t, the proof still
holds. 	

To prove that our algorithm never assigns more work to a time slot than it can process
on m fast machines, we proceed as follows. First, we show that at any time the remaining
processing time of any job in our schedule is not more than this quantity in the yardstick
schedule. Then, we show that at any point in time, our algorithm can distribute the
remaining processing time that any job has in the yardstick schedule without exceeding
the processing capacity under speed αm.

Lemma 3. A j is identical to Y j for all t′ ≥ x j.

Proof. We prove this by induction on j. Suppose the statement is true for all j ≤ k.
Then Yk and Ak are identical for all t′ after xk and, since xk+1 ≥ xk, for all t′ ≥ xk+1. The
job k + 1 is scheduled for one unit in each time slot between xk+1 and fk+1 in both Ak+1

and Yk+1. This implies both schedules are identical after xk+1. 	

Lemma 4. For any job j and time t′ ≤ f j, the amount of processing of j remaining at
time t′ in schedule A j is less than that remaining at time t′ in schedule Y j.

Proof. Since schedules A j and Y j are identical after x j (Lemma 3), the remaining pro-
cessing time of j at any time t′ ≥ x j is the same in both schedules.

Since in Y j, job j is scheduled only after time x j−1, for all times t′ ≤ x j−1 the re-
maining processing time of j in Y j is p j(t) and this is, trivially, at least as large as the
remaining processing time of j at any time t′ in A j. Hence we only need to prove the
statement for t′ in the interval (x j−1, x j).

In Y j one or more units of j are scheduled in each time slot between x j−1 and x j. We
now consider two cases.

238 S. Anand, N. Garg, and N. Megow

1. At least 2 units of j are scheduled in each slot between x j−1 and x j in Y j. However,
in A j at most α < 2 units of j are scheduled in each slot between x j−1 and x j. Hence
for any time t′ in the interval (x j−1, x j), the remaining processing time of j in Y j

exceeds that of j in A j.
2. Only one unit of j is scheduled in Y j for some slots in (x j−1, x j). Since Y j−1 has a

staircase profile, for all slots between x j−1 = y j−1
1 and y j−1

2 , j must be scheduled for

only one unit, while for slots between y j−1
2 and x j, j must be scheduled for at least

2 units.
By the argument in previous case, it follows that for all time t′ ≥ y j−1

2 , the
remaining processing time of j in Y j exceeds that of j in A j. This implies that
before time y j−1

2 , job j is processed to a larger extent in A j than in Y j. From our
procedure for scheduling job j it follows that we schedule j for β units in each
time slot in the interval (y j−1

1 , y
j−1
2), where 1 ≤ β ≤ α. This in turn implies that the

amount of j processed before t′, t′ ∈ (y j−1
1 , y

j−1
2), is larger in A j than in Y j which

proves the lemma. 	

We discuss some more properties of our schedule with respect to the yardstick schedule.
We first argue that in going from Ak to Ak+1 no new steps are created before xk+1.

Lemma 5. For every i where ak+1
i < xk+1 there is a p such that ak+1

i = ak
p.

Proof. The proof follows from the way we schedule job k + 1. Before time xk+1 we
schedule job k + 1 to an extent of α units in a time slot. Besides, when we redistribute
the job over consecutive steps, then no new step is created. 	

We use the above lemma for proving the following lemma which will be crucial for our
analysis.

Lemma 6. Consider a job j. In any schedule Ak, k ≥ j, and for any i such that ak
i ≤ x j,

either job j begins at or after ak
i or it is the case that in all slots between ak

i and x j, α
units of j is scheduled.

Proof. Suppose in the schedule A j, job j begins at time a j
p. By our method of schedul-

ing j it follows that in all slots between a j
p+1 and x j, α units of j is scheduled. Thus for

all i ≤ p it is the case that job j begins at or after a j
i while for i > p, all slots between a j

i
and x j have α units of j.

When we go from schedule A j to A j+1 then, by Lemma 5, we do not create any new
steps before x j+1. Since x j ≤ x j+1 no new steps are created before x j either. Further,
we do not modify the schedule of job j and so the lemma continues to hold for the
schedule A j+1 and in a similar manner for all subsequent schedules. 	

Now, we are ready to show the correctness of our algorithm with respect to the process-
ing capacity when given speed α = αm. To do so, consider any release time t and the
set of available unfinished jobs and their remaining processing times in the yardstick
schedule. We show that our algorithm applied to these jobs assigns always at most αm
units to time slots after t. By Lemma 4 this is only more than our algorithm actually has
to schedule.

Meeting Deadlines: How Much Speed Suffices? 239

For the sake of contradiction, assume that this is not the case and let k be the first
job for which we fail. This implies that the height of the first step in Ak exceeds αm.
In this proof we will assume that t = 0. It is straightforward to extend the argument
for arbitrary t. Let p j(t) = p j be the remaining processing time of j in the yardstick
schedule.

Let ak
1 = z. Consider the set of jobs scheduled in Ak. We will partition this set into

four disjoint subsets. Define B to be the set of jobs, j, for which f j < z and C as the set
of jobs, j, for which x j ≤ z < f j. The remaining jobs are the ones for which z ≤ x j and
these we partition into two sets; D is the set of those jobs which begin at or after z in our
schedule while E is the set of jobs which begin before z. Counting the total processing
time of all jobs in two different ways we get

∑

j∈B∪C∪D∪E

p j > mαz +
∑

j∈C
(f j − z) +

∑

j∈D
p j +
∑

j∈E
((f j − x j) + α(x j − z)).

Note that since a job j ∈ E begins before z = ak
1 in the schedule Ak, by virtue of

Lemma 6, α units of j would have been scheduled in each time slot between z and x j.
Rearranging terms now yields

∑

j∈B

p j +
∑

j∈C
(p j − f j + z) +

∑

j∈E
(p j − f j + x j) > α(mz +

∑

j∈E
(x j − z))

If α was chosen such that the above inequality is not satisfied, then this would imply
that our algorithm never uses more machine capacity than is available. Thus, chosing
an α with

α >

∑
j∈B p j +

∑
j∈C(p j − f j + z) +

∑
j∈E(p j − f j + x j)

mz +
∑

j∈E(x j − z)

guarantees that our algorithm finds a feasible schedule for all jobs when given m ma-
chines of speed α. In the following we determine the smallest α that satisfies this
condition.

Observe that
∑

j∈B p j +
∑

j∈C(p j − f j + z) < mz.
For j ∈ E define b j = (p j − f j + x j)/z and a j = x j/z. Then

0 ≤ b j (1)

b j ≤ a j (2)

a j ≥ 1 (3)

Let us number the jobs in E from 1 to k = |E| ≤ m in the order of their deadlines. Then
for 1 ≤ j ≤ k,

a j ≥ a j−1 + b j/m (4)

where a0 = 1.
Hence it suffices to choose α as the optimal value of the optimization problem

max
ai ,bi,1≤i≤k

⎧⎪⎪⎨⎪⎪⎩
m +
∑k

i=1 bi

m − k +
∑k

i=1 ai

∣∣∣∣∣ (1) − (4)

⎫⎪⎪⎬⎪⎪⎭ . (P)

Consider an optimal assignment of bi, ai, 1 ≤ i ≤ k for (P). It has the following property.

240 S. Anand, N. Garg, and N. Megow

Lemma 7. For every 1 ≤ i ≤ k, ai = ai−1 + bi/m and either bi = ai or bi = 0.

Proof. Let p be the largest index for which the statement of the lemma is not true. For
every i ≥ p we will determine an εi, δi so that the solution remains feasible when for
all i ≥ p we set

ai ← ai + εi

bi ← bi + δi

and also when for all i ≥ p we set

ai ← ai − εi
bi ← bi − δi

If the original solution had value X/Y, then the first solution has value (X + ε)/(Y + δ),
where ε =

∑k
i=p εi and δ =

∑k
i=p δi, while the second solution has value (X−ε)/(Y−δ). If

one of these solutions has value greater than that of the original solution then we would
have obtained a contradiction.

Otherwise, both solutions have the same value. Our choice of εi, δi will be such that
the condition of the lemma remains true for all i > p in both solutions built. Further, in
one of the two solutions we will satisfy both conditions for index p (if one was satisfied
to begin with) or satisfy one of the conditions for index p (if none were satisfied to
begin with). Thus by picking one of these two solutions, which, has the same value as
our original solution we get closer to proving the lemma for all indices.

To determine εi, δi for i = p we consider three cases.

ap > ap−1 + bp/m, bp < ap : Then δp = 0 and εp = min(ap − bp, ap − (ap−1 − bp/m)).
ap > ap−1 + bp/m, bp = ap : Then ap > map−1/(m − 1) and hence δp = εp = ap −

map−1/(m − 1).
ap = ap−1 + bp/m, 0 < bp < ap : Then δp = min(bp, ap − bp) and εp = δp/m.

The values for i ≥ p + 1 are determined by considering the following cases

bi = ai : Then ai = ai−1 + bi/m = ai−1 + ai/m which implies ai = mai−1/(m − 1).
Hence, δi = εi = mεi−1/(m − 1).

bi = 0 : Then δi = 0 and εi = εi−1. 	

Let i1 < i2 < · · · < ir be the indices, i for which bi = ai. It can be easily shown by
induction that a0 = ai = 1, i < i1, and ai1 = m/(m−1) = ai2−1, ai2 = (m/(m−1))2 = ai3−1,
and air = (m/(m − 1))r. Thus,

k∑

i=1

bi =

r∑

i=1

(m
m − 1

)i
.

In an optimal solution to (P), the sum
∑k

i=1 ai is minimized. This is the case, when the
indices for which bi = 0 are the lowest ones, i.e. bi = 0, 1 ≤ k− r. Then a0 = a1 = · · · =
ak−r = 1, and thus,

k∑

i=1

ai = (k − r) +
r∑

i=1

(m
m − 1

)i
.

Meeting Deadlines: How Much Speed Suffices? 241

Hence the value of this solution is

m +
∑r

i=1

(
m

m−1

)i

m − k + k − r +
∑r

i=1

(
m

m−1

)i =
m
(

m
m−1

)r

m
(

m
m−1

)r − r
=

m

m − r
(

m−1
m

)r .

Since r ≤ k ≤ m and r(1 − 1/m)r < m(1 − 1/m)m, the above ratio is at most

αm =
1

1 − (1 − 1/m)m
,

and this is our choice of α. For m = 2 this quantity equals 4/3 and for large m, α is
at most e/(e − 1), since (1 − 1/m)m < e−1. This upper bound combined with the lower
bound on the speed requirement of any deadline ordered online algorithm [6] concludes
the proof of our main result Theorem 1.

4 A Lower Bound for LLF

We give a lower bound on the speed that is necessary for LLF to schedule feasible
instances. We first give a necessary condition.

Recall that � j(t) is the laxity of job j at time t, and p j(t) denotes the remaining
processing time of j at this time.

Lemma 8. Let 1 ≤ s ≤ 2 − 1/m be the speed required for LLF to be optimal. Consider
an instance that is feasible for m unit speed machines and a time t by which all jobs
released before t could have completed in a feasible schedule. If job j has not completed
by time t in LLF on m speed-s machines, then

� j(t) ≥ p j(t)

s(s − 1)
, (5)

Proof. Suppose that LLF does not satisfy condition (5) for some job j at time t. We
show how to augment the current set of jobs with blocking jobs such that LLF will miss
the deadline d j or cannot schedule the blocking jobs feasibly. A set of blocking jobs
consists of m jobs each having the same size and release time and 0 laxity.

Define the relative laxity �rj(t) of a job as the ratio � j(t)/p j(t). We first show that if
condition (5) is not satisfied, we can decrease the relative laxity arbitrarily. When the
relative laxity of the job is sufficiently small, we release m blocking jobs so that no
matter how we schedule the jobs, we cannot finish all the jobs by their deadlines.

The procedure for decreasing the relative laxity of some job j is as follows. It is no
loss of generality to assume that p j(t) = 1. Since condition (5) is not satisfied, �rj(t) =

� j(t) = k
s(s−1) with k < 1. Now we release m blocking jobs each of size q. These jobs

will take up q/s time on each machine in the speed-s LLF schedule leaving q−q/s time
to process job j. Thus, at time t′ = t + q, we will have � j(t′) = � j(t) − q/s and p j(t′) =
p j(t)−s(q−q/s) whereas an optimal algorithm could have finished all the blocking jobs.
We choose q such that the new relative laxity � j(t′)/p j(t′) is half the original relative
laxity � j(t)/1, that is, q = 2−k

k(s−1) .

242 S. Anand, N. Garg, and N. Megow

Note that we do not release big blocking jobs of size q at one time. We release many
small blocking jobs, m at a time, so that each job has laxity less than � j(t′). The total
size of these small jobs scheduled on a machine is q. This way we can ensure that j is
never scheduled in parallel with the blocking jobs. Once these m jobs are finished in the
optimal schedule, we release another batch of m blocking jobs.

With the above procedure, we can halve the relative laxity of job j. Repeating this
process, we can reduce the relative laxity arbitrarily. Once the relative laxity �rj(t

′′) is
less than p j(t′′)/2m, we release m blocking jobs of size p j(t′′). It is easy to see that these
jobs cannot be scheduled within their deadlines. 	

Theorem 2. Let x = m

m−1 . LLF is not optimal for speed less than

1 +
√

1 + 4x2

2x
,

which is (1 +
√

17)/4 ≈ 1.281 for m = 2, and tends to (1 +
√

5)/2 ≈ 1.618 for m→ ∞.

Proof. Let 1 ≤ s < 2−1/m be the speed of the machines available to LLF. We construct
a worst case instance consisting of main and blocking jobs. We have m + 1 main jobs
with r j = 0, p j = 1, d j =

m
m−1 , for j = 1, . . . ,m, and rm+1 = 0, pm+1 =

m
m−1 , dm+1 =(

1 + 1
s

) (
m

m−1

)
.

There is a schedule S on m speed-1 machines in which the main jobs are completed
by time t = m

m−1 . Indeed, start the long job k at time 0 and schedule all other jobs in a
round robin fashion on the remaining m − 1 machines.

In contrast, LLF with speed s schedules the small jobs in a round robin fashion on
all m machines and completes them by time t′ = 1/s. Only then the long job begins
processing. To see that, observe that the laxity of the long job �m+1(t′′) ≥ �1(t′′) =

m
m−1− 1

s for any t′′ ≤ t′. The remaining processing time for job m+1 at time t = m/(m−1)

is pm+1(t) = m
m−1 −

(
m

m−1 − 1/s
)

s = 1 −
(

m
m−1

)
(s − 1). The lower bound on the speed

requirement for LLF now follows directly from Lemma 8. 	

5 A Lower Bound for EDZL

We show that the speed requirement of EDZL to guarantee an optimal schedule for a
feasible instance is no less than the one for EDF.

Theorem 3. EDZL is not optimal for speed s = 2 − 1
m − ε for any ε > 0.

Proof. We first give the proof for m = 2 and show later how this can be generalized
to arbitrary m > 2. At time t = 0, three jobs are released: two of them have size L
and deadline 2L. The remaining job (call this job j) has size 2L and deadline 3L/s.
At t = 2L, two jobs of size 1 and deadline 2L + 1 are released. Assume that L � 1 so
that 3L/s > xL + 1.

We first note that there is a feasible schedule for this instance. Schedule job j on one
machine and the other jobs in a round robin fashion on the other machine. All the jobs
are finished by time 2L. Then schedule the newly arrived jobs on separate machines.

Meeting Deadlines: How Much Speed Suffices? 243

EDZL will schedule the size L jobs on 2 machines till time L/s. At t = L/s, the
size L jobs will be finished and job j has zero laxity. Since we assume that L � 1,
one machine must be assigned to this job for the remainder of the schedule. Clearly the
newly released jobs at time t = 2L cannot both be scheduled on the other machine. Thus
EDZL is not optimal for s = 3/2 − ε for m = 2.

For general m, let x = m
m−1 . We release m + 1 jobs at time 0 with one job of size xL1

and deadline (x+ 1)L1/s and the remaining m jobs of size L1 and deadline xL1. Similar
to the above analysis, at time t = xL1, all jobs will be finished by an optimal offline
schedule while there is one tight job in EDZL. We choose L1 large enough so that one
machine is tied up to this job for the rest of the schedule. We repeat the construction
with m−1 machines with some large enough L2 and continue until we reach the case m =
2 in which a job will fail its deadline. 	

6 Concluding Remarks

As our main result we have introduced a new online algorithm which is optimal for
speed αm ≤ e/(e− 1) ≈ 1.58. This is the first significant improvement since the seminal
results in [8]. Our algorithm is best possible in the class of deadline ordered algorithms
with respect to speed resource augmentation. Nevertheless, this does not generally rule
out online algorithms that are optimal for less speed. However, we showed that our
algorithm outperforms all algorithms, deadline ordered and non-deadline ordered, for
which provable upper bounds are known in the literature.

References

1. Cho, S., Lee, S.K., Ahn, S., Lin, K.-J.: Efficient real-time scheduling algorithms for multipro-
cessor systems. IEICE Transactions on Communications E85-B(12), 2859–2867 (2002)

2. Dertouzos, M.L.: Control robotics: The procedural control of physical processes. In: IFIP
Congress, pp. 807–813 (1974)

3. Dertouzos, M.L., Mok, A.K.: Multiprocessor on-line scheduling of hard-real-time tasks. IEEE
Transactions on Software Engineering 15(12), 1497–1506 (1989)

4. Horn, W.A.: Some simple scheduling algorithms. Naval Research Logistics Quarterly 21(1),
177–185 (1974)

5. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. Journal of the
ACM 47(4), 617–643 (2000)

6. Lam, T.W., To, K.-K.: Trade-offs between speed and processor in hard-deadline scheduling.
In: Proc. of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
623–632 (1999)

7. Park, M., Han, S., Kim, H., Cho, S., Cho, Y.: Comparison of deadline-based scheduling algo-
rithms for periodic real-time tasks on multiprocessor. IEICE Transactions 88-D(3), 658–661
(2005)

8. Phillips, C.A., Stein, C., Torng, E., Wein, J.: Optimal time-critical scheduling via resource
augmentation. Algorithmica 32(2), 163–200 (2002)

Range Majority in Constant Time

and Linear Space�

Stephane Durocher1, Meng He2, J. Ian Munro2,
Patrick K. Nicholson2, and Matthew Skala1

1 Department of Computer Science, University of Manitoba, Canada
2 Cheriton School of Computer Science, University of Waterloo, Canada

Abstract. Given an array A of size n, we consider the problem of an-
swering range majority queries: given a query range [i..j] where 1 ≤ i ≤
j ≤ n, return the majority element of the subarray A[i..j] if it exists.
We describe a linear space data structure that answers range majority
queries in constant time. We further generalize this problem by defining
range α-majority queries: given a query range [i..j], return all the ele-
ments in the subarray A[i..j] with frequency greater than α(j−i+1). We
prove an upper bound on the number of α-majorities that can exist in a
subarray, assuming that query ranges are restricted to be larger than a
given threshold. Using this upper bound, we generalize our range major-
ity data structure to answer range α-majority queries in O(1

α
) time using

O(n lg(1
α

+ 1)) space, for any fixed α ∈ (0, 1). This result is interesting
since other similar range query problems based on frequency have nearly
logarithmic lower bounds on query time when restricted to linear space.

1 Introduction

The majority element, or majority, of an array A[1..n] is the element, if any, that
occurs more than n

2 times in A. The majority element problem is to determine
whether a given array has a majority element, and if so, to report that ele-
ment. This problem is fundamental to data analysis and has been well studied.
Linear time deterministic and randomized algorithms for this problem, such as
the Boyer-Moore voting algorithm [4], are well known, and they are sometimes
included in the curriculum of introductory courses on algorithms.

In this paper, we consider the data structure counterpart to this problem. We
are interested in designing a data structure that represents an array A[1..n] to
answer range majority queries: given a query range [i..j] where 1 ≤ i ≤ j ≤ n,
return the majority element of the subarray A[i..j] if it exists, and∞ otherwise.
Here we define the majority of a subarray A[i..j] as the element whose frequency
in A[i..j], i.e., the number of occurrences of the element in A[i..j], is more than
half of the size of the interval [i..j].

We further generalize this problem by defining the α-majorities of a subarray
A[i..j] to be the elements whose frequencies are more than α(j − i + 1), i.e., α

� This work was supported by NSERC and the Canada Research Chairs program.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 244–255, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Range Majority in Constant Time and Linear Space 245

times the size of the range [i..j], for 0 < α < 1. Thus an α-majority query on
array A[1..n] can be defined as: given a query range [i..j] where 1 ≤ i ≤ j ≤ n,
return the α-majorities of the subarray A[i..j] if they exist, and∞ otherwise. A
range α-majority query becomes a range majority query when α = 1

2 .
For the case of range majority, we describe a linear space data structure that

answers queries in constant time. We generalize this data structure to the case of
range α-majority, yielding an O(n lg(1

α + 1)) space1 data structure that answers
queries in O(1

α) time, for any fixed α ∈ (0, 1). Similar range query problems
based on frequency are the range mode and k-frequency problems [8]. A range
mode query for range [i..j] returns an element in A[i..j] that occurs at least as
frequently as any other element. A k-frequency query for range [i..j] determines
whether any element in A[i..j] occurs with frequency exactly k. Both of these
problems have a lower bound that requires Ω(lg n

lg lg n) query time for any linear
space data structure [8]. In light of this lower bound, it is interesting that a linear
space data structure can answer range α-majority queries in constant time for
fixed constant values of α.

1.1 Related Work

Computing the Mode, Majority, and Plurality of a Multiset. The mode of a
multiset S of n items can be found in O(n lg n) time by sorting S and counting
the frequency of each element. The decision problem of determining whether
the frequency m of the mode exceeds one reduces to the element uniqueness
problem, resulting in a lower bound of Ω(n lgn) time [16]. Better bounds are
obtained by parameterizing in terms of m: Munro and Spira [13] and Dobkin
and Munro [6] describe O(n lg(n

m)) time algorithms and corresponding lower
bounds of Ω(n lg(n

m)) time. Misra and Gries [12] give O(n) and O(n lg(1
α)) time

algorithms for computing an α-majority when α ≥ 1
2 and α < 1

2 , respectively.
The problem of computing α-majorities has also recently been studied in the
approximate setting, using the term heavy hitters instead of α-majorities [5].

The plurality of a multiset S is a unique mode of S. That is, every multiset
has a mode, but it might not have a plurality. The mode algorithms mentioned
above can verify the uniqueness of the mode without any asymptotic increase in
time. Numerous results establish bounds on the number of comparisons required
for computing a majority, α-majority, mode, or plurality (e.g., [1,2,6,13]).

Range Mode, Frequency, and Majority Queries. Krizanc et al. [11] describe data
structures that provide constant time range mode queries using O(n2 lg lg n

lg n) space
and O(nε lg n) time queries using O(n2−2ε) space, for any fixed ε ∈ (0, 1

2].
Petersen and Grabowski [15] improve the first bound to constant time and
O(n2 lg lg n

lg2 n
) space. Petersen [14] and Durocher and Morrison [7] improve the sec-

ond bound to O(nε) time and O(n2−2ε) space, for any fixed ε ∈ [0, 1
2). Durocher

and Morrison [7] describe four O(n) space data structures that return the mode

1 In this paper lg n denotes log2 n.

246 S. Durocher et al.

of a query range [i..j] in O(
√
n), O(k), O(m), and O(|j − i|) time, respectively,

where k denotes the number of distinct elements. Greve et al. [8] prove a lower
bound of Ω(lg n

lg(sw
n)) query time for any range mode query data structure that

uses s memory cells of w bits. Finally, various data structures support approxi-
mate range mode queries, in which the objective is to return an element whose
frequency is at least ε times the frequency of the mode, for a fixed ε ∈ (0, 1)
(e.g., [3,8]).

Greve et al. [8] examine the range k-frequency problem, in which the objective
is to determine whether any element in the query range has frequency exactly
k, where k is either fixed or given at query time. They note that when k is fixed
a straightforward linear space data structure exists for determining whether any
element has frequency at least k in constant time; determining whether any
element has frequency exactly k requires a different approach. For any fixed
k > 1, they describe how to support range k-frequency queries in O(lg n

lg lg n)
optimal time. When k is given at query time, Greve et al. show their lower
bound of Ω(lg n

lg lg n) time applies to either query: exactly k or at least k.
The best result applicable to the range α-majority problem is that of Karpinski

and Nekrich [10]. They study the problem in a geometric setting, in which points
on the real line are assigned colors, and the goal is to find τ-dominating colors :
given a range Q, return all the colors that are assigned to at least a τ fraction
of the points in Q. If we treat each entry of an array A[1..n] as a point in a
bounded universe [1, n], their data structure can be used to represent A in O(n

α)

space to support range α-majority queries in O((lg lg n)2

α) time.

1.2 Our Results

Our results can be summarized as follows:

– In Section 2 we present a data structure for answering range majority queries
in the word-RAM model with word size Ω(lg n). It uses O(n) words and
answers range majority queries in constant time. The data structure is con-
ceptually simple and based on the idea that, for query ranges above a certain
size threshold, only a small set of candidate elements need be considered in
order to determine the majority. In order to verify the frequency of these
elements efficiently we present a novel decomposition technique that uses
wavelet trees [9].

– In Section 3 we generalize our data structure to answer range α-majority
queries, for any fixed α ∈ (0, 1). Note that although α is fixed, it is not nec-
essarily a constant. For example, setting α = 1

lg n is permitted. Our structure
uses O(n lg(1

α + 1)) words and answers range α-majority queries in O(1
α)

time. The first part of the section proves an upper bound on the number
of potential range α-majority values that need be stored by our data struc-
ture. These bounds are of independent interest, and are tight for the case of
α = 1

2 . In order to generalize our data structure when 1
α is large, i.e., when

1
α = ω(1), we make use of batched queries over wavelet trees.

Range Majority in Constant Time and Linear Space 247

2 Range Majority Data Structure

In this section we describe a linear space data structure that supports range
majority queries in constant time. To provide some intuition, suppose we parti-
tion the input array A[1..n] into four contiguous equally sized blocks. If we are
given a query range that contains one of these four blocks, then it is clear that a
majority element for this query must have frequency greater than n

8 times in A.
Thus, at most seven elements need be considered when computing the majority
for queries that contain an entire block.

Of course, not all queries contain one of these four blocks. Therefore, we
decompose the array into multiple levels in order to support arbitrary queries
(Sections 2.1 and 2.2). Using this decomposition in conjunction with succinct
data structures, we design a linear space data structure that answers range
majority queries in constant time (Section 2.3). The data structure works by
counting the frequency of a constant number of candidate elements in order to
determine the majority element for a given query. While a loose bound on the
number of candidates that need be considered suffices to show that our data
structures occupy linear space, it is more challenging to prove a tighter bound,
such as that of Section 3.

2.1 Quadruple Decomposition

The first stage of our decomposition is to construct a notional complete binary
tree T over the range [1..n], in which each node represents a subrange of [1..n]. Let
the root of T represent the entire range [1..n]. For a node corresponding to range
[a..b], its left child represent the left half of its range, i.e., the range [a..� (a+b)

2 �],
and its right child represents the right half, i.e., the range [� (a+b)

2 � + 1..b]. For
simplicity, we assume that n is a power of 2. Each leaf of the tree represents
a range of size 1, which corresponds to a single index of the array A. We refer
to ranges represented by the nodes of T as blocks. Note that the tree T is for
illustrative purposes only, so we need not store it explicitly.

The tree T has lgn + 1 levels, which are numbered 0 through lg n from top
to bottom. For each level �, T partitions A into 2
 blocks of size n

2� . Let T (�)
denote the set of blocks at level � in T .

The second stage of our decomposition consists of arranging adjacent blocks
within each level T (�), 2 ≤ � ≤ lgn, into groups. Each group consists of four
blocks and is called a quadruple. Formally, we define a quadruple Uq to be a
range [a..b] at level � ≥ 2 of size 4n

2� , where a = 2(q−1)n
2� + 1 and b = 2(q−1)n

2� + 4n
2� ,

for 1 ≤ q ≤ 2
−1 − 1. In other words, each quadruple at level � contains exactly
4 consecutive blocks, and its starting position is separated from the starting
position of the previous quadruple by 2 blocks. To handle border cases, we also
define an extra quadruple U2�−1 which contains both the first two and last two
blocks in T (�). Thus, at level � there are 2
−1 quadruples, and each block in T (�)
is contained in two quadruples. These definitions are summarized in Figure 1.

248 S. Durocher et al.

A[1..16]

T (3)

Quadruples U1

U2

U3

U4U4

Q1 Q2

for T (3)

Fig. 1. An example where n = 16. Blocks in T (3) have size 2, and each of the 4
quadruples contain 4 blocks. Query ranges Q1 and Q2 are associated with quadruples
U1 and U3 respectively.

2.2 Candidates

Based on the decomposition from the previous section, we observe the following:

Observation 1. For every query range Q there exists a unique level � such that
Q contains at least one and at most two consecutive blocks in T (�), and, if Q
contains two blocks, then the nodes representing these blocks are not siblings in
the tree T .

Let U be a quadruple consisting of four consecutive blocks, B1 through B4 from
T (�), where � is the level referred to in the previous observation. We associate Q
with U if Q contains B2 or B3; for convenience we also say that Q is associated
with level �. Note that Q may contain both B2 and B3; see Q1 in Figure 1. The
following lemma can be proved by an argument analogous to that described at
the beginning of Section 2:

Lemma 1. There exists a set C of at most 7 elements such that, for any query
range Q associated with quadruple U , the majority element for Q is in C.

For a quadruple U , we define the set of candidates for U to be the elements in
C. In Section 3.2 we improve the upper bound on |C| from 7 to 5, which, as
illustrated by the following example, is tight.

Example 1. Let U be a quadruple containing 4 blocks, each of size 32, and (e)y

denote a sequence of y occurrences of the element e. In ascending order of starting
position, the first block begins with an arbitrary element and is followed by (e1)28

and (e2)3. The second block contains (e2)15, and (e3)17. The third block contains
(e1)8, (e4)17, and (e5)7. The final block contains (e5)19, followed by any arbitrary
sequence of elements. Assume the range contained by the quadruple is [1..128].
The queries [2..72], [30..64], [33..64], [65..96] and [65..115] are all associated with
U , and have e1 through e5 as majority elements respectively.

The elements in C can be found in O(|U |) time; complete details will appear in
a later version of this paper. This implies that the sets of candidates for all the
quadruples in all of the lg n+ 1 levels can be found in O(n lg n) time.

Range Majority in Constant Time and Linear Space 249

2.3 Data Structures for Counting

We now describe the data structures for each level � of the tree T , for 2 ≤ � ≤ lg n.
Given a quadruple Uq in level �, for 1 ≤ q ≤ 2
−1 we store the set of candidates
for Uq in an array Fq. Let Yq be a string of length |Uq|, where the i-th symbol
in Yq is f if the i-th symbol in Uq is Fq[f], and a unique symbol otherwise. Let
Y be the concatenation of the strings Y1 through Y2�−1 . We use the wavelet tree
data structure [9] to represent Y , which has alphabet size σ′ = |Fq|+1 ≤ 6. This
representation uses O(n) bits to provide constant time support for the operation
rankc(Y, i), which returns the number of occurrences of the character c in Y [1..i].

Theorem 1. Given an array A[1..n], there exists an O(n) word data structure
that supports range majority queries on A in O(1) time, and can be constructed
in O(n lg n) time.

Proof. Given a query Q = [a..b], we first want to find the level � and the index q
of the quadruple Uq with which Q is associated. This can be reduced to finding
the length of the longest common prefix of the (lgn)-bit binary representations
of a and b, which can be done in constant time using a lookup table of o(n) bits.
We only show how to answer queries associated with a quadruple at levels �, for
2 ≤ � ≤ lg n; the case in which 0 ≤ � ≤ 1 can be handled similarly.

The representation of quadruple Uq in Y begins at s = 4(q−1)n
2� + 1. Let

t = 2(q−1)n
2� + 1. For each f in [1..|Fq|], we count the frequency of Fq[f] in [a..b]

using rankf (Y, s + b − t) − rankf (Y, s + a − 1 − t), and report Fq[f] if it is a
majority. Since Y has a constant sized alphabet, this process takes O(1) time.

In addition to the input array, we must store the arrays Fq for each of the
O(n) quadruples, and each array requires a constant number of words. For each
of the lg n+ 1 levels in T we store a wavelet tree on an alphabet of size σ′ ≤ 6,
requiring O(n lg n) bits. To answer queries in constant time, we require o(n) bits
of additional space for a lookup table to determine � and q. Thus, the additional
space requirements beyond the input array are O(n) words. ��

3 Generalization to Range α-Majority Queries

In this section we provide an upper bound on the number of candidates we
need from each quadruple to support α-majority queries (Section 3.2). Using
this upper bound, we are able to generalize Theorem 1 to the case of α-majority
queries (Section 3.3).

3.1 Definitions

We refer to the range [a..b′], where a ≤ b′ ≤ b, as a prefix of the range [a..b].
Similarly, the range [a′..b], where a ≤ a′ ≤ b, is a suffix of [a..b]. For a block
L ∈ T (�), we refer to the successor of L, which is the block Ls ∈ T (�) such that
the range represented by Ls immediately follows the range represented by L.
The predecessor is defined analogously.

250 S. Durocher et al.

Consider a query [a..b′] that contains block L = [a..b] ∈ T (�), b ≤ b′ < b+ |L|.
Thus, [a..b′] contains L and a prefix of the successor of L. We refer to a query of
this form as a prefix query. We refer to the symmetric case, where a query [a′..b]
contains L and a − |L| < a′ ≤ a as a suffix query. Finally, let |A[i..j]|t denote
the frequency of an element t in A[i...j].

3.2 Relaxed Triples

Suppose we are given a block L, where Lp and Ls are the predecessor and
successor of L respectively; we call Lp ∪L∪Ls a triple. We relax the restriction
that blocks in the triple have equal size, and only require that |Lp| + |Ls| ≤
2|L|. Furthermore, we also relax the restriction that blocks and occurrences of
elements are of integer size; i.e., the ranges described in this section may start
and end at arbitrary real numbers. Although the ranges are real-valued, we still
refer to “occurrences” of elements. Thus, in the continuous setting described in
this section, an occurrence of an element may contain an arbitrary fraction of a
block; for example, inside a block there may be a contiguous range of occurrences
of element e that has length 5.22. We refer to these generalized triples as relaxed
triples.

Let e1, ..., em denote the m distinct α-majorities that exist for a query Q
where L ⊆ Q ⊂ (Lp ∪ L ∪ Ls); i.e. Q is a query contained in the relaxed triple
and Q contains L. For brevity, whenever we refer to a query in the context of a
relaxed triple, it is assumed to have this form. Let Q = {Q1, ..., Qm} be a set of
queries within a relaxed triple such that Qi is the smallest query for which ei is
an α-majority, breaking ties by taking the query with smallest starting position.
We refer to Q as the canonical query set for the relaxed triple. If query Qi is a
prefix query or a suffix query we refer to it as one-sided. If Qi is not one-sided,
then it is two-sided. Note that the query Qi = L is one-sided, since it is both a
suffix and a prefix query.

For two-sided canonical queries Qi ∈ Q, the element at both the starting
position and ending position of Qi must be ei; otherwise we could reduce the
size of Qi. Thus, for all two-sided canonical queries Qi ∈ Q, no Qj ∈ Q (j �= i)
exists having the same starting or ending position as Qi. However, there may
be several occurrences of the query L in Q, since many elements can share that
particular range as a canonical query. From this point on we only consider relaxed
triples where element ei occurs only within the range Qi for 1 ≤ i ≤ m. Since
the goal of this section is to find an upper bound on m, occurrences of ei outside
range Qi can be removed without decreasing m.

Lemma 2. Given a relaxed triple and its canonical query set Q = {Q1, ..., Qm},
the elements {e1, ..., em} associated with Q can be rearranged such that they each
appear in at most two contiguous ranges in the relaxed triple. This reordering
induces a new canonical query set Q′ = {Q′

1, ..., Q
′
m}, such that |Q′

j | ≤ |Qj| for
all 1 ≤ j ≤ m.

Proof. First, we describe a procedure for reordering the elements in Lp. Let
L′

p = Lp, Q′ = Q, and Qb ∈ Q′ be the query with the smallest starting position

Range Majority in Constant Time and Linear Space 251

in L′
p. Then Qb contains a non-empty suffix of L′

p; if no such query exists, then
L′

p is empty and we are done. Let eb be the element associated with Qb. We
swap the positions of all the occurrences of eb in L′

p such that they occupy a
prefix P of Qb. All elements that were in P are shifted toward L. Thus, it may
be possible to reduce the size of a query Qi ∈ Q′ that originally had a starting
position in P , and we recompute Q′. Let L′

p be the largest suffix of Lp that does
not contain any occurrences of eb. At this point we recurse and compute the
next Qb.

After we have finished moving eb, at no point later in the procedure will an
occurrence of eb in Lp be touched. At the end of the procedure each element
in Lp that is associated with a canonical query will occupy a contiguous block.
Furthermore, |Q′| = |Q|, since moving elements in P closer to the ending position
of Lp will not decrease the ratio of their frequency to canonical query size.
The procedure for reordering Ls is identical, though we process the elements in
decreasing order by ending position.

After executing the procedure on Lp and Ls, consider an element ei associated
with Qi. We can delete all k occurrences of ei in L and insert k copies of ei
immediately before the first occurrence of ei in Ls. This does not change the
relative order of any other elements in the relaxed triple, and shifts all other
elements in Ls in positions before the new first occurrence of ei closer to L.
Thus, each element appears in at most two contiguous ranges. ��

Lp LsL

P S

Qi
|P |ei occurrences of ei

Fig. 2. Illustration of the relaxed triple using notation from Step 1 in Lemma 3

Lemma 3. Given a relaxed triple and its canonical query set Q = {Q1, ..., Qm},
we can rearrange its elements, creating a new relaxed triple that has a canonical
query set Q′ = {Q′

1, ..., Q
′
m} such that Q′

i is one-sided for 1 ≤ i ≤ m.

Proof. We describe a procedure for rearranging the elements in the relaxed triple.

Step 1: Choose an arbitrary two-sided query, Qi ∈ Q. We apply Lemma 2 to the
triple, such that all occurrences of ei appear in the prefix and suffix of Qi. Let
P represent the prefix of Qi contained in Lp and S the suffix of Qi contained in
Ls. P is contained in c ≥ 0 queries in Q, distinct from Qi, and S is contained in
d ≥ 0 queries in Q, distinct from Qi. Without loss of generality, assume c ≥ d.

252 S. Durocher et al.

Note that |L|ei = α|L| − ΔL for ΔL ≥ 0; otherwise L would be the canonical
query for ei. Since |Qi|ei > α(|L| + |P |+ |S|), we have |P |ei = α|P |+ΔP , and
|S|ei = α|S| + ΔS , where ΔP + ΔS > ΔL. Note that ΔP > 0 and ΔS > 0; if
ΔP ≤ 0, then S∪L would be the canonical query for ei, and the same argument
applies to ΔS . This implies that |P | ≥ ΔP

1−α and |S| ≥ ΔS

1−α . See Figure 2.

Step 2: We remove all |P |ei = α|P |+ΔP ≥ ΔP

1−α occurrences of ei from Lp. This
shifts the starting position of c queries in Q closer to L. Let Qj be the innermost
of the c queries, i.e., Qj has the largest starting position of the c queries. Since
there were no occurrences of ej in the removed block, in order for ej to be an α-
majority for Qj , there must have been at least f occurrences of ej to pay for the
removed block, where f = α(|P |ei +f). This implies f = |P |ei

α
1−α . Generalizing

this formula to consider the number of occurrences of the c different elements
required to pay for the removed block, as well as the payments made by the
innermost queries, we get a recurrence relation. Let fi be the savings of the i-th
innermost of the c queries. It follows that fi = α

1−α (δp +
∑i−1

j=1 fj), for 1 ≤ i ≤ c.
Thus, we have reduced the size of Lp by the total sum δp +

∑c
i=1 fc.

Step 3: We insert ΔP

1−α ≤ |P |ei elements immediately after the last occurrence of
ei in S. After this, there exists a prefix query on the relaxed triple which returns
ei as a majority. This insertion causes the ending positions of d queries in Q to
be shifted farther from L. By the same argument as before, we must insert at
most

∑d
i=1 fd elements in order to correct for this shift. Since c ≥ d, our new

arrangement satisfies the constraint |Lp|+ |Ls| ≤ 2|L|, and is therefore a relaxed
triple.

Step 4: We reorder the elements according to Lemma 2 and recompute the
canonical query set. The procedure described in the proof of Lemma 2 does not
increase the number of two-sided queries. If any two-sided queries remain, then
go to step 1.

After rearranging element ei, Qi will remain one-sided in any future iteration
of the procedure; no occurrence of ei will subsequently be moved back to Lp.
Each iteration guarantees that ei will be an α-majority for a one-sided query,
and that the size of the canonical set remains unchanged. ��
Remark 1. We note that Lemma 3 only holds in the continuous setting where we
can manipulate fractional parts of elements. For an example where Lemma 3 does
not hold in the discrete setting, consider the case where |L| = |Lp| = |Ls| = 3,
and Lp = {e5, e5, e4}, L = {e1, e2, e3}, Ls = {e4, e6, e6}, and 2

7 < α < 1
3 . In

this example, we cannot rearrange the triple such that Q4 is one-sided, without
decreasing the size of the canonical query set.

We have shown that to give an upper bound on the number of candidates in
a relaxed triple, it suffices to examine the worst case restricted to prefix and
suffix queries in the successor and predecessor of L, respectively. Without loss
of generality, we consider the successor, then prove an upper bound on the size
of the canonical query set in a relaxed triple. First, we require the following
recurrence relation; the proof will appear in a later version of this paper:

Range Majority in Constant Time and Linear Space 253

Lemma 4. If dj = α
1−α (1 +

∑j−1
i=1 (1 + di)) for j ≥ 1, then dj = 1

(1−α)j − 1.

Next, we bound the number of candidates for prefix queries over a relaxed triple.

Lemma 5. Let L be a block and Ls its successor in a relaxed triple. There exists
a set of elements C, of size less than

⌈
1
α

⌉
+

lg(1 + |Ls|
|L|)

lg 1
1−α

,

such that for all prefix queries Q containing L, all α-majorities for Q are con-
tained in C.

Proof. We keep the set F = {f1, ..., fh} of the h = � 1
α� most frequently occurring

elements from the block L = [a..b]. Let prefix query Q1 = [a..b1], where b1 = b
initially, and increase b1 until a new element e1 �∈ F becomes an α-majority for
Q1. We continue this process k times, where k is a value determined later: for
1 ≤ i ≤ k, define Qi = [a..bi], where bi = bi−1 initially, and bi is increased until a
new element ei �∈ F ∪{e1, ..., ei−1} becomes an α-majority. Let Ri be the largest
prefix of Ls contained in Qi, and di = |Ri| = bi−b

|L| for 1 ≤ i ≤ k. In order for

Qi to be a prefix query, 0 < di <
|Ls|
|L| must hold for each 1 ≤ i ≤ k. We want

to determine the maximum value of k for which dk <
|Ls|
|L| for the specific value

of α. The value h + k provides an upper bound on the number of elements we
need examine to determine the α-majorities for any prefix query.

To maximize k, assume that all elements in F are α-majorities for the query
Q′ = L. Applying Lemma 2, each element fi appears in a contiguous block within
L. Note that any extra occurrences of fi can be removed without decreasing k.

With the exception of at most one element ek+1, we can assume L ∪ Ls only
contains elements e′ for which there exists some prefix query that returns e′ as
an α-majority; otherwise, we could replace all occurrences of these elements with
ek+1. We have filled L entirely with elements in F , and each element ei can only
occur in a single contiguous block in Ls, for 1 ≤ i ≤ k, by Lemmas 2 and 3.
Thus, each ei appears in a contiguous block immediately following ei−1.

Now we have an upper bound, |Rj |ej ≤ dj |L| −
∑j−1

i=1 |Ri|ei , and a lower
bound, |Rj |ej > α(1 + dj)|L| − |L|ej , for 1 ≤ j ≤ k. By our construction,
|L|ej = 0 for all 1 ≤ j ≤ k. Rearranging the upper and lower bounds, we get

that dk >
α

1−α +
∑k−1

i=1
|Ri|ei

|L|(1−α) , which implies that dk >
α

1−α +
∑k−1

i=1
α(1+di)
(1−α) . By

Lemma 4, dk >
1

(1−α)k − 1. Since |Ls|
|L| > dk, this is equivalent to the statement

1 + |Ls|
|L| >

1
(1−α)k . After isolating k we get that k <

(
lg
(

1 + |Ls|
|L|

))/(
lg 1

1−α

)
.
��

Extending the above lemma to arbitrary queries on relaxed triples yields the
following lemma:

254 S. Durocher et al.

Lemma 6. The canonical query set Q of any relaxed triple has size less than⌈
1
α

⌉
+

2
lg 1

1−α

.

Proof. We consider the worst case in both predecessor and successor of L, noting
that the contents of L are shared. We apply Lemmas 3 and 5 to Lp and Ls.
Recall the constraint |Lp| + |Ls| ≤ 2|L|, and note that the expression

⌈
1
α

⌉
+(

lg
(

1 + |Ls|
|L|

)
+ lg

(
1 + |Lp|

|L|
))/(

lg 1
1−α

)
is maximized when |Ls| = |Lp| = |L|.

��
We extend Lemma 6 to the case of quadruples. The complete details of the proof
will appear in a later version of this paper.

Theorem 2. For any quadruple U there exists a set C such that

|C| < 2
⌈

1
α

⌉
+

2
lg 1

1−α

,

and for any Q associated with U , all α-majorities for Q are in C.

3.3 Handling Large Alphabets

Now that we have an upper bound on the number of candidates required to
answer α-majority queries, we can generalize Theorem 1. For a given α, if the
number of candidates, |C|, required by Theorem 2 is ω(1), then we use the
following observation about executing batched rank queries on a wavelet tree.

Observation 2. A string S[1..n] over alphabet [σ], where σ ≤ n, can be repre-
sented using a wavelet tree such that given an index i, the results of rankf (S, i)
for all f = 1, 2, · · · , σ can be computed in O(σ) time.

With the above observation we present the following theorem:

Theorem 3. Given an array A[1..n] and any fixed α ∈ (0, 1), there exists an
O(n lg(1

α + 1)) word data structure that supports range α-majority queries on A
in O(1

α) time, and can be constructed in O(n lg n
α) time.

Proof. Based on Theorems 1, 2 and Observation 2 the query time follows, so
we focus on analyzing the space. We observe that if α < 1

4 , then we need not
keep data structures at level lg n in T , since every distinct element contained
in a query range, Q, associated with this level is a (1

4 − ε)-majority for Q, for
0 < ε < 1

4 . Instead, we perform a linear scan of the query range in O(1
α) time,

returning all the distinct elements. Continuing this argument, we observe that
we only require the array Fq, for quadruple q, if q is in the top O(lg n − lg 1

α)
levels in T . Since there are O(nα) quadruples in these levels, the arrays require
O(nα× 1

α lg n) = O(n lg n) bits in total. The overall space required for the wavelet
tree data structures is O(n lg(1

α + 1) × lg n) bits, and this term dominates the
overall space requirements. We defer the details of the construction time to a
later version of this paper. ��

Range Majority in Constant Time and Linear Space 255

4 Concluding Remarks

We have presented an O(n) word data structure that answers range majority
queries in constant time, and an O(n lg(1

α +1)) word data structure that answers
range α-majority queries in O(1

α) time, for any fixed α ∈ (0, 1). It would be
interesting to determine if the space bound of O(n lg(1

α + 1)) words can be
improved, while maintaining the O(1

α) query time.

References

1. Aigner, M.: Variants of the majority problem. Discrete Applied Mathematics 137,
3–25 (2004)

2. Alonso, L., Reingold, E.M.: Determining plurality. ACM Transactions on Algo-
rithms 4(3), 26:1–26:19 (2008)

3. Bose, P., Kranakis, E., Morin, P., Tang, Y.: Approximate range mode and range
median queries. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404,
pp. 377–388. Springer, Heidelberg (2005)

4. Boyer, R.S., Moore, J.S.: MJRTY - A fast majority vote algorithm. In: Boyer,
R.S. (ed.) Automated Reasoning: Essays in Honor of Woody Bledsoe. Automated
Reasoning Series, pp. 105–117. Kluwer, Dordrecht (1991)

5. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-
min sketch and its applications. Journal of Algorithms 55(1), 58–75 (2005)

6. Dobkin, D., Munro, J.I.: Determining the mode. Theoretical Computer Sci-
ence 12(3), 255–263 (1980)

7. Durocher, S., Morrison, J.: Linear-space data structures for range mode query in
arrays (2011), arXiv:1101.4068v1

8. Greve, M., Jørgensen, A.G., Larsen, K.D., Truelsen, J.: Cell probe lower bounds
and approximations for range mode. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp.
605–616. Springer, Heidelberg (2010)

9. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: Proc. of the 14th Symposium on Discrete Algorithms, pp. 841–850 (2003)

10. Karpinski, M., Nekrich, Y.: Searching for frequent colors in rectangles. In: Proc. of
the 20th Canadian Conference on Computational Geometry, pp. 11–14 (2008)

11. Krizanc, D., Morin, P., Smid, M.: Range mode and range median queries on lists
and trees. Nordic Journal of Computing 12, 1–17 (2005)

12. Misra, J., Gries, D.: Finding repeated elements. Science of Computer Program-
ming 2(2), 143–152 (1982)

13. Munro, J.I., Spira, M.: Sorting and searching in multisets. SIAM Journal on Com-
puting 5(1), 1–8 (1976)

14. Petersen, H.: Improved bounds for range mode and range median queries. In: Gef-
fert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.)
SOFSEM 2008. LNCS, vol. 4910, pp. 418–423. Springer, Heidelberg (2008)

15. Petersen, H., Grabowski, S.: Range mode and range median queries in constant
time and sub-quadratic space. Information Processing Letters 109, 225–228 (2009)

16. Skiena, S.: The Algorithm Design Manual, 2nd edn. Springer, Heidelberg (2008)

Dynamic Planar Range Maxima Queries

Gerth Stølting Brodal and Konstantinos Tsakalidis

MADALGO�,
Department of Computer Science,

Aarhus University, Denmark
{gerth,tsakalid}@madalgo.au.dk

Abstract. We consider the dynamic two-dimensional maxima query
problem. Let P be a set of n points in the plane. A point is maximal if it
is not dominated by any other point in P . We describe two data struc-
tures that support the reporting of the t maximal points that dominate
a given query point, and allow for insertions and deletions of points in P .
In the pointer machine model we present a linear space data structure
with O(log n + t) worst case query time and O(log n) worst case update
time. This is the first dynamic data structure for the planar maxima
dominance query problem that achieves these bounds in the worst case.
The data structure also supports the more general query of reporting the
maximal points among the points that lie in a given 3-sided orthogonal
range unbounded from above in the same complexity. We can support
4-sided queries in O(log2 n+ t) worst case time, and O(log2 n) worst case
update time, using O(n log n) space, where t is the size of the output.
This improves the worst case deletion time of the dynamic rectangular
visibility query problem from O(log3 n) to O(log2 n). We adapt the data
structure to the RAM model with word size w, where the coordinates of
the points are integers in the range U={0, . . . , 2w−1}. We present a lin-
ear space data structure that supports 3-sided range maxima queries in
O(log n

log log n
+t) worst case time and updates in O(log n

log log n
) worst case time.

These are the first sublogarithmic worst case bounds for all operations
in the RAM model.

1 Introduction

Given a set P of n points in the plane, a point p = (px, py) dominates another
point q = (qx, qy) if both px ≥ qx and py ≥ qy hold. The m points that are not
dominated by any other point in the set are called maximal. The maximal points
are also called the staircase of the set, since when they are sorted by increasing
x-coordinate they are also sorted by decreasing y-coordinate. We consider the
problem of designing a data structure that supports insertions and deletions
of points in the set, and allows reporting the maximal points that dominate a
given query point q (maxima dominance query). Actually we consider the more

� Center for Massive Data Algorithmics - a Center of the Danish National Research
Foundation.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 256–267, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Dynamic Planar Range Maxima Queries 257

y

x

q

y

xxr

y

xxrx�

yb

Maxima dominance Maxima contour 3-sided maxima

Fig. 1. Different range maxima queries. Black points are reported.

general 3-sided range maxima queries. That is, given parameters x
, xr and yb,
to report the maximal points of the points in the set P ∩ ([x
, xr] × [yb,+∞[.
The special case where the query range is]−∞, xr]×]−∞,+∞[is also known as
maxima contour queries.

Previous Results. The maximal points of a static set of two-dimensional points
can be computed in optimal O(n log n) time [2].1 In the pointer machine linear
space dynamic data structures have been presented that support reporting all
maximal points. They achieve O(m) worst case [8,9,3,13] or amortized [15] query
time. They support deciding whether a given query point lies above or below
the staircase (maxima emptiness query) in O(log n) [8,9,15] or O(logm) [3,13]
worst case time. Maxima contour queries are supported by the structures of [3]
and [9] in O(log n+ t) worst case time, where t is size of the output.

Regarding updates, the structure of Overmars and van Leeuwen [3] supports
the insertion and deletion of an arbitrary point in O(log2 n) worst case time.
Frederickson and Rodger [8], and independently Janardan [9], improve only the
worst case insertion time to O(log n), preserving the other complexities. D’Amore
et al. [13] improve both the insertion and deletion time to O(log n) worst case,
under the assumption that the updated point has the maximum or minimum
x-coordinate among the points in the set (boundary updates). Kapoor [15] shows
how to support both the insertion and deletion of an arbitrary point in O(log n)
worst case time. The deletion time is improved at the expense of worst case
query time O(m+chng · log n), where chng is the total number of changes that
the update operations have caused to the staircase reported by the latest query
operation. Kapoor modifies the structure such that a sequence of queries, and
n insertions and d deletions of points requires O(n log n+d logn+r) worst case
time, where r is the total number of reported maximal points. The worst case
update time remains O(log n), however the query needs O(r) amortized time.

An application of the maxima contour query is the rectangular visibility query
problem. A point p ∈ P is rectangularly visible from a point q if the orthogonal
rectangle with p and q as diagonally opposite corners contains no other point
in P . The structure of Overmars and Wood [5] supports reporting the t points
that are rectangularly visible from a given query point in O(log2 n+t) worst case
1 log n = log2 n

258 G.S. Brodal and K. Tsakalidis

Table 1. Running times for updates and the following query operations. Parameter t is
the number of reported points. “All”: Report all maximal points. “Emptiness”: Is the
query point above or below the staircase? “Dominance”: Report the maximal points
that dominate the query point. “Contour”: Report the maximal points among the
points that lie to the left of a given vertical query line. All structures occupy linear
space. (†only boundary updates, ‡amortized bounds)

Model All Emptiness Dominance Contour Insertion Deletion

[3] PM O(m) O(log m) O(log m + t) O(log n + t) O(log2 n) O(log2 n)
[8] PM O(m) O(log n) O(log n + t) O(min{log2 n + t, O(log n) O(log2 n)

(t + 1) log n})
[9] PM O(m) O(log n) O(log n + t) O(log n + t) O(log n) O(log2 n)

[13] PM O(m) O(log m) O(log m + t) - O(log n) O(log n)†

[15] PM‡ O(m) O(log n) O(log n + t) - O(log n) O(log n)
New PM O(m) O(log n) O(log n + t) O(log n + t) O(log n) O(log n)

New RAM O(m) O(log n
log log n

) O(log n
log log n

+ t) O(log n
log log n

+ t) O(log n
log log n

) O(log n
log log n

)

time, insertions and deletions of points in O(log3 n) worst case time and uses
O(n log n) space, when the structure of [3] is applied. Only the insertion time is
improved to O(log2 n) by applying the structure of [9]. Both the insertion and
deletion time can be improved to O(log2 n) worst case, using O(n log n) space,
at the expense of O(t log n) worst case query time [5, Theorem 3.5].

Our Results. In the pointer machine model we present a linear space data struc-
ture that supports maxima dominance queries, and more general 3-sided range
maxima queries in O(log n+t) worst case time. An arbitrary point can be inserted
and deleted in O(log n) worst case time. This is the first dynamic data structure
that achieves the update times of [15], and supports more general range maxima
queries with worst case complexities. Our structure can be generalized to solve
4-sided range maxima queries, namely to report the maximal points of the point
set P ∩([x
, xr]×[yb, yt]), in O(log2 n+t) worst case time. Updates take O(log2 n)
worst case time and the space usage is O(n logn). Using our 4-sided range max-
ima structure we can solve the dynamic rectangular visibility query problem
with the same bounds. In the word-RAM model we present a linear space data
structure that supports 3-sided range maxima queries in O(log n

log log n + t) worst
case time, and updates in O(log n

log log n) worst case time. This is the first dynamic
data structure in the RAM model that supports these operations in sublogarith-
mic worst case time. Both the pointer machine and the RAM data structures
support reporting all maximal points in O(m) worst case time.

Outline of Solution. We follow the basic approach of previous structures. We
store the points sorted by x-coordinate at the leaves of a tree, and maintain a
tournament in the internal nodes of the tree with respect to their y-coordinates.
An internal node u is assigned the point with maximum y-coordinate in its
subtree. We observe that the nodes in the subtree of u that contain this point
form a path. We also observe that the maximal points among the points assigned
to the nodes hanging to the right of this path are also maximal among the points

Dynamic Planar Range Maxima Queries 259

in the subtree of u. We store these points in node u in order to allow the query
algorithm to recursively access only points to be reported.

The implementation of our structures is based on the fact that we can obtain
the set of points we store in a node from the set stored in its child node that
belongs to the same path. In particular if that is the left child, we need to delete
the points that are dominated by the point assigned to the right child and insert
this point into the set. Sundar [7] shows how to implement a priority queue
that supports exactly this operation (attrition) in O(1) worst case time. This
allows us to complete the insertion and deletion of a point to the construction in
O(log n) worst case time. To achieve linear space we implement every path that
contains the same point as a partially persistent priority queue with attrition.
The priority queue with attrition abides by the assumptions for the technique of
Brodal [12] that makes a pointer-based data structure partially persistent, since
it can be implemented as a doubly linked list pointed by a constant number
of additional pointers. We adapt the above construction to the word-RAM by
increasing the degree of the tree to Θ(logε n) for some 0<ε<1. To search and
update a node in O(1) time, we make use of precomputed lookup-tables and the
Q-heap of Fredman and Willard [10].

2 Preliminaries

Partial Persistence. Driscoll et al. [6] show a general technique to make pointer
based data structures partially persistent. Suppose that an update operation on
a dynamic data structure creates a new version of the data structure. A dynamic
data structure is called partially persistent when only the latest version can be
updated, and any previous version can be queried given a pointer to it. We obtain
a list of versions called the version list, by ordering the versions such that an
update to version i creates version i+1. A rollback discards the latest version by
reversing the update that created it, and sets its preceding version in the version
list as the new updatable version.

Let D be a dynamic data structure that supports queries in worst case time q
and updates in worst case time u. Under the assumption that D can be modeled
by a graph where the in- and out-degree of each node is bounded by a constant,
Brodal [12] presented a method to make D partially persistent, such that a
query to a particular version can be supported in O(q) worst case time, and
an update to the latest version in O(u) worst case time. This improves the
original partial persistence technique of Driscoll et al. [6], that only achieves
amortized O(u) update time, and enables the rollback operation in O(u) worst
case time. Moreover after performing a sequence of s atomic update operations,
the partially persistent data structure occupies O(s) space.

Priority Queue with Attrition. Sundar [7] introduces the priority queue with at-
trition (PQA) that supports the following operations in O(1) worst case time
on a set of elements drawn from a total order: DeleteMax deletes and returns
the maximum element from the PQA, and InsertAndAttrite(x) inserts ele-
ment x into the PQA and removes all elements smaller than x from the PQA.

260 G.S. Brodal and K. Tsakalidis

The PQA uses space linear to the number of inserted elements, and is imple-
mented as a doubly linked list with a constant number of additional pointers.
Given a value x, the elements in the PQA that are larger than x can be reported
in sorted order in O(t+ 1) time, where t is the size of the output.

Red-black Tree. A red-black tree [1] is a balanced binary search tree that main-
tains a set of n elements drawn from a total order. It supports the following oper-
ations inO(log n) worst case time, using O(n) space: Insert(x) inserts element x
into the tree, Delete(x) deletes element x from the tree, and Predecessor(x)
returns the largest element in the tree that is smaller or equal to element x.

Q-Heap. A Q-heap [10] stores a subset of at most log1/4 n integers from the
set U={0, . . . , 2w − 1}. It operates in the RAM with word size w ≥ logn, and
supports the operations Insert(x), Delete(x) and Predecessor(x) in O(1)
worst case time. It uses O(log1/4 n) space, and utilizes an O(n) space global
precomputed lookup-table that needs O(n) preprocessing time.

3 Pointer-Based Data Structure

In this section we present our pointer based data structure that supports 3-sided
range maxima queries in O(log n+ t) worst case time, where t is the number of
reported points. The insertion and deletion of a point are supported in O(log n)
worst case time. The structure occupies O(n) space. Comparisons are the only
allowed computation on the coordinates of the points.

3.1 Data Structure

We store the points sorted by increasing x-coordinate at the leaves of a red-black
tree T . We maintain a tournament on the internal nodes of T with respect to
the y-coordinates of the points. In particular, every internal node u contains the
points px−max(u) and py−max(u) that are respectively the points with maximum
x- and y-coordinate among the points in the subtree of u. The points px−max(u)
allow us to search in T with respect to the x-coordinate. The points py−max(u)
define n disjoint winning paths in T whose nodes contain the same point.

Let u be an internal node. Let u belong to a winning path π. We denote by πu

the suffix of π that starts at node u and ends at the leaf that stores py−max(u).
We denote by Ru the set of right children of the nodes in πu that do not belong
to πu themselves. We denote by MAX(u) the points that are maximal among
{py−max(v) | v ∈ Ru}. We can obtain MAX(u) from the set of points MAX(c),
where c is the child of u that belongs to πu. In particular, if that is the right
child uR then Ru = RuR and thus MAX(u) = MAX(uR). Otherwise if that is
the left child uL, then Ru = RuL ∪ {uR}. Point py−max(uR) belongs to MAX(u)
since it has the largest x-coordinate among all points in Ru. Moreover, all the
points in MAX(uL) with y-coordinate at most py−max(uR)y should be excluded
from MAX(u) since they are dominated by py−max(uR). See Figure 2 for an
illustration of Ru and MAX(u).

Dynamic Planar Range Maxima Queries 261

u
Ru

MAX(u)

Fig. 2. The winning path π is
bold. The circular nodes are in Ru.
The black circular nodes are in
MAX(u).

We implement the sets MAX(u) of the
nodes u along a winning path π as the ver-
sions of a partially persistent priority queue
with attrition (PPPQA). That is, every in-
ternal node u stores the y-coordinates of the
points in MAX(u) in a priority queue with at-
trition (PQA). If u is the i-th node of π, then
it contains the i-th version of the PPPQA.
The leaf of π contains version 0. The child of
u that belongs to π contains the i−1-th ver-
sion. If that is uR, the i-th version and the
i−1-th versions have the same content. Else if
that is uL, the i-th version is obtained by exe-
cuting InsertAndAttrite(py−max(uR)y) to
the i−1-th version. Moreover, for every point
in MAX(u) we store a pointer to the node of
Ru that stores the point. This node is the highest node of its winning path. Note
that Ru is not explicitly maintained anywhere in the data structure.

Let p be the point with maximum y-coordinate among the points py−max(uL)
and py−max(uR). To extend the winning path that contains p from the child node
to node u, we assign to u the points px−max(uR) and p, and compute MAX(u).

Lemma 1. Extending a winning path from an internal node to its parent node
needs O(1) time and O(1) extra space.

Proof. Points px−max(u) and py−max(u) can be computed from the children of u
in O(1) time. To extend the winning path that contains py−max(uR), we create
the reference to the new version of the PPPQA for the winning path inO(1) time.
To extend the winning path that contains py−max(uL), we record persistently the
operation InsertAndAttrite(py−max(uR)y) and create a reference to the new
version in O(1) worst case time using O(1) extra space [12,7]. ��
Lemma 1 implies that T can be constructed bottom-up in O(n) worst case time,
assuming that the n points are given sorted by increasing x-coordinate. The
total space usage is O(n).

3.2 Query

In the following we describe how to answer 3-sided range maxima queries. This
immediately also gives us maxima dominance and maxima contour queries,
since these are special cases where the query ranges are [qx,+∞[×[qy,+∞[and
]−∞, xr]×]−∞,+∞[respectively.

Reporting the maximal points that lie above qy. We first show how to report all
maximal points with y-coordinate larger than a given value qy among the points
that belong to a subtree Tu of T rooted at an internal node u. If py−max(u)y≤qy
we terminate since no maximal point of Tu has to be reported. Otherwise we

262 G.S. Brodal and K. Tsakalidis

report py−max(u) and compute the prefix p[1], . . . , p[k] of MAX(u) of points with
y-coordinate larger than qy. To do so we report the elements of the PQA of u
that are larger than qy. Let ui be the node of Ru such that py−max(ui) = p[i].
We report recursively the maximal points in Tui with y-coordinate larger than
p[i+1]y for i ∈ {1, . . . , k−1}, and larger than qy for i = k. The algorithm reports
the maximal points in Tu in decreasing y-coordinate and terminates when the
maximal point with the smallest y-coordinate larger than qy is reported.

For the correctness of the above observe that the point py−max(u) is the left-
most maximal point among the points in Tu. The x-coordinates of the rest of
the maximal points in Tu are larger than py−max(u)x. The subtrees rooted at
nodes of Ru divide the x-range]py−max(u)x,+∞[into disjoint x-ranges. The
point p′ with maximum y-coordinate of each x-range is stored at a node u′ of
Ru. The points in MAX(u) are maximal among the points in Tu. Let p[i + 1]
be the leftmost maximal point in Tu to the right of p′. If p′ does not belong
to MAX(u) then none of the points in Tu′ are maximal, since p′y ≤ p[i + 1]y
and p[i + 1]x is larger than the x-coordinate of all points in Tu′ . Otherwise p′

belongs to MAX(u) and more precisely p′ = p[i]. Point p[i] is the leftmost max-
imal point among the points in Tu′ . The maximal points among the points in
Tu with x-coordinate at least p[i]x and y-coordinate larger than p[i+ 1]y belong
to Tu′ . In particular, they are the maximal points among the points in Tu′ with
y-coordinate larger than p[i+ 1]y.

Lemma 2. Reporting the maximal points with y-coordinate larger than qy among
the points of a subtree of T takes O(t+1) worst case time, where t is the number
of reported points.

Proof. If py−max(u) is not reported we spend in total O(1) time to assess that
no point will be reported. Otherwise py−max(u) is reported. We need O(k + 1)
time to compute the k points in MAX(u) with y-coordinate larger than qy. If
k = 0 we charge the O(1) time we spent in node u to the reporting of py−max(u).
Otherwise we charge the time to compute p[i] and to access node ui to the
reporting of p[i]. In total every reported point is charged O(1) time. ��
In order to report all maximal points of P we apply the above algorithm to the
root of T with qy=−∞. The total time is O(m).

3-sided Range Maxima Queries. We show how to report all maximal points of
the point set P ∩ ([x
, xr]× [yb,+∞[). We search for the leaves � and r of T that
contain the points with the largest x-coordinate smaller than xr and smallest
x-coordinate larger than x
, respectively. Let π
 and πr be the root-to-leaf paths
to � and r, respectively. Let R denote the set of right children of nodes of π
 \πr

that do not belong to π
 themselves, and the set of left children of nodes of
πr \ π
 that do not belong to πr themselves. The subtrees rooted at the nodes u
of R divide the x-range]x
, xr[into disjoint x-ranges. We compute the maximal
points p[1], . . . , p[k] among the points py−max(u) in R with y-coordinate larger
than yb using [2]. Let ui be the node of R such that py−max(ui) = p[i]. We report
recursively the maximal points in Tui with y-coordinate larger than p[i+ 1]y for
i ∈ {1, . . . , k − 1}, and larger than yb for i = k.

Dynamic Planar Range Maxima Queries 263

Lemma 3. Reporting the maximal points for the 3-sided range maxima query
takes O(log n+ t) worst case time, where t is the number of reported points

Proof. There are O(log n) nodes u in R. The points py−max(u) are accessed in
decreasing x-coordinate. Therefore we can compute the maximal points p[i], i ∈
{1, . . . , k} in O(log n) time [2]. Let p[i] = py−max(ui) for a particular node ui of
R, and let there be ti maximal points to be reported in the subtree Tui . Since p[i]
will be reported we get that ti ≥ 1. By Lemma 2 we need O(ti) time to report the
ti points. Therefore the total worst case time to report the t =

∑k
i=1 ti maximal

points is O(log n+ t). ��
In order to answer whether a given query point q = (qx, qy) lies above or below
the staircase (maxima emptiness query) in O(log n) time we terminate a 3-
sided range maxima query for the range [qx,+∞[×[qy,+∞[as soon as the first
maximal point is reported. If so, then q lies below the staircase. Else if no point
is reported then q lies above the staircase.

3.3 Update

To insert (resp. delete) a point p = (px, py) in the structure, we search for the
leaf � of T that contains the point with the largest x-coordinate smaller than px

(resp. contains p). We traverse the nodes of the parent(�)-to-root search path π
top-down. For each node u of π we discard the points px−max(u) and py−max(u),
and rollback the PQA of u in order to discard MAX(u). We insert a new leaf �′

for p immediately to the right of the leaf � (resp. delete �) and we rebalance T .
Before performing a rotation, we discard the information stored in the nodes that
participate in it. Finally we recompute the information in each node u missing
px−max(u), py−max(u), and MAX(u) bottom-up following π. For every node u we
extend the winning path of its child u′ such that py−max(u) = py−max(u′) as in
Section 3.1. Correctness follows from the fact that every node that participates
in a rotation either belongs to π or is adjacent to a node of π. The winning path
that ends at the rotated node will be considered when we extend the winning
paths bottom-up.

Lemma 4. Inserting or deleting a point from T takes O(log n) worst case time.

Proof. The height of T is O(log n). Rebalancing a red-black takes O(log n) time.
We need O(1) time to discard the information in every node of π. By Lemma 1
we need O(1) time to extend the winning path at every recomputed node. Thus
we need in total O(log n) time to update the internal nodes of T . ��

4 4-Sided Range Maxima Queries and Rectangular
Visibility

In the following we describe how to support 4-sided range maxima queries in
O(log2 n + t) worst case time and updates in O(log2 n) worst case time, using
O(n log n) space, by borrowing ideas from [5].

264 G.S. Brodal and K. Tsakalidis

For the rectangular visibility query problem, where we want to report the
points that are rectangularly visible from a given query point q = (qx, qy), we
note that it suffices to report the maximal points p that lie to the lower left
quadrant defined by point q (namely the points where px ≤ qx and py ≤ qy
holds). The rectangularly visible points of the three other quadrants can be
found in a symmetric way. This corresponds exactly to a 4-sided range maxima
query for the range]−∞, qx]×]−∞, qy]. The rectangular visibility query problem
can be solved in the same bounds, using four 4-sided range maxima structures.

To support 4-sided range maxima queries, as in [5], we store all points sorted
by increasing y-coordinate at the leaves of a weight-balanced B-tree S [16]. In
every internal node u of S we associate a secondary structure that can answer
3-sided range maxima queries on the points that belong to the subtree Su of S.

bi−1 yt

yb

x� xr

Su1

Su2

Sui

Suk

Fig. 3. 4-sided range
maxima query

To perform a 4-sided range maxima query we first
search for the leaves of S that contain the point with
the smallest y-coordinate larger than yb and the point
with largest y-coordinate smaller than yt, respectively.
Let πb and πt be the root-to-leaf search paths respec-
tively. Let L denote the set of nodes of S that are left
children of the nodes in πt \ πb and do not belong to
πt themselves, and the set of nodes of S that are right
children of the nodes in πb\πt and do not belong to πb

themselves. The subtrees rooted at the nodes of L di-
vide the y-range]yb, yt[into O(log n) disjoint y-ranges.
We consider the nodes u1, . . . , uk of L in decreasing
y-coordinate. In the secondary structure of u1 we per-
form a 3-sided range maxima query with the range]x
, xr]×]−∞,+∞[. In the
secondary structure of every other node ui of L we perform a 3-sided range max-
ima query with the range]bi−1, xr]×]−∞,+∞[, where bi−1 is the x-coordinate
of the last point reported from the secondary structures of u1, . . . , ui−1, i.e. the
rightmost point that lies to the left of xr and lies in y-range spanned by the
subtrees Su1 , . . . , Sui−1 . See Figure 3 for the decomposition of a 4-sided query.

To insert (resp. delete) a point in S, we first search S and create a new leaf
(resp. delete the leaf) for the point. Then we insert (resp. delete) the point
to the O(log n) secondary structures that lie on the search path. Finally we
rebalance the weight-balancedB-tree S and reconstruct the secondary structures
at rebalanced nodes.

Theorem 1. Given a set of n points in the plane, the 4-sided range maxima
query problem can be solved using O(n log n) space, O(log2 n+t) worst case query
time, and O(log2 n) worst case update time, where t is the output size.

Proof. There are k=O(logn) nodes in L where we execute a 3-sided range max-
ima query. By Lemma 3 each such query takes O(log n + ti) worst case time,
where ti is the number of reported points. In total the worst case time to report
the t =

∑k
i=1 ti points is O(log2 n + t). Each point p occurs once in every sec-

ondary structure of a node of S that is an ancestor of the leaf that contains p.
There are O(log n) such ancestor nodes, thus the total space is O(n log n). By

Dynamic Planar Range Maxima Queries 265

Lemma 4 we need O(log n) time to insert and delete a point p from each sec-
ondary structure at an ancestor node. The worst case time to insert and delete p
to the secondary structures that contain it is O(log2 n). When the incremental
rebalancing algorithm of [16] is applied, then for each insertion and deletion to S,
O(1) updates are applied to the secondary structures at each of O(log n) levels
of S. By Lemma 4 each such update needs O(log n) worst case time, thus the
rebalancing costs O(log2 n) worst case time. ��

5 3-sided Range Maxima in the RAM Model

In this section we consider the RAM model of computation, where the coor-
dinates are represented by a word of w ≥ log n bits and belong to the range
of integers U = {0, 1, . . . , 2w − 1}. We present a data structure that supports
3-sided range maxima queries in O(log n

log log n + t) worst case time, where t is the
number of reported points. The insertion and deletion of a point are supported
in O(log n

log log n) worst case time. The occupied space is linear to the number of
stored points.

Structure. We store the points of P sorted by increasing x-coordinate at the
leaves of an (a, b)-tree T , such that a = 1

2 log
1
4 n and b = log

1
4 n. The height of

T is O(log n
log log n). Every node u is assigned the points py−max(u) and px−max(u).

Define Cy(u) = {py−max(ui)y | ui is a child of u} and similarly let Cx(u) be the
x-coordinates of the points with maximum x-coordinate assigned to the children
of u. In every internal node u we store Cx(u) and Cy(u) in twoQ-heapsX(u) and
Y (u), respectively. We store two global lookup-tables for the Q-heaps. We store
a global look-up table S that supports 3-sided range maxima queries for a set of
at most log

1
4 n points in rank-space. Every node u stores a reference to the entry

of S that corresponds to the permutation in Cy(u). We adopt the definitions for
the winning paths and MAX(u) from Section 3.1, with the difference that now
Ru denotes the children of nodes v of πu that contain the second maximal point
in cy(v). As in Section 3.1, we implement the sets MAX(u) of the nodes u along
a winning path as the versions of a PPPQA. For every point p in MAX(u) we
store a pointer to the node v of πu whose child is assigned p. The tree and the
look-up tables use O(n) space.

Query. To report the maximal points in a subtree Tu with y-coordinate larger
than qy, we first compute the prefix p[1], . . . , p[k] of the points in MAX(u) with
y-coordinate larger than qy, as in Section 3.1. For each computed point p[i] we
visit the node v of πu whose child is assigned p[i]. We use the Y (v) and the
reference to S to compute the maximal points p′[j], j ∈ {1, . . . , k′} among the
points in Cy(v) that lie in the range]p[i]x,+∞[×]p[i+ 1]y,+∞[. Let vj be the
child of v such that p′[j] = py−max(vj). We recursively report the maximal points
in the subtree Tvj with y-coordinate larger than p′[j+1]y for j ∈ {1, . . . , k′−1},
and larger than p[i+ 1]y for j = k′. If i = k and j = k′ we recursively report the
points in Tvj with y-coordinate larger than qy. Correctness derives from the fact
that p[i]x<p′[1]x< · · ·<p′[k′]x<p[i+1]x and p[i]y>p′[1]y> · · ·>p′[k′]y>p[i+1]y

266 G.S. Brodal and K. Tsakalidis

hold, since p[i] and p′[1] are respectively the first and the second maximal points
among the points in Cy(v). The worst case query time is O(t).

To answer a 3-sided range maxima query, we first use the Q-heaps for the x-
coordinates in order identify the nodes on the paths π
 and πr to the leaves that
contain the points with smallest x-coordinate larger than x
 and with largest x-
coordinate smaller than x
, respectively. This takes O(log n

log log n) worst case time.
For each node on π
 and πr we identify the interval of children that are con-
tained in the x-range of the query. For each interval we identify the child c with
maximum py−max(c) using S in O(1) time. These elements define the set R from
which we compute the maximal points using [2] in O(log n

log log n) worst case time.
We apply the above modified algorithm to this set, ignoring the maximal points
p′[j] outside the x-range of the query. The worst case time for 3-sided range
maxima query is O(log n

log log n + t).

Update. To insert and delete a point from T we proceed as in Section 3.1.
To extend a winning path to a node v we first find the child u of v with the
maximum py−max(u)y using Y (v), i.e. the winning path of u will be extended
to v. Then we set px−max(v) = px−max(uk) where uk is the rightmost child of v,
we set py−max(v) = py−max(u), insert px−max(u)x and py−max(u)y to X(v) and
Y (v) respectively, we recompute the reference to the table S using Y (v), and
we recompute MAX(v) from MAX(u) as in Section 3.1. In order to discard the
information from a node u we remove px−max(u) and py−max(u) from node u
and from the Q-heaps X(v) and Y (v) respectively, and rollback MAX(u). These
operations take O(1) worst case time. Rebalancing involves splitting a node and
merging adjacent sibling nodes. To facilitate these operation in O(1) worst case
time we execute them incrementally in advance, by representing a node as a pair
of nodes. Therefore we consider each Q-heap as two separate parts Q
 and Qr,
and maintain the size of Q
 to be exactly a. In particular, whenever we insert
an element to Q
, we remove the rightmost element from Q
 and insert it to Qr.
Whenever we remove an element to Q
, we remove the leftmost element from
Qr and insert it to Q
. In case Qr is empty we remove the rightmost or leftmost
element from the immediately left or right sibling node respectively and insert
it to Q
. Otherwise if both sibling nodes have a elements in their Q-heaps, we
merge them. The total worst case time for an update is O(log n

log log n) since we
spend O(1) time per node.

Theorem 2. Given a set of n planar points with integer coordinates in the range
U = {0, 1, . . . , 2w−1}, the 3-sided range maxima query problem can be solved in
the RAM model with word size w using O(n) space, O(log n

log log n + t) worst case
query time, and O(log n

log log n) worst case update time, where t is the output size.

6 Conclusion

In the comparison model, it can be shown that O(log n) update time is optimal
for the attained query time, by reduction from the Insert/Delete/FindMax

problem [11]. In the cell probe model, it can be shown that O(log n
log log n) time

Dynamic Planar Range Maxima Queries 267

for the maxima emptiness query of the RAM structure is optimal for the at-
tained update time, by equivalence to the dynamic planar dominance emptiness
problem [14]. Reporting maximal or rectangularly visible points of dimension
larger than two, admits logarithmic factors on the output-sensitive part of the
query complexity [5,15]. Improving them even for the static case remains an
open problem.

References

1. Bayer, R.: Symmetric Binary B-Trees: Data Structure and Maintenance Algo-
rithms. Acta Inf. 1, 290–306 (1972)

2. Kung, H.T., Luccio, F., Preparata, F.P.: On Finding the Maxima of a Set of Vec-
tors. J. ACM 22(4), 469–476 (1975)

3. Overmars, M.H., van Leeuwen, J.: Maintenance of Configurations in the Plane. J.
Comput. Syst. Sci. 23(2), 166–204 (1981)

4. Huddleston, S., Mehlhorn, K.: A New Data Structure for Representing Sorted Lists.
Acta Inf. 17, 157–184 (1982)

5. Overmars, M.H., Wood, D.: On Rectangular Visibility. J. Alg. 9(3), 372–390 (1988)
6. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making Data Structures

Persistent. J. Comput. Syst. Sci. 38(1), 86–124 (1989)
7. Sundar, R.: Worst-Case Data Structures for the Priority Queue with Attrition. Inf.

Process. Lett. 31(2), 69–75 (1989)
8. Frederickson, G.N., Rodger, S.H.: A New Approach to the Dynamic Maintenance

of Maximal Points in a Plane. Discrete & Comp. Geom. 5, 365–374 (1990)
9. Janardan, R.: On the Dynamic Maintenance of Maximal Points in the Plane. Inf.

Process. Lett. 40(2), 59–64 (1991)
10. Fredman, M.L., Willard, D.E.: Trans-Dichotomous Algorithms for Minimum Span-

ning Trees and Shortest Paths. J. Comput. Syst. Sci. 48(3), 533–551 (1994)
11. Brodal, G.S., Chaudhuri, S., Radhakrishnan, J.: The Randomized Complexity of

Maintaining the Minimum. Nord. J. Comput. 3(4), 337–351 (1996)
12. Brodal, G.S.: Partially Persistent Data Structures of Bounded Degree with Con-

stant Update Time. Nord. J. Comput. 3(3), 238–255 (1996)
13. d’Amore, F., Franciosa, P.G., Giaccio, R., Talamo, M.: Maintaining Maxima un-

der Boundary Updates. In: Bongiovanni, G., Bovet, D.P., Di Battista, G. (eds.)
CIAC 1997. LNCS, vol. 1203, pp. 100–109. Springer, Heidelberg (1997)

14. Alstrup, S., Husfeldt, T., Rauhe, T.: Marked Ancestor Problems. In: Proc. 39th
Foundations of Computer Science, pp. 534–544. IEEE Press, Los Alamitos (1998)

15. Kapoor, S.: Dynamic Maintenance of Maxima of 2-d Point Sets. SIAM J. Com-
put. 29(6), 1858–1877 (2000)

16. Arge, L., Vitter, J.S.: Optimal External Memory Interval Management. SIAM J.
Comput. 32(6), 1488–1508 (2003)

Compact Navigation and Distance Oracles for

Graphs with Small Treewidth

Arash Farzan1 and Shahin Kamali2

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
2 Cheriton School of Computer Science, University of Waterloo, Ontario, Canada

Abstract. Given an unlabeled, unweighted, and undirected graph with
n vertices and small (but not necessarily constant) treewidth k, we con-
sider the problem of preprocessing the graph to build space-efficient en-
codings (oracles) to perform various queries efficiently. We assume the
word RAM model where the size of a word is Ω (log n) bits.

The first oracle, we present, is the navigation oracle which facilitates
primitive navigation operations of adjacency, neighborhood, and degree
queries. By way of an enumerate argument, which is of independent in-
terest, we show the space requirement of the oracle is optimal to within
lower order terms for all treewidths. The oracle supports the mentioned
queries all in constant worst-case time. The second oracle, we present, is
an exact distance oracle which facilitates distance queries between any
pair of vertices (i.e., an all-pair shortest-path oracle). The space require-
ment of the oracle is also optimal to within lower order terms. Moreover,
the distance queries perform in O

(
k2 log3 k

)
time. Particularly, for the

class of graphs of our interest, graphs of bounded treewidth (where k is
constant), the distances are reported in constant worst-case time.

1 Introduction

Graphs are arguably one of the most prolific structures to model relationships
among entities. With the ever-growing size of objects to model, the corresponding
graphs increase in size. As a result compact representation of graphs has always
been of interest. In this paper, we consider the problem of representing graphs
compactly while allowing efficient access and utilization of the graph by showing
fast support of navigation and distance queries.

Random graphs are highly incompressible [2]. Fortunately, graphs that arise
in practice are not random and turn out to have some combinatorial structural
property. Therefore, researchers have considered graphs with various combina-
torial structures for the purpose of space-efficient representation (see [9] for a
review of the exiting results). In this paper, we are interested in compact repre-
sentation of graphs with a small treewidth (to be defined in Section 2). Graphs
of bounded treewidth are of interest since many NP-hard problems on general
graphs are solvable in polynomial time on these graphs. In addition, graphs with
small treewidth occur in many more real-world applications [5,6]. We assume
the standard word RAM model where a word is at least lgn bits wide and n is
the number of vertices (lg denotes log2).

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 268–280, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Compact Navigation and Distance Oracles for Graphs with Small Treewidth 269

1.1 Contribution

In the first part of the paper (Section 4), we describe a data structure that
encodes a given undirected and unlabeled graph with n vertices and treewidth
at most k in k(n + o(n) − k/2) + O(n) bits and supports degree, adjacency,
and neighborhood queries in constant time. Degree query is to report the degree
of a vertex. Adjacency query is given two vertices u,w to determine if edge
(u, v) exists. Neighborhood query is to report all neighbors of a given vertex in
constant time per neighbor. These three queries constitute the set of primitive
navigational queries often required in a graph [2,10,3].

In [12] an implicit representation of graphs with treewidth k in n(lg n +
O (k lg lg(n/k))) bits is presented, which is not compact for all values of k. Al-
though it is not explicitly mentioned, the succinct representation of separable
graphs given in [3] yields an optimal navigation oracle for graphs of bounded
treewidth for any treewidth k = O (1). This is since graphs with a constant
treewidth are also separable (a graph is separable if it and its subgraphs can be
partitioned into two approximately equally sized parts by removing a relatively
small number of vertices [2]). The storage requirement of the oracle for sepa-
rable graphs is optimal to within lower order terms, and previously mentioned
navigation queries perform in constant time. In this paper, we extend the result
to graphs with treewidth k, where k = Ω(1).

Moreover, we show that the storage requirement of the oracle is optimal for
all values of k by proving that k(n−o(n)−k/2)+ δn bits are required to encode
graphs of treewidth k and n vertices (δ is a positive constant). Our proof is
a counting argument which is of independent interest as to best of our knowl-
edge, there existed no such enumerative result for graphs with a given treewidth
(though a lower bound of kn − o(kn) is known [11] for graphs with pagenum-
ber k, which are a larger family of graphs which include graphs with treewidth
smaller than k [8]). The desired oracle of this paper adopts the encoding of [3]
for values k = O (1) and the encoding outlined in this paper for k = Ω (1). Since
the storage requirement of the oracle matches the entropy bound for constant
values of k and our lower bound for non-constant values of k, both the space of
the oracle and our lower bound are tight.

In the second part of the paper, we give distance oracles for undirected, unla-
beled, and unweighted graphs with n vertices and treewidth k that for all values
of k requires the entropy bound number of bits to within lower order terms.
These are exact oracles that report the distance of two given vertices precisely.
The distance queries perform in O(k2 lg3 k) in which k is the graph treewidth.
We emphasize that for graphs of bounded treewidth where k is constant (the
family of graphs of our interest), the queries are supported in constant time.
Exact distance oracles for unweighted undirected graph require Ω

(
n2
)

bits and
there exists an oracle with about 0.79n2 bits [16]. Hence, we show that for graphs
with a bounded treewidth, these results can be significantly improved as there
is a linear size exact distance oracle (the number of edges can be θ(kn)).

The time to construct the oracles depends on the time to compute the treewidth
of the given graph and compute the tree decomposition correspondingly.

270 A. Farzan and S. Kamali

Determining the treewidth of a graph is NP-hard [5]. Fortunately however, for
graphs with constant treewidth, the treewidth and the corresponding tree de-
composition can be determined in linear time [6]. Moreover, for graphs with
treewidth k = ω (1), there exists a polynomial time algorithm that approximates
the treewidth within O (log k) factor and generates the corresponding tree de-
composition [5]. All other aspects of navigation oracles can be constructed in
O(kn) time where k is the determined treewidth and n is the number of ver-
tices. For the distance oracle, we pre-compute distances between every pairs of
vertices at the initial stage, and this can be accomplished in o(kn2) time [7].

2 Tree Decompositions and Variations

We use the notion of tree decompositions of graphs to design the oracles:

Definition 1 ([5]). A tree decomposition of a graph G = (V,E) of width k is a
pair ({Xi‖i ∈ I} , T) where {Xi‖i ∈ I} is a family of subsets of V (bags), and T
is a rooted tree whose nodes are the subsets Xi such that
–

⋃
i∈I

Xi = V and max
i∈I
|Xi| = k+1.

– for all edges (v, w) ∈ E, there exists an i ∈ I with v ∈ Xi and w ∈ Xi.
– for all i, j, k ∈ I: if Xj is on the path from Xi to Xk in T , then Xi∩Xk ⊆ Xj.

We say a vertex v ∈ V is introduced in node Xi(i ∈ I) of the tree, if v is in the
bag Xi (v ∈ Xi) but not in that of the parent of Xi. All vertices at the bag of the
root node are introduced by definition.

For each of the oracles, we use a specially adapted version of tree decomposition.
For the navigation oracle, we use a standard tree decomposition, in which each
bag contains exactly k + 1 vertices, and two neighboring nodes share exactly k
vertex, i.e., each node introduces one vertex. It is known that a tree decomposi-
tion can be changed to form a standard tree decomposition in linear time [4]. To
design distance oracles, we use the height-restricted tree decomposition T , whose
height is logarithmic in the number of vertices, i.e., height(T) = O (logn). A tree
decomposition can be transformed into a height-restricted tree decomposition by
the following lemma:

Lemma 1. Given a tree decomposition with treewidth k for a graph with n ver-
tices, one can obtain, in linear time, a height-restricted tree decomposition with
n nodes and width at most 3k + 2 (proof in the long version of the paper).

3 Lower Bound

To best of our knowledge, there exists no enumerative result for the number of
unlabeled graphs with a given treewidth k. We prove one in this section. We use
the concept of asymmetric trees (also known as identity trees), which are trees
in which the only automorphism is the identity, i.e., each vertex can be uniquely

Compact Navigation and Distance Oracles for Graphs with Small Treewidth 271

Fig. 1. Two different understanding of tree vertices in an asymmetric 4-graph. Dark
vertices are tree vertices.

distinguished from others. Harary et al, showed the total number of asymmetric
trees on n nodes is u(n) ∼ cn−5/2μ−n in which c and μ are positive constants
roughly equal to 0.299 and 0.397, respectively [14]. We use this result to count
asymmetric k-graphs as a family of graphs with treewidth k.

Definition 2. An asymmetric k-graph on n vertices is a graph which has an
asymmetric tree of size n−k as an induced subgraph. The involved vertices in
this subgraph are called tree vertices. Among the other k vertices, there is one
vertex, called center, which is connected to all other k−1 non-tree vertices and
is not connected to any of the n−k tree vertices (Figure 1).

Lemma 2. Any asymmetric k-graph has treewidth at most k.

Proof. Consider a tree decomposition of the asymmetric tree, which has at most
two vertices in each bag. Copy all other vertices except the center to all bags.
Now each bag contains 2 + (k−1) vertices. Create a new bag of size k involving
all non-tree vertices (including center) and attach it to an arbitrary position in
the tree decomposition. The result is a legitimate tree decomposition of width k
(at most k+1 vertices in each bag).

Therefore, to get a lower bound on the number of graphs with of treewidth k,
we just count asymmetric k-graphs.

Theorem 1. The number of asymmetric k-graphs with n vertices is at least
xn ∼c2(k+δ)n−(k2+(3+2δ)k−2)/2×(n−k)−5/2/(n(k−1)!) where c and δ are constants
roughly equal to 0.299 and 0.332 (proof in the long version of the paper).

Since we match the bound with an encoding, the exponent is tight within lower
order terms.

Corollary 1. At least k(n − o(n) − k/2) + δn bits are required to represent a
graph of treewidth k with n vertices, where δ is a constant roughly equal to 0.332.

4 Navigation Oracles

In this section, we provide a compact representation of graphs of treewidth k
which supports adjacency, neighborhood, and degree queries in constant time in
the lgn-bit word RAM model. The representation requires k(n+ o(n)− k/2) +

272 A. Farzan and S. Kamali

O(n), which is tight given corollary 1. First we mention some existing results for
auxiliary data structures we use in our representation.
Succinct rank/select structures: For a binary sequence S, we define
accessS(i) as the content of the i’th index of S, rankS(i, c) as the number of
occurrences of c before index i, and selectS(i, c) as the index of the i’th occur-
rence of c in S (c∈{0, 1}). There are data structures which represent a binary
sequence of length n using n+ o(n) bits which supports access, rank, select in
constant time. Moreover, for sequences with m ones (m�n), the space can be
reduced to lg

(
n
m

)
+O(n lg lgn/ lgn) to support queries in constant time [17].

Balanced Parenthesis and Multiple Parenthesis: A balanced parenthesis
sequence of size 2n, which is equivalent to an ordered tree of size n, can be
represented in 2n+o(n) bits, with support of access(v), rank(v,′ (′), select(v,′ (′),
findmatch(v), and child(i, v) in constant time [15]; access, rank, and select are
defined as before, findmatch(v) finds the position of parenthesis matching the
parenthesis at position v, and child(v, q) finds the position of the q’th child of
node v. A multiple parenthesis sequence, is an extension of balanced parenthesis
to k types of parenthesis, where an open parenthesis of type i, denoted by (i,
can be matched by a closed parenthesis of the same type, denoted by)i.

Lemma 3. [1] A multiple parenthesis sequence with 2n parentheses of k types,
in which the parentheses of any given type are balanced, can be represented using
(2+ε)n lg k+o(n lg k) bits to support m access,m rank, m select,m findmatch
and m enclose in O(1) time; all operations are defined as before, m enclose(v, i)
gives the position of the tightest open parenthesis of type i which encloses v.

Compact Tables: Given a binary matrix M of size k×n, we are interested in a
compact representation of M which supports the following queries: access(i, j)
which gives the content of M [i, j], r successor(i, j) which gives the entry one in
row i that comes after index j, and c successor(i, j) which is defined identically
on columns. For our purpose, we need to represent matrices in which k ≤ n, and
the first k columns form a triangular submatrix.

Lemma 4. A k×n matrix, in which the first k columns form a triangular sub-
matrix (k≤n) can be presented using kn− k2/2 + o(kn) bits to support access
and successor queries in constant time (proof in the long version of the paper).

4.1 Representing the Tree Decomposition

Assume for a given graph G = (V,E), a tree decomposition τ of width k is given
in standard form. We assign types to all vertices in a top-down manner: for the
vertices in the root, fix an arbitrary ordering 1 .. k+1 and give a vertex type i
iff it has index i in this ordering. For a vertex v introduced in a bag X , define
type(x) = j, where j is the type of the vertex in the parent of X which has been
replaced by v. Note that the only information associated with each bag is the
type of the vertex it introduces. So we can present the tree decomposition τ as
an ordered tree with a single label, not larger than k+1, on each bag. We assume

Compact Navigation and Distance Oracles for Graphs with Small Treewidth 273

(a) (b)

Fig. 2. A standard tree decomposition, an ordered labeled tree, and a multiple paren-
thesis are all equivalent

the root introduces k+1 vertices of different types, and to make representation
easier separate them in a path of bags, with labels 1 to k+1 (See Figure 2).

To represent τ efficiently, we use multiple parenthesis structure of Lemma
3. Assume a preorder traversal of τ ; we open a parenthesis of type i (i ≤ k)
whenever we enter a bag with label i, and close it when we leave the bag. The
result would be a balanced sequence of 2n parenthesis of k+1 types, and using
Lemma 3, this can be presented using (2 + ε)n lg k + o(n lg k) bits. We call this
sequence the MP sequence and represent every vertex in the graph by the index
of its opening parenthesis in this sequence.

To represent a graph of treewidth k, beside the tree decomposition, we need to
store which edges are indeed present in each bag. In fact, the tree decomposition
represents a (full) k-tree, which is the graph with maximal edges to respect the
tree decomposition. In a graph of treewidth k when a new vertex is introduced
in a bag X , it can be connected to any subset of k vertices present in X . These
vertices all have distinct types as they all appear in bag X . For each vertex v, let
lv be a bitmap of size k + 1, such that lv(j) denotes if there is an edge between
v and uj, where uj is the unique vertex of type j present in bag X . Observe
that uj is introduced in the closest ancestor of v which has type j. Let all lvs
form the columns of a table M , referred as ’big table’, where the vertices are
arranged in preorder. So M is a matrix of size (k + 1) × n and M [j, v] = lv(j)
(see Figure 3). Since two vertices of the same type cannot be connected, for any
vertex v we have M [type(v), v] = 0 (in the figure these entries are distinct by
’*’). Also the first k columns of M are associated with the vertices introduced
in the root and form a triangular submatrix. We apply Lemma 4 to store M in
kn−k2/2+o(kn) bits to support access and successor queries in constant time.

Assume we are given a vertex v (its index in the MP sequence), and we
need to access its column in the big table, i.e., the index of v in the preorder
walk. We use a map structure as follows: create a binary sequence S of size 2n
with one at position i if the i’th element is an open parenthesis (of any type)

274 A. Farzan and S. Kamali

Fig. 3. A big matrix associated with tree decomposition of Figure 2

and zero otherwise. We store this sequence using 2n+ o(n) bits to support rank
and select in constant time. Now rankS(v, 1) gives the index of v in the preorder
walk, and selectS(i, 1) retrieves the i’th vertex in the preorder walk. This enables
us to interchangeably represent a vertex by its position in the preorder (the big
matrix index) or its position in the MP sequence. Moreover, assume we are given
a range R in the MP sequence which may start or end with a close parenthesis,
and we need the preorder range which include the involved open parentheses. If
both endpoints of R are open parentheses, we simply map them into preorder
indices as discussed. If R starts (ends) with a closed parenthesis, we need to find
the next (previous) open parenthesis of any type. We can use S to find the index
of next (previous) open parenthesis as selectS(rankS(i, 1)± 1).

The MP sequence and the big table are sufficient for representing a graph of
treewidth k. The other data structures used in the rest of this section are indices
to support queries in constant time. Due to lack of space, we describe support
for neighborhood queries here and support for degree and adjacency queries are
presented in the long version of the paper.

4.2 Neighbor Report

We are given a vertex v, and asked to report its neighbors in constant time
per neighbor. We say a vertex u is a potential neighbors of v if there is a bag
that contains both vertices. The column representing v in the big table distinct
the actual neighbors of v among those potential neighbors which precede v in
preorder walk. To report these neighbors, we successively apply c successor on
the big table M to visit all ones in the column of v. Assume we haveM [j, v] = 1,
then we report the parenthesis of type j which encloses v using m enclose(v, j).
Note that these operations take constant time per neighbor.

Next, we show how report neighbors which come after v in the preorder walk.
Using the MP sequence, we can find the potential neighbors of v: we scan se-
quence from the position after v and report every vertex (open parenthesis) until
we observe the first open parenthesis of the same type as v. Let w be such paren-
thesis, we jump to the matching parenthesis of w using m findmatchMP (w) in
constant time, and continue this until we see the close parenthesis matching v.
Therefore, in the tree decomposition, we skip the subtrees in which v has been
overwritten by w.

The potential neighbors of each vertex form segments of consequent vertices in
the preorder walk. A segment of type i is a range of elements in the MP sequence
bordered by two parenthesis of type i. The bordering parenthesis can be open or
closed, and their segment can be empty if they are adjacent in the MP sequence

Compact Navigation and Distance Oracles for Graphs with Small Treewidth 275

(a) The MP sequence in which the segments of type 1 are highlighted. The
circles show those associated to vertex A

(b) The contracted parenthesis of type 1 (C1)

Fig. 4. The ignore sequence for vertex A (IgA) is 100100. To find the 4th segment
associated to A in the MP sequence, we find the 3rd child of A in Ci (the starred vertex
in (b)), its matching parenthesis and the one after (arrowed ones) are the boundaries
in the contracted sequence, which can be mapped to the MP sequence.

(Figure 4(a)). Note that any segment is associated to exactly one vertex, which
is a vertex of the same type which encloses it. To report actual neighbors in a
given segment associated to vertex v, we successively apply r successorM on the
row of the same type of v in the big table to find all ones in the range of the
segment. So, we can report the neighbors inside a segment in constant time per
neighbor. We also need to address how to select the appropriate segments. We
say the segment is good if it includes at least one actual neighbor of v, and it is
bad otherwise. Note that there may be a non-constant number of bad segments
associated to a vertex, and we cannot probe all of them. For each vertex v, we
define a bitmap Igv where Igv(i) determines whether the ith segment associated
to v is good (’1’) or bad (’0’). We store an ignore sequence IG as follows: read
vertices in preorder, for each vertex v write down a ’2’ followed by the sequence
Igv. The result would be a sequence of size 3n−k on alphabet {0, 1, 2}, which can
be stored using O(n) bits to support select in constant time [13]. To see why the
size of IG is 3n−k−1, note that there 2ni− 1 segments of type i where ni is the
number of vertices with type i, so there are totally 2n− (k+1) segments. Since
each segment is associated to exactly one vertex, the size of IG is 2n−(k+1)+n.
Note that Igv is the subsequent between selectIG(i, 2)+1 and selectIG(i+ 1, 2),
in which i is the index of v in preorder walk.

Using the ignore sequence, we can distinguish the index of good segments
among all segments associated to a vertex v. Next, we need to locate these
segments in the MP Sequence and use the map structure to locate the range of
the segment in the big table. For each type i, we store a contracted parenthesis
of type i, denoted by Ci, as a copy of the MP sequence in which all parenthesis
except those of type i are deleted. The result would be a balanced parenthesis
sequence, equivalently an ordered tree, for each type. The total size of these trees
is equal to n and we need 2n+ o(n) bits to represent them. Assume we need to
locate the t’th segment of vertex v in the MP sequence, and let i be the type of v.
If t=1, the desired segment starts with the parenthesis representing v and ends
with the next parenthesis of the same type, which can be found in constant time.

276 A. Farzan and S. Kamali

If t>1, we locate the segment in the contracted parenthesis sequence and then
map it into the MP sequence. First we locate v in the contracted parenthesis,
using vc = selectCi(x,′(′) where x is the rank of v among vertices of the same
type, i.e., x = rankMP (v,′(i

′). Observe the t’th segment of v starts after the
close parenthesis matching the open parenthesis representing t’th child of v in
the contracted parenthesis (Figure 4(b)). So we apply α = childCi(vc, t) and
β = findmatchCi(α) to find β, β+1 as the two neighboring parenthesis of type
i which bound segment t in the contracted parenthesis. Using rank and select,
respectively on Ci and MP we can locate these parenthesis in the MP sequence.

To summarize, to report neighbors of vertex v which succeed v in the preorder
walk, we use the ignore sequence to find the indices of good segments among
all segments associated to v. We use contracted parenthesis to find the actual
position of the good segments in the MP sequence, and use map structure to
find the range of the segments in the big table. Using r successor operation in
the big table we can report neighbors in constant time per neighbor.

The additional space used for supporting neighbor report are ignore sequence
and contracted parenthesis, which are both stored in O(n) bits. The index used
for degree request needs n lg k + o(nk) bits, and there is no additional index
for adjacency queries (details are presented in the long version of the paper).
Together with the main structures (the MP sequence and the big table), the size
of the oracle would be k(n+ o(n)− k/2) +O(n).

Theorem 2. Given a graph of size n and treewidth k, an oracle is constructed
to answer degree, adjacency, and neighborhood queries in constant time. The
storage requirement of the oracle is optimal to within lower order terms.

5 Distance Oracles

To give a distance oracle, we obtain the height-restricted tree decomposition T
of the input graph G of treewidth k using Lemma 1. Let k′ denote the maximum
number of vertices in each node of T . Since treewidth of T is at most 3k + 2,
we have k′ ≤ 3k + 3. We define the weight of a node as the number of vertices
introduced in that node. Correspondingly, we define the weight of a subtree as
the sum of the weights of nodes in the subtree. There are two recursive decompo-
sitions of G into smaller subgraphs using its height-restricted tree decomposition
T using the following lemma (proof in the long version of the paper):

Lemma 5. For any parameter 1 ≤ L ≤ n, a tree with n nodes such that the
weight of nodes is at most k′ can be decomposed into Θ (n/L) subtrees of weight
at most 2L+ k′ which are pairwise disjoint form their roots. Furthermore, aside
from edges stemming from the component root nodes, there is at most one edge
leaving a node of a component to its child in another component.

In the first phase, tree T is decomposed into smaller subtrees T1, T2, . . . using
Lemma 5 with value L = k′ lg3(n) (the first phase is skipped if L ≥ n). Let Vi

be the set of graph vertices that occur in a node in subtree Ti. We define Gi as
the subgraph of G induced on Vi.

Compact Navigation and Distance Oracles for Graphs with Small Treewidth 277

Fig. 5. Distance oracle: computing the distance between x and y

Lemma 5 guarantees that there are at most two nodes of each subtree Ti that
are connected via a tree edge to other subtrees; we refer to these tree nodes as
portal nodes. These nodes collectively contain 2k′ graph vertices. We refer to
these vertices as the portal vertices of Gi, and denote this set of vertices by Pi.

To reduce the distance oracle to within Gi’s, we explicitly store the dis-
tance from each portal vertices to all vertices in an ancestor node of the cor-
responding portal nodes. Namely, for each vertex v ∈ Pi in a portal tree node
t and vertex u in a node an ancestor of t, we explicitly store the distance be-
tween v and u. Since the height of the tree is O (logn), there are O (k′ logn)
such vertices as u. The storage requirement of this list in number of bits is
O
(

n
k′ lg3 n

k′ (k′ log(n)) log(n)
)

= o(kn).
We also take the projection of tree T on portal nodes by adding an edge

between two portal nodes if and only if the path in T between them does not
contain another portal node. The projected tree is a tree on O

(
n/(k′ log3(n))

)
nodes. We preprocess and store the tree (in O

(
n/(k′ log3(n))

)
bits) to be able

to answer lowest common ancestor queries in constant time [15].
If we can internally in any Gi determine the distance between any two vertices

s, t ∈ Gi, then using the explicitly stored distances for portal vertices, we can de-
termine the distances globally between any two vertices in G. Given two vertices
x, y, we determine the subgraphs Gx, Gy they belong in. We use a rank/select
structure to accomplish this task in constant time and o(n) storage. We compute
the distances from x to the portal vertices px

1 , . . . , p
x
2k′ in Gx and analogously the

distances from y to the portal vertices py
1 , . . . , p

y
2k′ of Gy (see Figure 5). Let Tx

and Ty be the subtrees corresponding to Gx, Gy . We determine in constant time
the lowest common ancestor L of the roots of Tx and Ty. Portal vertices have
their distances to vertices introduced in their ancestors explicitly stored. There-
fore, px

1 , . . . , p
x
2k′ and also py

1 , . . . , p
y
2k′ have their distances to vertices l1, . . . , lk′

in the bag of node L stored. Without loss of generality, we assume the harder
case where roots of Tx, Ty are not an ancestor of each other, the details of the
other case is deferred to the full version of this paper.

We repeat the previous step for each Gi by applying Lemma 1 to obtain
a height-restricted tree decomposition and using Lemma 5 with value L =
k′ lg2(k′)(lg lg(n))3 to obtain smaller subgraphs G′

i. Additionally, we store the
distance between each second-level portal vertex and all first-level portal vertices
contained in the same subgraph Gi. This structure allows us to reduce the prob-
lem to within second-level subgraphs G′

i, without paying a factor of k′ for the

278 A. Farzan and S. Kamali

query time. The space requirement of this structure can be analyzed similarly to
o(kn). We repeat the step for a final time using value L = k′ lg2(k′)(lg lg lg(n))3

to obtain tiny subgraphs G′′
i . Hence, the problem reduces to computing the dis-

tances of a vertex to third-level portal vertices confined to an individual third-
level graph G′′

i . As G′′
i ’s are subgraphs of the original graph, their treewidth is at

most k. The corresponding tree decomposition for these graphs can be obtained
trivially by projecting from the tree decomposition of the original graph. Hence,
treewidths of G′′

i ’s are k and not k′ any further.
We distinguish two cases according to the value of k. For smaller values of k

where lg k ≤ (lg lg lgn)3, the size of third-level subgraphs G′′
i is very small, there-

fore, we use a look-up table to catalog all graphs with p vertices and treewidth
k − 1 such that p < lg(n)/(2k). We exhaustively list answers to all distance
queries together with each graph. The representation of Section 4 bounds the
number of such graphs and consequently the size of the table is o(n). A third-
level graph G′′

i = (V ′′
i , E

′′
i) is represented by an index to within the look-up

table and therefore, the space requirement of each G′′
i matches the entropy of

graphs with |V ′′
i | vertices and treewidth G′′

i (we note that every subgraph of a
graph with treewidth k has treewidth at most k). Since

∑
i |V ′′

i | = n + o(n),
the distance oracle requires space which matches the entropy of graphs with
treewidth k to within lower order terms. Distances in G′′

i are read in constant
time from the table and there is an additive overhead of O(k2) for each level of
recursion. Thus, the total distance query time is O

(
k2
)
. Therefore, the distance

query performs in constant time when k is constant.
For larger values of k, where lg k > (lg lg lg n)3, we simply store third-level

graphs G′′
i = (V ′′

i , E
′′
i) using the navigation oracle representation of Section 4

to store each G′′
i in k(|V ′′

i | + o(|V ′′
i |) − k/2) + O(|V ′′

i |) bits. Since
∑

i |V ′′
i | =

n+ o(n), the total storage requirement for distance oracle in this case is k(n+
o(n) − k/2) + O(n). In order to determine the distance of a vertex in G′′

i to
the third-level portals of G′′

i , we simply perform a breadth first search (BFS).
The time of performing a BFS is O

(
k2 lg2(k)(lg lg lg(n))3

)
which in this case is

O
(
k2 log3(k)

)
. This dominates the overhead of O

(
k2
)

from recursion, and hence
distance queries perform in O

(
k2 log3(k)

)
time.

Theorem 3. Given an unlabeled, undirected, and unweighted graph with n ver-
tices and of treewidth k, an exact distance oracle is constructed to answer dis-
tance queries in time O

(
k2 log3 k

)
. The storage requirement of the oracle is

optimal to within lower order terms.

6 Conclusion

We considered the problem of preprocessing a graph small treewidth to construct
space-efficient oracles that answers a variety of queries efficiently. We gave a nav-
igation oracle that answers navigation queries of adjacency, neighborhood, and
degree queries in constant time. We also proposed a distance query which reports
the distances of any pair of vertices in O

(
k2 log3 k

)
where k is the (determined)

Compact Navigation and Distance Oracles for Graphs with Small Treewidth 279

treewidth. By way of an enumerative result, we showed the space requirements
of the oracles are optimal to within lower order terms.

Acknowledgement

We are thankful to Magnus Wahlstrom for helpful discussions.

References

1. Barbay, J., Aleardi, L.C., He, M., Ian Munro, J.: Succinct representation of la-
beled graphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 316–328.
Springer, Heidelberg (2007)

2. Blandford, D.K., Blelloch, G.E., Kash, I.A.: Compact representations of separable
graphs. In: Proceedings of 14th ACM-SIAM Symposium on Discrete Algorithms,
SODA 2003, pp. 679–688 (2003)

3. Blelloch, G.E., Farzan, A.: Succinct representations of separable graphs. In: Amir,
A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 138–150. Springer, Heidelberg
(2010)

4. Bodlaender, H.L.: NC-algorithms for graphs with small treewidth. In: van Leeuwen,
J. (ed.) WG 1988. LNCS, vol. 344, pp. 1–10. Springer, Heidelberg (1989)

5. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11, 1–23
(1993)

6. Bodlaender, H.L.: Treewidth: Characterizations, applications, and computations.
In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 1–14. Springer, Heidelberg
(2006)

7. Chan, T.M.: All-pairs shortest paths for unweighted undirected graphs in o(mn)
time. In: Proc. 17th ACM-SIAM Symposium on Discrete Algorithm, SODA 2006,
pp. 514–523 (2006)

8. Dujmovic, V., Wood, D.R.: Graph treewidth and geometric thickness parameters.
Discrete Comput. Geom. 37, 641–670 (2007)

9. Farzan, A.: Succinct Representation of Trees and Graphs. PhD thesis, School of
Computer Science, University of Waterloo (2009)

10. Farzan, A., Ian Munro, J.: Succinct representations of arbitrary graphs. In:
Halperin, D., Mehlhorn, K. (eds.) Esa 2008. LNCS, vol. 5193, pp. 393–404.
Springer, Heidelberg (2008)

11. Gavoille, C., Hanusse, N.: On Compact Encoding of Pagenumber k Graphs. Dis-
crete Mathematics & Theoretical Computer Science 10(3), 23–34 (2008)

12. Gavoille, C., Labourel, A.: Shorter implicit representation for planar graphs and
bounded treewidth graphs. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007.
LNCS, vol. 4698, pp. 582–593. Springer, Heidelberg (2007)

13. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: Proc. 14th ACM-SIAM Symposium on Discrete Algorithms, SODA 2003, pp.
841–850 (2003)

14. Harary, F., Robinson, R.W., Schwenk, A.J.: Twenty-step algorithm for determin-
ing the asymptotic number of trees of various species: Corrigenda. Journal of the
Australian Mathematical Society 41(A), 325 (1986)

280 A. Farzan and S. Kamali

15. He, M., Ian Munro, J., Srinivasa Rao, S.: Succinct Ordinal Trees Based on Tree
Covering. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007.
LNCS, vol. 4596, pp. 509–520. Springer, Heidelberg (2007)

16. Nitto, I., Venturini, R.: On compact representations of all-pairs-shortest-path-
distance matrices. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS,
vol. 5029, pp. 166–177. Springer, Heidelberg (2008)

17. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with appli-
cations to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algo-
rithms 3(4), 43 (2007)

Player-Centric Byzantine Agreement

Martin Hirt1 and Vassilis Zikas2,�

1 Department of Computer Science, ETH Zurich
hirt@inf.ethz.ch

2 University of Maryland, USA
vzikas@cs.umd.edu

Abstract. Most of the existing feasibility results on Byzantine Agreement (BA)
are of an all-or-nothing fashion: in Broadcast they address the question whether
or not there exists a protocol which allows any player to broadcast his input.
Similarly, in Consensus the question is whether or not consensus can be reached
which respects pre-agreement on the inputs of all correct players. In this work,
we introduce the natural notion of player-centric BA which is a class of BA prim-
itives, denoted as PCBA = {PCBA(C)}C⊆P , parametrized by subsets C of the
player set. For each primitive PCBA(C) ∈ PCBA the validity is defined on the
input(s) of the players in C. Broadcast (with sender p) and Consensus are special
(extreme) cases of PCBA primitives for C = {p} and C = P , respectively.

We study feasibility of PCBA in the presence of a general (aka non-threshold)
mixed (active/passive) adversary, and give a complete characterization for per-
fect, statistical, and computational security. Our results expose an asymmetry of
Broadcast which has, so far, been neglected in the literature: there exist non-trivial
adversaries which can be tolerated for Broadcast with sender some pi ∈ P but
not for some other pj ∈ P being the sender. Finally, we extend the definition
of PCBA by adding fail corruption to the adversary’s capabilities, and give ex-
act feasibility bounds for computationally secure PCBA(P) (aka Consensus) in
this setting. This answers an open problem from ASIACRYPT 2008 concerning
feasibility of computationally secure multi-party computation in this model.

1 Introduction

Byzantine agreement (BA) is one of the most studied problem in the areas of dis-
tributed protocols and multi-party computation. The problem was introduced by Lam-
port, Shostak, and Pease [26], where first solutions were also suggested. The high-level
goal is to have n players agree on an output-value, where some (dishonest) players
might try to prevent the others from reaching agreement. The potential dishonesty of
players is modeled by considering a central adversary who corrupts players. The three
most typical corruption types are active corruption (the adversary takes full control over
the player), passive corruption (the adversary sees the player’s internal state), and fail
corruption (the adversary can make the player crash at some point during the protocol).

BA comes in two flavors, namely Consensus and Broadcast. In Consensus, every
player has an input and it is required that they all agree on an output-value y (consis-
tency), where if all correct players have the same input x then the output is y = x

� Work done while the author was at ETH Zurich.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 281–292, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

282 M. Hirt and V. Zikas

(validity). In Broadcast, only one player, called the sender, has input, and the require-
ments are that all players should agree on an output-value y (consistency), such that if
the sender correctly follows the protocol then y equals his input (validity)1.

A protocol is said to perfectly A-securely realize Consensus or Broadcast, if it
achieves the above properties with probability 1, in the presence of a computation-
ally unbounded adversary A. If a protocol satisfies the above properties, except with
negligible probability, in the presence of a computationally bounded (resp. unbounded)
adversary, then we say this protocol computationally (resp. statistically) A-securely re-
alizes the corresponding primitive.

Known results. The first results on BA considered a threshold adversary who ac-
tively corrupts up to t players. In particular, in [27,26] it was shown that when no
setup is assumed, Consensus and Broadcast are possible if and only if less than a third
of the players are malicious (i.e., t < n/3). This model has been extensively stud-
ied [10,29,12,8,9,2,17] and protocols with optimal resiliency and complexity (commu-
nication and computation) polynomial in the number of players were suggested. Later
solutions [11,4,28,6] considered a setting where a setup allowing digital signatures is
available, and showed that Broadcast tolerating an arbitrary number of cheaters (t < n)
is possible, whereas Consensus is possible if and only if t < n/2; for both primi-
tives corresponding protocols with optimal resiliency and complexity polynomial in the
number of players were suggested2. Lamport and Fischer [25] considered an adversary
who can fail corrupt up to t players, and showed that any n − 1 players being fail cor-
rupted can be tolerated for Broadcast. The above results were unified in [18] where it
was shown that if at most ta players are actively corrupted and, simultaneously, at most
tf are fail corrupted, and no setup is assumed, then 3ta + tf < n is a tight bound on
feasibility of BA. In [23], it was observed that when a setup is assumed then the ex-
isting protocols for Broadcast and Consensus do not work for an adversary who can
actively and, simultaneously, passively corrupt players. The reason is that in such a
model the signatures of passively corrupted players are not reliable, as the adversary
knows the signing keys and can trivially fake them. In [21] it is shown that given a
Public-Key Infrastructure (PKI), an adversary who can actively corrupt up to ta play-
ers and passively corrupt up to tp players can be tolerated for Consensus if and only if
2ta + min{ta, tp} < n.

Our Contributions. We put forward a player-centric approach to BA by introducing
the class PCBA = {PCBA(C)}C⊆P parametrized by subsets C of the player set P . Each
primitive PCBA(C) ∈ PCBA has the same consistency property as traditional BA but
the validity property is defined with respect to the specific set C. In fact, Broadcast (with
sender p) and Consensus are special cases of PCBA primitives for C = {p} and C = P ,
respectively.

We prove general negative and positive results translating feasibility statements for
different PCBA primitives (i.e., for PCBA(C) with different choices of C), in the pres-

1 We point out that some works use the word “persistency” to refer to the validity property of
Consensus; furthermore, in some works the term Byzantine agreement refers exclusively to
Consensus.

2 In fact feasibility of Broadcast for t < n when a setup is available was also proved in [26], but
the suggested protocol has exponential communication complexity.

Player-Centric Byzantine Agreement 283

ence of a mixed active/passive adversary. In particular, we show under which conditions
we can construct PCBA(C) if we assume PCBA(C′) for C′ �= C. This characterization
allows to translate feasibility results for PCBA(C) for specific choices of C to results
about the traditional notions of BA (i.e., Broadcast and Consensus) and vice-versa. Fur-
thermore, we provide exact feasibility bounds for PCBA, for an arbitrary choice of C,
tolerating a general adversary who might actively and passively corrupt players, simul-
taneously. Our results are for perfect security and, assuming a setup which allows for
generation and verification of digital signatures, for statistical and computational secu-
rity. Our characterization specifies the set of players who can securely broadcast their
input. In fact, as we show, there are non-trivial adversary structures for which this set is
neither empty nor the complete player set P . To the best of our knowledge, this is the
first work to explore this asymmetry of Broadcast. Note that in this model, with the ex-
ception of perfect security, exact bounds are not even known for traditional BA. All our
protocols are efficient in the size of the player set and the representation of the inputs.
Furthermore, unless some signature is forged, our protocols achieve perfect security.

As an extension of our results, we show how to define PCBA in a setting where the
adversary can actively, passively, and fail corrupt players, simultaneously. For this set-
ting, we give an exact feasibility bound for computationally secure PCBA(P) (aka Con-
sensus), assuming a PKI. This result answers an open problem from ASIACRYPT 2008
that concerns feasibility of computationally secure multi-party computation (MPC) and
secure function evaluation (SFE) in this model. In particular, in [23], a complete char-
acterization of computationally secure MPC and SFE assuming Broadcast was proved.
Because an exact bound for Consensus is trivially necessary for SFE (hence, also for
MPC) and sufficient for Broadcast, our result fills the gap left open in that work.

Related Work. BA in the general adversary model was considered in [16,1], where
exact feasibility bounds for an adversary who can actively corrupt and/or fail corrupt
players were proved. However, these works consider the model without a setup and their
impossibility results are only for Consensus. We point out that, in that model, adding
passive corruption makes no difference for Consensus [5]. Feasibility of BA with active
and passive corruption (and a trusted PKI) was previously studied in [21] for Consen-
sus, and in [20] for Consensus and Broadcast. In both works, a threshold adversary
is considered; the corresponding bound for Consensus is 2ta + min{ta, tp} < n. In
such a threshold world, constructing BA protocols for the corresponding bound turns
out to be less involved than in the general-adversary setting, as one can consider the
cases ta ≤ tp and ta > tp separately, and construct one protocol for each. Finally, the
intermediate ground between Broadcast and Consensus was partially explored in [13],
where a variant of Consensus was considered with the property that if more than n/2
honest parties have the same input-value then the output is this value.

2 The Model

We consider a setP = {p1, . . . , pn} of n players who can communicate with each other
through a complete network of bilateral synchronous authenticated channels. Further-
more, we consider a general active/passive adversary, i.e., the adversary’s corruption
capability is characterized by an adversary structure which is a monotone set of pairs of

284 M. Hirt and V. Zikas

player sets, i.e., Z = {(A1, E1), . . ., (Am, Em)} (for somem). The adversary chooses
a class in Z non-adaptively i.e., before the beginning of the protocol; this class is de-
noted as Z� = (A�, E�) and is called the actual adversary class or simply the actual
adversary. The players in A� and E� are actively and passively corrupted, respectively.
Note that Z� is not known to the players and appears only in the security analysis.
For notational simplicity we assume that A ⊆ E for any (A,E) ∈ Z (intuitively, an
actively corrupted player can behave as being passively corrupted). To simplify the de-
scription, we adopt the following convention: Whenever a player does not receive a
message (when expecting one), or receives a message outside of the expected range,
then the special symbol ⊥ is taken for this message. Moreover, we say that a player
is correct at a certain point of the protocol if he has followed the protocol instructions
correctly up to that point.

Digital Signatures. For computational and statistical security, we assume a trusted
setup which allows the players to generate and verify digital signatures, e.g., a PKI, with
the respective security. We make the standard assumption on the security of the used
signature-scheme, namely existential unforgeability under chosen-message attacks. In
slight abuse of notation, we refer to signatures that unconditionally satisfy this defini-
tion, except with negligible probability, as information theoretically (i.t.), or statistically
secure. Note the no construction of such i.t. secure signatures is known. Nevertheless,
for our construction i.t. pseudo-signatures of the type used in [28] would also be suf-
ficient. We denote by sigi(x) the signature of player pi (i.e., generated using pi’s pri-
vate key) to message x. We say that some value σi is a valid signature with signer pi

(or simply pi’s valid signature) on a message x, if the signature-verification algorithm
(given pi’s public key) accepts this signature as valid for the message x. Without loss of
generality, we assume that every signature includes a unique signer ID, round ID, and
message ID so that it can be linked to the signer and the specific round of the protocol
in which it was generated.

Passive Corruption and Forgery. Passive corruption allows the adversary to see the
internal state of the corrupted players. This includes the private (signing) keys of these
players. Hence, for a passively corrupted player pi, the adversary can trivially produce
signatures with signer pi on any message of her choice. Therefore, we will only use the
term “forgery” for signatures of players who are not passively (or actively) corrupted.

3 Definition and Reductions

Consensus and Broadcast differ in their respective validity property. In particular,
Broadcast defines validity with respect to the input of one specific player, the sender,
whereas Consensus considers the inputs of every player in P . A natural question which
arises is: “why should one restrict the definition of BA primitives to these two extreme
cases?” In fact, one can find real world scenarios where agreement on the inputs of a
subset of parties is desirable, e.g., a network where a dedicated set of master-routers
needs to agree on the status of certain links, in order to compute routing-paths. Further-
more, considering such intermediate cases might lead to more efficient protocols for BA
and, more general, secure distributed computation in cases where only a subset of the

Player-Centric Byzantine Agreement 285

parties need to provide input. This leads naturally to the definition of a new class of BA
primitives, called player-centric BA and denoted as PCBA = {PCBA(C)}C⊆P , which
is parametrized by non-empty subsets C of the player set P . All the members of the
class PCBA have the same consistency property as in the original definitions of BA, but
the validity property of each PCBA(C) ∈ PCBA is defined on the inputs of the players
in C. More precisely, in PCBA(C), every pi ∈ C has an input xi and the goal is that all
players in P agree on an output-value y, such that if every non-actively corrupted player
in C has input x, then y = x. More formally, we say that a protocol perfectly Z-securely
realizes PCBA(C) among the players in P , if it satisfies the following properties in the
presence of a Z-adversary:

– (Consistency) There exists some y such that every pj ∈ P \A� outputs y3.
– (C-Validity) If every pi ∈ C\A� has the same input xi = x, then every pj ∈ P \A�

outputs y = x.

If a protocol satisfies the above properties except with negligible probability in the pres-
ence of a computationally bounded (resp. unbounded) Z-adversary, then we say that
the protocol computationally (resp. statistically) Z-securely realizes PCBA(C). As in
most of the synchronous BA literature, all the protocols presented in this work trivially
satisfy the following termination property: For every pi ∈ P \ A� the protocol termi-
nates after a finite number of rounds; to save space we omit it in our security analysis.
We point out that the above definition requires that the inputs of all non-actively cor-
rupted players (even those that are passively corrupted) are considered. This is the most
natural way of defining PCBA in the mixed active/passive model and it is consistent
with the past literature on secure distributed computation tolerating a mixed adversary,
e.g. [14,22,24,5,23], as well as the literature tolerating passive corruption only (semi-
honest model), e.g., [30,19,7].

Remark 1 (Authenticated Channels). Consistently with the existing BA literature, our
definition of PCBA(C) requires that the inputs of all p ∈ C \ A� (even those that are
passively corrupted) are considered. To meet this requirement, authenticated channels
are necessary. Indeed, when such channels are not given and are simulated, e.g., by dig-
ital signatures or MACs, then this requirement can trivially be violated. For a detailed
discussion on secure computation without authentication we refer to [3].

Note that Broadcast (with sender p) and Consensus are special cases of PCBA for
C = {p} and C = P , respectively. However, most past results on feasibility of Broad-
cast, including the ones considering a general adversary [22,1], are concerned with
whether or not there exists a protocol which achieve PCBA({p}) for every p ∈ P . In
the remaining of this section we prove results which allow us to translate statements
about feasibility of PCBA(C) for different choices of C ⊆ P . All results in the current
section hold for all three security levels, i.e., perfect, statistical, and computational; fur-
thermore, all the negative results hold even when a trusted key-setup allowing digital
signatures is assumed. The proofs have been moved to the full version of this paper.

An Inherent Impossibility. As with Consensus, the definition of PCBA(C) only
makes sense if there are no two actively corruptible sets that cover the set C. More
precisely, for a player set C ⊆ P , let C(2)

a (P ,Z, C) denote the following condition:

3 Recall that A� denotes the set of actively corrupted players.

286 M. Hirt and V. Zikas

C(2)
a (P ,Z, C)⇔ ∀(A1, E1), (A2, E2) ∈ Z : A1 ∪A2 �= C

One can verify that when C(2)
a (P ,Z, C) does not hold, then no protocol can achieve

PCBA(C), as the parties would have to be able to distinguish the setting where the
players in A1 are corrupted from the setting where the players in A2 are corrupted
(even when the corrupted players behave correctly).

The following lemma states that if for a non-empty set C a Z-secure protocol for
PCBA(C) exists and the adversary cannot actively corrupt every pi ∈ C simultaneously,
then Broadcast with sender any player pi ∈ P (i.e., any player in the complete player
set) is possible.

Lemma 1 (Broadcast from PCBA(C)). If for some (non-empty) set C ⊆ P there ex-
ists a protocol for Z-securely realizing PCBA(C) and the condition ∀(A,E) ∈ Z :
C �⊆ A holds, then for every p ∈ P there exists a protocol which Z-securely realizes
PCBA({p}) (i.e., Broadcast with sender p).

The above lemma can be generalized to compare arbitrary subsets of P with respect to
feasibility of PCBA as follows:

Lemma 2 (PCBA(C′) from PCBA(C)). If for a (non-empty) set C ⊆ P , there exists a
protocol for Z-securely realizing PCBA(C) and the condition ∀(A,E) ∈ Z : C �⊆ A
holds, then for every (non-empty) set C′ ⊆ P , for which the condition

(
(|C′| = 1) ∨

C(2)
a (P ,Z, C′)) holds, there exists a protocol which Z-securely realizes PCBA(C′).

Corollary 1. Assuming that for some (non-empty) set C ⊆ P the condition
C(2)

a (P ,Z, C) holds, there exists a protocol for Z-securely realizing PCBA(C) if and
only if for every (non-empty) C′ ⊆ C for which C(2)

a (P ,Z, C′) holds there exists a pro-
tocol which Z-secure realizes PCBA(C′).

4 Perfect Security

In this section we study the case of perfect security and prove an exact bound for player-
centric BA tolerating a general active/passive adversary. The bound is stated in the
following theorem:

Theorem 1. Assuming |P| ≥ 34, there exists a perfectly Z-secure PCBA(C) pro-
tocol for some C ⊆ P if and only if the condition Cperf

PCBA(P ,Z, C) holds,
where Cperf

PCBA(P ,Z, C) ⇐⇒ C(3)
a (P ,Z, C) ∧ (|C| = 1 ∨ C(2)

a (P ,Z, C)), and
C(3)

a (P ,Z, C)⇐⇒ ∀(A1, E1), (A2, E2), (A3, E3) ∈ Z : A1 ∪A2 ∪A3 �= P .
The sufficiency of the above condition is straight-forward: In [15] a Consensus (i.e.,
PCBA(P)) protocol was given which is Z-secure when C(3)

a (P ,Z, ·) holds. Because
the condition C(3)

a (P ,Z, ·) implies C(2)
a (P ,Z,P), if |C| = 1 then the sufficiency fol-

lows from Lemma 1 (feasibility of broadcast with sender the player p ∈ C), other-
wise Lemma 2 implies that there exist a PCBA(C) protocol for every C for which
C(2)

a (P ,Z, C) holds. The necessity of the condition Cperf
PCBA(P ,Z, C) for PCBA(C) is

proved in the full version of this paper.
4 The case |P| < 3 is of no interest, as PCBA(C) is either impossible (which happens when
|C| = 2 and C(2)

a (P ,Z, C) is violated) or trivial.

Player-Centric Byzantine Agreement 287

5 Statistical and Computational Security (With Setup)

In this section we consider Z-secure player-centric Byzantine Agreement in a setting
where a setup allowing secure signatures. e.g., a Public-Key Infrastructure (PKI), is
assumed. We point out that, unless some signature is forged, all the protocols in this
section are perfectly secure. Therefore, our constructed protocols are as secure as the
underlying signature scheme. The following theorem, states an exact bound for feasibil-
ity of PCBA(C) for an arbitrary set C ⊆ P , tolerating a Z-adversary who can actively
and passively corrupt players.

Theorem 2. Assuming that |P| ≥ 3 and a setup which allows for genera-
tion/verification of computationally (resp. statistically) secure digital signatures is
given, there exists a protocol which computationally (resp. statistically) Z-secure re-
alizes PCBA(C) for a non-empty set C ⊆ P if and only if the condition Cc/s

PCBA(P ,Z, C)
holds, where Cc/s

PCBA(P ,Z, C)⇔ C(5)
PCBA(P ,Z, C) ∧ ((|C| = 1) ∨ C(2)

a (P ,Z, C)), and

C(5)
PCBA(P ,Z, C)⇐⇒

{∀(A1, E1), (A2, E2), (A3, E3) ∈ Z :
A1 ∪A2 ∪

(
E1 ∩E2 ∩A3

)
= P ⇒ (E1 ∩ E2 ∩A3) ∩ C = ∅

The necessity of the condition is proved in the full version. In the remaining of this
section, we prove the sufficiency of Cc/s

PCBA(P ,Z, C) for the existence of Z-secure
PCBA(C). The proof proceeds in two steps: In a first step (Sub-section 5.1), we con-
struct a PCBA({p}) protocol which is Z-secure when the condition C(5)

PCBA(P ,Z, {p})
is satisfied. In a second step (Sub-section 5.2), we use this protocol to construct a pro-
tocol for PCBA(C) which is Z-secure when Cc/s

PCBA(P ,Z, C) is satisfied.

5.1 PCBA({p}) (Broadcast with Sender p)

For simplicity we construct a bit-broadcast protocol; using standard techniques, one
can extend it to broadcast any message. The high-level idea is the following: first, in a
distribution phase, the sender p sends his input and his signature on it to every player;
in a second phase, all the players run a protocol to establish a consistent view on the
sender’s value. Although this sounds similar to the standard approach for construct-
ing a Broadcast protocol [8,1] (i.e., first have p multi-send his input and then invoke
Consensus), our second phase cannot be realized by a Consensus protocol as the con-
dition C(5)

PCBA(P ,Z, {p}) is weaker than Cc/s
PCBA(P ,Z,P) which is necessary for Con-

sensus. Nevertheless, to realize the second phase we use an approach which is inspired
by the methodology of [8] for achieving Consensus. More precisely, we build sub-
protocols which achieve gradually stronger consistency properties, and compose them
in a clever way to construct the Broadcast protocol. We denote these sub-protocols as
MakeConsistent,GradeConsistency, and UseKing.

Because our protocols cannot achieve Consensus, the message which is distributed
by the sender in the first phase plays a central role in the construction. In particular, in
each sub-protocol, the players have input this message along with the sender’s signature.
To deal with a sender who never sends his signature to any player, we use the following
technical trick: Each pi ∈ P keeps a local bit (throughout the whole protocol) αi which
indicates whether or not, according to pi’s view, the sender p is actively corrupted.

288 M. Hirt and V. Zikas

Initially αi = 0. If pi detects that the sender is misbehaving then he sets αi := 1. When
some pi has set αi = 1 then pi will accept any value as p’s correct signature on any
bit (without invoking the signature verification algorithm). This trick makes sure that,
when no player receives a signature from p then every pi sets αi := 1 and hence any
value is acceptable as p’s signature on any bit. As syntactic sugar we say that some
value σ is a (p, pi)-acceptable signature on x if pi ∈ P accepts σ as p’s signature on
x (i.e, σ is valid or αi = 1); for a player set C we say that σ is a (p, C)-acceptable
signature on x if for every pi ∈ C the value σ is a (p, pi)-acceptable signature on x5.

Remark 2 (The use of signatures). The player use signatures for detecting and exposing
passive corruption. In particular, often in our sub-protocols a player pi is instructed to
send a message m to some pj along with his signature sigi(m) on it, so that pj has
a proof that he indeed got this message from this sender in the corresponding round6.
However, if pi is passively corrupted, the adversary might introduce into the protocol
arbitrary signatures with signer pi. To cope with this behavior, we have pj forward pi’s
signature sigi(m) to every player as soon as he receives it. This way, if some party
presents to pj a (fake) signature with sender pi and the same ID’s (round and message
ID) as sigi(m), then pj can prove to every player that pi ∈ E�.

In the following we sketch the sub-protocols MakeConsistent,GradeConsistency, and
UseKing, and specify the achieved security properties. Due to space limitation, many of
the protocols along with their security analysis have been removed, and will be included
in the full version of this paper. We stress that the security properties are guaranteed
only when at the beginning of the protocol the following two conditions hold: (1) Every
pi ∈ P \ A� holds as input a pair (xi, σi) such that σi is a (p,P)-acceptable signature
on xi with round ID corresponding to the distribution phase, and (2) when p ∈ P \A�

then for some x and for every pi ∈ P \A�: xi = x and αi = 0. To keep the description
short, we introduce the following notation: We say that the input state is (p, x)-well-
formed if it satisfies the above two conditions. The invariant in all sub-protocols is that
if the input state is (p, x)-well-formed then the output state is also (p, x)-well-formed.

Distribution Phase. Before describing the three sub-protocols, we describe the proto-
col Send (see next page) used in the distribution phase for p to send his input along with
his signature. The protocol achieves a (p, x)-well-formed state, where x is p’s input.

Protocol Send(P, Z, p, x)
1. p sends x along with his signature on it to every pj who denotes the received

value as xj and the corresponding signature as σj ; if pj does not receive a mes-
sage with a valid signature then he sets αj := 1.

2. Every pi ∈ P forwards (xi, σi) to every pj . If pj did not receive a consistent
pair (xj , σj) in Step 1 and receives one in Step 2 from some pi then he adopts it.
Otherwise pj sets (xj , σj) := (0,⊥).

5 Note that, for any pj �= p, only pj’s valid signature, i.e., the one matching pj’s public key, can
be (pj , pi)-acceptable.

6 Recall that every signature has a unique signer ID, message ID, and round ID.

Player-Centric Byzantine Agreement 289

Lemma 3. Assuming that no signature is forged, protocol Send(P ,Z, p, x) achieves a
(p, x)-well-formed state.

MakeConsistent. As the name suggests, protocol MakeConsistent ensures that there
are no inconsistencies among the outputs of non-actively corrupted players (however,
some of them might output a special symbol “n/v”, denoting that they have no output-
value)7. On a high level, the protocol works as follows: each pi sends his input along
with his signature on it to every party pj ; subsequently, every pj forwards all the re-
ceived values/signatures to every pk, who uses the received signatures to detect passive
corruption (see Remark 2). Each pk checks if his view is consistent with pre-agreement
on some value x; if this is the case, then he outputs x, otherwise he outputs “n/v”.

GradeConsistency. In GradeConsistency each pi ∈ P outputs a pair (yi, gi) (along
with a (p,P)-acceptable signature on yi), where yi is pi’s actual output-value and gi ∈
{0, 1} is a bit, called pi’s grade. The grade gi has the meaning of the confidence level
of pi on the fact that agreement on yi has been reached. In particular, if gi = 1 for some
pi ∈ P \ A� then (pi knows that) yj = yi for every pj ∈ P \ A�. Moreover, when
the non-actively corrupted players pre-agree on a value x, then they all output x with
grade 1. The protocol GradeConsistency is included in the full version.

UseKing. Here, there exists a distinguished player pk ∈ P , called the king. If pk ∈
P\A�, then every pj ∈ P outputs the same value yj = y along with a (p,P)-acceptable
signature on it (consistency). Furthermore, independent of whether or not the king is
correct, pre-agreement is preserved. The idea is simple: invoke GradeConsistency, and
have the king forward his output to every party pj , who adopts it when his grade (in
GradeConsistency) was gj = 0, and ignores it otherwise.

Broadcast. We next describe our PCBA({p}) (aka Broadcast) protocol: First, proto-
col Send is invoked. Subsequently, for k = 1, . . . , n, UseKing is invoked with king
pk ∈ P . The input to the first iteration of UseKing is the state which is output from
Send, whereas for k = 2, . . . , n the input to the kth iteration of UseKing is the output
of the (k − 1)th iteration. If p ∈ P \A� then the well-formness of the state (Lemma 3)
ensures that from the first iteration of UseKing all pi ∈ P \A� have as input the input-
bit of p, and the {p}-validity property of UseKing ensures that this agreement will be
preserved in all iterations. In any case, C(5)

PCBA(P ,Z, {p}) ensures that there is at least
one honest player p
 ∈ P ; at the latest during the iteration of UseKing with king p
,
agreement on the output will be achieved (king consistency), which is maintained in all
future iterations of UseKing ({p}-validity).

Lemma 4. Assuming that no signature is forged and the condition C(5)
PCBA(P ,Z, {p})

holds, the protocol Broadcast(P ,Z, p, x) Z-securely realizes PCBA({p}) (i.e, Broad-
cast with sender p).

5.2 PCBA(C) for an Arbitrary |C| ≥ 1

Using our PCBA({p}) protocol, i.e., protocol Broadcast, we can achieve PCBA(C) for
an arbitrary C ⊆ P . The corresponding protocol, denoted as PCBAC , is described in the
following; the input of each pi ∈ C is denoted as xi.

7 Observe that “n/v” is not the same as ⊥.

290 M. Hirt and V. Zikas

Protocol PCBAC(P, Z, x1, . . . , x|C|)
1. Every pi ∈ C uses Broadcast to Broadcast xi.
2. For each pj : if |C| = 1, then output the broadcasted value; otherwise, if there exists

unique x s.t. ∃(A,E) ∈ Z : {pi | xi �= x} ⊆ A then output x, otherwise output 0.

Lemma 5. Assuming that no signature is forged, if the condition C(5)
PCBA(P ,Z, C) ∧(

(|C| = 1)∨C(2)
a (P ,Z, {p})) holds for a set C ⊆ P , then the protocol PCBAC perfectly

Z-securely realized PCBA(C).

6 Extension: Adding Fail Corruption

We extend the definition of PCBA to consider an adversary who can actively, pas-
sively and fail corrupt players, simultaneously. In this setting, a general adversary is
described by a structure which is a collection of triples (instead of pairs) of player sets,
Z = {(A1, E1, F1), . . . , (Am, Em, Fm)}, where the adversary of class (A,E, F) ac-
tively corrupts the players in A, passively corrupts the players in E, and fail corrupts
the players in F . Consistently with our previous notation, we denote by (A�, E�, F �)
the class corresponding to the adversary’s actual corruption choice. To simplify the no-
tation, we assume that A ⊆ F (anyway, an actively corrupted player can behave as
being fail corrupted). We say that a player is alive at a certain point of the protocol if
he has not crashed until that point. Note that a fail corrupted player is both correct and
alive until the point when he crashes. In the following we give the definition of player-
centric BA in this extended model and prove an exact feasibility bound for PCBA(P)
(aka Consensus) for computational security assuming a trusted PKI.

A natural question which arises when fail corruption is considered in PCBA is how
the inputs of fail corrupted players are accounted in the validity condition. Following
the intuition that a fail corrupted player never gives a wrong input (but might give no
input) we extend the definition of PCBA as follows: every pi has input xi and the goal
is to agree on an output-value y, such that if every pi ∈ C \ A� who is alive at the
beginning has the same input xi = x then y = x. More formally, let C ⊆ P ; we say that
a protocol perfectly Z-securely realizes PCBA(C), if it satisfies the following properties
in the presence of a Z-adversary:

– (Consistency) There exists some y such that every player pi who is correct until the
end of the protocol outputs y.

– (C-Validity) If every pi ∈ C\A� who is alive at the beginning of the protocol has the
same input xi = x, then every (alive) pj ∈ P \ A� outputs y ∈ {x, “n/v”}, where
y = x, unless all players in C \A� have crashed during the protocol execution.

– (Termination) For pi ∈ P \ A� the protocol terminates after a finite number of
rounds.

When a protocol satisfies the above properties except with negligible probability in
the presence of a computationally bounded (resp. unbounded) adversary, then we say
that the protocol computationally (resp. statistically) Z-securely realizes PCBA(C).

PCBA(P) (Consensus). We next give an complete characterization of tolerable
adversaries for computationally secure PCBA(P) (Consensus) in our model. Recall
that the corresponding bound for (perfect) security without a setup can be derived in a

Player-Centric Byzantine Agreement 291

straight-forward manner from [1] (see [5] for details). The necessary and sufficient con-
dition is stated in the following theorem which is proved in the full version of this paper:

Theorem 3. Assuming |P| ≥ 3, if a setup allowing digital signatures is given, then a
set of players P can computationally Z-securely realize Consensus if and only if the
following condition holds: ∀(A1, E1, F1), (A2, E2, F2), (A3, E3, F3) ∈ Z : A1∪A2∪((

(E1 ∩ F1) ∪ (E2 ∩ F2) ∪ (E1 ∩E2)
) ∩A3

) ∪ (F1 ∩ F2 ∩ F3) �= P .

7 Conclusions and Open Problems

Most existing definitions of Byzantine Agreement are of an all-or-nothing type. Moti-
vated by the above observation, we introduced a new class of player-centric BA primi-
tives, denoted as PCBA = {PCBA(C)}C⊆P , which is parametrized by non-empty sub-
sets C of the player set. For each PCBA(C) ∈ PCBA, the validity condition depends on
the inputs of the players in C. We proved general negative and positive results, which as-
sociate feasibility of PCBA for different choices of the set C. Furthermore, for a general
active/passive adversary we proved exact feasibility bounds for PCBA for any choice of
the set C, for all three security levels, i.e., perfect, statistical, and computational. More-
over, we showed that there might be adversaries who can be tolerated for some specific
sender p to broadcast his input, but not for any p′ ∈ P being the sender.

As an extension of our results we provide a definition of PCBA tolerating an ac-
tive/passive/fail adversary and prove an exact bound for PCBA(P) (aka Consensus) in
this model. A complete characterization of PCBA for an arbitrary set C in this extended
model is an interesting research direction. However, the unexpectedly high complexity
of the tight bound for Consensus gives some evidence that such a characterization might
be too complicated, and raises the question whether one should look for a different tri-
chotomy of corruption types.

References

1. Altmann, B., Fitzi, M., Maurer, U.: Byzantine agreement secure against general adversaries
in the dual failure model. In: DISC 1999. LNCS, vol. 1693, pp. 123–139. Springer, Heidel-
berg (1999)

2. Bar-Noy, A., Dolev, D., Dwork, C., Strong, H.: Shifting gears: Changing algorithms on the
fly to expedite Byzantine agreement. Inf. Comput. 97(2), 205–233 (1992)

3. Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure computation without authenti-
cation. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 361–377. Springer, Heidel-
berg (2005)

4. Baum-Waidner, B., Pfitzmann, B., Waidner, M.: Unconditional Byzantine agreement with
good majority. In: Jantzen, M., Choffrut, C. (eds.) STACS 1991. LNCS, vol. 480, pp. 285–
295. Springer, Heidelberg (1991)

5. Beerliova-Trubiniova, Z., Fitzi, M., Hirt, M., Maurer, U., Zikas, V.: MPC vs. SFE: Perfect
security in a unified corruption model. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp.
231–250. Springer, Heidelberg (2008)

6. Beerliová-Trubı́niová, Z., Hirt, M., Riser, M.: Efficient Byzantine agreement with faulty mi-
nority. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 393–409. Springer,
Heidelberg (2007)

7. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In: STOC 1988, pp. 1–10 (1988)

292 M. Hirt and V. Zikas

8. Berman, P., Garray, J., Perry, J.: Towards optimal distributed consensus. In: FOCS 1989, pp.
410–415 (1989)

9. Coan, B., Welch, J.: Modular Construction of Efficient Byzantine Agreement Protocols. In:
PODC 1989, pp. 295–306 (1989)

10. Dolev, D., Fischer, M., Fowler, R., Lynch, N., Strong, H.: An efficient algorithm for Byzan-
tine agreement without authentication. Information and Control 52(3), 257–274 (1982)

11. Dolev, D., Strong, H.: Polynomial algorithms for multiple processor agreement. In: STOC
1982, pp. 401–407 (1982)

12. Feldman, P., Micali, S.: Optimal algorithms for Byzantine agreement. In: STOC 1988, pp.
148–161 (1988)

13. Fitzi, M., Garray, J.: Efficient player-optimal protocols for strong and differential consensus.
In: PODC 2003, pp. 211–220 (2003)

14. Fitzi, M., Hirt, M., Maurer, U.: Trading correctness for privacy in unconditional multi-
party computation. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 121–136.
Springer, Heidelberg (1998)

15. Fitzi, M., Hirt, M., Maurer, U.: General adversaries in unconditional multi-party computa-
tion. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp.
232–246. Springer, Heidelberg (1999)

16. Fitzi, M., Maurer, U.: Efficient Byzantine agreement secure against general adversaries. In:
Kutten, S. (ed.) DISC 1998. LNCS, vol. 1499, pp. 134–148. Springer, Heidelberg (1998)

17. Garay, J., Moses, Y.: Fully polynomial Byzantine agreement in t+1 rounds. In: STOC 1993,
pp. 31–41 (1993)

18. Garay, J., Perry, K.: A continuum of failure models for distributed computing. In: Segall, A.,
Zaks, S. (eds.) WDAG 1992. LNCS, vol. 647, pp. 153–165. Springer, Heidelberg (1992)

19. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game — a completeness
theorem for protocols with honest majority. In: STOC 1987, pp. 218–229 (1987)

20. Gordon, S., Katz, J., Kumaresan, R., Yerukhimovich, A.: Authenticated broadcast with a
partially compromised public-key infrastructure. In: Dolev, S., Cobb, J., Fischer, M., Yung,
M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 144–158. Springer, Heidelberg (2010)

21. Gupta, A., Gopal, P., Bansal, P., Srinathan, K.: Authenticated Byzantine generals in dual
failure model. In: Kant, K., Pemmaraju, S.V., Sivalingam, K.M., Wu, J. (eds.) ICDCN 2010.
LNCS, vol. 5935, pp. 79–91. Springer, Heidelberg (2010)

22. Hirt, M., Maurer, U.: Complete characterization of adversaries tolerable in secure multi-party
computation. In: PODC 1997, pp. 25–34 (1997)

23. Hirt, M., Maurer, U., Zikas, V.: MPC vs. SFE: Unconditional and computational security. In:
Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 1–18. Springer, Heidelberg (2008)

24. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: On combining privacy with guaranteed
output delivery in secure multiparty computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 483–500. Springer, Heidelberg (2006)

25. Lamport, L., Fischer, M.: Byzantine generals and transaction commit protocols. Technical
Report Opus 62, SRI International (Menlo Park CA), TR (1982)

26. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Transactions on
Programming Languages and Systems 4(3), 382–401 (1982)

27. Pease, M., Lamport, L.: Reaching agreement in the presence of faults. Journal of the
ACM 27, 228–234 (1980)

28. Pfitzmann, B., Waidner, M.: Unconditional Byzantine agreement for any number of faulty
processors. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 337–350.
Springer, Heidelberg (1992)

29. Toueg, S., Perry, K., Srikanth, T.: Fast distributed agreement. SIAM J. Comput. 16(3), 445–
457 (1987)

30. Yao, A.: Protocols for secure computations. In: FOCS 1982, pp. 160–164 (1982)

Limits on the Computational Power of Random Strings

Eric Allender1, Luke Friedman1, and William Gasarch2

1 Department of Computer Science, Rutgers University, Piscataway, NJ 08855, USA
{allender,lbfried}@cs.rutgers.edu

2 Dept. of Computer Science, University of Maryland, College Park, MD, 20742
gasarch@cs.umd.edu

Abstract. How powerful is the set of random strings? What can one say about
a set A that is efficiently reducible to R, the set of Kolmogorov-random strings?
We present the first upper bound on the class of computable sets in PR and NPR.

The two most widely-studied notions of Kolmogorov complexity are the “plain”
complexity C(x) and “prefix” complexity K(x); this gives two ways to define the
set “R”: RC and RK . (Of course, each different choice of universal Turing ma-
chineU in the definition of C andK yields another variant RCU or RKU .) Previous
work on the power of “R” (for any of these variants [1,2,9]) has shown

– BPP ⊆ {A : A≤p
ttR}.

– PSPACE ⊆ PR.
– NEXP ⊆ NPR.

Since these inclusions hold irrespective of low-level details of how “R” is defined,
we have e.g.: NEXP ⊆ Δ0

1 ∩
⋂

U NPRKU . (Δ0
1 is the class of computable sets.)

Our main contribution is to present the first upper bounds on the complexity
of sets that are efficiently reducible to RKU . We show:

– BPP ⊆ Δ0
1 ∩

⋂
U{A : A≤p

ttRKU } ⊆ PSPACE.
– NEXP ⊆ Δ0

1 ∩
⋂

U NPRKU ⊆ EXPSPACE.
Hence, in particular, PSPACE is sandwiched between the class of sets Turing-

and truth-table-reducible to R.
As a side-product, we obtain new insight into the limits of techniques for de-

randomization from uniform hardness assumptions.

1 Introduction

In this paper, we take a significant step toward providing characterizations of some
important complexity classes in terms of efficient reductions to non-computable sets.
Along the way, we obtain new insight into the limits of techniques for derandomization
from uniform hardness assumptions.

Our attention will focus on the set of Kolmogorov random strings:

Definition 1. LetK(x) be the prefix Kolmogorov complexity of the string x. Then

RK = {x : K(x) ≥ |x|}.
(More complete definitions of Kolmogorov complexity can be found in Section 2. Each
universal prefix Turing machine U gives rise to a slightly different measure KU , and
hence to various closely-related sets RKU .)

The first steps toward characterizing complexity classes in terms of efficient reduc-
tions to RK came in the form of the following curious inclusions:

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 293–304, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

294 E. Allender, L. Friedman, and W. Gasarch

Theorem 1. The following inclusions hold:

– BPP ⊆ {A : A≤p
ttRK} [9].

– PSPACE ⊆ PRK [2].
– NEXP ⊆ NPRK [1].

We call these inclusions “curious” because the upper bounds that they provide for the
complexity of problems in BPP, PSPACE and NEXP are not even computable; thus at
first glance these inclusions may seem either trivial or nonsensical.

A key step toward understanding these inclusions in terms of standard complexity
classes is to invoke one of the guiding principles in the study of Kolmogorov complex-
ity: The choice of universal machine should be irrelevant. Theorem 1 actually shows
that problems in certain complexity classes are always reducible toRK , no matter which
universal machine is used to defineK(x). That is, we have

– BPP ⊆ Δ0
1 ∩

⋂
U{A : A≤p

ttRKU }.
– PSPACE ⊆ Δ0

1 ∩
⋂

U PRKU .
– NEXP ⊆ Δ0

1 ∩
⋂

U NPRKU .

(Recall that Δ0
1 is the class of computable sets.) The question arises as to how pow-

erful the set Δ0
1 ∩

⋂
U{A : A ≤r RKU } is, for various notions of reducibility ≤r.

Until now, no computable upper bound was known for the complexity of any of these
classes. (Earlier work [1] did give an upper bound for a related class defined in terms
of≤p

dtt reductions – but this only provided a characterization of P in terms of a class of
polynomial-time reductions, which is much less compelling than giving a characteriza-
tion where the set RK is actually providing some useful computational power.)

Our main results show that the class of problems reducible to RK in this way does
have bounded complexity; hence it is at least plausible to conjecture that some com-
plexity classes can be characterized in this way:

Main Results

– Δ0
1 ∩

⋂
U{A : A≤p

ttRKU } ⊆ PSPACE.
– Δ0

1 ∩
⋂

U NPRKU ⊆ EXPSPACE.

A stronger inclusion is possible for “monotone” truth-table reductions (≤p
mtt). We

show thatΔ0
1 ∩

⋂
U{A : A≤p

mttRKU} ⊆ coNP ∩ P/poly.
Combining our results with Theorem 1 we now have:

– BPP ⊆ Δ0
1 ∩

⋂
U{A : A≤p

ttRKU } ⊆ PSPACE ⊆ Δ0
1 ∩

⋂
U PRKU .

– NEXP ⊆ Δ0
1 ∩

⋂
U NPRKU ⊆ EXPSPACE.

In particular, note that PSPACE is sandwiched in between the classes of computable
problems that are reducible to RK via truth-table and Turing reductions.

Our results bear a superficial resemblence to results of Book et al. [6,7,8], who
also studied decidable sets that are reducible in some sense to algorithmically random
sets. However, there is really not much similarity at all. Book et al. studied the class
ALMOST-R

Definition 2. Let R be a reducibility (e.g, ≤p
m or ≤p

T). Then ALMOST-R is the class
of all B such that {A : B is R-reducible to A} has measure 1.

Limits on the Computational Power of Random Strings 295

Book et al. showed that ALMOST-R can be characterized as the class of decidable sets
that are R-reducible to sets whose characteristic sequences are (for example) Martin-
Löf random. Thus using such sets as oracles is roughly the same as providing access to
unbiased independent coin flips. But a set whose characteristic sequence is Martin-Löf
random will contain many strings of low Kolmogorov complexity, and a set such as RK

is very far from being Martin-Löf random. Another contrast is provided by noting that
ALMOST-NP = AM, whereas NPRK contains NEXP.

1.1 Derandomization from Uniform Hardness Assumptions

Papers in derandomization that follow the “hardness vs. randomness” paradigm gen-
erally fall into two categories: those that proceed from uniform hardness assumptions,
and those that rely on nonuniform hardness. The nonuniform approach yields the more
general and widely-applicable tools. For instance, the work of Babai, Fortnow, Nisan,
and Wigderson [5] shows that, given any function f , one can construct a pseudorandom
generator1 Gf such that, given any test T that distinguishes the pseudorandom distri-
bution generated by Gf from the uniform distribution, one can conclude that f has
polynomial-size circuits that have access to T as an oracle. (Or, in terms of the contra-
positive, if f does not have small circuits relative to T , then the generatorGf is secure
against T .) As discussed by Gutfreund and Vadhan [10], invoking the terminology in-
troduced by Reingold et al. [16], this is an example of a fully black-box construction.

In contrast, there has been much more modest success in providing derandomization
tools from uniform hardness assumptions. The canonical example here comes from Im-
pagliazzo and Wigderson [12] as extended by Trevisan and Vadhan [17]. They show
that for certain functions f in PSPACE (including some PSPACE-complete problems),
one can build a pseudorandom generator Gf such that, given any test T that distin-
guishes the pseudorandom distribution generated by Gf from the uniform distribution,
one can conclude that f can be computed in BPPT . (Or, in terms of the contrapositive,
if f is not in BPPT , then the generator Gf is secure against T .) As discussed by Gut-
freund and Vadhan [10], this is still an example of a black-box reduction (although it
is not fully black box), since it works for every test T that distinguishes random from
pseudorandom.

Furthermore, Trevisan and Vadhan showed that a fully black-box construction, such
as is used in the nonuniform setting, can not yield derandomizations from uniform
assumptions [17]. Their argument is nonconstructive, in the sense that they derive a
contradiction from the assumption that a fully black-box construction exists, as opposed
to presenting a concrete function f for which no fully-black-box construction will work.

Gutfreund and Vadhan considered the question in more detail, and showed that there

is no function f outside of BPPNP for which there is a uniform non-adaptive black-box
reduction from computing f to distinguishing random from pseudorandom [10]. (That
is, if the BPPT algorithm computing f is non-adaptive in the sense that the list of oracle

queries is computed before any queries are asked, then f ∈ BPPNP.) Gutfreund and
Vadhan also considered a more general class of black-box reductions, still maintaining

1 The generator Gf in general is computable in PSPACEf , but in many important instances it is
computable in Pf .

296 E. Allender, L. Friedman, and W. Gasarch

some restrictions on “adaptiveness”, and showed that there is no function f outside
of PSPACE for which there is a uniform black-box reduction of this restricted class,
from computing f to distinguishing random from pseudorandom [10]. It appears that
no limits were known at all, for general BPP reductions to distinguishing random from
pseudorandom.

We state an easy consequence of our main theorems:

Theorem 2. If there is a uniform black-box reduction from a computable function f to
distinguishing random from pseudorandom, then f ∈ EXPSPACE.

In addition to shedding light on the limitations of black-box reductions to distinguishing
random from pseudorandom, Theorem 2 also provides some insight about the complete-
ness of problems related to the Minimum Circuit Size Problem:

The Minimum Circuit Size Problem (MCSP) (given the truth table of a Boolean
function f , and a number s, does f have a circuit of size s?) is a well-known example of
a problem in NP that is believed to lie outside of P, but is not known to be NP-complete
[13,2,4].

For a complexity class C, let MCSPC denote an analog of MCSP for C: given the
truth table of a Boolean function f , and a number s, does f have an oracle circuit of
size s, where the oracle is for the standard complete set for C?

It is known [2,4] that MCSPC is complete for C under P/poly reductions, where C
is any of {PSPACE,EXP,NEXP,EXPSPACE, doubly- or triply-exponential time and
space, etc. . . .}. Completeness under uniform reductions is known only for two cases:

MCSPPSPACE is complete for PSPACE under ZPP reductions, and MCSPEXP is com-
plete for EXP under NP reductions [2]. In the former case, completeness is proved via
the Impagliazzo-Wigderson generator [12]; in the latter case completeness is proved via
a uniform black-box NP-reduction to distinguishing random from pseudorandom.

Now consider doubly-exponential space EEXPSPACE. Is MCSPEEXPSPACE com-
plete for EEXPSPACE under ZPP or even NP reductions? As a consequence of Theo-
rem 2, this question cannot be answered using the techniques that were used to resolve
the analagous questions for PSPACE and EXP, which were black-box reductions to
distinguishing random from pseudorandom.

2 Background and Definitions

For a fixed universal Turing machine U , the plain Kolmogorov complexity of a string
x, C(x), is the size of the shortest s such that U(s) = x. This paper is concerned much
more with prefix complexity:

1. A prefix Turing machine is a Turing machineM such that, for all x, if M(x) halts
then, for all y �= λ,M(xy) does not halt. That is, the domain ofM is a prefix code.

2. Let M be a prefix Turing machine. Define KM (x) to be the size of the shortest s
such thatM(s) = x.

3. A universal prefix Turing machine is a prefix Turing machine U such that, for
any prefix Turing machine M , there is a constant c such that for all x,KU (x) ≤
KM (x) + c.

Limits on the Computational Power of Random Strings 297

We select some universal prefix Turing machineU and callKU (x) the prefix complexity
of x. As usual, we delete the subscript in this case, and let K(x) denote the prefix
complexity of x. The arbitrary choice ofU affectsK(x) by at most an additive constant,
and in most instances where prefix complexity is studied, the particular choice of U is
deemed to be irrelevant. Note however, that in this paper it is important to considerKU

for various machines U .
If f is a function mapping some domain to the naturals N, then ov(f), the overgraph

of f , is {(x, y) : f(x) ≤ y}. (For instance, ov(KU) = {(x, y) : there is an s, |s| ≤ y,
such that U(s) = x}).

The following definition was used implicitly by Muchnik and Positselsky [15]: A
Prefix Free Entropy Function f is a function from {0, 1}∗ to N such that

–
∑

x∈{0,1}∗ 2−f(x) ≤ 1 and
– ov(f) is computably enumerable (c.e.)

The canonical example of a prefix free entropy function isK(x). (ThatK is a prefix
free entropy function follows from the Kraft Inequality; see e.g. [14, Theorem 1.11.1].)

Note that if f is a prefix free entropy function, then 2−f is a special case of what Li
and Vitányi call a Lower Semicomputable Discrete Semimeasure [14, Definition 4.2.2].
We recall the Coding Theorem (see [14, Theorem 4.3.3]), the proof of which yields
the following important relationship between prefix free entropy functions and prefix
complexity.

Theorem 3. Let f be a prefix free entropy function. Given a machine computing f , one
can construct a prefix machineM such that f(x) = KM (x)− 1.

We will make use of the following easy propositions.

Proposition 1. Let U and U ′ be prefix Turing machines. Then there is a prefix machine
U ′′ such thatKU ′′(x) = min(KU (x),KU ′(x)) + 1.

Proposition 2. Given any machine U and constant c, there is a machine U ′ such that
KU (x) + c = KU ′(x)

In this paper we consider four types of reductions: truth table reductions, monotone
truth table reductions, anti-monotone reductions, and Turing reductions.

– Truth-table reductions. For a complexity class R and languages A and B, we say
that A R-truth-table-reduces to B (A ≤R

tt B) if there is a function q computable
in R, such that, on an input x ∈ {0, 1}∗, q produces an encoding of a circuit λ and
a list of queries q1, q2, . . . qm so that for a1, a2, . . . , am ∈ {0, 1} where ai = 1 if
and only if qi ∈ B, it holds that x ∈ A if and only if λ(a1a2 · · · am) = 1. If the
function q is polynomial time computable, we say that A polynomial-time-truth-
table-reduces to B (A ≤p

tt B).
– Monotone truth-table reductions. In the scenario above, if the circuit λ computes a

monotone function (i.e. changing any input bit of the function from 0 to 1 cannot
change the output of the function from 1 to 0), then we say that A R-monotone-
truth-table-reduces to B (A ≤R

mtt B). If the function q is polynomial time com-
putable, we say that A polynomial-time-monotone-truth-table-reduces to
B (A≤p

mttB).

298 E. Allender, L. Friedman, and W. Gasarch

– Anti-monotone truth-table reductions. In the scenario above, if the circuit λ com-
putes an anti-monotone function (i.e. ¬λ is monotone), then we say that A
R-anti-monotone-truth-table-reduces to B (A ≤R

amtt B). If the function q is poly-
nomial time computable, we say thatA polynomial-time-anti-monotone-truth-table-
reduces to B (A≤p

amttB).
– Turing reductions. We say that A R-Turing reduces to B (A ≤R

T B) if there is an
oracle Turing machine in classR that accepts A when given B as an oracle.

3 Main Results

Theorem 4. Δ0
1 ∩

⋂
U{A : A ≤p

tt RKU } ⊆ PSPACE

Proof. Due to space limitations, we provide an overview of the proof here; details can
be found in a more complete version of the paper [3]. The main idea of the proof can
be seen as a blending of the approach of [1] with the techniques that are used to prove
Theorem 2.7 of [15].

We will actually prove the statement

Δ0
1 ∩

⋂
U

{A : A ≤p
tt ov(KU)} ⊆ PSPACE. (1)

The theorem follows, since any query “x ∈ RKU ?” can always be modified to the
equivalent query “(x, |x| − 1) �∈ ov(KU)?”, so

Δ0
1 ∩

⋂
U

{A : A ≤p
tt RKU } ⊆ Δ0

1 ∩
⋂
U

{A : A ≤p
tt ov(KU)}.

To prove the statement (1) it suffices to show that

L �∈ PSPACE⇒ ∃ a universal prefix machine U s.t. L �≤p
tt ov(KU). (2)

Let L �∈ PSPACE be given. Our strategy will be to use a diagonalization technique
to carefully construct a universal prefix machine U such that L �≤p

tt ov(KU). To do
this we will use the standard prefix complexity function K , together with a function
F : {0, 1}∗ → N that we will construct, to form a function H : {0, 1}∗ → N with the
following properties.

1. F is a total function and ov(F) is c.e.
2. H(x) = min(K(x) + 4, F (x) + 2).
3.

∑
x∈{0,1}∗ 2−H(x) ≤ 1

4 .
4. L �≤p

tt ov(H).

Claim 1: Given the above properties, H = KU ′ for some universal prefix machine U ′

(which by Property 4 ensures that (2) holds).

It remains to show that for a givenL �∈ PSPACE we can always construct anH with the
desired properties. Let us first informally discuss the ideas before providing the formal
construction.

Limits on the Computational Power of Random Strings 299

Our control over H comes from our freedom in constructing the function F . The
construction will occur in stages – at any given time in the construction there will be a
“current” version of F which we will denote by F ∗. Similarly, there will be a “current”
version ofK denoted byK∗, which represents our knowledge ofK at a given stage. At
all times,H∗, our “current” version ofH , will be defined as min(K∗(x)+4, F ∗(x)+2).

Originally we set F ∗(x) = 2|x| + 2 and K∗ as the empty function. At each stage
of the construction we will assume that a new element (x, y) is enumerated into ov(K)
according to some fixed enumeration of ov(K). (This is possible since ov(K) is c.e.)
When this occurs K∗ is updated by setting K∗(x) = min(K∗(x), y). (Since K∗ is a
partial function, it is possible thatK∗(x) was previously undefined. In this case we set
K∗(x) = y.) Similarly, during the construction at times we will modify F by enumer-
ating elements into ov(F). Whenever we enumerate an element (x, y) into ov(F), F ∗

is updated by setting F ∗(x) = min(F ∗(x), y).
Let γ1, γ2, . . . be a list of all possible polynomial time truth table reductions from L

to ov(H). This is formed in the usual way: we take a list of all Turing Machines and
put a clock of ni + i on the ith one and we will interpret the output as an encoding of a
Boolean circuit on atoms of the form “(z, r) ∈ ov(H)”.

We need to ensure that L �≤p
tt ov(H). We break this requirement up into an infinite

number of requirements:

Re : γe is not a polynomial-time tt-reduction of L to ov(H)

At stage e of the construction we will begin to attempt to satisfy the requirementRe.
For a particular input x, let γe(x) be an encoding of a circuit λe,x. The output of the
circuit λe,x is determined by the truth values of the atoms “z ∈ ov(H)” that label the
inputs to the circuit. Define λe,x[H ′] to be the truth value obtained by taking the circuit
λe,x and for each atom “(z, r) ∈ ov(H)” using the truth value of “(z, r) ∈ ov(H ′) in
its place. In order to satisfy the requirementRe, we would like to find some x such that
λe,x[H] �= L(x), where L(x) is the characteristic function of L. The problem is that at
a given stage s we can “guess” at the value of λe,x[H] by computing λe,x[H∗], but in
general we cannot know the value of λe,x[H] for sure, because asH∗ evolves the value
of λe,x[H∗] may change. The main difficulty is that the functionK is out of our control
and determining whether (z, r) ∈ ov(K) is in general an uncomputable task.

We do have some influence over the situation though due to our control of F . In-
deed, for any atom “(z, r) ∈ ov(H)”, we can ensure that the truth value of the atom
is 1 by enumerating (z, r − 2) into ov(F). (Note that for all x, the value of H∗(x)
can only decrease over time). We have to be careful about making these types of
changes though; if we are too liberal in modifying F we may violate the condition∑

x∈{0,1}∗ 2−H(x) ≤ 1/4 in the process. Thus the construction becomes a balancing
act – we will try to use F to satisfy Re while at the same time maintaining the invariant
that

∑
x∈{0,1}∗ 2−H∗(x) ≤ 1/4 . (In particular, if Fs is the function F ∗ at the begin-

ning of stage s, for all x we will not want lims→∞ Fs(x) to be very much smaller than
K(x)).

As part of our solution, for each Re we will find a suitable witness x and set up
a game Ge,x played between us (making moves by enumerating elements into ov(F)),
and K , who makes moves by enumerating elements into ov(K). (Even though

300 E. Allender, L. Friedman, and W. Gasarch

elements are obliviously enumerated into ov(K) according to some fixed enumera-
tion we will treat K as if it is a willful adversary). The witness x will be chosen so
that we have a winning strategy; as long as K continues to make legal moves we can
respond with changes to F (our own legal moves) that both assure that Re is satisfied
and that

∑
x∈{0,1}∗ 2−H∗(x) ≤ 1/4. Our ability to find such a witness x follows from

our assumption that the language L is not in PSPACE; if no such witness exists, then
membership in L reduces to finding which player has a winning strategy in one of these
games, which can be done in PSPACE.

It is possible that K will cheat by enumerating elements into ov(K) in such a way
that it plays an illegal move. In this case we will simply destroy the game Ge,x and start
all over again with a new game Ge,x′ , using a different witness x′. However we will
be able to show that if K cheats infinitely often on games associated with a particular
requirement Re, then

∑
x∈{0,1}∗ 2−K(x) diverges. This contradicts K being a prefix

complexity function. HenceK can only cheat finitely often2.
The requirements R1, R2, R3, . . . are listed in priority ordering. If during stage s a

move is played on a game Ge,x, we say that Re is “acting”. In this case for all e < e′ ≤
s, if Ge′,y is the game associated with Re′ currently being played, we destroy this game
and start a new game Ge′,y′ with some new witness y′. When this happens we say that
each of the Re′ has been “injured” by Re. The reason this works in the end is that at
some pointR1, R2, . . . , Re−1 have stopped acting, so Re will no longer ever be injured
by some higher priority requirement.

3.1 Description of the Game

Now let us describe one of the games Ge,x in more depth and provide some analysis
of the game. Let the inputs to the Boolean circuit λe,x (encoded by γe(x)) be labeled
by the atoms {(z1, r1), . . . , (zk, rk)}. Let Xe = {z1, . . . , zk}. Note that the queries
in this reduction are of the form: “Is H(zi) ≤ ri?”. If H∗(zi) ≤ ri then we already
know H(zi) ≤ ri, so we can replace that input to the circuit with the value TRUE and
simplify the circuit accordingly. Renumber the z’s, rename k to again be the number of
questions, and renameXe to be the set of all z’s being asked about. When we are done
we have atoms {(z1, r1), . . . , (zk, rk)} and we know that (∀zi ∈ Xe)[H∗(zi) > ri].

We make one more change to Xe. If there exists an element zi such that zi ∈ Xe

and zi ∈ Xe′ for some e′ < e, then changing H∗ on the value zi during the game
Ge,x could affect the game associated with the requirementRe′ , which would upset our
priority ordering. Hence we will take

Xe = Xe −
⋃

e′<e

Xe′ .

This will ensure that Re cannot injure any Re′ with e′ < e.

2 This reliance on the convergence of
∑

x∈{0,1}∗ 2−K(x) is the key reason why our proof does
not go through in the case where we consider the plain complexity C(x) as opposed to the
prefix complexity.

Limits on the Computational Power of Random Strings 301

Let H∗
e,x be the function H∗ when the game Ge,x is first constructed. Let ε =

2−e−ie−5. (How ie is determined will be explained later). The game Ge,x is played
on a labeled DAG. The label of each node of the DAG has the following two parts:

1. A function h that mapsXe to N. The function h provides conjectured values forH
restricted to Xe. The function h will be consistent with H∗

e,x in that (∀i)[h(zi) ≤
H∗

e,x(zi)].
2. A truth value VAL, which is the value of λe,x assuming that (∀z ∈ Xe)[H(z) =
h(z)]. Note that this will be either YES or NO indicating that either, under assump-
tion (∀z ∈ Xe)[H(z) = h(z)], λe,x thinks x ∈ L or thinks x /∈ L.

There is a separate node in the DAG for every possible such function h.
Let us place an upper bound on the size of this DAG. The set Xe contains at most

|x|e queries. For any query zi, H(zi) can take at most 2|zi| + 4 values (since it is
always bounded by F ∗(zi) + 2). Note also that |zi| ≤ |x|e. Thus there are at most
(2|x|e + 4)|x|

e

possible choices for h. For all large x this is bounded by 2|x|
2e

, so note
that we can represent a particular node in the DAG with |x|2e + 1 bits.

We now describe the start node and how to determine the edges of the DAG.

1. There is a node (h,VAL) where h = H∗
e,x restricted to Xe. This is the start node

and has indegree 0.
2. There is an edge from (h,VAL) to (h′,VAL′) if for all zi ∈ Xe, h(zi) ≥ h′(zi) (so

it is possible thatH∗ could at some point evolve fromH∗
e,x to h, and then at a later

point evolve from h to h′.)

The game Ge,x is played between two players, the YES player and the NO player.
Each player has a score, which originally is zero, and represents how much the player
has been penalized so far in the game. (In other words a high score is bad). The game
starts with a token placed on the start node. The YES player goes first (although this
choice is arbitrary), after which the players alternate moves.

On a given turn a player can either leave the token where it is or move the token to
a new node in the DAG. Suppose a player moves the token from a node t to a node t′,
where h is the function labeling t and h′ is the function labeling t′. In this case we add∑

zi∈Xe
2−h′(zi) − 2−h(zi) to the player’s score.

A player can legally move the token from node t to t′ if

1. There is an edge from t to t′ in the game DAG.
2. The score of the player after making the move does not exceed ε.

The YES player wins if the token ends up on a node such that VAL = YES, and the
NO player wins if the token ends up on a node such that VAL = NO. Note that because
the game is entirely deterministic, for a given game Ge,x, either the YES player has a
winning strategy or the NO player has a winning strategy. Let val(Ge,x) = 1 if the YES
player has a winning strategy on the game Ge,x and val(Ge,x) = 0 otherwise.

During the actual construction the games will be played between us (the construc-
tion) trying to make the computation go one way, and K (which we do not control)
trying to make it go (perhaps) another way. We will always ensure that we play the side
of the player who has the winning strategy in the game. We will effect our moves by

302 E. Allender, L. Friedman, and W. Gasarch

enumerating elements into ov(F), which changes F ∗ and hence H∗. (To move the to-
ken to a node labeled with the function h, we modifyH∗ so that h equalsH∗ restricted
to the set Xe) TheK moves will occur when a new element is enumerated into ov(K)
at the beginning of each stage, which changes K∗ and hence H∗. (In this case K is
moving the token to the node in the game DAG labeled by the newH∗).

The key is that the players’ scores measure how much the sum
∑

x∈{0,1}∗ 2−H∗(x)

has gone up, which we bound by not allowing a player’s score to exceed ε. (Of courseK
is oblivious to the rules of the game and will at times cheat – we take this into account
as part of our analysis.) One final note: it is possible that K will simply stop playing
a game in the middle and never make another move. This will not matter to us in the
construction; what is important is that we have a winning strategy and if K does move
we always have a winning response.

Theorem 5. Δ0
1 ∩

⋂
U{A : A≤p

mttRKU } ⊆ coNP ∩ P/poly

Proof. The containment in P/Poly comes from [1].
Note that a reduction showing L≤p

mttRKU corresponds to an anti-monotone reduc-
tion to ov(KU) (where the only queries are of the form “Is KU (z) < |z|?”) Thus this
same reduction is an anti-monotone reduction from the complement of L to the com-
plement of RKU . If we replace each Boolean function in this anti-monotone reduction
with its complement, we obtain a monotone reduction of L to ov(KU).

Thus it suffices to show that any set that is ≤p
mtt -reducible to the overgraph ov(KU)

for every U is in NP.
The proof of this containment is almost identical to the proof of Theorem 4. The only

difference is now we consider an arbitrary language L �∈ NP, and must show that when
a game Ge,x is constructed corresponding to a polynomial time monotone truth table
reduction γe, determining whether val(Ge,x) = 1 can be computed in NP. Note that in
the monotone case, the NO player of the game has no incentive to ever make a move,
as doing so could only change the value of the circuit λe,x from NO to YES. Therefore
whether the YES player has a winning strategy in the game depends solely on whether
the YES player can legally move the token from the start node to a node u in the game
DAG labeled by YES. This is an NP question – the certificate is the node u, which as
we have seen can be represented by a polynomial number of bits in |x|.

Theorem 6. Δ0
1 ∩

⋂
U NPRKU ⊆ EXPSPACE

Proof. An NP-Turing reduction can be simulated by a truth-table reduction computable
in exponential time, where all queries have length bounded by a polynomial in the input
length. Carrying out the same analysis as in the proof of Theorem 4, but changing the
time bound on the truth-table reductions from polynomial to exponential, immediately
yields the EXPSPACE upper bound.

4 Perspective and Open Problems

How should one interpret the theorems presented here?

Limits on the Computational Power of Random Strings 303

Prior to this work, the inclusion NEXP ⊆ NPRK was just a curiosity, since it was not
clear that it was even meaningful to speak about efficient reductions to an undecidable
set. Here, we show that if we view RK not as merely a single undecidable set, but as a
class of closely-related undecidable sets (differing only by the “insignificant” choice of
the universal Turing machine U), then the computable sets that are always in NPRK is a
complexity class sandwiched between NEXP and EXPSPACE. The obvious question is
whether this class is actually equal to NEXP (or to EXPSPACE). Any characterization
of a complexity class in terms of efficient reductions to a class of undecidable sets would
raise the possibility of applying techniques from computability theory to questions in
complexity theory, where they had seemed inapplicable previously.

One possible objection to the theorems presented here is that they make use of uni-
versal Turing machinesU that are far from “natural”. However, we see little to be gained
in trying to formulate a definition of a “natural” universal Turing machine. Even basic
questions such as whether there is a truth-table reduction from the Halting Problem
to RK depend on the choice of the universal Turing machine U [15,1], and the only
machines for which the answer is known (positive and negative) are all decidedly “un-
natural”. All of the positive results, showing that problems are efficiently reducible to
RK hold using a quite general notion of “universal Turing machine”, and we believe
that the approach used here and in [1] to “factor out” the idiosyncrasies of individual
universal machines is a more productive route to follow.

It is natural to conjecture that our main theorems hold, even if “Δ0
1∩” is erased from

the statement of the theorems. For instance, if A is in
⋂

U NPRKU , we conjecture that
A is computable.

We also conjecture that all of our main theorems hold if the prefix complexity func-
tionK(x) is replaced everywhere by C(x), although the techniques that we use do not
seem sufficient to prove this.

Is RK just as useful as an oracle as ov(K)? All of the upper bounds that we have on
the classes of sets reducible to RK hold also for the classes of sets reducible to ov(K).
However, it seems much easier to make use of ov(K) than to use RK . For instance, for
any computable setA, there is a universal prefix machine U such thatA≤p

ttov(KU) (by
creating a machine U such that x ∈ A if and only ifKU (x) is odd). (Details will appear
in a more complete version of this work.) In contrast, some of us would conjecture
that, for any machine U , if A≤p

ttRKU , then A ∈ P/poly. (Some partial results in this
direction can be found in [1]; see also [11].)

The theorems presented here all relativize. For instance, for any computable oracle
B, if A �∈ PSPACEB , then there is a universal prefix Turing machine U such that
A �≤PB

tt RKU . (Note that, for computable oracles B, there is no need to “relativize”
RKU . A similar restatement is possible for noncomputable oracles B, too.) However,
it seems quite possible to us that, say, if it were possible to characterize NEXP in
terms of NPRK , that this might proceed via nonrelativizable techniques. The types of
characterizations of complexity classes that we are investigating are quite different than
those that have been studied in the past, and we hope that new insights will result as
new connections are explored.

304 E. Allender, L. Friedman, and W. Gasarch

Acknowledgments

We thank Adam Day, Bruno Loff, Russell Impagliazzo, and Danny Gutfreund for helpful
comments. The first two authors were supported in part by NSF Grants CCF-0830133
and CCF-0832787.

References

1. Allender, E., Buhrman, H., Koucký, M.: What can be efficiently reduced to the Kolmogorov-
random strings? Annals of Pure and Applied Logic 138, 2–19 (2006)

2. Allender, E., Buhrman, H., Koucký, M., van Melkebeek, D., Ronneburger, D.: Power from
random strings. SIAM Journal on Computing 35, 1467–1493 (2006)

3. Allender, E., Friedman, L., Gasarch, W.: Limits on the computational power of random
strings. Technical Report TR10-139, Electronic Colloquium on Computational Complexity
(2010)

4. Allender, E., Koucký, M., Ronneburger, D., Roy, S.: The pervasive reach of resource-
bounded Kolmogorov complexity in computational complexity theory. Journal of Computer
and System Sciences 77, 14–40 (2010)

5. Babai, L., Fortnow, L., Nisan, N., Wigderson, A.: BPP has subexponential time simulations
unless EXPTIME has publishable proofs. Computational Complexity 3, 307–318 (1993)

6. Book, R.V.: On languages reducible to algorithmically random languages. SIAM Journal on
Computing 23(6), 1275–1282 (1994)

7. Book, R.V., Lutz, J., Wagner, K.W.: An observation on probability versus randomness with
applications to complexity classes. Mathematical Systems Theory 27(3), 201–209 (1994)

8. Book, R.V., Mayordomo, E.: On the robustness of ALMOST-r. RAIRO Informatique
Théorique et Applications 30(2), 123–133 (1996)

9. Buhrman, H., Fortnow, L., Koucky, M., Loff, B.: Derandomizing from random strings. In:
25th IEEE Conference on Computational Complexity (CCC), pp. 58–63. IEEE Computer
Society Press, Los Alamitos (2010)

10. Gutfreund, D., Vadhan, S.P.: Limitations of hardness vs. Randomness under uniform reduc-
tions. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM
2008. LNCS, vol. 5171, pp. 469–482. Springer, Heidelberg (2008)

11. Hitchcock, J.M.: Lower bounds for reducibility to the kolmogorov random strings. In: Fer-
reira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158,
pp. 195–200. Springer, Heidelberg (2010)

12. Impagliazzo, R., Wigderson, A.: Randomness vs. time: de-randomization under a uniform
assumption. J. Comput. Syst. Sci. 63(4), 672–688 (2001)

13. Kabanets, V., Cai, J.-Y.: Circuit minimization problem. In: Proc. ACM Symp. on Theory of
Computing (STOC), pp. 73–79 (2000)

14. Li, M., Vitanyi, P.: Introduction to Kolmogorov Complexity and its Applications, 3rd edn.
Springer, Heidelberg (2008)

15. Muchnik, A.A., Positselsky, S.: Kolmogorov entropy in the context of computability theory.
Theoretical Computer Science 271, 15–35 (2002)

16. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryptographic prim-
itives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg (2004)

17. Trevisan, L., Vadhan, S.P.: Pseudorandomness and average-case complexity via uniform re-
ductions. Computational Complexity 16(4), 331–364 (2007)

The Decimation Process in Random k-SAT

Amin Coja-Oghlan and Angelica Y. Pachon-Pinzon�

University of Warwick, Mathematics and Computer Science,
Coventry CV4 7AL, UK

{a.coja-oghlan,a.y.pachon-pinzon}@warwick.ac.uk

Abstract. Non-rigorous statistical mechanics ideas have inspired a mes-
sage passing algorithm called Belief propagation guided decimation for
finding satisfying assignments of random k-SAT instances. This algo-
rithm can be viewed as an attempt at implementing a certain thought
experiment that we call the decimation process. In this paper we identify
a variety of phase transitions in the decimation process and link these
phase transitions to the performance of the algorithm.

1 Introduction

Let k ≥ 3 and n > 1 be integers, let r > 0 be a real, and set m = �rn�.
Let Φ = Φk(n,m) be a propositional formula obtained by choosing a set of m
clauses of length k over the variables V = {x1, . . . , xn} uniformly at random.
For k, r fixed we say that Φ has some property P with high probability (‘w.h.p.’)
if limn→∞ P [Φ ∈ P] = 1.

The interest in random k-SAT originates from the experimental observation
that for certain densities r the random formula Φ is satisfiable w.h.p. while a
large class of algorithms, including and particularly the workhorses of practi-
cal SAT solving such as sophisticated DPLL-based solvers, fail to find a sat-
isfying assignment efficiently [14]. Over the past decade, a fundamentally new
class of algorithms have been proposed on the basis of ideas from statistical
physics [6,13]. Experiments performed for k = 3, 4, 5 indicate that these new
‘message passing algorithms’, namely Belief Propagation guided decimation and
Survey Propagation guided decimation (‘BP/SP decimation’), excel on random
k-SAT instances [10]. Indeed, the experiments indicate that BP/SP decimation
find satisfying assignments for r close to the threshold where Φ becomes unsat-
isfiable w.h.p. Generally, SP is deemed conceptually superior to BP.

For example, in the case k = 4 the threshold for the existence of satisfying
assignments is conjectured to be m/n ∼ r4 ≈ 9.93 [12]. According to experi-
ments from [10], SP decimation finds satisfying assignments for densities up to
r = 9.73. Experiments from [16] suggest that the “vanilla” version of BP dec-
imation succeeds up to r = 9.05. Another version of BP decimation (with a
different decimation strategy from [6]) succeeds up to r = 9.24, again according
to experimental data from [10]. By comparison, the currently best rigorously

� Supported by EPSRC grant EP/G039070/2.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 305–316, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

306 A. Coja-Oghlan and A.Y. Pachon-Pinzon

analyzed algorithm is efficient up to r = 5.54 [9], while zChaff, a prominent
practical SAT solver, becomes ineffective beyond r = 5.35 [10].

Since random k-SAT instances have widely been deemed extremely challeng-
ing benchmarks, the stellar experimental performance of the physicists’ message
passing algorithms has stirred considerable excitement. However, the statistical
mechanics ideas that BP/SP decimation are based on are highly non-rigorous, and
thus a rigorous analysis of these message passing algorithms is an important but
challenging open problem. A first step was made in [7], where it was shown that
BP decimation does not outperform far simpler combinatorial algorithms for suf-
ficiently large clause lengths k. More precisely, the main result of [7] is that there
is a constant ρ0 > 0 (independent of k) such that the ‘vanilla’ version of BP dec-
imation fails to find satisfying assignments w.h.p. if r > ρ02k/k. By comparison,
non-constructive arguments show that w.h.p. Φ is satisfiable if r < rk = 2k ln 2−k,
and unsatisfiable if r > 2k ln 2 [3,4]. This means that for k$ ρ0 sufficiently large,
BP decimation fails to find satisfying assignments w.h.p. already for densities a
factor of (almost) k below the threshold for satisfiability.

The analysis performed in [7] is based on an intricate method for directly
tracking the execution of BP decimation. Unfortunately this argument does little
to illuminate the conceptual reasons for the algorithms’ demise. In particular,
[7] does not provide a link to the statistical mechanics ideas that inspired the
algorithm. The present paper aims to remedy these defects. Here we study the
decimation process, an idealized thought experiment that the BP decimation
algorithm aims to implement. We show that this experiment undergoes a variety
of phase transitions that explain the failure of BP decimation for densities r > ρ0·
2k/k. Our results identify phase transitions jointly in terms of the clause/variable
density r and with respect to the time parameter of the decimation process.
The latter dimension was ignored in the original statistical mechanics work on
BP [6,13] but turns out to have a crucial impact on the performance of the
algorithm. On a non-rigorous basis, this has been pointed out recently by Ricci-
Tersenghi and Semerjian [16], and our results can be viewed as providing a
rigorous version of (parts of) their main results. The results of this paper can
also be seen as a generalization of the ones obtained in [1] for random k-SAT, and
indeed our proofs build heavily upon the techniques developed in that paper.

2 Results

BP decimation is a polynomial-time algorithm that aims to (heuristically) im-
plement the ‘thought experiment’ shown in Fig. 1 [15,16], which we call the
decimation process.1 A moment’s reflection reveals that, given a satisfiable input
formula Φ, the decimation process outputs a uniform sample from the set of all
satisfying assignments of Φ. The obvious obstacle to actually implementing this
1 Several different versions of BP decimation have been suggested. In this paper we

refer to the simplest but arguably most natural one, also considered in [7,15,16].
Other versions decimate the variables in a different order, allowing for slightly better
experimental results [6,10].

The Decimation Process in Random k-SAT 307

experiment is the computation of the marginal probability Mxt(Φt−1) that xt

takes the value ‘true’ in a random satisfying assignment of Φt−1, a #P -hard
problem in the worst case. Yet the key hypothesis underlying BP decimation is
that these marginals can be computed efficiently on random formulas by means
of a message passing algorithm. We will return to the discussion of BP decima-
tion and its connection to Experiment 1 below.

Experiment 1 (‘decimation process’). Input: A satisfiable k-CNF Φ.
Result: A satisfying assignment σ : V → {0, 1} (with 0/1 representing ‘false’/‘true’).

0. Let Φ0 = Φ.
1. For t = 1, . . . , n do
2. Compute the fraction Mxt(Φt−1) of all satisfying assignments of Φt−1 in which

the variable xt takes the value 1.
3. Assign σ(xt) = 1 with probability Mxt(Φt−1), and let σ(xt) = 0 otherwise.
4. Obtain the formula Φt from Φt−1 by substituting the value σ(xt) for xt and

simplifying (i.e., delete all clauses that got satisfied by assigning xt, and omit
xt from all other clauses).

5. Return the assignment σ.

Fig. 1. The decimation process

We are going to study the decimation process when applied to a random
formula Φ for densities r < 2k ln 2− k, i.e., in the regime where Φ is satisfiable
w.h.p. More precisely, conditioning on Φ being satisfiable, we let Φt be the
(random) formula obtained after running the first t iterations of Experiment 1.
The variable set of this formula is Vt = {xt+1, . . . , xn}, and each clause of Φt

consists of at most k literals. Let S(Φt) ⊂ {0, 1}Vt be the set of all satisfying
assignments of Φt. We say that almost all σ ∈ S(Φt) have a certain property A
if |A ∩ S(Φt)| = (1 − o(1))|S(Φt)|.

We will identify various phase transition that the formulas Φt undergo as t
grows from 1 to n. As it turns out, these can be characterized via two simple
parameters. The first one is the clauses density r ∼ m/n. Actually, it will be
most convenient to work in terms of

ρ = kr/2k and θ = 1− t/n,
so that m/n ∼ ρ · 2k/k. We will be interested in the regime ρ0 ≤ ρ ≤ k ln 2,
where ρ0 is a constant (independent of k). The upper bound k ln 2 marks the
point where satisfying assignments cease to exist [4]. The second parameter θ is
the fraction of ‘free’ variables (i.e., variables not yet assigned by time t).

The symmetric phase. Let Φ be a k-CNF on V , let 1 ≤ t < n, let Φt be
the formula obtained after t steps of the decimation process, and suppose that
σ ∈ S(Φt). A variable x ∈ Vt is loose if there is τ ∈ S(Φt) such that σ(x) �= τ(x)
and d(σ, τ) ≤ lnn, where d(·, ·) denotes the Hamming distance. For any x ∈ Vt

we let Mx(Φt) = |{σ ∈ S(Φt) : σ(x) = 1}| /|S(Φt)| be the marginal probability
that x takes the value ‘true’ in a random satisfying assignment of Φt.

308 A. Coja-Oghlan and A.Y. Pachon-Pinzon

Theorem 2. There are constants k0, ρ0 > 0 such that for k ≥ k0, ρ0 ≤ ρ ≤
k ln 2− 2 lnk, and

k · θ > exp
[
ρ

(
1 +

ln ln ρ
ρ

+
10
ρ

)]
the random formula Φt has the following properties w.h.p.
1. In almost all σ ∈ S(Φt) at least 0.99θn variables are loose.
2. At least θn/3 variables x ∈ Vt satisfy Mx(Φt) ∈ [0.01, 0.99].
3. The average distance of two random satisfying assignments is ≥ 0.49θn.

Intuitively, Theorem 2 can be summarized as follows. In the early stages of the
decimation process (while θ is ‘big’), most variables in a typical σ ∈ S(Φt) are
loose. Hence, the correlations amongst the variables are mostly local: if we ‘flip’
one variable in σ, then we can ‘repair’ the unsatisfied clauses that this may
cause by simply flipping another lnn variables. Furthermore, for at least a good
fraction of the variables, the marginals Mx(Φt) are bounded away from 0/1.
Finally, as the distance between satisfying assignments is large on average, the
set S(Φt) is ‘well spread’ over the Hamming cube {0, 1}Vt .

Shattering and rigidity. Let Φ be a k-CNF and let σ ∈ S(Φt). For an integer
ω ≥ 1 we call a variable x ∈ Vt ω-rigid if any τ ∈ S(Φt) with σ(x) �= τ(x) satisfies
d(σ, τ) ≥ ω. Furthermore, we say that a set S ⊂ {0, 1}Vt is (α, β)-shattered if
it admits a decomposition S =

⋃N
i=1 Ri into pairwise disjoint subsets such that

the following two conditions are satisfied.
SH1. We have |Ri| ≤ exp(−αθn)|S| for all 1 ≤ i ≤ N .
SH2. If 1 ≤ i < j ≤ N and σ ∈ Ri, τ ∈ Rj , then dist(σ, τ) ≥ βθn.

Theorem 3. There are constants k0, ρ0 > 0 such that for k ≥ k0, ρ0 ≤ ρ ≤
k ln 2− 2 lnk, and

ρ

ln 2
(1 + 2ρ−2) ≤ kθ ≤ exp

[
ρ

(
1− ln ρ

ρ
− 2
ρ

)]
(1)

the random formula Φt has the following properties w.h.p.
1. In almost all σ ∈ S(Φt) at least 0.99θn variables are Ω(n)-rigid.
2. There exist α = α(k, ρ) > 0, β = β(k, ρ) > 0 such that S(Φt) is (α, β)-

shattered.
3. At least θn/3 variables x ∈ Vt satisfy Mx(Φt) ∈ [0.01, 0.99].
4. The average distance of two random satisfying assignments is at least 0.49θn.

Thus, if the fraction θ of free variables lies in the regime (1), then in most
satisfying σ ∈ S(Φt) the values assigned to 99% of the variables are linked via
long-range correlations: to ‘repair’ the damage done by flipping a single rigid
variable it is inevitable to reassign a constant fraction of all variables. This is
mirrored in the geometry of the set S(Φt): it decomposes into exponentially many
exponentially tiny subsets, which are mutually separated by a linear Hamming
distance Ω(n). Yet as in the symmetric phase, the marginals of a good fraction
of the free variables remain bounded away from 0/1, and the set S(Φt) remains
‘well spread’ over the Hamming cube {0, 1}Vt .

The Decimation Process in Random k-SAT 309

The ferromagnetic phase. Let α > 0. We say that a set S ⊂ {0, 1}θn is α-
ferromagnetic if for any σ, τ ∈ S we have dist(σ, τ) ≤ αn.

Theorem 4. There are constants k0, ρ0 > 0 such that for k ≥ k0, ρ0 ≤ ρ ≤
k ln 2− 2 lnk, and

ln ρ < k · θ < (1− ρ−2) · ρ/ (ln 2) (2)

the random formula Φt has the following properties w.h.p.

1. In almost all σ ∈ S(Φt) at least 0.99θn variables are Ω(n)-rigid.
2. The set S(Φt) is exp(2− ρ)/k-ferromagnetic.
3. At least 0.99θn variables x ∈ Vt satisfy Mx(Φt) ∈

[
0, 2−k/2

]∪ [1− 2−k/2, 1
]
.

4. There is a set R ⊂ Vt of size |R| ≥ 0.99θn such that for any σ, τ ∈ S(Φt) we
have |{x ∈ R : σ(x) �= τ(x)}| ≤ k2−kn.

In other words, as the decimation process progresses to a point that the fraction
θ of free variables satisfies (2), the set of satisfying assignments shrinks into a
ferromagnetic subset of {0, 1}Vt of tiny diameter, in contrast to a well-spread
shattered set as in Theorem 3. Furthermore, most marginals Mx(Φt) are either
extremely close to 0 or extremely close to 1. In fact, there is a large set R of
variables on which all satisfying assignments virtually agree (more precisely: any
two can’t disagree on more than k2−kn variables in R).

The forced phase. We call a variable x forced in the formula Φt if Φt has a clause
that only contains the variable x (a ‘unit clause’). Clearly, in any satisfying
assignment x must be assigned so as to satisfy this clause.

Theorem 5. There are constants k0, ρ0 > 0 such that for k ≥ k0, ρ0 ≤ ρ ≤
k ln 2− 2 lnk, and

1/n� k · θ < ln(ρ)(1− 10/ lnρ) (3)

the random formula Φt has the following properties w.h.p.

1. At least 0.99θn variables are forced.
2. The set S(Φt) is exp(2− ρ)/k-ferromagnetic.

Belief Propagation. As mentioned earlier, the BP decimation algorithm is an
attempt at implementing the decimation process by means of an efficient algo-
rithm. The key issue with this is the computation of the marginals Mxt(Φt−1)
in step 2 of the decimation process. Indeed, the problem of computing these
marginals is #P -hard in the worst case. Thus, instead of working with the ‘true’
marginals, BP decimation uses certain numbers μxt(Φt−1, ω) that can be com-
puted efficiently, where ω ≥ 1 is an integer parameter. The precise definition
of the μxt(Φt−1, ω) can be found in [6]. Basically, they are the result of a ‘lo-
cal’ dynamic programming algorithm (‘Belief Propagation’) that depends upon
the assumption of a certain correlation decay property. For given k, ρ, the key
hypothesis underpinning the BP decimation algorithm is

Hypothesis 6. For any ε > 0 there is ω = ω(ε, k, ρ, n) ≥ 1 such that w.h.p. for
all 1 ≤ t ≤ n we have |μxt(Φt−1, ω)−Mxt(Φt−1)| < ε.

310 A. Coja-Oghlan and A.Y. Pachon-Pinzon

In other words, Hypothesis 6 states that throughout the decimation process,
the ‘BP marginals’ μxt(Φt−1, ω) are a good approximation to the true marginals
Mxt(Φt−1).

Theorem 7. There exist constants c0, k0, ρ0 > 0 such that for all k ≥ k0, and
ρ0 ≤ ρ ≤ k ln 2 − 2 ln k the following is true for any integer ω = ω(k, ρ, n) ≥ 1.
Suppose that

c0 ln(ρ) < k · θ < ρ/ ln 2. (4)

Then for at least 0.99θn variables x ∈ Vt we have μx(Φt, ω) ∈ [0.49, 0.51] .

The proof is based on the techniques developed in [7]; the details are omitted
from this extended abstract. Comparing Theorem 4 with Theorem 7, we see that
w.h.p. for θ satisfying (4) most of the ‘true’ marginals Mx(Φt) are very close to
either 0 or 1, whereas the ‘BP marginals’ lie in [0.49, 0.51]. Thus, in the regime
described by (4) the BP marginals do not provide a good approximation to the
actual marginals.

Corollary 1. There exist constants c0, k0, ρ0 > 0 such that for all k ≥ k0,
ρ0 ≤ ρ ≤ k ln 2− 3 lnk Hypothesis 6 is untrue.

Summary and discussion. Fix k ≥ k0 and ρ ≥ ρ0. Theorems 2–5 show how
the space of satisfying assignments of Φt evolves as the decimation process pro-
gresses. In the symmetric phase kθ ≥ exp((1 + oρ(1))ρ) where there still is a
large number of free variables, the correlations amongst the free variables are
purely local (‘loose variables’). As the number of free variables enters the regime
(1 + oρ(1))ρ/ ln 2 ≤ kθ ≤ exp((1 − oρ(1))ρ), the set S(Φt) of satisfying assign-
ments shatters into exponentially many tiny ‘clusters’, each of which comprises
only an exponentially small fraction of all satisfying assignments. Most satisfying
assignments exhibit long-range correlations amongst the possible values that can
be assigned to the individual variables (‘rigid variables’). This phenomenon goes
by the name of dynamic replica symmetry breaking in statistical mechanics [11].

While in the previous phases the set of satisfying assignments is scattered
all over the Hamming cube (as witnessed by the average Hamming distance of
two satisfying assignments), in the ferromagnetic phase (1 − oρ(1)) ln ρ ≤ kθ ≤
(1 − oρ(1))ρ/ ln 2 the set of satisfying assignments has a tiny diameter. This is
mirrored by the fact that the marginals of most variables are extremely close to
either 0 or 1. Furthermore, in (most of) this phase the estimates of the marginals
resulting from Belief Propagation are off (Theorem 7). As part 4 of Theorem 4
shows, the mistaken estimates of the Belief Propagation computation would
make it impossible for BP decimation to penetrate the ferromagnetic phase. More
precisely, even if BP decimation would emulate the decimation process perfectly
up until the ferromagnetic phase commences, with probability 1− exp(−Ω(n))
BP decimation would then assign at least k2−kn variables in the set R from
part 4 of Theorem 4 ‘wrongly’ (i.e., differently than they are assigned in any
satisfying assignment). In effect, BP decimation would fail to find a satisfying
assignment, regardless of its subsequent decisions. Finally, in the forced phase

The Decimation Process in Random k-SAT 311

kθ ≤ (1− oρ(1)) ln ρ there is an abundance of unit clauses that make it easy to
read off the values of most variables. However, getting stuck in the ferromagnetic
phase, BP decimation won’t reach this regime.

3 Related Work

BP/SP decimation are inspired by a generic but highly non-rigorous analysis
technique from statistical mechanics called the cavity method [6]. This technique
is primarily destined for the analysis of phase transitions. In [6,11] the cavity
method was used to study the structure of the set S(Φ) of satisfying assignments
(or, more accurately, properties of the Gibbs measure) of the undecimated ran-
dom formula Φ. Thus, the results obtained in that (non-rigorous) work identify
phase transitions solely in terms of the formula density ρ. On the basis of these
results, it was hypothesized that (certain versions of) BP decimation should find
satisfying assignments up to ρ ∼ ln k or even up to ρ ∼ k ln 2 [11]. The argument
given for the latter scenario in [11] is that the key obstacle for BP to approximate
the true marginals is condensation, a phenomenon that from the viewpoint of BP
is very similar to ferromagnetism. In terms of the parameter ρ, the condensation
threshold was (non-rigorously) estimated to occur at ρ = k ln 2 − 3k2−k−1 ln 2.
However, [7] shows that (the basic version of) BP decimation fails to find satis-
fying assignments already for ρ ≥ ρ0, with ρ0 a constant independent of k.

The explanation for this discrepancy is that [6,11] neglect the time parameter
θ = 1 − t/n of the decimation process. As Theorem 4 shows, even for fixed
ρ ≥ ρ0 (independent of k) ferromagnetism occurs as the decimation process
proceeds to θ in the regime (2). This means that decimating variables has a
similar effect on the geometry of the set of satisfying assignments as increasing
the clause/variable density. On a non-rigorous basis an analysis both in terms
of the formula density ρ and the time parameter θ was carried out in [16]. Thus,
our results can be viewed as a rigorous version of parts of [16] (with proofs based
on completely different techniques). In addition, Theorem 7 confirms rigorously
that for ρ, θ in the ferromagnetic phase, BP does not yield the correct marginals.

The present results have no immediate bearing on the conceptually more so-
phisticated SP decimation algorithm. However, we conjecture that SP undergoes
a similar sequence of phase transitions and that the algorithm will not find sat-
isfying assignments for densities ρ ≥ ρ0, with ρ0 a constant independent of k.

Theorem 3 can be viewed as a generalization of the results on random k-
SAT obtained in [1] (which additionally deals with further problems such as
random graph/hypergraph coloring). In [1] we rigorously proved a substantial
part of the results hypothesized in [11] on shattering and rigidity in terms of the
clause/variable density ρ; this improved prior work [2,5,8]. The new aspect of the
present work is that we identify not only a transition for shattering/rigidity, but
also for ferromagnetism and forcing in terms of both the density ρ and the time
parameter θ of the decimation process. As explained in the previous paragraph,
the time parameter is crucial to link these phase transitions to the performance
of algorithms such as BP decimation.

312 A. Coja-Oghlan and A.Y. Pachon-Pinzon

In particular, from Theorem 3 we can recover the main result of [1] on random
k-SAT. Namely, if ρ ≥ ln k+ 2 ln ln k+ 2, then (1) is satisfied even for θ = 1, i.e.,
the undecimated random formula Φ has the properties 1.–4. stated in Theorem 3.
Technically, the present paper builds upon the methods developed in [1].

4 Analyzing the Decimation Process

In the rest of the paper, we are going to sketch the proofs of the main results.
In this section we perform some groundwork to facilitate a rigorous analysis of
the decimation process. The key problem is to get a handle on the following
experiment:

D1. Generate a random formula Φ, conditioned on Φ being satisfiable.
D2. Run the decimation process for t steps to obtain Φt.
D3. Choose a satisfying assignment σt ∈ S(Φt) uniformly at random.
D4. The result is the pair (Φt,σt).

As throughout the paper we only work with densities m/n where Φ is satisfiable
w.h.p., the conditioning in step D1 is essentially void. Recalling that the outcome
of the decimation process is a uniformly random satisfying assignment of Φ, we
see that the following experiment is equivalent to D1–D4:

U1. Generate a random formula Φ, conditioned on Φ being satisfiable.
U2. Choose σ ∈ S(Φ) uniformly at random.
U3. Substitute σ(xi) for xi for 1 ≤ i ≤ t and simplify to obtain a formula Φt.
U4. The result is the pair (Φt,σt), where σt : Vt → {0, 1} , x �→ σ(x).

Fact 8. The two probability distributions induced on formula/assignment pairs
by the two experiments D1–D4 and U1–U4 are identical.

Still, an analysis of U1–U4 seems difficult because of U2: it is unclear how to
analyze (or implement) this step directly. Following [1], we will surmount this
problem by considering yet another experiment.

P1. Choose an assignment σ′ ∈ {0, 1}V uniformly at random.
P2. Choose a formula Φ′ with m clauses that is satisfied by σ′ uniformly at

random.
P3. Substitute σ′(xi) for xi for 1 ≤ i ≤ t and simplify to obtain a formula Φ′

t.
P4. The result is the pair (Φ′

t,σ
′
t), where σ′

t : Vt → {0, 1} , x �→ σ′(x).

The experiment P1–P4 is easy to implement and, in effect, also amenable to
a rigorous analysis. For given the assignment σ′, there are (2k− 1)

(
n
k

)
clauses in

total that evaluate to ‘true’ under σ′, and to generate Φ′ we merely choose m
out of these uniformly and independently. Unfortunately, it is not true that the
experiment P1–P4 is equivalent to U1–U4. However, we will employ a result
from [1] that establishes a connection between these two experiments that is
strong enough to extend many results from P1–P4 to U1–U4.

The Decimation Process in Random k-SAT 313

To state this result, observe that P1–P4 and U1–U4 essentially only differ
in their first two steps. Thus, let Λk(n,m) denote the set of all pairs (Φ, σ),
where Φ is a k-CNF on V = {x1, . . . , xn} with m clauses, and σ ∈ S(Φ). Let
Uk(n,m) denote the probability distribution induced on Λk(n,m) by U1–U2,
and let Pk(n,m) signify the distribution induced by P1–P2; this distribution is
sometimes called the planted model.

Theorem 9 ([1]). Suppose k ≥ 4 and 0 < ρ < k ln 2−k2/2k. Let E ⊂ Λk(n,m).
If PPk(n,m) [E] ≥ 1− exp(−ρn/2k) then PUk(n,m) [E] = 1− o(1).

5 Shattering, Pairwise Distances, and Ferromagnetism

To prove shattering and ferromagnetism, we adapt arguments from [1,2,8] to
the situation where we have the two parameters θ, ρ (rather than just ρ). Let
(Φt,σt) be the (random) outcome of the experiment U1–U4. For 0 ≤ α ≤ 1 let
Xα(Φt,σt) denote the number of satisfying assignments τ ∈ S(Φt) with Ham-
ming distance d(σt, τ) = αθn. To establish the ‘shattering’ part of Theorem 3,
we are going to prove the following

Claim 10. Under the assumptions of Theorem 3 there exist a1 < a2 < 0.49,
a3 > 0 depending only on k, ρ such that w.h.p. we have

Xα(Φt,σt) = 0 for all a1 < α < a2, and (5)
max

α≤0.49
Xα(Φt,σt) < exp(−a3n) · |S(Φt)| . (6)

Claim 10 implies that for the outcome Φt of the first t steps of the decima-
tion process the set S(Φt) shatters w.h.p. For by Fact 8 Claim 10 implies that
w.h.p. almost all σt ∈ S(Φt) are such that (5) and (6) hold. Choose any such
σt,1 ∈ S(Φt) and let R1 = {τ ∈ S(Φt) : d(τ, σt,1) ≤ a1n}. Then, choose σt,2 ∈
S(Φt) \ R1 satisfying (5) and (6), let R2 = {τ ∈ S(Φt) \R1 : d(τ, σt,2) ≤ a1n},
and proceed inductively until all remaining satisfying assignments violate ei-
ther (5) or (6). Let R1, . . . , RN be the classes constructed in this way and let
R0 = S(Φt) \

⋃N
i=1 Ri. An additional (simple) argument is needed to show that

|R0| ≤ exp(−Ω(n))|S(Φt)| w.h.p. The decomposition R0, . . . , RN witnesses that
S(Φt) shatters.

With respect to pairwise distances of satisfying assignments, (6) implies that
w.h.p. only an exponentially small fraction of all satisfying assignments of Φt lies
within distance ≤ 0.49θn of σt. It is not difficult to derive the statement made
in Theorem 3 on the average pairwise distance from this. In addition, the fact
that the average pairwise distance of satisfying assignments is ≥ 0.49θn w.h.p.
implies in combination with a double counting argument the claim about the
marginals Mx(Φt) in Theorems 2 and 3.

314 A. Coja-Oghlan and A.Y. Pachon-Pinzon

To establish Claim 10 we will work with the experiment P1–P4 and use
Theorem 9 to transfer the result to the experiment U1–U4. Thus, let (Φ′

t,σ
′
t)

be the (random) outcome of experiment P1–P4, and assume that k, ρ, θ are as in
Theorem 3. To prove (5) we need to bound Xα(Φ′

t,σ
′
t) from above, for which we

use the ‘first moment method’. Indeed, by standard arguments (similar to those
used in [2]) the expectation of Xα(Φ′

t,σ
′
t) satisfies 1

n ln EXα(Φ′
t,σ

′
t) ≤ ψ(α),

with

ψ(α) = −αθ lnα− (1− α)θ ln(1− α) +
2kρ

k
ln
(

1− 1− (1− αθ)k

2k − 1

)
.

Thus, in order to prove that maxa1<α<a2 Xα(Φ′
t,σ

′
t) = 0 w.h.p. we would just

have to prove that maxa1<α<a2 ψ(α) < 0 (so that Markov’s inequality implies
that Xα = 0 w.h.p.). But as our goal is to prove a result about the Xα(Φt,σt)
(i.e., the experiment U1–U4), we need to prove a slightly stronger bound,
namely maxa1<α<a2 ψ(α) < −ρ/2k. Then Markov’s inequality and Theorem 9
imply the first part of Claim 10. Via elementary calculus, one can show that the
aforementioned bound holds with a1 = exp(2 − ρ) − ε and a2 = exp(2 − ρ) + ε
for a sufficiently small ε > 0.

To prove (6) we bound EXα from above by a similar first moment argument.
But in addition, we need a lower bound on |S(Φt)|. To derive this, we need

Theorem 11 ([2]). Assume k ≥ 4 and ρ ≤ k ln 2 − k2/2k. Then w.h.p.
1
n ln |S(Φ)| ≥ ln 2 + 2k ρ

k ln(1− 2−k)− 0.99ρ/2k.

Together with a double counting argument, Theorem 11 implies the part 2 of
Claim 10. The ‘ferromagnetism’ bit of Theorem 4 follows from similar arguments.

6 Rigid Variables

Assume that k, ρ, θ satisfy the assumptions of Theorem 3. Let (Φt,σt) be the
(random) outcome of U1–U4. Our goal is to show that w.h.p. most variables
x ∈ Vt are rigid.

What is the basic obstacle that makes it difficult to ‘flip’ the value of x?
Observe that we can simply assign x the opposite value 1 − σt(x), unless Φt

has a clause C in which either x or x̄ is the only literal that is true under σt.
If there is such a clause, we say that x supports C. But even if x supports a
clause C it might be easy to flip. For instance, if C features some variable y �= x
that does not support a clause, then we could just flip both x, y simultaneously.
Thus, to establish the existence of Ω(n)-rigid variables we need to analyze the
distribution of the number of clauses that a variable supports, the probability
that these clauses only consists of variables that support further clauses, the
probability that the same is true of those clauses, etc.

This analysis can be performed fairly neatly for the outcome (Φ′
t,σ

′
t) of the

experiment P1–P4. Let us sketch how this works, and why rigidity occurs at
kθ = exp((1 + o(1))ρ) (cf. (1)). For a variable x ∈ Vt we let Sx be the number of

The Decimation Process in Random k-SAT 315

clauses supported by x. Given the assignment σ′ chosen in step P1, there are
a total of

(
n−1
k−1

)
possible clauses that x supports. Since in step P2 we include

m out of the (2k − 1)
(
n
k

)
possible clauses satisfied under σ′ uniformly and inde-

pendently, we get E [Sx] = m
(
n−1
k−1

)
/
(
(2k − 1)

(
n
k

))
= ρ/(1 − 2−k) ≥ ρ. In fact,

Sx is binomially distributed. Hence, P [Sx = 0] ≤ exp(−ρ). Thus, the expected
number of variables x ∈ Vt with Sx = 0 is ≤ θn exp(−ρ). Furthermore, if we
condition on Sx = j ≥ 1, then the actual clauses C1, . . . , Cj supported by x are
just independently uniformly distributed over the set of all

(
n−1
k−1

)
possible clauses

that x supports. Therefore, the expected number of variables y ∈ Vt with Sy = 0
occurring in one of these clauses Ci is (1 + o(1))(k− 1) · θ exp(−ρ) ≤ kθ exp(−ρ).
Hence, if θ is as in (1), then this number is ≤ exp(−2)/ρ, i.e., ‘small’ for ρ ≥ ρ0
sufficiently big. Thus, we would expect that most clauses supported by x indeed
consist exclusively of variables that support other clauses. Hence, for θ as in (1)
we can expect most variables to be rigid.

Let us now indicate how this argument can be carried out in detail. Analyzing
the distribution of the variables Sx in the experiment P1–P4 and extending the
result to the experiment U1–U4 via Theorem 9, and setting ζ = ρ2/ exp(ρ), we
obtain the following.

Proposition 1. Suppose that k, ρ, θ satisfy the assumptions of Theorem 3. Then
w.h.p. in a random pair (Φt,σt) generated by the experiment U1–U4 no more
than 2ζθn variables in Vt support fewer than three clauses,

To establish rigidity, we need to show that most variables support clauses in
which only variables occur that support other clauses. To express this, we say
that S ⊂ Vt is t-self-contained if each x ∈ S supports at least two clauses of Φt

that contain variables from S only. From Proposition 1 we can derive

Proposition 2. Suppose that k, ρ, θ satisfy the assumptions of Theorem 3. The
outcome (Φt,σt) of U1–U4 has a t-self-contained set of size (1 − 3ζ)θn w.h.p.

Suppose that (Φt,σt) has a self-contained set S of size (1 − 3ζ)θn. To flip the
value of a variable x ∈ S we need to also flip one other variable from each of the
(at least two) clauses that x supports and that consist of variables from S only.
As each of these two variables, in turn, supports at least two clauses comprised
of variables from S only, we need to also flip further variables in those. But
these variables are again contained in S. This suggests that attempting to flip x
will entail an avalanche of further flips. Indeed, the expansion properties of the
random formula Φt imply the following.

Proposition 3. With k, ρ, θ as in Theorem 3 there is χ = χ(k, ρ) > 0 such that
the outcome (Φt,σt) of U1–U4 has the following property w.h.p.: all variables
that are contained in a t-self-contained set are χn-rigid.

Propositions 2 and 3 directly imply part 1 of Theorem 3. Self-contained sets also
play a key role in the proof of Theorem 4 (details omitted).

316 A. Coja-Oghlan and A.Y. Pachon-Pinzon

References

1. Achlioptas, D., Coja-Oghlan, A.: Algorithmic barriers from phase transitions. In:
Proc. 49th FOCS, pp. 793–802 (2008)

2. Achlioptas, D., Coja-Oghlan, A., Ricci-Tersenghi, F.: On the solution space geom-
etry of random formulas. Random Structures and Algorithms 38, 251–268 (2011)

3. Achlioptas, D., Moore, C.: Random k-SAT: two moments suffice to cross a sharp
threshold. SIAM Journal on Computing 36, 740–762 (2006)

4. Achlioptas, D., Peres, Y.: The threshold for random k-SAT is 2k ln 2−O(k). Journal
of the AMS 17, 947–973 (2004)

5. Achlioptas, D., Ricci-Tersenghi, F.: Random formulas have frozen variables. SIAM
J. Comput. 39, 260–280 (2009)

6. Braunstein, A., Mézard, M., Zecchina, R.: Survey propagation: an algorithm for
satisfiability. Random Structures and Algorithms 27, 201–226 (2005)

7. Coja-Oghlan, A.: On belief propagation guided decimation for random k-SAT. In:
Proc. 22nd SODA, pp. 957–966 (2011)

8. Daudé, H., Mézard, M., Mora, T., Zecchina, R.: Pairs of SAT-assignments in ran-
dom Boolean formulae. Theoretical Computer Science 393, 260–279 (2008)

9. Frieze, A., Suen, S.: Analysis of two simple heuristics on a random instance of
k-SAT. Journal of Algorithms 20, 312–355 (1996)

10. Kroc, L., Sabharwal, A., Selman, B.: Message-passing and local heuristics as deci-
mation strategies for satisfiability. In: Proc. 24th SAC, pp. 1408–1414 (2009)

11. Krzakala, F., Montanari, A., Ricci-Tersenghi, F., Semerjian, G., Zdeborova, L.:
Gibbs states and the set of solutions of random constraint satisfaction problems.
Proc. National Academy of Sciences 104, 10318–10323 (2007)

12. Mertens, S., Mézard, M., Zecchina, R.: Threshold values of random K-SAT from
the cavity method. Random Struct. Alg. 28, 340–373 (2006)

13. Mézard, M., Parisi, G., Zecchina, R.: Analytic and algorithmic solution of random
satisfiability problems. Science 297, 812–815 (2002)

14. Mitchell, D., Selman, B., Levesque, H.: Hard and easy distribution of SAT prob-
lems. In: Proc. 10th AAAI, pp. 459–465 (1992)

15. Montanari, A., Ricci-Tersenghi, F., Semerjian, G.: Solving constraint satisfaction
problems through Belief Propagation-guided decimation. In: Proc. 45th Allerton
(2007)

16. Ricci-Tersenghi, F., Semerjian, G.: On the cavity method for decimated random
constraint satisfaction problems and the analysis of belief propagation guided dec-
imation algorithms. J. Stat. Mech., 09001 (2009)

Improved Bounds for the Randomized Decision

Tree Complexity of Recursive Majority�

Frédéric Magniez1, Ashwin Nayak2,��, Miklos Santha1,3,� � �, and David Xiao1,4

1 LIAFA, Univ. Paris 7, CNRS; Paris, France
magniez@liafa.jussieu.fr

2 C&O and IQC, U. Waterloo; and Perimeter Institute; Waterloo, ON, Canada
ashwin.nayak@uwaterloo.ca

3 Centre for Quantum Technologies, National U. of Singapore
santha@lri.fr

4 Univ. Paris-Sud; Orsay, France
dxiao@lri.fr

Abstract. We consider the randomized decision tree complexity of the
recursive 3-majority function. For evaluating height h formulae, we prove
a lower bound for the δ-two-sided-error randomized decision tree com-
plexity of (1 − 2δ)(5/2)h, improving the lower bound of (1 − 2δ)(7/3)h

given by Jayram, Kumar, and Sivakumar (STOC ’03). Second, we im-
prove the upper bound by giving a new zero-error randomized decision
tree algorithm that has complexity at most (1.007) · 2.64946h . The pre-
vious best known algorithm achieved complexity (1.004) · 2.65622h . The
new lower bound follows from a better analysis of the base case of the
recursion of Jayram et al. The new algorithm uses a novel “interleaving”
of two recursive algorithms.

1 Introduction

Decision trees form a simple model for computing boolean functions by succes-
sively reading the input bits until the value of the function can be determined.
In this model, the only cost is the number of input bits queried. Formally, a
deterministic decision tree algorithm A on n variables is a binary tree in which
each internal node is labeled with an input variable xi, and the leaves of the tree
are labeled by either 0 or 1. Each internal node has two outgoing edges, labeled
either by 0 or 1. For every input x = x1 . . . xn, there is a unique path in the tree
leading from the root to a leaf: if an internal node is labeled by xi, we follow
either the 0 or the 1 outgoing edge according to the value of xi. The value of the
algorithm A on input x, denoted by A(x), is the label of the leaf on this unique

� Partially supported by the French ANR Defis project ANR-08-EMER-012
(QRAC) and the European Commission IST STREP project 25596 (QSC).

�� Partially supported by NSERC Canada. Research at PI is supported by the Gvt of
Canada through Industry Canada and by the Province of Ontario through MRI.

� � � Research at the Centre for Quantum Technologies is funded by the Singapore
Ministry of Education and the National Research Foundation.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 317–329, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

318 F. Magniez et al.

path. The algorithm A computes a boolean function f : {0, 1}n → {0, 1} if for
every input x, we have A(x) = f(x).

We define the cost C(A, x) of a deterministic decision tree algorithm A on
input x as the number of input bits queried by A on x. Let Pf be the set of
all deterministic decision tree algorithms which compute f . The deterministic
complexity of f is D(f) = minA∈Pf

maxx∈{0,1}n C(A, x). Since every function can
be evaluated after reading all the input variables, D(f) ≤ n. In an extension of
the deterministic model, we can also permit randomization in the computation.

A randomized decision tree algorithm A on n variables is a distribution over
all deterministic decision tree algorithms on n variables. Given an input x, the
algorithm first samples a deterministic tree B ∈R A, then evaluates B(x). The
error probability of A in computing f is given by maxx∈{0,1}n PrB∈RA[B(x) �=
f(x)]. The cost of a randomized algorithm A on input x, denoted also by C(A, x),
is the expected number of input bits queried by A on x. Let Pδ

f be the set of
randomized decision tree algorithms computing f with error at most δ. The
two-sided bounded error randomized complexity of f with error δ ∈ [0, 1/2) is
Rδ(f) = minA∈Pδ

f
maxx∈{0,1}n C(A, x).

We write R(f) for R0(f). By definition, for all 0 ≤ δ < 1/2, it holds that
Rδ(f) ≤ R(f) ≤ D(f), and it is also known [1, 2, 12] that D(f) ≤ R(f)2, and
that for all constant δ ∈ (0, 1/2), D(f) ∈ O(Rδ(f)3) [7].

Considerable attention in the literature has been given to the randomized
complexity of functions computable by read-once formulae, which are boolean
formulae in which every input variable appears only once. For a large class of
well balanced formulae with NAND gates the exact randomized complexity is
known. In particular, let NANDh denote the complete binary tree of height h
with NAND gates, where the inputs are at the n = 2h leaves. Snir [11] has shown
that R(NANDh) ∈ O(nc) where c = log2

(
1+

√
33

4

)
≈ 0.753. A matching Ω(nc)

lower bound was obtained by Saks and Wigderson [9], and extended to Monte-
Carlo algorithms by Santha [10]. Since D(NANDh) = 2h = n this implies that
R(NANDh) ∈ Θ(D(NANDh)c). Saks and Wigderson conjectured that for every
boolean function f and constant δ ∈ [0, 1/2), Rδ(f) ∈ Ω(D(f)c).

After further progress due to Heiman, Newman, and Wigderson [3] and
Heiman and Wigderson [4], one would have hoped that the simple model of
decision tree algorithms might shed more light on the power of randomness.
But surprisingly, we know the exact randomized complexity of very few boolean
functions. In particular, the randomized complexity of the recursive 3-majority
function (3-MAJh) is still open. This function, proposed by Boppana, was one
of the earliest examples where randomized algorithms were found to be more
powerful than deterministic decision trees [9]. It is a read-once formula on 3h

variables given by the complete ternary tree of height h whose internal vertices
are majority gates. It is easy to check that D(3-MAJh) = 3h, but there is a
naive randomized recursive algorithm for 3-MAJh that performs better: pick two
random children of the root and recursively evaluate them, then evaluate the
third child iff the value is not yet determined. This has zero-error randomized
complexity (8/3)h. However, it was already observed by Saks and Wigderson [9]

Improved Bounds for the Randomized Decision Tree Complexity 319

that one can do even better than this naive algorithm. As for lower bounds, that
reading 2h variables is necessary for zero-error algorithms is easy to show. In
spite of some similarities with the NANDh function, no progress was reported on
the randomized complexity of 3-MAJ for 17 years. In 2003, Jayram, Kumar, and
Sivakumar [5] proposed an explicit randomized algorithm that achieves com-
plexity (1.004) · 2.65622h, and beats the naive recursion. (Note, however, that
the recurrence they derive in [5, Appendix B] is incorrect.) They also prove a
(1− 2δ)(7/3)h lower bound for the δ-error randomized decision tree complexity
of 3-MAJh. In doing so, they introduce a powerful combinatorial technique for
proving decision tree lower bounds.

In this paper, we considerably improve the lower bound obtained in [5], by
proving that Rδ(3-MAJh) ≥ (1−2δ)(5/2)h. We also improve the upper bound by
giving a new zero-error randomized decision tree algorithm that has complexity
at most (1.007)2.64946h.

Theorem 1. For all δ ∈ [0, 1/2], we have (1 − 2δ)(5/2)h ≤ Rδ(3-MAJh) ≤
(1.007)2.64946h.

In contrast to the randomized case, the bounded-error quantum query complexity
of 3-MAJh is known more precisely; it is in Θ(2h) [8].

New lower bound. For the lower bound they give, Jayram et al. consider
a complexity measure related to the distributional complexity of 3-MAJh with
respect to a specific hard distribution (cf. Sect. 2.3). The focus of the proof is a
relationship between the complexity of evaluating formulae of height h to that
of evaluating formulae of height h − 1. They derive a sophisticated recurrence
relation between these two quantities, that finally implies that Rδ(3-MAJh) ≥
(1− 2δ)(2 + q)h, where (1− 2δ)qh is a lower bound on the probability pδ

h that a
randomized algorithm with error at most δ queries a special variable, called the
“absolute minority”, on inputs drawn from the hard distribution. They observe
that any randomized decision tree with error at most δ must query at least one
variable with probability 1− 2δ. This variable has probability 3−h of being the
absolute minority, so q ≥ 1/3, and the above lower bound follows.

We obtain the new lower bound by proving that pδ
h ≥ (1−2δ)2−h, i.e., q ≥ 1/2,

which immediately implies the improved lower bound for Rδ(3-MAJh). We ex-
amine the relationship between pδ

h and pδ
h−1, by encoding a height h−1 instance

into a height h instance, and using an algorithm for the latter. Analyzing our
encoding requires understanding the behavior of all decision trees on 3 variables,
and this can be done by exhaustively considering all such trees.

One can ask whether this is the best possible recurrence, and it may be possi-
ble to improve it by, say, encoding height h−2 instances into height h instances.
Unfortunately we are unable to prove a claim analogous to Claim 3 in the case
of such a recurrence, as the number of possible decision trees for 9 variables is
too large to check exhaustively by hand. We nevertheless conjecture that such
a claim exists for a two-level encoding scheme. More details will be provided in
the journal version.

320 F. Magniez et al.

New algorithm. The naive algorithm and the algorithm of Jayram et al. are
examples of depth-k recursive algorithms for 3-MAJh, for k = 1, 2, respectively. A
depth-k recursive algorithm is a collection of subroutines, where each subroutine
evaluates a node (possibly using information about other previously evaluated
nodes), satisfying the following constraint: when a subroutine evaluates a node v,
it is only allowed to call other subroutines to evaluate children of v at depth at
most k, but is not allowed to call subroutines or otherwise evaluate children
that are deeper than k. (Our notion of depth-1 is identical to the terminology
“directional” that appears in the literature. In particular, the naive recursive
algorithm is a directional algorithm.)

We present an improved depth-two recursive algorithm. To evaluate the root
of the majority formula, we recursively evaluate one grandchild from each of
two distinct children of the root. The grandchildren “give an opinion” about
the values of their parents. The opinion guides the remaining computation in
a natural manner: if the opinion indicates that the children are likely to agree,
we evaluate the two children in sequence to confirm the opinion, otherwise we
evaluate the third child. If at any point the opinion of the nodes evaluated so
far changes, we modify our future computations accordingly. A key innovation is
the use of an algorithm optimized to compute the value of a partially evaluated
formula. In our analysis, we recognize when incorrect opinions are formed, and
take advantage of the fact that this happens with smaller probability.

We do not believe that the algorithm we present here is optimal. Indeed,
we conjecture that even better algorithms exist that follow the same high level
intuition applied for depth-k recursion for k > 2. However, it seems new insights
are required to analyze the performance of deeper recursions, as the formulas
describing their complexity become unmanageable for k > 2.

Organization. We prepare the background for our main results Sect. 2. In
Sect. 3 we prove the new lower bound for 3-MAJ. The new algorithm for the
problem is described and analyzed in Sect. 4.

2 Preliminaries

We write u ∈R D to state that u is sampled from the distribution D. If X is
a finite set, we identify X with the uniform distribution over X , and so, for
instance, u ∈R X denotes a uniform element of X .

2.1 Distributional Complexity

A variant of the randomized complexity we use is distributional complexity. Let
Dn be the set of distributions over {0, 1}n. The cost C(A,D) of a randomized
decision tree algorithm A on n variables with respect to a distribution D ∈ Dn

is the expected number of bits queried by A when x is sampled from D and
over the random coins of A. The distributional complexity of a function f on
n variables for δ two-sided error is Δδ(f) = maxD∈Dn minA∈Pδ

f
C(A,D). The

following observation is a well established route to proving lower bounds on
worst case complexity.

Improved Bounds for the Randomized Decision Tree Complexity 321

Proposition 2. Rδ(f) ≥ Δδ(f).

2.2 The 3-MAJh Function and the Hard Distribution

Let MAJ(x) denote the boolean majority function of its input bits. The ternary
majority function 3-MAJh is defined recursively on n = 3h variables, for every
h ≥ 0. We omit the height h when it is obvious from context. For h = 0 it is the
identity function. For h > 0, let x be an input of length n and let x(1), x(2), x(3)

be the first, second, and third n/3 variables of x. Then

3-MAJ(x) = MAJ(3-MAJ(x(1)), 3-MAJ(x(2)), 3-MAJ(x(3))).

In other terms, 3-MAJh is defined by the read-once formula on the complete
ternary tree Th of height h in which every internal node is a majority gate and
the leaves are the input variables. For every node v in Th different from the root,
let P (v) denote the parent of v. We say that v and w are siblings if P (v) = P (w).
For any node v in Th, let Z(v) denote the set of variables associated with the
leaves in the subtree rooted at v. We say that a node v is at depth d in Th if the
distance between v and the root is d. The root is therefore at depth 0, and the
leaves are at depth h.

We now define recursively, for every h ≥ 0, the set Hh of hard inputs of height
h. The hard inputs consist of instances for which at each node v in the ternary
tree, one child of v has value different from the value of v. For b ∈ {0, 1}, let
Hb

h = {x ∈ Hh : 3-MAJh(x) = b}. The hard distribution on inputs of height h is
defined to be the uniform distribution over Hh.

For an x ∈ Hh, the minority path M(x) is the path, starting at the root,
obtained by following the child whose value disagrees with its parent. For 0 ≤
d ≤ h, the node of M(x) at depth d is called the depth d minority node, and
is denoted by M(x)d. We call the leaf M(x)h of the minority path the absolute
minority of x, and denote it by m(x).

2.3 The Jayram-Kumar-Sivakumar Lower Bound

For a deterministic decision tree algorithm B computing 3-MAJh, let LB(x)
denote the set of variables queried by B on input x. Recall that Pδ

3-MAJh
is

the set of all randomized decision tree algorithms that compute 3-MAJh with
two-sided error at most δ. Jayram et al. define the function Iδ(h, d), for d ≤ h:

Iδ(h, d) = min
A∈Pδ

3-MAJh

Ex∈RHh,B∈RA[|Z(M(x)d) ∩ LB(x)|].

In words, it is the minimum over algorithms computing 3-MAJh, of the ex-
pected number of queries below the dth level minority node, over inputs from
the hard distribution. Note that Iδ(h, 0) = minA∈Pδ

3-MAJh

C(A,Hh), and therefore

by Proposition 2, Rδ(3-MAJh) ≥ Iδ(h, 0).
We define pδ

h = Iδ(h, h), which is the minimal probability that a δ-error
algorithm A queries the absolute minority of a random hard x of height h.

322 F. Magniez et al.

Jayram et al. prove a recursive lower bound for Iδ(h, d) using information
theoretic arguments. A more elementary proof can be found in Ref. [6].

Theorem 3 (Jayram, Kumar, Sivakumar [5]). For all 0 ≤ d < h:

Iδ(h, d) ≥ Iδ(h, d+ 1) + 2Iδ(h− 1, d).

A simple computation using their recursion gives Iδ(h, 0) ≥ ∑h
i=0

(
h
i

)
2h−ipδ

i .
Putting this together with the fact that Rδ(3-MAJh) ≥ Iδ(h, 0), we get the
following corollary:

Corollary 4. Let q, a > 0 such that pδ
i ≥ a · qi for all i ∈ {0, 1, 2, . . . , h}. Then

Rδ(3-MAJh) ≥ a(2 + q)h.

As mentioned in Sect. 1, Jayram et al. obtain the (1 − 2δ)(7/3)h lower bound
from this corollary by observing that pδ

h ≥ (1− 2δ)(1/3)h.

3 Improved Lower Bound

Theorem 5. For every error δ > 0 and height h ≥ 0, we have pδ
h ≥ (1−2δ)2−h.

Proof. We prove this theorem by induction. Clearly, pδ
0 ≥ 1− 2δ. It then suffices

to show that 2pδ
h ≥ pδ

h−1 for h ≥ 1. We do so by reduction as follows: let A be
a randomized algorithm that achieves the minimal probability pδ

h for height h
formulae. We construct a randomized algorithm A′ for height h − 1 formulae
such that the probability that A′ errs is at most δ, and A′ queries the absolute
minority with probability at most 2pδ

h. Since pδ
h−1 is the minimum probability

of querying the absolute minority over all randomized algorithms on inputs of
height h− 1 with error at most δ, this implies that 2pδ

h ≥ pδ
h−1.

We now specify the reduction. For the sake of simplicity, we omit the error δ
in the notation. We use the following definition:

Definition 6 (One level encoding scheme). A one level encoding scheme is
a bijection ψ : Hh−1×{1, 2, 3}3h−1 → Hh, such that for all (y, r) in the domain,
3-MAJh−1(y) = 3-MAJh(ψ(y, r)).

Let c : {0, 1} × {1, 2, 3} → H1 satisfying b = MAJ(c(b, s)) for all inputs (b, s).
Define the one level encoding scheme ψ induced by c as follows: ψ(y, r) = x ∈ Hh

such that for all 1 ≤ i ≤ 3h−1, (x3i−2, x3i−1, x3i) = c(yi, ri).

To define A′, we use the one level encoding scheme ψ induced by the following
function: c(y, 1) = y01, c(y, 2) = 1y0, and c(y, 3) = 01y.

On input y, algorithm A′ picks a uniformly random string r ∈ {1, 2, 3}3h−1
,

and runs A on x = ψ(y,r). Observe that A′ has error at most δ as 3-MAJh−1(y) =
3-MAJh(ψ(y, r)) for all r, and A has error at most δ. We claim now:

2 Pr
A, x∈RHh

[A(x) queries xm(x)] ≥ Pr
A′, (y,r)∈RH′

h

[A′(y, r) queries ym(y)] (1)

where H′
h is the uniform distribution over Hh−1 × {1, 2, 3}3h−1

.

Improved Bounds for the Randomized Decision Tree Complexity 323

We prove this inequality by taking an appropriate partition of the probabilistic
space of hard inputs Hh, and prove Eq. 1 separately, on each set in the partition.
For h = 1, the two classes of the partition are H0

1 and H1
1 . For h > 1, the

partition consists of the equivalence classes of the relation ∼ defined by x ∼ x′
if xi = x′i for all i such P (i) �= P (m(x)) in the tree T .

Because ψ is a bijection, observe that this also induces a partition of (y, r),
where (y, r) ∼ (y′, r′) iff ψ(y, r) ∼ ψ(y′, r′). Also observe that every equivalence
class contains three elements. Let S be an equivalence class of ∼. Then Eq. 1
follows from the following stronger statement: for every S, and for all B in the
support of A, it holds that

2 Pr
x∈RHh

[B(x) queries xm(x) | x ∈ S]

≥ Pr
(y,r)∈RH′

h

[B′(y, r) queries ym(y) | ψ(y, r) ∈ S] ,
(2)

where B′ is the algorithm that computes x = ψ(y, r) and then evaluates B(x).
The same proof applies to all sets S, but to simplify the notation, we consider

a set S that satisfies the following: for x ∈ S, we have m(x) ∈ {1, 2, 3} and
that xm(x) = 1. Observe that for each j > 3, the jth bits of all three elements
in S coincide. Therefore, the restriction of B to the variables (x1, x2, x3), when
looking only at the three inputs in S, is a well-defined decision tree on three
variables. We call this restriction B1, and formally it is defined as follows: for
each query xj made by B for j > 3, B1 simply uses the value of xj that is
shared by all x ∈ S and that we hard-wire into B1; for each query xj made by
B where j ∈ {1, 2, 3}, B1 actually queries xj . Note that the restriction B1 does
not necessarily compute 3-MAJ1(x1x2x3), for two reasons. Firstly, B1 is derived
from B, which may err on particular inputs. But even if B(x) correctly computes
3-MAJh(x), it might happen that B never queries any of x1, x2, x3, or it might
query one and never query a second one, etc.

For any x ∈ S, recall that we write (y, r) = ψ−1(x). It holds for our choice of
S that m(y) = 1 because we assumed m(x) ∈ {1, 2, 3} and also y1 = ym(y) = 0
because we assumed xm(x) = 1.

Observe that, for inputs x ∈ S, B queries xm(x) iff B1 queries the minority
among x1, x2, x3. Also, B′(y, r) queries ym(y) iff B1(ψ(0, r1)) queries xr1 (cf. def-
inition of c used by A′). Furthermore, the distribution of x1x2x3 when x ∈R S is
uniform over H0

1. Similarly, the distribution of r1 over uniform (y, r) conditioned
on ψ(y, r) ∈ S is identical to that of (0, r1) = ψ−1(x1x2x3) for x1x2x3 ∈R H0

1.
Thus Eq. 2 is equivalent to:

2 Pr
x∈RH0

1

[B1(x) queries xm(x)]

≥ Pr
x∈RH0

1

[B1(x) queries xr1 where (0, r1) = ψ−1(x)] .
(3)

Observe that Eq. 3 holds trivially if B1 makes no queries, since then both
sides equal 0. Therefore it is enough to consider only the case where B1 makes
at least one query. For any decision tree algorithm Q on three bits, which makes

324 F. Magniez et al.

at least one query, we define the number ρQ as:

ρQ =
Prx∈RH0

1
[Q(x) queries xm(x)]

Prx∈RH0
1
[Q(x) queries xr1 where (0, r1) = ψ−1(x)]

.

Note that the denominator is at least 1/3, since Q queries xr1 when x is such
that r1 is the index of the first query. We prove that ρQ is always at least 1/2,
by describing a decision tree algorithm Q′ which minimizes ρQ. The algorithm
Q′ is defined as follows: first query x1, if x1 = 0, stop, else if x1 = 1, query x2

and stop.

Claim. The algorithm Q′ gives ρQ′ = 1/2, and this is the minimal possible ρQ

among all deterministic decision tree algorithms making at least one query.

To prove the claim we first evaluate ρQ′ . The numerator equals 1/3 since the
minority is queried only when x = 100, while the denominator equals 2/3 since
xr1 is queried when x is 001 or 100.

Let now be Q any algorithm which makes at least one query, we prove that
ρQ ≥ 1/2. Without loss of generality, we may suppose that the first query is x1.
We distinguish two cases.

If Q makes a second query when the first query is evaluated to 0 then the
numerator is at least 2/3 since for the second query there is also an x for which
m(x) is the index of this query. But the denominator is at most 1, and therefore
in that case ρQ ≥ 2/3. If Q does not make a second query when the first query
is evaluated to 0 then the denominator is at most 2/3 since for x = 010, we have
r1 = 3, but x3 is not queried. Since the numerator is at least 1/3, we have in
that case ρQ ≥ 1/2.

To handle a general S, we replace {1, 2, 3} with m(x) and its two siblings. For
S such that x ∈ S satisfies xm(x) = 0, the optimal algorithm Q′ is the same as
the one described above, except that each 0 is changed to 1 and vice versa.

Therefore Eq. 3 holds for every B1, which implies the theorem. ��
Combining Corollary 4 and Theorem 5, we obtain the following.

Corollary 7. Rδ(3-MAJh) ≥ (1− 2δ)(5/2)h.

4 Improved Depth-Two Algorithm

In this section, we present a new zero-error algorithm for computing 3-MAJh.
For the key ideas behind it, we refer the reader to Sect. 1.

As before, we identify the formula 3-MAJh with a complete ternary tree of
height h. In the description of the algorithm we adopt the following convention.
Once the algorithm has determined the value b of the subformula rooted at a
node v of the formula 3-MAJh, we also use v to denote this bit value b.

The algorithm is a combination of two depth-2 recursive algorithms. The first
one, Evaluate, takes a node v of height h(v), and evaluates the subformula
rooted at v. The interesting case, when h(v) > 1, is depicted in Fig. 1. The first

Improved Bounds for the Randomized Decision Tree Complexity 325

x1 = x2
E(x1), E(x2)

E(y3)

C(y1, x1) C(y2, x2) Output y1

Output y3

Output y3

Output y2

Output y3

Output MAJ(y1, y2, y3)

C(yb, xb)

C(y3-b, x3-b)

Set b ∈ {1, 2}
such that y3 = yb

E(y3)

E(y3)

C(y2, x2)

y1 = x2 y1 = y2

y1 ≠ x2

y1 ≠ y2

y1 = y3

y1 ≠ y3

x1 ≠ x2

y3 = yb

y3 ≠ yb

x1 x2

y2y1 y3

v

Fig. 1. Pictorial representation of algorithm Evaluate on a subformula of
height h(v) ≥ 2 rooted at v. It is abbreviated by the letter ‘E’ when called recursively
on descendants of v. The letter ‘C’ abbreviates the second algorithm Complete.

step, permuting the input, means applying a random permutation to the children
y1, y2, y3 of v and independent random permutations to each of the three sets of
grandchildren.

The second algorithm, Complete, is depicted in Fig. 2. It takes two argu-
ments v, y1, and completes the evaluation of the subformula 3-MAJh rooted at
node v, where h(v) ≥ 1, and y1 is a child of v whose value has already been
evaluated. The first step, permuting the input, means applying a random per-
mutation to the children y2, y3 of v and independent random permutations to
each of the two sets of grandchildren of y2, y3. Note that this is similar in form
to the depth 2 algorithm of [5].

To evaluate an input of height h, we invoke Evaluate(r), where r is the root.
The correctness of the two algorithms follows by inspection—they determine the
values of as many children of the node v as is required to compute the value of v.

For the complexity analysis, we study the expected number of queries they
make for a worst-case input of fixed height h. (A priori , we do not know if
such an input is a hard input as defined in Section 2.2.) Let T (h) be the worst-
case complexity of Evaluate(v) for v of height h. For Complete(v, y1), we
distinguish between two cases. Let y1 be the child of node v that has already
been evaluated. The complexity given that y1 is the minority child of v is denoted
by Sm, and the complexity given that it is a majority child is denoted by SM.

The heart of our analysis is the following set of recurrences that relate T, SM

and Sm to each other.

Lemma 8. It holds that Sm(1) = 2, SM(1) = 3
2 , T (0) = 1, and T (1) = 8

3 .

326 F. Magniez et al.

Output y3

E(x2) C(y2, x2)

E(y3)

C(y2, x2) Output y2

Output y3E(y3)

Output y1
y1 = x2 y1 = y2

y1 ≠ y2y1 ≠ x2

y3 = y1

y3 ≠ y1

x2

y2y1 y3

v

Fig. 2. Pictorial representation of algorithm Complete on a subformula of height h ≥ 1
rooted at v one child y1 of which has already been evaluated. It is abbreviated by the letter
‘C’ when called recursively on descendants of v. Calls to Evaluate are denoted ‘E’.

For all h ≥ 1, it holds that

SM(h) ≤ Sm(h) and SM(h) ≤ T (h) . (4)

Finally, for all h ≥ 2, it holds that

Sm(h) = T (h− 2) + T (h− 1) +
2
3
SM(h− 1) +

1
3
Sm(h− 1) , (5)

SM(h) = T (h− 2) +
2
3
T (h− 1) +

1
3
SM(h− 1) +

1
3
Sm(h− 1) , and (6)

T (h) = 2T (h− 2) +
23
27
T (h− 1) +

26
27
SM(h− 1) +

18
27
Sm(h− 1) . (7)

Proof. We prove these relations by induction. The bounds for h ∈ {0, 1} follow
immediately by inspection of the algorithms. To prove the statement for h ≥
2, we assume the recurrences hold for all l < h. Observe that it suffices to
prove Equations (5), (6), (7) for height h, since the values of the coefficients
immediately imply that Inequalities (4) holds for h as well.

Equation (5). Since Complete(v, y1) always starts by computing the value
of a grandchild x2 of v, we get the first term T (h − 2) in Eq. (5). It remains
to show that the worst-case complexity of the remaining queries is T (h − 1) +
(2/3)SM(h− 1) + (1/3)Sm(h− 1).

Since y1 is the minority child of v, we have that y1 �= y2 = y3. The complexity
of the remaining steps is summarized in the next table in the case that the
three children of node y2 are not all equal. In each line of the table, the worst
case complexity is computed given the event in the first cell of the line. The
second cell in the line is the probability of the event in the first cell over the
random permutation of the children of y2. This gives a contribution of T (h −
1) + (2/3)SM(h− 1) + (1/3)Sm(h− 1).

Improved Bounds for the Randomized Decision Tree Complexity 327

Sm(h) (we have y1 �= y2 = y3)
event probability complexity
y2 = x2 2/3 T (h− 1) + SM(h− 1)
y2 �= x2 1/3 T (h− 1) + Sm(h− 1)

This table corresponds to the worst case, as the only other case is when all
children of y2 are equal, in which the cost is T (h − 1) + SM(h − 1). Applying
Inequality (4) for h − 1, this is a smaller contribution than the case where the
children are not all equal.

Therefore the worst case complexity for Sm is given by Eq. (5). We follow
the same convention and appeal to this kind of argument also while deriving the
other two recurrence relations.

Equation (6). Since Complete(v, y1) always starts by computing the value of
a grandchild x2 of v, we get the first term T (h− 2) in Eq. (6). There are then
two possible patterns, depending on whether the three children y1, y2, y3 of v
are all equal. If y1 = y2 = y3, we have in the case that all children of y2 are not
equal that:

SM(h) if y1 = y2 = y3
event probability complexity
y2 = x2 2/3 SM(h− 1)
y2 �= x2 1/3 T (h− 1)

As in the above analysis of Eq. (5), applying Inequalities (4) for height h− 1
implies that the complexity in the case when all children of y2 are equal can only
be smaller, therefore the above table describes the worst-case complexity for the
case when y1 = y2 = y3.

If y1, y2, y3 are not all equal, we have two events y1 = y2 �= y3 or y1 = y3 �= y2
of equal probability as y1 is a majority child of v. This leads to the following
tables for the case where the children of y2 are not all equal

SM(h) given y1 = y2 �= y3
event prob. complexity
y2 = x2 2/3 SM(h− 1)
y2 �= x2 1/3 T (h− 1) + Sm(h− 1)

SM(h) given y1 = y3 �= y2
event prob. complexity
y2 = x2 2/3 T (h− 1)
y2 �= x2 1/3 T (h− 1) + Sm(h− 1)

As before, one can apply Inequalities (4) for height h−1 to see that the worst
case occurs when the children of y2 are not all equal.

From the above tables, we deduce that the worst-case complexity occurs on
inputs where y1, y2, y3 are not all equal. This is because one can apply Inequali-
ties (4) for height h− 1 to see that, line by line, the complexities in the table for
the case y1 = y2 = y3 are upper bounded by the corresponding entries in each of
the latter two tables. To conclude Eq. (6), recall that the two events y1 = y2 �= y3
and y1 = y3 �= y2 occur with probability 1/2 each:

328 F. Magniez et al.

SM(h) = T (h− 2) +
1
2

[
2
3
SM(h− 1) +

1
3

(T (h− 1) + Sm(h− 1))
]

+
1
2

[
2
3
T (h− 1) +

1
3

(T (h− 1) + Sm(h− 1))
]
.

Equation (7). Since Evaluate(v) starts with two calls to itself to compute
x1, x2, we get the first term 2 T (h− 2) on the right hand side. The full analysis
of Eq. (7) is similar to those of Eq. (5) and Eq. (6); we defer it to the journal
article. ��
Theorem 9. T (h), SM(h), and Sm(h) are all in O(αh), where α ≤ 2.64946.

Proof. We make an ansatz T (h) ≤ aαh, SM(h) ≤ b αh, and Sm(h) ≤ c αh, and
find constants a, b, c, α for which we may prove these inequalities by induction.

The base cases tell us that 2 ≤ cα, 3
2 ≤ bα, 1 ≤ a, and8

3 ≤ aα.
Assuming we have constants that satisfy these conditions, and that the in-

equalities hold for all appropriate l < h, for some h ≥ 2, we derive sufficient
conditions for the inductive step to go through.

By the induction hypothesis, Lemma 8, and our ansatz, it suffices to show

a+ 3a+2b+c
3 α ≤ c α2 a+ 2a+b+c

3 α ≤ b α2 2a+ 23a+26b+18c
27 α ≤ aα2 (8)

The choice α = 2.64946, a = 1.007, b = 0.55958 a, and c = 0.75582 a satisfies
the base case as well as all the Inequalities (8), so the induction holds. ��

References

[1] Blum, M., Impagliazzo, R.: General oracle and oracle classes. In: Proc. FOCS
1987, pp. 118–126 (1987)

[2] Hartmanis, J., Hemachandra, L.: One-way functions, robustness, and non-
isomorphism of NP-complete sets. In: Proc. Struc. in Complexity Th. 1987, pp.
160–173 (1987)

[3] Heiman, R., Newman, I., Wigderson, A.: On read-once threshold formulae and
their randomized decision tree complexity. In: Proc. Struc. in Complexity Th.
1990, pp. 78–87 (1990)

[4] Heiman, R., Wigderson, A.: Randomized versus deterministic decision tree com-
plexity for read-once boolean functions. In: Proc. Struc. in Complexity Th. 1991,
pp. 172–179 (1991)

[5] Jayram, T., Kumar, R., Sivakumar, D.: Two applications of information complex-
ity. In: Proc. STOC 2003, pp. 673–682 (2003)

[6] Landau, I., Nachmias, A., Peres, Y., Vanniasegaram, S.: The lower bound for
evaluating a recursive ternary majority function: an entropy-free proof. Tech.
rep., Dep. of Stat., UC Berkeley (2006) (undergraduate Research Report),
http://www.stat.berkeley.edu/110

[7] Nisan, N.: CREW PRAMs and decision trees. In: Proc. STOC 1989, pp. 327–335.
ACM, New York (1989)

http://www.stat.berkeley.edu/110

Improved Bounds for the Randomized Decision Tree Complexity 329

[8] Reichardt, B.W., Špalek, R.: Span-program-based quantum algorithm for evalu-
ating formulas. In: Proc. 40th STOC, pp. 103–112. ACM, New York (2008)

[9] Saks, M., Wigderson, A.: Probabilistic boolean decision trees and the complexity
of evaluating game trees. In: Proc. FOCS 1986, pp. 29–38 (1986)

[10] Santha, M.: On the Monte Carlo boolean decision tree complexity of read-once
formulae. Random Structures and Algorithms 6(1), 75–87 (1995)

[11] Snir, M.: Lower bounds for probabilistic linear decision trees. Combinatorica 9,
385–392 (1990)

[12] Tardos, G.: Query complexity or why is it difficult to separate NPA ∩ coNPA

from PA by a random oracle. Combinatorica 9, 385–392 (1990)

The Fourier Entropy–Influence Conjecture for

Certain Classes of Boolean Functions�

Ryan O’Donnell, John Wright, and Yuan Zhou

Department of Computer Science,
Carnegie Mellon University

{odonnell,jswright,yuanzhou}@cs.cmu.edu

Abstract. In 1996, Friedgut and Kalai made the Fourier Entropy–
Influence Conjecture: For every Boolean function f : {−1, 1}n → {−1, 1}
it holds that H [f̂2] ≤ C · I[f], where H [f̂2] is the spectral entropy of
f , I[f] is the total influence of f , and C is a universal constant. In this
work we verify the conjecture for symmetric functions. More generally,
we verify it for functions with symmetry group Sn1 × · · · × Snd where
d is constant. We also verify the conjecture for functions computable by
read-once decision trees.

1 Introduction

The field of Fourier analysis of Boolean functions f : {−1, 1}n → {−1, 1} plays
an important role in many areas of mathematics and computer science, including
complexity theory, learning theory, random graphs, social choice, inapproxima-
bility, arithmetic combinatorics, coding theory, metric spaces, etc. For a survey,
see e.g. [17]. One of the most longstanding and important open problems in the
field is the Fourier Entropy–Influence (FEI) Conjecture made by Friedgut and
Kalai in 1996 [6]:

Fourier Entropy–Influence (FEI) Conjecture. ∃C ∀f , H [f̂2] ≤ C · I[f]. That is,∑
S⊆[n]

f̂(S)2 log2

1

f̂(S)2
≤ C ·

∑
S⊆[n]

f̂(S)2|S|.

The quantity H [f̂2] =
∑
f̂(S)2 log 1

f̂(S)2
on the left is the spectral entropy or

Fourier entropy of f . It ranges between 0 and n and measures how “spread out”
f ’s Fourier spectrum is. The quantity I[f] =

∑
f̂(S)2|S| appearing on the right

is the total influence or average sensitivity of f . It also ranges between 0 and
n and measures how “high up” f ’s Fourier spectrum is. (For definitions of the
terms used in this introduction, see Section 2.)

� This research performed while the first author was a member of the School of Math-
ematics, Institute for Advanced Study. Supported by NSF grants CCF-0747250 and
CCF-0915893, BSF grant 2008477, and Sloan and Okawa fellowships.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 330–341, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

The Fourier Entropy–Influence Conjecture for Certain Classes 331

The FEI Conjecture is superficially similar to the well-known Logarithmic
Sobolev Inequality [9] for the Boolean cube which states that Ent[f2] ≤ 2 · I[f]
holds for any f : {−1, 1}n → R, where Ent[g] = E[g ln g]−E[g] ln E[g]. However
note that the FEI Conjecture requires f : {−1, 1}n → {−1, 1} to be Boolean-
valued, and it definitely fails for real-valued f .

1.1 Applications of the Conjecture

Friedgut and Kalai’s original motivation for the FEI Conjecture came from the
theory of random graphs. Suppose f represents a monotone graph property with
Pr[f(G) = 1] = 1/2 when G ∼ G(v, 1/2) (here n =

(
v
2

)
). If we also consider

Pr[f(G) = 1] for G ∼ G(v, p), then the total influence I[f] equals the recipro-
cal of the derivative of this quantity at p = 1/2. Hence the property has “sharp
threshold” if and only if I[f] is large. Friedgut and Kalai sought general conditions
on f which would force I[f] to be large. They conjectured that having significant
symmetry — and hence, a spread-out Fourier spectrum — was such a property.

The FEI Conjecture also easily implies the famed KKL Theorem [11]. To see
this, first note that H [f̂2] ≥H∞[f̂2] = minS{log 1

f̂(S)2
}, the min-entropy of f̂2.

Thus the FEI Conjecture is strictly stronger than the following:

Fourier Min-Entropy–Influence Conjecture ∃C ∀f H∞[f̂2] ≤ C · I[f]. That is,
∃S ⊆ [n] such that f̂(S)2 ≥ 2−C·I[f].

In particular, for balanced f (i.e., E[f] = 0 = f̂(∅)2) the above conjecture implies
there is a nonempty S with f̂(S)2 ≥ 2−C·I[f]. Since Inf j [f] ≥ f̂(S)2 for each
j ∈ S we conclude max{Inf i[f]} ≥ 2−C·n·max{Inf i[f]} whence max{Inf i[f]} ≥
Ω(1

C) · log n
n , which is KKL’s conclusion. Indeed, by applying the above deduc-

tion just to the nonempty Fourier coefficients it is straightforward to deduce
I[f] ≥ 1

C Var[f] log 1
maxi{Inf i[f]} , a strengthening of the KKL Theorem due to

Talagrand [20]. We also remark that since Inf i[f] = f̂({i}) for monotone f , the
KKL Theorem implies the Fourier Min-Entropy–Influence Conjecture holds for
monotone functions.

Finally, as emphasized by Klivans and coauthors [8,14], the FEI Conjecture is
also important because it implies a version of Mansour’s Conjecture from 1994.

Mansour’s Conjecture [15]. ∀ε > 0 ∃K such that if f : {−1, 1}n → {−1, 1} is
computable by a DNF formula with m ≥ 2 terms then by taking S to be the mK

sets S for which f̂(S)2 is largest,
∑

S �∈S f̂(S)2 ≤ ε.
In fact, Mansour conjectured more strongly that one may take K = O(log 1

ε).
It is well known [3] that if f is computed by an m-term DNF then I[f] ≤
O(logm). Thus the Fourier Entropy–Influence Conjecture would imply H[f̂2] ≤
C · O(logm), from which it easily follows that one may take K = O(C/ε) in
Mansour’s Conjecture. Mansour’s Conjecture is important because if it is true
then the query algorithm of Gopalan, Kalai, and Klivans [7] would agnostically
learn DNF formulas under the uniform distribution to any constant accuracy in

332 R. O’Donnell, J. Wright, and Y. Zhou

polynomial time. Establishing such a result is a major open problem in com-
putational learning theory [8]. Further, sufficiently strong versions of Mansour’s
Conjecture would yield improved pseudorandom generators for DNF formulas;
see, e.g., [4,14] for more on this important open problem in pseudorandomness.

1.2 Prior Work

As far as we are aware, the result in [14] showing that the FEI Conjecture
holds for random DNFs is the only published progress on the FEI Conjecture
since it was posed. In this subsection we collect some observations related to
the conjecture, all of which were presumably known to Friedgut and Kalai and
should be considered folklore. See also [12] for additional recent discussion of the
conjecture.

The FEI Conjecture holds for “the usual examples” that arise in analysis of
Boolean functions — Parities (for which the conjecture is trivial), ANDs and
ORs, Majority, Tribes [1], and Inner-Product-mod-2. This may be established
by direct calculation based on the known Fourier coefficient formulas for these
functions (see [21] for Majority and [16] for Tribes). By considering the AND
and OR functions it is easy to show that the constant C must be at least 4. We
can show that C = 4 is necessary and sufficient for the Tribes functions as well;
smaller constants suffice for Inner-Product-mod-2 and Majority. The authors
are also aware of an explicit family of functions which show the necessity of
C ≥ 60/13 ≈ 4.615. For a gross upper bound, it is not too hard to show that
H[f̂2] ≤ (1 + logn) · I[f] + 1; indeed, this will be shown in the course of the
present paper.

The FEI Conjecture “tensorizes” in the following sense: For f : {−1, 1}n →
{−1, 1} and M ∈ Z+, define f⊕M → {−1, 1}Mn → {−1, 1} by f(x(1), . . . , x(M))

= f(x(1))f(x(2)) · · · f(x(M)). Then it’s easy to check that H [f̂⊕M
2

] = M ·H [f̂2]
and I[f] = M · I[f]. This is of course consistent with the FEI Conjecture; it
also implies that the following weaker-looking conjecture is actually equivalent
to FEI:

for all f : {−1, 1}n → {−1, 1}, H [f̂2] ≤ C · I[f] + o(n).

To see the equivalence, given f : {−1, 1}n → {−1, 1}, apply the above to f⊕M ,
divide by M , and take the limit as M →∞.

1.3 Our Results and Approach

In this work, we prove the FEI Conjecture for some classes of Boolean functions.
Theorem 1. The FEI Conjecture holds for symmetric functions, with C =
12.04.

Although the class of symmetric functions is fairly small, there was sentiment
that it might be a difficult case for FEI: for symmetric functions, f̂(S) = f̂(S′)
whenever |S| = |S′| and hence their Fourier spectrum is maximally spread out
on each level.

The Fourier Entropy–Influence Conjecture for Certain Classes 333

Our proof of Theorem 1 uses the same high-level idea as in the well-known
KKL Theorem [11]: namely, prove a certain inequality for the discrete derivatives
Dif of f , and then sum over i. In our case, the key inequality we need for the
derivatives is that they are very noise-sensitive:

Theorem. Let g be a discrete derivative of a symmetric function f : {−1, 1}n+1 →
{−1, 1}. Then for all real 1 ≤ c ≤ n it holds that Stab1− c

n
[g] ≤ 2/

√
π√

c
E[g2].

(For the notation used here, see Section 2.) Having established Theorem 1, it is
not too hard to generalize it as follows:

Theorem 2. The FEI Conjecture holds for d-part-symmetric functions, with
C = 12.04 + log2 d.

A d-part-symmetric function is essentially a function with symmetry group of
the form Sn1 × · · · × Snd

. This theorem also generalizes the folklore fact that
FEI holds (up to an additive constant) with C = O(log n), since every function
is n-part-symmetric.

Finally, with an unrelated, direct inductive argument we can also prove:

Theorem 3. The FEI Conjecture holds for functions computable by read-once
decision trees, with C = 4.88.

The notion of read-once decision tree is defined as follows. We first recall the
definition of decition tree. We say that f : {−1, 1}n → {−1, 1} is computable as
a depth-0 decision tree if it is constantly −1 or 1. We inductively say that it is
computable as a depth-d decision tree if there is a coordinate i ∈ [n] such that
f(x) = f0(x) when xi = 1 and f(x) = f1(x) when xi = 0, where f0 and f1 are
computable by depth-(d−1) decision trees. We further say that the decision-tree
computation is read-once if f0 and f1 depend on disjoint sets of coordinates and
are themselves inductively read-once.

Remark: We can extend the proof of Theorem 3 to handle the more general
class of “recursively read-once functions” (as defined in [18]), with C = 19.

Remark: In independent and concurrent work, the FEI Conjecture was verified
for monotone symmetric functions (a special case of Theorem 1) and decision
lists (a special case of Theorem 3) using different methods of proof [22].

1.4 Outline for the Rest of the Paper

In Section 2, we introduce relevant definitions and notations. In Section 3, we
prove Theorem 1 and Theorem 2. In Section 4, we put several remarks on future
directions towards resolving the Fourier Entropy–Influence Conjecture.

Due to space reasons, we are not able to show the proof of Theorem 3 in this
version of the paper.

334 R. O’Donnell, J. Wright, and Y. Zhou

2 Definitions and Notation

We use the notation N = {0, 1, 2, . . .}, Z+ = N \ {0}, and [n] = {1, 2, · · · , n}.
Throughout we write log for log2; for the natural logarithm we write ln. The
expressions 0 log 0 and 0 log 1

0 are to be interpreted as 0.

2.1 Basics of Boolean Fourier Analysis

This paper is concerned with Boolean functions f : {−1, 1}n → R, especially
Boolean-valued functions f : {−1, 1}n → {−1, 1}. Every Boolean function f has
a unique multilinear polynomial representation over R,

f(x) =
∑

S⊆[n]

f̂(S)
∏
i∈S

xi.

This is known as the Fourier expansion of f , and the real numbers f̂(S) are the
Fourier coefficients of f . We have the formula f̂(S) = E[f(x)

∏
i∈S xi]. (Here

and throughout, expectation E[·] is with respect to the uniform distribution of
x on {−1, 1}n, unless otherwise specified.) In particular, f̂(∅) = E[f]. An impor-
tant basic fact about Fourier coefficients is Parseval’s identity:

∑
S⊆[n] f̂(S)2 =

E[f(x)2]. A consequence of Parseval is that
∑

S⊆[n] f̂(S)2 = 1 for Boolean-valued

f . Thus the numbers f̂(S)2 can be thought of as a probability distribution on
the subsets of [n].

Given f : {−1, 1}n → R and i ∈ [n], we define the discrete derivative Dif

: {−1, 1}n → R by Dif(x) = f(x(i=1))−f(x(i=−1))
2 , where x(i=b) denotes (x1, . . . ,

xi−1, b, xi+1, . . . , xn). It holds that

D̂if(S) =

{
0 if i ∈ S,
f̂(S ∪ {i}) if i �∈ S;

i.e,. Di acts on the Fourier expansion as formal differentiation. The influence of
i on f is

Inf i[f] = E[(Dif)2] =
∑
S�i

f̂(S)2.

In the particular case that f is Boolean-valued, the derivative Dif is {−1, 0, 1}-
valued and we have the combinatorial interpretation Inf i[f] = Pr[f(x(i=1)) �=
f(x(i=−1))]. The total influence of f : {−1, 1}n → R is

I[f] =
n∑

i=1

Inf i[f] =
∑

S⊆[n]

f̂(S)2|S|.

For 0 ≤ ρ ≤ 1, we say that x, y ∈ {−1, 1}n are a pair of ρ-correlated random
strings if x is distributed uniformly randomly on {−1, 1}n and y is formed by
setting yi = xi with probability 1

2 + 1
2ρ, yi = −xi with probability 1

2 − 1
2ρ,

The Fourier Entropy–Influence Conjecture for Certain Classes 335

independently for each i ∈ [n]. We may now define the noise stability of f at ρ
and give its Fourier formula:

Stabρ[f] = E
x,y ρ-correlated

[f(x)f(y)] =
∑

S⊆[n]

f̂(S)2ρ|S|.

We often stratify the Fourier coefficients into levels ; the level of S is simply |S|.
We define the weight of f at level k to be Wk[f] =

∑
|S|=k f̂(S)2. Thus

I[f] =
n∑

k=0

Wk[f] · k, Stabρ[f] =
n∑

k=0

Wk[f]ρk.

Finally, given a random variable or probability distribution we write H[·] for its
(binary) Shannon entropy. Hence for f : {−1, 1}n → {−1, 1}, H[f̂2] =

∑
S⊆[n]

f̂(S)2 log 1

f̂(S)2
, called the Fourier entropy, or spectral entropy, of f . Thus the

Fourier Entropy–Influence Conjecture may be stated as follows: there is a universal
constant C such that H[f̂2] ≤ C · I[f] holds for all Boolean-valued functions f .

2.2 Some Boolean Function Classes

We will call a function f : {−1, 1}n → R symmetric if it is invariant under any
permutation of the coordinates [n]. Equivalently, f is symmetric if the value of
f(x) depends only the Hamming weight of x, defined to be #{i ∈ [n] : xi = −1}.
In this case we may identify f with the function f : {0, 1, . . . , n} → R whose value
at s equals f(x) for any x of Hamming weight s.

We generalize the notion to that of d-part-symmetric functions, d ∈ Z+. We
say the function f : {−1, 1}n → R is d-part-symmetric if there is a partition
[n] = V1 ·∪V2 ·∪ · · · ·∪Vd such that f is invariant under any permutation of the
coordinates in any part Vi. Equivalently, f is d-part-symmetric if, after relabeling
coordinates, it has the same output value under the action of Sn1 × · · · × Snd

for some numbers n1 + · · ·+ nd = n. Note that a symmetric function is 1-part-
symmetric, and every function f : {−1, 1}n→ R is n-part-symmetric.

We also generalize the notion of Fourier “levels” for d-part-symmetric func-
tions. Suppose f is d-part-symmetric with respect to the partition [n] = V1 ·∪ · · ·
·∪Vd, where |Vi| = ni. Then f̂(S) depends only on the numbers |S ∩ V1|, . . . ,
|S ∩ Vd|. We consider all possible such sequences

k ∈ {0, 1, . . . , n1} × {0, 1, . . . , n2} × · · · × {0, 1, . . . , nd},

and say that S ⊆ [n] is at multi-level k if |S ∩ Vi| = ki for each i ∈ [d]. We also
use the notation

|k| = k1 + k2 + · · ·+ kd, Wk[f] =
∑

S at multi-level k

f̂(S)2,

so I[f] =
∑

k Wk[f] · |k|.

336 R. O’Donnell, J. Wright, and Y. Zhou

3 Symmetric and d-Part-Symmetric Functions

In this section we prove Theorems 1 and 2, establishing the FEI Conjecture
for symmetric and O(1)-part-symmetric functions. Although Theorem 2 strictly
generalizes Theorem 1, we prefer to prove Theorem 1 separately and then gen-
eralize it afterward.

When f : {−1, 1}n → {−1, 1} is symmetric we have f̂(S)2 = Wk[f]/
(
n
k

)
when-

ever |S| = k. Hence

H [f̂2] =
n∑

k=0

Wk[f] log (n
k)

Wk[f]
=

n∑
k=0

Wk[f] log
(
n

k

)
+

n∑
k=0

Wk[f] log 1
Wk[f]

. (1)

Thus Theorem 1 is an immediate consequence of the following two theorems:

Theorem 4. Let f : {−1, 1}n → {−1, 1} be a symmetric function. Then
∑n

k=0

Wk[f] log
(
n
k

) ≤ C1 · I[f], where C1 = 1
ln 2 (1 + 4

√
2e√
π

) ≤ 9.04.

Theorem 5. Let f : {−1, 1}n → {−1, 1} be any function, not necessarily sym-
metric. Then

∑n
k=0 Wk[f] log 1

Wk[f] ≤ 3 · I[f].

We prove these theorems in the subsequent subsections of the paper, following
which we give the extension to d-part-symmetric functions.

3.1 Theorem 4: Derivatives of Symmetric Functions are
Noise-Sensitive

We begin with an easy lemma, the proof of which is omitted due to space reasons.

Lemma 1. Let p1, . . . , pm be a nonnegative unimodal sequence; i.e., there exists
k ∈ [m] such that p1, . . . , pk is a nondecreasing sequence and pk, . . . , pm is a
nonincreasing sequence. Let g : [m] → {−1, 0, 1} have the property that the sets
g−1(−1) and g−1(1) are interleaving. Then |∑m

i=1 pig(i)| ≤ max{pi}.
We now show the key theorem stated in Section 1.3 on the noise sensitivity of
symmetric derivatives.

Theorem 6. Let g be a discrete derivative of a symmetric function f : {−1, 1}n+1

→ {−1, 1}. Then for all real 1 ≤ c ≤ n it holds that Stab1− c
n

[g] ≤ 2/
√

π√
c

E[g2].

Proof. Let (x, y) be a (1− c
n)-correlated pair of random strings in {−1, 1}n. We

will show that ∣∣∣E[g(y) | x]
∣∣∣ ≤ 2/

√
π√
c
, independent of x. (2)

Since g is {−1, 0, 1}-valued, it will follow from (2) that

Stab1− c
n

[g] = E[g(x)g(y)] ≤ 2/
√
π√
c

E[|g(x)|] =
2/
√
π√
c

E[g2],

The Fourier Entropy–Influence Conjecture for Certain Classes 337

as required. To show (2) we first observe that given x of Hamming weight s, the
Hamming weight t of y is distributed as the sum of two independent binomial
random variables, t1 ∼ Bin(s, 1 − c

2n) and t2 ∼ Bin(n − s, c
2n). Being the sum

of independent Bernoulli random variables, it is well known [13] that t has a
unimodal probability distribution. Since g is a derivative of a symmetric Boolean-
valued function, it is itself symmetric; hence we may identify it with a function
g : {0, 1, . . . , n} → {−1, 0, 1}. Further, because f is {−1, 1}-valued, g must have
the property that g−1(−1) and g−1(1) are interleaving subsets of {0, 1, . . . , n}.
Thus (2) follows from Lemma 1 assuming that maxi{Pr[t = i]} ≤ 2/

√
π√

c
. To

show this, we may assume without loss of generality that s ≥ n/2. Then

max
i
{Pr[t = i]} ≤ max

i
{Pr[t1 = i]} ≤ 1√

2πs(1− c
2n) c

2n

≤ 1√
2π n

2
1
2

c
2n

=
2/
√
π√
c
,

where the second inequality is the basic estimate maxi{Pr[Bin(m, p)] = i} ≤
1√

2πmp(1−p)
which uses Stirling’s formula (see [5, Ch. VII.3]).

We can now give the proof of Theorem 4.

Proof. (Theorem 4.) Using
(
n
k

) ≤ (en
k)k for all 1 ≤ k ≤ n we have

n∑
k=0

Wk[f] log
(
n

k

)
≤

n∑
k=1

Wk[f]k log(e) +
n∑

k=1

Wk[f]k log n
k ,

since
∑n

k=1 Wk[f]k log(e) = I[f]/(ln 2), it suffices to show

n∑
k=1

Wk[f]k ln n
k ≤

4
√

2e√
π
· I[f]. (3)

Let g be any derivative of f ; say g = Dnf . By symmetry of f , the right side
of (3) is 4

√
2e√
π
· nE[g2]. As for the left side, for k ∈ [n] we have

Wk−1[g] =
∑

S⊆[n−1]
|S|=k−1

ĝ(S)2 =
∑

S⊆[n]
|S|=k,S�n

f̂(S)2 =
k

n
Wk[f].

Hence the left side of (3) is
∑n

k=1 nW
k−1[g] ln n

k . Thus after dividing by n we
see that (3) is equivalent to

n−1∑
k=0

Wk[g] ln
n

k + 1
≤ 4
√

2e√
π
·E[g2]. (4)

Using the approximation lnm+ γ + 1
2m − 1

12m2 ≤
∑m

j=1
1
j ≤ lnm+ γ + 1

2m one
may obtain

n−1∑
k=0

Wk[g] ln
n

k + 1
≤

n−1∑
k=0

Wk[g]

n∑
j=k+1

1

j
=

n∑
j=1

1

j

j−1∑
k=0

Wk[g] ≤ √e

n∑
j=1

1

j
Stab1− 1

2j
[g],

338 R. O’Donnell, J. Wright, and Y. Zhou

where in the last step we used that
√
e(1− 1

2j)k ≥ 1 for all k ≤ j − 1. We may
now apply Theorem 6 with c = n

2j to obtain

n∑
k=0

Wk[g] ln
n

k + 1
≤ √e

n∑
j=1

1
j

2
√

2√
π

√
j√
n
·E[g2] ≤ 4

√
2e√
π
·E[g2],

using
∑n

j=1
1√
j
≤ 2
√
n. Thus we have verified (4) and completed the proof.

3.2 Theorem 5: Spectral Level Entropy Versus Influence

In this section we establish Theorem 5. We begin with a well-known fact about
“maximum entropy” which we prove for completeness:

Proposition 1. Let K be a random variable supported on Z+. Then H [K] ≤
E[K].

Proof. For k ∈ Z+ write pk = Pr[K = k], and let G be a Geometric(1
2) random

variable. Then by the nonnegativity of binary relative entropy,

0 ≤ D(K||G) =
n∑

k=1

pk log pk

(1/2)k = −H[P] +
n∑

k=1

pk log(2k) = E[K]−H[K].

We will also need a simple corollary of the edge-isoperimetric inequality for
{−1, 1}n.

Proposition 2. Let f : {−1, 1}n → {−1, 1} and write W0[f] = 1 − ε. Then
I[f] ≥ 1

2ε log(1/ε) + ε.

Proof. By negating f if necessary we may assume E[f] ≤ 0. We think of f as
the indicator of a subset A ⊆ {0, 1}n; the density of this set is p = 1

2 + 1
2 E[f] =

1
2 − 1

2

√
1− ε ≤ 1/2. It follows from the edge-isoperimetric inequality [10,19,2]

that I[f], which is 2−n times the size of A’s edge-boundary, is at least 2p log(1/p).
It is then elementary to check that (1−√1− ε) log(2

1−√
1−ε

) ≥ 1
2ε log(1/ε) + ε,

as required.

We can now establish Theorem 5.

Proof. (Theorem 5.) Write W0[f] = 1− ε. We may assume ε > 0 else the result
is trivial. Then

n∑
k=0

Wk [f] log 1
Wk[f]

≤
⎛⎝∑

k �=0

Wk[f] log 1
Wk[f]

⎞⎠ + 2ε (as (1− ε) log 1
1−ε
≤ 1

ln 2
ε ≤ 2ε)

= ε

⎛⎝∑
k �=0

Wk[f]

ε
log

ε

Wk[f]

⎞⎠ + ε log
1

ε
+ 2ε ≤ ε

⎛⎝∑
k �=0

Wk[f]

ε
· k
⎞⎠ + 2 · I[f] = 3 · I[f],

where the last inequality used Propositions 1 and 2.

The Fourier Entropy–Influence Conjecture for Certain Classes 339

3.3 Theorem 2: Extension to d-Part-Symmetric Functions

We show now how to extend the proof of Theorem 1 to obtain Theorem 2, the
FEI Conjecture for d-part-symmetric functions. Suppose then that f is d-part-
symmetric with respect to the partition [n] = V1 ·∪ · · · ·∪Vd, where |Vi| = ni,
and recall the multi-level index notation k from Section 2.2. Since f̂(S)2 =
Wk[f]/

∏d
i=1

(
ni

ki

)
whenever S is at multi-level k, we have

H[f̂2] =
d∑

i=1

∑
k

Wk[f] log
(
ni

ki

)
+

∑
k

Wk[f] log 1
Wk[f] ,

similarly to (1). Since I[f] =
∑

k Wk[f]·|k| = ∑d
i=1

∑
k Wk[f]·ki, we can prove

Theorem 2 by establishing the following two generalizations of Theorems 4 and 5:

Theorem 7. Let f : {−1, 1}V1 ·∪··· ·∪Vd → {−1, 1} be invariant under permuta-
tions of the coordinates in Vi. Then

∑
k Wk[f] log

(
ni

ki

) ≤ C1 ·
∑

k Wk[f] · ki,

where C1 = 1
ln 2 (1 + 4

√
2e√
π

) ≤ 9.04.

Theorem 8. Let f : {−1, 1}V1 ·∪··· ·∪Vd → {−1, 1} be any function, not necessarily
with any symmetries. Then

∑
k Wk[f] log 1

Wk[f]
≤ (3 + log d) · I[f].

Proof. (Theorem 7.) We assume i = d without loss of generality and write
Vd = V1 ·∪ · · · ·∪Vd−1. For y ∈ {−1, 1}Vd we define fy : {−1, 1}Vd → {−1, 1} by
fy(z) = f(y, z); the function fy is symmetric for each y by assumption. Applying
Theorem 4 to each fy and then taking expectations we obtain

nd∑
k′=0

E
y

[
Wk′

[fy]
]

log
(
nd

k′

)
≤ C1 ·

nd∑
k′=0

E
y

[
Wk′

[fy]
] · k′. (5)

Now, E
y

[
Wk′

[fy]
]

=
∑

S⊆Vd

|S|=k′

E
y

[
f̂y(S)2

]
=

∑
S⊆Vd

|S|=k′

∑
T⊆Vd

f̂(T ∪ S)2 =
∑

k : kd=k′
Wk[f] ,

where the middle equality is an easy exercise using Parseval. Substituting this
into (5) yields the desired inequality.

As for Theorem 8, its proof is essentially identical to that of Theorem 5, using
the following generalization of Proposition 3:

Proposition 3. Let K be a random variable supported on N
d \ {0} and write

L = |K|. Then H [K] ≤ (1 + log d) E[L].

Proof. Using the chain rule for entropy as well as Proposition 1, we have

H[K] = H[L] + H [K | L] ≤ E[L] +
∞∑

=1

Pr[L = �] ·H[K | L = �]. (6)

340 R. O’Donnell, J. Wright, and Y. Zhou

Given L = � there are precisely
(

+d−1

d−1

)
possibilities for K; hence

H [K | L = �] ≤ log
(
�+ d− 1
d− 1

)
= � · log

(

+d−1

d−1

)
�

≤ � · log
(
1+d−1

d−1

)
1

= � · log d.

(7)
The second inequality here follows from the technical Lemma 2 below. The proof
is completed by substituting (7) into (6).

Here we give the technical lemma used in the previous proof.

Lemma 2. For each c ∈ N the function 1

 log

(

+c

c

)
is a decreasing function of

� on Z+.

Proof. We wish to show that for all � ∈ Z+,

1

 ln

(

+c

c

) ≥ 1

+1 ln

(

+1+c

c

)⇔ (�+ 1) ln
(

+c

c

) ≥ � ln
(

+1+c

c

)⇔ (

+c

c

)
+1 ≥ (

+1+c

c

)

⇔ (

+c

c

) ≥ [(

+1+c

c

)
/
(

+c

c

)]

⇔ (

+c

c

) ≥ (1 + c

+1)
.

This last inequality is easily shown by induction on �: if one multiplies both sides
by (1 + c

+1) one obtains
(

+1+c

c

) ≥ (1 + c

+1)
+1 which exceeds (1 + c

+2)
+1 as
required for the induction step.

4 Closing Remarks

As the general Fourier Entropy–Influence Conjecture seems difficult to resolve,
one may try to prove it for additional interesting classes of Boolean functions. For
example, Wan has suggested linear threshold functions as a possibly tractable
case [22]. One may also try tackling the Fourier Min-Entropy–Influence Con-
jecture first (or the slightly stronger consequence that ∃S �= ∅ s.t. f̂(S)2 ≥
2−C·I[f]/Var[f]). However this will already likely require stronger tools than the
ones used in this paper. The reason is that as mentioned in Section 1.1, this con-
jecture implies the KKL Theorem, and there is no known proof of KKL which
avoids the Hypercontractive or Logarithmic Sobolev Inequalities.

Acknowledgments. The authors would like to thank Rocco Servedio, Li-Yang
Tan, and Andrew Wan for sharing their insights on the Entropy–Influence
Conjecture.

References

1. Ben-Or, M., Linial, N.: Collective coin flipping. In: Micali, S. (ed.) Randomness
and Computation. Academic Press, New York (1990)

2. Bernstein, A.: Maximally connected arrays on the n-cube. SIAM Journal on
Applied Mathematics, 1485–1489 (1967)

3. Boppana, R.: The average sensitivity of bounded-depth circuits. Information
Processing Letters 63(5), 257–261 (1997)

The Fourier Entropy–Influence Conjecture for Certain Classes 341

4. De, A., Etesami, O., Trevisan, L., Tulsiani, M.: Improved pseudorandom generators
for depth 2 circuits. In: Proceedings of the 14th Annual International Workshop
on Randomized Techniques in Computation, pp. 504–517 (2010)

5. Feller, W.: An introduction to probability theory and its applications, 3rd edn.,
vol. 1. Wiley, Chichester (1968)

6. Friedgut, E., Kalai, G.: Every monotone graph property has a sharp threshold.
Proceedings of the American Mathematical Society 124(10), 2993–3002 (1996)

7. Gopalan, P., Kalai, A., Klivans, A.: Agnostically learning decision trees. In: Pro-
ceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 527–
536 (2008)

8. Gopalan, P., Kalai, A., Klivans, A.: A query algorithm for agnostically learning
DNF? In: Proceedings of the 21st Annual Conference on Learning Theory, pp.
515–516 (2008)

9. Gross, L.: Logarithmic Sobolev inequalities. American Journal of Mathemat-
ics 97(4), 1061–1083 (1975)

10. Harper, L.: Optimal assignments of numbers to vertices. Journal of the Society for
Industrial and Applied Mathematics 12(1), 131–135 (1964)

11. Kahn, J., Kalai, G., Linial, N.: The influence of variables on Boolean functions. In:
Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer
Science, pp. 68–80 (1988)

12. Kalai, G.: The entropy/influence conjecture. Posted on Terence Tao’s
What’s new blog (2007), http://terrytao.wordpress.com/2007/08/16/gil-

kalai-the-entropyinfluence-conjecture/
13. Keilson, J., Gerber, H.: Some results for discrete unimodality. Journal of the Amer-

ican Statistical Association 66(334), 386–389 (1971)
14. Klivans, A., Lee, H., Wan, A.: Mansours Conjecture is true for random DNF for-

mulas. Electronic Colloquium on Computational Complexity TR10-023 (2010)
15. Mansour, Y.: Learning boolean functions via the Fourier Transform. In:

Roychowdhury, V., Siu, K.-Y., Orlitsky, A. (eds.) Theoretical Advances in Neu-
ral Computation and Learning, ch. 11, pp. 391–424. Kluwer Academic Publishers,
Dordrecht (1994)

16. Mansour, Y.: An O(nlog log n) learning algorithm for DNF under the uniform dis-
tribution. Journal of Computer and System Sciences 50(3), 543–550 (1995)

17. O’Donnell, R.: Some topics in analysis of boolean functions. In: Proceedings of the
40th Annual ACM Symposium on Theory of Computing, pp. 569–578 (2008)

18. O’Donnell, R., Saks, M., Schramm, O., Servedio, R.: Every decision tree has an
influential variable. In: Proceedings of the 46th Annual IEEE Symposium on Foun-
dations of Computer Science, pp. 31–39 (2005)

19. Steiglitz, K., Bernstein, A.: Optimal binary coding of ordered numbers. Journal of
the Society for Industrial and Applied Mathematics 13(2), 441–443 (1965)

20. Talagrand, M.: On Russo’s approximate zero-one law. Annals of Probability 22(3),
1576–1587 (1994)

21. Titsworth, R.: Correlation properties of cyclic sequences. PhD thesis, California
Institute of Technology (1962)

22. Wan, A.: Talk at the Center for Computational Intractability (2010)

http://terrytao.wordpress.com/2007/08/16/gil-kalai-the-entropyinfluence-conjecture/
http://terrytao.wordpress.com/2007/08/16/gil-kalai-the-entropyinfluence-conjecture/

Nonmonotone Submodular Maximization via

a Structural Continuous Greedy Algorithm

(Extended Abstract)

Moran Feldman�, Joseph (Seffi) Naor��, and Roy Schwartz

Computer Science Dept., Technion, Haifa, Israel
{moranfe,naor,schwartz}@cs.technion.ac.il

Abstract. Consider a suboptimal solution S for a maximization prob-
lem. Suppose S’s value is small compared to an optimal solution OPT
to the problem, yet S is structurally similar to OPT . A natural question
in this setting is whether there is a way of improving S based solely on
this information. In this paper we introduce the Structural Continuous
Greedy Algorithm, answering this question affirmatively in the setting
of the Nonmonotone Submodular Maximization Problem. We im-
prove on the best approximation factor known for this problem. In the
Nonmonotone Submodular Maximization Problem we are given a
non-negative submodular function f , and the objective is to find a subset
maximizing f . Our method yields an 0.42-approximation for this prob-
lem, improving on the current best approximation factor of 0.41 given
by Gharan and Vondrák [5]. On the other hand, Feige et al. [4] showed
a lower bound of 0.5 for this problem.

1 Introduction

Consider a situation where one has a suboptimal solution S for a maximization
problem. The most natural measure for the quality of S is its value with respect
to the objective function. However, an additional measure is the structural simi-
larity of S to an optimal solution OPT of the problem. We are interested in the
relation between these two measures. Suppose S is structurally similar to OPT ,
yet its value is small. We call problems in which such sets exist uncorrelated
objective-structure problems. For such problems it is possible for an algorithm to
produce a solution which is structurally very similar to OPT , and yet is a poor
approximation with respect to values. For example, in the Max Cut problem,
suppose the input is a star. If we put all vertices on one side of the cut, we get
a solution of value 0 which is only different from OPT in one vertex.

For every uncorrelated objective-structure problem P , a natural question is
whether there is an efficient algorithm that, given a solution S structurally sim-
ilar to OPT , produces a solution S′ of large value; i.e., we look for an algorithm
� Moran Feldman is a recipient of the Google Europe Fellowship in Market Algorithms,

and this research is supported in part by this Google Fellowship.
�� This work was partly supported by ISF grant 1366/07.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 342–353, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Nonmonotone Submodular Maximization 343

trading structural similarity to OPT for value. If we find such an algorithm for
problem P , then we can improve approximation algorithms for P which produce
(directly, or indirectly) solutions that are structurally similar to OPT .

In this paper we suggest the structural continuous greedy algorithm trading
structural similarity to OPT for value in the context of the Nonmonotone

Submodular Maximization Problem (NSM). Given a ground set E , a func-
tion f : 2E → R is called submodular if for every A,B ⊆ E , f(A) + f(B) ≥
f(A∪B) + f(A∩B). An instance of NSM consists of a non-negative submodu-
lar function f , and its objective is to find a subset of E maximizing f . An explicit
representation of f might be exponential in the size of E . Hence, we assume the
value oracle model in which the algorithm has access to an oracle that given a set
S returns f(S). This model is probably the most standard one, and is common
throughout the literature.

To see why NSM is indeed an uncorrelated objective-structure problem, ob-
serve the following example. Consider the groundset E = [n]×{a, b}, and the sub-
modular function: f(S) =

∑n
i=1 g(S∩{(i, a), (i, b)}), where g is an indicator func-

tion for the event that its argument is a set of size 1. The set E ′ = [n/2]×{a, b}
has f(E ′) = 0 although it contains half of the elements of every optimal solution.

In the next section we describe the structural continuous greedy algorithm.
We need a few well known terms, which we define here for completeness. Given
a function f , if f(∅) = 0 we say that f is normalized, and if for every A ⊆
B ⊆ E , f(A) ≤ f(B) (respectively, f(A) ≥ f(B)), we say that f is monotone
(respectively, down monotone). Also, we use the notation of OPT throughout
the article to denote an optimal solution to the problem in question. If there are
multiple optimal solutions, OPT denotes an arbitrary fixed one.

1.1 The Structural Continuous Greedy Algorithm

Let us formally define the structural similarity of a set S to OPT . One natural
definition is f(S∩OPT). This definition makes sense for a monotone f . However,
when f may be nonmonotone, we need a definition that also captures structural
similarity due to elements outside of OPT missing also from S. Thus, we define
the structural similarity of a set S to OPT as f(S ∩OPT) + f(S ∪OPT).1

Consider a set S. Removing all elements of S − OPT changes the value of
this set to f(S ∩OPT); hence, if f(S∩OPT) > f(S), removing all the elements
of S − OPT from S increases the objective function. By submodularity, the
last property also implies that there is at least one element in S − OPT whose
removal from S increases its value. Putting it all together, f(S ∩OPT) > f(S)
implies the existence of an element e ∈ S −OPT such that f(S − {e}) > f(S).
Similarly, f(S ∪OPT) > f(S) implies the existence of an element e ∈ OPT −S
such that f(S∪{e}) > f(S). We can now relate our observations to the definition
of structural similarity: if f(S ∩ OPT) + f(S ∪ OPT) > 2f(S), then the value
of S can be improved by adding or removing a single element from it.
1 The structural similarity is defined with an arbitrary optimal solution (in case there

are multiple options). Hence, the continuous greedy algorithm is guaranteed to im-
prove a set if it is structurally similar to any optimal solution.

344 M. Feldman, J. Naor, and R. Schwartz

The last conclusion seems to suggest that given a set S which is structurally
similar to OPT , and yet has a low value, S can be improved using a local search
algorithm seeking at every stage to improve S by adding or removing a single
element. However, as this algorithm adds and removes elements, the structural
similarity to OPT might decrease; and we do not know how to relate this decrease
to the increase in f(S). Therefore, although we can conclude that such a local
search algorithm will improve S, it is not clear how to give any positive lower
bound on this improvement.

To work around this difficulty, we propose the structural continuous greedy
algorithm. This algorithm maintains a fractional set (i.e., a set in which every
element appears independently with some probability). Initially, every element
of the input set S appears in the fractional set S′ with probability 1, and every
other element appears in it with probability 0. In every iteration the probability
of each element can be changed by a small δ. The probability of an element is
increased if doing so increases the expected value of the fractional set, assuming
all other probabilities are unchanged; and decreased otherwise.

Using arguments similar to those above, we can lower bound the improve-
ment in every iteration of the structural continuous greedy algorithm in terms
of E[f(S′ ∩OPT) + f(S′ ∪OPT)− 2f(S′)]. Hence, as long as S′ is structurally
similar to OPT , in expectation, the structural continuous greedy is guaranteed
to improve it by changing the probabilities of elements. Moreover, after m itera-
tions, the change in the structural similarity of S′ to OPT can be upper bounded
using the following observation: every element of the original set S appears in
S′ with probability at least 1−mδ, and every element outside of S appears in
S′ with probability at most mδ; which intuitively means that S′ is quite similar
(structurally) to S, and therefore, also to OPT .

The structural continuous greedy inherits much of its structure from an algo-
rithm of Vondrák [16] called “continuous greedy”; however, the two algorithms
are analyzed very differently. The roots of [16]’s continuous greedy algorithm
can be traced back to Wolsey [18], who also gives an algorithm called “continu-
ous greedy”, although, the two “continuous greedy” algorithms share only vague
general ideas. The continuous greedy algorithm of [16] starts with an empty set,
and then only increases the probabilities of elements. This is fine since [16] deals
with monotone submodular functions. On the other hand, the structural contin-
uous greedy, introduced in this paper, works with nonmonotone functions, which
requires both modifications of the algorithm and its analysis (with respect to the
algorithm and analysis of [16]).

There are two differences between our structural continuous greedy algorithm,
and the “continuous greedy” algorithm of [16]. First, the initial point of the
structural continuous greedy algorithm is an arbitrary set, and second, it may
both increase and decrease probabilities. Though these differences are quite mi-
nor, the analysis of the two algorithms is completely different. The continuous
greedy of [16] constructs a solution starting with an empty set, and its analysis

Nonmonotone Submodular Maximization 345

strongly uses the monotonicity of f (which implies that increasing the proba-
bilities of OPT ’s elements is always good). On the other hand, the structural
continuous greedy improves existing sets, and its analysis is based on the struc-
tural similarity of the input to OPT .

1.2 Taking Advantage of the Structural Continuous Greedy

The structural continuous greedy algorithm can improve sets that are already
structurally similar to OPT (at the cost of possibly decreasing their structural
similarity to OPT). However, it is not clear, at first glance, how this can be
used to produce an approximation algorithm for NSM. In order to answer this
question, we have to understand the details of the known algorithms for NSM.

The first constant factor approximation algorithms for NSM were given by
Feige et al. [4]. The simplest algorithm they provide simply selects every element
of the ground set with probability 1/2. Feige et al. [4] showed that this simple
algorithm already achieves a 1/4-approximation. They also suggested a local
search algorithm which basically starts with an arbitrary set and adds or removes
single elements as long as this improves the value of the set. The output set of
this algorithm is called locally optimal because it cannot be improved by adding
or removing a single element. In [4], it is shown that any locally optimal set gives
a 1/3-approximation for NSM.

The problem with local search algorithms is that they tend to get “stuck” in
local optima. One way to get around that is to add some noise to the system. For
that purpose, [4] defines for every set S, a random set R(S) containing every ele-
ment of S with probability 2/3 and every other element with probability 1/3 (in
other words, to get R(S), we start with S and switch the state of every element,
from being in S to being outside of it or vice versa, with probability 1/3). The
local search algorithm now tries to find a set maximizing E[f(R(S))]. Somewhat
surprisingly, this randomized local search has an improved approximation ratio
of 2/5. Looking more carefully at the analysis of [4], it actually shows that if S
is a locally optimal set (with respect to the last algorithm), then:

E[f(R(S))] +
f(S̄)

9
≥ 4f(OPT)

9
.

This inequality guarantees that the expected values of max{f(S̄), f(R(S))} is at
least 0.4f(OPT). Now, observe that f(S∩OPT)+f(S̄∩OPT) ≥ f(OPT), and
f(S ∪OPT) + f(S̄ ∪OPT) ≥ f(OPT). This suggests a negative correlation be-
tween the structural similarity to OPT of S and S̄ in the following sense: if one
of them is structurally far from OPT , then the other one must be structurally
close to OPT . Since R(S) is basically S with some noise, we also get a negative
correlation between the structural similarity to OPT of R(S) and S̄. Hence, if
R(S) has a low expected value, and it is too far from OPT for the structural
continuous greedy algorithm to improve it significantly, then S̄ must have both:

346 M. Feldman, J. Naor, and R. Schwartz

significant value and structural similarity to OPT ; hence, running the structural
continuous greedy algorithm on it is guaranteed to produce a good set.

Using the above observations, we can get a 0.413-approximation, which al-
ready slightly improves on the state of the art algorithm of Gharan and Von-
drack [5] that gives a 0.41-approximation (we defer details to a full version of this
paper). However, we can do better if we use the structural continuous greedy
algorithm together with [5]’s algorithm, though the combination of these two
techniques requires some work. The algorithm of [5] is a simulated annealing
algorithm. It starts as a local search algorithm with a lot of noise (i.e., R(S) is
obtained from S by adding or removing every element with high probability),
and gradually decreases the noise level. Intuitively, starting with a lot of noise
should help the algorithm avoid inferior local maxima.

Simulated annealing algorithms are common in practice, but they often turn
out to be very hard to analyze. The analysis of [5] works as following. For some,
relatively high, level of noise p0, the algorithm is analyzed as a noisy local search
algorithm, producing a lower bound on the value of the algorithm’s solution at
noise level p0. Now, observe what happens as the algorithm reduces the noise
level. In a locally optimal solution, infinitesimally increasing the probability of
every element inside the solution, and decreasing the probability of every el-
ement outside of the solution, only improve the solution. This change in the
probabilities is exactly equivalent to a reduction in the noise level. Hence, when-
ever the algorithm reduces the noise level, since the current solution is locally
optimal (the algorithm does not reduce the noise level unless this is the case),
the reduction in the noise level can only improve the solution.

The main observation of [5] is a way to show a positive lower bound on the
improvement achieved when the noise is reduced. This lower bound is negatively
correlated with f(S̄), where S is the current solution of the algorithm. This
immediately implies that either the set S̄ is good at some point, or the value
of S significantly increases as the noise level decreases. Together with the lower
bound on the value of S at noise level p0, an approximation guarantee follows.

The above description does not give an obvious way to combine [5]’s algorithm
with the structural continuous greedy. In order for the structural continuous
greedy algorithm to be useful, we must find sets in the proof of [5]’s algorithm
with the following properties.

– Structurally similar to OPT , at least when [5]’s algorithm behaves poorly.
– Has large value, again, at least when [5]’s algorithm behaves poorly.

If we find such a set, it can be improved using the structural continuous greedy
algorithm, and then be used as an alternative solution. In other words, whenever
the original algorithm behaves poorly, the structural continuous greedy produces
a good alternative solution, which results in an improved approximation ratio.

To this end, we make the following observation. The bound, given by [5],
on the improvement achieved when the noise is reduced is actually positively
correlated with f(S ∩ OPT) + f(S ∪ OPT). The negative correlation of the
bound with f(S̄) follows since, by submodularity, f(S̄) ≥ f(OPT) − f(S ∩
OPT) − f(S ∪ OPT). Another inequality that follows from f ’s submodularity

Nonmonotone Submodular Maximization 347

is f(S̄ ∩OPT) + f(S̄ ∪OPT) ≥ 2f(OPT)− f(S ∩OPT)− f(S ∪OPT). Hence,
the lower bound is also negatively correlated with the structural similarity of S̄
to OPT . In conclusion, if at some point the value of the algorithm’s solution
does not improve fast enough, then at that point S̄ has two properties: it has a
relatively high value and it is structurally similar to OPT . Therefore, applying
the structural continuous greedy algorithm to S̄ is guaranteed to produce a good
set. This is the intuition behind our 0.42 approximation for NSM.

We note [4] showed that no algorithm making a polynomial number of oracle
queries gives better than 1/2-approximation for NSM. This hardness result holds
even when f is symmetric, i.e., f(S) = f(E − S), in which case it is tight [4].

1.3 Related Work

It is well known that submodular functions can be minimized in polynomial
time [14]. However, maximizing a submodular function turns out to be much
more difficult. Maximization of nonnegative submodular functions generalizes
NP-hard problems such as Max-Cut [6], and [4] proved it impossible to give
better than 0.5-approximation for it using a polynomial number of oracle queries.
Related problems ask to maximize a nonnegative submodular function subject to
various combinatorial constraints on the sets we are allowed to choose [7,11,12,17]
or minimize a submodular function subject to such constraints [15,8,9].

Another line of work deals with maximizing normalized monotone submodu-
lar functions, again, subject to various combinatorial constraints. A continuous
greedy algorithm was given by Calinescu et al. [1] for maximizing a normal-
ized monotone submodular function subject to a matroid constraint. Later, Lee
et al. [12] gave a local search algorithm achieving 1/p − ε approximation for
maximizing such functions subject to intersection of p matroids. Kulik et al.
[10] showed a 1 − 1/e − ε approximation algorithm for maximizing a normal-
ized monotone submodular function subject to multiple knapsack constraints.
Recently, Chekuri et al. [3], gave a nonmonotone counterpart of the continuous
greedy algorithm of [16]. This result improves several nonmonotone submodular
optimization problems. Some of the above results were generalized by Chekuri et
al. [2], which gives a dependent rounding for various polytopes, including matroid
and matroid-intersection polytops. The advantage of this rounding technique is
that it guarantees strong concentration bounds for submodular functions.

2 Preliminaries

Formally, in NSM, we are given a nonnegative submodular function f : 2E →
R

+. The objective is to find a subset S ⊆ E maximizing f(S). We denote |E| by
n. In all algorithms presented, we assume n is larger than any given constant (if
this is not the case, one can solve NSM optimally using an exhaustive search).

There are two well known extensions of a submodular function f : 2E → R
+

to the hypercube [0, 1]E . The first one is F (x) : [0, 1]E → R
+, the multilinear

extension introduced by [1]. For a given vector z ∈ [0, 1]E , let R(z) be a set con-
taining every element e ∈ E with probability ze, independently. The multilinear

348 M. Feldman, J. Naor, and R. Schwartz

extension of f is defined as F (z) = E[R(z)]. This extensions is called multilinear
because it can also be written as F (z) =

∑
S⊆E

(∏
e∈S ze ·

∏
e�∈S(1 − ze) · f(S)

)
.

The other known extension of submodular functions is the Lovász extension
introduced in [13]. Define Tλ(z) to be the set of elements whose coordinate in z is
at least λ. The Lovász extension of a submodular function f : 2E → R

+ is defined
as f̂(z) =

∫ 1

0
f(Tλ(z))dλ. This definition can also be interpreted in probabilistic

terms as the expected value of f over the set Tλ(z), where λ is uniformly selected
from the range [0, 1]. In this paper, the Lovász extension is used only to lower
bound the multilinear extension. This is done using the following theorem.

Theorem 1 (Lemma A.4 in [17]). Let F (z) and f̂(z) be the multilinear and
Lovász extensions of a submodular function f , respectively. Then, for every z ∈
[0, 1]E , F (z) ≥ f̂(z).

We abuse notation, and write F (z ∪ S) to denote E[f(R(z) ∪ S)], F (z − S)
to denote E[f(R(z) − S)] and so on. We also use the shorthand ∂eF (z) for
F (z ∪ e) − F (z − e). The multilinear nature of F yields the following useful
observation which relates these notations.

Observation 1. Let F (z) be the multilinear extension of a submodular function
f : 2E → R+. Then, for every e ∈ E, ∂eF (z) = F (z∪e)−F (z)

1−ze
= F (z)−F (z−e)

ze
,

assuming the denominators are not 0.

The following lemma shows that the change in F (z) induced by small mod-
ifications to the coordinates of z is almost equal to the sum of changes that
would have resulted from modifying each coordinate independently. This kind
of lemmata are standard, hence, we omit its proof from this extended abstract.

Lemma 1. Consider two vectors z, z′ ∈ [0, 1]E such that for every e ∈ E, |ze −
z′e| ≤ δ, for δ ≤ n−3. Then, F (z′)− F (z) ≥∑

e∈E(z′e − ze) · ∂eF (z)−O(n−1δ).

Given a set S ⊆ E and a number p ∈ [0.5, 1], let zp(S) be a vector of [0, 1]E ,
containing p in the coordinate of every element of S, and 1 − p in all other
coordinates. Since the structural similarity of S to OPT is often used in our
proofs, we denote it by V (S), i.e., V (S) = f(S ∩ OPT) + f(S ∪ OPT). For
simplicity of the exposition we assume f(OPT) = 1. This assumption removes
some clattering from the mathematical calculations, and can be easily removed.

3 The Structural Continuous Greedy Algorithm

Following is the structural continuous greedy algorithm. This algorithm improves
a set S which has some structural resemblance to OPT (at the cost of possibly
making the set less structurally similar to OPT).

Nonmonotone Submodular Maximization 349

Structural Continuous Greedy (f, S, E):
1. Let δ = n−3. Initialize t = 0 and z0 = 1S .
2. While t < 1 do:
3. For every element e ∈ E do:
4. If ∂eF (zt) > 0,a (zt+1)e = min{1, (zt)e + δ}.
5. If ∂eF (zt) < 0, (zt+1)e = max{0, (zt)e − δ}.
6. t← t+ δ
7. Return R(z1)
a The algorithm does not have access to ∂eF (zt), however, it can approximate it

up to any required accuracy by averaging independent random samples. This is
a standard practice, and we omit details (e.g., see [1]). Taking the error induced
by the random sampling into account effects our results, with high probability,
only by a lower order term.

We prove in this section the following theorem.

Theorem 2. Assuming V (S) ≥ 2f(S), the expected value of the solution pro-
duced by the Structural Continuous Greedy Algorithm outputs is at least V (S)

4 ·[
2− ln

[
3− 4f(S)

V (S)

]]
−O(n−1).

We define a few sets of elements that we will refer to. Let E0
t (resp. E1

t) be
the set of elements whose coordinates in zt are 0 (resp. 1), E+

t be the set {e ∈
E|∂eF (zt) ≥ 0}, and E−t be E − E+

t .
The following lemma shows that there is a set of elements for which the gain

achieved by changing the coordinate of each one of them independently (i.e.,
when changing one coordinate, the others are kept unchanged) is significant.

Lemma 2. At every time t,
∑

e∈OPT∩(E+
t −E1

t) ∂eF (zt) −
∑

e∈OPT∩(E−
t −E0

t) ∂e

F (zt) ≥ F (OPT ∩ zt) + F (OPT ∪ zt)− 2F (zt).

Proof. Observe that
∑

e∈OPT∩(E−
t −E1

t) F (zt∪e)−F (zt) =
∑

e∈OPT∩(E−
t −E1

t)(1−
(zt)e) · ∂eF (zt) ≤ 0. Using this observation, we get:∑

e∈OPT∩(E+
t −E1

t)

∂eF (zt) ≥
∑

e∈OPT∩(E+
t −E1

t)

F (zt ∪ e)− F (zt) (1)

≥
∑

e∈OPT−E1
t

F (zt ∪ e)− F (zt)

≥ F (zt ∪ (OPT − E1
t))− F (zt) = F (zt ∪OPT)− F (zt) .

Analogously, we can also get:∑
e∈OPT∩(E−

t −E0
t)

∂eF (zt) ≤ F (zt)− F (zt −OPT) . (2)

The lemma now follows by combining (1) and (2).

Together with Lemma 1, Lemma 2 shows that there is a set of elements whose
coordinates can be changed together to produce a significant improvement. The
following lemma shows that the algorithm indeed finds such a set.

350 M. Feldman, J. Naor, and R. Schwartz

Lemma 3. F (zt+δ)−F (zt) ≥ δ[F (OPT∩zt)+F (OPT∪zt)−2F (zt)]−O(δn−1).

Proof. The algorithm increases the coordinates of all elements in E+
t − E1

t by δ,
and decreases the coordinates of all elements in E−t −E0

t by δ. Hence, by Lemma 1,
F (zt+δ) − F (zt) ≥ δ

∑
e∈E+

t −E1
t
∂eF (z) − δ∑e∈E−

t −E0
t
∂eF (z) − O(n−1δ). The

lemma now follows by combining this inequality with Lemma 2.

The following lemma lower bounds the similarity of R(zt) to OPT in terms of
the similarity of the original set S to OPT and the time that passed so far.

Lemma 4. For every time t, the following two inequalities hold:

– F (zt ∩OPT) ≥ (1− t) · f(S ∩OPT).
– F (zt ∪OPT) ≥ (1− t) · f(S ∪OPT).

Proof. Clearly, for every e ∈ OPT , f(OPT) ≥ f(OPT − e). By submodularity,
this implies that f is monotone on subsets of OPT . Observe that f(X ∩OPT)
is also a submodular function. Thus, by applying Theorem 1 to it, we get

F (zt ∩OPT) ≥
∫ 1

0

f(Tλ(zt) ∩OPT)dλ ≥
∫ 1−t

0

f(Tλ(zt) ∩OPT)dλ .

At time t, every element e ∈ S must have (zt)e ≥ 1−t, hence, the set Tλ(zt) in the
integrand must contain S. Plugging this observation into the previous inequality,
and using the monotonicity of f over subsets of OPT , we get F (zt ∩ OPT) ≥∫ 1−t

0
f(S ∩OPT)dλ = (1− t) · f(S ∩OPT). The other inequality guaranteed by

the lemma is proved analogously.

Plugging Lemma 4 into Lemma 3, we get the following lower bound on the
improvement made by the algorithm at each step.

Corollary 1. F (zt+δ)−F (zt) ≥ δ[(1−t)[f(S∩OPT)+f(S∪OPT)]−2F (zt)]−
O(n−1δ) = δ[(1− t)V (S)− 2F (zt)]−O(n−1δ).

Let g be the solution of the following recursive formula. g(t+ δ)− g(t) = δ[(1−
t)V (S) − 2g(t)], with the boundary condition g(0) = f(S). Lemmata 5 and 6
prove that it is sufficient to show that at some point g(t) ≥ X in order to prove
F (z1) ≥ X −O(n−1).

Lemma 5. For evert time t, F (zt) ≥ g(t)−O(n−1t).

Proof. Let c be the constant hiding behind the big O in Corollary 1. We prove
F (zt) ≥ g(t) − cn−1t by induction. For t = 0, the claim holds since F (z0) =
f(S) = g(0). Assume the claim holds for t, let us prove it for t+δ via Corollary 1.

F (zt+δ) ≥ (1− t)δV (S) + (1− 2δ)F (zt)− cn−1δ

≥ (1− t)δV (S) + (1− 2δ)g(t)− cn−1(δ + t) = g(t+ δ)− cn−1(δ + t) .

Lemma 6. For every time t, F (z1) ≥ F (zt)−O(n−1).

Nonmonotone Submodular Maximization 351

Proof. The algorithm increases only coordinates of elements with a positive
∂eF (zt), and decreases only coordinates of elements with a negative ∂eF (zt).
Hence, by Lemma 1, F (zt) decreases by at most O(n−1δ) in every time step.
Since there are δ−1 time steps, the lemma follows.

Let h be the function h(t) = 3
4V (S) · [1− 2t

3 − e−2t
]

+ e−2t · f(S) . Observe that
dh/dt = (1−t)V (S)−2h(t). The next lemma shows that h lower bounds g (given
some condition), and therefore, also lower bounds the value of the algorithm’s
solution.

Lemma 7. If for every t′ ≤ t, g(t′) ≤ 0.5(1− t)V (S), then g(t) ≥ h(t).

Proof. We prove the lemma by induction on t. For t = 0 the lemma follows from
the definition of h(0). Assume the lemma holds for some time t, let us prove it
for time t+ δ. Let t1 be the last time in the range [t, t+ δ] in which h(t1) ≤ g(t).

h(t+ δ) = h(t1) +
∫ t+δ

t1

h′(τ)dτ = h(t1) +
∫ t+δ

t1

((1− τ)V (S)− 2h(τ)) dτ

≤ g(t) +
∫ t+δ

t1

((1− t)V (S)− 2g(t)) dτ

= g(t) + (t+ δ − t1) ((1 − t)V (S)− 2g(t))
≤ g(t) + δ ((1− t)V (S)− 2g(t)) = g(t+ δ) .

Let t∗ = 0.5 ln
[
3− 4f(S)

V (S)

]
. Notice that if f(S∪OPT)+f(S∩OPT) ≥ 2f(S),

then �∗ ∈ [0, 0.5 ln 3] ⊆ [0, 1].

Lemma 8. Assuming V (S) ≥ 2f(S), h(t∗) = 0.25V (S) ·
[
2− ln

[
3− 4f(S)

V (S)

]]
.

Proof.

h(t∗) =
3
4
V (S)

⎡⎣1−
ln
[
3− 4f(S)

V (S)

]
3

− V (S)
3V (S)− 4f(S)

⎤⎦ + f(S)
V (S)

3V (S)− 4f(S)

=
3
4
V (S)

⎡⎣1−
ln
[
3− 4f(S)

V (S)

]
3

⎤⎦− V (S)
4

=
1
4
V (S)

[
2− ln

[
3− 4f(S)

V (S)

]]
.

We are now ready to prove Theorem 2.

Proof (of Theorem 2). First let us claim that somewhere g gets the value:

0.25V (S) ·
[
2− ln

[
3− 4f(S)

V (S)

]]
−O(n−3) .

If the assumption of Lemma 7 does not hold for t∗, then g gets, somewhere,
the value:

0.5(1− t∗)V (S) = 0.5
(

1− 0.5 ln
[
3− 4f(S)

V (S)

])
V (S) .

352 M. Feldman, J. Naor, and R. Schwartz

Which proves the claim. Hence, we can assume that the assumption of Lemma 7
holds, which implies g gets value of at least h(δ · �t∗/δ�). In order to lower bound
this value, we can use the observation that for every t ∈ [0, t∗], h′(t) ≤ 2. Thus,

h(δ · �t∗/δ�) ≥ h(t∗)− 2δ ≥ h(t∗)− 2n−3 .

And the theorem now follows from Lemmata 5 and 6.

4 Simulated Annealing Algorithm

Given a set S, let us denote by C(S) the random set resulting from running the
structural continuous greedy algorithm on S. Consider the following algorithm.

Simulated Annealing Algorithm (f, E):
1. Let d = 0.752 −√2/(1 +

√
2) and δ = d�n3d�−1.a

2. Initialize p =
√

2/(1 +
√

2) and Ap = ∅.
3. Repeat:
4. Set Bp ← Ap

5. While there exists a set S such that:
(i) |S ⊕Bp| = 1
(ii) F (zp(S)) > F (zp(Bt))

6. Replace Bp with S
7. Set Ap+δ ← Bp

8. Update p← p+ δ
9. Until p = 0.752.
10. Return the best set in {R(z0.752(B0.752))} ∪ {B̄p, C(B̄p)}0.752

p=
√

2
1+

√
2

a Informally δ is the inverse of a number which is both at least n3 and dividable
by d.

Remark: As written the Simulated Annealing algorithm does not run in poly-
nomial time for two reasons: the number of iterations that the algorithm makes
might be exponential, and checking condition (ii) exactly cannot be done in poly-
nomial time using only value oracle access to f . However, both problems can be
solved using standard means (see, e.g., [12,1]), at the cost of losing a lower order
term in the approximation ratio. We omit the details.

Theorem 3. The Simulated Annealing Algorithm returns a solution whose ex-
pected value is at least 0.42.

The proof of the theorem combines ideas from the proof of the simulated an-
nealing algorithm of [5] with the new observations described in Section 1.2. Due
to lack of space, this proof is deferred to a full version of this paper.

References

1. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submod-
ular function subject to a matroid constraint. To appear in SIAM J. Comput.

Nonmonotone Submodular Maximization 353

2. Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via
exchange properties of combinatorial structures. In: 51st Annual Symposium on
Foundations of Computer Science, pp. 575–584. IEEE Computer Society, Wash-
ington DC (2010)

3. Chekuri, C., Vondrák, J., Zenklusen, R.: Submodular function maximization via
the multilinear relaxation and contention resolution schemes. To appear in the
42nd ACM Symposium on Theory of Computer Science (2011)

4. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular
functions. In: 48th Annual IEEE Symposium on Foundations of Computer Sci-
ence, pp. 461–471. IEEE Computer Society, Washington DC (2007)

5. Gharan, S.O., Vondrák, J.: Submodular maximization by simulated annealing. In:
22nd ACM-SIAM Symposium on Discrete Algorithms, pp. 1096–1116 (2011)

6. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J.
ACM 42(6), 1115–1145 (1995)

7. Gupta, A., Roth, A., Schoenebeck, G., Talwar, K.: Constrained non-monotone
submodular maximization: Offline and secretary algorithms. In: Saberi, A. (ed.)
WINE 2010. LNCS, vol. 6484, pp. 246–257. Springer, Heidelberg (2010)

8. Iwata, S., Nagano, K.: Submodular function minimization under covering con-
straints. In: 50th Annual IEEE Symposium on Foundations of Computer Science,
pp. 671–680. IEEE Computer Society, Washington DC (2009)

9. Jegelka, S., Bilmes, J.: Cooperative cuts: Graph cuts with submodular edge weights.
Technical report, Max Planck Institute for Biological Cybernetics (2010)

10. Kulik, A., Shachnai, H., Tamir, T.: Maximizing submodular set functions subject
to multiple linear constraints. In: 20th ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 545–554. Society for Industrial and Applied Mathematics, Philadelphia
(2009)

11. Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Maximizing non-monotone
submodular functions under matroid or knapsack constraints. SIAM J. Discrete
Mathematics 23(4), 2053–2078 (2010)

12. Lee, J., Sviridenko, M., Vondrák, J.: Submodular maximization over multiple ma-
troids via generalized exchange properties. In: Dinur, I., Jansen, K., Naor, J.,
Rolim, J. (eds.) APPROX 2009. LNCS, vol. 5687, pp. 244–257. Springer, Hei-
delberg (2009)

13. Lovász, L.: Submodular functions and convexity. In: Bachem, A., Grötschel, M.,
Korte, B. (eds.) Mathematical Programming: the State of the Art, pp. 235–257.
Springer, Berlin (1983)

14. Lovász, L., Grötschel, M., Schrijver, A.: The ellipsoid method and its consequences
in combinatorial optimization. Combinatoria 1(2), 169–197 (1981)

15. Svitkina, Z., Fleischer, L.: Submodular approximation: Sampling-based algorithms
and lower bounds. In: 49th Annual IEEE Symposium on Foundations of Computer
Science, pp. 697–706. IEEE Computer Society, Washington DC (2008)

16. Vondrák, J.: Optimal approximation for the submodular welfare problem in the
value oracle model. In: 40th ACM Symposium on Theory of Computer Science,
pp. 67–74. ACM, New York (2008)

17. Vondrák, J.: Symmetry and approximability of submodular maximization prob-
lems. In: 50th Annual IEEE Symposium on Foundations of Computer Science, pp.
651–670. IEEE Computer Society, Washington DC (2009)

18. Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering
problem. Combinatorica 2(4), 385–393 (1982)

Submodular Cost Allocation Problem

and Applications�

Chandra Chekuri and Alina Ene

Dept. of Computer Science, University of Illinois, Urbana, IL 61801, USA
{chekuri,ene1}@cs.illinois.edu

Abstract. We study the Minimum Submodular-Cost Allocation prob-
lem (MSCA). In this problem we are given a finite ground set V and
k non-negative submodular set functions f1, . . . , fk on V . The objec-
tive is to partition V into k (possibly empty) sets A1, · · · , Ak such that
the sum

∑k
i=1 fi(Ai) is minimized. Several well-studied problems such

as the non-metric facility location problem, multiway-cut in graphs and
hypergraphs, and uniform metric labeling and its generalizations can be
shown to be special cases of MSCA. In this paper we consider a convex-
programming relaxation obtained via the Lovász-extension for submod-
ular functions. This allows us to understand several previous relaxations
and rounding procedures in a unified fashion and also develop new formu-
lations and approximation algorithms for related problems. In particular,
we give a (1.5− 1/k)-approximation for the hypergraph multiway parti-
tion problem. We also give a min{2(1−1/k), HΔ}-approximation for the
hypergraph multiway cut problem when Δ is the maximum hyperedge
size. Both problems generalize the multiway cut problem in graphs and
the hypergraph cut problem is approximation equivalent to the node-
weighted multiway cut problem in graphs.

1 Introduction

We consider the following allocation problem with submodular costs.

Minimum Submodular-Cost Allocation (MSCA). Let V be a finite ground
set and let f1, · · · , fk be k non-negative submodular set functions on V . That
is, for 1 ≤ i ≤ k, fi : 2V → R+ and fi(A) + fi(B) ≥ fi(A∪B) + fi(A∩B) for all
A,B ⊆ V . In the MSCA problem the goal is to partition the ground set V into
k (possibly empty) sets A1, · · · , Ak such that the sum

∑k
i=1 fi(Ai) is minimized.

We observe that the problem is interesting only if the fi’s are different for oth-
erwise allocating all of V to f1 is trivially an optimal solution. We assume that
the functions fi are given as a value oracle although in specific applications they
may be available as explicit poly-time computable functions of some auxiliary

� This is an extended abstract without proofs. A longer version of the paper will be
made available on the arXiv. The authors are supported in part by United States
NSF grants CCF-0728782 and CCF-1016684.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 354–366, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Submodular Cost Allocation Problem and Applications 355

input. The special case of this problem in which all of the functions are mono-
tone (f(A) ≤ f(B) if A ⊆ B) has been previously considered by Svitkina and
Tardos [21]. In this paper, we consider the problem with both monotone and
non-monotone functions. We show that several well-studied problems such as
non-metric facility location, multiway cut problems in graphs and hypergraphs,
uniform metric labeling and its generalization to hub location among others can
be cast as special cases of MSCA. In particular, we investigate the integrality
gap of a simple and natural convex-programming relaxation for MSCA that is
obtained via the use of the Lovász extension of a submodular function.

Lovász extension and a convex program for MSCA: Let V be a finite
ground set of cardinality n. Each real-valued set function on V corresponds to
a function f : {0, 1}n → R on the vertices of the n-dimensional hypercube. The
Lovász extension of f to the continuous domain [0, 1]n denoted by f̂ is defined
as1

f̂(x) = Eθ∈[0,1]

[
f(xθ)

]
=
∫ 1

0

f(xθ)dθ

where xθ ∈ {0, 1}n for a given vector x ∈ [0, 1]n is defined as: xθ
i = 1 if xi ≥ θ

and 0 otherwise.
Lovász showed that f̂ is convex if and only if f is a submodular set function

[16]. Moreover, it is easy to see that, given x, the value f̂(x) can be computed
in polynomial-time by using a value oracle for f . Via this extension, we obtain
a straightforward relaxation for MSCA with a convex objective function and
linear constraints. Let v1, · · · , vn denote the elements of V . The relaxation has
variables x(v, i) for v ∈ V and 1 ≤ i ≤ k with the interpretation that x(v, i) is
1 if v is assigned to Ai and 0 otherwise. Let xi = (x(v1, i), · · · , x(vn, i)). The
relaxation is given below.

LE-Rel

min
k∑

i=1

f̂i(xi)

k∑
i=1

x(v, i) = 1 ∀v

x(v, i) ≥ 0 ∀v, i

Throughout, we use OPT and OPTfrac

to denote the value of an optimal integral
and an optimal fractional solution to LE-

Rel (respectively).
We remark that LE-Rel can be

solved in time that is polynomial in n
and log(maxi,S⊆V fi(S)) via the ellipsoid
method. Moreover, for some problems of
interest the above convex program can be
rewritten into an equivalent linear pro-

gram. We now describe several problems that can be cast as special cases of
MSCA, and also how some previously considered linear-programming relax-
ations can be seen as being equivalent to the convex program above.

1 The definition is not the standard one but is equivalent to it, see [23]. This definition
is convenient to us in describing and understanding rounding procedures.

356 C. Chekuri and A. Ene

1.1 Problems Related to MSCA

Monotone MSCA (Monotone-MSCA) and Facility Location: In facility
location, we have a set of facilities F and a set of clients or demands D. There
is a non-negative cost cij to connect facility i to client j (we do not necessarily
assume that these costs form a metric). Opening facility i ∈ F costs fi. The
goal is to open a subset of the facilities and assign each client to an open facility
so as to minimize the sum of the facility opening cost and the connection costs.
Svitkina and Tardos [21] considered the setting where the cost of opening a
facility i is a monotone submodular function gi of the clients assigned to it, and
gave an (1 + ln |D|)-approximation, and matching hardness via a reduction from
set cover. We note that this problem is equivalent to MSCA when all the fi

are monotone submodular functions, which we refer to as Monotone-MSCA.
In [21] a greedy algorithm via submodular function minimization is used to
derive the approximation. Here we prove that the integrality gap of LE-Rel is
(1 + ln |D|), and describe how certain rounding algorithms achieve this bound.
These algorithms are useful when considering functions that are not necessarily
monotone.

Submodular Multiway Partition (Sub-MP): We define an abstract prob-
lem and then specialize to known problems. Let f : 2V → R+ be a submodular
set function over V and let S = {s1, s2, . . . , sk} be k terminals in V . The sub-
modular multiway partition problem is to find a partition of V into A1, . . . , Ak

such that si ∈ Ai and
∑k

i=1 f(Ai) is minimized. This has been previously con-
sidered by Zhao, Nagamochi and Ibaraki [26]. This can be seen as a special case
of MSCA as follows. Define the ground set to be V ′ = V \S and, for 1 ≤ i ≤ k,
fi : 2V ′ → R+ is the function defined as fi(S) = f(S ∪ {si}). If in addition f
is symmetric (f(A) = f(V − A) for all A) we call this the symmetric Sub-MP

problem (Sym-Sub-MP). Note that although the problem is based on a sin-
gle function f , k different submodular functions (induced by the terminals) are
needed to reduce it to MSCA. We now discuss some important special cases of
this problem.

Multiway Cut in Graphs (Graph-MC): The input is an edge-weighted undi-
rected graph G = (V,E) and k terminal vertices S = {s1, . . . , sk}; the goal is to
remove a minimum-weight set of edges to disconnect the terminals. This can be
seen as a special case of the symmetric submodular multiway partition problem
by simply choosing f to be the cut-capacity function of G scaled down by a fac-
tor of 2. That is, f(A) = 1

2

∑
e∈δ(A) w(e) where w(e) is the weight of edge e. We

observe that LE-Rel for this problem is equivalent to the well-known geometric
LP relaxation of Calinescu, Karloff and Rabani [2], which led to significant im-
provements (1.5−1/k in [2] and 1.3438 in [13]) over the 2(1−1/k)-approximation
obtained via the isolating-cut heuristic [4].

Multiway Cut and Partition in Hyper-Graphs: Given an edge-weighted hyper-
graph G = (V, E) and terminal set S ⊂ V , the Hypergraph Multiway Cut

problem (Hypergraph-MC) (see [17,25,7]) asks for the minimum weight subset

Submodular Cost Allocation Problem and Applications 357

of hyperedges whose removal disconnects the terminals. This can be seen as a
special case of Sub-MP [17]; this reduction requires some care and the underly-
ing submodular function is asymmetric. A related problem is the Hypergraph

Multiway Partition problem (Hypergraph-MP) introduced by Lawler [15]
where the cost for hyperedge e is proportional to the number of non-trivial pieces
it is partitioned into. This can be seen as a special case of the Sym-Sub-MP

with f being the hypergraph cut capacity function. We note that Graph-MC

is a special case of both Hypergraph-MC and Hypergraph-MP.

Node-weighted Multiway Cut in Graphs (Node-wt-MC): In this problem [8] the
graph has weights on nodes instead of edges and the goal is to find a minimum
weight subset of nodes whose removal disconnects a given set of terminals. It is
not difficult to show that Hypergraph-MC and Node-wt-MC are approxi-
mation equivalent [17].

Zhao et al. [26] consider generalizations of the above problems where some
set of terminals S ⊆ V and k are specified and the goal is to partition V into
k sets such that each set contains at least one terminal and the total cost of
the partition is minimized. We do not discuss these further since they are not
directly related to MSCA, although one can reduce them to MSCA if k is a
fixed constant.

Uniform Metric Labeling and Submodular Cost Labeling (Sub-Label):
The metric labeling problem was introduced by Kleinberg and Tardos [14] as a
general classification problem. We are given an undirected edge-weighted graph
G = (V,E) and k labels and the goal is to assign a label to each vertex to
minimize the sum of the labeling cost and the edge-cut cost. The labeling cost is
given by functions ci : V → R+ and the edge-cut cost is given by a metric d on
the label space; d(ij) is the distance between labels i and j. Assigning label i to
v incurs a cost ci(v) and if an edge uv of weight w(uv) has u labeled with i and
v labeled with j then the edge-cut cost incurred is w(uv) · d(ij). The uniform
metric labeling problem is obtained when d(ij) = 1 for all i �= j. We consider the
following generalization that we call the Submodular Cost Labeling (Sub-

Label) problem which is a special case of MSCA. The k labels correspond to
the k functions f1, . . . , fk. We define fi as the sum of two functions, a monotone
function gi that models the label assignment cost, and a non-monotone function
h that models the cut-cost. The goal then is to partition V into A1, . . . , Ak

to minimize
∑k

i=1(gi(Ai) + h(Ai)). Note that uniform metric labeling is the
special case when gi are modular and h is the graph cut function, which is
symmetric. We are motivated to consider this generalization by problems that
have been considered previously, such as metric labeling on hypergraphs, hub
location problem [9], and the extension of metric labeling to handle label opening
costs [5].

1.2 Overview of Results and Techniques

In this paper we examine the complexity of MSCA primarily through the “in-
tegrality gap” of the convex relaxation LE-Rel which can be optimized in

358 C. Chekuri and A. Ene

polynomial time. All the problems we consider are NP-hard and our focus is
on polynomial time approximation algorithms.

A significant portion of our contribution is to highlight the naturalness of
MSCA and the Lovász-extension based relaxation LE-Rel by showing con-
nections to previously studied problems, linear programming relaxations, and
rounding strategies. Viewing these problems in the more abstract setting of sub-
modularity gives insights into prior algorithms. In the process, we obtain new
and interesting results. Although one would like to obtain a single unifying algo-
rithm that achieves a good approximation for MSCA, it turns out that LE-Rel

has a large integrality gap and we believe that MSCA is hard to approximate to
a polynomial factor. However, it is fruitful to examine special cases of MSCA

that admit good approximations via LE-Rel. We describe several applications
below by summarizing our results; all of them are based on LE-Rel.

– The integrality gap of LE-Rel for Monotone-MSCA is Θ(log n).
– There is a (1.5− 1/k)-approximation for Hypergraph-MP.
– There is a min{2(1 − 1/k), HΔ}-approximation for HMC, where Δ is the

maximum hyperedge size andHi is the i-th harmonic number. ForΔ = 2 this
gives a 1.5-approximation and for Δ = 3 this gives a 1.833-approximation.

– LE-Rel for HMC gives a new mathematical programming relaxation for
Node-wt-MC and a new 2(1 − 1/k)-approximation. Moreover, if all non-
terminal nodes have degree at most 3 we obtain a 1.833-approximation im-
proving upon the 2(1− 1/k) known via the distance-based relaxation [8].

– The integrality gap of LE-Rel for Sym-Sub-MP is at most 2−2/k; this gives
an alternative approximation to previous combinatorial algorithms [18,26].
We raise the question as to whether the integrality gap is at most 1.5.

– There is an O(log n) for Sub-Label when the cut function is symmetric.
We derive results for other special cases of Sub-Label.

Rounding the convex relaxation: Recall that the objective function in LE-

Rel is
∑k

i=1 f̂i(xi), where f̂i(xi) = Eθ∈[0,1][f(xθ
i)]. How do we round while pre-

serving the objective function? If we focus on a specific i, the objective function
suggests that we pick θ randomly from [0, 1] and assign the elements in xθ

i to
i; we call this θ-rounding. However, there are two issues to contend with. First,
if we independently round for each i then the same element may be assigned
multiple times. Second, we need to ensure that all elements are assigned, which
is not guaranteed by the θ-rounding. We remark that there is an integrality gap
example for hypergraph metric labeling that shows that there is no effective
rounding strategy that works in general.

Our approach is to understand the rounding process by considering various
special cases of interest. In particular, we consider monotone functions, symmet-
ric functions, the hypergraph cut function (which is asymmetric), and combi-
nations of such functions. Monotonocity helps in that if elements are assigned

Submodular Cost Allocation Problem and Applications 359

to a label i, they can be removed without increasing the fractional cost. Al-
though one can use different strategies to obtain an O(log n)-approximation and
integrality gap, a useful strategy here is the rounding of Kleinberg and Tardos
[14] that they introduced for metric labeling. This has the additional property
of ensuring that an element u is assigned to i with probability exactly x(u, i).
We then consider the rounding process for Sub-MP, in particular the symmetric
case Sym-Sub-MP. Here, we crucially take advantage of the fact that there is
a single underlying function f , and moreover the fact that it is symmetric. We
consider the CKR-Rounding strategy from [2] and show its effectiveness for
hypergraphs by abstracting away some of the properties specific to graphs that
were previously exploited in the analysis. In the process, we also observe that a
variant is equally effective for graphs but is more insightful for Sym-Sub-MP.

Finally, Sub-Label combines a monotone function and a non-monotone
function. Here, we resort to KT-Rounding since it is a reasonable strategy
to approximately preserve the cost of the monotone component. For the uni-
form metric labeling problem, [14] showed that KT-Rounding approximately
(to within a factor of 2) preserves the fractional connection cost in the case of
graphs. We show bounds for hypergraph cut functions in an analogous fash-
ion. Our insights enable us to develop a variant of the rounding that gives an
O(log n)-approximation for Sub-Label when the cut function is an arbitrary
symmetric submodular function. Due to space constraints, we omit the results
for metric labeling.

Other Related Work: Due to space constraints, in this extended abstract we
restrict our attention to closely related work. There has been much recent in-
terest in optimizing with submodular set functions. In particular, maximization
problems have been examined via combinatorial techniques as well as the mul-
tilinear relaxation [1]. The submodular welfare problem [22] is similar in spirit
to MSCA except that one is interested in maximizing the value of an allocation
rather than minimizing the cost. Minimization problems with submodular costs
have also received substantial attention [19,11,12,10] with several negative results
for basic problems as well as positive approximation results for problems such as
the submodular cost vertex cover problem [12,10]. Lovász-extension based con-
vex programs have been effectively used for these problems. Various submodular
cut and partition problems and their special cases such as the hypergraph cut
and partition have been studied recently [26,25,17,7]; however, these papers have
typically focussed on greedy and divide-and-conquer based approaches while we
use LE-Rel.

Recent Results for Sym-Sub-MP and Sub-MP: Very recently, building on
the work in this paper and a non-trivial new technical theorem, we showed [3]
that the integrality gap of SubMP-Rel is at most 1.5− 1/k for Sym-Sub-MP

and at most 2 for Sub-MP.

360 C. Chekuri and A. Ene

2 Monotone MSCA

In this section we consider Monotone-MSCA where f1, . . . , fk are monotone
submodular functions. We will assume for simplicity that fi(∅) = 0 for all i.

KT-Rounding
let x be a solution to LE-Rel

S ← ∅ 〈〈set of all assigned vertices〉〉
〈〈set of vertices that are eventually assigned to i〉〉
Ai ← ∅ for all i (1 ≤ i ≤ k)
while S �= V

pick i ∈ {1, 2, · · · , k} uniformly at random
pick θ ∈ [0, 1] uniformly at random
Ai ← Ai ∪ ({v | x(v, i) ≥ θ} − S)
S ← S ∪Ai

return (A1, · · · , Ak)

Svitkina and Tardos [21]
considered this problem
in the context of facility
location and gave a (1 +
lnn)-approximation and
matching hardness via
an approximation pre-
serving reduction from
set cover. Let α =
minS⊆V,1≤i≤k fi(S)/|S|.
The main observation in
[21] is that α ≤ OPT/n,

and moreover a pair (S, i) such that fi(S)/|S| = α can be computed in
polynomial-time via submodular function minimization. One can then iterate
using a greedy scheme, by using the monotonicity of the functions, to obtain a
(1 + lnn)-approximation. Using a similar argument, we can prove the following
theorem.

Theorem 1. The integrality gap of LE-Rel for Monotone-MSCA is at most
(1 + lnn). In particular, α ≤ OPTfrac/n.

We consider other rounding algorithms that also achieve an O(log n)-
approximation. We focus on KT-Rounding derived from the work of Klein-
berg and Tardos on metric labeling [14].

Theorem 2. KT-Rounding achieves a randomized O(lnn)-approximation for
Monotone MSCA.

3 Submodular Multiway Partition

We consider MSCA when the fi can be non-monotone. We can show that the
integrality gap of LE-Rel even for a special case of labeling on hypergraphs can
beΩ(n), and we suspect that the problem is hard to approximate to a polynomial
factor in n. We therefore focus on Submodular Multiway Partition (Sub-

MP) and Submodular Cost Labeling (Sub-Label); these are broad special
cases which capture several problems that have been considered previously.

The reduction of Sub-MP to MSCA requires one to work with the non-
terminals V ′ as the ground set. It is however more convenient to work with the
terminals and non-terminals. In particular, we work with the relaxation below.
Recall that xi = (x(v1, i), · · · , x(vn, i)).

Submodular Cost Allocation Problem and Applications 361

SubMP-Rel

min
k∑

i=1

f̂(xi)

k∑
i=1

x(v, i) = 1 ∀v

x(si, i) = 1 ∀i
x(v, i) ≥ 0 ∀v, i

As before, a starting point for
rounding the relaxation is the
basic θ-rounding that preserves
the objective function. Suppose
we do θ-rounding for each i
to obtain sets A(1, θ), . . . , A(k, θ)
where each A(i, θ) ⊆ V . Here we
could use independent random θ
values for each i or the same θ.
Note that the constraints ensure
that si ∈ A(j, θ) iff i = j. How-

ever, the sets A(1, θ), . . . , A(k, θ) may intersect and also may not cover the entire
set V , in which case we have to allocate the remaining elements in some fashion.
First we show how to take advantage of the case when f is symmetric and then
discuss how to obtain results for hypergraph problems that are special cases of
Sub-MP.

A 2(1−1/k)-approximation for Sym-Sub-MP: A 2(1−1/k)-approximation
for Sym-Sub-MP is known via greedy combinatorial algorithms [18,26]. How-
ever, no mathematical programming formulation for the problem has been previ-
ously considered. Here we show that, on instances of Sym-Sub-MP, the integral-
ity gap of LE-Rel is 2(1− 1/k) by using an uncrossing property of symmetric
functions.

The following lemma is standard and it has been used in previous work [20].

Lemma 1. Let f be a symmetric submodular set function over V and let A1, . . . ,
Ak be subsets of V . Then there exist sets A′

1, . . . , A
′
k such that (i) A′

i ⊆ Ai for
1 ≤ i ≤ k, (ii) A′

1, . . . , A
′
k are mutually disjoint (iii) ∪iA

′
i = ∪iAi and (iv)∑

i f(A′
i) ≤

∑
i f(Ai). Moreover, given the Ai’s a collection of sets A′

i satisfying
the above properties can be found in polynomial time via a value oracle for f .

Theorem 3. The integrality gap of LE-Rel for Sym-Sub-MP is ≤ 2(1−1/k).

In an earlier version of this paper, we raised the following question.
Question. Is the integrality gap of LE-Rel for Sym-Sub-MP at most 1.5?
As we already noted, we have shown in subsequent work [3].

Rounding for Hypergraph-MC and Hypergraph-MP: Calinescu et al. [2]
gave a new geometric relaxation for Graph-MC, and a rounding procedure
that gave a (1.5 − 1/k)-approximation; the integrality gap was subsequently
improved to a bound of 1.3438− εk in [13], while the best known lower bound is
8/(7+1/k−1) [6]. Calinescu et al. [2] derived their relaxation as a way to improve
the integrality gap of 2(1−1/k) for a natural distance based linear programming
relaxation; in fact, it often goes unnoticed that [2] shows the equivalence of
their geometric relaxation to that of another relaxation obtained by adding valid
strengthening constraints to the distance based relaxation. Interestingly, when
we specialize MSCA to Graph-MC, LE-Rel becomes the geometric relaxation

362 C. Chekuri and A. Ene

of [2]! The rounding procedure in [2] can be naturally extended to rounding LE-

Rel for Sub-MP and we describe it below.

CKR-Rounding
let x be a solution to SubMP-Rel

pick a random permutation π of {1, 2, · · · , k}
pick θ ∈ [0, 1) uniformly at random
S ← ∅ 〈〈set of all assigned vertices〉〉
for i = 1 to k − 1

Aπ(i) ← ({v | x(v, π(i)) ≥ θ} − S)
S ← S ∪Aπ(i)

Aπ(k) ← V − S
return (A1, · · · , Ak)

CKR-Rounding uses the
same θ for all i and a ran-
dom permutation, both of
which are crucially used in
the 1.5-approximation analy-
sis for Graph-MC. In this
paper we investigate CKR-

Rounding and other round-
ings for Hypergraph-MC

and Hypergraph-MP.
Although Hypergraph-

MC and Hypergraph-MP

appear similar, their objective functions are different. The objective of
Hypergraph-MC is to remove a minimum weight subset of hyperedges such
that the terminals are separated, whereas the objective of Hypergraph-MP is
to minimize

∑
e w(e)p(e), where p(e) is the number of non-trivial parts that e is

partitioned into (a part is non-trivial if some vertex of e is in that part but not
all of e). For graphs we have that either p(e) = 0 or p(e) = 2, and therefore the
two problems Hypergraph-MC and Hypergraph-MP are equivalent; this is
the reason why one can view Graph-MC as a partition problem as well. How-
ever, when the hyperedges can have size larger than 2, the objective function
values are not related to each other (it is easy to see that the Hypergraph-MP

objective is always larger).
Hypergraph-MP and Hypergraph-MC have been studied for their theo-

retical interest and their applications. It is easy to see from its definition that
Hypergraph-MP is a special case of Sym-Sub-MP. It has been observed by a
simple yet nice reduction [17] that Hypergraph-MC is a special case of Sub-

MP. In addition, it has been observed that Hypergraph-MC is approximation-
equivalent to the node-weighted multiway cut problem in graphs (Node-wt-

MC) [8].
We show that CKR-Rounding gives a (1.5 − 1/k)-approximation to

Hypergraph-MP and a tight HΔ-approximation for Hypergraph-MC with
maximum hyperedge size Δ. Note that when Δ = 2, HΔ = 1.5 and when Δ = 3,
HΔ ' 1.833. For Δ > 3, CKR-Rounding gives a worse than 2 bound while we
give an alternate rounding which gives a 2(1 − 1/k)-approximation. Our anal-
ysis of CKR-Rounding differs from that in [2] since we cannot use the “edge
alignment” properties of the fractional solution that hold for graphs and were
exploited in [2]; our analysis is inspired by the proof given by Williamson and
Shmoys [24].

It is natural to wonder whether CKR-Rounding is crucial to obtaining a
bound that is better than 2 for these problems, and in particular whether it gives
a 1.5-approximation for Sym-Sub-MP. We show that a 1.5−1/k-approximation
for Hypergraph-MP (and hence Graph-MC also) can be obtained via a

Submodular Cost Allocation Problem and Applications 363

different algorithm as well; in particular, the crucial ingredient in CKR-Rounding

for Graph-MC when viewed as a special case of Hypergraph-MP is the cor-
relation provided by the use of the same θ for all i; one can replace the random
permutation by the uncrossing scheme in Lemma 1. We describe this algorithm
in the next section. However, for Hypergraph-MC, the random permutation
is important in proving the HΔ-bound.

3.1 A 1.5-Approximation for Hypergraph Multiway Partition

We start by understanding the objective function of SubMP-Rel in the con-
text of Hypergraph-MP. Let x be a feasible fractional solution, and let xi =
(x(v1, i), · · · , x(vn, i)) be the allocation to i. Recall that f here is the hypergraph
cut function. What is

∑n
i=1 f̂(xi)? For each terminal i and each hyperedge e, let

I(e, i) = [minv∈e x(v, i),maxv∈e x(v, i)]. Let d(e, i) denote the length of I(e, i),
and let d(e) =

∑k
i=1 d(e, i). Note that d(e) ∈ [0, |e|].

Lemma 2.
∑k

i=1 f̂(xi) =
∑

ew(e)d(e).

A crucial technical lemma that we need is the following which states that the
contribution of any i to d(e) is at most d(e)/2.

Lemma 3. For any i, d(e, i) ≤ d(e)/2.

SymSubMP-Rounding
let x be a feasible solution to SubMP-Rel

pick θ ∈ [0, 1] uniformly at random
A(i, θ)← {v | x(v, i) ≥ θ} for each i (1 ≤ i ≤ k)
〈〈uncross A(1, θ), · · · , A(k, θ)〉〉
A′

i ← A(i, θ) for each i (1 ≤ i ≤ k)
while there exist i �= j such that A′

i ∩A′
j �= ∅

if
(
f(A′

i) + f(A′
j −A′

i) ≤ f(A′
i) + f(A′

j)
)

A′
j ← A′

j −A′
i

else
A′

i ← A′
i −A′

j

return (A′
1, · · · , A′

k−1, V − (A′
1 ∪ · · ·A′

k−1))

The algorithmSymSubMP-

Rounding that we analyze
is described in the adja-
cent box. We can prove that
CKR-Rounding gives the
same bound; however, Sym-

SubMP-Rounding and its
analysis are perhaps more
intuitive in the context of
symmetric functions. The
algorithm does θ-rounding
to obtain sets A(1, θ), . . . ,
A(k, θ) and then uncrosses

these sets to make them disjoint without increasing the expected cost (see
Lemma 1).

Theorem 4. SymSubMP-Rounding achieves an (1.5 − 1/k)-approximation
for Hypergraph-MP.

Lemma 4. Let i∗ be the index such that the interval I(e, i∗) has the rightmost
ending point among the intervals I(e, i). More precisely, I(e, i∗) is an interval
such that maxv∈e x(v, i∗) = maxi maxv∈e x(v, i); if there are several such inter-
vals, we choose one arbitrarily. Let Ze be an indicator random variable equal to
1 iff e ∈ δ(V − (A(1, θ) ∪ · · · ∪A(k, θ))). Then E[Ze] ≤ d(e, i∗).

Theorem 4 follows from Lemma 1 and Lemma 4.

364 C. Chekuri and A. Ene

3.2 Algorithms for Hypergraph Multiway Cut

Now we consider Hypergraph-MC. For each hyperedge e, pick an arbitrary
representative node r(e) ∈ e. Define the function f : 2V → R+ as follows:
for A ⊆ V , let f(A) =

∑
e:r(e)∈A,e�⊆A w(e) be the weight of hyperedges whose

representatives are in A and they crossA. It is easy to verify that f is asymmetric
and submodular. Sub-MP with this function f captures Hypergraph-MC [17].

Let x be a feasible fractional allocation and xi be the allocation for i. For each
hyperedge e and each terminal i, let I(e, i) = [minv∈e x(v, i),maxv∈e x(v, i)]. Let
d(e, i) = x(r(e), i)−minv∈e x(v, i) and d(e) =

∑k
i=1 d(e, i).

Lemma 5.
∑k

i=1 f̂(xi) =
∑

ew(e)d(e).

Half-Rounding
let x be a solution to SubMP-Rel

pick θ ∈ (1/2, 1] uniformly at random
for i = 1 to k − 1

A(i, θ)← {v | x(v, i) ≥ θ}
U(θ)← V − (A(1, θ) ∪ · · · ∪A(k − 1, θ))
return (A(1, θ), · · · , A(k − 1, θ), U(θ))

For Hypergraph-MC we show
that Half-Rounding achieves a
2(1−1/k)-approximation and that
CKR-Rounding achieves an HΔ-
approximation where Δ is the
maximum hyperedge size.

Theorem 5. Let F be the set of all hyperedges crossing the partition returned
by Half-Rounding. For each hyperedge e, Pr[e ∈ F] ≤ 2d(e).

Theorem 6. Let F be the set of all hyperedges crossing the partition returned
by CKR-Rounding. For each hyperedge e, Pr[e ∈ F] ≤ H|e|· d(e). Moreover,
this analysis is tight for the rounding.

Acknowledgments. We thank Lisa Fleischer for suggesting that we contact
Zoya Svitkina about MSCA and thank Zoya for pointing out her work in [21] on
monotone MSCA. CC thanks Jan Vondrak for pointing out the interpretation of
the Lovász extension from his paper [23] which was very helpful in thinking about
rounding procedures. AE thanks Sungjin Im and Ben Moseley for discussions.

References

1. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set
function subject to a matroid constraint (Extended abstract). In: Fischetti, M.,
Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 182–196. Springer, Hei-
delberg (2007)

2. Calinescu, G., Karloff, H.J., Rabani, Y.: An improved approximation algorithm for
multiway cut. Journal of Computer and System Sciences 60(3), 564–574 (2000),
Preliminary version in STOC 1998

3. Chekuri, C., Ene, A.: Approximation algorithms for submodular multiway partition
(April 2011) (manuscript)

4. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.:
The complexity of multiterminal cuts. SIAM Journal on Computing 23(4), 864–894
(1994), Preliminary version in STOC 1992

Submodular Cost Allocation Problem and Applications 365

5. Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast approximate energy min-
imization with label costs. In: IEEE Computer Vision and Pattern Recognition
(CVPR), pp. 2173–2180 (2010)

6. Freund, A., Karloff, H.J.: A lower bound of 8/(7+(1/k)-1) on the integrality ratio
of the calinescu-karloff-rabani relaxation for multiway cut. Information Processing
Letters 75(1-2), 43–50 (2000)

7. Fukunaga, T.: Computing Minimum Multiway Cuts in Hypergraphs from Hy-
pertree Packings. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS,
vol. 6080, pp. 15–28. Springer, Heidelberg (2010)

8. Garg, N., Vazirani, V.V., Yannakakis, M.: Multiway cuts in node weighted graphs.
Journal of Algorithms 50(1), 49–61 (2004), Preliminary version in ICALP 1994

9. Ge, D., Ye, Y., Zhang, J.: The Fixed-Hub Single Allocation Problem: A Geometric
Rounding Approach (2007), preprint
http://www.stanford.edu/~yyye/revisedHub.pdf

10. Goel, G., Karande, C., Tripathi, P., Wang, L.: Approximability of combinatorial
problems with multi-agent submodular cost functions. In: IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 755–764 (2009)

11. Goemans, M.X., Harvey, N.J.A., Iwata, S., Mirrokni, V.S.: Approximating sub-
modular functions everywhere. In: ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 535–544 (2009)

12. Iwata, S., Nagano, K.: Submodular function minimization under covering con-
straints. In: IEEE Symposium on Foundations of Computer Science (FOCS), pp.
671–680 (2009)

13. Karger, D.R., Klein, P.N., Stein, C., Thorup, M., Young, N.E.: Rounding algo-
rithms for a geometric embedding of minimum multiway cut. Mathematics of Op-
erations Research 29(3), 436–461 (2004), Preliminary version in STOC 1999

14. Kleinberg, J.M., Tardos, É.: Approximation algorithms for classification problems
with pairwise relationships: Metric labeling and Markov random fields. Journal of
the ACM (JACM) 49(5), 616–639 (2002), Preliminary version in FOCS 1999

15. Lawler, E.L.: Cutsets and partitions of hypergraphs. Networks 3(3), 275–285 (1973)

16. Lovász, L.: Submodular functions and convexity. In: Mathematical Programming:
The State of the Art, pp. 235–257 (1983)

17. Okumoto, K., Fukunaga, T., Nagamochi, H.: Divide-and-conquer algorithms for
partitioning hypergraphs and submodular systems. Algorithmica, 1–20 (2010), Pre-
liminary version in ISAAC 2009

18. Queyranne, M.: Minimizing symmetric submodular functions. Mathematical Pro-
gramming 82(1), 3–12 (1998), Preliminary version in SODA 1995

19. Svitkina, Z., Fleischer, L.: Submodular approximation: Sampling-based algorithms
and lower bounds. In: IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 697–706 (2008)

20. Svitkina, Z., Tardos, É.: Min-max multiway cut. In: Jansen, K., Khanna, S., Rolim,
J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp.
207–218. Springer, Heidelberg (2004)

21. Svitkina, Z., Tardos, É.: Facility location with hierarchical facility costs. ACM
Transactions on Algorithms (TALG) 6(2), 1–22 (2010), Preliminary version in
SODA 2006

22. Vondrák, J.: Optimal approximation for the submodular welfare problem in the
value oracle model. In: ACM Symposium on Theory of Computing (STOC), pp.
67–74 (2008)

http://www.stanford.edu/~yyye/revisedHub.pdf

366 C. Chekuri and A. Ene

23. Vondrák, J.: Symmetry and Approximability of Submodular Maximization Prob-
lems. In: IEEE Symposium on Foundations of Computer Science (FOCS), pp.
651–670 (2010)

24. Williamson, D.P., Shmoys, D.B.: The design of approximation algorithms (2010),
preprint http://www.designofapproxalgs.com

25. Xiao, M.: Finding minimum 3-way cuts in hypergraphs. Information Processing
Letters 110(14-15), 554–558 (2010), Preliminary version in TAMC 2008

26. Zhao, L., Nagamochi, H., Ibaraki, T.: Greedy splitting algorithms for approxi-
mating multiway partition problems. Mathematical Programming 102(1), 167–183
(2005)

http://www.designofapproxalgs.com

Robust Independence Systems

Naonori Kakimura� and Kazuhisa Makino�

Department of Mathematical Informatics,
University of Tokyo,

Tokyo 113-8656, Japan
{kakimura,makino}@mist.i.u-tokyo.ac.jp

Abstract. An independence system F is one of the most fundamental
combinatorial concepts, which includes a variety of objects in graphs and
hypergraphs such as matchings, stable sets, and matroids. We discuss the
robustness for independence systems, which is a natural generalization of
the greedy property of matroids. For a real number α > 0, a set X ∈ F
is said to be α-robust if for any k, it includes an α-approximation of the
maximum k-independent set, where a set Y in F is called k-independent
if the size |Y | is at most k. In this paper, we show that every indepen-
dence system has a 1/

√
μ(F)-robust independent set, where μ(F) de-

notes the exchangeability of F . Our result contains a classical result for
matroids and the ones of Hassin and Rubinstein [12] for matchings and
Fujita, Kobayashi, and Makino [7] for matroid 2-intersections, and pro-
vides better bounds for the robustness for many independence systems
such as b-matchings, hypergraph matchings, matroid p-intersections, and
unions of vertex disjoint paths. Furthermore, we provide bounds of the
robustness for nonlinear weight functions such as submodular and convex
quadratic functions. We also extend our results to independence systems
in the integral lattice with separable concave weight functions.

Keywords: independence systems, matroids, exchangeability,
robustness.

1 Introduction

Let E be a finite set. A family F of subsets in E is an independence system
if ∅ ∈ F , and I ⊆ J ∈ F implies I ∈ F . A set F in F is called independent,
and k-independent if |F | ≤ k holds in addition. For an independence system F
with a nonnegative weight w ∈ R

E
+ and a positive integer k, we consider the

problem of finding a maximum weighted k-independent set, called the maximum
k-independent set problem.

Problem Pk(F) : maximize w(X)
subject to |X | ≤ k,

X ∈ F ,
� This work was partially supported by Grant-in-Aid for Scientific Research and by

Global COE Program “The research and training center for new development in
mathematics” from the Ministry of Education, Culture, Sports, Science and Tech-
nology of Japan.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 367–378, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

368 N. Kakimura and K. Makino

where for X ⊆ E, we define w(X) =
∑

i∈X w(i). If k is sufficiently large, e.g.,
k ≥ |E|, then it is called the maximum independent set problem, and denoted
by P(F). The maximum (k-)independent set problem is one of the most fun-
damental and important combinatorial optimization problems, which includes
a variety of graph and hypergraph problems such as matching, stable set, and
matroid problems. See e.g., [17,20,26] for the details. The problem is NP-hard
in general, while it is polynomially solvable if F belongs to some special classes.
For example, it is well-known that, for a matroid F , a greedy algorithm com-
putes a maximum independent set [4,25]. Note that this greedy solution X has
a good property, called robustness, in the sense that it contains a maximum k-
independent set for each k. More precisely, for each k, the heaviest k elements
in X is an optimal solution for the maximum k-independent set problem. Thus
the greedy solution X is adaptable to all the sizes k. This paper investigates this
kind of structural properties for the independence systems.

For an independence system, a robust independent set does not always exist.
Let Xk denote an optimal solution for Problem Pk(F), and for X = {x1, . . . , xp}
⊆ E with w(xi) ≥ w(xj) if i < j, we define

w≤k(X) =
∑
i≤k

w(xi), k = 1, 2, . . . , |E|.

For a real number α > 0, an independent set X is called α-robust (with respect
to w) if w≤k(X) ≥ α ·w(Xk) for all k’s. By definition, a robust independent set
is exactly 1-robust. We also say that an independence system F is α-robust if it
has an α-robust solution for any nonnegative weight w.

1.1 Previous and Our Main Results for the Robustness

The α-robustness for independence systems was first introduced by Hassin and
Rubinstein [12]. They proved that the greedy solution is ν-robust, where ν is the
rank quotient defined in Section 2.2. Moreover, they showed that the maximum
matching problem admits a 1/

√
2-robust solution, and that 1/

√
2-robustness is

the best possible for the maximum matching problem. Fujita, Kobayashi, and
Makino [7] extend their matching result to the matroid intersection problem,
and show that computing an α-robust matching is NP-hard for any α (> 1/

√
2).

The robustness was also studied for several combinatorial optimization problems
such as trees and paths [8,13]. Another concept similar to the robustness, called
the incremental problems, has been investigated for covering-type problems in
connection with the online algorithms [21,24].

In this paper, we analyze the robustness for independence systems F by using
parameter μ(F), called the exchangeability of F . For a nonnegative integer μ,
we say that F is μ-exchangeable if

∀X,Y ∈ F , ∀i ∈ Y \X, ∃Z ⊆ X \ Y s.t. |Z| ≤ μ, X ∪ {i} \ Z ∈ F . (1)

We denote by μ(F) the minimum μ satisfying the condition above. The ex-
changeability was introduced by Mestre [23]1 to measure the performance of the
1 In fact, he introduced “μ-extendibility,” which is equivalent to μ-exchangeability.

Robust Independence Systems 369

greedy algorithm. It is known [23] that F is a matroid if and only if μ(F) ≤ 1,
and that a number of independence systems arising from natural combinatorial
optimization such as (hypergraph) matchings, stable sets, acyclic subgraphs,
union of vertex disjoint paths, and matroid intersections, have bounded μ (see
Section 2.1).

In this paper we obtain the following theorem.

Theorem 1. Let F be an independence system on a finite set E. Then it is
min{1, 1/√μ(F)}-robust. In particular, for any weight w ∈ R

E
+, a w2-optimal

independent set is min{1, 1/√μ(F)}-robust with respect to w.

Here, for a weight u ∈ R
E
+, an independent set X of maximum weight u(X)

is called u-optimal. We denote by wb the vector defined by (wb)(i) = w(i)b for
i ∈ E.

To obtain our robustness, we show a maximum weight independent set with
respect to the b-th power weight wb is min{1, μ(F)−1/b, 1/μ(F)−1+(1/b)}-robust,
where our main result is obtained by fixing b = 2. The statement is similar to
Hassin and Rubinstein [12] and Fujita et al. [7], but different from their proofs,
ours, described in Section 3, exploits a polyhedral description of the b-th power
weight wb such that a given setX is maximum with respect to wb. Note that such
constraints can be represented as (an exponential number of) inequalities which
are linear in terms of wb. We show that X is min{1, μ(F)−1/b, 1/μ(F)−1+(1/b)}-
robust with respect to any weight w satisfying the constraints, by considering
the minimization of the total weight of the heaviest k elements in X subject to
these inequalities.

We also show that the ratio min{1, 1/√μ(F)} in Theorem 1 is tight.

Theorem 2. For any positive integer μ, there exists an independence system F
with μ(F) = μ and a weight w ∈ R

E
+ such that for any α > 1/

√
μ, F has no

α-robust independent set with respect to w.

Since F is a matroid if and only if μ(F) ≤ 1, Theorem 1 includes a classical
result for the greediness of matroids [4,25] (see Corollary 1 (i)), and it can be
regarded as a generalization of Hassin and Rubinstein [12] and Fujita et al. [7] (see
Corollary 1 (ii) with b ≡ 1 and (v) with p = 2, respectively), since independence
systems from matchings and matroid 2-intersections are both 2-exchangeable.
Moreover, our result implies the existence of highly robust independent sets for
a variety of combinatorial optimization problems.

Corollary 1. (i) Let F be a matroid. Then it is 1-robust.
(ii) For a graph G = (V,E) with b ∈ Z

V
+, let F ⊆ 2E be the family of b-matchings

in G. Then it is 1/
√

2-robust.
(iii) For a complete directed graph G = (V,E), we define F ⊆ 2E to be the

family of unions of vertex disjoint paths, i.e., F = {P (=
⋃

i Pi) ⊆ E |
Pi are pairwise vertex disjoint paths}. Then it is 1/

√
3-robust.

(iv) For a hypergraph E ⊆ 2V on a finite set V , let F be the family of matchings
in E, i.e., the family of disjoint hyperedges in E. Let r denote the maximum

370 N. Kakimura and K. Makino

number of disjoint neighbors of hyperedges. Then it is 1/
√
r-robust. In par-

ticular, for any k-hypergraph E (i.e., |E| ≤ k for E ∈ E), it is 1/
√
k-robust.

(v) Let F be the intersection of p (≥ 2) matroids. Then it is 1/
√
p-robust.

(vi) For a d-dimensional knapsack problem, i.e., maximizing wTx subject to
Ax ≤ b and x ∈ {0, 1}n, where A ∈ R

d×n
+ , b ∈ R

d
+ and w ∈ R

n
+, let

F denote the independence system corresponding to the set of the feasible
vectors. Define

μ(A) =
d∑

i=1

⌈ max{aij | 1 ≤ j ≤ n}
min{aij | aij �= 0, 1 ≤ j ≤ n}

⌉
.

Then it is 1/
√
μ(A)-robust.

(vii) For a graph G = (V,E), let F ⊆ 2V denote the family of stable sets in G.
Then it is 1/

√
dmax-robust, where dmax denotes the maximum degree of G.

(viii) For a directed graph G = (V,E), let F ⊆ 2E denote the family of acyclic
subgraphs in G. Then it is 1/

√
λ-robust, where λ denotes the maximum edge

connectivity between two vertices.

We remark that Theorem 1 improves upon the existing bounds for the ro-
bustness. For example, we have a stronger bound for the robustness of F if it
is obtained from hypergraph matchings or unions of vertex disjoint paths in a
complete directed graph (Corollary 1 (ii)(iii)(iv)). See Lemma 3 in Section 2. We
also note that the bounds in the corollary are all tight as Theorem 2.

From a viewpoint of complexity, a robust solution stated above can be com-
puted in polynomial time if the maximum independent set problem P(F) is
polynomially solvable. For example, a 1/

√
2-robust b-matching can be found in

polynomial time, since the maximum b-matching problem can be computed in
polynomial time [9]. If a given graph is perfect, we can find a 1/

√
dmax-robust

stable set [11], and if a directed graph is planar, we can find a 1/
√
λ-robust

acyclic subgraph in polynomial time [6,22].
However, it is often NP-hard to solve P(F), for example, if F is the family of

matchings in a hypergraph [2], the intersection of p matroids [19], or the family
of stable sets in a graph. You might expect that a γ-approximation solution with
respect to w2 provides a

√
γ
μ -robust set with respect to w. However, this is not

the case.

Theorem 3. Let E be a finite set with |E| ≥ 3. There exist an independence
system F ⊆ 2E and a weight w ∈ R

E
+ such that a γ-approximation solution with

respect to w2 is not 1/
√

(γ−1 − 1)(|E| − 1)-robust.

We further generalize Theorem 1 in the following two ways. First, we consider
a non-linear weight w : 2E → R+. Let h : R+ → R+ be a one-dimensional
function, and q ∈ R

E
+ be a vector. We say that a weight set function w : 2E → R+

is ρ-approximated by h and q if

h(
∑
i∈X

q(i)) ≤ w(X) ≤ ρ · h(
∑
i∈X

q(i)) for all X ∈ 2E .

Robust Independence Systems 371

If h is monotone (i.e., h(x) ≤ h(y) for any x, y ∈ R+ with x ≤ y) and submulti-
plicative (i.e., h(xy) ≤ h(x)h(y) for any x, y ∈ R+), then we have the following
result.

Theorem 4. If a weight w : 2E → R+ is ρ-approximated by a monotone sub-
multiplicative function h and q ∈ R

E
+, then any independence system F ⊆ 2E

has a 1

ρ·h(
√

μ(F))
-robust independent set with respect to w.

As corollaries, we have the robustness results for submodular and convex
quadratic weight functions as below. To obtain the result for a monotone sub-
modular function w, we use an algorithm due to Goemans et al. [10], which finds
in polynomial time and number of queries a vector q ∈ R

E
+ so that a function u

of the form u(X) =
√
q(X) is a good approximation of w. Note that a greedy

algorithm for submodular functions returns a 1/(μ(F) + 1)-robust solution [1,5].

Corollary 2. Let F be an independence system on E with n = |E|.

(i) If a weight function w : 2E → R+ is monotone submodular, then F has a
1

μ(F)1/4O(
√

n log n)
-robust independent set with respect to w. In particular, if w

is a matroid rank function, it has a 1
μ(F)1/4

√
n+1

-robust independent set. In
either case, such robust sets can be computed in polynomial time and number
of queries if P(F) is polynomially solvable.

(ii) Let w : 2E → R+ be a convex quadratic function, i.e., a function defined by
w(X) =

∑
i,j∈X aij for X ⊆ E with a positive definite matrix A = (aij) ∈

R
E×E. Then F has a λmin√

μ(F)λmax
-robust independent set with respect to w,

where λmax and λmin are the maximum and minimum eigenvalues of A,
respectively.

The second generalization is to independence systems in integral lattice Z
E
+.

We say that a function w : Z
E → R+ is separable concave if w can be written as

w(x) =
∑

i∈E wi(xi) for some one-dimensional concave functions wi : R → R+

for i ∈ E. In this paper, we assume that wi(0) = 0 and monotonicity.

Theorem 5. Let F be a bounded independence system in Z
E
+ and w be a separa-

ble concave function. Then F has a min{1, 1/√μ(F)}-robust independent vector
with respect to w.

By this theorem, we have a corollary for polymatroids, polymatroid intersections,
and packing systems.

The rest of the paper is organized as follows. In Section 2, we define the
exchangeability for independence systems and discuss its basic properties. In
Section 3, we consider the robustness for independence systems in the Boolean
lattice. In particular, we show Theorems 1 and 2. Due to the space limitation,
most of the proofs are omitted, where they can be found in the full version of
this paper [18].

372 N. Kakimura and K. Makino

2 Exchangeable Independence Systems

For a nonnegative integer μ, we say that an independence system F is μ-
exchangeable if F satisfies (1). We denote by μ(F) the minimum μ satisfying
(1). Note that F is 0-exchangeable if and only if F = 2J for some J ⊆ E. Thus
a 0-exchangeable independence system consists of the unique maximal indepen-
dent set.

After providing a variety of examples of μ-exchangeable independence systems,
in this section, we show further properties on μ-exchangeable independence sys-
tems. In particular, we prove that the exchangeability is at least the inverse of the
rank quotient, and it is NP-hard to approximate μ(F) for a given F .

2.1 Examples of Exchangeable Independence Systems

This subsection describes some basic independence systems with small μ.

Matroids: An independence system M is called a matroid if M1,M2 ∈ M
and |M1| < |M2| implies M1 ∪ {e} ∈ M for some e ∈ M2 \M1. It is known in
[23] that F is 1-exchangeable if and only if it is a matroid.

Matchings and b-Matchings of a Graph: For a graph G = (V,E), let
F ⊆ 2E denote the family of matchings F in G, i.e., e ∩ e′ = ∅ holds for any
distinct e, e′ ∈ F . Note that for any edge e ∈ E and any matching F , at most two
edges in F intersect e. Thus F turns out to be 2-exchangeable. More generally,
for a vector b ∈ Z

V
+ , we say that a subset F ⊆ E is a b-matching if for all v ∈ V

the number of edges in F incident to v is at most bv. Then the b-matchings also
form a 2-exchangeable independence system.

Unions of Vertex Disjoint Paths and Asymmetric Traveling Salesman
Systems: For a complete directed graph G = (V,E), let F be the family
of unions of vertex disjoint paths P ⊆ E, i.e., F = {P (=

⋃
i Pi) ⊆ E |

Pi are pairwise vertex disjoint paths}, and let H be the family of sets H ⊆ E
such that H is either unions of vertex disjoint paths or a Hamilton cycle. The
family H is well studied to solve the maximum asymmetric traveling salesman
problem, and it is known [16] that H is 3-exchangeable. Similarly to H, we have
μ(F) ≤ 3.

Matchings in Hypergraphs: For a hypergraph E ⊆ 2V on a finite set V ,
let F be the family of matchings in E , i.e., the family of disjoint hyperedges in
E . Let r denote the maximum number of disjoint neighbors of hyperedges, i.e.,
r = maxJ∈E{|M| | M ∈ F , I ∩ J �= ∅ for all I ∈ M}. Then it is not difficult to
see that F is r-exchangeable. In particular, for any k-hypergraph E (i.e., |E| ≤ k
for E ∈ E), F is k-exchangeable. This problem is also known as k-set packing [3].

Mestre [23] provides a maximum profit scheduling problem as an example of
the maximum independent set problem for F with r = 2. We also remark that
the family of the triangles, i.e., complete subgraphs with size three, in a graph
is an example with r = 3.

Robust Independence Systems 373

Intersections of p Matroids: For matroids Mi ⊆ 2E (i = 1, . . . , p), define
F =

⋂p
i=1Mi. Then we can see that F is p-exchangeable [23].

Multidimensional Knapsack Systems: For a positive integer d, we consider
the following d-dimensional knapsack problem with n items:

maximize wTx
subject to Ax ≤ b,

x ∈ {0, 1}n,

where A ∈ R
d×n
+ , b ∈ R

d
+ and w ∈ R

n
+. Let F denote the independence system

corresponding to the set of the feasible vectors. Recall that μ(A) is defined in
Corollary 1 (vi). Then we have

μ(F) ≤ μ(A) ≤ d
⌈amax

amin

⌉
,

where amin and amax denote the minimum and maximum values of nonzero
entries in A, respectively.

Stable Sets of a Graph: For a graph G = (V,E), let F ⊆ 2V denote the
family of stable sets (also called independent sets) in G, i.e., the set of vertices not
directly connected by edges. Then it is dmax-exchangeable, where dmax denotes
the maximum degree of G.

Acyclic Subgraphs: For a directed graph G = (V,E), let F ⊆ 2E denote the
family of acyclic subgraphs in G. Let λ denote the maximum edge connectivity
between two vertices. Then F is λ-exchangeable.

2.2 Exchangeability and Rank Quotient

Let F be an independence system. For X,Y ∈ F , a pair (ZX , ZY), where ZX ⊆
X \ Y and ZY ⊆ Y \X , is said to be (X,Y)-admissible if X \ZX ∪ZY ∈ F . For
X,Y ∈ F with Y \X �= ∅, we denote

μF (X,Y) = max
i∈Y \X

min{|Z| | (Z, {i}) is (X,Y)-admissible}.

If Y \X = ∅, we define μF (X,Y) = 0. Then we have

μ(F) = max
X,Y ∈F

μF(X,Y).

If there is no ambiguity, we simply use μ(X,Y) and μ instead of μF (X,Y) and
μ(F), respectively. We observe that μ(F) = maxX,Y ∈BF μF (X,Y), where BF is
the family of maximal independent sets in F .

We next consider the exchangeability of independence systems obtained by
contraction and deletion. For Z ⊆ E, we define the contraction F/Z and deletion
F\Z of F by F/Z = {X ⊆ E\Z | X∪Z ∈ F} and F\Z = {X ∈ F | X ⊆ E\Z}.

374 N. Kakimura and K. Makino

Lemma 1. Let F ⊆ 2E be an independence system on E. Then for any Z ⊆ E,
it holds that μ(F \ Z), μ(F/Z) ≤ μ(F).

For an independence system F ⊆ 2E, we define two parameters ν(F) and
κ(F).

It is known [19] that F can be represented as F =
⋂k

i=1Mi for some k
matroidsMi. We denote by κ(F) the minimum number of matroids to describe
F as the matroid intersection. For J ⊆ E, let ρ(J) and γ(J) be the minimum and
maximum sizes of maximal independent sets in F contained in J , respectively.
Define the rank quotient ν(F) to be

ν(F) = min
J⊆E

ρ(J)
γ(J)

.

Jenkyns [15] and Korte and Hausmann [19] showed the greedy algorithm finds a
ν(F)-approximation solution for P(F). Hassin and Rubinstein [12] proved that
the greedy solution is in fact ν(F)-robust.

The three parameters μ(F), ν(F), and κ(F) have the following relations,
which was also mentioned in [1].

Lemma 2. For an independence system F ⊆ 2E with μ(F) ≥ 1, we have

1
ν(F)

≤ μ(F) ≤ κ(F).

We remark that Lemma 2, together with Korte and Hausmann [19], implies that
the greedy algorithm provides a 1/μ(F)-approximation solution for P(F), which
was also shown in [23].

We note that in many cases the first inequality in Lemma 2 attains the equal-
ity.

Lemma 3. If an independence system F with μ(F) ≥ 1 satisfies one of the
following conditions, then we have 1

ν(F) = μ(F).

(i) it is a matroid,
(ii) for a graph G = (V,E), it is the family of matchings in G,
(iii) for a complete directed graph G = (V,E) with |V | ≥ 4, it is the family of

unions of vertex disjoint paths P ⊆ E,
(iv) for a hypergraph E ⊆ 2V , it is the family of matchings in E.

By this lemma, we can see that the bound for the robustness by Theorem 1 is
stronger than the one obtained by using rank quotient ν(F) in [12]. We finally
remark that the gaps in the inequalities in Lemma 2 might be large in general.

Before concluding this section, we show that computing μ(F) which is useful
for the robustness by Theorem 1 is intractable. More precisely, we prove that it is
NP-hard to approximate μ(F) by reducing the maximum stable set problem [14].

Theorem 6. For an independence system F on E with n = |E|, μ(F) is not
approximable within n1/2−ε for any ε > 0, unless P = NP .

Robust Independence Systems 375

3 Robust Independence Systems in Boolean Lattice

In this section, we investigate the robustness for independence systems in Boolean
lattice. Especially, we present the proof sketches of Theorems 1, 2, and Corollary
1. Let us first consider Theorem 1.

Theorem 7. Let F be an independence system on a finite set E and w ∈ R
E
+

be a weight vector on E. Then, for b ≥ 1, a wb-optimal independent set is
min{1, 1/μ(F)1/b, 1/μ(F)1−1/b}-robust with respect to w.

When b is sufficiently large, a wb-optimal independent set can be obtained by
a greedy algorithm for the original weight w. Thus the theorem implies that a
greedy solution is 1/μ-robust. Theorem 1 is obtained by maximizing the formula
in the theorem, i.e., when b = 2. It should be noted that the ratio 1/

√
μ(F)

cannot be improved to
√
ν(F) in Theorem 1.

We remark that it is natural to ask whether or not a given μ-exchangeable
independence system has an α-robust independent set for a given α > 1/

√
μ.

It is, however, NP-hard even when an independence system is the family of
matchings in a bipartite graph [7].

In order to prove Theorem 7, we show Lemma 4 below. For two subsetsX,Y ∈
F , we denote FX,Y = {Z ∈ F | X ∩ Y ⊆ Z ⊆ X ∪ Y }. We say that a weight
vector w ∈ R

E
+ is (X,Y)-optimal if w satisfies

w(X) ≥ w(Z) for any Z ∈ FX,Y . (2)

Lemma 4. Let F be an independence system on E, and X,Y be two sets in F
with X ∩ Y = ∅ and |Y | = k. If a weight vector w ∈ R

E
+ is (X,Y)-optimal, then

for any β with 0 ≤ β ≤ 1,

(wβ)≤k(X) ≥ min
{

1,
1
μβ
,

1
μ1−β

}
wβ(Y).

We will present the proof outline of Lemma 4 in the next subsection. Here we
remark that Lemma 4 immediately implies Theorem 7. We henceforth denote
α(F) = min{1, 1

μβ ,
1

μ1−β }.

3.1 The Proof Outline of Lemma 4

Before proving Lemma 4, we first observe the following lemma about the sizes of
two independent sets X and Y . For a weight vector w, we denote Γ (w) = {i ∈
E | w(i) �= 0}.
Lemma 5. Let X,Y be two independent sets in F with X ∩ Y = ∅. If a weight
vector w ∈ R

E
+ is (X,Y)-optimal, then we have μ(F) |X | ≥ |Γ (w) ∩ Y |.

Proof. By the definition of μ(F), there exists a (Y,X)-admissible pair (Z,X)
such that Y \ Z ∪ X ∈ F and |Z| ≤ μ(F) |X |. Since |X | ≤ |Y \ Z ∪ X | and
w(X) ≥ w(Y \Z∪X) by (2), we havew(Y \Z) = 0. This means (Y \Z)∩Γ (w) = ∅,
and hence we have μ(F) |X | ≥ |Γ (w) ∩ Y |. ��

376 N. Kakimura and K. Makino

We will show Lemma 4 by induction on |X |. The following lemma shows that
it is true when |X | = 1.

Lemma 6. Let X ∈ F with |X | = 1, and Y ∈ F with X ∩ Y = ∅. Then
wβ(X) ≥ α(F)wβ(Y) for any (X,Y)-optimal w.

Proof. Let i be the index with X = {i}. The (X,Y)-optimality implies that
w(i) ≥ w(Y). If w(Y) = 0, i.e., q = |Γ (w) ∩ Y | = 0, then the lemma is clearly
true. Otherwise, by maximizing wβ(Y) subject to w(Y) ≤ w(i) and q = |Γ (w)∩
Y |, we have wβ(Y) ≤ w(i)βq1−β . Since q ≤ μ(F) by Lemma 5, we obtain

wβ(i)
wβ(Y)

≥ w(i)β

w(i)βq1−β
≥ 1
μ1−β(F)

≥ α(F). ��

We assume that Lemma 4 is true when |X | ≤ p− 1 and consider the case in
which |X | = p (≥ 2). By induction hypothesis, the following two lemmas hold
for any (X,Y)-optimal w.

Lemma 7. If w(i) = 0 for some i ∈ X, then we have (wβ)≤k(X) ≥ α(F)wβ(Y).

Lemma 8. If there exists a set Z ∈ FX,Y with w(X) = w(Z), X ∩ Z �= ∅, and
X ∩ Z � X. Then we have wβ

≤k(X) ≥ α(F)wβ(Y).

The proof outline of Lemma 8 is as follows. We denote X1 = X ∩ Z and Y1 =
Y \ (Y ∩ Z). Let X2 = X \X1 and Y2 = Y \ Y1. Define the two independence
systems F1 = F/Y2 and F2 = F/X1. We then know that w is (X1, Y1)-optimal
with respect to F1, and that w is (X2, Y2)-optimal with respect to F2. Therefore,
by applying the induction hypothesis to F1 and F2, together with Lemma 1, we
obtain Lemma 8.

For a vector u ∈ R
E
+, we define a function fX : R

E
+ → R+ to be fX(u) =

(uβ)≤k(X). Given an (X,Y)-optimal vector w ∈ R
E
+, let w∗ be an (X,Y)-optimal

vector such that fX(w∗) is minimum over w∗(i) = w(i) for i ∈ E \X . Note that
such a w∗ exists, because the feasible region represented by linear inequalities is
nonempty, w∗ is nonnegative, and fX(u) is continuous and nonnegative. We call
such w∗ a minimizer of fX .

By Lemmas 7 and 8, we may assume that w∗ satisfies

w∗(X) > w∗(Z) for any Z ∈ FX,Y with X ∩ Z �= ∅ and X ∩ Z � X,

w∗(X) ≥ w∗(Z) for any Z ∈ FX,Y with X ⊆ Z or X ∩ Z = ∅, (3)
w∗(i) > 0, for any i ∈ X.

Note that the second inequality is equivalent to w∗(X) ≥ w∗(Y) and w∗(X) ≥
w∗(Z) for any Z ∈ FX,Y with X ⊆ Z. Furthermore, it follows that w∗(X) =
w∗(Y) by the minimality of w∗. We denote W = w∗(X) = w∗(Y).

For a minimizer w∗ of fX satisfying (3), we have the following lemma. This
lemma follows from the concavity of the β-th power of numbers in fX .

Lemma 9. Assume that a minimizer w∗ of fX satisfies (3). Then w∗(j) = W/p
holds for j ∈ X.

Robust Independence Systems 377

We then prove the following lemma, which completes the proof of Lemma 4.
This lemma is shown in a similar way to Lemma 6.

Lemma 10. If w∗(j) = W/p for j ∈ X, then it holds that (wβ)≤k(X) ≥
α(F)wβ(Y).

3.2 The Proof of Theorem 2

This section concludes with the proof of Theorem 2. Let p denote an integer with
p ≥ 2. For i = 1, . . . , p, let Vi = {vi

1, . . . , v
i
p}, and V =

⋃p
i=1 Vi. By definition,

|V | = p2. Let E ⊆ 2V be the hypergraph defined as E = {e0, e1, . . . , ep}, where
e0 = (v11 , v22 , . . . , vp

p) and ej = (v1j , . . . , v
p
j) for j = 1, . . . , p. Let F be the family

of matchings in E . It follows that μ(F) = p. We define a weight w ∈ R
E
+ as

w(e0) =
√
p and w(ej) = 1 for j = 1, . . . , p.

We can see that F has exactly two maximal independent sets I = {e1, . . . , ep}
and J = {e0}. For a positive integer k, J is a w-optimal k-independent set if
k ≤ �√p�, and so is {ej | j = 1, . . . , k} if k >

√
p. Hence, for any α > 1/

√
p,

J is not α-robust, since w≤p(J)/w(I) = 1/
√
p. Similarly, I is not α-robust,

since w≤1(I)/w(J) = 1/
√
p. Thus no independent set is α-robust. This proves

Theorem 2.
Note that the example above also shows the tightness for Corollary 1 (ii),

(iv) and (v), since F can be regarded as the family of matchings (if p = 2),
hypergraph matchings, and p-matroid intersection. Corollary 1 (i) is clearly tight.
We can also construct tight examples for (iii), (vi), (vii) and (viii). See [18] in
details.

References

1. Calinescu, G., Chekuri, C., Pal, M., Vondrak, J.: Maximizing a submodular set
function subject to a matroid constraint. SIAM Journal on Computing (to appear)

2. Chan, Y.H., Lau, L.C.: On linear and semidefinite programming relaxations for
hypergraph matching. In: Proceedings of the 21st Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2010), pp. 1500–1511 (2010)

3. Chandra, B., Halldórsson, M.: Greedy local improvement and weighted set packing
approximation. Journal of Algorithms 39, 223–240 (2001)

4. Edmonds, J.: Matroids and the greedy algorithm. Mathematical Programming 1,
127–136 (1971)

5. Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for
maximizing submodular set functions ii. Mathematical Programming Study 8, 73–
87 (1978)

6. Frank, A.: How to make a digraph strongly connected. Combinatorica 1, 145–153
(1981)

7. Fujita, R., Kobayashi, Y., Makino, K.: Robust matchings and matroid intersections.
In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6347, pp. 123–134. Springer,
Heidelberg (2010)

8. Fukunaga, T., Halldórsson, M., Nagamochi, H.: Robust cost colorings. In: Proceed-
ings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2008), pp. 1204–1212 (2008)

378 N. Kakimura and K. Makino

9. Gabow, H.N.: An efficient reduction technique for degree-constrained subgraph and
bidirected network flow problems. In: Proceedings of the 15th ACM Symposium
on Theory of Computing (STOC 1983), pp. 448–456 (1983)

10. Goemans, M.X., Harvey, N.J.A., Iwata, S., Mirrokni, V.: Approximating
submodular functions everywhere. In: Proceedings of the 20th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2009), pp. 535–544 (2009)

11. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization, 2nd edn. Springer, Heidelberg (1993)

12. Hassin, R., Rubinstein, S.: Robust matchings. SIAM Journal on Discrete Mathe-
matics 15, 530–537 (2002)

13. Hassin, R., Segev, D.: Robust subgraphs for trees and paths. ACM Transaction on
Algorithms 2, 263–281 (2006)

14. Hásted, J.: Clique is hard to approximate within n1−ε. Acta Mathematica 182,
105–142 (1999)

15. Jenkyns, T.A.: The efficacy of the “greedy” algorithm. In: Proceedings of the
7th Southeastern Conference on Combinatorics, Graph Theory and Computing,
pp. 341–350 (1976)

16. Jenkyns, T.A.: The greedy traveling salesman’s problem. Networks 9, 363–373
(1979)

17. Jungnickel, D.: Graphs, Networks, and Algorithms, 2nd edn. Algorithms and
Computation in Mathematics, vol. 5. Springer, Heidelberg (2002)

18. Kakimura, N., Makino, K.: Robust independence systems, Mathematical Engineer-
ing Technical Reports METR 2011-14, University of Tokyo (2011)

19. Korte, B., Hausmann, D.: An analysis of the greedy heuristic for independence
systems. Annals of Discrete Mathematics 2, 65–74 (1978)

20. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms.
Springer, Heidelberg (2006)

21. Lin, G., Nagarajan, C., Rajarama, R., Williamson, D.: A general approach for
incremental approximation and hierarchical clustering. SIAM Journal on Comput-
ing 39, 3633–3669 (2010)

22. Lucchesi, C.L.: A Minimax Equality for Directed Graphs, PhD thesis, University
of Waterloo (1976)

23. Mestre, J.: Greedy in approximation algorithms. In: Azar, Y., Erlebach, T. (eds.)
ESA 2006. LNCS, vol. 4168, pp. 528–539. Springer, Heidelberg (2006)

24. Mettu, R.R., Plaxton, C.G.: The online median problem. SIAM Journal on Com-
puting 32, 816–832 (2003)

25. Rado, R.: Note on independence relations. Proceedings of the London Mathemat-
ical Society 7, 300–320 (1957)

26. Schrijver, A.: Combinatorial Optimization — Polyhedra and Efficiency. Springer,
Heidelberg (2003)

Buyback Problem - Approximate Matroid

Intersection with Cancellation Costs

Ashwinkumar Badanidiyuru Varadaraja

Cornell University, Ithaca, NY
ashwin85@cs.cornell.edu

Abstract. In the buyback problem, an algorithm observes a sequence
of bids and must decide whether to accept each bid at the moment it
arrives, subject to some constraints on the set of accepted bids. Decisions
to reject bids are irrevocable, whereas decisions to accept bids may be
canceled at a cost that is a fixed fraction of the bid value. Previous to
our work, deterministic and randomized algorithms were known when
the constraint is a matroid constraint. We extend this and give a de-
terministic algorithm for the case when the constraint is an intersection
of k matroid constraints. We further prove a matching lower bound on
the competitive ratio for this problem. This problem has applications
to banner advertisement, semi-streaming, routing, load balancing and
other problems where preemption or cancellation of previous allocations
is allowed.

1 Introduction

Consider the online problem of resource allocation in which preemption is al-
lowed. This kind of problem has been heavily studied in a wide variety of set-
tings which range from advertisement allocations to routing to load balancing.
In online weighted resource allocation without preemption we cannot get any
nontrivial worst case guarantee on the sum of weights allocated. Consider the
simplest problem of choosing the maximum number in a sequence. Any deter-
ministic or randomized algorithm cannot have a constant competitive ratio up to
any factor. Usually this impossibility is circumvented in the literature by placing
some restrictions. This could be by allowing the input to be either a random per-
mutation [6,5,13,26,24] or drawn iid from some probability distribution [21,8].
Other approaches [4,9,18,1,7,3,19,20] which do not relax any conditions on the
input assume that either preemption is allowed or preemption with a penalty is
allowed and give guarantees for every input. In this paper we study this kind of
relaxation.

Consider the following generic problem. There is a set system I (downward
closed) for the ground set E . Elements from E are presented to the algorithm
in a sequential manner. Each element ei is also associated with a value wei .
When element ei is presented to the algorithm it must be accepted or rejected
immediately. When ei is accepted the algorithm could cancel (preempt) some of
the previously accepted elements. If S denotes the set currently accepted, then

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 379–390, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

380 A. Badanidiyuru Varadaraja

the constraint for the algorithm is to have S ∈ I. The utility of the algorithm
is the value of the accepted elements minus the penalty paid to the canceled
elements. All the canceled elements are paid a penalty proportional to their
corresponding value. We present some applications of this generic problem below.

Banner advertisement. The buyback problem was first defined and studied
in [4,9]. Specifically they give deterministic algorithms for the case when I is
a matroid. This was later extended by [2] which gave a randomized algorithm
with better competitive ratio. Consider an advertisement system for a single
advertisement slot. In certain systems bidding for this slot starts well in advance.
In such a system bidders come and bid in an online manner. The system accepts
the bids or rejects them immediately. The system could later accept much higher
bids and cancel previously accepted ones. But this causes a loss for the previously
accepted bidders. Hence the system pays them back with a penalty. The work
in [4,9,2] also generalizes to much more general systems where the accepted bids
can form a matroid. They leave open the question of finding algorithms for more
general constraints. One of the key constraints not modeled by this is when each
bidder desires a single item among a set of items, i.e when I is a valid matching in
a bipartite graph. Our result in section 2 solves this as well as a generalization to
k arbitrary matroid constraints. We also prove matching lower bounds in section
4. It is important to note that we ignore the incentives throughout our work and
assume that bids/values are truthfully reported.

Free Disposal. Consider the problem of online ad allocation with free disposal
studied in [18]. Here we have a set of advertisers A known in advance together
with an integer impression contract n(a) for each advertiser a ∈ A. n(a) denotes
the maximum number of impressions for which advertiser can be charged. When
an impression i ∈ I arrives the utility of this impression wia for every advertiser
a is also revealed. The final utility of the algorithm is the total amount charged
to each user. We note that there is a very straightforward reduction from this
problem to the problem we define, specifically from the case when k = 2 and
zero penalty for preemption1. Our algorithm gives a 5.828 competitive ratio.
[18] gives an unconditional 2 competitive and conditional e/(e− 1) competitive
algorithm. Note that our algorithm is tight for the generic problem defined due
to the lower bound shown in section 4. [18] is able to give better competitive
ratio as this problem is more restrictive than the generic problem we define.

Semi Streaming. Recently a few papers [28,16,12,10,11,17] have studied graph
problems in the semi-streaming model. Consider the problem of finding a
weighted matching in a stream which uses Õ(n) memory, O(1) update time and 1
pass. [17] introduced this problem and gave a factor 6 approximation. [28] improved
this to 5.828 approximate semi-streaming algorithm. Both of these algorithms are
characterized by the fact that they always maintain a valid matching. Hence our
lower bound in section 4 proves that among the class of algorithms which maintain
only edges of a valid matching no algorithm can achieve better than approximation
ratio 5.828. This improves the 4.967 lower bound proved in [14].
1 The system could allocate more than n(a) impressions and charge for the top n(a).

Buyback Problem 381

Routing with Preemption and Load Balancing. There has been a huge
literature [1,7,3,19,20] on routing in networks and load balancing where preemp-
tion of previously allocated resources in allowed. Many of these results studied
can be very succinctly generalized by the following problem.

Consider an arbitrary downward closed set system I. Elements ei ∈ I are
presented to the algorithm along with their weight and the sets to which they
belong. The algorithm has to either accept or reject the element immediately.
An accepted element can be preempted or canceled later but canceled/rejected
elements cannot be taken later. It is a simple excercise to show that such a
generic problem does not admit a competitive ratio better than n−1 even when
the penalty is 0. One should note that the papers which study routing with
preemption and load balancing are able to achieve better competitive ratio by
exploiting some additional structure in the problem.

The offline problem of intersection of k matroids was introduced and studied
in [23,25]. The problem has also been studied under more general submodular
utility functions in the CS theory/OR literature. Some of the recent papers in
this direction are [15,29,27].

2 Preliminaries

First we define the problem formally.

2.1 Model

Consider a ground set of elements E = {e1, e2, . . . , en}. Let M1, . . . ,Mk
2 be

k arbitrary matroid constraints on E . Let the corresponding subset system be
I1, . . . , Ik and let I = ∩k

j=1Ij . We define the online problem with the following
constraints.

1. The elements of E are presented to the algorithm in some arbitrary order.
The value wei of element ei and the matroid constraints it is involved with
are revealed to the algorithm when the element is presented to it.

2. When element ei is presented it must be accepted or rejected immediately.
Additionally it could be canceled at a later point in time. When an element
is canceled the algorithm must pay a penalty f · wei where f is a constant.
(Note the difference between reject and cancel.)

3. Let A be the set of elements accepted and R be the set of elements accepted
and later canceled. Then the utility of the algorithm is defined as

∑
e∈A we−

(1+f)
∑

e∈R we. Note that all elements inR are also counted in A. Moreover
the currently maintained set S = A − R must be an independent set, i.e.
S ∈ I.

Here we desire to find a competitive online algorithm with the above constraints.
2 A matroid Mi = (E ,Ii) is constructed from a ground set E �= φ and a nonempty

family of subsets of E , called the independent subsets of E , such that if B ∈ Ii and
A ⊆ B then A ∈ Ii (Ii is hereditary). Additionally, if A, B ∈ Ii and |A| < |B|, then
there is some element x ∈ B − A such that A ∪ {x} ∈ Ii (exchange property).

382 A. Badanidiyuru Varadaraja

1: Initialize S = ∅.
2: for all elements ei, in order of arrival, do
3: if S ∪ {ei} ∈ I then
4: S = S ∪ {ei}
5: else
6: for all 1 ≤ j ≤ k do
7: if S ∪ {ei} /∈ Ij then
8: eij be the element of smallest value such that S ∪ {ei} \ {eij} ∈ Ij

9: else
10: eij = NULL.
11: end if
12: end for
13: Let Cei = ∪k

j=1{eij}
14: if wei ≥ r · (

∑k
j=1 weij

) then
15: S = S ∪ {ei}\ ∪k

j=1 {eij}
16: end if
17: end if
18: end for

Fig. 1. Algorithms for k matroids intersection

2.2 Algorithm

The algorithm is shown in Figure 1 as Algorithm 1. At each step the algorithm
maintains an independent set S. Assume it sees the element ei at some step. If
S ∪ {ei} is also an independent set, then it includes {ei} into the current set
S. Otherwise S ∪ {ei} has a circuit in some of the matroids Ij . It first finds
the minimum value element (eij) it must remove in set S to make S ∪ {ei}
an independent set in each of Ij . Now suppose wei ≥ r · (

∑k
j=1 weij

), then it
includes the element ei and discards the elements ∪k

j=1{eij}. We will prove that
the above algorithm is (k·r−1)r

r−1−f competitive. Here r is a constant defined later to
optimize the competitive ratio.

3 Analysis of the Algorithm

Let S(i) be the set S at the end of step i and let OPT ⊆ E be optimal solution to
the weighted intersection of k matroids. The main part of competitive analysis
is based on the following lemma.

Lemma 1. w(S(n)) (k·r−1)r
r−1 ≥ w(OPT) where w(S(n)) =

∑
e∈S(n) we.

We will prove Lemma 1 in section 3.1. The proof is based on a charging scheme.
For now we just assume it to analyze the competitive ratio of the algorithm.

Theorem 1. The online algorithm with cancellations for k matroid constraints
has a competitive ratio c = (k·r−1)r

r−1−f . This ratio is minimized when r
1+f = 1 +√

1− 1
k(1+f) and has a value c = k(1 + f)(1 +

√
1− 1

k(1+f))2

Buyback Problem 383

The competitive ratio of our algorithm matches the case k = 1 given in [4,9].
Later in section 4 we will show that this is tight for every k.

Proof. The utility of the algorithm consists of two terms. One is due to the
utility of S(n) and the other is the penalty due to the canceled set R.

– For each element ei we define a value P (ei) recursively. If ei was accepted
in step 3 or was never accepted, then P (ei) = 0. Else if elements Cei =
{ei1 , ei2 , . . . , eik

} were canceled, then P (ei) = f ·∑k
j=1 weij

+
∑k

j=1 P (eij).
Now each canceled item eij ’s penalty is accounted to the item ei which
canceled it. We prove that for any element ei the total penalty accounted
is less than or equal to f

r−1 · wei . The proof is by induction. The base case
when P (ei) = 0 is simple. The inductive case is as follows.

P (ei) = f ·∑k
j=1 weij

+
∑k

j=1 P (eij)

≤ f ·∑k
j=1 weij

+
∑k

j=1 f ·
weij

r−1

≤ f · wei

r + f · wei

r(r−1)

= f · wei

r−1 (1)

Hence the total penalty is at most
∑

ei∈S(n) f · wei

r−1 = f ·w(S(n))
r−1

– The final weight of the set S(n) is bounded by Lemma 1. Combining the two
parts we get the total utility of the algorithm.

Utility ≥ w(S(n)) − f · w(S(n))
r−1

= r−1−f
r−1 · w(S(n))

≥ r−1−f
(k·r−1)r · w(OPT) (Using Lemma 1) (2)

Hence we get competitive ratio of c = (k·r−1)r
r−1−f . Optimizing over r we get r

1+f =

1 +
√

1− 1
k(1+f) and c = k(1 + f)(1 +

√
1− 1

k(1+f))2.

3.1 Charging Scheme

Here we will prove Lemma 1. This portion is technically the hardest part of
the paper and requires developing a new charging scheme. This is aided by a
graph construction. We first give some notation. Each element carries two kinds
of charges (ch1 and ch2). Let at any step j, ch(ei, j) = ch1(ei, j) + ch2(ei, j).
Additionally let Cei = ∪k

j=1eij (the set of elements discarded when ei is included)
be as defined in step 13 of Algorithm 1. Let S(j) denote the set S after step j.
Let ch(S′, j) =

∑
e∈S′ ch(e, j) (analogously for ch1 and ch2).

Sketch. We start with a total charge of OPT on the elements. ch1(ei, j) denotes
the charge which the element carries from the beginning. ch2(ei, j) denotes the

384 A. Badanidiyuru Varadaraja

charge which the element gets from some other elements. At any step either ei
or Cei is discarded. When any element is discarded all its charge is added to S(i)
(or S(j) for j ≥ i). There by all the charge is stored in S(n). Next we bound the
amount of charge any element can carry.

There are two ways charge is transferred. One way is for ch1 and another
for ch2. At step i if Cei is discarded, then we always transfer ch2(Cei , i − 1) to
ch2(ei, i). Another way of transfer is for ch1. This is done by a fairly sophisti-
cated graph construction. Essentially we construct k bipartite graphs and then
prove that each one has a matching that matches all vertices on the left side of
the bipartition using Hall’s Theorem. Suppose ei is matched to ej, we transfer
ch1(ei, a) to ch2(ej, b). Here a denotes the step at which ei was removed and b
denotes the step before which ej was removed (n otherwise). Note that we will
need causal consistency (a < b) for this.

The charges at the beginning of the algorithm are defined as follows.

– if ei ∈ OPT then ch(ei, 0) = ch1(ei, 0) = wei and ch2(ei, 0) = 0
– if ei /∈ OPT then ch(ei, 0) = ch1(ei, 0) = ch2(ei, 0) = 0.

Before defining the charging scheme we define a graph construction which will
aid us in the charging scheme.

Graph Construction. Construct k bipartite graphs as the algorithm proceeds.
Here the pth graph corresponds to the pth matroid. Let P1(p) denote partite set
1 of pth graph and P2(p) denote partite set 2 of pth graph. Additionally let Np(S)
denote the set of neighbors of S ⊆ P1(p) in pth graph. Let rankp(S) be the rank
of set S in the pth matroid.

1. The bipartite graph starts empty and edges are added. Each endpoint of an
edge corresponds to an element ei. The node corresponding to an element ei
exists only when the corresponding edge is added and removed when all its
adjacent edges are deleted. An edge in the graph corresponds to a potential
ch1 transfer.

2. Consider step 14 in the algorithm. If wei < r ·∑k
j=1 weij

, then ei is not
included in S. Now if ei ∈ OPT , then add a node ei to P1(p) (for each p).
Let Ckt(ei, p) be the unique circuit in pth matroid in S ∪ {ei}. Then add
edge ei, ej for each ej ∈ Ckt(ei, p)− {ei} with ej belonging to P2(p).

3. Consider step 14 in the algorithm. If wei ≥ r · ∑k
j=1 weij

, then Ci =
{ei1 , . . . , eik

} is deleted from S and ei is included into it. Delete each eip

from the corresponding P2(p)3. For each existing edge eq, eip add edges eq, ej
for each ej ∈ Ckt(ei, p) − {eip} with ej belonging to P2(p). Additionally if
eip ∈ OPT (i.e ch1(eip , 0) > 0), then readd it to P1(p). Add edges eip , ej for
each ej ∈ Ckt(ei, p)− {eip}.

Lemma 2. The graph construction has the following properties.

1. P1(p) ⊆ OPT − S(n) for each p.
3 Note that eip is deleted only from P2(p) and not from P2(p

′) for p′ �= p.

Buyback Problem 385

2. ∀Ŝ ⊆ P1(p),Np(Ŝ) spans Ŝ ⊆ P1(p) in pth matroid.
3. ∀Ŝ ⊆ P1(p),|Np(Ŝ)−OPT | ≥ |Ŝ|.
4. There exists a matching in graph p such that every e ∈ P1(p) is matched to

a node in P2(p)−OPT .
5. Any element e ∈ E − S(n)−OPT is matched in at most k− 1 of the graphs

from the side of P2.

Proof. 1. This is easily seen by construction. In steps 2 and 3 of Graph con-
struction an element is added to P1(p) precisely when it is removed from S
and when it belongs to OPT .

2. When a node ej is added to P1(p) then edges to each element in Ckt−{ej}
are added. Hence any node ej is spanned by Np({ej}). By matroid property
this implies that for any set Ŝ ⊆ P1(p) we have that Np(Ŝ) spans Ŝ. 4

3. Let W = Np(Ŝ) ∩ OPT . We now assert some statements from which the
inequality easily follows.
– rankp((Np(Ŝ)−OPT)∪W) ≥ rankp(Ŝ∪W)5. This follows from property

2.
– rankp(Ŝ ∪W) = rankp(Ŝ) + rankp(W) = |Ŝ| + |W |. This follows from

the fact that Ŝ and W are disjoint and Ŝ ∪W ⊆ OPT .
– rankp((Np(Ŝ) − OPT) ∪ W) ≤ rankp(Np(Ŝ) − OPT) + rankp(W) ≤
|Np(Ŝ)−OPT |+ |W |. These set of inequalities follows from the matroid
property.

Combining the above equations we get |Ŝ| ≤ |Np(Ŝ)−OPT |.
4. Follows from Hall’s Theorem and property 3. If ei ∈ P1(p) is matched to ej ,

then let ej = Mp(ei).
5. This follows from step 3 of graph construction. Here any element removed

from S(i) in any step is deleted from P2(p) (for one of the p’s). Hence such
an element could belong to P2 of at most k − 1 graphs and be matched at
most k − 1 times (from P2’s side). Note that any element e ∈ OPT − S(n)
could additionally be matched from the P1’s side.

Charge Transfer. We finally explain the exact way the charge is transferred
in each step.

1. Consider step 14 in the algorithm. If wei ≥ r · (
∑k

j=1 weij
), then transfer all

of ch2(eij , i− 1) for each eij to ch2(ei, i).
2. Consider step 14 in the algorithm. If wei ≥ r · (

∑k
j=1 weij

), then let Cei =
{ei1 , . . . , eik

} be deleted from S and ei is included into it. If eil
was added to

P1(l), then transfer all of ch1(eil
, 0) to ch2(Ml(eil

), t) (where t is either the
step Ml(eil

) is deleted or n). Note that in each transfer Ml(eil
) gets a ch1

transfer of atmost its value (Since eil
is the min weight element in the ckt).

4 Note that even though the edges could later be deleted, the span property still holds
due to additional edges being added.

5 rankp(S) is defined as the largest subset A ⊆ S such that A ∈ Ip.

386 A. Badanidiyuru Varadaraja

3. Consider step 14 in the algorithm. Let wei < r · (
∑k

j=1 weij
). Additionally

if ei ∈ OPT , then it would have been added to P1(l) of each graph l. Now
ei is matched to different nodes in different graphs. Transfer a portion of
ch1(ei, 0) to ch2(Ml(ei), t) which is proportional to weil

for each graph l.
(where t is either the step Ml(ei) is deleted or n). Note that in each transfer
Ml(ei) gets a ch1 transfer of atmost r times its value.

4. Note that the above transfer of charges does not violate causal consistency as
the transfer of charge happens from e to some element in S(i) of the future.

We finish the proof of Lemma 1 by analyzing the charge transfer. First note that
any element in E − S(n) − OPT receives ch1 transfer in step 2 or 3 of charge
transfer at most k − 1 times. This is by property 5 of Lemma 2. Additionally
we can also see that each ch1 transfer to element ei is at most r · wei . Using
these properties by induction that we prove that ch2(ei, j) ≤ (k−1)r2

r−1 wei for

ei ∈ E − S(n) and ch(ei, j) ≤ (k·r−1)r
r−1 wei for ei ∈ S(n).

– For any element in ei ∈ E − S(n) we have ch2(ei, j) ≤ (k−1)r2

r−1 wei if it was
deleted at step j. Note that ch1 transfer happens at most k − 1 times for
ei ∈ E − S(n)−OPT and 0 times for ei ∈ E − S(n) ∩OPT

ch2(ei, j) ≤ (k − 1) · (ch1 transfer) +
∑k

j=1 ch2(eij , i− 1)

≤ (k − 1) · r · wei +
∑k

j=1
(k−1)r2

r−1 weij

≤ (k − 1) · r · wei + (k−1)r2

r−1

wei

r

= (k−1)r2

r−1 wei (3)

– For any element in S(n) −OPT we have ch(ei, n) ≤ (k·r−1)r
r−1 wei . Note that

this is also true for any element in S(n) ∩OPT , as they do not get any ch1

transfer but have a non-zero ch1.

ch(ei, n) ≤ k · (ch1 transfer) +
∑k

j=1 ch2(eij , i− 1)

≤ k · r · wei +
∑k

j=1
(k−1)r2

r−1 weij

≤ k · r · wei + (k−1)r2

r−1

wei

r

= (k·r−1)r
r−1 wei (4)

The above argument proves that

– ∀ei ∈ S(n), ch(ei, n) ≤ (k·r−1)r
r−1 w(ei)

–
∑

ei∈S(n) ch(ei, n) = w(OPT). This follows naturally from charge conserva-
tion in the system.

The proof of Lemma 1 can be easily seen from the above two properties.

Buyback Problem 387

4 Lower Bound

In this section we prove a matching lower bound of c = k(1+f)(1+
√

1− 1
k(1+f))2

.

Theorem 2. Any deterministic online algorithm A cannot achive a competitive
ratio of β < c = k(1 + f)(1 +

√
1− 1

k(1+f))2 for the problem of online buyback
problem with k matroid constraints.

Sketch. Assume A is an online deterministic algorithm which achieves a com-
petitive ratio β < c. Then we arrive at a contradiction. The proof will be in
following steps.

1. We will construct a k-dimensional matching. Using this we will argue the
existence of an infinite sequence X = {x1, x2, . . .} of the following form.
x1 = 1 and xi ≥ 0, ∀i. Additionally they will satisfy the following inequality.

β(xi − f ·
i−1∑
j=1

xj) ≥ xi+1 + (k − 1)
i+1∑
j=1

xj , ∀i ≥ 1 (5)

2. Consider any sequence X = {x1, x2, . . .} (x1 = 1) which satisfies xi ≥ 0, ∀i
and β(xi− f ·

∑i−1
j=1 xj) ≥ xi+1 + (k−1)

∑i+1
j=1 xj , ∀i. Now if β < c, we arrive

at a contradiction.

The proof of the Theorem 2 follows from the above two steps. We will prove the
second part first.

4.1 Contradiction

Consider all sequences S of the form x1 = 1,xi ≥ 0, ∀i and satisfying equation 5.
For any given sequence X , let n(X) be the minimum i for which inequality 5 is
strict. We first claim that if a sequence of the above form exists, then asX ranges
over S, n(X) should take unboundedly large values. Assume by contradiction
that this claim is not true. Among the sequences consider sequence X for which
n(X) = N is as large as possible. We construct a sequence for which n(X) is
even larger thus arriving at a contradiction. Let λ be defined as follows.

λ =
β(xN − f ·

∑N−1
j=1 xj)− (k − 1)

∑N
j=1 xj

k · xN+1
(6)

Let X ′ = {x1, x2, . . . , xN , λxN+1, λN+2xN+2, . . .}. Then it is easy to see that
inequality 5 and other constraints are met. Additionally n(X ′) > n(X). Hence
we arrive at a contradiction. Let Y = {y1, y2, . . .} be the sequence defined as
follows.

y1 = 1, β(yi − f ·
i−1∑
j=1

yj) = yi+1 + (k − 1)
i+1∑
j=1

yj, ∀i ≥ 1 (7)

388 A. Badanidiyuru Varadaraja

Then yi ≥ 0, ∀i. This is because by our previous claim ∃ a sequence X ∈ S
where yi = xi ≥ 0. Let zi =

∑i
j=1 yi. Then we get the recurrence k · zi+1 =

(1 + β)zi − β(1 + f)zi−1 and z1 = 1. As each yi ≥ 0 we also have that zi ≥ 0.
Now we use a Lemma from [22] to get a contradiction.

Lemma 3. [22] Let un = aun−1 + bun−2 be a linear recurrence of second order.
If p(x) = x2 − ax− b has imaginary roots, then the sequence must have negative
elements.

Consider the case when β < k(1+f)(1+
√

1− 1
k(1+f))2. Then it is simple to see

thatD = (1+β)2−4·k·β(1+f)) < 0 which implies that k·x2 = (1+β)x−β(1+f)
has imaginary roots. Hence by Lemma 3 this implies that the sequence {zi} has
negative elements which is a contradiction to our assumption.

4.2 Construction of Sequence

Given the online algorithm with competitive ratio β we construct k dimensional
matching using which we will construct the sequence {xi}. For ease of description
we will restrict to the case k = 2. The general k case is similar. In other words we
construct bipartite graphs. Here each partite corresponds to a partition matroid.
Hence the subset of edges is in the intersection of the two matroids if and only
if it forms a valid matching. The graph will have two types of edges exi and eyi.
We will use xi and yi to denote the corresponding weights of the edges.

– Start with edge ex1 with weight x1 = 1.
– For simplicity we just state the inductive step in the construction. At step i

the edge held by the algorithm is exi (and no other edge).
– At step i + 1 we add edges to both ends of exi such that they differ in

weight by at most ε and the algorithm accepts exactly 1 of them. Due to
the matching condition it has to reject the currently accepted edge exi. Here
adding a new edge to one end of exi means a edge is revealed. This new edge
shares one vertex with exi and the other vertex is a brand new vertex which
hasn’t yet appeared in the algorithm. We describe how this is done below.
At step i + 1 add edges to both ends of exi of weight ε. If the algorithm
does not accept either of the new edges rewind the algorithm and instead
add edges of weight 2ε. Do this rewind, add edges of higher weights (higher
by ε) till the algorithm accepts exactly 1 new edge 6. Due to the matching
constraint this means the current edge exi sharing an end point must be
canceled and a penalty paid to it. Let the accepted edge be named exi+1

and the other newly added edge be named eyi. By construction we have
xi+1 ≤ yi + ε.

– Use the above construction to construct an infinite sequence xi and yi.

We will note some properties of the sequence xi and yi.

6 Since the two edges are added sequentially we can stop when one of them is accepted.

Buyback Problem 389

– At step i+1 the algorithm accepts exi+1 and cancels exi while not accepting
eyi. Consider the rewinding procedure in which the algorithm is presented
edge ex′i+1 of weight xi+1 − ε and eyi before exi+1 is presented. By the
construction of our rewinding procedure both ex′i+1 and eyi would not be
accepted and exi would still be the currently maintained edge in the solu-
tion. In such a case we assert some statements based on which we derive an
inequality.
• The utility of the algorithm is xi − f

∑i−1
j=1 xi−1 as exi is the currently

maintained edge and {ex1, ..., exi−1} are currently canceled edges.
• It is clear that {ey1, ey2, . . . , eyi, ex

′
i+1} is a valid matching in the current

set of revealed edges. This has total weight xi+1 − ε+
∑i

j=1 yi

• By definition of β we have β(xi − f
∑i−1

j=1 xi−1) ≥ xi+1 − ε+
∑i

j=1 yi.
• By construction of the sequence we also know that yi + ε ≥ xi+1.

Substituting we get β(xi − f
∑i−1

j=1 xi−1) ≥ xi+1 − ε +
∑i+1

j=2 xj − (i + 1)ε.
Tending ε to 0 7 we get β(xi − f

∑i−1
j=1 xi−1) ≥ xi+1 +

∑i+1
j=2 xj

– Note that the sequence constructed in not the one we desired. The sum
on the right hand side starts from j = 2. β(xi − f

∑i−1
j=1 xi−1) ≥ xi+1 +∑i+1

j=2 xj implies β(xi−f
∑i−1

j=2 xi−1) ≥ xi+1+
∑i+1

j=2 xj . So from the sequence
{x1, x2, ...} deleting x1 and rescaling x2 to 1 we get the desired sequence.

The general case k is very similar to case k = 2 but instead involves construction
of k-dimensional matching.

Acknowledgments. The author thanks Bobby Kleinberg, Renato Paes Leme
and Hu Fu for helpful suggestions.

References

1. Adler, R., Azar, Y.: Beating the logarithmic lower bound: randomized preemptive
disjoint paths and call control algorithms. In: SODA, pp. 1–10 (1999)

2. Ashwinkumar, B.V., Kleinberg, R.: Randomized online algorithms for the buyback
problem. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 529–536. Springer,
Heidelberg (2009)

3. Azar, Y., Blum, A., Mansour, Y.: Combining online algorithms for rejection and
acceptance. In: SPAA, pp. 159–163 (2003)

4. Babaioff, M., Hartline, J.D., Kleinberg, R.: Selling ad campaigns: online algorithms
with buyback. In: EC (2009)

5. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: A knapsack secretary prob-
lem with applications. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P.
(eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 16–28. Springer,
Heidelberg (2007)

6. Babaioff, M., Immorlica, N., Kleinberg, R.: Matroids, secretary problems, and on-
line mechanisms. In: SODA, pp. 434–443 (2007)

7 We are ignoring some issues of convergence for ease of exposition.

390 A. Badanidiyuru Varadaraja

7. Canetti, R., Irani, S.: Bounding the power of preemption in randomized scheduling.
In: STOC, pp. 606–615 (1995)

8. Chawla, S., Hartline, J.D., Malec, D.L., Sivan, B.: Multi-parameter mechanism
design and sequential posted pricing. In: STOC (2010)

9. Constantin, F., Feldman, J., Muthukrishnan, S., Pál, M.: An online mechanism for
ad slot reservations with cancellations. In: SODA (2009)

10. Cormode, G., Muthukrishnan, S.: Space efficient mining of multigraph streams. In:
PODS, pp. 271–282 (2005)

11. Sarma, A.D., Gollapudi, S., Panigrahy, R.: Estimating pagerank on graph streams.
In: PODS, pp. 69–78 (2008)

12. Demetrescu, C., Finocchi, I., Ribichini, A.: Trading off space for passes in graph
streaming problems. In: SODA, pp. 714–723 (2006)

13. Dynkin, E.B.: Optimal choice of the stopping moment of a Markov process. Dokl.
Akad. Nauk SSSR 150, 238–240 (1963)

14. Epstein, L., Levin, A., Mestre, J., Segev, D.: Improved approximation guarantees
for weighted matching in the semi-streaming model. In: STACS (2010)

15. Feige, U., Mirrokni, V.S., Vondrak, J.: Maximizing non-monotone submodular
functions. In: FOCS, pp. 461–471 (2007)

16. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in
the streaming model: the value of space. In: SODA, pp. 745–754 (2005)

17. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems
in a semi-streaming model. Theor. Comput. Sci. 348, 207–216 (2005)

18. Feldman, J., Korula, N., Mirrokni, V., Muthukrishnan, S., Pál, M.: Online ad
assignment with free disposal. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929,
pp. 374–385. Springer, Heidelberg (2009)

19. Garay, J.A., Gopal, I.S.: Call preemption in communication networks. In: IEEE
INFOCOM, pp. 1043–1050 (1992)

20. Garay, J.A., Gopal, I.S., Kutten, S., Mansour, Y., Yung, M.: Efficient on-line call
control algorithms. J. Algorithms 23(1), 180–194 (1997)

21. Hajiaghayi, M.T., Kleinberg, R., Sandholm, T.: Automated online mechanism de-
sign and prophet inequalities. In: AAAI (2007)

22. Halava, V., Harju, T., Hirvensalo, M.: Positivity of second order linear recurrent
sequences. Discrete Appl. Math. 154(3), 447–451 (2006)

23. Jenkyns, T.A.: The efficacy of the greedy algorithm. In: Proc. of 7th South Eastern
Conference on Combinatorics, Graph Theory and Computing, pp. 341–350 (1976)

24. Kleinberg, R.: A multiple-choice secretary algorithm with applications to online
auctions. In: SODA, pp. 630–631 (2005)

25. Korte, B., Hausmann, D.: An analysis of the greedy heuristic for independence
systems. Annals of Discrete Math. 2, 65–74 (1978)

26. Korula, N., Pál, M.: Algorithms for secretary problems on graphs and hypergraphs.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. LNCS, vol. 5556, pp. 508–520. Springer, Heidelberg (2009)

27. Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Non-monotone submodular
maximization under matroid and knapsack constraints. In: STOC (2009)

28. McGregor, A.: Finding graph matchings in data streams. In: Chekuri, C., Jansen,
K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005. LNCS,
vol. 3624, pp. 170–181. Springer, Heidelberg (2005)

29. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions ii. In: Mathematical Programming Study,
pp. 73–87 (1978)

Tamper-Proof Circuits:

How to Trade Leakage for Tamper-Resilience

Sebastian Faust1,�, Krzysztof Pietrzak2,��, and Daniele Venturi3

1 K.U. Leuven ESAT-COSIC/IBBT
2 CWI Amsterdam

3 Sapienza University of Rome

Abstract. Tampering attacks are cryptanalytic attacks on the imple-
mentation of cryptographic algorithms (e.g., smart cards), where an ad-
versary introduces faults with the hope that the tampered device will
reveal secret information. Inspired by the work of Ishai et al. [Euro-
crypt’06], we propose a compiler that transforms any circuit into a new
circuit with the same functionality, but which is resilient against a well-
defined and powerful tampering adversary. More concretely, our trans-
formed circuits remain secure even if the adversary can adaptively tamper
with every wire in the circuit as long as the tampering fails with some
probability δ > 0. This additional requirement is motivated by practical
tampering attacks, where it is often difficult to guarantee the success of
a specific attack.

Formally, we show that a q-query tampering attack against the trans-
formed circuit can be “simulated” with only black-box access to the
original circuit and log(q) bits of additional auxiliary information. Thus,
if the implemented cryptographic scheme is secure against log(q) bits
of leakage, then our implementation is tamper-proof in the above sense.
Surprisingly, allowing for this small amount of information leakage al-
lows for much more efficient compilers, which moreover do not require
randomness during evaluation. Similar to earlier works our compiler re-
quires small, stateless and computation-independent tamper-proof gad-
gets. Thus, our result can be interpreted as reducing the problem of
shielding arbitrary complex computation to protecting simple
components.

1 Introduction

Modern security definitions usually consider some kind of game between an ad-
versary and the cryptosystem under attack, where the adversary interacts with

� Supported in part by Microsoft Research through its PhD Scholarship Programme,
by the IAP Programme P6/26 BCRYPT of the Belgian State (Belgian Science Pol-
icy), and FWO grant G.0225.07. Part of this work was done while the first and the
third author were visiting CWI, Amsterdam.

�� Supported by the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC Starting Grant (259668-PSPC).

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 391–402, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

392 S. Faust, K. Pietrzak, and D. Venturi

the system and finally must break it. A distinctive feature of such notions is that
the adversary has only black-box access to the cryptosystem. Unfortunately, in
the last decade it became evident that such black-box notions do not capture
adversaries that attack the physical implementation of a cryptosystem. Recently,
significant progress has been made to close this gap. With few exceptions most of
this research is concerned with “side-channel attacks”. These are attacks where
the adversary measures information that is leaked from the cryptodevice during
computation.

In this work we explore active physical attacks which so far got much less at-
tention from the theory community (a few examples can be found in [10, 12, 7]).
We study the security of cryptographic implementations when the adversary
can not only measure, but actively tamper with the computation of the physical
device, e.g. by introducing faults. Such attacks, often called fault analysis or
tampering attacks, are a serious threat to the security of real-world implementa-
tions and often allow to completely break otherwise provably secure schemes. In
this work we investigate the general question whether any cryptographic scheme
can be implemented efficiently such that it resists a very powerful adversary
tampering with the whole computation and the memory.

Many techniques to induce faults into the computation of a cryptodevice have
been proposed. Important examples include heating up the device, expose it to
infrared radiation or alter the internal power supply or clock [4, 6, 18]. One might
think that an adversary that obtains the result of faulty computation will not be
very useful. In a seminal paper Boneh et al. [6] show that already a single fault
may allow to completely break an RSA based digital signature scheme. Different
methods to counter such attacks have been proposed. Most such countermeasures
have in common that they protect against specific adversarial strategies and
come without a rigorous security analysis. This is different from the provable
security approach followed by modern cryptography, where one first defines a
precise adversarial model and then proves that no (resource-bounded) attacker
exists who breaks the scheme.

An influential work on provable security against tampering attacks is the
work on private circuits of Ishai et al. [13, 12]. Informally, such “private cir-
cuits” carry out a specific cryptographic task (e.g., signing), while protecting
the internal secret state against a well-defined class of tampering attacks. The
authors construct a general circuit compiler that transforms any Boolean circuit
C into a functionally equivalent “private circuit” Ĉ. It is shown that an adver-
sary who can tamper1 with at most t wires in-between any two invocations of
Ĉ, cannot learn anything more about the secret state than an adversary having
just black-box access to C. Security is proven by a simulation argument: for any
adversary A that can mount a tampering attack on the circuit, there exists an
(efficient) simulator S having only black-box access to the circuit, such that the
output distribution of A and S are statistically close.

1 Tampering with a wire means permanently set its value to the constant 1 or 0 or
toggle the wire, which means that whatever value is put on the wire gets inverted.

Tamper-Proof Circuits: How to Trade Leakage for Tamper-Resilience 393

To achieve this goal their transformation uses techniques from multi-party
computation and combines randomized computation with redundant encodings
to detect faulty computation. If tampering is detected a self-destruction mech-
anism is triggered that overwrites the complete state, so that, from there on,
regular and tampering queries to the circuit can be trivially simulated. One dif-
ficulty that needs to be addressed is that this self-destruction mechanism itself
is exposed to tampering attacks. In particular, an adversary could just try to
cancel any trigger for self-destruction and from then on apply arbitrary attacks
without being in danger of detection. Ishai et al. face this problem by spreading
and propagating errors that appear during the computation. As discussed later
we will use similar techniques in our work.

Our Contribution. The “holy grail” in this line of research is to find an efficient
general circuit compiler that provably resists arbitrary tampering attacks to an
unlimited number of wires. This goal might be too ambitious since an adversary
might just “reprogram” the circuit such that it outputs its complete secret state.
Hence, to have any hope to formally analyze the security against tampering
attacks we will need to limit the power of the adversary. As just discussed, Ishai
et al. limit the adversary to tamper with at most t wires in each round. Their
construction blows up the circuit size quite significantly and makes extensive use
of randomness: for a statistical security parameter k, the size of the transformed
circuit is by a factor of O(k3t) larger and requires O(k2) bits of randomness in
each invocation.

“Noisy” tampering. In this work we consider a somewhat different (and incom-
parable) adversarial model, where the adversary can tamper with every wire
(not just some small number t) in the circuit, but tampering with every wire
will fail (independently) with some probability δ ≥ 0.2 This model is partially
motivated by existing attacks [17, 5, 6]. Concrete examples of attacks covered
by our model are, e.g., optical attacks and Eddy currents attacks (cf. [17] for
details).

Leakage. Another crucial difference between our work and [12] is that we use
a relaxed security definition which allows the tampering adversary to learn a
logarithmic amount of information about the secret state (in total, not per in-
vocation). This relaxation buys us a lot in terms of efficiency and simplicity. In
particular, for security parameter k we achieve statistical security by blowing up
the circuit size by only O(k) and requiring no randomness during run-time (and
only 2k bits during production).

If q is the number of queries and n the size of the output of the original circuit,
the amount of leakage that an adversary can learn by tampering with the circuit
is log(q · n) bits. Intuitively, the only advantage an adversary gets by being able
to tamper with the transformed circuit is to “destroy” its internal state, but

2 The adversary can tamper the same wire several times, but only once in-between
every two invocations. As tampering is persistent, after a sufficiently large number
of attempts the tampering will succeed almost certainly, i.e. with probability 1− δl

after l rounds.

394 S. Faust, K. Pietrzak, and D. Venturi

the point in the computation where the destruction happens can depend on the
secret state. Hence, this “point of failure” may be leaked to the adversary.

If we apply our transformation to a particular cryptosystem in order to get a
tamper-resilient version Ĉ of it, it is crucial that the scheme C remains secure
even given the leakage. Some primitives like public-key encryption [2] or digital
signatures [10, 8] are always secure against a logarithmic amount of arbitrary
leakage, but a logarithmic amount of leakage can decrease the security of the
PKE or signature scheme by a polynomial factor. Recently signature schemes
[15, 3] and public-key encryption schemes [2, 16] have been constructed where
the security does not degrade at all, even if the amount of leakage is quite
substantial. Using such schemes we can avoid the loss in security due to the
leakage.

Overview of the construction. Starting with any Boolean (probabilistic) circuit
C our transformation Φ outputs a transformed circuit Ĉ that consists of k sub-
circuits (which we will call the core). Each subcircuit is made out of special
constant size tamper-proof masked “Manchester gadgets”. Instead of doing sim-
ple Boolean operations, these gadgets compute with encodings, so called masked
Manchester encodings (which encode a single bit into 4 bits). If the inputs are
not valid encodings, such gadgets output the invalid state, i.e., 0000. Since each
of the k subcircuits is made solely out of such special gadgets, errors introduced
by a tampering attack will propagate to the output of the core and are input to
a self-destruction phase (essentially, identical to the one introduced by [12]). In
contrast to the core of the circuit which is built with gadgets of constant size,
the self-destruction phase (in the following also called cascade phase) will re-
quire (simple, stateless and deterministic) tamper-proof gadgets of linear (in k)
size. Ishai et al. require tamper-proof gadgets of linear (in kt) size in the entire
circuit, albeit simpler ones than we do.3 Unlike [12], we do not require so called
“reversible” NOT gates. Such gadgets propagate a fault on the output side to
their input side and are highly non-standard.

It is not difficult to see that the transformation as outlined above is not secure
in the setting of Ishai et al. (i.e. when δ = 0 and the adversary can tamper with
up to t wires in each round). Nevertheless, we show in the full version of this
paper [1] how to adjust our compiler to achieve similar efficiency improvement
when δ = 0 and some small amount of leakage is allowed.

On tamper-proof gadgets. The assumption of the existence of simple components
that withstand active physical attacks has been frequently made in the litera-
ture [12, 10] (and several others in the context of leakage [9, 14, 11]). Of course,
the simpler the components are, the stronger the result is that one gets.

1. The components we use are fixed, standard and universal elements that can
be added to once standard cell library. This is far better than designing over
and over task specific tamper-proof components.

2. Our gadgets are simple, stateless and deterministic. In particular, the gadgets
used in the core of the circuit have a small constant size.

3 More precisely, they require tamper-proof AND gadgets that take 4kt bits as input.

Tamper-Proof Circuits: How to Trade Leakage for Tamper-Resilience 395

3. Our transformation for the core is independent of the cascade phase, which
uses linear size gadgets. Thus one can implement a universal “tamper-proof
cascade phase”, and only has to compile and implement the core.

Outline of the security proof. We construct an efficient simulator S that – having
only black-box access to the circuit C – can simulate access to the transformed
circuit Ĉ including adversarial tampering queries. The main challenge here is
consistency, that is, answers computed by S must have the same distribution as
an adversary would see when tampering with Ĉ.

If an adversary tampers with Ĉ, the subsequent invocation of Ĉ can have one
of three different outcomes:

1. Nothing happens: the invocation goes through as if no tampering did happen
(this is, e.g., the case if a wire is set to 0, but its value during the invocation
is 0 anyway).

2. Self-destruct: the redundancy added to Ĉ “detects” tampering, and the en-
tire state is deleted.

3. Successful Tampering: the outcome of Ĉ changes as a consequence of the
tampering, and this tampering was not detected.

In a first step, we show that case 3 will not happen but with exponentially small
probability. To show this, we use the fact that tampering with any particular
wire fails with probability δ, and moreover that every bit carried by a wire in
C is encoded in Ĉ with a highly redundant and randomized encoding. This
guarantees that the chance of an adversary to change a valid encoding of a bit
to its complement is tiny: either she has to be lucky – in the sense that she
tampers with many wires at once and all attacks succeed – or she has to guess
the randomness used in the encoding.

As we ruled out case 3., we must only build a simulator S that simulates Ĉ
as if no tampering has happened (i.e., case 1.). This is easy as S has access to
C which is functionally equivalent. Moreover, at some point S has to simulate
a self-destruct (i.e., case 2.). Unfortunately, there is no way for S to know when
the self-destruct happens (as the probability of this event can be correlated with
the secret state). As explained before, we provide the exact point of failure as
auxiliary input to S.

The simulator has to continue the simulation even after the self-destruct. This
seems easy, as now all the secret state has been deleted. There is one important
technicality though. As tampering is permanent, even after self-destruct the sim-
ulator S must simulate a circuit in a way that is consistent with the simulation
so far. A priori the simulator only knows which wires the adversary tried to
tamper, but recall that each tampering is only successful with probability 1− δ.
For this reason, we let the simulator choose all the randomness used, including
the randomness of the compiler (which generates Ĉ from C) and the random-
ness that determines the success of the tampering attacks. Knowledge of this
randomness, allows the simulator to continue simulation after self-destruct.

Note that the above-mentioned auxiliary information (i.e., the point at which
self-destruct is triggered) can be computed as a function of this randomness, and
the randomness used by the adversary.

396 S. Faust, K. Pietrzak, and D. Venturi

2 Definitions

Notation. If D is a distribution over a setD, then x← D means a random variable
x is drawn from D (ifD is a set with no distribution specified, then x← D denotes
a random variable with uniform distribution over D). If D is an algorithm, then
y ← D(x) means that y is the output of D on input x; in particular when D
is probabilistic, y is a random variable. Two distributions D and D′ are ε-close,
written D ≈ε D′, if their statistical distance 1

2

∑
x∈D |D(x)− D′(x)| is less than

or equal to ε. We write AO(·) to denote an algorithmA with oracle access to O(·).
Given two codewords x, y ∈ {0, 1}n their Hamming distance, 0 ≤ dH(x, y) ≤ n,
is the number of positions in which x and y differ.

Our Model. Our physical model of computation is very similar to [12]. We
consider (probabilistic) stateful Boolean circuits C and present circuit compilers
Φ that transform any such circuit into a new circuit Ĉ resistant against a well-
defined class of tampering attacks. Details follow below.

Circuits. A Boolean circuit C is a directed acyclic graph whose vertices are
standard Boolean gates and whose edges are the wires. The depth of C, denoted
depth(C), is the longest path from an input to an output. A circuit is clocked if
it evolves in clock cycles (or rounds). The input and output values of the circuit
C in clock cycle i are denoted by Xi and Yi, respectively. A circuit is probabilistic
if it uses internal randomness as part of its logic. We call such probabilistic logic
randomness gates and denote them with $. In each clock cycle $ outputs a fresh
random bit.

Additionally, a circuit may contain memory gates. Memory gates, which have
a single incoming edge and any number of outgoing edges, maintain state: at any
clock cycle, a memory gate sends its current state down its outgoing edges and
updates it according to the value of its incoming edge. Any cycle in the circuit
graph must contain at least one memory gate. The state of all memory gates at
clock cycle i is denoted byMi, with M0 denoting the initial state. When a circuit
is run in stateMi−1 on inputXi, the circuit will output Yi and the memory gates
will be in a new state Mi. We will denote this by (Yi,Mi)← C[Mi−1](Xi).

Adversarial model. We consider adversaries that can adaptively tamper in q
clock cycles with up to t wires. In this paper we are particularly interested in
the case where t is unbounded, i.e., the adversary can tamper with an arbitrarily
large number of wires in the circuit in every round. For each wire we allow the
adversary to choose between the following types of attacks: set, i.e., setting a wire
to 1, reset, i.e., setting a wire to 0 and toggle, i.e., flipping the value on the wire.
For each wire such an attack fails independently with some probability. This is
captured by the global parameter δ, where δ = 0 means that the attack succeeds
always, and δ = 1 that no tampering takes place. The model of [12] considers
the case in which t is a small integer and tampering is always successful, i.e.,
δ = 0.

When an attack fails for one wire the computation continues with the orig-
inal value on that wire. Notice that once a fault is successfully placed it stays

Tamper-Proof Circuits: How to Trade Leakage for Tamper-Resilience 397

permanently. Let us stress that we do allow the adversary to “undo” (with zero
error probability) persistent attacks induced in previous rounds (this captures
so called transient faults). We call such an adversary, that can adaptively tam-
per with a circuit for up to q clock cycles attacking up to t wires per round,
an (t, δ, q)-adversary and denote the attack strategy for each clock cycle as
W = {(w1, a1), . . . , (wt, at)}. The first element in each such tuple specifies which
wire in the circuit is attacked and the second element specifies the type of at-
tack (i.e., set, reset or toggle). When the number of faults per clock cycle is
unbounded, we will explicitely write t =∞.

Tamper-Proof Security. The definitions below are given for (∞, δ, q)-
adversaries, but can be adapted to the case where the number t of faults in
every clock cycle is bounded in a straight forward way.

Transformation. A circuit transformation Φ takes as input a security parameter
k, a (probabilistic) circuit C and an initial state M0 and produces a transformed
initial state M̂0 and a transformed (probabilistic) circuit Ĉ. This is denoted by
(Ĉ, M̂0)← Φ(C,M0). The compiled circuit can use a different set of gates, and
this will be the case for the compiler we construct. The transformation itself can
be randomized and we let ρΦ denote the random coins of the transformation.
We say that the transformation Φ is functionality preserving if for all C, M0 and
any set of public inputs X1, X2, . . . , Xq the original circuit C starting with state
M0 and the transformed circuit Ĉ starting with state M̂0 result in an identical
output distribution.

Following [12], we define security of circuit transformations against tamper-
ing attacks by a simulation-based argument, but we augment the simulation by
allowing auxilliary input. Loosely speaking, for every (∞, δ, q)-adversary A tam-
pering with Ĉ, there exists a simulator Sλ, that gets as input some λ-bounded
auxiliary information Λ and only has black-box access to the original circuit C,
such that the output distribution of A and Sλ are close. We will specify the
nature of the auxiliary information below.

Real world experiment. The adversary A can in each round i adaptively specify
an input Xi and an attack strategy Wi that is applied to the transformed circuit
Ĉ when run on inputXi with secret state M̂i−1. The output Yi resulting from the
(possibly) faulty computation is given to the adversary and the state is updated
to M̂i for the next evaluation. To formally describe such a process we introduce
a special oracle, Tamper, that can be queried on (Xi,Wi) to return the result
Yi. More precisely, for any (∞, δ, q)-adversary A, any circuit C and any initial
state M0, we define the following experiment:

Experiment. ExpReal
Φ (A, C,M0):

(Ĉ, M̂0)← Φ(C,M0)
Output ATamper(Ĉ,M̂0,·,·)(C)

Simulation. The simulator Sλ simulates the adversary’s view, however, she has to
do so without having tampering access to the transformed circuit. More precisely,

398 S. Faust, K. Pietrzak, and D. Venturi

the simulator only has oracle access to C[M0](·). Additionally, we will give the
simulator some λ-bounded auxiliary information. This is described by letting Sλ

choose an arbitrary function f : {0, 1}∗ → {0, 1}λ and returning the result of f
evaluated on input the secret state M0, i.e., Λ def= f(M0). For a simulator Sλ we
define the following experiment for any circuit C, any initial state M0 and any
(∞, δ, q)-adversary A:

Experiment. ExpSim
Φ (Sλ, C,M0,A):

f ← Sλ(A, C) where f : {0, 1}∗ → {0, 1}λ
Output SC[Mi](·)

λ (Λ) where Λ = f(M0)

Tamper-resilient circuit transformations. A circuit transformation is said to be
tamper-resilient if the outputs of the two experiments are statistically close.

Definition 1. (Tamper-Resilience of Circuit Transformation). A circuit
transformation Φ is (∞, δ, q, λ, ε)-tamper-resilient if for any (∞, δ, q)-adversary
A, for any circuit C and any initial state M0, there exists a simulator Sλ such
that

ExpSim
Φ (Sλ, C,M0,A) ≈ε ExpReal

Φ (A, C,M0),

where the probabilities are taken over all the random coin tosses involved in the
experiments.4

3 A Compiler Secure against (∞, δ, q)-Adversaries

We describe a compiler Φ which is secure against (∞, δ, q)-adversaries. A different
construction for the case of a small t and δ = 0 – i.e. when the number of faults
per round is bounded but attacks succeed always – is given in the full version [1].

Instead of computing with bits the compiled circuit Ĉ will operate on redun-
dant and randomized encodings of bits.

Encodings. Our transformation is based on three encoding schemes, where each
is used to encode the previous one. The first encoding, so called Manchester
encoding, can be described by a deterministic function that takes as input a
bit b ∈ {0, 1} and has the following output: MC(b) def= (b, b̄). Decoding is done
just by outputting the first bit. The output (b, b̄) is given as input to the next
level of our encoding procedure where we use a probabilistic function mask :
{0, 1}2×{0, 1}2 → {0, 1}4. Such a function uses as input additionally two random
bits for masking its output. More precisely, we have mask(MC(b), (r, r′)) def=
(b ⊕ r, r, b̄ ⊕ r′, r′), with (r, r′) ← {0, 1}2. We denote with MMC ⊂ {0, 1}4 the
set of valid masked Manchester encoded bits, and with MMC

def= {0, 1}4 \MMC
the non-valid encodings. Our final encoding consists of k independent masked
Manchester encodings:

Enc(b, �r) def= mask (MC(b), (r1, r′1)), . . . ,mask (MC(b), (rk, r′k)), (1)
4 The parameters δ, q, λ and ε are all parameterized by the security parameter k.

Tamper-Proof Circuits: How to Trade Leakage for Tamper-Resilience 399

with �r = (r1, r′1, r2, r
′
2, . . . , rk, r

′
k) ∈ {0, 1}2k. Thus it has length 4k bits and

uses 2k bits of randomness. When the randomness in an encoding is omitted, it
is uniformly sampled, e.g. Enc(b) denotes the random variable Enc(b, �r) where
�r ∈ {0, 1}2k is sampled uniformly at random.

We denote with Enc ⊂ {0, 1}4k the set of all valid encodings and with Enc
def=

{0, 1}4k \ Enc the non-valid ones.

The Compiler. Consider any (probabilistic) Boolean circuit C that consists of
Boolean NAND gates, randomness gates $ and memory cells. We assume that
the original circuit handles fanout through special copy gates taking one bit as
input and outputting two copies. If k copies are needed, the original value is
passed through a subcircuit of k − 1 copy gadgets arranged in a tree structure.
Let us first describe the transformation for the secret state. On factory setup 2k
random bits ρΦ = (r1, r′1, . . . , rk, r

′
k) are sampled uniformly. Then, each bit of the

secret state mi is encoded by Enc(mi, ρΦ). Putting all these encodings together
we get the initial transformed secret state M̂0. The encoded secret state will be
stored in the memory cells of Ĉ, but we will discuss this below. Notice that we
use the same randomness for each encoding.

The global picture of our transformation consists of four different stages: the
encoder, the input/output cascade phase, the transformation for the core and
the decoder. These stages are connected as shown in Figure 1 and are described
below.

The encoder and the decoder. Since the compiled circuit computes with values
in encoded form, we need to specify how to encode and decode the public inputs
and outputs of Ĉ. The encoder (which is deterministic and build from copy and
negation gates) encodes every bit of the input using randomness ρΦ:

Encoder(x1, . . . , xt)
def= Enc(x1, ρΦ), . . . ,Enc(xt, ρΦ) where x1, . . . , xt ∈ {0, 1}.

The decoding phase simply outputs the XORs of the first two bits of every
encoding:

Decoder(X1, . . . , Xt′)
def= X1[1]⊕X1[2], . . . , Xt′ [1]⊕Xt′[2] where Xi ∈ {0, 1}4k.

The input and output cascade phases. For self-destruction we use a tool already
introduced by Ishai et al. – the cascade phase (cf. Figure 2). In our construction
we make use of two cascade phases: an input cascade phase and an output cascade
phase. As shown in Figure 1 the input cascade phase takes as input the output
of the encoder and the encoded secret state. The output cascade phase takes
as inputs the output of the core and the updated secret state.5 For technical
reasons we require that the secret state is always in the top part and the public
output is always on the bottom part of the cascade phase. For ease of description

5 Notice that the input and the output cascade phases might have a different number
of inputs/outputs.

400 S. Faust, K. Pietrzak, and D. Venturi

Fig. 1. A global picture of our compiler in the case k = 3. In the red-coloured parts we
rely on gadgets of constant size, whereas in the blue-coloured parts gadgets of linear
size (in the security parameter k) are used.

Fig. 2. The cascade phase for error propagation and self-destruction

we call the part of the cascade phase that takes the inputs as the first half and
the part that produces the outputs as the second half (cf. Figure 2).

Inside the cascade phase we make use of special cascade gadgets Π : {0, 1}8k →
{0, 1}8k. The gadgets behave like the identity function if the inputs are valid
encodings using randomness ρΦ, and output 08k otherwise, i.e.

Π(A,B) =
{
A,B if A,B ∈ {Enc(0, ρΦ),Enc(1, ρΦ)}
08k otherwise.

The gadgets are assumed to be tamper-proof, i.e. the adversary is allowed to
tamper with their inputs and outputs, but she cannot modify their internals.

The core. As outlined in the introduction, the core of the circuit is made out
of k sub-circuits each using special tamper-proof gadgets of constant size. Let
us describe these gadgets in more detail. With N̂ANDr,r′ : {0, 1}2×4 → {0, 1}4
we define a NAND gate which works on masked Manchester encodings using
randomness r, r′ (on input and output). If the input contains anything else than
a valid masked Manchester encoding, the output is 04 ∈ MMC. The truth table of
these gadgets is given in Figure 3. Similarly we denote with ĉopyr,r′ : {0, 1}4 →
{0, 1}2×4 a copy gate which takes as input a masked Manchester encoding using
randomness r, r′ and outputs two copies of it. Whenever the input contains
anything else than a masked Manchester encoding using randomness r, r′, the
output is 08 ∈ MMC.

Tamper-Proof Circuits: How to Trade Leakage for Tamper-Resilience 401

1st Input 2nd Input Output

mask(MC(0, r, r′)) mask(MC(0, r, r′)) mask(MC(1, r, r′))
mask(MC(0, r, r′)) mask(MC(1, r, r′)) mask(MC(1, r, r′))
mask(MC(1, r, r′)) mask(MC(0, r, r′)) mask(MC(1, r, r′))
mask(MC(1, r, r′)) mask(MC(1, r, r′)) mask(MC(0, r, r′))

 04

Fig. 3. Truth table of N̂ANDr,r′ : {0, 1}2×4 → {0, 1}4

ĉopyr,r′(A) =
{
A,A if A ∈ {mask(MC(0, r, r′)),mask (MC(1, r, r′))}
08 otherwise.

Finally we let $̂r,r′ denote a randomness gadget outputting a fresh masked
Manchester encoded random bit.

With Ĉr,r′ we denote the circuit we get by replacing every wire in C with 4
wires (carrying an encoding in MMC using randomness r, r′) and every NAND

gate (resp. copy gate, $ gate) in C with a N̂ANDr,r′ (resp. ĉopyr,r′ , $̂r,r′). Similar

to the Π gadgets, we require the N̂ANDr,r′ , ĉopyr,r′ , $̂r,r′ gadgets to be tamper-
proof, i.e. the adversary is allowed to tamper with their inputs and outputs,
but cannot modify the internals. Note that if we want to avoid the use of $̂r,r′

gadgets we can derandomize the original circuit C replacing the $ gates with the
output of a PRG. The core of the transformed circuit consists of the k circuits
Ĉr1,r′

1
, . . . , Ĉrk,r′

k
(where the ri, r′i are from ρΦ).

Security. We can now state our main theorem.

Theorem 1 (Tamper-resilience against (∞, δ, q)-adversaries). Let 0 <
δ < 1/2, k > 0. The compiler Φ of Section 3 is (∞, δ, q, λ, ε)-tamper resilient,
where λ = log(q) + log(n+ 1) + 1 and ε = 3(1− δ/2)k.

Proof. Due to lack of space the proof has been moved to the full version [1].

Acknowledgments. We thank Yuval Ishai and Manoj Prabhakaran for helpful
discussions on their work in [12].

References

[1] The full version of this paper will be posted on the Cryptology ePrint Archive,
http://eprint.iacr.org/

[2] Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

[3] Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 36–54. Springer, Heidelberg (2009)

http://eprint.iacr.org/

402 S. Faust, K. Pietrzak, and D. Venturi

[4] Anderson, R., Kuhn, M.: Tamper resistance: a cautionary note. In: WOEC 1996,
p. 1. USENIX Association, Berkeley (1996)

[5] Blömer, J., Seifert, J.-P.: Fault based cryptanalysis of the advanced encryption
standard (AES). In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 162–181.
Springer, Heidelberg (2003)

[6] Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors
in cryptographic computations. J. Cryptology 14(2), 101–119 (2001)

[7] Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS 2010, pp.
434–452 (2010)

[8] Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures.
In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer, Hei-
delberg (2010)

[9] Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting cir-
cuits from leakage: the computationally-bounded and noisy cases. In: Gilbert, H.
(ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg
(2010)

[10] Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
tamper-proof (ATP) security: Theoretical foundations for security against hard-
ware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277.
Springer, Heidelberg (2004)

[11] Goldwasser, S., Rothblum, G.N.: Securing computation against continuous leak-
age. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 59–79. Springer,
Heidelberg (2010)

[12] Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: Keeping
secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 308–327. Springer, Heidelberg (2006)

[13] Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

[14] Juma, A., Vahlis, Y.: Protecting cryptographic keys against continual leakage. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 41–58. Springer, Heidelberg
(2010)

[15] Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009)

[16] Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

[17] Otto, M.: Fault Attacks and Countermeasures. PhD thesis, University of Pader-
born, Germany (2006)

[18] Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski
Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12.
Springer, Heidelberg (2003)

New Algorithms for Learning

in Presence of Errors�

Sanjeev Arora and Rong Ge

Department of Computer Science, Princeton University
and Center for Computational Intractability
{arora,rongge}@cs.princeton.edu

Abstract. We give new algorithms for a variety of randomly-generated
instances of computational problems using a linearization technique that
reduces to solving a system of linear equations.

These algorithms are derived in the context of learning with structured
noise, a notion introduced in this paper. This notion is best illustrated
with the learning parities with noise (LPN) problem —well-studied in
learning theory and cryptography. In the standard version, we have access
to an oracle that, each time we press a button, returns a random vector
a ∈ GF(2)n together with a bit b ∈ GF(2) that was computed as a ·u+η,
where u ∈ GF(2)n is a secret vector, and η ∈ GF(2) is a noise bit that
is 1 with some probability p. Say p = 1/3. The goal is to recover u. This
task is conjectured to be intractable.

In the structured noise setting we introduce a slight (?) variation of
the model: upon pressing a button, we receive (say) 10 random vectors
a1,a2, . . . ,a10 ∈ GF(2)n, and corresponding bits b1, b2, . . . , b10, of which
at most 3 are noisy. The oracle may arbitrarily decide which of the 10
bits to make noisy. We exhibit a polynomial-time algorithm to recover
the secret vector u given such an oracle. We think this structured noise
model may be of independent interest in machine learning.

We discuss generalizations of our result, including learning with more
general noise patterns. We also give the first nontrivial algorithms for
two problems, which we show fit in our structured noise framework.

We give a slightly subexponential algorithm for the well-known learn-
ing with errors (LWE) problem over GF(q) introduced by Regev for
cryptographic uses. Our algorithm works for the case when the gaussian
noise is small; which was an open problem. Our result also clarifies why
existing hardness results fail at this particular noise rate.

We also give polynomial-time algorithms for learning the MAJORITY
OF PARITIES function of Applebaum et al. for certain parameter values.
This function is a special case of Goldreich’s pseudorandom generator.

The full version is available at http://www.eccc.uni-trier.de/report
/2010/066/.

� Research supported by NSF Grants CCF-0832797, 0830673, and 0528414.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 403–415, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

404 S. Arora and R. Ge

1 Introduction

Sometimes, generating difficult instances of computational problems seems too
easy. Of course this can be a boon for cryptography, but on the other hand can
frustrate machine learning theorists, since it implies that hard-to-learn instances
of learning problems can arise easily.

Consider for instance Goldreich’s simple random number generator: it takes a
random string u of length n and a fixed predicate f on d = O(1) bits that is bal-
anced (i.e., |f−1(0)| = |f−1(1)|), and applies f on m random (or pseudorandom)
subsets of u. Can the resulting string of m bits be distinguished from a random
m-bit string? If not, we have a pseudorandom generator, and in particular can
conclude that the task of learning u from the resulting string is also hard.

Or to take another example, consider the Learning parities with noise (LPN)
problem: we are given a set of data points (a1, b1), (a2, b2) . . . , where ai ∈ GF(2)n

and bi ∈ GF(2). Each ai was chosen randomly. The corresponding bi was com-
puted as ai ·u+ηi, where u ∈ GF(2)n is a secret vector, and ηi ∈ GF(2) is a noise
bit that is 1 with some probability p. (All ai’s and ηi’s are iid.) The goal is to
distinguish these m bits from a truly random string. It can be shown that such
a distinguisher also allows us to recover u with high probability. All evidence
suggests that this recovery problem is hard, and this conjectured hardness is
the basis of some cryptosystems [4,7,13]. The best algorithm to recover u runs
in 2O(n/ log n) time (Blum et al. [8]), only very slightly better than the trivial
2O(n). The hardness of the LPN problem has important implications for ma-
chine learning. A standard technique to make learning algorithms noise-tolerant
is using Kearns [14]’s statistical query (SQ) model, but parity is perhaps the
simplest concept class for which the approach fails (and must fail because par-
ity has exponential SQ dimension). This is frustrating, because the algorithm
for learning parities in the noise-free setting is so simple and canonical: gaussian
elimination (i.e., solving linear equations). If even this algorithm cannot be made
noise-tolerant then the prospects for more complicated learning algorithms seem
bleak.

Clearly, we need more algorithmic ideas for this type of problems. Even if they
do not always work, they may help us understand parameter ranges where the
problem transitions from hard to easy. Sometimes the success/failure of specific
algorithms can lead to interesting new research questions, as happened with
phase transitions for Random3SAT. If the problem is being used in cryptography,
then having several candidate algorithms —and the parameter values for which
they fail—is useful for setting parameter values in practice. Regev’s Learning with
Errors (LWE) problem, a generalization of LPN, provides a good example. This
problem has become ubiquitous in new cryptographic research in the last few
years, since it shares similar hardness properties as lattice-based cryptosystems
a la Ajtai [1], Ajtai-Dwork [2] and others, while having more algebraic structure
which enables new uses (e.g., oblivious transfer protocol by Peikert et al. [17],
and a leakage-resistant crytosystem by Akavia et al. [3]; see Micciancio and
Regev [15] for a survey). There are no nontrivial algorithms for this problem,
and it is known to become as hard as (worst-case) approximate lattice vector

New Algorithms for Learning in Presence of Errors 405

problems when the noise parameter is more than
√
n. Does it have any nontrivial

algorithms for noise below
√
n (or for that matter, any other noise rate)? This

is not an idle question since the problem structure could be quite different for
different noise rates; for example in case of LPN the known construction for
public-key cryptosystems from LPN [4] need to assume the hardness of LPN for
noise rate below 1/

√
n.

In this paper we use an algorithmic technique called linearization to make
progress on some of these questions. The main idea is an obvious one and similar
to the linearization technique used in practical cryptanalysis [6]: given a nonlin-
ear equation that holds among some variables, introduce new variables for the
monomials and obtain a linear system in the new variables. Similar linearization
ideas underlie Sherali-Adams lift and project methods in linear programming.
Also, Friedl et. al.[11] used a similar approach to solve special polynomial equa-
tions in GF(q). Our contribution is to fruitfully apply this idea to the above
settings and introduce new ways of analysis that lead to provable running times.
We hope this will inspire new results.

To illustrate our idea in the simplest way we introduce a variant on LPN that
does not appear to have been considered before and that, surprisingly, turns out
to be tractable using our methods. We call it the LPN problem with structured
noise.

In the standard noise model, pushing an oracle button gives us a random
a ∈ GF(2)n and a corresponding noisy value b ∈ GF(2) that is wrong with prob-
ability p. In our model, pushing the oracle button returns m random vectors
a1,a2, . . . ,am ∈ GF(2)n and m bits b1, b2, . . . , bm, of which at most p fraction
are noisy (in other words, for at least (1−p)m of the indices i, we are guaranteed
ai · u = bi). This may be viewed as a guarantee that the data errors, though
still happening p fraction of the time, are not arbitrarily bursty. Every sample
returned by the oracle contains untainted data. Perhaps this and other struc-
tured noise models should be considered in machine learning since the standard
noise model has often led to intractable problems. Our algorithm for LPN with
structured noise runs in time that is polynomial in nm, which is polynomial if
m is a constant. Interestingly, it works even if the oracle is allowed to look at
ai’s while deciding where to add noise. It also works for more general “noise
patterns” as described later.

The idea in our algorithm is fairly simple: the above structured noise model im-
plies that the hidden secret u is the solution to a system of degree-m constraints.
These degree-m constraints are linearized by replacing monomials

∏
i∈S ui with

a new variables yS , thus obtaining a linear constraint in
(

n
m

)
variables. Then we

prove that the resulting system has a unique solution. We also give an exact
characterization of noise-models for which our technique works.

We also apply the linearization technique to give a subexponential algorithm
for the LWE problem with noise rate below

√
n, which clarifies why existing hard-

ness results (which show that LWE is as hard as lattice approximation [18,16])
did not extend to this case.

406 S. Arora and R. Ge

Then we apply the linearization technique to an important subcase of Gol-
dreich’s generator, whereby f = MAJORITY of three XORs. This was proposed
by Applebaum, Barak and Wigderson [5] as a suitable choice of f following
some earlier attacks on Goldreich’s generator for “structured” f ’s (Bogdanov
and Qiao [9]). We show that if m = Ω̃(n2) then the secret vector u can be effi-
ciently learned from the output of the generator. (Note that Applebaum et al.
had proposed m = n1.1 as a safe parameter choice, which is not contradicted by
our results. However, thus far there was no result indicating that even m = nd/3

is an unsafe choice.)

2 Learning Parities with Structured Noise

2.1 Problem Definition

This section introduces our linearization technique in context of the LPN prob-
lem. The following is the most general kind of oracle our algorithm can work with.
The oracle has an associated nonzero polynomial P in m variables over GF(2).
Any η ∈ GF(2)m such that P (η) = 0 is an acceptable noise pattern. Each time a
button is pressed the oracle picks m random a1, a2, . . . ,am ∈ GF(2)n, and then
picks an arbitrary acceptable noise pattern η. Then it outputs a1, a2, . . . ,am

together with m bits b1, b2, . . . , bm defined as bi = ai · u + ηi. For example, the
polynomial such that P (η) = 0 iff η is a vector of hamming weight at most m/3
corresponds to the intuitive notion of “noise rate 1/3.” This polynomial also
satisfies the hypothesis of the main theorem below.

Note that this noise model allows the oracle to look at the ai’s in choosing the
noise pattern (this is analogous to the agnostic-learning or worst-case noise model
of the standard LPN, which Feldman et al. [10] have shown to be equivalent to
the white noise case.)

Our algorithm requires P (·) to be such that there is at least one ρ ∈ GF(2)m

such that ρ �= η + η′ for all η, η′ satisfying P (η) = P (η′) = 0. For example,
we could have P (η) = 0 iff the number of 1’s in η is fewer than m/2 − 1,
corresponding to a noise rate of less than 1/2. But one can conceive of more
exotic noise polynomials.

Theorem 1 (Main). Suppose P (·) is such that there is at least one ρ ∈ GF(2)m

such that ρ �= η + η′ for all η, η′ satisfying P (η) = P (η′) = 0. Then there is an
algorithm that learns the secret u in time poly(nm) time.

In this section we do a simpler version of Theorem 1 where the oracle’s noise
pattern η is not allowed to depend upon the a vectors. We think of this as white
noise. The proof of the general result appears in the full version.

The learning algorithm has access to an oracle Q(u,m, P, μ), where u ∈
GF(2)n is the secret vector. Let m be an integer and P (η1, η2, ..., ηm) be a
multilinear polynomial over the vector η ∈ GF(2)m of degree d (P cannot be

New Algorithms for Learning in Presence of Errors 407

identically 0). Let μ be a distribution over the values of η that satisfies P (η) = 0.
The algorithm knows m and P , and tries to compute the secret u by querying
the oracle. (The algorithm does not know the distribution μ).

When queried by the algorithm, the oracle with secret u ∈ GF(2)n returns m
random vectors a1,a2, . . . ,am ∈ GF(2)n together with m bits b1, b2, . . . , bm ∈
GF(2). The b values are determined by first choosing a random vector η that
satisfies P (η) = 0 using the distribution μ, then computing bi = ai · u + ηi.

Many structures can be expressed in this framework, for example, “at least
one equation ai ·u = bi is satisfied” can be expressed by P (η) =

∏m
i=1 ηi. In fact,

any “structure” within the group of size m that excludes at least one value of η
can be expressed by a non-zero polynomial.

2.2 Constraints and Linearization

Now we describe the linearization in the context of LPN. Let x be an n dimen-
sional vector, where xi’s are considered to be variables. The algorithm uses the
sample returned by the oracle to write a polynomial constraint for the variables
xi’s. Ideally the solution to the equations will be x = u. First write the formula
for η that is known to be satisfied given the oracle Q: P (η1, η2, ..., ηm) = 0. Then
substitute ηi = ai · x + bi to obtain

P (a1 · x + b1,a2 · x + b2, . . . ,am · x + bm) = 0, (1)

which is a degree d polynomial constraint over the variable vector x that is
always satisfied by the samples obtained from the oracle when x = u. Since
x2

i = xi in GF(2), without loss of generality such a polynomial is multilinear.
Now convert this polynomial constraint to a linear one by the obvious lin-

earization: For each S ⊆ [n] and |S| ≤ d replace the monomial
∏

i∈S xi by
the new variable yS . Thus (1) turns into a linear constraint in a vector y of
N =

∑d
i=1

(
n
i

)
new variables. Ideally the solution should have y being the “ten-

sor” of u, that is, yS =
∏

i∈S ui, and this is what we will show.
We define the linearization process more formally:

Definition 2 (Linearization) Let p(x) =
∑

S⊆[n],|S|≤d cS
∏

i∈S xi, be a mul-
tilinear polynomial of degree d in n variables where the coefficients cS’s are in
GF(2). The linearization of p, denoted L(p), is a linear function over the vari-
ables yS, where S ranges over subsets of [n] of size at most d:

L(p) =
∑

S⊆[n],|S|≤d

cSyS.

We will assume there is a variable y∅ that is always 1, so the number of new
variables is N + 1 =

∑d
i=0

(
n
i

)
The linearization procedure has a few nice properties because it relies on the
unique representation of multilinear polynomials using monomials. In particular,
if two polynomials P , Q are the same, their linearizations L(P) and L(Q) are
also identical. Also, the linearization for P +Q is the sum of linearizations of P
and Q (L(P +Q) = L(P) + L(Q)).

408 S. Arora and R. Ge

Our learning algorithm will take poly(N) samples from the oracle, thus ob-
taining a linear system in N variables and poly(N) constraints. Each constraint
is the linearization of Equation (1):

L(P (a1 · x + b1,a2 · x + b2, . . . ,am · x + bm)) = 0. (2)

2.3 Proof for White Noise Case

Note that the set of constraints always has at least one solution, namely, the
vector y obtained from the hidden vector u (yS =

∏
i∈S ui). Here we will show

a simplified proof which relies heavily on the structure of the learning parities
problem; a proof that is more generalizable to other settings can be found in the
full version. The key lemma in the proof states that when the a vectors and b
values are chosen uniformly at random, the constraint is violated with significant
probability no matter what value y takes.

Lemma 1. When the vectors ai and values bi are all independent and uniformly
random, the probability that any particular solution y satisfies a single constraint
is at most 1− 2−d.

Proof. To prove this lemma, we observe that once we fix the solution vector y,
the left hand side of Constraint (2) becomes a polynomial of degree d over the
components of ai and values bi. By assumption these variables are uniformly and
independently chosen at random. For such polynomials, we have the following
version of Schwartz-Zippel Lemma, which is essentially the fact that degree d
Reed-Muller Codes over GF(2) have distance 2−d. We call it “Schwartz-Zippel”
because that is the name given to a similar lemma over GF(q).

Lemma 2 (Binary Schwartz-Zippel). If P is a nonzero multilinear polyno-
mial over GF(2) of degree d, then Prx∈U [P (x) �= 0] ≥ 2−d.

If the polynomial we get after fixing y is always nonzero, by Schwartz-Zippel we
can already conclude that the probability of satisfying Constraint (2) is at most
1− 2−d. Hence we only need to show the polynomial is never constant 0.

We write the polynomial P (η) as the sum of monomials:P (η)=
∑

S⊆[n],|S|≤d cS ·∏
i∈S ηi. Here cS ∈ GF(2) are indicator variables showing whether the corre-

sponding monomials appear in the polynomial P . By linearity, the left hand side
of Constraint (2) can be written as:

∑
S⊆[n],|S|≤d cSL(

∏
i∈S(ai · x + bi)).

Let S be one of the largest sets with cS = 1, then the monomial
∏

i∈S bi
will appear in the linearization of the corresponding term

∏
i∈S(ai · x + bi).

Notice that the same monomial cannot appear anywhere else. If it appears in
the linearization for another monomial

∏
i∈T (ai · x + bi), then we must have

S ⊆ T and S �= T , so |T | > |S|, which contradicts with the assumption that S is
the largest set. So the polynomial is always nonzero no matter how the vector y
is chosen, and by Binary Schwartz-Zippel we know the probability of Constraint
(2) being satisfied is at most 1− 2−d.

Based on this lemma, the following algorithm can learn the secret vector u.

New Algorithms for Learning in Presence of Errors 409

Algorithm 1

1. Query the oracle 10N2d times
2. Repeat for all index i from 1 to n
3. Replace the i-th component of a vectors with fresh random bits.
4. Try to solve the equations generated by the new a’s and original b’s
5. If there’s no solution, ui = 1, otherwise ui = 0.
6. Restore the original values for a vectors

It’s clear that the algorithm runs in poly(N) time since 2d ≤ N , we shall
prove that it computes the correct vector u with high probability.

Proof. First suppose uj = 0. Then let â be the modified a vectors. Even after
we replace the j-th component of a vectors with fresh random bits, we still have
bj = âi · u + ηj because âi and ai only differ in the j-th component. As we
discussed before Constraint (2) is always satisfied by the solution yS =

∏
j∈S uj ,

so the algorithm will find a solution and conclude uj = 0.
Now let uj = 1 and let t be the j-th component of ai, and t̂ be the j-th

component of âi. Then we have bi = âi ·u+t+ t̂+ηi. Notice that t is independent
from anything in â, and is uniformly 0, 1 with probability 1/2. Thus in this
case the vectors âi and values bi are all independent and uniformly chosen at
random. By Lemma 1 we know for any fixed assignment of y, the probability that
it satisfies one constraint is at most 1 − 2−d. But we have 10N2d independent
constraints, the probability that all those constraints are satisfied simultaneously
is at most (1− 2−d)10N2d � e−N . There are 2N different values for y, by union
bound, the probability that at least one of them satisfies all the constraints (so
the system of linear equations has solution) is at most 2Ne−N � 1/n. Therefore
the algorithm will correctly decide uj = 1.

3 Learning with Errors

The learning with errors problem is a generalization of LPN to a larger field.
There is an unknown vector u ∈ GF(q)n where q is a prime number that is
usually a polynomial of n (but can be large in some applications). The algo-
rithm is given noisy samples of the type a · u + η where the noise η is gener-
ated according to the Discrete Gaussian distribution Ψα with standard deviation
αq, which consists of picking a random real number r from the (usual) Gaus-
sian distribution with standard deviation σ = αq (i.e., with density function
Dσ(r) = 1/σ exp(−(πr/σ)2)), then rounding it up to the nearest integer �r�
and outputting �r�(mod q). The algorithm is given access to an oracle Q(u, Ψα).
which picks a ∈ GF(q)n uniformly at random, then picks η independent of a
from distribution Ψα, and returns a, b where b = a · u + η. It is conjectured that
no polynomial time algorithm can learn the secret u for some specific parame-
ters, and the best known algorithm works in exponential time. We give the first
subexponential algorithm for LWE:

410 S. Arora and R. Ge

Theorem 3. When αq = nε where ε is a constant strictly smaller than 1/2,
and q $ (αq logn)2, there is a 2Õ(n2ε) time algorithm algorithm that learns u
when given access to the oracle Q(u, Ψα).

The theorem is derived by showing that the low error case fits in our “structured
noise” setting, for which we show a subexponential algorithm. In the structured
noise model the algorithm has access to a different oracle Q(u, Ψα, d). The new
parameter d is an integer that is considered to be the “bound” of the error η
and satisfies 4d+ 1 < q. The oracle ensures that the noise η is picked uniformly
from Ψα conditional on it being at most d in magnitude. (We always interpret η
as an integer between −(q − 1)/2 and (q − 1)/2.)

We will rely on the well known fact about the gaussian distribution:

Lemma 3. For η ∈ [−(q − 1)/2, (q − 1)/2], we have Prη∼Ψα [|η| > kαq] ≤
e−O(k2).

This implies (we omit the simple calculation) that if we draw fewer than eo(k2)

samples from the standard oracle then these are statistically very close to samples
from the structured noise oracle Q(u, Ψα, d) for d = kαq. Thus from now on we
will assume that samples are drawn from the latter.

The algorithm works similarly as the algorithm for LPN, with an additional
twist needed because the field is not GF(2), so the underlying polynomials are
non-multilinear. We first write a univariate degree 2d + 1 polynomial P such
that P (η) = 0 whenever η is drawn from oracle Q(u, Ψα, d) (and thus |η| ≤ d):
P (η) = η

∏d
i=1(η + i)(η − i).

From now on we use similar notation as in the LPN section. We use x (an
n-dimensional vector) as variables, and try to write a system of equations which
whp have solutions that allow us to recover u. To do this we substitute η = a·x+b
in the polynomial P (η) to obtain a degree 2d+ 1 polynomial over the variables
xi: (a · x + b)

∏d
i=1(a · x + b+ i)(a · x + b− i) = 0.

This constraint is always satisfied if x = u. Let D = 2d+ 1 denote the degree
of the polynomial P (η). Finally we linearize this equation using variable vector
y that is indexed by vectors v ∈ Zn such that 1 ≤ ∑n

i=1 vi ≤ D. (Although
v also has dimension n, we will not use bold font because it usually appears
in the subscript.) The variable yv corresponds to the monomial

∏n
i=1 xvi

i . We
denote the degree of this monomial namely

∑n
i=1 vi as deg(v) or deg(yv). For

simplicity we add one component y0, which always has the value 1. The number
of variables is N =

(
n+D

n

)
. We define yk to be the vector of all the variables with

degree k. Thus y = (1, y1, y2, ..., yD).
The new linearization operator L replaces each monomial in the polynomial

with the corresponding y variable. The linearized equation will be a linear con-
straint on the y variables, L (P (a · x + b)) = 0.

Again we observe that this constraint is always satisfied by the solution gen-
erated by u: yv =

∏n
i=1 uvi

i . Since this is similar to the white noise case in LPN,
we show a lemma similar to Lemma 1: when a and b are independent and uni-
formly random, a large number of constraints of this form cannot be satisfied
simultaneously.

New Algorithms for Learning in Presence of Errors 411

Lemma 4. When the vector a and the values b are independent and uniformly
random, the probability that any particular solution y satisfies a single constraint
is at most 1− 1/q.

Proof. Similar to the proof of Lemma 1, we again observe that once y is fixed,
the left hand side of the equation (L (P (a · x + b))) is a polynomial over a(i)’s
and b of degree at most D. This polynomial is clearly nonzero because no matter
what value y has, the coefficient for bD is always 1 (to get bD, it’s essential to
choose b in all factors of the product (a ·x + b)

∏d
i=1(a ·x + b+ i)(a ·x + b− i)).

So we can always apply the standard version of Schwartz-Zippel Lemma: If p is
a nonzero polynomial over GF(q) of degree d, then Prx∈U [p(x) = 0] ≤ d/q.

Since the polynomial we get after fixing y is always nonzero, and D < q, the
probability that the constraint is satified is at most D/q ≤ 1− 1/q.

According to this lemma, we use the following algorithm to learn the secret
vector u.

Algorithm 2

1. Query the oracle 10Nq log q times
2. Repeat for all index i from 1 to n
3. Try for all k from 0 to q − 1
4. Guess xi = k.
5. Let b = b− a(i) · k for all oracle answers
6. Replace the i-th component of a vectors with new independent uni-

form random value in GF(q).
7. Try to solve the equations generated by the modified a’s and b’s
8. If there’s no solution, the guess is incorrect; otherwise it is correct
9. Restore the original values for a vectors and b values

We will show that with high probability the algorithm will get the correct
value of u.

Proof. Let â be the modified a vector and b̂ be the modified b value. Let û be
the vector u except that the i-th component is changed to 0.

If xi = k, we have b̂ = a · u + η − u(i)a(i) = âû + η. Therefore â and b̂ form
a valid oracle answer, the system of linear equations always has the solution
yv =

∏n
j=1 ûvj

j .
If xi �= k, we have b̂ = a · u + η − ka(i) = âû + η + (u(i) − k)a(i). Since

u(i) − k is nonzero and a(i) is independent with everything in â, the value b̂
is independent of â. For any solution vector y, by Lemma 4 the probability
that it satisfies a single constraint is at most 1− 1/q. Since we have 10Nq log q
independent constraints, the probability that all of them are satisified is at most
(1−1/q)10Nq log q � q−2N . There are qN different solutions, by union bound that
at least one of them satisfies all the constraints is at most q−2NqN = q−N �
1/nq. Thus with high probability the algorithm will be able to learn the secret
vector u.

412 S. Arora and R. Ge

The running time of this algorithm is proportional to q, which in some cases can
be quite large. In the full version of the paper we give a better algorithm whose
running time only depends on log q.

4 Learning the Majority of Parities Function

Applebaum et al. [5] proposed the“DSF assumption” and showed how to use it
(with other assumptions) to build public-key cryptosystems. Let Mm,n,d be a
random bipartite graph with m vertices on top, n vertices at the bottom, and d
edges from each top vertex. If G is such a graph, f is a function f : {0, 1}d →
{0, 1}, define the function Gf : {0, 1}n → {0, 1}m to be the function obtained by
mapping every u ∈ {0, 1}n to (f(uΓ (1)), . . . , f(uΓ (m))), where Γ (i) denotes the
neighbors of the i-th “top” vertex. The DSF assumption asserts the existence of
a function f such that (G,Gf (Un)) is ε-indistinguishable from the distribution
(G,Um) when G ∈R Mm,n,d. Here d is a large constant. When m = n this is
conjectured by Goldreich [12], but in [5] m is required to be super-linear.

To avoid known attacks by Bogdanov and Qiao [9], Applebaum et al. suggested
the “majority of three parities” (that is, f is the majority of three parities
on d/3 bits each) as a candidate function for f . Indeed, they showed when
m = O(n1.1), this function has nice properties such as looking pseudorandom
for AC0 circuits (and the proofs can be generalized when m = o(n2)). However,
using our algorithm we can show when m = Ω(n2 logn), the function Gf fails
to be a pseudorandom generator in a really severe way: not only is the output
no longer indistinguishable from uniform distribution, but the function Gf is
also invertible with high probability. Notice the claim is that (G,Gf (Un)) is
indistinguishable with (G,Um), if instead we consider (u, Gf (u)) then clearly it
cannot be pseudorandom by simple dimension arguments.

Our algorithm is designed by noting that the “majority of parities” function
can actually be viewed as an answer given by a learning parities with structured
noise oracle. Given Maj(a1 · u, a2 · u, a3 · u) = b, where u ∈ {0, 1}n is the
input, and a1, a2, a3 are vectors with exactly d/3 1’s that are obtained when
applying Gf , we can write a group of linear equations: a1 · u = b, a2 · u = b,
a3 · u = b. Since b is the majority of these three parities, we know that at
least two out of the three equations are satisfied. This is exactly the kind of
structure our LPN algorithm can work with. We can represent this structure
by P (η) = η1η2 + η1η3 + η2η3 where ηi = ai · u + b. We could try to use our
earlier LPN algorithm, except the earlier analysis does not apply because the a
vectors are not uniformly random —each of a1, a2, a3 is randomly chosen from
all vectors that have d/3 1’s, and have disjoint support. Also, once we fix the
input u, the error η is dependent on the a vectors, which we will need to deal
with it differently than in Section 2. We will see that all our calculations become
easier when m = n4 instead of m = n2 logn.

The algorithm will be analogous to our LPN algorithm. We expand P (a1 ·
(x + u) + η1,a1 · (x + u) + η2,a1 · (x + u) + η3) explicitly and treat (x + u) as a
formal variable:

New Algorithms for Learning in Presence of Errors 413

(a1⊗a2+a1⊗a3+a3⊗a2)·Y 2+((η1+η2)a3+(η2+η3)a1+(η1+η3)a2)·Y 1 = 0,
(3)

where Y 2, Y 1 are linearizations of (x + u) ⊗ (x + u) and (x + u) respectively.
Unlike in case of LPN, having enough equations of this form does not guarantee
a unique solution. Nevertheless we can show that the solutions to the system of
linear equations allow us to learn the secret u.

A key observation is η1 + η2 = (a1 +a2) ·u. Indeed, when (a1 +a2) ·u = 0, it
means a1 ·u = a2·u, so η1 = η2 = 0; when (a1+a2)·u = 1, it means a1·u �= a2·u,
so exactly one of the equations is incorrect, and we have η1 + η2 = 1. Applying
this observation to (3), we get

(a1 ⊗ a2 + a1 ⊗ a3 + a3 ⊗ a2) · (Y 2 + u⊗ Y 1 + Y 1 ⊗ u) = 0. (4)

Let W denote (Y 2 +u⊗Y 1 +Y 1⊗u). Since the diagonal entries of W do not
affect the equation we will assume Wi,i = 0 below. For distinct p, q, s, t ∈ [n], let
W(p,q)×(s,t) denote the sum Wp,s +Wp,t +Wq,s +Wq,t.

Claim 1: There is a polynomial-time algorithm that, given any solution Y 2, Y 1

for which W(p,q)×(s,t) = 0 for all p, q, s, t, finds the secret u.
The proof is simple after observing y{p,s} + y{p,t} + y{q,s} + y{q,t} = upus +

uput + uqus + uqut. Due to space constraint we leave the full proof in the full
version of the paper. Now we give the simpler analysis for m = O(n4).

Claim 2: O(n4) equations suffice whp to rule out all solutions in which
W(p,q)×(s,t) = 1 for some p, q, s, t.

Proof. We show that if p, q, s, t are such that W(p,q)×(s,t) = 1, then Equation (4)
is violated with probability Ω(1/n2). Since the number of possible solutions W
is 2n2

a simple union bound yields the claim.
Let Ai denote the set whose indicator vector is ai; thus Ai is a random set of

size d/3 and A1, A2, A3 are disjoint. Consider the event E that |A1

⋂{p, q, s, t}| =
0, |A2

⋂{p, q}| = |A3

⋂{s, t}| = 1, |A2

⋂{s, t}| = |A3

⋂{p, q}| = 0. That is,
exactly one of p, q appears in A2 and exactly one of s, t appears in A3. It’s
easy to see that this happens with probability Ω(1/n2). Now fix A1, A2\{p, q},
A3\{s, t} and let the corresponding indicator variables be a1, a2

∗, a3
∗. Now and

consider the four possibilities depending upon which of p, q appears in A2 and
which of s, t appear in A3: either a2 = a2

∗ + ep or a2 = a2
∗ + eq, and either

a3 = a3
∗ + es or a3 = a3

∗ + et (ei is the vector which is 1 only at position
i). The sum of the expression (a1 ⊗ a2 + a1 ⊗ a3 + a3 ⊗ a2) over these four
possibilities evaluates to exactly the matrix (ep + eq) ⊗ (es + et), because all
other terms appear even number of times.Therefore the sum of LHS of Equation
(4) is exactly W(p,q)×(s,t). Since W(p,q)×(s,t) is 1, in at least one of the four cases
Equation (4) is violated, and this happens with probability 1/4 conditioned on
the event E.

We leave the proof that O(n2 logn) equations actually suffice for Claim 2 to the
full version of this paper.

414 S. Arora and R. Ge

5 Conclusions

Linearization techniques have been applied in various contexts, and in this paper
we manage to give provable bounds for this idea in several contexts such as LPN,
LWE, and learning the MAJORITY of PARITIES function.

We also introduced a new structured noise model for LPN problems (and by
analogy, for related problems such as learning low-depth decision trees) which is a
natural modification to the original LPN problem and seems more tractable. We
think such structured noise models should be studied more in machine learning
since standard models led to intractable problems.

It should be interesting to apply our techniques to other problems and settings,
and to investigate the optimality of our parameter choices. Our algorithm for
m = n2 logn for the MAJORITY of PARITIES function shows that analysis
can sometimes be tightened beyond what a first glance suggests.

An obvious open problem is to relate the new structured noise model with
the original LPN problem. This seems difficult, though it worked in the special
case of LWE with low noise.

Acknowledgements. We thank several people for useful conversations: Boaz
Barak, Avrim Blum, Daniele Micciancio, Oded Regev, David Steurer, Avi Wigder-
son. We thank an anonymous referee for suggesting the simplified proof in Sec-
tion 2.3.

References

1. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
Proceedings of the 28th Annual ACM Symposium on Theory of Computing (1996)

2. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: Proceedings of the 29th Annual ACM Symposium on Theory of
Computing (1997)

3. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

4. Alekhnovich, M.: More on average case vs approximation complexity. In:
Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer
Science (2003)

5. Applebaum, B., Barak, B., Wigderson, A.: Public key cryptography from different
assumptions. In: Proceedings of the 42nd Annual ACM Symposium on Theory of
Computing (2010)

6. Bard, G.V.: Algebraic Cryptanalysis. Springer, Heidelberg (2009)
7. Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Cryptographic primitives based

on hard learning problems. In: Proceedings of the 13th Annual International Cryp-
tology Conference on Advances in Cryptology (1994)

8. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. Journal of ACM (2003)

9. Bogdanov, A., Qiao, Y.: On the security of goldreich’s one-way function. In: Dinur,
I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX 2009. LNCS, vol. 5687, pp. 392–
405. Springer, Heidelberg (2009)

New Algorithms for Learning in Presence of Errors 415

10. Feldman, V., Gopalan, P., Khot, S., Ponnuswami, A.K.: New results for learning
noisy parities and halfspaces. In: Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (2006)

11. Friedl, K., Ivanyos, G., Magniez, F., Santha, M., Sen, P.: Hidden translation and
orbit coset in quantum computing. In: Proceedings of the 35th Annual ACM Sym-
posium on Theory of Computing (2003)

12. Goldreich, O.: Candidate one-way functions based on expander graphs. technical
report. TR00-090, Electronic Colloquium on Computational Complexity, ECCC
(2000)

13. Hopper, N.J., Blum, M.: Secure human identification protocols. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, p. 52. Springer, Heidelberg (2001)

14. Kearns, M.: Efficient noise-tolerant learning from statistical queries. Journal of
ACM (1998)

15. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Post Quantum Cryp-
tography (2009)

16. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem.
In: Proceedings of 41st ACM Symposium on Theory of Computing (2009)

17. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008)

18. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
Journal of ACM (2009)

Exact Learning Algorithms, Betting Games, and

Circuit Lower Bounds�

Ryan C. Harkins and John M. Hitchcock

Department of Computer Science,
University of Wyoming

Abstract. This paper extends and improves work of Fortnow and Kli-
vans [5], who showed that if a circuit class C has an efficient learning
algorithm in Angluin’s model of exact learning via equivalence and mem-
bership queries [2], then we have the lower bound EXPNP �⊆ C. We use
entirely different techniques involving betting games [4] to remove the
NP oracle and improve the lower bound to EXP �⊆ C. This shows that
it is even more difficult to design a learning algorithm for C than the
results of Fortnow and Klivans indicated.

1 Introduction

We continue the line of research basing hardness of learning results on com-
putational complexity and cryptography (see for example [16,8,1,9]). Fortnow
and Klivans [5] consider Angluin’s model of exact learning from equivalence and
membership queries [2]. In an equivalence query, the learner presents a hypoth-
esis and asks if it is equivalent to the unknown target concept. If the hypothesis
is equivalent, the learner has succeeded; otherwise, the learner is given an ex-
ample on which the hypothesis is incorrect. In a membership query, the learner
chooses an example and asks the value of the target concept on that example.
To succeed, the learner must exactly identify the target concept. Fortnow and
Klivans show that learning algorithms for a circuit class give lower bounds for
that type of circuit in the class EXPNP. Throughout this introduction, C denotes
any nonuniform class of polynomial-size circuits. (Several results will be stated
informally here but made precise in the body of the paper.)

Theorem 1.1. (Fortnow and Klivans [5]) If there is an efficient exact learning
algorithm for C using equivalence and membership queries, then EXPNP �⊆ C.

While “efficient” typically means a polynomial-time algorithm, the result of Fort-
now and Klivans as well as our results allow for exponential time and subexpo-
nentially many queries (i.e. (2O(n)) time and 2no(1)

queries).

� This research was supported in part by NSF grants 0652601 and 0917417 and by an
NWO travel grant. Part of this research was done while Hitchcock was on sabbatical
at CWI.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 416–423, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Exact Learning Algorithms, Betting Games, and Circuit Lower Bounds 417

For the case of exact learning algorithms that only make equivalence queries, a
stronger lower bound follows immediately from results [10,6] connecting resource-
bounded measure and dimension with Littlestone’s model of online mistake-
bound learning [11]. Combining these results with the fact that exact learning
with equivalence queries is the same as online mistake-bound learning, we have
the following, which was also noted in [5].

Theorem 1.2. (Hitchcock [6]) If there is an efficient exact learning algorithm
for C using equivalence queries, then EXP �⊆ C.

Given these two theorems, it is natural to ask whether we can prove a lower
bound in EXP assuming the learning algorithm makes both equivalence and
membership queries. Where does the NP oracle come from in Theorem 1.1? The
proof of Theorem 1.1 separates into two parts, giving an indirect diagonalization.
Assume that EXPNP ⊆ C.

(i) Because C ⊆ P/poly, EXPNP collapses and reduces to the Permanent
[3,7,15].

(ii) Use the exact learning algorithm to learn the C circuits for the Permanent.
An NP oracle is used to answer the equivalence queries. This yields a PNP

algorithm for the Permanent.

Combining (i) and (ii) gives EXPNP ⊆ PNP, a contradiction. Therefore we see
that the NP oracle in Theorem 1.1 is for the equivalence queries. In contrast, no
NP oracle is required in Theorem 1.2 where equivalence queries are allowed. The
proof of Theorem 1.2 relies on martingales and a more direct measure-theoretic
diagonalization, which is very different than the double-collapse argument and
indirect diagonalization used for Theorem 1.1. This suggests hope that a more
direct diagonalization approach may yield the desired improvement.

To improve Theorems 1.1 and 1.2, we must simulate the learning algorithm’s
queries while performing our diagonalization. Following [6], consider implement-
ing this in the form of a martingale. The equivalence queries are no problem.
We simply use the transformation in [11] that converts an equivalence query
algorithm to a mistake-bound learning algorithm and apply the technique from
[6]. We can therefore focus our effort on the membership queries. Unfortunately,
we have been unable to discover a method for simulating membership queries in
a martingale, due to the stringent requirement that a martingale must bet on
all strings in lexicographic order. However, there is an extension of martingales
called betting games that do help.

Buhrman et al. [4] introduced betting games to define a generalization of
resource-bounded measure with applications to autoreducibility and the BPP
vs. EXP problem. Betting games and martingales are similar; the difference
is how the betting strategy is allowed to operate. A martingale is required to
consider the strings at each length in lexicographic order. Betting games lift this
requirement by allowing the betting strategy to pick the next string that it will
bet on. We can easily simulate a membership query in a betting game – the
strategy simply asks to make a prediction on the queried string and then it gets

418 R.C. Harkins and J.M. Hitchcock

to see the answer for that string. This allows for a more powerful diagonalization
and it suffices for our purposes:

Theorem 1.3. If there is an exact learning algorithm for C using equivalence
and membership queries, then there is a betting game which succeeds on C in the
sense of [4].

Buhrman et al. showed that it is also possible to diagonalize within EXP against
betting games [4], just as is the case for martingales [12]. Formally, no betting
game can succeed on all of EXP. Hence the desired improvement, our main
result, follows from Theorem 1.3:

Theorem 1.4. If there is an exact learning algorithm for C using equivalence
and membership queries, then EXP �⊆ C.

This results shows that designing an exact learning algorithm for many circuit
classes C will be difficult, as for most classes it is an open problem whether
EXP ⊆ C.

This paper is organized as follows. Precise technical definitions for betting
games and exact learning are given in section 2. We construct betting games
from exact learning algorithms in section 3.

2 Preliminaries

We use standard notation. The binary alphabet is Σ = {0, 1}, the set of all
binary strings is Σ∗, the set of all binary strings of length n is Σn, and the set
of all infinite binary sequences is Σ∞. The empty string is denoted by λ. We
use the standard enumeration of strings, λ, 0, 1, 00, 01, . . ., and a total ordering
of strings corresponding to this enumeration. A language A can alternatively
be seen as a subset of Σ∗, or as an element of Σ∞ via identification with its
characteristic sequence.

2.1 Betting Games

Betting games, which are also called nonmonotonic martingales, originated in
the field of algorithmic information theory. In that setting they yield the no-
tion of Kolmogorov-Loveland randomness (generalizing Kolmogorov-Loveland
stochasticity) [14,13]. The concept was introduced to computational complexity
by Buhrman et al. [4]. Our notation for betting games is taken predominantly
from Merkle et al. [13]. First, for comparison, we recall the definition of a mar-
tingale:

Definition 2.1. A martingale is a function d : Σ∗ → [0,∞) such that for all
w ∈ Σ∗, we have the following averaging condition:

d(w) =
d(w0) + d(w1)

2
.

Exact Learning Algorithms, Betting Games, and Circuit Lower Bounds 419

Intuitively, a martingale is betting in order on the characteristic sequence of an
unknown language. The martingale starts with finite initial capital d(λ). The
quantity d(w) represents the current capital the martingale has after betting on
the first |w| bits of a sequence that begins with w. The quantities π(w, 0) =
d(w0)/2d(w) and π(w, 1) = d(w1)/2d(w) represent the fraction of its current
capital that the martingale is waging on 0 and 1, respectively, being the next
bit of the sequence. This next bit is revealed and the martingale has d(w0) =
2π(w, 0)d(w) in the case of a 0 and d(w1) = 2π(w, 1)d(w) in the case of a 1.

Betting games are similar to martingales but have an additional capability of
selecting which position in a sequence (or which string in a language) to bet upon
next. Because of this added complexity, it is simpler to break the description of
a betting game into pieces.

Definition 2.2. A betting game is a system that bets nonmonotonically on an
infinite sequence (or a language) and formally is a triple G = (s, π, V) consisting
of a scan rule s, a stake function π, and a capital function V .

1. A finite assignment is a sequence x ∈ (Σ∗ ×Σ)∗. In essence, it is a list of
strings examined thus far, each string coupled with an assignment, saying
whether or not it is included in the language being bet upon. The set of all
finite assignments is denoted FA.

2. The scan rule is a (partial) computable function s : FA → Σ∗ from finite
assignments to strings that looks at a finite assignment and determines the
next string (or bit of a sequence) to bet on. The scan rule is limited in that it
cannot select a string that already appears in the current finite assignment.

3. The stake function is a partial function π : FA×Σ → [0, 1]. Its function is
to examine the current finite assignment and determine what fraction of the
capital to bet on either side. It carries a condition that π(w, 0)+π(w, 1) = 1.

4. The capital function is a partial function V : FA → [0,∞) from finite
assignments to nonnegative reals, and utilizes the stake function π. Its initial
capital V (λ) is finite. When V (w) is defined, the scan rule s(w) determines
the next string to bet on, and π(w, b) is the stake amount, the capital is
updated according to the rule

V (w · (s(w), b)) = 2π(w, b)V (w). (2.1)

A betting game’s capital function also satisfies an averaging condition, in analogy
with the definition of a martingale:

V (w) =
V (w · (s(w), 0)) + V (w · (s(w), 1))

2
.

Note that a betting game is a martingale when the scan rule always selects the
next string in the lexicographic order.

Definition 2.3. If a betting game G earns unbounded capital on a language
A (in the sense that for every constant c there is a point at which the capital
function exceeds c when betting on A), we say that G succeeds on A. The success
set of a betting game G, denoted S∞[G], is the set of all languages on which G
succeeds.

420 R.C. Harkins and J.M. Hitchcock

The ability of the betting game to examine a sequence nonmonotonically makes
determining its running time complicated, since each language can induce a
unique computation of the betting game. In other words, the betting game may
choose to examine strings in different orders depending upon the language it is
wagering against. Buhrman et al. looked at a betting game as an infinite process
on a language, rather than a finite process on a string. They used the following
definition:

Definition 2.4. A betting game G runs in time t(n) if for all languages A, every
query of length n made by G occurs in the first t(n) steps of the computation.

Specifically, once a t(n)-time-bounded betting game uses t(n) computational
steps, its scan rule cannot go back and select any string of length n. We remark
that in the results of this paper all betting games have the special form that
they bet on all strings of each length before moving on to the next length, so
the technical issue of measuring the run time is not important for this paper. In
any case, the crucial result is that no exponential-time betting game is successful
against the class EXP = DTIME(2nO(1)

).

Theorem 2.5. (Buhrman et al. [4]) No 2nO(1)
-time betting game succeeds on

EXP.

In our results, we often refer to 2O(n)-time bounds for sake of comparison to the
results of Fortnow and Klivans [5]. We note that our results also hold for 2nO(1)

-
time bounds, but for simplicity we prefer to not focus on such minor issues in
this paper.

2.2 Exact Learning

In general, a learning algorithm seeks to identify an unknown concept from some
known class of concepts. We now review the basic notation and definitions for
the exact learning model.

A concept is a Boolean function cn : Σn → Σ . For any string x ∈ Σn, if
cn(x) = 1, then x is positively classified as belonging to the concept, while if
cn(x) = 0, then x is classified as not belonging to the concept. A string x paired
with the classification cn(x) is called an example. A concept cn is often identified
with the set of positive examples {x | cn(x) = 1} ⊆ Σn. A concept class Cn is
a set of concepts over Σn. A concept class family is a sequence C = {Cn}n≥0 of
concept classes.

A learning algorithm tries to identify a target concept drawn from Cn, and
often does this by forming a hypothesis, which is typically some concept in Cn
that is consistent with (i.e. classifies correctly) all the examples seen thus far.
In the exact learning paradigm, a learner A may make various sorts of queries
to a teacher, and then, depending on the answers, formulate a hypothesis. This
process repeats until A has successfully discovered the target concept. We will
focus on two types of queries: equivalence queries and membership queries.

Exact Learning Algorithms, Betting Games, and Circuit Lower Bounds 421

Definition 2.6. An equivalence query is a request to the teacher to know if the
current hypothesis matches the target concept. If the answer is yes, the teacher
responds accordingly. If the answer is no, then the teacher provides the learner
with a counterexample (an example that is incorrectly classified by the current
hypothesis).

Definition 2.7. A membership query is a request to the teacher to know the
classification of a specific string x. The teacher responds with cn(x), where cn is
the target concept.

3 Exact Learning and Betting Games

Theorem 3.1. Let C = {Cn | n ∈ N} be a concept class family, and let

X = {A | (∃∞n)A=n ∈ Cn } .
If there is an exact learning algorithm for C that learns each Cn in time 2cn and
makes no more than 2n−2 equivalence and membership queries, then there exists
a betting game G that runs in time O(2(c+2)n), such that X ⊆ S∞[G].

Proof. Let A be the learning algorithm that learns concepts in C. In other words,
for each n ∈ N, and for any target concept cn ∈ Cn, A can learn cn using no more
than 2cn time, and making at most 2n−2 equivalence and membership queries.

Let G(s, π, V) be described as follows. G effectively runs in stages, examining
strings by length, betting on all strings of length n before betting on any string of
size n+1. This is proper, since A learns concepts taken from Cn, whose concepts
only classify strings of length n. Therefore, we will apply two subscripts to the
stages of calculation, the first to indicate string length, and the second to indicate
how many stages have been executed at the string length.
G starts with capital V0,0 = 2, but it treats its capital as divided up into an

infinite number of amounts, 2−n for each n. Thus at each stage (n, 0), the capital
effectively is Vn,0 = 2−n (with all previous winnings “banked” and untouchable).
To reflect this, we will divide π in a class of functions {πn}n≥0, so that πn only
touches the capital Vn,i.

At each stage (n, i), the scan rule s runs the learning algorithm A, which
updates its current hypothesis hn,i. In the process of formulating hn,i+1, one of
two things will happen:

– A will make a membership query to some string x ∈ Σn

– A will make an equivalence query

If A makes a membership query to x, s then checks to see if x occurs in w, the
current finite assignment. If so, then s answers the query according to the label.
If not, then we set s(w) = x and πn(w, 0) = πn(w, 1) = 1/2. In other words, the
betting game selects x and makes no bet on the outcome. Once the label for x
is revealed, the finite assignment is updated (w = w · (x, b), where b is the label
for x). The scan rule then provides the correct classification of x to A as the

422 R.C. Harkins and J.M. Hitchcock

answer to the membership query. The betting game’s capital is unchanged and
the computation then proceeds onto stage (n, i+ 1).

If A makes an equivalence query, then s proceeds in an online fashion. First,
the scan rule selects s(w) = x, where x is the lexicographically least string in
Σn that does not appear in w. The stake function computes the prediction b =
hn,i(x) using the current hypothesis hn,i and sets πn(w, b) = 3/4 and πn(w, 1−
b) = 1/4. The true classification of x is revealed and Vn,i is updated according to
(2.1). If cn(x) �= hn,i(x), then (x, 1−b) is presented toA as a counterexample, and
computation proceeds to stage (n, i + 1). If cn(x) = hn,i(x), then computation
proceeds to stage (n, i+1), and A is treated as still making an equivalence query.
This process repeats until either a counterexample is discovered or the strings
of size n are exhausted.

Without loss of generality, we will assume that A always finishes with an
equivalence query to ensure correctness of its hypothesis. Thus if A has formed
the correct hypothesis, G will continue searching for a counterexample until all
strings of length n are exhausted, and G moves onto (n+ 1, 0), where it utilizes
A to learn a new concept.

To examine the running time of G, we note first that A updates its hypothesis
in 2cn time. The remaining time is allotted to the scan rule, which takes only
time linear in the size of the current finite assignment (which has size at most
2n+1) to determine a string to select, and to updating the capital function, which
can be done in time O(2n). Hence the aggregate time for G to make all queries
of size n is O(2n · 2cn · 2n). Therefore G is an O(2(c+2)n)-time betting game.

To see that G succeeds on X , it suffices to show that for infinitely many n,
Vn,2n ≥ 1. We know that for any A ∈ X , there exist infinitely many n such that
A=n ∈ Cn, and hence for infinitely many n, A will either correctly learn A=n, or
at least will classify correctly a sufficiently large number of strings in A=n. Thus
it suffices to show that for any sufficiently large n, A learns sufficiently quickly
enough to bring in large earnings.

The worst case occurs if all 2n−2 queries are equivalence queries, to which a
counterexample is ultimately found for each query. (If we allow for membership
queries, the bet for each query is 0, and so the capital does not change regardless
of the true label. The counterexample to the equivalence query, though, will
decrease capital.) Since, by definition, each string of length n will be queried, we
have:

Vn,2n = Vn,0 ·
(

1
2

)2n−2

·
(

3
2

)3·2n−2

= 2−n

(
27
16

)2n−2

≥ 1

Hence for infinitely many n, G will “bank” one dollar, and therefore its earn-
ings will increase unbounded. Therefore, X ⊆ S∞[G].

Our improvement to the result of Fortnow and Klivans now follows as an imme-
diate corollary to Theorems 2.5 and 3.1:

Corollary 3.2. Under the assumptions of Theorem 3.1, EXP � X.

Exact Learning Algorithms, Betting Games, and Circuit Lower Bounds 423

Corollary 3.3. Let C be any subset of P/poly that is exactly learnable in time
2cn, making at most 2n−2 equivalence and membership queries. Then EXP � C.
Specifically, if P/poly is learnable under these assumptions, then EXP � P/poly.

We remark that throughout this section, the stronger results where either EXP
is replaced by E = DTIME(2O(n)) or the learning algorithms are allowed to run
in 2nO(1)

time also hold via the same proofs.

References

1. Aizenstein, H., Hegedüs, T., Hellerstein, L., Pitt, L.: Complexity theoretic hardness
results for query learning. Computational Complexity 7, 19–53 (1998)

2. Angluin, D.: Queries and concept learning. Machine Learning 2(4), 319–342 (1988)
3. Buhrman, H., Homer, S.: Superpolynomial circuits, almost sparse oracles and

the exponential hierarchy. In: Shyamasundar, R.K. (ed.) FSTTCS 1992. LNCS,
vol. 652, pp. 116–127. Springer, Heidelberg (1992)

4. Buhrman, H., van Melkebeek, D., Regan, K.W., Sivakumar, D., Strauss, M.: A
generalization of resource-bounded measure, with application to the BPP vs. EXP
problem. SIAM Journal on Computing 30(2), 576–601 (2001)

5. Fortnow, L., Klivans, A.R.: Efficient learning algorithms yield circuit lower bounds.
Journal of Computer and System Sciences 75(1), 27–36 (2009)

6. Hitchcock, J.M.: Online learning and resource-bounded dimension: Winnow yields
new lower bounds for hard sets. SIAM Journal on Computing 36(6), 1696–1708
(2007)

7. Karp, R.M., Lipton, R.J.: Some connections between nonuniform and uniform com-
plexity classes. In: Proceedings of the 12th Annual ACM Symposium on Theory
of Computing, pp. 302–309 (1980)

8. Kearns, M., Valiant, L.: Cryptographic limitations on learning Boolean formulae
and finite automata. J. ACM 41(1), 67–95 (1994)

9. Kharitonov, M.: Cryptographic lower bounds for learnability of Boolean functions
on the uniform distribution. J. of Comput. Syst. Sci. 50(3), 600–610 (1995)

10. Lindner, W., Schuler, R., Watanabe, O.: Resource-bounded measure and learnabil-
ity. Theory of Computing Systems 33(2), 151–170 (2000)

11. Littlestone, N.: Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning 2(4), 285–318 (1988)

12. Lutz, J.H.: Almost everywhere high nonuniform complexity. Journal of Computer
and System Sciences 44(2), 220–258 (1992)

13. Merkle, W., Miller, J., Nies, A., Reimann, J., Stephan, F.: Kolmogorov-Loveland
Randomness and Stochasticity. Annals of Pure and Applied Logic 138(1-3), 183–
210 (2006)

14. Muchnik, A.A., Semenov, A.L., Uspensky, V.A.: Mathematical metaphysics of ran-
domness. Theoretical Computer Science 207(2), 263–317 (1998)

15. Toda, S.: On the computational power of PP and ⊕P. SIAM Journal on Comput-
ing 20(5), 865–877 (1991)

16. Valiant, L.G.: A theory of the learnable. Communications of the ACM 27(11),
1134–1142 (1984)

Constraint Satisfaction Parameterized by Solution Size

Andrei A. Bulatov1,� and Dániel Marx2,��

1 Simon Fraser University
abulatov@cs.sfu.ca

2 Humboldt-Universität zu Berlin
dmarx@cs.bme.hu

Abstract. In the constraint satisfaction problem (CSP) corresponding to a con-
straint language (i.e., a set of relations) Γ , the goal is to find an assignment of
values to variables so that a given set of constraints specified by relations from
Γ is satisfied. In this paper we study the fixed-parameter tractability of constraint
satisfaction problems parameterized by the size of the solution in the following
sense: one of the possible values, say 0, is “free,” and the number of variables
allowed to take other, “expensive,” values is restricted. A size constraint requires
that exactly k variables take nonzero values. We also study a more refined version
of this restriction: a global cardinality constraint prescribes how many variables
have to be assigned each particular value. We study the parameterized complexity
of these types of CSPs where the parameter is the required number k of nonzero
variables. As special cases, we can obtain natural and well-studied parameter-
ized problems such as INDEPENDENT SET, VERTEX COVER, d-HITTING SET,
BICLIQUE, etc. In the case of constraint languages closed under substitution of
constants, we give a complete characterization of the fixed-parameter tractable
cases of CSPs with size constraints, and we show that all the remaining problems
are W[1]-hard. For CSPs with cardinality constraints, we obtain a similar clas-
sification, but for some of the problems we are only able to show that they are
BICLIQUE-hard. The exact parameterized complexity of the BICLIQUE problem
is a notorious open problem, although it is believed to be W[1]-hard.

1 Introduction

In a constraint satisfaction problem (CSP) we are given a set of variables, and the goal
is to find an assignment of the variables subject to specified constraints. A constraint
is usually expressed as a requirement that combinations of values of a certain (usually
small) set of variables belong to a certain relation. In the theoretical study of CSPs, one
of the key research direction has been the complexity of the CSP when there are restric-
tions on the type of allowed relations [9,3,2]. This research direction has been started
by the seminal Schaefer’s Dichotomy Theorem [17], which showed that every Boolean
CSP (i.e., CSP with 0-1 variables) restricted in this way is either solvable in polyno-
mial time or is NP-complete. An outstanding open question is the so called Dichotomy
conjecture of Feder and Vardi [7] which suggests that the dichotomy remains true for

� Research supported by an NSERC Discovery grant.
�� Research supported by the Alexander von Humboldt Foundation and OTKA grant 67651.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 424–436, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Constraint Satisfaction Parameterized by Solution Size 425

CSPs over any fixed finite domain. The significance of a dichotomy result is that it is
very likely to provide a comprehensive understanding of the algorithmic nature of the
problem. Indeed, in order to obtain the tractability part of such a conjecture one needs
to identify all the algorithmic ideas relevant for the problem.

Parameterized complexity [6,8] investigates the complexity of problems in finer de-
tails than classical complexity. Instead of expressing the running time of an algorithm as
a function of the input size n only, the running time is expressed as a function of n and a
well-defined parameter k of the input instance (such as the size of the solution k we are
looking for). For many problems and parameters, there is a polynomial-time algorithm
for every fixed value of k, i.e., the problem can be solved in time nf(k). In this case,
it makes sense to ask if the combinatorial explosion can be limited to the parameter k
by improving the running time to f(k) · nO(1). Problems having algorithms with run-
ning time of this form are called fixed-parameter tractable (FPT); it turns out that many
well-known NP-hard problems, such as k-VERTEX COVER, k-PATH, and k-DISJOINT

TRIANGLES are FPT. On the other hand, the theory of W[1]-hardness suggests that cer-
tain problems (e.g., k-CLIQUE, k-DOMINATING SET) are unlikely to be FPT.

The canonical complete problems of the W-hierarchy are (circuit) satisfiability prob-
lems where the solution is required to contain exactly k ones. This leads us to the study
of Boolean CSP problems with the goal of finding a solution with exactly k ones. The
first attempt to study the parameterized complexity of Boolean CSP was made in [14].
If we consider 0 as a “cheap” value available in abundance, while 1 is “costly” and of
limited supply then the natural parameter is the number of 1’s in a solution. Boolean
CSP asking for a solution that assigns exactly k ones is known as the k-ONES prob-
lem [5,11]. Clearly, the problem is polynomial-time solvable for every fixed k (by brute
force), but it is not at all obvious whether it is FPT. For example, it is possible to express
k-VERTEX COVER (which is FPT) and k-INDEPENDENT SET (which is W[1]-hard) as
a Boolean CSP. Therefore, characterizing the parameterized complexity of k-ONES re-
quires understanding a class of problems that includes, among many other things, the
most basic graph problems. It turned out that the parameterized complexity of the k-
ONES problem depends on a new combinatorial property called weak separability [14].
Assuming that the constraints are restricted to a finite set Γ of Boolean relations, if ev-
ery relation in Γ is weakly separable, then the problem is FPT; if Γ contains even one
relation violating weak separability, then the problem is W[1]-hard.

There have been further parameterized complexity studies of Boolean CSP [12,18,13],
but CSP’s with larger domains were not studied. In most cases, we expect that results
for larger domains are much more complex than for the Boolean case, and usually re-
quire significant new ideas. The goal of the present paper is to generalize the results
of [14] to non-Boolean domains. First, we have to define what the proper generaliza-
tion of k-ONES is if the variables are not Boolean. One natural generalization assumes
that there is a distinguished “cheap” value 0 and requires that in a solution there are
exactly k nonzero variables. We will call this version of the CSP a constraint satis-
faction problem with size constraints and denote by OCSP. Another generalization of
k-ONES specifies the number π(d) of variables assigned each nonzero value d: A map-
ping π : D \ {0} → N is given, and it is required that for each nonzero value d, exactly
π(d) variables are assigned value d. In the CSP and AI literature, requirements of this

426 A.A. Bulatov and D. Marx

form are called global cardinality constraints [1,15]. We will call this problem the con-
straint satisfaction problem with cardinality constraints and denote it by CCSP. In both
versions, the parameter is the number of nonzero values required, that is, k for OCSP,
and

∑
d∈D\{0} π(d) for CCSP. The usual (non-parametrized) complexity of CCSP over

arbitrary domain was characterized in [4]. We investigate both versions; as we shall see,
there are unexpected differences between the complexity of the two variants.

A natural minor generalization of CSPs is allowing the use of constants in the in-
put, that is, some variables in the input can be fixed to constant values, or equivalently
the constant unary relation {(d)} is allowed for every element d of the domain. It is
known that the complexity of the decision CSP (corresponding to a ‘core’ structure)
does not change with this generalization [3]. While there is no similar result for the
versions of CSPs we study here (and thus this assumption may diminish the general-
ity of our results), this setting is still quite general and at the same time more robust.
Many technicalities can be avoided with this formulation. For example, the availability
of constants ensures that the decision and search problems are equivalent: by repeatedly
substituting constants and solving the decision problem, we can actually find a solution.

Is weak separability the right tractability criterion in the non-Boolean case? It is not
difficult to observe that the algorithm of [14] using weak separability generalizes for
non-Boolean problems1. However, it is not true that only weakly separable relations are
tractable. It turns out that there are certain degeneracies and symmetries that allow us to
solve the problem even for some relations that are not weakly separable. To understand
these degenerate situations, the notion of multivalued morphisms (a generalization of
homomorphisms) turns out to be crucial.

Results. For CSP with size constraints, we prove a dichotomy result:

Theorem 1.1. For every finite Γ closed under substitution of constants, OCSP(Γ) is
either FPT or W[1]-hard.

The precise tractability criterion (which is quite technical) is stated in Section 4. The
algorithmic part of Theorem 1.1 consists of a preprocessing to eliminate degeneracies
and trivial cases, followed by the use of weak separability. In the hardness part, we
take a relation R having a counterexample to weak separability, and use it to show that
a known W[1]-hard problem can be simulated with this relation. In the Boolean case
[14], this is fairly simple: by identifying coordinates and substituting 0’s, we can assume
that the relationR is binary, and we need to prove hardness only for two concrete binary
relations. For larger domains, however, this approach does not work. We cannot reduce
the counterexample to a binary relation by identifying coordinates, thus a complex case
analysis would be needed. Fortunately, our hardness proof is more uniform than that.
We introduce gadgets that control the values that can appear on the variables. There are
certain degenerate cases when these gadgets do not work. However, these degenerate
cases can be conveniently described using multivalued morphisms, and these cases turn
out to be exactly the cases that we can use in the algorithmic part of the proof.

In the case of cardinality constraints, we face an interesting obstacle. Consider the
binary relation R containing only tuples (0, 0), (1, 0), and (0, 2). Given a CSP instance
with constraints of this form, finding a solution where the number of 1’s is exactly k

1 In fact, we give an algorithm for non-Boolean domains that is simpler then the one in [14].

Constraint Satisfaction Parameterized by Solution Size 427

and the number of 2’s is exactly k is essentially equivalent to finding an independent set
of a bipartite graph with k vertices in both classes, or equivalently, a complete bipartite
graph (biclique) with k+k vertices. The parameterized complexity of the k-BICLIQUE

problem is a longstanding open question (it is conjectured to be W[1]-hard). Thus at
this point, it is not possible to give a dichotomy result similar to Theorem 1.1 in the
case of cardinality constraints, unless we prove that BICLIQUE is hard:

Theorem 1.2. For every finite Γ closed under substitution of constants, CCSP(Γ) is
either FPT, or BICLIQUE-hard.

2 Preliminaries

Constraint satisfaction problem with size and cardinality constraints. Let D be a
set. We assume that D contains a distinguished element 0. Let Dn denote the set of all
n-tuples of elements fromD. An n-ary relation onD is a subset ofDn, and a constraint
language Γ is a set of relations onD. In this paper constraint languages are assumed to
be finite. We denote by dom(Γ) the set of all values that appear in tuples of the relations
in Γ . Given a constraint language Γ , an instance of the constraint satisfaction problem
(CSP) is a pair I = (V, C), where V is a set of variables, and C is a set of constraints. A
constraint is a pair 〈s, R〉, where R is a (say, n-ary) relation from Γ , and s is an n-tuple
of variables. A satisfying assignment of I is a mapping τ : V → D such that for every
〈s, R〉 ∈ C with s = (s1 . . . , sn) the image τ(s) = (τ(s1), . . . , τ(sn)) belongs to R.
The question in the CSP is whether there is a satisfying assignment for a given instance.
The CSP over constraint language Γ is denoted by CSP(Γ).

The size of an assignment is the number of variables receiving nonzero values. A size
constraint is a prescription on the size of the assignment. A cardinality constraint for a
CSP instance I is a mapping π : D → N with

∑
a∈D π(a) = |V |. A satisfying assign-

ment τ of I satisfies the cardinality constraint π if the number of variables mapped to
each a ∈ D equals π(a). We denote by CCSP(Γ) the variant of CSP(Γ) where the in-
put contains both a cardinality constraint π and the size constraint k =

∑
a∈D\{0} π(a)

(this constraint is used a parameter); the question is, given an instance I , an integer
k, and a cardinality constraint π, whether there is a satisfying assignment of I of size
k and satisfying π. So, instances of OCSP (resp., CCSP) are triples (V, C, k) (resp.,
quadruples (V, C, k, π)). A solution of an instance is a satisfying assignment satisfying
the size/cardinality constraints. For both OCSP(Γ) and CCSP(Γ), we are interested in
FPT with respect to the parameter k. The INDEPENDENT SET problem is representable
as OCSP(RIS), where RIS = {(0, 0), (0, 1), (1, 0)}. Similarly, the BICLIQUE prob-
lem in which given a bipartite graph G(A,B), find two A′ ⊆ A and B′ ⊆ B with
|A′| = |B′| = t and such that every vertex of A′ is adjacent with every vertex of B′.
This problem is equivalent to CCSP({RBC}), where RBC is a relation on {0, 1, 2}
given by {(0, 0), (1, 0), (0, 2)}.
Closures and 0-validity. A constraint language is called constant closed (cc-, for short)
if along with every (say, n-ary) relation R, any i, 1 ≤ i ≤ n, and any d ∈ D the re-
lation obtained by substitution of constants R|i;d = {(a1, . . . , ai−1, ai+1, . . . , an) |
(a1, . . . , ai−1, d, ai+1, . . . , an) ∈ R}, also belongs to R. Substitution of constants

428 A.A. Bulatov and D. Marx

d1, . . . , dq for coordinate positions i1, . . . , iq is defined in a similar way; the resulting
relation is denoted by R|i1,...,iq ;d1,...,dq . We call the smallest cc-language containing a
constraint language Γ the cc-closure of Γ . It is easy to see that the cc-closure of Γ is
the set of relations obtained from relations of Γ by substituting constants.

Let f be a satisfying assignment for an instance I = (V, C, k) of OCSP(Γ) and
S = {v | f(v) �= 0}. We say that the instance I ′ = (V ′, C′, k′) is obtained
by substituting the nonzero values of f as constants if I ′ is constructed as follows:
V ′ = V \ S, and for each constraint 〈s, R〉 ∈ C such that vi1 , . . . vir are the variables
from s contained in S and {vj1 , . . . , vjq} = s \ S, we include in C′ the constraint
〈(vj1 , . . . , vjq), R|i1,...ir ;f(vi1),...f(vir)〉. The size constraint k′ is set to k minus the size
of f . This operation is defined similarly for a CCSP(Γ) instance I = (V, C, k, π), but
in this case the new cardinality constraint π′ is given by π′(d) = π(d) − |{v ∈ V |
f(v) = d}|.

A relation is said to be 0-valid if the all-zero tuple belongs to the relation. A con-
straint language Γ is a cc0-language if every R ∈ Γ is 0-valid, and if R′ is a 0-valid
relation obtained fromR by substitution of constants, thenR′ ∈ Γ . Observe that if Γ is
a cc-language and Γ0 is the set of 0-valid relations in Γ , then Γ0 is a cc0-language (but
not necessarily a cc-language).

We say that tuple t1 = (a1, . . . , ar) is an extension of tuple t2 = (b1, . . . , br) if they
are of the same length and for every 1 ≤ i ≤ r, ai = bi if bi �= 0. Tuple t2 is then called
a subset of t1. A minimal satisfying extension of an assignment f is an extension f ′ of
f (where f, f ′ are viewed as tuples) such that f ′ is satisfying, and f has no satisfying
extension f ′′ �= f ′ such that f ′ is an extension of f ′′.

By repeatedly branching on the unsatisfied constraints, a simple bounded search tree
algorithm can enumerate all the minimal satisfying extensions of an assignment.

Lemma 2.1. Let Γ be a finite constraint language over D. There are functions d′Γ (k)
and e′Γ (k) such that for every instance of CSP(Γ) with n variables, every assignment f
has at most d′Γ (k) minimal satisfying extensions of size at most k and all these minimal
extensions can be enumerated in time e′Γ (k)nO(1).

A consequence of Lemma 2.1 is that, as in [14], CCSP(Γ) and OCSP(Γ) can be re-
duced to a set of 0-valid instances. We enumerate all the minimal satisfying extensions
of size at most k of the all zero assignment (where k is the size constraint) and obtain
the 0-valid instances by substituting the nonzero values as constants.

Corollary 2.2. Let Γ be a cc-language and let Γ0 ⊆ Γ be the set of all 0-valued
relations from Γ . Then CCSP(Γ) is FPT/W[1]-hard/ BICLIQUE-hard if and only if
CCSP(Γ0) is. The same holds for OCSP(Γ) and OCSP(Γ0).

A nonzero satisfying assignment f is said to be a minimal (nonzero) satisfying assign-
ment if it is not a proper extension of any nonzero satisfying assignment.

Lemma 2.3. Let Γ be a finite constraint language. There are functions dΓ (k) and
eΓ (k) such that for any instance of CSP(Γ) with n variables every variable v is nonzero
in at most dΓ (k) minimal satisfying assignments of size at most k and all these minimal
satisfying assignments can be enumerated in time eΓ (k)nO(1).

Constraint Satisfaction Parameterized by Solution Size 429

3 Properties of Constraints

By Corollary 2.2, for proving Theorems 1.1 and 1.2 it is sufficient to consider only
cc0-languages. Thus in the rest of the paper, we consider only cc0-languages.

3.1 Weak Separability

In the Boolean case, the tractability of 0-valid constraints depends only on weak sep-
arability [14]. This is not true exactly this way for larger domains: as we shall see
(Theorems 4.1 and 5.1), the complexity characterizations have further conditions.

Tuples t1 = (a1, . . . , ar) and t2 = (b1, . . . , br) are disjoint if ai = 0 or bi = 0 for
every i. The union of disjoint tuples t1 and t2 is t1 + t2 = (c1, . . . , cr) where ci = ai

if ai �= 0 and ci = bi otherwise. If (a1, . . . , ar) is an extension of (b1, . . . , br), then
their difference is the tuple (c1, . . . , cr) where ci = ai if bi = 0 and ci = 0 otherwise.
A tuple t is contained in a set C ⊆ D if every nonzero entry of t is in C.

A 0-valid relation R is said to be weakly separable if the following two conditions
hold: (1) For every disjoint tuples t1, t2 ∈ R, we have t1+t2 ∈ R. (2) For every disjoint
tuples t1, t2 with t2, t1 + t2 ∈ R, we have t1 ∈ R. A constraint language Γ is said to
be weakly separable if every relation from Γ is weakly separable. If constraint language
Γ is not weakly separable, then we call a triple (R, t1, t2), R ∈ Γ , witnessing that a
union counterexample if t1, t2 violate condition (1), while if t1, t2 violate condition (2)
it is called a difference counterexample.

The following combinatorial property is the key for solving weakly separable in-
stances (this property does not necessarily hold for arbitrary relations):

Lemma 3.1. Let Γ be a weakly separable finite cc0-language overD and I an instance
of CCSP(Γ) or OCSP(Γ).

(1) Any satisfying assignment of I is a union of pairwise disjoint minimal ones.
(2) If there is a satisfying assignment f with f(v) = d for some variable v and d ∈ D,
then there is a minimal satisfying assignment f ′ with f ′(v) = d.

In light of Lemma 3.1(1), it is sufficient to enumerate every minimal assignment of
size at most k (using Lemma 2.3) and then to find a disjoint minimal assignments that
together satisfy the size/cardinality constraints. As the total size of the assignments we
select is at most k and furthermore Lemma 2.3 implies that each variable is nonzero in at
most a bounded number of these minimal assignments, the fixed-parameter tractability
of finding such disjoint assignments can be shown by standard arguments.

Theorem 3.2. Let Γ be a finite weakly separable cc0-language overD.

1. A solution to an instance (V, C, k, π) of CCSP(Γ) can be found in time eΓ (k)|V |O(1).
2. A solution to an instance (V, C, k) of OCSP(Γ) can be found in time
k|D|−1eΓ (k)|V |O(1).

3.2 Morphisms

Homomorphisms and polymorphisms are standard tools for understanding the com-
plexity of constraints [3,10]. We make use of the notion of multivalued morphisms, a

430 A.A. Bulatov and D. Marx

generalization of homomorphisms, that in a different context has appeared in the liter-
ature (see, e.g. [16]) under the guise of hyperoperation. We classify the values into 4
types according to the existence of such morphisms (Definition 3.3). This classification
and the observation that these types play an essential role in the way the MVM gadgets
(Section 3.4) work are the main technical ideas behind the hardness proofs.

For a subset 0 ∈ D′ ⊆ D and an n-ary relation R on D, by R|D′ we denote the
relation R ∩ (D′)n. For a language Γ , Γ|D′ contains every relation R|D′ for R ∈ Γ .

For a tuple t = (a1, . . . , ar) ∈ dom(Γ)r, we denote by h(t) the tuple (h(a1), . . . ,
h(ar)). An endomorphism of Γ is a mapping h : dom(Γ)→ dom(Γ) such that h(0) =
0 and for every R ∈ Γ and t ∈ R, the tuple h(t) is also in R. Observe that the
requirement h(0) = 0 is nonstandard, but it is natural in our setting. The mapping
sending all elements of dom(Γ) to 0 is an endomorphism of any 0-valid language. An
inner homomorphism of Γ from D1 to D2 with 0 ∈ D1, D2 ⊆ dom(Γ) is a mapping
h : D1 → D2 such that h(0) = 0 and h(t) ∈ R holds for any r-ary relationR ∈ Γ and
t ∈ Dr

1 ∩R.
A multivalued morphism of Γ is a mapping φ : dom(Γ)→ 2dom(Γ) such that φ(0) =

{0} and for every R ∈ Γ and (a1, . . . , ar) ∈ R, we have φ(a1) × · · · × φ(ar) ⊆ R.
An inner multivalued morphism φ from D1 to D2 where 0 ∈ D1, D2 ⊆ dom(Γ) is
defined to be a mapping φ : D1 → 2D2 such that φ(0) = {0} and for everyR ∈ Γ and
(a1, . . . , ar) ∈ R|D1 , we have φ(a1)× · · · × φ(ar) ⊆ R|D2 .

Observe that if φ : dom(Γ) → 2dom(Γ) is a multivalued morphism of a constraint
language Γ , and φ′ : dom(Γ) → 2dom(Γ) is a mapping such that φ′(d) ⊆ φ(d) for
d ∈ dom(Γ), then φ′ is a multivalued morphism. Similar statement holds for inner
multivalued morphisms ψ, ψ′ : D1 → 2D2 .

The product g ◦ h of two endomorphisms or inner homomorphisms is defined by
(g ◦ h)(x) = h(g(x)) for every x ∈ D. If φ and ψ are (inner) multivalued morphisms
then their product φ ◦ ψ is given by (φ ◦ ψ)(x) =

⋃
y∈φ(x) ψ(y).

For x, y ∈ dom(Γ), we say that x produces y in Γ if Γ has a multivalued morphism
φ with φ(x) = {0, y} and φ(z) = {0} for every z �= x. Observe that the relation “x
produces y” is transitive.

Definition 3.3. A value y ∈ dom(Γ) is

1. regular if there is no multivalued morphism φ where 0, y ∈ φ(x) for some x ∈
dom(Γ),
2. semi-regular if there is a multivalued morphism φ where 0, y ∈ φ(x) for some x ∈
dom(Γ), but there is no x ∈ dom(Γ) that produces y,
3. self-producing if y produces y, and for every x that produces y, y also produces x.
4. degenerate otherwise.

It will sometimes be convenient to say that a value y has type 1, 2, 3, or 4. We need the
following simple properties:

Proposition 3.4. If there is an endomorphism h with h(x) = y, then the type of x
cannot be larger than that of y.

Proposition 3.5. Every degenerate value y is produced by a nondegenerate value x.

Constraint Satisfaction Parameterized by Solution Size 431

3.3 Components

The structure of endomorphisms and inner homomorphisms plays an important role in
our study. Let Γ be a cc0-language. A retraction to X ⊆ D \ {0} is a mapping retX
such that retX(x) = x for x ∈ X and retX(x) = 0 otherwise. A nonempty subset
C ⊆ D \ {0} is a component of Γ if retC is an endomorphism of Γ . A component
C is minimal if there is no component that is a proper subset of C. If a set C is not a
component, then there is a relationR ∈ Γ and t ∈ R such that t′ = retCt �∈ R. Observe
that the intersection of two components is also a component (if it is nonempty). Hence
for every nonemptyX ⊆ D \ {0}, there is a unique inclusion-wise minimal component
that containsX ; this component is called the component generated byX (or simply the
component ofX). The importance of components comes from the following result:

Lemma 3.6. If Γ is not weakly separable, then either

– there is a union counterexample (R, t1, t2) such that t1 (resp., t2) is contained in a
component generated by a value a1 (resp., a2), or
– there is a difference counterexample (R, t1, t2) such that both t1 and t2 are contained
in a component generated by a value a1.

3.4 Multivalued Morphism Gadgets

For a relation R and a tuple t ∈ R, we denote by supp(t) the set of coordinate po-
sitions of t occupied by nonzero elements. Let suppt(R) denote the relation obtained
by substituting 0 into all coordinates of R except for supp(t), i.e. if R is r-ary and
supp(t) = {1, . . . , r} \ {i1, . . . , ir} then suppt(R) = R|i1,...,ir ;0,...,0.

For a cc0-language Γ and some 0 ∈ D′ ⊆ dom(Γ), a multivalued morphism gadget
MVM(Γ,D′) consists of |D′| − 1 bags of vertices Bd, d ∈ D′ \ {0}. The number of
variables in each bag will be specified every time it is used. The gadget is equipped with
the following set of constraints. For every R ∈ Γ and every tuple t = (a1, . . . , ar) ∈
R|D′ (with, say, supp(t) = {i1, . . . , iq}), we add all possible constraints 〈s, suppt(R)〉
where s = (vi1 , . . . , viq) such that vj ∈ Baj for every j ∈ {i1, . . . , iq}. The standard
assignment of a gadget assigns a to every variable in bagBa; observe that it assignment
satisfies every constraint of the gadget. We say that bag Ba and the variables in bag Ba

represent a.

Proposition 3.7. Let 0 ∈ D′ ⊆ dom(Γ). Consider a satisfying assignment f of an
MVM(Γ,D′) gadget. If hf : D′ → 2dom(Γ) is a mapping such that hf (a) is the set
of values appearing in bag Ba of the gadget and hf (0) = {0}, then hf is an inner
multivalued morphism of Γ from D′ to dom(Γ).

We define gadgets connecting MVM gadgets. The gadget NAND(G1, G2) on
MVM(Γ,D′) gadgets G1, G2 has constraints as follows. For every R ∈ Γ and
disjoint tuples t1 = (a1, . . . , ar), t2 = (b1, . . . , br) in R|D′ , we add a constraint
〈s, suppt1+t2R〉, where s = (vi1 , . . . , viq) with {i1, . . . iq} = supp(t1 + t2), such
that vj for j ∈ {i1, . . . iq} is in bag Baj of G1 if aj �= 0 and vj is in bag Bbj of G2 if
bj �= 0.

432 A.A. Bulatov and D. Marx

If one of G1, G2 has the standard assignment and the other is fully zero, then all the
constraints in NAND(G1, G2) are satisfied. On the other hand, if bothG1 and G2 have
the standard assignment and there is a union counterexample, then NAND(G1, G2) is
not satisfied. For the reductions, we need this second conclusion not only if both G1

and G2 have the standard assignment, but also assignments that “behave well” in some
sense. The right notion for our purposes is the following: An inner homomorphism h :
D′ → dom(Γ) is t-recoverable if Γ has an endomorphism h′ such that (h◦h′)(t) = t.

Lemma 3.8. Let 0 ∈ D′ ⊆ dom(Γ) and let there be a NAND(G1, G2) gadget on
MVM(Γ,D′) gadgets G1, G2.
(1) If one of G1 andG2 has the standard assignment and the other gadget is fully zero,
then all constraints of NAND(G1, G2) are satisfied.
(2) If Γ|D′ has a union counterexample (R, t1, t2) and an assignment τ is such that for
i = 1, 2, τ on Gi is a ti-recoverable inner homomorphism hi, then NAND(G1, G2) is
not satisfied.

The IMP(G1, G2) gadget is defined similarly, but instead of t1, t2 ∈ R|D′ , we require
t2, t1 + t2 ∈ R|D′ . An analog of Lemma 3.8 holds for such gadgets.

When the multivalued morphism gadgets are used in the reductions, it will be essen-
tial that the bags of the gadgets have very specific sizes. We will ensure somehow that
in a solution each bag is either fully zero or fully nonzero. Our aim is to choose the
sizes of the bags in such a way that if the sum of the sizes of certain bags add up to a
certain integer, then this is only possible if there is exactly one bag of each size.

Fix an integer t and a set 0 ∈ D′ ⊆ D. It will be convenient to assume that D′ =
{0, 1, . . . , d}. By Zt,D′

we denote the set of integers Zt,D′
i,j for 1 ≤ i ≤ t and 1 ≤ j ≤

d, given by Zt,D′
i,j := (4td)2td+(id+j) + (4td)5td−(id+j).

Lemma 3.9. Let us fix t and D′ = {0, 1, . . . , d}. If A ⊆ Zt,D′
and B is a multiset of

values from Zt,D′
with |∑S∈A S −

∑
S∈B S| < (4td)2td, then B is a set and B = A.

3.5 Frequent Instances

The following property plays an important role in our algorithms. We say that an in-
stance of CCSP(Γ) or OCSP(Γ), with parameter k is c-frequent (for some integer c) if
for every d ∈ dom(Γ) \ {0} there are at least c variables that take value d in satisfying
assignments of size at most k. The algorithm of Lemma 2.1 can be used to decide in
fpt-time whether an instance is c-frequent. Lemma 3.10 shows that if an instance is not
c-frequent, it can be reduced to c-frequent instances satisfying an additional technical
requirement. This is done by eliminating values that appear on less than c variables one
by one. A subset 0 ∈ D′ ⊆ dom(Γ) is closed (with respect to Γ) if Γ has no inner
homomorphism fromD′ that maps some element ofD′ to an element in dom(Γ) \D′.

Lemma 3.10. Let Γ be a finite cc0-language. Given an instance I of CCSP(Γ) or
OCSP(Γ) with parameter k and an integer c, we can construct in time fΓ (k, c)nO(1) a
set of c-frequent instances such that

Constraint Satisfaction Parameterized by Solution Size 433

1. instance I has a solution iff at least one of the constructed instances has a solution,
2. each instance Ii is an instance of CCSP(Γ|Di

), respectively, OCSP(Γ|Di
), for some

Di ⊆ dom(Γ) closed in Γ , and 3. the parameter ki of Ii is at most k.

4 Classification for Size Constraints

Unlike in the Boolean case, weak separability of Γ is not equivalent to the tractability of
OCSP(Γ): it is possible that Γ is not weakly separable, but OCSP(Γ) is FPT. However,
if there is a subset D′ ⊆ dom(Γ) of the domain such that Γ|D′ is not weakly separable
andD′ has “no special problems” in a certain technical sense, then OCSP(Γ) is W[1]-
hard. We need the following definitions. A value d ∈ dom(Γ) is weakly separable if
Γ|{0,d} is weakly separable. A contraction of Γ to D′ with 0 ∈ D′ ⊆ dom(Γ) is an
endomorphism h : dom(Γ) → D′ such that h(d) �= 0 for any d ∈ dom(Γ) \ {0}.
Contraction h is proper if D′ �= dom(Γ).

The main result for the size constraints CSP is the following dichotomy theorem.

Theorem 4.1. Let Γ be a finite cc0-language. If there are two sets {0} ⊆ D2 ⊆ D1 ⊆
dom(Γ) such that (1) D1 is closed in Γ , (2) Γ|D1 has a contraction h to D2, (3) Γ|D2

has no proper contraction, (4) Γ|D1 has no weakly separable value that is either de-
generate or self-producing, and (5) Γ|D2 is not weakly separable, then OCSP(Γ) is
W[1]-hard. If there are no suchD1, D2, then OCSP(Γ) is FPT.

We present an algorithm solving the FPT cases of the problem and then an important
case of the hardness proof, demonstrating the concepts introduced in Section 3.

The algorithm. Let I = (V, C, k) be an instance of OCSP(Γ). Let us use Lemma 3.10
to obtain instances I1, . . . , I
 such that Ii is a k-frequent instance of OCSP(Γ|Di) for
some closed set Di ⊆ dom(Γ). Fix some i and let h be a contraction of Γ|Di such that
|h(Di)| is minimum possible. Set D1 := Di andD2 := h(Di).

The pair D1, D2 violates one of properties (1)–(5) in Theorem 4.1. By the way D1

and D2 defined, it is clear that (1) and (2) hold. If the pair violates (3), then let g be a
proper contraction of Γ|D2 . Then h ◦ g is a contraction of Γ|D1 such that |g(h(D1))|
is strictly less than |h(D1)|, a contradiction. If D1, D2 violate (4), then instance Ii
always has a solution. Indeed, suppose that d ∈ D1 is weakly separable and d is pro-
duced by d′ ∈ D1 (possibly d = d′). Let ki be the parameter of Ii; then ki ≤ k by
Lemma 3.10(4). Since Ii is k-frequent, the set S of variables of Ii where d′ can appear
in a satisfying assignment of size at most k contains at least k elements. As d′ produces
d, Γ|D1 has a multivalued morphism φ such that φ(d′) = {0, d} and φ(a) = {0} for
a ∈ D1 \ {d′}. Therefore, for every v ∈ S, the assignment δv,d with δv,d(v) = d and 0
everywhere else is a satisfying assignment of Ii. As d is weakly separable in Γ|D1 , the
disjoint union of ki such assignments δv,d is a solution to Ii. Finally, if (5) is violated,
then instance Ii of OCSP(Γ|D1) has a solution if and only if it has a solution restricted
toD2, and the latter can be decided using Lemma 3.2 (as Γ|D2 is weakly separable).

Hardness. We say that a set p1, . . . , p
 of endomorphisms of Γ is a partition set if,
for every d ∈ D′ \ {0}, pi(d) �= 0 for exactly one i. The sum of the partition set is
the mapping h defined such that h(d) is the unique nonzero value in p1(d), . . . , p
(d).

434 A.A. Bulatov and D. Marx

The partition set is good if the sum of these pairwise disjoint endomorphisms is also an
endomorphism; otherwise, the partition set is bad.

Lemma 4.2. If every value is regular in Γ|D2 , there is no bad partition set in Γ|D2 , and
there is a union counterexample in Γ|D2 , then OCSP(Γ) is W[1]-hard.

Proof. Assume D2 = {0, 1, . . . , p}. The reduction is from MULTICOLORED INDE-
PENDENT SET, the following W[1]-hard problem: Given a graph G with vertices vi,j
(1 ≤ i ≤ t, 1 ≤ j ≤ n), find an independent set of size t of the form {v1,y1 , . . . , vt,yt}.
For each vi,j , we introduce a gadget MVM(Γ,D2) denoted by Gi,j . The bag of Gi,j

corresponding to value d ∈ D2 \ {0} has size Zt,D2
i,d . The size constraint is k :=∑t

i=1

∑
d∈D2\{0} Z

t,D2
i,d . If vi,j and vi′,j′ are adjacent, then we add the gadget

NAND(Gi,j , Gi′,j′). Also, for every 1 ≤ i ≤ t, 1 ≤ j < j′ ≤ n, we add the
NAND(Gi,j , Gi,j′) gadget.

Suppose that there is a solution C of size exactly t for the MULTICOLORED INDE-
PENDENT SET instance. If vertex vi,j is in C, then set the standard assignment on gad-
get Gi,j , otherwise set the zero assignment. It is clear that this results in an assignment
satisfying the size constraint. By Lemma 3.8(1), the constraints of the MVM(Γ,D2)
gadgets as well as the NAND(Gi,j , Gi,j′) gadgets are satisfied.

For the other direction, suppose that there is a solution τ satisfying the size con-
straint. First we observe that τ contains values only fromD1. Indeed, if c �∈ D1 appears
in bag Bd of a gadget Gi,j , then τ on Gi,j is an inner homomorphism g of Γ from D2

with g(d) = c. Now h◦g maps a value ofD1 to c, contradicting the assumption thatD1

is a closed set. By applying h on a solution, it can be assumed that only values fromD2

are used. Thus τ on the MVM(Γ,D2) gadgets provides multivalued morphisms of Γ|D2 .
Since every value is regular in Γ|D2 , each bag is either fully zero or fully nonzero. The
sizes of the nonzero bags add up exactly to the size constraint k. Thus by Lemma 3.9,
there is exactly one nonzero bag with size Zt,D2

i,d for every 1 ≤ i ≤ t and d ∈ D2 \ {0}.
Take a union counterexample (R, t1, t2) in Γ|D2 ; by Lemma 3.6, we can assume that

t1, t2 are in the components of Γ|D2 generated by some a1, a2 ∈ D2, respectively. We
show that for every 1 ≤ i ≤ t, there are values y1i and y2i such that every endomorphism
of Γ|D2 given by Gi,y1

i
(resp., Gi,y2

i
) is t1-recoverable (resp., t2-recoverable). For a

fixed i, let g1, . . . , gn be arbitrary endomorphisms of Γ|D2 given by Gi,1, . . . , Gi,n,
respectively. Since the sizes of nonzero bags are all different, these endomorphisms are
pairwise disjoint and they form a partition set. As there is no bad partition set in Γ|D2 ,
their sum g is an endomorphism of Γ|D2 . Since Γ|D2 has no proper contractions, g has
to be a permutation and hence gs is the identity for some s ≥ 1. There is a unique
1 ≤ y1i ≤ n such that gy1

i
(a1) �= 0. The homomorphism gy1

i
◦ gs−1 maps every a ∈ D2

either to 0 or a; i.e., gy1
i
◦ gs−1 = retS for some set S ⊆ D2 containing a1. Hence S is

a component containing a1 and S contains every value of t1. It follows that gy1
i

given
by Gy1

i
is t1-recoverable. A similar argument works for y2j , thus the required values

y1i , y2i exist. Let us observe that it is not possible that y1i �= y2i : by Lemma 3.8(2) the
constraints of NAND(Gi,y1

i
, Gi,y2

i
) are not satisfied in this case. Let C contain vertex

vi,j if j = y1i = y2i . It follows that C is a multicolored independent set: if vertices vi,j ,
vi′,j′ are adjacent, then some constraint of NAND(Gi,j , Gi′,j′)=NAND(Gi,y1

j
, Gi′,y2

j
)

is not satisfied. ��

Constraint Satisfaction Parameterized by Solution Size 435

5 Classification for Cardinality Constraints

The characterization of the complexity of CCSP(Γ) requires a new definition, which
was not relevant for OCSP(Γ). The core of Γ is the component generated by the set of
all nondegenerate values in dom(Γ). We say that Γ is a core if the core of Γ is dom(Γ).

Theorem 5.1. Let Γ be a cc0-language. If there is a 0 ∈ D′ ⊆ dom(Γ) s.t. Γ|D′ is a
core and not weakly separable, then CCSP(Γ) is BICLIQUE-hard, and FPT otherwise.

A significant difference between the hardness proofs of OCSP(Γ) and CCSP(Γ) is that
in OCSP(Γ), we can assume that no proper contraction exists and this can be used
to show that certain endomorphisms have to be permutations (see Lemma 4.2). For
CCSP(Γ), we cannot make this assumption, thus we need a delicate argument, making
use of the cardinality constraint, to achieve a similar effect.

References

1. Bessière, C., Hebrard, E., Hnich, B., Walsh, T.: The complexity of global constraints. In:
Wallace, M. (ed.) AAAI. LNCS, vol. 3258, pp. 112–117. Springer, Heidelberg (2004)

2. Bulatov, A.: Tractable conservative constraint satisfaction problems. In: LICS, pp. 321–330.
IEEE Computer Society, Los Alamitos (2003)

3. Bulatov, A.A., Jeavons, P., Krokhin, A.A.: Classifying the complexity of constraints using
finite algebras. SIAM J. Comput. 34(3), 720–742 (2005)

4. Bulatov, A.A., Marx, D.: The complexity of global cardinality constraints. In: LICS, pp.
419–428. IEEE Computer Society, Los Alamitos (2009)

5. Creignou, N., Schnoor, H., Schnoor, I.: Non-uniform boolean constraint satisfaction prob-
lems with cardinality constraint. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS,
vol. 5213, pp. 109–123. Springer, Heidelberg (2008)

6. Downey, R.G., Fellows, M.R.: Parameterized Complexity (1999)
7. Feder, T., Vardi, M.Y.: Monotone monadic snp and constraint satisfaction. In: STOC, pp.

612–622 (1993)
8. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)
9. Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. J. ACM 44, 527–548

(1997)
10. Jeavons, P., Cohen, D., Gyssens, M.: How to determine the expressive power of constraints.

Constraints 4, 113–131 (1999)
11. Khanna, S., Sudan, M., Trevisan, L., Williamson, D.P.: The approximability of constraint

satisfaction problems. SIAM J. Comput. 30(6), 1863–1920 (2001)
12. Kratsch, S., Wahlström, M.: Preprocessing of min ones problems: A dichotomy. In: Abram-

sky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010.
LNCS, vol. 6198, pp. 653–665. Springer, Heidelberg (2010)

13. Krokhin, A.A., Marx, D.: On the hardness of losing weight. In: Aceto, L., Damgård, I.,
Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008,
Part I. LNCS, vol. 5125, pp. 662–673. Springer, Heidelberg (2008)

14. Marx, D.: Parameterized complexity of constraint satisfaction problems. Computational
Complexity 14

436 A.A. Bulatov and D. Marx

15. Régin, J.C., Gomes, C.P.: The cardinality matrix constraint. In: Wallace, M. (ed.) CP 2004.
LNCS, vol. 3258, pp. 572–587. Springer, Heidelberg (2004)

16. Rosenberg, I.: Multiple-valued hyperstructures. In: ISMVL, pp. 326–333 (1998)
17. Schaefer, T.J.: The complexity of satisfiability problems. In: STOC, pp. 216–226 (1978)
18. Szeider, S.: The parameterized complexity of k-flip local search for sat and max sat. In:

Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 276–283. Springer, Heidelberg (2009)

Preprocessing for Treewidth: A Combinatorial

Analysis through Kernelization�

Hans L. Bodlaender, Bart M.P. Jansen, and Stefan Kratsch

Utrecht University, The Netherlands
{hansb,bart,kratsch}@cs.uu.nl

Abstract. Using the framework of kernelization we study whether
efficient preprocessing schemes for the Treewidth problem can give
provable bounds on the size of the processed instances. Assuming the
AND-distillation conjecture to hold, the standard parameterization of
Treewidth does not have a kernel of polynomial size and thus in-
stances (G, k) of the decision problem of Treewidth cannot be effi-
ciently reduced to equivalent instances of size polynomial in k. In this
paper, we consider different parameterizations of Treewidth. We show
that Treewidth has a kernel with O(�3) vertices, where � denotes the
size of a vertex cover, and a kernel with O(�4) vertices, where � de-
notes the size of a feedback vertex set. This implies that given an in-
stance (G, k) of Treewidth we can efficiently reduce its size to O((�∗)4)
vertices, where �∗ is the size of a minimum feedback vertex set in G. In
contrast, we show that Treewidth parameterized by the vertex-deletion
distance to a co-cluster graph and Weighted Treewidth parameter-
ized by the size of a vertex cover do not have polynomial kernels unless
NP ⊆ coNP/poly. Treewidth parameterized by the target value plus
the deletion distance to a cluster graph has no polynomial kernel unless
the AND-distillation conjecture does not hold.

1 Introduction

Treewidth is a well-studied graph parameter, with many theoretical and practical
applications. A related parameter is Weighted Treewidth, where vertices have
weights, and the width of a tree decomposition is the maximum over all bags
of the sum of the weights of the vertices in a bag minus one. In this work we
study the decision problems related to these width parameters, which given a
graph G and integer k ask whether the (weighted) treewidth of G is at most k.
For precise definitions, see Section 2.

Preprocessing heuristics for Treewidth and Weighted Treewidth have
been studied in a practical setting [8,9,15]. The experimental results reported in
these papers show that there are preprocessing heuristics that give significant
reductions in size for many practical instances, making it more feasible to com-
pute, exactly or approximately, the treewidth of those graphs. However, these
� This work was supported by the Netherlands Organization for Scientific Research

(N.W.O.), project “KERNELS: Combinatorial Analysis of Data Reduction”.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 437–448, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

438 H.L. Bodlaender, B.M.P. Jansen, and S. Kratsch

heuristics do not give any guarantees on the effectiveness of the preprocessing:
there is no provable bound on the size of the processed instances. The purpose
of this work is to give a theoretical analysis of the potential of preprocessing
for Treewidth, studying whether there are efficient preprocessing procedures
whose effectiveness can be proven, and what the resulting size bounds look like.
Such investigations are made possible using the concept of kernelization [16],
which is a relatively young subfield of algorithm design and analysis. A ker-
nelization algorithm (or kernel) is a polynomial-time algorithm which given an
instance (x, k) ∈ Σ∗×N of some parameterized problem, computes an equivalent
instance (x′, k′) whose size is bounded by a function f(k) depending only on the
chosen parameter, i.e., |x′|, k′ ≤ f(k). The function f is the size of the kernel,
and polynomial kernels (f ∈ kO(1)) are of particular interest.

From a theoretical point of view, the fact that Treewidth belongs to FPT
(see for instance [3,17]), implies that there is a kernel for the problem. How-
ever, the size of such a kernel depends on the function of the parameter in the
running time of the FPT algorithm; with the current state of FPT algorithms
for Treewidth this size would be exponential in k3 (where k is the target
treewidth). Bodlaender et al. [5] have shown that Treewidth with standard
parameterization (i.e., parameterized by k) has no polynomial kernel unless all
coNP-complete problems have distillation algorithms; hence it is unlikely that
there is a polynomial-time algorithm that reduces the size of an instance (G, k)
of Treewidth to a polynomial in the desired treewidth k. We therefore turn to
other parameters (e.g., the vertex cover number of the input graph), and deter-
mine whether we can efficiently shrink an input of Treewidth to a size which
is polynomial in such a parameter. We consider different structural parameters
of the input graph: these parameters measure the number of vertex deletions
needed to transform the input into a graph of some very simple graph class.
All parameterized problems we consider fit the following template, where F is a
class of graphs:

Treewidth parameterized by a modulator to F
Instance: A graph G = (V,E), a positive integer k, and a set S ⊆ V
such that G− S ∈ F .
Parameter: � := |S|.
Question: tw(G) ≤ k?

The set S is a modulator to the class F .

Our work. In this paper, we add positive theoretical results to the positive exper-
imental work. Our theoretical results can possibly be of practical value, but an
experimental evaluation has not yet been undertaken. We first take as parameter
the size of a vertex cover of G, resulting in the problem Treewidth parame-

terized by a vertex cover (which fits into the given template when using F
as the class of edgeless graphs). We prove that this problem admits a polynomial
kernel with O(�3) vertices. Since we can first compute a 2-approximation for the
minimum vertex cover and then feed this to our kernelization algorithm, this im-
plies that an instance (G, k) of Treewidth on a graph with a minimum vertex

Preprocessing for Treewidth: A Combinatorial Analysis 439

cover of size �∗ can be shrunk in polynomial-time into an instance with O((�∗)3)
vertices, even if we are not given a minimum vertex cover in the input.

We then turn to the parameter “feedback vertex number”, which is easily
seen to be at most the value of the vertex cover number. We extend our positive
results by showing that Treewidth parameterized by a feedback vertex

set (which fits the template when F is the class of forests) admits a kernel
with O(�4) vertices. By using a polynomial-time 2-approximation algorithm for
Feedback Vertex Set [2], we can again drop the assumption that such a set
is supplied in the input.

After these two examples it becomes an interesting question whether there
is a parameter even smaller than the feedback vertex number in which the size
of an instance can be bounded efficiently. Since Treewidth is trivially solv-
able on chordal graphs, and the deletion distance to a chordal graph is at most
the feedback vertex number, one might hope that Treewidth parameterized

by a modulator to chordal graphs admits a polynomial kernel. This ap-
pears to be very unlikely. Assuming the AND-distillation conjecture [5] we prove
the stronger statement that even when using the compound parameter “target
treewidth plus the size of a given modulator to cluster graphs”, Treewidth

does not admit a polynomial kernel - recall that a cluster graph is a disjoint
union of cliques. We also prove that Treewidth parameterized by a modu-

lator to co-cluster graphs (the edge-complements of cluster graphs) does
not admit a polynomial kernel unless NP ⊆ coNP/poly, and use this result to
show that, under the same assumption, the Weighted Treewidth problem
does not even admit a polynomial kernel when parameterized by the size of a
vertex cover. It is interesting to note the difference between Treewidth and
Weighted Treewidth when parameterized by vertex cover.

Organization of the paper. After this introduction, we give preliminary defini-
tions and results in Section 2. In Section 3, we show that Treewidth param-

eterized by a vertex cover has a kernel with O(�3) vertices. To do so,
we introduce a number of ‘safe’ reduction rules, that are variants of rules from
existing treewidth algorithms and preprocessing methods, including rules that
remove simplicial vertices. In Section 4, we turn to Treewidth parameter-

ized by a feedback vertex set (of size �) and show a kernel with O(�4)
vertices. A key role, in addition to variants of the rules for vertex cover, will be
played by almost simplicial vertices and we will give a set of safe reduction rules
that remove all those vertices. In Section 5 we present our lower bound results
for Treewidth parameterized by distance from cluster respectively co-cluster
graphs as well as for Weighted Treewidth parameterized by a vertex

cover; we build upon the recent framework of Bodlaender et al. [5] as well as
the notion of cross-composition [6]. Some final remarks are made in Section 6.

2 Preliminaries

In this work all graphs are finite, simple, and undirected. The open neighborhood
of a vertex v ∈ V in a graph G is denoted by NG(v), and its closed neighborhood

440 H.L. Bodlaender, B.M.P. Jansen, and S. Kratsch

is NG[v]. If S ⊆ V is a vertex set then G−S denotes the graph obtained from G
by deleting all vertices of S and their incident edges. A vertex v is simplicial in
a graph G if NG(v) is a clique. A vertex v ∈ V is almost simplicial in a graph G
if v has a neighbor w such that NG(v)−{w} is a clique. In such a case, we call w
the special neighbor of v.

A tree decomposition of a graph G = (V,E) is a pair ({Xi | i ∈ I}, T = (I, F))
with {Xi | i ∈ I} a family of subsets of V , and T a tree on edge set F , such that

–
⋃

i∈I Xi = V .
– For all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi.
– For all v ∈ V , the set Iv = {i ∈ I | v ∈ Xi} induces a subtree of T .

The sets Xi are called the bags of the tree decomposition. The width of a tree
decomposition ({Xi | i ∈ I}, T = (I, F)) is maxi∈I |Xi| − 1, and the treewidth
of G is the minimum width of a tree decomposition of G.

Suppose we have a graph G = (V,E) with a weight function w : V → N.
The weighted width of a tree decomposition ({Xi | i ∈ I}, T = (I, F)) of G
equals maxi∈I

∑
v∈Xi

w(i)− 1, and the weighted treewidth of G is the minimum
weighted width of a tree decomposition of G.

A graph H = (W,F) is a minor of a graph G = (V,E), if H can be obtained
from G by a series of zero or more vertex deletions, edge deletions, and/or
edge contractions. An edge contraction is the operation where two adjacent ver-
tices v, w are replaced by one vertex with neighborhood (N(v)∪N(w))\ {v, w}.
The following proposition is well known.

Proposition 1. Let H be a minor of G. Then the treewidth of H is at most the
treewidth of G.

The kernelization algorithms we present consist of a number of reduction rules.
In each case, the input to the rule is a graph G = (V,E), an integer k, and a
deletion set S ⊆ V such that G− S is a member of the relevant graph class F ,
and the output is an instance (G′ = (V ′, E′), k′, S′). A rule is said to be safe if for
all inputs (G, k, S) which satisfy G− S ∈ F we have tw(G) ≤ k ⇔ tw(G′) ≤ k′
and G′ − S′ ∈ F . We will sometimes say that the algorithm answers yes or no;
this should be interpreted as outputting a constant-size yes or no instance of
the problem at hand, i.e., a clique on three vertices with k = 2, respectively the
same clique with k = 1.

Several proofs had to be omitted from this extended abstract due to space
restrictions, and can be found in the full version of this work [7].

3 Kernelization with Respect to Vertex Cover Number:
Eliminating Simplicial Vertices

In this section we show our kernelization for Treewidth parameterized by a

vertex cover (i.e., parameterized by a modulator to an independent set). The
kernelization focuses mostly on simplicial vertices; removing them (and possibly

Preprocessing for Treewidth: A Combinatorial Analysis 441

updating a bound for the treewidth) is a well known and often used preprocessing
rule for Treewidth; see the discussion in [9]. Another rule, first used in the
linear time algorithm for bounded treewidth in [3] adds edges between vertices
with many common neighbors. The rule was also used in lower bound heuristics
for treewidth, see [13,14], see also [10,4].

Rule 1 (Low degree simplicial vertex). If v is a simplicial vertex of degree
at most k then remove v.

Rule 2 (High degree simplicial vertex). If v is a simplicial vertex of degree
greater than k then answer no.

Standard theory on treewidth shows that Rules 1 and 2 are safe. It is well
known [3] that if non-adjacent vertices v, w have at least k+1 common neighbors,
then adding the edge {v, w} does not affect1 whether the treewidth of the graph
is at most k. We use this rule in a restricted setting, to ensure that S remains a
vertex cover of the graph.

Rule 3 (Common neighbors improvement). Suppose that {v, w} �∈ E and
that v ∈ S or w ∈ S. If v and w have at least k+ 1 common neighbors, then add
the edge {v, w}.
Yet another simple rule is the following, using that S is a vertex cover of G.

Rule 4 (Trivial decision). If k ≥ |S|, then answer yes.

Safeness can be argued as follows. The treewidth of G is at most |S|: for each v ∈
V − S, take a bag with vertex set S ∪ {v}, and connect these bags in any way.
This gives a tree decomposition of G of width at most |S|.

It is not hard to argue the, possibly surprising, fact that the exhaustive ap-
plication of Rules 1–4 (i.e., until we answer no or yes or no application of one
of these rules is possible) already gives a polynomial kernel for Treewidth

parameterized by a vertex cover. It is clear that this reduction can be
performed in polynomial time (it is easy to do it in time O(|V | · |E|)).
Theorem 1. Treewidth parameterized by a vertex cover has a kernel
with O(�3) vertices.

Proof. Let (G, k, S) be an instance of Treewidth parameterized by a ver-

tex cover. Let (G′, k′, S′) be the instance obtained from exhaustive applica-
tion of Rules 1–4. By safety of the reduction rules (G′, k′, S′) is yes if and only
if (G, k, S) is yes.

The reduction rules guarantee that S′ ⊆ S is a vertex cover in G′, with |S′| ≤
�. Each vertex v ∈ V ′−S′ has at least one pair of distinct neighbors in S′ that are
not adjacent, otherwise v is simplicial and would have been handled by Rule 1 or
1 In any triangulation, either {v, w} is an edge, or all common neighbors of v and w

form a clique. In the latter case, this clique plus v is a clique with at least k + 2
vertices, implying a tree decomposition of width at least k + 1.

442 H.L. Bodlaender, B.M.P. Jansen, and S. Kratsch

Rule 2. Assign v to this pair. If we assign v to the pair {w, x}, then v is a common
neighbor of w and x. Hence a pair cannot have more than k vertices assigned to
it, otherwise Rule 3 applies. As there are at most �·(�−1)/2 pairs of non-adjacent
neighbors in S′, we have |V ′ − S′| ≤ k · � · (�− 1)/2 ≤ �2 · (�− 1)/2 ∈ O(�3). ��
By combining Theorem 1 with a polynomial-time 2-approximation algorithm for
vertex cover, we obtain the following corollary.

Corollary 1. There is a polynomial-time algorithm that given an instance (G =
(V,E), k) of Treewidth computes an equivalent instance (G′ = (V ′, E′), k)
such that V ′ ⊆ V and |V ′| ∈ O((�∗)3), where �∗ is the size of a minimum vertex
cover of G.

4 A Polynomial Kernel for Treewidth Parameterized by
Feedback Vertex Set

In this section, we give the proof that Treewidth parameterized by a feed-

back vertex set (of size �) has a kernel with O(�4) vertices. The kernelization
algorithm is again given by a set of safe reduction rules, that are applied while
possible: two simple rules, three rules that remove all almost simplicial vertices
(Section 4.1), and four rules that reduce the graph when there is a clique-seeing
path (defined in Section 4.2). In Section 4.3, we show that graphs to which no
rule applies have O(�4) vertices, and thus arrive at our kernel bound.

The first new rule generalizes Rule 3; it was used in experiments [13] and its
correctness is proven in [4]. The rule can be implemented in polynomial time by
using a maximum flow algorithm to find the disjoint paths.

Rule 5 (Disjoint paths improvement). Suppose {v, w} �∈ E and that v ∈ S
or w ∈ S. If there are at least k + 1 internally vertex-disjoint paths between v
and w, then add the edge {v, w}.
The second new rule is straight forward, and is correct because reasoning similar
to that of Rule 4 shows that each graph with a feedback vertex set of size � has
treewidth at most �+ 1.

Rule 6 (Trivial decision). If k ≥ |S|+ 1, then answer yes.

4.1 Almost Simplicial Vertices

In [9], the notion of almost simplicial vertex was introduced, and a reduction rule
was given that removed almost simplicial vertices whose degreewas at most aknown
lower bound for the treewidth of the input graph. In this section, we give a set of
rules that also remove almost simplicial vertices of higher degree. Rule 7 is a re-
formulation the Low Degree Almost Simplicial Vertex Rule from [9]. Rule 8 gives
a simple way to deal with almost simplicial vertices of degree larger than k + 1.
Its correctness is obvious: v with its neighbors except its special neighbor forms a
clique with at least k + 2 vertices, so the treewidth is larger than k.

Preprocessing for Treewidth: A Combinatorial Analysis 443

Rule 7 (Low Degree Almost Simplicial Vertex). Let v be an almost sim-
plicial vertex with special neighbor w. If the degree of v is at most k, then contract
the edge {v, w} into w obtaining G′. If v ∈ S, then let S′ := S \ {v} ∪ {w}, else
let S′ := S.

Lemma 1. Rule 7 is safe.

Proof. It is clear that S′ is a feedback vertex set of G′.
Let G′ be the graph resulting after the operation. If the treewidth of G is at

most k, then the treewidth of G′ is at most k as the treewidth cannot increase
by contraction (Proposition 1).

Suppose the treewidth of G′ is at most k. Take a tree decomposition of G′ of
width at most k. It is well-known that because NG(v) is a clique in G′, there
must be a bag that contains all vertices of NG(v), say NG(v) ⊆ Xi. Add a new
bag with vertex set NG[v] and make it adjacent in the tree decomposition to
node i; we obtain a tree decomposition of G of width at most k. ��
Rule 8 (High Degree Almost Simplicial Vertex). Let v be an almost sim-
plicial vertex. If the degree of v is at least k + 2, then answer no.

We introduce a new, more complex rule that deals with almost simplicial vertices
of degree exactly k + 1. The correctness proof had to be omitted [7].

Rule 9 (Degree k+ 1 Almost Simplicial Vertex). Let v be an almost sim-
plicial vertex with special neighbor w, and let the degree of v be exactly k + 1.

– If for each vertex x ∈ NG(v) − {w}, there is an edge {x,w} ∈ E or a path
in G from x to w that avoids NG[v]− {x,w}, answer no.

– Otherwise, contract the edge {v, w} to a new vertex x, obtaining G′. If v ∈ S
or w ∈ S, then let S′ := S \ {v, w} ∪ {x}, else let S′ := S.

Note that the rules for almost simplicial vertices (Rules 7, 8, and 9) can be
easily seen to subsume the rules for simplicial vertices (Rules 1 and 2) used
in the previous section (the first case of Rule 9 covers simplicial vertices of
degree k + 1).

The following proposition follows from counting arguments similar to those
in the proof of Theorem 1, by observing that after exhaustive application of the
rules no leaf in the forest G − S is almost simplicial, and hence every such leaf
must have a pair of neighbors in S which are non-adjacent.

Proposition 2. Suppose an instance (G, k) of Treewidth is given together
with a feedback vertex set S of size �. If we exhaustively apply Rules 5 – 9, then
we obtain in polynomial time an equivalent instance (G′, k) with a feedback vertex
set S′ of size at most �, such that the forest G′ − S′ has O(�3) leaves.

444 H.L. Bodlaender, B.M.P. Jansen, and S. Kratsch

X

v1 v2v0 v3 v4 v5

Fig. 1. An example of a clique-seeing path

Preprocessing heuristics. At this point, we want to make a sidestep. In [9],
the Almost Simplicial Vertex Rule was given as a preprocessing heuristic for
the optimization version of Treewidth. There, a variable low was invariantly
kept as lower bound on the treewidth of the original input graph; the rule could
be applied to almost simplicial vertices of degree d whenever d was at most
this value low. Thus, in the work of [9], almost simplicial vertices of degree at
least low +1 could not be dealt with. Using a variant of Rule 9, we can now
extend the Almost Simplicial Vertex Rule and preprocess a graph such that we
remove all almost simplicial vertices, as follows. Suppose v is an almost simplicial
vertex of degree d with special neighbor w. If d − 1 > low, then low is set
to d − 1. Then, if d − 1 = low, we check if for each vertex x ∈ NG(v) − {w},
there is an edge {x,w} ∈ E or a path from x to w that does not use any
vertex in NG[v] − {x,w}. If so, low is increased by one. Now, we contract the
edge {x,w}. This rule is safe in the sense that the treewidth of the original
graph G equals the maximum of low and the treewidth of the reduced graph.

An experimental evaluation of this ‘extended simplicial vertex rule’, similar
as the work in [9] has not yet been undertaken.

4.2 Clique-Seeing Paths

We call a path (v0, v1, . . . , vr, vr+1) a clique-seeing path that sees clique X , if

– X =
⋃r

i=1NG(vi) \ {v0, v1, . . . , vr+1} is a clique.
– For each each i, 1 ≤ i ≤ r, N(vi) ⊆ {vi−1, vi+1} ∪X .

An example is given in Fig. 1. Note that v0 and vr+1 play a special role.
Each vi, 1 ≤ i ≤ r, has exactly two neighbors outside X , namely the previ-
ous and next vertex on the path (vi−1 and vi+1). In our analysis it is sufficient
when we look at clique-seeing paths with all vertices on the path in the for-
est V − S, and all vertices in the seen clique in the feedback vertex set S, but
the rules are also safe in other cases.

We present four reduction rules. The first rule deals with clique-seeing paths
that see a clique of size at most k − 2. The second and third consider the case
that {v1, . . . , vr} ∪X separate v0 and vr+1 in the graph. The fourth decides no
if the path has at least 6k+ 6 inner vertices and no other rule applies. All proofs
are deferred to the full version [7].

Preprocessing for Treewidth: A Combinatorial Analysis 445

Rule 10. Suppose we have a clique-seeing path (v0, v1, . . . , vr, vr+1), that sees a
clique X with |X | ≤ k − 2. If

N(vr) ∩X ⊆
⋃

1≤i≤r−1

N(vi) ∩X

then contract the edge {vr, vr+1} into the vertex vr+1, obtaining G′. If vr ∈ S,
then let S′ := S \ {vr} ∪ {vr+1}, else let S′ := S.

The next rule is based upon the notion of minimal almost clique separators from
[8]. A set of vertices Q separates vertices v and w if each path from v to w uses
at least one vertex in Q. A set of vertices is a separator if there exist vertices v
and w such that Q separates v from w. Q minimally separates v and w if it
separates v and w but there is no proper subset of Q that separates v and w. Q
is a minimal separator if there is a pair of vertices v and w that are minimally
separated by Q. A set of vertices Q is a minimal almost clique separator, if it is
a minimal separator and there is a vertex v ∈ Q such that Q− {v} is a clique.
Bodlaender and Koster [8] have shown that the treewidth is not changed when
edges are added to make a minimal almost clique separator into a clique. We use
a version of this rule that ensures that S still is a feedback vertex set. Safeness
of the following rule thus follows directly from the analysis in [8]. The discussion
in [8] also shows that it can be tested in polynomial time.

Rule 11. Let Q be a minimal almost clique separator in G, and suppose there
is at most one vertex v ∈ Q with v �∈ S. Then, add an edge between each pair of
non-adjacent vertices in Q.

Exhaustive application of the following rule will provide us with a useful con-
nectivity property that allows a rejection of instances with clique-seeing paths
which remain long after application of Rules 5 to 12.

Rule 12. Suppose (v0, v1, v2, v3, v4) is a clique-seeing path in V \ S that sees
clique X ⊆ S. Suppose {v1, v2, v3} ∪ X separates v0 from v4 and suppose that
Rule 11 cannot be applied. Compute the treewidth of G[{v1, v2, v3} ∪X]. If it is
larger than k, then answer no, otherwise remove v2 from G.

Polynomial-time computability of the treewidth ofG[{v1, v2, v3}∪X] follows from
a result in [12]. A detailed counting argument shows safeness of our last rule.

Rule 13. Suppose we have a clique-seeing path (v0, . . . , vr+1) with r ≥ 6k + 6,
and suppose Rules 5–12 are not applicable. Then answer no.

4.3 The Kernelization

We show that exhaustive application of Rules 5 through 13 gives the following
kernelization result.

Theorem 2. Treewidth parameterized by a feedback vertex set has
a kernel with O(�4) vertices.

446 H.L. Bodlaender, B.M.P. Jansen, and S. Kratsch

Proof. Let (G, k, S) be an instance of Treewidth parameterized by a feed-

back vertex set and let (G′, k, S′) be obtained from exhaustive application
of Rules 5 through 13. Rules 12 and 13 are only tested for paths in G − S; as
that is a forest, we need to test at most O(n2) paths, and thus the test has to
be done a polynomial number of times. It was showed that all rules are safe and
that they can be performed exhaustively in polynomial time, so the instances
are equivalent, S′ is a feedback vertex set of G′, and |S′| ≤ |S|.

Let us analyze the size of G′. The forest G′ − S′ has O(�3) leaves (Propo-
sition 2), and hence O(�3) vertices of degree at least three. There are O(�3)
paths in the forest connecting leaves and vertices of degree at least three. Each
path of length at least 6k + 8, i.e., with at least 6k + 6 internal vertices is not
clique-seeing by Rule 13. Thus, for the analysis, we split the paths into parts of
size 6k + 8 which are therefore not clique-seeing. At most 6k + 7 vertices per
path will not belong to such a part, but these are at most O(�3 · k) in total.
We assign each part to a pair of non-adjacent vertices in S which are adjacent
to internal vertices of the part. We can assign at most k parts to a pair {u, v}:
indeed, since the parts are disjoint they would otherwise give rise to more than k
disjoint u− v paths, contradicting (G′, k, S′) being reduced under Rule 5. Thus,
we have O(k(6k + 8)�2) + O(�3 · k) = O(�4) vertices in the forest G′ − S′, and
thus O(�4) vertices in G′. ��

Using a 2-approximation algorithm for feedback vertex set we obtain a corollary
similar to the one given in the previous section.

Corollary 2. There is a polynomial-time algorithm that given an instance (G =
(V,E), k) of Treewidth computes an equivalent instance (G′ = (V ′, E′), k)
such that V ′ ⊆ V and |V ′| ∈ O((�∗)4), where �∗ is the size of a minimum
feedback vertex set of G.

5 Kernelization Lower Bounds

In this section we present our lower bound results for Treewidth and Weigh-

ted Treewidth; due to space restrictions the proofs are deferred to the full
version [7]. We show the following results.

Theorem 3. Unless the AND-distillation conjecture fails and all coNP-com-
plete problems have OR-distillation algorithms, Treewidth parameterized

by target treewidth plus the size of a given modulator to cluster

graphs does not admit a polynomial kernel.

For this result we use that Treewidth on co-bipartite graphs is NP-
complete [1, Theorem 3.3]. The key idea is that by identifying one bipartition
from each of t co-bipartite graphs into one clique one obtains a graph that has
treewidth at most some integer k if and only if all t graphs have treewidth at
most k; this constitutes an AND-composition [5].

Preprocessing for Treewidth: A Combinatorial Analysis 447

Theorem 4. Treewidth parameterized by a modulator to co-clus-

ter graphs does not admit a polynomial kernelization unless NP ⊆ coNP/poly
(which would imply a collapse of the polynomial hierarchy to its third level).

The proof goes by giving a cross-composition from Treewidth to the target
problem, i.e., a reduction of some t instances of Treewidth into one instance
of the parameterized problem with a small parameter value, which is yes iff one
of the t instances is yes (for details on cross-composition see [6]). We use that
the join of t graphs each on n vertices has a treewidth equaling (t − 1) · n plus
the minimum treewidth of any of the graphs (a corollary of work by Bodlaender
and Möhring [11]). To turn the join of the graphs into an almost co-cluster, their
edges are replaced by a set of m cliques (each connected to the endpoints of one
edge per graph), which are then added to the modulator.

Theorem 5. Weighted Treewidth parameterized by a vertex cover

does not admit a polynomial kernelization unless NP ⊆ coNP/poly.

This final result is obtained by an extension of the proof for Theorem 4. In
addition to that construction, we also replace the join edges by a set of 2n2 log t
vertices of high weight. The effect on the treewidth is the same, but adding the
vertices to the modulator we obtain an independent set instead of a co-cluster.

6 Conclusions

We considered different parameterizations for the Treewidth problem and ob-
tained both positive and negative results for the existence of polynomial kernels.
Our first positive result, a cubic kernel for Treewidth parameterized by

a vertex cover, is interesting as its algorithm largely consists of elements of
existing preprocessing heuristics for Treewidth, and thus also sheds some light
on the experimentally observed success of these heuristics. Our second positive
result, a polynomial kernel for Treewidth parameterized by a feedback

vertex set, is not only interesting from a theoretical point of view, but we ex-
pect that some of the reduction rules are also of practical value. In that regard
it would be interesting to carry out an algorithmic engineering study, and im-
plement (part of) the algorithms. E.g., does the Degree k + 1 Almost Simplicial
Vertex Rule (Rule 9) give significant reductions of instance sizes for practical
instances? This could be compared to the experiments reported in [9,15].

Our lower bounds, for distance from cluster respectively co-cluster graphs,
rule out polynomial kernels for Treewidth for a number of possibly interest-
ing parameters like distance from cographs or from chordal, interval, or split
graphs. We recall also that Treewidth is NP-hard on bipartite graphs (eas-
ily seen by subdividing all edges), implying that parameterization by distance �
from bipartite or perfect graphs does not even permit O(nf(
)) time algorithms
unless P = NP; hence also no polynomial kernels.

Apart from improving the kernel sizes, e.g., for parameterization by a feed-
back vertex set, or giving polynomial lower bounds (e.g., Ω(�2)), it seems inter-
esting whether parameter-wise one can obtain stronger results. For example, is

448 H.L. Bodlaender, B.M.P. Jansen, and S. Kratsch

there a polynomial kernel with respect to the size of a modulator to outerplanar
graphs or even to planar graphs (note that membership in P or NP-hardness of
Treewidth on planar graphs is open). For the lower bounds, further research
may consider whether they can be extended to distance from a single clique
(which is both cluster and co-cluster); complementary to a vertex cover. If true,
then the method needs to generalize proofs using ANDs and ORs of sets of in-
put instances (cf. [5]). If instead there is a polynomial kernel, then the reduction
rules have to handle large cliques, the main building block of our lower bounds.

References

1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM Journal on Algebraic and Discrete Methods 8, 277–284 (1987)

2. Becker, A., Geiger, D.: Optimization of Pearl’s method of conditioning and greedy-
like approximation algorithms for the vertex feedback set problem. Artificial Intel-
ligence 83, 167–188 (1996)

3. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)

4. Bodlaender, H.L.: Necessary edges in k-chordalizations of graphs. Journal of Com-
binatorial Optimization 7, 283–290 (2003)

5. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. Journal of Computer and System Sciences 75, 423–434
(2009)

6. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new technique
for kernelization lower bounds. In: STACS 2011, pp. 165–176 (2011)

7. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Preprocessing for treewidth: A com-
binatorial analysis through kernelization. CoRR, abs/1104.4217 (2011)

8. Bodlaender, H.L., Koster, A.M.C.A.: Safe separators for treewidth. Discrete Math-
ematics 306, 337–350 (2006)

9. Bodlaender, H.L., Koster, A.M.C.A., van den Eijkhof, F.: Pre-processing rules for
triangulation of probabilistic networks. Computational Intelligence 21(3), 286–305
(2005)

10. Bodlaender, H.L., Koster, A.M.C.A., Wolle, T.: Contraction and treewidth lower
bounds. Journal of Graph Algorithms and Applications 10, 5–49 (2006)

11. Bodlaender, H.L., Möhring, R.H.: The pathwidth and treewidth of cographs. SIAM
Journal on Discrete Mathematics 6, 181–188 (1993)

12. Bodlaender, H.L., Rotics, U.: Computing the treewidth and the minimum fill-in
with the modular decomposition. Algorithmica 36, 375–408 (2003)

13. Clautiaux, F., Carlier, J., Moukrim, A., Négre, S.: New lower and upper bounds for
graph treewidth. In: Jansen, K., Margraf, M., Mastrolli, M., Rolim, J.D.P. (eds.)
WEA 2003. LNCS, vol. 2647, pp. 70–80. Springer, Heidelberg (2003)

14. Clautiaux,F.,Moukrim,A.,Négre, S., Carlier, J.: Heuristic andmeta-heuristicmeth-
ods for computing graph treewidth. RAIRO Operations Research 38, 13–26 (2004)

15. van den Eijkhof, F., Bodlaender, H.L., Koster, A.M.C.A.: Safe reduction rules for
weighted treewidth. Algorithmica 47, 138–158 (2007)

16. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.
ACM SIGACT News 38, 31–45 (2007)

17. Lagergren, J., Arnborg, S.: Finding minimal forbidden minors using a finite con-
gruence. In: Leach Albert, J., Monien, B., Rodŕıguez-Artalejo, M. (eds.) ICALP
1991. LNCS, vol. 510, pp. 532–543. Springer, Heidelberg (1991)

Subset Feedback Vertex Set Is Fixed-Parameter
Tractable

Marek Cygan1, Marcin Pilipczuk1,
Michał Pilipczuk1, and Jakub Onufry Wojtaszczyk2

1 Institute of Informatics, University of Warsaw, Poland
{cygan@,malcin@,mp248287@students.}mimuw.edu.pl

2 Institute of Mathematics, University of Warsaw, Poland
(currently Google Inc., Cracow, Poland)

onufry@google.com

Abstract. The classical FEEDBACK VERTEX SET problem asks, for a given
undirected graph G and an integer k, to find a set of at most k vertices that hits all
the cycles in the graph G. FEEDBACK VERTEX SET has attracted a large amount
of research in the parameterized setting, and subsequent kernelization and fixed-
parameter algorithms have been a rich source of ideas in the field.

In this paper we consider a more general and difficult version of the problem,
named SUBSET FEEDBACK VERTEX SET (SUBSET-FVS in short) where an in-
stance comes additionally with a set S ⊆ V of vertices, and we ask for a set of at
most k vertices that hits all simple cycles passing through S. Because of its ap-
plications in circuit testing and genetic linkage analysis SUBSET-FVS was stud-
ied from the approximation algorithms perspective by Even et al. [SICOMP’00,
SIDMA’00].

The question whether the SUBSET-FVS problem is fixed-parameter tractable
was posed independently by Kawarabayashi and Saurabh in 2009. We answer this
question affirmatively. We begin by showing that this problem is fixed-parameter
tractable when parametrized by |S|. Next we present an algorithm which reduces
the given instance to 2knO(1) instances with the size of S bounded by O(k3),
using kernelization techniques such as the 2-Expansion Lemma, Menger’s the-
orem and Gallai’s theorem. These two facts allow us to give a 2O(k log k)nO(1)

time algorithm solving the SUBSET FEEDBACK VERTEX SET problem, proving
that it is indeed fixed-parameter tractable.

1 Introduction

FEEDBACK VERTEX SET (FVS) is one of the long–studied problems in the algorithms
area. It can be stated as follows: given an undirected graph G on n vertices and a pa-
rameter k decide if one can remove at most k vertices from G so that the remaining
graph does not contain a cycle, i.e., is a forest. The problem of finding feedback sets in
undirected graphs arises in a variety of applications in genetics, circuit testing, artificial
intelligence, deadlock resolution, and analysis of manufacturing processes [15].

Because of its importance the feedback vertex set problem was studied from the
approximation algorithms perspective in different variants and generalisations including
DIRECTED FEEDBACK VERTEX SET and SUBSET FEEDBACK VERTEX SET (see [14]

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 449–461, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

450 M. Cygan et al.

and [16] for further references). In this paper we will study the SUBSET FEEDBACK

VERTEX SET problem from the parametrized complexity perspective.
In the parameterized complexity setting, an instance comes with an integer param-

eter k — formally, a parameterized problem Q is a subset of Σ∗ × N for some finite
alphabet Σ. We say that a problem is fixed-parameter tractable (FPT) if there exists
an algorithm solving any instance (x, k) in time f(k)poly(|x|) for some (usually ex-
ponential) computable function f . Intuitively, the parameter k measures the hardness
of the instance. Fixed-parameter tractability has received much notice as a method of
effectively solving NP-hard problems for instances with a small parameter value.

The long line of research concerning FVS in the parameterized complexity setting
contains [1,2,6,7,10,12,13,18,19,23,24]. Currently the fastest known algorithm works in
3knO(1) time [9]. Thomassé [26] has shown a quadratic kernel for this problem improv-
ing previous results [3,5]. The directed version has been proved to be FPT in 2008 by
Chen et al. [8], closing a long-standing open problem in the parameterized complexity
community. The natural question concerning the parameterized complexity of the SUB-
SET FEEDBACK VERTEX SET problem was posed independently by Kawarabayashi
at the 4th workshop on Graph Classes, Optimization, and Width Parameters (GROW
2009) and by Saurabh at the Dagstuhl seminar 09511 [11].

Notation. Let us now introduce some notation. Let G = (V,E) be a simple undirected
graph with n vertices. A cycle in G is a sequence of vertices v1v2 . . . vm ∈ V such
that vivi+1 ∈ E and vmv1 ∈ E. We say a cycle is simple if m > 2 and the vertices
vi are pairwise different. We will also consider multigraphs (i.e., graphs with multiple
edges and loops), in which a simple cycle can have two vertices if there is a multiple
edge between them. We call an edge vw ∈ E a bridge if in (V,E \ {vw}) the vertices
v and w are in different connected components. Note that no simple cycle can contain
a bridge as one of its edges. Given subsets X,Y ⊆ V , by E(X,Y) we denote the set
of edges with one endpoint in X and the other in Y . By G[X] we denote the subgraph
induced by X with the edge set E(X,X). By N(X) we denote the neighbourhood of
X , i.e. {u ∈ V \ X : ∃v∈Xuv ∈ E}. For a subset of edges E′ ⊆ E by V (E′) we
denote the set of all endpoints of edges from the set E′.

Problem definitions. In this paper we study the SUBSET FEEDBACK VERTEX SET

problem (SUBSET-FVS), where an instance comes with a subset of vertices S, and we
ask for a set of at most k vertices that hits all simple cycles passing through S. It is easy
to see that SUBSET-FVS is a generalisation of FVS by putting S = V . The weighted
version of SUBSET-FVS was introduced by Even et al. [15] as a generalization of two
problems: FEEDBACK VERTEX SET and NODE MULTIWAY CUT. Even et al. motivate
SUBSET-FVS problem by explaining its applicability to genetic linkage.

SUBSET FEEDBACK VERTEX SET (SUBSET-FVS) Parameter: k
Input: An undirected graph G = (V,E), a set S ⊆ V and a positive integer k
Question: Does there exist a set T ⊆ V such that |T | ≤ k and no simple cycle in
G[V \ T] contains any vertex of S?

We also define a variant of SUBSET-FVS, where the set S is a subset of edges of G.

Subset Feedback Vertex Set Is Fixed-Parameter Tractable 451

EDGE SUBSET FEEDBACK VERTEX SET (EDGE-SUBSET-FVS) Parameter: k
Input: An undirected graph G = (V,E), a set S ⊆ E and a positive integer k
Question: Does there exist a set T ⊆ V with |T | ≤ k, such that no simple cycle in
G[V \ T] contains an edge from S?

The two problems stated above are equivalent. To see this, note that if (G,S, k) is
an instance of SUBSET-FVS, we create an instance (G,S′, k) of EDGE-SUBSET-FVS
by selecting as S′ all the edges incident to any vertex of S. Then any simple cycle
passing through a vertex of S has to pass through an edge of S′, and conversely, any
cycle passing through an edge of S′ contains a vertex from S. In the other direction,
if (G,S′, k) is an instance of EDGE-SUBSET-FVS, obtain G′ by replacing each edge
uv ∈ S′ by a path u − xuv − v of length 2, and solve the SUBSET-FVS instance
(G′, S, k) where S = {xe : e ∈ S′}. Clearly both reductions work in polynomial time
and do not change the parameter. Thus, in the rest of this paper we focus on solving
EDGE SUBSET FEEDBACK VERTEX SET. A simple cycle containing an edge from S
is called an S–cycle.

Let us recall here the definitions of two other problems related to SUBSET-FVS.

NODE MULTIWAY CUT Parameter: k
Input: An undirected graph G = (V,E), a set of vertices T ⊆ V , called terminals,
and a positive integer k
Question: Does there exist a set T ⊆ V of at most k non-terminals, such that no
two terminals are in the same connected component of G[V \ T]?

NODE MULTICUT Parameter: k
Input: An undirected graph G = (V,E), a set of pairs of vertices T ⊆ V × V ,
called terminal pairs, and a positive integer k
Question: Does there exist a set T ⊆ V of at most k non-terminals, such that no
terminal pair is contained in one connected component of G[V \ T]?

Our contributions. We develop a 2O(k log k)nO(1) algorithm for EDGE-SUBSET-FVS
(which implies an algorithm of the same time complexity for SUBSET-FVS). This re-
sult resolves an open problem posted in 2009 independently by Kawarabayashi and
by Saurabh. To achieve this result we use several tools such as iterative compression,
the 2-Expansion Lemma, Menger’s theorem, Gallai’s theorem and the algorithm for
the MULTIWAY CUT problem. Some of our ideas were inspired by previous FPT re-
sults: the algorithm for MULTICUT parameterized by (|T|, k) by Guillemot [17], the
37.7knO(1)–time algorithm for FVS by Guo et al. [18] and the quadratic kernel for
FVS by Thomassé [26].

Related work. As observed by Even et al. [15] the weighted version of SUBSET-
FVS is a generalisation of NODE MULTIWAY CUT. It is straightforward to adjust their
reduction to the unweighted parameterized case.

452 M. Cygan et al.

Recently a lot of effort was put into developing kernelization and FPT algorithms
for terminal separation problems, including the quadratic kernel [26] and the fast FPT
algorithm [9] for FVS and the results resolving the parametrized complexity status
of MULTICUT independently obtained by Bousquet et al. [4] and by Marx and Raz-
gon [22]. To the best of our knowledge, though, none of those results implies an FPT
algorithm for SUBSET-FVS.

SUBSET-FVS was studied from the approximation perspective and the best known
approximation algorithm by Even at al. [16] gives approximation ratio equal to 8.

We were recently informed that an FPT algorithm for SUBSET-FVS was indepen-
dently discovered by Kawarabayashi and Kobayashi [20]. Their algorithm uses signifi-
cantly different techniques (minor theory) and its dependency on k in the running time
is worse than 2O(k log k).

Outline of the paper. In Section 2 we present an FPT algorithm for EDGE-SUBSET-
FVS when parameterized by |S|, where for the sake of presentation we give an easy-to-
describe f(|S|)nO(1) algorithm at the cost of a fast growing function f . This algorithm
can be enhanced using techniques of Guillemot [17] so that the function f is replaced
by 2O(k log |S|). Later in Section 3 we develop a set of branchings and reductions which
work in 2knO(1) time and reduce the size of the set S to O(k3).

The proofs of all results marked with the spade symbol (♠), including the enhanced
algorithm from Section 2, the detailed proof of a crucial lemma from Section 3, as
well as some details of the final reductions in Section 3, do not appear in this extended
abstract due to space limitations.

2 EDGE-SUBSET-FVS Parameterized by |S|
In this section we concentrate on solving the EDGE-SUBSET-FVS problem parameter-
ized by |S|, which means that our complexity function can be exponentially dependent
on the number of edges in the set S. This is the first step towards obtaining an FPT
algorithm when parameterized by k. Observe that we may assume k < |S| since other-
wise we may delete one vertex from each edge from the set S thus removing all edges
from the set S from our graph. We begin by showing an FPT algorithm which is easy
to understand and later we present methods to improve the time complexity. We use the
fact that NODE MULTICUT is FPT when parameterized by (k, |T|) which was shown
by Marx [21].

Theorem 1. There exists an algorithm solving the EDGE SUBSET FEEDBACK VERTEX

SET problem in f(|S|)nO(1) time, for some function f .

Proof. Let T be some solution of EDGE-SUBSET-FVS. Our new parametrization, by
|S|, allows us to guess, by checking all possibilities, the subset TS = T ∩ V (S) that
is removed by the solution T . Moreover, our algorithm guesses how the set V (S) \
TS is partitioned into connected components in the graph G[V \ T] with the edges
from S removed. Clearly both the number of subsets and of possible partitions is a
function of |S|. For a partition P = {P1, . . . , Pm} of V (S) \ TS we form a multigraph
GP on the set {P1, . . . , Pm} by adding an edge PiPj for every edge uv ∈ S, where

Subset Feedback Vertex Set Is Fixed-Parameter Tractable 453

u ∈ Pi, v ∈ Pj . Now we check whether there exists an edge in GP which is not
a bridge. If that is the case we know that the partition P does not correspond to any
solution of EDGE-SUBSET-FVS, as any simple cycle in GP can be converted into a
simple cycle in G — hence we skip this partition. Otherwise we create a set of pairs T,
containing all pairs of vertices from the set V (S) \ TS that belong to different sets in
the partition P. Formally T = {(vi, vj) : vi ∈ Pi′ , vj ∈ Pj′ , i

′ �= j′}. Because of the
properties of the multigraph GP it is sufficient to ensure that no pair from the set T is
contained in one connected component, hence the last step is calling an algorithm for
the NODE MULTICUT problem with parameter k − |TS |. If the call returns a positive
answer and a solution X , the set TS ∪ X is a solution to EDGE-SUBSET-FVS: the
connected components of G[V \ (TS ∪X)] induce a partition of V (S) \ (TS ∪X) that
is a subpartition of P and thus all remaining edges of S are bridges in G[V \ (TS ∪X)].
Note that we do not require here that X ∩ V (S) = ∅ nor that the induced partition of
V (S) \ (TS ∪ X) is exactly the partition P (being a subpartition is sufficient). On the
other hand, if the answer to EDGE-SUBSET-FVS is positive, the NODE MULTICUT call
returns a solution for at least one choice of TS and P, the one implied by the EDGE-
SUBSET-FVS solution. Observe that |T| = O(|S|2) so we obtain an FPT algorithm for
the EDGE SUBSET FEEDBACK VERTEX SET problem parameterized by |S|.

Function EdgeSubsetFeedbackVertexSet(G, S, k) {parameterized by (|S|, k)}
1: for all subsets TS ⊆ V (S), |TS| ≤ k do
2: for all partitions P = {P1, . . . , Pm} of V (S) \ TS do
3: form a multigraph GP on the set {P1, . . . , Pm} by adding an edge PiPj for every

edge uv ∈ S, u ∈ Pi, v ∈ Pj .
4: if all edges in GP are bridges then
5: let T = {(vi, vj) : vi ∈ Pi′ , vj ∈ Pj′ , i

′ �= j′}
6: if MultiCut(G[V \ TS], T, k − |TS|) returns (Y ES, X) then
7: return TS ∪X
8: return NO

Using techniques of Guillemot [17] we can improve the time complexity.

Theorem 2 (♠). There exists an algorithm solving the EDGE SUBSET FEEDBACK

VERTEX SET problem in 2O(k log |S|)nO(1) time.

3 EDGE-SUBSET-FVS Parameterized by k

In this section we show an FPT algorithm for EDGE SUBSET FEEDBACK VERTEX SET.
Begin by noting that, using standard arguments, one can show that EDGE-SUBSET-

FVS is self-reducible — i.e., if we have an algorithm that solves EDGE-SUBSET-FVS,
we can also find a witness: a set T that intersects all cycles passing through S.

We now follow the idea of iterative compression proposed by Reed et al. [25]. First,
note that if V ′ ⊆ V and T is a feasible solution to an EDGE-SUBSET-FVS instance
(G,S, k), then V ′ ∩ T is a feasible solution to the instance (G[V ′], S′, k), where S′ =
S ∩ E(G[V ′]). Thus, if the answer for (G[V ′], S′, k) is negative, so is the answer for
(G,S, k). Let V = {v1, v2, . . . , vn} be an arbitrary ordering of the set of vertices of
G. We consecutively construct solutions to EDGE-SUBSET-FVS for instances Ii =

454 M. Cygan et al.

(G[Vi], Si, k), where Vi = {v1, v2, . . . , vi} and Si = S ∩ E(G[Vi]). When looking
for a solution for graph G[Vi+1], we use the fact that if Ti is a solution for Ii, then
Zi+1 = Ti ∪ {vi+1} is a solution for (G[Vi+1], Si+1, k + 1) — a solution for our
problem with the parameter increased by one.

We start with a standard branching into 2|Zi+1| subcases, guessing which vertices
from Zi+1 are taken into a solution to the instance Ii+1. Let us focus on a fixed branch,
where we decided to take TZ ⊆ Zi+1 into a solution and denote Z = Zi+1 \ TZ . We
delete TZ from the graph G, reduce S to S ∩ E(G \ TZ), and decrease k by |TZ |,
arriving at the following subproblem.

DISJOINT EDGE-SUBSET-FVS Parameter: k and |Z|
Input: A EDGE-SUBSET-FVS instance (G,S, k) together with a set Z ⊆ V (G)
that is a solution to the EDGE-SUBSET-FVS instance (G,S, |Z|)
Question: Does there exist a solution to (G,S, k) that is disjoint with Z?

Definition 1. We say that a DISJOINT EDGE-SUBSET-FVS instance (G,S, k, Z) is
a maximal YES-instance if every feasible solution to EDGE-SUBSET-FVS instance
(G,S, k) is disjoint with Z . We say that a DISJOINT EDGE-SUBSET-FVS instance
(G′, S′, k′, Z ′) is a properly reduced instance (G,S, k, Z) if the following holds:

1. |V (G′)| ≤ |V (G)| and k′ ≤ k;
2. (G′, S′, k′) is an equivalent EDGE-SUBSET-FVS instance to (G,S, k);
3. if (G,S, k, Z) is a maximal DISJOINT EDGE-SUBSET-FVS YES-instance then

(G′, S′, k′, Z ′) is a maximal YES-instance.

Note that we do not insist that if (G,S, k, Z) is a DISJOINT EDGE-SUBSET-FVS YES-
instance, (G′, S′, k′, Z ′) is a YES-instance.

Theorem 3. There exists a polynomial-time algorithm R that, given a DISJOINT EDGE-
SUBSET-FVS instance (G,S, k, Z), either:

1. returns a properly reduced instance (G′, S′, k′, Z ′) with |S′| = O(k|Z|2); or
2. returns IGNORE; in this case (G,S, k, Z) is not a maximal YES-instance.

We first show that Theorem 3 leads to the desired FPT algorithm for EDGE-SUBSET-
FVS. In each step of the iterative compression, in each of 2|Zi+1| branches, we run
the algorithm R. If it gives the first answer, we invoke the algorithm from Theorem 2
on EDGE-SUBSET-FVS instance (G′, S′, k′), leading to running time 2O(k log k)nO(1).
Note that (G′, S′, k′) is a YES-instance iff (G,S, k) is a YES-instance, and any solution
(even not disjoint with Z) to (G,S, k) can be extended to a solution of Ii+1 by taking
its union with TZ . In the case of the second answer, we ignore this branch. Obviously, if
Ii+1 is a NO-instance, the algorithm cannot find a solution. Otherwise, let T be a solu-
tion to Ii+1 with maximum possible intersection with Zi+1. We claim that the algorithm
finds a solution in the branch TZ = T ∩ Zi+1. Indeed, then (G,S, k, Z) is a maximal
YES-instance to DISJOINT EDGE-SUBSET-FVS and the algorithm R cannot return IG-
NORE. Thus we obtain a EDGE-SUBSET-FVS instance (G′, S′, k′), equivalent to the
YES-instance (G,S, k), and the algorithm from Theorem 2 finds a solution.

Subset Feedback Vertex Set Is Fixed-Parameter Tractable 455

The proof of Theorem 3 consists of a set of polynomial-time proper reductions (in
the sense of Definition 1), each either decreasing |V (G)| or decreasing |E(G)| while
not changing |V (G)|.

In all our reductions the last property of Definition 1 is satisfied, as there is a trivial
way to extend a solution in the reduced instance a solution in the original instance. We
will not provide a description of this extension. Some reductions may result with an
IGNORE answer, in which case the answer is immediately returned from this branch.
Note that the last property of Definition 1 implies that all DISJOINT EDGE-SUBSET-
FVS instances in the current sequence of reductions are not maximal YES-instances.
We assume that at each step, the lowest–numbered applicable reduction is used. If no
reduction is applicable, we clam that |S| = O(k|Z|2).

We start with an obvious reduction. Note that if it is not applicable, every edge in S
is contained in some simple cycle.

Reduction 1. Remove all bridges and all connected components not containing any
edge from S.

3.1 The Outer–Abundant Lemma

In this section we consider an instance of DISJOINT EDGE-SUBSET-FVS (G,S, k, Z),
where G = (V,E). We assume that Reduction 1 is not applicable, i.e., every edge in S
belongs to some simple cycle. The approach here is based on ideas from the quadratic
kernel for the classical FEEDBACK VERTEX SET problem [26], however, a few aspects
need to be adjusted to better fit our needs.

Definition 2. A set F ⊆ V is called outer–abundant iff:

(a) G[F] is connected,
(b) there are no edges from S in G[F],
(c) there at least 10k edges from S incident with F .

Lemma 1 (♠, The outer–abundant lemma). Let F be an outer–abundant set. If Re-
duction 1 is not applicable, then in polynomial time one can find a nonempty set X ⊆
V \ F such that the following condition is satisfied: if there exists a solution A for
EDGE-SUBSET-FVS on (G,S, k) such that A ∩ F = ∅, then there exists a solution A′

such that A′ ∩ F = ∅ and X ⊆ A′.

The Lemma allows us to greedily assume X is in the solution we are looking for (after
we ensure that it is disjoint with F), and either take it into the solution (if X ∩ Z = ∅)
or return IGNORE (if X ∩ Z �= ∅). The proof of Lemma 1 involves kernelization
techniques such as the 2-Expansion Lemma, Menger’s theorem and Gallai’s theorem.
As a direct application of Lemma 1, we obtain the following reduction rule. Note that
if it is not applicable, there are at most 10k|Z| edges from S incident with Z .

Reduction 2. Let v ∈ Z be a vertex that is incident to at least 10k edges from S. Apply
Lemma 1 to the outer–abundant set F = {v} obtaining a set X . Then, as we seek for a
solution disjoint with Z , we may greedily take X into the solution. If X ∩ Z = ∅, we
remove X and decrease k by |X |, otherwise we return IGNORE.

456 M. Cygan et al.

3.2 Bubbles

Recall that our goal is to reduce the size of S. After Reduction 2, there are O(k|Z|)
edges from S incident with Z . Thus, we need to care only about S ∩E(G[V \ Z]).

As Z is a feasible solution to EDGE-SUBSET-FVS on (G,S, |Z|), every edge from
S∩E(G[V \Z]) has to be a bridge in G[V \Z]. After removing those bridges G[V \Z]
becomes an union of connected components not having any edge from S. We call each
such a component a bubble. Denote the set of bubbles by D. On D we have a natural
structure of a graph H = (D, ED), where IJ ∈ ED iff components I and J are
connected by an edge from S. As Z is a solution, H is a forest and each I, J connected
in H are connected in G by a single edge from S.

Consider I ∈ D. Denote the set of vertices of I by VI . Note that if at most a single
edge leaves I (that is, |E(VI , V \VI)| ≤ 1) then VI would be removed while processing
Reduction 1. The following reduction sorts out bubbles with exactly two outgoing edges
and later we assume that for every I ∈ D we have |E(VI , V \ VI)| ≥ 3.

Reduction 3. Let us assume that |E(VI , V \VI)| = 2 and let {u, v} = N(VI) (possibly
u = v). Each cycle passing through a vertex from VI is either fully contained in I
and thus non–S–cycle, or exits VI through u and v. We remove VI from the graph
and replace it with a single edge uv, belonging to S iff any one of the two edges in
E(VI , V \ VI) is in S. If the addition of the edge uv lead to a multiple edge or a loop,
we immediately resolve it: If uv is a loop and uv /∈ S, we delete it. If uv is a loop and
uv ∈ S, we return IGNORE, as the fact that Z is a solution to (G,S, |Z|) implies that
u ∈ Z . If uv is a multiple edge and no edge between u and v is from S, we delete the
new edge uv. If uv is a multiple edge and one of the edges between u and v is S, we
first note that, since Z is a solution to (G,S, |Z|), u or v is in Z . If both are in Z , we
return IGNORE, otherwise we delete {u, v} \Z from the graph and decrease k by one.

We are now left with bubbles that have at least three outgoing edges. We classify those
bubbles according to the number of edges that connect them to other bubbles, that is
degH(I).

Definition 3. We say that a bubble I ∈ D is

(a) a solitary bubble if degH(I) = 0,
(b) a leaf bubble if degH(I) = 1,
(c) an edge bubble if degH(I) = 2,
(d) an inner bubble if degH(I) ≥ 3.

Denote by Ds,Dl,De,Di the sets of appropriate types of bubbles.

We show that we can do some reductions to make following inequalities hold:

|Dl| = O(k|Z|2), |Di| < |Dl|, |De| < 3(|Z|+ k) + |Di|+ |Dl|.
Note that these conditions imply that |D \ Ds| = O(k|Z|2). As edges of H create a
forest over D \ Ds, this bounds the number of edges from S not incident with Z by
O(k|Z|2), as desired.

Lemma 2. |Di| < |Dl|.

Subset Feedback Vertex Set Is Fixed-Parameter Tractable 457

Proof. As H is a forest, then |ED| < |D| − |Ds| = |Di| + |De| + |Dl|. Moreover,
2|ED| =

∑
I∈D degH(I) ≥ 3|Di|+ 2|De|+ |Dl|. Therefore |Dl| > |Di|.

Reduction 4. If |De| ≥ 3(|Z|+ k) + |Di|+ |Dl|, then return IGNORE.

Proof (of correctness). We first show that the number of edge bubbles not adjacent to
any other edge bubble in H is at most |Di|+|Dl|. Let us root each connected component
of H in an arbitrary leaf and for any bubble I ∈ De let ϕ(I) be the only child of I .
Observe that this mapping is injective and maps the set of edge bubbles isolated in
H [De] into Di ∪Dl.

We now prove by contradiction if we apply the reduction, every feasible solution of
(G,S, k) contains a vertex from Z . As edge bubbles have degree 2 in H , H [De] is a set
of paths of non-zero length and isolated vertices. There are at least 3(|Z|+ k) vertices
contained in the paths. Let M be a maximal matching in H [De]. If a path contains l
vertices (for l ≥ 2), it has a matching of cardinality � l

2� ≥ l
3 . Therefore, in H [De] we

have a matching of cardinality at least |Z| + k. Let us examine an arbitrary IJ ∈ M .
Recall that at least three edges leave each bubble. As each of VI , VJ is adjacent to two
other bubbles by single edges, it has to be connected to Z as well. Choose uI , uJ —
vertices from Z such that uI ∈ N(VI) and uJ ∈ N(VJ). We see that there is a path
from uI to uJ passing through an edge from S: it goes from uI to I , then to J through
an edge from S, and then to uJ . As M is a matching, such paths are vertex–disjoint for
all IJ ∈M , except for endpoints uI and uJ .

If we have a solution disjoint with Z of cardinality at most k, there are at least |Z|
pairs IJ ∈ M , where neither I nor J contains a vertex from the solution. Now we
construct a graph P = (Z,EP) such that uIuJ ∈ EP if uI , uJ have been chosen for
some IJ ∈ M , where I and J are solution–free. We prove that P has to be a forest.
Indeed, otherwise there would be a cycle in P — and by replacing each edge from
it by associated path, we construct an S-cycle in G (as paths in which edges from EP

originated are vertex–disjoint). This cycle does not contain any vertex from the solution,
as it passes only through Z and solution–free bubbles. However, as |EP | ≥ |Z|, P
cannot be a forest; the contradiction ends the proof.

3.3 The Leaf Bubble Reduction

We are left with the leaf bubbles and we need to show reductions that lead to |Dl| =
O(k|Z|2). We do this by a single large reduction described in this subsection. It pro-
ceeds in a number of steps. Each step either returns IGNORE (thus ending the reduc-
tion) or — after, possibly, modifying G — passes to the next step. Each step is not
a standalone reduction, as it may increase |E(G)|. However, if the reduction below is
fully applied, it either returns IGNORE or reduces |V (G)|.

Let I be a leaf bubble. As there are at least three edges leaving I , each leaf bubble is
connected to Z by at least two edges. We begin with a bit of preprocessing:

Step 1. As long as there are two vertices v, v′ in Z with vv′ /∈ E, and at least k + 1
bubbles, each connected to both v and v′ by edges not in S, we add an edge vv′ to E,
with vv′ /∈ S.

458 M. Cygan et al.

Lemma 3 (♠). The output (G′, S, k) of Step 1 and the input (G,S, k) have equal sets
of feasible solutions.

Now for each bubble I with vertex set VI we choose arbitrarily two of the edges con-
necting it to Z: eI and e′I . Additionally assume that if S ∩ E(VI , Z) �= ∅ then eI ∈ S.
Let vI and v′I be the endpoints of eI and e′I in Z (possibly vI = v′I). We say that a
bubble I is associated with vertices vI , v

′
I . If two leaf bubbles I1, I2 are connected in

H (form a K2 in H), by an edge eI1I2 ∈ S, we call them a bubble–bar. The proofs
of the following lemmata proceed along lines similar to the proof of correctness for
Reduction 4:

Lemma 4 (♠). If there are at least |Z|2(k + 2) leaf bubbles I such that eI ∈ S then
every feasible solution of (G,S, k) contains a vertex from Z .

Lemma 5 (♠). If there are at least |Z|2(k+ 1) leaf bubbles I such that vIv
′
I ∈ S, then

every feasible solution of (G,S, k) contains a vertex from Z .

Lemma 6 (♠). If there are at least |Z|2(k+ 2) bubble–bars, then any feasible solution
to (G,S, k) contains a vertex from Z .

Step 2. If any of the situations from Lemmata 4, 5 and 6 occur, return IGNORE.

Summing all the obtained bounds, we can count almost all the leaf bubbles (possibly
more than once) and bound their number by O(k|Z|2). The ones that are left satisfy the
following definition:

Definition 4. A leaf bubble I satisfying the following three conditions is called a clique
bubble:

(a) G[N(VI) ∩ Z] is a clique not containing any edge from S,
(b) I is connected to Z by edges not belonging to S,
(c) I is connected to a non–leaf bubble.

Denote the only edge from S connecting a given clique bubble I with its neighbour
bubble by wIw

′
I , with wI ∈ VI .

Lemma 7. If there exists a feasible solution T for EDGE-SUBSET-FVS on (G,S, k),
then there exists a feasible solution T ′, which is disjoint from all clique bubbles in G.

Proof. Let I be a clique bubble. Assume we have a feasible solution T , with T∩VI �= ∅.
We show T ′ = (T \ VI) ∪ {w′

I} is also a feasible solution. Consider any S–cycle C
in G[V \ T ′]. This cycle has to pass through VI (possibly multiple times), or it would
be an S–cycle in G[V \ T], contrary to the assumption T was a feasible solution. Note
that C has to enter and exit VI through N(VI) ∩ Z , as the only vertex in N(VI) \ Z is
w′

I , which is removed by T ′. But then C can be shortened to C′ by replacing every part
contained in VI by a single edge in Z (as N(VI) ∩ Z is a clique). Now C′ is disjoint
from VI and is an S–cycle due to the definition of the clique bubble. So C′ is an S–cycle
in G[V \ T], a contradiction.

Note that the only vertex we added to T was w′
I , which does not belong to a clique

bubble (it does not belong even to a leaf bubble, from property (c) in the definition of
clique bubbles). Thus we can apply this procedure inductively, at each step reducing the
number of vertices in T contained in clique bubbles, until none are left.

Subset Feedback Vertex Set Is Fixed-Parameter Tractable 459

Assume there is a vertex v ∈ Z such that v ∈ N(VIj) for some distinct clique–bubbles

I1, I2, . . . , I10k. We show that the set F = {v} ∪ ⋃10k
j=1 VIj is outer–abundant in G.

Indeed, it is connected and due to the definition of bubbles and properties of the clique
bubble definition, the subgraph G[F] does not contain edges from S. Moreover, there
are at least 10k edges from S incident with G[F] — these are the edges connecting
bubbles Ij with other bubbles, not contained in F as they are non–leaf ones due to
property (c). This enables us to formulate the key step:

Step 3. If there is a vertex v ∈ Z which is adjacent to at least 10k clique bubbles, we
apply Lemma 1 to the set F = {v} ∪⋃10k

j=1 VIj to obtain a set X . If X ∩ Z = ∅, we
remove X from the graph and decrease k by |X |, otherwise we return IGNORE.

Suppose there is a feasible solution T to (G,S, k). Due to Lemma 7 we may assume T
to be disjoint with F \ {v}. Thus either T contains v, or it is disjoint with F , and by
Lemma 1 there exists a solution containing X . This justifies the correctness of Step 3.

Thus we managed to reach the state when the number of leaf bubbles is bounded
by O(k|Z|2). As we modified only the subgraph G[Z], the sets Di, De, Dl remain the
same after modifications and we obtain a graph with |S| = O(k|Z|2). This completes
the description of the 2O(k log k)nO(1) algorithm for EDGE-SUBSET-FVS.

Now we summarize the steps made in this section to show clearly that the number of
leaf bubbles is bounded by O(k|Z|2).

Assume no reduction is applicable. Note that in the last run, the last reduction may
add some edges in Step 1. Let G′ denote the modified graph. Let us check that the graph
G′ indeed has O(k|Z|2) edges from S:

1. The decomposition of V (G) \ Z into bubbles is the same as the decomposition of
V (G′)\Z and bubbles that were inner or edge bubbles in G are, respectively, inner
or edge bubbles in G′;

2. If Step 2 is not applicable, there are at most |Z|2(k+ 2)−1 leaf bubbles connected
to Z by an edge from S, at most |Z|2(k+ 1)−1 leaf bubbles associated with a pair
of vertices connected with an edge from S, and at most 2|Z|2(k + 2) leaf bubbles
connected to other leaf bubbles.

3. If Step 1 is not applicable, for any pair v, v′ of vertices in Z with vv′ /∈ E there are
at most k leaf bubbles adjacent to both vertices of that pair through edges not in S.

4. If a leaf bubble is not a clique bubble, it either is connected to a leaf bubble (forming
a bubble–bar), is connected to Z by an edge in S, has an edge from S between some
two of its neighbours in Z , or has some two neighbours in Z not connected by an
edge. The number of such bubbles in all four cases was estimated above. Thus, in
total, there are at most O(k|Z|2) bubbles which are not clique bubbles.

5. Finally, if Step 3 is not applicable, there are at most (10k − 1)|Z| clique bubbles.
6. Thus |Dl| = O(k|Z|2), moreover |Di| ≤ |Dl| by Lemma 2 and |De| ≤ 3(|Z| +

k)+ |Di|+ |Dl| by Reduction 4 — thus the number of edges in S not incident with
Z is bounded by O(k|Z|2). We added no new edges to S, and the number of edges
in S incident to Z was bounded by O(k|Z|) in the input graph, thus in the output
graph there are O(k|Z|2) edges from S, as desired.

460 M. Cygan et al.

References

1. Becker, A., Bar-Yehuda, R., Geiger, D.: Randomized algorithms for the loop cutset problem.
J. Artif. Intell. Res (JAIR) 12, 219–234 (2000)

2. Bodlaender, H.L.: On disjoint cycles. Int. J. Found. Comput. Sci. 5(1), 59–68 (1994)
3. Bodlaender, H.L., van Dijk, T.C.: A cubic kernel for feedback vertex set and loop cutset.

Theory Comput. Syst. 46(3), 566–597 (2010)
4. Bousquet, N., Daligault, J., Thomassé, S.: Multicut is FPT. In: Proc. of STOC 2011 (to ap-

pear, 2011)
5. Burrage, K., Estivill-Castro, V., Fellows, M.R., Langston, M.A., Mac, S., Rosamond, F.A.:

The undirected feedback vertex set problem has a poly(k) kernel. In: Bodlaender, H.L.,
Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 192–202. Springer, Heidelberg
(2006)

6. Cao, Y., Chen, J., Liu, Y.: On feedback vertex set new measure and new structures. In: Ka-
plan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 93–104. Springer, Heidelberg (2010)

7. Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for feedback vertex
set problems. J. Comput. Syst. Sci. 74(7), 1188–1198 (2008)

8. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the
directed feedback vertex set problem. In: Proc. of STOC 2008, pp. 177–186 (2008)

9. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.:
Solving connectivity problems parameterized by treewidth in single exponential time. CoRR
abs/1103.0534 (2011)

10. Dehne, F.K.H.A., Fellows, M.R., Langston, M.A., Rosamond, F.A., Stevens, K.: An

O(2o(k)n3) FPT algorithm for the undirected feedback vertex set problem. In: Wang, L.
(ed.) COCOON 2005. LNCS, vol. 3595, pp. 859–869. Springer, Heidelberg (2005)

11. Demaine, E.D., Hajiaghayi, M.T., Marx, D.: Open problems from dagstuhl seminar 09511
(2009)

12. Downey, R.G., Fellows, M.R.: Fixed parameter tractability and completeness. In: Complexity
Theory: Current Research, pp. 191–225 (1992)

13. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)
14. Even, G., Naor, J., Schieber, B., Sudan, M.: Approximating minimum feedback sets and

multicuts in directed graphs. Algorithmica 20(2), 151–174 (1998)
15. Even, G., Naor, J., Schieber, B., Zosin, L.: Approximating minimum subset feedback sets in

undirected graphs with applications. SIAM J. Discrete Math. 13(2), 255–267 (2000)
16. Even, G., Naor, J., Zosin, L.: An 8-approximation algorithm for the subset feedback vertex

set problem. SIAM J. Comput. 30(4), 1231–1252 (2000)
17. Guillemot, S.: FPT algorithms for path-transversals and cycle-transversals problems in

graphs. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 129–140.
Springer, Heidelberg (2008)

18. Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-based fixed-
parameter algorithms for feedback vertex set and edge bipartization. J. Comput. Syst.
Sci. 72(8), 1386–1396 (2006)

19. Kanj, I.A., Pelsmajer, M.J., Schaefer, M.: Parameterized algorithms for feedback vertex set.
In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 235–
247. Springer, Heidelberg (2004)

20. Kawarabayashi, K., Kobayashi, Y.: Fixed-parameter tractability for the subset feedback set
problem and the S-cycle packing problem (2010) (manuscript)

21. Marx, D.: Parameterized graph separation problems. Theor. Comput. Sci. 351(3), 394–406
(2006)

Subset Feedback Vertex Set Is Fixed-Parameter Tractable 461

22. Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by the size of
the cutset. In: Proc. of STOC 2011 (to appear, 2011)

23. Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable algorithms for
undirected feedback vertex set. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518,
pp. 241–248. Springer, Heidelberg (2002)

24. Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable algorithms for
finding feedback vertex sets. ACM Transactions on Algorithms 2(3), 403–415 (2006)

25. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–
301 (2004)

26. Thomassé, S.: A quadratic kernel for feedback vertex set. In: Proc. of SODA 2009, pp. 115–
119 (2009)

Domination When the Stars Are Out

Danny Hermelin1, Matthias Mnich2,�,
Erik Jan van Leeuwen3, and Gerhard J. Woeginger4

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
hermelin@mpi-inf.mpg.de

2 International Computer Science Institute, Berkeley, USA
mmnich@icsi.berkeley.edu

3 Department of Informatics, University of Bergen, Norway
E.J.van.Leeuwen@ii.uib.no

4 Department of Mathematics and Computer Science, TU Eindhoven,
The Netherlands

gwoegi@win.tue.nl

Abstract. We algorithmize the recent structural characterization for
claw-free graphs by Chudnovsky and Seymour. Building on this result,
we show that Dominating Set on claw-free graphs is (i) fixed-parameter
tractable and (ii) even possesses a polynomial kernel. To complement
these results, we establish that Dominating Set is not fixed-parameter
tractable on the slightly larger class of graphs that exclude K1,4 as an
induced subgraph. Our results provide a dichotomy for Dominating Set in
K1,�-free graphs and show that the problem is fixed-parameter tractable
if and only if � ≤ 3. Finally, we show that our algorithmization can also
be used to show that the related Connected Dominating Set problem is
fixed-parameter tractable on claw-free graphs.

1 Introduction

The dominating set problem is the problem of determining whether a given graph
G has a dominating set of size at most k. (A subset D ⊆ V (G) is dominating
if every vertex in G is either contained in D or adjacent to some vertex in D.)
Dominating sets play a prominent role in both algorithmics and combinatorics
(see e.g. [18,19]). Since the dominating set problem is hard in its decision [21], ap-
proximation [15], and parameterized versions [9], research has focused on finding
special graph classes for which the problem becomes tractable. In this paper we
consider the class of claw-free graphs. A graph is claw-free if no vertex has three
pairwise nonadjacent neighbors, i.e. if it does not contain K1,3 as an induced sub-
graph. The class of claw-free graphs contains several well-studied graph classes
as a special case, including line graphs, unit interval graphs, the complements of
triangle-free graphs, and graphs of several polyhedra and polytopes. Throughout
� Matthias Mnich has been partly supported by the Netherlands Organisation for

Scientific Research (NWO), grant 639.033.043, and by a DAAD Postdoctoral
Fellowship.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 462–473, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Domination When the Stars Are Out 463

the years, this graph class attracted much interest, and is by now the subject of
hundreds of mathematical research papers and surveys [13].

In the context of algorithms, initial study was directed towards extending
algorithms developed for line graphs. The foremost examples are the two inde-
pendent results by Shibi [30] and Minty [25] (the latter corrected by Nakamura
and Tamura [27]), which extend Edmond’s classical polynomial-time algorithm
for Maximum Independent Set on line graphs [11], better known as Maximum
Matching, to the class of claw-free graphs. In contrast to the independent set
problem, Dominating Set on line graphs, also known as Edge Dominating Set, is
NP-complete [32]. Nevertheless, Fernau recently showed that this problem has
an f(k) · nO(1) time algorithm, where k is the size of the solution [16]. Whether
this result extends to claw-free graphs has been left an open question.

There has also been considerable study devoted to graphs excluding K1,
 for
� > 3, i.e. �-claw-free graphs. These types of graphs appear frequently when
considering geometric intersection graphs of various types. For instance, unit
square graphs are K1,5-free, and unit disk graphs are K1,6-free. Marx showed
that Dominating Set is W[1]-hard on unit square graphs, implying it is hard on
K1,5-free graphs [24]. Note that the problem becomes easy on K1,2-free graphs,
since these graphs are just disjoint unions of cliques. Thus, the remaining cases
left open were K1,3-free and K1,4-free graphs. It is important that we exclude
these graphs as an induced subgraph, and not as a subgraph. In the latter case,
Dominating Set is known to be fixed-parameter tractable [28].

Our Results. We show that Dominating Set is fixed-parameter tractable on claw-
free graphs, generalizing earlier results on line graphs. We use a recent, highly
nontrivial structural characterization of claw-free graphs by Chudnovsky and
Seymour. This characterization shows that every claw-free graph can be built
by applying certain gluing operations to certain atomic structures. Its proof is
contained in a sequence of seven papers (called Claw-free graphs I -VII). The
survey [5] gives an accessible summary of the proof.

The original proof of the Chudnovsky and Seymour characterization theorem
for claw-free graphs is essentially nonalgorithmic. Thus, the main challenge in our
approach was to provide an algorithmic version of this theorem (see Section 2).
Using our algorithmic claw-free decompostion, we establish the following:

– Dominating Set on claw-free graphs is fixed-parameter tractable. To be pre-
cise, we show that we can decide the existence of a dominating set of size at
most k in 9k · nO(1) time (Section 3).

– Connected Dominating Set on claw-free graphs is fixed-parameter tractable
and solvable in 36k ·nO(1) time (Section 3), resolving an open question in [26].

– Dominating Set on claw-free graphs has a polynomial kernel with O(k4)
vertices (Section 4).

To complement our results, we show that Dominating Set is W[1]-hard on K1,4-
free graphs (see the full paper). Thus, we completely determine the parameter-
ized complexity status of Dominating Set in K1,
-free graphs for all �.

464 D. Hermelin et al.

Related Work. Since the announcement of the Chudnovsky-Seymour decompo-
sition theorem for claw-free graphs, several results appeared that use it to attack
problems on the class of claw-free graphs, and particularly on a subclass called
quasi-line graphs (see e.g. [4,3,17]). However, these results are structural and
give no algorithms to find the decomposition.

Recently and independent of our work, two proposals appeared that find an
algorithmic decomposition theorem for claw-free graphs. The decomposition the-
orem obtained by King [22] is based on the work of Chudnovsky and Seymour
and has subtle differences when compared to ours, but his algorithmic methods
are completely different. The decomposition theorem by Faenza et al. [14] is not
based on the Chudnovsky-Seymour structure theorem and thus is substantially
different from ours. They use it to obtain a faster polynomial-time algorithm for
Weighted Independent Set on claw-free graphs. Although their decomposition
can potentially be used to obtain a parameterized algorithm for Dominating Set
on claw-free graphs [31], it is not clear whether a polynomial kernel would follow
as well. Conversely, the ideas behind our work can be adapted to give a fast
polynomial-time algorithm for Weighted Independent Set on claw-free graphs.

While this paper was under submission, another paper proving that Domi-
nating Set is fixed-parameter tractable on claw-free graphs appeared [7]. Their
algorithm does not use the Chudnovsky-Seymour decomposition theorem and
runs in time 2O(k2) · nO(1), compared to our 9k · nO(1) algorithm.

2 Algorithmic View of the Structure of Claw-Free Graphs

We give algorithms to find the decomposition of claw-free graphs implied by the
structural characterization of claw-free graphs by Chudnovsky and Seymour.
Moreover, we show that the characterization can be significantly simplified if we
assume that the size of the maximum independent set of the graph is greater
than three. Due to space limitations, we only state this theorem here and defer
its proof to the full paper.

To understand the structure theorem, we need to introduce a significant
amount of notation. All notions and definitions are essentially the same as in [6].

We work with a more general type of graph, a so-called trigraph. A trigraph is
a graph with a distinguished subset of edges, that are called semi-edges and form
a matching. Two vertices are called semiadjacent if there is a semi-edge between
them, strongly adjacent if there is an edge between them that is not a semi-edge,
and strongly antiadjacent if there is no edge between them. A graph is then sim-
ply a trigraph that has no semi-edges. We now say that u, v are adjacent if u, v
are either strongly adjacent or semiadjacent, and u, v are antiadjacent if u, v are
either strongly antiadjacent or semiadjacent. In a similar manner, we can dis-
tinguish (strong) neighborhoods, completeness, cliques, simplicial vertices, etc.,
as well as (strong) antineighborhoods, anticompleteness, stable sets, etc. We use
α(G) to denote the maximum size of a stable set of G.

A trigraph G is a thickening of a trigraph G′ if for every v ∈ V (G′) there
is a nonempty set Xv ⊆ V (G), such that Xv is a strong clique in G for each

Domination When the Stars Are Out 465

v ∈ V (G′), Xu ∩Xv = ∅ for all distinct u, v ∈ V (G′), and
⋃

v∈V (G′) Xv = V (G).
Moreover, if u, v are strongly adjacent in G′, then Xu is strongly Xv-complete in
G; if u, v are strongly antiadjacent in G′, then Xu is strongly Xv-anticomplete
in G; and if u, v are semiadjacent in G′, then Xu is neither strongly Xv-complete
nor strongly Xv-anticomplete in G.

Note that if G is a thickening of G′ and G′ is a thickening of G′′, then G is
also a thickening of G′′. Also note that if a graph G is a thickening of trigraph
G′ and u, v are semiadjacent in G′, then |Xu|+ |Xv| ≥ 3.

A strong clique X of a trigraph G is homogeneous if every vertex in G\X is
either strongly complete or strongly anticomplete to X . A trigraph G admits
twins if G has a homogeneous strong clique of size 2. A pair of strong cliques
(A,B) is homogeneous if every vertex v ∈ V (G)\(A∪B) is either strongly com-
plete or strongly anticomplete to A, and is either strongly complete or strongly
anticomplete to B. A homogeneous pair of cliques (A,B) is a W-join if A is not
strongly complete nor strongly anticomplete to B, and |A| ≥ 2 or |B| ≥ 2. A
W-join is proper if no member of A is strongly complete or strongly anticomplete
to B and no member of B is strongly complete or strongly anticomplete to A.

Note that by thickening a trigraph to a graph, one creates twins and W-joins.
Hence given a graph G, we can find a trigraph G′ such that G is a thickening of
G′ by contracting twins into a single vertex and replacing W-joins by semi-edges.
Strips, Stripes, and Base Classes. A strip-graph H consists of disjoint finite sets
V (H) and E(H), and an incidence relation between V (H) and E(H) (i.e. a
subset of V (H)× E(H)). For any F ∈ E(H), let F denote the set of h ∈ V (H)
incident with F . A strip-graph is essentially a hypergraph, except that we allow
multiple edges and empty edges.

A strip-structure (H, η) of a trigraph G is a strip-graph H with E(H) �= ∅,
and a function η such that for each F ∈ E(H), η(F) ∈ 2V (G), and for each
h ∈ F , η(F, h) ⊆ η(F), such that:

– The sets η(F) (F ∈ E(H)) are nonempty, pairwise disjoint, and have union
V (G).

– For each h ∈ V (H), the union of the sets η(F, h) for all F ∈ E(H) with
h ∈ F is a strong clique of G.

– For all distinct F1, F2 ∈ E(H), if v1 ∈ η(F1) and v2 ∈ η(F2) are adjacent in
G, then there exists h ∈ F1 ∩ F2 such that v1 ∈ η(F1, h) and v2 ∈ η(F2, h).

– For each F ∈ E(H), the strip corresponding to F is claw-free.

Here the strip corresponding to F ∈ E(H), where F = {h1, . . . , hk}, is defined
as follows. Let z1, . . . , zk be new vertices and let J be the trigraph obtained
from G[η(F)] by adding z1, . . . , zk, and for each i making zi strongly complete
to η(F, hi) and strongly anticomplete to J\η(F, hi). Then (J, {z1, . . . , zk}) is
the strip corresponding to F . Observe that there is a direct correspondence
between hi and zi, and between η(F, hi) and N(zi). Moreover, given just a
strip-structure, it is easy to reconstruct the graph it is based on. We define
η(h) =

⋃
F |h∈F η(F, h) for all h ∈ V (H).

We discern two special types of strips. A strip (J, Z) is a spot if J has three
vertices, say v, z1, z2, and v is strongly adjacent to z1, z2, and z1 is strongly

466 D. Hermelin et al.

antiadjacent to z2, and Z = {z1, z2}. A strip (J, Z) is a stripe if J is a claw-free
trigraph and Z ⊆ V (J) is a set of strongly simplicial vertices, such that Z is
strongly stable and a vertex of V (J)\Z is adjacent to at most one vertex of Z.

We say that a stripe (J, Z) is a thickening of a stripe (J ′, Z ′) if J is a thickening
of J ′ with sets Xv (v ∈ V (J ′)), such that |Xz | = 1 for each z ∈ Z ′ and Z =⋃

z∈Z′ Xz.
The structural characterization shows that claw-free graphs can be decom-

posed into several base classes. Below we define these classes.
An arc is a connected subset of the sphere S1. A circular-arc graph is the

intersection graph of a set I of arcs. If the arcs do not cover S1, this is an
interval graph. A circular-arc graph is proper if no arc of I contains another arc
of I.

A line trigraph G of some graph H is a trigraph where V (G) = E(H) and
e, f ∈ E(H) are adjacent in G if and only if e and f share an endpoint in H .
Moreover, e, f are strongly adjacent if e and f share an endpoint of degree at
least three.

Let G be the trigraph with V (G) = {v1, . . . , v13} such that {v1, . . . , v6} is an
induced cycle; v7 is strongly adjacent to v1 and v2; v8 is strongly adjacent to
v4, v5, and possibly adjacent to v7; v9 is strongly adjacent to v1, v2, v3, and v6;
v10 is strongly adjacent to v3, v4, v5, and v6, and adjacent to v9; v11 is strongly
adjacent to v1, v3, v4, v6, v9, and v10; v12 is strongly adjacent to v2, v3, v5, v6,
v9, and v10; v13 is strongly adjacent to v1, v2, v4, v5, v7, and v8. Then G\X for
any X ⊆ {v7, v11, v12, v13} is an XX-trigraph.

The following trigraphs are called near-antiprismatic trigraphs. Let G be a
trigraph that is the disjoint union of three n-vertex strong cliques A,B,C for
n ≥ 2 and two vertices a0, b0. Let X ⊆ A ∪ B ∪ C with |C\X | ≥ 2 and let the
graph have the following adjacencies. For 1 ≤ i, j ≤ n, ai and bj are adjacent if
and only if i = j, and ci is antiadjacent to aj and bj if and only if i = j. All
(anti-)adjacencies are strong, except that possibly ai is semiadjacent to bi for at
most one value of i ∈ {1, . . . , n}, and if so then ci ∈ X ; ai is semiadjacent to ci

for at most one value of i ∈ {1, . . . , n}, and if so then bi ∈ X ; bi is semiadjacent
to ci for at most one value of i ∈ {1, . . . , n}, and if so then ai ∈ X . Moreover, a0

is strongly complete to A, b0 is strongly complete to B, and a0 is antiadjacent
to b0. Then G\X is near-antiprismatic.

We also define certain special stripes. Let J be near-antiprismatic, let a0, b0 be
as in the above definition, with a0, b0 strongly antiadjacent, and let Z = {a0, b0}.
The class of all such stripes (J, Z) is denoted by Z2.

Let H be a graph and let h1, . . . , h5 be a path in H , such that h1 and h5

have degree one and every edge of H is incident with one of h2, h3, h4. Let J
be obtained from a line trigraph of H by making the vertices corresponding
to edges h2h3 and h3h4 either semiadjacent or strongly antiadjacent, and let
Z = {h1h2, h4h5}. The class of all such stripes (J, Z) is denoted by Z3.

Let J be the trigraph with the vertex set {a0, a1, a2, b0, b1, b2, b3, c1, c2} such
that {a0, a1, a2}, {b0, b1, b2, b3}, {a2, c1, c2}, and {a1, b1, c2} are strong cliques,

Domination When the Stars Are Out 467

b2, c1 are strongly adjacent, b2, c2 are semiadjacent, and b3, c1 are semiadjacent.
Then let Z = {a0, b0}. The class of all such stripes (J, Z) is denoted by Z4.

Let J be an XX-trigraph, let v1, . . . , v13, X be as in the definition of XX-
trigraphs, let v7, v8 be strongly antiadjacent in J , and let Z = {v7, v8}\X . The
class of all such stripes (J, Z) is denoted by Z5.
Algorithmic Structure Theorem. Our main result is the following algorithmic
structure theorem of claw-free graphs. The proof is given in the full paper.

Theorem 1. Let G be a connected claw-free graph, such that G does not admit
twins or proper W-joins and α(G) > 3. Then either

– G is a thickening of an XX-trigraph, or G is a proper circular-arc graph, or
– G admits a strip-structure such that each strip (J, Z) either is a spot or is a

stripe with 1 ≤ |Z| ≤ 2 for which either
• J is a proper circular-arc graph and |Z| = 1,
• J is a proper interval graph and |Z| = 2,
• (J, Z) is a thickening of a member of Z2 ∪ Z3 ∪ Z4 ∪ Z5, or
• |Z| = 1, α(J) ≤ 3, and J\N [Z] �= ∅.

We can distinguish the cases and find the strip-structure in polynomial time.

3 Application to Parameterized Algorithms

Using Theorem 1, we show that Dominating Set and Connected Dominating Set
on claw-free graphs are fixed-parameter tractable. Due to space limitations, we
defer the proof for Connected Dominating Set to the full paper.

Let γ(G) denote the minimum size of a dominating set of G. More generally,
let γ(G,A), where A ⊆ V (G), denote the size of a smallest subset of V (G)
dominating all vertices in V (G)\A. We implicitly use the following result of Allan
and Laskar [1]. Let i(G) denote the minimum size of an independent dominating
set of G, that is, of any subset of V (G) that is both an independent set and a
dominating set of G.

Theorem 2 ([1]). If G is a claw-free graph, then i(G) = γ(G).

Allan and Laskar also give an algorithm to turn any dominating set into an
independent dominating set of the same or smaller size. We can thus assume
throughout w.l.o.g. that any (minimum) dominating set that we consider is also
an independent set.

The idea of how to establish the fixed-parameter tractability of Dominating
Set on claw-free graphs is as follows. We first show that we can remove twins and
proper W-joins from G without changing the size of its minimum dominating
set. If α(G) ≤ 3, then γ(G) ≤ 3, and we can find a minimum dominating set by
exhaustive enumeration. If α(G) > 3, we can apply Theorem 1. Then G either
belongs to a basic class, or it can be decomposed into strips. If G is in a basic
class, we can easily find a minimum dominating set. If G can be decomposed
into strips, we solve Minimum Dominating Set separately on each strip. We then
use a parameterized algorithm to stitch the solutions of the strips together.

468 D. Hermelin et al.

Easy Cases and Further Structure. We first show that we can remove twins
and (proper) W-joins from a graph without changing the size of its minimum
dominating set. Moreover, the reductions preserve claw-freeness.

Lemma 1. Let a, b be twins of a graph G. Then γ(G) = γ(G− a).

Lemma 2. Let (A,B) be a W-join of a graph G and let X ⊆ V (G) be such that
A ∩X �= ∅ implies A ⊆ X and the same for B. Then we can find in polynomial
time sets A′ ⊂ A and B′ ⊂ B with |A\A′|+ |B\B′| ≤ 3, such that the graph G′

obtained by removing A′ and B′ from G, and possibly removing all remaining
edges between A\A′ and B\B′, satisfies γ(G,X) = γ(G′, X ∩ V (G′)).

The lemma implies that we can remove proper W-joins. Hence we can use the
structure theorem. We now show that if a graph G is in a ‘basic class’, a minimum
dominating set can be computed in polynomial time.

Theorem 3 ([20]). Let G be a circular-arc graph. Then γ(G) can be computed
in linear time.

Lemma 3. Let G be a graph that is a thickening of an XX-trigraph. Then γ(G)
can be computed in polynomial time.

Given a strip-structure of a graph, we want to compute a minimum dominating
set efficiently for all its strips and be able to stitch these solutions together in an
optimal fashion. To this end, we need to parameterize the minimum dominating
set of a strip (J, Z) by what a minimum dominating set D of G would look like
relative to this strip. Let F be the edge of the strip structure corresponding
to (J, Z). Then for each h ∈ F corresponding to some z ∈ Z, there are three
possible cases, depending on whether or not η(h) or η(F, h) contains a vertex
of D or not. We model this by considering two disjoint sets X,Y ⊆ Z. We put
z ∈ Z into X to model the situation where η(h)∩D = ∅, and we put z into Y to
model the situation where (η(h)\η(F, h)) ∩D �= ∅. Then, for any class of strips
we have, we have to show how to compute γ(J\(X ∪ Y), N [Y]) efficiently for
any disjoint X,Y ⊆ Z. Observe that the case when z ∈ Z is neither in X nor in
Y correctly models the case when η(F, h)∩D �= ∅, because, since z is simplicial,
we can always assume that any dominating set of J contains a neighbor of z
instead of z.

Lemma 4. Let (J, Z) be a stripe of any of the types mentioned in Theorem 1.
Then for any disjoint X,Y ⊆ Z, γ(J\(X ∪ Y), N [Y]) can be computed in poly-
nomial time.

We now investigate the strip-structure given by Theorem 1 in relation to the
minimum dominating set problem. It follows from the strip-structure that we
can see H as a multigraph with loops. The loops are precisely those F ∈ E(G)
for which |F | = 1. We bicolor the edges of H as follows. Color an edge F ∈ E(H)
black if the strip (J, Z) corresponding to F satisfies that V (J)\N [Z] �= ∅, or that
V (J) is a union of two strong cliques, |V (J)| ≥ 4, and |Z| = 2. All other edges
are colored white. We can observe from Theorem 1 that strips corresponding to
white edges of H are either spots or have exactly one edge and two vertices.

Domination When the Stars Are Out 469

Lemma 5. If γ(G) ≤ k, then the subgraph HB of H induced by the black edges
has at most 2k vertices.

Lemma 6. Let D be a dominating set of G with |D| ≤ k. Let H ′ denote the
graph obtained from H by removing all black edges and removing the set of all k′

vertices h ∈ V (H) incident to a black edge F ∈ E(H) for which η(F, h)∩D �= ∅.
Then D induces a vertex cover of H ′ of size at most 2(k − k′).

FPT Algorithm. We show how to stitch the results of the stripes together. Our
approach extends ideas of Fernau [16] for parameterized Edge Dominating Set.

Theorem 4. Let G be a claw-free graph and k ≥ 0 an integer. Then we can
decide in 9k · nO(1) time whether γ(G) ≤ k.

Proof. Following Lemma 1 and 2, we can assume that G does not admit twins or
proper W-joins. Note that all twins in a graph can be found in linear time, while
proper W-joins can be found in O(n2m) time [23]. If α(G) ≤ 3, then γ(G) ≤ 3,
which we can decide in polynomial time by exhaustive enumeration. Hence we
can apply Theorem 1. Consider the various cases. If G is a proper circular-arc
graph or if G is a thickening of an XX-trigraph, then γ(G) can be computed in
polynomial time by Theorem 3 and Lemma 3.

Otherwise, consider the strip-structure (H, η) found. Let D be a minimum
dominating set of G. Then for any F ∈ E(H), the way η(F) is dominated is
determined by D∩(

⋃
h∈F η(h)). Lemmas 5 and 6 suggest the following approach

to guessing this information. Let S1 be any subset of the vertices of H incident
to a black edge. Remove S1 and all black edges from H , and call the remaining
graph H ′. Let S2 be a minimal vertex cover of H ′ of size at most 2k − |S1|.
Let S = S1 ∪ S2. For each such set S, we will determine a dominating set D
such that D ∩ η(h) �= ∅ for each h ∈ S. To this end, we construct an auxiliary
multigraph G′ with vertices vh for each h ∈ S, a weight function w on the edges
of G′, and an integer k′. The idea is that k′ is the number of vertices that any
dominating set D of G must have if D ∩ η(h) �= ∅ for each h ∈ S. Then we use
the multigraph and its associated edge weight function to decide which strips
should be made responsible for ensuring that D∩ η(h) �= ∅ for each h ∈ S, while
minimizing |D|. Initially, G′ consists of the vertices vh and no edges, and k′ = 0.

Consider some edge F ∈ E(H) and let (J, Z) be the strip corresponding to
F . Suppose that F = {h} for some h ∈ V (H), i.e. that |Z| = 1. Note that
(J, Z) must be a stripe, as spots have |Z| = 2. If h �∈ S, then the strip is itself
responsible for dominating all vertices in η(F). So add γ(J\Z) to k′. Otherwise,
i.e. if h ∈ S, then some vertex of η(h) will be in the dominating set and it
could potentially also be in η(F). So add a vertex vF to G′, and add an edge
eF between vF and vh to G′ with weight γ(J)− γ(J\Z,N [Z]). This models the
additional cost of having a vertex of η(F, h) in the dominating set. Since N [Z]
is a strong clique, any dominating set for J can be assumed to have a vertex in
N(Z), i.e. in η(F, h). Finally, add γ(J\Z,N [Z]) to k′.

Suppose that F = {h, h′} for distinct h, h′ ∈ V (H), i.e. that |Z| = 2. If (J, Z)
is a spot, then F ∩ S �= ∅, or the vertex in η(F) will never be dominated. Add

470 D. Hermelin et al.

an edge eF to G′. If h, h′ ∈ S, then eF runs between vh and vh′ . If only one of
h and h′ belongs to S, say h ∈ S, add a new vertex vF to G′ and let eF run
between vh and vF . The weight of eF is 1.

If (J, Z) is a stripe, let Z = {z, z′}, where z corresponds to h and z′ to h′.
If F ∩ S = ∅, add γ(J\Z) to k′. If F ∩ S = {h}, then add a vertex vF to G′

and an edge eF with weight γ(J\{z′})− γ(J\Z,N [z]) between vF and vh. Add
γ(J\Z,N [z]) to k′. The cases when F ∩S = {h′} or F ∩S = {h, h′} are similar.

Observe that each edge e added to G′ for some F ∈ E(H) in the above
construction corresponds to a particular way to ensure that a dominating set of
the strip F has a vertex in η(F, h), where e is incident to vh in G′. The weight
on the edge corresponds to the number of extra vertices it would cost to ensure
this, compared to the cost of having no vertex in η(F, h). Therefore we want to
find a subset of the edges of minimum total weight that covers all vertices vh

of G′. This clearly corresponds to a smallest dominating set D of G for which
D∩η(h) �= ∅ for each h ∈ S. Finding this subset takes cubic time via a minimum
generalized weighted edge cover [29,16].

The above algorithm yields a smallest dominating set D with D∩η(h) �= ∅ for
each h ∈ S. Repeat this procedure for all S = S1 ∪ S2. The number of possible
choices for S1 is at most

∑2k
i=0

(
2k
i

)
. For each set S1, we spend 22k−|S1| · nO(1)

time to enumerate all minimal vertex covers [8]. As
∑2k

i=0

(
2k
i

)
22k−i = 9k by the

binomial theorem, the algorithm decides whether γ(G) ≤ k in 9k ·nO(1) time. ��

4 Polynomial Kernel for Dominating Set

We show that Dominating Set has a polynomial kernel on claw-free graphs.
A kernelization algorithm for a parameterized problem Π computes in polyno-
mial time, given an instance (x, k) of Π , a new instance (x′, k′) of Π such that
(x′, k′) ∈ Π if and only if (x, k) ∈ Π , and |x′| ≤ f(k) for some computable func-
tion f . The instance (x′, k′) is called a kernel of Π , and it is called a polynomial
kernel if f is a polynomial. Not every fixed-parameter tractable problem admits
a polynomial kernel, or the polynomial hierarchy collapses to the third level [2].

The basic idea of our kernel is to replace each stripe of the strip-structure
given in Theorem 1 by a stripe of size at most linear in k. We then reduce the
strip-structure itself to have a polynomial number of vertices and edges.

We first consider stripes (J, Z) with |Z| = 2. We need to show that if a stripe
(J, Z) is a thickening of a member of Z2 ∪ Z3 ∪ Z4 ∪ Z5, we can distinguish
of a member of which class (J, Z) is a thickening of. We provide recognition
algorithms for each class in the full paper. Then we can reduce (J, Z).

Lemma 7. Let (J, Z) be a stripe of any of the types mentioned in Theorem 1
with |Z| = 2 such that J is a graph, J does not admit twins, and V (J) is not
a union of two strong cliques. Then we can find a claw-free stripe (J ′, Z) with
|V (J ′)| ≤ 18k + 33, such that γ(J\(X ∪ Y), N(Y)) = γ(J ′\(X ∪ Y), N(Y)) for
any disjoint X,Y ⊆ Z.

For stripes (J, Z) with |Z| = 1, we can follow a simpler approach.

Domination When the Stars Are Out 471

Lemma 8. Let (J, Z) be a thickening of an almost-unbreakable stripe such that
|Z| = 1 and J is a graph. Then we can find in polynomial time a claw-free stripe
(J ′, Z ′) and an integer k′ ≥ 0, such that γ(J\Z,N [Z]) = γ(J ′\Z ′, N [Z ′]) + k′,
γ(J\Z) = γ(J ′\Z ′) + k′, γ(J) = γ(J ′) + k′, |Z ′| = 1, and |V (J ′)| ≤ 4.

We now again consider the strip-structure as a multigraph with loops and color
its edges black or white as before. Consider the subgraph HW of H induced
by the white edges and flatten it by removing all parallel edges and replacing
loops by pendant vertices. Then HW has a vertex cover of size at most 2k by
Lemma 6 if γ(G) ≤ k. Now kernelize HW using the Buss rule. Repeatedly do
the following until no longer possible: Remove a vertex of degree 0 and remove
a vertex v of degree greater than 2k in HW and add v to a set M . It is clear
that the remaining graph H ′

W must have at most (2k)2 + 2k vertices, or we can
answer NO. Moreover, |M | ≤ 2k, or we can answer NO.

Let HB denote the subgraph of H induced by black edges. From Lemma 5 it
follows that |V (HB)| ≤ 2k, or we can answer NO. Now consider the subgraph of
H induced by V (H ′

W), M , and V (HB). To each vertex h ∈ M , we add a loop
F with F = {h}, and set η(F) = η(F, h) = v∗h for some new vertex v∗h. Call the
resulting graph Hk. It is clear that |V (Hk)| ≤ 6k + 4k2.

Lemma 9. Let Gk be the subgraph of G induced by Hk. Then γ(G) ≤ k if and
only if γ(Gk) ≤ k.

Theorem 5. Dominating Set on claw-free graphs has an O(k4) kernel.

Proof. By eliminating twins and proper W-joins (Lemma 1 and 2), and solving
base cases as in Theorem 4, it follows from Theorem 1 that we find a nontrivial
strip-structure (H, η). It follows from Lemma 9 that we can either return a
trivial NO-instance, or reduce (H, η) to a strip-structure (Hk, ηk) with |V (Hk)| =
O(k2). Let Gk be the graph induced by (Hk, ηk). Then γ(G) ≤ k if and only if
γ(Gk) ≤ k by Lemma 9. Abusing notation, let H = Hk and η = ηk. We now
consider different types of strips (J, Z) and bound their number and size.

Suppose that |Z| = 1. Consider all strips for which additionally |V (J)| = 2.
Note that each h ∈ V (H) is incident to at most one F ∈ E(H) that corresponds
to such a strip, for any two would imply the existence of twins in G. Hence we
can limit the number of such strips by 2k. If |V (J)| > 2, then as G does not
admit twins, J\N [Z] �= ∅. Hence any dominating set of G must have at least
one vertex in J\Z. Following Theorem 1, either J is a proper circular-arc graph,
or α(J) ≤ 3, or (J, Z) is a thickening of a member of Z5. In all three cases, we
can compute γ(J\(X ∪ Y), N(Y)) for any disjoint X,Y ⊆ Z in polynomial time
following Theorem 3 and Lemma 4. We then apply Lemma 8 to replace (J, Z)
by a stripe (J ′, Z ′) of constant size. Since each dominating set of G must have
at least one vertex in J\Z, the number of these stripes is at most k.

So assume that |Z| = 2. Consider all stripes between h and h′, for certain
h, h′ ∈ V (H), that are a union of two strong cliques. Suppose that there are
j such stripes and denote the two cliques of the i-th stripe by Ai and Bi. We
can assume that Ai ⊆ η(h) and Bi ⊆ η(h′). Hence A =

⋃
i Ai is a strong clique

472 D. Hermelin et al.

and so is B =
⋃

i Bi. But then we can actually view all these stripes as a single
stripe that is the union of the two strong cliques A,B and assume that j ≤ 1.
(Alternatively, one can reduce (A,B) to form a proper W-join in G if j ≥ 2.) If
j = 1, we can show that this stripe is a thickening of a stripe with four vertices
and one semiadjacent pair of vertices. Then we use Lemma 2 to reduce this stripe
to a claw-free stripe (J ′, Z ′) with |V (J ′)| ≤ 5 and |Z ′| = 2. Since these stripes
each correspond to a black edge of H , the total number of such stripes in H is
at most

(
2k
2

)
by Lemma 5.

Observe that any two spots incident to the same h, h′ ∈ V (H) form twins.
But then H contains at most

(
6k+4k2

2

)
spots. They already have constant size.

We conclude from Theorem 1 that the strips not considered thus far have
J\N [Z] �= ∅ and that J\Z thus must contain a vertex of any dominating set of
G. Moreover, J is a proper interval graph or (J, Z) is a thickening of a member
of Z2 ∪ Z3 ∪ Z4 ∪ Z5. Then it follows that we can ‘kernelize’ each such strip
to have size O(k), following Lemma 7. Since J\Z must contain a vertex of any
dominating set of G, there are at most k such strips.

Consider the strip structure (H ′, η′) and strips as constructed above. Let G′

be the graph induced by these strips. Then G′ is claw-free, has O(k4) vertices,
and has a dominating set of size k if and only if G has one. ��

References

1. Allan, R.B., Laskar, R.: On Domination and Independent Domination Numbers
of a Graph. Discrete Mathematics 23, 73–76 (1978)

2. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. Journal of Computer and System Sciences 75(8), 423–434
(2009)

3. Chudnovsky, M., Fradkin, A.O.: An approximate version of Hadwiger’s conjecture
for claw-free graphs. Journal of Graph Theory 63(4), 259–278 (2010)

4. Chudnovsky, M., Ovetsky, A.: Coloring Quasi-Line Graphs. Journal of Graph
Theory 54(1), 41–50 (2007)

5. Chudnovsky, M., Seymour, P.D.: The Structure of Claw-Free Graphs. London
Mathematical Society Lecture Note Series: Surveys in Combinatorics, vol. 327,
pp. 153–171 (2005)

6. Chudnovsky, M., Seymour, P.D.: Claw-free graphs. V. Global structure. Journal
of Combinatorial Theory, Series B 98(6), 1373–1410 (2008)

7. Cygan, M., Philip, G., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.:
Dominating Set is Fixed Parameter Tractable in Claw-free Graphs,
arXiv:1011.6239v1 (cs.DS) (2010) (preprint)

8. Damaschke, P.: Parameterized Enumeration, Transversals, and Imperfect Phy-
logeny Reconstruction. In: Downey, R., Fellows, M., Dehne, P. (eds.) IWPEC
2004. LNCS, vol. 3162, pp. 1–12. Springer, Heidelberg (2004)

9. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness.
Congressus Numerantium 87, 161–178 (1992)

10. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York
(1999)

11. Edmonds, J.: Paths, trees, and flowers. Canadian Journal of Mathematics 17,
449–467 (1965)

Domination When the Stars Are Out 473

12. Eisenbrand, F., Oriolo, G., Stauffer, G., Ventura, P.: The Stable Set Polytope of
Quasi-Line Graphs. Combinatorica 28(1), 45–67 (2008)

13. Faudree, R., Flandrin, E., Ryjáček, Z.: Claw-free graphs – A survey. Discrete
Mathematics 164(1-3), 87–147 (1997)

14. Faenza, Y., Oriolo, G., Stauffer, G.: An algorithmic decomposition of claw-free
graphs leading to an O(n3)-algorithm for the weighted stable set problem. In:
Proc. SODA 2011, pp. 630–646. ACM-SIAM (2011)

15. Feige, U.: A Threshold of ln n for Approximating Set Cover. Journal of the
ACM 45, 634–652 (1998)

16. Fernau, H.: Edge Dominating Set: Efficient Enumeration-Based Exact Algo-
rithms. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS,
vol. 4169, pp. 142–153. Springer, Heidelberg (2006)

17. Galluccio, A., Gentile, C., Ventura, P.: The stable set polytope of claw-free graphs
with large stability number. Electronic Notes Discrete Mathematics 36, 1025–1032
(2010)

18. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of domination in
graphs. Marcel Dekker Inc., New York (1998)

19. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in graphs: Advanced
Topics. Marcel Dekker Inc., New York (1998)

20. Hsu, W.-L., Tsai, K.-H.: Linear-time algorithms on circular arc graphs. Informa-
tion Processing Letters 40, 123–129 (1991)

21. Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103.
Plenum, New York

22. King, A.D.: Claw-free graphs and two conjectures on ω, Δ, and χ, PhD Thesis,
McGill University, Montreal, Canada (2009)

23. King, A.D., Reed, B.A.: Bounding χ in Terms of ω and Δ for Quasi-Line Graphs.
Journal of Graph Theory 59(3), 215–228 (2008)

24. Marx, D.: Parameterized Complexity of Independence and Domination on Geo-
metric Graphs. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS,
vol. 4169, pp. 154–165. Springer, Heidelberg (2006)

25. Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. Journal
of Combinatorial Theory, Series B 28(3), 284–304 (1980)

26. Misra, N., Philip, G., Raman, V., Saurabh, S.: The effect of girth on the kernel-
ization complexity of Connected Dominating Set. In: Lodaya, K., Mahajan, M.
(eds.) FSTTCS 2010, Schloss Dagstuhl, Daghstuhl, Germany. LIPIcs, vol. 8, pp.
96–107 (2010)

27. Nakamura, D., Tamura, A.: A revision of Minty’s algorithm for finding a maxi-
mum weighted stable set of a claw-free graph. Journal of the Operations Research
Society of Japan 44(2), 194–204 (2001)

28. Philip, G., Raman, V., Sikdar, S.: Solving Dominating Set in Larger Classes of
Graphs: FPT Algorithms and Polynomial Kernels. In: Fiat, A., Sanders, P. (eds.)
ESA 2009. LNCS, vol. 5757, pp. 694–705. Springer, Heidelberg (2009)

29. Plesńık, J.: Constrained weighted matchings and edge coverings in graphs. Dis-
crete Applied Mathematics 92(2-3), 229–241 (1999)

30. Sbihi, N.: Algorithme de recherche d’un stable de cardinalité maximum dans un
graphe sans étoile. Discrete Mathematics 29(1), 53–76 (1980)

31. Stauffer, G.: Personal communication
32. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM Journal on

Applied Mathematics 38(3), 364–372 (1980)

A Simple Deterministic Reduction for

the Gap Minimum Distance of Code Problem�

Per Austrin1 and Subhash Khot2

1 University of Toronto
2 New York University

Abstract. We present a simple deterministic gap-preserving reduction
from SAT to the Minimum Distance of Code Problem over F2. We also
show how to extend the reduction to work over any finite field (of con-
stant size). Previously a randomized reduction was known due to Dumer,
Micciancio, and Sudan [9], which was recently derandomized by Cheng
and Wan [7, 8]. These reductions rely on highly non-trivial coding theo-
retic constructions whereas our reduction is elementary.

As an additional feature, our reduction gives a constant factor hard-
ness even for asymptotically good codes, i.e., having constant rate and
relative distance. Previously it was not known how to achieve determin-
istic reductions for such codes.

1 Introduction

The Minimum Distance of Code Problem over a finite field Fq, which we denote
Min Dist(q), asks for a non-zero codeword with minimum Hamming weight in
a given linear code C (i.e., a linear subspace of F

n
q). The problem was proved to

be NP-hard by Vardy [16].
Dumer, Micciancio, and Sudan [9] proved that assuming RP �= NP the prob-

lem is hard to approximate within some factor γ > 1 using a gap preserving re-
duction from the Nearest Codeword Problem, denoted NCP(q) (which is known
to be NP-hard even with a large gap). The latter problem asks, given a code
C̃ ⊆ F

m
q and a point p ∈ F

m
q , for a codeword that is nearest to p in Hamming

distance. However, Dumer et al.’s reduction is randomized: it maps an instance
(C̃, p) of NCP(q) to an instance C of Min Dist(q) in a randomized manner
such that: in the YES Case, with high probability, the code C has a non-zero
codeword with weight at most d, and in the NO Case, C has no non-zero code-
word of weight less that γd, for some fixed constant γ > 1. We note that the
minimum distance of code is multiplicative under the tensor product of codes;
this enables one to boost the inapproximability result to any constant factor, or
even to an almost polynomial factor (under a quasipolynomial time reduction),
see [9].

� Research done while first author at New York University supported by NSF Ex-
peditions grant CCF-0832795. Second author supported by NSF CAREER grant
CCF-0833228, NSF Expeditions grant CCF-0832795, and BSF grant 2008059.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 474–485, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Simple Deterministic Reduction 475

The randomness in Dumer et al.’s reduction is used for constructing, as a
gadget, a non-trivial coding theoretic construction with certain properties. In
a remarkable pair of papers, Cheng and Wan [7, 8] recently constructed such
a gadget deterministically, thereby giving a deterministic reduction to the Gap
Min Dist(q) Problem. Cheng and Wan’s construction is quite sophisticated. It
is an interesting pursuit, in our opinion, to seek an elementary deterministic
reduction for the Gap Min Dist(q) Problem.

In this paper, we indeed present such a reduction. For codes over F2, our
reduction is (surprisingly) simple, and does not rely on any specialized gadget
construction. The reduction can be extended to codes over any finite field Fq;
however, then the details of the reduction become more involved, and we need
to use Viola’s recent construction of a psedorandom generator for low degree
polynomials [17]. Even in this case, the resulting reduction is conceptuelly quite
simple.

We also observe that our reduction produces asymptotically good codes, i.e.,
having constant rate and relative distance. While Dumer et al. [9] are able to prove
randomized hardness for such codes, this was not obtained by the deterministic
reduction by Cheng and Wan. In [8], proving a constant factor hardness of approx-
imation for asymptotically good codes is mentioned as an open problem.

Our main theorem is thus:

Theorem 1. For any finite field Fq, there exists a constant γ > 0 such that
it is NP-hard (via a deterministic reduction) to approximate the Min Dist(q)
problem to within a factor 1+γ, even on codes with rate ≥ γ and relative distance
≥ γ (i.e., asymptotically good codes).

Another motivation to seek a new deterministic reduction for Min Dist(q) is
that it might lead to a deterministic reduction for the analogous problem for
integer lattices, namely the Shortest Vector Problem (SVP). For SVP, we do not
know of a deterministic reduction that proves even the basic NP-hardness, let
alone a hardness of approximation result, except in the case of the �∞ norm. All
known reductions are randomized [1, 6, 15, 12, 13, 11]. In fact, the reduction
of Dumer et al. [9] giving hardness of approximation for Min Dist(q) assuming
NP �= RP is inspired by a reduction by Micciancio [15] for SVP.

Our hope is that our new reduction for Min Dist(q) can be used to shed new
light on the hardness of SVP. For instance, it might be possible to combine our
reductions for Min Dist(q) for different primes q so as to give a reduction over
integers, i.e., a reduction to SVP.

1.1 Organization

We present a proof of this theorem for the binary field in Section 3 and for a
general finite field in Section 5. Even for the binary case, it is instructive to
first see a reduction to NCP(2) in Section 3.1 which is then extended to the
Min Dist(2) problem in Section 3.2.

476 P. Austrin and S. Khot

2 Preliminaries

2.1 Codes

Let q be a prime power.

Definition 1. A linear code C over a field Fq is a linear subspace of F
n
q , where n

is the block-length of the code and dimension of the subspace C is the dimension
of the code. The distance of the code d(C) is the minimum Hamming weight of
any non-zero vector in C.

The two problems Min Dist(q) and NCP(q) are defined as follows.

Definition 2. Min Dist(q) is the problem of determining the distance d(C) of
a linear code C ⊆ F

n
q . The code may be given by the basis vectors for the subspace

C or by the linear forms defining the subspace.

Definition 3. NCP(q) is the problem of determining the minimum distance
from a given point p ∈ F

n
q to any codeword in a given code C ⊆ F

n
q . Equivalently,

it is the problem of determining the minimum Hamming weight of any point z
in a given affine subspace of F

n
q (which would be C − p).

Our reduction uses tensor products of codes, which are defined as follows.

Definition 4. Let C1, C2 ⊆ F
n
q be linear codes. Then the linear code C1 ⊗C2 ⊆

F
n2

q is defined as the set of all n × n matrices over Fq such that each of its
columns is a codeword in C1 and each of its rows is a codeword in C2.

A well-known fact is that the distance of a code is multiplicative under the tensor
product of codes.

Fact 2 Let C1, C2 ⊆ F
n
q be linear codes. Then the linear code C1 ⊗ C2 ⊆ F

n2

q

has distance d(C1 ⊗ C2) = d(C1)d(C2).

We shall need the following Lemma which shows that for many codewords of
C ⊗ C one can obtain a stronger bound on the distance than the bound d(C)2

given by Fact 2. A proof can be found in the full version [4].

Lemma 1. Let C ⊆ F
n
q be a linear code of distance d = d(C), and let Y ∈ C⊗C

be a non-zero codeword with the additional properties that

1. The diagonal of Y is zero.
2. Y is symmetric.

Then Y has at least d2(1 + 1/q) non-zero entries.

2.2 Hardness of Constraint Satisfaction

The starting point in our reduction is a constraint satisfaction problem that we
refer to as the Max NAND problem, defined as follows.

A Simple Deterministic Reduction 477

Definition 5. An instance Ψ of the Max NAND problem consists of a set of
quadratic equations over F2, each of the form xk = NAND(xi, xj) = 1+xi ·xj for
some variables xi, xj , xk. The objective is to find an assignment to the variables
such that as many equations as possible are satisfied. We denote by Opt(Ψ) ∈
[0, 1] the maximum fraction of satisfied equations over all possible assignments
to the variables.

The following is an easy consequence of the PCP Theorem [10, 3, 2] and the fact
that NAND gates form a basis for the space of boolean functions.

Theorem 3. There is a universal constant δ > 0 such that given a Max NAND

instance Ψ it is NP-hard to determine whether Opt(Ψ) = 1 or Opt(Ψ) ≤ 1− δ.

3 The Binary Case

In this section we give a simple reduction from Max NAND showing that it is
NP-hard to approximate Min Dist(2) to within some constant factor.

3.1 Reduction to Nearest Codeword

It is instructive to start with a reduction for the Nearest Codeword Problem,
NCP(2), for which it is significantly easier to prove hardness. There are even
simpler reductions known than the one we give here, but as we shall see in the
next section this reduction can be modified to give hardness for the Min Dist(2)
problem.

Given a Max NAND instance Ψ with n variables and m constraints, we shall
construct an affine subspace S of F

4m
2 such that:

(i) If Ψ is satisfiable then S has a vector of weight at most m.
(ii) If Opt(Ψ) ≤ 1− 2δ then S has no vector of weight less than (1 + 2δ)m.

This proves, according to Definition 3, that NCP(2) is NP-hard to approximate
within a factor 1 + 2δ.

Every constraint xk = 1+xixj in Ψ gives rise to four new variables, as follows.
We think of the four variables as a function Sijk : F

2
2 → F2. The intent is that

this function should be the indicator function of the values of xi and xj , in other
words, that

Sijk(a, b) =
{

1 if xi = a and xj = b
0 otherwise .

With this interpretation in mind, each function Sijk has to satisfy the following
linear constraints over F2:

Sijk(0, 0) + Sijk(0, 1) + Sijk(1, 0) + Sijk(1, 1) = 1 (1)
Sijk(1, 0) + Sijk(1, 1) = xi (2)
Sijk(0, 1) + Sijk(1, 1) = xj (3)

Sijk(0, 0) + Sijk(0, 1) + Sijk(1, 0) = xk. (4)

478 P. Austrin and S. Khot

Thus, we have a set of n + 4m variables z1, . . . , zn+4m (recall that n and m
are the number of variables and constraints of Ψ , respectively) and 4m linear
constraints of the form

∑
lijzj = bi where li ∈ F

n+4m
2 and bi ∈ F2.

Let S ⊆ F
4m
2 be the affine subspace of F

4m
2 defined by the set of solutions to

the system of equations, projected to the 4m coordinates corresponding to the
Sijk variables. Note that these coordinates uniquely determine the remaining n
coordinates (assuming without loss of generality that every variable of Ψ appears
in some constraint), according to Equations (2)-(4).

Now, if Ψ is satisfiable, then using the satisfying assignment for x and the
intended values for the Sijk’s we obtain an element of S with m non-zero entries.
Note that for each constraint involving variables xi, xj , xk, exactly one of the four
variables Sijk(·, ·) is non-zero.

On the other hand, note that if the function Sijk(·, ·) has exactly one non-
zero entry it must be that the induced values of (xi, xj , xk) satisfy the constraint
xk = 1 + xi · xj (which one can see either by trying all such Sijk or noting that
each of the four different satisfying assignments to (xi, xj , xk) gives a unique such
Sijk). Since every Sijk is constrained to have an odd number of non-zero entries
by Equation (1), it means that whenever Sijk induces values of (xi, xj , xk) that
do not satisfy xk = 1 + xi · xj , it must hold that Sijk has three non-zero entries.
Therefore, we see that if Opt(Ψ) ≤ 1 − δ, it must hold that every element of S
has at least (1 + 2δ)m non-zero entries.

To summarize, we obtain that it is NP-hard to approximate the minimum
weight element of an affine subspace (or equivalently, the Nearest Codeword
Problem) to within a constant factor 1 + 2δ.

3.2 Reduction to Minimum Distance

To get the hardness result for the Min Dist problem, we would like to alter the
reduction in the previous section so that it produces a linear subspace rather
than an affine one. The only non-homogenous part of the subspace produced are
the equations (1) constraining each Sijk to have an odd number of entries. To
produce a linear subspace, we are going to replace the constant 1 with a variable
x0, which is intended to take the value 1. In other words, we replace Equation (1)
with the following equation:

Sijk(0, 0) + Sijk(0, 1) + Sijk(1, 0) + Sijk(1, 1) = x0 (1’)

However, in order to make this work we need to ensure that every assignment
where x0 is set to 0 has large weight, and this requires adding some more com-
ponents to the reduction.

We first observe that the system of constraints relating Sijk to (x0, xi, xj , xk)
is invertible. Namely, we have Equations (1’)-(4), and inversely, that

Sijk(0, 0) = xi + xj + xk Sijk(0, 1) = x0 + xj + xk

Sijk(1, 0) = x0 + xi + xk Sijk(1, 1) = x0 + xk.

Now, if x0 = 0 but at least one of (xi, xj , xk) is non-zero, it must hold that Sijk

has at least two non-zero entries. Thus, if it happens that for a large fraction

A Simple Deterministic Reduction 479

(more than 1/2) of constraints at least one of (xi, xj , xk) is non-zero, it must be
the case that the total weight of the Sijk’s is larger than m. But of course, we
have no way to guarantee such a condition on (xi, xj , xk).

However, we can construct what morally amounts to a separate dummy in-
stance of Max NAND that has this property, and then let it use the same x0

variable as Ψ . Towards this end, let C ⊆ F
N
2 be a linear code of relative distance

1/2 − ε. Here ε > 0 will be chosen sufficiently small and for reasons that will
become clear momentarily, the dimension of the code will be exactly n so that
one can take N = O(n).

Now we introduce N +N2 new variables which we think of as a vector y ∈ F
N
2

and matrix Y ∈ F
N×N
2 . The vector y should be an element of C and the matrix

Y should be an element of C ⊗ C. The intention is that Y = y · y�, or in other
words, that for every i, j ∈ [N] we have Yij = yi · yj .

Analogously to the Sijk functions intended to check the NAND constraints of
Ψ , we now introduce for every i, j ∈ [N] a function Zij : F

2
2 → F2 that is intended

to check the constraint Yij = yi · yj, and that is supposed to be the indicator
of the assignment to the variables (yi, yj). We then impose the analogues of the
constraints (1’)-(4), viz.

Zij(0, 0) + Zij(0, 1) + Zij(1, 0) + Zij(1, 1) = x0 (5)
Zij(1, 0) + Zij(1, 1) = yi (6)
Zij(0, 1) + Zij(1, 1) = yj (7)

Zij(1, 1) = Yij . (8)

Finally, we impose two sets of additional constraints. First, we require that
y = C(x) is the encoding of x under C (recall that C has dimension exactly n
so we can view it as a one-to-one linear map C : F

n
2 → F

N
2). The purpose of this

is to ensure that x is non-zero if and only if y is. Second, we require that the
matrix Y is symmetric and that the diagonal of Y equals y (using Lemma 1 this
is going to enable us to get a better distance bound in the soundness analysis
which turns out to be critical for the reduction to work).

The final subspace S will consist of the projection to the 4m different Sijk

variables and the 4N2 different Zij variables, but with each of the Sijk variables
repeated some r ≈ N2/m number of times in order to make these two sets of
variables of comparable size. Note that by Equations (1)-(4) and (5)-(8) these
variables uniquely determine x0, x, y and Y . Furthermore, because of the invert-
ibility of these constraints, we have that if some Sijk or Zij is non-zero it must
hold that one of x0, x, y and Y are non-zero. Figure 1 gives an overview of the
different components of the reduction and their relations.

Let us then study the the completeness and soundness of the reduction. The
completeness easily follows as in the previous section; using the intended indica-
tor functions for the Sijk’s and Zij ’s we obtain a codeword of weight N2 + rm.
For the soundness, we now proceed by a simple case analysis.

As in the previous section, when x0 is non-zero, each Sijk and Zij must have
at least one non-zero entry and all the δ fraction of the Sijk’s corresponding to

480 P. Austrin and S. Khot

�� ��
�� �	x ∈ F

n
2

�� y=C(x) ��
� ��� ��y ∈ F
N
2

� �
�� ��Y ∈ F

N2

2

diag.��

�� ��
�� �	x0 ∈ F2

� ��� ��{Sijk : F
2
2 → F2} ∈ F

4m
2

Eq. (2)-(4)

��

Eq. (1’)

���������������

� �
�� ��{Zij : F

2
2 → F2} ∈ F

4N2

2

Eq. (5)

�������������

Eq. (6)-(7)

�����������������

Eq. (8)

�����������������

Fig. 1. The different components of the reduction to Min Dist(2). An arrow from one
component to another indicates that the second component is a linear function of the
first, with the label indicating the nature of this linear function.

unsatisfied NAND constraints of Ψ must have at least three non-zero entries,
giving a total weight of N2 + (1 + 2δ)rm.

It remains to consider the case that x0 is zero. Let us first look at the subcase
that y is non-zero. Since y ∈ C is a non-zero codeword, at least (1/2− ε)N of its
coordinates are non-zero. Thus, for at least (3/4− 2ε)N2 pairs (yi, yj) �= (0, 0).
For each such pair, the corresponding Zij function is non-zero, and as argued
earlier, has at least two non-zero entries, which means that the total weight of
the Zij ’s is at least

2 · (3/4− 2ε) ·N2 =
(

3
2
− 4ε

)
·N2.

The next subcase is that x0 and y are zero. In this case x must be zero (because
of the constraint y = C(x)) and thus the matrix Y is non-zero. In this case, it
is easily verified from Equations (5)-(8) that for each i, j ∈ [N] such that Yij is
non-zero, it must be that Zij has four non-zero entries. However, the distance
of the code C ⊗ C to which Y belongs is only (1/2 − ε)2 < 1/4, so it seems
as though we just came short of obtaining a large distance. However, since we
added the constraints that Y is symmetric and that its diagonal equals y (which
is zero), Lemma 1 now implies that Y in fact has (1/2 − ε)2 · 3

2 > (1/4 − 2ε)3
2

fraction non-zero entries. As mentioned above, each corresponding Zij function
has four non-zero entries giving a total weight of at least

4 · (3/8− 3ε) ·N2 =
(

3
2
− 12ε

)
·N2.

In summary, this gives if Ψ is satisfiable the minimum distance of S is rm+N2,
whereas if Opt(Ψ) ≤ 1− δ every non-zero vector in S must have weight at least

min
(

(1 + 2δ)rm + N2,

(
3
2
− 12ε

)
·N2

)
.

A Simple Deterministic Reduction 481

Choosing ε > 0 sufficiently small and

r ≈ N2

2(1 + 2δ)m

we obtain that it is NP-hard to approximate Min Dist(2) to within some factor
δ′ > 1. We have not yet proved that S has good rate and distance – see the full
version [4] for details.

4 Interlude: Linear Approximations to Nonlinear Codes

In our hardness result for Min Dist(q), we need explicit constructions of certain
codes which can be thought of as serving as linear approximations to some
nonlinear codes. In particular, we need a sequence of linear codes C1, . . . , Cq−1

over Fq with the following two properties:

1. d(Ce) � (1 − e/q) ·N for 1 ≤ e ≤ q − 1.
2. If x ∈ C1 then xe ∈ Ce for 1 ≤ e ≤ q − 1. Here xe denotes a vector that is

componentwise eth power of x.

In other words, Ce should contain the nonlinear code {xe}x∈C1 , while still having
a reasonable distance. In this sense we can think of Ce as a linear approximation
to a nonlinear code. To obtain such a sequence of codes, we use pseudorandom
generators for low-degree polynomials. Such pseudorandom generators were re-
cently constructed by Viola [17] (building on [5, 14]), who showed that the sum
of d PRGs for linear functions fool degree d polynomials. Using his result, and
PRGs against linear functions of optimal seed length logq n + O(1 + logq 1/ε)
(see e.g., Appendix A of [5]), one obtains the following theorem.

Theorem 4. For every prime power q, d > 0, ε > 0 there is a constant c :=
c(q, d, ε) such that for every n > 0, there is a polynomial time constructible
(multi)set R ⊆ F

n
q of size |R| ≤ c ·nd such that, for any polynomial f : F

n
q → Fq

of total degree at most d, it holds that∑
a∈Fq

∣∣∣∣ Pr
x∼R

[f(x) = a]− Pr
x∼Fn

q

[f(x) = a]
∣∣∣∣ ≤ ε. (9)

A simple corollary of (9) and the Schwarz-Zippel Lemma is the following.

Corollary 1. If d = q − 1 the (multi)set R ⊆ F
n
q constructed in Theorem 4 has

the property that for every non-zero polynomial f : F
n
q → Fq of total degree at

most e ≤ q − 1,
Pr

x∼R
[f(x) �= 0] ≥ 1− e/q − ε. (10)

Now define, for 1 ≤ e ≤ q − 1, Ce to be the set of all vectors (f(x))x∈R

where f : F
n
q �→ Fq is a polynomial of total degree at most e. Clearly, Ce is a

linear subspace of F
|R|
q . As observed in Corollary 1, the relative distance of Ce

482 P. Austrin and S. Khot

is essentially 1 − e/q. Moreover, any v ∈ C1 is the evaluation vector of a degree
one polynomial, and hence ve is the evaluation vector of a degree e polynomial,
and therefore ve ∈ Ce as desired. Also, note that the dimension of Ce is of order
ne and in particular Cq−1 has constant rate.

5 Reduction to Min Dist(q) for q ≥ 3

We now describe a general reduction from the Max NAND problem to the
Min Dist(q) problem for any constant prime power q. The basic idea is the
same as in the F2 case but some additional work is needed both in the reduction
itself and in its analysis. For simplicity we here assume that q ≥ 3 as the binary
case was already handled in the previous section.

As before, let n be the number of variables in the Max NAND instance Ψ
and m the number of constraints. Fix some small enough parameter ε and let
R ⊆ F

n
q be the ε-pseudorandom set for degree q − 1 polynomials F

n
q → Fq given

by Theorem 4. Let N = |R| = O(nq−1).
For 0 ≤ d ≤ q − 1, let Pd ⊆ F

N
q be the linear subspace of all polynomials

of degree at most d in n variables with coefficients in Fq, evaluated at points
on R. I.e., all vectors in Pd are of the form (p(x))x∈R for some polynomial
p ∈ Fq[X1, . . . , Xn] with deg(p) ≤ d. Note that Pd is a linear code and by
Corollary 1, its relative distance is at least 1 − d/q − ε. From here on, we will
ignore the parameter ε > 0; it can be chosen to be sufficiently small (independent
of q and the inapproximability for Max NAND) and hence the effect of this can
be made insignificant.

We define C = P1 and for α ∈ F
n
q we write C(α) ∈ F

N
q for the encoding of α

under C; this corresponds to the evaluations of the linear polynomial
∑n

i=1 αiXi

at all points (X1, . . . , Xn) in R. Conversely, for a codeword y ∈ C we write
α = C−1(y) ∈ F

n
q for the (unique) decoding of y.

We now construct a linear code C′(Ψ) with variables as described in Figure 2.
As in the F2 case, the final code C(Ψ) will consist of the projection of these
variables to the Zij ’s and the Sijk’s, which determine the remaining variables
by the constraints that we shall define momentarily.

Before we describe the constraints defining C′(Ψ) it is instructive to describe
the intended values of these variables. Loosely speaking, the different Y variables
are supposed to be an encoding of an assignment α ∈ F

n
2 to Ψ , the function Sijk

is a check that α satisfies the equation xk = 1 + xi · xj , and the Zij functions

1. For every 0 ≤ e ≤ 2(q − 1) a vector Y e ∈ F
N
q .

2. For every 0 ≤ e, f ≤ q − 1 a matrix Y e,f ∈ F
N2

q .

3. For every 1 ≤ i, j ≤ N a function Zij : F
2
q → Fq (i.e., a vector in F

q2

q).
4. For every equation xk = 1+xi ·xj in Ψ , a function Sijk : F

2
2 → Fq (i.e., a vector

in F
4
q).

Fig. 2. Variables of C′(Ψ)

A Simple Deterministic Reduction 483

1. Y e is supposed to be C(α)e (where we think of F
n
2 as a subset of F

n
q in the

obvious way).
2. Y e,f is supposed to be C(α)e · (C(α)f)� (i.e., we should have Y e,f (i, j) =

C(α)e
i C(α)f

j .
3. Zij is supposed to be the indicator function of (C(α)i, C(α)j) (i.e., Zij(x, y)

should be 1 if x = C(α)i and y = C(α)j ; and 0 otherwise).
4. Sijk is supposed to be the indicator function of (αi, αj) (i.e., Sijk(a, b) = 1 if

αi = a and αj = b; and 0 otherwise).

Fig. 3. Intent of variables of C′(Ψ)

check that the Y variables resemble a valid encoding of some α. Specifically, the
variables are supposed to be assigned as described in Figure 3.

We categorize the constraints of C′(Ψ) as being of two different types, namely
basic constraints that aim to enforce rudimentary checks of Items 1 and 2 of
Figure 3, and consistency constraints that aim to use the Zij ’s and Sijk’s to check
that the Y e,f matrices are consistent with an encoding of a good assignment to
Ψ . As a comparison with the reduction for F2 in Section 3, the basic constraints
correspond to the horizontal arrows on the upper side of Figure 1, and the
consistency constraints correspond to the other arrows, i.e., Equations (1’)-(8).
Keeping the interpretation from Figure 3 in mind, the basic constraints that we
impose are given in Figure 4.

1. For 0 ≤ e ≤ q − 1, Y e ∈ Pe.
2. For q ≤ e ≤ 2(q − 1), Y e = Y e−(q−1).
3. For 0 ≤ e, f ≤ q − 1:

(a) Y e,f ∈ Pe ⊗ Pf .
(b) The diagonal of Y e,f equals Y e+f .

4. For 0 ≤ e ≤ q − 1, the rows (resp. columns) of Y 0,e (resp. Y e,0) are identical
(and therefore equal to Y e as this is the diagonal).

5. The matrix Y q−1,q−1 is symmetric3.

Fig. 4. Basic constraints of C′(Ψ)

Note that all entries of the matrix Y 0,0 must be equal, and that in the intended
assignment they should equal the constant 1. For notational convenience let us
write Y0 ∈ Fq for the value of the entries of Y 0,0 (this variable plays the same
role as the variable x0 in the reduction for F2 in Section 3).

We then turn to the consistency constraints of C′(Ψ), which are described in
Figure 5.

The four equations (11) are the same as Equations (1)-(4) from the F2 reduc-
tion, the only difference being that they are now constraints over Fq. Note that
instead of Y0 we would like to use the constant 1 in the above constraint, but as

3 In general we could add the constraint that Y e,f = (Y f,e)� for every e, f , but it
turns out we only need it for the case e = f = q − 1.

484 P. Austrin and S. Khot

1. For every constraint xk = 1 + xi · xj of Ψ , four constraints on Sijk:

Y0 =
∑

a,b∈F2

Sijk(a, b) αi =
∑

a,b∈F2

a · Sijk(a, b)

αj =
∑

a,b∈F2

b · Sijk(a, b) αk =
∑

a,b∈F2

(1⊕ a · b) · Sijk(a, b).
(11)

(Here ⊕ denotes addition in F2 and the remaining summations are over Fq.)
2. For every i, j ∈ [N], q2 constraints on Zij : for every 0 ≤ e, f ≤ q − 1 it must

hold that

Y e,f (i, j) =
∑

x,y∈Fq

xeyfZij(x, y). (12)

Fig. 5. Consistency constraints of C′(Ψ)

we are not allowed to do this we use Y0, which, as mentioned above, is intended
to equal 1. Note also that Y 1 = C(α), and thus α is implicitly defined by Y 1. If
one wanted to be precise, one would write C−1(Y 1)i instead of αi in the above
equations.

The function Sijk is an invertible linear transformation of {Y0, αi, αj , αk} and
hence is non-zero if and only if one of those four variables are non-zero. Similarly,
from (12) it follows that Zij is an invertible linear transformation of the set of
(i, j)’th entries of the q2 different matrices {Y e,f}0≤e,f≤q−1. In particular Zij is
non-zero if and only if the (i, j)’th entry of some matrix Y e,f is non-zero.

The final code C(Ψ) contains the projection of these variables to the functions
Zij and the functions Sijk, with each Sijk repeated r ≥ 1 times. Note that C(Ψ)
is a subspace of F

M
q where M = (qN)2 + 4rm. The completeness and soundness

are as follows.

Lemma 2 (Completeness). If Opt(Ψ) = 1 then

d(C(Ψ)) ≤ N2 + rm.

Lemma 3 (Soundness). If Opt(Ψ) ≤ 1− δ then

d(C(Ψ)) ≥ min
(
N2 + (1 + δ)rm, (1 + 1/q)N2

)
.

Lemma 4 (C is a Good Code). The dimension of C(Ψ) is Ω(N2), and the
distance is at least N2.

Setting r ≈ N2

(1+δ)qm , Lemmas 2-4 give Theorem 1 (for the case q ≥ 3). Proofs of
the three lemmas can be found in the full version [4].

References

[1] Ajtai, M.: The shortest vector problem in L2 is NP-hard for randomized reduc-
tions. In: Proc. 30th ACM Symposium on the Theory of Computing, pp. 10–19
(1998) 475

A Simple Deterministic Reduction 485

[2] Arora, S., Lund, C., Motawani, R., Sudan, M., Szegedy, M.: Proof verification
and the hardness of approximation problems. Journal of the ACM 45(3), 501–555
(1998) 477

[3] Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of
NP. Journal of the ACM 45(1), 70–122 (1998) 477

[4] Austrin, P., Khot, S.: A Simple Deterministic Reduction for the Gap Minimum
Distance of Code Problem. arXiv report 1010.1481 476, 481, 484

[5] Bogdanov, A., Viola, E.: Pseudorandom bits for polynomials. SIAM J. Com-
put. 39(6), 2464–2486 (2010) 481

[6] Cai, J., Nerurkar, A.: Approximating the SVP to within a factor (1 + 1/dimε)
is NP-hard under randomized reductions. Journal of Computer and Systems Sci-
ences 59(2), 221–239 (1999) 475

[7] Cheng, Q., Wan, D.: Complexity of decoding positive-rate reed-solomon codes.
In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir,
A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 283–293.
Springer, Heidelberg (2008) 474, 475

[8] Cheng, Q., Wan, D.: A deterministic reduction for the gap minimum distance
problem. In: Proceedings of the ACM Symposium on the Theory of Computing,
pp. 33–38 (2009) 474, 475

[9] Dumer, I., Micciancio, D., Sudan, M.: Hardness of approximating the minimum
distance of a linear code. In: Proc. 40th IEEE Symposium on Foundations of
Computer Science (1999) 474, 475

[10] Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs
and the hardness of approximating cliques. Journal of the ACM 43(2), 268–292
(1996) 477

[11] Haviv, I., Regev, O.: Tensor-based hardness of the shortest vector problem to
within almost polynomial factors. In: Proceedings of the ACM Symposium on the
Theory of Computing, pp. 469–477 (2007) 475

[12] Khot, S.: Hardness of approximating the shortest vector problem in high Lp norms.
In: Proc. 44th IEEE Symposium on Foundations of Computer Science (2003) 475

[13] Khot, S.: Hardness of approximating the shortest vector problem in lattices. In:
Proc. 45th IEEE Symposium on Foundations of Computer Science, pp. 126–135
(2004) 475

[14] Lovett, S.: Unconditional pseudorandom generators for low degree polynomials.
Theory of Computing 5(1), 69–82 (2009) 481

[15] Micciancio, D.: The shortest vector problem is NP-hard to approximate to within
some constant. SIAM Journal on Computing 30(6), 2008–2035 (2000) 475

[16] Vardy, A.: The intractability of computing the minimum distance of a code. IEEE
Transactions on Information Theory 43(6), 1757–1766 (1997) 474

[17] Viola, E.: The sum of d small-bias generators fools polynomials of degree d. Com-
putational Complexity 18(2), 209–217 (2009) 475, 481

Recoverable Values for Independent Sets

Uriel Feige and Daniel Reichman

Department of Computer Science and Applied Mathematics,
The Weizmann Institute of Science, Rehovot, Israel

uriel.feige@weizmann.ac.il, daniel.reichman@gmail.com

Abstract. The notion of recoverable value was advocated in work of
Feige, Immorlica, Mirrokni and Nazerzadeh [Approx 2009] as a measure
of quality for approximation algorithms. There this concept was applied
to facility location problems. In the current work we apply a similar
framework to the maximum independent set problem (MIS). We say that
an approximation algorithm has recoverable value ρ, if for every graph it
recovers an independent set of size at least maxI

∑
v∈I min[1, ρ/(d(v) +

1)], where d(v) is the degree of vertex v, and I ranges over all indepen-
dent sets in G. Hence, in a sense, from every vertex v in the maximum
independent set the algorithm recovers a value of at least ρ/(dv + 1) to-
wards the solution. This quality measure is most effective in graphs in
which the maximum independent set is composed of low degree vertices.
It easily follows from known results that some simple algorithms for MIS
ensure ρ ≥ 1. We design a new randomized algorithm for MIS that en-
sures an expected recoverable value of at least ρ ≥ 7/3. In addition, we
show that approximating MIS in graphs with a given k-coloring within
a ratio larger than 2/k is unique games hard. This rules out a natural
approach for obtaining ρ ≥ 2.

1 Introduction

The notion of recoverable value was advocated in work of Feige, Immorlica, Mir-
rokni and Nazerzadeh [5] as a measure of quality for approximation algorithms.
This notion leads to greater expressive power for stating the guarantees of ap-
proximation algorithms (compared to the standard notion of approximation ra-
tio), by this leading to greater differentiation among the performance guarantees
of different algorithms. The hope is that this concept will lead to the design of
new algorithms with superior performance with respect to the recoverable value
measure (regardless of whether the classic approximation ratio differs from that
of existing algorithms), and moreover, that these algorithms will have better
performance in practice (at least in some interesting special cases).

In [5], the term PASS approximation (where PASS is an acronym for PA-
rameterized by the Signature of the Solution) was used in order to capture the
two main features that we wish the recoverable value to have. One feature is
that the recoverable value is expressed in terms of properties of the (unknown)
solution, rather than of the input instance. The other is that the property of
the solution that it refers to is not some aggregate property (such as average

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 486–497, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Recoverable Values for Independent Sets 487

degree), but rather some signature in which the contribution of each individual
component of the solution is considered separately. Rather than try to present
general principles here, let us focus on the problem studied in the current paper,
that of maximum independent set, and specialize the notion of recoverable value
to this problem.

We use the following notation. All graphs in this work are undirected. The
degree d(v) of vertex v is the number of neighbors of v. The set of neigh-
bors of v is N(v). The average degree of a graph is denoted by davg, and
davg(U) = 1

|U|
∑

v∈U d(v) denotes the average over degrees of vertices in a set U .
An independent set in a graph is a set of vertices I such that every two vertices
in I are non-neighbors. We shall refer to the problem of finding an independent
set of maximum cardinality as MIS. The independence ratio of G = (V,E) is
α(G) = |Imax|/|V |, where |Imax| is the size of a maximum independent set I.
In the maximum weight independent set problem MWIS, every vertex v has a
nonnegative weight wv and the goal is to find an independent set of maximum
weight.

We now present our notion of recoverable value for MIS. For an independent
set I, we define its signature to be the sequence of degrees of vertices in I.
The value that we shall want to recover from each vertex of I depends on its
degree. With every degree d we associate a recoverable value of 0 ≤ ρd ≤ 1, and
wish our approximation algorithms to find an independent set of size at least∑

v∈I ρd(v). The independent set I is not known to the algorithm – it is only used
in analyzing its performance measure. Hence this performance guarantee holds
simultaneously with respect to all independent sets in the graph, including the
independent set I that happens to maximizes the expression

∑
v∈I ρd(v) (this

I might not be the maximum independent set in the graph). The notion of
recoverable value easily generalizes to MWIS, by multiplying each term by w(v).
For randomized algorithms, one considers the expected size (or weight for MWIS)
of the independent set that they return.

Intuitively, the smaller the degree of v the more likely algorithms are to place
v in an independent set (because v excludes a smaller number of other vertices),
and hence the higher we would like its recoverable value to be. Hence it is natural
for ρd to be a non-increasing function of d. We find it convenient to introduce
a parameter ρ (that we shall attempt to maximize later) and to consider the
function ρd = min[1, ρ/(d + 1)]. (Not allowing the recoverable value to exceed 1
is necessary, as we cannot find a solution larger than the optimal solution.) For
graphs of minimum degree at least ρ − 1, such approximation algorithms need
to find an independent set of size at least

∑
v∈I ρ/(d(v) + 1).

We refer to ρ in the expression min[1, ρ/(d(v) + 1)] as the canonical recov-
erable value (though we sometimes omit the word canonical for brevity). For
comparison with some previously published algorithms, it is useful to note that
for every set U of vertices,

∑
v∈U 1/(dv + 1) ≥ |U |/(davg(U) + 1) (with equality

only if all vertices in U have the same degree). Hence for a given value of ρ,
our notion of recoverable value that is based on the signature of I (its degree
sequence) is more demanding than had we only considered the average degree
of vertices in I.

488 U. Feige and D. Reichman

1.1 Our Results

It is not hard to see that some known algorithms achieve a canonical recoverable
value ρ ≥ 1. It can be shown that they do not achieve a value of ρ bounded away
from 1 (see [6]).

One can readily observe that ρ0 = ρ1 = 1. We use a procedure that we call
2-elimination to that that for MIS one may enforce ρ2 = 1 as well.

Thereafter, we design relatively simple new algorithms that achieve a recov-
erable value of ρ ≥ 2 for MWIS and ρ ≥ 7/3 for MIS. It is NP-hard to achieve
ρ = 4, as this will imply exact solution of MIS in 3-regular graphs, a problem
that is NP-hard and APX-hard [3]. However, in graphs in which the minimum
degree δ is large we provide an algorithm achieving ρ ≥ Ω(log δ/ log log δ) for
MWIS.

Our investigations of the best recoverable value achievable by our approaches
also lead us to consider MIS in k-colored graphs (graphs for which a k-coloring
is given). For this problem a 2/k approximation ratio is known [13], and we show
that improving it would refute the unique games conjecture.

Our proofs in some cases provide simple alternatives to previously published
related results. For a more detailed version of the current manuscript, see [6].

1.2 Related Work

The strong inapproximability results for MIS [12] justify searching other mea-
sures of performance guarantees, and the notion of recoverable value is one such
candidate. It considers degrees of vertices, and hence it is instructive to recall
known approximation algorithms for MIS and MWIS and how their performance
depends on the degree sequence of the graph.

Random permutation. Choosing a permutation uniformly at random and
taking all vertices that appear prior to their neighbors in the order induced by
the permutation produces an independent set whose expected weight is at least∑

v∈V
wv

d(v)+1 (see [1], for example). This guarantees a recoverable value of ρ ≥ 1.

Greedy. For MIS, iteratively picking a minimum degree vertex, adding it to
an independent set I and deleting the vertex and its neighbors from the graph
is guaranteed to find an independent set of size at least

∑
v∈V

1
d(v)+1 [7,17].

Halldorsson and Radhakrishnan [11] showed that this greedy algorithm produces
an independent set of size at least |V | 1+α2

davg+1+α (where α denotes the fraction
of vertices in the maximum independent set). For MWIS, weighted greedy that
iteratively picks a vertex v with minimum wv/(dv + 1) is guaranteed to find an
independent set of size at least

∑
v∈V

wv

d(v)+1 [16].

LP. An integer programming formulation of MWIS is:
maximize

∑
i∈V wixi

subject to
xi + xj ≤ 1 for every edge (i, j).
xi ∈ {0, 1} for every vertex i.

Recoverable Values for Independent Sets 489

Consider the LP relaxation of this program where each xi ∈ [0, 1]. A well
known result due to Nemhauser and Trotter [15] asserts that there is an optimal
solution for the relaxation such that for every i, xi ∈ {0, 1

2 , 1}. Moreover, such
an optimal solution can be found in polynomial time.

LP+greedy. Consider the following algorithm. Find an optimal half integral
solution to the LP, discard all the vertices assigned 0, keep all the vertices as-
signed 1, and run the greedy algorithm on the graph induced by all vertices that
are assigned 1/2. This algorithm was analyzed for connected graphs. Hochbaum
[13] proved an approximation ratio of 2

davg+1 , and Halldorsson and Radhakrish-
nan [11] (based on their improved analysis of the greedy algorithm) proved an
approximation ratio of 5

2davg+3 .

SDP. Using semidefinite programming Halldorsson [10] provided approximation
ratios of Ω(log davg

davg log log davg
) for MIS, and Ω(log δ

δ log log δ) for MWIS on δ-inductive
(a.k.a. δ-degenerate) graphs (in some permutation over the vertices δ is the
maximum backward degree).

Local Search. In graphs of degree bounded by Δ, algorithms based on local
search were shown to achieve an approximation ratio of roughly 5/(Δ+ 3), with
some distinction between the cases of odd and even Δ (see [3,4]). We remark that
in the special case of Δ-regular graphs, the notion of recoverable value becomes
equivalent to the traditional notion of approximation ratio, and our results are
not as strong in this case as those achieved by local search. On the other hand,
our algorithms are much faster than the local search algorithms.

In terms of hardness results, Austrin, Khot and Safra [2] proved that approx-
imating independent set in graphs of maximum degree Δ within a ratio larger
than (log Δ)2

Δ is unique games hard. Our hardness results for finding independent
sets in graphs where a k-coloring is given match the 2/k bounds achieved by
known approximation algorithms [13]. Results for related problems on hyper-
graphs appeared in [9], and hardness results for MIS in graphs with bounded
chromatic number but when no coloring is given were shown in [8].

1.3 Our Techniques

We begin by showing that For MIS we show that ρ0 = ρ1 = ρ2 = 1. (See
Section 2 for subtleties involved in the statement of this result.)

Thereafter, following a recipe suggested in [5] (though there the problem con-
sidered was different, facility location), we present an algorithm based on the
so called recoverable value LP (see Theorem 2). This gives recoverable value of
ρ = 2 for MWIS. For MIS we improve over this bound by using a new combi-
nation of some of the algorithms presented in Section 1.2. (A new combination
is indeed needed, as we also provide examples showing that plain use of these
algorithms does not even achieve ρ bounded away from 1.)

Given a graph G, choose a random permutation π on the vertices. We say
that vertex v is in layer Li with respect to π if exactly i − 1 of v’s neighbors

490 U. Feige and D. Reichman

appear before v in π. For k ≥ 1, let Gk be the subgraph of G induced on the
vertices of the first i layers. The random permutation algorithm referred to in
Section 1.2 simply returns G1 which is an independent set. Our new algorithms
will instead consider Gk with small value of k (depending on the context, we
shall take k ∈ {2, 3, δ+1}, where δ denotes the minimum degree), and on Gk run
some algorithm from Section 1.2. The advantage of our approach (in the context
of recoverable value) is that low degree vertices are more likely to end up in Gk.
Moreover, Gk (for small values of k) has special structure that makes finding
large independent sets easier. For example, it turns out that Gk is k-colorable.
This suffices for obtaining a recoverable value of ρ = 2 (for MWIS on the original
G), but does not guarantee anything better (by our new hardness of approxi-
mation results for approximating MIS in k-colored graphs). The fact that Gk is
(k−1)-inductive allows us to obtain a recoverable value of ρ = Ω(log δ/ log log δ)
(which improves over ρ = 2 when δ is large). Our unconditional improvement
over ρ = 2 uses G3 and applies only to MIS. For G3 we considered its aver-
age degree, which is no longer a deterministic property but rather a function
of several random variables (number of vertices in each layer). After showing
that the 5

2davg+3 approximation ratio of [11] extends to disconnected graphs (see
Theorem 4), we show that the random variables can safely be replaced by their
expectations (which are deterministic quantities), by this considerably simplify-
ing the analysis. It was previously known that working with expectations often
simplifies the analysis of randomized algorithms (through the use of linearity of
the expectation), but the reason why it applies in our context is more delicate
than usual, and may have applications also elsewhere. This leads to a canonical
recoverable value ρ ≥ 15/7. This can be improved to ρ ≥ 7/3 by designing a new
approximation algorithm for MIS in graphs of small average degree.

2 Handling Low Degree Vertices

It is instructive to consider separately ρd for 0 ≤ d ≤ 3.
For isolated vertices, ρ0 = 1 as they can be included in the optimal solution

without changing the degree of any other vertex. Note an important point here.
Our notion of recoverable value treats every vertex of I separately. Hence we
can remove isolated vertices without effecting the remaining vertices in I. This
might not have been so simple had we considered aggregate properties such as
the average degree of vertices in I. Removing an isolated vertex increases the
average degree for the remaining vertices.

Likewise, ρ1 = 1 as every vertex of degree 1 can be included in the indepen-
dent set, and its neighbor removed. At most one of these two vertices is in any
independent set. For other vertices in I, this process can only lower their degrees,
and hence their recoverable value does not decrease (since ρd is non-increasing).

The above arguments also imply that we can remove recursively vertices of
degree at most 1 with no harm to the recoverable value. Hence we may assume
that all graphs have minimum degree at least 2.

Recoverable Values for Independent Sets 491

We show that for MIS ρ2 = 1 (see Theorem 1 for an exact statement). Consider
a graph G of minimum degree 2. Let u be a vertex of degree 2, and let v and w
be its neighbors. Consider the following process termed 2-elimination. If there
is an edge (v, w) we add u to the independent set (and remove vertices v and w)
because at most one of u, v, w is in any independent set, and u can replace any of
v and w in an independent set. If v and w are not neighbors of each other remove
u from G, merge v and w to become a new vertex u′ whose neighbors are the
original neighbors of v and w (except for u that was removed from the graph).
Call the resulting graph G′. Any independent set I ′ in G′ can be extended to an
independent set I in G whose size is larger by 1. If u′ ∈ I ′, replace it by v and
w. If u′ �∈ I ′, then include u in I.

Consider how the recoverable value changes when transforming from G to G′

where we assume canonical recoverable values. Without loss of generality, either
u ∈ I or both v and w are in I. In G′, we take an independent set I ′ that is
induced by I in a natural way (if u ∈ I than u is simply lost, if v, w ∈ I then
u′ ∈ I ′). As |I| = |I ′|− 1, we wish to show that their recoverable values differ by
at most 1. If u ∈ I then I ′ differs from I by the recoverable value of u which is
indeed at most 1. If v, w ∈ I, then the recoverable values of G and G′ differ by

min[1,
ρ

dv + 1
] + min[1,

ρ

dw + 1
]−min[1,

ρ

du′ + 1
] (1)

Using the facts that dv, dw ≥ 2 and du′ ≤ dv + dw − 2 the value of (1) is at
most 1 whenever ρ ≤ 10/3 (the worst choice of parameters being dv = dw = 3
and du′ = 4). Hence if one considers canonical recoverable values, then if ρ ≥ 3
this implies (by definition) that ρ2 = 1, and if ρ ≤ 10/3 then 2-elimination
achieves ρ2 = 1 (without affecting ρ for vertices of degrees larger than 2).

The above discussion establishes:

Theorem 1. When using canonical recoverable values for MIS then regardless
of the value of ρ one may assume that ρ0 = ρ1 = ρ2 = 1.

Note that there is some fixed ε > 0 such that ρ3 ≤ 1 − ε. This follows from the
fact that approximating MIS in 3-regular graphs in APX-hard [3].

3 Algorithms for MWIS

In this section we assume that G = (V,E) has been preprocessed to include
all isolated vertices in the output independent set. This allows us to simplify
notation from min[1, ρ/(d(v) + 1)] to ρ/(d(v) + 1).

Theorem 2. Let G = (V,E) be a weighted graph without isolated vertices. There
is a polynomial time algorithm for MWIS achieving a recoverable value of ρ = 2.
Namely, the output of the algorithm is an independent set of weight at least∑

v∈I
2wv

d(v)+1 .

492 U. Feige and D. Reichman

Proof. We present two different polynomial time algorithms that achieve the
desired bounds. One is based on linear programming. The other is much faster,
but randomized.

LP algorithm. Consider the following recoverable value LP (the RV LP). xi is
a variable that indicates whether vertex i is in the independent set.

maximize
∑

i∈V
wi

d(i)+1xi

subject to
xi + xj ≤ 1 for every edge (i, j).
0 ≤ xi ≤ 1 for every vertex i.

The indicator vector of any independent set I is a feasible solution to the re-
coverable value LP. Moreover, the value of the LP then would be the recoverable
value with respect to I (up to a scaling factor of ρ). Hence the optimal value of
the LP is at least the desired recoverable value with respect to best independent
set I (scaled by 1/ρ). Treating wi

d(i)+1 as a weight of vertex i, the results of [15]
imply that this LP has a half-integral optimal solution, and moreover that such
a solution can be found in polynomial time.

Include in the independent set all vertices with xi = 1 (getting credit wi

which is at least twice the credit wi/(d(i) + 1) that the LP got for them), and
discard all vertices of xi = 0 (the LP got no credit for them). Let G1/2 be the
weighted graph induced on all vertices assigned 1/2. Running weighted greedy
on this graph ensures a solution of value

∑
i∈V1/2

wi/(di +1), whereas the LP (by
having xi = 1/2) got only half this credit. Hence after the rounding we obtain
an integral solution of value at least twice that of the RV LP, implying ρ ≥ 2.

A fast randomized algorithm. Choose a random permutation and consider
G2 as in Section 1.3. This graph is a forest (can be verified by orienting edges
towards earlier vertices in the permutation). As every vertex v within I belongs
to G2 with probability 2

d(v)+1 , the expected weight of an independent set within
G2 is at least

∑
v∈I

2wv

d(v)+1 . MWIS can be found in forests in linear time, proving
Theorem 2.

The bounds
∑

v∈V
wv

d(v)+1 (achieved by the random permutation algorithm of Sec-
tion 1.2) and maxI

∑
v∈I 2wv/(d(v) + 1) of Theorem 2 are incomparable. Never-

theless, it is not hard to see that both algorithms of Theorem 2 ensure not only the
bound maxI

∑
v∈I 2wv/(d(v) + 1) claimed in the statement of the theorem, but

also the bound
∑

v∈V
wv

d(v)+1 . For the LP algorithm this is attained by the feasible
solution that assigns 1/2 to all variables. For the fast randomized algorithm this
follows because returning the first layer is a legitimate output for it.

We now improve the recoverable value in the special case when the minimum
degree δ in the input graph is sufficiently high.

Theorem 3. Let G = (V,E) be a weighted graph with minimum degree δ. There
is a polynomial time algorithm for MWIS achieving a recoverable value of ρ =
Ω(log δ/ log log δ).

Recoverable Values for Independent Sets 493

Proof. Choose a random permutation and consider Gδ+1 as defined in Sec-
tion 1.3. This graph is a δ-inductive (orienting edges towards earlier vertices
in the permutation, no vertex has outdegree larger than δ). As every vertex v
within I belongs to Gδ+1 with probability δ+1

d(v)+1 (here we used the assump-
tion that d(v) ≥ δ), the expected weight of an independent set within Gδ+1 is
at least

∑
v∈I

wv(δ+1)
d(v)+1 . Run the SDP algorithm from [10] with approximation

ratio Ω(log δ
δ log log δ) (on δ-inductive graphs) to obtain a recoverable value with

ρ = Ω(log δ/ log log δ).

4 Algorithms for MIS

Here we show that for unweighted graphs there are randomized algorithms
achieving a recoverable value of ρ strictly larger than 2. As in Section 2, we
wish to simplify notation from min[1, ρ/(d(v) + 1)] to ρ/(d(v) + 1). This requires
that the input graph G = (V,E) has no vertices of degree less than 2. As we say
in the previous section, this can be assumed without loss of generality .

The basic idea of our algorithm is as follows. Pick a random permutation
over the vertices and consider the graph G3 induced on layers L1 ∪ L2 ∪ L3.
The expected size of I ∩ G3 is now

∑
v∈I

3
d(v)+1 . (Here we use the fact that

the minimum degree in G is 2). One would expect all three layers L1,L2 and
L3 to be of equal size. Moreover, every vertex in L1 contributes no edge to G3,
every vertex in L2 contributes at most one edge to G3, and every vertex in L3

contributes at most two edges to G3. Hence one would expect the average degree
of G3 to be at most 2. Recall that the algorithm of [11] (LP+greedy) obtains
an approximation ratio of 5

2davg+3 (on connected graphs). Hence, applying this
algorithm to G3 (and using the bounds of [11] even though G3 need not be
connected), one may hope to attain recoverable value of 15

7

∑
v∈I

1
d(v)+1 .

Summarizing, we have algorithm PLG (Permute, LP, Greedy).

1. Pick a random permutation over the vertices and consider the graph G3

induced on layers L1 ∪ L2 ∪ L3.
2. Find a half-integral solution to the LP for MIS on G3. Put the vertices with

value 1 in the independent set and remove the vertices with value 0.
3. Run the greedy algorithm on the subgraph induced on the vertices that

remain from G3.

The above argument of why PLG achieves a value of ρ = 15/7 had two gaps
in it. One relates to the assumption that G3 is connected (which might not
hold), and the other to the assumption that sizes of layers are equal to their
expectations. We shall deal with each one of them separately.

As noted, the approximation ratio of 5
2davg+3 of the algorithm of [11] assumes

that the graph is connected (plugging in this expression with davg < 1 lead to
ratios larger than 1 which of course cannot hold). Nevertheless, when the average
degree is at least 2, the following theorem shows that the bound of 5

2davg+3 does

494 U. Feige and D. Reichman

apply, regardless of whether the graph is connected or not. Observe that all
connected graphs are captured by the theorem (either they are trees and then
greedy solves them optimally, or their average degree is at least 2), and hence
our proof can also replace the one given in [11] for connected graphs.

Theorem 4. If G is a graph of average degree at least 2 then MIS can be ap-
proximated within ratio of 5

2davg+3 .

Proof. Recall that by the results of [11], the approximation ratio of the greedy
algorithm on graphs with average degree davg and independence ratio α is f(α) =

1+α2

(davg+1+α)α . This ratio as a function of α is decreasing in the range (0, 1/2]. For
α = 1/2 we obtain the desired approximation ratio of 5

2davg+3 . Hence to prove
Theorem 4 it suffices to show that we can assume that α(G) ≤ 1/2.

Consider an optimal half integral solution to the standard LP relaxation of the
MIS problem (as implied by [15]). Let ONE denote the set of variables receiving
1, ZERO the set of variables receiving 0, and HALF the set of variables receiv-
ing 1/2. Let H be the subgraph induced on the vertices whose corresponding
variables are in HALF . The independence ratio of H is at most 1/2, as desired.
Necessarily |ONE| ≥ |ZERO| (otherwise they would both be in HALF). Re-
move ONE and ZERO and all edges connected to them (and thus only H is
left), and add instead |ONE| isolated edges (one edge for each vertex of ONE),
thus obtaining a new graph G′. Observe that the size of the maximum indepen-
dent set does not change, but α(G′) ≤ 1/2 as desired. It remains to analyze the
average degree of G′. In the removal phase |ONE| + |ZERO| vertices and at
least |ZERO| edges are removed (every vertex in ZERO has an edge to ONE,
otherwise it could be moved to HALF). Thereafter 2|ONE| vertices and |ONE|
edges are added. Hence altogether exactly |ONE|−|ZERO| vertices and at most
|ONE| − |ZERO| edges are added. If the average degree of G is at least 2, the
average degree of G′ cannot be larger than that of G.

Summarizing, we have shown how to transform G into a new graph G′ for
which α(G′) ≤ 1/2, the average degree of G′ is at most that of G, and the
maximum independent sets in G and G′ have the same size. Applying greedy
to G′ is the same as taking ONE into the solution and applying greedy only
on H , which is precisely the algorithm of [11]. By the properties of G′, the
approximation ratio is at least as desired by Theorem 4.

Apparently, the result of Theorem 4 can be extended also to davg ≥ 3/2 (Hall-
dorsson, private communication), though this is not needed in our paper.

Now let us deal with the issue of expectations. Let us first explain the prob-
lem. We have various information about expectations. Namely, E[|I ∩V (G3)|] =∑

v∈I 3/(d(v) + 1), and E[|L1|] = E[|L2|] = E[|L3|]. Moreover, the number of
edges in G3 is at most 2|L3|+ |L1|. If things behave exactly as expectation the
average degree of G3 is at most 2, Theorem 4 applies and we get an approxima-
tion ratio of 5

7

∑
v∈I 3/(d(v) + 1) as desired. However, there is also variability in

the above random variables, and it can be quite large. (The complete bipartite

Recoverable Values for Independent Sets 495

graph K3,d illustrates this variability.) With some probability the average de-
gree in G3 may be larger than 2, and with some probability smaller. Hence the
approximation ratio on G3 is a random variable. Moreover, when the average
degree of G3 is too small, the bounds of Theorem 4 no longer hold. Moreover,
the size of the maximum independent set in G3 might be correlated with the
average degree in complicated ways.

We present here a very simple way to handle all the above complications.

Theorem 5. The expected size the independent set found by algorithm PLG is
at least 15

7

∑
v∈I

1
d(v)+1 , where I is any independent set in G.

Proof. Our proof uses two important facts. One is that Theorem 4 applies also
to disconnected graphs. The other (which the reader may verify) is that algo-
rithm PLG when run on a disconnected graph gives the same outcome (or more
formally, the same probability distribution on outcomes) as that when PLG is
run on each connected component separately.

Let ε > 0 be any desired level of accuracy with which we want to estimate
the performance guarantee of PLG. Let G be an arbitrary graph on which we
run PLG, let n be the number of its vertices, and let I be an independent set
in G. As a thought experiment, make N disjoint copies of G, where N is chosen
to be sufficiently large as a function of ε and n. Call the resulting graph on nN
vertices GN , and let IN be the independent set composed from the N copies
of I. Run PLG on GN . With respect to PLG, the random variables L1, L2,
L3, and IN ∩ G3 are all concentrated around their expectation within relative
errors that are o(ε) (by our large choice of N and the fact that these random
variables are each a sum of N bounded and independent random variables, one
for each copy of G). Hence on GN , with probability that can be made (1− ε/2)
PLG finds an independent set of size at least (1 − ε/2)15

7

∑
v∈IN

1
d(v)+1 . Hence

in expectation, per copy of G, the size of the independent set found is at least
(1− ε)15

7

∑
v∈IN

1
d(v)+1 . Letting ε tend to 0 Theorem 5 is proved.

Theorem 5 can be strengthened by replacing the algorithm of [11] (used in the
proof of Theorem 4) by an algorithm that approximates MIS in graphs with
average degree 2 within a ratio better than 5/7. In [6] we show such an algorithm
with approximation ratio 7/9. This implies:

Theorem 6. A canonical recoverable value ρ = 7/3 is achievable for MIS.

5 MIS in k-Colored Graphs

In analyzing algorithm PLG we only used the fact that G3 has small average
degree. However, G3 has other structural properties as well. It is 3-colorable,
and furthermore, the 3-coloring can be found efficiently (e.g., by coloring the
vertices of G3 inductively in the order in which they appear in the permutation
that generated G3). We use the term k-colored graph to denote a graph with a
given k-coloring. The following proposition is known [13].

496 U. Feige and D. Reichman

Proposition 1. MIS on k-colored graphs can be approximated within 2/k.

One may hope that Proposition 1 can be improved, leading to an approximation
ratio better than 2/3 for G3, hence potentially replacing or even surpassing the
5/7 bound that we used for G3 based on Theorem 4.

We show that Proposition 1 is nearly tight, unless vertex cover can be approx-
imated within a ratio better than 2. (In particular, this implies UGC-hardness,
since hardness of unique games is a stronger assumption than inapproximability
of VC beyond a ratio of 2, see [14].)

Let G be an n-vertex graph in which one wants to approximate VC within a
ratio better than 2. As is well known (e.g., [11]), this is the same as distinguishing
for some ε > 0 whether α(G), the size of MIS in G, satisfies α(G) ≥ (1/2− ε)n)
or α(G) ≤ εn.

For k > 2 construct from G a k-colored graph G′ as follows. For every vertex
v ∈ G, the graph G′ contains k copies v1, . . . vk. All vertices with the same index
i form an independent set (hence a color class). Between any two distinct color
classes other than class k, place a bipartite graph mimicking the edge pattern of
G, connecting vertex vi with vertex uj (where k �= j �= i �= k) if (v, u) (or (u, v))
is an edge in G. Each vertex vk of the kth class is connected only to its own
copies vi in the other classes. Hence the bipartite graph between class k and any
other class is simply a perfect matching.

Lemma 1. In the reduction above, α(G′) = n + (k − 2)α(G).

This gives a gap of n+O(εkn)
kn/2−O(εkn) = (1 + o(1)) 2

k between no and yes instances.
To prove Lemma 1, we shall use the following lemma.

Lemma 2. There is a MIS I ′ in G′ such that for every vertex v ∈ G, either
vi ∈ I ′ for all i �= k, or vk ∈ I ′.

Proof. Consider an arbitrary independent set I ′ in G′. If either no copy or only
one copy of v is in I ′, then without loss of size of I ′ we may take this to be vk. If
at least two copies of v are in I ′, then neither one of them can be vk. But then,
we can add all other vi with i �= k to I ′, since none of them can be a neighbor
of a vertex already in I ′.

Lemma 2 implies that all vertices v ∈ G for which vk �∈ I ′ form an independent
set in G. Lemma 1 easily follows. Applying Lemma 1 and [14] we immediately
obtain:

Theorem 7. Let k be an integer greater than 2. Assume that for every ε > 0
it is NP-hard to distinguish between graphs with independent set of size at least
(1
2 − ε)n to graphs with independent sets of size at most εn. Then, for arbitrary

δ > 0 it is NP-hard to approximate MIS on k-colored graphs within a factor
larger than 2

k + δ. In particular, approximating MIS on k-colored graphs within
a factor larger than 2

k + δ is unique-games hard.

Recoverable Values for Independent Sets 497

Acknowledgements

Work supported in part by the Israel Science Foundation (grant No. 873/08).
We thank Magnus Halldorsson for sharing with us his thoughts on the range of
values of davg for which Theorem 4 holds.

References

1. Alon, N., Spencer, J.: The Probablistic Method. Wiley, Chichester (2008)
2. Austrin, P., Khot, S., Safra, S.: Inapproximability of vertex cover and independent

set in bounded degree graphs. In: CCC (2009)
3. Berman, P., Fujito, T.: On approximation properties of the independent set prob-

lem for low degree graphs. Theory of Computing Systems
4. Chleb́ık, M., Chleb́ıková, J.: On approximability of the independent set problem

for low degree graphs. In: Kralovic, R., Sýkora, O. (eds.) SIROCCO 2004. LNCS,
vol. 3104, pp. 47–56. Springer, Heidelberg (2004)

5. Feige, U., Immorlica, N., Mirrokni, V.S., Nazerzadeh, H.: Pass approximation.
In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX 2010, LNCS,
vol. 6302. Springer, Heidelberg (2010)

6. Feige, U., Reichman, D.: Recoverable values for independent sets (Detailed version
of current paper),
http://www.arxiv.org/PS_cache/arxiv/pdf/1103/1103.5609v1.pdf

7. Griggs, J.: Lower bounds on the independence number in terms of the degrees.
Journal of Combinatorial Theory, Series B 34(1), 22–39 (1983)

8. Guruswami, V., Kemal Sinop, A.: The complexity of finding independent sets in
bounded degree (hyper)graphs of low chromatic number. In: SODA (2011)

9. Guruswami, V., Saket, R.: On the inapproximability of vertex cover on k-partite
k-uniform hypergraphs. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 360–371.
Springer, Heidelberg (2010)

10. Halldorsson, M.M.: Approximations of weighted independent set and hereditary
subset problems. Journal of Graph Algorithms and Applications 4, 1–16 (2000)

11. Halldorsson, M.M., Radhakrishnan, J.: Greed is good: Approximating independent
sets in sparse and bounded-degree graphs. Algorithmica 18, 145–163 (1997)

12. Hastad, J.: Clique is hard to approximate within n1−ε. Acta Mathematica 182,
105–142 (1999)

13. Hochbaum, D.: Efficient bounds for the stable set, vertex cover, and set packing
problems. Discrete Appl. Math 6, 243–254 (1983)

14. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε.
In: CCC (2003)

15. Nemhauser, G., Trotter, L.: Vertex packings: Structural properties and algorithms.
Math. Programming 8, 232–248 (1975)

16. Sakai, M., Togasaki, M., Yamazaki, K.: A note on greedy algorithms for the maxi-
mum weighted independent set problem. Discrete Applied Mathematics 126, 313–
322 (1999)

17. Wei, V.K.: A lower bound on the stability number of a simple graph. Bell Labora-
tories Technical Memorandum 8 I- I 12 17.9 (1981)

http://www.arxiv.org/PS_cache/arxiv/pdf/1103/1103.5609v1.pdf

Vertex Cover in Graphs with Locally Few Colors

Fabian Kuhn1 and Monaldo Mastrolilli2

1 Faculty of Informatics, University of Lugano (USI), 6904 Lugano, Switzerland
fabian.kuhn@usi.ch

2 Dalle Molle Institute for Artificial Intelligence (IDSIA), 6928 Manno, Switzerland
monaldo@idsia.ch

Abstract. In [13], Erdős et al. defined the local chromatic number of a
graph as the minimum number of colors that must appear within distance
1 of a vertex. For any Δ ≥ 2, there are graphs with arbitrarily large
chromatic number that can be colored so that (i) no vertex neighborhood
contains more than Δ different colors (bounded local colorability), and (ii)
adjacent vertices from two color classes induce a complete bipartite graph
(biclique coloring).

We investigate the weighted vertex cover problem in graphs when a
locally bounded coloring is given. This generalizes the vertex cover prob-
lem in bounded degree graphs to a class of graphs with arbitrarily large
chromatic number. Assuming the Unique Game Conjecture, we provide
a tight characterization. We prove that it is UGC-hard to improve the
approximation ratio of 2− 2/(Δ + 1) if the given local coloring is not a
biclique coloring. A matching upper bound is also provided. Vice versa,
when properties (i) and (ii) hold, we present a randomized algorithm
with approximation ratio of 2 − Ω(1) ln lnΔ

ln Δ
. This matches known inap-

proximability results for the special case of bounded degree graphs.
Moreover, we show that the obtained result finds a natural applica-

tion in a classical scheduling problem, namely the precedence constrained
single machine scheduling problem to minimize the total weighted com-
pletion time. In a series of recent papers it was established that this
scheduling problem is a special case of the minimum weighted vertex
cover in graphs GP of incomparable pairs defined in the dimension the-
ory of partial orders. We show that GP satisfies properties (i) and (ii)
where Δ − 1 is the maximum number of predecessors (or successors) of
each job.

Keywords: approximation, local coloring, scheduling, vertex cover

1 Introduction

Vertex Cover is one of the most studied problems in combinatorial optimization:
Given a graph G = (V,E) with weights wi on the vertices, find a subset V ′ ⊆ V ,
minimizing the objective function

∑
i∈V ′ wi, such that for each edge {u, v} ∈ E,

at least one of u and v belongs to V ′.
The related bibliography is vast and cannot be covered in this introduc-

tory note. We mention here that vertex cover cannot be approximated within

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 498–509, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Vertex Cover in Graphs with Locally Few Colors 499

a factor of 1.3606 [11], unless P=NP. Moreover, if the Unique Game Conjec-
ture (UGC) [23] holds, Khot and Regev [24] show that vertex cover is hard to
approximate within any constant factor better than 2. On the other side several
simple 2-approximation algorithms are known (see e.g. [30,20]). Hochbaum [20]
uses the natural linear program (LP) relaxation and a threshold rounding ap-
proach to obtain better than 2 approximation algorithms when a k-coloring of
the graph is given as input. An optimal solution to the LP assigns a non-negative
real value to each vertex of the input graph G. It is well known that such a solu-
tion is half-integral [30]. Let S1 be the vertices of the input graph which attain
value 1 in this solution; and let S2 be the vertices which attain value 1/2. The
vertices S1 together with a cover of the subgraph induced by S2 are sufficient to
cover the whole graph G. A k-coloring of the subgraph induced by S2 gives an
independent set of value at least w(S2)/k, where w(S2) is the sum of the vertex
weights in S2. This yields a (2− 2/k)-approximation for the minimum weighted
vertex cover problem. For graphs with degree bounded by d, this directly leads
to a (2− 2/d)-approximation.

This basic approach has been considerably improved by Halperin [19]. The
improvement is obtained by replacing the LP relaxation with a stronger semidef-
inite program (SDP) relaxation, and using a fundamental result by Karger et al.
[22]. The algorithm in [19] achieves a performance ratio of 2− (1− o(1))2 ln ln d

ln d ,
which improves the previously known [18] ratio of 2 − ln d+O(1)

d . Under the
UGC [23], Austrin, Khot and Safra [5] have recently proved that it is NP-
hard to approximate vertex cover in bounded degree graphs to within a factor
2− (1+o(1))2 ln ln d

ln d . This exactly matches the algorithmic result of Halperin [19]
up to the o(1) term. For general vertex cover, the currently best approximation
ratio is due to Karakostas [21], achieving a performance of 2−Θ(1/

√
lnn).

Brook’s theorem states that except for complete graphs and odd cycles, graphs
with maximum degree d can be colored with d colors. In this paper we consider
the vertex cover problem in graphs with bounded local chromatic number, a gen-
eralization of the bounded degree case with arbitrarily large chromatic number.

For an undirected graph G = (V,E) and a vertex u ∈ V , we use N(u) :=
{v ∈ V : {u, v} ∈ E} to denote the set of neighbors of u. Given a graph G, a valid
vertex coloring of G is a function ϕ : V → N such that ϕ(u) �= ϕ(v) whenever
{u, v} ∈ E. In [13], Erdős et. al introduced the notion of local colorings.

Definition 1 (Local Coloring). Let k be a positive integer. A k-local coloring
of a graph G is a valid vertex coloring ϕ such that for every vertex u ∈ V ,
| {ϕ(v) : v ∈ N(u)} | < k.

Note that the definition implies that in each closed neighborhood {u} ∪N(u),
the number of different colors is bounded by k. The local chromatic number ψ(G)
of a graph G is the minimum k such that G admits a k-local coloring [13]. Since
any valid coloring with k colors also is a local k-coloring, clearly, ψ(G) ≤ χ(G).
Interestingly, it can also be shown that the local chromatic number is always at
least as large as the fractional chromatic number, i.e., ψ(G) ≥ χf (G) [26].

Given a valid vertex coloring ϕ and an integer i, let Ci := {v ∈ V : ϕ(v) = i}
be the set of vertices with color i. Further, for integers i �= j, we use Nj(Ci) :=

500 F. Kuhn and M. Mastrolilli

Cj ∩
⋃

v∈Ci
N(v) to denote the vertices with color j that have a neighbor with

color i. We consider colorings with the following density condition.

Definition 2 (Biclique Coloring). A coloring ϕ of a graph G is called a
biclique coloring if for any two colors i and j, the subgraph induced by Ni(Cj)
and Nj(Ci) is either empty or a complete bipartite graph.

We will consider vertex cover in graphs for which a local biclique coloringϕ is given.
For any fixed k ≥ 3, it is shown in [13] that there are n-vertex graphs with local
chromatic number k and chromatic number Θ(log logn). This is shown using bi-
clique colorings (cf. Def. 1.3 and Lemma 1.1 in [13]). Consequently, there are graphs
that have chromatic number Θ(log logn) and admit a 3-local biclique coloring.

Contribution: In this paper we study the vertex cover problem in graphs with
bounded local colorings. Assuming the UGC [23], the provided results give a tight
characterization of the problem. The two main results are summarized as follows.

Theorem 1. The vertex cover problem in graphs G = (V,E) for which a (Δ+1)-
local biclique coloring ϕ of G is given as input admits a randomized polynomial-
time algorithm with approximation ratio 2−Ω(1) ln lnΔ

ln Δ .

Theorem 2. Assuming the UGC, it is NP-hard to approximate the vertex cover
problem in graphs for which a (Δ+1)-local coloring is given as input, within any
constant factor better than 2− 2/(Δ + 1).

The result stated in Theorem 1 matches (up to the constant factor in the lower
order term) a known inapproximability result [5]. In Section 3 we provide a
matching upper bound for the inapproximability result of Theorem 2.

Besides generalizing the bounded degree case to a class of graphs with ar-
bitrarily large chromatic number, we show that Theorem 1 finds a natural ap-
plication in the precedence constrained single machine scheduling problem to
minimize the weighted sum of completion times, known as 1|prec|∑wjCj in
standard scheduling notation. In a series of papers [1,9,10] it was established
that this scheduling problem is a special case of minimum weighted vertex cover
in graphs GP of incomparable pairs defined in the dimension theory of partial
orders. We prove the following in this paper.

Theorem 3. For any graph of incomparable pairs GP, a (Δ + 1)-local biclique
coloring of GP can be computed in polynomial time, where Δ−1 is the maximum
number of predecessors (or successors) of each job.

Together with Theorem 1, this improves the previously best (2−2/max{Δ, 2})-
approximation algorithm described in [2]. Due to space limitations, omitted
proofs will appear in the full version of the paper.

Review of the SDP Approach for Bounded Degree Graphs: In [22]
the authors consider the problem of coloring graphs using semidefinite pro-
gramming. Given a graph G = (V,E) on n vertices, and a real number k ≥ 2,
a vector k-coloring [22] of G is an assignment of unit vectors vi ∈ R

n to each

Vertex Cover in Graphs with Locally Few Colors 501

vertex i ∈ V , such that for any two adjacent vertices i and j the dot product of
their vectors satisfies the inequality vi · vj ≤ −1/(k − 1). They show that it is
possible to check if a graph admits a vector k-coloring by using semidefinite pro-
gramming. Moreover, they prove that vector k-colorable graphs have a “large”
independent set when k is “small”.

Theorem 4 ([22]). For every integral k ≥ 2, a vector k-colorable graph G =
(V,E) with maximum degree d has an independent set I of value Ω(w(V)

d1−2/k
√

lnd
).

In [25], it is proved that the following program is a semidefinite relaxation of
the vertex cover problem. Moreover, it can be solved within an additive error of
ε > 0 in polynomial time in ln 1

ε and n using the ellipsoid method.

min
∑n

u=1 wu
1+v0·vu

2
s.t. (vi − v0)(vj − v0) = 0, {i, j} ∈ E
‖vu ‖= 1, u ∈ V ∪ {0}, vu ∈ R

n+1
(1)

Note that in an “integral” solution of (1) (corresponding to a vertex cover),
vectors for vertices that are picked coincide with v0, while the other vectors
coincide with −v0. It is shown in [25] that the integrality gap is 2− ε, for any
ε > 0, i.e., for every ε > 0 there is a graph Gε such that vc(Gε)/sd(Gε) is at
least 2 − ε, where vc(Gε) and sd(Gε) denote the minimum vertex cover value
and the optimum value of (1).

Halperin [19] uses (1) to provide an efficient randomized algorithm that ap-
proximates vertex cover in graphs with maximum degree d. The improvement is
obtained as follows by using a threshold rounding approach. Solve relaxation (1)
and let S1 = {u ∈ V | v0 · vu ≥ x} and S2 = {u ∈ V | −x ≤ v0 · vu < x}, where
x is a small positive number. As in Hochbaum’s approach [20], it holds that the
vertices S1 together with a cover of the subgraph induced by S2 are sufficient
to cover the whole graph G. Moreover, for any two adjacent vertices i and j in
the graph G[S2] induced by S2, (1) implies that vi · vj ≤ −1 + 2x. This has the
important consequence that G[S2] is a vector k-colorable graph, where k = 2−2x

1−2x

is close to 2 for small x. We can then use1 Theorem 4 to obtain a large valued
independent set I of G[S2]. The returned vertex cover is S1 ∪ (S2 \ I) and the
result of [19] follows by choosing a suitable value for x.

The problem we consider in this paper is a classical problem in scheduling
theory, known as 1|prec|∑wjCj in standard scheduling notation (see e.g. Gra-
ham et al. [16]). It is defined as the problem of scheduling a set N = {1, . . . , n}
of n jobs on a single machine, which can process at most one job at a time. Each
job j has a processing time pj and a weight wj , where pj and wj are nonnegative
integers. Jobs also have precedence constraints between them that are specified
in the form of a partially ordered set (poset) P = (N,P). The goal is to find a

1 In Theorem 4 the integrality assumption on k is not technically necessary, and it can
be easily generalized to fractional k. As remarked in [19], by using exactly the same
analysis and rounding technique as in [22], it is possible to compute an independent

set of value at least Ω(w(S2)

dx/(1−x)
√

x ln d
) for k = 2−2x

1−2x
.

502 F. Kuhn and M. Mastrolilli

non-preemptive schedule which minimizes
∑n

j=1 wjCj , where Cj is the time at
which job j completes in the given schedule.

The described problem was shown to be strongly NP-hard already in 1978
[27,28]. For the general version of 1|prec |∑wjCj , several 2-approximation al-
gorithms are known [32,17,9,8,29]. Until recently, no inapproximability results
were known, and closing the approximability gap has been listed as one of ten
outstanding open problems in scheduling theory (e.g., [33]). In [4], it is proved
that the problem does not admit a PTAS, assuming that NP-complete problems
cannot be solved in randomized subexponential time. Moreover, if a fixed cost
present in all feasible schedules is ignored then the problem is as hard to approx-
imate as vertex cover [4]. Recently, Bansal and Khot [6] showed that the gap for
the general problem indeed closes assuming a variant of the UGC [23].

In a series of papers [1,9,10] it was proved that 1|prec|∑wjCj is a special
case of minimum weighted vertex cover in some special graphs GP that depend
on the input poset P. More precisely, it is shown that any feasible solution to
the vertex cover problem in graphs GP can be turned in polynomial time into
a feasible solution to 1|prec|∑wjCj without deteriorating the objective value.
This result was achieved by investigating different integer LP formulations and
relaxations [31,9,10] of 1|prec|∑wjCj , using linear ordering variables δij such
that the variable δij has value 1 if job i precedes job j in the corresponding
schedule, and 0 otherwise.

Dushnik and Miller [12] introduced dimension as a parameter of partial orders
in 1941. There is a natural way to associate with a poset P a hypergraph HP,
called the hypergraph of incomparable pairs, so that the dimension of P is the chro-
matic number of HP [15]. Furthermore, the fractional dimension of P, a general-
ization due to Brightwell and Scheinerman [7] is equal to the fractional chromatic
number of HP. It turns out [3] that graph GP is the (ordinary) graph obtained by
removing from HP all edges of cardinality larger than two. This allows to apply
the rich vertex cover theory to 1|prec|∑wjCj together with the dimension theory
of partial orders. One can, e.g., conclude that the scheduling problem with two-
dimensional precedence constraints is solvable in polynomial time, as GP is bipar-
tite in this case [15,10], and the vertex cover problem is well-known to be solvable
in polynomial time on bipartite graphs. Further, these connections between the
1|prec|∑wjCj and the vertex cover problem on GP, and between dimension and
coloring, yield a framework for obtaining (2− 2/f)-approximation algorithms for
classes of precedence constraints with bounded (fractional) dimension f [2,1]. It
yields the best known approximation ratios for all previously considered special
classes of precedence constraints, like semi-orders, convex bipartite orders, inter-
val orders, interval dimension 2, bounded in-degree posets.

2 Vertex Cover Using Bounded Local Biclique Colorings

In this section we provide and analyze an approximation algorithm for the vertex
cover problem in graphs G = (V,E) for which a (Δ + 1)-local biclique coloring
ϕ of G is given.

Vertex Cover in Graphs with Locally Few Colors 503

The presented approximation algorithm follows the threshold rounding ap-
proach used for the bounded-degree vertex cover problem [19]: first solve the
SDP (1) and, based on this solution and a parameter x that will be determined
later, two vertex sets, S1 and S2, are computed as follows.

S1 = {u ∈ V | v0 · vu ≥ x} and S2 = {u ∈ V | −x ≤ v0 · vu < x, }

The cover is obtained by picking the vertices in S1 together with a cover of the
subgraph induced by S2.

However, unlike in [19], Theorem 4 does not apply to graph G[S2]. Indeed,
the graph degree is not bounded and the theorem does not generalize to these
graphs since the rounding procedure and analysis in [22] are strongly based on
the assumption that the graph has “few”, i.e. O(n) edges.

We show that graph G[S2] has a “large” independent set by using a new
rounding procedure to compute it that works as follows. The vertices in S2 are
first grouped into overlapping clusters. For every two colors i and j (of the given
coloring ϕ) such that the number of edges connecting vertices with the two colors
is non-zero, there are two clusters Ni(Cj) and Nj(Ci). Note that Nj(Ci) �= ∅ iff
Ni(Cj) �= ∅ in G[S2]. Because we assume that the coloring ϕ is a local (Δ + 1)-
coloring, each vertex u ∈ V belongs to at most Δ clusters. Furthermore, for
all i and j, clusters Ni(Cj) and Nj(Ci) are connected by complete bipartite
sub-graphs (note that this property also holds when restricting the graph G to
the vertex set S2). It can be easily proved, that all vectors vi corresponding to
vertices from the same cluster almost point in the same direction. This essentially
follows from having a biclique coloring and because, by the definition of the set
S2, vectors corresponding to adjacent vertices in S2 are almost antipodal. For
each cluster Ni(Cj), we arbitrarily choose one representative vertex. Let R be
the set of representatives of all clusters Ni(Cj). Further, for a vertex u, let Ru

be the set of representatives of clusters Ni(Cj) for which u ∈ Ni(Cj). By only
using the vectors of the representatives, we compute a subset I ′ ⊆ S2 as follows:
vertex u ∈ S2 belongs to I ′ if and only if every representative a ∈ Ru of u satisfies
va · r ≥ c, where c is a parameter and r is a random (n+ 1)-dimensional vector r
from the (n+ 1)-dimensional standard normal distribution, i.e., the components
of r are independent Gaussian random variables with mean 0 and variance 1.
We show that the set I ′ has a large independent set. Formally, we have

I ′ =

{
u ∈ S2 :

∧
a∈Ru

va · r ≥ c

}
. (2)

The complete procedure is summarized in Algorithm 1.
We first show that for all u ∈ S2, the vectors corresponding to representatives

of u’s clusters point in almost the same direction as the vector vu corresponding
to vertex u.

504 F. Kuhn and M. Mastrolilli

1. Solve SDP (1)
2. Let S1 = {u ∈ [n] | v0 · vu ≥ x}, S2 = {u ∈ [n] | −x ≤ v0 · vu < x}.
3. Find an IS I in G[S2] as follows:

(a) Compute the set R of representatives
(b) Let Ru =

{
a ∈ R : {u, a} ⊆ Ni(Cj) for any two colors i and j

of the given coloring ϕ
}

(c) Choose a random vector r and define

I ′ = {u ∈ S2 |
∧

a∈Ru

va · r ≥ c}

(d) Get I by removing one vertex of every edge in G[I ′] from I ′

4. Output the constructed vertex cover S1 ∪ (S2 \ I)

Algorithm 1. Vertex Cover Approximation Algorithm

Lemma 1. Let u ∈ S2 be a vertex, a ∈ Ru be the representative vertex of any
cluster to which u belongs, and x ∈ (0, 1). We have vu · va ≥ 1− 8x + o(x).

The expected size of the set I ′ is
∑

u∈S2
Pr[u ∈ I ′]. Using (2), we have Pr[u ∈

I ′] = Pr
[∧

a∈Ru
va · r ≥ c

]
. In the following we compute a lower bound on the

above probability. The subsequent analysis uses some basic properties of the
normal distribution. Let X be a standard normal random variable (X has mean
0 and variance 1). We use N (x) to denote the probability that X is at least
x. Hence, N (x) := Pr(X ≥ x) =

∫∞
x φ(t)dt, where φ(t) = e−t2/2/

√
2π is the

density of X .

Lemma 2. For any u ∈ S2 and any constant γ > 0

Pr

[∧
a∈Ru

va · r ≥ c

]
≥ N (αc)−Δ · N

(
c

β
√
x

)
,

where α = γ + 1 + o(1) and β = 4+o(1)
γ .

Proof. Assume, without loss of generality, that vu = (1, 0, . . . , 0). By Lemma 1,
for every a ∈ Ru vu · va ≥ 1− δ, where δ = 8x+ o(x). Then the first component
va,1 of va = (va,1, va,2, . . . , va,n+1) must be at least 1−δ. Let A = (1−δ, 0, . . . , 0)
and Ba = (0, va,2, . . . , va,n+1) for any a ∈ Ru.

Since va is a unit length vector, we have that (1− δ)2 +
∑n+1

j=2 v2
a,j ≤ 1, which

which gives an upper bound on the length of Ba:

‖Ba ‖2=
n+1∑
j=2

v2
a,j ≤ 2δ − δ2 < 2δ.

Vertex Cover in Graphs with Locally Few Colors 505

We then get

Pr

[∧
a∈Ru

va · r ≥ c

]
≥ Pr

[∧
a∈Ru

(A · r ≥ (γ + 1)c ∧Ba · r ≥ −γc)
]

= 1− Pr

[
A · r < (γ + 1)c ∨

∨
a∈Ru

Ba · r < −γc
]

≥ 1− Pr [A · r < (γ + 1)c]−
∑

a∈Ru

Pr [Ba · r < −γc]

= Pr
[

A

‖A‖ · r ≥
(γ + 1)c
‖A‖

]
−

∑
a∈Ru

Pr
[
− Ba

‖Ba ‖ · r >
γc

‖Ba ‖
]

≥ N
(

(γ + 1)c
1− δ

)
−Δ · N

(
γc√
2δ

)
= N (αc)−Δ · N

(
c

β
√
x

)
.

The last inequality follows because the sum of k independent Gaussian random
variables with variances σ2

1 , . . . , σ
2
k is a Gaussian random variable with variance∑k

i=1 σ
2
i . Consequently, the the dot product of a unit vector with r is a standard

normal random variable. ��
The total weight of the vertices that are removed from I ′ is upper bounded by
the weight of vertices of the edges in the graph G[I ′] induced by I ′. The next
lemma bounds the probability that a vertex u ∈ S2 is in I ′ and that u has a
neighbor u′ ∈ S2 that is also in I ′.

Lemma 3. Consider a vertex u ∈ S2. The probability that u as well as some
neighbor u′ of u are in I ′ is upper bound by

Pr [u ∈ I ′ ∧ ∃u′ ∈ S2 : {u, u′} ∈ E ∧ u′ ∈ I ′] ≤ Δ · N
(

c√
x

)
.

Based on Lemmas 2 and 3, we can now lower bound the expected size of the
computed independent set I and we can thus obtain a bound on the expected
approximation ratio of Algorithm 1.

Theorem 5. Choosing x = 1−o(1)
25 · ln ln Δ

ln Δ , c = (1 + o(1)) ·
√

2x
1−25x lnΔ, and

γ = 4, Algorithm 1 has an expected approximation ratio of 2− 2−o(1)
25 · ln ln Δ

ln Δ .

3 Vertex Cover in Graphs with Bounded
Local Chromatic Number

Consider the vertex cover problem in graphs GΔ for which a local (Δ + 1)-
coloring is given. Theorem 6 shows that the approximation ratio achievable from
relaxation (1) is no better than 2− 2

Δ+1 if only the bounded local colorability,
but not the biclique condition holds.

506 F. Kuhn and M. Mastrolilli

Theorem 6. For any fixed Δ ≥ 2 and ε > 0, there is a local (Δ + 1)-colorable
graph GΔ,ε for which

vc(GΔ,ε)
sd(GΔ,ε)

≥ 2− 2
Δ + 1

− ε,

where vc(G) and sd(G) denote the size of a minimum weighted vertex cover of
G and the solution value for the corresponding SDP relaxation (1), respectively.

Under the Unique Game Conjecture, Khot and Regev [24] proved that vertex
cover is NP-hard to approximate better than 2− ε, for any ε > 0.

Theorem 7 ([24]). Assuming the Unique Game Conjecture, for arbitrarily
small constants ε, δ > 0, there is a polynomial time reduction mapping a SAT
formula φ to an n-vertex graph G such that if φ is satisfiable then G has an inde-
pendent set of size (1

2 − ε)n and if φ is unsatisfiable, then G has no independent
set of size δn.

By using Theorem 7, the reduction and the analysis in the proof of Theorem 6
can be easily adapted to obtain the following conditional hardness.

Theorem 8. Assuming the Unique Game Conjecture, it is NP-hard to approx-
imate the vertex cover problem in graphs for which a local (Δ + 1)-coloring is
given as input, within any constant factor better than 2− 2/(Δ + 1).

A matching upper bound can be obtained by showing that an independent set
of value at least

∑n
i=1 wi

Δ+1 is computable in polynomial time. Indeed, the following
result shows that Turan’s theorem (as proved by Caro and Wei) for bounded
degree graphs can be generalized to graphs with bounded local colorings.

Theorem 9. For any weighted graph G = (V,E), there exists an independent
set of value at least

∑
v∈V

wv

Δv+1 , where Δv = |{c(u) : u ∈ N(v)}| is the number
of different colors in the neighborhood of v ∈ V of any proper coloring c of G.

By using standard techniques, an upper bound that matches the lower bound of
Theorem 2 can be obtained in deterministic polynomial time.

Corollary 1. There exists a (2− 2
Δ+1)-approximation algorithm for the vertex

cover problem in graphs for which a local (Δ + 1)-coloring is given as input.

4 The Scheduling Application

Problem 1|prec |∑wjCj is a classical and fundamental problem in scheduling
theory [33]. Its complexity certainly depends on the poset complexity In partic-
ular, the dimension of the input poset has been established to be an important
parameter for the approximability of the problem [2,1]. Another natural param-
eter of partial orders is given by the poset in- or out-degree [14], namely the job
maximum number of predecessors or successors, respectively. One of the first
NP-complete proofs [28] for 1|prec |∑wjCj shows that the problem remains

Vertex Cover in Graphs with Locally Few Colors 507

strongly NP-hard even if every job has at most two predecessors (or successors)
in the poset. In [2], the authors present a (2− 2/max{Δ, 2})-approximation al-
gorithm, where Δ− 1 is the minimum between the in- and the out-degree of the
input poset. In this section, we show how to use Theorem 1 to improve this by
showing how to compute a Δ-local biclique coloring of GP.

Consider a partially ordered set P = (N,P). When neither (x, y) ∈ P nor
(y, x) ∈ P , we say that x and y are incomparable, denoted by x||y. We call
inc(P) = {(x, y) ∈ N ×N : x||y in P} the set of incomparable pairs of P. For
any integer k ≥ 2, a subset S = {(xi, yi) : 1 ≤ i ≤ k} ⊂ inc(P) is called
an alternating cycle when xi ≤ yi+1 in P , for all i = 1, 2, . . . , k, and where
yk+1 = y1. An alternating cycle S = {(xi, yi) : 1 ≤ i ≤ k} is strict if xi ≤ yj in
P if and only if j = i + 1, for all i, j = 1, 2, . . . , k.

For a poset P, the hypergraph of incomparable pairs of P [15], denoted HP =
(V,E), is the hypergraph that satisfies the following conditions: (1) V is the set
inc(P) of incomparable pairs of P; and (2) E consists of those subsets of V that
form strict alternating cycles. The graph GP of incomparable pairs of P is the
ordinary graph determined by all edges of size 2 in HP Hence, in GP, there is
an edge between incomparable pairs (i, j) and (k, �) if an only if (i, �), (k, j) ∈ P .

In a series of papers [1,10,9], it was proved that 1|prec|∑wjCj is equivalent
to a weighted vertex cover problem on the graph of incomparable pairs GP of
the poset P characterizing the precedence constraints of the scheduling problem.
More precisely, given a scheduling instance S with precedence constraints P, we
need to consider the following weighted version GS

P of GP. For all incomparable
pairs (i, j) ∈ inc(P), the weight of vertex (i, j) in GP is pi · wj , where pi is the
processing time of job i and wj is the weight of process j.

Let P = (N,P) be a poset. For j ∈ N , define the degree of j deg(j) as
the number of elements comparable (but not equal) to j in P. Given j ∈ N ,
let D(j) denote the set of all elements which are less than j, and U(j) those
which are greater than j in P . Let degD(j) := |D(j)| be the in-degree of j
and the maximum in-degree ΔD(P) := max{degD(j) : j ∈ N}. The out-degree
of j degU (j) and the maximum out-degree ΔU (P) are defined analogously (see
also [14]). The maximum vertex degree in the graph of incomparable pairs GP

is bounded by (ΔD(P) + 1) · (ΔU (P) + 1). Hence, if both ΔD(P) and ΔU (P)
are bounded, GP has bounded degree and therefore, the bounded degree vertex
cover approximation of [19] can be used to approximate the scheduling problem
1|prec|∑wjCj with precedence constraints P. If only either the in-degree or the
out-degree of P is bounded, GP does not have bounded degree. However, we will
now show that in this case GP has a good local biclique coloring.

Theorem 10. Let P = (N,P) be a poset and let Δ = 1+min{ΔD(P), ΔU (P)}.
Then, we can efficiently compute a (Δ+1)-local biclique coloring of GP = (V,E).

Proof. We assume that Δ−1 = ΔD(P) is the largest in-degree. The case Δ−1 =
ΔU (P) can be proven analogously. We first show how to compute a (Δ+1)-local
coloring of GP (cf. Def. 1). Partition the incomparable pairs into |N | color classes:
Ci = {(i, j) ∈ inc(P)} for i ∈ [|N |]. It is easy to check that every Ci forms an
independent set. Moreover any incomparable pair (i, j) ∈ inc(P) is adjacent to

508 F. Kuhn and M. Mastrolilli

(k, �) ∈ inc(P) if (necessary condition) (k, j) ∈ P . Since the in-degree of j is
bounded by Δ − 1, it follows that the number of distinct pairs (k, j) such that
(k, j) ∈ P is bounded by Δ (it is Δ and not Δ−1 because we also have to consider
the pair (j, j) ∈ P). Therefore any incomparable pair (i, j) has neighbors in at
most Δ clusters and thus the coloring is (Δ + 1)-local.

In order to show that the coloring is a biclique coloring (cf. Def. 2), assume
that {(i, a), (j, c)} ∈ E and {(i, b), (j, d)} ∈ E. The claim follows by proving that
{(i, a), (j, d)} ∈ E and {(i, b), (j, c)} ∈ E. By the assumption we have: (i, c) ∈ P ,
(j, a) ∈ P , (i, d) ∈ P and (j, b) ∈ P . Since (j, a) ∈ P ∧ (i, d) ∈ P we have
{(i, a), (j, d)} ∈ E, and (i, c) ∈ P ∧ (j, b) ∈ P implies {(i, b), (j, c)} ∈ E. ��
Acknowledgments. The second author is indebted to Nikos Mutsanas and
George Karakostas for many interesting discussions. We would like to thank Jǐri
Sgall for suggesting the term “biclique coloring.” The research is supported by
the Swiss National Science Foundation project 200020-122110/1 and by Hasler
Foundation Grant 11099.

References

1. Ambühl, C., Mastrolilli, M.: Single machine precedence constrained scheduling is
a vertex cover problem. Algorithmica 53(4), 488–503 (2009)

2. Ambühl, C., Mastrolilli, M., Mutsanas, N., Svensson, O.: Scheduling with prece-
dence constraints of low fractional dimension. In: Fischetti, M., Williamson, D.P.
(eds.) IPCO 2007. LNCS, vol. 4513, pp. 130–144. Springer, Heidelberg (2007)

3. Ambühl, C., Mastrolilli, M., Svensson, O.: Approximating precedence-constrained
single machine scheduling by coloring. In: Dı́az, J., Jansen, K., Rolim, J.D.P.,
Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 15–
26. Springer, Heidelberg (2006)

4. Ambühl, C., Mastrolilli, M., Svensson, O.: Inapproximability results for spars-
est cut, optimal linear arrangement, and precedence constrained scheduling. In:
FOCS, pp. 329–337 (2007)

5. Austrin, P., Khot, S., Safra, M.: Inapproximability of vertex cover and indepen-
dent set in bounded degree graphs. In: IEEE Conference on Computational Com-
plexity, pp. 74–80 (2009)

6. Bansal, N., Khot, S.: Optimal Long-Code test with one free bit. In: Foundations
of Computer Science (FOCS), pp. 453–462 (2009)

7. Brightwell, G.R., Scheinerman, E.R.: Fractional dimension of partial orders. Or-
der 9, 139–158 (1992)

8. Chekuri, C., Motwani, R.: Precedence constrained scheduling to minimize sum
of weighted completion times on a single machine. Discrete Applied Mathemat-
ics 98(1-2), 29–38 (1999)

9. Chudak, F.A., Hochbaum, D.S.: A half-integral linear programming relaxation for
scheduling precedence-constrained jobs on a single machine. Operations Research
Letters 25, 199–204 (1999)

10. Correa, J.R., Schulz, A.S.: Single machine scheduling with precedence constraints.
Mathematics of Operations Research 30(4), 1005–1021 (2005)

11. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover.
Annals of Mathematics 162(1), 439–485 (2005)

Vertex Cover in Graphs with Locally Few Colors 509

12. Dushnik, B., Miller, E.: Partially ordered sets. American Journal of Mathemat-
ics 63, 600–610 (1941)

13. Erdös, P., Füredi, Z., Hajnal, A., Komjáth, P., Rödl, V., Seress, Á.: Coloring
graphs with locally few colors. Discrete Mathematics 59(1-2), 21–34 (1986)

14. Felsner, Trotter: On the fractional dimension of partially ordered sets. DMATH:
Discrete Mathematics 136, 101–117 (1994)

15. Felsner, S., Trotter, W.T.: Dimension, graph and hypergraph coloring. Or-
der 17(2), 167–177 (2000)

16. Graham, R., Lawler, E., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and
approximation in deterministic sequencing and scheduling: A survey. Annals of
Discrete Mathematics, vol. 5, pp. 287–326. North-Holland, Amsterdam (1979)

17. Hall, L.A., Schulz, A.S., Shmoys, D.B., Wein, J.: Scheduling to minimize aver-
age completion time: off-line and on-line algorithms. Mathematics of Operations
Research 22, 513–544 (1997)

18. Halldórsson, M.M., Radhakrishnan, J.: Greed is good: Approximating independent
sets in sparse and bounded-degree graphs. Algorithmica 18(1), 145–163 (1997)

19. Halperin, E.: Improved approximation algorithms for the vertex cover problem in
graphs and hypergraphs. SIAM J. Comput. 31(5), 1608–1623 (2002)

20. Hochbaum, D.S.: Efficient bounds for the stable set, vertex cover and set packing
problems. Discrete Applied Mathematics 6, 243–254 (1983)

21. Karakostas, G.: A better approximation ratio for the vertex cover problem. ACM
Transactions on Algorithms 5(4) (2009)

22. Karger, D.R., Motwani, R., Sudan, M.: Approximate graph coloring by semidefi-
nite programming. J. ACM 45(2), 246–265 (1998)

23. Khot, S.: On the power of unique 2-prover 1-round games. In: STOC, pp. 767–775
(2002)

24. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-
epsilon. J. Comput. Syst. Sci. 74(3), 335–349 (2008)

25. Kleinberg, J.M., Goemans, M.X.: The lovász theta function and a semidefinite
programming relaxation of vertex cover. SIAM J. Discrete Math. 11(2), 196–204
(1998)

26. Körner, J., Pilotto, C., Simonyi, G.: Local chromatic number and Sperner capac-
ity. Journal on Combinatorial Theory, Series B 95(1), 101–117 (2005)

27. Lawler, E.L.: Sequencing jobs to minimize total weighted completion time subject
to precedence constraints. Annals of Discrete Mathematics 2, 75–90 (1978)

28. Lenstra, J.K., Rinnooy Kan, A.H.G.: The complexity of scheduling under prece-
dence constraints. Operations Research 26, 22–35 (1978)

29. Margot, F., Queyranne, M., Wang, Y.: Decompositions, network flows and a prece-
dence constrained single machine scheduling problem. Operations Research 51(6),
981–992 (2003)

30. Nemhauser, G.L., Trotter, L.E.: Vertex packings: Structural properties and algo-
rithms. Mathematical Programming 8, 232–248 (1975)

31. Potts, C.N.: An algorithm for the single machine sequencing problem with prece-
dence constraints. Mathematical Programming Study 13, 78–87 (1980)

32. Schulz, A.S.: Scheduling to minimize total weighted completion time:
Performance guarantees of LP-based heuristics and lower bounds. In: Cunning-
ham, W.H., Queyranne, M., McCormick, S.T. (eds.) IPCO 1996. LNCS, vol. 1084,
pp. 301–315. Springer, Heidelberg (1996)

33. Schuurman, P., Woeginger, G.J.: Polynomial time approximation algorithms for
machine scheduling: ten open problems. Journal of Scheduling 2(5), 203–213
(1999)

Maximizing Polynomials Subject to Assignment

Constraints

Konstantin Makarychev and Maxim Sviridenko

IBM Thomas J. Watson Research Center

Abstract. We study the q-adic assignment problem. We first give an
O(n(q−1)/2)-approximation algorithm for the Koopmans–Beckman ver-
sion of the problem improving upon the result of Barvinok. Then, we
introduce a new family of instances satisfying “tensor triangle inequali-
ties” and give a constant factor approximation algorithm for them. We
show that many classical optimization problems can be modeled by q-adic
assignment problems from this family. Finally, we give several integrality
gap examples for the natural LP relaxations of the problem.

1 Introduction

In 1963 Lawler [13] suggested the following problem that he called q-adic assign-
ment problem: We are given a set {1, . . . , n} = [n] of indices and a 2q-dimensional
array cu,v for u, v ∈ [n]q. The goal is to find a permutation π : [n] → [n] opti-
mizing (maximizing or minimizing) the expression∑

u∈[n]q

cu,π(u), (1)

where π(u) = (π(u1), . . . , π(uq)) for a vector u = (u1, . . . , uq). We will call the
maximization (minimization) problem the maximum (minimum) q-adic assign-
ment problem. This problem naturally generalizes the famous quadratic assign-
ment problem (QAP) originally defined by Koopmans and Beckman [12] for
which q = 2 and cu,v = wudv for all u, v ∈ [n]2. The problem with decomposable
coefficients cu,v = wudv will be called the Koopmans–Beckman version of the
q-adic assignment problem throughout the paper.

Similarly, to the quadratic assignment problem, the general q-adic assignment
problem has many practical applications and can be used to model variety of
optimization problems. For example, Winter and Zimmerman [18] used the cu-
bic assignment problem for scheduling. Burkard, Cela and Klinz [7] suggested
applications of the 4-adic (or quartic) assignment problem in VLSI synthesis.
The Koopmans-Beckman version of the problem can also be viewed as a variant
of the hypergraph isomorphism problem studied by Babai et al. [3] where we
would like to maximize the product of weights of hyperedges that are mapped
into each other. (However, since techniques used in hypergraph or graph isomor-
phism algorithms heavily use the fact that all hyperedges must be mapped these
techniques cannot be used for the q-adic assignment problem.) But despite enor-
mous amount of applications, the problem remains highly intractable both from

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 510–520, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Maximizing Polynomials Subject to Assignment Constraints 511

theoretical [15] and practical viewpoints even when q = 2. For larger q, e.g. for
q = 4, the problem cannot be solved exactly in practice even if n = 14 (see [6]).

1.1 Overview of the Results

In this paper, we concentrate on the maximization version of the problem with
nonnegative coefficients. There are no known approximation algorithms that
have a proven performance guarantee for the general case. The Koopmans–
Beckman version of the maximum q-adic assignment problem was considered by
Barvinok [4] who designed an approximation algorithm with performance guar-
antee εnq/2 and running time nO(q/ε) for any ε > 0. The best known approxima-
tion algorithm with performance guarantee O(

√
n) for the special case of q = 2,

i.e. the Maximum QAP, was given in [15] (see also [16]). In this paper, we present
a new O(n(q−1)/2)-approximation algorithm for the Koopmans–Beckman version
of the maximum q-adic assignment problem thus improving upon the result of
Barvinok [4] and matching the performance guarantee of [15] for the Maximum
QAP. Note, that we cannot hope to get a poly-logarithmic approximation ratio,
since such possibility was ruled out (under very plausible complexity assump-
tions) even for the maximum quadratic assignment problem in [15] (using the
same method as in [15], one can show that under slightly stronger assumptions
(see [5]), there exists δ > 0 and q such that the maximum q-adic assignment
problem is NP-hard to approximate within a factor of nδ). Thus, one of our
main goals is to identify special families of instances that can be solved with a
much better performance guarantee. Arkin, Hassin and Sviridenko [2] and, then
Nagarajan and Sviridenko [16] showed how to get a constant approximation ratio
in the Koopmans–Beckman version of the maximum quadratic assignment prob-
lem, if the coefficients dv satisfy the triangle inequality. We give a very general
analog of this result for the general (i.e., not the Koopmans–Beckman version)
maximum q-adic assignment problem. We further show that many combinato-
rial optimization problems can be expressed as special cases of this problem. In
the full version of the paper, we give an integrality gap examples of Ω

(
nq−1

lnn

)
for the general case, and Ω

(
n(q−1)/2√

ln n

)
for the Koopmans–Beckman case of the

maximum q-adic assignment problem.

1.2 Tensor Triangle Inequality

Let K = {k1, . . . , kq−1} where k1, . . . , kq−1 ∈ [n] are arbitrary (q − 1) distinct
indices, i.e. ka �= kb for all a �= b. For each vector v ∈ [n]q and coordinate
s ∈ [q], let Vs(v,K) be the set of (q − 1)! vectors obtained from v by replacing
all coordinates except the coordinate s with indices k1, . . . , kq−1 in an arbitrary
order. For example for q = 3, s = 1, vector v = (v1, v2, v3) and K = {k1, k2} ⊂ [n]
we get V1(v,K) = {(v1, k1, k2), (v1, k2, k1)}.
Definition 1.1. We say that an instance of the maximum q-adic assignment
problem satisfies the tensor triangle inequality if for every K = {k1, . . . , kq−1}
and u, v ∈ [n]q,

512 K. Makarychev and M. Sviridenko

cu,v ≤
q∑

s=1

∑
v′∈Vs(v,K)

cuv′ . (2)

Note that the total number of terms on the right hand side of (2) is q! and the
total number of different sets K is

(
n

q−1

)
. We now discuss various special cases

of the tensor triangle inequality:

1. For q = 2 the 4-dimensional tensor (c(i,j),(p,q)) for i, j, p, q ∈ [n] satisfies the
tensor triangle inequality if for any r ∈ [n] the following inequality holds

c(i,j),(p,q) ≤ c(i,j),(p,r) + c(i,j),(r,q). (3)

In the Koopmans–Beckman version of the problem, c(i,j),(p,q) = wijdpq and
the condition (3) just becomes the triangle inequality dpq ≤ dpr + drq. If in
addition dpq is symmetric, i.e. dpq = dqp we obtain the maximum quadratic
assignment problem with the triangle inequality for which constant factor
approximation algorithms are known [2,16].

If wij is the weight of the edge (i, j) in a directed graph, dpq = 1 if p < q
and dpq = 0 if p ≥ q, then the tensor triangle inequality is also satisfied,
and the problem is exactly equivalent to the Maximum Acyclic Subgraph
Problem.

More generally, the condition (3) models the Koopmans–Beckman variant
of the maximum quadratic assignment problem in which matrix dpq is not
symmetric but satisfies the triangle inequality. There was no constant factor
algorithm known for this problem before and the techniques from [2,16] do
not seem to generalize to this case.

2. In the Betweenness Problem, we are given the set T of triples (i, j, k), we
would like to find a permutation π and maximize the number of triples
such that either π(i) < π(j) < π(k) or π(i) > π(j) > π(k). This problem
has applications in computational biology and was studied in [9,14]. This
problem is modeled by the q-adic assignment problem in the Koopmans–
Beckman form with q = 3. We define c(i,j,k),(p,q,r) = w(i,j,k)d(p,q,r) such
that w(i,j,k) = 1 for each (i, j, k) ∈ T , w(i,j,k) = 0, for each (i, j, k) �∈ T
and d(p,q,r) = 1 if p < q < r or p > q > r and d(p,q,r) = 0, otherwise.
The condition (3) is satisfied since if dpqr = 1 then at least one of the
term one right hand side of (3) must be one for any choice of k1, k2. We
note however that the random assignment gives 3 approximation for the
Betweenness Problem, our algorithm gives a worse constant.

3. Finally, the condition (3) models the generalization of the Maximum Acyclic
Subgraph Problem considered by Guruswami et al. [10]. In this problem for
each customer we are given a list of preferences in the form i1 > i2 > · · · > iq
the goal is to find a permutation π that maximizes the total number of sat-
isfied customers, where a customer is satisfied if his preferences are satisfied,
i.e. π(i1) > π(i2) > · · · > π(iq). Guruswami et al. [10] show that assum-
ing the Unique Games Conjecture there is no approximation algorithm for
this problem with performance guarantee better than q! (a random assign-
ment gives a q! approximation). Since this problem can be modelled using

Maximizing Polynomials Subject to Assignment Constraints 513

condition (3) it shows that our e2q! approximation for the maximum q-adic
assignment problem is optimal up to a factor e2.

2 Linear Programming Relaxation

For any vector u ∈ [n]q, let us be the s-th coordinate of vector u. The maximum
q-adic assignment problem can be formulated as the problem of maximizing the
value of degree q polynomial subject to assignment constraints:

max
∑

u,v∈[n]q
cu,v

q∏
s=1

xusvs , (4)∑
i∈[n]

xij = 1, j ∈ [n], (5)

∑
j∈[n]

xij = 1, i ∈ [n], (6)

xij ∈ {0, 1}. (7)

We linearize the objective function (4) and relax the integrality constraint
(7). Let Pq be the set of all permutations on q elements. For each u ∈ [n]q and
φ ∈ Pq, let u(φ) denote a vector v with coordinates vs = uφ(s). In our linear
programming relaxation we keep assignment variables xij for i, j ∈ [n] and we
define new variables yu,v for u, v ∈ [n]q that have the value

∏q
s=1 xusvs for integer

variables xij .
Let F ⊆ [n]q be the set of index vectors such that for each u ∈ F there is a

pair of coordinates s, s′ and us = us′ . The assignment constraints (5) and (6)
imply that

∏q
s=1 xusvs = 0 if u ∈ F or v ∈ F . In other words, the set F consists

of infeasible vectors u ∈ [n]q. Therefore, we can assume that cu,v = 0 and add
the constraint yu,v = 0 if u ∈ F or v ∈ F to our linear programming relaxation.
We now formally define our linear programming relaxation

max
∑

u,v∈[n]q
cu,vyu,v, (8)∑

u∈[n]q:us=i
yu,v = xivs , v ∈ [n]q, s ∈ [q], i ∈ [n], (9)∑

v∈[n]q :vs=j
yu,v = xusj , u ∈ [n]q, s ∈ [q], j ∈ [n], (10)

yu,v = 0, u ∈ F or v ∈ F , (11)
yu,v = yφ(u),φ(v), u, v ∈ [n]q, φ ∈ Pq, (12)∑

i∈[n]
xij = 1, j ∈ [n], (13)∑

j∈[n]
xij = 1, i ∈ [n], (14)

yu,v ≥ 0, u, v ∈ [n]q, (15)
xij ≥ 0, i, j ∈ [n]. (16)

514 K. Makarychev and M. Sviridenko

The constraints (9) are valid for an integral solution of the maximum q-adic
assignment problem since

∑
u∈[n]q :us=i yu,v =

∑
u∈[n]q:us=i

∏q
s′=1 xus′vs′ and we

can iteratively apply the equations (13) for each coordinate of vector u except
coordinate s. Analogously, we can show that constraints (10) are valid. The
validity of constraints (12) follows from the fact that the product

∏q
s=1 xusvs

does not depend on the order of factors.
In the full version of the paper, we show that our linear programming re-

laxation has integrality gap Ω(nq−1/ logn) for the general case of the maximum
q-adic assignment problem. However, in the Koopmans–Beckman form, i.e. when
cu,v = wudv for all u, v ∈ [n]q the integrality gap is O(n(q−1)/2). We present an
approximation algorithm in Section 4 (An almost matching Ω(n(q−1)/2/

√
logn)-

integrality gap example is presented in the full version of the paper.)

3 Problems Satisfying the Tensor Triangle Inequality

The following lemma provides us with an upper bound on the value of the linear
programming relaxation.

Lemma 3.1. Let (x∗, y∗) be an optimal solution of the linear programming re-
laxation (8)–(16). If the input instance of the maximum q-adic assignment prob-
lem satisfies the tensor triangle inequality, i.e. the inequality (2), then for the
optimal value LP ∗ of the linear programming relaxation (8)–(16) we have

LP ∗ ≤
(

n

q − 1

)−1 ∑
u,v∈[n]q

cu,v

(
q∑

s=1

x∗
usvs

)

Proof. We apply the inequality (2) to each term in the expression LP ∗ =∑
u,v∈[n]q cu,vy

∗
u,v and average over different choices of the set K. We obtain

LP ∗ ≤
∑

u,v∈[n]q

⎛⎝(
n

q − 1

)−1 ∑
K:|K|=q−1

q∑
s=1

∑
v′∈Vs(v,K)

cuv′

⎞⎠ y∗u,v

=
(

n

q − 1

)−1 ∑
u,v′∈[n]q

cu,v′

⎛⎝ q∑
s=1

∑
v∈[n]q:vs=v′

s

y∗u,v

⎞⎠
=
(

n

q − 1

)−1 ∑
u,v∈[n]q

cu,v

(
q∑

s=1

xus,vs

)
,

where the last equality follows from constraints (10). The first equality is derived
by considering which terms in the expression LP ∗ =

∑
u,v∈[n]q cu,vy

∗
u,v generate

the term cu,v′y∗u,v after applying the tensor triangle inequality.

The next Lemma holds for the general case of the maximum q-adic assignment
problem and will be used later in another context.

Maximizing Polynomials Subject to Assignment Constraints 515

Lemma 3.2. There exists a randomized polynomial time algorithm that finds
an integral solution to the linear program (8)–(16) with expected value at least(

1− 1
q

)2(q−1)

q!

(
n

q − 1

)−1 ∑
u,v∈[n]q

cu,v

(
q∑

s=1

x∗
usvs

)
.

Proof. The matrix X∗ = (x∗
ij) for i, j ∈ [n] is doubly stochastic since it satis-

fies the constraints (13) and (14). Therefore, it can be represented as a convex
combination of permutation matrices, i.e.

X∗ =
∑

τ∈[N]

λτΠτ (17)

where N ≤ n2,
∑N

τ=1 λτ = 1, λτ ≥ 0 for all τ ∈ [N] and each Πτ is a permutation
matrix.

Our randomized algorithm chooses one permutation matrix with probability
distribution given by coefficients λτ . The chosen permutation matrix corresponds
to an integral solution of the linear program (8)–(16), it also corresponds to a
random mapping ϕ : [n] → [n]. Moreover, (17) implies that Pr[ϕ(i) = j] = x∗

ij

for any i, j ∈ [n]. We also define the second random mapping ψ : [n]→ [n] that
corresponds to a permutation on [n] chosen uniformly at random.

We now combine two random mappings ϕ and ψ. Choose the set X ⊆ [n] at
random such that each index i ∈ [n] belongs to X independently with probability
1/q. We define the mapping π as follows: if i ∈ X , then π(i) = ϕ(i), if i /∈ X and
ψ(i) /∈ ϕ(X), then π(i) = ψ(i), all other elements are mapped in an arbitrary
way.

We estimate probability, that π(u) = v for u, v ∈ [n]q \ F . For every s ∈ [q],
let As(u, v) be the following event

As(u, v) = {ϕ(us) = vs}
∧
{ψ(us′) = vs′ for all s′ ∈ [q], s′ �= s}.

Since the permutations ϕ and ψ are defined independently, we have

Pr[As(u, v)] =
x∗

us,vs

(q − 1)!

(
n

q − 1

)−1

.

Let Bs(u, v) be the event Bs(u, v) = {us ∈ X}∧{us′ /∈ X and vs′ /∈ ϕ(X) for all
s′ ∈ [q], s′ �= s}. Since each i ∈ [n] is chosen to the set X independently with
probability 1/q and since | ∪s′ �=s {us′ , ϕ−1(vs′)}| ≤ 2(q − 1) (always, and thus
independently of As(u, v)) we have

Pr [Bs(u, v) | As(u, v)] ≥ 1
q

(
1− 1

q

)2(q−1)

.

For every s ∈ [q], events As(u, v) and Bs(u, v) together imply the event {π(u) =
v}, also events Bs(u, v) are disjoint for different s ∈ [q], therefore

Pr[π(u) = v] ≥
q∑

s=1

Pr[As(u, v)∧Bs(u, v)] ≥
q∑

s=1

x∗
us,vs

(q − 1)!

(
n

q − 1

)−1

×1

q

(
1− 1

q

)2(q−1)

.

516 K. Makarychev and M. Sviridenko

We are now ready to estimate the expected value of the solution.

E

⎡⎣ ∑
u∈[n]q

cu,π(u)

⎤⎦ =
∑

u,v∈[n]q

cu,v Pr[π(u) = v]

≥
∑

u,v∈[n]q

cu,v ×
q∑

s=1

x∗
us,vs

(q − 1)!

(
n

q − 1

)−1

× 1
q

(
1− 1

q

)2(q−1)

=

(
1− 1

q

)2(q−1)

q!

(
n

q − 1

)−1 ∑
u,v∈[n]q

cu,v

(
q∑

s=1

x∗
us,vs

)
.

Combining Lemmas 3.1 and 3.2 we obtain the following theorem.

Theorem 3.1. There exists a randomized approximation algorithm with perfor-
mance guarantee e2q! for the maximum q-adic assignment problem satisfying the
generalized triangle inequality (2).

In the full version of the paper, we also prove the following result.

Theorem 3.2. There exists a randomized approximation algorithm for the max-
imum q-adic assignment problem (1) that finds a solution with expected value at
least LP ∗/(e2(q − 1)!

(
n

q−1

)
), i.e. the performance guarantee of the algorithm is

e2(q − 1)!
(

n
q−1

)
= O(nq−1).

4 Koopmans–Beckman Case: The Problem with
Decomposable Coefficients

We now give an algorithm for the Koopmans–Beckman variant of the problem
(an extension of our earlier work [15]). In this case, all weights cu,v have the form
cu,v = wudv. It is convenient to think that vectors u, v ∈ [n]q are hyperedges
and wu and dv are weights of these hyperedges. We write i ∈ u, if for some s,
i = us. If u′ ∈ [n]q and u′′ ∈ [n]q do not have common vertices i ∈ [n], then we
say that u′ and u′′ are disjoint.

Theorem 4.1. There exists a polynomial-time randomized approximation algo-
rithm for the Koopmans–Beckman version of the q-adic assignment problem with
the approximation ratio O(q2n(q−1)/2).

Proof. The input of the algorithm is a collection of weights {wu : u ∈ [n]q} and
{dv : v ∈ [n]q}. The output is a permutation π : [n]→ [n]. Fix a parameter

M =

⌈
1
q

√
(q − 1)!

(
n

q − 1

) ⌉
=

⌈
1
q

√
n!

(n− q + 1)!

⌉
.

Solve the linear program. Denote the solution by (x∗, y∗) and the value of the
objective function by LP ∗. Now, greedily find a set of disjoint “heavy” (according
to the LP) hyperedges E = {e ∈ [n]q} using the following algorithm.

Maximizing Polynomials Subject to Assignment Constraints 517

– Initialization: Set U = [n]q; E = ∅.
– while (U is not empty)
• Find the most expensive edge e ∈ U with respect to the cost function

lp-cost(e) =
∑

v∈[n]q

wedvy
∗
e,v.

• Add e to the set E .
• For every vertex i ∈ e, we denote e(i) = e.
• For every i ∈ e, and s ∈ {1, . . . , q}: we iteratively, set Ai,s = {u ∈
U : us = i} and then remove elements of Ai,s from the set U . Thus,
we partition all hyperedges in U that intersect with e into disjoint sets
Ai,s (where i ∈ e, s ∈ {1, . . . , q}), such that for every u ∈ Ai,s, us = i.
Note also that deleting hyperedges from U we ensure that each e(i) is
well-defined and each vertex i has at most one hyperedge e(i) associated
with it. Moreover, each hyperedge belongs to exactly one set Ai,s.
• Let Bi,s be the set of M hyperedges u from Ai,s with the maximum value

of wu. If |Ai,s| < M , then let Bi,s = Ai,s.
Note, that ∪i∈[n]∪s∈{1,...,q}Ai,s = [n]q andAi,s∩Ai′,s′ = ∅ for (i, s) �= (i′, s′).

By convention, we define Ai,s = ∅ if i does not belong to any edge e ∈ E . Then
we have

LP ∗ =
∑

u∈[n]q

∑
v∈[n]q

wudvy
∗
u,v =

∑
i∈[n]

q∑
s=1

∑
u∈Ai,s

∑
v∈[n]q

wudvy
∗
u,v

=
∑
i∈[n]

q∑
s=1

∑
u∈Ai,s\Bi,s

∑
v∈[n]q

wudvy
∗
u,v︸ ︷︷ ︸

LP∗
I

+
∑
i∈[n]

q∑
s=1

∑
u∈Bi,s

∑
v∈[n]q

wudvy
∗
u,v︸ ︷︷ ︸

LP∗
II

.

Denote the first term in the sum LP ∗
I and the second term LP ∗

II . We now consider
two cases. In each case we run a separate approximation algorithm. Our final
algorithm could be viewed as an algorithm that runs these two approximation
algorithms and chooses the best solution.

I. First, assume, that LP ∗
I ≥ LP ∗/2. Let mi,s = min{wu : u ∈ Bi,s}, if |Bi,s| =

M ; and mi,s = 0, otherwise. Note, that

max{wu : u ∈ Ai,s \ Bi,s} ≤ mi,s ≤ 1
M

∑
u∈Bi,s

wu. (18)

We have

LP ∗
I =

∑
i∈[n]

q∑
s=1

∑
u∈Ai,s\Bi,s

∑
v∈[n]q

wudvy
∗
u,v ≤

∑
i∈[n]

q∑
s=1

∑
u∈Ai,s\Bi,s

∑
v∈[n]q

mi,sdvy
∗
u,v

≤
∑
i∈[n]

q∑
s=1

∑
u∈[n]q :us=i

∑
v∈[n]q

mi,sdvy
∗
u,v =

∑
i∈[n]

q∑
s=1

∑
v∈[n]q

mi,sdvx
∗
i,vs

.

518 K. Makarychev and M. Sviridenko

In the last equality, we used LP constraint (9). Then, using upper bound (18)
on mi,s, we get

LP ∗
I =

∑
i∈[n]

q∑
s=1

∑
v∈[n]q

mi,sdvx
∗
i,vs
≤

∑
i∈[n]

q∑
s=1

∑
v∈[n]q

⎛⎝ 1
M

∑
u∈Bi,s

wu

⎞⎠ dvx
∗
i,vs

≤ 1
M

∑
i∈[n]

q∑
s=1

∑
u:us=i

∑
v∈[n]q

wudvx
∗
i,vs

=
1
M

q∑
s=1

∑
u∈[n]q

∑
v∈[n]q

wudvx
∗
us,vs

.

Hence,
q∑

s=1

∑
u,v∈[n]q

wudvx
∗
us,vs

≥ 1
2
M · LP ∗.

By Lemma 3.2, there exists a randomized polynomial-time algorithm that finds
a solution of cost

ALGI ≥
(1 − 1

q)2(q−1)

q!

(
n

q − 1

)−1 ∑
u,v∈[n]q

wudv

(
q∑

s=1

x∗
usvs

)

≥ 1
2e2

1
q

√
(q − 1)!

(
n

q−1

)
q!
(

n
q−1

) LP ∗ ≥ LP ∗

2e2q2n
q−1
2

.

II. Now, assume, that LP ∗
II ≥ LP ∗/2. For every e ∈ E , select independently a

random v ∈ [n]q with probability y∗e,v, and set φ(e) = v. Then, pick elements
e ∈ E in a random order and for each s = 1, . . . , q set π(es) = φ(e)s, if the vertex
φ(e)s does not have a preimage yet; and discard the vertex es, otherwise. In the
end, map all discarded vertices in an arbitrary way.

We need to estimate the probability that π(e) = v. The probability that
φ(e) = v equals y∗e,v. Let N(v) be the number of e′ for which φ(e′) intersects v.
Then we can estimate the expectation

E[N(v) | φ(e) = v] ≤ 1 +
∑
e′∈E

∑
v′:v′∩v �=∅

y∗e′v′

= 1 +
∑
e′∈E

q∑
s=1

q∑
s′=1

∑
v′:v′

s′=vs

y∗e′v′ = 1 +
∑
e′∈E

q∑
s=1

q∑
s′=1

x∗
e′

s′vs
.

Recall, that all hyperedges e′ in E are disjoint. Thus the expression above can
be bounded above by 1 +

∑n
i=1

∑q
s=1 x

∗
ivs

= 1 + q. This bound implies that

Pr[π(e) = v] = Pr[φ(e) = v] · E
[

1
N(v) | φ(e) = v

]
≥ y∗ev/(q + 1), where the last

inequality follows from the Jensen’s inequality for convex function 1/x. Hence,
the cost of the solution returned by the algorithm is at least

ALGII ≥
∑
e∈E

∑
v∈[n]q

wudv
y∗ev

q + 1
.

Maximizing Polynomials Subject to Assignment Constraints 519

On the other hand (using |Bi,s| ≤M),

LP ∗
II =

n∑
i=1

q∑
s=1

∑
u∈Bi,s

⎛⎝ ∑
v∈[n]q

wudvy
∗
u,v

⎞⎠
︸ ︷︷ ︸

lp-cost(u)

≤
n∑

i=1

q∑
s=1

∑
u∈Bi,s

⎛⎝ ∑
v∈[n]q

we(i)dvy
∗
e(i),v

⎞⎠
︸ ︷︷ ︸

lp-cost(e(i))

≤ qM
∑
e∈E

∑
i∈e

⎛⎝ ∑
v∈[n]q

wedvy
∗
e,v

⎞⎠ = q2M
∑
e∈E

⎛⎝ ∑
v∈[n]q

wedvy
∗
e,v

⎞⎠ .

Combining the inequalities, we get

ALGII ≥ LP ∗
II

q2(q + 1)M
≥ LP ∗

4n
(q−1)

2 q(q + 1)
.

Thus, we have showed that the approximation ratio of the algorithm is
O(q2n

(q−1)
2).

References

1. Adams, W.P., Johnson, T.A.: Improved Linear Programming-based Lower Bounds
for the Quadratic Assignment Problem. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science 16, 43–77 (1994)

2. Arkin, E., Hassin, R., Sviridenko, M.: Approximating the Maximum Quadratic
Assignment Problem. Information Processing Letters 77, 13–16 (2001)

3. Babai, L., Codenotti, P.: Isomorphism of Hypergraphs of Low Rank in Moderately
Exponential Time. In: Proc. 39th Ann. IEEE Symp. on Theory of Computing
(FOCS 2008), pp. 667–676. IEEE Comp. Soc. Press, Los Alamitos (2008)

4. Barvinok, A.: Estimating L∞ norms by L2k norms for functions on orbits. Found.
Comput. Math. 2(4), 393–412 (2002)

5. Bellare, M., Goldwasser, S., Lund, C., Russel, A.: Efficient Probabilistically
Checkable Proofs and Applications to Approximation. In: Proceedings of the
Twenty-Fifth Annual ACM Symposium on Theory of Computing (STOC 1993),
pp. 294–304 (1993)

6. Burkard, R.E., Cela, E.: Heuristics for biquadratic assignment problems and their
computational comparison. European Journal of Operations Research 83, 283–300
(1995)

7. Burkard, R., Cela, E., Klinz, B.: On the biquadratic assignment problem. In:
Quadratic Assignment and Related Problems, New Brunswick, NJ. DIMACS Ser.
Discrete Math. Theoret. Comput. Sci., vol. 16, pp. 117–146. Amer. Math. Soc.,
Providence (1994)

8. Cela, E.: The Quadratic Assignment Problem: Theory and Algorithms. Springer,
Heidelberg (1998)

9. Chor, B., Sudan, M.: A Geometric Approach to Betweenness. SIAM J. Discrete
Math. 11(4), 511–523 (1998)

10. Guruswami, V., H̊astad, J., Manokaran, R., Raghavendra, P., Charikar, M.:
Beating the Random Ordering is Hard: Every ordering CSP is approximation resis-
tant. Electronic Colloquium on Computational Complexity (ECCC) 18, 27 (2011)

520 K. Makarychev and M. Sviridenko

11. Hassin, R., Levin, A., Sviridenko, M.: Approximating the minimum quadratic as-
signment problems. ACM Transactions on Algorithms 6(1) (2009)

12. Koopmans, T.C., Beckman, M.: Assignment problems and the location of economic
activities. Econometrica 25, 53–76 (1957)

13. Lawler, E.: The quadratic assignment problem. Management Science 9, 586–599
(1962/1963)

14. Makarychev, Y.: Simple Linear Time Approximation Algorithm for Betweenness,
Microsoft Research Technical Report MSR-TR-2009-74

15. Makarychev, K., Manokaran, R., Sviridenko, M.: Maximum Quadratic Assignment
Problem: Reduction from Maximum Label Cover and LP-based Approximation
Algorithm. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide,
F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 594–604. Springer,
Heidelberg (2010)

16. Nagarajan, V., Sviridenko, M.: On the maximum quadratic assignment problem.
Mathematics of Operations Research 34(4), 859–868 (2009)

17. Queyranne, M.: Performance ratio of polynomial heuristics for triangle inequality
quadratic assignment problems. Operations Research Letters 4, 231–234 (1986)

18. Winter, T., Zimmermann, U.: Real-time dispatch of trams in storage yards, Val-
paraiso. Mathematics of industrial systems, vol. IV (1996); Ann. Oper. Res. 96,
287–315 (2000)

A Polynomial-Time Algorithm for Estimating

the Partition Function of the Ferromagnetic
Ising Model on a Regular Matroid�

Leslie Ann Goldberg1 and Mark Jerrum2

1 Department of Computer Science, University of Liverpool, Ashton Building,
Liverpool L69 3BX, United Kingdom

2 School of Mathematical Sciences Queen Mary, University of London,
Mile End Road, London E1 4NS, United Kingdom

Abstract. We investigate the computational difficulty of approximat-
ing the partition function of the ferromagnetic Ising model on a regular
matroid. Jerrum and Sinclair have shown that there is a fully polynomial
randomised approximation scheme (FPRAS) for the class of graphic ma-
troids. On the other hand, the authors have previously shown, subject to
a complexity-theoretic assumption, that there is no FPRAS for the class
of binary matroids, which is a proper superset of the class of graphic ma-
troids. In order to map out the region where approximation is feasible,
we focus on the class of regular matroids, an important class of matroids
which properly includes the class of graphic matroids, and is properly
included in the class of binary matroids. Using Seymour’s decomposition
theorem, we give an FPRAS for the class of regular matroids.

1 Introduction

Classically, the Potts model [10] in statistical physics is defined on a graph. Let q
be a positive integer and G = (V,E) a graph with edge weights γ = {γe : e ∈ E};
the weight γe > −1 represents a “strength of interaction” along edge e. The q-
state Potts partition function specified by this weighted graph is

ZPotts(G; q,γ) =
∑

σ:V →[q]

∏
e={u,v}∈E

(
1 + γe δ(σ(u), σ(v))

)
, (1)

where [q] = {1, . . . , q} is a set of q spins or colours, and δ(s, s′) is 1 if s =
s′, and 0 otherwise. The partition function is a sum over “configurations” σ
which assign spins to vertices in all possible ways. We are concerned with the
computational complexity of approximately evaluating the partition function (1)
and generalisations of it. For reasons that will become apparent shortly, we
shall be concentrating on the case q = 2, which is the familiar Ising model.
In this special case, the two spins correspond to two possible magnetisations
at a vertex (or “site”), and the edges (or “bonds”) model interactions between

� This work was partially supported by the EPSRC grant “Computational Counting”

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 521–532, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

522 L.A. Goldberg and M. Jerrum

sites. In the ferromagnetic case, when γe > 0, for all e ∈ E, the configurations
σ with many adjacent like spins make a greater contribution to the partition
function ZPotts(G; q,γ) than those with few; in the antiferromagnetic case, when
−1 < γe < 0, the opposite is the case.

An equivalent way of looking at (1) is as a restriction of the (multivariate)
Tutte polynomial, which is defined as follows:

Z̃(G; q,γ) =
∑
A⊆E

γA qκ(A)−|V |, (2)

where γA =
∏

e∈A γe and κ(A) denotes the number of connected components in
the graph (V,A) [12, (1.2)]. This is perhaps not the most usual expression for
the multivariate Tutte polynomial of a graph, but it conveniently generalises to
the Tutte polynomial of a matroid (4), also [12, (1.3)], which is the main subject
of this article. Although (2) and (1) are formally quite different, they agree when
q is a positive integer, up to a factor of q−|V |.

Jaeger, Vertigan and Welsh [7] were the first to consider the computational
complexity of computing the Tutte polynomial. They considered the classical
bivariate Tutte polynomial in which the edge weights are constant, i.e., γe = γ
for all e ∈ E. Their approach was to fix q and γ, and consider the computational
complexity of computing (2) as a function of the instance graph G. Jaeger et al.
showed, amongst other things, that computing the Tutte polynomial exactly is
#P-hard when q > 1 and γ ∈ (−1,∞)− {0}. In particular, this means that the
partition function (1) of the Potts model is computationally intractable, unless
P = #P.

In the light of this intractability result, it is natural to consider the complex-
ity of approximate computation in the sense of “fully polynomial approximation
scheme” or FPRAS. Before stating the known results, we quickly define the
relevant concepts. A randomised approximation scheme is an algorithm for ap-
proximately computing the value of a function f : Σ∗ → R. The approximation
scheme has a parameter ε > 0 which specifies the error tolerance. A randomised
approximation scheme for f is a randomised algorithm that takes as input an in-
stance x ∈ Σ∗ (e.g., for the problem of computing the bivariate Tutte polynomial
of a graph, the graph G) and a rational error tolerance ε > 0, and outputs a ra-
tional number z (a random variable of the “coin tosses” made by the algorithm)
such that, for every instance x,

Pr
[
e−εf(x) ≤ z ≤ eεf(x)

] ≥ 3
4
. (3)

The randomised approximation scheme is said to be a fully polynomial ran-
domised approximation scheme, or FPRAS, if it runs in time bounded by a
polynomial in |x| and ε−1.

For the problem of computing the bivariate Tutte polynomial in the anti-
ferromagnetic situation, i.e., −1 < γ < 0, there is no FPRAS for (2) unless
RP = NP [3]. This perhaps does not come as a great surprise, since, in the special
case γ = −1, the equivalent expression (1) counts proper colourings of a graph.

The Ferromagnetic Ising Model on a Regular Matroid 523

So we are led to consider the ferromagnetic case, γ > 0. Even here, Goldberg
and Jerrum [2] have recently provided evidence of computational intractability
(under a complexity theoretic assumption that is stronger than RP �= NP) when
q > 2.

The sequence of results so far described suggest we should focus on the special
case q = 2 and γ > 0, i.e., the ferromagnetic Ising model. Here, at last, there is a
positive result to report, as Jerrum and Sinclair [8] have presented an FPRAS for
the partition function (2), with q = 2 and arbitrary positive weights γ. As hinted
earlier, the Tutte polynomial makes perfect sense in the much wider context of
an arbitrary matroid (see Sections 2 and 3 for a quick survey of matroid basics,
and of the Tutte polynomial in the context of matroids). The Tutte polynomial
of a graph is merely the special case where the matroid is restricted to be graphic.
It is natural to ask whether the positive result of [8] extends to a wider class of
matroids than graphic. One extension of graphic matroids is to the class of binary
matroids. Goldberg and Jerrum [4] recently provided evidence of computational
intractability of the ferromagnetic Ising model on binary matroids, under the
same strong complexity-theoretic assumption mentioned earlier.

Sandwiched between the graphic (computationally easy) and binary matroids
(apparently computationally hard) is the class of regular matroids. Since it is
interesting to locate the exact boundary of tractability, we consider here the
computational complexity of estimating (in the FPRAS sense) the partition
function of the Ising model on a regular matroid. We show that there is an
FRPAS in this situation.

Theorem 1. There is an FPRAS for the following problem.

Instance. A binary matrix representing a regular matroid M. A set γ = {γe :
e ∈ E(M)} of non-negative rational edge weights.

Output. Z̃(M; 2,γ). (The extension of the Tutte polynomial Z̃ to matroids is
formally defined in (4)).

Aside from the existing FPRAS for graphic matroids, which also works, by
duality, for so-called cographic matroids, the main ingredient in our algorithm
is Seymour’s decomposition theorem for regular matroids. This theorem has
been applied on at least one previous occasion to the design of a polynomial-
time algorithm. Golynski and Horton [6] use the approach in their algorithm
for finding a minimum-weight basis of the cycle space (or circuit space) of a
regular matroid. The decomposition theorem states that every regular matroid
is either graphic, cographic, a special matroid on 10 elements named R10, or can
be decomposed as a certain kind of sum (called “1-sum”, “2-sum” or “3-sum”) of
two smaller regular matroids (see Theorem 2). Since we know how to handle the
base cases (graphic, cographic and R10), it seems likely that the decomposition
theorem will yield a polynomial time algorithm quite directly. However, there
is a catch (which does not arise in [6]). When we pull apart a regular matroid
into two smaller ones, say into the 3-sum of M1 andM2, four subproblems are
generated for each of the parts M1 and M2. This is fine if the decomposition
is fairly balanced at each step, but that is not always the case. In the case of a
highly unbalanced decomposition, we face a combinatorial explosion.

524 L.A. Goldberg and M. Jerrum

The solution we adopt is to “solve” recursively only the smaller subproblem,
sayM2. Then we construct a constant size matroid I3 that we show is equivalent
to M2 in the context of any 3-sum. We then glue I3 ontoM1, using the 3-sum
operation, in place ofM2. The matroid I3 is small, just six elements, and has the
property that forming the 3-sum with M1 leaves M1 unchanged as a matroid,
though it acquires some new weights from I3. (In a sense, I3 is an identity for the
3-sum operation.) Then we just have to find the partition function ofM1 (with
amended weights). Since we have four recursive calls on “small” subproblems,
but only one on a “large” one, we achieve polynomially bounded running time.

The fact that I3 is able to simulate the behaviour of an arbitrary regular
matroid in the context of a 3-sum is a fortunate accident of the specialisation
to q = 2. Since the existing algorithm for the graphic case also makes particular
use of the fact that q = 2, one gets the impression that the Ising model has very
special properties compared with the Potts model in general.

Several technical proofs that are omitted from this extended abstract can be
found in the full version of the paper [5].

2 Matroid Preliminaries

A matroid is a combinatorial structure that has a number of equivalent defini-
tions, but the one in terms of a rank function is the most natural here. A set
E (the “ground set”) together with a rank function r : E → N is said to be
a matroid if the following conditions are satisfied for all subsets A,B ⊆ E:
(i) 0 ≤ r(A) ≤ |A|, (ii) A ⊆ B implies r(A) ≤ r(B) (monotonicity), and
(iii) r(A ∪ B) + r(A ∩ B) ≤ r(A) + r(B) (submodularity). A subset A ⊆ E
satisfying r(A) = |A| is said to be independent ; a maximal (with respect to
inclusion) independent set is a basis, and a minimal dependent set is a circuit.
A circuit with one element is a loop. We denote the ground set of matroid M
by E(M) and its rank function by rM. To every matroid M there is a dual
matroid M∗ with the same ground set E = E(M) but rank function rM∗ given
by rM∗(A) = |A| + rM(E − A) − rM(E). A cocircuit in M is a set that is a
circuit in M∗; equivalently, a cocircuit is a minimal set that intersects every
basis. A cocircuit with one element is a coloop. A thorough exposition of the
fundamentals (and beyond) of matroid theory can be found in Oxley’s book [9].

Important operations on matroids include contraction and deletion. Suppose
T ⊆ E is any subset of the ground set of matroid M. The contraction M/T
of T from M is the matroid on ground set E − T with rank function given
by rM/T (A) = rM(A ∪ T) − rM(T), for all A ⊆ E − T . The deletion M\T
of T from M is the matroid on ground set E − T with rank function given by
rM/T (A) = rM(A), for all A ⊆ E−T . These operations are often combined, and
we write M/T \S for the matroid obtained by contracting T from M and then
deleting S from the result. The operations of contraction and deletion are dual
in the sense that (M\T)∗ = M∗/T . For compactness, we shall often miss out
set brackets, writing M/p1\p2, p3, for example, in place of M/{p1}\{p2, p3}.
The restriction M | S of M to S ⊆ E is the matroid on ground set S that

The Ferromagnetic Ising Model on a Regular Matroid 525

inherits its rank function from M; another way of expressing this is to say
M | S =M\(E − S).

The matroid axioms are intended to abstract the notion of linear independence
of vectors. Some matroids can be represented concretely as a matrix M with
entries from a field K, the columns of the matrix being identified with the
elements of E. The rank r(A) of a subset A ⊆ E is then just the rank of the
submatrix of M formed from columns picked out by A. A matroid that can
be specified in this way is said to be representable over K. A matroid that is
representable over GF(2) is binary, and one that is representable over every
field is regular ; the regular matroids form a proper subclass of binary matroids.
Another important class of matroids are ones that arise as the cycle matroid of
an undirected (multi)graph G = (V,E). Here, the edge set E of the graph forms
the ground set of the matroid, and the rank of a subset A ⊆ E is defined to be
r(A) = |V | − κ(A), where κ(A) is the number of connected components in the
subgraph (V,A). A matroid is graphic if it arises as the cycle matroid of some
graph, and cographic if its dual is graphic. Both the class of graphic matroids
and the class of cographic matroids are strictly contained in the class of regular
matroids.

Now for some definitions more specific to the work in this article. A cycle in
a matroid is any subset of the ground set that can be expressed as a disjoint
union of circuits. We let C(M) denote the set of cycles of a matroidM. IfM is
a binary matroid, the symmetric difference of any two cycles is again a cycle [9,
Thm. 9.1.2(vi)], so C(M), viewed as a set of characteristic vectors on E(M),
forms a vector space over GF(2), which we refer to as the circuit space of M.
Indeed, any vector space generated by a set of vectors in GF(2)E can be regarded
as the circuit space of a binary matroid on ground set E (see the remark following
[9, Cor. 9.2.3]). The set of cycles C(M) of a matroid M determines the set of
circuits of M (these being just the minimal non-empty cycles), which in turn
determines M. Note, from the definition of “cycle”, that

C(M\T) = {C ∈ C(M) | C ⊆ E\T }.

The term “cycle” in this context is not widespread, but is used by Seymour [11]
in his work on matroid decomposition; the term “circuit space” is more standard.

Consider two binary matroids M1 and M2 with E(M1) = E1 ∪ T and
E(M2) = E2 ∪ T and E1 ∩ E2 = ∅. The delta-sum of M1 and M2 is the
matroid M1,M2 on ground set E1 ∪ E2 with the following circuit space:

C(M1,M2) =
{
C ⊆ E1 ∪ E2 : C = C1 ⊕ C2,

for some C1 ∈ C(M1) and C2 ∈ C(M2)
}
,

where ⊕ denotes symmetric difference [11]. (The right-hand side of the above
equation defines a vector space over GF(2), and hence does describe the circuit
space of some matroid.) A situation of particular interest occurs whenM1 | T =
M2 | T = N (say), i.e.,M1 andM2 have the same restriction, namely N , to T .
The special case of the delta-sum when T = ∅ is called the 1-sum ofM1 andM2.

526 L.A. Goldberg and M. Jerrum

(It is just the direct sum of the two matroids.) The special case when T is a
singleton that is not a loop or coloop inM1 orM2, and |E(M1)|, |E(M2)| ≥ 3,
is called the 2-sum ofM1 orM2 and is denotedM1⊕2M2. Finally, the special
case when |T | = 3, T is a circuit in bothM1 andM2 but contains no co-circuit
of either, and |E(M1)|, |E(M2)| ≥ 7, is called the 3-sum of M1 or M2 and is
denoted M1 ⊕3M2 [11].

Our main tool is the following celebrated result of Seymour [11, (14.3)]:

Theorem 2. Every regular matroid M may be constructed by means of 1- 2-
and 3-sums, starting with matroids each isomorphic to a minor of M, and each
either graphic, cographic or isomorphic to a certain 10-element matroid R10.

It is important for us that a polynomial-time algorithm exists for finding the
decomposition promised by this theorem. As Truemper notes [14], such an al-
gorithm is given implicitly in Seymour’s paper. However, much more efficient
algorithms are known. In particular, [13, (10.6.1)] gives a polynomial-time algo-
rithm for testing whether a binary matroid is graphic or cographic. Also, [14]
gives a cubic algorithm for expressing any regular matroid that is not graphic,
cographic or isomorphic to R10 as a 1-sum, 2-sum or 3-sum. While Seymour’s
decomposition theorem is in terms of 1-sums, 2-sums and 3-sums, it will be con-
venient for us to do our preparatory work, in the following section, using the
slightly more general notion of a delta-sum.

3 Tutte Polynomial and Decomposition

Suppose M is a matroid, q is an indeterminate, and γ = {γe : e ∈ E(M)} is a
collection of indeterminates, indexed by elements of the ground set of M. The
(multivariate) Tutte polynomial of M and γ) is defined to be

Z̃(M; q,γ) =
∑

A⊆E(M)

γA q−rM(A), (4)

where γA =
∏

e∈A γe [12, (1.3)]. In this article, we are interested in the Ising
model, which corresponds to the specialisation of the above polynomial to q = 2,
so we shall usually omit the parameter q in the above notation and assume
that q is set to 2. As we are concerned with approximate computation, we shall
invariably be working in a environment in which each of the indeterminates γe is
assigned some real value; furthermore, we shall be focusing on the ferromagnetic
case, in which those values or weights are all non-negative. For convenience, we
refer to the pair (M,γ) as a “weighted matroid”, and we will assume throughout
that γe ≥ 0 for all e ∈ E(M). For background material on the multivariate Tutte
polynomial, and its relation to the classical 2-variable Tutte polynomial, refer to
Sokal’s expository article [12].

In order to exploit Theorem 2, we need to investigate how definition (4) be-
haves when M is a delta-sum of two matroids. The interaction between the
classical bivariate Tutte polynomial and 2- and 3-sums has been investigated

The Ferromagnetic Ising Model on a Regular Matroid 527

previously, for example by Andrzejak [1]. In principle, it would be possible to
assure oneself that his proof carries over from the bivariate to the multivari-
ate situation, and then recover the appropriate formulas (such as the one in
Lemma 1 below) by appropriate algebraic translations. However, in the case of
the 3-sum there is an obstacle. While Andrzejak’s identities remain valid, as
identities of rational functions on q, they become degenerate (through division
by zero) under the specialisation q = 2. In fact, this degeneracy is crucial to
us, in that it reduces the dimension of the bilinear form in Lemma 1 from five,
as in Andrzejak’s general result, to four. The significance of this reduction in
dimension will become apparent in Section 4. In light of these considerations,
and because certain intermediate results in our proofs are in any case required
later, we derive the required formulas in the full version of the paper [5]. Here, to
save space, we not only omit these proofs, but also state the result that relates
to the 3-sum (i.e., the case |T | = 3); the statement in the case of a 2-sum has a
similar form, but is simpler. Denote by D the matrix

D =

⎛⎜⎜⎝
4 −1 −1 −1
−1 1 0 0
−1 0 1 0
−1 0 0 1

⎞⎟⎟⎠ .

Lemma 1. Suppose that (M1,γ1) and (M2,γ2) are weighted binary matroids
with E(M1) ∩ E(M2) = T = {p1, p2, p3}, and suppose also that T is a circuit
in both M1 and M2. For i = 1, 2, let

zi =
(
Z̃(Mi\T ; γi), Z̃(Mi/p1\p2, p3; γi), Z̃(Mi/p2\p1, p3; γi), Z̃(Mi/p3\p1, p2; γi)

)T
.

Denote by γ = γ1, γ2 the weighting on E(M1,M2) inherited from M1 and
M2. Then

Z̃(M1 ,M2; γ) = (z1)TDz2. (5)

4 Signatures

The goal of this section is to show that, for every weighted binary weighted ma-
troid (M,γ) with distinguished elements p1, p2, p3, there is a small (6-element)
weighted matroid (I3, δ) that is equivalent to M in the following sense: if we
replace (M,γ) by (I3, δ) in the context of any 3-sum, the Tutte polynomial
(specialised to q = 2) of the 3-sum is changed by a factor that is independent
of the context. Moreover, the weighted matroid (I3, δ) can readily be computed
given a “signature” of M. There is also a 2-element weighted matroid (I2, δ)
that does a similar job for 2-sums, but to save space we state the result for
3-sums only.

For a weighted binary matroid (M,γ) with distinguished elements T =
{p1, p2, p3}, the signature of (M,γ) with respect to T is the vector

σ(M;T,γ) =

(
Z̃(M/p1\p2, p3; γ), Z̃(M/p2\p1, p3; γ), Z̃(M/p3\p1, p2; γ)

)
Z̃(M\T ; γ)

.

528 L.A. Goldberg and M. Jerrum

What we are seeking in the 3-sum case is a small matroid whose signature is
equal to that of a given binary matroidM. Such a matroid will be equivalent to
M in the context of any 3-sum. Before describing such a matroid we give two
technical lemmas that investigate inequalities between the Tutte polynomial of
various minors of a binary matroid. These inequalities will restrict the domain
of possible signatures that can occur.

Lemma 2. Suppose that (M,γ) is a weighted binary matroid with distinguished
elements T = {p1, p2, p3}, and that T is a circuit in M. Let

zT = (z0, z1, z2, z3, z4)

=
(
Z̃(M\T ; γ), Z̃(M/p1\p2, p3; γ),

Z̃(M/p2\p1, p3; γ), Z̃(M/p3\p1, p2; γ), Z̃(M/T ; γ)
)
.

Then the following (in)equalities hold: (i) z0 > 0, (ii) z0 ≤ z1, z2, z3 ≤ 2z0,
(iii) 1

2z4 < z1, z2, z3 ≤ z4 and (iv) z1 + z2 + z3 = 2z0 + z4.

These inequalities arise as a by-product of the proof of Lemma 1.

Lemma 3. Under the same assumptions as Lemma 2, z1z2, z1z3, z2z3 ≤ z0z4.

These inqualities are derived from the Fortuin-Kasteleyn-Ginibre (FKG) inequal-
ity. For details, consult the full paper [5].

Denote by I3 the 6-element matroid with ground set {p1, p2, p3, e1, e2, e3},
whose circuit space is generated by the circuits {p1, e1}, {p2, e2}, {p3, e3}, and
{p1, p2, p3}. The matroid I3 can be thought of as the cycle matroid of a cer-
tain graph, namely, the graph with parallel pairs of edges {p1, e1}, {p2, e2} and
{p3, e3} in which edges p1, p2 and p3 form a length-3 cycle in the graph.

Let T = {p1, p2, p3}. We start by showing that, as long as a signature (s1, s2, s3)
satisfies certain equations, which Lemmas 2 and 3 will guarantee, then it is
straightforward to compute a weighting δ so that the weighted matroid (I3, δ)
has signature σ(I3;T,γ) = (s1, s2, s3).

Lemma 4. Suppose s1, s2 and s3 satisfy: (i) 2+s1−s2−s3 > 0, 2−s1+s2−s3 >
0, 2−s1−s2+s3 > 0, (ii) s1+s2+s3−3 ≥ 0, and (iii) s1+s2+s3−s2s3−2 ≥ 0,
s1 + s2 + s3 − s1s3 − 2 ≥ 0 and s1 + s2 + s3 − s1s2 − 2 ≥ 0; then there are non-
negative weights d1, d2 and d3 such that, for any weight function δ with δe1 = d1,
δe2 = d2 and δe3 = d3, σ(I3;T, δ) = (s1, s2, s3). The values d1, d2 and d3 can be
computed from s1, s2 and s3.

Proof. Define

S1 = 2 + s1 − s2 − s3

S2 = 2− s1 + s2 − s3

S3 = 2− s1 − s2 + s3

R = s1 + s2 + s3 − 2,

and define the weights d1, d2, d3 for δ as follows:

The Ferromagnetic Ising Model on a Regular Matroid 529

d1 = −1 +
√
RS1/S2S3, d2 = −1 +

√
RS2/S1S3, and d3 = −1 +

√
RS3/S1S2.

A calculation presented in the full paper verifies that these are the required
weights.

Temporarily leaving aside the issue of approximation, the way that we will
use Lemma 4 is captured in the following corollary.

Corollary 1. Suppose that (M1,γ1) and (M2,γ2) are weighted binary ma-
troids with E(M1) ∩ E(M2) = T = {p1, p2, p3}, and suppose also that T is
a circuit in both M1 and M2. Let (s1, s2, s3) = σ(M2;T,γ2). Then there are
non-negative weights d1, d2 and d3 such that, for any weight function δ with
δe1 = d1, δe2 = d2 and δe3 = d3,

Z̃(M1,M2; γ1, γ2) = ζZ̃(M1 , I3; γ1, δ),

where

ζ = Z̃(M2\T ; γ2)/Z̃(I3\T ; δ) = Z̃(M2\T ; γ2)/
√
R/S1S2S3,

in the notation of the proof of Lemma 4. The values d1, d2 and d3 can be com-
puted from s1, s2 and s3 — they do not otherwise depend upon (M1,γ1) or
(M2,γ2). Moreover, the values R, S1, S2 and S3 are byproducts of this compu-
tation.

The problem with using Corollary 1 to replace the complicated expression
Z̃(M1,M2; γ1,γ2) with the simpler Z̃(M1,I3; γ1,δ) is that, in general, we
will not be able to compute the necessary values s1, s2 and s3 exactly. Instead,
we will use our FPRAS recursively to approximate these values. Thus, we need a
version of Corollary 1 (omitted from this paper, but given in the full version [5])
that accommodates some approximation error. The technical complication to
be faced is that the approximations to s1, s2 and s3 that we obtain may not
correspond to the signature of any actual matroid.

We also need a matroid, I2, and results, analogous to but simpler than those
mentioned above, which are appropriate for 2-sums, but we omit those here.

We complete this section by investigating the (simple) way in which the spe-
cial matroids I2 and I3 interact with delta-sums with |T | = 1 and |T | = 3,
respectively.

Suppose (M,γ) is a weighted binary matroid with distinguished elements
T = {p1, p2, p3}, where T is a cycle in M. Consider the delta-sum M, I3.
As before, there is a natural correspondence between the ground sets of the
two matroids. Let C1, C2, C3 be the three 2-circuits in I3 including elements
p1, p2, p3, respectively. Any cycle C in M can be transformed in a unique way
to a cycle C′ in M,I3, by adding a subset of circuits from {C1, C2, C3}. The
mapping C �→ C′ is invertible, and is a bijection between cycles inM and those
in M,I3. Now let γ′ be derived from γ by assigning γp1 = δe1 , γp2 = δe2 and
γp3 = δe3 . Then Z̃(M,I3,γ , δ) = Z̃(M,γ′).

Again, a similar observation applies to I2 under delta-sum with |T | = 1, but
we omit the details.

530 L.A. Goldberg and M. Jerrum

Step 1. IfM is graphic, cographic or R10 then estimate Z̃(M, γ) directly.
Step 2. Otherwise use Seymour’s decomposition algorithm to expressM asM1�
M2, where � is a 1-, 2- or 3-sum. Recall that E(M) = E(M1) ⊕ E(M2).
Let T = E(M1) ∩ E(M2), E1 = E(M1) − T and E2 = E(M2) − T . Noting
E(M) = E1 ∪ E2, let γ1 : E1 → R

+ and γ2 : E2 → R
+ be the restrictions of

γ to E1 and E2. Assume without loss of generality that |E(M2)| ≤ |E(M1)|
(otherwise swap their names).

Step 3. If � is s 3-sum then let T = {p1, p2, p3} (say). Execute Steps 4a–7a in
Figure 2. If� is a 2-sum then let T = {p}. Execute Steps 4b–7b of the algorithm.
(The details of these steps are omitted from this extended abstract, but they are
similar in structure to Steps 4a–7a.) If � is a 1-sum then recursively estimate

Z̃(M1; γ1) with accuracy parameter ε|M1|/|M|, and Z̃(M2; γ2) with accuracy
parameter ε|M2|/|M|, and return the product of the two, which is an estimate

of Z̃(M, γ).

Fig. 1. Algorithm for estimating the Ising partition function of a regular matroid M
given accuracy parameter ε ≤ 1

5 The Algorithm

We now have all the ingredients for the algorithm for estimating Z̃(M; γ) =
Z̃(M; 2,γ), given a weighted regular matroid (M,γ) and an accuracy param-
eter ε. The base cases for this recursive algorithm are when M is graphic, co-
graphic or R10. In these cases we estimate Z̃(M; γ) “directly”, which means the
following. IfM is R10 then we evaluate Z̃(M; γ) by brute force. IfM is graphic,
we form the weighted graph (G,γ) whose (weighted) cycle matroid is (M,γ).
Then the partition function of the Ising model on (G,γ) may be estimated using
the algorithm of Jerrum and Sinclair [8]. IfM is cographic, then its dualM∗ is
graphic, and

Z̃(M; γ) = γEq
−rM(E)Z̃(M∗; γ∗),

where E = E(M), and γ∗ is the dual weighting given by γ∗
e = q/γe = 2/γe

for all e ∈ E(M) [12, 4.14a]. (Ground set elements e with γe = 0 do not cause
any problems, because they can just be deleted.) Then we proceed as before,
but using (M∗,γ∗) in place of (M,γ). The proposed algorithm is presented as
Figure 1.

In the full version of the paper [5] there is a technical lemma that extends
Corollary 1 to the situation where we have only an approximation to the signa-
ture of M2, and a corresponding lemma for the 2-sum. Given these results it is
easy to see that the algorithm is correct. That is, given a regular matroid M
and an accuracy parameter ε < 1, the algorithm returns an estimate Ẑ satisfying
e−εZ̃(M,γ) ≤ Ẑ ≤ eεZ̃(M,γ). The rest of this section shows that the running
time is at most a polynomial in |E(M)| and ε−1.

Let Tdecomp(m) = O(mαdecomp) be the time complexity of performing the
Seymour decomposition of an m-element matroid (this is our initial splitting

The Ferromagnetic Ising Model on a Regular Matroid 531

Step 4a. Recusively estimate z0 = Z̃(M2\T ; γ2), z1 = Z̃(M2/p1\p2, p3; γ2), z2 =

Z̃(M2/p2\p1, p3; γ2) and z3 = Z̃(M2/p3\p1, p2; γ2) with accuracy parameter
ε�|M2|/(4|M|).

Step 5a. Using techniques sketched in Section 4, compute d1, d2 and d3 such that,
for any weight function δ with δe1 = d1, δe2 = d2 and δe3 = d3,

e−ε|M2|/(2|M|)Z̃(M; γ) ≤ ζZ̃(M1 � I3; γ1 � δ) ≤ eε|M2|/(2|M|)Z̃(M; γ).

Note that our estimate for z0 gives an estimate for ζ = z0/
√

R/S1S2S3 with
accuracy parameter at most ε|M2|/(2|M|). (R, S1, S2 and S3 are byproducts of
the computation of d1, d2 and d3.)

Step 6a. Recall from Section 4 that Z̃(M1�I3, γ1� δ) = Z̃(M1, γ
′), where γ ′ is

derived from γ1 by assigning γ′
p1 = δe1 , γ′

p2 = δe2 and γ′
p3 = δe3 .

Step 7a. Recursively estimate Z̃(M1; γ
′) with accuracy parameter ε(|M| −

|M2|)/|M| and multiply it by the estimate for ζ from Step 5a. Return this

value, which is an estimate of Z̃(M, γ).

Fig. 2. The 3-sum case. (� is a sufficiently small positive constant which does not
depend uponM or ε.)

step), and let Tbase(m, ε) = O(mαbaseε−2) be the time complexity of estimating
the Ising partition function of an m-edge graph. (From [8, Theorem 5], and
the remark following it, we may take αbase = 15.) Denote by T (m, ε) the time-
complexity of the algorithm of Figure 1. The recurrence governing T (m, ε) is now
presented, immediately followed by an explanation of its various components.
Here, � is a sufficiently small positive constant which does not depend upon M
or ε, and can be taken to be � = 1/6000.

T (m, ε) ≤ Tdecomp(m) + max
{
Tbase(m, ε),

max
4≤k≤m/2

(
T (m− k + 3, ε(m−k−3)

m) + 4T (k, ε�(k+3)
4m)

)
,

max
2≤k≤m/2

(
T (m− k + 1, ε(m−k−1)

m) + 2T (k, ε�(k+1)
2m)

)
,

max
1≤k≤m/2

(
T (m− k, ε(m−k)

m) + T (k, εk
m)

)}
.

The four expressions within the outer maximisation correspond to the direct
case, the 3-sum case, the 2-sum case, and the 1-sum case, respectively. The
variable k is to be interpreted as the number of ground set elements in M that
come from M2 (and hence m− k is the number that come from M1). Thus, in
the case of a 3-sum, for example, |E(M1)| = m− k + 3 and |E(M2)| = k + 3.
Note that Step 2 of the algorithm ensures k ≤ m/2. The lower bounds on k
come from the corresponding lower bounds on the size of matroids occurring
in 3-sums, 2-sums and 1-sums. In this extended abstract we omit the technical
calculations necessary to justify the stated error bounds for the recursive calls.

532 L.A. Goldberg and M. Jerrum

It is a routine exercise demonstrate that T (m, ε) = O(mαε−2), where α =
max{αbase, αdecomp + 1, 43}. Specifically, we show in the full paper, by induction
on m, that T (m, ε) ≤ Cmαε−2, for some constant C and all sufficiently large m.
In our analysis, we do not attempt to obtain the best possible exponent α for the
running time. It would certainly be possible to reduce the constant 43 appearing
in the formula for the exponent, but there seems little point in doing so, as the
best existing value for αbase is already too large to make the algorithm feasible
in practice.

References

1. Andrzejak, A.: Splitting formulas for Tutte polynomials. J. Combin. Theory Ser.
B 70(2), 346–366 (1997)

2. Goldberg, L., Jerrum, M.: Approximating the partition function of the ferro-
magnetic potts model. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 396–407.
Springer, Heidelberg (2010)

3. Goldberg, L.A., Jerrum, M.: Inapproximability of the Tutte polynomial. Inform.
and Comput. 206(7), 908–929 (2008)

4. Goldberg, L.A., Jerrum, M.: Approximating the Tutte polynomial of a binary
matroid and other related combinatorial polynomials. arXiv:1006.5234v1 (cs.CC)
(2010)

5. Goldberg, L.A., Jerrum, M.: A polynomial-time algorithm for estimating the
partition function of the ferromagnetic ising model on a regular matroid.
arXiv:1010.6231v1 (cs.CC) (2010)

6. Golynski, A., Horton, J.D.: A polynomial time algorithm to find the minimum
cycle basis of a regular matroid. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT
2002. LNCS, vol. 2368, pp. 200–209. Springer, Heidelberg (2002)

7. Jaeger, F., Vertigan, D.L., Welsh, D.J.A.: On the computational complexity of the
Jones and Tutte polynomials. Math. Proc. Cambridge Philos. Soc. 108(1), 35–53
(1990)

8. Jerrum, M., Sinclair, A.: Polynomial-time approximation algorithms for the Ising
model. SIAM J. Comput. 22(5), 1087–1116 (1993)

9. Oxley, J.G.: Matroid theory. Oxford Science Publications. Oxford Science Publi-
cations, The Clarendon Press Oxford University Press, New York (1992)

10. Potts, R.B.: Some generalized order-disorder transformations. Proc. Cambridge
Philos. Soc. 48, 106–109 (1952)

11. Seymour, P.D.: Decomposition of regular matroids. J. Combin. Theory Ser. B 28(3),
305–359 (1980)

12. Sokal, A.D.: The multivariate Tutte polynomial (alias Potts model) for graphs and
matroids. In: Surveys in Combinatorics 2005. London Math. Soc. Lecture Note
Ser., vol. 327, pp. 173–226. Cambridge Univ. Press, Cambridge (2005)

13. Truemper, K.: Matroid decomposition. Academic Press Inc., Boston (1992)
14. Truemper, K.: A decomposition theory for matroids. V. Testing of matrix total

unimodularity. J. Combin. Theory Ser. B 49(2), 241–281 (1990)

Rapid Mixing of Subset Glauber Dynamics on

Graphs of Bounded Tree-Width

Magnus Bordewich and Ross J. Kang

Durham University, Durham, UK
m.j.r.bordewich@durham.ac.uk, ross.kang@gmail.com

Abstract. Motivated by the ‘subgraphs world’ view of the ferromag-
netic Ising model, we develop a general approach to studying mixing
times of Glauber dynamics based on subset expansion expressions for a
class of graph polynomials. With a canonical paths argument, we demon-
strate that the chains defined within this framework mix rapidly upon
graphs of bounded tree-width. This extends known results on rapid mix-
ing for the Tutte polynomial, the adjacency-rank (R2-)polynomial and
the interlace polynomial.

Keywords: Markov chain Monte Carlo, graph polynomials, subset ex-
pansion, tree-width, canonical paths, randomised approximation schemes,
rapid mixing.

1 Introduction

We analyse a subset-sampling Markov chain on simple graphs that is derived
from certain graph functions — usually, in fact, graph polynomials. We show
that this chain mixes rapidly on graphs of constant tree-width.

The graph functions P we consider are formulated using subset expansion. An
edge subset expansion formula for P is written as follows: for any simple graph
G = (V,E),

P(G) =
∑
S⊆E

w((V, S)) (1)

for some graph function w, where (V, S) denotes the graph with vertex set V and
edge set S. If the function w is non-negative, that is, w(G) ≥ 0 for all graphs G,
we refer to (1) as an edge subset weighting for P and to w as its weight function.
In fact, we shall need the weight function to be positive — from a statistical
physics viewpoint, this results in a so-called ‘soft-core model’.

Before moving on, let us anchor the general formula (1) with an example that
is prominent in statistical physics, theoretical computer science, and discrete
probability. The partition function of the random cluster model can be defined
for any G = (V,E) and parameters q, μ as

ZRC(G; q, μ) :=
∑
S⊆E

qκ(S)μ|S|, (2)

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 533–544, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

534 M. Bordewich and R.J. Kang

where κ(S) is the number of components in (V, S). For more on the random clus-
ter model, see an extensive treatise by Grimmett [21]. Notice that, if q, μ ≥ 0,
then w((V, S)) := qκ(S)μ|S| provides an edge subset weighting for ZRC(G; q, μ).
Under a suitable transformation, ZRC(G; q, μ) is equivalent to the Tutte poly-
nomial [43], defined for any G = (V,E) and parameters x, y as

T (G;x, y) :=
∑
S⊆E

(x− 1)r(E)−r(S)(y − 1)|S|−r(S), (3)

where r(S) is the F2-rank of the incidence matrix for (V, S). A wealth of com-
binatorial and structural information can be obtained from evaluations of this
function. The Tutte polynomial specialises to several key univariate graph poly-
nomials, including the chromatic polynomial of Birkhoff [5]. It specialises to the
Jones polynomial in knot theory [28]. By its connection with the random cluster
model, it also generalises the partition functions of the Ising [24] and Potts [38]
models1. Consult the monograph of Welsh [44] for more on these crucial con-
nections. In addition to ZRC(G; q, μ) and T (G;x, y), we shall highlight a few
other specific polynomials from the literature, but for a broad account of the
development of graph polynomials, consult the recent surveys by Makowsky [31]
and Ellis-Monaghan and Merino [13,14].

It was shown in 1990 by Jaeger, Vertigan and Welsh [25] that, in general, for
fixed (rational) values of x and y, the evaluation of T (G;x, y) is #P-hard, except
on a few special points and curves in the (x, y)-plane. As a result, there have
been substantial efforts since then to pin down the approximation complexity
of computing T (G;x, y). For large swaths of the (x, y)-plane, it is now known
that the computation of T (G;x, y) either does not admit a fully polynomial-time
randomised approximation scheme (FPRAS) unless RP = NP, or is at least as
hard as #BIS (the problem of counting independent sets in bipartite graphs) un-
der approximation-preserving reductions, cf. Goldberg and Jerrum [19]. The sole
positive approximation result applicable to general graphs is the breakthrough
FPRAS by Jerrum and Sinclair [27] for the partition function of the ferromag-
netic Ising model — this corresponds to computation of T (G;x, y) along the
portion of the parabola (x − 1)(y − 1) = 2 with y > 1. Various approaches
have given efficient approximations in some regions of the Tutte plane for spe-
cific classes of graphs — cf. e.g. [1,9,29]. To obtain their seminal result, Jerrum
and Sinclair used a Markov chain Monte Carlo (MCMC) method, a principal
tool in the design of efficient approximation schemes for counting problems.
MCMC methods are widespread in computational physics, computational biol-
ogy, machine learning, and statistics. There have been steady advances in our
understanding of such random processes and in showing how quickly they gen-
erate good approximations of useful probability distributions in huge, complex
data sets. See the lecture notes of Jerrum [26] or a survey by Randall [39] for an
overview of the application of these techniques in theoretical computer science.

1 If x, y ≥ 1 or q, μ ≥ 0, then, respectively, T (G;x, y) or ZRC(G; q, μ) generalise the
partition functions of the ferromagnetic Ising and Potts models.

Rapid Mixing of Subset Glauber Dynamics 535

We postpone the precise statement of our main result, Theorem 1, as it re-
quires a host of definitions, but here we give a cursory description. In this paper,
we are interested in the rate of convergence to stationarity of a natural Markov
chain closely associated to a subset weighting of P (of form (1)), when some
mild restriction is placed upon the weight function w. That restriction — which
we have dubbed λ-multiplicativity — is described in Subsection 2.1: for now,
we remark that some important graph polynomials and partition functions from
statistical physics (e.g. ZRC(G; q, μ) and T (G;x, y)) obey it. The state space of
our chain is the set of all edge subsets, upon which we have set up a MCMC
method using Glauber dynamics [17]. Each possible transition in the chain is
either the addition or deletion of exactly one edge to/from the subset and the
transition probabilities are defined according to the weights w((V, S)), subject
to a Metropolis-Hastings filter [22,34]2. Our main finding is that on graphs of
bounded tree-width this Markov chain converges to the stationary distribution
in time that is polynomial in the number of vertices of the graph.

Our approach is inspired in part by the ‘subgraphs world’ in which Jerrum and
Sinclair designed their FPRAS for the partition function of the ferromagnetic
Ising model. It is also motivated by recent work of Ge and Štefankovič [16], who
introduced the R2-polynomial in an attempt to devise a FPRAS for #BIS. Their
adjacency-rank polynomial is defined for any G = (V,E) and parameters q, μ as

R2(G; q, μ) :=
∑
S⊆E

qrk2(S)μ|S|, (4)

where rk2(S) is the F2-rank of the adjacency matrix for (V, S). Using a combina-
torial interpretation of rk2 applicable only to bipartite graphs, they showed that
the edge subset Glauber dynamics (using the weighting in (4)) mixes rapidly
on trees. They conjectured that the chain mixes rapidly on all bipartite graphs,
cf. Conjecture 1 in [16]. In addition, Ge and Štefankovič showed that the Markov
chain for the (soft-core) random cluster model — i.e. weighted according to (2)
— mixes rapidly upon graphs of bounded tree-width. We have extended both
of these results under a unified framework. In particular, we show that the
R2-polynomial fits in our framework without recourse to the combinatorial in-
terpretation for bipartite graphs, and hence that the Markov chain for the R2-
polynomial mixes rapidly upon all graphs of bounded tree-width. We also remark
here that the conjectured rapid mixing of this chain on all bipartite graphs was
disproved by Goldberg and Jerrum [18].

The polynomials and Markov chains that we capture in our framework are
defined for any graph; however, we obtain rapid mixing results only on graphs of
constant tree-width. For brevity, we will not define tree-width here, but merely
say that it is an essential concept in structural graph theory and parameterised
complexity — see modern surveys on the topic by Bodlaender [8] and Hliněný
et al. [23]. The restriction of tree-width is commonly used in graph algorithms
2 A Metropolis-Hastings filter is applied in order to ensure that the resulting process

is a reversible Markov chain and thus guaranteed to converge to a unique stationary
distribution with state probabilities proportional to the weights.

536 M. Bordewich and R.J. Kang

to reduce the complexity of a computationally difficult problem, usually by way
of dynamic programming. For example, it is already known that many of the
polynomials covered here can be evaluated efficiently for graphs of bounded tree-
width. Independently, Andrzejak [2] and Noble [35] exhibited polynomial-time
algorithms to compute the Tutte polynomial of graphs with bounded tree-width.
Works of Makowsky and Mariño [32] and Noble [36] have significantly generalised
this, in the former case, to a wide array of polynomials under the framework of
monadic second order logic (MSOL), and, in the latter case, to the so-called
U -polynomial [37], a polynomial that includes not only the Tutte polynomial
but also a powerful type of knot invariant as a special case.

Even though many of the polynomials we refer to can be computed exactly
in polynomial time for graphs of bounded tree-width, it remains of interest to
show that the associated Glauber dynamics is rapidly mixing. One hope is that
for some polynomials the chain mixes rapidly for a wider class of graphs. There
have been significant and concerted endeavours by researchers spanning physics,
computer science and probability to determine the mixing properties of Glauber
dynamics on many related Markov chains. Spin systems have been of particular
interest; indeed, the main thrust of the work of Jerrum and Sinclair was to tackle
the partition function for the ‘spins world’ of the ferromagnetic Ising model
(using a translation to the rapidly mixing ‘subgraphs world’). Much recent work
on spin systems is restricted to trees or tree-like graphs, cf. e.g. [4,11,12,20,33,41].

Our primary focus in this paper is to establish results for polynomials defined
according to edge subset expansion, but we can also extend our methodology to
polynomials defined according to vertex subset expansion, which may be viewed
as the ‘induced subgraphs world’. To our knowledge, this form of Markov chain
has not been greatly examined, but it handles one important graph polynomial
that was recently introduced by Arratia, Bollobás and Sorkin [3]: the bivariate
interlace polynomial is defined for any graph G = (V,E) and parameters x, y as

q(G;x, y) :=
∑
S⊆V

(x − 1)rk2(S)(y − 1)|V |−rk2(S), (5)

where rk2(S) is the F2-rank of the adjacency matrix for G[S]. This polynomial
specialises to the independence polynomial and is intimately related to Mar-
tin polynomials. Just as for the Tutte polynomial, computation of the bivariate
interlace polynomial is #P-hard in almost the entire plane [7]. The multivari-
ate interlace polynomial, a generalisation of the interlace polynomial, can be
evaluated efficiently for graphs of bounded tree-width [10], cf. [6]. Subject to
a condition on the weightings, which we call vertex λ-multiplicativity, we es-
tablish rapid mixing for vertex subset Glauber dynamics on graphs of constant
tree-width.

For all of our results, we need that the weight function is strictly positive
for all (induced) subgraphs. Many of the classical enumeration polynomials such
as the matching, independence, clique and chromatic polynomials are captured
by the general polynomials that we mention as examples throughout this work.
However, these are ‘hard-core models’, in which some (induced) subgraphs have

Rapid Mixing of Subset Glauber Dynamics 537

a zero weighting, and hence are not included in our approach. Many of these
are evaluations that fall at the boundary of the regions that we can handle. For
example, the Tutte polynomial evaluated at the point (2, 1) counts the number
of forests of the graph. We have shown rapid mixing at all fixed points (2, 1+ δ),
for δ > 0, with a mixing time that depends on δ. It would be interesting to
consider whether the chains associated with these boundary points mix rapidly
for graphs of bounded tree-width.

Outline of the paper. In the next section, we give the definitions that are neces-
sary for a detailed description of the main theorem. We give the main theorem
in Section 3 and then indicate some of its consequences. We present an outline of
the proof in Section 4. In Section 5, we state how our results extend to Glauber
dynamics on vertex subsets.

2 Definitions

2.1 λ-Multiplicative Weight Functions

In this subsection, we describe the condition we require on our graph functions P .
This condition prescribes that the weight function is multiplicative with respect
to the operation of disjoint graph union as well as “nearly multiplicative” with
respect to the operation of composition via small vertex cuts.

We use the notation λ̂ := max{λ, 1/λ}. For a graph G = (V,E), a vertex cut
K is said to separate sets V1 and V2 if (V1,K, V2) is a partition of V and there
is no edge of E that is incident to both a vertex of V1 and a vertex of V2. A
partition (E1, E2) of E is appropriate (for K) if E1 has no edge adjacent to a
vertex in V2 and E2 has no edge adjacent to a vertex in V1.

For fixed λ > 0, we say that the weight function w is λ-multiplicative, if
for any G = (V,E), any vertex cut K that separates sets V1 and V2, and any
appropriate partition (E1, E2), we have

λ̂−|K| ≤ w((V1 ∪K,E1))w((V2 ∪K,E2))
w(G)

≤ λ̂|K|. (6)

As mentioned above, if w is λ-multiplicative, then w is multiplicative with respect
to disjoint union (by taking K = ∅); furthermore, taking V2 = ∅ implies that the
addition or deletion of a few edges in the graph does not change w wildly.

2.2 Examples of Valid Polynomials

In this subsection, we emphasise specific examples with weight functions that
are λ-multiplicative. Let G = (V,E) be any graph, K be any vertex cut that
separates vertex subsets V1 and V2, and (E1, E2) be any appropriate partition.
We define G′ to be the disjoint union of graphs (V1∪K,E1) and (V2∪K,E2). We
could imagine forming G′ from G by splitting each vertex in K, taking incident
edges in E1 with one copy of the vertex and those in E2 with the other. It is trivial

538 M. Bordewich and R.J. Kang

to verify multiplicativity with respect to disjoint union for each of the weight
functions considered below. Therefore, to establish λ-multiplicativity for these
weight functions w, it will suffice to verify that λ̂−|K| ≤ w(G′)/w(G) ≤ λ̂|K|.

First, we observe that the partition function of the random cluster model for
q, μ > 0 satisfies the condition. Recalling (2), the relevant weight function is
w((V, S)) := qκ(S)μ|S|. To handle the μ|S| factor, note that the graphs G and G′

have the same number of edges. For the qκ(S) factor, the number of components
in G′ can be at most κ(G)+|K| since G′ can be obtained by splitting |K| vertices
of G. Thus, w is λ-multiplicative if we take λ := q.

This can also be seen in the context of the Tutte polynomial when x, y > 1.
Recalling (3), the relevant weight function is w((V, S)) := (x − 1)r(E)−r(S)(y −
1)|S|−r(S). As before, it is easy to take care of the (x − 1)r(E)(y − 1)|S| factor.
For the remaining ((x − 1)(y − 1))−r(S) factor, it is enough to observe that
the incidence matrix of G may be obtained from the incidence matrix of G′ as
follows. The matrix for G′ has two rows for each of the vertices in K, one from
(V1 ∪ K,E1) and one from (V2 ∪ K,E2). If we replace one of these two rows
with the sum of the two rows, we do not alter the rank; if we then delete the
other of the two rows, we change the rank by at most 1. Repeating this for each
vertex in K, we obtain the incidence matrix for G, at a total change in the rank
r of the incidence matrix of at most |K|. Thus, w is λ-multiplicative if we take
λ := (x− 1)(y − 1).

Next, we see that the adjacency-rank polynomial of Ge and Štefankovič sat-
isfies the condition if q, μ > 0. Recalling (4), the relevant weight function is
w((V, S)) := qrk2(S)μ|S|. As before, it is simple to handle the μ|S| factor. For the
qrk2(S) factor, we note that the adjacency matrix of G may be formed from the
adjacency matrix of G′ by |K| row additions, followed by |K| column additions
and finally the deletion of |K| rows and |K| columns. Since we must delete both
rows and columns, the rank rk2 of the adjacency matrix may change by up to
2|K|. Thus, in this case, w is λ-multiplicative when taking λ := q2.

Now, consider the multivariate Tutte polynomial as formulated by Sokal [40],
defined for any graph G = (V,E) and parameters q,v = {ve}e∈E by

ZTutte(G; q,v) :=
∑
S⊆E

qκ(S)
∏
e∈S

ve. (7)

Under this expansion, w := qκ(S)
∏

e∈S ve is an edge subset weight function if
q > 0 and ve > 0 for any e ∈ E are fixed. We can handle the qκ(S) factor as
we did for the random cluster model partition function. For the

∏
e∈S ve factor,

observe that G and G′ have the same set of edges. Thus, w is λ-multiplicative
when taking λ := q.

Last, we discuss the U -polynomial of Noble and Welsh [37], defined for any
graph G = (V,E) and parameters y,x = {xi}|V |

i=1 by

U(G; x, y) :=
∑
S⊆E

(y − 1)|S|−r(S)

|V |∏
i=1

xi
κ(i,S), (8)

Rapid Mixing of Subset Glauber Dynamics 539

where κ(i, S) denotes the number of components of order i in (V, S). If y > 1
and xi > 0 for all i, then w((V, S)) := (y − 1)|S|−r(S)

∏|V |
i=1 xi

κ(i,S) gives an
edge subset weighting. The (y − 1)|S|−r(S) factor can be handled as above. For
the

∏|V |
i=1 xi

κ(i,S) factor, observe that
∑

i |κ(i, G) − κ(i, G′)| is at most 3|K|,
since, if we obtain G′ by splitting the vertices in K, each time we split a vertex
we either change the size of a single component or split a single component
into two smaller components. Thus, taking x′ := maxi max{xi, x

−1
i } and y′ :=

max{y− 1, (y− 1)−1}, we see that w is λ-multiplicative when taking λ := y′x′3.

2.3 Glauber Dynamics for Edge Subsets

In this subsection, we define the Markov chain associated with the edge subset
expansion formula for P . From the formulation in (1), the single bond flip chain
M on a given graph G = (V,E) is defined as follows. We start with an arbitrary
subset X0 ⊆ E and repeatedly generate Xt+1 from Xt by running the following
experiment.

1. Pick an edge e ∈ E uniformly at random and let S = Xt ⊕ {e}.
2. Set Xt+1 = S with probability 1

2 min {1, w((V, S))/w((V,Xt))} and Xt+1 =
Xt with the remaining probability.

By convention, we denote the state space of M by Ω (i.e. Ω = 2E) and its
transition probability matrix by P.

The term rapidly mixing applies to a Markov chain that quickly converges
to its stationary distribution. We make this precise here. The total variation
distance ‖ν− ν′‖TV between two probability distributions ν and ν′ is defined by
‖ν − ν′‖TV = 1

2

∑
H∈Ω |ν(H) − ν′(H)|. For ε > 0, the mixing time of a Markov

chain M (with state space Ω, transition matrix P and stationary distribution
π) is defined as

τ(ε) := max
H∈Ω
{min{t | ‖P t(H, ·)− π(·)‖TV ≤ ε}}.

In this paper, we shall say that a chainM mixes rapidly if, for any fixed ε, τ(ε)
is (upper) bounded by a polynomial in the number of vertices of the input graph.

3 Results

We are now prepared for a precise statement of the main theorem.

Theorem 1. Let G = (V,E) where |V | = n. If w is λ-multiplicative for some
λ > 0, then the mixing time of M on G satisfies

τ(ε) = O
(
n4+4(tw(G)+1)| log λ| log(1/ε)

)
(where tw(G) denotes the tree-width of G).

540 M. Bordewich and R.J. Kang

In Subsection 2.2, we noted some examples of polynomials with λ-multiplicative
weight functions; thus, Theorem 1 implies the following.

Corollary 1. Let G = (V,E) where |V | = n. In the following list, we state
conditions on the parameters which guarantee rapid mixing of the single bond
flip chain on G associated with the stated polynomial and weighting. We also
state the mixing time bound.

1. For fixed q, μ > 0 and the weighting (2) of ZRC(G; q, μ), the mixing time
satisfies

τ(ε) = O
(
n4+4(tw(G)+1)| log q| log(1/ε)

)
.

Equivalently, for fixed x, y > 1 and the weighting (3) of T (G;x, y), the mixing
time satisfies

τ(ε) = O
(
n4+4(tw(G)+1)| log((x−1)(y−1))| log(1/ε)

)
.

2. For fixed q, μ > 0 and the weighting (4) of R2(G; q, μ), the mixing time
satisfies

τ(ε) = O
(
n4+8(tw(G)+1)| log q| log(1/ε)

)
.

3. For fixed q > 0 and ve > 0 for all e and the weighting (7) of Z(G; q,v), the
mixing time satisfies

τ(ε) = O
(
n4+4(tw(G)+1)| log q| log(1/ε)

)
.

4. For fixed y > 1 and xi > 0 for all i and the weighting (8) of U(G; x, μ), the
mixing time satisfies

τ(ε) = O
(
n4+4(tw(G)+1)|log(y′x′3)| log(1/ε)

)
,

where x′ = maxi max{xi, x
−1
i } and y′ = max{y − 1, (y − 1)−1}.

Here, we remark that Ge and Štefankovič obtained part 1 above and showed
part 2 above in the special case of trees. Parts 2–4 directly extend these findings,
and our main theorem considerably broadens the scope of mixing time bounds
for subset Glauber dynamics on graphs of bounded tree-width.

4 Proof Outline

Due to page restrictions, the detailed proof of Theorem 1 has been postponed
to a full journal version and can be found on arXiv, but we give a brief outline.

Although our main result is stated in terms of tree-width, we do not treat tree-
width directly but instead use linear-width, a more restrictive width parameter

Rapid Mixing of Subset Glauber Dynamics 541

introduced by Thomas [42], which is nearly equal to path-width pw [15]. This
strategy was also employed by Ge and Štefankovič in the two specific cases
mentioned above. For any graph G = (V,E), an ordering (e1, . . . , em) of E has
linear-width at most �, if, for each i ∈ {1, . . . ,m}, there are at most � vertices
that are incident to both an edge in {e1, . . . , ei−1} and an edge in {ei, . . . , em}.
The linear-width lw(G) of G = (V,E) is the smallest integer � such that there is
an ordering of E with linear-width at most �. The motive for using linear-width is
that it implies an ordering of the edges which we can then use to define canonical
paths between pairs of edge subsets. Then we show that λ-multiplicativity is the
general condition under which we can bound the congestion of these canonical
paths. A key relationship we rely on is that pw(G) ≤ (tw(G) + 1)(�log2 n�+ 1),
cf. [16]. The use of canonical paths is a standard technique for obtaining a bound
on the mixing time of MCMC methods — see the lecture notes of Jerrum [26]
for an expository account of this approach.

5 Vertex Subset Mixing for Bounded Tree-Width

Until now, we have considered edge subsets (subgraphs) and Glauber transitions
which change one edge at a time. In this section, we consider vertex subsets
(induced subgraphs) and transitions that involve one vertex at a time — each
such transition can affect many edges, up to the maximum degree of G.

A vertex subset expansion formula for P is written as follows: for any simple
graph G = (V,E),

P(G) =
∑
S⊆V

w(G[S]) (9)

for some graph function w, where G[S] denotes the subgraph of G induced by S.
If the function w is non-negative, we refer to (9) as a vertex subset weighting for
P and to w as its weight function. From such a weighting, we define the single
site flip chain M′ on a given graph G = (V,E) as follows. We start with an
arbitrary subset X0 ⊆ V and repeatedly generate Xt+1 from Xt by running the
following experiment.

1. Pick a vertex v ∈ V uniformly at random and let S = Xt ⊕ {v}.
2. Set Xt+1 = S with probability 1

2 min {1, w(G[S])/w(G[Xt])} and Xt+1 = Xt

with the remaining probability.

For fixed λ > 0, we say that the weight function w in (9) is vertex λ-multiplicative,
if for any G = (V,E) and K a vertex cut that separates sets V1 and V2 with
respect to G, we have

λ̂−|K| ≤ w(G[V1])w(G[V2 ∪K])
w(G)

≤ λ̂|K|. (10)

The main result of this section is the following.

542 M. Bordewich and R.J. Kang

Theorem 2. Let G = (V,E) where |V | = n. If w is vertex λ-multiplicative for
some λ > 0, then the mixing time of M′ on G satisfies

τ(ε) = O
(
n2+4(tw(G)+1)| log λ| log(1/ε)

)
.

Again, due to space limitations, we have omitted the proof, but note that it
follows a pattern similar to what is described in Section 4, with the exception
that instead of linear-width it is convenient to work with vertex-separation (a
closely related width parameter, shown by Kinnersley [30] to be equal to path-
width).

Recalling (5), for fixed x, y > 1, w(G[S]) := (x − 1)rk2(S)(y − 1)|V |−rk2(S)

gives a vertex subset weighting for q(G;x, y). With arguments similar to those
given in Subsection 2.2, it can be verified that this weight function is vertex
λ-multiplicative. By Theorem 2, it follows that a natural Markov chain derived
from the bivariate interlace polynomial — a chain that has not been studied ex-
tensively, as far as we are aware — mixes rapidly on tree-width-bounded graphs.

Corollary 2. Let G = (V,E) where |V | = n. If x, y > 1 are fixed, then for the
single site flip chain on G associated with the weighting (5) of q(G; q, μ), the
mixing time satisfies

τ(ε) = O
(
n2+8(tw(G)+1)| log((x−1)/(y−1))| log(1/ε)

)
.

6 Conclusion

In this work, we have developed a new general framework of graph polynomials
and Markov chains defined via subset expansion formulae for these polynomials,
and demonstrated that their dynamics mix rapidly for graphs of bounded tree-
width. On a graph G with n vertices, we have shown a mixing time of order
nO(1)eO(pw(G)) = nO(tw(G)). Our results apply to many of the most prominent
and well-known polynomials in the field. The mixing times of our processes
have, respectively, exponential and super-exponential dependencies upon path-
width and tree-width. We ask if this could be improved, in particular, to achieve
something akin to fixed-parameter tractability in terms of tree-width.

Acknowledgements. This research was supported by the Engineering and Phys-
ical Sciences Research Council (EPSRC), grant EP/G066604/1.

References

1. Alon, N., Frieze, A., Welsh, D.: Polynomial time randomized approximation
schemes for Tutte-Gröthendieck invariants: the dense case. Random Structures
Algorithms 6(4), 459–478 (1995)

2. Andrzejak, A.: An algorithm for the Tutte polynomials of graphs of bounded
treewidth. Discrete Math. 190(1-3), 39–54 (1998)

Rapid Mixing of Subset Glauber Dynamics 543

3. Arratia, R., Bollobás, B., Sorkin, G.B.: A two-variable interlace polynomial. Com-
binatorica 24(4), 567–584 (2004)

4. Berger, N., Kenyon, C., Mossel, E., Peres, Y.: Glauber dynamics on trees and
hyperbolic graphs. Probab. Theory Related Fields 131(3), 311–340 (2005)

5. Birkhoff, G.D.: A determinant formula for the number of ways of coloring a map.
Ann. of Math. (2) 14(1-4), 42–46 (1912/1913)

6. Bläser, M., Hoffmann, C.: Fast evaluation of interlace polynomials on graphs of
bounded treewidth. To appear in Algorithmica, doi:10.1007/s00453-010-9439-4

7. Bläser, M., Hoffmann, C.: On the complexity of the interlace polynomial. In:
Albers, S., Weil, P. (eds.) 25th International Symposium on Theoretical Aspects
of Computer Science (STACS 2008), Dagstuhl, Germany. Leibniz International
Proceedings in Informatics (LIPIcs), vol. 1, pp. 97–108. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik (2008)

8. Bodlaender, H.L.: Treewidth: Characterizations, applications, and computations.
In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 1–14. Springer, Heidelberg
(2006)

9. Bordewich, M.: Approximating the number of acyclic orientations for a class of
sparse graphs. Combin. Probab. Comput. 13(1), 1–16 (2004)

10. Courcelle, B.: A multivariate interlace polynomial and its computation for graphs
of bounded clique-width. Electron. J. Combin. 15(1): Research Paper 69, 36 (2008)

11. Dembo, A., Montanari, A.: Ising models on locally tree-like graphs. Ann. Appl.
Probab. 20(2), 565–592 (2010)

12. Ding, J., Lubetzky, E., Peres, Y.: Mixing time of critical Ising model on trees is
polynomial in the height. Comm. Math. Phys. 295(1), 161–207 (2010)

13. Ellis-Monaghan, J.A., Merino, C.: Graph polynomials and their applications I:
The Tutte polynomial. In: Dehmer, M. (ed.) Structural Analysis of Complex Net-
works, pp. 219–255. Birkhäuser, Boston (2011)

14. Ellis-Monaghan, J.A., Merino, C.: Graph polynomials and their applications II:
Interrelations and interpretations. In: Dehmer, M. (ed.) Structural Analysis of
Complex Networks, pp. 257–292. Birkhäuser, Boston (2011)

15. Fomin, F.V., Thilikos, D.M.: A 3-approximation for the pathwidth of Halin
graphs. J. Discrete Algorithms 4(4), 499–510 (2006)

16. Ge, Q., Štefankovič, D.: A graph polynomial for independent sets of bipartite
graphs. CoRR, abs/0911.4732 (2009)

17. Glauber, R.J.: Time-dependent statistics of the Ising model. J. Mathematical
Phys. 4, 294–307 (1963)

18. Goldberg, L.A., Jerrum, M.: Personal communication (2010)
19. Goldberg, L.A., Jerrum, M.: Approximating the partition function of the ferro-

magnetic potts model. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 396–407.
Springer, Heidelberg (2010)

20. Goldberg, L.A., Jerrum, M., Karpinski, M.: The mixing time of Glauber dynamics
for coloring regular trees. Random Structures Algorithms 36(4), 464–476 (2010)

21. Grimmett, G.: The random-cluster model. Grundlehren der Mathematischen
Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 333.
Springer, Berlin (2006)

22. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their
applications. Biometrika 57(1), 97–109 (1970)

23. Hliněný, P., Oum, S.-i., Seese, D., Gottlob, G.: Width Parameters Beyond Tree-
width and their Applications. The Computer Journal 51(3), 326–362 (2008)

544 M. Bordewich and R.J. Kang

24. Ising, E.: Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik A
Hadrons and Nuclei 31, 253–258 (1925), doi:10.1007/BF02980577

25. Jaeger, F., Vertigan, D.L., Welsh, D.J.A.: On the computational complexity of
the Jones and Tutte polynomials. Math. Proc. Cambridge Philos. Soc. 108(1),
35–53 (1990)

26. Jerrum, M.: Counting, sampling and integrating: algorithms and complexity, ETH
Zürich. Lectures in Mathematics. Birkhäuser, Basel (2003)

27. Jerrum, M., Sinclair, A.: Polynomial-time approximation algorithms for the Ising
model. SIAM J. Comput. 22(5), 1087–1116 (1993)

28. Jones, V.F.R.: A polynomial invariant for knots via von Neumann algebras. Bull.
Amer. Math. Soc (N.S.) 12(1), 103–111 (1985)

29. Karger, D.R.: A randomized fully polynomial time approximation scheme for the
all-terminal network reliability problem. SIAM Rev. 43(3), 499–522 (2001)

30. Kinnersley, N.G.: The vertex separation number of a graph equals its path-width.
Inform. Process. Lett. 42(6), 345–350 (1992)

31. Makowsky, J.A.: From a zoo to a zoology: towards a general theory of graph
polynomials. Theory Comput. Syst. 43(3-4), 542–562 (2008)

32. Makowsky, J.A., Mariño, J.P.: Farrell polynomials on graphs of bounded tree
width. Adv. in Appl. Math. 30(1-2), 160–176 (2003), Formal power series and
algebraic combinatorics, Scottsdale, AZ (2001)

33. Martinelli, F., Sinclair, A., Weitz, D.: Fast mixing for independent sets, colorings,
and other models on trees. Random Structures Algorithms 31(2), 134–172 (2007)

34. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.:
Equation of state calculations by fast computing machines. The Journal of Chem-
ical Physics 21(6), 1087–1092 (1953)

35. Noble, S.D.: Evaluating the Tutte polynomial for graphs of bounded tree-width.
Combin. Probab. Comput. 7(3), 307–321 (1998)

36. Noble, S.D.: Evaluating a weighted graph polynomial for graphs of bounded tree-
width. Electron. J. Combin. 16(1): research Paper 64, 14 (2009)

37. Noble, S.D., Welsh, D.J.A.: A weighted graph polynomial from chromatic in-
variants of knots. Ann. Inst. Fourier 49(3), 1057–1087 (1999), Symposium à la
Mémoire de François Jaeger, Grenoble (1998)

38. Potts, R.B.: Some generalized order-disorder transformations. Proc. Cambridge
Philos. Soc. 48, 106–109 (1952)

39. Randall, D.: Rapidly mixing Markov chains with applications in computer science
and physics. Computing in Science Engineering 8(2), 30–41 (2006)

40. Sokal, A.D.: The multivariate Tutte polynomial (alias Potts model) for graphs
and matroids. In: Surveys in Combinatorics 2005. London Math. Soc. Lecture
Note Ser., vol. 327, pp. 173–226. Cambridge Univ. Press, Cambridge (2005)

41. Tetali, P., Vera, J.C., Vigoda, E., Yang, L.: Phase transition for the mixing time
of the Glauber dynamics for coloring regular trees. In: Charikar, M. (ed.) SODA,
pp. 1646–1656. SIAM, Philadelphia (2010)

42. Thomas, R.: Tree-decompositions of graphs (1996), Lecture notes
http://www.math.gatech.edu/~thomas/tree.ps

43. Tutte, W.T.: A contribution to the theory of chromatic polynomials. Canadian J.
Math. 6, 80–91 (1954)

44. Welsh, D.J.A.: Complexity: knots, colourings and counting. London Mathematical
Society Lecture Note Series, vol. 186. Cambridge University Press, Cambridge
(1993)

http://www.math.gatech.edu/~thomas/tree.ps

Efficient Sample Extractors for Juntas with

Applications�

Sourav Chakraborty1, David Garćıa-Soriano2, and Arie Matsliah3

1 Chennai Mathematical Institute, India
2 CWI Amsterdam, The Netherlands

3 IBM Research and Technion, Haifa, Israel

Abstract. We develop a query-efficient sample extractor for juntas, that
is, a probabilistic algorithm that can simulate random samples from the
core of a k-junta f : {0, 1}n → {0, 1} given oracle access to a function
f ′ : {0, 1}n → {0, 1} that is only close to f . After a preprocessing step,

which takes Õ(k) queries, generating each sample to the core of f takes
only one query to f ′.

We then plug in our sample extractor in the “testing by implicit learn-
ing” framework of Diakonikolas et al. [DLM+07], improving the query
complexity of testers for various Boolean function classes. In particular,
for some of the classes considered in [DLM+07], such as s-term DNF
formulas, size-s decision trees, size-s Boolean formulas, s-sparse polyno-
mials over F2, and size-s branching programs, the query complexity is
reduced from Õ(s4/ε2) to Õ(s/ε2). This shows that using the new sample
extractor, testing by implicit learning can lead to testers having better
query complexity than those tailored to a specific problem, such as the
tester of Parnas et al. [PRS02] for the class of monotone s-term DNF
formulas.

In terms of techniques, we extend the tools used in [CGM11] for testing
function isomorphism to juntas. Specifically, while the original analysis
in [CGM11] allowed query-efficient noisy sampling from the core of any
k-junta f , the one presented here allows similar sampling from the core of
the closest k-junta to f , even if f is not a k-junta but just close to being
one. One of the observations leading to this extension is that the junta
tester of Blais [Bla09], based on which the aforementioned sampling is
achieved, enjoys a certain weak form of tolerance.

Keywords: property testing, sample extractors, implicit learning.

1 Introduction

Suppose we wish to test for the property defined by a class C of Boolean func-
tions over {0, 1}n; that is, we aim to distinguish the case f ∈ C from the case
dist(f, C) ≥ ε. The class is parameterized by a “size” parameter s (e.g. the class
of DNFs with s terms, or circuits of size s) and, as usual, our goal is to minimize

� Research supported in part by an ERC-2007-StG grant number 202405.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 545–556, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

546 S. Chakraborty, D. Garćıa-Soriano, and A. Matsliah

the number of queries made to f . In particular we strive for query complexity
independent of n whenever possible.

The main observation underlying the “testing by implicit learning” paradigm
of Diakonikolas et al. [DLM+07] (see also [Ser10], [DLM+08], [GOS+09]) is that
a large number of interesting classes C can be well approximated by (relatively)
small juntas also belonging to C.

The prototypical example is obtained by taking for C the class of s-term
DNFs. Let τ > 0 be an approximation parameter (which for our purpose should
be thought of as polynomial in ε/s). Any DNF term involving more than log(s/τ)
variables may be removed from f while affecting only a τ/s fraction of its values;
hence, removing all of them results in an s-term DNF f ′ that is τ -close to f and
depends on only s log(s/τ) variables (equivalently, f ′ is a s log(s/τ)-junta). Let
Jun[k] denote the subset of (k-junta) functions {0, 1}n → {0, 1} that depend only
on the first k variables. Since the class C is isomorphism-invariant (closed un-
der permutations of the variables), the foregoing observation can be rephrased
as follows: for any k ≥ s log(s/τ), the subclass C[k] � C ∩ Jun[k] is such that
every f ∈ C is τ -close to being isomorphic to some g ∈ C[k] (in short,
distiso(f, C[k]) ≤ τ).

On the other hand, for every f such that dist(f, C) = distiso(f, C) ≥ ε it also
holds that distiso(f, C[k]) ≥ ε, since C[k] ⊆ C. Hence, to solve the original problem,
all we need is to differentiate between the two cases (i) distiso(f, C[k]) ≤ τ and
(ii) distiso(f, C[k]) ≥ ε.

Let us denote by f∗ the k-junta that is closest to f ; f∗ can be identified with
its core, i.e. the Boolean function corek(f∗) : {0, 1}k → {0, 1} obtained from f∗

by dropping its irrelevant variables. If we could somehow manage to get random
samples of the form (x, corek(f∗)(x)) ∈ {0, 1}k × {0, 1}, we could use standard
learning algorithms to identify an element g ∈ C[k] which is close to being isomor-
phic to f∗ (if any), which would essentially allow us to differentiate between the
aforementioned cases. The number of such samples required for this is roughly
logarithmic in |C[k]|; we elaborate on this later.1 An important observation is
that the size of C[k] � C ∩ Jun[k] is usually very small, even compared to the
size of Jun[k], which is 22k

. For instance, it is not hard to see that for the case
of s-term DNFs, the size of C[k] is bounded by (2k)k, which is exponential in k,
rather than doubly exponential.

It is a surprising fact that such samples from the core of f∗ can indeed be
efficiently obtained (with some noise), even though f is the only function we have
access to. Even having query access to f∗ itself would not seem to help much
at first glance, since the location of the relevant variables of f∗ is unknown to
us, and cannot be found without introducing a dependence of n in the query
complexity. It is in this step that our approach departs from that of [DLM+07].
We mention next the two main differences that, when combined together, lead
to better query complexity bounds.

1 Issues of computational efficiency are usually disregarded here; however see
[DLM+08].

Efficient Sample Extractors for Juntas with Applications 547

The first difference is in the junta-testing part; both algorithms start with a
junta tester to identify k disjoint subsets of variables (blocks), such that every
“influential” variable of the function f being tested lies in one of these blocks.
While [DLM+07] use the tolerant version of the junta-tester of Fischer et al.
[FKR+02], we switch to the query-efficient junta tester of Blais [Bla09]. To make
this step possible, we have to show that the tester from [Bla09] is sufficiently
tolerant (the level of tolerance of the tester determines how large τ can be, which
in turn determines how small k can be). The second (and the main) difference
is in sample extraction - the actual process that obtains samples from the core
of f∗. While in [DLM+07] sampling is achieved via independence tests2, applied
to each of the identified blocks separately (which requires Ω(k) queries to f
per sample), we use ideas from [CGM11] instead. The algorithm presented in
[CGM11, Section 7] accomplishes this task in the (strict) case f = f∗ by making
just one query to f . The bulk of this work is a proof that, when f is close enough
to f∗, it is still possible to obtain each such sample using only one query to f
(an overview of the proof is given in Section 4.1).

Organization. In Section 2 we give the notation necessary for the formal state-
ment of our results, which is done in Section 3. In Section 4 some of the proofs
are presented. For reasons of lack of space, many proofs have been omitted; the
reader can find them in the full version of the paper at
http://homepages.cwi.nl/~david/downloads/implicit.pdf.

2 Notation

For any permutation π : [n] → [n] and x ∈ {0, 1}n, we define π(x) as the map
on n-bit strings that sends x = x1 . . . xn ∈ {0, 1}n to π(x) � xπ(1) . . . xπ(n) ∈
{0, 1}n. If f : {0, 1}n → {0, 1}, we also denote by fπ the function fπ(x) ≡
f(π(x)).

Given x ∈ {0, 1}n, A ⊆ [n] and y ∈ {0, 1}|A|, we denote by x
A←y

an input
obtained by taking x and substituting its values in A with y (according to the
natural ordering of [n]).

For a function f : {0, 1}n → {0, 1} and a set A ⊆ [n], the influence3 of f on
A is

Inff (A) � Pr
x∈{0,1}n, y∈{0,1}|A|

[
f(x) �= f(x

A←y
)
]
.

Here and throughout this paper, x ∈ S under the probability symbol means that
an element x is chosen uniformly at random from a set S.

2 Loosely speaking, these tests try to extract the values of the relevant variables of
f∗ by querying f on several inputs that are slightly perturbed (see [FKR+02] for
details).

3 When |A| = 1, this value is half that of the most common definition of influence of
one variable; for consistency we stick to the previous definition instead in this case
as well. It also appears in the literature under the alternate name of variation.

http://homepages.cwi.nl/~david/downloads/implicit.pdf

548 S. Chakraborty, D. Garćıa-Soriano, and A. Matsliah

A set S ⊆ [n] is relevant with respect to f if Inff(S) �= 0; an index (variable)
i ∈ [n] is relevant if {i} is. A k-junta is a function g that has at most k relevant
variables; equivalently, there is S ∈ ([n]

k

)
such that Infg([n] \ S) = 0.

Junk denotes the class of k-juntas (on n variables), and for A ⊆ [n], JunA

denotes the class of juntas with all relevant variables in A. In addition, given a
function f : {0, 1}n → {0, 1}, we denote by f∗ : {0, 1}n → {0, 1} the k-junta
that is closest to f (if there are several k-juntas that are equally close, break ties
using some arbitrarily fixed scheme). Clearly, if f is itself a k-junta then f∗ = f .

Given a k-junta f : {0, 1}n → {0, 1} we define corek(f) : {0, 1}k → {0, 1} to
be the restriction of f to its relevant variables (where the variables are placed
according to the natural order). In case f has fewer than k relevant variables,
corek(f) is extended to a function {0, 1}k → {0, 1} arbitrarily (by adding dummy
variables).

Unless explicitly mentioned otherwise, C will always denote a class of functions
f : {0, 1}n → {0, 1} that is closed under permutation of variables; that is, for any
f and permutation π of [n], f ∈ C if and only if fπ ∈ C. For any k ∈ N, let C[k]

denote the subclass C ∩ Jun[k]. Note that since C is closed under permutations of
variables, C[k] is closed under permutations of the first k variables. With a slight
abuse of notation, we may use corek(C[k]) to denote the class {corek(f) : f ∈ C[k]}
of k-variable functions.

3 Results

3.1 Upper Bounds

The main tool we develop here is the following:

Theorem 1. Let ε > 0, k ∈ N and let C[k] ⊆ Jun[k] be a class closed un-
der permutations of the first k variables. Let θ1(k, ε) = (ε/2400)6/(1026k10) =
poly(ε/k). There is a randomized algorithm A1 that given ε, k and oracle access
to a function f : {0, 1}n → {0, 1} does the following:

– if distiso(f, C[k]) ≤ θ1(k, ε), A1 accepts with probability at least 7/10;
– if distiso(f, C[k]) ≥ ε, A1 rejects with probability at least 7/10;

– A1 makes O
(

k
ε + k log k + 1+log |C[k]|

ε2

)
queries to f .

Coupled with the prior discussion on testing by implicit learning, Theorem 1
also implies:

Corollary 1. Let ε > 0 and let C be an isomorphism-invariant class of Boolean
functions. In addition, let k ∈ N be such that for every f ∈ C, distiso(f, C[k]) ≤
θ1(k, ε). Then there is an algorithm that makes

O

(
k

ε
+ k log k +

1 + log |C[k]|
ε2

)
= O

(
k log k + log |C[k]|

ε2

)
queries and satisfies:

Efficient Sample Extractors for Juntas with Applications 549

– if f ∈ C, it accepts with probability at least 7/10;
– if dist(f, C) ≥ ε, it rejects with probability at least 7/10.

To minimize the query complexity, we would like to pick k as small as possible,
subject to the requirement of the theorem. Let k�(C, τ) be the smallest k ∈ N

such that for every f ∈ C, distiso(f, C[k]) ≤ τ ; intuitively, this condition means
that C is τ -approximated by C[k]. We take from [DLM+07] the bounds on k� =
k�(C, τ) and |C[k�]| for the following classes of functions:

C (class) k� � k�(C, τ) ≤ |C[k�]| ≤
1 s-term DNFs s log(s/τ) (2s log(s/τ))s log(s/τ))

2 size-s Boolean formulae s log(s/τ) (2s log(s/τ))s log(s/τ)+s

3 size-s Boolean circuits s log(s/τ) 22s2+4s

4 s-sparse polynomials over F2 s log(s/τ) (2s log(s/τ))s log(s/τ))

5 size-s decision trees s (8s)s

6 size-s branching programs s ss(s + 1)2s

7 functions with Fourier degree at most d d2d 2d222d

These bounds hold for any approximation parameter τ ≥ 0. But to make Corol-
lary 1 applicable, we need to pick τ and k such that the (circular) inequalities
τ ≤ θ1(k, ε) and k ≥ k�(C, τ) are satisfied.

For items 5, 6, 7 setting τ = 0 does the job; the reason these bounds are
independent of τ is the fact that the corresponding classes contain only functions
that actually are k�-juntas (rather than functions that can be well approximated
by k�-juntas).

For the first 4 items we can set τ = θ1(s, ε)2. It is easy to verify that this sat-
isfies the foregoing pair of inequalities. Furthermore, since θ1(s, ε) is polynomial
in ε/s, we get k = O(s(log s + log 1/ε)). Plugging in the resulting values into
Corollary 1, we obtain the following query-complexity bounds:

Class This work [DLM+07], [PRS02](∗)

s-term DNFs, size-s Boolean formulae, s-sparse
polynomials over F2, size-s decision trees, size-s
branching programs

Õ(s/ε2) Õ(s4/ε2)

size-s Boolean circuits Õ(s2/ε2) Õ(s6/ε2)
functions with Fourier degree at most d Õ(22d/ε2) Õ(26d/ε2)
s-term monotone DNFs Õ(s/ε2) Õ(s2/ε)∗

3.2 Lower Bounds

In order to analyze how close to optimal our testers are, we need lower bounds
on the problems studied here. By using constructions of k-wise independent
generators in restricted computational models (in particular the ones of Healy
and Viola [HV06]), we improve some of the existing lower bounds and rederive
others (refer to the full version of this paper for details):

550 S. Chakraborty, D. Garćıa-Soriano, and A. Matsliah

1. size-s boolean formulae, branching programs and boolean circuits: poly(s).
2. functions with Fourier degree d: Ω(d).
3. s-sparse polynomials over GF (2): Ω(

√
s).

4. s-term DNFs, size-s decision trees: Ω(log s).

We remark that from independent work of Blais, Brody and Matulef [BBM11]
follows a stronger lower bound of Ω(s) queries for s-sparse polynomials. They
also obtain the Ω(log s) lower bounds for DNFS and decision trees.

4 Proof of Theorem 1

4.1 Overview

A key component of our algorithm is the nearly optimal junta tester of [Bla09].
This is a test to distinguish k-juntas from functions that are ε-far from being
one, and has perfect completeness, i.e., never rejects a k-junta (see Section 4.4
for a more detailed description). The tester is not guaranteed to accept functions
that are, say, ε/10 close to juntas. We observe, however, that it enjoys a certain
weak form of tolerance; roughly speaking, θ1(k, ε) is a measure of the amount
of tolerance of said tester, i.e. how close f must be to a k-junta in order to
guarantee it will be accepted with high probability. This is Lemma 7 in Section
4.4.

Our algorithm begins by calling the junta tester with parameter k. If f is
θ1(k, ε)-close to being a k-junta, the aforementioned tolerance implies that f is
not rejected. (Note however that f may be θ1(k, ε)-far from any k-junta and
still be accepted with high probability, as long as it is ε-close to some k-junta.)
The tester also returns a set of k blocks (disjoint subsets of indices of the n
variables) such that there is a k-junta h that is O(ε)-close to f and has all its
relevant variables in one of the k blocks, with no block containing more than
one relevant variable. Such an h must be itself O(ε) close to f∗ as well. Using
these properties, we then obtain a noisy sampler for the core of f∗, which on
each execution makes one query to f and outputs a pair (x, a) ∈ {0, 1}k ×{0, 1}
such that corek(f∗) = a with high probability.

Intuitively, the idea is that such samples may be obtained by making queries
to f on certain strings y ∈ {0, 1}n that are constant inside each of the blocks,
so that we know the values that y sets on the (unknown) relevant variables of h
(which is sufficiently close to both f and f∗). While such y’s are far from being
uniformly distributed, the approach can be shown to work most of the time.
These samples are then used to test isomorphism between corek(f∗) and the
functions in C[k]; in this final step we allow a small, possibly correlated, fraction
of the samples to be incorrectly labelled.

4.2 Main Lemmas and Proof of Theorem 1

We start with the notion of a noisy sampler.

Efficient Sample Extractors for Juntas with Applications 551

Definition 1. Let g : {0, 1}k → {0, 1} be a function, and let η, μ ∈ [0, 1). An
(η, μ)-noisy sampler for g is a probabilistic algorithm g̃ that on each execution
outputs (x, a) ∈ {0, 1}k × {0, 1} such that

– for all α ∈ {0, 1}k, Pr[x = α] = 1
2k (1± μ);

– Pr[a = g(x)] ≥ 1− η;
– the pairs output on each execution are mutually independent.

An η-noisy sampler is an (η, 0)-noisy sampler, i.e. one that on each execution
picks a uniformly random x. 4

Now assume that f is very close to a k-junta g : {0, 1}n → {0, 1}, and we have
been given an η-noisy sampler for corek(g) : {0, 1}k → {0, 1}. Then we can use a
variant of Occam’s razor to test (tolerantly) whether g is close to some function
from a given class S:

Lemma 1. There is an algorithm that given ε ∈ R
+, k ∈ N, a set S of Boolean

functions on {0, 1}k, and an η-noisy sampler g̃ for some g : {0, 1}k → {0, 1},
where η ≤ ε/100, satisfies the following:

– if dist(g,S) < ε/10, it accepts with probability at least 9/10;
– if dist(g,S) > 9ε/10, it rejects with probability at least 9/10;
– it draws O

(
1+log |S|

ε2

)
samples from g̃.

Now is the time to state the main technical lemma.

Lemma 2 (Construction of efficient noisy samplers)
There are algorithms AP , AS (resp. preprocessor and sampler), both of which

having oracle access to a function f : {0, 1}n → {0, 1}, and satisfying the follow-
ing properties:

The preprocessor AP takes ε > 0, k ∈ N as inputs, makes O(k/ε + k log k)
queries to f and can either reject or accept and return a state α ∈ {0, 1}poly(n).
Assuming AP accepted, the sampler AS can be called on demand, with state α
as an argument; in each call, AS makes only one query to f and outputs a pair
(x, a) ∈ {0, 1}k × {0, 1}.

On termination of the preprocessing stage AP , all the following conditions are
fulfilled with probability at least 4/5:

– If f is θ1(k, ε)-close to a k-junta, AP has accepted f ;
– If f is ε/2400-far from a k-junta, AP has rejected f ;
– If AP has accepted, state α is such that, for some permutation π : [k]→ [k],

AS(α) is an ε/100-noisy sampler for corek(f∗)π.

The statement is somewhat technical and calls for careful reading. It is cru-
cial that the last condition be satisfied with high probability for any f . When
4 The reader familiar with [CGM11] should beware that the usage of the parameter μ

here is slightly different from that of the similar definition thereof.

552 S. Chakraborty, D. Garćıa-Soriano, and A. Matsliah

θ1(k, ε) < dist(f, Junk) < ε/2400, it might be the case that AP always accepts
f , always rejects f , or anything in between, but with high probability either f
has been rejected or an ε/100-noisy sampler for (a permutation of) corek(f∗)
has been constructed.

Assuming Lemmas 2 and 1 we can prove our main theorem.

Proof (of Theorem 1). Let τ � θ1(k, ε). Suppose first that distiso(f, C[k]) ≤ τ .
Then Lemma 2 says that, with probability at least 4/5, we can construct an
ε/100-noisy sampler for corek(f∗). Since dist(f, f∗) ≤ τ and dist(f, C[k]) ≤ τ , we
actually obtain an ε/100-noisy sampler for a function that is 2τ < ε/10-close to
the core of some g ∈ C[k]. Using this noisy sampler we may apply the algorithm
from Lemma 1 with S = corek(C[k]), which in turn will accept with probability
at least 9/10. The overall acceptance probability in this case is at least 7/10 by
the union bound.

Now consider the case distiso(f, C[k]) ≥ ε. There are two possible sub cases:

dist(f, Junk) > ε/2400: In this case f is rejected with probability at least 4/5 >
7/10.

dist(f, Junk) ≤ ε/2400: In this case, with probability at least 4/5, either f is
rejected (in which case we are done), or an ε/100-noisy sampler has been con-
structed for corek(f∗). Since f∗ is ε/2400-close to f , by the triangle inequal-
ity we have dist(corek(f∗), corek(C[k])) ≥ distiso(f, C[k])−dist(f, f∗) > 9ε/10,
and hence with probability at least 9/10 the algorithm from Lemma 1 rejects.
Thus the overall rejection probability in this case is at least 7/10 too.

The assertion about the number of queries is easily seen to be correct, as it is
the sum of the number of queries made in the preprocessing stage by AP , and
the number of executions of the sampler AS .

The rest of this section is devoted to the proof of Lemma 2.

4.3 Additional Definitions and Lemmas

Our first observation is that, using rejection sampling, one can easily obtain an
exactly uniform sampler (as required in Lemma 1) from a slightly non-uniform
sampler at the cost of a small increase in the error probability:

Lemma 3. Let g̃ be an (η, μ)-noisy sampler for g : {0, 1}k → {0, 1}, that on
each execution picks x according to some fixed distribution D. Then g̃ can be
turned into an (η + μ)-noisy sampler g̃uniform for g.

We remark that the conversion made in Lemma 3 is only possible when the
distribution D is known. However, this will be the case for the sampler that we
construct here.

Throughout the rest of this section, a random partition I = I1, . . . , I
 of [n]
into � sets is constructed by starting with � empty sets, and then putting each
coordinate i ∈ [n] into one of the � sets picked uniformly at random. Unless

Efficient Sample Extractors for Juntas with Applications 553

explicitly mentioned otherwise, I will always denote a random partition I =
I1, . . . , I
 of [n] into � subsets, where � is even; and J = J1, . . . , Jk will denote
an (ordered) k-subset of I (meaning that there are a1, . . . , ak such that Ji = Iai

for all i ∈ [k]).

Definition 2 (Operators replicate and extract). We call y ∈ {0, 1}n
I-blockwise constant if the restriction of y on every set of I is constant; that is,
if for all i ∈ [�] and j, j′ ∈ Ii, yj = yj′ .

– Given z ∈ {0, 1}
, define replicateI(z) to be the I-blockwise constant string
y ∈ {0, 1}n obtained by setting yj ← zi for all i ∈ � and j ∈ Ii.

– Given an I-blockwise constant y ∈ {0, 1}n and an ordered subset J =
(J1, . . . , Jk) of I define extractI,J (y) to be the string x ∈ {0, 1}k where for
every i ∈ [k]: xi = yj if j ∈ Ji; and xi is a uniformly random bit if Ji = ∅.

Definition 3 (Distributions DI and DJ). For any I and J ⊆ I as above,
we define a pair of distributions:

– The distribution DI on {0, 1}n: A random y ∼ DI is obtained by
1. picking z ∈ {0, 1}
 uniformly at random among all

(

/2

)
strings of weight

�/2;
2. setting y ← replicateI(z).

– The distribution DJ on {0, 1}|J |: A random x ∼ DJ is obtained by
1. picking y ∈ {0, 1}n at random, according to DI;
2. setting x← extractI,J (y).

Lemma 4 (Properties of DI and DJ)

1. For all α ∈ {0, 1}n, Pr
I,y∼DI

[y = α] = 1/2n;

2. Assume � > 4|J |2. For every I and J ⊆ I, the total variation distance
between DJ and the uniform distribution on {0, 1}|J | is bounded by 2|J |2/�.
Moreover, the total variation distance between the two distributions is at
most 4|J |2/(�2|J |).

Definition 4 (Algorithm samplerI,J (f)). Given I,J as above and oracle ac-
cess to f : {0, 1}n → {0, 1}, we define a probabilistic algorithm samplerI,J (f),
that on each execution produces a pair (x, a) ∈ {0, 1}|J | × {0, 1} as follows:
first it picks a random y ∼ DI , then it queries f on y, and outputs the pair
(extractI,J (y), f(y)).

Jumping ahead, we remark that the pair I,J (along with the values of k, ε) will
be the information encoded in state α referred to in Lemma 2. In order to ensure
that the last condition there is satisfied, we need to impose certain conditions
on I and J .

Definition 5. Given δ > 0, a function f : {0, 1}n → {0, 1}, a partition I =
I1, . . . , I
 of [n] and a k-subset J of I, we call the pair (I,J) δ-good (with
respect to f) if there exists a k-junta h : {0, 1}n → {0, 1} such that the following
conditions are satisfied:

554 S. Chakraborty, D. Garćıa-Soriano, and A. Matsliah

1. Conditions on h:
(a) Every relevant variable of h is also a relevant variable of f∗ (recall that

f∗ denotes the k-junta closest to f);
(b) dist(f∗, h) < δ.

2. Conditions on I:
(a) For all j ∈ [�], Ij contains at most one variable of corek(f∗); 5

(b) Pry∼DI [f(y) �= f∗(y)] ≤ 10 · dist(f, f∗);
3. Conditions on J :

(a) The set
⋃

Ij∈J Ij contains all relevant variables of h;

Lemma 5. Let δ, f, I,J be as in the preceding definition. If the pair (I,J) is δ-
good (with respect to f), then samplerI,J (f) is an (η, μ)-noisy sampler for some
permutation of corek(f∗), with η ≤ 2δ + 4k2/� + 10 · dist(f, f∗) and μ ≤ 4k2/�.

This is essentially Lemma 8.3 in [CGM11].
As the lemma suggests, our next goal is to obtain a good pair (I,J). For

this we need to prove that (a slight variation of) the junta tester from [Bla09]
satisfies certain properties.

4.4 Junta Testers, Smoothness, and Tolerance

Consider a property P of Boolean functions on {0, 1}n and an ε-tester T for it
that makes q queries and has success probability 1−δ. Let r denote a random seed
(so that we can view the tester as a deterministic algorithm with an additional
input r) and let Q(f, r) ⊆ {0, 1}n be the set of queries it makes on input f
and seed r. Define Q(r) �

⋃
f Q(f, r); this is the set of all possible queries

T may make as f ranges over all possible functions, once r is fixed. We call
p � maxr |Q(r)| the non-adaptive complexity of the tester. If q = p then the
tester is essentially non-adaptive; and clearly p ≤ 2q holds for any tester of
Boolean properties. We observe that for the junta tester of Blais [Bla09], p is
in fact polynomially bounded in q. (Without loss of generality we assume that
Q(r) is never empty.)

Definition 6. A tester is p-smooth if its non-adaptive complexity is at most p
and for all α ∈ {0, 1}n,

Pr
r

y∈Q(r)

[y = α] =
1
2n

.

Notice that y is picked uniformly at random from the set Q(r), regardless of the
probability y would be queried by T on any particular f . In other words, we are
picking one random query of the non-adaptive version of T that queries all of
Q(r) in bulk, and requiring that the resulting string be uniformly distributed.

5 Note that this with 1a implies that every block Ij contains at most one relevant
variable of h, since the variables of corek(f∗) contain all relevant variables of f∗.

Efficient Sample Extractors for Juntas with Applications 555

Lemma 6. Let T be a p-smooth tester for P that accepts every f ∈ P with
probability at least 1− δ. Then for every f : {0, 1}n → {0, 1}, Pr[T accepts f] ≥
1− δ − p · dist(f,P).

Proof. Choose any f ′ ∈ P and let Δ � {y ∈ {0, 1}n : f(y) �= f ′(y)}. By
the union bound, the probability (over r) that Q(r) intersects Δ is at most
μ � p · dist(f, f ′), and hence the probability is at least 1 − μ that the tester
reaches the same decision about f as it does about f ′. But the probability that
f ′ is rejected is at most δ, hence the claim follows.

Lemma 7. The one-sided error junta tester T[Bla09] from [Bla09] is p7(k, 1/ε)-

smooth, where p7(k, 1/ε) � (1025k10)/ε6. Thus, by Lemma 6, it accepts functions

that are θ1(k, ε)-close to Junk with probability at least 9/10 (since 10 · θ1(k, ε) ≤
1/p7(k, 1/ε).) It also rejects functions that are ε-far from Junk with probability

at least 2/3, as proved in [Bla09].

4.5 Obtaining a Good Pair (I, J)

In the following proposition we claim that the tester T[Bla09] satisfies several
conditions that we need for obtaining the aforementioned sampler.

Proposition 1. There is a tester T[Bla09] for Junk that makes O(k log k + k/ε)
queries, takes a (random) partition I = I1, . . . , I
 of [n] as input, where � =
Θ(k9/ε5) is even, and outputs (in case of acceptance) a k-subset J of I such
that for any f the following conditions hold (the probabilities below are taken
over the randomness of the tester and the construction of I):

– if f is θ1(k, ε) close to Junk, T[Bla09] accepts with probability at least 9/10;
– if f is ε/2400-far from Junk, T[Bla09] rejects with probability at least 9/10;
– for any f , with probability at least 4/5 either T[Bla09] rejects, or it outputs
J such that the pair (I,J) is ε/600-good (as per Definition 5).

In particular, if dist(f, Junk) ≤ θ1(k, ε), then with probability at least 4/5 T[Bla09]

outputs a set J such that (I,J) is ε/600-good.

We are finally ready to complete the proof of Lemma 2.

4.6 Proof of Lemma 2

We start by describing how AP and AS operate: The preprocessor AP starts by
constructing a random partition I and calling the junta tester T[Bla09]. Then, in
case T[Bla09] accepted, AP encodes in the state α the partition I and the subset
J ⊆ I output by T[Bla09] (see Proposition 1), along with the values of k and ε.
The sampler AS , given α, obtains a pair (x, a) ∈ {0, 1}k × {0, 1} by executing
samplerI,J (f) (once).

556 S. Chakraborty, D. Garćıa-Soriano, and A. Matsliah

Now we show how Lemma 2 follows from Proposition 1. The first two items
are immediate. As for the third one, notice that we only have to analyze the case
where dist(f, f∗) ≤ ε/2400 and T[Bla09] accepted; all other cases are taken care
of by the first two items. By the third item in Proposition 1, with probability
at least 4/5 the pair (I,J) is ε/600-good. If so, by Lemma 5 samplerI,J (f) is
an (η, μ)-noisy sampler for some permutation of corek(f∗), with η ≤ ε/300 +
4k2/�+10 ·dist(f, f∗) ≤ ε/120+4k2/� and μ ≤ 4k2/�. The final step we apply is
the conversion from Lemma 3, with which we obtain a (ε/120+4k2/�+4k2/�) ≤
(ε/100)-noisy sampler for some permutation of corek(f∗). ��

Acknowledgement

We are grateful to Noga Alon, Eric Blais and Eldar Fischer for very useful
discussions, and to Bruno Loff for bringing the paper [HV06] to our attention.

References

[BBM11] Blais, E., Brody, J., Matulef, K.: Property testing lower bounds via
communication complexity. Personal communication (2011)

[Bla09] Blais, E.: Testing juntas nearly optimally. In: Proc. ACM Symposium
on the Theory of Computing, pp. 151–158. ACM, New York (2009)

[CGM11] Chakraborty, S., Garćıa-Soriano, D., Matsliah, A.: Nearly tight
bounds for testing function isomorphism. In: Proc. of the ACM-SIAM
Symposium on Discrete Algorithms, SODA (2011)

[DLM+07] Diakonikolas, I., Lee, H.K., Matulef, K., Onak, K., Rubinfeld, R.,
Servedio, R.A., Wan, A.: Testing for concise representations. In: Proc.
IEEE Symposium on Foundations of Computer Science, pp. 549–558
(2007)

[DLM+08] Diakonikolas, I., Lee, H.K., Matulef, K., Servedio, R.A., Wan, A.:
Efficiently testing sparse GF(2) polynomials. In: Aceto, L., Damg̊ard,
I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 502–514. Springer,
Heidelberg (2008)

[FKR+02] Fischer, E., Kindler, G., Ron, D., Safra, S., Samorodnitsky, A.: Testing
juntas. In: FOCS, pp. 103–112 (2002)

[GOS+09] Gopalan, P., O’Donnell, R., Servedio, R.A., Shpilka, A., Wimmer, K.:
Testing fourier dimensionality and sparsity. In: Albers, S., Marchetti-
Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP
2009. LNCS, vol. 5555, pp. 500–512. Springer, Heidelberg (2009)

[HV06] Healy, A., Viola, E.: Constant-depth circuits for arithmetic in finite fields
of characteristic two. In: Durand, B., Thomas, W. (eds.) STACS 2006.
LNCS, vol. 3884, pp. 672–683. Springer, Heidelberg (2006)

[PRS02] Parnas, M., Ron, D., Samorodnitsky, A.: Testing basic boolean formulae.
SIAM J. Discrete Math. 16(1), 20–46 (2002)

[Ser10] Servedio, R.A.: Testing by implicit learning: a brief survey (2010)

Efficiently Decodable Error-Correcting List

Disjunct Matrices and Applications

(Extended Abstract)

Hung Q. Ngo1, Ely Porat2, and Atri Rudra1,�

1 Department of CSE, University at Buffalo, SUNY, Buffalo, NY, 14260, USA
2 Department of Computer Science, Bar-Ilan University, Ramat Gan 52900, Israel

Abstract. A (d, �)-list disjunct matrix is a non-adaptive group testing
primitive which, given a set of items with at most d “defectives,” outputs
a superset of the defectives containing less than � non-defective items.
The primitive has found many applications as stand alone objects and
as building blocks in the construction of other combinatorial objects.

This paper studies error-tolerant list disjunct matrices which can cor-
rect up to e0 false positive and e1 false negative tests in sub-linear time.
We then use list-disjunct matrices to prove new results in three different
applications.

Our major contributions are as follows. (1) We prove several (almost)-
matching lower and upper bounds for the optimal number of tests, in-
cluding the fact that Θ(d log(n/d) + e0 + de1) tests is necessary and
sufficient when � = Θ(d). Similar results are also derived for the disjunct
matrix case (i.e. � = 1). (2) We present two methods that convert error-
tolerant list disjunct matrices in a black-box manner into error-tolerant
list disjunct matrices that are also efficiently decodable. The methods
help us derive a family of (strongly) explicit constructions of list-disjunct
matrices which are either optimal or near optimal, and which are also
efficiently decodable. (3) We show how to use error-correcting efficiently
decodable list-disjunct matrices in three different applications: (i) explicit
constructions of d-disjunct matrices with t = O(d2 log n+rd) tests which
are decodable in poly(t) time, where r is the maximum number of test
errors. This result is optimal for r = Ω(d log n), and even for r = 0 this
result improves upon known results; (ii) (explicit) constructions of (near)-
optimal, error-correcting, and efficiently decodable monotone encodings;
and (iii) (explicit) constructions of (near)-optimal, error-correcting, and
efficiently decodable multiple user tracing families.

1 Introduction

The basic objective of group testing is to figure out a subset of “defective items”
in a large item population by performing tests on subsets of items. The mani-
festation of “defective” and “tests” depends on the application. For most of this
paper we will consider the basic interpretation where we have a universe [n] of
� Supported by NSF CAREER grant CCF-0844796.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 557–568, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

558 H.Q. Ngo, E. Porat, and A. Rudra

items and some subset S ⊂ [n] of at most d defectives (also interchangeably
called positives). Every (group) test is a subset T ⊆ [n], which results in a posi-
tive outcome if some defective is in T and a negative outcome when T contains no
defectives. In many applications, non-adaptive group testing is required, where
one cannot use one test’s outcome to design another test. Non-adaptive group
testing (NAGT) has found applications in drug and DNA library screening [18],
live baiting of DoS attackers [16], data forensics [12] and data streams [4], among
others. See the standard monograph on group testing for more details [6].

The first objective in the design of such NAGT primitives is to minimize the
number of tests necessary to identify (or decode) all the defectives. A NAGT
strategy with t tests on n items can be represented by a t × n binary matrix
M where each row is the incidence vector of the corresponding test. For unique
decoding of up to d defectives, it is necessary that all the unions of up to d
columns of M have to be distinct. Such a matrix is said to be d-separable. It has
been known for a long time that the optimal number of rows of a d-separable
matrix is between Ω(d2 logn/ log d) [8] and O(d2 log(n/d)) [6].

The second objective is to explicitly construct disjunct matrices with as few
tests as possible. Recently, a O(nt)-time explicit construction attaining the t =
O(d2 log(n))-bound has also been found [20]. No strongly explicit construction
matching the bound is known.1

The third objective is to decode efficiently. The brute-force algorithm is too
slow as it goes through all possible

(
n
≤d

)
= O(nd) choices for the defective set.

Some NAGT strategies, however, allow a very simple O(nt)-time decoding algo-
rithm to work: the decoder simply eliminates items belonging to negative tests
and returns the remaining items. We shall refer to this decoder as the naive
decoder. A NAGT matrix is said to be d-disjunct iff the naive decoder works on
all possible inputs of up to d defectives. While disjunct matrices are a stronger
notion than separable matrices, they have asymptotically the same number of
tests [6]. Thus, we went from O(nd) down to O(nt)-decoding time “for free.”

The time complexity of O(nt) is reasonable for most of the “traditional” al-
gorithmic applications. However with the proliferation of massive data sets and
their numerous applications, the decoding time of O(nt) is no longer good enough
because the number of items n is prohibitively large. For example, in typical data
stream applications a running time of poly(t) (with t = O(d2 log n) tests in the
best case) for moderate values of d would imply an exponential improvement
in the running time. The question of constructing efficiently decodable disjunct
matrices was first explicitly raised by Cormode and Muthukrishnan [4]. Recently,
Indyk, Ngo and Rudra [14] presented a randomized construction of d-disjunct
matrices with t = O(d2 log(n)) tests that could be decoded in time poly(t). They
also derandomized their construction for d ≤ O(log n/ log logn). Our construc-
tion in this paper removes the above constraint on d. We thus can get further

1 Throughout this paper we will call a t× n matrix strongly explicit if any column of
the matrix can be constructed in time poly(t). A matrix will be called explicit if it
can be constructed in time poly(t, n).

Efficiently Decodable Error-Correcting List Disjunct Matrices 559

down to poly(t) decoding time “for free.” Henceforth, “efficient decoding” means
decoding in poly(t)-time.

The fourth objective is to correct errors in test outcomes. In many applications
such as drug discovery and DNA library screening, faulty test outcomes are
unavoidable [15]. Or, when heavy-hitters in a data-stream are identified using
group testing, non-heavy hitter elements might generate false positive tests if the
small-tail property is not satisfied [4]. This paper essentially obtains the above
“for free” result even with the additional error-correcting requirement.

Our NAGT results crucially use as a building block a weaker notion of disjunct
matrices called list disjunct matrices, which turns out to have many other useful
applications as well.

1.1 List Disjunct Matrices and Our Main Results

Similar to list-decoding, if we relax the exact decoding requirement and only
require the NAGT primitive to output a bounded super-set of all the defec-
tives, then separable/disjunct matrices become list-separable/disjunct matrices.
Roughly, a (d, �)-list disjunct matrix is one where the naive decoder always out-
puts a super-set of the defectives containing less than � other non-defective items.
The name “list disjunct” was coined in [14], though it was previously studied un-
der the different names: (d, n, �)-super-imposed codes in [7,5], list-decoding super-
imposed codes of strength d and list-size � in [21].2 We stick with the term “list
disjunct matrices” in this paper. Shortly prior to [14], Cheraghchi [3] studied the
notion of error-correcting measurement matrices for d-sparse vectors, which are
slightly more general than the notion of list-separable matrices. It can be shown
that list-separable matrices are equivalent to list-disjunct matrices with a slight
loss in parameters. Hence, the results in [3], though shown for list-separable ma-
trices, apply for list-disjunct matrices as well. Conversely, our bounds also apply
to error-correcting measurement matrices. Our lower bounds slightly improve
lower bounds in [3].

List-disjunct matrices were used in [14] to construct efficiently decodable dis-
junct matrices. They also presented a “stand alone” application of list disjunct
matrices in constructing sparsity separators, which were used by Ganguly [11] to
design data stream algorithms for the sparsity problem. Rudra and Uurtamo [22]
used these objects to design data stream algorithms for tolerant testing Reed-
Solomon codes. As observed in De Bonis et. al. [5], these objects can also be
used to construct optimal two stage group testing algorithms.

List disjunct matrices are also similar to other combinatorial objects such as
selectors [13] and multi-user tracing families [2]. Selectors have found numerous
applications such as broadcasting in unknown directed networks and designing
tests for coin-weighting problems [13] as well as designing optimal two stage
group testing schemes [5]. Multi-user tracing families were used to construct
monotone encodings in [2]. Monotone encodings can be used for designing secure
vote storage systems [17].

2 The authors of [14] were not aware of these previous works.

560 H.Q. Ngo, E. Porat, and A. Rudra

Given the various applications of list disjunct matrices, it is very natural
to ask if one could (explicitly) construct list disjunct matrices that are also
efficiently decodable. Indyk, Ngo and Rudra [14] constructed efficiently decod-
able (d,O(d1+ε))-list-disjunct matrices with O(d1+ε log1+1/ε n) tests (∀ε > 0).
Cheraghchi [3] constructed efficiently decodable (d,O(d))-list-separable matri-
ces (and thus, due to their almost-equivalence, (d,O(d))-list-disjunct matrices)
with O(d3+α+1/α log1+1/α n) tests (∀α > 0).

This paper improves upon both [14] and [3] by presenting efficiently decod-
able (d,O(d))-list-disjunct matrices with O(d1+o(1) logn log logd n) tests as well
as (d,O(d1+ε))-list disjunct matrices with O(d1+ε logn) tests (for any ε > 0).
In addition, our matrices are also error-correcting. To state the results more
precisely we briefly discuss the error-correcting matrices next.

Error-correcting versions of disjunct matrices have been studied a fair bit [6]
but to the best of our knowledge the only existing work that considers error
tolerant list-separable matrices is [3]. This paper studies the general notion of
(d, �, e0, e1)-list disjunct/separable matrices which are (d, �)-disjunct/separable
matrices capable of correcting up to e0 false positives and e1 false negatives.

We prove upper and lower bounds on the optimal number of rows of a
(d, �, e0, e1)-list disjunct matrix. The bounds are tight for sufficiently large e0 +
de1. (Our lower bounds are slightly better than those in [3].)

We then show how to construct error-tolerant and efficiently decodable list-
disjunct matrices by presenting two general procedures which – in a black-box
fashion – convert any (d, �, e0, e1)-list disjunct matrices into (d, �, e′0, e

′
1)-list dis-

junct matrices that are also efficiently decodable with a mild blow-up in the
number of tests. Note that we essentially show how to convert a combinatorial
guarantee into an algorithmic guarantee, which for combinatorial objects (e.g.
codes) is generally not obvious.

One of our conversion procedures provides a tradeoff between the blow-up in
the number of tests vs. the gain in decoding time (from the simple linear time
algorithm). Unfortunately, this procedure can only give e′0 = e0 and e′1 = e1

(even though the number of tests has gone up). Our other conversion procedure
does not provide such a nice tradeoff but it does lead to efficient decoding with
a mild blow-up in the number of tests. More importantly, the quantities e′0/e0

and e′1/e1 scale up linearly with the blow-up in the number of tests. This allows
us to design error-tolerant (d, d1+ε, e0, e1)-list disjunct matrices that for large
values of e0 + de1 have essentially all the nice properties one can wish for: (i)
Optimal number of tests; (ii) Strongly explicit construction and (iii) Efficiently
decodable.

1.2 Applications and Other Results

(Near) Optimal, explicit, and error-correcting disjunct matrices. Constructions
of efficiently decodable list disjunct matrices lead to constructions of efficiently
decodable d-disjunct matrices with the best known O(d2 logn) number of tests.
This result settles an open question from [14]. The black-box conversion proce-
dures also work for disjunct matrices. We prove a similar optimal result as in the

Efficiently Decodable Error-Correcting List Disjunct Matrices 561

list-disjunct case where a disjunct matrix is explicit, error-correcting, efficiently
decodable, and has the best known number of tests. In fact, when the number
of errors is sufficiently large, our error-tolerant disjunct matrices also have the
optimal number of tests. This result points out the following somewhat surpris-
ing fact: our understanding of error-tolerant (list) disjunct matrices is essentially
limited by our understanding of the traditional no error case. In other words,
adding more errors only makes the problem “easier,” which is not the case for
related combinatorial objects such as codes.

Near Optimal, Efficiently Computable, and Efficiently Decodable Monotone En-
codings. With a construction similar to that in Alon-Hod [2], we show that
(d, d/2)-list disjunct t × n matrices imply a (n, d)-monotone encoding of length
t, i.e. a monotone injective functions from subsets of size up to d of [n] to t bits.
By contrast, the Alon-Hod’s construction used multi-user tracing families which
are, in a sense, duals of list-disjunct matrices. Alon and Hod showed that optimal
(n, d)-monotone encodings have length t = Θ(d log (n/d)), and presented a prob-
abilistic construction with encoding and decoding time of O(nd log n). From our
list-disjunct matrix constructions, we construct (n, d)-monotone encodings with
length t = O((d log n)1+o(1)) that are both explicitly computable and decodable
in poly(t)-time. Our result also hold for the error-tolerant monotone encodings.
We also prove an almost matching lower-bound for the length of error-correcting
monotone-encoding.

Near-Optimal Efficiently Decodable Multiple User Tracing Families. Given posi-
tive integers u ≤ d, a (d, u)-multiuser tracing (MUT) family is a NAGT strategy
(or matrix) which, given the test outcomes imposed by an arbitrary set of v ≤ d
defectives, there is a decoding algorithm that outputs at least min(u, v) out of
the v defectives. Thus, in a sense MUT is the dual of list-disjunct matrices. Alon-
Asodi [1] proved that, given n, the smallest t for which a t×n (d, u)-MUT matrix
exists must satisfy Ω

((
d + u2

log u

)
· logn

)
≤ t ≤ O

(
(d + u2) logn

)
. From our re-

sults on list-disjunct matrices, we show how to construct (d, u)-MUT matrix of
size t × n with t = O((d1+o(1) + u2) log n + (e0 + e1)d) which are explicit, effi-
ciently decodable and error tolerant. By removing the explicitness requirement,
we can retain the other two properties and reduce t to essentially the optimal
O((d + u2) logn + (e0 + e1)d log logn).

2 Error-Correcting List-Disjunct/Separable Matrices

Let M = (mij) be any binary matrix with t rows and n columns. Let Mj denote
the jth column of M. We can also think of the columns Mj as characteristic
vectors of subsets of [t], i.e. Mj = {i | mij = 1}. Thus, overloading notation we
will apply set operations on the columns of M.

The key combinatorial structure we study in this paper is the error-tolerant
version of the notion of list-disjunct matrix. Using a (d, �)-list-disjunct t × n
matrix M we can design a NAGT procedure for n items with at most d defectives.

562 H.Q. Ngo, E. Porat, and A. Rudra

The decoding algorithm simply eliminates any item which is present in any
negative test. When M is (d, �)-list-disjunct, this “naive decoder” returns a set R
of (remaining) items containing all defectives and less than � extra (non-negative)
items. In many applications, the test outcomes might have errors. The following
combinatorial structure is a generalization of list-disjunct matrices which can
correct up to e0 false positives and e1 false negatives in test outcomes.

Definition 1. Let d ≥ 1, � ≥ 1, e0 ≥ 0, e1 ≥ 0, and n ≥ d+� be given integers. A
t×n binary matrix M is called a (d, �, e0, e1)-list-disjunct matrix if M satisfies the
following conditions. For any disjoint subsets S, T ⊂ [n] such that |S| = d,|T | =
�, and an arbitrary subset X ⊆

(⋃
j∈T Mj

)
\
(⋃

j∈S Mj
)

of size |X | ≤ e0, there

exists a column j̄ ∈ T \ S such that
∣∣∣Mj̄ \

(
X ∪⋃j∈S Mj

)∣∣∣ ≥ e1 + 1.

Proposition 2. Define the “naive decoder” be the algorithm which eliminates all
items belonging to at least e1 + 1 negative tests and returns the remaining items.
If M is (d, �, e0, e1)-list-disjunct, then the naive decoder returns a set R of items
containing all the (at most d) defectives and at most �− 1 negative items, even
if the test outcomes have up to e0 false positives and e1 false negatives.

3 Intuition behind the Blackbox Conversion Procedures

The first conversion uses ideas similar to those used in [14]: given an error tolerant
list disjunct matrix, we concatenate Parvaresh-Vardy codes [19] with it. PV codes
have excellent list recoverability properties, which can be exploited to design
efficient decoding procedure for the resulting matrix.

Our second conversion procedure is perhaps technically more interesting. The
main idea behind the construction is as follows. Say we are trying to construct a
(d, �, e0, e1)-list-disjunct matrix M∗ with n columns that is efficiently decodable
from a family of matrices, where for any i ≥ d, there is a (d, �, e0, e1)-list-disjunct
t(i)× i matrix (not necessarily efficiently decodable). Towards efficient decoding,
say we somehow knew that all the positive items are contained in a subset
S ⊆ [n]. Then the naive decoder would run in time O(t(n) · |S|), which would
be sublinear if |S| and t(n) are sufficiently small. The idea is to construct this
small set S recursively.

Fix n ≥ d ≥ 1. Assume there exists a (d, �, e0, e1)-list disjunct t1×√n matrix
M(1) that is efficiently decodable and let M(2) be a (d, �, e0, e1)-list disjunct t2×n
matrix (that is not necessarily efficiently decodable). Let ML be the t1×n matrix
where the ith column (for i ∈ [n]) is identical to the jth column of M(1) such
that the first 1

2 logn bits of i is j (where we think of i and j as their respective
binary representations). Similarly, let MR be the t1 × n matrix where the last
1
2 logn bits of i is j.

Let S ⊆ [n], |S| ≤ d, be an arbitrary set of positives. Let the vector rL (rR,
resp.) be the vector that results from applying ML (MR, resp.) on S. Note
that rL and rR might be different from the unions ∪j∈S(ML)j and ∪j∈S(MR)j ,

Efficiently Decodable Error-Correcting List Disjunct Matrices 563

respectively, due to the (e0, e1-bounded) errors in test outcomes. Apply the de-
coding algorithm for M(1) to rL (rR, resp.) and obtain the set SL (SR, resp.) of
1
2 logn-bit vectors such that, for every i ∈ S, the first (last, resp.) 1

2 logn bits of
i belongs to SL (SR, resp.). In other words, S = SL×SR contains all the indices
i ∈ S. Further, note that both |SL| and |SR| have less than d + � elements.

Now, our final matrix M∗ is simple: just vertically stack ML, MR and M(2)

together. Note that M∗ is (d, �, e0, e1)-list disjunct because M(2) is (d, �, e0, e1)-
list disjunct. Finally, decoding M∗ can be done efficiently: first decode the part of
the result matrix corresponding to ML and MR to obtain SL and SR respectively
– this is efficient as M(1) is efficiently decodable. Finally computing the output
item set (containing S) can be done with an additional O(t2 · (d + �)2)-time as
we only need to run the naive decoder for M(2) over S = SL × SR. To achieve
a tradeoff between the number of tests and the decoding time, we choose the
parameters of the recursion more carefully.

Our conversion of a disjunct matrix into an efficiently decodable one is very
simple: stack an efficiently decodable (d, poly(d))-list disjunct matrix on a d-
disjunct matrix. Decoding the result vector from the list disjunct matrix gives a
subset of size poly(d) that contains all the defective items. We then run the naive
decoder for the disjunct matrix on this set of possibilities leading to an overall
efficient decoding algorithm. Since there is an Ω(d/ log d) gap in the number
of tests needed in a list disjunct matrix and a disjunct matrix, as long as we
have an efficiently decodable list disjunct matrix with o(d2 logn/ log d) tests, we
are fine. Indeed, we get such matrices from our construction mentioned earlier.
To obtain the efficiently decodable matrix with O(d2 logn) tests we use the d-
disjunct matrix construction of Porat and Rothschild [20]. The same idea works
for the error-correcting versions.

4 Bounds

Given d, �, e0, e1, and n, let t(d, �, e0, e1, n) denote the minimum number of rows t
of a (d, �, e0, e1)-list-disjunct matrix with t rows and n columns. It is not hard to
see that every (d, 1, e0, e1)-list-disjunct matrix is the same as a (d, 1, e0 + e1, 0)-
list-disjunct matrix, which is the same as a (d, 1, 0, e0 + e1)-list-disjunct matrix.
Let r = e0 + e1 + 1. It is customary in the literature to call a (d, 1, r − 1, 0)-list-
disjunct matrix a dr-disjunct matrix [6]. To shorten the notations, let t(d, r, n)
denote t(d, 1, e0, e1, n) for the disjunct case, where r = e0 + e1 + 1.

The following lower bound for (d, �)-list-disjunct matrices is better than the
similar bound proved in [5] in two ways: (1) the actual bounds are slightly better,
and (2) the bound in [5] requires a precondition that n > d2/(4�) while ours does
not. We make use of the argument from Erdős-Frankl-Füredi [9, 10], while [5]
uses the argument from Ruszinkó [23]. The bound helps prove Theorem 4, which
is tight when � = Θ(d).

Lemma 3. For any n, d, � with n ≥ d+�, we have t(d, �, 0, 0, n) > d log
(

n
d+
−1

)
.

When d ≥ 2�, we have t(d, �, 0, 0, n) > �d/
�(d+2−
)
2 log(e�d/
�(d+2−
)/2) log

(
n−d−2
+2

)
.

564 H.Q. Ngo, E. Porat, and A. Rudra

Theorem 4. For any non-negative integers d, �, e0, e1, n where n ≥ d +
�, we have t(d, �, e0, e1, n) = Ω

(
d log n

d+
−1 + e0 + de1

)
. In particular,

t(d,Θ(d), e0, e1, n) = Ω (d log(n/d) + e0 + de1). Furthermore, when d ≥ 2� we
have t(d, �, e0, e1, n) = Ω

(
d2/

log(d2/
) log n−d

 + e0 + de1

)
.

Theorem 5. Let n, d, �, e0, e1 be given non-negative integers. If � = Ω(d), then
t(d, �, e0, e1, n) = O (d log(n/d) + e0 + de1). In particular, when l = Θ(d) we
have a precise characterization t(d, �, e0, e1, n) = Θ (d log(n/d) + e0 + de1).

Theorem 6. For the dr-disjunct matrices, we have t(d, r, n) =
O
(
d2 log n

d + rd
)
.

5 Constructions

We will need the following existing results from the literature.

Theorem 7 ([3]). Let 1 ≤ d ≤ n be integers. Then there exists a strongly-
explicit t × n matrix that is (d,O(d), αt, Ω(t/d))-list disjunct (for any constant
α ∈ (0, 1)) with t = O(d1+o(1) logn) rows.

Theorem 8 ([14]). Let 1 ≤ d ≤ n be integers. Then there exists a strongly-
explicit t × n matrix that is (d, δd,Ω(t), Ω(t/d))-list disjunct (for any constant
δ > 0) with t = O((d log n)1+o(1)) rows.

5.1 Black-Box Conversion Using List Recoverability

Our first black-box procedure converting any error tolerant list disjunct matrix
into one that is also efficiently decodable (with a mild sacrifice in some parame-
ters) is based on concatenating PV codes [19] with the given list disjunct matrix.

Theorem 9. Let �, d ≥ 1, e0, e1 ≥ 0 be integers. Assume that for every Q ≥ d,
there exists a (d, �, e0, e1)-list-disjunct t̄(d, �, e0, e1, Q)×Q matrix. For every s ≥ 1
and every n ≥ d, define A(d, l, s) = 3(d+ l)1/s(s+1)2. Let k be minimum integer
such that 2k log(kA(d, l, s)) ≥ logn, and q be the minimum power of 2 such that
q ≥ kA(d, l, s). Then, there exists a (d − 1, L, e′0, e

′
1)-list disjunct t′ × n matrix

with the following properties:

(i) t′ = O
(
s2 · (d + �)1/s ·

(
log n
log q

)
· t̄(s)

)
, where t̄(s) is shorthand for

t̄(d, �, e0, e1, q
s)

(ii) e′0 = γe0 and e′1 = γe1 where γ = Θ(t′/t̄(s)).
(iii) L = sO(s) · (d + �)1+1/s.
(iv) It is decodable in time (t′)O(s).

Combining Theorem 9 and Theorem 7, we get the following result.

Corollary 10. Let ε > 0 be a real number and let 1 ≤ d ≤ n be inte-
gers. Then there exists a strongly-explicit t × n matrix that is (d, (1/ε)O(1/ε) ·
d1+ε, Ω(t), Ω(t/d))-list disjunct with t = (1/ε)O(1/ε) ·d1+ε · logn rows that can be
decoded in time tO(1/ε).

Efficiently Decodable Error-Correcting List Disjunct Matrices 565

5.2 Black-Box Conversion Using Recursion

Unlike the previous construction, the second procedure gives a more general
tradeoff between the blow-up in the number of tests and the resulting decoding
time. On the other hand, this conversion uses multiple matrices from a given
family of error-tolerant matrices unlike the previous procedure, which only used
one error-tolerant list disjunct matrix.

Theorem 11. Let n ≥ d ≥ 1 be integers. Assume for every i ≥ d, there is
a (d, �, e0, e1)-list disjunct t(i) × i matrix Mi for integers 1 ≤ � ≤ n − d and
e0, e1 ≥ 0. Let 1 ≤ a ≤ logn and 1 ≤ b ≤ logn/a be integers. Then there exists a
ta,b × n matrix Ma,b that is (d, �, e0, e1)-list disjunct that can be decoded in time
Da,b where

ta,b =
�logb(log n

a)�−1∑
j=0

bj · t
(

bj√
n
)

(1)

and

Da,b = O

(
ta,b ·

(
logn · 2a

a
+ (d + �)b

))
. (2)

Finally, if the family of matrices {Mi}i≥d is (strongly) explicit then so is Ma,b.

The bound in (1) is somewhat unwieldy. We note in Corollary 12 that when
t(i) = dx logy i for some reals x, y ≥ 1, we can achieve efficient decoding with
only a log-log factor increase in number of tests. Theorem 11 with b = 2 and
a = log d implies the following:

Corollary 12. Let n ≥ d ≥ 1 be integers and x, y ≥ 1 be reals. Assume for
every i ≥ d, there is a (d, �, e0, e1)-list disjunct O(dx logy i)×i matrix for integers
1 ≤ � ≤ n−d and e0, e1 ≥ 0. Then there exists a t×n matrix that is (d, �, e0, e1)-
list disjunct that can be decoded in poly(t, �) time, where

t ≤ O (dx · logy n · log logd n) .

Finally, if the original matrices are (strongly) explicit then so is the new one.

Corollary 12 along with Theorems 8 and 7 imply the followings:

Corollary 13. Let 1 ≤ d ≤ n be integers. For any constant δ > 0 there exists
a strongly-explicit t × n matrix that is (d, δd,Ω(t/ log logn), Ω(t/(d log logn)))-
list-disjunct with t = O((d log n)1+o(1)) rows and can be decoded in poly(t) time.

Corollary 14. Let 1 ≤ d ≤ n be integers. For any constant
α ∈ (0, 1) there exists a strongly-explicit t × n matrix that
is (d,O(d), αt/ log logn,Ω(t/(d log logn)))-list disjunct with t =
O(d1+o(1) logn log logn) rows and can be decoded in poly(t) time.

566 H.Q. Ngo, E. Porat, and A. Rudra

6 Applications

Efficiently decodable disjunct matrices. The following proposition along
with Corollary 10 (with say ε = 1/2) lead to the next theorem, a significant
improvement over the similar result obtained in [14] that only worked for d ≤
O(log n/ log logn).

Proposition 15. Let n ≥ d ≥ 1 be integers. Let M1 be a (d, �)-list disjunct t1×n
matrix that can be decoded in time D. Let M2 be a d-disjunct t2×n matrix. Then
there exists a (t1 + t2)× n matrix that is d-disjunct and can be decoded in time
D+O((d+ �) · t2). If both M1 and M2 are polynomial time constructible then so
is the final matrix.

Theorem 16. Let 1 ≤ d ≤ n. Then there exists a t× n d-disjunct matrix with
t = O(d2 logn) that can be decoded in poly(t) time. Further, the matrix can be
computed in time Õ(nt).

(Near) Optimal Error-Tolerant, Efficiently Constructible, and Effi-
ciently Decodable (List) Disjunct Matrices. We begin with simple obser-
vation that stacking i copies of a list disjunct matrix increases the error-tolerance
parameters by a factor of i.

Proposition 17. If there exists a (d, �, e0, e1)-list disjunct matrix with t rows
then there exists another (d, �, α · e0, α · e1)-list disjunct matrix with αt rows for
any integer α ≥ 1.

The surprising thing is that the result above leads to optimal construction of
(list) disjunct matrices. In particular, applying Proposition 17 with Corollary 10
implies the following:

Corollary 18. For every ε > 0, there exists a strongly explicit (d, (1/ε)O(1/ε) ·
d1+ε, r, r/d)-list disjunct matrix with O(t + r) rows, where t = O((1/ε)O(1/ε) ·
d1+ε · logn) that can be decoded in time r · tO(1/ε).

Note that Theorem 4 shows that the number of tests in the result above is
optimal for r ≥ Ω(t). We also get the following result with the construction
in [20], Corollary 18, and Proposition 17. The result is optimal for r = Ω(d log n),
by Theorem 4.

Corollary 19. Let 1 ≤ d ≤ n and r ≥ 1 be integers. Then there exists a t× n
dr-disjunct matrix with t = O(d2 logn+rd) decodable in r ·poly(t) time. Further,
the matrix can be computed in time Õ(nt).

Error tolerant monotone encodings. A (one-sided) r-error-correcting (n, d)-
monotone encoding is a monotone injective mapping from subsets of size up to
d of [n] to t bits, such that we can recover the correct subset even when up to r
bits are flipped from 0 to 1. The number t is called the length of the encoding.
This type of one-sided error holds true for the read-once memory environment
where monotone encoding is applicable [17, 2].

Efficiently Decodable Error-Correcting List Disjunct Matrices 567

Theorem 20. Let n ≥ d be given positive integers. For each integer i, 0 ≤
i ≤ log2 d − 1, let Ai be a (d/2i, d/2i+1, r, 0)-list-disjunct ti × n matrix. From
the matrices Ai, we can construct a r-error-correcting (n, d)-monotone encoding
with length t =

∑log2 d−1
i=0 ti which can be encoded and decoded in time O(nt).

Furthermore, if the matrices Ai are strongly explicit then the monotone encoding
is strongly explicit. If the list-disjunct matrices Ai can be decoded in time Ti(n, d),
then the monotone encoding can be computed in time

∑
i Ti(n, d).

Corollary 21. There exist r-error-correcting (n, d)-monotone-encodings of
length t = O (d log(n/d) + r log d) . Note that, this bound is best possible when
r = 0 because the information theoretic bound is Ω(d log(n/d)).

Finally, apply the list-disjunct matrices in Corollary 13 to Theorem 20, we obtain
the following.

Corollary 22. Given integers n ≥ d ≥ 1 and r, there exists a poly(t)-time
algorithm computing an r-error-correcting (n, d)-monotone-encoding with length
t = O

(
(d logn)1+o(1) + r log d · log logn

)
, which can be decoded in poly(t)-time

also.

The following lower bound is off from the upper bound by a factor of about
Õ(log d).

Proposition 23. Suppose there exists a r-error-correcting (n, d)-
monotone encoding, then the code length t has to satisfy t =
Ω
(
d log(n/d) + r log

(
d log(n/d)

r

))
.

Efficiently Decodable Multiple User Tracing Family. The following results
answer two open questions left in [1], concerning the explicit constructions of
MUT families and the fast-decodability of such families. Furthermore, our results
are error-correcting.

Theorem 24. Given non-negative integers e0, e1, u ≤ d < n, there is a random-
ized construction of t×n (d, u)-MUT matrix, which can correct e0 false positives
and e1 false negatives, where t = O((d + u2) logn + (e0 + e1)d). If we also want
explicit construction along with efficient decoding, then t is slightly increased to
t = O((d1+o(1) + u2) logn + (e0 + e1)d log logn).

References

1. Alon, N., Asodi, V.: Tracing many users with almost no rate penalty. IEEE Trans.
Inform. Theory 53(1), 437–439 (2007)

2. Alon, N., Hod, R.: Optimal monotone encodings. IEEE Transactions on Informa-
tion Theory 55(3), 1343–1353 (2009)

3. Cheraghchi, M.: Noise-resilient group testing: Limitations and constructions. In:
Kuty�lowski, M., Charatonik, W., G ↪ebala, M. (eds.) FCT 2009. LNCS, vol. 5699,
pp. 62–73. Springer, Heidelberg (2009)

568 H.Q. Ngo, E. Porat, and A. Rudra

4. Cormode, G., Muthukrishnan, S.: What’s hot and what’s not: tracking most fre-
quent items dynamically. ACM Trans. Database Syst. 30(1), 249–278 (2005)

5. De Bonis, A., Ga̧sieniec, L., Vaccaro, U.: Optimal two-stage algorithms for group
testing problems. SIAM J. Comput. 34(5), 1253–1270 (electronic) (2005)

6. Du, D.Z., Hwang, F.K.: Combinatorial group testing and its applications, 2nd edn.
Series on Applied Mathematics, vol. 12. World Scientific Publishing Co. Inc., River
Edge (2000)

7. D’yachkov, A.G., Rykov, V.V.: A survey of superimposed code theory. Problems
Control Inform. Theory/Problemy Upravlen. Teor. Inform. 12(4), 229–242 (1983)

8. D’yachkov, A.G., Rykov, V.V., Rashad, A.M.: Superimposed distance codes. Prob-
lems Control Inform. Theory 18(4), 237–250 (1989)

9. Erdős, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered
by the union of r others. Israel J. Math. 51(1-2), 79–89 (1985)

10. Füredi, Z.: On r-cover-free families. J. Combin. Theory Ser. A 73(1), 172–173
(1996)

11. Ganguly, S.: Data stream algorithms via expander graphs. In: Hong, S.-H.,
Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 52–63.
Springer, Heidelberg (2008)

12. Goodrich, M.T., Atallah, M.J., Tamassia, R.: Indexing information for data foren-
sics. In: Third International Conference on Applied Cryptography and Network
Security (ANCS), pp. 206–221 (2005)

13. Indyk, P.: Explicit constructions of selectors and related combinatorial structures,
with applications. In: SODA, pp. 697–704 (2002)

14. Indyk, P., Ngo, H.Q., Rudra, A.: Efficiently decodable non-adaptive group testing.
In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 1126–1142 (2010)

15. Kainkaryam: Pooling in high-throughput drug screening. Current Opinion in Drug
Discovery & Development 12(3), 339–350 (2009)

16. Khattab, S.M., Gobriel, S., Melhem, R.G., Mossé, D.: Live baiting for service-level
dos attackers. In: INFOCOM, pp. 171–175 (2008)

17. Moran,T.,Naor,M., Segev,G.:Deterministichistory-independent strategies for stor-
ing information on write-once memories. Theory of Computing 5(1), 43–67 (2009)

18. Ngo, H.Q., Du, D.Z.: A survey on combinatorial group testing algorithms with
applications to DNA library screening. In: Discrete Mathematical Problems with
Medical Applications. DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 55,
pp. 171–182. Amer. Math. Soc., Providence (2000)

19. Parvaresh, F., Vardy, A.: Correcting errors beyond the Guruswami-Sudan radius in
polynomial time. In: Proceedings of the 46th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), pp. 285–294 (2005)

20. Porat, E., Rothschild, A.: Explicit non-adaptive combinatorial group test-
ing schemes. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125,
pp. 748–759. Springer, Heidelberg (2008)

21. Rashad, A.M.: Random coding bounds on the rate for list-decoding superimposed
codes. Problems Control Inform. Theory/Problemy Upravlen. Teor. Inform. 19(2),
141–149 (1990)

22. Rudra, A., Uurtamo, S.: Data stream algorithms for codeword testing. In: Abram-
sky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.)
ICALP 2010. LNCS, vol. 6198, pp. 629–640. Springer, Heidelberg (2010)

23. Ruszinkó, M.: On the upper bound of the size of the r-cover-free families. J. Com-
bin. Theory Ser. A 66(2), 302–310 (1994)

Robust Simulations and Significant Separations

Lance Fortnow1,� and Rahul Santhanam2,��

1 Northwestern University
2 University of Edinburgh

Abstract. We define and study a new notion of “robust simulations”
between complexity classes which is intermediate between the traditional
notions of infinitely-often and almost-everywhere, as well as a corre-
sponding notion of “significant separations”. A language L has a robust
simulation in a complexity class C if there is a language in C which agrees
with L on arbitrarily large polynomial stretches of input lengths. There
is a significant separation of L from C if there is no robust simulation of
L ∈ C.

The new notion of simulation is a cleaner and more natural notion
of simulation than the infinitely-often notion. We show that various im-
plications in complexity theory such as the collapse of PH if NP = P
and the Karp-Lipton theorem have analogues for robust simulations. We
then use these results to prove that most known separations in complex-
ity theory, such as hierarchy theorems, fixed polynomial circuit lower
bounds, time-space tradeoffs, and the recent theorem of Williams, can
be strengthened to significant separations, though in each case, an almost
everywhere separation is unknown.

Proving our results requires several new ideas, including a completely
different proof of the hierarchy theorem for non-deterministic polynomial
time than the ones previously known.

1 Introduction

What does the statement “P �= NP” really tell us? All is says is that for any
polynomial-time algorithm A, A fails to solve SAT on an infinite number of
inputs. These hard-to-solve inputs could be exponentially (or much worse) far
from each other. Thus even a proof of P �= NP could leave open the possibil-
ity that SAT or any other NP-complete problem is still solvable on all inputs
encountered in practice. This is unsatisfactory if we consider that one of the
main motivations of proving lower bounds is to understand the limitations of
algorithms.

Another important motivation for proving lower bounds is that hardness is
algorithmically useful in the context of cryptography or derandomization. Again,
if the hardness only holds for inputs or input lengths that are very far apart, this
usefulness is called into question. For this reason, theorists have studied a notion

� Supported in part by NSF grants CCF-0829754 and DMS-0652521.
�� Supported in part by EPSRC grant H05068X/1.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 569–580, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

570 L. Fortnow and R. Santhanam

of almost-everywhere (a.e.) separations, and a corresponding notion of infinitely-
often (i.o.) simulations. A language L is in i.o.C for a complexity class C if there
is some A ∈ C such that A and L agree on infinitely many input lengths. A class
D is almost everywhere not in C if for some language L in D, L �∈ i.o.C, that is
any C-algorithm fails to solve L on all but a finite number of input lengths. As
an example of applying these notions, Impagliazzo and Wigderson [IW97] show
that if E �⊆ SIZE(2o(n)) then BPP is in i.o.P, and that if E �⊆ i.o.SIZE(2o(n)), then
BPP = P.

However, the infinitely often notion has its own issues. Ideally, we would
like a notion of simulation to capture “easiness” in some non-trivial sense.
Unfortunately, many problems that we consider hard have trivial infinitely often
simulations. For example, consider any NP-hard problem on graphs or square
matrices. The natural representation of inputs for such problems yields non-
trivial instances only for input lengths that are perfect squares. In such a case,
the problem has a trivial infinitely often simulation on the set of all input lengths
which are not perfect squares. On the other hand, the problem could be “padded”
so that it remains non-trivial on input lengths which are not perfect squares. It’s
rather unsatisfactory to have a notion of simulation which is so sensitive to the
choice of input representation.

Not unrelated to this point is that analogues of many classical complexity
results fail to hold in the infinitely often setting. For example, we do not know
if SAT ∈ i.o.P implies that the entire Polynomial Hierarchy has simulations
infinitely-often in polynomial time. Also it’s not true in general that if a complete
language for a class is easy infinitely-often, then the entire class is easy infinitely-
often. This is true for SAT and NP because SAT is paddable and downward
self-reducible, but it’s unclear in which situations the implication holds. Given
that even these basic analogues are not known, it’s not surprising that more
involved results such as the Karp-Lipton theorem [KL82] and the theorem of
Impagliazzo, Kabanets and Wigderson [IKW02] that NEXP ⊆ SIZE(poly) implies
NEXP = MA don’t have known infinitely often analogues either.

In an ideal world, we would like all our algorithms to work on all input lengths,
and all our separations to be almost-everywhere separations. While algorithm
design does typically focus on algorithms that work on all input lengths, many
of the complexity separations we know do not work in the almost everywhere
setting. Separations proved using combinatorial or algebraic methods, such as
Hastad’s lower bound for Parity [H̊as86] or Razborov’s monotone circuit lower
bound for Clique [Raz85] tend to be almost everywhere (in an appropriate input
representation). However, such techniques typically have intrinsic limitations, as
they run into the natural proofs barrier [RR97]. Many of the lower bounds proved
recently have come from the use of indirect diagonalization. A contrary upper
bound is assumed and this assumption is used together with various other ideas
to derive a contradiction to a hierarchy theorem. These newer results include hi-
erarchy theorems [Bar02, FS04, vMP06], time-space tradeoffs [For00, FLvMV05],
and circuit lower bounds [BFT98, Vin05, San07, Wil10a, Wil10b]. Unfortunately,
none of these results give almost everywhere separations, and so the question

Robust Simulations and Significant Separations 571

immediately arises what we can say quantitatively about these separations, in
terms of the frequency with which they hold.

To address all these issues, we describe a new notion of “robust simulation”
and a corresponding notion of “significant separation”. A language L is in r.o.C
(robustly-often in C) if there is a language A in C such that for every k there
are infinitely many m such that A and L agree on all input lengths between m
and mk. A class D has a significant separation from C if there is some L in D
such that L �∈ r.o.C. This implies that for each L′ ∈ C, there is a constant k such
that for each m, L and L′ differ on at least one input length between m and mk.
Intuitively, this means that if the separation holds at some input length, there
is another input length at most polynomially larger at which the separation also
holds, i.e., the hardness is not too “sparsely” distributed.

Our definition of robust simulations extends the notion of uniform hardness of
Downey and Fortnow [DF03]. A set A is uniformly hard in the sense of Downey
and Fortnow if A �∈ r.o.P.

The notion of robust simulation is just slightly stronger than the notion of in-
finitely often simulation, and correspondingly the notion of significant separation
is slightly weaker than that of almost everywhere separations. By making this
tradeoff, however, we show that we can often achieve the best of both worlds.

We give robustly often analogues of many classical complexity results, where
infinitely often analogues remain open, including

– NP ⊆ r.o.P implies PH ⊆ r.o.P
– NP ⊆ r.o.SIZE(poly) implies PH ⊆ r.o.SIZE(poly)
– NEXP ⊆ r.o.SIZE(poly) implies NEXP ⊆ r.o.MA

We then use these robustly often analogues together with other ideas to give
several significant separations where almost everywhere separations remain open,
including

– NTIME(nr) �⊆ r.o.NTIME(ns), when r > s � 1
– For each constant k, Σ2P �⊆ r.o.SIZE(nk)
– SAT �⊆ r.o.DTISP(nα, polylog(n)) when α <

√
2

– NEXP �⊆ r.o.ACC0

The robustly often notion gives us a cleaner and more powerful theory than
the infinitely often notion.

1.1 Intuition and Techniques

To illustrate the advantages of the robustly often notion over the infinitely often
notion, let’s look at a simple example: trying to show that if SAT is easy, then
all of NP is easy. Let L ∈ NTIME(nk) be any NP language, where k > 0 is
a constant. SAT ∈ i.o.P doesn’t immediately imply L ∈ i.o.P, as the range
of the reduction from L to SAT might only intersect input lengths where the
polynomial-time algorithm for SAT is incorrect. In this case, the problem can
be fixed by padding the reduced instance to polynomially many different input

572 L. Fortnow and R. Santhanam

lengths and using downward self-reducibility to check YES answers for any of
these inputs. However, this fix depends on specific properties of SAT.

Showing that SAT ∈ r.o.P implies L ∈ r.o.P is an easier, more generic ar-
gument. Define a robust set of natural numbers to be any set S such that for
each k > 0 there is an m for which S contains all numbers between m and
mk for some m. SAT ∈ r.o.P means that there is a robust set S on which the
simulation works. Now the reduction from L to SAT creates instances of length
nkpolylog(n), and it’s not hard to see that this automatically implies that com-
posing the reduction with the algorithm for SAT gives an algorithm for L which
works on some robust subset S′ of S. This implies L ∈ r.o.P. We call a robust
subset of a set a robust refinement. Many of our arguments will involve defining
a series of robust refinements of a robust set such that the desired simulation
holds on the final refinement in the series, thus implying that the simulation
goes through in the robustly often setting.

Thus far, using robustly often seems easier but hasn’t given us any additional
power. The situation changes if we consider implications where the assumption
is used two or more times. An example is the proof that NP ⊆ P implies PH ⊆ P
- this is an inductive proof where the assumption is used several times. Trying
to carry an infinitely often simulation through fails miserably in this setting
because two infinitely often simulations do not compose - they might work on
two completely different infinite sets of input lengths.

Now two robustly often simulations do not in general compose either. It is not
in general true that for complexity classes B,C and D, if B ⊆ r.o.C and C ⊆ r.o.D,
then B ⊆ r.o.D. However, we can get these two robustly often simulations to
compose when they are both consequences of a single robustly often assumption.
The robustly often assumption gives us some robust set to work with. If we’re
careful we can define a single robust refinement of this set on which B ⊆ C holds
and so too does C ⊆ D, which implies B ⊆ D holds on this refinement as well.

This is an idea that we will use again and again in our proofs. However, in
order to use this idea, we need to be careful with the steps in our proof, as there
are only some kinds of implications for which the idea is useful. For example,
it works well with fixed polynomial-time reductions or translations with fixed
polynomial advice, but not with exponential padding. More importantly, the
idea only works when all the steps in the proof follow from a single assumption,
so we need to re-formulate proofs so that they conform to this pattern. In some
cases, eg. the proofs of Theorem 4 and Theorem 6, the re-formulation is non-
trivial and leads to proofs that are quite a bit more involved than the originals
[IKW02, Kan82].

In the case of hierarchies for non-deterministic time where the lower bound
is against robust simulations, the known techniques break down entirely. The
traditional argument is a “chaining argument” [Coo72, SFM78, Ž8́3] which uses
a chain of exponentially many input lengths and cannot possibly give a hierarchy
against robustly often simulations. Here, we come up with a novel idea of chaining
using witnesses to get such a hierarchy for polynomial time.

Robust Simulations and Significant Separations 573

Our most technically involved result is that the recent breakthrough lower
bound of Williams [Wil10a, Wil10b] can be strengthened to a significant sep-
aration. The proof of this result uses almost all of the techniques we develop,
including the sophisticated use of robust refinements involved in proving Theo-
rem 4, and a variant of the significant hierarchy for non-deterministic polynomial
time.

Implicit in our paper is a certain proof system for proving complexity class
separations, such that any separation proved in this system automatically yields
a significant separation. It’s an interesting open problem to make this system
explicit, and to study its power and its limitations more formally.

2 Preliminaries

2.1 Complexity Classes, Promise Problems and Advice

We assume a basic familiarity with complexity classes such as P, RP, BPP, NP,
MA, AM, Σp

2 ,PP and their exponential-time versions.The Complexity Zoo1 is an
excellent resource for basic definitions and statements of results.

Given a complexity class C, coC is the class of languages L such that L̄ ∈ C.
Given a function s : N→ N, SIZE(s) is the class of Boolean functions f = {fn}
such that for each n, fn has Boolean circuits of size O(s(n)). Given a language L
and an integer n, Ln = L∩{0, 1}n. Given a class C, i.o.C is the class of languages
L for which there is a language L′ ∈ C such that Ln = L′

n for infinitely many
length n.

In order to deal with promise classes in a general way, we take as fundamental
the notion of a complexity measure. A complexity measure CTIME is a mapping
which assigns to each pair (M,x), where M is a time-bounded machine (here
a time function tM (x) is implicit) and x an input, one of three values “0” (ac-
cept), “1” (reject) and “?” (failure of CTIME promise). We distinguish between
syntactic and semantic complexity measures. Syntactic measures have as their
range {0, 1} while semantic measures may map some machine-input pairs to “?”.
The complexity measures DTIME and NTIME are syntactic (each halting deter-
ministic or non-deterministic machine either accepts or rejects on each input),
while complexity measures such as BPTIME and MATIME are semantic (a prob-
abilistic machine may accept on an input with probability 1/2, thus failing the
bounded-error promise). For syntactic measures, any halting machine defines a
language, while for semantic measures, only a subset of halting machines define
languages.

A promise problem is a pair (Y,N), where Y,N ⊆ {0, 1}∗ and Y ∩ N = ∅.
We say that a promise problem (Y,N) belongs to a class CTIME(t) if there is a
machine M halting in time t on all inputs of length n such that M fulfils the
CTIME promise on inputs in Y ∪N , accepting on inputs in Y and rejecting on
inputs in N .

1 http://qwiki.caltech.edu/wiki/ComplexityZoo

574 L. Fortnow and R. Santhanam

A language L is in CTIME(t)/a if there is a machine M halting in time t(·)
taking an auxiliary advice string of length a(·) such that for each n, there is
some advice string bn, |bn| = a(n) such that M fulfils the CTIME promise for
each input x with advice string bn and accepts x iff x ∈ L. Note that this is a
weaker requirement than in the original Karp-Lipton notion where the promise
must be satisfied on all advice strings.

For syntactic classes, a lower bound for the class with small advice or for the
promise version of the class translates to a lower bound for the class itself. For eg.,
if there is a promise problem in P which doesn’t have polynomial-size circuits,
then P �⊆ SIZE(poly) and similarly, if P/O(n) �⊆ SIZE(poly), then P �⊆ SIZE(poly).

Definition 1. Let S be a subset of positive integers. S is robust if for each
positive integer k, there is a positive integer m � 2 such that n ∈ S for all
m � n � mk.

Note that any robust set is infinite. We now define what it means to simulate a
language in a complexity class on a subset of the positive integers.

Definition 2. Let L be a language, C a complexity class, and S a subset of the
positive integers. We say L ∈ C on S if there is a language L′ ∈ C such that
Ln = L′

n for any n ∈ S.

Using the terminology of Definition 2, L ∈ i.o.C for a language L and complexity
class C if there is some infinite set S ⊆ N such that L ∈ C on S. We now define
our main notion of robustly-often simulations.

Definition 3. Given a language L and complexity class C, L ∈ r.o.C if there is
a robust S such that L ∈ C on S. In such a case, we say that there is a robustly-
often (r.o.) simulation of L in C. We extend this notion to complexity classes
in the obvious way - given complexity classes B and C, B ⊆ r.o.C if there for
each language L ∈ B, L ∈ r.o.C. If B �⊆ r.o.C, we say that there is a significant
separation of B from C.

Clearly B ⊆ r.o.C implies B ⊆ i.o.C. Conversely, B �⊆ i.o.C gives a very strong
separation of B and C, i.e., an almost-everywhere separation, while a significant
separation is somewhat weaker but still much more significant than simply a
separation of B and C. Intuitively, a significant separation means that input
lengths witnessing the separation are at most polynomially far apart.

We now define a sequence of canonical refinements for any given set S, which
will play an important part in many of our proofs.

Definition 4. Let S be a robust set. The canonical refinement Sd of S at level
d is defined as follows for any integer d > 0: m ∈ Sd iff m ∈ S and n ∈ S for
all m � n � md.

It is easy to see Sd is robust if S is robust and that Sd ⊆ Sd′ for d � d′.
Due to space constraints, we omit most proofs in this version of the paper.

Robust Simulations and Significant Separations 575

3 Robust Simulations

For any NP-complete language L the language

L′ = {x10i | x ∈ L, |x|+ 1 + i is even}
remains NP-complete but sits in i.o.P. In contrast if any NP-complete set under
honest m-reductions sits in r.o.P then NP ⊆ r.o.P.

Lemma 1. Let L and L′ be languages such that L′ reduces to L via an honest
polynomial-time m-reduction. Let C be a complexity class closed under poly-time
m-reductions. If there is a robust S such that L ∈ C on S, then there is a robust
refinement S′ of S such that L′ ∈ C on S′.

The proof ideas of Lemma 1 can be used to show that robustly often analogues
of various useful implications hold. The first analogue essentially says that we
can take a complete language to be representative of a complexity class, even
in the context of robustly often simulations. It is an immediate consequence of
Lemma 1.

Proposition 1. If SAT ∈ r.o.P, then NP ⊆ r.o.P.

The next proposition says that translation arguments using a fixed polynomial
amount of padding carry through in the robustly often setting, for any “reason-
able” complexity measure.

Proposition 2. Let BTIME and CTIME be any complexity measures closed
under efficient deterministic transductions. Let g and h be time-constructable
functions, and p a polynomial. If BTIME(g(n)) ⊆ r.o.CTIME(h(n)), then
BTIME(g(p(n))) ⊆ r.o.CTIME(h(p(n))).

As a consequence of Proposition 2, we get for example that if NTIME(n) ⊆ r.o.P,
then NP ⊆ r.o.P.

The proposition below says that simulations of a syntactic class in another
class can be translated to a simulation with fixed polynomial advice, even in the
robustly often setting.

Proposition 3. Let BTIME be a syntactic complexity measure and CTIME a
complexity measure, such that both BTIME and CTIME are closed under efficient
deterministic transductions. Let f and g be time-constructable measures and p
a polynomial. If BTIME(f(n)) ⊆ r.o.CTIME(g(n)), then BTIME(f(n))/p(n) ⊆
r.o.CTIME(g(n + p(n)))/p(n).

Theorem 1. If NP ⊆ r.o.P, then PH ⊆ r.o.P

The proof is by induction, where the inductive hypothesis states that the k’th
level of PH is contained in a suitably chosen refinement of the robust set on
which the original polynomial-time simulation of SAT works.

Theorem 2. If NP ⊆ r.o.SIZE(poly), then PH ⊆ r.o.SIZE(poly)

576 L. Fortnow and R. Santhanam

Theorem 3. If NP ⊆ r.o.BPP, then PH ⊆ r.o.BPP.

We omit the proofs of Theorems 2 and 3, which closely resemble the proof of
Theorem 1.

Next we state a robust analogue of the Karp-Lipton theorem [KL82]. We
formulate a stronger statement which will be useful when we show significant
fixed-polynomial circuit size lower bounds for Σp

2 .

Lemma 2. If there is a constant k and a robust set S such that SAT ∈ SIZE(nk)
on S, then there is a robust refinement S′ of S such that Π2SAT ∈ Σ2 −
TIME(nk+1+o(1)) on S′.

The following is an immediate corollary.

Corollary 1. If NP ⊆ r.o.SIZE(poly), then Σp
2 ⊆ r.o.Πp

2 .

The following can be shown using the easy witness method of Kabanets [Kab01,
IKW02] and known results on pseudo-random generators [NW94, KvM99].

Lemma 3. Let R be any robust set and let k > 1 be any constant. Then there
is a robust refinement R′ of R such that either NE ⊆ DTIME(2n16k4

) on R or
MATIME(n4k2

) ⊆ NE/O(n) on R′.

Lemma 3 can be used to prove the following robustly-often analogue of the main
theorem of Impagliazzo, Kabanets and Wigderson [IKW02].

Theorem 4. NEXP ⊆ r.o.SIZE(poly) iff NEXP ⊆ r.o.MA.

4 Significant Separations

4.1 Hierarchies

The proofs of the hierarchies for deterministic time and space actually give
almost-everywhere separations and therefore significant separations.

For nondeterministic time the situation is quite different. Cook [Coo72]
showed that NTIME(nr) � NTIME(ns) for any reals r < s. Seiferas, Fis-
cher and Meyer [SFM78] generalize this result to show that NTIME(t1(n)) �

NTIME(t2(n)) for t1(n + 1) = o(t2(n)). Zak [Ž8́3] gives a simpler proof of the
same result. All these proofs require building an exponential (or worse) chain
of equalities to get a contradiction. Their proofs do not give almost everywhere
separations or significant separations. No relativizable proof can give an i.o.
hierarchy as Buhrman, Fortnow and Santhanam give a relativized world that
NEXP ⊆ i.o.NP.

In this section we give a relativizing proof that NTIME(nr) �⊆ r.o.NTIME(ns)
for r > s � 1. This also gives a new proof of the traditional nondeterministic
time hierarchy.

Theorem 5. If t1 and t2 are time-constructable functions such that

Robust Simulations and Significant Separations 577

– t1(n) = o(t2(n)), and
– n � t1(n) � nc for some constant c

then NTIME(t2(n)) �⊆ r.o.NTIME(t1(n)).

Corollary 2. For any reals 1 � r < s, NTIME(ns) �⊆ r.o.NTIME(nr).

Proof (Proof of Theorem 5). Let M1,M2, . . . be an enumeration of multitape
nondeterministic machines that run in time t1(n).

Define a nondeterministic Turing machine M that on input 1i01m0w does as
follows:

– If |w| < t1(i + m + 2) accept if both Mi(1i01m0w0) and Mi(1i01m0w1)
accept.

– If |w| � t1(i + m + 2) accept if Mi(1i01m0) rejects on the path specified by
the bits of w.

Since we can universally simulate t(n)-time nondeterministic multitape Turing
machines on an O(t(n))-time 2-tape nondeterministic Turing machine, L(M) ∈
NTIME(O(t1(n + 1))) ⊆ NTIME(t2(n)). Note (n + 1)c = O(nc) for any c.

Suppose NTIME(t2(n)) ⊆ r.o.NTIME(t1(n)). Pick a c such that t1(n)� nc. By
the definition of r.o. there is some n0 and a language L ∈ NTIME(t1(n)) such that
L(M) = L on all inputs of length between n0 and nc

0. Fix i such that L = L(Mi).
Then z ∈ L(Mi)⇔ z ∈ L(M) for all z = 1i01n00w for w � t1(i + n0 + 2).

By induction we have Mi(1i01n00) accepts if Mi(1i01n00w) accepts for all
w � t1(i + n0 + 2). So Mi(1i01n00) accepts if and only Mi(1i01n00) rejects on
every computation path, contradicting the definition of nondeterministic time.

4.2 Circuit Lower Bounds

We first state a stronger version of Kannan’s [Kan82] lower bound for Σp
2 against

fixed polynomial size, where the separation is significant.

Theorem 6. For each integer k > 1, Σp
2 �⊆ r.o.SIZE(nk).

Using similar ideas we can get robustly often analogues of the lower bound of
Cai and Sengupta [Cai01] for S2P and Vinodchandran [Vin05] for PP:

Theorem 7. For any k > 0, S2P �⊆ r.o.SIZE(nk).

Theorem 8. For any k > 0, PP �⊆ r.o.SIZE(nk).

Our most technically involved result is that the recent lower bound of
Williams [Wil10b] that NEXP �⊆ ACC0 extends to the robustly often setting. His
proof uses the nondeterministic time hierarchy and the proof of Impagliazzo, Ka-
banets and Wigderson [IKW02], neither of which may hold in the infinitely-often
setting. So to get a robustly-often result we require variants of our Theorems 5
and 4. To save space, we will focus on the new ingredients, and abstract out
what we need from Williams’ paper.

We first need the following simultaneous resource-bounded complexity class.

578 L. Fortnow and R. Santhanam

Definition 5. NTIMEGUESS(T (n), g(n)) is the class of languages accepted by
NTMs running in time O(T (n)) and using at most O(g(n)) non-deterministic
bits.

We have the following variant of Theorem 5, which has a similar proof.

Lemma 4. For any constant k, NTIME(2n) �⊆ r.o.NTIMEGUESS(2n/n, nk).

We also need the following robustly often analogue of a theorem of Williams
[Wil10a], which uses the proof idea of Theorem 4. The problem SUCCINCT3SAT
is complete for NEXP under polynomial-time m-reductions.

Lemma 5. If NE ⊆ r.o.ACC0 on S for some robust set S, then there is a con-
stant c and a refinement S′ of S such that SUCCINCT3SAT has succinct satis-
fying assignments that are ACC0 circuits of size nc on S′.

Proof. The proof of Theorem 4 gives that if NE ⊆ ACC0 on S, then there is
a constant d and a robust refinement R of S such that SUCCINCT3SAT has
succinct satisfying assignments that are circuits of size nd on R. Since P ⊆ ACC0

on S and using Proposition 3, we get that there is a constant c and a robust
refinement S′ of R such that SUCCINCT3SAT has succinct satisfying assignments
that are ACC0 circuits of size nc on S′.

Now we are ready to prove the robustly often analogue of Williams’ main result
[Wil10b].

Theorem 9. NEXP �⊆ r.o.ACC0.

Proof Sketch. Assume, to the contrary, that SUCCINCT3SAT ∈ ACC0 on R for
some robust R. By completeness of SUCCINCT3SAT, it follows that there is a
robust refinement S of R and a constant k′ > 1 such that NE has ACC0 circuits
of size nk′

. Let L ∈ NTIME(2n) but not in r.o.NTIMEGUESS(2n/n, nk), where
k will be chosen large enough as a function of k′. Existence of L is guaran-
teed by Lemma 4. We will show L ∈ r.o.NTIMEGUESS(2n/n, nk) and obtain a
contradiction.

The proof of Theorem 3.2 in Williams’ paper gives an algorithm for deter-
minining if x ∈ L. The algorithm non-deterministically guesses and verifies a
”small” (size nO(c)) ACC0 circuit which is equivalent to the SUCCINCT3SAT
instance to which x reduces, within time 2n/ω(n) by using Williams’ new al-
gorithm for ACC0-SAT together with the assumption that NEXP and hence P
in ACC0 on S. This guess-and-verification procedure works correctly on some
robust refinement of S. Then, the algorithm uses the existence guarantee of
Lemma 5 to guess and verify a succinct witness, again using Williams’ algorithm
for ACC0-SAT. This further guess-and-verification procedure works correctly on
some further robust refinement S′′ of S. In total, the algorithm uses at most
ndk′

non-deterministic bits for some constant d, runs in time at most 2n/n and
decides L correctly on S′′. By choosing k > dk′, we get the desired contradiction.

�

Robust Simulations and Significant Separations 579

Williams’ work still leaves open whether NEXP ⊆ SIZE(poly). Using the same
ideas as in the proof of Theorem 9, we can show that an algorithm for CircuitSAT
that improves slightly on brute force search robustly often would suffice to get
such a separation.

Theorem 10. If for each polynomial p, CircuitSAT can be solved in time
2n−ω(log(n)) robustly often on instances where the circuit size is at most p(n),
then NEXP �⊆ SIZE(poly).

4.3 Time-Space Tradeoffs

Proposition 4. Let t and T be time-constructible functions such that t = o(T).
Then NTIME(T) �⊆ i.o.coNTIME(t).

Proposition 4 can be used to show the following r.o.analogue of a time-space
tradeoff for SAT [FLvMV05].

Theorem 11. Let α <
√

2 be any constant. SAT �∈ r.o.DTISP(nα, polylog(n)).

References

[Bar02] Barak, B.: A probabilistic-time hierarchy theorem for “Slightly Non-
uniform” algorithms. In: Rolim, J.D.P., Vadhan, S.P. (eds.) RANDOM
2002. LNCS, vol. 2483, pp. 194–208. Springer, Heidelberg (2002)

[BFL91] Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time
has two-prover interactive protocols. Computational Complexity 1, 3–40
(1991)

[BFS09] Buhrman, H., Fortnow, L., Santhanam, R.: Unconditional lower bounds
against advice. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y.,
Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp.
195–209. Springer, Heidelberg (2009)

[BFT98] Buhrman, H., Fortnow, L., Thierauf, T.: Nonrelativizing separations.
In: Proceedings of 13th Annual IEEE Conference on Computational
Complexity, pp. 8–12 (1998)

[Cai01] Cai, J.-Y.: SP
2 ⊆ ZPPNP. In: Proceedings of the 42nd Annual Sympo-

sium on Foundations of Computer Science, pp. 620–629 (2001)

[Coo72] Cook, S.: A hierarchy for nondeterministic time complexity. In: Fourth
Annual ACM Symposium on Theory of Computing, Conference Record,
Denver, Colorado, May 1-3, pp. 187–192 (1972)

[Coo88] Cook, S.: Short propositional formulas represent nondeterministic com-
putations. Informations Processing Letters 26(5), 269–270 (1988)

[DF03] Downey, R., Fortnow, L.: Uniformly hard languages. Theoretical Com-
puter Science 298(2), 303–315 (2003)

[FLvMV05] Fortnow, L., Lipton, R., van Melkebeek, D., Viglas, A.: Time-space lower
bounds for satisfiability. Journal of the ACM 52(6), 833–865 (2005)

[For00] Fortnow, L.: Time-space tradeoffs for satisfiability. Journal of Computer
and System Sciences 60(2), 337–353 (2000)

580 L. Fortnow and R. Santhanam

[FS04] Fortnow, L., Santhanam, R.: Hierarchy theorems for probabilistic poly-
nomial time. In: Proceedings of the 45th IEEE Symposium on Founda-
tions of Computer Science, pp. 316–324 (2004)

[H̊as86] H̊astad, J.: Almost optimal lower bounds for small depth circuits. In:
Proceedings of the 18th Annual ACM Symposium on Theory of Com-
puting, pp. 6–20 (1986)

[IKW02] Impagliazzo, R., Kabanets, V., Wigderson, A.: In search of an easy
witness: Exponential time vs. probabilistic polynomial time. Journal of
Computer and System Sciences 65(4), 672–694 (2002)

[IW97] Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential
circuits: Derandomizing the XOR lemma. In: Proceedings of the 29th
Annual ACM Symposium on the Theory of Computing, pp. 220–229
(1997)

[Kab01] Kabanets, V.: Easiness assumptions and hardness tests: Trading time
for zero error. Journal of Computer and System Sciences 63(2), 236–252
(2001)

[Kan82] Kannan, R.: Circuit-size lower bounds and non-reducibility to sparse
sets. Information and Control 55(1), 40–56 (1982)

[KL82] Karp, R., Lipton, R.: Turing machines that take advice. L’Enseignement
Mathématique 28(2), 191–209 (1982)

[KvM99] Klivans, A., van Melkebeek, D.: Graph nonisomorphism has subexpo-
nential size proofs unless the polynomial-time hierarchy collapses. In:
Proceedings of the Thirty-First Annual ACM Symposium on Theory of
Computing, pp. 659–667 (1999)

[NW94] Nisan, N., Wigderson, A.: Hardness vs randomness. Journal of Com-
puter and System Sciences 49(2), 149–167 (1994)

[Raz85] Razborov, A.: Lower bounds for the monotone complexity of some
boolean functions. Soviet Mathematics Doklady 31, 354–357 (1985)

[RR97] Razborov, A., Rudich, S.: Natural proofs. Journal of Computer and
System Sciences 55(1), 24–35 (1997)

[San07] Santhanam, R.: Circuit lower bounds for Merlin-Arthur classes. In:
Proceedings of 39th Annual Symposium on Theory of Computing, pp.
275–283 (2007)

[SFM78] Seiferas, J., Fischer, M., Meyer, A.: Separating nondeterministic time
complexity classes. Journal of the ACM 25(1), 146–167 (1978)

[Vin05] Vinodchandran, V.: A note on the circuit complexity of PP. Theoretical
Computer Science 347(1-2), 415–418 (2005)

[vMP06] van Melkebeek, D., Pervyshev, K.: A generic time hierarchy for semantic
models with one bit of advice. In: Proceedings of 21st Annual IEEE
Conference on Computational Complexity, pp. 129–144 (2006)

[Wil10a] Williams, R.: Improving exhaustive search implies superpolynomial
lower bounds. In: Proceedings of the 42nd Annual ACM Symposium
on Theory of Computing, pp. 231–240 (2010)

[Wil10b] Williams, R.: Non-uniform ACC circuit lower bounds (2010)
(manuscript)

[Ž8́3] Ž ák, S.: A Turing machine time hierarchy. Theoretical Computer Sci-
ence 26(3), 327–333 (1983)

A PCP Characterization of AM

Andrew Drucker�

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139, USA
adrucker@mit.edu

http://www.springer.com/lncs

Abstract. We introduce a 2-round stochastic constraint-satisfaction
problem, and show that its approximation version is complete for (the
promise version of) the complexity class AM. This gives a “PCP charac-
terization” of AM analogous to the PCP Theorem for NP. Similar charac-
terizations have been given for higher levels of the Polynomial Hierarchy,
and for PSPACE; however, we suggest that the result for AM might be
of particular significance for attempts to derandomize this class.

To test this notion, we pose some hypotheses related to our stochas-
tic CSPs that (in light of our result) would imply collapse results for
AM. Unfortunately, the hypotheses may be over-strong, and we present
evidence against them. In the process we show that, if some language
in NP is hard-on-average against circuits of size 2Ω(n), then there ex-
ist “inapproximable-on-average” optimization problems of a particularly
elegant form.

All our proofs use a powerful form of PCPs known as Probabilistically
Checkable Proofs of Proximity, and demonstrate their versatility. We
also use known results on randomness-efficient soundness- and hardness-
amplification. In particular, we make essential use of the Impagliazzo-
Wigderson generator; our analysis relies on a recent Chernoff-type theo-
rem for expander walks.

Keywords: Arthur-Merlin games, PCPs, average-case complexity.

1 Introduction

1.1 CSPs, PCPs, and Complexity Classes

A Constraint Satisfaction Problem (CSP) is a collection of Boolean-valued con-
straints over variables from a finite alphabet Σ. A CSP in which each constraint
depends on at most k variables is called a k-CSP. A natural computational task
is to determine the maximum fraction of constraints that can be satisfied by any
assignment. The landmark PCP Theorem of [1] asserts that, for a sufficiently

� Supported by a DARPA YFA grant. Supported during part of this work by an
Akamai Presidential Graduate Fellowship. This research formed part of the author’s
Master’s thesis [8].

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 581–592, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.springer.com/lncs

582 A. Drucker

small constant ε > 0, it is NP-hard to distinguish between 3-CSPs in which one
can satisfy all constraints, and those for which every assignment violates an ε
fraction of the constraints (here one can take Σ = {0, 1}).

Choosing an assignment to a CSP can be viewed as a game of solitaire; the
PCP Theorem implies that this game’s value is NP-hard to approximate. Now, it
is equally possible to study games played on a CSP in which 2 players alternate
in setting values to designated blocks of variables, with one player trying to
maximize the fraction of satisfied clauses and the other trying to minimize this
fraction. Inspired by and building on the PCP Theorem, several works explored
the complexity of approximating the value of such games. Ko and Lin [15] showed
that approximating the value of such a game is hard for the jth level of the
Polynomial Hierarchy, if the game lasts for j moves. In more recent work of
Haviv, Regev, and Ta-Shma [9] this result was shown to hold even if each variable
is allowed to appear in at most a constant number of constraints. If the game is
allowed to last polynomially many rounds, the approximation problem becomes
PSPACE-hard, as shown by Condon, Feigenbaum, Lund, and Shor [4]. The same
authors showed in [5] that the approximation problem for poly(n) rounds is also
PSPACE-hard if a maximizing player plays against a random player, where the
game’s value is now defined as the expected fraction of satisfied clauses under
optimum play by the maximizer. Moreover, all of the hardness-of-approximation
results mentioned so far are in fact completeness results for the corresponding
promise classes, so they can be viewed as giving “PCP characterizations” of
NP,PSPACE, and the Polynomial Hierarchy.

One class that did not receive a PCP characterization based on CSP games
was the “Arthur-Merlin” class AM. In fact, there are few known natural complete
problems for AM (technically, for its promise version, prAM; it is unknown if AM,
a semantic class, has any complete problems. See Sec. 2.1 for the definition of
prAM.). To our knowledge, there is only one approximation problem previously
known to be prAM-complete: Mossel and Umans [16] give a prAM-completeness
result for approximating the VC dimension of set systems. This striking result
does not fall within the framework of CSP games given above.

1.2 Our Results

Our first main result is a new PCP characterization of prAM. Following [5], we
consider “stochastic” 2-CSPs ψ(r, z), where r is a collection of Boolean variables
and z a collection of variables over an alphabet Σ. Let Valψ(r, z) be the fraction
of constraints of ψ satisfied by (r, z). We prove:

Theorem 1. There is a finite alphabet Σ, a constant ε > 0, and a function
p(�) ≤ 2−Ω(
), such that it is prAM-complete to distinguish between the following
two sets of 2-CSPs:

ΠAM−CSP,Y ES = {ψ : for all r there exists z such that Valψ(r, z) = 1};

ΠAM−CSP,NO = {ψ : with prob. ≥ 1−p(|r|) over r, Maxz[Valψ(r, z)] < 1−ε}.

A PCP Characterization of AM 583

AM is a class for which we feel such a PCP characterization might be espe-
cially important. There is compelling evidence that AM = NP, or at least that
significant derandomization of AM is possible (see [18] for an overview of this line
of research). One approach to try and derandomize AM is to directly attack the
“easiest” AM-hard problems—those whose membership in AM is trivial to show,
but whose AM-hardness is not. A problem like the one provided by Theorem 1
seems like a plausible candidate.

With this hope in mind, we initiate the study of a second, closely related
computational problem for stochastic 2-round CSPs, the randomized CSP op-
timization problem. In this problem, we are given a CSP ψ(r, z) along with a
uniformly chosen setting to r. Subject to this setting, we wish to find a value
z such that Valψ(r, z) is very nearly maximized. We are interested in efficient
algorithms that perform this task well with high probability over r.

Several variations of the randomized CSP optimization problem can be ex-
plored, but one thing is clear: in any positive general solution to the problem,
we must allow our optimizer to depend nonuniformly on the 2-CSP ψ. Such
nonuniformity is necessary provided P �= NP, in light of the PCP Theorem for
NP. This leads us to consider the following “Randomized Optimization Hypoth-
esis”, which posits that nonuniformity suffices to solve the randomized CSP
optimization problem. In the statement below, ψ(r, z) is a 2-CSP over � Boolean
variables (r) and m variables (z) over a finite alphabet Σ.

Hypothesis 1. (Randomized Optimization Hypothesis for P/poly) Fix any δ >
0. For every 2-CSP ψ(r, z), there exists a circuit Cψ(r) : {0, 1}
 → Σm of
size O(poly(|ψ|)), such that with probability at least 1/poly(�) over a random
r ∈ {0, 1}
, we have Valψ(r, Cψ(r)) ≥ Maxz[Valψ(r, z)]− δ.

Using Theorem 1, it is easy to show that any proof of this hypothesis would
yield a collapse result for AM:

Claim 2. Hypothesis 1 implies AM = MA.

A strengthened hypothesis gives the stronger implication that AM = NP:

Hypothesis 2. (Randomized Optimization Hypothesis for NC0) For any δ > 0,
there is an integer t = t(δ) > 0 such that the following holds. For every 2-
CSP ψ(r, z), there exists a function Fψ(r) : {0, 1}
 → Σm, where each output
coordinate of Fψ depends on at most t bits of r, and such that with probability
at least 1− δ over r, Valψ(r, Fψ(r)) ≥ Maxz[Valψ(r, z)]− δ.

Claim 3. Hypothesis 2 implies AM = NP.

The proofs of both claims are in the full version. Given the potential consequences
of our hypotheses, what chance do they have of being true? Unfortunately, it
seems that each is unlikely. We prove two results to the effect that, if NP decision
problems are hard on average for exponential-size circuits, then both hypotheses
fail in a strong way. We state these results next. A language L is p(n)-hard for
size s(n) if for every circuit C of size s(n), Prx∈{0,1}n [C(x) = L(x)] ≤ p(n). We
show:

584 A. Drucker

Theorem 4. Suppose there exists a γ1 > 0 and an L ∈ NP ∩ coNP that is
(1 − 1/poly(n))-hard for size 2γ1n. Then there exist constants c, γ2, θ > 0,
and a polynomial-time constructible family {ψn(r, z)}n>0 of 2-CSPs (with |r| =
cn, |z| = d(n) = O(poly(n))), such that for all n:

(4.i) For all r, ∃z such that Valψn(r, z) = 1;
(4.ii) If C : {0, 1}cn→ {0, 1}d(n) is any circuit of size at most 2γ2n, then

Pr
r

[Valψn(r, C(r)) > 1− θ] ≤ 2−Ω(n) .

Theorem 5. There is an ε0 > 0 such that the following holds. Suppose there
exists a γ1 > 0 and an L ∈ NP that is (1/2 + ε0)-hard for size 2γ1n. Then
there exist constants c, γ2, θ > 0, and a polynomial-time constructible family
{ψn(r, z)}n>0 of 2-CSPs (with |r| = cn, |z| = d(n) = O(poly(n))), such that for
all n:

(5.i) With probability ≥ 1− 2−Ω(n) over r, ∃z such that Valψn(r, z) = 1;
(5.ii) If C : {0, 1}cn→ {0, 1}d(n) is any circuit of size at most 2γ2n, then

Pr
r

[Valψn(r, C(r)) > 1− θ] ≤ 2−Ω(n) .

Theorem 4 (proved in the full version) and Theorem 5 both say that if NP (or
NP∩coNP) has sufficiently hard-on-average problems, we get an “inapproximable-
on-average” optimization problem associated with a single, uniform family of
2-CSPs. The two results offer a tradeoff: Theorem 5 gives a slightly weaker con-
clusion than Theorem 4, but from a presumably likelier hardness assumption.
The assumptions in the above results are strong but, we feel, plausible.1 At the
very least, Theorems 4 and 5 suggest that we must consider more restricted
forms of the randomized CSP optimization problem to have a reasonable chance
of proving positive results. We feel, however, that the randomized CSP optimiza-
tion problem is worthy of study in its own right, even if Hypotheses 1 and 2 turn
out to be false. We also feel that the CSPs families produced by Theorems 4
and 5 are interesting for the study of average-case hardness in NP, and might
find further applications in complexity theory.

1.3 Our Methods

For the proofs of each of our main results, we use a powerful type of PCP
known as Probabilistically Checkable Proofs of Proximity (PCPPs). PCPPs were
introduced independently by Ben-Sasson et al. [3] and by Dinur and Reingold [7],
and the PCPPs we use were developed by Dinur [6] (in [7], [6] PCPPs are referred

1 We comment that the assumption in Theorem 5 is implied by the assumption that
there exists a balanced function L ∈ NP that is (1 − 1/poly(n))-hard for some size
s(n) = 2Ω(n) [17], [11]. We also note that the assumptions in Theorems 4 and 5
are not known to imply AM = NP under known hardness-vs.-randomness results
(surveyed in [18]).

A PCP Characterization of AM 585

to as Assignment Testers). We will define PCPPs in Section 2, and in Section 3
we give a variant form of PCPPs that is more useful for our purposes. Our PCPP
variant gives a general reduction (similar to past uses of PCPPs [3], [6]) in which
we start with a two-argument circuit Q(r, w) and efficiently produce a 2-CSP
ψ(r, z). The basic hope for our reduction is as follows: first, for any r, if the
restricted circuit Q(r, ·) is satisfiable, then the restricted 2-CSP ψ(r, ·) should
be satisfiable as well. Second, if Q(r, ·) is unsatisfiable, then any assignment to
ψ(r, ·) should violate an Ω(1)-fraction of the constraints in ψ. Unfortunately, this
second requirement is too strong and cannot be met. What we can guarantee is
that, if r is “far” in Hamming distance from any r′ for which Q(r′, ·) is satisfiable,
then for any z, (r, z) violates an Ω(1)-fraction of constraints of ψ.

How does this reduction help us prove the prAM-hardness result in Theorem 1?
Any instance x of a promise problem Π = (ΠY ES , ΠNO) defines a predicate
Q(r, w) computed by a poly-size circuit. If x ∈ ΠY ES then for all r, Q(r, ·) is
satisfiable; while if x ∈ ΠNO then for a 2/3 fraction of r, Q(r, ·) is unsatisfiable.
In order to apply our reduction, we need a stronger condition in the second case:
a random choice of r should be far from any r′ for which Q(r′, ·) is satisfiable.
Such a property would hold if we could assume an extremely low error prob-
ability in our underlying Arthur-Merlin protocol. This cannot be achieved by
straightforward parallel repetition, but it is provided by a theorem of Bellare et
al. [2] which gives a randomness-efficient soundness-amplification for AM. Inter-
estingly, Mossel and Umans [16] also used a similar amplification tool for their
AM-hardness-of-approximation result on VC dimension, but for rather different
purposes (unrelated to PCPs).

Our prAM-hardness proof is, we feel, more straightforward than the existing
proofs of the analogous results for PSPACE and the Polynomial Hierarchy, mod-
ulo our use of sophisticated tools (PCPPs and efficient soundness-amplification)
which we apply in a “black-box” fashion. However, the proof of the result for
PSPACE in [4] uses property-testing ideas from PCP theory that prefigure the
concept of PCPPs and are similar to our applications of PCPPs.

Next we discuss our methods in Theorems 4 and 5. Our transformation in
Lemma 8 from the circuit Q to the 2-CSP ψ has a further useful property:
we can reduce the problem of finding satisfying assignments to Q(r, ·), to the
problem of finding nearly-optimal assignments to ψ(r, ·). Roughly speaking, we
show the following. Suppose there is an algorithm P (r) producing an assignment
z, such that with some probability p over r, the assignment (r, P (r)) satisfies
“almost all” of the constraints of ψ; then there is a second algorithm P̃ (r) such
that Q(r, P̃ (r)) = 1 with probability p′ ≥ 2−ε|r|p. (Here, ε > 0 can be chosen
arbitrarily small.) This property of the reduction is more novel, although the
techniques we use (involving error-correcting codes) resemble previous works.

To apply our reduction, we use the hardness assumptions in Theorems 4
and 5 to produce poly-time predicates Q(r, w) such that Q(r, ·) is satisfiable
with high probability, while any “small” witness-producing circuit C fails to
solve the search problem associated with Q: that is, Q(r, C(r)) = 0 with high
probability. Due to the exponential loss factor 2−ε|r| in our reduction, we need

586 A. Drucker

the search problem associated with Q to be extremely hard: every “small” circuit
C must succeed with probability ≤ 2−Ω(|r|) over r in achieving Q(r, C(r)) = 1.

To produce such extremely hard search problems from a more “mild” hardness
assumption, we use existing hardness-amplification techniques. In particular, we
use the well-known Impagliazzo-Wigderson generator [14]. This generator, on
input parameter n, takes a seed r of length O(n), and produces n “pseudoran-
dom” outputs g1, . . . , gn each of length n. The generator has the property that
if language L is mildly hard for sufficiently small (but exponential-size) circuits,
then any sufficiently smaller circuit has success probability ≤ 2−Ω(n) in correctly
guessing the n-bit string (L(g1), . . . , L(gn)). Then, if our hard language L is in
NP ∩ coNP (as in Theorem 4), defining our predicate Q is straightforward: we
let Q(r, w) = 1 iff w contains “proofs” for the n values (L(g1), . . . , L(gn)).

If our hard language is merely in NP (as in Theorem 5), we need to work
harder. In this case, we let Q(r, w) = 1 iff w contains proofs that L(gi) = 1,
for a “sufficient number” of the strings gi. The idea is that, if a small cir-
cuit C(r) could with some noticeable probability guess such proofs for “al-
most all” the indices i for which L(gi) = 1, then C could be modified to
correctly guess (L(g1), . . . , L(gn)) with noticeable probability, contrary to the
properties of the generator. To make this idea work, we prove that the set size
|{i ∈ [n] : L(gi) = 1}| is highly concentrated around its expectation. For this we
rely on a recently proved concentration result called the “strong Chernoff bound
for expander walks” [19], [20], [10]. This result is perfectly suited to analyze the
Impagliazzo-Wigderson generator, which is partly defined in terms of walks on
expander graphs.

The precise form of our assumptions in Theorems 4 and 5 are dictated by the
hardness-amplification tools currently available. In particular, sufficiently strong
hardness-amplification is only available if we make a hardness assumption against
nonuniform, exponential-sized circuits. We believe versions of Theorems 4 and 5
should be possible for a uniform hardness assumption; recently Impagliazzo et
al. [13] made partial progress towards the hardness-amplification tools needed.

1.4 Questions for Future Work

Are there other, perhaps weaker, complexity-theoretic assumptions that give
conclusions similar to Theorems 4 and 5? Alternatively, can we disprove Hypoth-
esis 2 unconditionally? Given the sharp limitations of NC0 circuits, this might be
doable. Another open question we find intriguing is whether the promise prob-
lem in Theorem 1 remains prAM-complete when all variables are restricted to
appear only O(1) times each in the constraints. (The challenging part is to make
the stochastic “Arthur-variables” obey this restriction.) Finally, can we use PCP
ideas to prove new upper bounds on the class AM?

2 Preliminaries

For a CSP ψ and an assignment x, define Valψ(x) as the fraction of constraints
ψj of ψ for which ψj(x) = 1. We assume familiarity with complexity classes

A PCP Characterization of AM 587

P,NP, AM, and MA, and with the Boolean circuit model of computation (which
we’ll review shortly). We define promise classes and the promise class prAM in
Section 2.1. For a language L ⊆ {0, 1}∗, we use L(x) to denote the characteristic
function of L. We use |x| to denote the length of a (possibly non-Boolean) string
x. d(x, S) denotes the Hamming distance between x ∈ Σn, and a set S ⊆ Σn. If
d(x, S) > c we say x is c-far from S.

H(t) : [0, 1] → [0, 1] denotes the binary entropy function, H(t) = −t log2 t −
(1 − t) log2(1 − t) for t ∈ (0, 1) and H(0) = H(1) = 0. We let Vn,k denote the
discrete volume of the Hamming sphere of radius k in {0, 1}n; that is, Vn,k :=∑

0≤i≤k

(
n
i

)
. We use the known bound Vn,αn ≤ 2H(α)n (for α ∈ [0, 1/2]).

When we speak of circuits, we mean deterministic Boolean circuits of fanin-
two, and we measure the circuit size |C| as the number of gates (including
inputs). A function F : {0, 1}n → {0, 1}m is p(n)-hard for size s(n) if for every
Boolean circuit C of size ≤ s(n), Prx∈{0,1}n [C(x) = F (x)] ≤ p(n). Similarly, if
this holds with F (x) := L(x) for language L, we say L is p(n)-hard for size s(n).

Next we define PCPPs. Fix a circuit C(x) on n Boolean input variables, a
finite alphabet Σ, and a parameter β > 0. We say a k-CSP ψ is a PCPP for C
over Σ with security β if:

1. ψ is defined on variable set (x, z), where x are the Boolean input variables
to C and z are auxiliary “proof” variables taking values in Σ;

2. For any x ∈ {0, 1}n, if C(x) = 1 then ∃z such that Valψ(x, z) = 1;
3. For all x ∈ {0, 1}n and z, Valψ(x, z) ≤ 1− β · d(x,C−1(1))/n.

The proof size of ψ is the number of variables in z. Dinur showed:

Theorem 6. [6, Cor. 8.4] There is a constant-size alphabet Σ0, a constant β >
0, and a polynomial-time algorithm that, given a circuit Q(x) of size t, produces
a 2-CSP ψQ(x, z) that is a PCPP for Q over Σ0 with security β. Moreover, the
proof size of ψQ is Õ(t).

2.1 Promise Problems and prAM

A promise problem is a pair Π = (ΠY ES , ΠNO) of disjoint subsets of {0, 1}∗.
We define prAM as the promise problems for which there is a polynomial-time
algorithm M(x, r, w), with |r|, |w| = O(poly(|x|)), such that: (1) If x ∈ ΠY ES ,
then for all r, ∃w = w(r) such that M(x, r, w) = 1; (2) If x ∈ ΠNO, then
Prr[∃w : M(x, r, w) = 1] ≤ 1/3. A promise problem Π1 = (ΠY ES , ΠNO) is
prAM-hard if for all Π ′ = (Π ′

Y ES , Π ′
NO) in prAM, there exists a polynomial-

time computable reduction R(x), such that, if x ∈ Π ′
Y ES , then R(x) ∈ ΠY ES ,

while if x ∈ Π ′
NO, then R(x) ∈ ΠNO. We say that Π is prAM-complete if Π is

both in prAM and prAM-hard.
For any Π ∈ prAM, the soundness parameter in the protocol, convention-

ally set as 1/3, can always be made exponentially small in |x|, using parallel

588 A. Drucker

repetition of the original protocol. However, we need a more randomness-efficient
soundness-amplification, provided by a result of Bellare et al. [2]:2

Theorem 7. [2] Let Π = (ΠY ES , ΠNO) ∈ prAM, where M(x, r, w) is a
polynomial-time predicate defining an Arthur-Merlin protocol for Π. Let n = |x|,
and fix a polynomial m(n). Then there exists an Arthur-Merlin protocol for Π de-
fined by a polynomial-time predicate M ′(x, r′, w′), with |w′| ≤ O(poly(n)), |r| ≤
|r′| ≤ O(|r| + m(n)), and with soundness 2−m(n).

3 An Augmented PCPP

As a tool for proving Theorems 1, 4, and 5, we need an “augmented” form of
PCPPs. Lemma 8 below can be derived from Theorem 6; the proof is in the
full version. We remark that the proof of Theorem 1 uses only condition (i)
of Lemma 8; this first part of the Lemma is also present in previous uses of
PCPPs [6], [3]. Condition (ii) is derived by an application of efficiently encod-
able/decodable error-correcting codes.

Lemma 8. There is a finite alphabet Σ0 such that the following holds. For
any ε > 0 there is a ν > 0 and a polynomial-time algorithm A that takes
as input a Boolean circuit C = C(r, w). A outputs a 2-CSP ψ(r, z), where
|z| = O(poly(|C|)) and the variables of z are over Σ0. Letting � = |r|, we have:

(8.i) For all r, if there is a w such that C(r, w) = 1, then there is a z such that
Valψ(r, z) = 1. On the other hand, if r is α�-far from any r′ for which
C(r′, ·) is satisfiable, then for all z, Valψ(r, z) < 1−Ω(α).

(8.ii) Suppose P (r) is any function such that with probability at least p = p(�)
over a uniform r ∈ {0, 1}
, P (r) outputs a z such that Valψ(r, z) > 1− ν.
Then there exists a function P̃ (r), such that Prr[C(r, P̃ (r)) = 1] ≥ p(�) ·
2−ε
. Also, P̃ (r) is computable by a nonuniform, poly(|C|)-sized circuit
that makes a single oracle call to P on the same input length.

4 Proof of Theorem 1

First, it is easy to see that (ΠAM−CSP,Y ES , ΠAM−CSP,NO) is in prAM, for any
setting p(�) ≤ 2−Ω(|
|). Our main task is to show that the promise problem
is prAM-hard, for appropriate choice of parameters. Let Π = (ΠY ES , ΠNO) ∈
prAM, and let M1(x, r1, w1) be a polynomial-time-computable predicate defining
an Arthur-Merlin protocol for Π . We use parameters n = |x|, �1(n) = |r|; by
definition of prAM we have �1(n) = O(poly(n)) and |w1| = O(poly(n)). By
padding r1 if needed, we may ensure �1(n) ≥ n. Apply Theorem 7 to M1, with the
setting m(n) := �1(n). Thus we get a new Arthur-Merlin protocol M2(x, r2, w2)

2 They state their theorem for AM, not prAM, but the proof carries over without
changes to the promise setting and we state it for this setting.

A PCP Characterization of AM 589

for Π , with |r2| = �2(n) ∈ [n, . . . , D · �1(n)] (for some fixed D > 0), |w2| =
O(poly(n)), and with soundness 2−
1(n).

Given an input x ∈ ΠY ES ∪ ΠNO, we construct a poly(n)-sized circuit
C(r2, w2) = Cx(r2, w2) that accepts iff M2(x, r2, w2) = 1. To this circuit we
apply the algorithm A of Lemma 8 (with ε > 0 to be announced), yielding a
2-CSP ψ = ψ(r2, z) which we make the output of our reduction.

We show the correctness of the reduction. First, suppose that x ∈ ΠY ES . Then
for each r2, there exists a w2 such that M2(x, r2, w2) = 1. By condition (8.i) of
Lemma 8, there exists z such that Valψ(r2, z) = 1. Thus ψ ∈ ΠAM−CSP,Y ES .

Now suppose that x ∈ ΠNO. Then by the soundness property of M2, the
number of strings r2 for which M2(x, r2, ·) is satisfiable is at most 2−
1(n)·2
2(n) ≤
2(1− 1

D)
2(n). Thus for any α ∈ (0, 1/2), the number of r2 for which there exists
an r′ at distance ≤ α�2(n) from r2, such that M2(x, r′, ·) is satisfiable, is at most
V
2(n),α
2(n) · 2(1− 1

D)
2(n) ≤ 2(H(α)+1− 1
D)
2(n).

Choosing α > 0 such that H(α) < 1
D , we find that with probability ≥ 1 −

2−Ω(
2(n)) over a uniform choice of r2, r2 is α�2(n)-far from any r′ such that
C(r′, ·) is satisfiable. For such r2, condition (8.i) of Lemma 8 tells us Valψ(r2, z) <
1 − Ω(α) for any z. Thus if we fix ε > 0 as a small enough value and choose
an appropriate function p(|r2|) ≤ 2−Ω(|r2|) to define ΠAM−CSP,NO, we have
ψ ∈ ΠAM−CSP,NO. This proves Theorem 1.

5 Proof of Theorem 5

Our key tool to prove Theorem 5 is randomness-efficient hardness amplification.
Say we’re given an integer c ≥ 1, a parameter k = k(n), and a “generator”
function G(r) : {0, 1}cn → {0, 1}k×n, where the string G(r) is divided into k
blocks G1(r), . . . , Gk(r), each of length n. The hope is that G1(r), . . . , Gk(r)
should behave in certain respects like a truly independent collection of random
strings, while satisfying |r| � k · n. In particular, if it is somewhat hard to
compute L(x) for random x, it should be very hard to compute L correctly on
G1(r), . . . , Gk(r) simultaneously. Define Lk ◦G : {0, 1}cn → {0, 1}k by

(Lk ◦G)(r) := (L(G1(r)), L(G2(r)), . . . , L(Gk(r))) . (1)

Impagliazzo and Wigderson gave a generator (we denote it GIW) with a strong
hardness-amplification property:

Theorem 9. [14, Thm. 2.12] For any γ > 0, there are γ′, c > 0, and a
polynomial-time computable GIW : {0, 1}cn → {0, 1}n×n, such that: if L is 2/3-
hard for size 2γn, then (Ln ◦GIW)(r) is 2−γ′n-hard for size 2γ′n.

The generator GIW has a second useful property: for any language L, with very
high probability over r, the fraction of the strings GIW,1(r), . . ., GIW,n(r) which
lie in L is close to |L∩{0, 1}n|/2n; that is, close to the fraction we’d expect if these
strings were drawn independently and uniformly. To prove this fact (not proved
or used in [14]), we need to describe the generator in more detail. The input r

590 A. Drucker

to GIW consists of two parts, r = (ra, rb). GIW (ra, rb) is defined blockwise for
i ∈ [n] as

GIW,i(ra, rb) = Ki(ra) + K ′
i(rb) , (2)

with Ki : {0, 1}|ra| → {0, 1}n, K ′
i : {0, 1}|rb| → {0, 1}n, and with + denoting

bitwise addition mod 2. We describe Ki; the definition of K ′
i is not important

to us. The string ra defines a random walk of length n (counting the starting
vertex) on an explicit expander graph Gn with vertex set {0, 1}n. Gn is 16-regular
with normalized second eigenvalue λn at most some fixed λ < 1. The value
vi := Ki(ra) represents the ith vertex visited in this walk. v1 is uniform element
of {0, 1}n, and each subsequent step vi+1 is picked uniformly from among the
neighbors of vi. (Note, this can be achieved with |ra| = O(n), as required.)

We will use the following powerful result, called the “strong Chernoff bound
for expander walks”, as proved by Healy [10].3

Theorem 10. [10] Let G = (V,E) be a d-regular graph with normalized sec-
ond eigenvalue λ, let m > 0, and let f1, . . . , fm : V → [0, 1] have expectations
μ1, . . . , μm (over a uniform choice of v ∈ V). Taking a random walk v1, . . . , vm

on G with uniform starting-point, we have for all ε > 0,

Pr[|∑i≤m fi(vi)−
∑

i≤m μi| ≥ εm] ≤ 2e−
ε2(1−λ)m

4 . (3)

For a fixed language L and r ∈ {0, 1}cn, let �(r) := |{i : L(GIW,i(r)) = 1}|.
Lemma 11. Let L be an arbitrary language. Let cn = |L ∩ {0, 1}n|/2n. Then
for any fixed δ > 0, Prr[|�(r) − cn · n| ≥ δn] ≤ 2−Ω(n).

Proof. Recall that r = (ra, rb). It is enough to show that the above in-
equality is true after conditioning on any value of rb. Let (v′1, . . . , v

′
n) =

(K ′
1(rb), . . . ,K ′

n(rb)). Then for i ∈ [n], GIW,i(r) ∈ L iff Ki(ra)+v′i ∈ L, or equiv-
alently Ki(ra) ∈ Ln+v′i (where Ln := L∩{0, 1}n and Ln+v′i = {x+v′i : x ∈ Ln}).

Define fi : {0, 1}n → {0, 1} to be the characteristic function of Ln + v′i.
Clearly μi = cn for all i. The needed inequality follows by a direct application of
Theorem 10, using the fact that Gn has second eigenvalue bounded away from
1. This proves Lemma 11.

Now we prove Theorem 5. Our choice of ε0 will be no larger than 1/6, so our
hypothesis implies there is a γ′ > 0, a c > 0, and a poly-time GIW : {0, 1}cn →
{0, 1}n×n for which Theorem 9 holds. Let M(x,w) be a polynomial-time verifier
for L: x ∈ L iff ∃w : M(x,w) = 1. Let t(n) = |w| = O(poly(n)).

If C : {0, 1}cn → {0, 1}t(n)×n is a circuit producing n strings w1, . . . , wn, each
of length t(n), define �C(r) := |{i ∈ [n] : M(GIW,i(r), wi) = 1}|.
Claim 12. There exists γ′′ > 0 such that, if C(r) : {0, 1}cn → {0, 1}t(n)×n is a
circuit of size at most 2γ′′n, then Prr[�C(r) > �(r) − γ′′n] < 2−γ′′n .

3 A more general claim was made earlier by Wigderson and Xiao [19], but the proof
contained an error, as pointed out in [20]. (A valid proof of the Theorem above, with
different constants, can still be extracted from [19].)

A PCP Characterization of AM 591

Claim 12 is proved in the full version; the idea is that if �C(r) ≈ �(r) with
noticeable probability, we could modify C to guess the small set of instances
GIW,i(r) ∈ L for which it failed to find witnesses—allowing us to guess (Ln ◦
GIW)(r) with noticeable probability. This contradicts Theorem 9 if |C| is small.

Now set ε0 := min(1/6, γ′′/4). Fix any circuit C : {0, 1}cn → {0, 1}t(n)×n of
size at most 2γ′′n. We use Lemma 11 applied to δ := ε0, along with Claim 12,
to find that, with probability ≥ 1 − 2−Ω(n) over r, we have the simultaneous
inequalities (cn + ε0)n > �(r) > (cn − ε0)n and �(r) ≥ �C(r) + γ′′n. Call a
string r with this property C-typical. Now, we claim that |cn − 1/2| ≤ ε0. For
otherwise, a size-1 circuit could guess L(x) with probability greater than 1/2+ε0

by guessing the majority value on length n, contrary to our hardness assumption
about L. Thus for a C-typical r, �C(r) ≤ (1/2 + ε0)n − γ′′n ≤ (1/2 − 3γ′′/4)n
and also �(r) ≥ (1/2− ε0)n− ε0n ≥ (1/2− γ′′/2)n.

Fix a rational value η ∈ (1/2 − 3γ′′/4, 1/2 − γ′′/2). Define a predicate
Q(r, w1, . . . , wn) : {0, 1}cn× {0, 1}n×t(n) → {0, 1} as follows: Q(r, w1, . . . , wn) =
1 iff |{i : M(GIW,i(r), wi) = 1}| ≥ η · n. Q is polynomial-time computable, com-
puted by some uniform family {Qn}n>0 of poly-size circuits. We have the key fact
that for a C-typical r, ∃w1, . . . , wn : Q(r, w1, . . . , wn) = 1, yet Q(r, C(r)) = 0.

Invoke Lemma 8 with ε := γ′′/(2c), yielding an algorithm A (and an associated
ν > 0). Then we claim {A(Qn)}n>0 = {ψn(r, z)}n>0 is the desired family of 2-
CSPs (here |r| = cn, |z| = d(n) = O(poly(n))). First we verify condition (5.i).
Consider any r for which there exists a w1, . . . , wn such that Qn(r, w1, . . . , wn) =
1. By condition (8.i) of Lemma 8, we find that in this case there exists z such
that Valψn(r, z) = 1. Since all but a 2−Ω(n) fraction of r have this property,
condition (5.i) is satisfied.

To establish condition (5.ii), fix γ2 as any value in (0, γ′′) and let θ := ν.
Suppose C(r) : {0, 1}cn → {0, 1}d(n) is a circuit of size at most 2γ2n, such that
with some probability q(n), Valψn(r, C(r)) > 1−θ. By condition (8.ii) of Lemma
8, there exists a circuit C̃(r) : {0, 1}cn → {0, 1}n×t(n), such that with probability
at least q(n) · 2−ε(cn) over r, Qn(r, C̃(r)) = 1. Note that such an r fails to be C̃-
typical. Moreover, C̃ is of size at most |C|+O(poly(n)), which for large enough n
is less than 2γ′′n. So, by our previous analysis we find that q(n) · 2−εcn ≤ 2−γ′′n,
i.e., q(n) ≤ 2(εc−γ′′)n = 2−γ′′n/2 = 2−Ω(n). We have proved condition (5.ii). This
completes the proof of Theorem 5.

Acknowledgements. I thank Scott Aaronson and Madhu Sudan for helpful
comments.

References

1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

2. Bellare, M., Goldreich, O., Goldwasser, S.: Randomness in interactive proofs. Com-
putational Complexity 3, 319–354 (1993)

592 A. Drucker

3. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Robust PCPs
of proximity, shorter PCPs, and applications to coding. SIAM J. Comput. 36(4),
889–974 (2006)

4. Condon, A., Feigenbaum, J., Lund, C., Shor, P.S.: Probabilistically checkable
debate systems and nonapproximability of PSPACE-hard functions. Chicago J.
Theor. Comput. Sci (1995)

5. Condon, A., Feigenbaum, J., Lund, C., Shor, P.S.: Random debaters and the hard-
ness of approximating stochastic functions. SIAM J. Comput. 26(2), 369–400 (1997)

6. Dinur, I.: The PCP theorem by gap amplification. J. ACM 54(3) (2007)
7. Dinur, I., Reingold, O.: Assignment testers: Towards a combinatorial proof of the

PCP theorem. SIAM J. Comput. 36(4), 975–1024 (2006)
8. Drucker, A.: PCPs for Arthur-Merlin Games and Communication Protocols. Mas-

ter’s thesis, Massachusetts Institute of Technology, Dept. of Electrical Engineering
and Computer Science (2010)

9. Haviv, A., Regev, O., Ta-Shma, A.: On the hardness of satisfiability with bounded
occurrences in the polynomial-time hierarchy. Theory of Computing 3(1), 45–60
(2007)

10. Healy, A.: Randomness-efficient sampling within NC1. Computational Complex-
ity 17(1), 3–37 (2008)

11. Healy, A., Vadhan, S.P., Viola, E.: Using nondeterminism to amplify hardness.
SIAM J. Comput. 35(4), 903–931 (2006)

12. Impagliazzo, R.: Hard-core distributions for somewhat hard problems. In: Proc.
36th IEEE FOCS, pp. 538–545 (1995)

13. Impagliazzo, R., Jaiswal, R., Kabanets, V., Wigderson, A.: Uniform direct product
theorems: Simplified, optimized, and derandomized. SIAM J. Comput. 39(4), 1637–
1665 (2010)

14. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In: Proc. 29th ACM STOC, pp. 220–229 (1997)

15. Ko, K.-I., Lin, C.-C.: Non-approximability in the polynomial-time hierarchy. TR
94-2, Dept. of Computer Science, SUNY at Stony Brook (1994)

16. Mossel, E., Umans, C.: On the complexity of approximating the VC dimension. J.
Comput. Syst. Sci. 65(4), 660–671 (2002)

17. O’Donnell, R.: Hardness amplification within NP. In: Proc. 34th ACM STOC, pp.
751–760 (2002)

18. Shaltiel, R., Umans, C.: Low-end uniform hardness vs. randomness tradeoffs for
AM. SIAM J. Comput. 39(3), 1006–1037 (2009)

19. Wigderson, A., Xiao, D.: A randomness-efficient sampler for matrix-valued func-
tions and applications. In: Proc. 46th IEEE FOCS, pp. 397–406 (2005)

20. Wigderson, A., Xiao, D.: Derandomizing the Ahlswede-Winter matrix-valued
Chernoff bound using pessimistic estimators, and applications. Theory of Com-
puting 4(1), 53–76 (2008)

Lower Bounds for Online Integer Multiplication

and Convolution in the Cell-Probe Model

Raphaël Clifford and Markus Jalsenius

Department of Computer Science, University of Bristol, Bristol, UK

Abstract. We show time lower bounds for both online integer multipli-
cation and convolution in the cell-probe model with word size w. For the
multiplication problem, one pair of digits, each from one of two n digit
numbers that are to be multiplied, is given as input at step i. The online
algorithm outputs a single new digit from the product of the numbers
before step i + 1. We give a lower bound of Ω(δ

w
log n) time on average

per output digit for this problem where 2δ is the maximum value of a
digit. In the convolution problem, we are given a fixed vector V of length
n and we consider a stream in which numbers arrive one at a time. We
output the inner product of V and the vector that consists of the last
n numbers of the stream. We show an Ω(δ

w
log n) lower bound for the

time required per new number in the stream. All the bounds presented
hold under randomisation and amortisation. Multiplication and convo-
lution are central problems in the study of algorithms which also have
the widest range of practical applications.

1 Introduction

We consider two related and fundamental problems: multiplying two integers
and computing the convolution or cross-correlation of two vectors. We study
both these problems in an online or streaming context and provide time lower
bounds in the cell-probe model. The importance of these problems is hard to
overstate with both the integer multiplication and convolution problems playing
a central role in modern algorithms design and theory.

For notational brevity, we write [q] to denote the set {0, . . . , q − 1}, where q
is a positive integer.

Problem 1 (Online convolution). For a fixed vector V ∈ [q]n of length n, we
consider a stream in which numbers from [q] arrive one at a time. For each
arriving number, before the next number arrives, we output the inner product
(modulo q) of V and the vector that consists of the last n numbers of the stream.

We show that there are instances of this problem such that any algorithm solving
it will require Ω(δ

w logn) amortised time on average per output, where δ = log2 q
and w is the number of bits per cell in the cell-probe model. The result is formally
stated in Theorem 1.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 593–604, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

594 R. Clifford and M. Jalsenius

Problem 2 (Online multiplication). Given two numbers X,Y ∈ [qn], where q is
the base and n is the number of digits per number, we want to output the n least
significant digits of the product of X and Y , in base q. We must do this under
the constraint that the ith digit of the product (starting from the lower-order
end) is outputted before the (i+ 1)th digit, and when the ith digit is outputted,
we only have access to the i least significant digits of X and Y , respectively. We
can think of the digits of X and Y arriving online in pairs, one digit from each
of X and Y .

We show that there are instances of this problem such that any algorithm solving
it takes Ω(δ

w logn) time on average per input pair, where δ = log2 q and w is
the number of bits per cell in the cell-probe model. The result is formally stated
in Theorem 4

Our main technical innovation is to extend recently developed methods de-
signed to give lower bounds on dynamic data structures to the seemingly distinct
field of online algorithms. Where δ = w, for example, we have Ω(logn) lower
bounds for both online multiplication and convolution, thereby matching the
currently best known offline upper bounds. As we discuss in the Section 1.1, this
may be the highest lower bound that can be formally proved for these problems.

For the convolution problem, one consequence of our results is a new sepa-
ration between the time complexity of exact and inexact string matching in a
stream. The convolution has played a particularly important role in the field
of combinatorial pattern matching where many of the fastest algorithms rely
crucially for their speed on the use of fast Fourier transforms to perform re-
peated convolutions. These methods have also been extended to allow searching
for patterns in rapidly processed data streams [1,2]. The results we present here
therefore give the first strict separation between the constant time complexity
of online exact matching [7] and any convolution based online pattern matching
algorithm.

Although we show only the existence of probability distributions on the in-
puts for which we can prove lower bounds on the expected running time of any
deterministic algorithm, by Yao’s minimax principle [14] this also immediately
implies that for every (randomised) algorithm, there is a worst-case input such
that the (expected) running time is equally high. Therefore our lower bounds
hold equally for randomised algorithms as for deterministic ones.

1.1 Previous Results and Upper Bounds

Lower bounds for the time complexity of online multiplication of two n-bit num-
bers have been studied in [10]. However, there the focus was on the bit complexity
of the problem with an Ω(logn) lower bound given for a multitape Turing ma-
chine and an Ω(log(n)/ log log(n)) lower bound for a model equivalent to the
modern bit-probe model. Neither online integer multiplication nor online convo-
lution have been considered before in the cell-probe model to our knowledge.

The best known time complexities for both offline integer multiplication and
convolution in the word-RAM model are O(n logn) by the well known applica-
tion of fast Fourier transforms. As a consequence our online lower bounds match

Lower Bounds for Online Integer Multiplication and Convolution 595

the best known upper bounds for the offline problem. The question naturally
arises as to whether one could find higher lower bounds for the online problem
as there remains a gap between the best known upper and lower bounds. How-
ever, any offline algorithm for convolution or multiplication can be converted to
an online one with at most an O(log n) factor overhead [4,1]. As a consequence,
it is likely to be hard to prove a higher lower bound than we have given, at
least for the case where δ/w ∈ Θ(1), as this would immediately imply a su-
perlinear lower bound for offline convolution or multiplication. Such superlinear
lower bounds are not yet known for any problem in NP except in very restricted
models of computation, such as for example a single tape Turing Machine. Our
only alternative route to tight bounds would be to find better upper bounds for
the online problems. For the case of online multiplication at least, this was first
posed as an open problem almost 40 years ago and has so far proved hard to
achieve [4].

1.2 The Cell-Probe Model

The lower bounds we develop hold in perhaps the strongest model of them all,
the cell-probe model [9,5,15]. In this model, there is a separation between the
computing unit and the memory, which is external and consists of a set of cells
of w bits each. The computing unit cannot remember any information between
operations. Computation is free and the cost is measured only in the number of
cell reads or writes (cell-probes). Typically we think of the cell size w as being
at least log2 n bits, where n is the number of cells. This allows each cell to hold
the address of any location in memory.

The generality of the cell-probe model makes it particularly attractive for
establishing lower bounds for data structure problems and many such results
have been given in the past couple of decades. The approaches taken have un-
til recently mainly been based on communication complexity arguments and
extensions of the chronogram technique of Fredman and Saks [6]. There re-
mains however, a number of unsatisfying gaps between the lower bounds and
known upper bounds. Only a few years ago, a breakthrough lead by Demaine
and Pǎtraşcu gave us the tools to seal the gaps for several data structure prob-
lems [13]. The new technique was based on information theoretic arguments.
Demaine and Pǎtraşcu also presented ideas which allowed them to express more
refined lower bounds such as trade-offs between updates and queries of dynamic
data structures. For a list of data structure problems and their lower bounds
using these and related techniques, see for example [11].

2 Online Convolution

For a vector V of length n and i ∈ [n], we write V [i] to denote the elements of
V . For positive integers n and q, the inner product of two vectors U, V ∈ [q]n,

596 R. Clifford and M. Jalsenius

denoted 〈U, V 〉, is defined as

〈U, V 〉 =
∑
i∈[n]

(U [i] · V [i]) .

Parameterised by two positive integers n and q, and a fixed vector V ∈ [q]n,
the online convolution problem asks to maintain a vector U ∈ [q]n subject to
an operation next(Δ), which takes a parameter Δ ∈ [q], modifies U to be the
vector (U [1], U [2], . . . , U [n − 1], Δ) and then returns the inner product 〈U, V 〉.
In other words, next(Δ) modifies U by shifting all elements one step to the left,
pushing the leftmost element out, and setting the new rightmost element to Δ.
We consider the online convolution problem over the ring Z/qZ, that is integer
arithmetic modulo q. Let δ = log2 q.

Theorem 1. For any positive integers q and n, in the cell probe model with w
bits per cell there exist instances of the online convolution problem such that the
expected amortised time per next-operation is Ω

(
δ
w logn

)
, where δ = log2 q.

In order to prove Theorem 1 we will consider a random instance that is described
by n next-operations on the sequence Δ = (Δ0, . . . , Δn−1), where each Δi is
chosen independently and uniformly at random from [q]. We defer the choice of
the fixed vector V until later. For t from 0 to n− 1, we use t to denote the time,
and we say that the operation next(Δt) occurs at time t.

We may assume that prior to the first update, the vector U = {0}n, although
any values are possible since they do not influence the analysis. To avoid tech-
nicalities we will from now on assume that n is a power of two.

2.1 Information Transfer

Following the overall approach of Demaine and Pǎtraşcu [12] we will consider
adjacent time intervals and study the information that is transferred from the
operations in one interval to the next interval. More precisely, let t0, t1, t2 ∈ [n]
such that t0 � t1 < t2 and consider any algorithm solving the online convolution
problem. We would like to keep track of the memory cells that are written to
during the time interval [t0, t1] and then read during the succeeding interval
[t1 +1, t2]. The information from the next-operations taking place in the interval
[t0, t1] that the algorithm passes on to the interval [t1+1, t2] must be contained in
these cells. Informally one can say that there is no other way for the algorithm
to determine what occurred during the interval [t0, t1] except through these
cells. Formally, the information transfer, denoted IT (t0, t1, t2), is defined to be
the set of memory cells c such that c is written during [t0, t1], read at a time
tr ∈ [t1 +1, t2] and not written during [t1 +1, tr]. Hence a cell that is overwritten
in [t1+1, t2] before being read is not included in the information transfer. Observe
that the information transfer depends on the algorithm, the vector V and the
sequence Δ. The first aim is to show that for any choice of algorithm solving
the online convolution problem, the number of cells in the information transfer

Lower Bounds for Online Integer Multiplication and Convolution 597

is bounded from below by a sufficiently large number for some choice of the
vector V .

For 0 � t0 � t1 < n, we write Δ[t0,t1] to denote the subsequence (Δt0 , . . . , Δt1)
of Δ, and Δ[t0,t1]c to denote the sequence (Δ0, . . . , Δt0−1, Δt1+1, . . . , Δn−1) which
contains all the elements of Δ except for those in Δ[t0,t1]. For t ∈ [n], we let
Pt ∈ [q] denote the inner product returned by next(Δt) at time t (recall that we
operate modulo q). We let P[t1+1,t2] = (Pt1+1, . . . , Pt2).

Since Δ is a random variable, so is P[t1+1,t2]. In particular, if we condition on
a fixed choice of Δ[t0,t1]c , call it Δfix

[t0,t1]c
, then P[t1+1,t2] is a random variable that

depends on the random values in Δ[t0,t1]. The dependency on the next-operations
in the interval [t0, t1] is captured by the information transfer IT (t0, t1, t2), which
must encode all the relevant information in order for the algorithm to correctly
output the inner products in [t1 + 1, t2]. In other words, an encoding of the
information supplied by cells in the information transfer is an upper bound on
the conditional entropy of P[t1+1,t2]. This fact is stated in Lemma 1 and was
given in [11] with small notational differences.

Lemma 1 (Lemma 3.2 of [11]). The entropy

H(P[t1+1,t2] | Δ[t0,t1]c = Δfix
[t0,t1]c

) �

w + 2w · E
[
|IT (t0, t1, t2)| | Δ[t0,t1]c = Δfix

[t0,t1]c

]
.

2.2 Recovering Information

In the previous section, we provided an upper bound for the entropy of the
outputs from the next-operations in [t1 + 1, t2]. Next we will explore how much
information needs to be communicated from [t0, t1] to [t1+1, t2]. This will provide
a lower bound on the entropy. As we will see, the lower bound can be expressed
as a function of the length of the intervals and the vector V .

Suppose that [t0, t1] and [t1 + 1, t2] both have the same length �. That is,
t1 − t0 + 1 = t2 − t1 = �. For i ∈ [�], the output at time t1 + 1 + i can be broken
into two sums Si and S′

i, such that Pt1+1+i = Si + S′
i, where

Si =
∑
j∈[
]

(V [n− 1− (� + i) + j] ·Δt0+j)

is the contribution from the alignment of V with Δ[t0,t1], and S′
i is the contri-

bution from the alignments that do not include Δ[t0,t1].
We define MV,
 to be the �×� matrix with entries MV,
(i, j) = V [n− 1− (�+

i) + j] and observe that MV,
 is a Toeplitz matrix (or “upside down” Hankel
matrix) since it is constant on each descending diagonal from left to right. This
property will be important later. From the definitions above it follows that

MV,
 ×

⎛⎜⎜⎜⎝
Δt0

Δt0+1

...
Δt1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
S0

S1

...
S
−1

⎞⎟⎟⎟⎠ . (1)

598 R. Clifford and M. Jalsenius

We define the recovery number RV,
 to be the number of variables x ∈ {x1, . . . , x
}
such that x can be determined uniquely by the system of linear equations

MV,
 ×

⎛⎜⎝x1

...
x

⎞⎟⎠ =

⎛⎜⎝y1

...
y

⎞⎟⎠ ,

where we operate in Z/qZ. The recovery number may be distinct from the rank
of a matrix, even where we operate over a field. As an example, consider the
all ones matrix. The matrix will have recovery number zero but rank one. The
recovery number is however related to the conditional entropy of P[t1+1,t2] as
described by the next lemma.

Lemma 2. If the intervals [t0, t1] and [t1 + 1, t2] both have the same length �,
then the entropy

H(P[t1+1,t2] | Δ[t0,t1]c = Δfix
[t0,t1]c

) � δRV,
 .

Proof. As described above, for i ∈ [�], Pt1+1+i = Si + S′
i, where S′

i is a con-
stant that only depends on V and Δfix

[t0,t1]c
. Hence we can compute the val-

ues S0, . . . , S
−1 from P[t1+1,t2]. From Equation (1) it follows that S0, . . . , S
−1

uniquely specify RV,
 of the parameters in Δ[t0,t1]. That is, we can recover RV,

of the parameters from the interval [t0, t1]. Each of these parameters is a random
variable that is uniformly distributed in [q], so it contributes δ bits of entropy.

��
We now combine Lemmas 1 and 2 in the following corollary.

Corollary 1. For any fixed vector V , two intervals [t0, t1] and [t1 + 1, t2] of the
same length �, and any algorithm solving the online convolution problem on Δ
chosen uniformly at random from [q]n,

E [|IT (t0, t1, t2)|] � δRV,

2w
− 1

2
.

Proof. For Δ[t0,t1]c fixed to Δfix
[t0,t1]c , comparing Lemmas 1 and 2, we see that

E

[
|IT (t0, t1, t2)| | Δ[t0,t1]c = Δfix

[t0,t1]c

]
� δRV,

2w
− 1

2
.

The result follows by taking expectation over Δ[t0,t1]c under the random se-
quence Δ. ��

2.3 The Lower Bound for Online Convolution

We now show how a lower bound on the total number of cell reads over n
next-operations can be obtained by summing the information transfer between
many pairs of time intervals. We again follow the approach of Demaine and

Lower Bounds for Online Integer Multiplication and Convolution 599

Pǎtraşcu [12], which involves conceptually constructing a balanced tree over the
time axis. This lower bound tree, denoted T , is a balanced binary tree on n
leaves. Recall that we have assumed that n is a power of two. The leaves, from
left to right, represent the time t from 0 to n− 1, respectively. An internal node
v is associated with the times t0, t1 and t2 such that the two intervals [t0, t1]
and [t1 + 1, t2] span the left subtree and the right subtree of v, respectively.

For an internal node v of T , we write IT (v) to denote IT (t0, t1, t2), where t0,
t1, t2 are associated with v. We write L(v) to denote the number of leaves in the
left (same as the right) subtree of v. The key lemma, stated next, is a modified
version of Theorem 3.6 in [11]. The statement of the lemma is adapted to our
online convolution problem and the proof relies on Corollary 1.

Lemma 3. For any fixed vector V and any algorithm solving the online con-
volution problem, the expected running time of the algorithm over a sequence Δ
that is chosen uniformly at random from [q]n is at least

δ

2w

∑
v∈T

RV,L(v) − n− 1
2

,

where the sum is over the internal nodes of T .

Proof. We first consider a fixed sequence Δ. We argue that the number of read
instructions executed by the algorithm is at least

∑
v∈T |IT (v)|. To see this, for

any read instruction, let tr be the time it is executed. Let tw � tr be the time
the cell was last written, ignoring tr = tw. Then this read instruction (the cell
it acts upon), is contained in IT (v), where v is the lowest common ancestor of
tw and tr. Thus,

∑
v∈T |IT (v)| never double-counts a read instruction.

For a random Δ, an expected lower bound on the number of read instructions
is therefore E[

∑
v∈T |IT (v)|]. Using linearity of expectation and Corollary 1, we

obtain the lower bound in the statement of the lemma. ��

Lower bound with a random vector V . We have seen in Lemma 3 that a
lower bound is highly dependent on the recovery numbers of the vector V . In
the next lemma, we show that a random vector V has recovery numbers that
are large.

Lemma 4. Suppose that q is a prime and the vector V is chosen uniformly at
random from [q]n. Then E[RV,
] � �/2 for every length �.

Proof. Recall that MV,
 is an �×� Toeplitz matrix. It has been shown in [8] that
for any �, out of all the �×� Toeplitz matrices over a finite field of q elements,
a fraction of exactly (1 − 1/q) is non-singular. This fact was actually already
established in [3] almost 40 years earlier but incidentally reproved in [8]. Since
we have assumed in the statement of the lemma that q is a prime, the ring Z/qZ
we operate in is indeed a finite field. The diagonals of MV,
 are independent
and uniformly distributed in [q], hence the probability that MV,
 is invertible is
(1 − 1/q) � 1/2. If MV,
 is invertible then the recovery number RV,
 = �; there

600 R. Clifford and M. Jalsenius

is a unique solution to the system of linear equations in Equation (1). On the
other hand, if MV,
 is not invertible then the recovery number will be lower.
Thus, we can safely say that the expected recovery number RV,
 is at least �/2,
which proves the lemma. ��
Before we give a lower bound for a random choice of V in Theorem 3 below, we
state the following fact.

Fact 2. For a balanced binary tree with n leaves, the sum of the number of leaves
in the subtree rooted at v, taken over all internal nodes v, is n log2 n.

Theorem 3. Suppose that q is a prime. In the cell-probe model with w bits per
cell, any algorithm solving the online convolution problem on a vector V and
Δ, both chosen uniformly at random from [q]n, will run in Ω

(
δ
wn logn

)
time in

expectation, where δ = log2 q.

Proof. For a random vector V , a lower bound is obtained by taking the expec-
tation of the bound in the statement of Lemma 3. Using linearity of expectation
and applying Lemma 4 and Fact 2 completes the proof. ��
Remark. Theorem 3 requires that q is a prime but for an integer δ > 1, q = 2δ

is not a prime. However, we know that there is always at least one prime p such
that 2δ−1 < p < 2δ. Thus, Theorem 3 is applicable for any integer δ, only with
an adjustment by at most one.

Lower bound with a fixed vector V . We demonstrate next that it is possible
to design a fixed vector V with guaranteed large recovery numbers. We will use
this vector in the proof of Theorem 1. The idea is to let V consist of stretches
of 0s interspersed by 1s. The distance between two succeeding 1s is an increasing
power of two, ensuring that for half of the alignments in the interval [t1 + 1, t2],
all but exactly one element of Δ[t0,t1] are simultaneously aligned with a 0 in V .
We define the binary vector Kn ∈ [2]n to be

Kn = (. . . 0000000000000100000000000000010000000100010110) ,

or formally,

Kn[i] =

{
1, if n− 1− i is a power of two;
0, otherwise.

(2)

Lemma 5. Suppose V = Kn and � � 1 is a power of two. The recovery number
RV,
 � �/2.

Proof. Recall that entry MV,
(i, j) = V [n− 1− (�+ i) + j]. Thus, MV,
(i, j) = 1
if and only if n− 1− (n− 1− (�+ i) + j) = �+ i− j is a power of two. It follows
that for row i = �/2, . . . , � − 1, MV,
(i, j) = 1 for j = i and MV,
(i, j) = 0 for
j �= i. This implies that the recovery number RV,
 is at least �/2. ��
We finally give the proof of Theorem 1.

Lower Bounds for Online Integer Multiplication and Convolution 601

Proof (Theorem 1). We assume that n is a power of two. Let V = Kn. It follows
from Lemma 5 and Fact 2 that

∑
v∈T RV,L(v) �

∑
v∈T L(v)/2 = Ω (n logn).

Note that L(v) is a power of two for every node v in T . For Δ chosen uni-
formly at random from [q]n, apply Lemma 3 to obtain the expected running
time Ω

(
δ
wn logn

)
over n next-operations. ��

3 Online Multiplication

In this section we consider online multiplication of two n-digit numbers in base
q � 2. For a non-negative integer X , let X [i] denote the ith digit of X in base
q, where the positions are numbered starting with 0 at the right (lower-order)
end. We think of X padded with zeros to make sure that X [i] is defined for
arbitrary large i. For j � i, we write X [i . . j] to denote the integer that is
written X [j] · · ·X [i] in base q.

The online multiplication problem is defined as follows. The input is two n-
digit numbers X,Y ∈ [qn] in base q (higher order digits may be zero). Let
Z = X × Y . We want to output the n lower order digits of Z in base q (i.e.
Z[0], . . . , Z[n−1]) under the constraint that Z[i] must be outputted before Z[i+1]
and when Z[i] is outputted, we are not allowed to use any knowledge of the digits
X [i + 1], . . . , X [n− 1] and Y [i + 1], . . . , Y [n − 1]. We can think of the digits of
X and Y arriving one pair at a time, starting with the least significant pair of
digits, and we output the corresponding digit of the product of the two numbers
seen so far.

We also consider a variant of the online multiplication problem when one of
the two input numbers, say Y, is known in advance. That is, all its digits are
available at every stage of the algorithm and only the digits of X arrive in an
online fashion. In particular we will consider the case when Y = Kq,n is fixed,
where we define Kq,n to be the largest number in [qn] such that the ith bit in
the binary expansion of Kq,n is 1 if and only if i is a power of two (starting with
i = 0 at the lower-order end). Note that the binary expansion of Kq,n is the
reverse of K(n log2 q) in Equation (2). We will prove the following theorem.

Theorem 4. For any positive integers δ and n in the cell probe model with w
bits per cell, the expected running time of any algorithm solving the online mul-
tiplication problem on two n-digit random numbers X,Y ∈ [qn] is Ω(δ

wn logn),
where q = 2δ is the base. The same bound holds even under full access to every
digit of Y, and when Y = Kq,n is fixed.

It suffices to prove the lower bound for the case when we have full access to
every digit of Y ; we could always ignore digits. We prove Theorem 4 using the
same approach as for the online convolution problem. Here the next-operation
delivers a new digit of X , which is chosen uniformly at random from [q], and
outputs the corresponding digit of the product of X and Y .

For t0, t1, t2 ∈ [n] such that t0 � t1 < t2, we write X [t0, t1]c to denote every
digit of X (in base q) except for those at position t0 through t1. It is helpful to
think of X [t0, t1]c as a vector of digits rather than a single number. We write

602 R. Clifford and M. Jalsenius

←−−−−−−−−−−−−−−−−−−−−−−− n −−−−−−−−−−−−−−−−−−−−−−−→
←−−
 −−→←−−−−−−−− t0 −−−−−−−−→

X′ = X

←−−−−− 2
 −−−−−→
Y ′ = Y

←−−
 −−→←−−−−−−−−−−− t0 +
 −−−−−−−−−−−→
Z′ = Z

Fig. 1. X, Y and Z = X × Y in base q

Xfix[t0, t1]c to denote a fixed choice of X [t0, t1]c. During the interval [t1 + 1, t2],
we output Z[(t1 + 1) . . t2]. The information transfer is defined as before, and
Lemma 1 is replaced with the following lemma.

Lemma 6. The entropy

H(Z[(t1 + 1) . . t2] | X [t0, t1]c = Xfix[t0, t1]c) �
w + 2w · E [|IT (t0, t1, t2)| | X [t0, t1]c = Xfix[t0, t1]c

]
.

3.1 Retrorse Numbers and the Lower Bound

In Figure 1, the three numbers X , Y and Z = X × Y are illustrated with
some segments of their digits labelled X ′, Y ′ and Z ′. Informally, we say that
Y ′ is retrorse if Z ′ depends heavily on X ′. We have borrowed the term from
Paterson, Fischer and Meyer [10], however, we give it a more precise meaning,
formalised below.

Suppose [t0, t1] and [t1 + 1, t2] both have the same length �. For notational
brevity, we write X ′ to denote X [t0 . . t1], Y ′ to denote Y [0 . . (2�− 1)] and Z ′ to
denote Z[(t1 + 1) . . t2] (see Figure 1). We say that Y ′ is retrorse if for any fixed
values of t0, X [t0, t1]c (the digits of X outside [t0, t1]) and Y [2� . . (n− 1)], each
value of Z ′ can arise from at most four different values of X ′. That is to say there
is at most a four-to-one mapping from possible values of X ′ to possible values
of Z ′. We define IY,
 = � if Y ′ is retrorse, otherwise IY,
 = 0. Note that IY,
 only
depends on Y and �. We will use IY,
 similarly to the recovery number RV,
 from
Section 2.2 and replace Lemma 2 with Lemma 7 below, which combined with
Lemma 6 gives us Corollary 2.

Lemma 7. If the intervals [t0, t1] and [t1 + 1, t2] both have the same length �,
then the entropy

H(Z[(t1 + 1) . . t2] | X [t0, t1]c = Xfix[t0, t1]c) � δIY,

4
− 1

2
.

Corollary 2. For any fixed number Y, two intervals [t0, t1] and [t1 + 1, t2] of
the same length �, and any algorithm solving the online multiplication problem
on X chosen uniformly at random from [qn],

Lower Bounds for Online Integer Multiplication and Convolution 603

E [|IT (t0, t1, t2)|] � δIY,

8w
− 1 .

We take the same approach as in Section 2.3 and use a lower-bound tree T
with n leaves to obtain the next lemma. The proof is identical to the proof of
Lemma 3, only that we use Corollary 2 instead of Corollary 1.

To avoid technicalities we will assume that n and δ are both powers of two
and we let the base q = 2δ.

Lemma 8. For any fixed number Y and any algorithm solving the online mul-
tiplication problem, the expected running time of the algorithm with the number
X chosen uniformly at random from [qn] is at least

δ

8w

∑
v∈T

IY,L(v) − (n− 1) .

Before giving the proof of Theorem 4, we bound the value of IY,
 for both a
random number Y and Y = Kq,n. In order to do so, we will use the following
two results by Paterson, Fischer and Meyer [10] which apply to binary numbers.
The lemmas are stated in our notation, but the translation from the original
notation of [10] is straightforward.

Lemma 9 (Lemma 1 of [10]). For the base q = 2 and fixed values of t0, �, n
and X [t0, t1]c (where t1 = t0 + �− 1), such that � is a power of two, each value
of Z ′ can arise from at most two values of X ′ when Y = K2,n.

Lemma 10 (Corollary of Lemma 5 in [10]). For the base q = 2 and fixed
values of t0, �, n and X [t0, t1]c (where t1 = t0 + �− 1), such that � is a power of
two, at least half of all possible values of Y ′ have the property that each value of
Z ′ can arise from at most four different values of X ′.

Lemma 11. If � is a power of two, then for a random Y ∈ [qn], E[IY,
] � �/2,
and for Y = Kq,n, IY,
 = �.

Proof. Suppose first that Y = Kq,n. Let � be a power of two and t0 a non-
negative integer. We define X ′, Y ′ and Z ′ as before (see Figure 1). Instead of
writing the numbers in base q, we consider their binary expansions, in which
each digit is represented by δ = log2 q bits. In binary, we can write X , Y and
Z as in Figure 1 if we replace n, t0 and � with δn, δt0 and δ�, respectively.
Note that δ� is a power of two. Since Kq,n = K2,δn, it follows immediately from
Lemma 9 that Y ′ is retrorse and hence IY,
 = �.

Suppose now that Y is chosen uniformly at random from [qn], hence Y ′ is
a random number in [q2
]. From Lemma 10 it follows that Y ′ is retrorse with
probability at least a half. Thus, E[IY,
] � �/2. ��
Proof (Theorem 4). We assume that n is a power of two. Let Y be a random
number in [qn], either under the uniform distribution or the distribution in
which Kq,n has probability one and every other number has probability zero.

604 R. Clifford and M. Jalsenius

A lower bound on the running time is obtained by taking the expectation of the
bound in the statement of Lemma 8. Using linearity of expectation and applying
Lemma 11 and Fact 2 finish the proof. Note from Lemma 11 that the expected
value E[IY,
] = � when Y = Kq,n. ��

Acknowledgements

We are grateful to Mihai Pǎtraşcu for suggesting the connection between online
lower bounds and the recent cell-probe results for dynamic data structures and
for very helpful discussions on the topic. MJ was supported by the EPSRC.

References

1. Clifford, R., Efremenko, K., Porat, B., Porat, E.: A black box for online approxi-
mate pattern matching. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS,
vol. 5029, pp. 143–151. Springer, Heidelberg (2008)

2. Clifford, R., Sach, B.: Pattern matching in pseudo real-time. Journal of Discrete
Algorithms 9(1), 67–81 (2011)

3. Daykin, D.E.: Distribution of bordered persymmetric matrices in a finite field.
Journal für die reine und angewandte Mathematik 203, 47–54 (1960)

4. Fischer, M.J., Stockmeyer, L.J.: Fast on-line integer multiplication. In: STOC 1973:
Proc. 5th Annual ACM Symposium Theory of Computing, pp. 67–72 (1973)

5. Fredman, M.L.: Observations on the complexity of generating quasi-gray codes.
SIAM Journal on Computing 7(2), 134–146 (1978)

6. Fredman, M.L., Saks, M.: The cell probe complexity of dynamic data structures.
In: STOC 1989: Proc. 21st Annual ACM Symposium Theory of Computing, pp.
345–354 (1989)

7. Galil, Z.: String matching in real time. Journal of the ACM 28(1), 134–149 (1981)
8. Kaltofen, E., Lobo, A.: On rank properties of Toeplitz matrices over finite fields. In:

ISSAC 1996: Proc. of the 1996 International Symposium on Symbolic and Algebraic
Computation, pp. 241–249 (1996)

9. Minsky, M., Papert, S.: Perceptrons: An Introduction to Computational Geometry.
MIT Press, Cambridge (1969)

10. Paterson, M.S., Fischer, M.J., Meyer, A.R.: An improved overlap argument for
on-line multiplication. In: Proceedings of SIAM-AMS, vol. 7, pp. 97–111. Amer.
Math. Soc., Providence (1974)

11. Pǎtraşcu, M.: Lower Bound Techniques for Data Structures. PhD thesis, Mas-
sachusetts Institute of Technology (2008)

12. Pǎtraşcu, M., Demaine, E.D.: Tight bounds for the partial-sums problem. In:
SODA 2004: Proc. 15th ACM/SIAM Symposium on Discrete Algorithms, pp. 20–
29 (2004)

13. Pătraşcu, M., Demaine, E.D.: Logarithmic lower bounds in the cell-probe model.
SIAM Journal on Computing 35(4), 932–963 (2006)

14. Yao, A.C.-C.: Probabilistic computations: Toward a unified measure of complex-
ity. In: FOCS 1977: Proc. 18th Annual Symposium on Foundations of Computer
Science, pp. 222–227 (1977)

15. Yao, A.C.-C.: Should tables be sorted? Journal of the ACM 28(3), 615–628 (1981)

Automatizability and Simple Stochastic Games

Lei Huang and Toniann Pitassi

University of Toronto
{leih,toni}@cs.toronto.edu

Abstract. The complexity of simple stochastic games (SSGs) has been open
since they were defined by Condon in 1992. Despite intensive effort, the com-
plexity of this problem is still unresolved. In this paper, building on the results
of [4], we establish a connection between the complexity of SSGs and the com-
plexity of an important problem in proof complexity–the proof search problem
for low depth Frege systems. We prove that if depth-3 Frege systems are weakly
automatizable, then SSGs are solvable in polynomial-time. Moreover we identify
a natural combinatorial principle, which is a version of the well-known Graph Or-
dering Principle (GOP), that we call the integer-valued GOP (IGOP). We prove
that if depth-2 Frege plus IGOP is weakly automatizable, then SSG is in P.

1 Introduction

In a groundbreaking paper from 1992, Condon defined the family of simple stochastic
games (SSGs) [13]. A simple stochastic game is a directed graph with four types of
vertices: min nodes, max nodes, average nodes, and two sinks, a 0-sink and a 1-sink.
The game is played by two players, Max and Min, from a given start node. The goal of
Max is to reach the 1-sink, while the goal of Min is to reach the 0-sink, or to continue
the game indefinitely. The value of the game is the probability that Max wins, assuming
that both players play optimally.

A fascinating open question is determining the complexity of finding the value of a
game, or equivalently, the complexity of finding an optimal strategy. From a practical
point of view, stochastic games are used to model a variety of problems in software
verification and controller optimization, and from a theoretical point of view, the SSG
problem is fundamental since an efficient algorithm for it will imply algorithms for a
host of other problems. Indeed, it is known to be polynomial-time equivalent to many
other computational problems such as the generalized linear complementarity problem,
and the minimum stable circuit problem. Many other game-theoretic problems, such as
mean payoff games, discounted payoff games, and parity games, all reduce to SSGs
[2]. Furthermore, SSG is also the complete problem for the class AUC-SPACE(log n)
of logspace bounded alternating random turing machines [13].

Despite considerable effort over the last decades, it remains a longstanding open
problem to determine the complexity of SSGs. Condon [13,14] proved that the SSG
decision problem, “does the max player have a strategy ensuring at least 1

2 probability
of winning”, is in both NP and coNP. This makes SSGs one of the few combinato-
rial problems known to be in NP∩ coNP and suggests that it is very unlikely to be

 Supported by NSERC.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 605–617, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

606 L. Huang and T. Pitassi

NP-complete. Another natural avenue for obtaining a hardness result for SSGs are the
complexity classes associated with total functions in NP, such as PLS and PPAD. In
fact, recently the complexity of the Nash Equilibrium problem was resolved in a cele-
brated sequence of papers, culminating in a proof of the PPAD-completeness of Nash
[11,15] Unfortunately, such a hardness result for SSGs is unlikely, as it was shown to
lie in both PLS and PPAD [6].

The SSG problem has also been studied extensively from an algorithmic point of
view [14,17,24,22,18,5,21]. Many restrictions such as allowing only two of three types
of vertices, or to a constant number of random nodes, are known to have polynomial
time algorithms [14,17]. However, the current best algorithm for the full game is a
O(2

√
n) time randomized algorithm [22,18], and a O(n · |Vr|!) time deterministic algo-

rithm [17], where Vr is the set of average nodes.
A seemingly unrelated, but also longstanding and important problem is to determine

whether proofs in standard proof systems can be found efficiently. A proof system P is
automatizable if there exists an algorithm that takes as input a tautology f , and outputs a
P -proof of f , and such that the runtime is polynomial in the size of the shortest P -proof
of f . P is weakly automatizable if there is an algorithm that on input f and a number r
in unary, can distinguish the case where f is not a tautology from the case where f has
a P -proof of size at most r. It is known that P is weakly-automatizable if and only if
there is an automatizable proof system that simulates P [3].

The question of whether standard proof systems are automatizable is a fundamen-
tal question in logic and automated theorem proving [9]. Following [20], it was shown
that Frege systems are not weakly automatizable under a widely believed cryptographic
assumption – that the Diffie Hellman (DH) problem (and hence factoring) is hard to
compute. However, despite considerable effort, the weak automatizability question for
low-depth Frege systems is unresolved. [7] showed that ACk

0-Frege is not weakly au-
tomatizable under the assumption that the DH problem can be solved in time exp(nc/k),
where c > 2. The best algorithm for DH runs in time exp(n1/2), and moreover the num-
ber field sieve is conjectured to solve DH in time exp(n1/3); thus for small k (k less than
5 or 6), the weak automatizability of depth-k Frege is unresolved. Even for depth-1
Frege (i.e. resolution), there is no clear evidence for or against weak automatizability,
despite results in both directions [1,12].

Results and Related Work. In a recent paper, Atserias and Maneva made an important
new link between automatizability and game theory by proving that solving mean pay-
off games (MPGs) is reducible to the weak automatizability of depth-2 Frege systems
and to feasible interpolation of depth-3 Frege systems[4]. In this paper, we prove that
if depth-3 Frege systems are weakly automatizable, then simple stochastic games are
solvable in polynomial time, thus establishing a link between SSGs and an important
open problem in proof complexity.

Mean payoff games can be viewed as a special case of simple stochastic games,
but depth-2 Frege systems can also be viewed as a special case of depth-3 Frege thus
the results cannot be directly compared. However, the increase in depth suggests an
approach to pinpointing a difference between MPGs and SSGs, an interesting open
problem in its own right. Moreover, the only part of our proof that is not contained in
depth-2 is in the proof of a natural combinatorial property about graphs that we will

Automatizability and Simple Stochastic Games 607

call the Integer-Valued Graph Ordering Principle (IGOP). IGOP states informally that
in any finite undirected graph where all nodes are labelled by integers, there exists a
vertex whose value is at least as large as its neighbors. This principle is expressible as
a CNF formula, and we actually prove that if depth-2 Frege, augmented with IGOP,
is weakly automatizable, then SSGs are in P. This raises the very interesting question
as to the exact proof theoretic strength required to prove IGOP: If it has a polynomial
size depth-2 Frege proof, then our result subsumes that of [4]. On the other hand, if
not, then we have found a natural CNF formula separating depth-2 from depth-3 Frege,
and furthermore, expose an essential difference between mean payoff games and simple
stochastic games.

Our proof builds on [4] in that we use and further develop very low depth circuits
that they invent for performing addition of a constant number of integers. However, at a
high level our proofs are very different. [4] goes through an intermediate transformation
to the Max Atom Problem that appears to hold only for mean payoff games. In contrast
our proof strategy is much more generalizable. The main idea relies on the unique fixed
point property of SSGs - ie SSGs can be characterized as a fixed point computation
where the unique fixed point indicates the winner. This property is shared by a variety
of other problems, including the more general class of stochastic games defined by
Shapley [23].

Proof Overview. The basic idea behind our proof is to study the complexity of stopping
games, which are polynomial-time equivalent to general SSGs. In a stopping game, the
optimal solution is also the only solution to a set of local optimality conditions. We
formalize the formulas, MinWin(G) (and MaxWin(G)) expressing that there is a locally
optimal strategy with value less than or equal to one half (or greater than one half).
Since the locally optimal solution is always unique for stopping games, the formula
F(G) = MinWin(G)∧MaxWin(G) is unsatisfiable. The bulk of our argument is thus to
show that F(G), has an efficient depth-3 Frege refutation. Then if depth-3 Frege has fea-
sible interpolation, the interpolant for F will return whether MinWin(G) or MaxWin(G)
is unsatisfiable, thus revealing the winner of the game. Since weak automatizability im-
plies interpolation, it immediately follows that weak automatizability of depth-3 Frege
implies that SSG is in P. The technical difficulty is to prove that for any stopping game
G, the locally optimal solution is unique. This involves a very careful analysis of low
depth circuits for performing arithmetic on sets of numbers, as well as very efficient
reasoning about these arithmetic formulas.

2 Definitions

Simple Stochastic Games. In a simple stochastic game (SSG) two players take turns
moving a pebble along a directed graph G : (V, E) with two terminal positions, a 0-sink
and a 1-sink. Conventionally the game also has a unique source node from which game-
play starts. All non terminal nodes of G are partitioned into max nodes, min nodes, and
random nodes. From a max (min) nodes, Max (Min) chooses the out-edge the pebble
takes next. At a random node, the successor node is chosen by chance. We will consider
only binary SSGs where every node has out degree two and random nodes choose each
out-edge with probability 1

2 . All SSGs have such a binary equivalent.

608 L. Huang and T. Pitassi

In a given play, the max player wins if the pebble reaches the 1-sink and the min
player wins otherwise (either by reaching the 0-sink or continuing play indefinitely).
Let σ be a strategy for Max, σ : V ∗ → V mapping paths in a play to a legal successor
node, and τ be a strategy for Min. The value of a node under σ and τ, vσ,τ(i), is defined
to be the probability that the game ends at 1-sink if the players use strategies σ, τ and
the pebble starts at node i. The optimal value vopt(i) of a node is the minimax over
all strategies vopt(i) = maxσ minτ vσ,τ(i) = minτ maxσ vσ,τ(i) The value of the game is
vopt(0) where node 0 is the start node.

Fact 1. (Shapley, 53) For every SSG there exists pure positional strategies σ and τ that
achieve vopt(i) at every node i.

A strategy can be thought of as simply a mapping V →V and optimal strategies ergodic,
they are optimal regardless of which vertex is the start vertex.

Fact 2. (Condon, 92) The optimal values of any n node SSG can be written as a
b where

a,b ∈N, b = O(2n)

Definition 1. For a simple stochastic game G we define the associated function IG :
{0,1}n→ {0,1}n as follows.

IG(!x)(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max{!x(j),!x(k)} if i is a max vertex with successors j,k

min{!x(j), !x(k)} if i is a min vertex with successors j,k
1
2!x(j) + 1

2!x(k) if i is a average vertex with successors j,k

0/1 if i is the zero/one sink

The vector !x is stable for G F if for all i, IG(!x)(i) =!x(i). If !v is the vector of optimal
values,!v(i) = vopt(i) for all i, then!v is stable for G. In general, there can be more than
one stable vector. However, for every game G, there is a corresponding SSG, G′ such
that G′ has a unique stable vector and moreover, G has optimal value greater than 1/2
if and only if G′ has optimal value greater than 1/2, [13,23].

Definition 2. Let G be an n node
SSG. The m-stopping game G′
corresponding to G is a simple
stochastic game with n+mn nodes
constructed such that any play
eventually halts at a terminal node.
For each vertex i in the original
graph of G, G′ has a network of av-
erage nodes structured as in Fig. 1.
Every in-edge to i in G is replaced
by an in-edge to emi in G′.

Fig. 1. Average node network added to every node i
of original game G

Theorem 3. (Condon ’92, Shapley 53’) If G is an m-stopping game (for any m), then
G has a unique stable vector!x.

Automatizability and Simple Stochastic Games 609

Theorem 3 implies that finding the optimal values for a stopping game G is equivalent to
finding a stable vector for IG. This characterization of optimal values will be very useful
to us since it allows us to express the statement ”!v is the vector of optimal values” in
terms of very low level equalities and sums.

Theorem 4. (Condon ’92, Shapley 53’) For every G there exists a constant c such that
the cn-stopping game G′ has value > 1

2 if and only iff G has value > 1
2 .

Formulas and Proof Systems. We will work with the propositional sequent calculus,
PK. (See [19] for details.) The size of a PK proof is the sum of the sizes of all formulas
occurring in the proof. The depth of a formula is the number of alternations of OR
and ANDs. A formula is Σ+

k (Π+
k) if it has depth k + 1, where the top connective is

OR (AND), and the bottom connective has constant size; a formula is Δ+
k if it can be

written both as a Σ+
k and as a Π+

k formula. A depth-k PK proof is a PK proof where every
formula in the proof has depth at most k. It is important to note that depth-k PK proofs
are the same as depth-k + 1 Frege proofs in other non-sequent style axiomatizations.
We will present PK proofs where every formula in the proof is a Δ+

k formula, for some
k. Such proofs translate into depth k−1 PK proofs, or equivalently, into depth k Frege
proofs (in non sequent-style proof systems).

Definition 3. A proof system P is automatizable if there exists an algorithm A such that
for all unsatisfiable formulas f A(f) returns a P -proof of f , and the runtime of A on f
is polynomial in the size of the smallest P -proof of f . P is weakly automatizable if there
exists a proof system that polynomially simulates P and that is automatizable.

Definition 4. Let F = A(!x,!z)∧B(!y,!z) be an unsatisfiable formula. An algorithm C is
an interpolant for F if for all α∈ {0,1}|!z|, C(α) = 1 implies A(!x,α) is unsatisfiable, and
C(α) = 0 implies B(!y,α) is unsatisfiable. A proof system P admits feasible interpolation
if for all unsatisfiable formulas F = A(!x,!z)∧B(!y,!z), there exists an algorithm C that
is an interpolant for F, and the runtime of C is polynomial in the size of the shortest
P -proof of F. Note that, if P is weakly automatizable then P has feasible interpolation.

Definition 5. Let G be a n node graph with constant out-degree 2 where each node is
labeled with an integer xi, not all zero. The formula IGOP(G) intuitively says that there
exists some i with a nonzero label at least as large as that of its children. Formally, if
x(i) is a set of variables representing the value xi in binary, IGOP(G) is the formula∨

i x(i) �= 0−→∨
i[x(i) > 0]∧ [x(i)≥ x(c1(i))]∧ [x(i) ≥ x(c2(i))] where c1(i) and c2(i)

are the children of i and ≥ denotes a standard Δ+
2 formula for comparison. Note that

[x(i) ≥ x(c1(i))]∧ [x(i) ≥ x(c2(i))] is NC0 of Δ+
2 which can be written in Δ+

2 so that
IGOP(G) is in Σ+

2 formula.

Definition 6. The formula Max-Noden intuitively expresses that in any set of n integers,
there exists a maximal element. Formally, let x(i) be the set of variables represending
the value xi. Max-Noden =

∨
i
∧

j �=i[x(i)≥ x(j)].

For our purposes, we’d like to apply the IGOP principle to graphs where the nodes are
labeled with differences of integers. This does not inherently add to the depth IGOP(G)
since we will develop a Δ+

2 circuit to compare difference (see Sect. 4).

610 L. Huang and T. Pitassi

Definition 7. Let Σ+
2 -Frege+IGOP denote the Σ+

2 -Frege proof system augmented with
the following axiom schema for IGOP. Let d(i) be shorthand for the difference |x(i)−
y(i)| ∨

i

[x(i) �= y(i)]−→
∨

i

[d(i) > 0]∧ [d(i))≥ d(c1(i))]∧ [d(i) ≥ d(c2(i))]

which states intuitively that if x and y are not equal for every i then there exists an i
where the difference d(i) is nonzero at least as the value of d at the children of i.

We will show that IGOP has a Σ3 proof (via Max-Noden), Σ+
2 -Frege+IGOP is a special

case of Σ3-Frege.

3 Main Result

In this section we prove our main theorem, showing that if Σ3-Frege admits feasible
interpolation, then SSG can be solved in polynomial time.

Theorem 5. If Σ+
2 -Frege+IGOP has feasible interpolation, then SSG is in P.

Corollary 1. If Σ3-Frege has feasible interpolation, then SSG is in P.

The main idea behind the reduction is as follows. Given an SSG, G, we first construct
an m-stopping game G′, where G′ has value greater than 1/2 if and only if G has value
greater than 1/2. This implies that the following statement is unsatisfiable.

FG′ =
(

IG′(!x) =!x∧!x(0) >
1
2

)∧(
IG′(!w) = !w∧!w(0)≤ 1

2

)
,

where each!x(i) and !w(i) is an integer represented by a length N binary string where N
is O(n).

For every stopping game G′ we will prove that FG′ has a polynomial-sized Σ3-Frege
refutation. Thus if Σ3-Frege has feasible interpolation, then the interpolant for F ′G solves
the SSG-value problem for G. In order to provide a short Σ3-Frege refutation of F ′G, it
suffices to provide a polynomial-sized Σ3-Frege proof of Uniqueness(G) = ”IG(!x) =
!x, IG(!w) = !w−→!x = !w”.

To see this, note that if Uniqueness(G) has a short Σ3-Frege proof, then: (1) From
IG(!x) = !x and IG(!w) = !w, we can derive !x = !w; (2) Secondly, from !x = !w, we can
derive!x(0) = !w(0); and finally (3) From !x(0) = !w(0), we can derive!x(0) ≤ 1

2 , which
contradicts FG.

Theorem 6. For any stopping simple stochastic game G, the statement Uniqueness(G)
can be proved in Σ+

2 -Frege+IGOP.

We first present a proof of Theorem 3, the uniqueness theorem for SSGs. The remainder
of our paper will focus on showing that this can be formalized in depth-3 Frege.

Automatizability and Simple Stochastic Games 611

Proof. Theorem 3
Let G′ be a m-stopping game. Suppose that !w and !x are stable for G′ and !x �= !w.
Denote !d the difference vector, !d = |!w−!x|. Let i be a node such that !d(i) > 0.
The stopping game structure induces a discount on the original. If node i had chil-
dren j and k in the original game, then in any stable solution !v for G′ i’s children
are nodes with the values

(
1− 1

2m

)
!v(j) and

(
1− 1

2m

)
!v(k). This implies that !d(i) =(

1− 1
2m

)
(F(!x(j),!w(k))−F(!w(j),!w(k))) where F ∈ {min,max,ave}, and thus at least

one of !d(j) or !d(k) is strictly greater than !d(i). If we choose i to be a node where
!d(i) ≥ !d(j) and !d(i) ≥ !d(k) then we reach a contradiction. (Note that such an i exists
since choosing i that maximizes !d(i) satisfies these conditions.)

4 Arithmetic Formulas

We will represent integers using two’s complement binary notation. In two’s comple-
ment a set of variables z1z2...zn has the value z =−2n−1 · z1 +2n−2 · z2 + ...+21 · zn−1 +
20 · zn. To prevent overflow, we will also pad each integer by a constant k where k is the
largest number of summands used in any operation so that z1z2...zn→ zk

1z2z3...zn.
Let !x be a vector that satisfies !x = IG(!x) for some game G. Recall that in any SSG,

the values can be written as a
b where b = O(2n). After normalizing to a common de-

nominator D and padding by k, each x(i) will be expressed as a set of N binary variables
x1x2...xN so that x(i) = 1

D

(−2N−1 · x1 + 2N−2 · x2 + ...+ 21 · xN−1 + 20
)

For the remainder of the paper, [F(x)] will be used to represent the Δ+
2 logical for-

mula that is equivalent to the mathematical formula, F(x). To simplify notation, only
one set of brackets will be used when any nesting occurs so that [[F(x)]↔ [G(x)]] is
just [F(x)↔ G(x)]. Boldface variables x denote an array of k×N array of integers and
x(i) is the ith row. Normal font variables x represent a single integer expressed with N
binary variables. We can represent the following formulas as Δ+

2 formulas. See [19] for
precise definitions.

– [x↔ y] is a formula that is true if and only if ∀i(xi↔ yi)
– [x(1) + ...+ x(k)− y(1)...− y(l)] represents a set of N formulas, such that the ith

formula is true iff the ith bit of x(1) + ...+ x(k)−y(1)...−y(k) is 1.
– [x(1) + ...+ x(k)− y(1)...− y(l)] ≥ z] is true if and only if the sum on the left is
≥ z. And similarly [x(1) + ...+ x(k)−y(1)...−y(l)]< z] is true iff the sum is less
than z

– [max(x,y)] represents a set of formulas where the ith formula is xi iff x = max(x,y)
and [min(x,y)] represents the set of formulas where the ith formula is xi iff x =
min(x,y).

The technical difficulty lies in defining formulas, Fk
i∈1,...,N for calculating all of the

bits in the sum of k N−bit integers for any constant k. Given {Fk
i } the remainder of

the formulas are fairly straightforward. For arbitrary k, [4] shows that there exists a
Δ+

2 formula for calculating whether the sum of k integers generates an overflow. We
extend their formula so that it calculates all bits, Fk

i , of the sum. The following lemmas
comprise the bulk of the work of our proof. (Proofs are in [19].)

612 L. Huang and T. Pitassi

Lemma 1 (Substitution)
For any Δ+

2 formula F(x1,x2, ...xN ,z...) there exists a short PK proof of the following se-
quent, where all formulas in the proof are Δ+

2 formulas. [x↔ y]−→ [F(x1,x2, ...xN ,z...)
↔ F(y1,y2, ...yN ,z...)]

Lemma 2. For N bit integers x, y the following sequents have short PK proofs where
all formulas are Δ+

2 : (1) [x≥ y]−→ [max(x,y) = x], and (2) [x≥ y]−→ [min(x,y) = y].

Lemma 3 (Nested Addition). For N bit integers a, b, c, and array of constant k N−bit
integers x there exists short PK proofs of the following where all formulas are Δ+

2 :

[a + b↔ c]−→ [x(1) + ...+ x(k) + a + b↔ x(1) + ...+ x(k) + c]
[a−b↔ c]−→ [x(1) + ...+ x(k) + a + b+ 1↔ x(1) + ...+ x(k) + c]

Corollary 2. Given [x + a + b↔ 1N] we can derive [x↔ a + b] for any integers x, a, b.
In particular, [x↔ a−b]−→ [x↔ a + b], and [x↔ a + b]−→ [x↔ a−b].

Lemma 4. Let x,y,x′,y′ be N-bit integers, and m > 0, and 1
2m y represents

0my1y2...yN−m. Then there exists a short PK proof of the following formula, where all
formulas are Δ+

2 :

[x > x′], [x↔ y− 1
2m y], [x′ ↔ y′ − 1

2m y′]−→ [x− x′ − y + y′ < 0]

Lemma 5. Fix an a×N array z and a b×N array x where each integer is padded by
k = a + b bits. There is a short proof of the following:

[z(1) + ...z(a) < 0] , [x(1) + ...+ x(b)< 0]−→[z(1) + ...z(a) + x(1) + ...x(b) < 0]
[z(1) + ...z(a)≥ 0] , [x(1) + ...+ x(b)≥ 0]−→[z(1) + ...z(a) + x(1) + ...x(b)≥ 0]

5 Proof of Uniqueness

Equipped with the above lemmas, we can now prove uniqueness for SSGs in depth-3
Frege. Let x and w be arrays of integers as defined in the previous section such that
each integer is padded by k bits and x(i) is the value associated with the ith node of a
m−stopping game G. We define a formula, Uniqueness(G) on the N ·(n+mn) variables
defined above which will state that if x = IG(x) and w = IG(w), then x(i) = w(i) for
every i. The premise x = IG(x) can be stated as follows, using the arithmetic formulas
defined in the previous section.

(1) For every max node i, with children em j and emk, [x(i)↔max(x(em j),x(emk))]
(2) For every min node i, with children em j and emk, [x(i)↔min(x(em j),x(emk))]
(3) For every average node i, with children em j and emk, [2 ·x(i)↔ x(em j) + x(emk)]
(4) For every new average node of the form ei j, [x(ei j)↔ x(j)− 1

2i x(j)].

For any i, we will prove that if d(i) (the absolute value of x(i)−w(i)) is nonzero and
at least as large as its neighbors, d(j) and d(k), then we can derive a contradiction.
Formally, let M(i) be the formula:

[x(i) > w(i)],∀s ∈ { j,k}([x(i)−w(i)−x(s) + w(s)≥ 0]) ,
∀s ∈ { j,k}([x(i)−w(i)−w(s) + x(s)≥ 0])

Automatizability and Simple Stochastic Games 613

We will prove for every i: M(i), [x = IG(x)], [w = IG(w)]−→⊥. Finally we can use
the IGOP axiom schema to prove that there exists an i such that M(i) holds which allows
us to conclude: [x = IG(x)], [w = IG(w)]−→[x(1)↔ w(1)], ..., [x(n)↔ w(n)].

Case 1. i is a max node with children j and k (Proof for i is a min node is similar.)
As in proof of Theorem 3, we can further divide Case 1 into four cases depending on the
sign of [x(j)− x(k)] and [w(j)−w(k)]. Because of the way we defined comparisons,
[a < b] is exactly ¬[a ≥ b] so it it’s not hard to show that exactly one of four sub cases
is true. We show a complete proof for when [x(em j)≥ x(emk)], [w(em j) ≥ w(emk)], the
remaining three subcases are in [19].

Let H(x,w) denote the subcase premise [x(em j) ≥ x(emk)], [w(em j) ≥ w(emk)].
We prove for contradiction that M(i),H(x,w), [x = IG(x)], [w = IG(w)]−→⊥. Using
Lemma 2 we can prove [x(em j) ≥ x(emk)]−→[max(x(em j), x(emk))−→x(em j)]. And
by weakening the LHS we have H(x,w) −→ [max(x(em j), x(emk))↔ x(em j)]. From
the statements forming [x = IG(x)] above we can apply [x(i)↔ max(x(em j), x(emk))]
and [x(em j)↔ x(j)− 1

2m x(j)] to prove
(1) : [x = IG(x)] ,H(x,w)−→ [x(i)↔ x(j)− 1

2m x(j)] and (2) : [w = IG(w)] ,H(x,w)
−→ [w(i)↔ w(j)− 1

2m w(j)]. The next step is to prove the following sequent, which
follows from Lemma 4:

(3) : [x(i) > w(i)], [x(i)↔ x(j)− 1
2m x(j)], [w(i)↔ w(j)− 1

2m w(j)]−→
[x(i)−w(i)−x(j) + w(j)< 0]

Finally to put things together, we apply cut on (1),(2) and (3) to obtain:

(4) : M(i),H(x,w), [x = IG(x)] , [w = IG(w)]−→[x(i)−w(i)−x(j) + w(j)< 0]

which is the same as M(i),H(x,w), [x = IG(x)] , [w = IG(w)]−→⊥.

Case 2. For an average node i, it is easy to show that x(j)−w(j) > x(em j)−w(em j)
and x(k)−w(k)> x(emk)−w(emk) just as we did in the max node case using Lemma 4.
By Lemma 5 we can combine the two negative sums above to the larger negative sum

[x(em j)−w(em j)−x(j) + w(j) + x(emk)−w(emk)−x(k) + w(k) < 0]

The goal is to make the substitutions that relate this inequality back to x(i)−w(i).
We can always add zero to any sum without changing its value, and due to Lemma 3
we can also add a pair of integers that sum to zero. Using this trick we will replace the
terms containing em j and emk with terms containing i.

When i is an average node, 2x(i) = [x(em j) + x(emk)]. Recall that 2x(i) does not
represent a sum but a new set of binary variables x(i)2...x(i)N0. This is very convenient
as we can now freely use Lemma 3 to add 0 = 2x(i)−2x(i) and 0 = 2w(i)−2w(i) to
the negative sum above to prove that

[2x(i)−2x(i) + 2w(i)−2w(i) + x(em j)−w(em j)−x(j) + w(j)
+x(emk)−w(emk)−x(k) + w(k) < 0]

In order to cancel out the em j and emk terms, we need to make the following four
substitutions:

614 L. Huang and T. Pitassi

– 2x(i)→ [x(i) + x(i)]
– 2x(i)→ [x(em j)−x(emk)]

– 2w(i)→ [w(em j) + w(emk)]
– 2w(i)→ [w(i)−w(i)]

After removing the zero terms, we finally arrive at

[x = IG(x)], [w = IG(w)]−→[x(i)+x(i)−w(i)−w(i)−x(j)+w(j)−x(k)+w(k)< 0]

On the other hand, if M(i) is true then both [x(i)−w(i)− x(j) + w(j) ≥ 0] and
[x(i)−w(i)− x(k) + w(k) ≥ 0] are true. Applying Lemma 5 to the two positive sums
we can derive that the same sum must be positive.

M(i)−→[x(i)−w(i)−x(j) + w(j) + x(i)−w(i)−x(k) + w(k)≥ 0]

As with the max/min nodes, we have shown that for all average nodes i from
M(i), [x = IG(x)], [w = IG(w)] we can derive a contradiction. Thus for any i, M(i)
−→Uniqueness(G). Using the IGOP axiom schema, we can immediately derive∨

i M(i) from which we can conclude Uniqueness(G).

5.1 Proving Max-Noden

To achieve the Σ3 result, it remains to prove Max-Noden. Suppose that x(i)−w(i) is
maximal among the first n− 1 nodes, and x(n) ≥ w(n) (w(n) > x(n) follows by sym-
metry). Either (1) [x(i)−w(i) ≥ x(n)−w(n)] or (2) [x(i)−w(i) < x(n)−w(n)]. If (1)
is true then x(i)−w(i) remains maximal. If (2) is true then for each j, [x(n)−w(n)−
x(j) + w(j) < 0] would imply that [x(i)−w(i)− x(j) + w(j)] as well (Lemma 5 fol-
lowed by Lemma 3). Since we know the latter is not true, we can prove that for all j,
[x(n)−w(n)≥ x(j)−w(j)]. In either case, we’ve proven Max-Noden, by Σ+

3 proofs.

5.2 Removing the Bottom Fan-In

So far, we have shown how to prove the uniqueness property with Σ+
3 proofs, or with

depth Σ+
2 proofs plus the IGOP principle. With one additional idea, we can remove

the small bottom fanin. Recall that the bottom fanin was only a constant – suppose
the largest bottom fanin is c. We can replace our original formula, F (in our case the
formula asserting uniqueness), by a new formula, F ′, as follows. First, we introduce
(polynomially many) new variables, one associated with each conjunction of at most
c literals. The new uniqueness formula F ′ asserts that G implies F , where G is a con-
junction of new clauses (called ”extension axioms”) asserting that each new variable is
equivalent to its associated conjunction. The new formula F ′ is still of polynomial size,
and furthermore it is a tautology if and only if F is a tautology. It is a standard argument
to show that if F has a PK proof where all formulas in the proof are Δ+

k , then F ′ has
a PK proof where all formulas in the proof are Δk. To complete the proof of Theorem
5, we replace our original uniqueness formula, F , by the new uniqueness formula, F ′.
Since F has efficient Σ+

3 -Frege proofs, F ′ has efficient Σ3-Frege proofs.

Automatizability and Simple Stochastic Games 615

6 Consequences and Open Problems

Tightness of our Result. In this paper, we have shown that if depth-2 Frege systems
plus the Integer-Valued Graph Ordering Principle (IGOP) is automatizable, then SSGs
are in P. This can be viewed as either an “easyness” result for SSGs or a hardness result
for automatizability but more importantly this paper and [4] open up new ways of ap-
proaching both problems. Of course, any result in the converse direction would further
strengthen this connection. An interesting question is whether there exists an efficient
depth-2 proof of uniqueness for SSGs (this would follow immediately if IGOP could be
proven in depth-2). However, we conjecture that IGOP does not have efficient depth-2
proofs. Our conjecture is based on the fact that this principle is simply an instance of the
usual GOP but where the variables are replaced by Δ2 formulas. GOP is a well-known
propositional tautology as it is the classic (and only) example of a family of formulas
that exhibits the tightness of size-width tradeoffs lower bounds for resolution in that it
has efficient proofs but requires O(

√
n) clause width [8,16]. Our conjecture just says

that this phenomena continues to hold when we scale GOP up to higher depth. In fact
we make the stronger conjecture that our depth-3 proof of Uniqueness for SSGs is tight.
Moreover, we conjecture that the depth-2 proofs of totality for mean payoff games [4]
are also tight:

Conjecture 1. (1)Uniqueness for SSGs does not have polynomial-size depth-2 Frege
proofs; (2)Totality of MPGs does not have polynomial-size depth-1 (resolution) proofs.

If Conjecture (1) is true, it would imply that SSGs cannot be efficiently reduced (in the
type-2 setting) to mean payoff games. This follows from the main result of Atserias
and Maneva [4], together with a theorem due to Morioka and Buresh-Oppenheim [10]
(Theorem 10 in their paper).

More generally, it is interesting to study low-depth, efficient reductions between
statements of totality of various game-theoretic problems. Just as we study the relative
strength of various search problems, it is natural to consider the relative proof theoretic
strength of the underlying principles, by studying efficient reductions between them in
standard low-depth propositional proof systems. The study of total search problems in
general, and their corresponding proofs of totality are widely studied in proof complex-
ity. Indeed, the strength of weak systems of arithmetic are classified in terms of what
kinds of search problems are provably total in the theory. (For every search problem
there is a first order formula expressing that the search problem is total, and conversely
for every statement of the form ∃xA(x,y), there is a corresponding total search problem.)
PLS figures prominently in this research, as it is precisely the class of total functions that
are provably total in the theory TV 1. It would be interesting to expand this work to in-
clude the study of statements of totality for various game-theory problems, as well as to
study low-depth reductions between such statements. In particular, consider the propo-
sitional statements expressing the following principles: (a) totality for SSGs, (b) totality
of mean payoff games, (c) the iteration principle (underlying PLS), (d) the pigeonhole
principle (underlying PPAD). Which ones can and cannot be reduced in low-depth to
one another? Answers to these questions would likely yield an understanding of the
relative strengths of the corresponding search classes: SSG, MPG, PLS, and PPAD.

616 L. Huang and T. Pitassi

References

1. Alekhnovich, M., Razborov, A.: Resolution is not automatizable unless w[p] is tractable. In:
IEEE Symposium on Foundations of Computer Science (2001)

2. Andersson, D., Miltersen, P.B.: The complexity of solving stochastic games on graphs. In:
Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 112–121. Springer,
Heidelberg (2009)

3. Atserias, A., Bonet, M.: On the automatizability of resolution and related propositional proof
systems. Information and Computation 189(2), 182–201 (2004)

4. Atserias, A., Maneva, E.: Mean-payoff games and propositional proofs. In: Abramsky, S.,
Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS,
vol. 6198, pp. 102–113. Springer, Heidelberg (2010)

5. Bjorklund, H., Vorobyov, S.: Combinatorial structure and randomized subexponential algo-
rithms for infinite games. Theoretical Computer Science 349, 347–360 (2005)

6. Blum, M., Juba, B., Williams, R.: Non-monotone behaviors in min/max/avg circuits and their
relationship to simple stochastic games

7. Bonet, M., Domingo, C., Gavalda, R., Maciel, A., Pitassi, T.: No feasible interpolation or
automatization for AC0-Frege proof systems (1998) (manuscript)

8. Bonet, M.L., Galesi, N.: optimality of size-width tradeoffs for resolution. Computational
Complexity 10, 261–276 (2001)

9. Bonet, M.L., Pitassi, T., Raz, R.: On interpolation and automatization for frege systems.
SIAM J. Comput. 29, 1939–1967 (2000)

10. Buresh-Oppenheim, J., Morioka, T.: Relativized np search problems and propositional proof
systems. In: 19th IEEE Conference on Computational Complexity, CCC (2004)

11. Chen, X., Deng, X., Teng, S.H.: Settling the complexity of two-player nash equilibria. Journal
of the ACM 56 (2009)

12. Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Gröbner basis algorithm to find proofs of
unsatisfiability. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory
of Computing, Philadelphia, PA, pp. 174–183 (May 1996)

13. Condon, A.: The complexity of stochastic games. Information and Computation 96, 203–224
(1992)

14. Condon, A.: On algorithms for simple stochastic games. In: Advances in Computational
Complexity Theory. DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, vol. 13, pp. 51–73 (1993)

15. Daskalakis, C., Goldberg, P., Papadimtriou, C.H.: The complexity of computing a nash equi-
librium. SIAM Journal on Computing 39, 195–259 (2009)

16. Galesi, N., Lauria, M.: Optimality of size-degree tradeoffs for polynomial calculus. ACM
Trans. Comput. Logic 12, 4:1–4:22 (2010)

17. Gimbert, H., Horn, F.: Simple stochastic games with few random vertices are easy to solve.
In: Amadio, R. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 5–19. Springer, Heidelberg
(2008)

18. Halman, N.: Simple stochastic games, parity games, mean payoff games and discounted
payoff games are all lp-type problems. Algorithmica 49(1), 37–50 (2007)

19. Huang, L., Pitassi, T.: Automatizability and simple stochastic games (2011),
http://www.cs.toronto.edu/˜leih/ssg_full.pdf

20. Krajicek, K., Pudlak, P.: Some consequences of cryptographic conjectures for S1
2 and EF. In:

Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 210–220. Springer, Heidelberg (1995)
21. Kumar, V., Tripathi, R.: Algorithmic results in simple stochastic games. Technical Report

855, University of Rochester (2004)

http://www.cs.toronto.edu/~leih/ssg_full.pdf

Automatizability and Simple Stochastic Games 617

22. Ludwig, W.: A subexponential randomized algorithm for the simple stochastic game
problem. Inf. Comput. 117, 151–155 (1995)

23. Shapley, L.S.: Stochastic games. Proceedings of the National Academy of Sciences
U.S.A. 39, 1095–1100 (1953)

24. Somla, R.: New algorithms for solving simple stochastic games. Electron. Notes Theor.
Comput. Sci. 119(1), 51–65 (2005)

Exponential Lower Bounds for AC0-Frege Imply
Superpolynomial Frege Lower Bounds

Yuval Filmus1,�, Toniann Pitassi1,�, and Rahul Santhanam2

1 Univeristy of Toronto
{yuvalf,toni}@cs.toronto.edu

2 University of Edinburgh
rsanthan@inf.ed.ac.uk

Abstract. We give a general transformation which turns polynomial-
size Frege proofs to subexponential-size AC0-Frege proofs. This indicates
that proving exponential lower bounds for AC0-Frege is hard, since it is
a longstanding open problem to prove super-polynomial lower bounds
for Frege. Our construction is optimal for tree-like proofs.

As a consequence of our main result, we are able to shed some light on
the question of weak automatizability for bounded-depth Frege systems.
First, we present a simpler proof of the results of Bonet et al. [5] showing
that under cryptographic assumptions, bounded-depth Frege proofs are
not weakly automatizable. Secondly, we show that because our proof is
more general, under the right cryptographic assumptions, it could resolve
the weak automatizability question for lower depth Frege systems.

1 Introduction

The fundamental question in computational complexity is the P vs. NP question.
Though we are very far from resolving this question, over the past few decades
we have made substantial progress in understanding why certain approaches, for
example diagonalization and the use of combinatorial or algebraic techniques to
prove circuit lower bounds, are unlikely to work. Various barriers such as the
relativization, natural proofs and algebrization barriers have been formulated
to capture the limitations of known techniques, and in turn, this meta-level
understanding of complexity lower bound problems has led to developments in
areas such as low-level complexity and derandomization.

However, there are still approaches whose power is not well understood, such
as those used in proof complexity. Proof complexity was introduced by Cook and
Reckhow [8] as a framework within which to study the NP vs. coNP problem.
Cook and Reckhow defined propositional proof systems in a very general way by
insisting only that proofs be verifiable in polynomial time, and showed that the
existence of a propositional proof system in which all tautologies have polynomial
size proofs is equivalent to NP = coNP. They suggested a program to separate
NP and coNP (and thereby P and NP) by showing superpolynomial proof size

� Supported by NSERC.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 618–629, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Exponential Lower Bounds 619

lower bounds for explicit tautologies in progressively stronger proof systems. The
hope was that techniques from logic and proof theory could be effective where
techniques inspired by recursion theory or combinatorics are not. The fact that
the very definition of the P vs. NP question involves the notion of “proof” in a
fundamental way makes this hope somewhat plausible.

Indeed, over the past couple of decades, lower bounds have been shown for
various natural proof systems [9,3]. However, lower bounds for natural systems
such as Frege and Extended Frege still seem out of reach. We seem to have hit a
“wall” with proof complexity lower bounds, just as with circuit complexity lower
bounds.

To an extent, this reflects the fact that the techniques used for the currently
strongest proof complexity lower bounds are adaptations of the techniques used
in circuit complexity, and limitations of the circuit complexity techniques carry
over to the versions used in proof complexity. There is an informal “mapping”
from proof systems to complexity classes, where a proof system Q corresponds
to the smallest complexity class C such that the lines of polynomial-sized proofs
in Q are functions in C. In this way, Resolution maps to DNFs, Bounded-Depth
Frege to non-uniform AC0, Frege to non-uniform NC1, and Extended Frege to
SIZE(poly).

In the circuit complexity world, we have lower bounds for explicit functions
against DNFs and non-uniform AC0, but not against non-uniform NC1 and
SIZE(poly); correspondingly, in the proof complexity setting we have strong
lower bounds for Resolution and fairly strong lower bounds for bounded-depth
Frege, but no non-trivial lower bounds for Frege and Extended Frege.

The question arises whether this connection between circuit complexity and
proof complexity is fundamental or not. No formal connection is known either
way — we don’t have theorems to the effect that circuit complexity lower bounds
yield proof complexity lower bounds, nor any implications in the reverse direc-
tion. Moreover, barriers such as the natural proofs barrier don’t seem to apply to
proof complexity. This suggests that perhaps completely different techniques, say
from proof theory or finite model theory, might help in showing proof complexity
lower bounds. Is there a sense in which there are barriers to making progress in
proof complexity? Formulating and understanding such barriers would not only
guide us towards the “right” techniques, but might have collateral benefits as
well, as in the circuit complexity setting.

In this paper, we shed some light on these questions. We draw a connection
between two fundamental lower bound questions in proof complexity. The first
question is to prove strong lower bounds for bounded-depth Frege. Superpoly-
nomial lower bounds are known for this proof system, but there aren’t any lower
bounds known that are purely exponential, i.e., 2Ω(nc) where the constant c
doesn’t depend on the depth of lines in the proof (the best known lower bound

is Ω(2n5−d

) [3]). The second question, which is perhaps the major open question
in proof complexity, is to obtain superpolynomial lower bounds for Frege. This
question is believed to be very hard — it is non-trivial even to think of plausible
candidate tautologies for which superpolynomial lower bounds are believed to

620 Y. Filmus, T. Pitassi, and R. Santhanam

hold [4]. We show that progress on the first question would lead to progress on
the second, by giving a general simulation of polynomial size Frege proofs by
subexponential size bounded-depth Frege proofs. More precisely, we show that
even a 2nω(1/d)

proof size lower bound for proving CNF tautologies in depth d
Frege would translate to a superpolynomial proof size lower bound for Frege.

The proof of this connection is inspired by a result in circuit complexity,
further strengthening the “mapping” between proof complexity and circuit com-
plexity. The circuit complexity result we draw inspiration from is that NC1 can
be simulated by bounded-depth circuits with sub-exponential size [1]. The stan-
dard proof of this goes via a divide-and-conquer technique. We use a similar
technique in our context, however our task is made harder in a sense by the fact
that we need to reason within bounded-depth Frege about equivalence of var-
ious alternative representations of a function. The technical heart of our proof
involves such reasoning.

Our result is also relevant to algorithmic analysis, which is another major
motivation for studying proof complexity. A propositional proof system can be
thought of as a non-deterministic algorithm for deciding if a formula is a tau-
tology or not. Proof systems such as bounded-depth Frege and Frege provide
particularly simple and natural examples of such algorithms. Indeed, many of
the algorithms and heuristics used in practice for solving SAT, such as DPLL and
Clause Learning, arise from determinizing the non-deterministic algorithm cor-
responding to some natural proof system. Thus lower bounds for proof systems
give us information on the performance of algorithms used in practice.

Algorithmic analysis would appear to be a simpler question than proving com-
plexity lower bounds, since a complexity lower bound is a statement about any
possible algorithm for a problem, while algorithmic analysis deals with specific
algorithms. There are somewhat artificial algorithms such as Levin’s optimal
algorithm for SAT whose analysis is just as difficult as proving complexity lower
bounds. However, one might expect that for more natural algorithms, such as
those corresponding to natural propositional proof systems, this is not the case.
Our current lack of progress in proving proof complexity lower bounds indicates
that there might be barriers even in algorithmic analysis of natural algorithms.
Our main result here can be interpreted as saying that the algorithmic analysis
question for the algorithm corresponding to bounded-depth Frege is as hard as
the question for the algorithm corresponding to Frege (which in some sense is a
more sophisticated algorithm). In general, it would be useful to have a theory of
algorithmic analysis which gives us information about the relative difficulty of
analyzing various natural algorithms. We make a small step in this direction in
the setting of non-deterministic algorithms for TAUT.

There are a couple of interesting byproducts of our main result. First, we
are able to prove tight bounds for proving certain explicit tautologies in treelike
bounded-depth Frege. Lower bounds for the tautologies we consider were already
shown by Kraj́ıček [10]. We give corresponding upper bounds as a corollary of
our simulation of Frege by bounded-depth Frege.

Exponential Lower Bounds 621

Second, we address the question of weak automatizability for bounded-depth
Frege systems. A proof system P is weakly automatizable if there is an algorithm
that on input f and a number r in unary, can distinguish the case where f is
not a tautology from the case where f has a P-proof of size at most r. Despite
considerable effort, the question of whether low depth proof systems are weakly
automatizable is unresolved. Bonet, Domingo, Gavaldá, Maciel and Pitassi [5]
show that depth k Frege systems are not weakly automatizable under a cryp-
tographic assumption, but their result breaks down for small k (less than 6).
We use our main result to re-derive their main theorem. Our proof is cleaner
and simpler than theirs, and we show that it could potentially resolve the weak
automatizability question for lower depth Frege systems than what is currently
known.

1.1 Proof Overview

Suppose that P is a Frege proof of some formula f . We want to simulate P
by a subexponential-size depth d Frege proof of f . The high-level idea behind
the simulation is to replace every formula in the proof by its equivalent depth d
(subexponential-size) flattened formula, and then to show that if C was derived
by a rule from A and B, then the flattened version of C can be efficiently derived
from the flattened versions of A and B.

We can assume without loss of generality that all formulas f in the proof
are balanced (Reckhow’s theorem). We first review the translation of a balanced
formula f to its flattened form. We say that a formula has logical depth at most
d if the depth of the binary tree representing the formula is at most d. Suppose
that we want to replace f , of size n and logical depth logn, by a depth 3 formula.
The idea is to view f as consisting of two layers: the top layer is a formula, f1, of
height (logn)/2, and the bottom layer consists of 2(log n)/2 =

√
n subformulas,

g1, . . . , g√n, each of height (log n)/2. Since f1 has height (logn)/2, it has at most√
n inputs, and thus can be written as either a CNF or a DNF formula (of its

inputs) of size
√
n2

√
n. Similarly, each formula in the bottom layer can be written

as either a CNF or a DNF formula of size
√
n2

√
n. Writing f1 as a CNF formula,

and writing all formulas gj in the bottom layer as DNF formulas, we obtain a
new formula for f of depth 3 and total size O(n22

√
n). (The depth is 3 because

we can merge the middle two AND layers.) In a similar manner, we can replace
any formula f , of size n and logical depth logn, by a depth d + 2 formula: Now
we break up f into d equally-spaced layers, each of size (log n)/d. Again, we
write the formula at the top layer as a CNF formula, the formulas at the next
layer as DNF formulas, and so on. This gives a formula of depth 2(d + 1) and
total size O(n2dn1/d

), but since we alternated CNF/DNFs, we can collapse every
other layer to obtain a new flattened formula of depth 2(d + 1)− d = d + 2.

Now that we have flattened translations of each formula in P , it remains to fill
in the proof, to show that the flattened versions can be derived from one another.
In order to carry this out, we define a more general procedure for flattening a
formula as follows. Let d be any depth vector – i.e., it is a sequence of increasing
numbers, where each number in the sequence is between 1 and logn. Then from

622 Y. Filmus, T. Pitassi, and R. Santhanam

a balanced formula f of size n and logical depth logn, d defines a new flattened
formula of depth |d|+2: we break f up into |d| many levels, where now instead of
the levels being equally spaced, the breakpoints are specified by d. For example,
if d = (4, 12) and f has depth 20, then the d-flattened version of f will have 3
levels, the top level containing levels 1 through 3, the second level 4 through 11,
and the third level 12 through 20. Our main lemma shows that for any balanced
formula f and any two depth vectors d1, d2, there are efficient low-depth Frege
proofs showing that the d1-flattened version of f is equivalent to the d2-flattened
version of f . This main lemma will then allow us to prove that for any rule of
our proof system, the flattened versions of the antecedent formulas derive the
flattened version of the consequent formula.

2 Proof Systems

We will work with the propositional sequent calculus, PK. In the fundamen-
tal work of Cook and Reckhow [8], many reasonable formulations of Frege sys-
tems (including all PK-like systems) were studied and shown to be polynomially
equivalent; we work with PK for convenience, but any other Frege system will do.

Each line in a PK proof is a sequent of the form A1, . . . , Ak−→B1, . . . , Bm

where −→ is a new symbol, and Ai, Bj are formulas. The intended meaning is
that the conjunction of the Ai’s implies the disjunction of the Bj ’s.

A PK proof of −→ f is a sequence of sequents, such that each sequent is either
an instance of the axiom A−→A, or follows from previous sequents from one of
the inference rules, and such that the final sequent is −→ f .

The rules of PK are of three types: (i) the structural rules, (ii) the logical
rules, and (iii) the cut rule.

The structural rules are weakening, contraction and permutation.
The logical rules allow us to introduce each connective on both the left side

and the right side.
The final rule is the cut rule, which allows us to derive Γ −→Δ from A,Γ −→Δ

and Γ −→A,Δ. We call formula A the cut formula.
A full description of PK is found in the appendix.
The size of a PK proof is the sum of the sizes of all formulas occurring in the

proof.
The logical depth of a formula ϕ, denoted by ldp(ϕ), is the depth of the formula

when considered as a binary tree. For example, (A∧B)∧C has logical depth 2.
A formula whose logical depth is D has size at most 2D+1 − 1, and can depend
on at most 2D variables.

The depth of a formula ϕ, denoted by dp(ϕ), is the maximum number of
alternations between AND and OR connectives from root to leaf, not counting
negations, plus one. For example, (A ∧ B) ∧ C has depth 1, and the depth of a
CNF or DNF formula is two.

We have given definitions of two different notions of depth. We will use logical
depth to reason about formulas in Frege proofs, and depth to reason about
formulas in bounded depth proofs.

Exponential Lower Bounds 623

A cut-depth k proof, also called an AC0
k-Frege proof, is a PK proof where every

cut formula in the proof has depth at most k (other formulas are allowed to have
arbitrary depth). Note that in the literature, an AC0

k-Frege proof is often defined
to be a PK proof where all formulas have depth at most k. This definition is
equivalent to ours if the proven formula has depth at most k.

A PK proof is tree-like if the underlying dag structure of the proof forms a
tree, i.e. each sequent is used only once.

For technical reasons, we will need all the formulas in our proofs to be bal-
anced. By the following result of Reckhow, this can be assumed without loss of
generality.

Theorem 1 (Reckhow, [11, Lemma 4.4.14]). If a formula of logical depth
D has a PK proof of size s, then it has a PK proof of size sO(1) in which all
formulas have logical depth D + O(log s). If the original proof is tree-like, then
the new balanced proof is also tree-like.

Definition 1. A proof system S is automatizable if there exists an algorithm A
such that for all unsatisfiable formulas f , A(f) returns an S-proof of f , and the
runtime of A on f is polynomial in the size of the smallest S-proof of f . S is
weakly automatizable if there exists a proof system that polynomially simulates
S and that is automatizable.

3 Reducing Formula Depth

We reduce the depth of a formula using a divide-and-conquer technique. The
idea is to decompose the formula into relatively small sub-trees, and replace
each sub-tree by a CNF or DNF which is equivalent to the formula computed
by the sub-tree.

Definition 2. Let ϕ be an arbitrary formula depending on n variables. Denote
by CNF(ϕ) (DNF(ϕ)) some canonically chosen CNF (DNF) representing ϕ of
size O(n2n). We require that CNF(p ∧ q) = DNF(p ∧ q) = p ∧ q, and similarly
for p ∨ q and ¬p, when p and q are variables.

We think of formulas as trees in which internal nodes are either binary (if the
corresponding connective is ∧ or ∨) or unary (when the connective is ¬), and
leaves are labelled by variables. Each formula has an equivalent formula of the
same size where negations only appear immediately above leaves, just by apply-
ing De Morgan’s laws repeatedly to “move” negations down. We will call such
formulas quasi-monotone, and will work with them throughout our simulation.

Definition 3. A quasi-monotone formula is one in which negations only appear
next to variables, and there are no double negations. Let ϕ be a quasi-monotone
formula. Its dual form M(ϕ) is obtained from ϕ by switching ∧ and ∨ and
negating all literals, that is for each variable x switching x and ¬x; M(ϕ) is
logically equivalent to ¬ϕ.

624 Y. Filmus, T. Pitassi, and R. Santhanam

We define two canonical flattened forms in parallel.

Definition 4. Let d = d1, . . . , dk be a vector of increasing positive integers. The
conjunctive flattened form C(ϕ; d) and disjunctive flattened form D(ϕ; d) of a
formula ϕ are defined recursively as follows. If k = 0 (i.e., d is the empty vector)
or d1 ≥ ldp(ϕ) then C(ϕ; d) = CNF(ϕ) and D(ϕ; d) = DNF(ϕ). Otherwise,
let ψ be the formula obtained from ϕ by trimming the tree at depth d1. The
formula ψ depends on the variables of ϕ as well as on variables corresponding
to subformulas of ϕ at depth d1; we call these true variables and subformula
variables, respectively. Let vχ denote the subformula variable corresponding to
the subformula χ.

We explain how to calculate the conjunctive flattened form; the disjunctive
flattened form is analogous. Start with CNF(ψ). Let e = d2 − d1, . . . , dk − d1.
Replace each positive occurrence of a subformula variable vχ in CNF(ψ) with
D(χ; e), and each negative occurrence with M(C(χ; e)). The result is C(ϕ).

The flattened forms are both shallow and not too large.

Definition 5. Let ϕ be a formula and d = d1, . . . , dk be a vector of increasing
positive integers, such that d1 ≤ ldp(ϕ). Let d0 = 0 and dk+1 = ldp(ϕ). The
extent of ϕ with respect to d is

ex(ϕ; d) = max{di+1 − di : 0 ≤ i ≤ k}.
Lemma 1. Let ϕ be a formula and d a vector of length k and extent x =
ex(ϕ; d). Then C(ϕ; d) and D(ϕ; d) are formulas of depth at most k+ 2 and size
2O(k2x) equivalent to ϕ.

4 Proof of Main Theorem

In this section, we will prove the following theorem.

Theorem 2. Let ϕ be a formula provable in Frege in size s, satisfying ldp(ϕ) ≤
C log s. For every k ≥ 1 there is an AC0

k+2-Frege proof of ϕ of size 2O(ksO(C/k)).
Furthermore, if the original proof is tree-like, so is the new one.

Corollary 1. Let ϕ be a formula of size s and logical depth at most C log s. If
ϕ has a Frege proof of size O(sc) then for every k ≥ 1 there is an AC0

k+2-Frege
proof of ϕ of size 2O(cksO(C/k)).

We will first state some simple lemmas which will enable us to reason about
flattened forms. The proofs of these lemmas appear in the Appendix.

Lemma 2. Let Γ −→Δ be a valid sequent of size m, in which n variables ap-
pear. The sequent is provable using a tree-like proof of size O(m2n2n) which cuts
only on variables.

Our next lemma states that we can substitute formulas for variables to get a
valid proof.

Exponential Lower Bounds 625

Lemma 3. Let π be a proof of Γ −→Δ of size s, and let x be a variable appear-
ing in Γ −→Δ. If we substitute everywhere a formula ϕ of size m for x then we
get a valid proof of size at most sm.

The preceding lemma shows that we can lift a proof of a sequent by attaching
stuff ‘below’. The next lemma shows that we can also lift a proof by attaching
stuff ‘above’; this corresponds to deep inference.

Definition 6. The double sequent P ←→Q is the pair of sequents P −→Q and
Q−→P .

Lemma 4. Let P −→Q be a sequent of size m, and ϕ(x) be a formula of size
n in which the variable x appears only once (other variables may also appear).
The double sequent ϕ(x|P)←→ϕ(x|Q) has a cut-free, tree-like proof from the
double sequent P ←→Q of size O(n(m + n)) (this means that each of P −→Q
and Q−→P is used only once in the joint proof).

We next state two easy lemmas on dualization.

Lemma 5. Let ϕ be a quasi-monotone formula of size n. The double sequent
M(ϕ)←→¬ϕ has a cut-free, tree-like proof of size O(n2).

The second lemma allows us to lift an equivalence to its dualized version.

Lemma 6. Let ϕ, ψ be quasi-monotone formulas. Suppose that the double se-
quent ϕ←→ψ has a proof of size s cutting on formulas of depth at most D. Then
the double sequent M(ϕ)←→M(ψ) has a proof of size O(s) cutting on formulas
of depth at most D. Furthermore, if the original proof is tree-like then so is the
new proof.

We comment that the preceding lemma can be strengthened to produce cut-free
proofs.

4.1 Moving Down the Depth Vector

In this section we show how to prove the equivalence of two flattened forms of
the same formula which correspond to two different depth vectors.

Lemma 7. Let ϕ be a formula of logical depth D, and δ a positive integer.
Consider CNF(ϕ) and C(ϕ; δ) as monotone formulas depending on literals x, x̄;
in other words, for each variable x, we replace ¬x by x̄. The double sequent
CNF(ϕ)←→C(ϕ; δ) has a tree-like proof of size 2O(2D) cutting only on literals.

Lemma 8. Let ϕ be a formula, d = d1, . . . , dk a vector of increasing positive in-
tegers, and δ < d1 be a positive integer. The double sequent C(ϕ; d)←→C(ϕ; δ,d)
has a tree-like proof of size 2O(k2x) cutting only on formulas of depth at most
k + 1, where x = ex(ϕ; d).

626 Y. Filmus, T. Pitassi, and R. Santhanam

Lemma 9. Let ϕ be a formula, d = d1, . . . , dk a vector of increasing positive in-
tegers, and di < δ < di+1, where 1 ≤ i ≤ k. Define e = d1, . . . , di, δ, di+1, . . . , dk.
The double sequent has a tree-like proof of size 2O(k2x) cutting only on formulas
of depth at most k + 1, where x = ex(ϕ; d).

Lemma 10. Let ϕ be a formula, and d = d1, . . . , dk be a vector of increasing
positive integers. Define e = 1, d1 + 1, . . . , dk + 1. The double sequent
C(ϕ; d)←→C(ϕ; e) has a tree-like proof of size 2O(k2x) cutting only on formulas
of depth at most k + 3, where x = max(ex(ϕ; d), ex(ϕ; e)).

The same methods used to prove Lemma 9 enable us to prove the following
lemma.

Lemma 11. Let ϕ be a formula, and d = d1, . . . , dk be a vector of increasing
positive integers. The double sequent C(ϕ; d)←→D(ϕ; d) has a tree-like proof of
size 2O(k2x) cutting only on formulas of depth at most k+2, where x = ex(ϕ; d).

4.2 Putting It Together

In this section we show how to transform a Frege proof to an AC0-Frege proof.
We begin by proving intensional comprehension.

Lemma 12. Let ϕ, ψ be formulas, and d be a vector of increasing positive in-
tegers of length k. The double sequents

C(ϕ ∧ ψ; d)←→C(ϕ; d) ∧ C(ψ; d), C(ϕ ∨ ψ; d)←→C(ϕ; d) ∨ C(ψ; d)

have tree-like proofs of size 2O(k2x) with cuts on formulas of depth at most k+3,
where x = ex(ϕ ∧ ψ; d).

Lemma 13. Let ϕ be a formula, and d be a vector of increasing positive integers
of length k. The double sequent C(¬ϕ; d)←→¬C(ϕ; d) has a tree-like proof of
size 2O(k2x) with cuts on formulas of depth at most k + 3, where x = ex(¬ϕ; d).

The preceding lemmas allow us to unroll flattened forms.

Lemma 14. Let ϕ be a formula, and d be a vector of increasing positive integers
of length k. The double sequent ϕ←→C(ϕ; d) has a tree-like proof of size 2O(k2x)

with cuts on formulas of depth at most k + 3, where x = ex(ϕ; d).

Proof. The proof is by structural induction. If ϕ is a literal then there is nothing
to prove. If ϕ = ¬ψ, then use Lemma 13 to prove C(ϕ; d)←→¬C(ψ; d). The
induction hypothesis gives us a proof of ψ←→C(ψ; d); move both ψ and its
flattened form to the other side using four ¬ introduction rules, and apply cut
twice to prove the required double sequent.

If ϕ = ψ ∧ χ then start with proofs of the following sequents, obtained by
Lemma 12 and the induction hypothesis:

C(ϕ; d)←→C(ψ; d) ∧ C(χ; d), ψ←→C(ψ; d), χ←→C(χ; d).

Exponential Lower Bounds 627

Now prove C(ψ; d) ∧ C(χ; d)←→ψ ∧ χ as follows:

C(ψ; d)−→ψ ∧L
C(ψ; d) ∧ C(χ; d)−→ψ

C(χ; d)−→χ ∧L
C(ψ; d) ∧ C(χ; d)−→χ ∧R

C(ψ; d) ∧ C(χ; d)−→ψ ∧ χ

The other sequent is proved similarly. Complete the proof using the cut rule.
The case ϕ = ψ ∨ χ is similar.

The proof of the main theorem is now simple.

Lemma 15. Let ϕ be a formula provable in Frege in size s using a proof with
maximum logical depth D. For every k there is an AC0

k+2-Frege proof of ϕ of
size s2O(k2D/k). Furthermore, if the original proof is tree-like, so is the new one.

Proof. Let d = �D/k�, 2�D/k�, . . . , (k − 1)�D/k�. Note that the extent of each
formula with respect to d is at most x = �D/k�. Take the original proof and
replace each formula ψ by C(ψ; d). Each application of a rule is still valid, but
the proof as a whole isn’t valid since not all formulas are in flattened form. We
address this issue by tampering with the introduction rules, as in the following
example, corresponding to the right ∧ introduction rule:

Γ −→Δ,C(ψ; d) Γ −→Δ,C(ψ; d)
∧R

Γ −→Δ,C(ψ; d) ∧ C(χ; d)
Lem. 12

C(ψ; d) ∧ C(χ; d)−→C(ψ ∧ χ; d)
Cut

Γ −→Δ,C(ψ ∧ χ; d)

Applying the same transformation for all introduction rules, we are left with a
valid proof of −→C(ϕ; d), where each sequent is now replaced by sequents of
total size 2O(k2x); the total size so far is s2O(k2x). Lemma 14 proves C(ϕ; d)−→ϕ,
and the proof is complete by cutting on C(ϕ; d).

The lemmas we used employ cuts of depth at most k + 2. All cuts in the
original proof now cut flattened formulas, which are of depth at most k + 1.

Proof (of Theorem 2). Reckhow’s Theorem (Theorem 1) supplies us with an
AC0

O(log s) proof of ϕ of size sO(1). The theorem now follows by substituting
D = C log(s) in Lemma 15.

5 Applications and Consequences

5.1 Tightness of Our Simulation

We first address the tightness of our simulation. The analogous result for circuit
complexity shows that any function computable by a polynomial-size formula
can be computed by depth d circuits of size exp(nO(1/d)). This result is tight,
since H̊astad’s theorem proves that the parity function on n Boolean variables
requires AC0

d circuits of size exp(n1/d).
Similarly we can show that our result is also tight. The following theorem

states that there are formulas that have polynomial-size Frege proofs, but that
require AC0

d proofs of size exponential in n1/d.

628 Y. Filmus, T. Pitassi, and R. Santhanam

Theorem 3. For every d there is a sequence of balanced formulas ϕn of depth
d + 2 provable in Frege by a tree-like proof of size sn such that every tree-like
AC0

d proof of ϕn requires size 2sΩ(1/d)
n .

Proof. The formula ϕn is PHPn, the pigeonhole principle with n+1 pigeons and
n holes, with each variable replaced by a Sipser function of depth d. Buss [7]
has shown how to prove PHPn using a Frege proof of size nO(1), which can be
made tree-like by squaring its size. Substituting the Sipser functions, we obtain
a Frege proof of size nd+O(1).

Conversely, Kraj́ıček [10] gives a lower bound of 2nΩ(1)
for proving ϕn in tree-

like AC0
d.

Since the formulas ϕn are balanced, Theorem 2 applies, and with k = d − 2,
gives proofs essentially matching the lower bound.

The above result proves tightness for formulas of high depth. We conjecture
that our simulation is also tight with respect to CNF formulas and general, dag-
like proofs. The obvious formula for witnessing the lower bound is the pigeonhole
principle itself. However, as an artifact of the switching lemma technique used
to obtain depth d Frege lower bounds for the pigeonhole principle, the current
best lower bound is exponential in n1/2d

. It is a well-known open problem to
improve the lower bound to exp(n1/d) for the pigeonhole principle, or for any
other CNF formula. Such a result would show that our simulation is tight even
for CNF formulas and arbitrary dag-like proofs.

5.2 Weak Automatizability

Using our theorem, we are able to show that bounded-depth Frege is not weakly
automatizable, under an assumption about the hardness of factoring. While this
result has already been known [5], we first show how to prove it as a simple
corollary of our main theorem.

Theorem 4 ([6]). Frege systems do not have feasible interpolation and are not
weakly automatizable unless the Diffie Hellman problem is computable by poly-
nomial size circuits.

The Diffie Hellman problem is based on a prime number p, |p| = n. The input
to the problem is a number g less than p, and numbers ga (mod p), gb (mod p),
for some numbers a, b ≤ p. The output should be gab (mod p). The main lemma
from [6] shows that a particular tautology, DHp, stating that the Diffie Hellman
function is well defined, has Frege proofs of size O(|p|c), where c ≤ 4. Take
DHp where |p| = (logn)q for some constant q. By our normal form theorem,
this implies that DHp has AC0

k-Frege proofs of size 2O(k(log n)cq/k). Thus for
k > cq, this is polynomial in n. Hence it follows that if AC0

k-Frege is weakly
automatizable (or has feasible interpolation), then the Diffie Hellman problem for
|p| = n′ = (log n)k/c can be solved in time nO(k) = 2O(k log n) = expO(k(n′)c/k).

Unfortunately, the quality of this negative result degrades for small k. Indeed
despite considerable effort, it is unknown whether or not very low depth Frege

Exponential Lower Bounds 629

systems (when k is less than 5) are weakly automatizable (the recent paper [2]
reveals a connection between automatizability of AC0

2-Frege with bottom fan-in 2
and feasibility of mean-payoff games). The main reason for this is that the Diffie
Hellman function is not hard enough! Algorithms exist for computing discrete log
over all finite fields, and hence for Diffie Hellman, that run in time exponential
in
√
n. Moreover, the number field sieve is conjectured to solve discrete log (and

thus Diffie Hellman) in time exponential in 3
√
n. On the other hand, it seems

entirely possible to come up with a different interpolant statement for another
function that is much harder – truly exponential in n, and that still has efficient
Frege proofs. Using our main theorem (which scales down any Frege proof),
this would imply new negative results for weak automatizability and feasible
interpolation for lower depth Frege systems than what is currently known.

References

1. Allender, E., Hellerstein, L., McCabe, P., Pitassi, T., Saks, M.: Minimizing dis-
junctive normal form formulas and AC0 circuits given a truth table. SIAM Journal
on Computing 38(1), 63–84 (2008)

2. Atserias, A., Maneva, E.: Mean-payoff games and propositional proofs. Inf. and
Comp. 209(4), 664–691 (2011)

3. Beame, P.W., Impagliazzo, R., Kraj́ıček, J., Pitassi, T., Pudlák, P., Woods, A.:
Exponential lower bounds for the pigeonhole principle. In: Proceedings of the
Twenty-Fourth Annual ACM Symposium on Computing, Victoria, B.C., Canada,
pp. 200–220 (May 1992)

4. Bonet, M.L., Buss, S.R., Pitassi, T.: Are there hard examples for Frege systems?
In: Feasible Mathematics II, pp. 30–56. Birkhäuser, Basel (1995)

5. Bonet, M.L., Domingo, C., Gavaldà, R., Maciel, A., Pitassi, T.: Non-
automatizability of bounded-depth Frege proofs. Computational Complexity 13(1-
2), 47–68 (2004)

6. Bonet, M.L., Pitassi, T., Raz, R.: On interpolation and automatization for Frege
systems. SIAM Journal on Computing 29(6), 1939–1967 (2000)

7. Buss, S.R.: Polynomial size proofs of the pigeonhole principle. Journal of Symbolic
Logic 57, 916–927 (1987)

8. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
Journal of Symbolic Logic 44(1), 36–50 (1979)

9. Haken, A.: The intractability of resolution. Theoretical Computer Science 39, 297–
305 (1985)

10. Kraj́ıček, J.: Lower bounds to the size of constant-depth propositional proofs. Jour-
nal of Symbolic Logic 59(1), 73–86 (1994)

11. Kraj́ıček, J.: Bounded arithmetic, propositional logic, and complexity theory. Cam-
bridge University Press, New York (1995)

Parameterized Bounded-Depth Frege Is Not

Optimal

Olaf Beyersdorff1,�, Nicola Galesi2,��,
Massimo Lauria2, and Alexander Razborov3,� � �

1 Institut für Theoretische Informatik, Leibniz Universität Hannover, Germany
2 Dipartimento di Informatica, Sapienza Università di Roma, Italy

3 Department of Computer Science, The University of Chicago

Abstract. A general framework for parameterized proof complexity was
introduced by Dantchev, Martin, and Szeider [9]. There the authors con-
centrate on tree-like Parameterized Resolution—a parameterized version
of classical Resolution—and their gap complexity theorem implies lower
bounds for that system.

The main result of the present paper significantly improves upon this
by showing optimal lower bounds for a parameterized version of bounded-
depth Frege. More precisely, we prove that the pigeonhole principle re-
quires proofs of size nΩ(k) in parameterized bounded-depth Frege, and,
as a special case, in dag-like Parameterized Resolution. This answers
an open question posed in [9]. In the opposite direction, we interpret a
well-known technique for FPT algorithms as a DPLL procedure for Pa-
rameterized Resolution. Its generalization leads to a proof search algo-
rithm for Parameterized Resolution that in particular shows that tree-like
Parameterized Resolution allows short refutations of all parameterized
contradictions given as bounded-width CNF’s.

1 Introduction

Recently, Dantchev, Martin, and Szeider [9] introduced the framework of pa-
rameterized proof complexity, an extension of the proof complexity approach of
Cook and Reckhow to parameterized complexity. One motivation for this is the
quest for efficient algorithms which solve optimization problems [10,11,16]. Since
Resolution is very important for SAT solving, its analogue in this context, Pa-
rameterized Resolution, combines these two approaches, and its investigation
might provide new insights into proof search for tractable fragments of classi-
cally hard problems. Some results in this direction are already outlined in the

� Part of this work was done while the first author was visiting Sapienza University
Rome under support of grant N. 20517 by the John Templeton Foundation.

�� Supported by grant “Limiti di compressione in combinatoria e complessità com-
putazionale” by Sapienza University Rome.

� � � Part of this work was done while the author was at Steklov Mathematical In-
stitute, supported by the Russian Foundation for Basic Research, and at Toyota
Technological Institute, Chicago.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 630–641, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Parameterized Bounded-Depth Frege Is Not Optimal 631

work of Gao [13] where he analyzes the effect of the standard DPLL algorithm
on the problem of weighted satisfiability for random d-CNF. However, the study
of Parameterized Resolution and our understanding of the possible implications
for SAT-solving algorithms are still at a very early stage.

More generally, parameterized complexity is a branch of complexity theory
where problems are analyzed in a different way than in the classical approach:
we say that a problem is fixed-parameter tractable (FPT) with parameter k if
any instance of size n can be solved in time f(k)nO(1) for some computable
function f of arbitrary growth. In this setting, classically intractable problems
may have efficient solutions for small choices of the parameter, even if the to-
tal size of the input is large. Consider e.g. the classical satisfiability problem of
finding a truth assignment that satisfies all clauses of a formula in conjunctive
normal form. Bounded CNF Sat and Weighted CNF Sat are parameter-
ized variants of CNF satisfiability in which the satisfying assignment is required
to have Hamming weight at most k or exactly k, respectively. Many parameter-
ized combinatorial problems can be naturally encoded in Bounded CNF Sat

or Weighted CNF Sat: finding a vertex cover of size at most k, finding a
clique of size k, or finding a dominating set of size at most k. In the theory of
parameterized complexity, the hardness of both problems is reflected by their
W[2]-completeness.

In [9], Dantchev, Martin, and Szeider laid the foundations to study complex-
ity of proofs in a parameterized setting. The dual problem of Bounded CNF

Sat is that of deciding parameterized contradictions PCon: it consists of all
pairs (F, k) where F is a propositional formula F which has no satisfying assign-
ment of weight ≤ k. After considering this notion of propositional parameterized
tautologies , Dantchev et al. [9] introduced the concepts of parameterized proof
systems and of fpt-bounded proof systems (see Section 2 for a discussion). The
main motivation behind the work of [9] was that of generalizing the classical
approach of Cook and Reckhow to the parameterized case and working towards
a separation of parameterized complexity classes as FPT and W[2] by techniques
developed in proof complexity. In fact, we obtain an analogous result to the
well-known Cook-Reckhow theorem from [8]: A parameterized language L has
an fpt-bounded proof system if and only if L ∈ para-NP (Theorem 1).

In [9] (tree-like) Parameterized Resolution was defined as a refutation system
for the set of parameterized contradictions. If (F, k) ∈ PCon is defined on vari-
ables x1, . . . , xn then a (tree-like) Parameterized Resolution refutation of (F, k)
is a (tree-like) Resolution refutation of F ∪ {¬xi1 ∨ · · · ∨ ¬xik+1 | 1 ≤ i1 <
· · · < ik+1 ≤ n}. Thus, in (tree-like) Parameterized Resolution we have built-in
access to all parameterized clauses of the form ¬xi1 ∨ · · · ∨ ¬xik+1 . All these
clauses are available in the system, but when measuring the size of a derivation
we only count those which actually appear in the derivation. This concept can
be straightforwardly generalized to an arbitrary proof system P , be it dag-like
or tree-like, that understands clauses and works with lines.

Dantchev et al. [9] prove an extension of Riis’ gap theorem [20] and obtain a
model theoretic classification for the complexity of tree-like Parameterized Res-

632 O. Beyersdorff et al.

olution refutations for parameterized contradictions originating as propositional
encodings of first-order formulas. In particular, their main result implies that
tree-like Parameterized Resolution is not fpt-bounded. A similar question for
dag-like Parameterized Resolution was left open in [9]. More specifically, they
asked if (the parameterized version of) the pigeonhole principle is hard for dag-
like Parameterized Resolution.

We answer this question by proving that PHPn+1
n requires proofs of size

nΩ(k) not only in Parameterized Resolution but in the much stronger system
of bounded-depth Frege. Our result is in sharp contrast with [9, Proposition
17] that gives efficient proofs of PHPn+1

n in Parameterized Resolution using
a more sophisticated encoding with auxiliary variables. We discuss these aug-
mented proof systems in the final Section 5. Our lower bound for the pigeonhole
principle is a rather simple application of the method of random restrictions in-
troduced in proof complexity by Haken in his seminal paper [14]. But our choice
of parameters is totally different and allows us to kill with the restriction any
small prescribed set of parameterized axioms. While the technique is routine,
it nonetheless seems to be its first application in the context of parameterized
complexity, be it computational or proof complexity.

As our second contribution we investigate classes of parameterized contra-
dictions that have short refutations in tree-like Parameterized Resolution. The
notion of kernelization plays an important role in the theory of parameterized
complexity to design fpt-algorithms. Here we propose a notion of core for pa-
rameterized proof complexity: the core of a parameterized contradiction (F, k)
is a subset of clauses F ′ ⊆ F whose size is bounded by a function of k only,
and such that (F ′, k) is still a parameterized contradiction. We observe that if a
formula has a core, then it can be efficiently refuted in tree-like Parameterized
Resolution with a refutation of size independent of the size of F . As an immedi-
ate consequence, several examples of formulas hard for tree-like Resolution are
instead efficiently refutable in the parameterized case: pebbling contradictions,
linear ordering principles, graph pigeonhole principles, and colorability princi-
ples. But sometimes a core of a formula is not explicit or immediate to find. In
Theorem 3 we prove that contradictions of bounded width have a core and thus
very efficient tree-like Parameterized Resolution refutations.

2 Parameterized Proof Complexity

A parameterized language is a language L ⊆ Σ∗ × N. For an instance (x, k), we
call k the parameter of (x, k). A parameterized language L is fixed-parameter
tractable if L has a deterministic decision algorithm running in time f(k)|x|O(1)

for some computable function f . The class of all fixed-parameter tractable lan-
guages is denoted by FPT.

Besides FPT there is a wealth of complexity classes containing problems which
are not believed to be fixed-parameter tractable. The most prominent classes lie
in the weft hierarchy forming a chain FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P]. All
these classes are included in para-NP (see Definition 6). The classes of the weft

Parameterized Bounded-Depth Frege Is Not Optimal 633

hierarchy are usually defined as the closure of a canonical problem under fpt-
reductions. For W[2] this canonical problem is Weighted CNF Sat containing
instances (F, k) with a propositional formula F in CNF and a parameter k ∈ N.
Weighted CNF Sat asks whether F has a satisfying assignment of weight
exactly k, where the weight of an assignment α, denoted as w(α), is the number
of variables that α assigns to 1. Instead of asking for an assignment α with
w(α) = k we can also ask for α with w(α) ≤ k and still get the W[2]-complete
problem Bounded CNF Sat (cf. [9] or the full version of this paper for the
proof of its W[2]-completeness).

Like in the classical duality between tautologies and satisfiability, the com-
plement of Bounded CNF Sat is a complete problem for coW[2]:

Definition 1 (Dantchev, Martin, Szeider [9]). A parameterized contradic-
tion is a pair (F, k) consisting of a propositional formula F , given as a CNF,
and k ∈ N such that F has no satisfying assignment of weight ≤ k. We denote
the set of all parameterized contradictions by PCon.

Next we discuss the general definition of a parameterized proof system from [9].

Definition 2 (Dantchev, Martin, Szeider [9]). A parameterized proof sys-
tem for a parameterized language L ⊆ Σ∗×N is a function P : Σ∗×N→ Σ∗×N

such that rng(P) = L and P (x, k) can be computed in time f(k)|x|O(1) with some
computable function f .

The purpose of the second argument in P remains a little bit unclear to us since
all natural proof systems we can think of do not have this feature. Thus, we
propose the following simplification.

Definition 3. A proof system for a parameterized language L ⊆ Σ∗ × N is a
polynomial-time computable function P : Σ∗ → Σ∗ × N such that rng(P) = L.

Now we would like to show that both versions are even formally equivalent in
the sense that a parameterized language has a proof system in which all strings
possess “short” proofs if and only if it has a parameterized proof system with
this property. First we have to formalize the notion of “short”. In the framework
of [9] it goes as follows:

Definition 4 (Dantchev, Martin, Szeider [9]). A parameterized proof sys-
tem P for a parameterized language L is fpt-bounded if there exist computable
functions f and g such that every (x, k) ∈ L has a P -proof (y, k′) with |y| ≤
f(k)|x|O(1) and k′ ≤ g(k).

Again, our analogue is simpler.

Definition 5. A proof system P for a parameterized language L is fpt-bounded
if there exists a computable function f such that every (x, k) ∈ L has a P -proof
of size at most f(k)|x|O(1).

Recall that by the theorem of Cook and Reckhow [8], the class of all languages
with polynomially bounded proof systems coincides with NP. To obtain a similar
result in the parameterized world, we use the following parameterized version of
NP.

634 O. Beyersdorff et al.

Definition 6 (Flum, Grohe [11]). The class para-NP contains all parameter-
ized languages which can be decided by a nondeterministic Turing machine in
time f(k)|x|O(1) for a computable function f .

Theorem 1. Let L ⊆ Σ∗ × N be a parameterized language. Then the following
statements are equivalent: (1) There exists an fpt-bounded proof system for L. (2)
There exists an fpt-bounded parameterized proof system for L. (3) L ∈ para-NP.

Proof (Sketch). (1) equivalent to (2): by padding the proof, the proof verification
procedure can be made polynomial in proof length. (1) equivalent to (3): a proof
can be guessed nondeterministically and then verified. ��

2.1 Parameterized Versions of Ordinary Proof Systems

A literal is a positive or negated propositional variable and a clause is a set of
literals. The width of a clause is the number of its literals. A clause is interpreted
as the disjunction of its literals and a set of clauses as the conjunction of the
clauses. Hence clause sets correspond to formulas in CNF.

The system of Parameterized Resolution was introduced by Dantchev, Martin,
and Szeider [9]. Parameterized Resolution is a refutation system for the set PCon
of parameterized contradictions (cf. Definition 1). Given a set of clauses F in
variables x1, . . . , xn with (F, k) ∈ PCon, a Parameterized Resolution refutation
of (F, k) is a Resolution refutation of

F ∪ {¬xi1 ∨ · · · ∨ ¬xik+1 | 1 ≤ i1 < · · · < ik+1 ≤ n}. (1)

Thus, in Parameterized Resolution we have built-in access to all parameterized
clauses of the form ¬xi1 ∨ · · · ∨ ¬xik+1 . All these clauses are available in the
system, but when measuring the size of a derivation we only count those which
appear in the derivation. Note that Parameterized Resolution is actually a proof
system for PCon in the sense of Definition 3, i. e., verification proceeds in poly-
nomial time. This definition allows the following straightforward generalization.

Definition 7. Let P : Σ∗ → Con be an ordinary proof system for the language
Con of all (ordinary) CNF contradictions. We define the parameterized version
P̂ of P by letting P̂ (F, k, x) = (F, k) whenever P (x) is an arbitrary subset of the
set of axioms (1). If P (x) does not have this form, P̂ (F, k, x) outputs something
trivial.

The only specific proof system we would like to comment on is tree-like Param-
eterized Resolution (as it will be needed in Section 4). As explained in [9], a
tree-like Parameterized refutation of (F, k) can equivalently be described as a
boolean decision tree. A boolean decision tree for (F, k) is a binary tree where
inner nodes are labeled with variables from F and leafs are labeled with clauses
from F or parameterized clauses ¬xi1 ∨· · ·∨¬xik+1 . Each path in the tree corre-
sponds to a partial assignment where a variable x gets value 0 or 1 according to
whether the path branches left or right at the node labeled with x. The condition

Parameterized Bounded-Depth Frege Is Not Optimal 635

on the decision tree is that each path α must lead to a clause which is falsified
by the assignment corresponding to α. Therefore, a boolean decision tree solves
the search problem for (F, k) which, given an assignment α, asks for a clause
falsified by α. It is easy to verify that each tree-like Parameterized Resolution
refutation of (F, k) yields a boolean decision tree for (F, k) and vice versa, where
the size of the Resolution proof equals the number of nodes in the decision tree.

An embarrassing fact about Parameterized Proof Complexity (brought to our
attention by an anonymous referee of a previous version of this paper) is that,
as defined in Definition 7, P̂ is never bounded for some dull reasons.

Example 1. Let (F, k) be the parameterized contradiction in which F is the set
of positive clauses {x1,1 ∨ . . . ∨ x1,n, . . . , xk+1,1 ∨ . . . ∨ xk+1,n}. Then in order
to make this set even semantically invalid, one has to append to it all nk+1

parameterized axioms of the form ¬x1,j1 ∨ . . . ∨ ¬xk+1,jk+1 .

Obviously, this is not the kind of phenomena we want to study (and not the
kind of methods we want to develop) so we have to try to somehow isolate such
pathological examples. One approach (borrowed from circuit complexity) would
be simply to declare some parameterized contradictions “natural”, “interesting”
or ”explicit” without giving precise definitions or even revealing exact reasons
for this classification. Another possibility (that we adopt in this paper) is to
formally restrict the set of contradictions we are interested in.

Definition 8. A parameterized contradiction (F, k) is strong if F itself is a
contradiction. A proof system P for the set PCon is weakly fpt-bounded if there
exists a computable function f such that every strong (F, k) ∈ PCon has a
P -proof of size at most f(k)|F |O(1).

One reason to introduce this restriction is that “interesting” contradictions are
almost always strong. In fact, the only exception we are aware of (even if it is the
one that inspired almost all material in Section 4) is the vertex cover problem.

On a more philosophical level, the concept of a strong parameterized contra-
diction intends to capture the idea that the new knowledge provided by param-
eterized axioms should be rather thought of as a helper or an additional feature
made available to already existing DPLL algorithms rather than being the prime
source of the validity of the statement. It is perhaps useful to note at this point
that there is no monotonicity on k in Definition 8, either way. Since, as k grows,
our size constraint f(k)|F |O(1) gets looser, but, on the other hand, the helper
axioms become less helpful.

Finally, we are not aware of any analogue of Example 1 for strong parameter-
ized contradictions.

Yet another possibility to get rid of this example is to try to encode param-
eterized axioms in (1) in a more economical way (so that their number stays
small), possibly using some auxiliary variables. For Parameterized Resolution
this possibility was discussed already in [9], and we continue this discussion in a
broader context in Section 5.

636 O. Beyersdorff et al.

3 Parameterized Bounded-Depth Frege Is Not Weakly
fpt-Bounded

The pigeonhole principle PHPn+1
n uses variables xi,j with i ∈ [n + 1] and j ∈

[n], indicating that pigeon i goes into hole j. PHPn+1
n consists of the clauses∨

j∈[n] xi,j for all pigeons i ∈ [n + 1] and ¬xi1,j ∨ ¬xi2,j for all choices of two
distinct pigeons i1, i2 ∈ [n + 1] and a hole j ∈ [n].

Let Fd be the fragment of the Frege system over de Morgan basis {¬,∧,∨}
that operates with formulas of logical depth at most d.

Theorem 2. For any fixed d, k ≥ 0 and all sufficiently large n, any refutation
of (PHPn+1

n , k) in F̂d, the parameterized version of Fd, requires size ≥ nk/5.

Note that, somewhat surprisingly, d does not appear in the final bound at all
(although it implicitly appears in the bound assumed in the “sufficiently large”
premise).

Proof. Choose uniformly at random a set I of n−√n pigeons and match them
with a set J of n−√n uniformly chosen holes. Such partial matching f induces
the following natural partial assignment of the variables of PHPn+1

n :

xi,j = 1 whenever i ∈ I and f(i) = j,
xi,j = 0 whenever i ∈ I and f(i) �= j,
xi,j = 0 whenever j ∈ J and there exist i′ �= i such that f(i′) = j, and
xi,j = otherwise.

We claim that with non-zero probability such partial assignment satisfies all pa-
rameterized axioms used in the refutation, as long as there are at most nk/5 of
them. (Notice that we do not care if such assignment falsifies unused parame-
terized axioms.) Before proving this claim, we show how the theorem follows.

The refutation, restricted with such assignment, does not contain parame-
terized axiom anymore. Thus it is a classical Fd-refutation for the restricted
formula, which in turn is equivalent (up to a re-indexing of pigeons and holes) to
PHP

√
n+1√
n

. Such refutation must be of size at least 2ncd [17,15] for some cd > 0,

thus bigger than nk/5 if n is sufficiently large. This concludes the proof.
The missing part is to show that the probabilistic choice of the partial match-

ing realizes the desired properties with positive probability. Consider a param-
eterized axiom ¬xi1,j1 ∨ . . . ∨ ¬xik+1,jk+1 . If there are two equal indexes ja and
jb for a �= b, then such axiom is just a weakening of a standard clause of the
pigeonhole principle and does not need any special treatment.

We can now focus on a parameterized axiom in which exactly k + 1 holes
are represented: the probability that such axiom fails to be satisfied is the
probability that all xil,jl

are either true or unassigned for 1 ≤ l ≤ k + 1.
Let J0 = {j1, . . . , jk+1} be the set of all holes represented in our axiom. The
probability that the support J of our random restriction contains at most k/2
of them (and hence the complement to J that has size

√
n contains at least

k/2 of them) is bounded by
(
k+1
k/2

) · (n−k/2√
n−k/2)
(n√

n) ≤ 2k+1n−k/4. And, conditioned

Parameterized Bounded-Depth Frege Is Not Optimal 637

by the event |J ∩ J0| ≥ k/2, the probability that every hole ja ∈ J ∩ J0 is
sent by the matching f to the right pigeon ia (so that xia,ja is not set to 0)
is at most (n− k/2)−k/2. Thus, the overall probability that our random partial
assignment does not satisfy an individual parameterized axiom is bounded by
2k+1n−k/4 +(n− k/2)−k/2

< n−k/5 for sufficiently large n. By the union bound,
if our refutation has size ≤ nk/5, then for at least one particular choice of f the
corresponding assignment satisfies all parameterized axioms actually used in the
refutation. As we already observed, this concludes the proof. ��
The same proof works for weaker versions of the pigeonhole principle, like func-
tional or onto, and it works up to k ≤ nεd , where εd > 0 depends only on the
depth of the Frege system. If we consider Parameterized Resolution instead of
parameterized bounded-depth Frege, our proof applies also to the pigeonhole
principle with arbitrarily many pigeons. See the full version of this paper for
details.

4 Cores and Small Refutations

The notion of kernelization plays an important role in the theory of parameter-
ized complexity. A kernelization for a parameterized language L is a polynomial-
time procedure A : Σ∗ ×N→ Σ∗ ×N such that for each (x, k) it holds that (1)
(x, k) ∈ L if and only if A(x, k) ∈ L and (2) if A(x, k) = (x′, k′), then k′ ≤ k
and |x′| ≤ f(k) for some computable function f independent of |x|.

It is clear that if a parameterized language admits a kernelization then it
is fixed-parameter tractable. The converse is also true for decidable languages
(cf. [12]). For parameterized proof complexity we suggest a similar notion of core
for parameterized contradictions:

Definition 9. A core for a set Γ ⊆ PCon of parameterized contradictions is a
mapping which maps every (F, k) ∈ Γ to a subset F ′ ⊆ F of clauses satisfying
the following conditions: (1) F ′ contains at most f(k) variables and (2) (F ′, k)
is a parameterized contradiction, where f is a computable function depending
only on the mapping.

We will sometimes abuse terminology by saying that a set of clauses F ′ ⊆ F is
a core of F when it is clear from the context that F is a member of a family of
parameterized contradictions and that F ′ can be chosen for any k and any F in
that family.

Clearly, any k+1 positive clauses of width f(k) and with pairwise disjoint sets
of variables make a core that we will call a trivial core. It is very easy to come up
with many parameterized contradictions (pebbling contradictions, colorability,
sparse pigeonhole principle etc.) that possess trivial cores. Thus an interesting
question is the following: do there exist “natural” parameterized contradictions
that possess only non-trivial cores? And do we have a “parameterized automa-
tizability”, i.e. , is it easy to find a core once we know that it exists?

Our motivating example for the latter question is the vertex cover problem.
A vertex cover for a graph G is a set C ⊆ V (G) such that for any {u, v} ∈ E(G)

638 O. Beyersdorff et al.

either u ∈ C or v ∈ C or both. To determine whether G has a vertex cover of
size at most k there is a well-known [10, Chapter 3] fixed parameter tractable
algorithm (here the parameter is k). This algorithm is based on the following
observation: if a vertex is not in C, then all its neighbors must be in C. The
algorithm is a simple recursive procedure which focuses on an arbitrary vertex
u, and on its neighbors v1, . . . , vl: if neither G \ {u} has a vertex cover of size
k−1 nor G\ {u, v1, . . . , vl} has a vertex cover of size k− l, then G has no vertex
cover of size k.

This is interpretable as a parameterized DPLL procedure on the 2-CNF FG =∧
{u,v}∈E(G)(xu ∨ xv) where xu indicates whether u ∈ C. The DPLL procedure

fixes an arbitrary variable xu and branches on it. When xu = 1, then the DPLL
algorithm proceeds with analyzing FG �xu=1 which is equal to FG\{u}. When
xu = 0, then xv1 = 1, . . . , xvl

= 1 by unit propagation. Thus the DPLL proceeds
on formula FG �{xu=0,xv1=1,...,xvl

=1}= FG\{u,v1,...,vl}. If at any point the DPLL
has more than k variables set to one, it stops and backtracks.

And now we establish a far-reaching generalization of this example.

Theorem 3. If F is a CNF of width d and (F, k) is a parameterized contra-
diction, then (F, k) has a tree-like Parameterized Resolution refutation of size
O(dk+1). Moreover, there is an algorithm that for any (F, k) either finds such
tree-like refutation or finds a satisfying assignment for F of weight ≤ k. The
algorithm runs in time O(|F | · k · dk+1).

A related result was obtained in [7, Theorem 12]. Notice that while Bounded

CNF Sat and Weighted CNF Sat are both W[2]-complete, Bounded d-CNF

Sat is in FPT and Weighted d-CNF Sat is known to be W[1]-complete. This
means that reducing the case of exact weight to bounded weight requires large
clauses unless FPT = W[1]. We state two interesting consequences of Theorem 3.

Corollary 1. For each d ∈ N, the set of all parameterized contradictions in
d-CNF has a core.

Proof. The refutations constructed in Theorem 3 contain O(dk) initial clauses
in O(dk+1) variables. These clauses form a core. ��
The following corollary expresses some restricted form of automatizability (cf.
also the discussion in Section 5).

Corollary 2. If Γ ⊆ PCon has a core, then there exists an fpt-algorithm which
on input (F, k) ∈ Γ returns both a core and a refutation of (F, k).

Proof. Let Γ have a core of size f(k). Then the core only contains clauses of
width ≤ f(k). On input (F, k) we run the algorithm of Theorem 3 on the CNF
formula consisting of all clauses of F with width ≤ f(k). This yields a core
together with its refutation. ��
Finally, we comment on the question whether the existence of a core is a nec-
essary condition for a parameterized contradiction to have an fpt-bounded refu-
tation in tree-like Parameterized Resolution. A trivial counterexample to this

Parameterized Bounded-Depth Frege Is Not Optimal 639

conjecture is made by the CNF (x1 ∨ x2 ∨ . . . ∨ xn) ∧ ¬x1 ∧ . . . ∧ ¬xn. A more
interesting example—a version of the linear ordering principle—will be included
in the full version of this paper.

5 Discussion and Open Problems

Is the parameterized proof system P̂ from Definition 7 the most natural way
to define the parameterized analogue of P? The answer depends on the original
proof system P , of course. The main (unspoken) reason why [9] defined it in this
way is simply because weak proof systems cannot directly talk about the weight
of the input. Let us first discuss two familiar systems that are strong enough to
overcome this limitation: Frege and Cutting Planes.

The problem of getting super-polynomial lower bounds for the Frege proof
system F is one of the biggest open problems in Logic and Theoretical Com-
puter Science. Lower bounds for its parameterized version F̂ seem even harder to
achieve for strong contradictions (as we just add new axioms). A similar conclu-
sion remains true if we combine all parameterized axioms into one (using e.g. [6])
but allow arbitrary parameterized contradictions, not necessarily strong.

The case of Cutting Planes (CP) is way more interesting. First of all, we do
not seem to know lower bounds even for the “canonical” version ĈP :

Question 1. Is ĈP weakly fpt-bounded?

This, of course, is yet another reflection of the mysterious status of this proof
system: the only known lower bounds for it are based on very indirect methods
(interpolation, see [5,18]) and no direct, combinatorial proof is currently known.
And if we try to generalize the methods from [5,18] (at least in a straightforward
way) then we immediately arrive at a problem in parameterized circuit complex-
ity that seems to be widely open (at least, we do not see how known methods
can be applied to it).

Question 2. Find an explicit partial monotone function (a.k.a. a monotone
promise problem) f : [n]≤k → {0, 1} defined only on inputs of Hamming weight
≤ k that does not possess monotone circuits of size f(k)nO(1).

The problem of finding (say) a
√
k-clique does become easy in this context.

For weaker proof systems, [9, Section 4] proposed to use auxiliary variables.
Their suggestion was to add new “pigeonhole variables” pi,j (i ∈ [n], j ∈ [k])
and “pigeonhole clauses” ¬xi ∨

∨
j∈[k] pi,j for all i ∈ [n] (pigeon clauses) and

¬pi1,j ∨ ¬pi2,j for all i1 �= i2 ∈ [n], j ∈ [k] (hole clauses), where x1, . . . , xn are
the original variables. Remarkably, they proved that the pigeonhole principle has
fpt-bounded refutations in this version of Parameterized Resolution.

The disturbing Example 1 turns into an instance of PHPk+1
k with large

“metapigeons” that has an fpt-bounded proof (e.g., the straightforward adaption
of the rectangular proof from [19, Example 1]). Thus, following [9], we ask:

640 O. Beyersdorff et al.

Question 3. Is Parameterized Resolution with auxiliary variables fpt-bounded?

Let us now point out that there is an interesting and well-studied class of con-
tradictions for which the difference between these two encodings disappears, and
these are independent set principles. Following [2], let G be a graph [n] in which
vertices are split into k subsets V1, . . . , Vk of size n/k each called blocks. The
principle αblock(G, k) encodes the fact that G has a block-respecting indepen-
dent set of size k; it has the variables xv (v ∈ [n]) and the axioms ¬xu ∨ ¬xv

for all (u, v) ∈ E(G) (edge clauses),
∨

v∈ Vi
xv for all i ∈ [k] (block clauses), and

¬xu ∨ ¬xv for all u �= v in the same block (1–1 clauses).
The fact that all satisfying assignments have at most k ones is already built in

this principle: all parameterized axioms are subsumed by the 1–1 clauses above.
Auxiliary clauses in the sense of [9] (both pigeon and holes) also do not help
to reduce the refutation size, as witnessed by the substitution of the pigeonhole
variables pv,j �→ 0 if v �∈ Vj and pv,j �→ xv if v ∈ Vj . Thus, we are also asking
the following specific form of Question 3:

Question 4. Do the principles αblock(G, k) always have fpt-bounded Resolution
refutations as long as the graph G does not contain block-respecting independent
sets of size k?

One good candidate for a lower bound here would be Erdös-Rényi random graphs
G(n, p) for an appropriately chosen value of p. Such lower bound has been re-
cently proved for tree-like Resolution in [4].

Let us recall that a proof system P is automatizable if there exists an algorithm
which for a tautology F with a P -proof of size S finds a P -proof for F of size at
most SO(1) and runs in time SO(1). Alekhnovich and Razborov [1] proved that
if (classical) Resolution or tree-like Resolution were automatizable, then W[P]
would coincide with FPR, the randomized version of FPT. On the other hand,
tree-like Resolution is quasi-polynomially automatizable (see e.g. [3]).

We point out that the concept of quasi-polynomial automatizability is mean-
ingless in the context of Parameterized Resolution, because every (F, k) ∈ PCon
with |F | = n has a refutation of size c · (n

k+1

)
for some constant c. If k ≤ logn

this is smaller than nlog n; otherwise
(

n
k+1

) ≤ 2(k+1)2 which is fpt with respect to
k. On the contrary, the concept of polynomial automatizability can be extended
to parameterized proof systems in an obvious way. Thus, we ask:

Question 5. Is (tree-like) Parameterized Resolution, with or without auxiliary
variables, fpt-automatizable or fpt-automatizable w.r.t. strong contradictions?
That is, does there exist an algorithm that for any (strong) parameterized con-
tradiction (F, k) ∈ PCon outputs its refutation within time f(k)SO(1), where S
is the minimal possible size of a parameterized refutation of (F, k)?

Naturally, unconditional results of this sort are completely out of reach for the
moment, so we are willing to allow here any reasonable complexity assumption
(that will most likely reside in the realm of parameterized complexity itself).

Parameterized Bounded-Depth Frege Is Not Optimal 641

References

1. Alekhnovich, M., Razborov, A.A.: Resolution is not automatizable unless W(P) is
tractable. SIAM Journal on Computing 38(4), 1347–1363 (2008)

2. Beame, P., Impagliazzo, R., Sabharwal, A.: The resolution complexity of indepen-
dent sets and vertex covers in random graphs. Computational Complexity 16(3),
245–297 (2007)

3. Beame, P., Karp, R.M., Pitassi, T., Saks, M.E.: The efficiency of resolution and
Davis–Putnam procedures. SIAM J. Comput. 31(4), 1048–1075 (2002)

4. Beyersdorff, O., Galesi, N., Lauria, M.: Parameterized complexity of DPLL search
procedures. In: Proc. 14th International Conference on Theory and Applications
of Satisfiability Testing (to appear, 2011)

5. Bonet, M.L., Pitassi, T., Raz, R.: Lower bounds for cutting planes proofs with
small coefficients. The Journal of Symbolic Logic 62(3), 708–728 (1997)

6. Buss, S.R.: Polynomial size proofs of the propositional pigeonhole principle. The
Journal of Symbolic Logic 52, 916–927 (1987)

7. Chen, Y., Flum, J.: The parameterized complexity of maximality and minimality
problems. Annals of Pure and Applied Logic 151(1), 22–61 (2008)

8. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
The Journal of Symbolic Logic 44(1), 36–50 (1979)

9. Dantchev, S.S., Martin, B., Szeider, S.: Parameterized proof complexity. In: Proc.
48th IEEE Symposium on the Foundations of Computer Science, pp. 150–160
(2007)

10. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

11. Flum, J., Grohe, M.: Describing parameterized complexity classes. Information and
Computation 187(2), 291–319 (2003)

12. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

13. Gao, Y.: Data reductions, fixed parameter tractability, and random weighted d-
CNF satisfiability. Artificial Intelligence 173(14), 1343–1366 (2009)

14. Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39, 297–308 (1985)
15. Kraj́ıček, J., Pudlák, P., Woods, A.: Exponential lower bounds to the size of

bounded depth Frege proofs of the pigeonhole principle. Random Structures and
Algorithms 7(1), 15–39 (1995)

16. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and Its Applications. Oxford University Press, Oxford (2006)

17. Pitassi, T., Beame, P., Impagliazzo, R.: Exponential lower bounds for the pigeon-
hole principle. Computational Complexity 3, 97–140 (1993)

18. Pudlák, P.: Lower bounds for resolution and cutting planes proofs and monotone
computations. The Journal of Symbolic Logic 62(3), 981–998 (1997)

19. Razborov, A., Wigderson, A., Yao, A.: Read-once branching programs, rectangu-
lar proofs of the pigeonhole principle and the transversal calculus. Combinator-
ica 22(4), 555–574 (2002)

20. Riis, S.: A complexity gap for tree resolution. Computational Complexity 10(3),
179–209 (2001)

On Minimal Unsatisfiability and

Time-Space Trade-offs for k-DNF Resolution

Jakob Nordström1 and Alexander Razborov2

1 KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
2 Department of Computer Science, University of Chicago, Chicago, IL 60637, USA

Abstract. A well-known theorem by Tarsi states that a minimally un-
satisfiable CNF formula with m clauses can have at most m−1 variables,
and this bound is exact. In the context of proving lower bounds on proof
space in k-DNF resolution, [Ben-Sasson and Nordström 2009] extended
the concept of minimal unsatisfiability to sets of k-DNF formulas and
proved that a minimally unsatisfiable k-DNF set with m formulas can
have at most (mk)k+1 variables. This result is far from tight, however,
since they could only present explicit constructions of minimally unsat-
isfiable sets with Ω(mk2) variables.

In the current paper, we revisit this combinatorial problem and sig-
nificantly improve the lower bound to (Ω(m))k, which almost matches
the upper bound above. Furthermore, using similar ideas we show that
the analysis of the technique in [Ben-Sasson and Nordström 2009] for
proving time-space separations and trade-offs for k-DNF resolution is
almost tight. This means that although it is possible, or even plausible,
that stronger results than in [Ben-Sasson and Nordström 2009] should
hold, a fundamentally different approach would be needed to obtain such
results.

1 Introduction

A formula in conjunctive normal form, or CNF formula, is said to be minimally
unsatisfiable if it is unsatisfiable but deleting any clause makes it satisfiable. A
well-known result by Tarsi [1], reproven several times by various authors (see,
for instance, [6, 12, 15]), says that the number of variables in any such CNF
formula is always at most m− 1, where m is the number of clauses.

Motivated by problems in proof complexity related to the space measure in
the k-DNF resolution proof systems introduced by Kraj́ıček [14], Ben-Sasson and
Nordström generalized this concept in [9]. In that paper, later published as part
of [10], they studied the minimal unsatisfiability of conjunctions of formulas in
disjunctive normal form where all terms in the disjunctions have size at most k,
henceforth k-DNF formulas. We begin by reviewing their definition.

Assume that D = {D1, . . . , Dm} is the set of k-DNF formulas appearing in
our conjunction, and that D itself is unsatisfiable. What should it mean that D

is minimally unsatisfiable?

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 642–653, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On Minimal Unsatisfiability and Time-Space Trade-offs 643

The first, naive, attempt at a definition would be to require, by analogy with
the k = 1 case, that D becomes satisfiable after removing any Di from it. How-
ever, the following simple example of two 2-DNF formulas

{(x ∧ y1) ∨ . . . ∨ (x ∧ yn), (x̄ ∧ y1) ∨ . . . ∨ (x̄ ∧ yn)} (1)

that is minimally unsatisfiable in this sense shows that we can not hope to get
any meaningful analogue of Tarsi’s lemma under this assumption only.

The reason for this is that the 2-DNF set (1) is not minimally unsatisfiable
in the following sense: even if we “weaken” a formula in the set (i.e., make it
easier to satisfy) by removing any, or even all, y-variables, what remains is still
an unsatisfiable set. This leads us to the stronger (and arguably more natural)
notion that the formula set should be minimally unsatisfiable not only with
respect to removing DNF formulas but also with respect to shrinking terms
(i.e., conjunctions) in these formulas. Fortunately, this also turns out to be just
the right notion for the proof complexity applications given in [10]. Therefore,
following [10], we say that a set D of k-DNF formulas is minimally unsatisfiable
if weakening any single term (i.e., removing from it any literal) appearing in a
k-DNF formula from D will make the “weaker” set of formulas satisfiable. This
raises the following combinatorial question:

How many variables (as a function of k and m) can appear in a mini-
mally unsatisfiable set {D1, . . . , Dm} of k-DNF formulas?

Tarsi’s lemma states that for k = 1 the answer is m− 1. This result has a rel-
atively elementary proof based on Hall’s marriage theorem, but its importance
to obtaining lower bounds on resolution length and space is hard to overem-
phasize. For instance, the seminal lower bound on refutation length of random
CNF formulas in [12] makes crucial use of it, as does the proof of the “size-width
trade-off” in [11]. Examples of applications of this theorem in resolution space
lower bounds include [3, 7, 8, 10, 16, 18].

To the best of our knowledge, the case k ≥ 2 had not been studied prior
to [10]. That paper established an (mk)k+1 upper bound and an Ω

(
mk2

)
lower

bound on the number of variables. The gap is large, and, as one of their open
questions, the authors asked to narrow it.

In this paper, we almost completely resolve this problem by proving an (Ω(m))k

lower bound on the number of variables. Our construction is given in Section 3,
following some preliminaries in Section 2. In Section 4, we show how a similar
construction proves that in order to improve on the space complexity bounds
from [10] a different approach would be needed. The paper is concluded with a
few remarks and open problems in Section 5.

2 Preliminaries

Recall that a DNF formula is a disjunction of terms, or conjunctions, of literals,
i.e., unnegated or negated variables. If all terms have size at most k, then the
formula is referred to as a k-DNF formula (where k should be thought of as some
arbitrary but fixed constant).

644 J. Nordström and A. Razborov

Definition 1 ([10]). A set of DNF formulas D is minimally unsatisfiable if it
is unsatisfiable but replacing any single term T appearing in any DNF formula
D ∈ D with any proper subterm of T makes the resulting set satisfiable.

Note that this indeed generalizes the well-known notion of minimally unsatisfi-
able CNF formulas, where a “proper subterm” of a literal is the empty term 1
that is always true and “weakening” a clause hence corresponds to removing it
from the formula.

We are interested in bounding the number of variables of a minimally unsat-
isfiable k-DNF set in terms of the number of formulas in the set. For 1-DNF sets
(i.e., CNF formulas), Tarsi’s lemma says that the number of variables must be at
most the number of formulas (i.e., clauses) minus one for minimal unsatisfiability
to hold. This is easily seen to be tight by considering the example

{x1, x2, . . . , xn, x̄1 ∨ x̄2 ∨ . . . ∨ x̄n} . (2)

No such bound holds for general k, however, since there is an easy construc-
tion shaving off a factor k2. Namely, denoting by Vars(D) the set of variables
appearing somewhere in D, we have the following lemma.

Lemma 2 ([10]). There are arbitrarily large minimally unsatisfiable sets D of
k-DNF formulas with |Vars(D)| ≥ k2(|D| − 1).

Proof sketch. Consider any minimally unsatisfiable CNF formula consisting of
n + 1 clauses over n variables (for example, the one given in (2)). Substitute
every variable xi with(

x1
i ∧ · · · ∧ xk

i

) ∨ (
xk+1

i ∧ · · · ∧ x2k
i

) ∨ · · · ∨ (
xk2−k+1

i ∧ · · · ∧ xk2

i

)
(3)

and expand every clause to a k-DNF formula. (Note that for this to work, we
also need the easily verifiable fact that the negation of (3) can be expressed as
a k-DNF formula.) It is straightforward to verify that the result is a minimally
unsatisfiable k-DNF set, and this set has n + 1 formulas over k2n variables.

There is a big gap between this lower bound on the number of variables (in terms
of the number of formulas) and the upper bound obtained in [10], stated next.

Theorem 3 ([10]). Suppose that D is a minimally unsatisfiable k-DNF set con-
taining m formulas. Then |Vars(D)| ≤ (km)k+1.

A natural problem is to close, or at least narrow, this gap. In this work, we do
so by substantially improving the bound in Lemma 2.

3 An Improved Lower Bound for Minimal Unsatisfiability

In this section, we present our construction establishing that the number of
variables in a minimally unsatisfiable k-DNF set can be roughly at least the
number of formulas raised to the kth power.

On Minimal Unsatisfiability and Time-Space Trade-offs 645

Theorem 4. There exist arbitrarily large minimally unsatisfiable k-DNF sets D

with m formulas over more than
(

m
4

(
1− 1

k

))k variables.

In particular, for any k ≥ 2 there are minimally unsatisfiable k-DNF sets with
m formulas over (more than) (m/8)k = (Ω(m))k variables.

Very informally, we will use the power afforded by the k-terms to construct a
k-DNF set D consisting of roughly m formulas that encode roughly mk−1 “par-
allel” instances of the minimally unsatisfiable CNF formula in (2). These parallel
instances will be indexed by coordinate vectors

(
x1

i1
, x2

i2
, . . . , xk−1

ik−1

)
. We will add

auxiliary formulas enforcing that only one coordinate vector
(
x1

i1 , x
2
i2 , . . . , x

k−1
ik−1

)
can have all coordinates true. This vector identifies which instance of the for-
mula (2) we are focusing on, and all other parallel instances are falsified by their
coordinate vectors not having all coordinates true.

Let us now formalize this intuition. We first present the auxiliary formulas
constraining our coordinate vectors, which are the key to the whole construction.

3.1 A Weight Constraint k-DNF Formula Set

Let us write x =
(
x1, . . . , xm(k−1)

)
to denote a vector of variables of dimension

m(k−1). Let |x| = ∑m(k−1)
i=1 xi denote the Hamming weight of x, i.e., the number

of ones in the vector. We want to construct a k-DNF set Wm(x) with O(m)
formulas over x1, . . . , xm(k−1) and some auxiliary variables minimally expressing
that |x| ≤ 1. That is, a vector x can be extended to a satisfying assignment
for Wm(x) if and only if |x| ≤ 1 but if we weaken any formula in the set, then
there are satisfying assignments with |x| ≥ 2.

We define Wm(x) to be the set of k-DNF formulas listed in Figure 1. The
intuition for the auxiliary variables is that zj can be set to true only if the
first j(k − 1) variables x1, . . . , xj(k−1) are all false, and wj can be set to true
only if at most one of the first j(k − 1) variables x1, . . . , xj(k−1) is true. The set
Wm contains 2m− 1 formulas. Let us see that Wm minimally expresses that x
has weight at most 1. For ease of notation, we will call the group of variables
{x(j−1)(k−1)+1, . . . , xj(k−1)} the jth block and denote it by Xj .

Every x with |x| ≤ 1 can be extended to a satisfying assignment for
Wm(x). Since all x-variables appear only negatively, we can assume without loss
of generality that |x| = 1, so that all xi are false except for a single variable in,
say, the j0th block Xj0 . We simply set zj to true for j < j0 and false for j ≥ j0,
and we set all wj to true.

Every satisfying assignment for Wm(x) satisfies |x| ≤ 1. Assume on the
contrary that xi1 = xi2 = 1; i1 ∈ Xj1 , i2 ∈ Xj2 ; j1 ≤ j2. We have that the truth
of xi1 forces zj to false for all j ≥ j1, and then xi2 = 1 forces wj to false for all
j ≥ j2. But this means that there is no way to satisfy the final formula (4g). So
for all satisfying assignments it must hold that |x| ≤ 1.

After weakening any term in Wm(x), the resulting set can be satisfied
by an assignment giving weight at least 2 to x. First, notice that weakening

646 J. Nordström and A. Razborov

z1 ∨
(
x1 ∧ · · · ∧ xk−1

)
(4a)

z2 ∨
(
z1 ∧ xk ∧ · · · ∧ x2(k−1)

)
(4b)

...

zm−1 ∨
(
zm−2 ∧ x(m−2)(k−1)+1 ∧ · · · ∧ x(m−1)(k−1)

)
(4c)

w1 ∨ z1 ∨
k−1∨
i=1

k−1∧
i′=1
i′ �=i

xi′ (4d)

w2 ∨ z2 ∨
(
w1 ∧ xk ∧ · · ·x2(k−1)

) ∨ 2(k−1)∨
i=k

(
z1 ∧

2(k−1)∧
i′=k
i′ �=i

xi′

)
(4e)

...

wm−1 ∨ zm−1 ∨
(
wm−2 ∧ x(m−2)(k−1)+1 ∧ · · · ∧ x(m−1)(k−1)

)
∨

(m−1)(k−1)∨
i=(m−2)(k−1)+1

(
zm−2 ∧

(m−1)(k−1)∧
i′=(m−2)(k−1)+1

i′ �=i

xi′

)
(4f)

(
wm−1 ∧ x(m−1)(k−1)+1 ∧ · · · ∧ xm(k−1)

)
∨

m(k−1)∨
i=(m−1)(k−1)+1

(
zm−1 ∧

m(k−1)∧
i′=(m−1)(k−1)+1

i′ �=i

xi′

)
(4g)

Fig. 1. Weight constraint k-DNF formulas Wm(x)

any of the unit terms (i.e., terms of size one) results in removing the formula in
question altogether. This can only make it easier to satisfy the whole set than
if we just shrink a k-term. Hence, without loss of generality we can focus on
shrinking k-terms. Let us consider the formulas in Wm(x) one by one.

If we remove some literal xi in (4a)–(4c), then we can set xi = 1 but still have
z1 = · · · = zm−1 = 1. This will allows us to set also xm(k−1) = 1 in (4g) and still
satisfy the whole set of formulas although |x| ≥ 2.

If we instead remove some zj (j ≤ m − 2) in these formulas, then we can
set all xi = 1 for xi ∈ X1 ∪ . . . ∪ Xj (that already gives us weight ≥ 2) and
z1 = . . . = zj = 0, and then we set zj+1 = . . . = zm−1 = 1 and xi = 0 for
xi ∈ Xj+1 . . . ∪ . . . Xm. Note that j ≤ m− 2 implies that zm−1 = 1 which takes
care of (4g), and then (4d)–(4f) are satisfied simply be setting all wj to 0. This
completes the analysis of the formulas (4a)–(4c).

In formula (4d), if we remove some xi′ , then we can set xi = xi′ = w1 = 1
and extend this to a satisfying assignment for the rest of the formulas.

For the corresponding terms zj−1 ∧
∧j(k−1)

i′=(j−1)(k−1)+1, i′ �=i xj in (4e)–(4g), if
we remove some xi′ , we can again set xi = xi′ = 1 and z1 = . . . = zj−1 = 1

On Minimal Unsatisfiability and Time-Space Trade-offs 647

W j
m(xj) 1 ≤ j < k (5a)∨

(i1,...,ik−1)

∈[m(k−1)]k−1

(
x1

i1 ∧ · · · ∧ xk−1
ik−1
∧ yν

i1,...,ik−1

)
1 ≤ ν ≤ m(k − 1) (5b)

ūν ∨
∨

(i1,...,ik−1)

∈[m(k−1)]k−1

(
x1

i1 ∧ · · · ∧ xk−1
ik−1
∧ yν

i1,...,ik−1

)
1 ≤ ν ≤ m(k − 1) (5c)

u1 ∨ · · · ∨ um(k−1) (5d)

Fig. 2. Minimally unsatisfiable set of k-DNF formulas D
k
m

and then wj = . . . = wm−1 = 1 to satisfy the rest of the set, whereas removing
zj−1 would allow us to assign to 1 all xi ∈ X1 ∪ . . . ∪Xj−1 and then still assign
wj = . . . = wm−1 = 1.

For the other kind of terms wj−1 ∧ x(j−1)(k−1)+1 ∧ · · · ∧ xj(k−1) in (4e)–(4g),
if some xi with xi ∈ Xj is removed, we can set this xi to true as well as an
arbitrary xi′ ∈ X1 ∪ . . .∪Xj−1, whereas removing wj−1 would allow as again to
set to 1 all variables in X1 ∪ . . . Xj−1. This proves the minimality of Wm(x).

3.2 The Minimally Unsatisfiable k-DNF Set

Let us write xj =
(
xj

1, x
j
2, . . . , x

j
m(k−1)

)
, and let W j

m(xj) be the k-DNF set with
O(m) formulas constructed above (over disjoint sets of variables for distinct j)
minimally expressing that |xj | ≤ 1. With this notation, let D

k
m be the k-DNF

set consisting of the formulas in Figure 2. It is worth noting that the range
of the index ν does not have any impact on the following proof of minimal
unsatisfiability, and it was set to m(k−1) only to get the best numerical results.

It is easy to verify that D
k
m consists of less than 4mk k-DNF formulas over

more than (m(k − 1))k =
(

1
4 (4mk)

(
1 − 1

k

))k variables. We claim that D
k
m is

minimally unsatisfiable, from which Theorem 4 follows.
To prove the claim, let us first verify unsatisfiability. If the k-DNF formulas

W j
m(x) in (5a) are to be satisfied for all j < k, then there exists at most one

(k−1)-tuple (i∗1, i∗2, . . . , i∗k−1) ∈ [m(k − 1)]k−1 such that x1
i∗1
, x2

i∗2
, . . . , xk−1

i∗k−1
are all

true. This forces yν
(i∗1,i∗2 ,...,i∗k−1) to true for all ν to satisfy the formulas in (5b), and

then (5c) forces all uν to 0, so that (5d) is falsified. Hence, D
k
m is unsatisfiable.

Let us now argue that D
k
m is not only unsatisfiable, but minimally unsatisfiable

in the sense of Definition 1. The proof is by case analysis over the different types
of formulas in D

k
m.

1. If we shrink any term in (5a)—say, in W 1
m(x1)—then by the minimality

property in Section 3.1 we can set some x1
i′1

= x1
i′′1

= 1 for i′1 �= i′′1 and

fix some x2
i∗2

= . . . = xk−1
i∗k−1

= 1 without violating the remaining clauses in

648 J. Nordström and A. Razborov

W 1
m(x1), . . . ,W k−1

m (xk−1). This allows us to satisfy the formulas in (5b) and
(5c) by setting yν

(i′1,i∗2 ...,i∗k−1) = 1 and yν
(i′′1 ,i∗2 ...,i∗k−1) = 0 for all ν. Finally, set

any uν to true to satisfy (5d). This satisfies the whole k-DNF set.
2. Next, suppose that we shrink some term x1

i∗1
∧ x2

i∗2
∧ · · · ∧ xk−1

i∗k−1
∧ yν

(i∗1 ,...,i∗k−1)

in the νth k-DNF formula in (5b). There are two subcases:
(a) Some x-variable is removed, say, the variable x1

i∗1
. Set x1

i∗1
= 0 and x2

i∗2
=

. . . = xk−1
i∗
k−1

= yν
(i∗1 ,i∗2 ,...,i∗k−1) = 1. This satisfies the νth formula in (5b).

Then pick some i′1 �= i∗1 and set x1
i′1

= 1. All this can be done in a way that
satisfies all clauses in (5a) since the weight of every xj is one. Set uν = 1
and uν′ = 0 for all ν′ �= ν to satisfy (5d) and then yν

(i′1,i∗2 ,...,i∗k−1)
= 0

to satisfy the νth formula in (5c) (all others are satisfied by literals ūν′ ,
ν′ �= ν). The νth formula in (5b) was satisfied above, and for all other
ν′ �= ν we set yν′

(i′1,i∗2 ,...,i∗k−1) = 1 to satisfy the rest of the formulas in (5b).
This satisfies the whole k-DNF set.

(b) The variable yν
(i∗1 ,...,i∗

k−1) is eliminated. If so, set x1
i∗1

= . . . = xk−1
i∗k−1

= 1
to satisfy the νth formula in (5b), uν = 1 and yν

(i∗1 ,...,i∗k−1) = 0 to satisfy

(5d) and the νth formula in (5c), and uν′ = 0 and yν′
(i∗1 ,...,i∗k−1) = 1 for all

ν′ �= ν to satisfy the rest of the formulas in (5b) and (5c). This is easily
extended to an assignment satisfying (5a) as well.

3. For the νth formula in (5c), we may assume, for the same reasons as in
Section 3.1, that we shrink a non-trivial k-term. Then we again have two
subcases, treated similarly.
(a) Some x-variable is removed, say x1

i∗1
. Set uν = 1, x1

i∗1
= 0, x2

i∗2
= . . . =

xk−1
i∗k−1

= 1, and yν
(i∗1 ,i∗2 ,...,i∗k−1) = 0. This satisfies (5d) and the νth formula

in (5c). Setting uν′ = 0 for ν′ �= ν takes care of the rest of (5c). To
satisfy (5b), pick some i′1 �= i∗1 and set x1

i′1
= 1, and yν′

(i′1,i∗2 ,...,i∗k−1) = 1 for
all ν′. These assignments are all consistent with the weight constraints
in (5a).

(b) The literal yν
(i∗1 ,...,i∗k−1) is eliminated. If so, set x1

i∗1
= . . . = xk−1

i∗k−1
= 1 to

satisfy the νth formula in (5c) and uν = 1 to satisfy (5d). Setting uν′ = 0
for ν′ �= ν takes care of the rest of (5c). Now we can satisfy all of (5b)
by setting yν′

(i∗1 ,...,i∗k−1) = 1 for all ν′, and it is once again easy to see that
the weight constraints in (5a) are also satisfied.

4. The disjunctive clause (5d) is removed. Set all uν to 0, and then set all
yν

i1,...,ik
to 1, then (5a)–(5b) become easy to satisfy.

This completes the proof that D
k
m is minimally unsatisfiable as claimed, and

Theorem 4 hence follows.

4 Implications for k-DNF Resolution Trade-offs

Let us start this section by a quick review of the relevant proof complexity
context. The k-DNF resolution proof systems were introduced by Kraj́ıček [14]

On Minimal Unsatisfiability and Time-Space Trade-offs 649

as an intermediate step between resolution and depth-2 Frege. Roughly speaking,
the kth member of this family, denoted henceforth by R(k), is a system for
reasoning in terms of k-DNF formulas. For k = 1, the lines in the proof are
hence disjunctions of literals, and the system R(1) is standard resolution. At the
other extreme, R(∞) is equivalent to depth-2 Frege.

Informally, we can think of an R(k)-proof as being presented on a blackboard.
The allowed derivation steps are to write on the board a clause of the CNF for-
mula being refuted, to deduce a new k-DNF formula from the formulas currently
on the board, or to erase formulas from the board. The length of an R(k)-proof is
the total number of formulas appearing on the board (counted with repetitions)
and the (formula) space is the maximal number of formulas simultaneously on
the board at any time during the proof.

A number of works, for example, [2, 4, 5, 19, 20, 21], have proven super-
polynomial lower bounds on the length of k-DNF refutations. It was also shown
in [20, 21] that the R(k)-family forms a strict hierarchy with respect to proof
length. Just as in the case for standard resolution, however, our understanding
of space complexity in k-DNF resolution has remained more limited. Esteban
et al. [13] established essentially optimal space lower bounds for R(k) and also
proved that the family of tree-like R(k) systems form a strict hierarchy with
respect to space. They showed that there are formulas Fn of size n that can be
refuted in tree-like (k + 1)-DNF resolution in constant space but require space
Ω(n/ log2 n) in tree-like k-DNF resolution. It should be pointed out, however,
that tree-like R(k) for any k ≥ 1 is strictly weaker than standard resolution,
so the results in [13] left open the question of whether there is a strict space
hierarchy for (non-tree-like) k-DNF resolution or not.

Recently, the first author in joint work with Ben-Sasson [10] proved that
Kraj́ıček’s family of R(k) systems do indeed form a strict hierarchy with respect
to space. However, the parameters of the separation were much worse than for
the tree-like systems in [13]; namely, the R(k + 1)-proofs have constant space
but any R(k)-proof requires space Ω

(
k+1
√
n/ logn

)
. It is not clear that there has

to be a (k+ 1)st root in this bound. No matching upper bounds are known, and
indeed for the special case of R(2) versus R(1) the lower bound proven in [10]
is Ω

(
n/ logn

)
, i.e., without a square root. Also, [10] established strong length-

space trade-offs for k-DNF resolution, but again a (k + 1)st root is lost in the
analysis compared to the corresponding results for standard resolution R(1).

Returning now to the minimally unsatisfiable k-DNF sets, the reason [10]
studied this concept was that it appeared related to a problem arising in their
proof analysis, and they hoped that better upper bounds for minimal unsatisfi-
ability would translate into improvements in the analysis. Instead, using ideas
from the improved lower bound construction for minimal unsatisfiability in the
previous section, we can show that the analysis of the particular proof technique
employed in [10] is almost tight. Thus, any further substantial improvements of
the bounds in that paper would have to be obtained by other methods.

We do not go into details of the proof construction in [10] here, since it is
rather elaborate. Suffice it to say that the final step of the proof boils down to

650 J. Nordström and A. Razborov

studying k-DNF sets that imply Boolean functions with a particular structure,
and proving lower bounds on the size of such DNF sets in terms of the number
of variables in these Boolean functions. (Recall that a set F implies a function F ,
denoted F � F , if any satisfying truth value assignment to all of F must also
satisfy F .) Having come that far in the construction, all that remains is a purely
combinatorial problem, and no reference to space proof complexity or k-DNF
resolution is needed.

For concreteness, below we restrict our attention to the case where the Boolean
functions are exclusive or. More general functions can be considered, and have
been studied in [10], and everything that will be said below applies to such
Boolean functions with appropriate (and simple) modifications. Hence, from now
on let us focus on DNF sets that “minimally imply” (in a sense made formal
below) a particular kind of formulas that we will refer to as

(∧∨⊕k
)
-block for-

mulas . A
(∧∨⊕k

)
-block formula is a CNF formula in which every variable x is

replaced by
⊕k

i=1 xi, where x1, . . . , xk are new variables. Thus, literals turn into
unnegated or negated XORs, every XOR applies to exactly one “block” of k
variables, and no XOR mixes variables from different blocks. Let us write this
down as a formal definition.

Definition 5. A
(∧∨⊕k

)
-block formula G is a conjunction of disjunctions of

negated or unnegated exclusive ors. The variables of G are divided into disjoint
blocks x1, . . . , xk, y1, . . . , yk, z1, . . . , zk et cetera, of k variables each, and every
XOR or negated XOR is over one full block of variables.

The key behind the lower bounds on space in [10] is the result that if a k-DNF
set D implies a

(∧∨⊕k+1
)
-block formula G with many variables, then D must

also be large.

Theorem 6 ([10]). Let k be some fixed but arbitrary positive integer. Suppose
D is a k-DNF set and G is a

(∧∨⊕k+1
)
-block formula such that D implies G

“precisely,” in the sense that if we remove a single XOR or negated XOR from
G (thus making the formula stronger, i.e., harder to satisfy), it no longer holds
that D implies G. Then |Vars(G)| = O

(|D|k+1
)
.

Using this theorem, one can get the k+1
√
n/ logn space separation mentioned

above between R(k) and R(k + 1). Any improvement in the exponent in the
bound in Theorem 6 would immediately translate into an improved space sepa-
ration, and would also improve the k-DNF resolution trade-offs in [10].

Prior to the current paper, the best lower bound giving limits on what one
could hope to achieve in Theorem 6 was linear, i.e., |Vars(G)| = Ω(|D|). Namely,
let G be a conjunction of XORs (

⊕k+1
i=1 xi) ∧ (

⊕k+1
i=1 yi) ∧ (

⊕k+1
i=1 zi) ∧ · · · and

D be the union of the expansions of every
⊕k+1

i=1 xi as a CNF formula. For this
particular structure of G it is also easy to prove that |Vars(G)| = O(|D|) for any
choice of D, but it was open what happens when we consider general formulas G.

For k = 1, [10] proved that a linear bound O(|D|) in fact holds for any set
of clauses D and any

(∧∨⊕2
)
-block formula G, but all attempts to extend the

On Minimal Unsatisfiability and Time-Space Trade-offs 651

techniques used there to the case k > 1 have failed. And indeed, they have failed
for a good reason, since building on the construction in Section 3 we can show
that the best one can hope for in Theorem 6 is |Vars(G)| = O

(|D|k).
Theorem 7. For any k > 1 there are arbirarily large k-DNF sets D of size m
and

(∧∨⊕k+1
)
-block formulas G such that D “precisely” implies G in the sense

of Theorem 6 and |Vars(G)| ≥ (k + 1)
[

m
k+2

(
1− 1

k

)]k ≥ k
(

m
4k

)k.

Proof. We utilize all the previous notation and start with the CNF formula∧
ν∈[m(k−1)]

∨
(i1,...,ik−1)∈[m(k−1)]k−1

yν
i1,...,ik−1

(6)

and substitute an exclusive or over variables yν,r
i1,...,ik−1

, r = 1, . . . , k+1, for every
variable yν

i1,...,ik−1
. This results in the formula

G =
∧

ν∈[m(k−1)]

∨
(i1,...,ik−1)∈[m(k−1)]k−1

k+1⊕
r=1

yν,r
i1,...,ik−1

(7)

which will be our
(∧∨⊕k+1

)
-block formula. Clearly, G contains (k+1)·(m(k−1))k

variables. We claim that the following easy modification of the k-DNF set from
Figure 2 “precisely” implies G in the sense of Theorem 6:

W j
m(xj) 1 ≤ j < k (8a)∨

(i1,...,ik−1)∈[m(k−1)]k−1

(
x1

i1 ∧ · · · ∧ xk−1
ik−1
∧ yν,1

i1,...,ik−1

)
1 ≤ ν ≤ m(k − 1) (8b)

∨
(i1,...,ik−1)∈[m(k−1)]k−1

(
x1

i1 ∧ · · · ∧ xk−1
ik−1
∧ yν,r

i1,...,ik−1

)
1 ≤ ν ≤ m(k − 1),

2 ≤ r ≤ k + 1

(8c)

It is straightforward to verify that D consists of less than m(k − 1)(k + 1) +
2mk ≤ mk(k + 2) k-DNF formulas. D implies G since once we have picked
which variables x1

i∗1
, x2

i∗2
, . . . , xk−1

i∗k−1
should be satisfied, D will force all XOR blocks⊕k+1

r=1 y
ν,r
i∗1 ,...,i∗k−1

, j ∈ [m(k − 1)] to true by requiring the variable yν,1
i∗1 ,...,i∗k−1

to be
true and all other variables yν,r

i∗1 ,...,i∗k−1
, r ≥ 2, to be false. Finally, it is also easy

to verify that if a single XOR block
⊕k+1

r=1 y
ν,r
i∗1 ,...,i∗k−1

is removed from G, then we
can satisfy D but falsify the rest of the formula G (the proof is very similar to
the one given in Section 3.2). Theorem 7 follows.

5 Concluding Remarks and Open Problems

We conclude this paper by discussing two remaining open problems. First, the
most obvious problem still open is to close the gap between the lower bound

652 J. Nordström and A. Razborov

(Ω(m))k and upper bound (mk)k+1 on the number of variables that can appear
in a minimally unsatisfiable k-DNF set with m formulas. A strong intuition
expressed by [10] is that it should be possible to bring down the exponent from
k + 1 to k. Hence, we have the following conjecture, where for simplicity we fix
k to remove it from the asymptotic notation.

Conjecture 8. Suppose that D is a minimally unsatisfiable k-DNF set for some
arbitrary but fixed k > 1. Then the number of variables in D is at most O(|D|)k.

Proving this conjecture would establish asymptotically tight bounds for mini-
mally unsatisfiable k-DNF sets (ignoring factors involving the constant k).

Second, we again stress that the result in Theorem 7 does not per se imply
any restrictions (that we are aware of) on what space separations or time-space
trade-offs are possible for k-DNF resolution. The reason for this is that our
improved lower bound only rules out a particular approach for proving better
separations and trade-offs, but it does not say anything to the effect that the
k-DNF resolution proof systems are strong enough to match this lower bound. It
would be very interesting to understand better the strength of k-DNF resolution
in this respect. Hence we have the following open problem (where due to space
constraints we have to refer to [10] or [17] for the relevant formal definitions).

Problem 9. Let Pebk+1
G [⊕] be the XOR-pebbling contradiction over some di-

rected acyclic graph G. Is it possible that R(k) can refute Pebk+1
G [⊕] in space

asymptotically better than the black-white pebbling price BW-Peb(G) of G?

We remark that for standard resolution, i.e., 1-DNF resolution, the answer to
this question is that XOR-pebbling contradictions over two or more variables
cannot be refuted in space less than the black-white pebbling price, as proven
in [10]. For k-DNF resolution with k > 1, however, the best known lower bound
is Ω

(
k+1
√

BW-Peb(G)
)
, as also shown in [10]. There is a wide gap here between

the upper and lower bounds since, as far as we are aware, there are no known
k-DNF resolution proofs that can do better than space linear in the pebbling
price (which is achievable by standard resolution).

Acknowledgements. The authors would like to thank Eli Ben-Sasson for get-
ting them to work together on this problem and for many stimulating discussions.
We also gratefully acknowledge the ICALP anonymous reviewers, whose com-
ments helped improve this manuscript considerably. The first author is grateful
to Johan H̊astad, Nati Linial, and Klas Markström for thoughtful comments and
advice about the problem of minimally unsatisfiable k-DNF sets.

The first author did this work while at the Massachusetts Institute of Technol-
ogy, supported by the Royal Swedish Academy of Sciences, the Ericsson Research
Foundation, the Sweden-America Foundation, the Foundation Olle Engkvist
Byggmästare, and the Foundation Blanceflor Boncompagni-Ludovisi, née Bildt.
He is currently supported by Swedish Research Council grant 621-2010-4797.

The second author did part of this work while with Steklov Mathematical
Institute, supported by the Russian Foundation for Basic Research, and with
Toyota Technological Institute at Chicago.

On Minimal Unsatisfiability and Time-Space Trade-offs 653

References

[1] Aharoni, R., Linial, N.: Minimal non-two-colorable hypergraphs and minimal un-
satisfiable formulas. J. Comb. Theory 43, 196–204 (1986)

[2] Alekhnovich, M.: Lower bounds for k-DNF resolution on random 3-CNFs. In:
Proc. 37th ACM Symposium on Theory of Computing, pp. 251–256 (May 2005)

[3] Alekhnovich, M., Ben-Sasson, E., Razborov, A.A., Wigderson, A.: Space complex-
ity in propositional calculus. SICOMP 31(4), 1184–1211 (2002)

[4] Atserias, A., Bonet, M.L.: On the automatizability of resolution and related propo-
sitional proof systems. Info. Comp. 189(2), 182–201 (2004)

[5] Atserias, A., Bonet, M.L., Esteban, J.L.: Lower bounds for the weak pigeonhole
principle and random formulas beyond resolution. Info. Comp. 176(2), 136–152
(2002)

[6] Baumer, S., Esteban, J.L., Torán, J.: Minimally unsatisfiable CNF formulas. Bul-
letin of the EATCS 74, 190–192 (2001)

[7] Ben-Sasson, E., Galesi, N.: Space complexity of random formulae in resolution.
Rand. Struc. Alg. 23(1), 92–109 (2003)

[8] Ben-Sasson, E., Nordström, J.: Short proofs be spacious: An optimal separation of
space and length in resolution. In: Proc. 49th IEEE Symposium on Foundations
of Computer Science, pp. 709–718 (2008)

[9] Ben-Sasson, E., Nordström, J.: A space hierarchy for k-DNF resolution. Technical
Report TR09-047, Electronic Colloquium on Computational Complexity (2009)

[10] Ben-Sasson, E., Nordström, J.: Understanding space in proof complexity: Sepa-
rations and trade-offs via substitutions. In: Proc. 2nd Symposium on Innovations
in Computer Science, pp. 401–416 (2011)

[11] Ben-Sasson, E., Wigderson, A.: Short proofs are narrow—resolution made simple.
J. ACM 48(2), 149–169 (2001)

[12] Chvátal, V., Szemerédi, E.: Many hard examples for resolution. J. ACM 35(4),
759–768 (1988)

[13] Esteban, J.L., Galesi, N., Messner, J.: On the complexity of resolution with
bounded conjunctions. TCS 321(2-3), 347–370 (2004)

[14] Kraj́ıček, J.: On the weak pigeonhole principle. Fund. Math. 170(1-3), 123–140
(2001)

[15] Kullmann, O.: An application of matroid theory to the SAT problem. In: Proc.
15th IEEE Conference on Computational Complexity, pp. 116–124 (2000)

[16] Nordström, J.: Narrow proofs be spacious: Separating space and width in resolu-
tion. SICOMP 39(1), 59–121 (2009)

[17] Nordström, J.: Pebble games, proof complexity and time-space trade-offs. Logical
Methods in Computer Science (to appear, 2011)

[18] Nordström, J., H̊astad, J.: Towards an optimal separation of space and length
in resolution (Extended abstract). In: Proc. 40th ACM Symposium on Theory of
Computing, pp. 701–710 (May 2008)

[19] Razborov, A.A.: Pseudorandom generators hard for k-DNF resolution and poly-
nomial calculus resolution (manuscript)

[20] Segerlind, N.: Exponential separation between Res(k) and Res(k + 1) for k ≤
ε log n. IPL 93(4), 185–190 (2005)

[21] Segerlind, N., Buss, S.R., Impagliazzo, R.: A switching lemma for small restric-
tions and lower bounds for k-DNF resolution. SICOMP 33(5), 1171–1200 (2004)

Sorting by Transpositions Is Difficult

Laurent Bulteau, Guillaume Fertin, and Irena Rusu

Laboratoire d’Informatique de Nantes-Atlantique (LINA), UMR CNRS 6241
Université de Nantes, 2 rue de la Houssinière, 44322 Nantes Cedex 3 - France

{Laurent.Bulteau,Guillaume.Fertin,Irena.Rusu}@univ-nantes.fr

Abstract. In comparative genomics, a transposition is an operation that
exchanges two consecutive sequences of genes in a genome. The transposition
distance, that is, the minimum number of transpositions needed to transform a
genome into another, can be considered as a relevant evolutionary distance. The
problem of computing this distance when genomes are represented by permuta-
tions, called the SORTING BY TRANSPOSITIONS problem (SBT), has been in-
troduced by Bafna and Pevzner [3] in 1995. It has naturally been the focus of
a number of studies, but the computational complexity of this problem has re-
mained undetermined for 15 years.

In this paper, we answer this long-standing open question by proving that
the SORTING BY TRANSPOSITIONS problem is NP-hard. As a corollary of our
result, we also prove that the following problem from [10] is NP-hard: given a
permutation π, is it possible to sort π using db(π)/3 permutations, where db(π)
is the number of breakpoints of π?

Introduction

Along with reversals, transpositions are one of the most elementary large-scale opera-
tions that can affect a genome. A transposition consists in swapping two consecutive
sequences of genes or, equivalently, in moving a sequence of genes from one place to
another in the genome. The transposition distance between two genomes is the min-
imum number of such operations that are needed to transform one genome into the
other. Computing this distance is a challenge in comparative genomics, since it gives a
maximum parsimony evolution scenario between the two genomes.

The SORTING BY TRANSPOSITIONS problem is the problem of computing the trans-
position distance between genomes represented by permutations: see [17] for a de-
tailed review on this problem and its variants. Since its introduction by Bafna and
Pevzner [3,4], the complexity class of this problem has never been established. Hence a
number of studies [4,10,18,20,14,5,16] aim at designing approximation algorithms or
heuristics, the best known fixed-ratio algorithm being a 1.375-approximation[14]. Other
works [19,10,15,22,14,5] aim at computing bounds on the transposition distance of a
permutation. Studies have also been devoted to variants of this problem, by considering,
for example, prefix transpositions [13,23,8] (in which one of the blocks has to be a prefix
of the sequence), or distance between strings [11,12,26,25,21] (where multiple occur-
rences of each element are allowed in the sequences), possibly with weighted or prefix
transpositions [24,6,1,2,8]. Note also that sorting a permutation by block-interchanges
(i.e. exchanges of non-necessarily consecutive sequences) is a polynomial problem [9].

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 654–665, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Sorting by Transpositions Is Difficult 655

In this paper, we address the long-standing issue of determining the complexity class
of the SORTING BY TRANSPOSITIONS problem, by giving a polynomial-time reduction
from SAT, thus proving the NP-hardness of this problem. Our reduction is based on
the study of transpositions that remove three breakpoints. A corollary of our result is
the NP-hardness of the following problem, introduced in [10]: given a permutation
π, is it possible to sort π using db(π)/3 permutations, where db(π) is the number of
breakpoints of π? Due to space constraints, this paper only describes the reduction
itself. The detailed proof can be found in the full version of this paper [7].

1 Preliminaries

In this paper, n denotes a positive integer. Let �a ; b� = {x ∈ N | a ≤ x ≤ b}, and Idn

be the identity permutation over �0 ; n�. We consider only permutations of �0 ; n� such
that 0 and n are fixed-points. Given a word u1 u2 . . . ul, a subword is a subsequence
up1 up2 . . . upl′ , where 1 ≤ p1 < p2 < . . . < pl′ ≤ l. A factor is a subsequence of
contiguous elements, i.e. a subword with pk+1 = pk + 1 for every k ∈ �1 ; l′ − 1�.

Definition 1 (Transposition). Given three integers 0 < i < j < k ≤ n, the transposi-
tion τi,j,k over �0 ; n� is the following permutation:

τi,j,k =
(

0 · · · i− 1 i · · · k + i− j − 1 k + i− j · · · k − 1 k · · · n
0 · · · i− 1 j · · · k − 1 i · · · j − 1 k · · · n

)
Let π be a permutation of �0 ; n�. The transposition distance dt(π) from π to Idn is
the minimum value k for which there exist k transpositions τ1, τ2, . . . , τk such that
π ◦ τk ◦ . . . ◦ τ2 ◦ τ1 = Idn.

The transposition τi,j,k is the operation that, when it is composed with a permutation,
exchanges factors with indices i, . . . , j − 1 and j, . . . , k − 1, see Figure 1a. The in-
verse function of τi,j,k is also a transposition: τ−1

i,j,k = τi,k+i−j,k . See Figure 1b for an
example of the computation of the transposition distance.

We consider the following problem:

SORTING BY TRANSPOSITIONS PROBLEM [3]
INPUT: A permutation π, an integer k.
QUESTION: Is dt(π) ≤ k?

Computing the transposition distance has often been linked to studying the break-
points of a permutation. A breakpoint of π is a pair (x − 1, x), x ∈ �1 ; n�, such that
π(x) �= π(x− 1) + 1. A transposition can decrease the number of breakpoints of a per-
mutation, db(π), by at most 3. In this paper we in fact focus on the “simpler” problem
of determining whether dt(π) = db(π)/3 for a given permutation π.

2 3-Deletion and Transposition Operations

In this section, we introduce 3DT-instances, which are the cornerstone of our reduction
from SAT to the SORTING BY TRANSPOSITIONS problem, since they are used as an
intermediate between instances of the two problems.

656 L. Bulteau, G. Fertin, and I. Rusu

Fig. 1. (a) Representation of a transposition τi,j,k for 0 < i < j < k ≤ n on a general
permutation. (b) The transposition distance from π = (0 2 4 3 1 5) to Id5 is 2: it is at most 2
since π ◦ τ1,3,5 ◦ τ1,2,4 = Id5, and it cannot be less than 2 since dt(π) ≥ db(π)/3 = 5/3 > 1.

Definition 2 (3DT-instance). A 3DT-instance I = 〈Σ, T, ψ〉 of span n is composed of
the following elements:

– Σ: an alphabet of at most n elements;
– T = {(ai, bi, ci) | 1 ≤ i ≤ |T |}: a set of (ordered) triples of elements of Σ,

partitioning Σ (i.e. all elements are pairwise distinct, and
⋃|T |

i=1{ai, bi, ci} = Σ);
– ψ : Σ → �1 ; n�, an injection.

The domain of I is the image of ψ, that is the set L = {ψ(σ) | σ ∈ Σ}. The word
representation of I is the n-letter word u1 u2 . . . un over Σ ∪ {	} (where 	 /∈ Σ), such
that for all i ∈ L, ψ(ui) = i, and for i ∈ �1 ; n�− L, ui = 	. For σ1, σ2 ∈ Σ, we write
σ1 ≺ σ2 if ψ(σ1) < ψ(σ2), and σ1 # σ2 if σ1 ≺ σ2 and 	x ∈ Σ, σ1 ≺ x ≺ σ2.

Two examples of 3DT-instances are given in Figure 2. Note that such instances can
be defined by their word representation and by their set of triples T . The empty 3DT-
instance, in which Σ = ∅, can be written with a sequence of n dots, or with the empty
word ε.

Using the triples in T , we can define a successor function over the domain L:

Definition 3. Let I = 〈Σ, T, ψ〉 be a 3DT-instance with domain L. We write succI :
L → L the function such that, for all (a, b, c) ∈ T , ψ(a) �→ ψ(b), ψ(b) �→ ψ(c), and
ψ(c) �→ ψ(a).

Function succI is a bijection, with no fixed-points, and such that succI ◦ succI ◦ succI

is the identity over L.

In the example of Figure 2, succI =
(

1 2 3 4 5 6
3 6 5 2 1 4

)
and succI′ =

(
2 4 6
4 6 2

)
.

Definition 4. Let I = 〈Σ, T, ψ〉 be a 3DT-instance, and (a, b, c) be a triple of T . Write
i = min{ψ(a), ψ(b), ψ(c)}, j = succI(i), and k = succI(j). The triple (a, b, c) ∈
T is well-ordered if we have i < j < k. In such a case, we write τ [a, b, c, ψ] the
transposition τi,j,k.

An equivalent definition is that (a, b, c) ∈ T is well-ordered iff one of abc, bca, cab is a
subword of the word representation of I . In the example of Figure 2, (a1, b1, c1) is well-
ordered in I: indeed, we have i = ψ(a1), j = ψ(b1) and k = ψ(c1), so i < j < k. The
triple (a2, b2, c2) is also well-ordered in I ′ (i = ψ′(b2) < j = ψ′(c2) < k = ψ′(a2)),
but not in I: i = ψ(c2) < k = ψ(b2) < j = ψ(a2). In this example, we have
τ [a1, b1, c1, ψ] = τ1,3,5 and τ [a2, b2, c2, ψ

′] = τ2,4,6.

Sorting by Transpositions Is Difficult 657

I = a1 c2 b1 b2 c1 a2 with T = {(a1, b1, c1), (a2, b2, c2)}
I ′ = 	 b2 	 c2 	 a2 with T ′ = {(a2, b2, c2)}

Fig. 2. Two examples of 3DT-instances of span 6. We write I = 〈Σ, T, ψ〉 and I ′ = 〈Σ′, T ′, ψ′〉.
I has an alphabet of size 6, Σ = {a1, b1, c1, a2, b2, c2}, hence ψ is a bijection (ψ(a1) = 1,
ψ(c2) = 2, ψ(b1) = 3, etc). I ′ has an alphabet of size 3, Σ′ = {a2, b2, c2}, with ψ′(b2) = 2,
ψ′(c2) = 4, ψ′(a2) = 6.

Definition 5 (3DT-step). Let I = 〈Σ, T, ψ〉 be a 3DT-instance with (a, b, c) ∈ T a
well-ordered triple. The 3DT-step of parameter (a, b, c) is the operation written (a, b, c)−−−−−→,
transforming I into the 3DT-instance I ′ = 〈Σ′, T ′, ψ′〉 such that, with τ = τ [a, b, c, ψ]:

Σ′ = Σ − {a, b, c}; T ′ = T − {(a, b, c)}; ψ′ :
Σ′ → �1 ; n�
σ �→ τ−1(ψ(σ)) .

If the word representation of I is W aX bY cZ , then, after the 3DT-step I (a, b, c)−−−−−→I ′,
the word representation of I ′ is W 	Y 	X 	Z . Note that a triple that is not well-ordered
in I can become well-ordered in I ′, or vice-versa. In the example of Figure 2, I ′ can be
obtained from I via a 3DT-step: I (a1, b1, c1)−−−−−−−−→I ′. Moreover, I ′ (a2, b2, c2)−−−−−−−−→ε.

Definition 6 (3DT-collapsibility). A 3DT-instance I = 〈Σ, T, ψ〉 is 3DT-collapsible if
there exists a sequence of 3DT-instances Ik, Ik−1, . . . , I0 such that Ik = I , I0 = ε, and
∀i ∈ �1 ; k� , ∃(a, b, c) ∈ T, Ii

(a, b, c)−−−−−→Ii−1.

In Figure 2, I and I ′ are 3DT-collapsible, since we have I (a1, b1, c1)−−−−−−−−→I ′ (a2, b2, c2)−−−−−−−−→ε.

3 3DT-Collapsibility Is NP-Hard to Decide

In this section, we define, for any boolean formula φ, a corresponding 3DT-instance Iφ.
We also prove that Iφ is 3DT-collapsible iff φ is satisfiable (see Theorem 1).

3.1 Block Structure

The construction of the 3DT-instance Iφ uses a decomposition into blocks, defined be-
low. Some triples will be included in a block, in order to define its behavior, while others
will be shared between two blocks, in order to pass information. The former are uncon-
strained, so that we can design blocks with the behavior we need (for example, blocks
mimicking usual boolean functions), while the latter need to follow several rules, so
that the blocks can easily be arranged together.

Definition 7 (l-block-decomposition). An l-block-decompositionB of a 3DT-instance
I of span n is an l-tuple (s1, . . . , sl) such that s1 = 0, for all h ∈ �1 ; l − 1�, sh < sh+1

and sl < n. We write th = sh+1 for h ∈ �1 ; l − 1�, and tl = n.
Let I = 〈Σ, T, ψ〉 and u1 u2 . . . un be the word representation of I . For h ∈ �1 ; l�,

the subword ush+1 ush+2 . . . uth
where every occurrence of 	 is deleted is called the

658 L. Bulteau, G. Fertin, and I. Rusu

block Bh. For σ ∈ Σ, we write blockI,B(σ) = h if ψ(σ) ∈ �sh + 1 ; th� (equivalently,
if σ appears in the word Bh). A triple (a, b, c) ∈ T is said to be internal if blockI,B(a) =
blockI,B(b) = blockI,B(c), external otherwise.

Given a 3DT-step I
(a, b, c)−−−−−→I ′, the arrow notation can be extended to an l-block-

decomposition B of I , provided at least one of the following equalities is satisfied:
blockI,B(a) = blockI,B(b), blockI,B(b) = blockI,B(c) or blockI,B(c) = blockI,B(a).
In this case, with τ = τ [a, b, c, ψ], the l-tuple B′ = (τ−1(s1), . . . , τ−1(sl)) is an l-
block-decomposition of I ′, and we write (I,B) (a, b, c)−−−−−→(I ′,B′).

Definition 8 (Variable). A variable A of a 3DT-instance I = 〈Σ, T, ψ〉 is a pair of
triples A = [(a, b, c), (x, y, z)] of T . It is valid in an l-block-decomposition B if

(i) ∃h0 ∈ �1 ; l� such that blockI,B(b) = blockI,B(x) = blockI,B(y) = h0

(ii) ∃h1 ∈ �1 ; l�, h1 �= h0, such that blockI,B(a) = blockI,B(c) = blockI,B(z) = h1

(iii) if x ≺ y, then we have x # b # y

(iv) a ≺ z ≺ c

For such a valid variable A, the block Bh0 containing {b, x, y} is called the source
of A, and the block Bh1 containing {a, c, z} is called the target of A. For h ∈ �1 ; l�,
the variables of which Bh is the source (resp. the target) are called the output (resp.
the input) of Bh. The 3DT-step I (x, y, z)−−−−−−→I ′ is called the activation of A (it requires that
(x, y, z) is well-ordered).

Note that, for any valid variable A = [(a, b, c), (x, y, z)] in (I,B), we have, accord-
ing to condition (i), blockI,B(x) = blockI,B(y), thus its activation can be written

(I,B) (x, y, z)−−−−−−→(I ′,B′).

Property 1. Let (I,B) be a 3DT-instance with an l-block-decomposition, and A be a
variable of I that is valid in B, A = [(a, b, c), (x, y, z)]. Then (x, y, z) is well-ordered
iff x ≺ y; and (a, b, c) is not well-ordered.

Definition 9 (Valid context). A 3DT-instance with an l-block-decomposition (I,B) is
a valid context if the set of external triples of I can be partitioned into valid variables.

Let B be a block in a valid context (I,B) (in which B = Bh, for some h ∈ �1 ; l�),
and (I,B) (d, e, f)−−−−−−→(I ′,B′) be a 3DT-step such that, writing B′ = B′

h, we have B′ �= B.
Then, depending on the triple (d, e, f), we are in one of the following three cases:

– (d, e, f) is an internal triple of B. We write: B B′(d, e, f)

– (d, e, f) = (x, y, z) for some output A = [(a, b, c), (x, y, z)] of B. We write:
B B′A

– (d, e, f) = (x, y, z) for some input A = [(a, b, c), (x, y, z)] of B. We write:
B B′A

The graph obtained from a block B by following exhaustively the possible arcs as
defined above (always assuming this block is in a valid context) is called the behavior
graph of B. Figure 3 illustrates the activation of a valid variable A.

Sorting by Transpositions Is Difficult 659

· · ·

· · ·

· · ·

source

�

R x b y S

�

�

R S

�

�

R S

�

· · ·

· · ·

· · ·

target

�

T a U z V c W

�

�

T a U b V c W

�

�

T V U W

�

· · ·

· · ·

· · ·

AA

(a, b, c)

(x, y, z)

(a, b, c)

Fig. 3. Activation of a valid variable A = [(a, b, c), (x, y, z)]. It can be followed by the 3DT-

step (a, b, c)−−−−−→, impacting only the target block of A. Dot symbols () are omitted. We denote by
R, S, T, U, V, W some factors of the source and target blocks of A: the consequence of activating
A is to allow U and V to be swapped in the target of A.

3.2 Basic Blocks

We now define four basic blocks: copy, and, or, and var. They are studied independently
in this section, before being assembled in Section 3.3. Each of these blocks is defined by
a word and a set of triples. We distinguish internal triples, for which all three elements
appear in a single block, from external triples, which are part of an input/output variable,
and for which only one or two elements appear in the block. Note that each external
triple is part of an input (resp. output) variable, which itself must be an output (resp.
input) of another block, the other block containing the remaining elements of the triple.

We then compute the behavior graph of each of these blocks (it is given here for the
block copy, see Figure 4, and in the full version for the other blocks): in each case, we
assume that the block is in a valid context, and follow exhaustively the 3DT-steps that
can be applied to it. It must be kept in mind that for any variable, it is the state of the
source block which determines whether it can be activated, whereas the activation itself
affects mostly the target block. It can be verified that each output (resp. input) variable
of these blocks satisfy the constraints (i) and (iii) (resp. (ii) and (iv)) of Definition 8.

The block copy. This block aims at duplicating a variable: any of the two output vari-
ables can only be activated after the input variable has been activated. See Figure 4 for
the behavior graph of this block.
Input variable: A = [(a, b, c), (x, y, z)].
Output variables: A1 = [(a1, b1, c1), (x1, y1, z1)] and A2 = [(a2, b2, c2), (x2, y2, z2)].
Internal triple: (d, e, f).
Definition:

[A1, A2] = copy(A) = a y1 e z d y2 x1 b1 c x2 b2 f

Property 2. In a block [A1, A2] = copy(A) in a valid context, the possible orders in
which A, A1 and A2 can be activated are (A,A1, A2) and (A,A2, A1).

The block and. This block aims at simulating a conjunction: the output variable can
only be activated after both input variables have been activated.

660 L. Bulteau, G. Fertin, and I. Rusu

�

a y1 e z d y2 x1 b1 c x2 b2 f

�

�

a y1 e b d y2 x1 b1 c x2 b2 f

�

�

d y2 x1 b1 y1 e x2 b2 f

�

�

x2 b2 y2 x1 b1 y1

�

�

d y2 e x2 b2 f

�

�

x1 b1 y1

�

�

x2 b2 y2

�

�

ε

�

A

(a, b, c)

(d, e, f)

A2

(d, e, f)

A2

A1

A1

A1

Fig. 4. Behavior graph of the block [A1, A2] = copy(A)

Input variables: A1 = [(a1, b1, c1), (x1, y1, z1)] and A2 = [(a2, b2, c2), (x2, y2, z2)].
Output variable: A = [(a, b, c), (x, y, z)].
Internal triple: (d, e, f).
Definition:

A = and(A1, A2) = a1 e z1 a2 c1 z2 d y c2 x b f

Property 3. In a blockA = and(A1, A2) in a valid context, the possible orders in which
A, A1 and A2 can be activated are (A1, A2, A) and (A2, A1, A).

The block or. This block aims at simulating a disjunction: the output variable can be
activated as soon as any of the two input variables is activated.
Input variables: A1 = [(a1, b1, c1), (x1, y1, z1)] and A2 = [(a2, b2, c2), (x2, y2, z2)].
Output variable: A = [(a, b, c), (x, y, z)].
Internal triples: (a′, b′, c′) and (d, e, f).
Definition:

A = or(A1, A2) = a1 b′ z1 a2 d y a′ x b f z2 c1 e c′ c2

Property 4. In a block A = or(A1, A2) in a valid context, the possible orders in
which A, A1 and A2 can be activated are (A1, A,A2), (A2, A,A1), (A1, A2, A) and
(A2, A1, A).

The block var. This block aims at simulating a boolean variable: in a first stage, only
one of the two output variables can be activated. The other needs the activation of the
input variable to be activated.
Input variable: A = [(a, b, c), (x, y, z)].
Output variables: A1 = [(a1, b1, c1), (x1, y1, z1)], A2 = [(a2, b2, c2), (x2, y2, z2)].
Internal triples: (d1, e1, f1), (d2, e2, f2) and (a′, b′, c′).
Definition:

[A1, A2] = var(A) = d1 y1 a d2 y2 e1 a′ e2 x1 b1 f1 c
′ z b′ c x2 b2 f2

Sorting by Transpositions Is Difficult 661

Property 5. In a block [A1, A2] = var(A) in a valid context, the possible orders in
which A, A1 and A2 can be activated are (A1, A,A2), (A2, A,A1), (A,A1, A2) and
(A,A2, A1).

With such a block, if A is not activated first, one needs to make a choice between
activating A1 or A2. Once A is activated, however, all remaining output variables are
activable.

Assembling the blocks copy, and, or, var

Definition 10 (Assembling of basic blocks). An assembling of basic blocks (I,B) is
composed of a 3DT-instance I and an l-block-decompositionB obtained by the follow-
ing process. Create a set of variables A. Define I = 〈Σ, T, ψ〉 by its word representa-
tion, as a concatenation of l factors B1 B2 . . . Bl and a set of triples T , where each
Bh is one of the blocks [A1, A2] = copy(A), A = and(A1, A2), A = or(A1, A2) or
[A1, A2] = var(A), with A1, A2, A ∈ A (such that each X ∈ A appears in the input
of exactly one block, and in the output of exactly one other block); and where T is the
union of the set of internal triples needed in each block, and the set of external triples
defined by the variables of A.

Lemma 1. Let I ′ be a 3DT-instance with an l-block-decompositionB′, such that (I ′,B′)
is obtained from an assembling of basic blocks (I,B) after any number of 3DT-steps.
Then (I ′,B′) is a valid context. Moreover, if the set of variables of (I ′,B′) is empty,
then I ′ is 3DT-collapsible.

The above lemma justifies the assumption that each block is in a valid context to derive
Properties 2 to 5. An assembling of basic blocks is 3DT-collapsible iff there exists a
total order, satisfying these properties, in which all its variables can be activated.

3.3 Construction of Iφ

Let φ be a boolean formula, over the boolean variables x1, . . . , xm, given in conjunctive
normal form: φ = C1 ∧ C2 ∧ . . . ∧ Cγ . Each clause Cc (c ∈ �1 ; γ�) is the disjunction
of a number of literals, xi or ¬xi, i ∈ �1 ; m�. We write qi (resp. q̄i) for the number
of occurrences of the literal xi (resp. ¬xi) in φ, i ∈ �1 ; m�. We also write k(Cc) for
the number of literals appearing in the clause Cc, c ∈ �1 ; γ�. We can assume that
γ ≥ 2, that for each c ∈ �1 ; γ�, we have k(Cc) ≥ 2, and that for each i ∈ �1 ; m�,
qi ≥ 2 and q̄i ≥ 2 (otherwise, we can always add clauses of the form (xi ∨ ¬xi) to φ,
or duplicate the literals appearing in the clauses Cc such that k(Cc) = 1). In order to
distinguish variables of an l-block-decomposition from x1, . . . , xm, we always use the
term boolean variable for the latter.

The 3DT-instance Iφ is defined as an assembling of basic blocks: we first define a
set of variables, then we list the blocks of which the word representation of Iφ is the
concatenation. It is necessary that each variable is part of the input (resp. the output)
of exactly one block. Note that the relative order of the blocks is of no importance.
We simply try, for readability reasons, to ensure that the source of a variable appears
before its target, whenever possible. We say that a variable represents a term, i.e. a
literal, clause or formula, if it can be activated only if this term is true (for some fixed

662 L. Bulteau, G. Fertin, and I. Rusu

assignment of the boolean variables), or if φ is satisfied by this assignment. We also say
that a block defines a variable if it is its source block.

The construction of Iφ is done as follows (an example is given in the full version [7]):
Create a set of variables:

– For each i ∈ �1 ; m�, create qi + 1 variables representing xi: Xi and Xj
i , j ∈

�1 ; qi�, and q̄i + 1 variables representing ¬xi: X̄i and X̄j
i , j ∈ �1 ; q̄i�.

– For each c ∈ �1 ; γ�, create a variable Γc representing the clause Cc.
– Create m + 1 variables, Aφ and Ai

φ, i ∈ �1 ; m�, representing the formula φ.

– We also use a number of intermediate variables, with namesU j
i , Ū j

i , V p
c ,Wc and Yi.

Start with an empty 3DT-instance ε, and add blocks successively:

– For each i ∈ �1 ; m�, add the following qi + q̄i − 1 blocks defining the variables
Xi, X

j
i (j ∈ �1 ; qi�), and X̄i, X̄

j
i (j ∈ �1 ; q̄i�):

[Xi, X̄i] = var(Ai
φ);

[X1
i , U

2
i]=copy(Xi); [X2

i , U
3
i]=copy(U2

i);

. . . [Xqi−2
i , U qi−1

i]=copy(U qi−2
i); [Xqi−1

i , Xqi

i]=copy(U qi−1
i);

[X̄1
i , Ū

2
i]=copy(X̄i); [X̄2

i , Ū
3
i]=copy(Ū2

i);

. . . [X̄ q̄i−2
i , Ū q̄i−1

i]=copy(Ū q̄i−2
i); [X̄ q̄i−1

i , X̄ q̄i

i]=copy(Ū q̄i−1
i).

– For each c ∈ �1 ; γ�, let Cc = λ1 ∨ λ2 ∨ . . . ∨ λk, with k = k(Cc). Let each λp,
p ∈ �1 ; k�, be the j-th occurrence of a literal xi or ¬xi, for some i ∈ �1 ; m� and
j ∈ �1 ; qi� (resp. j ∈ �1 ; q̄i�). We respectively write Lp = Xj

i or Lp = X̄j
i . Add

the following k − 1 blocks defining Γc:

V 2
c = or(L1, L2); V 3

c = or(V 2
c , L3);

. . . V k−1
c = or(V k−2

c , Lk−1); Γc = or(V k−1
c , Lk).

– Since φ = C1 ∧ C2 ∧ . . . ∧ Cl, add the following l − 1 blocks:

W2=and(Γ1, Γ2); W3=and(W2, Γ3);
. . . Wl−1=and(Wl−2, Γl−1); Aφ=and(Wl−1, Γl).

– The m copies A1
φ, . . . , A

m
φ of Aφ are defined with the following m− 1 blocks:

[A1
φ, Y2] = copy(Aφ); [A2

φ, Y3] = copy(Y2);

. . . [Am−2
φ , Ym−1] = copy(Ym−2); [Am−1

φ , Am
φ] = copy(Ym−1).

Sorting by Transpositions Is Difficult 663

Theorem 1. Let φ be a boolean formula, and Iφ the 3DT-instance defined above. The
construction of Iφ is polynomial in the size of φ, and φ is satisfiable iff Iφ is 3DT-
collapsible.

4 Sorting by Transpositions Is NP-Hard

In order to transfer our result from 3DT-collapsibility to SORTING BY TRANSPOSI-
TIONS, we need a notion of equivalence between 3DT-instances and permutations,
which is introduced here.

Definition 11. Let I = 〈Σ, T, ψ〉 be a 3DT-instance of span n with domain L, and π
be a permutation of �0 ; n�. We say that I and π are equivalent, and we write I ∼ π, if:

π(0) = 0,
∀v ∈ �1 ; n�− L, π(v) = π(v − 1) + 1,
∀v ∈ L, π(v) = π(succ−1

I (v)− 1) + 1.

There is no guarantee that any 3DT-instance I has an equivalent permutation π (for ex-
ample, no permutation is equivalent to I = a1 a2 b1 b2 c1 c2). However, coming back to
our example in Figure 2, we have I ∼ π = (0 5 2 1 4 3 6), and I ′ ∼ π′ = (0 1 4 5 2 3 6).
More generally, with the following theorem, we show that such a permutation can al-
ways be found in the special case of assemblings of basic blocks, which is the case we
are interested in.

Theorem 2. Let I be a 3DT-instance of span n with B an l-block-decomposition such
that (I,B) is an assembling of basic blocks. Then there exists a permutation πI , com-
putable in polynomial time in n, such that I ∼ πI .

With an equivalence I ∼ π, each breakpoint of π can be associated to an element of
Σ via ψ, and the triples of breakpoints that may be resolved by a single transposition
correspond to the well-ordered triples of T . Moreover, applying such a transposition
on π corresponds to operating a 3DT-step on I . These properties, which lead to the
following theorem, can be seen on the previous example as summarized below:

I (a1, b1, c1)−−−−−−−−→ I ′ (a2, b2, c2)−−−−−−−−→ ε
π ◦ τ1,3,5−−−−−→ π′ ◦ τ2,4,6−−−−−→ Id6

db(π) = 6 db(π′) = 3 db(Id6) = 0

Theorem 3. Let I = 〈Σ, T, ψ〉 be a 3DT-instance of span n with domain L, and π be
a permutation of �0 ; n�, such that I ∼ π. Then I is 3DT-collapsible iff dt(π) = |T | =
db(π)/3.

With the previous theorem, we now have all the necessary ingredients to prove the main
result of this paper.

Theorem 4. The SORTING BY TRANSPOSITIONS problem is NP-hard.

664 L. Bulteau, G. Fertin, and I. Rusu

Proof. The reduction from SAT is as follows: given any instance φ of SAT, create a
3DT-instance Iφ, being an assembling of basic blocks, which is 3DT-collapsible iff φ is
satisfiable (Theorem 1). Then create a permutation πIφ

equivalent to Iφ (Theorem 2).
The above two steps can be achieved in polynomial time.

Finally, set k = db(πIφ
)/3 = n/3: φ is satisfiable iff dt(πIφ

) = k (Theorem 3).

Corollary 1. The following decision problem from [10] is also NP-complete: given a
permutation π of �0 ; n�, is the equality dt(π) = db(π)/3 satisfied?

5 Conclusion

In this paper we have proved that the SORTING BY TRANSPOSITIONS problem is NP-
hard, thus answering a long-standing question. However, a number of questions remain
open. For instance, does this problem admit a polynomial-time approximation scheme?
We note that the reduction we have provided does not answer this question, since it is
not a linear reduction. Indeed, by our reduction, if a formula φ is not satisfiable, it can
be seen that we have dt(πIφ

) = db(πIφ
)/3 + 1.

Also, do there exist some relevant parameters for which the problem is fixed pa-
rameter tractable? A parameter that comes to mind when dealing with the transposition
distance is the size of the factors exchanged (e.g., the value max{j − i, k − j} for a
transposition τi,j,k). Does the problem become tractable if we bound this parameter? In
fact, the answer to this question is no if we bound only the size of the smallest factor,
min{j − i, k − j}: in our reduction, this parameter is upper bounded by 6 for every
transposition needed to sort πIφ

, independently of the formula φ.

References

1. Amir, A., Aumann, Y., Benson, G., Levy, A., Lipsky, O., Porat, E., Skiena, S., Vishne, U.:
Pattern matching with address errors: Rearrangement distances. J. Comput. Syst. Sci. 75(6),
359–370 (2009)

2. Amir, A., Aumann, Y., Indyk, P., Levy, A., Porat, E.: Efficient computations of �1 and
�?8? rearrangement distances. In: Ziviani, N., Baeza-Yates, R.A. (eds.) SPIRE 2007. LNCS,
vol. 4726, pp. 39–49. Springer, Heidelberg (2007)

3. Bafna, V., Pevzner, P.A.: Sorting permutations by transpositions. In: SODA, pp. 614–623
(1995)

4. Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM J. Discrete Math. 11(2), 224–240
(1998)

5. Benoı̂t-Gagné, M., Hamel, S.: A new and faster method of sorting by transpositions. In: Ma,
B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 131–141. Springer, Heidelberg (2007)

6. Bongartz, D.: Algorithmic Aspects of Some Combinatorial Problems in Bioinformatics. PhD
thesis, RWTH Aachen University, Germany (2006)

7. Bulteau, L., Fertin, G., Rusu, I.: Sorting by Transpositions is Difficult. CoRR abs/1011.1157
(2010)

8. Chitturi, B., Sudborough, I.H.: Bounding prefix transposition distance for strings and permu-
tations. In: HICSS, p. 468. IEEE Computer Society, Los Alamitos (2008)

9. Christie, D.A.: Sorting permutations by block-interchanges. Inf. Process. Lett. 60(4), 165–
169 (1996)

Sorting by Transpositions Is Difficult 665

10. Christie, D.A.: Genome Rearrangement Problems. PhD thesis, University of Glasgow, Scot-
land (1998)

11. Christie, D.A., Irving, R.W.: Sorting strings by reversals and by transpositions. SIAM J.
Discrete Math. 14(2), 193–206 (2001)

12. Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with moves. In:
SODA, pp. 667–676 (2002)

13. Dias, Z., Meidanis, J.: Sorting by prefix transpositions. In: Laender, A.H.F., Oliveira, A.L.
(eds.) SPIRE 2002. LNCS, vol. 2476, pp. 65–76. Springer, Heidelberg (2002)

14. Elias, I., Hartman, T.: A 1.375-approximation algorithm for sorting by transpositions.
IEEE/ACM Trans. Comput. Biology Bioinform. 3(4), 369–379 (2006)

15. Eriksson, H., Eriksson, K., Karlander, J., Svensson, L.J., Wästlund, J.: Sorting a bridge hand.
Discrete Mathematics 241(1-3), 289–300 (2001)

16. Feng, J., Zhu, D.: Faster algorithms for sorting by transpositions and sorting by block inter-
changes. ACM Transactions on Algorithms 3(3) (2007)

17. Fertin, G., Labarre, A., Rusu, I., Tannier, É., Vialette, S.: Combinatorics of genome rear-
rangements. The MIT Press, Cambridge (2009)

18. Gu, Q.-P., Peng, S., Chen, Q.M.: Sorting permutations and its applications in genome analy-
sis. Lectures on Mathematics in the Life Science, vol. 26, pp. 191–201 (1999)

19. Guyer, S.A., Heath, L.S., Vergara, J.P.: Subsequence and run heuristics for sorting by trans-
positions. Technical report, Virginia State University (1997)

20. Hartman, T., Shamir, R.: A simpler and faster 1.5-approximation algorithm for sorting by
transpositions. Inf. Comput. 204(2), 275–290 (2006)

21. Kolman, P., Waleń, T.: Reversal distance for strings with duplicates: Linear time approxima-
tion using hitting set. In: Erlebach, T., Kaklamanis, C. (eds.) WAOA 2006. LNCS, vol. 4368,
pp. 279–289. Springer, Heidelberg (2007)

22. Labarre, A.: New bounds and tractable instances for the transposition distance. IEEE/ACM
Trans. Comput. Biology Bioinform. 3(4), 380–394 (2006)

23. Labarre, A.: Edit distances and factorisations of even permutations. In: Halperin, D.,
Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 635–646. Springer, Heidelberg (2008)

24. Qi, X.-Q.: Combinatorial Algorithms of Genome Rearrangements in Bioinformatics. PhD
thesis, University of Shandong, China (2006)

25. Radcliffe, A.J., Scott, A.D., Wilmer, A.L.: Reversals and transpositions over finite alphabets.
SIAM J. Discret. Math. 19, 224–244 (2005)

26. Shapira, D., Storer, J.A.: Edit distance with move operations. In: Apostolico, A., Takeda, M.
(eds.) CPM 2002. LNCS, vol. 2373, pp. 85–98. Springer, Heidelberg (2002)

Popular Matchings in the Stable Marriage

Problem�

Chien-Chung Huang1 and Telikepalli Kavitha2

1 Humboldt-Universität zu Berlin, Germany
villars@informatik.hu-berlin.de

2 Tata Institute of Fundamental Research, India
kavitha@tcs.tifr.res.in

Abstract. The input is a bipartite graph G = (A ∪ B, E) where each
vertex u ∈ A ∪ B ranks its neighbors in a strict order of preference. A
matching M∗ is said to be popular if there is no matching M such that
more vertices are better off in M than in M∗. We consider the problem of
computing a maximum cardinality popular matching in G. It is known
that popular matchings always exist in such an instance G, however
the complexity of computing a maximum cardinality popular matching
was not known so far. In this paper we give a simple characterization
of popular matchings when preference lists are strict and a sufficient
condition for a maximum cardinality popular matching. We then show
an O(mn0) algorithm for computing a maximum cardinality popular
matching in G, where m = |E| and n0 = min(|A|, |B|).

1 Introduction

Our input is a bipartite graph G = (A ∪ B, E) where each vertex ranks its
neighbors in a strict order of preference. Each vertex u ∈ A ∪ B seeks to be
assigned to one of its neighbors and u’s preference is given by the ordering in
u’s preference list. Preference lists can be incomplete, which means that a vertex
may be adjacent to only some of the vertices on the other side. Note that this
is the same as an instance of the stable marriage problem with incomplete lists.
Let V denote the entire vertex set A ∪ B and let |V | = n and |E| = m. We
assume that no vertex is isolated, so m ≥ n/2.

A matching M is a set of edges no two of which share an endpoint. An edge
(u, v) is said to be a blocking edge for a matching M if by being matched to each
other, both u and v are better off than their respective assignments in M : that
is, u is either unmatched in M or prefers v to M(u) and similarly, v is either
unmatched in M or prefers u to M(v). A matching that admits no blocking
edges is called a stable matching. It is known that every instance G admits a
stable matching [7] and such a matching can be computed in linear time by a
straightforward generalization [5] of the Gale/Shapley algorithm [3] for complete
lists.
� Work done when C.-C. Huang was at MPI Saarbrücken and visited TIFR Mumbai

under the IMPECS program.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 666–677, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Popular Matchings in the Stable Marriage Problem 667

Popular Matchings. For any two matchings M and M ′, we say that vertex
u prefers M to M ′ if u is better off in M than in M ′ (i.e., u is either matched
in M and unmatched in M ′ or matched in both and prefers M(u) to M ′(u)).
We say that M is more popular than M ′, denoted by M � M ′, if the number
of vertices that prefer M to M ′ is more than the number of vertices that prefer
M ′ to M .

Definition 1. A matching M is popular if there is no matching that is more
popular than M .

Popularity is an attractive notion of optimality as a majority vote cannot force
a migration from a popular matching. Using the fact that a stable matching
has no blocking edges, it can be shown that every stable matching is popular.
But not all popular matchings are stable as shown by this simple example: let
A = {a1, a2} and B = {b1, b2} and let the preference lists be as follows: a1’s
top choice is b1 and second choice is b2 while a2 has a single neighbor b1. The
vertex b1’s top choice is a1 and second choice is a2 while b2 has a single neighbor
a1. In this instance, the matching {(a1, b1)} is the only stable matching, while
{(a1, b2), (a2, b1)} is popular but unstable.

Our problem. Given G = (A ∪ B, E) with two-sided preference lists, a stable
matching has usually been considered the optimal way of matching the vertices.
The fact that there can be no blocking edge in a stable matching is a very strong
condition and it is known that all stable matchings in G have the same size and
match exactly the same set of vertices ([5], Section 4.5.2), let U denote this subset
of V . There are many problems, where it is desirable to match more than just the
vertices in U , for instance, in allocating training positions to trainees or projects
to students, where the total absence of blocking edges is not necessary and a more
relaxed definition of stability suffices. The notion of popularity captures this
slightly weakened notion of stability: blocking edges are permitted in a popular
matching M , nevertheless M has overall stability since there is no matching
where more vertices are better off than in M . Hence in problems where we
are ready to substitute stability with popularity, for the sake of increasing the
size of the resulting matching, what we seek is a maximum cardinality popular
matching. There are instances, as in our example above, where a maximum
cardinality popular matching can be twice as large as a stable matching. Our
main result is that a maximum cardinality popular matching in G = (A∪B, E)
can be computed in O(mn0) time, where m = |E| and n0 = min(|A|, |B|).

Related work. Abraham et al. [1] considered the popular matchings problem
in the domain of one-sided preference lists (only vertices in A have preferences
here and ties are allowed). They gave a structural characterisation of instances
that admit popular matchings and described efficient algorithms to determine
if a given instance admits a popular matching or not and if so, to compute one
with maximum cardinality. The work in [1] on one-sided popular matchings was
generalized to the capacitated version by Manlove and Sng [9], the weighted
version by Mestre [11], and Mahdian studied random popular matchings [8]. For

668 C.-C. Huang and T. Kavitha

instances that do not admit popular matchings, McCutchen [10] considered the
problem of computing a least unpopular matching and showed this problem to be
NP-hard, while Kavitha, Mestre, and Nasre [6] showed the existence of popular
mixed matchings and gave efficient algorithms for computing them.

Gärdenfors [4], who originated the notion of popular matchings, considered
this problem in the domain of two-sided preference lists. When ties are allowed
in preference lists here, it has recently been shown by Biró, Irving, and Manlove
[2] that the problem of computing an arbitrary popular matching in the stable
marriage problem is NP-hard. The complexity of the maximum cardinality pop-
ular matching problem in the stable marriage problem when preference lists are
strict (recall that the popular matchings always exist here) was not known so
far and we answer this question here.

2 Structural Results

Theorem 1 gives a simple characterization of popular matchings in an instance
G = (V, E) with strictly ordered preference lists. Note that the theorems in this
section also hold for non-bipartite graphs with strictly ordered preference lists,
however popular matchings need not always exist in the non-bipartite case.

For any vertex u in G and neighbors v and w of u, let voteu(v, w) be 1 if u
prefers v to w, it is −1 if u prefers w to v, and it is 0 otherwise (i.e., v = w).
Let M be any matching in G. Mark every edge e = (u, v) in E \ M by the pair
(αe, βe), where αe = voteu(v, M(u)) and βe = votev(u, M(v)), i.e., αe is u’s vote
for v vs. M(u) and βe is v’s vote for u vs. M(v). Also, if M leaves u unmatched,
then voteu(v, M(u)) = 1 where v is any neighbor of u.

Theorem 1. Let GM denote the subgraph of G obtained by deleting all edges
from G that are marked (−1,−1) wrt M . The matching M is popular in G if
and only if the following conditions hold in GM :

(i) There is no alternating cycle with respect to M that contains a (1, 1) edge.
(ii) There is no alternating path starting from an unmatched vertex wrt M that

contains a (1, 1) edge.
(iii) There is no alternating path with respect to M that contains two or more

(1, 1) edges.

Proof. Suppose M is any matching in G that satisfies conditions (i)-(iii). Let
M ′ be any matching in G. Define Δ(M ′, M) =

∑
u∈V voteu(M ′(u), M(u)). Thus

Δ(M ′, M) is the difference between the votes that M ′ gets vs. M and the votes
that M gets vs. M ′. Note that M(u) or M ′(u) can also be the state of being
unmatched, which is the least preferred state for any u. We have M ′ � M if and
only if Δ(M ′, M) > 0. We will now show that Δ(M ′, M) ≤ 0 for all matchings
M ′. This will prove that M is popular.

We need to compute
∑

u voteu(M ′(u), M(u)) now. Mark each edge e = (u, v)
of M ′ by the pair (αe, βe) where αe = voteu(v, M(u)) and βe = votev(u, M(v)).
Suppose αe = βe = −1. That is, both u and v are happier with their partners

Popular Matchings in the Stable Marriage Problem 669

in M than with each other. Then we can as well assume that M ′ leaves u
and v unmatched, i.e., we can delete the edge (u, v) from M ′ since this makes
no difference to voteu(M ′(u), M(u)) or votev(M ′(v), M(v)) because both these
values were −1 to begin with and they both remain −1 after assuming that u
and v are unmatched in M ′. Thus in order to evaluate

∑
u voteu(M ′(u), M(u)),

we can assume that M ′ is a matching in the subgraph GM . Recall that GM is
the subgraph of G obtained by deleting all edges marked (−1,−1) wrt M .

Let ρ be any connected component in M ⊕ M ′. We have Δ(M ′, M) =∑
ρ

∑
u∈ρ voteu(M ′(u), M(u)), where the sum is over all the components ρ ∈

M ⊕M ′. For vertices u that are isolated in M ⊕M ′, M(u) = M ′(u), so we need
to consider only those components ρ that contain two or more vertices. Each
such ρ in M ⊕ M ′ is either a cycle or a path; also voteu(M ′(u), M(u)) = ±1 for
each vertex u in ρ.

Let ρ be a cycle. Since every vertex in ρ is matched by M ′, we have∑
u∈ρ

voteu(M ′(u), M(u)) =
∑

e=(u,v)∈ ρ∩M ′
αe + βe (1)

where αe = voteu(v, M(u)) and βe = votev(u, M(v)). Note that for every edge
e ∈ ρ, (αe, βe) is either (1, 1) or (−1, 1) or (1,−1). But we are given that M
satisfies condition (i) of Theorem 1. Hence there is no (1, 1) edge in ρ. Thus for
each edge e ∈ ρ ∩ M ′, αe + βe = 0 and hence

∑
e∈ρ∩M ′ αe + βe = 0.

Let ρ be a path. Suppose both the endpoints of ρ are matched in M ′. Then
Eqn. (1) holds here. Since an endpoint of ρ is free in M , by condition (ii) of
Theorem 1, we have no (1, 1) edge wrt M in ρ. Thus for each edge e ∈ ρ ∩ M ′,
α + βe = 0 and hence

∑
e∈ρ∩M ′ αe + βe = 0.

Suppose exactly one endpoint of ρ is matched in M ′. Then∑
u∈ρ

voteu(M ′(u), M(u)) = −1 +
∑

e=(u,v)∈ ρ∩M ′
αe + βe

since there is one vertex that is matched in M but not in M ′ and that vertex
prefers M to M ′. Here too an endpoint of ρ is free in M , and so by condition (ii),
we have no (1, 1) edge wrt M in ρ. Thus for each edge e ∈ ρ ∩ M ′, α + βe = 0
and hence

∑
u∈ρ voteu(M ′(u), M(u)) = −1 here.

Suppose neither endpoint of ρ is matched in M ′. Then∑
u∈ρ

voteu(M ′(u), M(u)) = −2 +
∑

e=(u,v)∈ ρ∩M ′
αe + βe,

since there are two vertices that are matched in M but not in M ′ and those two
vertices prefer M to M ′. We use condition (iii) here. There can be at most one
(1, 1) edge wrt M in ρ. Thus except for at most one edge e in ρ ∩ M ′, we have
αe +βe = 0. So

∑
e=(u,v)∈ ρ∩M ′ αe +βe ≤ 2, thus

∑
u∈ρ voteu(M ′(u), M(u)) ≤ 0.

Hence for each component ρ of M ⊕M ′,
∑

u∈ρ voteu(M ′(u), M(u)) ≤ 0. Thus
it follows that Δ(M ′, M) ≤ 0. In other words, if M satisfies properties (i)-(iii),
then M is popular.

The proof of the converse is straightforward and is omitted here. 	

670 C.-C. Huang and T. Kavitha

Recall that an augmenting path ρ wrt M is an alternating path where both
the endpoints of ρ are unmatched in M . Along with conditions (i)-(iii), let us
introduce condition (iv): There is no augmenting path wrt M in GM .

Theorem 2. If a popular matching M satisfies condition (iv), then M is a
maximum cardinality popular matching in G.

Proof. Since M is a popular matching, we know that M satisfies conditions (i)-
(iii) of Theorem 1. Let Q be another matching in G and let |Q| > |M |. So Q⊕M
contains an augmenting path p wrt M . We will show using condition (iv) that
Q⊕ p is more popular than Q. Thus no matching of size larger than |M | can be
popular. Hence M is a maximum cardinality popular matching in G.

Condition (iv) states that there is no augmenting path with respect to M in
GM . So the path p has to use edges outside GM , i.e., p contains (−1,−1) edges
wrt M . Split the path p into subpaths p1, p2, . . . , pt by removing the (−1,−1)
edges from p. Each of the subpaths pi belongs to GM .

Each of the paths p2, . . . , pt−1 can have at most one (1, 1) edge wrt M by
condition (iii). By condition (ii), neither p1 nor pt can contain a (1, 1) edge.
Thus we have

∑
u∈p voteu(Q(u), M(u)) ≤ 2(t−2)−2(t−1), where the first term

2(t − 2) counts the total number of (1, 1) edges possible over p1, . . . , pt and the
second term 2(t − 1) counts all the (−1,−1) edges in p (one such edge between
pi and pi+1, for i = 1, . . . t − 1). Thus

∑
u∈p voteu(Q(u), M(u)) ≤ −2. In other

words, Q ⊕ p is more popular than Q. 	

Lemma 1. If S is a stable matching in G, then S is a minimum cardinality
popular matching in G.

If M0 is a matching such that |M0| < |S|, then there has to be an augmenting
path ρ wrt M0 in M0 ⊕ S. Using the fact that S has no blocking edges, we can
show that M0 ⊕ ρ is more popular than M0. Thus Lemma 1 follows.

2.1 Good Matchings

Our goal now is to construct a matching M in G that obeys conditions (i)-(iv)
(as given in Theorems 1 and 2). Our approach is as follows: suppose we partition
the vertex set V into L and R, i.e., L ∪̇ R = V , and reorganize the graph G by
placing all the vertices of L on the left and all the vertices of R on the right.
Note that L and R need not be independent sets. Let M be a matching in L×R,
i.e., every edge of M has one endpoint in L and the other endpoint in R.

Definition 2. Call a matching M ⊆ L × R good with respect to (L, R) if the
following two properties are satisfied:

(1) There is no edge marked (1, 1) in L × R.
(2) Every edge in L × L is marked (−1,−1).

Theorem 3. If M is a matching that is good with respect to some partition
(L, R) of V and M is R-perfect, then M satisfies conditions (i)-(iv).

Popular Matchings in the Stable Marriage Problem 671

Proof. Let M be a matching that is good with respect to some partition (L, R)
of V and suppose M is R-perfect. Consider the graph GM . By property (2)
of goodness, the set L of vertices is independent in GM . We now show that
conditions (i)-(iv) are obeyed by M .

Condition (i). Let C be an alternating cycle with respect to M in GM . Since
M ⊆ L × R, every edge in C ∩ M is an edge of L × R. Thus the number of
vertices of L that are in C equals the number of vertices of R that are in C.
Since there is no edge in GM between any pair of vertices in L, the only way
an alternating cycle C can exist in GM is that C ⊆ L × R. By property (1) of
goodness of M , there is no (1, 1) edge in L × R. Hence C has no (1, 1) edge wrt
M . Thus condition (i) is satisfied.

Condition (ii). Let p = 〈u0, u1, . . . , uk〉 be an alternating path with respect to
M in GM such that u0 is unmatched in M . Since M is R-perfect, the vertex
u0 ∈ L. Since there are no L × L edges in GM , the next vertex u1 in p is in R.
Since M uses only L × R edges, it follows that u2 = M(u1) has to be in L, and
u3 is in R since u2 has no neighbor in L and so on. Thus p ⊆ L × R. Hence by
property (1) of goodness of M , condition (ii) is satisfied.

Condition (iii). Let p = 〈u0, u1, . . . , uk〉 be any alternating path with respect to
M in GM . We need to show that p has at most one (1, 1) edge wrt M in GM .
Since it is only edges outside M that get marked, we can assume without loss
of generality that (u0, u1) /∈ M . If u0 ∈ L, then the same argument as in the
earlier case (which showed that condition (ii) is satisfied) shows that p ⊆ L × R
and so there is no (1, 1) edge in p.

So let us assume that u0 ∈ R. Since there are R × R edges in GM , there are
two cases.
Case 1: Every odd indexed vertex (i.e., for every i, the vertex u2i+1) is in L.
Then the entire path uses only L × R edges, hence there is no (1, 1) edge in p.
Case 2: Not every odd indexed vertex is in L. Let u2j+1 be the first odd indexed
vertex that is in R. That is, the edge (u2j , u2j+1) ∈ R × R. Then u2j+2, which
is M(u2j+1), has to be in L. Since there are no L × L edges in GM , thereafter
every odd indexed vertex u2k−1 of p is in R and u2k = M(u2k−1) has to be in
L, so every even indexed vertex in p after u2j+1 is in L. Hence there can be only
one R × R edge, which is (u2j , u2j+1), in p. Thus p has at most one (1, 1) edge
and condition (iii) is satisfied.

Condition (iv). Suppose there exists an augmenting path p = 〈u0, u1, . . . , u2k+1〉
wrt M in GM , that is, the vertices u0 and u2k+1 are unmatched in M . Since
M is R-perfect, u0 ∈ L and since there are no L × L edges in GM , the vertex
u1, which is u0’s neighbor, has to be in R. So the vertex u2 = M(u1) is in L,
and the vertex u3, which is u2’s neighbor, has to be in R, and u4 = M(u3) has
to be in L, and so on. That is, every even indexed vertex u2i is in L and every
odd indexed vertex u2i+1 is in R. Thus u2k+1 (the other endpoint of p) has to
be in R, which contradicts that M is R-perfect, since u2k+1 is unmatched in M .
Hence there exists no augmenting path wrt M in GM .

672 C.-C. Huang and T. Kavitha

Thus if M is a matching that is good wrt a partition (L, R) and M is also
R-perfect, then M has to satisfy conditions (i)-(iv). 	

3 The Algorithm

Our input is a bipartite graph G = (A∪B, E). Now we want to find a partition
(L, R) and a matching M that is good wrt this partition and which is R-perfect.
The vertices in R can be viewed as the “sought-after” vertices and the vertices
in L are the vertices that seek partners in R. Our algorithm is given below.
For convenience, we will refer to the elements of A and B as men and women,
respectively. We assume without loss of generality that |B| ≤ |A|.

Algorithm 1. Input: G = (A ∪ B, E) with strict preference lists
1. Let S be the stable matching returned by the Gale/Shapley proposal-

disposal algorithm on (A,B). {That is, men propose and women dispose.}
2. Let L1 = set of vertices left unmatched in S; let R1 = V \ L1.
3. i = 1.

4. while true do
5. compute a matching Mi by the proposal-disposal algorithm on (Li, Ri).
6. if Mi is Ri-perfect then return Mi.

7. let Ai ⊂ A be the set of men in Ri who are unmatched in Mi.
8. set L′

i = Li ∪Ai and R′
i = V \ L′

i.

9. compute a matching M ′
i by the proposal-disposal algorithm on (L′

i, R
′
i).

10. if M ′
i is R′

i-perfect then return M ′
i .

11. let Bi be the set of vertices in R′
i left unmatched by M ′

i .
{we will show that all these vertices have to be women}

12. set Li+1 = Li ∪Bi and Ri+1 = V \ Li+1.
13. i = i + 1.
14. end while

We use the Gale/Shapley proposal-disposal algorithm several times in
Algorithm 1: for any X, Y such that X ∪̇Y = V , when the vertices of X propose
to those in Y (i.e., the edge set is restricted to E∩(X×Y)) and the vertices of Y
dispose, every unmatched x ∈ X proposes in decreasing order of preference and
every y ∈ Y improves in the choice of its partner whenever M(y) gets reassigned.
Hence Claim 1 stated below is straightforward. This will be used in our analysis.

Claim 1. If M is returned by the Gale/Shapley proposal-disposal algorithm on
(X, Y), then there is no edge (x, y) in X × Y such that votex(y, M(x)) is 1 and
votey(x, M(y)) is 1.

Let A0 ⊂ A and B0 ⊂ B be the sets of those men and women respectively, that
are unmatched in any stable matching of G = (A∪B, E). Our initial left side L1

Popular Matchings in the Stable Marriage Problem 673

is A0∪B0. It is easy to see that M1 is good with respect to the partition (L1, R1).
Property (1) of goodness holds by Claim 1 and property (2) of the goodness of
any matching M1 ⊆ L1 ×R1 is vacuously true, since L1 is an independent set in
G, and hence in GM . If every vertex of R1 receives a proposal, then we have our
desired matching. Otherwise, we enter the second stage of the first iteration. In
the second stage, we move all the unmatched men from R1 to L1 and run the
proposal-disposal algorithm between the new L1 (call this set L′

1) and the new
R1 (call this set R′

1) to compute M ′
1. We will show that M ′

1 is good with respect
to the new left-right partition.

If M ′
1 matches all the vertices on the right, then this is the desired matching.

Otherwise, let B1 denote the set of vertices (women) [as is proved below] on
the right who are not matched by M ′

1. We set L2 = L1 ∪ B1 (our old L1 along
with B1) and R2 = R1 \ B1 (our old R1 with B1 deleted) and move to the next
iteration of the algorithm. The unmatched men who moved from right to left in
the second stage of the first iteration are back on the right now. Their purpose
was to identify the set B1.

At the start of the i-th iteration, we have a partition (Li, Ri) of V .

– If the matching Mi that results from the proposal-disposal algorithm on
(Li, Ri) is Ri-perfect, then Mi is the desired matching.

– Else let Ai be the set of men in Ri who are unmatched in Mi. We run the
proposal-disposal algorithm on (Li ∪ Ai, Ri \ Ai). If the resulting matching
M ′

i matches all the vertices of Ri \ Ai, then M ′
i is the desired matching.

– Else let Bi be the set of unmatched vertices (women) [as is proved below]
on the right. We set Li+1 = Li ∪ Bi and Ri+1 = Ri \ Bi; the next iteration
begins.

Lemma 2. For every i, the set Bi ⊆ B.

Proof. The set Bi is the set of vertices of R′
i = Ri \ Ai that are unmatched in

M ′
i . The matching M ′

i is the result of vertices in L′
i = Li ∪ Ai proposing and

vertices in R′
i disposing. Note that every vertex of R′

i that was matched in Mi

with vertices in Li proposing, will remain matched in M ′
i with L′

i = Li ∪ Ai

proposing to R′
i = Ri \ Ai.

Thus every man in Ri who was matched in Mi will remain matched in M ′
i .

Since we moved all the unmatched men of Ri (this is the set Ai) away from Ri

to form R′
i = Ri \ Ai, every vertex of R′

i that is unmatched in M ′
i has to be

a woman. That is, the set Bi of vertices of R′
i that are unmatched in M ′

i , is a
subset of B. 	

Termination of the algorithm. It is easy to see that every iteration takes O(m+n)
time, which is O(m). We now show that the while loop in Algorithm 1 runs for
at most |B| iterations.

Lemma 3. The number of while-loop iterations in Algorithm 1 is at most |B|.
Proof. To show that termination has to happen within the first |B| iterations
is simple. This is because, if termination does not happen in the i-th iteration,

674 C.-C. Huang and T. Kavitha

then Li+1 ⊃ Li because Bi �= ∅ (otherwise termination would have happened
in the i-th iteration). Once a woman moves to the left side of the graph, she
never moves back to the right side again. Thus there is an iteration k, for some
1 ≤ k ≤ |B|, where either Mk is Rk-perfect or M ′

k matches all the women in
R′

k (in other words, M ′
k will be R′

k-perfect), i.e., the termination condition gets
satisfied. So the algorithm terminates in the k-th iteration, for some k ≤ |B|. 	

Correctness of Algorithm 1. We will show in this section that our algorithm
maintains the following invariants:

• Mi is good with respect to (Li, Ri).
• M ′

i is good with respect to (L′
i, R

′
i).

Note that for all the matchings Mi and M ′
i computed in our algorithm,

property (1) of goodness is obvious since these matchings are obtained by the
proposal-disposal algorithm between the left side and the right side (see Claim 1).
What we need to show now is that property (2) of goodness is also obeyed by
them.

Recall that M1 obeys property (2) of goodness. The next lemma shows that
M ′

1 obeys property (2) of goodness.

Lemma 4. If (a, b) ∈ L′
1×L′

1, then votea(b, M ′
1(a)) and voteb(a, M ′

1(b)) are −1.

Proof. Let e = (a, b) be any edge in L′
1 × L′

1, where a ∈ A and b ∈ B. Since
L′

1 = A0 ∪ B0 ∪ A1 where A0 ∪ B0 is an independent set, the vertex a has to be
in A1. Observe that every vertex of A1 will be matched in M ′

1 by virtue of the
fact that the other vertices in L′

1 comprise the set of vertices unmatched in any
stable matching of G. It is easy to see that a ∈ A1 gets a partner in M ′

1 that is at
least as good as S(a), where S is the stable matching that results from vertices
in A proposing to vertices in B. Recall that B0 is the set of women unmatched
in S, so a regards S(a) better than any neighbor in B0. Thus a prefers M ′

1(a)
to all his neighbors in B0, hence votea(b, M ′

1(a)) = −1.
Now we show that voteb(a, M ′

1(b)) = −1. Recall that each man in A1 was left
unmatched in M1: so b ∈ B0 prefers M1(b) to all her neighbors in A1. Observe
that no vertex b of B0 gets dislodged from M1(b) (a man) by the presence of
A1 in L′

1 since vertices of A1 propose to women. Thus M ′
1(b) = M1(b) and so

voteb(a, M ′
1(b)) = −1. This finishes the proof of the lemma. 	

This proves that M ′
1 is good with respect to (L′

1, R
′
1). Now consider any i ≥ 2.

We assume by induction hypothesis on i that the matching M ′
i−1 ⊆ L′

i−1 ×R′
i−1

is good with respect to (L′
i−1, R

′
i−1). Lemma 5 shows that then Mi ⊆ Li × Ri

will be good with respect to (Li, Ri).

Lemma 5. If (a, b) ∈ Li ×Li, then votea(b, Mi(a)) and voteb(a, Mi(b)) are −1.

Proof. The set Li = A0 ∪ B0 ∪ B1 ∪ · · · ∪ Bi−1. Let e = (a, b) ∈ Li × Li, where
a ∈ A and b ∈ B. So a has to be in A0 and b ∈ B0 ∪ · · · ∪Bi−1. We need to show
that every a ∈ A0 prefers Mi(a) to his neighbors in B0 ∪ · · · ∪ Bi−1 and every
b ∈ B0 ∪ · · · ∪ Bi−1 prefers Mi(b) to her neighbors in A0.

Popular Matchings in the Stable Marriage Problem 675

By induction hypothesis, we know that M ′
i−1 is good wrt (L′

i−1, R
′
i−1), where

the set L′
i−1 = A0∪B0∪· · ·∪Bi−2∪Ai−1. So for every edge (a, b) ∈ L′

i−1×L′
i−1,

we know that a prefers M ′
i−1(a) to any neighbor b in B0 ∪ · · · ∪ Bi−2. It is easy

to see that any a ∈ A0 gets at least as good a partner in Mi as in M ′
i−1 because

Li = (L′
i−1 \ Ai−1) ∪ Bi−1.

The presence of Bi−1 in Li does not hurt the men in A0 when they propose
to women in Ri because Bi−1 is the set of women who were unmatched on the
right when the men in A0 were proposing in (L′

i−1, R
′
i−1). Also, the absence of

Ai−1 on the left helps the men in A0 as they are the only men proposing on the
left now in (Li, Ri) in comparison with (L′

i−1, R
′
i−1).

Thus for any a ∈ A0 and a’s neighbor b ∈ B0 ∪ · · · ∪ Bi−2, votea(b, Mi(a)) is
−1. Also, for any a ∈ A0 and neighbor b ∈ Bi−1, we know that votea(b, M ′

i−1(a))
is −1 since the vertices of Bi−1 were unmatched in M ′

i−1, hence votea(b, Mi(a))
is −1.

Now we show that for every (a, b) ∈ Li × Li, the vertex b also votes −1 for a
vs Mi(b). First, there are no edges between B0 and A0. So b ∈ B1 ∪ · · · ∪ Bi−1.
Each woman in B1 ∪ · · · ∪ Bi−1 is matched in any stable matching of G and
recall that A0 is the set of men left unmatched in any stable matching of G.
Hence when women in B1 ∪ · · · ∪ Bi−1 propose to men in A \ A0, each woman
in B1 ∪ · · · ∪ Bi−1 gets matched to a man that she considers better than her
neighbors in A0. Thus for any b ∈ B1 ∪ · · · ∪ Bi−1 and b’s neighbor a ∈ A0,
voteb(a, Mi(b)) = −1. This finishes the proof of this lemma. 	

Suppose Mi does not match all the vertices in Ri. Then we run the second
stage of the i-th iteration, where all the men in Ri who were left unmatched
by Mi (call this set Ai) are moved to the left. Thus L′

i = Li ∪ Ai. That is,
L′

i = A0 ∪ B0 ∪ · · · ∪ Bi−1 ∪ Ai.
The proposal-disposal algorithm between L′

i and R′
i results in the matching

M ′
i . We will now show that property (2) of goodness also holds for M ′

i . By
induction hypothesis on i, we know that the matching M ′

i−1 is good with respect
to (L′

i−1, R
′
i−1). The following claim will be helpful to us.

Claim 2. The set Ai ⊆ Ai−1, where Ai−1 is the set of men in Ri−1 left un-
matched by Mi−1.

Proof. The set Ai−1 was the set of men in Ri−1 left unmatched by Mi−1. Observe
that every vertex in Ri−1 that was matched with Li−1 = A0 ∪ B0 ∪ · · · ∪ Bi−2

proposing, will remain matched with Li−1∪Ai−1 proposing to Ri−1 \Ai−1. Thus
every man in Ri−1 who was matched in Mi−1 will remain matched in M ′

i−1 with
the women in B0 ∪ · · · ∪Bi−2 proposing on the left. At the end of the (i − 1)-th
iteration, the set Ai−1 goes back to the right and the set Bi−1 moves to the
left. With the women in B0 ∪ · · · ∪ Bi−1 proposing in the i-th iteration, all the
men who were matched in the second stage of the previous iteration, continue to
remain matched and some vertices of Ai−1 also possibly get matched. So the set
of men in Ri who are unmatched in Mi is a subset of Ai−1, i.e., Ai ⊆ Ai−1. 	

We will now show that for any (a, b) ∈ L′

i × L′
i, votea(b, M ′

i(a)) = −1 and
voteb(a, M ′

i(b)) = −1 in Lemmas 6 and 7, respectively.

676 C.-C. Huang and T. Kavitha

Lemma 6. If (a, b) ∈ L′
i × L′

i, then votea(b, M ′
i(a)) = −1.

Proof. We know from Claim 2 that Ai ⊆ Ai−1. Now Bi−1 is the set of women
in R′

i−1 left unmatched when vertices of L′
i−1, which contains A0 ∪ Ai−1, were

proposing on the left in the second stage of the (i − 1)-th iteration. Hence each
man a ∈ A0 ∪ Ai−1 prefers M ′

i−1(a) to any neighbor b ∈ Bi−1. Each man in
A0 ∪ Ai gets at least as good a partner in M ′

i as in M ′
i−1 because there are

fewer men proposing now than in the second stage of the (i − 1)-th iteration
as A0 ∪ Ai ⊆ A0 ∪ Ai−1 and it is only the unmatched women who moved away
from R′

i−1. Hence all women who belong to {M ′
i−1(a) : a ∈ A0 ∪ Ai−1} are still

present in R′
i for A0 ∪ Ai to propose to.

We know from the induction hypothesis that M ′
i−1 is good with respect to

(L′
i−1, R

′
i−1). Hence each a ∈ A0 ∪ Ai−1 prefers M ′

i−1(a) to any neighbor in
B0 ∪ · · · ∪ Bi−2. Also, we just argued that a ∈ A0 ∪ Ai−1 prefers M ′

i−1(a) to
any neighbor in Bi−1. Since Ai ⊆ Ai−1 and because M ′

i(a) is at least as good as
M ′

i−1(a) for all a ∈ A0 ∪ Ai, it follows that votea(b, M ′
i(a)) = −1 for any edge

(a, b) where a ∈ A0 ∪ Ai and b ∈ B0 ∪ · · · ∪ Bi−2 ∪ Bi−1. 	

Lemma 7. If (a, b) ∈ L′

i × L′
i, then voteb(a, M ′

i(b)) = −1.

Proof. Since L′
i = A0 ∪B0∪· · ·∪Bi−1∪Ai, for any (a, b) ∈ L′

i×L′
i, where a ∈ A

and b ∈ B, the vertex a ∈ A0 ∪ Ai.
Case 1: Suppose a ∈ Ai. Since Ai is the set of men in Ri who are unmatched
by Mi, it follows that each of b ∈ B0 ∪ · · · ∪ Bi−1 prefers Mi(b) to any neighbor
in Ai. Also for any b ∈ B0 ∪ · · · ∪ Bi−1, we have M ′

i(b) = Mi(b), since it is
only unmatched men that moved from Ri to the left side to form L′

i. Thus
voteb(a, M ′

i(b)) = −1.
Case 2: Suppose a ∈ A0. Consider any edge between a man in A0 and a woman
b ∈ B0 ∪· · ·∪Bi−1. In the first place, b has to be in B1 ∪· · ·∪Bi−1 since A0 ∪B0

is an independent set. Every b ∈ B1∪· · ·∪Bi−1 prefers her partner M ′
i(b) to any

neighbor in A0, since A0 is the set of unmatched men in any stable matching of
G. Thus voteb(a, M ′

i(b)) = −1.
Hence for any b ∈ B0 ∪ · · · ∪ Bi−1, and any neighbor a ∈ A0 ∪ Ai, we have

voteb(a, M ′
i(b)) = −1. 	

Thus property (2) of goodness is true for M ′
i . We have thus shown that for every

i, where 1 ≤ i ≤ number of iterations in our algorithm, Mi is good with respect
to (Li, Ri) and M ′

i is good with respect to (L′
i, R

′
i). Thus as soon as we find an

Mi or an M ′
i that matches all the vertices on the right, we have a good matching

that matches all the vertices on the right. Thus if M is returned by Algorithm 1,
then we know from Theorems 1-3 that M is a maximum cardinality popular
matching.

Lemma 3 tells us that within the first |B| iterations of the while loop, there is
an iteration k such that either Mk or M ′

k matches all the vertices on the right.
Hence the running time of Algorithm 1 is O(m · |B|) (recall that we assumed
|B| ≤ |A|). We can now conclude Theorem 4.

Popular Matchings in the Stable Marriage Problem 677

Theorem 4. A maximum cardinality popular matching in a bipartite graph G =
(A ∪ B, E) with 2-sided strict preference lists can be computed in O(mn0) time,
where m = |E| and n0 = min(|A|, |B|).

4 Conclusions

We gave a simple characterization of popular matchings in an instance G with
strictly ordered (incomplete) preference lists. We also showed a sufficient condi-
tion for a popular matching to be one of maximum cardinality. We introduced
the notion of a “good” matching wrt a partition (L, R) of the vertex set and
showed that a good matching that is R-perfect has to be a maximum cardinality
popular matching. We gave an efficient algorithm to compute such a matching
when G is bipartite. When G is non-bipartite, the complexity of determining if
a popular matching exists in G is an open problem.

Acknowledgments. We thank the reviewers for their helpful comments.

References

1. Abraham, D.J., Irving, R.W., Kavitha, T., Mehlhorn, K.: Popular matchings.
SIAM Journal on Computing 37(4), 1030–1045 (2007)

2. Biró, P., Irving, R.W., Manlove, D.F.: Popular matchings in the marriage and
roommates problems. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS,
vol. 6078, pp. 97–108. Springer, Heidelberg (2010)

3. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. American
Mathematical Monthly 69, 9–15 (1962)

4. Gärdenfors, P.: Match making: assignments based on bilateral preferences. Be-
havioural Sciences 20, 166–173 (1975)

5. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algo-
rithms. MIT Press, Cambridge (1989)

6. Kavitha, T., Mestre, J., Nasre, M.: Popular mixed matchings. In: Albers,
S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.)
ICALP 2009. LNCS, vol. 5555, pp. 574–584. Springer, Heidelberg (2009)

7. Knuth, D.E.: Mariages Stables. Les Presses de L’Université de Montreal (1976)
8. Mahdian, M.: Random popular matchings. In: Proceedings of the 7th ACM Con-

ference on Electronic-Commerce, pp. 238–242 (2006)
9. Manlove, D.F., Sng, C.: Popular matchings in the capacitated house allocation

problem. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 492–
503. Springer, Heidelberg (2006)

10. McCutchen, M.: The least-unpopularity-factor and least-unpopularity-margin cri-
teria for matching problems with one-sided preferences. In: Laber, E.S., Bornstein,
C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 593–604.
Springer, Heidelberg (2008)

11. Mestre, J.: Weighted popular matchings. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 715–726. Springer, Heidelberg
(2006)

Center Stable Matchings and Centers of Cover

Graphs of Distributive Lattices

Christine Cheng�, Eric McDermid��, and Ichiro Suzuki���

Department of Computer Science,
University of Wisconsin–Milwaukee, Milwaukee, WI 53211, USA

{ccheng,mcdermid,suzuki}@uwm.edu

Abstract. Let I be an instance of the stable marriage (SM) problem.
In the late 1990s, Teo and Sethuraman discovered the existence of me-
dian stable matchings, which are stable matchings that match all par-
ticipants to their (lower/upper) median stable partner. About a decade
later, Cheng showed that not only are they locally-fair, but they are
also globally-fair in the following sense: when G(I) is the cover graph of
the distributive lattice of stable matchings, these stable matchings are
also medians of G(I) – i.e., their average distance to the other stable
matchings is as small as possible. Unfortunately, finding a median stable
matching of I is #P-hard.

Inspired by the fairness properties of the median stable matchings, we
study the center stable matchings which are the centers of G(I) – i.e.,
the stable matchings whose maximum distance to any stable matching is
as small as possible. Here are our two main results. First, we show that
a center stable matching of I can be computed in O(|I |2.5) time. Thus,
center stable matchings are the first type of globally-fair stable matchings
we know of that can be computed efficiently. Second, we show that in
spite of the first result, there are similarities between the set of median
stable matchings and the set of center stable matchings of I . The former
induces a hypercube in G(I) while the latter is the union of hypercubes
of a fixed dimension in G(I). Furthermore, center stable matchings have
a property that approximates the one found by Teo and Sethuraman
for median stable matchings. Finally, we note that our results extend
to other variants of SM whose solutions form a distributive lattice and
whose rotation posets can be constructed efficiently.

Keywords: stable matching, fairness, median, center, partially ordered
set, distributive lattice, hypercube.

1 Introduction

In the stable marriage problem (SM), there are n men and n women each of
whom has a preference list that ranks the opposite gender in a linear order.

� Supported by NSF award CCF-0830678.
�� Supported by NSF award CCF-0830678 and UWM Research Growth Initiative.

��� Supported by UWM Research Growth Initiative.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 678–689, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Center Stable Matchings and Centers of Cover Graphs 679

A matching is a set of n disjoint man-woman pairs; it is stable if there is no
man-woman pair who prefer each other over their partners in the matching.
The goal of the problem is to find a stable matching if one exists. A seminal
result of Gale and Shapley in the 1960s [11] states that every SM instance has a
stable matching that can be computed in O(n2) time. Today, centralized stable
matching algorithms are used to match medical residents to hospitals [21] and
students to schools [1,2].

In general, SM instances have many stable matchings. It turns out, however,
that the Gale-Shapley algorithm outputs only two kinds: the man-optimal/woman-
pessimal stable matching and the woman-optimal/man-pessimal stable matching.
In the man-optimal stable matching, every man is matched to his best partner in
all of the stable matchings while simultaneously every woman is matched to her
worst partner in all of the stable matchings; the woman-optimal/man-pessimal
stable matching has the opposite properties. Hence, in spite of the fact that the
Gale-Shapley algorithm solves SM efficiently, we might not want to use the solu-
tion as one group is extremely happy while the other group is extremely unhappy.
This motivates the problem of finding fair stable matchings.

Different notions of fair stable matchings have been considered. Loosely speak-
ing, locally-fair stable matchings seek to ensure that all participants are uniformly
happy. On the other hand, globally-fair stable matchings are good representatives
of the entire set of stable matchings. Examples of locally-fair stable matchings
include the egalitarian stable matchings which maximize the total happiness of
all the individuals, the minimum-regret stable matchings which maximize the
happiness of the unhappiest person in the matching, and the rank-maximal sta-
ble matchings which maximize the number of individuals matched to their first
choice, and within that maximize the number of individuals matched to their
second choice, etc. All three of these stable matchings can be computed in poly-
nomial time [12,15]. On the other hand, a stable matching chosen uniformly at
random is a globally-fair stable matching. Unfortunately, even in very restricted
cases, uniform sampling of stable matchings is computationally hard [4,7].

Interestingly, the two categories of fair stable matchings we have just described
are not mutually exclusive. In the late 1990s, Teo and Sethuraman [22] discovered
the existence of the generalized median stable matchings, which are obtained
as follows. Let I be an SM instance and M(I) be its set of stable matchings
with N = |M(I)|. Assume M ′ ⊆ M(I). For each man m, order his multiset of
partners in M ′ from his most preferred to his least preferred. Denote by pi(m)
the ith woman in this sorted list, and set αi = {(m, pi(m))for each man m}.
Do the same for the women, and let βi = {(pi(w), w) for each woman w}. Teo
and Sethuraman proved that for i = 1, . . . , |M ′|, not only are αi and βi stable
matchings, but αi = β|M ′|−i+1. When M ′ = M(I), αi is called the ith generalized
median stable matching of I. The most notable of these are the ones in the
“middle” – α(N+1)/2 when N is odd and αN/2, αN/2+1 when N is even – because
all participants are matched to their (lower or upper) median stable partners and
are therefore locally-fair. About a decade later, Cheng [8] showed that when a

680 C. Cheng, E. McDermid, and I. Suzuki

graph structure is imposed on M(I), these stable matchings are also fair in a
global sense.

In facility location, when a graph G models a town, and the location of an
important structure such as a hospital or a school has to be chosen, a central
vertex of G is widely accepted as a good choice because everyone has “equal”
access to it. One such candidate is a median, a vertex whose total (or average)
distance to all the vertices of G is as small as possible. The median set of G,
Med(G), consists of all the medians of G. Thus, for SM instance I, if G(I) is the
graph that represents the global structure of M(I), a median of G(I) is arguably
a globally-fair stable matching.

To construct G(I), we define the relation � on M(I). For any two stable
matchings μ, μ′ of I, let μ � μ′ if, for each man m, either m has the same partner
in μ and μ′ or m prefers his partner in μ over his partner in μ′. Conway was the
first to recognize that (M(I),�) forms a distributive lattice [16]. Set G(I) to be
the cover graph of (M(I),�); i.e., the undirected version of its Hasse diagram.
Applying the work of Barbut [3], Cheng [8] showed that when N = |M(I)|
is odd, α(N+1)/2 is the unique median of G(I), and when N is even, a stable
matching μ is a median of G(I) if and only if αN/2 � μ � α(N+1)/2. Hence, the
elements of Med(G(I)), called the median stable matchings of I, are both locally
and globally-fair. Unfortunately, such a fair set of stable matchings comes with
a cost: computing a median stable matching of I is #P-hard [8].

Inspired by the nice properties of Med(G(I)), we study another class of stable
matchings whose fairness criterion is based again on the fact that they are central
vertices of G(I). In a graph G, the eccentricity of a vertex v, E(v), is the maximum
distance of v to any other node in G. A center of G is a vertex whose eccentricity
is as small as possible. The center set of G, Cen(G), consists of all the centers of
G. Like a median, a center of G is also a reasonable spot to build an important
facility for a town modeled by G. Call the elements of Cen(G(I)) the center
stable matchings of I. Our basic question is this – how similar are the center and
median stable matchings of I? For example, are the center stable matchings of
I also locally-fair? Are they hard to compute as well?

To address our questions, we turn to Birkhoff’s representation theorem for
distributive lattices. Let P = (P,≤) be a partially-ordered set or poset. A subset
P ′ of P is a closed-subset (also a down-set or order ideal) of P if, for every element
p ∈ P ′, all predecessors of p are also in P ′. Let D(P) contain all the closed subsets
of P .

Theorem 1. (Birkhoff[5]) For every distributive lattice L, there is poset PL so
that (D(PL),⊆) is order-isomorphic to L.

For some problems whose solutions form a distributive lattice L, PL can be
constructed far more quickly than L itself (see [10] for examples). This is the
case for SM. One poset that corresponds to (M(I),�) is the rotation poset of I
and is denoted by R(I). When I consists of n men and n women, |M(I)| can be
as large as 2O(n) but R(I) has O(n2) elements and can be constructed in O(n2)
time [13]. For this reason, R(I) has become one of the most important tools for
solving computational problems in SM.

Center Stable Matchings and Centers of Cover Graphs 681

In this paper, we shall frame the problem for finding a center stable matching
of I as follows. Let L be a distributive lattice and G(L) its cover graph. Given
PL, find a center of G(L) (expressed as a closed subset of PL). Consequently,
our results are expressed in terms of L and its related structures first and then
translated to the SM context. We note that many papers have been written about
finding centers of graphs (e.g., see [9] and references therein). To our knowledge,
however, the graphs are always given explicitly so that a center can easily be
identified by computing the pairwise distances of the vertices. The underlying
goal is to beat this brute force algorithm. In our case, the graphs are given
implicitly; hence, it is not obvious at all that there is an efficient algorithm for
finding a center. Here now are our two main results.

Result 1: We show that the maximum matchings of the comparability graph of
PL, C(PL), and the centers of G(L) are related: every maximum matching F of
C(PL) can be transformed into a center of G(L) whose eccentricity is |PL|− |F |.
This allows us to prove that when |PL| = k, finding a center of G(L) can be
done in O(f(k) + k2.5) time, where f(k) is the time it takes to construct the
transitive closure of PL from the input representation of PL.

For SM, the result implies a surprising contrast between computing a median
stable matching and a center stable matching – the former is #P-hard while the
latter can be done in O(n5) time where n is the number of men and women in
the instance1. Thus, center stable matchings are the first type of globally-fair
stable matchings we know of that can be computed efficiently.

Result 2: We provide a characterization of the centers of G(L) that essentially
says that an element of L is a center of G(L) if and only if it can be derived from
a special kind of maximum matching of C(PL) which we call a lowest maximum
matching. An interesting corollary of this result is that the “shape” of the median
and center sets of G(L) are similar in the following sense – the median set of
G(L) induces a hypercube [19,14] while the center set of G(L) is the union of
hypercubes with dimension |PL| − 2|Fmax|.

For SM, the characterization also implies that center stable matchings have a
property that approximates the one found by Teo and Sethuraman for median
stable matchings: there is a set M ′ ⊆ M(I) whose stable matchings form a
maximum-length chain in (M(I),�) such that α(|M ′|+1)/2 is a center stable
matching of I when |M ′| is odd, and α|M ′|/2 and α|M ′|/2+1 are center stable
matchings of I when |M ′| is even.

Finally, all our results about SM extend to its variants as long as their solutions
form a distributive lattice, and their rotation posets can be constructed efficiently
(e.g., when the preference lists are incomplete, the hospital-residents setting,
etc.). The rest of the paper is arranged as follows. Section 2 is the preliminaries
section. Section 3 describes the first result while section 4 the second result. We
conclude in Section 5.

1 We note that O(n5) may seem large, but n5 = |I |2.5 only, where |I | is the input size,
because specifying the preference lists of all the participants takes Θ(n2) time and
space.

682 C. Cheng, E. McDermid, and I. Suzuki

2 Preliminaries

A distributive lattice2 L = (L,≤) is a poset where (i) for every pair of elements x
and y, their greatest lower bound or meet, x∧ y, and their least upper bound or
join, x∨y, exist, and (ii) the meet and join operations distribute over each other.
Consequently, L has a bottom element 0̂ = ∧L and a top element 1̂ = ∨L so that
every other element x of L lies between 0̂ and 1̂; i.e., 0̂ < x < 1̂. Many objects
form a distributive lattice [20,10]. For instance, when F is a collection of subsets
of X that is closed under set union and intersection, (F ,⊆) is a distributive
lattice where X1 ∧ X2 = X1 ∩ X2 and X1 ∨ X2 = X1 ∪ X2. It is easy to verify
that D(P), the set containing all the closed subsets of poset P , satisfies this
condition so (D(P),⊆) is a distributive lattice. Birkhoff’s theorem states that
every distributive lattice can be viewed in this manner. To find the poset PL
corresponding to L, Birkhoff showed that it is sufficient to consider the subposet
induced by the join-irreducible elements of L – which are the elements with
indegree 1 in the Hasse diagram of L. See Figure 1 for an example.

For an SM instance I, however, a poset corresponding to the distributive
lattice of I’s stable matchings (M(I),�) can be derived from the preference lists
of the participants itself. In the SM literature, it is called the rotation poset of I
and is denoted by R(I). Its elements are referred to as rotations, which are the
simplest moves one can make to modify one stable matching into another. When
there are n men and n women in I, R(I) has the following nice properties: (i)
it has O(n2) elements, (ii) a directed acyclic graph that represents R(I) (i.e.,
a DAG whose vertices are the elements of R(I) and whose transitive closure
contains exactly the ordered pairs in R(I)) can be constructed in O(n2) time,
(iii) this directed acyclic graph has O(n2) nodes and O(n2) edges, and (iv) given a
closed subset of R(I), the stable matching that corresponds to it can be obtained
in O(n2) time. We refer readers to [13] for a more thorough discussion on this
topic.

One of the advantages of representing the elements of L as closed subsets of
PL is that their pairwise distances in G(L) can be readily inferred from the sets.

Proposition 1. For each element x of L, let Sx denote the closed subset of PL
that corresponds to x. Then for any two elements x and y of L, the distance
between x and y in G(L) is |Sx�Sy| = |Sx − Sy| + |Sy − Sx|.
For example, S0̂ = ∅ while S1̂ consists of all the elements of PL. Thus, d(0̂, 1̂) in
G(L) is |PL|. But for any two elements x and y, d(x, y) in G(L) is at most |PL|.
Hence, the diameter of G(L) is |PL|. We shall make extensive use of Proposition 1
in the latter sections.

Consider the distributive lattice L in Figure 1. It is straightforward to check
that G(L) has only one median, which is h, and one center, which is i. That is,
in general, the medians and centers of G(L) need not be the same. In fact, by
enlarging this example, one can show that the medians and centers of G(L) can
be arbitrarily far apart. Blair [6] showed that every finite distributive lattice is
2 All lattices discussed in this paper are finite.

Center Stable Matchings and Centers of Cover Graphs 683

Fig. 1. Consider the distributive lattice L on the left. The subposet PL induced by the
join-irreducible elements of L is shown in the middle. The closed subsets of PL (labeled
without the curly braces) ordered according to the subset relation are shown on the
right. Clearly, L and (D(PL),⊆) are isomorphic distributive lattices.

the lattice of stable matchings for some stable marriage instance – hence this
example illustrates the differences between median and center stable matchings
as well.

3 Finding a Center of G(L)

From hereon, when L is a distributive lattice, we shall refer to its elements
as closed subsets of the poset PL and represent them using capital letters
V, W, X, Y , etc. Our goal is to show that given PL, a center of G(L) can be
computed efficiently.

Let C(PL) denote the comparability graph of PL. In this graph, the vertices
are the elements of PL, and two elements p and q are adjacent if and only if
p and q are comparable in PL. We begin by considering maximum matchings
of C(PL). Let F be one such matching with F = {(p1, q1), (p2, q2), . . . , (pf , qf)}
such that pi < qi. Denote by U(F) the set consisting of all the elements of PL
not saturated by F , B(F) = {p1, . . . , pf} and T (F) = {q1, . . . , qf}3. We shall say
that F is a low maximum matching if Z(F) = B(F)∪U(F) is a closed subset of
PL, and F is a lowest maximum matching if, additionally, B(F) is also a closed
subset of PL. See Figure 2 for an example of these two kinds of matchings.

3 The letters U , B and T are meant to remind the reader what the sets contain: U
for unsaturated elements, B for the bottom elements, and T for the top elements of
the maximum matching F .

684 C. Cheng, E. McDermid, and I. Suzuki

Fig. 2. Suppose PL is the figure on the left. Its comparability graph C(PL) is the
second figure. The third figure shows a low maximum matching F of C(PL) with
Z(F) = {a, b, d, e}. It is, however, not a lowest maximum matching because B(F) =
{b, e} is not a closed subset of PL. The rightmost figure show a lowest maximum
matching of C(PL).

Lemma 1. For every distributive lattice L, C(PL) has at least one low maxi-
mum matching and at least one lowest maximum matching.

Proof. Assume F is a maximum matching of C(PL) but Z(F) is not a closed
subset of PL. We now show that F can be transformed into another maximum
matching that satisfies this property by performing a sequence of switches. Sup-
pose x ∈ Z(F) has a predecessor that is missing from Z(F). This predecessor
must be some q′ such that such that (p′, q′) ∈ F . There are two cases to consider:

Case 1: x ∈ B(F) so that x = p and (p, q) ∈ F . Hence, p′ < q′ < p < q in PL,
and p′p, q′q are edges of C(PL). Switch the edges (p′, q′), (p, q) with (p′, p), (q′, q);
that is, replace F with F ′ = F − {(p′, q′), (p, q)} ∪ {(p′, p), (q′, q)}. Clearly, F ′

is another maximum matching of C(PL) with B(F ′) = B(F) − {p} ∪ {q′} and
U(F ′) = U(F).

Case 2: x ∈ U(F). Hence, p′ < q′ < x in PL, and p′x is an edge of C(PL). Switch
the edge (p′, q′) with (p′, x); that is, replace F with F ′ = F −{(p′, q′)}∪{(p′, x)}.
Again, F ′ is a maximum matching of C(PL) with U(F ′) = U(F) − {x} ∪ {q′}
and B(F ′) = B(F).

Observe that in both cases Z(F ′) is obtained from Z(F) by replacing the
element with a missing predecessor by its missing predecessor. Hence, if we
process the elements of PL in a top-down manner, once an element is removed
from Z(F), it is never added into the set again. That is, do the following:

Step 1: Topologically sort the elements of PL, and let the result be x1, x2, . . . , xk;
i.e., for each xi, all its predecessors occur before it in the ordering.

Step 2: For i = k to 1, if xi ∈ Z(F), check that all the predecessors of xi also
belong to Z(F). If not, perform a switch, and update both F and Z(F). At the
end of the for loop, return F .

Suppose the output F is not a low maximum matching of C(PL). This must
mean that for some xi ∈ F , a predecessor xh, h < i, was part of F when xi was
processed in step 2 but was later removed. For the latter to happen, however,
xh must have a missing predecessor and was replaced by this predecessor. That

Center Stable Matchings and Centers of Cover Graphs 685

is, when xi was processed, it also had a missing predecessor – a contradiction.
Hence, F must be a low maximum matching of C(PL).

Now, suppose that F is a low maximum matching of C(PL) but not a lowest
maximum matching. This means that some p ∈ B(F) with (p, q) ∈ F has a
predecessor x that is missing from B(F). But since Z(F) is already a closed
subset of PL, x must lie in U(F). Thus, x < p < q and xq is an edge of C(PL).
Switch the edge (p, q) with (x, q); i.e., replace F with F ′ = F −{(p, q)}∪{(x, q)}
so that B(F ′) = B(F) − {p} ∪ {x} and Z(F ′) = Z(F). Using the same kind of
reasoning as above, we note that steps 1 and 2 (where Z(F) is replaced by B(F))
can now transform a low maximum matching of C(PL) into a lowest maximum
matching. 	

In this section, we are mainly interested in the low maximum matchings of
C(PL). In the next section, the lowest maximum matchings of C(PL) will help
us characterize the centers of G(L). The next lemma shows how the low max-
imum matchings of C(PL) can be used to identify elements of L with small
eccentricities in G(L). We shall use rad(G) to denote the radius of a graph G,
the eccentricity of its centers.

Lemma 2. Suppose PL = (PL,≤) has k elements, and F is a low maximum
matching of C(PL). Then V = Z(F) is an element of L with |V | = E(V) =
k − |F |. Consequently, rad(G(L)) ≤ k − |F |.
Proof. By definition, V is a closed subset of PL and must therefore be an element
of L. The key property of V that we shall use is this: for every element q �∈ V ,
there is a distinct element p ∈ V such that p < q in PL. Consider any other
element W of L. Let V̄ = PL − V . By the key property of V and the fact that
W is a closed subset of PL, it must be the case that |W ∩ V̄ | ≤ |W ∩ V |. Thus,
the distance between W and V in G(L) is

d(W,V) = |W − V |+ |V −W |
= |W ∩ V̄ |+ |V | − |W ∩ V |
≤ |V |.

That is, E(V) ≤ |V |. But ∅ ∈ L and d(∅, V) = |V | so E(V) ≥ |V |. Hence,
E(V) = |V | = |B(F)| + |U(F)| = |F | + (k − 2|F |) = k − |F |. Since rad(G(L)) is
at most E(V), its value is at most k − |F | too. 	

Next, we show how the centers of G(L) can lead to large matchings in C(PL).
Our proof makes novel use of König’s theorem [17] which states that in a bipartite
graph, the size of a maximum matching is equal to the size of a smallest vertex
cover.

Lemma 3. Suppose PL = (PL,≤) has k elements. Then C(PL) has a matching
of size k − rad(G(L)). Hence, a maximum matching of C(PL) has size at least
k − rad(G(L)).

Proof. Let V be a center node of G(L) with E(V) = k′. Create the bipartite
graph H [V̄ , V], where one side consists of elements from V̄ = PL − V and the

686 C. Cheng, E. McDermid, and I. Suzuki

other side elements from V . For each q ∈ V̄ , p ∈ V , let qp be an edge if and
only if q > p in PL. Let F be a maximum matching in H [V̄ , V] with |F | = f .
If f ≥ k − k′, we are done. So suppose f < k − k′. By König’s theorem, the
smallest vertex cover of H [V̄ , V] also has size f . Let NV̄ ∪ NV be such a cover
with NV̄ ⊆ V̄ and NV ⊆ V .

Notice that since NV̄ ∪NV is a vertex cover of H [V̄ , V], H [V̄ , V] has no edges
with one endpoint in V̄ − NV̄ and another endpoint in V − NV . Furthermore,
each p ∈ NV must cover at least one edge whose other endpoint is in V̄ − NV̄ ;
otherwise, NV̄ ∪ NV − {p} is still a vertex cover of H [V̄ , V], contradicting the
minimality of NV̄ ∪NV . By the same reasoning, each q ∈ NV̄ must cover at least
one edge whose other endpoint is in V − NV .

Set W = (V̄ − NV̄) ∪ NV . Let us now argue that W is a closed subset of
PL. Suppose it is not. Either some q ∈ (V̄ − NV̄) or some p ∈ NV is missing a
predecessor in W . Consider the first case. If q is missing a predecessor x, x either
belongs to NV̄ or to V − NV . If x ∈ NV̄ , we know that x covers some edge xy
such that y ∈ V −NV ; i.e., q > x > y. It follows that qy is an edge of H [V̄ , V]. If
x ∈ V − NV , qx is an edge of H [V̄ , V]. For both of these subcases, we conclude
that there is an edge between V̄ − NV̄ and V −NV , a contradiction. Hence, the
first case is not possible. In the second case, if p is missing a predecessor x, x
can only belong to V − NV because V is already a closed subset. But we know
that p covers an edge qp such that q ∈ V̄ − NV̄ ; i.e., q > p > x. Hence, qx is an
edge of H [V̄ , V]; again, there is an edge between V̄ − NV̄ and V − NV so the
second case is also not possible. Thus, W is a closed subset of PL.

Consider the distance between V and W in G(L):

d(W,V) = |W − V |+ |V −W |
= |W ∩ V̄ |+ |V | − |W ∩ V | = |V̄ −NV̄ |+ |V | − |NV |
= |V̄ | − |NV̄ |+ |V | − |NV | = k − (|NV̄ |+ |NV |)
= k − f > k − (k − k′) = k′

where the inequality is based on our assumption that the maximum matching
F in H [V̄ , V] has size f < k − k′. But d(W, V) > k′ is a contradiction since
E(V) = k′. It follows that f ≥ k − k′. Finally, since H [V̄ , V] is a subgraph of
C(PL), C(PL) must also have a matching of size at least k − k′. 	

Here is our main result.

Theorem 2. When PL = (PL,≤) has k elements, and F is a low maximum
matching of C(PL), then V = Z(F) is a center of G(L) with |V | = E(V) =
k−|F |. Furthermore, given PL, such a center V can be computed in O(f(k)+k2.5)
time, where f(k) is the time it takes to construct the transitive closure of PL
from the input representation of PL.

Proof. The first statement of the theorem follows directly from Lemmas 2 and
3 so let us prove the second statement. Suppose Tr(PL) is the transitive closure
of PL. Then C(PL) is just the undirected version of Tr(PL); it has k vertices
and O(k2) edges. Using the algorithm of Micali and Vazirani [18], a maximum

Center Stable Matchings and Centers of Cover Graphs 687

matching F of C(PL) can be computed in O(k2.5) time. Checking if F is a low
maximum matching can be done in O(k2) time. If it is not, the proof of Lemma 1
describes how it can be transformed into one. Step 1 takes O(k2) time. In step 2,
each element’s predecessor is examined at most once; switching takes O(1) time.
Hence, step 2 also takes O(k2) time. Thus, finding a low maximum matching
of C(PL) given Tr(PL) takes O(k2.5). Finally, extracting V from the low maxi-
mum matching takes O(k) time so the overall running time for computing V is
O(f(k) + k2.5). 	

Corollary 1. Let I be an SM instance with n men and n women. Finding a
center stable matching of I takes O(n5) time.

Proof. The poset R(I) corresponding to the distributive lattice of stable match-
ings of I can be constructed from I in O(n2) time, and its transitive closure in
O(n4) time (by repeatedly using depth-first search, for example). Hence, f(k)
in Theorem 2 is O(n4), so that computing a center stable matching of I takes
O(n5) time. 	

4 The Center Set of G(L)

Applying the techniques used in the previous section, we shall now provide a
characterization of the centers of G(L).

Lemma 4. Let F be a lowest maximum matching of C(PL). Then every set of
the form V = B(F) ∪ U ′ where U ′ ⊆ U(F) is a center of G(L).

Proof. Assume that PL has k elements. Let V1 = B(F) and V2 = B(F) ∪U(F).
According to Theorem 2, V2 is a center of G(L) with |V2| = E(V2) = k − |F |.
To prove the lemma, we need to show that for V with V1 ⊆ V ⊂ V2, V is an
element of L with eccentricity k − |F |.

First, observe that U(F) must be an antichain in PL for otherwise F is not
a maximum matching of C(PL). Second, since Z(F) is a closed subset, any
predecessor of x ∈ U(F) must belong to B(F). Hence, V = B(F) ∪ U ′ where
U ′ ⊆ U(F) must also be a closed subset of PL and therefore an element of L. Let
W be an element of L. Using the same key property of V mentioned in the proof
of Lemma 2 (i.e., for each q ∈ T (F), there is a distinct p ∈ B(F)) and the fact
that W is a closed subset of PL, it must be the case that |W∩T (F)| ≤ |W∩B(F)|.
So consider the distance between W and V in G(L):

d(W,V) = |W − V |+ |V −W |
= |W ∩ T (F)|+ |W ∩ (U(F)− U ′)|+ |V | − |W ∩B(F)| − |W ∩ U ′|
≤ |V |+ |W ∩ (U(F)− U ′)| − |W ∩ U ′|
= |B(F)|+ |U ′|+ |W ∩ (U(F)− U ′)| − |W ∩ U ′|
≤ |B(F)|+ |U ′|+ |U(F)− U ′|
= |B(F)|+ |U(F)| = |F |+ (k − 2|F |) = k − |F |.

Thus, E(V) ≤ k − |F | so V must be a center of G(L). ��

688 C. Cheng, E. McDermid, and I. Suzuki

Theorem 3. Let V be an element of L. Then V is a center of G(L) if and only
if there is a lowest maximum matching F of C(PL) such that V = B(F) ∪ U ′

with U ′ ⊆ U(F).

Proof. The sufficiency direction of the theorem follows immediately from
Lemma 4. So consider the necessity direction. Suppose V is a center of G(L). Ac-
cording to Theorem 2, E(V) = k−f where f is the size of a maximum matching
of C(PL). In the proof of Lemma 3, we showed that the bipartite graph H [V̄ , V]
has a maximum matching F of size k − (k − f) = f . Thus, F is a maximum
matching of C(PL) too. Clearly, V = B(F) ∪ U ′ for some U ′ ⊆ U(F). If F is a
lowest maximum matching of C(PL), we are done. But suppose it is not. Let us
assume the worst case – that F is not even a low maximum matching of C(PL).
Using the algorithm outlined in the proof of Lemma 1, transform F into a low
maximum matching F ′. If F ′ is not a lowest maximum matching, transform it
into one using the same algorithm and call it F ′′. Let us now show that, like F ,
both F ′ and F ′′ are matchings of H [V̄ , V].

If F is not a low maximum matching, Z(F) is not a closed subset of C(PL).
Since V is a closed subset of C(PL), the only way this can happen is for some
x ∈ U(F) ∩ V̄ to have a predecessor q with (p, q) ∈ F . To correct this, the
algorithm will switch (p, q) with (p, x) in F . Possibly many more switches like
this will have to be performed until Z(F) is a closed subset of C(PL). What is
true though is that every such switch preserves the property that F is a matching
of H [V̄ , V]. Hence, at the end of the algorithm, the resulting low maximum
matching F ′ is still a matching of H [V̄ , V].

Now, if F ′ is not a lowest maximum matching, it is because B(F ′) is not a
closed subset of C(PL). Again, since V is a closed subset of C(PL), this must
mean that some p ∈ B(F ′) with (p, q) ∈ F ′ is missing a predecessor x ∈ U(F ′)∩
V . To correct this, the algorithm will switch (p, q) with (x, q) in F ′; that is, F ′

remains a matching of H [V̄ , V]. Applying the same reasoning as the previous
paragraph, it must be the case that the resulting lowest maximum matching
F ′′ at the end of the algorithm is still a matching of H [V̄ , V]. As a result,
V = B(F ′′) ∪ U ′ for some U ′ ⊆ U(F ′′). 	

We close by describing the “shape” of the center set of G(L). As we noted
in the introduction, the corollary is quite interesting in light of the fact that
the median set of G(L) induces a hypercube [19,14]. For space reasons, the
proofs are omitted, but can be found in the full version of the paper available at
http://www.cs.uwm.edu/∼ccheng/.

Corollary 2. Let L be a distributive lattice such that PL has k elements, and a
maximum matching of C(PL) has size f . Then,

1. The center set of G(L) is a union of hypercubes with dimension k − 2f .

2. There is a maximum-length chain from 0̂ to 1̂ whose middle elements are
centers of G(L). Equivalently, in G(L), there is a path whose length is the
diameter of G(L) and whose middle nodes are centers of G(L).

Center Stable Matchings and Centers of Cover Graphs 689

3. For an SM instance I, there is a set M ′ ⊆ M(I) whose stable matchings
form a maximum-length chain in (M(I),�) such that α(|M ′|+1)/2 is a center
stable matching of I when |M ′| is odd, and α|M ′|/2 and α|M ′|/2+1 are center
stable matchings of I when |M ′| is even.

References

1. Abdulkadiroglu, A., Pathak, P., Roth, A.: The New York City high school match.
American Economic Review, Papers and Proceedings 95, 364–367 (2005)

2. Abdulkadiroglu, A., Pathak, P., Roth, A., Sönmez, T.: The Boston public school
match. American Economic Review, Papers and Proceedings 95, 368–371 (2005)

3. Barbut, M.: Médiane, distributivité, éloignements, 1961. Reprinted in.
Mathématiques et Sciences Humaines 70, 5–31 (1980)

4. Bhatnagar, N., Greenberg, S., Randall, D.: Sampling stable marriages: why spouse-
swapping won’t work. In: Proc. of SODA 2008, pp. 1223–1232 (2008)

5. Birkhoff, G.: Rings of sets. Duke Mathematical Journal 3, 443–454 (1937)
6. Blair, C.: Every finite distributive lattice is a set of stable matchings. J. Combin.

Theory, Ser. A 37, 353–356 (1984)
7. Chebolu, P., Goldberg, L., Martin, R.: The complexity of approximately count-

ing stable matchings. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.)
APPROX 2010, LNCS, vol. 6302, pp. 81–94. Springer, Heidelberg (2010)

8. Cheng, C.: Understanding the generalized median stable matchings. Algorith-
mica 58, 34–51 (2010)

9. Chepoi, V., Dragan, F., Vaxéx, Y.: Center and diameter problems in plane trian-
gulations and quadrangulations. In: Proc. of SODA 2002, pp. 346–355 (2002)

10. Felsner, S.: Lattice structure from planar graphs. Electronic Journal of Combina-
torics 11, R15 (2004)

11. Gale, D., Shapley, L.: College admissions and the stability of marriage. American
Mathematical Monthly 69 (1962)

12. Gusfield, D.: Three fast algorithms for four problems in stable marriage. SIAM
Journal on Computing 16, 111–128 (1987)

13. Gusfield, D., Irving, R.: The Stable Marriage Problem: Structure and Algorithms.
The MIT Press, Cambridge (1989)

14. Imrich, W., Klavžar, S.: Product Graphs: Structure and Recognition. Wiley Inter-
science, Hoboken (2000)

15. Irving, R., Leather, P., Gusfield, D.: An efficient algorithm for the optimal stable
marriage. Journal of the ACM 34, 532–544 (1987)

16. Knuth, D.: Mariages Stables. Les Presses de l’Université de Montréal (1976)
17. König, D.: Gráfokés mátrixok. Matematikaiés Fizikai Lapok 38, 116–119 (1931)
18. Micali, S., Vazirani, V.: An O(

√
V E) algorithm for finding maximum matchings

in general graphs. In: Proc. of FOCS 1980, pp. 17–27 (1980)
19. Nieminen, J.: Distance center and centroid of a median graph. Journal of the

Franklin Institute 323, 89–94 (1987)
20. Propp, J.: Generating random elements of finite distributive lattices. Electronic

Journal of Combinatorics 4 (1997)
21. Roth, A., Peranson, E.: The redesign of the matching market of American physi-

cians: Some engineering aspects of economic design. American Economic Re-
view 89, 748–780 (1999)

22. Teo, C.-P., Sethuraman, J.: The geometry of fractional stable matchings and its
applications. Mathematics of Operations Research 23, 874–891 (1998)

VC-Dimension and Shortest Path Algorithms

Ittai Abraham1, Daniel Delling1, Amos Fiat2,�,
Andrew V. Goldberg1, and Renato F. Werneck1

1 Microsoft Research Silicon Valley
{ittaia,dadellin,goldberg,renatow}@microsoft.com

2 Tel Aviv University
fiat@tau.ac.il

Abstract. We explore the relationship between VC-dimension and graph
algorithm design. In particular, we show that set systems induced by sets
of vertices on shortest paths have VC-dimension at most two. This allows
us to use a result from learning theory to improve time bounds on query
algorithms for the point-to-point shortest path problem in networks of
low highway dimension, such as road networks. We also refine the defi-
nitions of highway dimension and related concepts, making them more
general and potentially more relevant to practice. In particular, we define
highway dimension in terms of set systems induced by shortest paths,
and give cardinality-based and average case definitions.

1 Introduction

The use of navigation software motivated recent work on point-to-point shortest
path algorithms with preprocessing for road networks. This produced a large
body of experimental work, including hierarchical approaches [13,18], reach-
based approaches [15,14], and transit node routing algorithms [3]. (See [10] for a
more detailed overview of the literature.) Abraham et al. [2] gave a theoretical
justification of some of these algorithms under the assumption of low highway di-
mension (HD), which is believed to be true for road networks. In particular, they
proved an O((Δ + h log n log D)(h log n log D)) query bound on variants of the
reach and contraction hierarchy algorithms with polynomial-time preprocessing.
Here n is the number of vertices in the input graph, D is the graph diameter,
Δ is its maximum vertex degree, and h is its highway dimension. In addition,
Abraham et al. proposed a labeling algorithm (referred to as a variant of transit
node routing in [2]) with a query bound of O(Δ + h log n log D). A very fast
implementation of the labeling algorithm has been subsequently developed [1].

The contributions of our paper are as follows.

– We propose a novel application of results from learning theory, in partic-
ular those related to VC-dimension [20], to improve the above-mentioned
bounds. In the above-mentioned query bounds, we replace the log n factor
by a log h factor. This is achieved using a boosting-type algorithm. As bounds

� This work was done while the author was visiting Microsoft Research.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 690–699, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

VC-Dimension and Shortest Path Algorithms 691

based on highway dimension are interesting for h � n, this is a significant
improvement.

VC-dimension is heavily used in learning theory and computational geom-
etry. Kleinberg [17] used VC-dimension to analyze failure detection sets in
graphs. As far as we know, however, our results are the first application of
these techniques to graph algorithm design.

– We generalize the definition of highway dimension and related concepts to set
systems. This allows us to apply VC-dimension results. The new definition
is also less restrictive and should give smaller highway dimension values for
real-world graphs.

– We show that, if shortest paths are unique, they induce set systems of VC-
dimension at most two.

– We give a cardinality-based definition of highway dimension and use it to
replace the log D term in the bounds by log n, thus obtaining strongly-
polynomial bounds.

Although improved bounds on the shortest path algorithms are interesting
in themselves, the relationship to VC-dimension and the application of learning
techniques to graph algorithm design are especially exciting. This relationship
may have more applications in the design and analysis of graph algorithms. The
ideas may also lead to algorithms with better practical performance.

This paper is organized as follows. Section 2 gives basic definitions and no-
tation. Section 3 defines VC-dimension and shows that set systems induced by
unique shortest paths have small VC-dimension. In Section 4 we give a new def-
inition of highway dimension and shortest path covers, and discuss the relation-
ship between them. Section 5 combines the results of the previous two sections
to improve the existing time bounds. Section 6 explores alternative definitions
of highway dimension: average-case and cardinality-based. Section 7 contains
concluding remarks.

2 Definitions

A network (G, �) consists of a graph G = (V, E) and a length function � : E → R.
The input to the preprocessing phase of a point-to-point algorithm is the network
(G, �). The preprocessing phase outputs additional data that can be used in the
query phase. A query takes as input a source vertex s and a target vertex t and
returns the length of the shortest path P (s, t) from s to t.

For this paper, we assume that the graph is undirected and connected, and
that the length function is integral and nonnegative. We denote the length of a
path P by �(P). Given a nonnegative r, let Br(u) = {v ∈ V, �(P (u, v)) ≤ r} be
the ball of radius r centered at u. Let D = maxu,v∈V �(P (u, v)) be the diameter
of the network, and let Δ be the maximum degree of a vertex in G. We assume
that the shortest path between any two vertices is unique. This is a common
assumption that can be made without loss of generality, as one can perturb the
input to ensure uniqueness.

692 I. Abraham et al.

3 VC-Dimension and USP Systems

A set system (X,R) consists of a base set X and a collection of its subsets R.
A hitting set H is a subset of X that intersects every element of R. For Y ⊆ X ,
R|Y = {S ∩ Y |S ∈ R}. Y is shattered by R if R|Y = 2Y (i.e., it includes every
subset of Y). (X,R) has VC-dimension d [20] if d is the smallest integer such
that no element Y ⊆ X with |Y | = d + 1 can be shattered.

We use the fact that, for set systems with low VC-dimension, there are better
hitting set approximation algorithms than in the general case. More specifi-
cally, we use the following result, due to Clarkson [6,7] (randomized version)
and to Brönnimann and Goodrich [5] (derandomization). This result is based on
a boosting-type algorithm from learning theory. An alternative algorithm, based
on linear programming relaxations, appears in [11].

Theorem 1. For a set system with an optimum hitting set of size h and with
VC-dimension d, there is an efficient algorithm to find an O(hd log(hd)) hitting
set.

In this paper, we study set systems (V,R) where V is the set of vertices of a
graph and each element of R corresponds to the set of vertices on a shortest
path. We refer to such set systems for graphs with unique shortest paths as USP
systems. To simplify notation, we view a path P both as a path and as a set of
its vertices.

The following theorem shows that USP systems have low VC-dimension. This
fact is natural and may be known; since we could not find a reference, we give a
proof.

Theorem 2. A USP system (V,R) has VC-dimension at most two.

Proof. We need to show that no 3-vertex set Y = {a, b, c} can be shattered.
First suppose that for some P ∈ R, Y ⊆ P . Without loss of generality, assume

that b lies between a and c on the shortest path P . Consider Z = {a, c}. By
uniqueness of shortest paths, any shortest path containing a and c must contain
b. Thus Y is not shattered.

Now suppose that for no P ∈ R, Y ⊆ P . Clearly in this case Y is not
shattered. 	

This theorem in combination with Theorem 1 gives the following result:

Corollary 1. For a USP-system with an optimum hitting set of size h, there is
an efficient algorithm to find an O(h log h) hitting set.

For an integer k ≥ 2, we also study the k-UPS system (V,Rk), where V is the
set of vertices of a graph and the elements of Rk correspond to sets of vertices on
at most k shortest paths. More precisely, Rk = {⋃k

1 Si | Si ∈ R}. The following
theorem shows that k-UPS systems have VC-dimension O(k log k).

Theorem 3. A k-USP system (V,Rk) has VC-dimension O(k log k).

VC-Dimension and Shortest Path Algorithms 693

Proof. Consider any set B ⊆ V of size |B| = b. Due to uniqueness of shortest
paths we have |R|B| ≤ b2. Therefore if 2b > b2k then the VC-dimension of
(V,Rk) must be less than b (because there are not enough combinations to
shatter any set of size b). For any k ≥ 3, if we choose b = 7k log k we have
log(2b) = 7k log k > 2k log(7k log k). For k = 2 we can get a slightly better
bound: any set B of size 10 cannot be shattered. If B can be covered by two
shortest paths then one of them contains at least 5 points p1, . . . , p5 that are on
a shortest path. Hence the subset p1, p3, p5 cannot be formed by intersecting B
with two shortest paths because any shortest path that covers more than one
of these points must also include either p2 or p4. We conclude that the VC-
dimension of Sk is O(k log k) for all integers k. 	

Corollary 2. For a k-USP-system with an optimum hitting set of size h, there
is an efficient algorithm to find an O(hk log k log(hk log k)) hitting set.

In particular if k is a constant, the bound is O(h log h).

4 Highway Dimension and Shortest Path Covers

The concept of highway dimension was motivated by the transit node routing
(TNR) algorithm [4,3]. The efficiency of TNR on road networks is based on the
following observation: after a map is partitioned into regions, all significantly
long shortest paths out of each region can be hit by a small number of vertices.
The definition of highway dimension in [2] uses the notion of balls. In this section
we give a more flexible definition using neighborhoods and set systems.

For q > r > 0, denote by Pq the collection of all shortest paths of length at
most q, and by P r

q the collection of all shortest paths P with r < �(P) ≤ q.
Define the r-neighborhood of v by Nr(v) =

⋃
(P ∈ Pr : v ∈ P). (Here we think

of P as a set of vertices, so Nr(v) is also a set.) Note that Nr(v) = Br(v), but
the definition of Nr is more general; in particular, it works if one defines the
collection of sets Pr in an arbitrary way. Define the r-neighborhood set system
Sr(v) = (V, {P ∈ P

r/2
r : P ∩ Nr(v) �= ∅}), i.e., Sr(v) is induced by the set of all

shortest paths of length between r/2 and r intersecting the r-neighborhood of
v. We use S2r in our new definition of highway dimension.

The highway dimension (HD) of a network (G, �) is the smallest h such that
∀r > 0, ∀v ∈ V , there is a hitting set of S2r(v) of size at most h. A related
concept is that of a shortest path cover (SPC). For r > 0, an (h, r)-SPC is a set
C ⊆ V such that C hits all paths in P r

2r and ∀v ∈ V, |N2r(v) ∩ C| ≤ h (C is
sparse).

The previous definition of HD used B2r instead of N2r and required the hitting
set to cover all paths in B4r(v) ∩ P r

2r . While B2r and N2r are the same, the
requirement to hit all the paths is stronger, as some of these do not intersect
B2r(v). For individual instances, including real-life ones, the new definition is
likely to give smaller HD values.

The basic theorem of [2] relating HD and SPC holds under the new definitions,
and the proof is similar.

694 I. Abraham et al.

Theorem 4. If the highway dimension of (G, �) is h, then for any r > 0 the
smallest hitting set for P r

2r is an (h, r)-SPC.

Proof. Let H∗ be the smallest hitting set for P r
2r . We prove that H∗ is an (h, r)-

SPC. Suppose for contradiction that for some u, U = H∗ ∩ N2r(u) and |U | > h.
By the definition of h, there is a hitting set H for S2r(u) with |H | ≤ h. By
the definition of S2r(u), H hits all shortest paths in P r

2r hit by U . Therefore
(H∗ \U)∪H is smaller than H∗ and hits all shortest paths in P r

2r, contradicting
the optimality of H∗. 	

5 Improved Bounds

Although Theorem 4 guarantees the existence of good covers, computing the set
H∗ (used in the proof) is NP-hard. This motivates building approximate SPCs,
i.e., (h′, r)-SPCs such that h′ bigger than (but close to) h. As Abraham et al. [2]
show, a greedy algorithm [16] (which in each iteration adds to the solution the
vertex that hits the most uncovered paths) produces (O(h log n), r)-SPCs.

Next we show how to compute (O(h log h), r)-SPCs efficiently. The result is
more complicated than a direct application of Corollary 1 because we want to
get a sparse hitting set instead of just a small one.

Theorem 5. If the highway dimension of (G, �) is h, then for any r > 0 we can
compute an (O(h log h), r)-SPC in polynomial time.

Proof. Let c be the constant hidden by the big “O” notation in Theorem 1. By
Theorem 2, for any S2r(u), we can efficiently compute a hitting set of size at
most h′ = 2hc log(2h). Our goal is to build an (h′, r)-SPC.

We maintain a hitting set A for P r
2r . We can start with any such A computed in

polynomial time, for example by the greedy algorithm. We show that if A is not
sparse, then we can replace A by a smaller hitting set for P r

2r in polynomial time.
Iterating this construction O(n) times, we will eventually stop with a sparse A.

While A is not sparse, there exists some u such that U = A ∩ N2r(u) and
|U | > h′. We efficiently compute a hitting set H for S2r(u) with |H | ≤ h′.
(A \ U) ∪ H is a hitting set for P r

2r that is smaller than A. 	

The results of [2] imply the following lemma.

Lemma 1. Suppose that one can, in polynomial time, compute (k, r)-SPCs for
all r and some parameter k. Then the reach [14] and contraction hierarchy [13]
algorithms have a polynomial-time preprocessing routine that adds O(k log D)
edges to the graph, and the corresponding query algorithms run in O((Δ +
k log D)(k log D)) time. For the labeling algorithm [12], the preprocessing adds
the same number of edges and the query runs in O(Δ + k log D) time.

The results of [2] use a greedy hitting set algorithm to get k = O(h log n).
Theorem 5 gives k = O(h log h), and we obtain the following improved bounds:

VC-Dimension and Shortest Path Algorithms 695

Theorem 6. The reach and contraction hierarchy algorithms have a polynomial-
time preprocessing routine that adds O(h log h log D) edges to the graph, and the
corresponding query algorithms run in O((Δ+h log h log D)(h log h log D)) time.
For the labeling algorithm, the preprocessing adds the same number of edges and
the query runs in O(Δ + h log h log D) time.

6 Extensions

6.1 Labeling Algorithm and Average Dimension

Road networks are non-uniform. At the same scale, some regions contain struc-
tures requiring denser local covers, while most areas do not. So far we worked
with the worst-case definition of highway dimension. In this section we give an
average-case definition. For many graphs, this definition should give a much
smaller value. We use the new definition to prove an expected-time bound on
the labeling algorithm.

The labeling algorithm was introduced in [12,19] and analyzed for low highway
dimension networks in [2]. An O(log n)-approximation algorithm for the smallest
average label size appears in [8]. The labeling algorithm works in two stages. The
preprocessing stage computes, for each vertex v, a label L(v). The label consists
of a set of vertices w, together with their respective distances dist(v, w) from v.
The labels have the following cover property: For every pair of distinct vertices
s and t, L(s) ∩ L(t) contains a vertex u on the shortest path from s to t. The
query stage of the labeling algorithm is quite simple. Given s and t, find the
vertex u ∈ L(s)∩L(t) that minimizes dist(s, u)+dist(u, t) and return the length
of the corresponding path.

Theorem 7. Suppose the average label size is k. Then for random queries, the
expected query time for the labeling algorithm is O(k).

Proof. For two vertices with label sizes x and y, the query time is O(x+ y). The
result follows by the linearity of expectation. 	

We do not have a similar average-case result for hierarchical and reach-based
algorithms because they are asymmetric: Some vertices are used in many point-
to-point computations, and they can be the ones with high degree.

We define the average highway dimension (AHD) of a network (G, �) by taking
the maximum, over all r, of the average minimum hitting set size for the 2r-
neighborhood set system of a vertex. More formally, let h(v, r) be the size of the
minimum hitting set for S2r(v). The AHD is defined by

max
r

∑
v h(v, r)

n
.

A related concept is the average shortest path cover (ASPC). For r > 0, an
(h, r)-ASPC is a set C ⊆ V such that C hits all paths in P r

2r and is sparse on
average: ∑

v |N2r(v) ∩ C|
n

≤ h.

696 I. Abraham et al.

Remark: Note that the HD and AHD definitions use ∞- and 1-norm, respec-
tively. We can generalize these definitions for k-norms. For an integer k ≥ 1, let
hk(v, r) = (h(v, k))k. We define HDk by

max
r

k

√∑
v hk(v, r)

n
.

Similarly, we can define (h, r)-SPCk to be a hitting set for P r
2r such that

k

√∑
v |N2r(v) ∩ C|k

n
≤ h.

As limk→∞
k

√∑
v hk(v,r)

n = maxv h(v, r), we have that HD∞ is the same as HD.
The following analog of Theorem 4 holds. (The proof is similar, with modifi-

cations analogous to those used in the proof of Theorem 9 below.)

Theorem 8. If the AHD of (G, �) is h, then for any r > 0 the smallest hitting
set for P r

2r is an (h, r)-ASPC.

Next we prove an analog of Theorem 5. The proof is similar but slightly more
complicated.

Theorem 9. If the AHD of (G, �) is h, then for any r > 0 we can compute an
(O(h log h), r)-ASPC in polynomial time.

Proof. Let V = {v1, . . . , vn}. Fix r > 0 and let hi = h(vi, r). By definition,
h ≥

∑
i hi

n . Let c be the constant hidden by the big “O” notation in Theorem 1.
We maintain a hitting set A for P r

2r. We can start with A computed by the
greedy algorithm, for example. Suppose for some vi, U = A∩N2r(vi) and |U | >
chi log hi. We efficiently compute a hitting set H for S2r(u) with |H | ≤ chi log hi.
(A \ U) ∪ H is a hitting set for P r

2r that is smaller than A.
By iterating the above construction at most n times, we get a hitting set A

such that for all 1 ≤ i ≤ n, |A ∩ N2r(vi)| ≤ chi log hi. Since the average of hi is
at most h and log is a concave function, we have∑

i

chi log hi ≤ c log h
∑

i

hi ≤ cnh log h

and the theorem follows. 	

Remark: The two theorems above also hold for HDk and SPCk.
For the labeling algorithm, we can state an expected time bound in terms of

the average highway dimension.

Lemma 2. If the AHD of a network is h, then we can compute labels of average
size O(h log h log D) in polynomial time.

VC-Dimension and Shortest Path Algorithms 697

Proof. We build labels similarly to the worst case [2]. For i = 0, . . . , log D, let Ci

be an (O(h log h), 2 · 2i)-ASPC cover. Define L(v) = ∪i(Ci ∩N2·2i(v)). It is easy
to see that the Ls have the labeling property. We get the size bound as follows:∑

v

|L(v)| =
∑

i

∑
v

|Ci ∩ N2·2i(v)| = O(nh log h log D),

as desired. 	

Theorem 10. If the average highway dimension of a network is h, the expected
running time of the labeling algorithm with polynomial-time preprocessing on a
random query is O(Δ + h log h log D).

Note that all constructions for the average case are the same as for the worst
case, so the worst-case bounds (in terms of the worst-case highway dimension)
hold in addition to the average-case bounds.

6.2 Cardinality-Based Highway Dimension

We can state an alternative definition of highway dimension using path cardi-
nality instead of path length. For the definition to be robust, we assume that the
input graph has no vertices of degree two. (This can be trivially enforced during
a preprocessing step, and does not affect the correctness of routing algorithms.)

To define cardinality-based highway dimension and shortest path covers, we
redefine Pq and P r

q as follows. For q > r > 0, denote by Pq the collection
of all shortest paths P of cardinality |P | ≤ q, and by P r

q the collection of all
shortest paths P with r < |P | ≤ q. Our set-based definition of highway dimension
and shortest path covers is general enough for all the results to go through. A
major difference is that the maximum path length is D but the maximum path
cardinality is n, so in the bounds we get log n instead of log D, i.e., the bounds
become strongly polynomial. Note that, in general, the value of h will be different
for the two definitions.

Note that these results apply to the average-case bounds of Section 6.1 as well.
This alternative definition of highway dimension might be useful in the analysis
of methods such as highway hierarchies [18], which are based on the cardinality
of shortest paths.

7 Concluding Remarks

Kleinberg [17] showed that VC-dimension can be useful in the analysis of graph
algorithms. We extend this observation by showing that it can be used to design
graph algorithms. This suggests that designers of graph algorithms can poten-
tially benefit from relevant developments in learning theory.

Consider the cardinality-based definitions of HD and SPC. These definitions
are set-theoretic. The shortest-path domain gives only the base set and the subset
families. For the cardinality case, Sr, Nr, HD, and (h, r)-SPC are well-defined

698 I. Abraham et al.

for any set system. Furthermore, Theorem 4 holds. If the highway dimension is h
and the VC-dimension of the set system is d, we can find an (O(h log n), r)-SPC
or an (O(hd log(hd)), r)-SPC in polynomial time. These generalizations make it
possible to apply the notion of highway dimension in other contexts.

Our results apply to undirected graphs, while road networks are directed.
Extensions to the directed case, discussed in [2], apply under our new definitions.
Unfortunately these extensions require additional assumptions, such as bounded
asymmetry. It would be interesting to relax or eliminate these assumptions.

An important open question is that of designing practical algorithms for build-
ing good SPCs on large graphs with low highway dimension. Such algorithms
will be useful in practice. Abraham et al. [1] improve contraction hierarchies by
applying the greedy algorithm late in the preprocessing stage, when the graph
shrinks to a sufficiently small size. A faster SPC algorithm may bring further
improvements. Boosting techniques could potentially lead to practical improve-
ments of this approach. Note that recent developments in one-to-all shortest
path algorithms [9] make a wider class of algorithms potentially practical.

Another interesting experimental question is that of computing good upper
and lower bounds on the highway dimension of real road networks. As we have
discussed, our new definition of highway dimension is likely to yield smaller
values. Experimental studies can also help to determine how much smaller the
AHD of real road networks is compared to their highway dimension, and whether
the cardinality-based highway dimension of these networks is smaller than the
length-based one.

On the theoretical side, it would be interesting to develop better bounds on
approximating SPCs, either directly or by improving the results of Theorem 1.
It may also be interesting to know if Theorem 3 is tight.

Acknowledgements

We would like to thank Anupam Gupta and Kunal Talwar for helpful discussions.

References

1. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A Hub-Based Labeling
Algorithm for Shortest Paths in Road Networks. In: Pardalos, P.M., Rebennack,
S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 230–241. Springer, Heidelberg (2011)

2. Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway Dimension, Short-
est Paths, and Provably Efficient Algorithms. In: Proceedings of the 21st Annual
ACM–SIAM Symposium on Discrete Algorithms (SODA 2010), pp. 782–793 (2010)

3. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In Transit to Constant
Shortest-Path Queries in Road Networks. In: Proceedings of the 9th Workshop
on Algorithm Engineering and Experiments (ALENEX 2007), pp. 46–59. SIAM,
Philadelphia (2007)

4. Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast Routing in Road Networks with
Transit Nodes. Science 316(5824), 566 (2007)

VC-Dimension and Shortest Path Algorithms 699

5. Brönnimann, H., Goodrich, M.: Almost Optimal Set Covers in Finite VC-
dimension. Discrete and Computational Geometry 14, 463–497 (1995)

6. Clarkson, K.L.: A Las Vegas Algorithm for Linear Programming When the Dimen-
sion is Small. In: Proc. 29th IEEE Annual Symposium on Foundations of Computer
Science, pp. 452–456. IEEE, Los Alamitos (1988)

7. Clarkson, K.L.: Algorithms for Polytope Covering and Approximation. In: Proc.
3rd Workshop Algo. Data Struct., pp. 246–252. Springer, New York (1993)

8. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and Distance Queries
via 2-hop Labels. SIAM J. Comput. 32 (2003)

9. Delling, D., Goldberg, A.V., Nowatzyk, A., Werneck, R.F.: PHAST: Hardware-
Accelerated Shortest Path Trees. In: 25th International Parallel and Distributed
Processing Symposium (IPDPS 2011). IEEE Computer Society, Los Alamitos
(2011)

10. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning
Algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large
and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)

11. Even, G., Rawitz, D., Shahar, S.: Hitting Sets when the VC-dimension is Small.
Inf. Process. Lett. 95, 358–362 (2005)

12. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance Labeling in Graphs. J.
Algorithms 53(1), 85–112 (2004)

13. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction Hierarchies:
Faster and Simpler Hierarchical Routing in Road Networks. In: McGeoch, C.C.
(ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)

14. Goldberg, A., Kaplan, H., Werneck, R.: Reach for A∗: Shortest Path Algorithms
with Preprocessing. In: Demetrescu, C., Goldberg, A., Johnson, D. (eds.) The
Shortest Path Problem: Ninth DIMACS Implementation Challenge, pp. 93–140.
AMS, Providence (2009)

15. Gutman, R.: Reach-based Routing: A New Approach to Shortest Path Algorithms
Optimized for Road Networks. In: Proc. 6th International Workshop on Algorithm
Engineering and Experiments, pp. 100–111 (2004)

16. Johnson, D.: Approximation Algorithms for Combinatorial Problems. J. Comput.
Syst. Sci. 9, 256–278 (1974)

17. Kleinberg, J.: Detecting a Network Failure. In: Proc. 41nd IEEE Annual Sym-
posium on Foundations of Computer Science, pp. 231–239. IEEE, Los Alamitos
(2008)

18. Sanders, P., Schultes, D.: Highway Hierarchies Hasten Exact Shortest Path Queries.
In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 568–579.
Springer, Heidelberg (2005)

19. Thorup, M., Zwick, U.: Approximate Distance Oracles. J. ACM 52(1), 1–24 (2005)
20. Vapnik, V., Chervonenkis, A.: On the Uniform Convergence of Relative Frequencies

of Events to Their Probabilities. Theory of Probability and its Applications 16,
264–280 (1971)

Characterizing Arithmetic Circuit Classes by

Constraint Satisfaction Problems

(Extended Abstract)

Stefan Mengel�

Institute of Mathematics, University of Paderborn, D-33098 Paderborn, Germany
stefan.mengel@mail.uni-paderborn.de

Abstract. We explore the expressivity of constraint satisfaction prob-
lems (CSPs) in the arithmetic circuit model. While CSPs are known to
yield VNP-complete polynomials in the general case, we show that for
different restrictions of the structure of the CSPs we get characterizations
of different arithmetic circuit classes. In particular we give the first nat-
ural non-circuit characterization of VP, the class of polynomial families
efficiently computable by arithmetic circuits.

1 Introduction and Related Work

The complexity class VP has a very natural definition: It is the class of fami-
lies of polynomials computable by arithmetic circuits efficiently, i.e., by fami-
lies of arithmetic circuits of polynomial size. Despite this apparent naturality
there is one irritating aspect in which VP differs from other arithmetic circuit
classes: There are no known natural complete problems for VP – artificial ones
can be constructed – and no known natural characterizations of VP that do not
in one form or another depend on circuits. This puzzling feature of VP raises
the question whether VP is indeed the right class for measuring natural efficient
computability. This scepticism is further strengthened by the fact that Malod
and Portier [14] have shown that many natural problems from linear algebra
are complete for VPws, a subclass of VP. Thus the search for complete problems
or natural characterizations of VP is an interesting and meaningful problem in
algebraic complexity. In this paper we give such a natural characterization of
VP and other classes by constraint satisfaction problems.

Constraint satisfaction problems (CSPs) are a classical problem in complex-
ity theory and among the first shown to be NP-complete. In a seminal paper
Schaefer [15] characterized the complexity of boolean CSPs by showing a fa-
mous dichotomy theorem: if all constraints are chosen from a small class which
he completely describes, then the corresponding CSP is in P, otherwise it is
NP-complete. This result has spawned several follow up results, in one of which
Briquel and Koiran [5] gave a similar dichotomy result in the arithmetic circuit

� Supported by the Research Training Group GK-693 of the Paderborn Institute for
Scientific Computation (PaSCo)

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 700–711, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Characterizing Arithmetic Circuit Classes 701

model. To a family (Φn) of CSPs they assign a polynomial family (P (Φn)). They
show that there is a small set S of constraints with the following property: If a
family (Φn) of CSPs is built of constraints in S only, then (P (Φn)) ∈ VP. On the
other hand if CSPs may be constructed with the help of any constraint not in S,
one can construct such a CSP-family (Φn) such that (P (Φn)) is VNP-complete.

Because CSPs are immensely important for practical purposes, researchers
especially in database theory and AI tried to circumvent Schaefer’s result by
finding feasible subclasses of CSPs. The key idea here is not to restrict the
individual constraints but instead to restrict the structure of the CSPs built
with these constraints. It was shown [1] that if one restricts the problem to so
called acyclic CSPs, then the resulting CSPs are solvable in P. It was even shown
that acyclic CSPs are parallelizable, but the exact complexity of the problem
was open for some time. Gottlob et. al [11] solved this question by proving that
acyclic CSPs are complete for the class LOGCFL. This result easily extends to
CSPs of bounded treewidth.

Treewidth is a crucial graph parameter for many algorithmic problems on
graphs. Often hard problems become feasible if one bounds the treewidth of
the inputs by a constant. During the last years treewidth has found its way
into arithmetic circuit complexity. This was started by Courcelle et al. [8] who
showed that generating functions of graph problems expressible in monadic sec-
ond order logic have small arithmetic circuits for graphs of bounded treewidth.
This line of research was continued by Flarup et al. [13] who improved these
upper bounds and showed matching lower bounds for some familes of polynomi-
als: On the one hand the permanent and the hamilton polynomial on graphs of
bounded treewidth can be computed by arithmetic formulas of polynomial size.
On the other hand all arithmetic formulas can be expressed this way. Briquel,
Koiran and Meer [6,12] – building on a paper by Fischer et al. [9] which deals
with counting problems – considered polynomials defined by CNF formulas of
bounded treewidth (see also Section 3).

In this paper we unify these different lines of work: We complement the general
infeasibility results of Briquel and Koiran [5] by showing feasible subclasses of
polynomials assigned to CSPs. Also, our paper can be seen as an extension of the
work of Briquel, Koiran and Meer [12,6] by generalization from CNF-formulas
to general CSPs. We introduce two kinds of polynomials for CSPs and show that
they characterize the hierarchy VPe ⊆ VPws ⊆ VP ⊆ VNP of arithmetic circuit
classes commonly considered (cf Section 2.1), respectively, for different classes
of CSPs. Boolean bounded treewidth or pathwidth CSPs capture VPe, while in
the non-boolean case we get VPws for bounded pathwidth and VP for bounded
treewidth. We also explain where exactly the difference in expressivity between
boolean and non-boolean CSPs comes from. We prove that if each variable can
take only a constant number of values in satisfying assignments of each constraint
in non-boolean CSPs, then these CSPs capture VPe again. In boolean CSPs
each variable trivially takes only at most 2 values in the satisfying assignments
of each constraint. This explains that non-boolean CSPs are more powerful,

702 S. Mengel

simply because the variables can take more values in satisfying assignments of
the constraints.

2 Preliminaries

2.1 Arithmetic Circuit Complexity

We briefly recall the relevant definitions from arithmetic circuit complexity.
A more thorough introduction into arithmetic circuit classes can be found in
the book by Bürgisser [7]. Newer insights into the nature of VP and espe-
cially VPws are presented in the excellent paper of Malod and Portier [14].

An arithmetic circuit over a field F is a labeled directed acyclic graph (DAG)
consisting of vertices or gates with indegree or fanin 0 or 2. The gates with
fanin 0 are called input gates and are labeled with constants from F or variables
X1, X2, . . . , Xn. The gates with fanin 2 are called computation gates and are
labeled with × or +.

The polynomial computed by an arithmetic circuit is defined in the obvious
way: An input gate computes the value of its label, a computation gate computes
the product or the sum of its childrens’ values, respectively. We assume that a
circuit has only one sink which we call output gate. We say that the polynomial
computed by the circuit is the polynomial computed by the output gate. The
size of an arithmetic circuit is the number of gates. The depth of a circuit is the
length of the longest path from an input gate to the output gate in the circuit.

Sometimes we also consider circuits in which the +-gates may have unbounded
fanin. We call these circuits semi-unbounded circuits. Observe that in semi-
unbounded circuits ×-gates still have fanin 2. A circuit is called multiplicatively
disjoint if for each ×-gate v the subcircuits that have the children of v as output-
gates are disjoint. A circuit is called skew, if for all of its ×-gates one of the
children is an input gate.

We call a sequence (fn) of multivariate polynomials a family of polynomials
or polynomial family. We say that a polynomial family is of polynomial degree,
if there is a univariate polynomial p such that deg(fn) ≤ p(n) for each n. VP is
the class of polynomial families of polynomial degree computed by families of
polynomial size arithmetic circuits. VPe is defined analogously with the circuits
restricted to trees. By a classical result of Brent [4], VPe equals the class of
polynomial families computed by arithmetic circuits of depth O(log(n)). VPws is
the class of families of polynomials computed by families of skew circuits of
polynomial size. Finally, a family (fn) of polynomials is in VNP, if there is a
family (gn) ∈ VP and a polynomial p such that fn(X) =

∑
e∈{0,1}p(n) gn(e, X)

for all n where X denotes the vector (X1, . . . , Xq(n)) for some polynomial q.
A polynomial f is called a projection of g (symbol: f ≤ g), if there are

values ai ∈ F ∪ {X1, X2, . . .} such that f(X) = g(a1, . . . , aq). A family (fn)
of polynomials is a p-projection of (gn) (symbol: (fn) ≤p (gn)), if there is a
polynomial r such that fn ≤ gr(n) for all n. As usual we say that (gn) is hard
for an arithmetic circuit class C if for every (fn) ∈ C we have (fn) ≤p (gn). If
further (gn) ∈ C we say that (gn) is C-complete.

Characterizing Arithmetic Circuit Classes 703

2.2 CSPs. . .

Let D and X be two sets. We denote with DX := {a : X → D} the set of
functions from X to D. A constraint is a function φ : DX → {0, 1} where X and
D are finite sets. We call D the domain and var(φ) = X the set of variables of
φ. We call k = |var(φ)| the arity of the constraint φ. If k = 2 we also say that
φ is binary. An assignment a : var(φ) → D is said to satisfy φ, if and only if
φ(a) = 1. We say that φ is boolean, if D = {0, 1}.

A constraint satisfaction problem (CSP) Φ of size m in the variables var(Φ)
and domain D is a set of m constraints {φ1, . . . , φm} such that the domain of all
φi is D and

⋃
i∈[m] var(φi) = var(Φ). A CSP Φ is called binary iff all constraints

φi of Φ are binary. If D = {0, 1} we call the CSP boolean.
A CSP Φ is satisfied by an assignment a : var(Φ) → D if for all i = 1, . . .m

we have φi(a|var(φi)) = 1, where a|var(φi) ∈ Dvar(φ) is the restriction of a onto
var(φ). We also say that a satisfies the constraints of Φ.

When we have an order on the variables of the CSP we sometimes identify
assignments a : var(Φ) → D and vectors of length var(Φ) in the obvious way by
giving a value table of a. We sometimes also describe constraints by describing
its satisfying assignments as a set of vectors.

A CSP defines a function Φ∗ : Dvar(Φ) → {0, 1} by setting Φ∗(a) = 1 if and
only if a satisfies Φ. In a slight abuse of notation we will not distinguish between
the CSP Φ and the function Φ∗ in this paper, but use the same symbol Φ for
both of them. It will always be clear from the context which one of the two we
mean.

Many well known decision problems can be formulated as CSPs. For example
2-CNF-formulas are constraint satisfaction problems in which all constraint are
of the form a∨b where a and b are literals of the form xi or ¬xi for a variable xi.
This illustrates the fact that in general a CSP has many more variables than
each of its individual constraints.

We will in the following consider families (Φn) of CSPs. Every Φn may have
its own universe Dn and its own set of variables var(Φn). But we will always
assume that the arity of all constraints in all of the CSPs Φn is bounded by a
constant k independent of n. We say that (Φn) has bounded arity in this case.

We call a family (Φn) of CSPs p-bounded, if and only if (Φn) has bounded
arity and there is a polynomial p such that |Dn| ≤ p(n) and |var(Φn)| ≤ p(n) for
every n. We say that a constraint φ is c-assignment bounded if for all x ∈ var(φ)
we have |{a(x) | a : var(φ) → D with φ(a) = 1}| ≤ c, i.e., in the satisfying
assignments of φ each variable x takes at most c values. We call a CSP c-
assignment bounded if all of its constraints are c-assignment bounded. Observe
that all boolean CSPs are trivially 2-assignment bounded. We can normalize
CSPs with the following straightforward lemma:

Lemma 1. Let (Φn) be p-bounded family of CSPs. Then there is a p-bounded
family of CSPs (Φ′

n) that defines the same family of functions such that Φ′
n is of

polynomial size in n.

704 S. Mengel

2.3 . . . and Their Polynomials

To a CSP Φ we will assign two polynomials P (Φ) and Q(Φ). However, P (Φ) is
only defined for boolean CSPs. So let Φ first be a boolean CSP with the set
of variables X = {x1, . . . , xn}. We assign a polynomial P (Φ) in the (position)
variables Y1, . . . , Yn to Φ in the following way:

P (Φ) :=
∑

e:{x1,...xn}→{0,1}n

Φ(e)Y e.

Here Y e stands for Y
e(x1)
1 Y

e(x2)
2 . . . Y

e(xn)
n .

Example 1. Let the constraints in Φ be {x1 ∨ x2, x3 �= x2,¬x4 ∨ x2}. The sat-
isfying assignments are then 0100, 0101, 1010, 1100 and 1101. This results in
P (Φ) = X2 + X2X4 + X1X3 + X1X2 + X1X2X4.

In contrast to P (Φ) the second polynomial Q(Φ) is also defined for non-boolean
CSPs. So let Φ be a CSP with domain D. We assign to Φ the following polynomial
Q(Φ) in the variables {Xd | d ∈ D}.

Q(Φ) :=
∑

a:var(Φ)→D

Φ(a)
∏

x∈var(Φ)

Xa(x) =
∑

a:var(Φ)→D

Φ(a)
∏
d∈D

X
μd(a)
d ,

where μd(a) = |{x ∈ var(Φ) | a(x) = d}| computes number of variables mapped
to d by a. Note that Q(Φ) is homogeneous of degree |var(Φ)|.
Example 2. Let D = {1, 2, 3, 4} and let the constraints in Φ be {x1 + x2 ≥
4, x3 = 5 − x2, x1 < x2}. The satisfying assignments are then (1, 3, 2), (2, 3, 2),
(1, 4, 1), (2, 4, 1) and (3, 4, 1). This results in Q(Φ) = X1X2X3 +X2

2X3 +X2
1X4 +

X1X2X4 + X1X3X4.

Remark 1. The polynomial Q has a very natural algebraic interpretation: Con-
sider the free monoid D∗ consisting of finite words of the symbols in D. Further-
more consider the free commutative monoid Xc

D on the symbols XD := {Xd | d ∈
D} which is essentially the set of monomials in the variables in XD. There is a
natural monoid morphism q : D∗ → Xc

D with q(a1 . . . as) =
∏s

i=1 Xai . The mor-
phism q drops the order of the symbols in a word and computes a commutative
version of it.

Now we consider two rings: The first one is Z[D∗] consisting of formal integer
linear combinations of words in D∗. Observe that we can think of any finite set
S ∈ D∗ as an element of Z[D∗] by encoding it as

∑
a∈S a. The second ring we

consider is Z[XD] which is simply the polynomial ring over Z in the variables
XD. The monoid morphism q induces the ring morphism Q : Z[D∗] → Z[XD]
by Q(

∑
a caa) =

∑
a caq(a). Given the encoding

∑
a∈S a of a set S, Q computes

a commutative version of it. This is exactly what the polynomial Q(Φ) defined
above does: To a CSP Φ it computes a commutative version of the set of satisfying
assignments.

Characterizing Arithmetic Circuit Classes 705

In general the P (Φ) and Q(Φ) are expressive enough to characterize VNP. Thus
in order to characterize subclasses of VNP we introduce structural restrictions
to CSPs in the next section.

2.4 Treewidth

An excellent introduction to treewidth, its properties and algorithmic conse-
quences can be found in [10, Chapter 11]. For the convenience of the reader we
recall the definitions and facts needed in the remainder of this paper.

A tree decomposition of a graph G = (V, E) is a pair (T , (Bt)t∈T), where
T = (T, F) is a tree and (Bt)t∈T is a family of subsets of V such that:

–
⋃

t∈T Bt = V .
– For every v ∈ V , the set B−1(v) := {t ∈ T | v ∈ Bt} is nonempty and

connected in T .
– For every edge uv ∈ E there is a t ∈ T such that u, v ∈ Bt.

The sets Bt are called the bags of the decomposition. The width of the decom-
position is max{|Bt| | t ∈ T }−1. The treewidth tw(G) of a graph G is defined as
the minimum of the widths of all tree-decompositions of G. With this definition
trees have a treewidth of 1.

A path decomposition is a tree decomposition in which T is a path. The path-
width pw(G) is defined in a completely analogous fashion to tw(G). Clearly for
all graphs G we have tw(G) ≤ pw(G).

We state a well known property of tree-decompositions (see [10, Chapter 11]).

Proposition 1. Let G = (V, E) be a graph and (T , (Bt)t∈T) be a tree-decompo-
sition of G. Then for each clique C ⊆ V in G there is a bag Bt such that C ⊆ Bt.

To a CSP Φ we assign two graphs: The primal graph GP
Φ has the vertex set

var(Φ) and there is an edge between two vertices x and y if and only if there
is a constraint φ in Φ such that {x, y} ⊆ var(φ). Note that the constraints in
Φ yield cliques in GP

Φ . The incidence graph GI
Φ has the vertex set var(Φ) ∪ {φ |

φ constraint in Φ}. There is an edge between x ∈ var(Φ) and φ if and only if
x ∈ var(φ). There are no other edges in GI

Φ, thus GI
Φ is bipartite.

We define the treewidth of a CSP G as tw(Φ) := tw(GP
Φ). We say that a family

of CSPs (Φn) has bounded treewidth, if and only if tw(GΦn) ≤ d for a constant d
independent of n. We could also have defined the treewidth of Φ as the treewidth
of the incidence graph GI

Φ, but the following folklore lemma tells us that there
is not much difference if we consider CSPs with bounded arity.

Lemma 2. For every CSP Φ we have:

a) tw(GI
Φ) ≤ tw(GP

Φ) + 1.
b) If all constraints in Φ have arity at most k, then tw(GP

Φ) ≤ k(tw(GI
Φ)+1)−1.

The following lemma relates the expressivity of P and Q.

Lemma 3. For every boolean CSP Φ in s variables there is a 2-assignment
bounded CSP Ψ with domain size |D| = 2s such that P (Φ) ≤ Q(Ψ) and GP

Φ �
GP

Ψ .

706 S. Mengel

3 Statement of the Results

Having introduced all necessary definitions we will now formulate our results in
this section. Our first theorem characterizes the expressive power of boolean and
non-boolean CSPs of bounded path- and treewidth.

Theorem 1 (Characterization of VPe)

a) Let (Φn) be a p-bounded family of boolean CSPs with bounded treewidth. Then
(P (Φn)) ∈ VPe. Moreover, any family in VPe is a p-projection of such a
(P (Φn)). The same statement also holds with pathwidth instead of treewidth.

b) Let (Φn) be a p-bounded family of c-assignment bounded CSPs with bounded
treewidth. Then (Q(Φn)) ∈ VPe. Moreover, any family in VPe is a p-projec-
tion of such (Q(Φn)). The same statement also holds with pathwidth instead
of treewidth.

Observe that Theorem 1 implies that bounded pathwidth and bounded tree-
width have the same computational power in this setting, although pathwidth
is a far more restrictive measure.

Our next Theorem shows that general non-boolean CSPs with bounded
treewidth characterize VP.

Theorem 2 (Characterization of VP) Let (Φn) be a p-bounded family of
CSPs with bounded treewidth. Then (Q(Φn)) ∈ VP. Moreover, any family in
VP is a p-projection of such a (Q(Φn)).

Finally we show that for general non-boolean CSPs pathwidth and treewidth
differ in expressivity. With bounded pathwidth we get a characterization of VPws.

Theorem 3 (Characterization of VPws) Let (Φn) be a p-bounded family of
CSPs with bounded pathwidth. Then (Q(Φn)) ∈ VPws. Moreover, any family in
VPws is a p-projection of such a (Q(Φn)).

Observe that the only difference between Theorem 1 b) and Theorem 2/3 is
the c-assigment boundedness. This means that the difference between VPe and
VP/VPws in this setting is simply that for VP and VPws the variables in the
constraints may take more different values in satisfying assignments.

We will prove Theorem 1, Theorem 2 and Theorem 3 in several individual
lemmas. Because of space restrictions most of the proofs are omitted. They can
be found in the upcoming full version of this paper.

We now relate our results to known results. Fischer, Makowsky and Ravve
[9] consider the problem of counting solutions to boolean CSPs and achieve the
following results:

Theorem 4 ([9])

a) There is an algorithm that given a CNF-Formula Φ of size n and a tree
decomposition of GI

Φ of width k counts the number of satisfying assignments
of Φ using at most 4kn operations.

Characterizing Arithmetic Circuit Classes 707

b) Given a boolean CSP Φ of size n and a tree decomposition of GP
Φ of width

k, the number of satisfying assignments of Φ can be computed with 4kn2

arithmetic operations.

Observe that CNF formulas are special forms of CSPs in which the constraints
are disjunctive clauses. For CNF-formulas the size of the clauses need not have
bounded arity to guarantee feasibility in part a) of Theorem 4. In b) there is an
implicit bound on the arity of the constraints, because the treewidth of the primal
graph is bounded, so the setting is more comparable to ours. Thus Theorem 2
can be seen as an extension of b) to non-boolean CSPs also adding a matching
lower bound.

Briquel, Koiran and Meer [12,6] give the following result.

Theorem 5 ([12,6]). For every family (Φn) of p-bounded CNF-formulas with
bounded treewidth of GI

Φn
we have (P (Φn)) ∈ VPe. Moreover, any family in

VPeis a p-projection of such a (P (Φn)).

Again the size of the CNF-clauses is not restricted and the treewidth of the
incidence graph is considered. Theorem 5 can be interpreted as translation of
Theorem 4 a) into the arithmetic circuit model with a matching hardness re-
sult. Theorem 1 is an extension of Theorem 5 to general CSPs instead of CNF-
formulas. Moreover, the lower bound is shown to already hold for bounded path-
width. But in contrast to Briquel, Koiran and Meer we require a bound on the
arity of the constraints to show feasibility in our setting.

4 Lower Bounds

In this section we show the lower bounds on the expressivity of polynomials
defined by CSPs.

Lemma 4. There is a constant c ≤ 26 such that the following holds: For every
(fn) ∈ VPe there is a p-bounded family (Φn) of boolean CSPs with pathwidth at
most c such that (fn) ≤p (P (Φn)).

A proof of Lemma follows by using an encoding of iterated 3 × 3-matrix multi-
plication (see [2]) into CSPs. Combining Lemma 4 and Lemma 3 directly yields
the following corollary.

Corollary 1. There is a constant c ≤ 26 such that the following holds: For every
(fn) ∈ VPe there is a p-bounded family (Ψn) of 2-assignment bounded CSPs with
pathwidth at most c such that (fn) ≤p (Q(Ψn)).

Next we will show the lower bounds for the characterizations of VP and VPws.
For the proofs we use so called parse tree arguments (see e.g. [14, Section 4]).
A parse tree T of a multiplicatively disjoint circuit C is a subgraph of C that is
constructed in the following way:

708 S. Mengel

– Add the output gate of C to T .
– For every gate v added to T do the following;

• If v is a +-gate, add exactly one of its children to T .
• If v is a ×-gate, add both of its children to T .

Observe that parse trees are binary trees. The weight w(T) of a parse tree T
is the product of the labels of its leaves. The polynomial computed by C is the
sum of the weights of all of C’s parse trees.

Lemma 5. Let (fn) ∈ VP, then there is a p-bounded family Φn of binary CSPs
such that (fn) ≤p (Q(Φn)) and GP

Φn
is a tree for every n.

In the proof we will use the following result.

Lemma 6. (fn) ∈ VP if and only if (fn) is computed by a family of multiplica-
tively disjoint semi-unbounded logarithmic depth circuits.

The proof of Lemma 6 easily follows by applying the techniques of Malod and
Portier [14, Lemma 2] on the classical characterization of VP by logarithmic
depth semi-unbounded arithmetic circuits found by Valiant et al. [16].

Proof (of Lemma 5). The idea of the proof is the following: We use the char-
acterization in Lemma 6 which yields that the polynomials fn have logarithmic
depth parse trees. We encode these parse trees into polynomial size CSPs whose
primal graphs are trees isomorphic to the parse trees of the fn. Summing up
over all possible encodings of parse trees we get polynomials whose projection
are the fn. We now describe the construction in more detail.

So consider a polynomial f = fn from our family. By Lemma 6 we know that
fn is computed by a logarithmic depth semi-unbounded circuit C of polynomial
size. By adding dummies we can make sure that C has the following “layered”
form:

– All operation gates at the same depth have the same operation.
– All leaves are at the same depth level.

This implies that all parse trees of C are isomorphic binary trees. Let the
children of the ×-gates in Φ be ordered, i.e., we call one of them the left child
and the other one the right child. Let T be a binary tree isomorphic to the parse
trees of C. The children of vertices in T that correspond to ×-gates in C are
also ordered.

We now build a CSP Φ with var(Φ) = V (T) and GP
Φ = T . The domain is the

vertex set V (C) of C. To distinguish the vertices of T from the gates of C we
write the vertices of T with a hat, e.g. v̂ ∈ V (T). For each edge ûv̂ in T we define
a constraint φûv̂ on the variables û and v̂ in the following way: If û corresponds
to a +-gate in C, then the satisfying assignments of φûv̂ (where u and v denote
the images of û and v̂, respectively) are described by

{(u, v) | u, v ∈ V (C), u is a +-gate, v is a child of u}.

Characterizing Arithmetic Circuit Classes 709

If û corresponds to a ×-gate and v̂ is the left child of û, then φûv̂ is described by

{(u, v) | u, v ∈ V (C), u is a ×-gate, v is the left child of u}.
For right children we add constraints in an analog fashion.

It is easy to see, that Φ is satisfied by an assignment a : V (T) → V (C) if and
only if a maps T onto a parse tree Ta of C. Also for each satisfying assignment
a the resulting monomial

∏
û∈V (T) Xa(û) can be projected to w(Ta) by doing

the following: If v is an operation gate of C, then substitute Xv by 1. If v is an
input gate of C with label l, then substitute Xv by l. Because each v is either an
operation gate or an input gate but never both, these settings do not contradict
for different satisfying assignments of Φ. It follows that f ≤ Q(Φ). The primal
graph GP

Φ of Φ is by construction the tree T . The observation that the size of Φ
and its domain V (C) are polynomial completes the proof. 	

We use a similar parse tree argument for VPws.

Lemma 7. Let (fn) ∈ VPws, then there is a p-bounded family Φn of binary
CSPs such that (fn) ≤p (Q(Φn)). Furthermore pw(Φn) = 1 for every n.

The key insight for the proof for Lemma 7 is that parse trees of skew circuits
have a very restricted form that allows encoding them into CSPs of bounded
pathwidth.

5 Upper Bounds on the Complexity

Lemma 8. For every family (Φn) of p-bounded and c-assignment bounded CSPs
of bounded treewidth we have (Q(Φn)) ∈ VPe.

Proof. Consider a family (Φn) of CSPs with the desired properties. To ease
notation we fix n and set Φ = Φn and D = Dn.

Fix a tree-decomposition (T , (Bt)t∈T) of the primal graph GP
Φ with minimal

width. W.l.o.g. the tree T = (T, F) is a rooted, binary tree and has depth
O(log(n)) (see [3]). We give T a direction from the leaves to the root and will
later make an induction along this direction. We use teh following helpful claim:

Claim 6. We may assume that there is a bijection from the vertices in T to the
constraints in Φ such that t ∈ T is mapped to a constraint φt with var(φt) = Bt.

It follows that |Bt| ≤ k for every t ∈ T , where k is the upper bound on arity of
the constraints in Φ.

For each vertex t of T let Tt be the subtree of T that has t as its root. Let
Tt = V (Tt) be the vertex set of Tt. Furthermore let Φt be the CSP with the set
of constraints {φt′ | t′ ∈ Tt} and the set of variables var(Φt) =

⋃
t′∈Tt

Bt′ .
We say that an assignment a : Bt → D is good for t or φt if it satisfies φt.

Similarly we call a partial assignment to Bt good for t or φt if it can be extended
to a good assignment. We are only interested in good assignments for individual
constraints φt, because bad assignments do not contribute to Q(Φ) anyway.

710 S. Mengel

Let a : V → D and b : W → D be assignments. We say that a and b are
consistent (symbol: a ∼ b), if a|V ∩W = b|V ∩W , i.e. they assign the same values
to variables they share.

For each vertex t ∈ T we will compute polynomials

ft,a,e :=
∑

α : var(Φt)→D,
a∼α

Φt(α)
∏

x∈var(Φt)\e

Xα(x),

where a is a good assignment for φt and e ⊆ Bt. The sets e ⊆ Bt will later in the
construction prevent that variables Xa(x) appear more than once in a monomial
for x ∈ var(Φ).

Observe that for each t there are only O(1) polynomials ft,a,e: Because Φ is
c-assignment bounded and its constraints φ have at most arity k, each φ has
at most ck satisfying assignments. Also there are at most 2|Bt| ≤ 2k sets e. It
follows that there are at most ck2k = O(1) polynomials ft,a,e for each t.

The depth of a vertex t ∈ T , denoted by depth(t), is the length of the longest
path from a leaf to t in Tt.

Claim 7. For each t ∈ T we can compute all ft,a,e with a circuit of depth
O(depth(t)).

Lemma 8 follows easily with Claim 7: Let t∗ be the root of T . By definition

Q(Φ) =
∑

α : var(Φ)→D

Φ(α)
∏

x∈var(Φ)

Xα(x)

=
∑

a : Bt∗→D

∑
α : var(Φ)→D,a∼α

Φ(α)
∏

x∈var(Φ)

Xα(x)

=
∑

a : Bt∗→D,Φt∗ (a)=1

ft∗,a,∅

The tree T has depth O(log(n)), so with Claim 7 we can compute Q(Φ) with a
circuit of depth O(log(n)). It follows that (Φn) ∈ VPe. Thus all that is left to do
is to prove Claim 7. 	

Corollary 2. For every family (Φn) of boolean p-bounded CSPs of bounded
treewidth we have (P (Φn)) ∈ VPe.

The proof of Lemma 8 can be adapted to show the following lemmas:

Lemma 9. For every family (Φn) of p-bounded CSPs of bounded treewidth we
have (Q(Φn)) ∈ VP.

Lemma 10. For every family (Φn) of p-bounded CSPs of bounded pathwidth we
have (Q(Φn)) ∈ VPws.

Acknowledgements. I am very grateful to my supervisor Peter Bürgisser for
many helpful discussions and his support in making the presentation of this paper
much clearer. I would also like to thank the organizers of the Dagstuhl Seminar
10481 “Computational Counting” where some of the results in this paper were
conceived.

Characterizing Arithmetic Circuit Classes 711

References

1. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic
database schemes. J. ACM 30(3), 479–513 (1983)

2. Ben-Or, M., Cleve, R.: Computing algebraic formulas using a constant number of
registers. SIAM J. Comput. 21(1), 54–58 (1992)

3. Bodlaender, H.L.: NC-algorithms for graphs with small treewidth. In: van Leeuwen,
J. (ed.) WG 1988. LNCS, vol. 344, pp. 1–10. Springer, Heidelberg (1989)

4. Brent, R.P.: The complexity of multiple-precision arithmetic. In: Brent, R.P., An-
dersson, R.S. (eds.) The Complexity of Computational Problem Solving, pp. 126–
165. Univ. of Queensland Press (1976)

5. Briquel, I., Koiran, P.: A dichotomy theorem for polynomial evaluation. In:
Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 187–198.
Springer, Heidelberg (2009)

6. Briquel, I., Koiran, P., Meer, K.: On the expressive power of cnf formulas of
bounded tree- and clique-width. Discrete Applied Mathematics 159(1), 1–14 (2011)

7. Bürgisser, P.: Completeness and reduction in algebraic complexity theory. Springer,
Heidelberg (2000)

8. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity
of graph enumeration problems definable in monadic second-order logic. Discrete
Applied Mathematics 108(1-2), 23–52 (2001)

9. Fischer, E., Makowsky, J.A., Ravve, E.V.: Counting truth assignments of formulas
of bounded tree-width or clique-width. Discrete Applied Mathematics 156(4), 511–
529 (2008)

10. Flum, J., Grohe, M.: Parameterized complexity theory. Springer-Verlag New York
Inc., New York (2006)

11. Gottlob, G., Leone, N., Scarcello, F.: The complexity of acyclic conjunctive queries.
J. ACM 48(3), 431–498 (2001)

12. Koiran, P., Meer, K.: On the expressive power of CNF formulas of bounded tree-
and clique-width. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D.
(eds.) WG 2008. LNCS, vol. 5344, pp. 252–263. Springer, Heidelberg (2008)

13. Flarup, U., Koiran, P., Lyaudet, L.: On the Expressive Power of Planar Per-
fect Matching and Permanents of Bounded Treewidth Matrices. In: Tokuyama,
T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 124–136. Springer, Heidelberg (2007),
http://dx.doi.org/10.1007/978-3-540-77120-3_13

14. Malod, G., Portier, N.: Characterizing Valiant’s algebraic complexity classes. J.
Complexity 24(1), 16–38 (2008)

15. Schaefer, T.J.: The complexity of satisfiability problems. In: STOC 1978, pp. 216–
226 (1978)

16. Valiant, L.G., Skyum, S., Berkowitz, S., Rackoff, C.: Fast parallel computation of
polynomials using few processors. SIAM J. Comput. 12(4), 641–644 (1983)

http://dx.doi.org/10.1007/978-3-540-77120-3_13

The Complexity of Symmetric Boolean Parity

Holant Problems

(Extended Abstract)

Heng Guo1, Pinyan Lu2, and Leslie G. Valiant3,�

1 University of Wisconsin-Madison
hguo@cs.wisc.edu

2 Microsoft Research Asia
pinyanl@microsoft.com

3 Harvard University
valiant@seas.harvard.edu

Abstract. For certain subclasses of NP, ⊕P or #P characterized by
local constraints, it is known that if there exist any problems that are
not polynomial time computable within that subclass, then those prob-
lems are NP-, ⊕P- or #P-complete. Such dichotomy results have been
proved for characterizations such as Constraint Satisfaction Problems,
and directed and undirected Graph Homomorphism Problems, often with
additional restrictions. Here we give a dichotomy result for the more ex-
pressive framework of Holant Problems. These additionally allow for the
expression of matching problems, which have had pivotal roles in com-
plexity theory. As our main result we prove the dichotomy theorem that,
for the class ⊕P, every set of boolean symmetric Holant signatures of
any arities that is not polynomial time computable is ⊕P-complete. The
result exploits some special properties of the class ⊕P and characterizes
four distinct tractable subclasses within ⊕P. It leaves open the corre-
sponding questions for NP, #P and #kP for k �= 2.

1 Introduction

The complexity class ⊕P is the class of languages L such that there is a poly-
nomial time nondeterministic Turing machine that on input x ∈ L has an odd
number of accepting computations, and on input x �∈ L has an even number
of accepting computations [29,25]. It is known that ⊕P is at least as powerful
as NP, since NP is reducible to ⊕P via (one-sided) randomized reduction [28].
Also, the polynomial hierarchy is reducible to ⊕P via two sided randomized re-
duction [27]. There exist decision problems, such as graph isomorphism, that
are not known to be in P but are known to be in ⊕P [1]. The class ⊕P has
also been related to other complexity classes via relativization [2]. Further, while
the class ⊕P lies between NP and #P, it is known that there are several natural
� This research was supported in part by grants NSF-CCF-04-27129 and NSF-CCF-

09-64401.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 712–723, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

The Complexity of Symmetric Boolean Parity Holant Problems 713

problems such as 2SAT that are ⊕P-complete where the corresponding existence
problem is in P [31], and a range of others, including graph matchings and some
coloring problems, for which the parity problem is in P but exact counting is
#P-complete [33].

As with the classes NP and #P it is an open question whether ⊕P strictly
extends P. For certain restrictions of these classes, however, dichotomy theo-
rems are known. For NP a dichotomy theorem would state that any problem in
the restricted subclass of NP is either in P or is NP-complete (or both, in the
eventuality that NP equals P.) Ladner [24] proved that without any restrictions
this situation does not hold: if P �= NP then there is an infinite hierarchy of
intermediate problems that are not polynomial time interreducible.

The restrictions for which dichotomy theorems are known can be framed in
terms of local constraints, most importantly, Constraint Satisfaction Problems
(CSP) [26,15,3,4,17,20,14,19], and Graph Homomorphism Problems [18,21,5].
Explicit dichotomy results, where available, manifest a total understanding of
the class of computations in question, to within polynomial time reduction, and
modulo the collapse of the class.

In this paper we consider dichotomies in a framework for characterizing local
properties that is more general than those mentioned in the previous paragraph,
and is called the Holant framework [9,11]. A particular problem in this frame-
work is characterized by a set of signatures as defined in the theory of Holo-
graphic Algorithms [32,31]. The CSP framework can be viewed as the special
case of the Holant framework in which equality relations of any arity are always
available [11]. The addition of equality relations in CSP makes many sets of
constraints complete that are not otherwise.

A brief description of the Holant framework is as follows. A signature grid
Ω = (G,F , π) is a triple, where G = (V, E) is an undirected graph, F is a set
of functions on variables from a domain D, and π labels each v ∈ V with a
function fv ∈ F . An assignment σ maps each edge e ∈ E to an element of D
and determines a value

∏
v∈V fv(σ |E(v)), where E(v) denotes the incident edges

of v, and σ |E(v) denotes the restriction of σ to E(v). The counting problem on
the instance Ω is the problem of computing the following sum over all possible
assignments σ

HolantΩ =
∑

σ

∏
v∈V

fv(σ |E(v)).

For example, consider the Perfect Matching problem on G. This corresponds
to D = {0, 1} and fv the Exactly-One function at every vertex of G. Then σ
corresponds to a subset of the edges, and HolantΩ counts the number of perfect
matchings in G. If we use the At-Most-One function at every vertex, then we
count all (not necessarily perfect) matchings. We use the notation Holant(F)
to denote the class of Holant problems where the functions fv are chosen from
the set F . If all functions take integer values and we only need to compute the
parity of the Holant value, it is called a parity Holant problem, and is denoted
by ⊕Holant(F).

714 H. Guo, P. Lu, and L.G. Valiant

In this paper we consider symmetric boolean parity Holant problems, that
is, in the definition of HolantΩ, D = {0, 1}, F is a set of symmetric functions
with variables in D and range in D, and summation is modulo two. Out main
theorem is a dichotomy regarding the class ⊕P.

Theorem 1. Let F be a set of symmetric signatures. The parity problem ⊕Holant
(F) is either computable in polynomial time, or ⊕P-complete.

This is the first such dichotomy for the Holant family. No dichotomy theorem
is known for comparable restrictions of #P, NP or #kP for k �= 2. For #P
dichotomy results are known only for Holantc problems, where Holantc denotes
that the unary constant signatures 0 and 1 are assumed to be available. The
known results for Holantc are for the symmetric case over the real numbers [11],
and over the complex numbers [6], and for planar graphs in the former case [12].
For NP, Cook and Bruck [13] gave a dichotomy theorem for singleton sets of
constraints of arity up to three in the general nonsymmetric case.

Our main dichotomy theorem exhibits four classes of signature sets that are
polynomial time computable. The first class is composed by affine signatures,
for which the Holant problem is solvable by Gaussian elimination. The second
corresponds to signature sets that include perfect and partial matching gates.
The third corresponds to Fibonacci signatures with the addition of the binary
negation signature [0, 1, 0]. The fourth is what we call vanishing signature sets,
which always give zero solutions modulo two. We do not have an explicit char-
acterization of this fourth class. We show that any set of symmetric signatures
that is not a subset of one of these four classes is ⊕P-complete.

Similar results have been obtained for the #CSP problem modulo k. In
Faben’s dichotomy theorem for boolean #CSP modulo k [19], the affine ones
form the only positive class for general k, and for our case of k = 2 there is
the second class of those that vanish for the simple reason that they are closed
under complement. In the dichotomy of weighted boolean #CSP modulo k [22],
the tractable classes have no immediate counterpart as it is of no meaning to
discuss weights here in the parity setting.

Along the way to proving our main result we prove dichotomy theorems for
both the planar and general case of ⊕Holantc, that is for signature sets including
both of the unary constants 0 and 1. We also prove a dichotomy theorem for 2-3
regular bipartite graphs with singleton signature sets, which is the simplest non-
trivial setting, and previously investigated in the Holant framework [9,10,23,6]
for #P.

Finding analogs of our main result for NP, #P or #kP for k �= 2 remain
challenges for the future, as is also the same question for ⊕P for nonsymmetric
signatures.

2 Preliminaries

The framework of Holant problems for #P is usually defined for functions map-
ping any [q]k → C for a finite q. Our results in this paper for ⊕P are for the

The Complexity of Symmetric Boolean Parity Holant Problems 715

Boolean case q = 2 of functions [2]k → {0, 1}. We shall therefore assume through-
out that q = 2.

A signature grid Ω = (H,F , π) consists of a graph H = (V, E) with each
vertex labeled by a function fv ∈ F , where π is the labelling. The Holant problem
on instance Ω is that of evaluating HolantΩ =

∑
σ

∏
v∈V fv(σ |E(v)), a sum over

all edge assignments σ : E → {0, 1}. A function fv can be represented as a
truth table, or as a tensor in (C2)⊗ deg(v). We also use fα to denote the value
f(α), where α is a {0, 1} string. A function f ∈ F is also called a signature. A
symmetric function f on k Boolean variables can be expressed as [f0, f1, . . . , fk],
where fi is the value of f on inputs of Hamming weight i. For any 0 ≤ l < h ≤ k,
we call [fl, fl+1, . . . , fh] a subsignature of [f0, f1, . . . , fk]. Note that with the help
of the two unary signatures [0, 1] and [1, 0], any subsignature of a given signature
is realizable.

Definition 1. A signature is degenerate iff it is a tensor product of unary sig-
natures.

A Holant problem is parameterized by a set of signatures.

Definition 2. Given a set of signatures F , we define the following counting
problem as Holant(F):

Input: A signature grid Ω = (G,F , π);
Output: HolantΩ.

The following family Holantc of Holant problems is important [11,6,12]. This is
the class of all Holant Problems (on boolean variables) where one can set any
particular edge (variable) to 0 or 1 in an input to the graph, or in other words,
where the unary constant functions 0 and 1 are always available for use.

Definition 3. Given a set of signatures F , Holantc(F) denotes Holant(F ∪
{[1, 0], [0, 1]}).

In this paper, we consider the parity version of Holant problems ⊕Holant(F),
where each signature in F takes values from Z2 = {0, 1}. We also define ⊕Holantc

problems analogously. Planar (parity) Holant problems are (parity) Holant prob-
lems on planar graphs.

To introduce the idea of holographic reductions, it is convenient first to con-
sider bipartite graphs. We note that for any general graph we can make it bi-
partite by adding an additional vertex on each edge, and giving each new vertex
the Equality function =2 on 2 inputs.

We use Holant(G |R) to denote all counting problems, expressed as Holant
problems on bipartite graphs H = (U, V, E), where each signature for a vertex
in U or V is from G or R, respectively. An input instance for the bipartite Holant
problem is a bipartite signature grid and is denoted as Ω = (H, G |R, π). Signa-
tures in G are denoted by column vectors (or contravariant tensors); signatures
in R are denoted by row vectors (or covariant tensors) [16].

One can perform (contravariant and covariant) tensor transformations on the
signatures. We define a simple version of holographic reductions that are invert-
ible. Suppose Holant(G |R) and Holant(G ′|R′) are two Holant problems defined

716 H. Guo, P. Lu, and L.G. Valiant

for the same family of graphs, and T ∈ GL2(C) is a basis transformation. We
say that there is an (invertible) holographic reduction from Holant(G |R) to
Holant(G ′|R′), if the contravariant transformation G′ = T⊗gG and the covari-
ant transformation R = R′T⊗r map G ∈ G to G′ ∈ G ′ and R ∈ R to R′ ∈ R′,
and vice versa, where G and R have arity g and r respectively. (Notice the rever-
sal of directions when the transformation T⊗n is applied. This is the meaning of
contravariance and covariance.) Suppose there is a holographic reduction from
#G |R to #G ′|R′ mapping signature grid Ω to Ω′, then HolantΩ = HolantΩ′ .

In particular, for invertible holographic reductions from Holant(G |R) to
Holant(G ′|R′), one problem is in P iff the other one is in P, and similarly one
problem is #P-hard (⊕P-hard) iff the other one is also #P-hard (⊕P-hard).

In the study of Holant problems, we will often move between bipartite and
non-bipartite settings. When this does not cause confusion, we do not distinguish
between signatures that are column vectors (or contravariant tensors) and row
vectors (or covariant tensors). Whenever we write a transformation as T⊗nF
or TF , we view the signatures as column vectors (or contravariant tensors);
whenever we write a transformation as FT⊗n or FT , we view the signatures as
row vectors (or covariant tensors).

All signatures we consider are in the boolean domain. If we flip the 0 and
1 in the domain, a symmetric signature will be changed into its reverse, and
the Holant values are the same. That is, the complexity of Holant problems for
a set of signatures is the same as the complexity of Holant problems for the
set composed by those signatures reversed. In this paper this operation will be
performed repeatedly.

3 Tractable Families

We shall identify three tractable families for ⊕Holantc problems. The first family,
Affine Signatures, is adopted directly from the corresponding family for #CSP,
where it is the sole tractable class [15,14]. The second family we derive from the
Fibonacci Signatures. For general counting problems, we also have a tractable
family of Fibonacci signatures, but for parity problems, as we shall show, the
family remains tractable even with the addition of the inversion signature [0, 1, 0].
This addition for general counting problems would give rise to #P-hardness. The
third tractable family, Matchgate Signatures, is special to parity problems.

3.1 Affine Signatures

Definition 4. A signature is affine iff its support is an affine space. We denote
the set of all affine signatures by A .

By definition, an affine signature can be viewed as a constraint defined by a set
of linear equations. Viewing the edges as variables in Z2, every assignment which
contributes 1 in the summation corresponds to a solution which satisfies all the
linear equations. Then the Holant value is exactly the number of solutions of the
linear system, which can be computed in polynomial time.

Theorem 2. If F ⊆ A , ⊕Holantc(F) is polynomial time computable.

The Complexity of Symmetric Boolean Parity Holant Problems 717

3.2 Fibonacci Signatures and [0, 1, 0]

Definition 5. A symmetric signature [f0, f1, . . . , fn] is called a Fibonacci sig-
nature iff for 1 ≤ k ≤ n − 2, it is the case that xk + xk+1 = xk+2. We denote
the set of all Fibonacci signatures by F .

The family of Fibonacci signatures was introduced in [9] to characterize a new
family of holographic algorithms. It has played an important role in some pre-
vious dichotomy theorems [9,11]. The Holant of a grid composed of Fibonacci
signatures can be computed in polynomial time [9]. Its parity version is therefore
also tractable. But here we shall show that the tractability still holds even if we
extend the set to contain the signature [0, 1, 0], which is not a Fibonacci signa-
ture. This proof of tractability is based on the properties of Fibonacci signatures
and a new observation on [0, 1, 0] as a parity signature.

Since we only care about the parity of the solutions, [0, 1, 0] can be replaced
by the unsymmetrical signature (0, 1,−1, 0) in R. (Note that here (0, 1,−1, 0) is
not a symmetric signature. It is in fact in the vector form, rather than the abbre-
viated form of symmetric signatures.) This (0, 1,−1, 0) is a so-called 2-realizable
signature, which is invariant up to a constant under holographic transforma-
tions [31,7,8]. Polynomial time computability follows from the facts that every
Fibonacci signature can be transformed into a form similar to equality signatures
while leaving invariant the signature (0, 1,−1, 0).

Theorem 3. If F ⊆ F ∪ {[0, 1, 0]}, ⊕Holantc(F) is polynomial time
computable.

3.3 Matchgate Signatures

Definition 6. A signature is called a matchgate signature iff it can be realized by
a gadget, where each signature used in the gadget is a perfect matching signature
([0, 1, 0, 0, . . . , 0]) or a partial matching signature ([1, 1, 0, 0, . . . , 0]). We denote
the set of all matchgate signatures by M .

Matchgates were introduced to simulate classically certain subclasses of quantum
computations [30] and to be the basis of a class of holographic algorithms [32].
We remark that the notion of matchgate we use here is in its most general sense:
the graph can be either planar or non-planar and for each node we can insist or
not on whether it has to be saturated by a matching edge.

As F ⊆ M and we also have [1, 0], [0, 1] ∈ M , the problem of ⊕Holantc(F) is
essentially that of computing the parity of the number of matchings in a graph
where some specified nodes must be saturated while the remainder need not be.
We show that the parity of the number of matchings equals the Pfaffian of a
certain matrix of even arity in Z2. If the parity of the perfect matchings only is
needed then such a result is immediate. What we show is that it is true also in
the more general case.

Theorem 4. If F ⊆ M , ⊕Holantc(F) is polynomial time computable.

718 H. Guo, P. Lu, and L.G. Valiant

4 Hardness Results and Dichotomy for ⊕Holantc

In this section, we prove several hardness results. These results, together with
the tractable results in previous section, lead to the dichotomy theorem for
⊕Holantc.

4.1 An Initial Hard Problem

The following hardness result from [31] is the starting point for all the hardness
results in this paper.

Theorem 5. ⊕Pl-Rtw-Mon-3CNF is ⊕P-complete. In the Holant language, Pla-
nar ⊕Holant([0, 1, 1, 1]) is ⊕P-complete.

Remark: All the hardness results in this paper for ⊕Holantc, but not for
⊕Holant, will hold even if we restrict the input to planar graphs. This is be-
cause the above starting point is true for planar graphs, and all the gadgets
used in those reductions are also planar. In the following, for brevity, we will not
explicitly refer to this.

This ⊕Holant([0, 1, 1, 1]) can also be viewed as ⊕Holant([1, 0, 1]|[0, 1, 1, 1]).

Under the holographic transformation
(

1 0
1 1

)
, the Holant value of ⊕Holant

([1, 0, 1] |[0, 1, 1, 1]) is the same as that of ⊕Holant ([1, 1, 0]|[1, 0, 0, 1]). This gives
the following hardness result for vertex covers:

Corollary 1. ⊕Holant([0, 1, 1]|[1, 0, 0, 1]), and ⊕Holant([1, 1, 0]|[1, 0, 0, 1]) are
⊕P-complete.

Corollary 2. ⊕Holantc([0, 1, 1], [1, 0, . . . , 0, 1]) is ⊕P-complete, as long as the
number of 0s is at least 2.

4.2 More Hardness Results and the Dichotomy

We establish some further hardness results for other signatures. These results
will be used to obtain subsequent hardness results for certain longer signatures
and sets of signatures.

Lemma 1. ⊕Holantc([0, 1, 0, 1, 0], [0, 1, 1, 0]) is ⊕P-complete.

The proof of this lemma utilizes some novel gadget and holographic transforma-
tion. It can be further generalized because of certain realizability properties of
matchgates and Fibonacci signatures.

Corollary 3. If F contains a non-degenerate symmetric signature in M and
a non-degenerate Fibonacci signature, both of which have arity at least 3, then
⊕Holantc(F) is ⊕P-complete.

The Complexity of Symmetric Boolean Parity Holant Problems 719

This result implies that simultaneous occurrences of matchgates and Fibonacci
signatures lead to ⊕P-completeness. Similarly, we have the following lemma,
which shows that the simultaneous occurrences of matching signatures and equal-
ity signatures also lead to ⊕P-completeness.

Lemma 2. The parity problems ⊕Holantc ([0, 0, 1, 0], [1, 0, 0, . . . , 0, 1]),
⊕Holantc ([0, 1, 0, 0], [1, 0, 0, . . . , 0, 1]), ⊕Holantc ([0, 0, 1, 1], [1, 0, 0, . . . , 0, 1])
and ⊕Holantc ([1, 1, 0, 0], [1, 0, 0, . . . , 0, 1]) are all ⊕P-complete if the arity of
the equality signature is at least 3.

This lemma entails the following direct corollary for signatures that contain both
equality and matching signatures as subsignatures.

Corollary 4. ⊕Holantc([1, 0, . . . , 0, 1, 0]) and ⊕Holantc([1, 0, . . . , 0, 1, 1])
are ⊕P-complete, as long as the number of 0s is at least 2.

There are still two special patterns of signatures that we need to take care of.

Lemma 3. ⊕Holantc([0, 0, 1, 0, 0]) and ⊕Holantc([0, 0, 1, 0, 1]) are ⊕P-complete.

Based on the algorithms in Section 3 and the hardness results above, we show
a dichotomy theorem for parity Holantc problems. The proof is basically a case-
by-case study based on the number of consecutive 0s or 1s.

Theorem 6. If F ⊆ A , F ⊆ M or F ⊆ F ∪ {[0, 1, 0]} then the parity problem
⊕Holantc(F) is computable in polynomial time. Otherwise it is ⊕P-complete.
The same statement also holds for planar graphs.

5 Vanishing Signature Sets

In the remaining two sections we extend our results to obtain the dichotomy
result for ⊕Holant without any assumptions. In order to formulate the dichotomy
we shall need a fourth family of tractable signature sets, which we call Vanishing
Signature Sets.

Definition 7. A set of signatures F is called vanishing iff the value of ⊕HolantΩ

(F) is zero for every Ω. We denote the class of all vanishing signature sets by O.

First we show some general properties of vanishing signature sets. For two sig-
natures f and g of the same arity, f + g denotes the bitwise addition in Z2,
i.e. [f0 + g0, f1 + g1, . . .].

Lemma 4. Let F be a vanishing signature set. If a signature f can be realized
by a gadget using signatures in F , then F ∪ {f} ∈ O. If g0 and g1 are two
signatures in F with the same arity, then F ∪ {g0 + g1} ∈ O.

There are several classes of vanishing signatures, e.g. complement invariant sig-
natures and matchgate-based vanishing signatures. Here we introduce a concept
called self-vanishable signatures which plays an important role in the proof of the
general dichotomy. First, we introduce an extended version of the inner product
for two signatures of not necessarily the same arity.

720 H. Guo, P. Lu, and L.G. Valiant

Definition 8. Let f and g be two signatures with arities n and m (n ≥ m)
respectively. Their inner product h = 〈f, g〉 is a signature with arity n − m
defined as follows:

hα =
∑

β∈{0,1}m

fβ,αgβ ,

where α ∈ {0, 1}n−m.

If f is symmetric, the final h = 〈f, g〉 is also symmetric. If both f and g are
symmetric, their inner product h = [h0, h1, . . . , hn−m] has the following form:

hi =
∑m

j=0

(
m
j

)
fj+igj for 0 ≤ i ≤ n − m.

Definition 9. A signature f is called self-vanishable of degree k iff 〈f, [1, 1]⊗k〉 =
0 and 〈f, [1, 1]⊗k−1〉 �= 0. We denote this by v(f) = k. If such a k does not exist,
the signature f is not self-vanishable.

We note that for the trivial signature 0, we have v(0) = 0. Also, f = [1, 1] is
self-vanishable with v(f) = 1 since 〈[1, 1], [1, 1]〉 = 0.

For a symmetric signature f = [f0, f1, . . . , fn], we call f0 the first entry of f
and f0, f1, ..., fk−1 the first k entries of f . It follows from the definition that for
a symmetric signature f = [f0, f1, . . . , fn], we have

〈f, [1, 1]〉 = [f0 + f1, f1 + f2, . . . , fn−1 + fn].

Hence the only symmetric signature of arity n with v(f) = 1 is [1, 1]⊗n. There
are two symmetric signatures of arity n ≥ 3 with v(f) = 2, which are the
parity signatures [1, 0, 1, 0, . . . , 0/1] and [0, 1, 0, 1, . . . , 0/1]. Inductively, we have
the following lemma:

Lemma 5. For any k ≥ 2, there are 2k−1 symmetric signatures of arity n ≥ k
with v(f) = k, whose first k − 1 entries are arbitrary and the remaining entries
are determined by them.

To be self-vanishable is a necessary condition for a signature to be a member
of a vanishing signature set. This lemma also explains the intuition for why we
define this notion of self-vanishable and why we define it in this way. The proof
is a direct construction of a grid with Holant value 1.

Lemma 6. If F contains a signature f which is not self-vanishable then F is
not a vanishing set.

However, it is not sufficient for a signature to be self-vanishable for it to form
a vanishing set. One condition that is sufficient, called strong self-vanishable,
is defined below. There exist some weak self-vanishable signatures that do not
form vanishing sets, e.g. {[1, 0, 0, 0, 1, 0]}.

Definition 10. Let f be self-vanishable of degree k ≥ 0 with arity n. It is called
strong self-vanishable if k ≤ �n

2 �+1 and weak self-vanishable if �n
2 �+2 ≤ k ≤ n.

The Complexity of Symmetric Boolean Parity Holant Problems 721

Theorem 7. Let F be a set of symmetric strong self-vanishable signatures.
Then F is a vanishing set, i.e. F ∈ O.

As a final remark we note that the family O of vanishing signature sets has the
following difference from the previous tractable families A , M and F∪{[0, 1, 0]}.
The union of two sets in O is not necessarily in O.

6 Dichotomy for the Whole Holant Family

In this final section, we prove our main theorem, the dichotomy for all parity
Holant problems with symmetric signatures, without assuming any freely avail-
able signatures. This improves on our dichotomy theorem for parity Holantc

problems given in Section 4, which we use, however, as our starting point. The
main idea is to construct gadgets for the two signatures [0, 1] and [1, 0]. We
will first show that realizing either one of these is enough. Where one of these
unary signatures is realizable, we reduce the Holant problem to the correspond-
ing Holantc problem and apply the Holantc dichotomy result. However, for some
signature sets it is impossible to realize [0, 1] or [1, 0]. We show that those sig-
nature sets must be vanishing, in the sense defined in the previous section.

First we show that it is enough to realize just one of [0, 1] or [1, 0]. We remark
that the gadgets used in the proof are not all planar, and hence the dichotomy
for planar graphs does not follow.

Lemma 7. Let F be a set of symmetric signatures. If F ⊆ A , F ⊆ M , or
F ⊆ F ∪{[0, 1, 0]} then the parity problems ⊕Holant(F ∪{[1, 0]}), ⊕Holant(F ∪
{[1, 0, 0]}), ⊕Holant(F ∪{[0, 1]}) and ⊕Holant(F ∪{[0, 0, 1]}) are computable in
polynomial time. Otherwise these parity problems are ⊕P-complete.

The proof of the first part of Lemma 7 is a case-by-case study which shows that
we can always realize [0, 1] via some signature in F and [1, 0]. The second part is
shown using reductions from ⊕Holant(F ∪ {[1, 0]}) to ⊕Holant(F ∪ {[1, 0, 0]}).
We duplicate an instance of ⊕Holant(F ∪ {[1, 0]}), and replace every two corre-
sponding occurrences of [1, 0] with a binary signature [1, 0, 0]. The Holant value
remains the same due to properties of Z2.

An important fact is that, as long as the signature set F is not vanishing,
one of the above unary or binary signatures is realizable. In particular, we can
always construct such a signature from a not self-vanishable signature, or realize
either [0, 1] or [1, 0] from a weak self-vanishable signature. This gives our main
theorem.

Theorem 8. Let F be a set of symmetric signatures. If F ⊆ A , F ⊆ M ,
F ⊆ F ∪{[0, 1, 0]}, or F ∈ O then the parity problem ⊕Holant(F) is computable
in polynomial time. Otherwise it is ⊕P-complete.

Acknowledgements. We would like to thank anonymous referees for their help-
ful comments. Part of the work was done when Heng Guo was a master’s student
in Peking University.

722 H. Guo, P. Lu, and L.G. Valiant

References

1. Arvind, V., Kurur, P.P.: Graph isomorphism is in spp. Inf. Comput. 204(5), 835–
852 (2006)

2. Beigel, R., Buhrman, H., Fortnow, L.: Np might not be as easy as detecting unique
solutions. In: STOC 1998: Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, pp. 203–208 (1998)

3. Bulatov, A.A.: A dichotomy theorem for constraint satisfaction problems on a
3-element set. J. ACM 53(1), 66–120 (2006)

4. Bulatov, A.A.: The complexity of the counting constraint satisfaction problem.
In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir,
A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 646–661.
Springer, Heidelberg (2008)

5. Cai, J.-Y., Chen, X., Lu, P.: Graph homomorphisms with complex values: A
dichotomy theorem. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der
Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part I. LNCS, vol. 6198, pp. 275–286.
Springer, Heidelberg (2010)

6. Cai, J.Y., Huang, S., Lu, P.: From holant to #CSP and back: Dichotomy for
holantc problems. arXiv 1004.0803 (2010)

7. Cai, J.Y., Lu, P.: Holographic algorithms: from art to science. In: STOC 2007:
Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Com-
puting, pp. 401–410. ACM, New York (2007)

8. Cai, J.-Y., Lu, P.: Signature theory in holographic algorithms. In: Hong, S.H.,
Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 568–579.
Springer, Heidelberg (2008)

9. Cai, J.Y., Lu, P., Xia, M.: Holographic algorithms by fibonacci gates and holo-
graphic reductions for hardness. In: FOCS 2008: Proceedings of the 49th Annual
IEEE Symposium on Foundations of Computer Science. IEEE Computer Society
Press, Washington, DC, USA (2008)

10. Cai, J.Y., Lu, P., Xia, M.: A computational proof of complexity of some re-
stricted counting problems. In: Chen, J., Cooper, S.B. (eds.) TAMC 2009. LNCS,
vol. 5532, pp. 138–149. Springer, Heidelberg (2009)

11. Cai, J.Y., Lu, P., Xia, M.: Holant problems and counting CSP. In: Mitzenmacher,
M. (ed.) STOC, pp. 715–724. ACM, New York (2009)

12. Cai, J.Y., Lu, P., Xia, M.: Holographic algorithms with matchgates capture pre-
cisely tractable planar #CSP. In: FOCS 2010: Proceedings of the 49th Annual
IEEE Symposium on Foundations of Computer Science, pp. 427–436 (2010)

13. Cook, M., Bruck, J.: Implementability among predicates. Tech. rep., California
Institute of Technology (2005)

14. Creignou, N., Khanna, S., Sudan, M.: Complexity classifications of boolean con-
straint satisfaction problems. SIAM Monographs on Discrete Mathematics and
Applications (2001)

15. Creignou, N., Hermann, M.: Complexity of generalized satisfiability counting
problems. Inf. Comput. 125(1), 1–12 (1996)

16. Dodson, C.T.J., Poston, T.: Tensor Geometry. Graduate Texts in Mathematics,
vol. 130. Springer, New York (1991)

17. Dyer, M.E., Goldberg, L.A., Jerrum, M.: The complexity of weighted boolean
#CSP. SIAM J. Comput. 38(5), 1970–1986 (2009)

18. Dyer, M.E., Goldberg, L.A., Paterson, M.: On counting homomorphisms to di-
rected acyclic graphs. J. ACM 54(6) (2007)

The Complexity of Symmetric Boolean Parity Holant Problems 723

19. Faben, J.: The complexity of counting solutions to generalised satisfiability prob-
lems modulo k. CoRR abs/0809.1836 (2008)

20. Feder, T., Vardi, M.: The computational structure of monotone monadic snp and
constraint satisfaction: A study through datalog and group theory. SIAM Journal
on Computing 28(1), 57–104 (1999)

21. Goldberg, L.A., Grohe, M., Jerrum, M., Thurley, M.: A complexity dichotomy for
partition functions with mixed signs. In: Albers, S., Marion, J.Y. (eds.) STACS.
LIPIcs, vol. 3, pp. 493–504. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
Germany (2009)

22. Guo, H., Huang, S., Lu, P., Xia, M.: The complexity of weighted boolean #csp
modulo k. In: Schwentick, T., Dürr, C. (eds.) STACS. LIPIcs, vol. 9, pp. 249–260.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)

23. Kowalczyk, M., Cai, J.Y.: Holant problems for regular graphs with complex edge
functions. In: The Proceeding of STACS (2010)

24. Ladner, R.E.: On the structure of polynomial time reducibility. J. ACM 22(1),
155–171 (1975)

25. Papadimitriou, C.H., Zachos, S.: Two remarks on the power of counting. In: Pro-
ceedings of the 6th GI-Conference on Theoretical Computer Science, pp. 269–276
(1982)

26. Schaefer, T.: The complexity of satisfiability problems. In: Proceedings of the
Tenth Annual ACM Symposium on Theory of Computing, p. 226. ACM, New
York (1978)

27. Toda, S., Ogiwara, M.: Counting classes are at least as hard as the polynomial-
time hierarchy. SIAM J. Comput. 21(2), 316–328 (1992)

28. Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions. Theor.
Comput. Sci. 47(1), 85–93 (1986)

29. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput.
Sci. 8, 189–201 (1979)

30. Valiant, L.G.: Quantum circuits that can be simulated classically in polynomial
time. SIAM J. Comput. 31(4), 1229–1254 (2002)

31. Valiant, L.G.: Accidental algorthims. In: FOCS 2006: Proceedings of the 47th
Annual IEEE Symposium on Foundations of Computer Science, pp. 509–517.
IEEE Computer Society Press, Washington, DC, USA (2006)

32. Valiant, L.G.: Holographic algorithms. SIAM J. Comput. 37(5), 1565–1594 (2008)
33. Valiant, L.G.: Some observations on holographic algorithms. In: López-Ortiz, A.

(ed.) LATIN 2010. LNCS, vol. 6034, pp. 577–590. Springer, Heidelberg (2010)

Permanent Does Not Have Succinct Polynomial

Size Arithmetic Circuits of Constant Depth

Maurice Jansen and Rahul Santhanam

School of Informatics, The University of Edinburgh
maurice.julien.jansen@gmail.com, rsanthan@inf.ed.ac.uk

Abstract. We show that over fields of characteristic zero there does not
exist a polynomial p(n) and a constant-free1 succinct arithmetic circuit
family {Φn}, where Φn has size at most p(n) and depth O(1), such that
Φn computes the n × n permanent. A circuit family {Φn} is succinct
if there exists a nonuniform Boolean circuit family {Cn} with O(log n)
many inputs and size no(1) such that that Cn can correctly answer direct
connection language queries about Φn - succinctness is a relaxation of
uniformity.

To obtain this result we develop a novel technique that further strength-
ens the connection between black-box derandomization of polynomial
identity testing and lower bounds for arithmetic circuits. From this we
obtain the lower bound by explicitly constructing a hitting set against
arithmetic circuits in the polynomial hierarchy.

1 Introduction

Proving super-polynomial arithmetic circuit lower bounds for explicit polyno-
mials is one of the hardest challenges in theoretical computer science. For un-
restricted circuits the best-known lower bounds are Ω(n log r), for polynomials
in n variables and degree r, due to Baur and Strassen [6]. To make further
progress one popular approach has been to aim at proving lower bounds for
small depth circuits first. This restriction is well-motivated by a recent result of
Agrawal and Vinay [3], who show that proving a 2Ω(n) lower bound for a mul-
tilinear polynomial in n variables for depth four arithmetic circuits translates
into a 2Ω(n) lower bound for the unrestricted model. Over finite fields, Grigoriev
and Karpinski [9] show that depth three arithmetic formulas that are sums-
of-products-of-sums require size 2Ω(n) to compute the determinant polynomial
detn =

∑
σ∈Sn

sgn(σ)
∏n

j=1 xiσ(j). Over fields of characteristic zero, e.g. Q or R,
super-polynomial lower bounds have proven to be especially difficult to obtain.
The best-known lower bound for depth three sums-of-products-of-sums formulas
for detn, and also for the permanent polynomial pern =

∑
σ∈Sn

∏n
j=1 xiσ(j) is

Ω(n4/ log n), due to Shpilka and Wigderson [21]. Over fields of characteristic

1 In the constant-free model the only allowed constants in the circuit are −1, 0, 1, cf.
[7,16]. Our result holds for a slightly more general setting where Φn is allowed to use

integer constants in the set {−1, 0, 1} ∪ {220
, 221

, . . . , 22p(n)}.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 724–735, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Permanent Does Not Have Succinct Polynomial Size Arithmetic Circuits 725

zero, no lower bounds for this depth three model are known beyond Ω(n2), for
explicit polynomials in n variables of degree at most poly(n). For higher depth,
the best-known bounds are due to Raz [18], who constructs a polynomial with
coefficients in {0, 1} of degree O(d) in n variables that requires depth d circuits of
size n1+Ω(1/d) over any field. Adding the restriction of multilinearity2 Raz and
Yehudayoff [19] prove that detn and pern require size 2nΩ(1/d)

for multilinear
circuits of product depth d. For constant-free uniform3 arithmetic circuits it is
known that depth o(log log n) circuits for pern must have super-polynomial size,
as proved by Koiran and Perifel [17]. For such circuits of constant depth, earlier
work of Allender [4] implies a super-polynomial lower bound.

We interpret the result of Ref. [17] as a lower bound for circuits that are
succinct in some extreme sense. In order to make progress we will prove lower
bounds for a far less restrictive notion of succinctness. To make this precise,
we give some definitions. Consider a family {Φn} of constant-free arithmetic
circuits. We say that {Φn} is (a(n), b(n))-succinct3, if there exists a family of
nonuniform Boolean circuits {Cn}, where Cn has at most a(n) inputs and is of
size at most b(n), such that Cn can answer direct connection language queries
about Φn. This means that given names of gates in Φn, the circuit Cn should be
able to answer queries like whether two gates are connected, what the type of a
gate is: +, ×, or ‘input’, and in the latter case whether the variable or constant
label equals some given string.

Succinctness interpolates between uniformity and non-uniformity.
DLOGTIME-uniform circuits of polynomial size are (O(log n), O(log n))-
succinct. On the other hand, if a sequence {Φn} of circuits is (a(n), b(n))-
succinct, the circuit Φn can be constructed in time 2O(a(n))b(n)O(1), given b(n)
bits of advice.

In what follows we take a(n) = O(log n), which limits the size of the arithmetic
circuit to be nO(1). By convention, whenever a(n) = O(log n), we will drop it
from the notation, and just write “b(n)-succinct”.

Within this setting there is a spectrum of scenarios to study. At one extreme,
poly(n)-succinctness forms no restriction at all. At the other end, for polylog(n)-
succinctness, a lower bound can be derived4 using the known uniform TC0 lower
bound for permanent by Allender [4]. Our main result is to push the envelope
towards the high end by proving the following theorem5:

Theorem 1. Let d ≥ 0 be an integer. Over fields of characteristic zero, there
does not exist a polynomial p(n) such that {pern} has no(1)-succinct size p(n)
depth d arithmetic circuits using constants in the set Γp(n) = {−1, 0, 1} ∪
{220

, 221
, . . . , 22p(n)}.

2 This means that at any gate the computed polynomial must be multilinear.
3 See Section 3 for a formal definition. .
4 This will appear in the full version of the paper.
5 We have strengthened this result in several respects in a recent paper [13] by going

through derandomization of univariate polynomial identity testing. Moreover, the
resulting proof is conceptually cleaner.

726 M. Jansen and R. Santhanam

Thus either the permanent does not have polynomial size constant depth
constant-free arithmetic circuits, or in the odd case that it does, the correspond-
ing direct connection language L that is hard in the sense that for deciding
inputs of size k = O(log n), for some ε > 0 one requires nonuniform Boolean
circuits of size nε = 2Ω(k), i.e. exponential in the input size6.

Why are we interested in lower bounds against succinct circuits? If we’re
interested in actually computing the permanent, the mere fact of there being
polynomial-size circuits for it doesn’t seem to be sufficient, for there is the ques-
tion of how we can find these circuits. Succinctness is a measure of how easy the
circuits themselves are.

Also, ultimately, much of the motivation for arithmetic complexity comes
from classical problems like NP vs P and PSPACE vs P, which have resisted
solution, or even progress, for many decades. Often the nonuniform versions of
these questions are studied because we have few ways of taking advantage of
uniformity apart from diagonalization. One aspect of our proof is that we do not
make use of hierarchy theorems7, and this methodology might prove useful in
other contexts. We next describe the actual techniques used in the proof.

1.1 Techniques

At a high level, we exploit the well-known connection between lower bounds and
derandomization of arithmetic circuit identity testing (ACIT). In the ACIT prob-
lem one is given an arithmetic circuit, and the question is to decide whether the
polynomial computed by the circuit is identically zero or not. Using the Schwartz-
Zippel-deMillo-Lipton Lemma [8,20,28], Ibarra and Moran [12] show this prob-
lem is in coRP. It is known that non-trivial deterministic algorithms would lead
to circuit lower bounds against Boolean or arithmetic circuits [10,14,1]. This is
often interpreted as evidence for the difficulty of derandomizing ACIT. However
Agrawal turns this interpretation on its head and advocates derandomization of
ACIT as an approach toward proving circuit lower bounds [1]. Our result is a
step in this direction.

There are two major parts to our argument. The first is to show that the
lower bound of Theorem 1 follows from a black-box derandomization hypothesis
(Working Hypothesis 1) for ACIT. Our Working Hypothesis 1 poses the existence
of integer sequences definable by no(1)-succinct TC0 circuits that form a hitting
set against small constant-free arithmetic circuits. We prove the implication by
combining ideas of Agrawal [1], Bürgisser [7] and Koiran [15], and making critical
use of our succinctness assumption to indirectly perform computations which we
cannot afford to do directly.

We do not know how to prove Working Hypothesis 1. Instead what we will
establish for the second part of our argument, is a weaker derandomization of

6 It is possible to give a uniform upper of ENPRP
for L.

7 One of the referees of this paper sketched a potential alternative route to our lower
bounds using ‘out of the box’ diagonalization. We have not fully explored this argu-
ment as of yet.

Permanent Does Not Have Succinct Polynomial Size Arithmetic Circuits 727

ACIT using integer sequences so-called weakly-definable in the polynomial hi-
erarchy. However, this statement appears not to be strong enough to get the
lower bound of Theorem 1 directly. To resolve this, we argue by contradiction
as follows. Assuming that the conclusion of Theorem 1 fails, then due to Toda’s
Theorem [22] and an improvement by Zankó [27], cf. [4], of Valiant’s [24] com-
pleteness result for pern, this induces a collapse of the polynomial hierarchy,
which makes the integer sequence we explicitly construct good enough to satisfy
the requirements of Working Hypothesis 1. This way we obtain a lower bound
for pern after all, but this contradicts the assumption that the conclusion of
Theorem 1 does not hold.

2 Preliminaries

An arithmetic circuit Φ over variables X = {x1, x2, . . . , xn} and a field F is
given by a directed acyclic graph such that nodes with in-degree = 0 are labeled
with elements of X ∪ F. Nodes with higher in-degree are labeled by + or ×. To
each vertex in Φ we can associate an element of the polynomial ring F[X] in
the obvious way. A polynomial f ∈ F[X] is said to be computed by Φ, if there
exists a node in Φ where the associated polynomial equals f . The size s(Φ) of the
circuit is defined to be the number of edges in Φ. We will also write |Φ| for s(Φ).
For a polynomial f ∈ F[X], its arithmetic circuit complexity s(f) is defined by
s(f) = min{s(Φ) : Φ computes f}. If the underlying graph of Φ is a tree, then Φ
is called a formula. Arithmetic formula size of f is denoted by e(f).

Next we list several of the important complexity classes used in the paper.
#P is the class of all function f : {0, 1}∗ → {0, 1}∗ such that there exists a
language A ∈ P and a polynomial p(n) such that f(x) = |{w ∈ {0, 1}p(|x|) :
(x, w) ∈ A}|. GapP is the class of all function f − g, where f, g ∈ #P. We
will make combined use of Valiant’s [24] result that computing pern(M) for
M with entries in {0, 1} over Z is complete for #P, and Toda’s [22] Theorem,
which states that PH ⊆ P#P[1]. We define the majority operator C. acting on
a complexity class as follows. Given a complexity class C, C.C is the class of
all languages L for which there exists L′ ∈ C and a polynomial p(n) such that
x ∈ L ⇔ |{w ∈ {0, 1}p(|x|) : (x, w) ∈ L′}| > 2p(|x|)−1. The counting hierarchy,
introduced by Wagner [26], is defined to be

⋃
i≥0 CiP, where C0P = P, and for

all i ≥ 1, CiP = C.Ci−1P. The first level C1P of this hierarchy corresponds to
the standard complexity class PP. We will use Torán’s [23] characterization of
the counting hierarchy which states that Ci+1P = PPCiP, for all i ≥ 0. Next we
define nonuniform versions of complexity classes. An advice function is a function
of type h : N → {0, 1}∗. For a complexity class C, we define C/poly to be the
class of languages for which there exists L′ ∈ C, and advice function h with
|h(n)| = nO(1), such that x ∈ L ⇔ (x, h(|x|)) ∈ L′. We use the Boolean circuit
complexity classes AC0, TC0 and NC1. AC0 is the class of all Boolean functions
computable by polynomial size constant depth circuits with unbounded fan-in
gates in {∨,∧,¬}. TC0 is the class of all Boolean function that can be decided by
polynomial size constant depth unbounded fan-in threshold circuits. A threshold

728 M. Jansen and R. Santhanam

circuit is a Boolean circuit in which all gates either compute the negation, or the
majority function of their inputs. NC1 is the class of all Boolean functions that
can be decided by polynomial size O(log n) depth circuits of bounded fan-in. For
these classes we have that AC0 ⊆ TC0 ⊆ NC1. For a Boolean circuit family {Cn},
if there are no requirements on constructability, we call the family nonuniform.
For the uniform versions of Boolean complexity classes we will always be using
the notion of DLOGTIME-uniformity. We define this below.

We will use the notion of definability of Ref. [16]. To distinguish this from
definability as in Ref. [7], we use the term weakly-definable. An integer sequence
of bit size q(n) is given by a function a(n, k1, k2, . . . , kt), for some fixed number
t, such that there exist polynomials p(n) and so that a(n, k1, k2, . . . , kt) ∈ Z is
defined for all n ≥ 0, and all 0 ≤ k1, k2, . . . , kt < 2p(n), and where the bit size
of a(n, k1, k2, . . . , kt) is bounded by q(n). We will often write an(k1, k2, . . . , kt)
instead of a(n, k1, k2, . . . , kt). We define the language

uBit(a) = {(1n, k1, k2, . . . , kt, j, b) : the jth bit of a(n, k1, k2, . . . , kt) equals b}.
Here k1, k2, . . . , kt and j are encoded in binary. For a sequence a(n, k1, k2, . . . , kt)
and a complexity class C, if uBit(a) ∈ C, then we say that the sequence
a(n, k1, k2, . . . , kt) is weakly-definable in C. Finally, we require using the
Schwartz-Zippel-deMillo-Lipton Lemma.

Lemma 1 ([8,20,28]). Let A be a nonempty subset of the field F. Then for any
nonzero polynomial f ∈ F[X] of degree d, Pr[f(a1, a2, . . . , an) = 0] ≤ d

|A| , where
the ais are picked independently and uniformly at random from A.

3 Representing Arithmetic Circuits over Z by Boolean
Circuits Succinctly

For constant-free arithmetic circuits the only field constants that are allowed for
labels are ∈ {−1, 0, 1}, cf. [7,16]. We work over a slightly more general model.
Define for n ≥ 0, the set integer constants Γn = {220

, 221
, . . . , 22n} ∪ {−1, 0, 1}.

For the set {x1, x2, . . . , xn}∪Γn∪{+,×}, we assume we have fixed some naming
scheme that assigns to each element an O(log n) bit binary string, which is called
a type. We assume that all gates in a circuit have been labeled by unique binary
strings that also specify the type.

A representation of an arithmetic circuit Φ with constants ∈ Γk is given by
a Boolean circuit Cn that accepts precisely all tuples (t, a, b, q) such that 1) In
case q = 1 (connection query), a and b are numbers of gates in Φ, b is a child of
a, and a has type t. 2) In case q = 0 (type query only), a is a number of a gate
in Φ, and a is of type t.

Let a(n), b(n) be two functions N → N. For a family of arithmetic circuits
{Φn}, we say it is (a(n), b(n))-succinct, if there exists a non-uniform family of
Boolean {∨,∧,¬}-circuits {Cn}, such that Cn represents Φn, where for all large
enough n, Cn has ≤ a(n) inputs and is of size ≤ b(n). As a matter of convention,
if a(n) = O(log n), we drop it from the notation, and just write b(n)-succinct.

Permanent Does Not Have Succinct Polynomial Size Arithmetic Circuits 729

We want to study the notion of no(1)-succinctness. We will fix some arbitrarily
slow growing function γ(n) and consider n1/γ(n)-succinctness instead. A typical
example to think of would be γ(n) = log∗ n. For the rest of the paper we let γ(n) :
N → N be an unbounded monotone function, such that ∀n, γ(n) < log log n.

Similarly to the above, we define the notion of (a(n), b(n))-succinct Boolean
circuits. In this case type names are assumed to form a naming scheme for the
elements of {x1, x2, . . . , xn} ∪ {0, 1} ∪ {∨,∧,¬, MAJ}.

Regarding DLOGTIME-uniformity we refer the reader to Ref. [5] for an ex-
tensive treatment. In our set-up this can be defined as follows. A poly size
Boolean circuit family {Cn} is DLOGTIME-uniform, if given (n, t, a, b, q) with
n in binary, we can answer the representation queries as defined above in time
O(log n) on a Turing machine. Using standard conversions from Turing machines
to Boolean circuits, observe that if a Boolean circuit family {Cn} is DLOGTIME-
uniform, then it is O(log n)-succinct, but that a converse of this does not gener-
ally hold. We use the following results. For iterated integer multiplication

one is given n integers A1, A2, . . . , An of n bits each, and the problem is to com-
pute the bits of A1A2 . . . An. Hesse, Allender and Barrington [11] show this can
be done with DLOGTIME-uniform TC0 circuits. For the analogous problem
of iterated integer addition it is well-known it is in DLOGTIME-uniform
TC0, cf. [25]. Next we state several technical lemmas that deduce consequences
from the assumption that {pern} has n1/γ(n)-succinct arithmetic circuits. Proofs
will appear in the full version of the paper.

Lemma 2. Assume {pern} can be computed by n1/γ(n)-succinct size nc0 depth
d arithmetic circuits that use constants from Γnc0 , for some constant c0 > 0.
Then for some constant d′, we can compute pern(M) over Z, where entries of
M are in {0, 1} by 2n1/γ(n)-succinct TC0 circuits of depth d′ · d.

Using an improvement of Valiant’s completeness result by Zankó [27], cf. [4], who
shows that 0, 1-pern over Z is complete for #P under DLOGTIME uniform-AC0

reductions, one can now easily verify the following statement:

Lemma 3. Assume {pern} can be computed by n1/γ(n)-succinct size nc0 depth
d arithmetic circuits that use constants from Γnc0 , for some constant c0 > 0.
Then for any F ∈ GapP there exists constants d′, d′′ and c′ ≥ 1 such that F can
be computed by nc′/γ(n)-succinct depth d′ · d + d′′ TC0 circuits.

Corollary 1. If {pern} can be computed by n1/γ(n)-succinct size nc0 depth d
arithmetic circuits that use constants from Γnc0 , for some constant c0 > 0, then
CH/poly ⊆ nonuniform-TC0.

Lemma 4. Assume {pern} can be computed by n1/γ(n)-succinct size nc0 depth
d arithmetic circuits that use constants from Γnc0 , for some integer constant
c0 > 0. Let F : {0, 1}∗ → {0, 1}∗ be a GapP function, and let c′ and d′, d′′ be
the constants provided by Lemma 3 for this F . Let (An) be an integer sequence
of bit size at most �(n) that is weakly-definable in CH/poly. If it holds that
�(n)c′/γ(�(n)) = nO(1) and log �(n) ≤ nO(1), then bn := F (An) is an integer
sequence of bit size poly(�(n)) weakly-definable in CH/poly.

730 M. Jansen and R. Santhanam

4 Conditional Lower Bound for Permanent

Given an integer sequence an(i, j) with 0 ≤ i < n, 0 ≤ j < p(n) for some function
p(n), we think of this as encoding a collection {Hn} of subsets Hn ⊆ Z

n with
|Hn| = p(n), where Hn = {(an(0, j), an(1, j), . . . , an(n − 1, j)) : 0 ≤ j < p(n)}.
Working Hypothesis 1. Let d be a constant. There exists an integer sequence
an(i, j) of polynomial bit size with 0 ≤ i < n, 0 ≤ j < p(n), with p polynomially
bounded, such that uBit(an(i, j)) can be decided by n1/γ(n)-succinct TC0 circuits,
and for which the following holds:

– For any arithmetic circuit Φ of size n over m ≤ n variables using constants in
Γn = {220

, 221
, . . . , 22n} ∪ {−1, 0, 1} of depth at most d, if Φ(x1, x2, . . . , xm)

computes a nonzero polynomial, then there exist 0 ≤ j < p(n) such that
Φ(an(0, j), an(1, j), . . . , an(m − 1, j)) �= 0.

The following is our randomness-to-hardness theorem:

Theorem 2. If Working Hypothesis 1 is true for depth d, then there does not
exist a polynomial p(n) such that {pern} has size p(n) depth d− 1 circuits using
constants in the set Γp(n) = {−1, 0, 1} ∪ {220

, 221
, . . . , 22p(n)}, where in addition

these circuits are n1/γ(n)-succinct.

Proof. We will argue by contradiction, hence we start by assuming that for some
constant c0 > 0, {pern} can be computed by a family {Φn} of size nc0 depth
d − 1 circuits that use constants from Γnc0 , and furthermore that for all large
enough n, these circuits are represented by a family of Boolean circuits {Cn}
with O(log n) inputs and size n1/γ(n). Hence by Corollary 1, we have the collapse
CH/poly ⊆ nonuniform-TC0. We proceed as in Ref. [1] by using the black-box
derandomization assumption to construct a hard polynomial by solving a system
of linear equations.

Let an(i, j) be the integer sequence given by Working Hypothesis 1. Let {Hn}
be given as mentioned in the remark before Working Hypothesis 1. Let k be
such that we can take p(n) ≤ nk in Working Hypothesis 1, and let c be such
that the bit size of any integer an(i, j) is bounded by nc. Choose positive ε <
min(k−1, c−1). Let N = �nεγ(n)�, and let m = �γ(n) log n . Then Nk < 2m. Let

fm =
2m−1∑
e=0

cm(e)xe1
1 xe2

2 . . . xem
m , (1)

where ej denotes the jth bit of e. In other words, we sum over all strings in
{0, 1}m in the above. We want to take cm(e) to be a nonzero integer solution to
the system (S) given by f(b) = 0, for all b ∈ HN . These are at most Nk linear
equations in 2m variables. Since 2m > Nk, we can get a nonzero solution. The
system (S) is slightly too large to manipulate directly. Coding (S) as an integer
sequence weakly-definable in CH/poly will allow us to indirectly let a solution
finding procedure act on (S), due to Lemma 4. For this purpose we think of (S)

Permanent Does Not Have Succinct Polynomial Size Arithmetic Circuits 731

as presented by a 2m × 2m matrix MS (with 2m − Nk zero rows). We code MS

as an integer sequence by letting An be the integer represented by the binary
string 12m

01r0list(MS), where r := N cm is an upper bound on the maximum
bit length of entries of M , and list(MS) is the concatenation of length r binary
representations of the entries of MS (say left-to-right, top-to-bottom). Define
�(n) to be the bit length of An.

Due to space restriction the proof of the following lemma is omitted, and will
appear in the full version. The proof involves using the DLOGTIME-uniform
TC0 circuits for iterated integer multiplication from [11], and the technique of
scaling up the the counting hierarchy [7].

Lemma 5. Given that γ(n) is an unbounded monotone nondecreasing function
such that for all n, γ(n) < log log n, we have that (An) is an integer sequence
of bit size �(n), where for all but finitely many n, �(n) ≤ n4γ(n). Furthermore,
(An) is weakly-definable in CH/poly.

Next we apply a solver to (S). For this purpose, we let F : {0, 1}∗ → {0, 1}∗
be the following poly-time computable mapping: On input x of length ñ, try to
parse x = 12m̃

01r̃0y, for some integer r̃, m̃ and y ∈ {0, 1}∗ with |y| = 22m̃r̃. If
this fails, output 0. Otherwise, construct the 2m̃ × 2m̃ matrix M whose (left-to-
right, top-to-bottom) entries are given by consecutive r bit blocks of y. Then
using standard tools, try to compute a nonzero integer 2m̃-vector c such that
Mc = 0. Output c if this succeeds, 0 otherwise. We define α to be the absolute
integer constant such that for all large enough ñ, F runs within time ñα. This
implies that for all large enough ñ, for any x ∈ {0, 1}ñ, |F (x)| ≤ ñα.

By Lemma 5, (An) is weakly-definable in CH/poly. Clearly, since γ(n) is
assumed to be a monotone growing function, for any constant c′ ≥ 1, it is satisfied
that �(n)c′/γ(�(n)) = nO(1), as for all but finitely many n, n ≤ �(n) ≤ n4γ(n).
Hence we can apply Lemma 4. We get that F (An) is an integer sequence weakly-
definable in CH/poly. We have that F (An) encodes a 2m-vector of integers.
Indexing this vector by e ∈ {0, 1}m, we let cm(e) be the integer encoded by the
eth entry, i.e. cm(e) = F (An)e, and let fm be the polynomial given by fixing
these integer coefficients in Equation (1). We have the following properties:

– ∀∞n, cm(e) has bit size at most �(n)α ≤ 24αγ(n) log n ≤ 24αm.
– L := {(1n, e, j, b) : e ∈ {0, 1}m, j ∈ {0, 1}4αm, and cm(e)j = b, where m =

�γ(n) log n } ∈ CH/poly.

The proof of the following claim will be included in the full version:

Claim 1. fm = perm′(M ′) for m′ = 2o(m), where M ′ is a matrix whose entries
are in {x1, x2, . . . , xm} ∪ {−1,− 1

2 , 0, 1
2 , 1} ∪ {220

, 221
, . . . , 224αm}.

To prove the above claim one proceeds similarly as in the proof of “Valiant’s
Criterion”, cf. Proposition 2.11 in [7]. Recall we already observed that under
our assumptions we have the collapse CH/poly ⊆ nonuniform-TC0. Hence L ∈
nonuniform-TC0. One can use the fact that nonuniform-TC0 ⊆ nonuniform-NC1,

732 M. Jansen and R. Santhanam

so we get O(log n) = o(m) depth formulas computing bits of the coefficients
cm(e). Then by arithmetizing these Boolean formulas and employing standard
arithmetic techniques the claim follows.

Let us observe that this completes the proof of Theorem 2. Consider f ′
m =

2m′
fm. Observe that f ′

m is a nonzero polynomial in m << N variables that
vanishes on HN . Hence we have that

Fact 1. f ′
m has no size N depth d arithmetic circuits using constants ∈ ΓN .

By Claim 1, we have that f ′
m = perm′(2M ′). Our assumptions imply that we

have a size s := (m′)c0 = 2o(m) circuits of depth d − 1 for perm′ that use
constants from Γs. We can put together 2M ′ using O((m′)2) = 2o(m) circuitry
of depth one, while only using constants in Γ4αm. Hence we obtain s′ := 2o(m)

size circuits for f ′
m of depth d that use constants from Γ4αm ∪ Γs. Recalling

that N = �2εγ(n) log n� and m = �γ(n) log n , we have that for all but finitely
many n, max(4αm, s) < N and s′ < N . We have arrived at a contradiction with
Fact 1. 	

5 Proving a Weak Derandomization Hypothesis
Unconditionally

We don’t know how to prove Working Hypothesis 1, but as we will see in Sec-
tion 6, neither do we need to for obtaining the sought after lower bound for
the permanent as in the conclusion of Theorem 2! What we can establish is the
following theorem. Note that there is no restriction to constant depth.

Theorem 3. There exists an integer sequence an(i) of polynomial bit size with
0 ≤ i < n, such that an(i) is weakly-definable in the polynomial hierarchy, and
for which the following holds:

– For any arithmetic circuit Φ of size n over m ≤ n variables and constants in
Γn = {220

, 221
, . . . , 22n}∪{−1, 0, 1}, if Φ(x1, x2, . . . , xm) computes a nonzero

polynomial, then Φ(an(0), an(1), . . . , an(m − 1)) �= 0.

Proof. Let Cn be the set of all arithmetic circuits of size n over m ≤ n
variables using constants in Γn. For some constant c > 0, we can bound
|Cn| ≤ 2cn2

, provided n is large enough. Note that circuits in Cn can com-
pute polynomials with degree at most 2n. Let S = {1, 2, . . . , 2n3+n}. If
we pick s1, . . . , sn independently and uniformly at random from S, then
by Lemma 1, for any nonzero polynomial f computed by a circuit in Cn,
Pr[f(s1, s2, . . . , sn) = 0] ≤ 2n/2n3+n = 2−n3

. Hence by the union bound,
Pr[∃ nonzero f computed by a circuit ∈ Cn, f(s1, s2, . . . , sn) = 0] ≤ 2cn2−n3

<
1. This means there exist at least one s ∈ Sn, such that for any nonzero
polynomial f computed by a circuit from Cn, f(s1, s2, . . . , sn) �= 0. For s =
(s1, s2, . . . , sn) ∈ Sn define the predicate P(s) by

∀Ψ ∈ Cn, (if Ψ(s1, s2, . . . , sn) = 0, then ∀t ∈ Sn, Ψ(t1, t1, . . . , tn) = 0). (2)

Permanent Does Not Have Succinct Polynomial Size Arithmetic Circuits 733

Observe that if P(s) is true, then for any nonzero f computed by a circuit
from Cn, f(s1, s2, . . . , sn) �= 0. Also observe that for both universal quantifiers in
(2), they range over sets whose elements can be described by poly(n) size strings,
assuming encodings of circuits using type names of size O(log n) as defined in
Section 3. Hence if we can argue that given Ψ ∈ Cn and u ∈ Sn, we can decide
whether Ψ(u1, u2, . . . , un) ?= 0 in PH, then the predicate P(s) is PH-decidable.
Consequently, we can define an to be the lexicographically least element s of Sn

such that P(s) holds. This makes an computable in PPH by binary search. This
implies that an is weakly-definable in PH.

We complete the proof by showing that given Ψ ∈ Cn and u ∈ Sn, we can de-
cide whether Ψ(u1, u2, . . . , un) ?= 0 in PH. The only problem that may arise when
evaluating Ψ(u1, u2, . . . , un) is that intermediate values get too large. For this we
employ the idea of Ibarra and Moran [12] by evaluating modulo a prime num-
ber in some large range. Namely, consider primes p in the range {1, 2, . . . , 2n2}.
Each such prime takes n2 many bits. We can evaluate Ψ(u1, u2, . . . , un) mod p
in polynomial time8. By the Prime Number Theorem, the number of primes
in this range is at least 2n2

log 2n2 > 22n, provided n is large enough. By a
simple induction, it follows that the value |Ψ(u1, u2, . . . , un)| can be bounded
by 222n

. Hence it cannot be that all primes ≤ 2n2
divide Ψ(u1, u2, . . . , un),

if Ψ(u1, u2, . . . , un) �= 0. In other words, Ψ(u1, u2, . . . , un) = 0 iff ∀m ∈
{1, 2, . . . , 2n2}, if m is prime, then Ψ(u1, u2, . . . , un) mod p = 0. Agrawal, Kayal
and Saxena [2] proved primality testing is in polynomial time. Hence we get that
the above is a Π1P-predicate. 	

6 Proof of Theorem 1

It is sufficient to show the following claim:

Claim 2. For any unbounded monotone function γ(n) = o(log log n), there does
not exist a polynomial p(n) such that ∀∞n, pern has size p(n) depth d arithmetic
circuits using constants in the set Γp(n) = {−1, 0, 1}∪{220

, 221
, . . . , 22p(n)}, where

in addition these circuits are n1/γ(n)-succinct.

Proof. We argue by contradiction. Let γ(n) be as in the claim, and suppose
that for some polynomial p(n), for all large enough n, pern has size p(n) depth
d arithmetic circuits with constants in Γp(n), where these circuits are n1/γ(n)-
succinct.

By Lemma 2, we get that we can compute pern(M) over Z, where entries of M
are in {0, 1} by 2n1/γ(n)-succinct TC0 circuits. By Toda’s Theorem and Valiant’s
completeness result for pern, any L ∈ PH can be decided in polynomial time with
a single query to the 0, 1-permanent. We can think of this as a three stage process:

8 As a technical detail, we remark that for large numbers like 22n

, which appear as a
O(log n) type name in the encoding of Ψ , we can compute (22n

mod p) by performing
n repeated squarings computed modulo p.

734 M. Jansen and R. Santhanam

first apply a function Q ∈ FP to the input x, then obtain per(Q(x)), finally apply
R ∈ FP to produce the output R(per(Q(x)). Since FP ⊆ #P, Lemma 3 implies
that for some constant b, we obtain nb/γ(n)-succinct TC0-circuits for Q and R.
Combining all three levels of TC0 circuits yields TC0-circuits for L, where for
some constant c depending on L, this family is nc/γ(n)-succinct. The constant c
can be picked larger than b to accommodate for the increase in size of joining
the three representations. Wlog. assume c > 1.

In particular, for the integer sequence an(i) of Theorem 3, we get that
uBit(an) can be decided by nc/γ(n)-succinct TC0 circuits, for some constant
c > 1. This means that Working Hypothesis 1 is satisfied regardless of the
depth (so certainly for depth d + 1), and for γ′(n) := c−1γ(n) instead of
γ(n). Since Theorem 2 holds for any unbounded monotone growing function
γ(n) where ∀∞γ(n) < log log n, we can apply Theorem 2 with γ′(n) in-
stead, to yield that there does not exist a polynomial q(n) such that, for all
large enough n, pern has size q(n) depth d circuits using constants in the set
Γq(n) = {−1, 0, 1} ∪ {220

, 221
, . . . , 22q(n)}, where in addition these circuits are

n1/γ′(n)-succinct. Since 1/γ′(n) > 1/γ(n), this contradicts the assumption that
for all large enough n, pern has size p(n) depth d arithmetic circuits using con-
stants in the set Γp(n) = {−1, 0, 1}∪{220

, 221
, . . . , 22p(n)}, where in addition these

circuits are n1/γ(n)-succinct. 	

Acknowledgments. We thank the anonymous referees for their valuable comments.

References

1. Agrawal, M.: Proving lower bounds via pseudo-random generators. In: Sarukkai,
S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 92–105. Springer, Heidelberg
(2005)

2. Agrawal, M., Kayal, N., Saxena, N.: Primes is in P. Ann. of Math 2, 781–793 (2002)
3. Agrawal, M., Vinay, V.: Arithmetic circuits: A chasm at depth four. In: Proc. 49th

Annual IEEE Symposium on Foundations of Computer Science, pp. 67–75 (2008)
4. Allender, E.: The permanent requires large uniform threshold circuits. Chicago

Journal of Theoretical Computer Science, article 7 (1999)
5. Barrington, D.M., Immerman, N., Straubing, H.: On uniformity within NC1. J.

Comp. Sys. Sci. 41, 274–306 (1990)
6. Baur, W., Strassen, V.: The complexity of partial derivatives. Theor. Comp. Sci. 22,

317–330 (1982)
7. Bürgisser, P.: On defining integers and proving arithmetic circuit lower bounds.

Computational Complexity 18, 81–103 (2009)
8. DeMillo, R., Lipton, R.: A probabilistic remark on algebraic program testing. Inf.

Proc. Lett. 7, 193–195 (1978)
9. Grigoriev, D., Karpinski, M.: An exponential lower bound for depth 3 arithmetic

circuits. In: Proc. 13th Annual ACM Symposium on the Theory of Computing, pp.
577–582 (1998)

10. Heintz, J., Schnorr, C.: Testing polynomials which are easy to compute (extended
abstract). In: Proc. 12th Annual ACM Symposium on the Theory of Computing,
pp. 262–272 (1980)

Permanent Does Not Have Succinct Polynomial Size Arithmetic Circuits 735

11. Hesse, W., Allender, E., Barrington, D.: Uniform constant-depth threshold circuits
for division and iterated multiplication. J. Comp. Sys. Sci. 64(4), 695–716 (2001)

12. Ibarra, O., Moran, S.: Probabilistic algorithms for deciding equivalence of straight-
line programs. J. Assn. Comp. Mach. 30, 217–228 (1983)

13. Jansen, M., Santhanam, R.: Marginal hitting sets imply super-polynomial lower
bounds for permanent (2011) (manuscript)

14. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity testing means
proving circuit lower bounds. Computational Complexity 13(1-2), 1–44 (2004)

15. Koiran, P.: Shallow circuits with high powered inputs. In: Proc. 2nd Symp. on
Innovations in Computer Science (2010)

16. Koiran, P., Perifel, S.: Interpolation in Valiant’s theory (2007) (to appear)
17. Koiran, P., Perifel, S.: A superpolynomial lower bound on the size of uniform non-

constant-depth threshold circuits for the permanent. In: Proc. 24th Annual IEEE
Conference on Computational Complexity (2009)

18. Raz, R.: Elusive functions and lower bounds for arithmetic circuits. Theory of
Computing 6 (2010)

19. Raz, R., Yehudayoff, A.: Lower bounds and separations for constant depth multi-
linear circuits. Computational Complexity 18(2) (2009)

20. Schwartz, J.: Fast probabilistic algorithms for polynomial identities. J. Assn. Comp.
Mach. 27, 701–717 (1980)

21. Shpilka, A., Wigderson, A.: Depth-3 arithmetic formulae over fields of characteristic
zero. Journal of Computational Complexity 10(1), 1–27 (2001)

22. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20,
865–877 (1991)

23. Torán, J.: Complexity classes defined by counting quantifiers. J. Assn. Comp.
Mach. 38(3), 753–774 (1991)

24. Valiant, L.: The complexity of computing the permanent. Theor. Comp. Sci. 8,
189–201 (1979)

25. Vollmer, H.: Introduction to Circuit Complexity. A uniform approach. Springer,
Heidelberg (1999)

26. Wagner, K.: The complexity of combinatorial problems with succinct input repre-
sentation. Acta Informatica 23, 325–356 (1986)

27. Zankó, V.: #P-completeness via many-one reductions. International Journal of
Foundations of Computer Science 2, 77–82 (1991)

28. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, K.W. (ed.)
EUROSAM 1979 and ISSAC 1979. LNCS, vol. 72, pp. 216–226. Springer, Heidel-
berg (1979)

On the Power of Algebraic Branching Programs of
Width Two

Eric Allender and Fengming Wang

Department of Computer Science, Rutgers University, Piscataway, NJ 08855, USA
{allender,fengming}@cs.rutgers.edu

Abstract. We show that there are families of polynomials having small depth-
two arithmetic circuits that cannot be expressed by algebraic branching programs
of width two. This clarifies the complexity of the problem of computing the prod-
uct of a sequence of two-by-two matrices, which arises in several settings.

1 Introduction

The nth Iterated Matrix Multiplication polynomial of degree d, denoted IMMd,n is the
multilinear polynomial with d2n variables that is the result of multiplying n d-by-d
matrices of indeterminates. This family plays a central role in the study of algebraic
complexity. Ben-Or and Cleve showed that IMM3,n is complete (under projections) for
the class of polynomials that can be expressed by arithmetic formulae of polynomial
size [5,6]. This class is sometimes denoted VNC1 [12] (as the analog of the Boolean
class NC1 in the setting of algebraic complexity initiated by Valiant [18]) and is also
sometimes denoted VPe (corresponding to the subclass of Valiant’s class VP of polyno-
mials of polynomial degree that have arithmetic circuits of polynomial size, where we
restrict the circuits to be expressions).

It is natural to wonder if Ben-Or and Cleve’s construction is optimal, in terms of
dimension. That is: What can one say about IMM2,n?

There are some indications that IMM2,n should be nearly as powerful as IMM3,n.
For instance, Ben-Or and Cleve’s completeness argument proceeds by showing that
arithmetic formulae can be efficiently evaluated by a restricted type of straight-line
program with three registers (and this translates into an implementation with 3-by-3
matrices). In the original conference publication of their results [5], Ben-Or and Cleve
credit Coppersmith with the observation that if the underlying ring is commutative and
has an element 1

2 such that 1
2 + 1

2 = 1, then in fact two registers suffice to evaluate
any arithmetic formula (albeit via straight-line programs that do not immediately lend
themselves to implementation as IMM2,n computations).

Perhaps the first study of the complexity of evaluating IMM2,n arose in the work of
Lipton and Zalcstein [11], who (in modern terminology) showed that the word problem
over the free group with two generators (also known as the two-sided Dyck language)
is AC0-reducible to the problem of determining if a product of n two-by-two integer
matrices evaluates to the identity matrix. Since the two-sided Dyck language is hard for
NC1 [15], this gives a lower bound on the complexity of evaluating IMM2,n instances.

This lower bound is rather close to the best known upper bound. The problem of
evaluating integer instances of IMM3,n is complete for the Boolean complexity class

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 736–747, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On the Power of Algebraic Branching Programs of Width Two 737

GapNC1 [7] (consisting of functions that have arithmetic circuits of polynomial size and
logarithmic depth), and every problem in this latter class has Boolean circuits of poly-
nomial size, bounded-fan-in, and depth O(log n log∗ n) [10]. The closeness of these
bounds has led some researchers to wonder whether the classes of functions in NC1

and GapNC1 are in fact equal [2], in which case IMM2,n and IMM3,n would be interre-
ducible under AC0 reductions.

The NC1-hardness of IMM2,n over the integers holds even for restricted cases of the
problem. In [3], it is asserted that counting paths in planar width-two graphs (a restricted
case of IMM2,n over the integers) is hard for NC1 under ACC0 reductions. (An error in
the proof of this claim in [3] has been identified and corrected [13].)

On the other hand, there have also been indications that IMM2,n should be weaker
than IMM3,n. Ben-Or and Cleve point out that problems over GF(2) having what they
called “LBS” straight-line programs (i.e., restricted straight-line programs which they
used as a tool in presenting their completeness result) that use only two registers trans-
late into permutation branching programs of width three [6], which Barrington showed
require exponential size in order to compute the AND function [4]. However, this does
not strictly rule out more general computations over IMM2,n.

The AC0 reductions from problems in NC1 to IMM2,n are not projections, which are
the usual type of reductions that are used in studying algebraic complexity classes. To il-
lustrate the difference, consider the class GapAC0: functions computed by polynomial-
size constant-depth arithmetic circuits over the integers, where the input variables take
only Boolean inputs. GapAC0 ⊆ TC0 ⊆ NC1 [1], and hence any bit of any function
f ∈ GapAC0 can be computed by an AC0 reduction to the problem of multiplying a
sequence of 2-by-2 integer matrices. However, any such function f can also be viewed
as a polynomial f(x1, . . . , xn) in its input variables, and the AC0 reduction does not
allows us to obtain f from IMM2,nk by substituting field elements and the variables
x1, . . . , xn for the variables of IMM, even though this is possible for IMM3,nk . It fol-
lows from our main result that, even for fairly simple functions f ∈ GapAC0, no such
reduction is possible – even if we allow projections to arbitrarily large IMM instances,
and even if we greatly enlarge the type of substitutions that are considered.

If we expand the notion of projection, to allow variables to be replaced by arbitrary
linear expressions, then we obtain an alternative characterization of algebraic branching
programs, which were introduced by Nisan in order to study the complexity of deter-
minant and permanent computations in various settings [14].

Definition 1. An Algebraic Branching Program over F is a layered DAG with a single
source s and exactly one sink t. The layers are numbered as 0, 1, 2, . . . , d; let Vi denote
the set of vertices in the ith layer. The source (the sink, respectively) is the unique vertex
in V0 (Vd, respectively). Edges exist only between vertices in adjacent layers (i.e., each
edge (a, b) has a ∈ Vi and b ∈ Vi+1 for some 0 ≤ i < d). Each edge e is associated
with a linear function le over F in the variables {xi | 1 ≤ i ≤ n}. Every directed path
p = e1e2 . . . ek represents the product fp =

∏k
j=1 lej . The polynomial fv represented

by v is
∑

p∈Ps,v
fp, where Ps,v is the set of paths from s to v. The output of the algebraic

branching program is ft. The width of the program is maxi |Vi|.
It follows from [6] that polynomial-size algebraic branching programs of width three (or
of any constant width w ≥ 3) characterize exactly the polynomials in VNC1. Algebraic

738 E. Allender and F. Wang

branching programs of constant width have been studied by several authors; we cite
some recent examples [9,8]. We show that width three is optimal; the expressive power
of width two algebraic branching programs is severely limited.

Theorem 1. Let l(x) be an arbitrary linear function. ∀k ≥ 8, the polynomial f(x) =∑k
i=1 x2i−1x2i + l(x) can not be computed by algebraic branching programs of width

two over any field F. This implies that IMM2,n is not complete for VNC1 under regular
projections (defined in Section 2).

Width-two algebraic branching programs were also explored by Saha, Saptharishi and
Saxena [16]. They considered “degree-restricted” algebraic branching programs (mean-
ing that, if the output polynomial has degree n, then no intermediate polynomial in the
branching program has degree greater than n). Their Theorem 16 shows that degree-
restricted width-two algebraic branching programs compute polynomials only if they
belong to an ideal generated by at most five linear forms (and thus they cannot compute
the polynomial f in our Theorem 1 [17]). We do not know whether width-two algebraic
branching programs can be simulated by width-two degree-restricted branching pro-
grams. Thus our Theorem 1 is incomparable with [16, Theorem 16]; their result applies
to a larger class of polynomials, but relies on the degree restriction.

The remaining part of the paper is organized as follows: Section 2 provides the for-
mal definitions and terminology that we use. In Section 3, we study homogeneous pro-
jections (defined in Section 2) of IMM2,n and prove a structural theorem for this type of
computation as well as an impossibility result. Finally, we extend these results to more
general settings in Section 4. Many proofs are omitted, due to lack of space.

2 Preliminaries

Let the underlying field be F. Let q(x) ∈ F[x] be a multivariate polynomial over a set of
variables x. A projection p on q(x) is an operation to generate new polynomials; a pro-
jection is described by a set of assignments {xi ← vi}, where the values vi come from
a particular set (to be specified later), and each variable xi ∈ x appears at most once on
the left-hand-side of a rule in p; furthermore, variables on the left-hand-side never occur
on the right-hand-side. We get the new instance q(x)|p by replacing all occurrences of
xi in q(x) with its counterpart vi and leaving untouched those variables that are not in
p. In this way, we say that q(x)|p is obtained from q(x) under the projection p.

Let H be the set of homogeneous linear terms {c · xi | c ∈ F
∗, i ∈ N} where F

∗

is the set of units (i.e., non-zero elements). Let L be the set of general linear terms
{∑n

i=1 ci · xi + w | n ∈ N, ci, w ∈ F}. We define a projection p = {xi ← vi} to be a
homogeneous projection if ∀i, vi ∈ H ∪ F. If ∀i, vi ∈ L, then p is a regular projection.
We mention that the most restrictive of these three types of projections, homogeneous
projections, are the usual types of projections studied in algebraic complexity [18,6].

Consider n square matrices of dimension two m1, m2, . . . , mn, the entries of which
are distinct variables. The (1, 1)-entry of their product

∏n
i=1 mi is a multi-linear poly-

nomial, denoted as IMM2,n, which is called the nth iterated matrix multiplication poly-
nomial of dimension two. The matrix mi|p is obtained from mi under the projection
p, which means that the entries of mi are substituted by the corresponding values in

On the Power of Algebraic Branching Programs of Width Two 739

p. Given a polynomial f(x), it is easy to see that f(x) is obtained from IMM2,n under
some projection p if and only if f(x) is the (1, 1)-entry of

∏n
i=1 mi|p, and moreover, the

variables appearing in mi|p belong to the set {xj | xj occurs in f(x)}. Note that f(x)
is computable by some algebraic branching program of width two if and only if there
exists n ∈ N such that f(x) can be obtained from IMM2,n under regular projections.

Let M be a set of square matrices of dimension two. We say a polynomial f(x) is
computable by M if there is an integer n and a projection p such that f(x) = IMM2,n|p
and furthermore, ∀i ≤ n, mi|p ∈ M .

Let H2×2 (R2×2) denote the set of square matrices of dimension two with entries
from H ∪ F (L, respectively). Obviously, H2×2 ⊆ R2×2.

We divide all square matrices of dimension two whose entries belong to L into three
groups, Indg, Idg and Pdg. The matrices in Indg are called inherently non-degenerate
matrices and their determinants evaluate to a fixed element in F

∗ while Idg consists of
inherently degenerate matrices with zero determinants. Pdg = R2×2 \ (Indg ∪ Idg) is
the set of potentially degenerate matrices. Obviously the determinants of matrices in
Pdg are nonzero polynomials of degree at least one.

We need some facts about the simple degree-two polynomials we study:

Fact 2. Over any field F, x1x2 + x3x4 is an irreducible polynomial.

Fact 3. Let F be any field, k ≥ 2 and let l(x) be an arbitrary linear function. Then
Σk

i=1x2i−1x2i + l(x) is an irreducible polynomial, and furthermore, its degree-two
homogeneous part is irreducible as well.

We group the variables x2i−1 and x2i together, and call each the other’s partner vari-
able. It is convenient to consider a restricted class of projections:

Definition 2. A regular projection {xi ← vi} is well-formed if a variable appears on
the left-hand-side iff its partner variable does, and ∀i ∈ N, {v2i−1, v2i} ∩ F �= ∅.

Fact 4. Let k < n be two natural numbers. Consider the polynomial Σn
i=1x2i−1x2i.

Then under any well-formed regular projection p of size 2k, f(x)|p = Σn−k
i=1 x2i−1x2i+

l(x) (up to re-numbering the variables) is also an irreducible polynomial, where l(x)
is a linear function. Furthermore, its degree-two homogeneous part is also irreducible.

Note that we may assume that the underlying field F is algebraically closed.

Fact 5. Let F
′ be the algebraic closure of F and let M be a set of matrices. For any

polynomial f(x), if f(x) is computable by M over F, then it is computable by M over
F
′ as well.

3 IMM2,n under Homogeneous Projections

Recall that H2×2 denotes the set of square matrices of dimension two with entries from
H ∪ F. We will show that it causes no loss of computational power, if we restrict the
type of matrices that are used in H2×2 computations. First, however, it is very useful to
observe that H2×2 corresponds exactly to a type of straight-line programs.

740 E. Allender and F. Wang

Let μ be a set of allowable straight-line program instructions (rules), and let Rt
i

denote the contents of the register Ri at time t. A straight-line program P over the rule
set μ using 2 registers (μ-SLP) is a sequence of pairs of instructions from μ, denoted
as {(st

1, s
t
2) | 1 ≤ t ≤ |P |, (st

1, s
t
2) ∈ μ}, where |P | is the size of the program. P

computes a function p(x) in the natural way: Initially, R0
1 = 1 and R0

2 = 0. At the t-th

step, Ri is updated according to the rule st
i. The final output p(x) is stored as R

|P |
1 . In

this section, we consider only instructions that come from the set μ
H2×2

= {(Rt+1
1 ←

a · Rt
1 + b · Rt

2, Rt+1
2 ← a′ · Rt

1 + b′ · Rt
2) | a, b, a′, b′ ∈ H ∪ F, t ∈ N}. Under

these assumptions, each Rt
i is a polynomial over the variables {xj | j ∈ N}. It is not

hard to see that μH2×2
-SLPs and IMM2,n under homogeneous projections compute the

same set of polynomials. (Similar observations were made by Ben-Or and Cleve [6].)
Furthermore, for any subset N ⊆ H2×2, there is a corresponding rule set μN ⊆ μ

H2×2

such that a polynomial f(x) is computable by N if and only if there is a μN -SLP for it.
Hence, given an arbitrary μN -SLP P , we may abuse the notations and identify the ith
pair of instructions with its matrix representations mi

P , which means that P can also be
characterized by a sequence of matrices {mi

P | 1 ≤ i ≤ |P |}.

3.1 Classification of H2×2 ∩ Indg

We present a collection μN of rules that suffice to simulate any straight-line program
using the rules μ

H2×2∩Indg. Let a, b, c, d ∈ F
∗.

1. Transposition rule.

Rt+1
1 ← Rt

2

Rt+1
2 ← Rt

1

given by matrix
[

0 1
1 0

]
2. Scalar rules.

Rt+1
1 ← a · Rt

1

Rt+1
2 ← b · Rt

2

given by matrix
[
a 0
0 b

]
3. Offsetting rules of degree one.

(a)

Rt+1
1 ← a · Rt

1 + c · xi · Rt
2

Rt+1
2 ← b · Rt

2

given by matrix
[
a c · xi

0 b

]
(b)

Rt+1
1 ← a · Rt

1

Rt+1
2 ← c · xi · Rt

1 + b · Rt
2

given by matrix
[

a 0
c · xi b

]
4. Offsetting rules of degree zero.

(a)

Rt+1
1 ← a · Rt

1 + c · Rt
2

Rt+1
2 ← b · Rt

2

given by matrix
[
a c
0 b

]

On the Power of Algebraic Branching Programs of Width Two 741

(b)

Rt+1
1 ← a · Rt

1

Rt+1
2 ← c · Rt

1 + b · Rt
2

given by matrix
[
a 0
c b

]
5. Other non-degenerate linear transformations.

Rt+1
1 ← a · Rt

1 + c · Rt
2

Rt+1
2 ← d · Rt

1 + b · Rt
2

given by matrix
[

a c
d b

]
where ab − cd �= 0.

Observation 6. Any straight-line program using μH2×2∩Indg can be simulated by a
straight-line program using μN . That is, without loss of generality, one can assume that
any straight-line program P has the following properties.

– If the transposition matrix is ever adopted by P , it is applied only once as the final
pair of instructions.

– The following matrices need never appear, because they are transpositions of rules
in μN (and transpositions introduced in this way can be eliminated).[

0 a
b 0

]
,

[
0 a
b c

]
,

[
c a
b 0

]
,

[
0 a
b c · xi

]
,

[
c · xi a

b 0

]
– This leaves only the rule set μN .

3.2 Structure of μH2×2∩Indg-SLPs and Its Implications

Definition 3. Let deg(f) denote the degree of the polynomial f . For any straight-line
program P , let deg(P, t) = deg(Rt

1) + deg(Rt
2) be the degree of P at time t. We call

deg(P, 0), deg(P, 1), . . . , deg(P, |P |) the degree sequence of P .
An ordered pair of non-negative integers (t1, t2), where t1 +1 < t2, is called a mesa

in the degree sequence of P if there exists d > 0 (the mesa’s height) such that

– For all t1 < t′ < t2, deg(P, t′) = d;
– deg(P, t1) < d;
– deg(P, t2) < d.

The operations in Observation 6 that simplify the straight-line program P do not change
the height of any mesa in which the operations are applied.

Theorem 7. If f is computable by H2×2 ∩ Indg, then there is a μ
H2×2∩Indg-SLP P

for f with the property that there are no mesas in the degree sequence of P .

Proof. By our assumption, there is some μH2×2∩Indg-SLP P ′ computing f . If P ′ does
not contain any mesas in its degree sequence, then we are done. Otherwise, we will
show how to obtain P from P ′ by a series of transformations. At every step, we turn the
current P ′ into an equivalent μH2×2∩Indg-SLP while reducing the total height of all
mesas by at least one. Ultimately we will obtain a μH2×2∩Indg-SLP P with the desired
property. Hence, it suffices to verify the correctness of a single step.

Let (t1, t2) be the first mesa in the current P ′ and d be its height. There are three
cases to consider.

742 E. Allender and F. Wang

1. deg(Rt1+1
1) > deg(Rt1+1

2).
We claim that the only instruction that can produce this outcome at time t1 + 1
is the degree-one offsetting rule 3(a). Rule 2 is impossible since it only scales the
registers by a constant factor respectively. Rule 3(b) implies that deg(Rt1+1

1) =
deg(Rt1

1); there are two subcases to consider:
– If deg(Rt1

1) ≥ deg(Rt1
2), then deg(Rt1+1

1) ≤ deg(Rt1+1
2), a contradiction to

our assumption that deg(Rt1+1
1) > deg(Rt1+1

2).
– If deg(Rt1

1) < deg(Rt1
2), then deg(Rt1+1

2) ≤ deg(Rt1
2). This contradicts our

assumption that deg(P, t1) < deg(P, t1 + 1).
For similar reasons, one can show that rules 4(a) and 4(b) are not applicable either.
There are two cases that arise, in dealing with rule 5:

– If deg(Rt1
1) �= deg(Rt1

2), then under rule 5, deg(Rt1+1
1) = deg(Rt1+1

2), which
contradicts our assumption that deg(Rt1+1

1) > deg(Rt1+1
2);

– If deg(Rt1
1) = deg(Rt1

2), then deg(P ′, t1) ≥ deg(P ′, t1+1), which contradicts
our assumption that (t1, t2) is a mesa.

∀t1 < t′ < t2, deg(P ′, t′) = d and deg(P ′, t2) < d implies that rules 3(b),
4(b) and 5 are impossible at time t′ (and at time t2), since under our assumptions
they would increase the degree of R2 while maintaining the degree of R1. Hence,

for all t1 < t′ ≤ t2, the product
∏t′

i=t1+1 mi
P ′ is an upper triangular matrix of

the form

[
a gt′ + w
0 b

]
, where w ∈ F, a, b ∈ F

∗ and gt′ is a linear homogeneous

polynomial. In other words, Rt′
1 = a · Rt1

1 + (gt′ + w) · Rt1
2 and Rt′

2 = b · Rt1
2 .

Since deg(P ′, t2) < d = deg(P ′, t1 + 1), it follows that deg(Rt1
1) < deg(Rt1+1

1)
and gt2 = 0. Thus, we can replace the whole computation between t1 and t2 by a
simple application of rule 2 or 4(a) while avoiding the mesa (t1, t2).

2. deg(Rt1+1
1) < deg(Rt1+1

2).
This is completely analogous to case 1.

3. deg(Rt1+1
1) = deg(Rt1+1

2).
We argue that neither of rules 3(a) and 3(b) can happen at time t1 + 1. We study
the reasons for 3(a) and those for 3(b) are symmetric.

– If deg(Rt1
1) ≤ deg(Rt1

2), then deg(Rt1+1
1) > deg(Rt1+1

2), a contradiction to
our assumption deg(Rt1+1

1) = deg(Rt1+1
2).

– If deg(Rt1
1) > deg(Rt1

2), then deg(P ′, t1 + 1) < deg(P ′, t1) since deg(Rt1
2) =

deg(Rt1+1
2). This contradicts our assumption that (t1, t2) is a mesa.

Furthermore, ∀t1 < t′ < t2, deg(P ′, t′) = d implies that rules 3(a) and 3(b) are
impossible at time t′ (and at time t2). Thus, we obtain that for all t1 < t′ ≤ t2,

the product
∏t′

i=t1+1 mi
P ′ is a non-degenerate linear transformation, which can be

captured by one of the other rules or their transposed counterparts. The analysis of
this case can now be completed similarly to Case 1.

In all cases, we are able to reduce the total height of all mesas in P ′ by at least one,
which concludes our proof. �

Corollary 1. If a polynomial f(x) is computable by H2×2 ∩ Indg, then there exists a
μ

H2×2∩Indg-SLP for f(x) with a monotonically nondecreasing degree sequence.

On the Power of Algebraic Branching Programs of Width Two 743

The analysis in the proof of Theorem 7 also shows:

Fact 8. For any μ
H2×2∩Indg-SLP P , ∀0 < t ≤ |P |, if deg(P, t) > deg(P, t − 1), then

only one of the following two scenarios can happen.

– If either 3(a) or 3(b) is applied at time t, then |deg(Rt
1) − deg(Rt

2)| = 1.
– If the other rules are used at time t, then deg(Rt

1) = deg(Rt
2).

Lemma 1. If P is a μ
H2×2∩Indg-SLP with a monotonically nondecreasing degree se-

quence, then for all 0 ≤ t ≤ |P |, |deg(Rt
1) − deg(Rt

2)| ≤ 1. Furthermore, we can

assume that deg(R|P |
1) ≥ deg(R|P |

2).

Theorem 9. Let f(x) be a polynomial of total degree at least two whose highest-degree
homogeneous part is irreducible. Then f(x) is not computable by H2×2 ∩ Indg.

Remark 1. The proof of Theorem 9 reveals that if f(x) is computable by H2×2 ∩ Indg,
then the highest-degree homogeneous part of f(x) can be completely factored into ho-
mogeneous linear polynomials.

3.3 Limitation of μH2×2
-SLPs

Note that we may assume that entries in inherently degenerate matrices all belong to F,
since they can be factored into a product of matrices, exactly one of which, denoted as
m1, belongs to Idg and furthermore, all m1’s entries are from F.

Given a projection p and a straight-line program P = {mi
P | 1 ≤ i ≤ |P |} for a

polynomial f(x), we obtain the straight-line program P |p = {mi
P |p | 1 ≤ i ≤ |P |}

for f(x)|p. In the remaining part, all polynomials considered will be nonzero under any
regular projection of size at most four.

Lemma 2. There does not exist a matrix in P such that all of its entries belong to H.
This implies all matrices in P must contain an entry from F.

Lemma 3. For any matrix m ∈ H2×2 ∩ Pdg, there exists a homogeneous projection p
of size at most three such that m|p is degenerate and all of the entries in m|p belong
to F. Moreover, there is a well-formed homogeneous projection q of size at most six
extending p.

Definition 4. We call such a well-formed homogeneous projection q as in Lemma 3 a
degenerating projection for the potentially degenerate matrix m.

Lemma 4. Let f(x) be a polynomial and P be one of its μ
H2×2

-SLPs. Suppose that

there exists 0 < t ≤ |P | such that mt
P is a potentially degenerate matrix. Let p be one

of its degenerating projections. Let P ′ = P |p and let Rt
i(P

′) be the contents of Ri at
time t in P ′. Then up to the permutation of the indices, only one of the three following
cases will happen.

1. Rt
1(P ′) = Rt

2(P ′) = 0 and f(x)|p = 0. This is the uninteresting case and we
ignore it in the remainder of the proof.

744 E. Allender and F. Wang

2. Rt
1(P ′) ∈ F

∗ and Rt
2(P ′) = w · Rt

1(P ′) for some w ∈ F.
3. Rt

1(P ′) is a polynomial of degree at least one, Rt
2(P ′) = w · Rt

1(P ′) for some
w ∈ F, and f(x)|p is divisible by Rt

1(P ′).

Corollary 2. If f(x)|p is a nonzero irreducible polynomial and the other hypotheses of
Lemma 4 hold, then Rt

1(P ′) = c · f(x)|p for some c ∈ F
∗.

Definition 5. Let f(x), P , mt
P and P ′ satisfy the conditions of Lemma 4. If under

the degenerating projection p, case 2 of Lemma 4 happens, then we call p a cutting
projection for mt

P in P . If instead we have case 3, then we call p a finishing projection
for mt

P in P .

Observation 10. Let f(x) be a polynomial such that under any well-formed homoge-
neous projection q of size at most ten, f(x)|q is always a nonzero irreducible polyno-
mial. Let P be a μH2×2

-SLP for f(x), and let mt
P , p and P ′ be the corresponding

objects as in Lemma 4. We obtain a μ
H2×2

-SLP for f(x)|p from P as follows:

– If the projection p is a cutting projection for mt
P in P , then we can simply ignore

the instructions in P ′ before time t (including the t-th instruction), and concate-
nate a single instruction, which is a linear transformation from the initial condition
(R0

1, R
0
2) = (1, 0) to the current status (Rt

1(P ′), Rt
2(P ′)), with the remaining seg-

ment of P ′. This produces a μ
H2×2

-SLP of size at most |P | − t + 1 for f(x)|p.

– If p is a finishing projection for mt
P in P , then by Corollary 2, Rt

1(P ′) is a nonzero
multiple of f(x)|p and moreover, Rt

1(P ′) = a·Rt−1
1 (P ′)+b·Rt−1

2 (P ′) where a, b ∈
H∪F. We claim that a and b can not both belong to H. Otherwise, let a = c ·xi and
b = c′ · xj , then p′ = p ∪ {xi = 0, xj = 0} is a homogeneous projection of size no
more than eight. Hence, f(x)|p′ �= 0 while Rt

1(P ′)|xi=0,xj=0 = 0, a contradiction.
The same observation implies that one of a and b must be a unit. Therefore, we
can throw away the portion of P ′ after time t (including the t-th instruction) and
generate R1’s contents Rt

1(P ′) by an offsetting matrix m′ at time t, as follows: We
have that Rt

1(P ′) is some non-zero multiple of f(x)|p′ , say Rt
1(P ′) = s·f(x)|p′ . We

also have that Rt
1(P ′) = a ·Rt−1

1 (P ′)+b ·Rt−1
2 (P ′). If a is a unit, then the desired

output f(x)|p′ is produced by the assignment Rt
1(P ′) ← (a/s) ·Rt−1

1 (P ′)+(b/s) ·
Rt−1

2 (P ′), which can be accomplished by a rule of type 3(a) or 4(a) (since we do
not care what value is placed in R2). If b is a unit, then the desired assignment
instead is produced by a transposition of a rule of type 3(b) or 4(b). Thus, in either
case, we obtain a μH2×2

-SLP of size at most t + 1 for f(x)|p.

Definition 6. Let f(x) be a polynomial and P be one of its μH2×2
-SLPs. We classify

the potentially degenerate matrices mt
P in P according to the following criterion: If

mt
P has at least one finishing projection, then mt

P is good; Otherwise, mt
P is bad.

In the same spirit, we can classify inherently degenerate matrices in μH2×2
-SLPs. In

this case, we can think that the degenerating projection is the empty set. The notions of
badness and goodness also carry over; note that the notions of badness and goodness
only apply to potentially and inherently degenerate matrices.

On the Power of Algebraic Branching Programs of Width Two 745

Observation 11. Let p be an arbitrary homogeneous projection and let P ′ = P |p.
If mt

P is bad in P , then mt
P ′ can not be good in P ′ (This is because, if mt

P is bad,
then under any extension of p, at time t both registers compute field elements which
are constant polynomials with no variables). More precisely, mt

P ′ either stays as a bad
matrix or becomes an inherently non-degenerate matrix. Furthermore, inherently non-
degenerate matrices will never be turned into some other type by any projection.

Theorem 12. If k ≥ 8, then f(x) =
∑k

i=1 x2i−1x2i is not computable by H2×2. That
is, for every n, f(x) can not be obtained from IMM2,n under homogeneous projections.

Proof. We prove the theorem by contradiction. Suppose P is a μH2×2
-SLP for f(x).

We define the set G of time steps as:

G = {t | mt
P is a good matrix}.

There are two cases to consider.
The first case is that G = ∅. Define the set B similarly as:

B = {t | mt
P is a bad matrix}.

If B is empty as well, then P is indeed a μ
H2×2∩Indg-SLP. By Fact 3, the highest-

degree homogeneous part of f(x) is irreducible, and by Theorem 9, we have reached
a contradiction. Otherwise, let tB = max(B). Note that, by Fact 4, the output at time
|P | is a non-zero polynomial under any well-formed regular projection of size at most

six, which means that m
|P |
P cannot be bad, and hence tB < |P |. Let p be one of the

cutting projections of mtB

P . Consider P |p and the polynomial f(x)|p it computes. Since
the size of p is bounded by six, by Fact 4, f(x)|p is again an irreducible polynomial
and moreover, its degree-two homogeneous part is irreducible. For all t such that tB ≤
t ≤ |P |, mt

P is an inherently non-degenerate matrix. By the first item of Observation
10, we now have a μH2×2∩Indg-SLP for f(x)|p which is a contradiction to Theorem
9. Notice that by Fact 4, the above arguments apply to any polynomial of the form∑5

i=1 x2i−1x2i + l(x) where l(x) is an arbitrary linear function.
We now assume that G �= ∅. Let tG = min G. Suppose first that mtG

P is an inherently
degenerate matrix. Since mtG

P is good, we have by Lemma 4 that, at time tG, register
R1 computes a nonzero multiple of f . Hence by the second item of Observation 10 with
p = ∅, we obtain a new μ

H2×2
-SLP for f(x), consisting of only the matrices before tG

– none of which are good. This brings us back to the first case and a contradiction.
Otherwise, assume that mtG

P is a potentially degenerate matrix and let p be one of
its finishing projections of size at most six. Consider P |p and the polynomial f(x)|p
it computes. By the second item of Observation 10, we obtain a new μH2×2

-SLP P ′

for f(x)|p and furthermore, by Observation 11, P ′ does not contain any good matrices.
Hence, this reduces us to the first case, since f(x)|p is of the form

∑5
i=1 x2i−1x2i+l(x)

where l(x) is an arbitrary linear function. It is not hard to see that we will arrive at a
contradiction for f(x)|p, which completes our proof. �

Corollary 3. If k ≥ 8, then f(x) =
∑k

i=1 x2i−1x2i + l(x) is not computable by H2×2,
where l(x) is an arbitrary linear function.

746 E. Allender and F. Wang

4 Extensions to Regular Projections

In this section, we show that in the seemingly more powerful model, it is still hard
to compute simple polynomials. The following lemma (whose proof is omitted due to
lack of space) shows that, for nondegenerate matrices, the regular case reduces to the
homogeneous case.

Lemma 5. Every matrix m in R2×2∩ Indg can be represented by a product of matrices
in H2×2 ∩ Indg.

Theorem 13. Let f(x) be a polynomial whose highest-degree homogeneous part is
irreducible. Then f(x) is not computable by R2×2 ∩ Indg.

In the remaining part of this section, we show how to adapt the machinery in Section
3.3 to prove Theorem 1. As part of this adaptation, we use a measure of “independence”
among the linear functions appearing in a matrix (and indeed, this is also used in the
proof of Lemma 5). The following paragraph makes this precise:

Let m ∈ R2×2 be of the following form:

[
l1,1 + w1,1 l1,2 + w1,2

l2,1 + w2,1 l2,2 + w2,2

]
. where wi,j ∈ F

and the li,j’s are homogeneous linear forms in {∑n
k=1 ckxk | n ∈ N, ck ∈ F}. We will

pay attention to the rank of the subspace spanned by {li,j | i, j ∈ {1, 2}}, denoted as
r(m), which in some sense characterizes the number of “independent variables" among
the li,j’s.

Theorem 14 (Theorem 1 restated). Let l(x) be an arbitrary linear function. ∀k ≥
8, f(x) =

∑k
i=1 x2i−1x2i + l(x) is not computable by R2×2. That is, for any n, f(x)

can not be obtained from IMM2,n under regular projections.

Proof (Proof sketch). The proof is by contradiction. Suppose P is a μR2×2
-SLP for

f(x). The following lemma plays the same role as Lemma 3 played in Section 3.3.

Lemma 6. For any matrix m ∈ R2×2 ∩ Pdg, there exists a regular projection p of size
at most three such that m|p is degenerate. Moreover, there is a well-formed projection q
of size at most six such that m|q is degenerate and all of the entries in m|p belong to F.

Define cutting and finishing projections in terms of well-formed regular degenerating
projections as we did in Definition 5. Combined with variations of Lemma 4 and Ob-
servation 10, the remaining proof proceeds along similar lines as in Section 3.3. �

Acknowledgment

Discussions that the first author had with Meena Mahajan, Guillaume Malod, and Syl-
vain Perifel at the 2010 Dagstuhl Seminar 10481 on Computational Counting were
very influential in helping us understand the limitations of width-two computations. We
thank Luke Friedman, Chandan Saha, Ramprasad Saptharishi and anonymous referees
for many helpful comments. We are grateful to Luke Friedman and Ramprasad Sapthar-
ishi for pointing out mistakes in earlier versions. Useful feedback was also provided by
Maurice Jansen and Ran Raz. This work was supported by NSF Grants CCF-0830133
and CCF-0832787.

On the Power of Algebraic Branching Programs of Width Two 747

References

1. Agrawal, M., Allender, E., Datta, S.: On TC0, AC0, and arithmetic circuits. Journal of Com-
puter and System Sciences 60, 395–421 (2000)

2. Allender, E.: Arithmetic circuits and counting complexity classes. In: Krajíček, J. (ed.) Com-
plexity of Computations and Proofs. Quaderni di Matematica, vol. 13, pp. 33–72. Seconda
Università di Napoli (2004)

3. Ambainis, A., Allender, E., Barrington, D.A.M., Datta, S., LêThanh, H.: Bounded depth
arithmetic circuits: Counting and closure. In: Wiedermann, J., Van Emde Boas, P., Nielsen,
M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 149–158. Springer, Heidelberg (1999)

4. Barrington, D.A.: Width-3 permutation branching programs. Technical Report Technical
Memorandum MIT/LCS/TM-293, MIT (1985)

5. Ben-Or, M., Cleve, R.: Computing algebraic formulas using a constant number of registers.
In: Proc. ACM Symp. on Theory of Computing (STOC), pp. 254–257 (1988)

6. Ben-Or, M., Cleve, R.: Computing algebraic formulas using a constant number of registers.
SIAM Journal on Computing 21(1), 54–58 (1992)

7. Caussinus, H., McKenzie, P., Thérien, D., Vollmer, H.: Nondeterministic NC1 computation.
Journal of Computer and System Sciences 57, 200–212 (1998)

8. Jansen, M.J.: Lower bounds for syntactically multilinear algebraic branching programs. In:
Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 407–418. Springer,
Heidelberg (2008)

9. Jansen, M.J., Raghavendra Rao, B.V.: Simulation of arithmetical circuits by branching pro-
grams with preservation of constant width and syntactic multilinearity. In: Frid, A., Moro-
zov, A., Rybalchenko, A., Wagner, K.W. (eds.) CSR 2009. LNCS, vol. 5675, pp. 179–190.
Springer, Heidelberg (2009)

10. Jung, H.: Depth efficient transformations of arithmetic into Boolean circuits. In: Budach, L.
(ed.) FCT 1985. LNCS, vol. 199, pp. 167–173. Springer, Heidelberg (1985)

11. Lipton, R., Zalcstein, Y.: Word problems solvable in logspace. Journal of the ACM 24, 522–
526 (1977)

12. Mahajan, M., Raghavendra Rao, B.V.: Small-space analogues of valiant’s classes. In:
Kutyłowski, M., Charatonik, W., Gębala, M. (eds.) FCT 2009. LNCS, vol. 5699, pp. 250–
261. Springer, Heidelberg (2009)

13. Mahajan, M., Saurabh, N., Sreenivasaiah, K.: Counting paths in planar width 2 branching
programs (2011) (manuscript)

14. Nisan, N.: Lower bounds for non-commutative computation (extended abstract). In: Proc.
ACM Symp. on Theory of Computing (STOC), pp. 410–418 (1991)

15. Robinson, D.: Parallel algorithms for group word problems. PhD thesis, Univ. of California,
San Diego (1993)

16. Saha, C., Saptharishi, R., Saxena, N.: The power of depth 2 circuits over algebras. In:
Proc. Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence (FST&TCS), pp. 371–382 (2009)

17. Saha, C.: Private communication (2011)
18. Valiant, L.: Completeness classes in algebra. In: Proc. ACM Symp. on Theory of Computing

(STOC), pp. 249–261 (1979)

Primal-Dual Approximation Algorithms for
Node-Weighted Steiner Forest on Planar Graphs

Carsten Moldenhauer

Humboldt-Universität zu Berlin, Institut für Informatik, D-10099 Berlin, Germany
carsten.moldenhauer@gmail.com

Abstract. NODE-WEIGHTED STEINER FOREST is the following problem:
Given an undirected graph, a set of pairs of terminal vertices, a weight function
on the vertices, find a minimum weight set of vertices that includes and connects
each pair of terminals. We consider the restriction to planar graphs where the
problem remains NP-complete. Demaine et al. [DHK09] showed that the generic
primal-dual algorithm of Goemans and Williamson [GW97] is a 6-approximation
on planar graphs. We present (1) a different analysis to prove an approxima-
tion factor of 3, (2) show that this bound is tight for the generic algorithm,
and (3) show how the algorithm can be improved to yield a 9/4-approximation
algorithm.

We give a simple proof for the first result using contraction techniques and
present an example for the lower bound. Then, we establish a connection to the
feedback problems studied by Goemans and Williamson [GW98]. We show how
our constructions can be combined with their proof techniques yielding the third
result and an alternative, more involved, way of deriving the first result. The third
result induces an upper bound on the integrality gap of 9/4. Our analysis im-
plies that improving this bound for NODE-WEIGHTED STEINER FOREST via the
primal-dual algorithm is essentially as difficult as improving the integrality gap
for the feedback problems in [GW98].

1 Introduction

We consider the following problem, called NODE-WEIGHTED STEINER FOREST

(NWSF): Given an undirected graph, a set of pairs of terminal vertices, a weight func-
tion on the vertices, find a minimum weight set of vertices whose induced graph in-
cludes and connects each pair of terminals. This problem is a generalization of STEINER

FOREST, where the weight function is defined on the edges and the task is to find a min-
imum weight set of edges. STEINER FOREST reduces to our problem by placing a new
vertex on every edge and setting its weight to the edge weight. It follows that NWSF is
NP-complete and remains so when restricted to planar graphs [GJ77].

Steiner problems are among the oldest NP-complete problems. In fact, the (edge-
weighted) STEINER TREE problem, where all terminal pairs have one common termi-
nal, is one of the 21 NP-complete problems from Karp’s list [Kar72]. Besides numerous
research in the past, Steiner problems have particularly received much attention in the
last three years: STEINER TREE is known to be MAX-SNP hard on general graphs
and Chlebı́k and Chlebı́ková [CC08] presented the current best lower bound of 96/95

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 748–759, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Primal-Dual Approximation Algorithms 749

in 2008. Further, Byrka et al. [BGRS10] recently achieved a 1.39-approximation al-
gorithm. On planar graphs, Borradaile et al. [BKM09] gave a polynomial time ap-
proximation scheme for STEINER TREE that has been extended to polynomial time
approximation schemes for STEINER FOREST [BHM10] and the prize-collecting vari-
ants [BCE+10]. In contrast, for node-weighted Steiner problems on planar graphs, the
only known result is a 6-approximation algorithm [DHK09].

Node-weighted Steiner problems have various applications reaching from mainte-
nance of electric power networks [GMNS99] to computational sustainability [DG10].
Particularly, they have been studied as subproblems in more constrained settings [MR07].
Due to an easy approximation preserving reduction from SET COVER, NWSF cannot be
approximated up to (1 − o(1)) ln k in general graphs where k is the number of termi-
nal pairs, unless NP admits slightly superpolynomial time algorithms [Fei98]. Hence,
the node-weighted problem is much harder to approximate than the edge-weighted one.
Klein and Ravi [KR95] presented an algorithm for NWSF which is implicitly a primal-
dual algorithm and has an approximation guarantee of 2 ln k. Thus, their algorithm is
optimal up to a constant factor on general graphs. However, on planar graphs substantial
improvement is still possible.

Since most practical applications occur in planar or nearly planar environments, we
focus on planar graphs. The only algorithm that has been previously applied to NWSF
in this setting is the primal-dual algorithm of Goemans and Williamson [GW97]. De-
maine et al. [DHK09] showed that this algorithm is a 6-approximation. Due to an edge
counting argument their analysis also extends to graphs with a fixed forbidden minor. It
is not known if polynomial time approximation schemes exist for planar graphs.

Our contributions

1. We improve the result of Demaine et al. [DHK09] by showing that the generic primal-
dual algorithm has an approximation factor of 3 for NODE-WEIGHTED STEINER FOR-
EST on planar graphs. We outline our proof in Section 3 using contraction techniques.
Further, our analysis implies a reduction by a factor of 2/3 in the constants in [DHK09,
p. 337] for graphs with a fixed forbidden minor.

2. We show that the factor of 3 is best possible for the generic algorithm by presenting
a worst-case example in Section 4.

3. The primal-dual algorithm is defined by an oracle. By improving this oracle we obtain
an algorithm with approximation factor of 9/4. This factor is best possible for this algo-
rithm. Our analysis combines our constructions with the proof techniques of Goemans
and Williamson for feedback problems on planar graphs [GW98]. Additionally, we de-
rive an alternative, but more involved, proof of the factor of 3 for the generic algorithm.
Further, our work implies strong similarities between the analysis of the primal-dual al-
gorithm for the feedback problems studied in [GW98] and the analysis of the algorithm
for NWSF. It is very likely that an improvement in the approximation factor in one of
these problems via the primal-dual method will also carry over to the other problems.
Moreover, we reduce FEEDBACK VERTEX SET to NWSF on undirected planar graphs.

We present the standard integer linear programming formulation for NWSF in
Section 1.1. The integrality gap for this formulation is lower bounded by 2 and our

750 C. Moldenhauer

results imply an upper bound of 9/4. Essentially, our analysis shows that improving
this bound via the primal-dual method is as difficult as improving the bound of 9/4 on
the integrality gap for the feedback problems from [GW98] which is an open problem
since 1996.

1.1 Preliminaries

Let G = (V, E) be an undirected simple plane graph, i.e., a planar graph with given
embedding. Let S ⊆ V be a set of vertices. We denote the induced subgraph of S in
G by G[S]. The set of neighbors of S is denoted by Γ (S) = {v : u ∈ S, v �∈ S, uv ∈
E}. The set of connected components of G is denoted by C(G). A ρ-approximation
algorithm is an algorithm that runs in polynomial time and produces a feasible solution
of weight at most ρ times the weight of an optimal solution.

Let w : V → R
+ be a weight function on the vertices. Let {(s1, t1), . . . , (sk, tk)}

be a set of pairs of vertices, called terminal pairs. The problem NODE-WEIGHTED

STEINER FOREST is to find a minimum weight set X ⊆ V of vertices such that for all
1 ≤ i ≤ k, si and ti are in the same component of G[X]. Let T be the family of vertex
sets that separate a terminal pair

T = {S ⊆ V : |{si, ti} ∩ S| = 1 for some 1 ≤ i ≤ k}.
Then, NODE-WEIGHTED STEINER FOREST is the problem

(NWSF)

minimize
∑
v∈V

w(v) xv (1)

subject to
∑

v∈Γ (S)

xv ≥ 1 ∀S ∈ T (2)

xv ∈ {0, 1} ∀v ∈ V. (3)

The constraints (2) ensure that for every set that separates terminals the solution has
to select one of its neighbors. This guarantees connectedness of the terminal pairs.

We can assume w.l.o.g. that all terminals have zero weight. Otherwise, attaching a
new dummy zero-weight vertex to each terminal and replacing the terminal vertex set
by all dummy vertices gives an equivalent instance.

2 The Primal-Dual Algorithm

In this section, we will briefly describe the primal-dual method developed by Goemans
and Williamson. For more information, we refer to their excellent survey [GW97].

Consider the LP relaxation of (NWSF) that replaces the integrality constraints (3) by
xv ≥ 0. The dual of the relaxation is

(DNWSF)

maximize
∑
S∈T

yS (4)

subject to
∑

S∈T : v∈Γ (S)

yS ≤ w(v) ∀v ∈ V (5)

yS ≥ 0 ∀S ∈ T . (6)

Primal-Dual Approximation Algorithms 751

Intuitively, the dual packing constraints (5) ensure that the weight distributed among
the sets adjacent to v is not more than the weight of v.

The algorithm simultaneously constructs a feasible solution X corresponding to (NWSF)
and a feasible solution y to the dual of the LP relaxation (DNWSF), beginning with X
equal to the set of all terminals and a dual solution y ≡ 0. It is defined by an oracle
which, given an infeasible solution X , selects a set of violated constraints in the primal
program (NWSF). We denote this oracle by VIOL(X) and it returns the sets from T
associated with the selected violated constraints (2) of X . While X is not a feasible so-
lution, the algorithm simultaneously increases the dual variables on the sets returned by
VIOL(X). When one of the dual packing constraints (5) becomes tight for some ver-
tex v ∈ V , v is added to X . Observe that after v is added to X , no variable yS occurring
in v’s packing constraint (5) will be increased again since the respective constraint (2)
for S is satisfied. After a feasible solution is obtained, the algorithm performs a clean-
up step. It considers all vertices in X in the reverse order in which they were added and
removes any vertex that is not necessary for feasibility of X .

Primal-Dual Algorithm

(i) X ← {si : 1 ≤ i ≤ k} ∪ {ti : 1 ≤ i ≤ k}
(ii) y ← 0.

(iii) While X is not feasible
(a) Increase yS uniformly for all S ∈ VIOL(X) until ∃S ∈ VIOL(X), v ∈ Γ (S) :∑

S′∈T :v∈Γ (S′) yS′ = w(v).
(b) X ← X ∪ {v}.

(iv) For each v ∈ X in the reverse order in which they were added in Step (iii):
(a) If X \ {v} is feasible then set X ← X \ {v}.

(v) Return X (and y).

Note that the algorithm runs in polynomial time if the oracle VIOL can be computed
in polynomial time and returns only polynomially many sets. Even though there might
be exponentially many variables yS, only polynomially many will be changed in the
course of the algorithm. In fact, the algorithm can be implemented to encode the values
of y implicitly. We refer the reader to [GW97, p. 164, Figure 4.5] for details. In the
following sections we will present two different oracles that can easily be computed in
polynomial time. In fact, for a given infeasible set X they each return a subset of the
components C(X). Recall, that a solution X is feasible if and only if all terminals are
selected and all its components do not separate any terminal pair. Thus, for our oracles,
the while loop in the algorithm is executed until the oracle does not return any sets
anymore.

The above algorithm differs slightly from the generic primal-dual algorithm because
in (i) X is initialized with the set of all terminals instead of the empty set. Since we can
assume that all terminals have zero weight (see above), this is no restriction. In [GW97]
it is proved that the performance guarantee can be obtained using the theorem below. A
minimal augmentation F of X is a feasible solution F containing X such that for any
v ∈ F \ X , F \ {v} is not feasible.

752 C. Moldenhauer

Theorem 1 ([GW97]). Let OPT denote the weight of an optimal solution. Let γ sat-
isfy that for any infeasible set X ⊆ V containing all the terminals, and any minimal
augmentation F of X ∑

S∈VIOL(X)

|F ∩ Γ (S)| ≤ γ |VIOL(X)|.

Then, the primal-dual algorithm delivers a solution of weight at most γ
∑

S∈T yS ≤
γ OPT.

Therefore, given an oracle VIOL, showing that Theorem 1 holds for an appropriate
choice of γ proves the algorithm to be a γ-approximation. For the here presented oracles
we will show that the minimal values of γ are 3 and 9/4.

3 A 3-Approximation on Planar Graphs

We now consider planar graphs and the oracle AVC that returns all components of the
current solution that separate a terminal pair. Recall that a set S separates a terminal
pair (si, ti) if |S ∩ {si, ti}| = 1. We call a component that separates a terminal pair
violated. Let X be the current solution in any iteration of the algorithm. The set of all
violated components is AVC(X) = C(X) ∩ T .

Note that AVC(X) returns the inclusion-wise minimal sets from T for which the
constraint (2) is violated: Let S be a set with violated constraint (2) for X . Let (si, ti)
be any terminal pair that is separated by S and w.l.o.g. si ∈ S. Due to the initialization
in Step (i), every terminal is included in a component of X . Denote by C the component
of X containing si. Clearly, C ⊆ S because otherwise S has a neighbor in C \ S ⊆ X
and its respective constraint would not have been violated. Now, C ∈ AVC(X) since C
is a component of X and separates (si, ti).

Clearly, AVC can be computed in polynomial time by checking each component
of X if it separates two terminals. We will show that the corresponding value of γ in
Theorem 1 is 3 and therefore the primal-dual algorithm is a 3-approximation.

Theorem 2. Let G be planar, X be an infeasible solution containing all the terminals
and F be any minimal feasible augmentation of X . Then,∑

S∈AVC(X)

|F ∩ Γ (S)| ≤ 3 |AVC(X)|. (7)

Proof. The sum in (7) counts the number of adjacencies between F and all violated
components of X , counting multiply if one violated component is adjacent to several
vertices in F , but counting only once if multiple vertices in a common violated compo-
nent are adjacent to one vertex in F .

Recall that contraction of an edge in a planar graph preserves planarity. Let G be
the graph obtained from G[F] by contracting each violated component of X to a single
vertex and discarding multiple copies of edges (Figure 1). In the following, we will
refer to vertices corresponding to violated components of X as white vertices. All other

Primal-Dual Approximation Algorithms 753

t2

s1

t1

s4

s3
s2

t6

s5

s6

t5

t3t4

(a) G in gray; G[F] in black; C(X) marked with
dashed lines.

(b) G with non-violated components of X
marked with dashed lines.

Fig. 1. Construction of G from G[F]

vertices are called black. Thus, we want to bound the number of edges between white
and black vertices in G by three times the number of white vertices.

Now, consider any component C ∈ C(X) that is not violated and has therefore not
been contracted. Since all white vertices in G correspond to other components of X ,
C does not have a white neighbor in G and therefore does not affect the number of
edges between white and black vertices. We construct the graph Ĝ by copying G and
contracting or removing all these components in the following way (Figure 2(a)). Ei-
ther C is isolated or has at least one neighbor in G. In the first case, remove C from Ĝ
because there are no connections from C to any white vertex. In the second case, let v
be any neighbor of C in G. Then, contract C∪{v} to a black vertex in Ĝ that will again
be identified with v and discard multiple copies of edges. Observe that this contraction
preserves planarity of Ĝ.

If Ĝ is not connected, we apply the following arguments to each component. Since
we want to bound the number of edges between white and black vertices the claim then
follows for the entire graph. Hence, we may assume that Ĝ is connected.

The graph Ĝ has the following properties:

(a) Ĝ is planar, simple and connected.
(b) Removing a black vertex from Ĝ splits the graph into multiple components (by

minimality of F).

In the following, we transform Ĝ to a bipartite graph G′ that maintains the above prop-
erties, has the same number of white vertices and the same number of edges between
white and black vertices as Ĝ (Figure 2(b)). Until there are no more edges between two
black vertices, iteratively perform one of the following two operations:

– Contract an edge between two black vertices that have no common white neighbor.
– Remove an edge between two black vertices with a common white neighbor.

For the sequel, the order of these operations can be arbitrary. However, different order-
ings of these operations can result in different graphs.

754 C. Moldenhauer

(a) Ĝ. (b) G′.

Fig. 2. Construction of Ĝ and G′ from G in Figure 1

Edges between white and black vertices are not affected because black vertices with
a common white neighbor are not contracted. White vertices remain unchanged. G′ is
bipartite since all edges between two black vertices have been contracted or removed.
Since white vertices correspond to components of X there are no edges between them
in G and consequently Ĝ and G′. G′ obeys property (a): Contraction along an edge
maintains planarity and connectedness. It is simple because black vertices with com-
mon white neighbor are not contracted. Removing an edge maintains planarity and
connectedness since an edge is only removed when the two black vertices have a com-
mon white neighbor. G′ obeys property (b): Fix a black vertex v of G′. Due to the above
contractions, v is the replacement for a set of black vertices in Ĝ. Due to the minimality
of F , deleting this set in Ĝ splits Ĝ into components each containing at least one white
vertex. Since the white vertices are equivalent in Ĝ and G′, the deletion of v also splits
G′ into components that each contains at least one white vertex.

Let W and B be the sets of white and black vertices in G′, respectively. Recall, that
we would like to bound the number of edges between W and B in terms of |W |. Fix any
r ∈ W . Construct a breadth-first search tree T in G′ rooted at r. Due to the minimality
property (b), all the leafs of T are white. Since each white vertex has at most one black
parent in the tree and G′ is bipartite, the number of black vertices is at most the number
of white vertices, i.e., |B| ≤ |W |.

Note that Demaine et al. [DHK09, Lemma 3, p. 337] showed a bound of |B| ≤
2|W |. If G is H-minor free then G′ is H-minor free and the number of edges in G′ is
O((|B|+|W |)m√

log m) if H has m vertices. Thus, our bound implies an improvement
by a factor of 2/3 in the approximation factors for graphs with a forbidden minor.

In the following, we show the existence of a white vertex that is only connected to
one black vertex in G′. We call such a vertex an earring. Consider the breadth-first
search tree T and a leaf w with its parent v. Recall that v is black and all its children
are white. Due to property (b), v has a child in T that is only connected to v in G′;
otherwise removing v would leave G′ connected.

Now, we show that the number of faces in G′ is at most |W |. The argument proceeds
by induction on the number of black vertices. Clearly, there is at least one black vertex.
Consider a bipartite graph H on b black vertices, any number of white vertices, and
satisfying (a) and (b). Let b = 1. Then, H is a star having one face and at least two
white vertices, yielding the induction base. Suppose H has b + 1 black vertices. Due to

Primal-Dual Approximation Algorithms 755

v
r

w2

w1wi

wd

Fig. 3. Earring r in H with adjacent vertex v and its other neighbors w1, . . . , wd

the above discussion, there exists an earring r in H (Figure 3). Let v denote its black
neighbor. Further, let (d + 1) denote the degree of v in H and let r, w1, . . . , wd denote
the neighbors of v. Since r is an earring, v is adjacent to at most d faces of H .

Let H ′ denote the graph obtained from H by contracting v, r, w1, . . . , wd to a new
white vertex identified with r, and deleting multiple copies of edges. Clearly, H ′ has
b black vertices, is planar, simple and connected, thus obeys (a). Consider any black
vertex v′ �= v in H . Since H obeys (b) we know that removing v′ from H splits H into
multiple components, with v, r, w1, . . . , wd falling into the same component. Hence,
there must be a second component of H\{v′} that is also contained in H ′. Therefore, v′

disconnects r from this component in H ′ and therefore H ′ also obeys (b). By induction
hypothesis we have that in H ′ the number of faces is at most the number of white
vertices. H has at most d more faces than H ′ and exactly d more white vertices. Thus,
the number of faces in H is at most the number of white vertices in H .

We now finish the proof. Let E′ and F ′ denote the edges and faces of G′, respec-
tively. Since G′ is a connected planar graph, Euler’s formula yields |E′| = |B| +
|W | + |F ′| − 2. Due to the above we have |B| ≤ |W | and |F ′| ≤ |W | which yields
|E′| = |B| + |W | + |F ′| − 2 ≤ 3|W | − 2 ≤ 3|W |. 	

4 Lower Bound

We now show that the approximation factor of 3 in Theorem 2 is best possible, even
when restricted to NODE-WEIGHTED STEINER TREE. Let ε > 0 be arbitrarily small.
Set m =

⌈
4
ε (3 − ε)

⌉
and δ = 1

3

(
3 − 1

2ε
)
. Construct the graph Gm as illustrated in

Figure 4. Let p, q, t1, . . . , tm be the terminals and require that they are all connected.
Set the weights w(ai) = w(bi) = w(ci) = δ (1 ≤ i ≤ m), w(di) = 0 (1 ≤ i ≤ m),
and w(ei) = 1 (2 ≤ i ≤ m).

Selecting all di and ei as well as a1, b1 and c1 gives a feasible solution. Therefore,
the weight of an optimal solution is at most 3δ+(m−1) ≤ m+2. The algorithm selects
all ai, bi, ci, di, incurring a weight of 3δm (see the full version of this paper for further
discussion). Due to the definition of δ and m we have (3δ−3+ε)m = mε/2 ≥ 2(3−ε).
This gives 3mδ ≥ (3 − ε)(m + 2) ≥ (3 − ε)(m + 3δ − 1) which means that the

756 C. Moldenhauer

a1

p

t1 c1

q

d1

e2

a2
am

em

tm cm dm

bm

t2 d2
c2

b2
b1

Fig. 4. Graph Gm for the lower bound construction

approximation factor of the algorithm is at least (3 − ε). Since ε was arbitrary, the
algorithm cannot achieve a better approximation factor than 3 on planar graphs.

5 A 9/4-Approximation Algorithm on Planar Graphs

It can be shown that on undirected planar graphs FEEDBACK VERTEX SET reduces
to NODE-WEIGHTED STEINER TREE by placing a terminal vertex in each face of
the graph and connecting it to the vertices on the perimeter of the face. This sug-
gests similarities to the feedback problems on planar graphs studied by Goemans and
Williamson [GW98] which include FEEDBACK VERTEX SET. We show that after con-
structing a certain family of sets it is also possible to leverage the proof techniques
from [GW98]. This yields an alternative derivation of Theorem 2 which we outline
first. Further, reusing the arguments from this derivation we can prove a bound of 9/4
for an improved oracle.

Alternative proof of Theorem 2. As before, let X be the infeasible solution containing
all the terminals and F be the minimal feasible augmentation of X . Again, construct the
graph Ĝ and let W and B denote the sets of white and black vertices in Ĝ, respectively.
Recall that we would like to bound the number of edges between W and B in terms
of |W |.

A family of sets S is said to be laminar if for any two sets S1, S2 ∈ S we have
S1 ⊆ S2, S2 ⊆ S1 or S1 ∩ S2 = ∅. For each black vertex v ∈ B we will select a set Sv

of vertices of Ĝ, called the witness set for v, with the following properties:

(c) For all v ∈ B, Sv contains at least one white vertex.
(d) For all v ∈ B, v is the only neighbor of Sv in Ĝ.
(e) The family {Sv : v ∈ B} is laminar.

Let w ∈ W and T be a breadth-first search tree in Ĝ rooted at w. Denote the subtree
of T below a vertex v and including v by T (v). We will use the same notation for the
vertex sets of these trees. Recall that, due to property (b), all leafs in T are white. Now,
fix a vertex v ∈ B. Clearly, v is neither a leaf nor the root of T and therefore has a
parent and at least one child in T . Due to property (b), removing v from Ĝ splits Ĝ

Primal-Dual Approximation Algorithms 757

v3 v4 v5 v6 v7 v8

v2v1

Fig. 5. Construction of Sv’s from Ĝ. T is marked with black edges. Sv is marked with dashed
lines for all v ∈ B.

into multiple components. Let C1 denote the component containing the parent of v. Let
C2 �= C1 be any other component of Ĝ \ {v}. Set Sv = C2 (see Figure 5).

Since T \ T (v) is connected and the parent of v is in C1 we have T \ T (v) ⊆ C1.
Hence, C2 is the union of subtrees of some children of v in T . Since all the leafs of T are
white, (c) follows. Further, v is the only neighbor of Sv in Ĝ because Sv is a component
of Ĝ \ {v}, which gives (d). To show (e) consider any other vertex v′ ∈ B, v′ �= v.
If neither v is a predecessor of v′ in T nor v′ a predecessor of v, then Sv ⊆ T (v)
and Sv′ ⊆ T (v′) are disjoint. W.l.o.g. let v be the predecessor of v′. If v′ ∈ Sv, then
Sv′ ⊆ Sv since Sv′ is the union of subtrees of some children of v′ which are all in Sv . If
v′ �∈ Sv, then Sv ∩T (v′) = ∅ since T (v′) is connected and therefore entirely contained
in a component of Ĝ\{v}. Since Sv′ ⊆ T (v′), Sv and Sv′ are disjoint. Hence, (e) holds.

The proof now continues with the arguments from Goemans and Williamson [GW98,
p. 45-47]. Intuitively, the idea is to count the number of edges of some special bipar-
tite subgraphs of Ĝ and thereby double counting all black vertices. Replace “witness
cycles” by witness sets: the property that is exploited by the proof is property (d). We
have shown in (e) that our family of witness sets is laminar. Property (c) is equivalent
to the “Minimal Cycle Property 2” [GW98, top of p. 46]. The “Minimal Cycle Prop-
erty 1” does not make sense in our context since the violated components of X are the
inclusion-wise minimal sets with violated constraints (2) and are therefore contracted
to (white) vertices in Ĝ. 	

Improved Oracle. The arguments from Goemans and Williamson heavily depend on
bounding the number of edges in a bipartite graph by the number of its vertices. This
bound can be improved if it is known that the bipartite graph does not have an induced
cycle of length four. This is the basic idea behind the following oracle.

Consider a plane graph on white and black vertices. Two white vertices w1 and w2

with common neighbors b1, . . . , bd partition the plane into several regions. One of these
regions contains the exterior face and we refer to all the other regions as pockets. We say
that two white vertices w1 and w2 surround a third white vertex w3 if w3 is contained
in one of the pockets of w1 and w2.

758 C. Moldenhauer

The oracle C4-free-violated-components first contracts every violated component of
X in G to a white vertex (Step (ii)). Second, if the obtained graph does not contain
two white vertices w1, w2 that surround a third white vertex w3, the oracle returns all
violated components. Otherwise, the oracle subsequently selects the pocket of w3 with
respect to w1 and w2 (Step (iii)). Let V be the set of selected white vertices whose
corresponding components are returned in Step (iv). The oracle ensures that there do
not exist two vertices in V that surround a third vertex in V , and V consists of all white
vertices contained in one pocket of two white vertices.

C4-free-violated-components(G, X)

(i) H ← G.
(ii) Contract each violated component C ∈ AVC(X) to a white vertex in H . (Call all other

vertices black.)
(iii) While H contains two white vertices w1 and w2 that surround another white vertex w3

Set H to be the interior of the pocket of w1 and w2 containing w3.
(iv) Return the violated components of X corresponding to the white vertices of H .

Theorem 3. Let G be planar, X be an infeasible solution containing all the terminals,
F be any minimal augmentation of X , and V be the sets returned by C4-free-violated-
components(G, X). Then, ∑

S∈V
|F ∩ Γ (S)| ≤ 9

4
|V|.

Proof. Analog to the proof of Theorem 2, construct G by contracting every violated
component of X in G[F] to a white vertex. Further, obtain Ĝ from G by removing all
isolated non-violated components of X and contracting all other non-violated compo-
nents of X into a black neighbor. Recall that all non-violated components of X do not
have a white neighbor in G since the white vertices also correspond to components of
X . Therefore, contracting non-violated components does not create new cycles contain-
ing two white vertices. Hence, two white vertices w1 and w2 surround a third white ver-
tex w3 in Ĝ if and only if they surround w3 in G. Thus, the white vertices corresponding
to V in Ĝ do not contain two white vertices surrounding a third vertex from V .

We now use the above construction of a laminar family of witness sets that sat-
isfy (c), (d) and (e). The claim then follows by applying the arguments of Goemans and
Williamson [GW98, p. 49-52] by, again, interchanging “witness cycles” with witness
sets. 	

The analysis given in Theorem 3 is best possible (see the full version of this paper for a
worst case example).

Primal-Dual Approximation Algorithms 759

References

[BCE+10] Bateni, M., Chekuri, C., Ene, A., Hajiaghayi, M., Korula, N., Marx, D.:
Prize-collecting Steiner Problems on Planar Graphs. In: 22nd Annual ACM-
SIAM Symposium on Discrete Algorithms (2010)

[BGRS10] Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: An improved LP-based
Approximation for Steiner Tree. In: 42nd ACM Symposium on Theory of Com-
puting, pp. 583–592 (2010)

[BHM10] Bateni, M., Hajiaghayi, M., Marx, D.: Approximation Schemes for Steiner
Forest on Planar Graphs and Graphs of Bounded Treewidth. In: 42nd ACM
Symposium on Theory of Computing, pp. 211–220 (2010)

[BKM09] Borradaile, G., Klein, P., Mathieu, C.: An O(n log n) Approximation Scheme
for Steiner Tree in Planar Graphs. ACM Transactions on Algorithms 5(3), 1–31
(2009)

[CC08] Chlebı́k, M., Chlebı́ková, J.: The Steiner tree problem on graphs: Inapproxima-
bility results. Theoretical Computer Science 406, 207–214 (2008)

[DG10] Dilkina, B., Gomes, C.P.: Solving Connected Subgraph Problems in Wildlife
Conservation. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS,
vol. 6140, pp. 102–116. Springer, Heidelberg (2010)

[DHK09] Demaine, E.D., Hajiaghayi, M., Klein, P.N.: Node-Weighted Steiner Tree and
Group Steiner Tree in Planar Graphs. In: Albers, S., Marchetti-Spaccamela, A.,
Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555,
pp. 328–340. Springer, Heidelberg (2009)

[Fei98] Feige, U.: A threshold of ln n for approximating set cover. Journal of the
ACM 45, 634–652 (1998)

[GJ77] Garey, M.R., Johnson, D.S.: The Rectilinear Steiner Tree Problem is NP-
Complete. SIAM Journal on Applied Mathematics 32(4), 826–834 (1977)

[GMNS99] Guha, S., Moss, A., Naor, J.S., Schieber, B.: Efficient recovery from power
outage (extended abstract). In: 31st ACM Symposium on Theory of Comput-
ing, pp. 574–582 (1999)

[GW97] Goemans, M.X., Williamson, D.P.: The Primal-Dual Method for Approxima-
tion Algorithms and its Application to Network Design Problems, ch. 4, pp.
144–191 (1997), In Hochbaum [Hoc97]

[GW98] Goemans, M.X., Williamson, D.P.: Primal-Dual Approximation Algorithms for
Feedback Problems in Planar Graphs. Combinatorica 18, 37–59 (1998)

[Hoc97] Hochbaum, D.S. (ed.): Approximation Algorithms for NP-hard Problems. PWS
Publishing Co., Boston (1997)

[Kar72] Karp, R.M.: Reducibility Among Combinatorial Problems. In: Complexity of
Computer Computations, pp. 85–103 (1972)

[KR95] Klein, P., Ravi, R.: A Nearly Best-Possible Approximation Algorithm for
Node-Weighted Steiner Trees. Journal of Algorithms 19(1), 104–115 (1995)

[MR07] Moss, A., Rabani, Y.: Approximation Algorithms for Constrained Node
Weighted Steiner Tree Problems. SIAM Journal on Computing 37(2), 460–481
(2007)

Steiner Transitive-Closure Spanners

of Low-Dimensional Posets�,��

Piotr Berman1, Arnab Bhattacharyya2, Elena Grigorescu3,
Sofya Raskhodnikova1, David P. Woodruff4, and Grigory Yaroslavtsev1

1 Pennsylvania State University, USA
{berman,sofya,grigory}@cse.psu.edu

2 Massachusetts Institute of Technology, USA
abhatt@mit.edu

3 Georgia Institute of Technology, USA
elena@cc.gatech.edu

4 IBM Almaden Research Center, USA
dpwoodru@us.ibm.com

Abstract. Given a directed graph G = (V, E) and an integer k ≥ 1,
a Steiner k-transitive-closure-spanner (Steiner k-TC-spanner) of G is a
directed graph H = (VH , EH) such that (1) V ⊆ VH and (2) for all
vertices v, u ∈ V , the distance from v to u in H is at most k if u is
reachable from v in G, and ∞ otherwise. Motivated by applications to
property reconstruction and access control hierarchies, we concentrate on
Steiner TC-spanners of directed acyclic graphs or, equivalently, partially
ordered sets. We study the relationship between the dimension of a poset
and the size, denoted Sk, of its sparsest Steiner k-TC-spanner.

We present a nearly tight lower bound on S2 for d-dimensional directed
hypergrids. Our bound is derived from an explicit dual solution to a
linear programming relaxation of the 2-TC-spanner problem. We also
give an efficient construction of Steiner 2-TC-spanners, of size matching
the lower bound, for all low-dimensional posets. Finally, we present a
nearly tight lower bound on Sk for d-dimensional posets.

1 Introduction

Graph spanners were introduced in the context of distributed computing by
Awerbuch [3] and Peleg and Schäffer [12], and since then have found numerous
applications. Our focus is on transitive-closure spanners, introduced explicitly
in [5], but studied prior to that in many different contexts (see references in [5]).

Given a directed graph G = (V, E) and an integer k ≥ 1, a k-transitive-
closure-spanner (k-TC-spanner) of G is a directed graph H = (V, EH) such

� E.G. is supported by NSF award CCR-0829672 and NSF award 1019343 to the
Computing Research Association for the Computing Innovation Fellowship Program.
S.R. and G.Y. are supported by NSF / CCF CAREER award 0845701. G.Y. is also
supported by University Graduate Fellowship and College of Engineering Fellowship.

�� Full version is available at http://arxiv.org/abs/1011.6100.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 760–772, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Steiner Transitive-Closure Spanners of Low-Dimensional Posets 761

that: (1) EH is a subset of the edges in the transitive closure of G; (2) for all
vertices u, v ∈ V , if dG(u, v) < ∞ then dH(u, v) ≤ k and if dG(u, v) = ∞ then
dH(u, v) = ∞, where dG(u, v) denotes the distance from u to v in G. That is, a
k-TC-spanner is a graph with a small diameter that preserves the connectivity of
the original graph. The edges of the transitive closure of G, added to G to obtain
a TC-spanner, are called shortcuts and the parameter k is called the stretch.

TC-spanners have numerous applications, and there has been a lot of work
on finding sparse TC-spanners for specific graph families. See [13] for a survey.
In some applications of TC-spanners, in particular, to access control hierarchies
[2,8], the shortcuts can use Steiner vertices, that is, vertices not in the original
graph G. The resulting spanner is called a Steiner TC-spanner.

Definition 1.1 (Steiner TC-spanner). Given a directed graph G = (V, E)
and an integer k ≥ 1, a Steiner k-transitive-closure-spanner (Steiner k-
TC-spanner) of G is a directed graph H = (VH , EH) such that: (1) V ⊆ VH ;
(2) for all vertices u, v ∈ V , if dG(u, v) < ∞ then dH(u, v) ≤ k and if dG(u, v) =
∞ then dH(u, v) = ∞. Vertices in VH\V are called Steiner vertices.

For some graphs, Steiner TC-spanners can be significantly sparser than ordinary
TC-spanners. For example, consider a complete bipartite graph K n

2 , n
2

with n/2
vertices in each part and all edges directed from the first part to the second.
Every ordinary 2-TC-spanner of this graph has Ω(n2) edges. However, K n

2 , n
2

has
a Steiner 2-TC-spanner with n edges: it is enough to add one Steiner vertex v,
edges to v from all nodes in the left part, and edges from v to all nodes in the
right part. Thus, for K n

2 , n
2

there is a factor of Θ(n) gap between the size of the
sparsest Steiner 2-TC-spanner and the size of an ordinary 2-TC-spanner.

We focus on Steiner TC-spanners of directed acyclic graphs (DAGs) or, equiv-
alently, partially ordered sets (posets). They represent the most interesting case
in applications of TC-spanners. In addition, there is a reduction from construct-
ing TC-spanners of graphs with cycles to constructing TC-spanners of DAGs,
with a small loss in stretch ([13], Lemma 3.2), which also applies to Steiner
TC-spanners.

The goal of this work is to understand the minimum number of edges needed to
form a Steiner k-TC-spanner of a given graph G as a function of n, the number
of nodes in G. More specifically, motivated by applications to access control
hierarchies [2,8] and property reconstruction [4,11], described in Section 1.2,
we study the relationship between the dimension of a poset and the size of its
sparsest Steiner TC-spanner. The dimension of a poset G is the smallest d such
that G can be embedded into a d-dimensional directed hypergrid via an order-
preserving embedding. (See Definition 2.1). Atallah et al. [2], followed by De
Santis et al. [8], use Steiner TC-spanners in key management schemes for access
control hierarchies. They argue that many access control hierarchies are low-
dimensional posets that come equipped with an embedding demonstrating low
dimensionality. For this reason, we focus on the setting where the dimension d
is small relative to the number of nodes n.

We also study the size of sparsest (Steiner) 2-TC-spanners of specific posets of
dimension d, namely, d-dimensional directed hypergrids. Our lower bound on this

762 P. Berman et al.

quantity improves the lower bound of [4] and nearly matches their upper bound.
It implies that our construction of Steiner 2-TC-spanners of d-dimensional posets
is optimal up to a constant factor for any constant number of dimensions. It also
has direct implications for property reconstruction.

1.1 Our Results

Steiner 2-TC-spanners of Directed d-dimensional Grids. The directed
hypergrid, denoted Hm,d, has vertex set1 [m]d and edge set {(x, y) : ∃ unique
i ∈ [d] such that yi −xi = 1 and if j �= i, yj = xj}. We observe (in Corollary 2.4)
that for the grid Hm,d, Steiner vertices do not help to create sparser k-TC-
spanners. In [4], it was shown that for m ≥ 3, sparsest (ordinary) 2-TC-spanners
of Hm,d have size at most md logd m and at least Ω

(
md logd m

(2d log log m)d−1

)
. They also

give tight upper and lower bounds for the case of constant m and large d. Our
first result is an improvement on the lower bound for the hypergrid for the case
when m is significantly larger than d, i.e., the setting in the above applications.

Theorem 1.1. All (Steiner) 2-TC-spanners of Hm,d have Ω(md(ln m−1)d

(4π)d) edges.

The proof of Theorem 1.1 constructs a dual solution to a linear programming
relaxation of the 2-TC-spanner problem. We consider a linear program (LP) for
the sparsest 2-TC-spanner of Hm,d. Our program is a special case of a more
general LP for the sparsest directed k-spanner of an arbitrary graph G, used in
[5] to obtain an approximation algorithm for that problem. We show that for our
special case the integrality gap of this LP is small and, in particular, does not
depend on n. Specifically, we find a solution to the dual LP by selecting initial
values that have a combinatorial interpretation: they are expressed in terms of
the volume of d-dimensional boxes contained in Hm,d. For example, the dual
variable corresponding to the constraint that enforces the existence of a length-
2 path from u to v in the 2-TC-spanner is initially assigned a value inversely
proportional to the number of nodes on the paths from u to v. The final sum
of the constraints is bounded by an integral which, in turn, is bounded by an
expression depending only on the dimension d.

We note that the best lower bound known previously [4] was proved by a long
and sophisticated combinatorial argument that carefully balanced the number
of edges that stay within different parts of the hypergrid and the number of
edges that cross from one part to another. The recursion in the combinatorial
argument is an inherent limitation of [4], resulting in suboptimal bounds even
for constant d. In contrast, our linear programming argument can be thought of
as assigning types to edges based on the volume of the boxes they define, and
automatically balancing the number of edges of different types by selecting the
correct coefficients for the constraints corresponding to those edges. It achieves
an optimal bound for any constant number of dimensions.

1 For a positive integer m, we denote {1, . . . , m} by [m].

Steiner Transitive-Closure Spanners of Low-Dimensional Posets 763

Table 1. Steiner k-TC-spanner sizes for d-dimensional posets on n vertices for d ≥ 2

Stretch k Prior bounds on Sk(G)

2d− 1 O(n2) [2]

2d− 2 + t ∀t ≥ 2 O(n(logd−1 n)λt(n)) [2]

2d + O(log∗ n) O(n logd−1 n) [2]

3
O(n logd−1 n log log n)

for fixed d [8]

Stretch k Our bounds on Sk(G)

Ω
(
n
(

log n
cd

)d)
2 O(n logd n)

for a fixed c > 0

≥ 3
Ω(n log�(d−1)/k� n)

for fixed d

Steiner TC-spanners of General d-dimensional Posets. We continue the
study of the number of edges in a sparsest Steiner k-TC-spanner of a poset
as a function of its dimension, following [2,8]. We note that the only poset of
dimension 1 is the directed line Hn,1. TC-spanners of directed lines were discov-
ered under many different guises. (See references in [5].) It was implicitly shown
in [6,7] that, for constant k, the size of the sparsest k-TC-spanner of Hn,1 is
Θ(n · λk(n)), where λk(n) is the kth-row inverse Ackermann function.

Table 1 compares old and new results for d ≥ 2. Sk(G) denotes the number of
edges in the sparsest Steiner k-TC-spanner of G. The upper bounds hold for all
posets of dimension d. The lower bounds mean that there is an infinite family of
d-dimensional posets with sparsest Steiner k-TC-spanners of the specified size.

Atallah et al. constructed Steiner k-TC-spanners with k proportional to d.
De Santis et al. improved their construction for constant d. They achieved
O(3d−tnt logd−1 n log log n) edges for odd stretch k = 2t + 1, where t ∈ [d].
In particular, setting t = 1 gives k = 3 and O(n logd−1 n log log n) edges.

We present the first construction of Steiner 2-TC-spanners for d-dimensional
posets. In our construction, the spanners have O(n logd n) edges, and the length-
2 paths can be found in O(d) time. This result is stated in Theorem 2.2 (in
Section 2). Our construction, like all previous constructions, takes as part of the
input an explicit embedding of the poset into a d-dimensional grid. (Finding such
an embedding is NP-hard [15]. Also, as mentioned previously, in the application
to access control hierarchies, such an embedding is usually given.) The Steiner
vertices used in our construction are necessary to obtain sparse TC-spanners.
An (easy) example that demonstrates this is deferred to the full version.

Theorem 1.1 implies that there is an absolute constant c > 0 for which our
upper bound for k = 2 is tight within an O((cd)d) factor, showing that no drastic
improvement in the upper bound is possible. To obtain a bound in terms of the
number n of vertices and dimension d, substitute md with n and ln m with
(ln n)/d in the theorem statement. This gives the following corollary.

Corollary 1.2 There is an absolute constant c > 0 for which for all d ≥ 2 and
n larger than some constant to the power d, there exists a d-dimensional poset G

on n vertices such that every Steiner 2-TC-spanner of G has Ω
(
n
(

log n
cd

)d) edges.

In addition, we prove a lower bound for all constant k > 2 and constant di-
mension d, which qualitatively matches known upper bounds. It shows that, in

764 P. Berman et al.

particular, every Steiner 3-TC-spanner has size Ω(n log n), and even with signif-
icantly larger constant stretch, every Steiner TC-spanner has size n logΩ(d) n.

Theorem 1.3. For all constant d ≥ 2 and sufficiently large n, there exists a
d-dimensional poset G on n vertices such that for all k ≥ 3, every Steiner k-TC-
spanner of G has Ω(n log(d−1)/k� n) edges.

This theorem (see Section 4) captures the dependence on d and greatly improves
upon the previous Ω(n log log n) bound, which follows trivially from known lower
bounds for 3-TC-spanners of a directed line.

The lower bound on the size of a Steiner k-TC-spanner for k ≥ 3 is proved
by the probabilistic method. We note that using the hypergrid as an example
of a poset with large Steiner k-TC-spanners for k > 2 would yield a much
weaker lower bound because Hm,d has a 3-TC-spanner of size O((m log log m)d)
and, more generally, a k-TC-spanner of size O((m · λk(m))d), where λk(m) is
the kth-row inverse Ackermann function [4]. Instead, we construct an n-element
poset embedded in Hn,d as follows: all poset elements differ on coordinates in
dimension 1, and for each element, the remaining d − 1 coordinates are chosen
uniformly at random from [n]. We consider a set of partitions of the underlying
hypergrid into d-dimensional boxes, and carefully count the expected number of
edges in a Steiner k-TC-spanner that cross box boundaries for each partition.
We show that each edge is counted only a small number of times, proving that
the expected number of edges in a Steiner k-TC-spanner is large. We conclude
that some poset attains the expected number of edges.

Organization. We explain applications of Steiner TC-spanners in Section 1.2.
Section 2 gives basic definitions and observations. In particular, our construc-
tion of sparse Steiner 2-TC-spanners for d-dimensional posets (the proof of The-
orem 2.2) is presented there. Our lower bounds constitute the main technical
contribution of this paper. The lower bound for the hypergrid for k = 2 (The-
orem 1.1) is proved in Section 3. The lower bound for k > 2 (Theorem 1.3) is
presented in Section 4.

1.2 Applications

Numerous applications of TC-spanners are surveyed in [13]. We focus on two
of them: property reconstruction, described in [4,11], and key management for
access control hierarchies, described in [2,5,8].

Property Reconstruction. A local filter [14] (see also a slightly modified
definition in [4,11]) reconstructs an arbitrary function f to ensure that the re-
constructed function g has the desired property, changing f only when necessary.
A local filter is given a function f and a query x and, after looking up the value
of f on a small number of points, it has to output g(x) for some function g,
which has the desired property and does not depend on x. If f has the property,
g must be equal to f .

Steiner Transitive-Closure Spanners of Low-Dimensional Posets 765

Our results on TC-spanners are relevant to reconstruction of two properties of
functions: monotonicity, studied in [1,4,14] and having a low Lipschitz constant,
studied in [11]. In [4], the authors proved that the existence of a local filter
for monotonicity of functions with low lookup complexity implies the existence
of a sparse 2-TC-spanner of Hm,d. In [11], an analogous connection was drawn
between local reconstruction of functions with low Lipschitz constant and 2-TC-
spanners. Our improvement in the lower bound on the size of 2-TC-spanners of
Hm,d directly translates into an improvement by the same factor in the lower
bounds on lookup complexity of local nonadaptive filters for these two properties,
showing they are nearly optimal for any constant d.

Key Management for Access Control Hierarchies. Atallah et al. [2] used
sparse Steiner TC-spanners to construct efficient key management schemes for
access control hierarchies. An access hierarchy is a partially ordered set G of ac-
cess classes. Each user is entitled to access a certain class and all classes reachable
from the corresponding node in G. In the approach from [2,8] to enforcing the ac-
cess hierarchy, a user from a class u can compute cryptographic keys necessary to
access a class v in time proportional to dG(u, v). To speed this up, Atallah et al.
suggest adding edges and nodes to G to increase connectivity. To preserve the ac-
cess hierarchy represented by G, the new graph H must be a Steiner TC-spanner
of G. With this modification, the number of edges in H corresponds to the space
complexity of the scheme, while the running time has two components: the time
to find a path of length at most k from u to v in H and the time to compute
the cryptographic keys. The second component is proportional to the stretch k
of H . In our construction of Steiner 2-TC-spanners, the time to find length-k
paths is O(d). For small d, it is likely to be dominated by the second component
which involves a (time-consuming) evaluation of a cryptographic hash function.

2 Definitions and Observations

For integers j ≥ i, an interval [i, j] refers to the set {i, i + 1, . . . , j}. Logarithms
are always base 2, except for ln which is the natural logarithm.

Each DAG G = (V, E) is equivalent to a poset with elements V and partial
order �, where x � y if y is reachable from x in G. Elements x and y are
comparable if x � y or y � x, and incomparable otherwise. We write x ≺ y
if x � y and x �= y. The hypergrid Hm,d with dimension d and side length
m was defined in the beginning of Section 1.1. Equivalently, it is the poset
on elements [m]d with the dominance order, defined as follows: x � y for two
elements x, y ∈ [m]d iff xi ≤ yi for all i ∈ [d].

A mapping f from a poset G to a poset G′ is called an embedding if it respects
the partial order, that is, f(x) �G′ f(y) iff x �G y for all x, y ∈ G.

Definition 2.1 ([10]). Let G be a poset with n elements. The dimension of G
is the smallest integer d such that G can be embedded into the hypergrid Hn,d.

As shown in [9], for any m > 1, the hypergrid Hm,d has dimension exactly d.

766 P. Berman et al.

Fact 2.1. Each d-dimensional poset G with n elements can be embedded into
a hypergrid Hn,d, so that for all i ∈ [d], the ith coordinates of images of all
elements are distinct. Moreover, such an embedding can be obtained from an
arbitrary embedding of G into Hn,d in time O(dn log n).

Sparse Steiner 2-TC-spanners for d-dimensional Posets. We give a sim-
ple construction of sparse Steiner 2-TC-spanners for d-dimensional posets. For
constant d, it matches the lower bound from Section 3 up to a constant factor.
Note that the construction itself works for arbitrary, not necessarily constant, d.

Theorem 2.2. Each d-dimensional poset G on n elements has a Steiner 2-TC-
spanner H of size O(n logd n). Given an embedding of G into the hypergrid Hn,d,
H can be constructed in time O(dn logd n). Moreover, for all x, y ∈ G, where
x ≺ y, one can find a path in H from x to y of length at most 2 in time O(d).

Proof. Consider an n-element poset G embedded into the hypergrid Hn,d. Trans-
form it, so that for all i ∈ [d], the ith coordinates of images of all elements are
distinct. (See Fact 2.1.) In this proof, assume that the hypergrid coordinates
start with 0, i.e., its vertex set is [0, n− 1]d. Let � = �log n and b(t) be the �-bit
binary representation of t, possibly with leading zeros. Let pi(t) denote the i-bit
prefix of b(t) followed by a single 1 and then �−i−1 zeros. Let lcp(t1, t2) = pi(t1),
where i is the length of the longest common prefix of b(t1) and b(t2).

To construct a Steiner 2-TC-spanner (VH , EH) of G, we insert at most �d

edges into EH per each poset element. Consider a poset element with coordi-
nates x = (x1, . . . , xd) in the embedding. For each d-tuple (i1, . . . , id) ∈ [0, � −
1]d, let p be a hypergrid vertex whose coordinates have binary representations
(pi1(x1), . . . , pid

(xd)). If x ≺ p, we add an edge (x, p) to EH ; otherwise, if p ≺ x
we add an edge (p, x) to EH . Note that only edges between comparable points
are added to EH .

Observe that for d > (2 log n)/(log log n), the theorem is trivial since then
n logd n > n3, and the transitive-closure of G has O(n2) edges and can be com-
puted in O(n3) time. For smaller d, �log n d = O(logd n) and, consequently,
EH contains O(n logd n) edges and can be constructed in O(dn logd n) time, as
described, if bit operations on coordinates can be performed in O(1) time.

For all pairs of poset elements x = (x1, . . . , xd) and y = (y1, . . . , yd), such
that x ≺ y, there is an intermediate point z with coordinates whose binary rep-
resentations are (lcp(x1, y1), . . . , lcp(xd, yd)). By construction, both edges (x, z)
and (z, y) are in EH . Point z can be found in O(d) time, since lcp(xi, yi) can be
computed in O(1) time, assuming O(1) time bit operations on coordinates. 	

Equivalence of Steiner and non-Steiner TC-spanners for Hypergrids.
Our lower bound on the size of 2-TC-spanners for d-dimensional posets of size n
is obtained by proving a lower bound on the size of the Steiner 2-TC-spanner of
Hm,d where m = n1/d. The following lemma, used in Section 4, implies Corol-
lary 2.4 that shows that sparsest Steiner and non-Steiner 2-TC-spanners of Hm,d

have the same size. The proof of the lemma is deferred to the full version.

Steiner Transitive-Closure Spanners of Low-Dimensional Posets 767

Lemma 2.3 Let G be a poset on elements V ⊆ [m]d with the dominance order
and H = (VH , EH) be a Steiner k-TC-spanner of G with minimal VH . Then H
can be embedded into Hm,d.

Corollary 2.4 If Hm,d has a Steiner k-TC-spanner H, it also has a k-TC-
spanner with the same number of nodes and at most the same number of edges.

3 Lower Bound for 2-TC-spanners of the Hypergrid

In this section, we prove Theorem 1.1 that gives a nearly tight lower bound on
the size of (Steiner) 2-TC-spanners of the hypergrids Hm,d. By Corollary 2.4, we
only have to consider non-Steiner TC-spanners.

Proof (of Theorem 1.1). We start by introducing an LP for the sparsest 2-TC-
spanner of an arbitrary graph. Our lower bound on the size of a 2-TC-spanner
of Hm,d is obtained by finding a feasible solution to the dual program, which,
by definition, gives a lower bound on the objective function of the primal.

An Integer LP for Sparsest 2-TC-spanner. For each graph G = (V, E),
we can find the size of a sparsest 2-TC-spanner by solving the following {0,1}-
LP, a special case of an LP from [5] for directed k-spanners. For all vertices
u, v ∈ V satisfying u � v, we introduce variables xuv ∈ {0, 1}. For u �= v,
they correspond to potential edges in a 2-TC-spanner H of G. For all vertices
u, v, w ∈ V satisfying u � w � v, we introduce auxiliary variables x′

uwv ∈ {0, 1},
corresponding to potential paths of length at most 2 in H . The {0,1}-LP is as
follows:

minimize
∑

u,v : u�v

xuv

subject to xuw − x′
uwv ≥ 0, xwv − x′

uwv ≥ 0 ∀u, v, w : u � w � v;∑
w : u�w�v

x′
uwv ≥ 1 ∀u, v : u � v.

Given a solution to the LP, we can construct a 2-TC-spanner H = (V, EH)
of G of size not exceeding the value of the objective function by including (u, v)
in EH iff the corresponding variable xuv = 1 and u �= v. In the other direction,
given a 2-TC-spanner H = (V, EH) of G, we can find a feasible solution of
the LP with the value of the objective function not exceeding |EH | + |V |. Let
E′

H = EH ∪ L, where L is the set of loops (v, v) for all v ∈ V . Then we set
xuv = 1 iff (u, v) ∈ E′

H and x′
uwv = 1 iff both (u, w) ∈ E′

H and (w, v) ∈ E′
H .

Therefore, the size of a sparsest 2-TC-spanner of G and the optimal value of
the objective function of the LP differ by at most |V |. They are asymptotically
equivalent because |V | = O(|EH |) for every weakly connected graph G.

768 P. Berman et al.

A Fractional Relaxation of the Dual LP. Every feasible solution of the
following fractional relaxation of the dual LP gives a lower bound on the optimal
value of the objective function of the primal:

maximize
∑

u,v : u�v

yuv

subject to
∑

w : v�w

y′
uvw +

∑
w : w�u

y′′
wuv ≤ 1 ∀u, v : u � v; (1)

yuv − y′
uwv − y′′

uwv ≤ 0 ∀u, v, w : u � w � v; (2)
yuv ≥ 0, y′

uwv ≥ 0, y′′
uwv ≥ 0 ∀u, v, w : u � w � v.

Finding a Feasible Solution for the Dual. When the graph G is a hypergrid
Hn,d, we can find a feasible solution of the dual, which gives a lower bound on
the objective function of the primal. To do that, we perform the following three
steps. First, we choose initial values ŷuv for the variables yuv of the dual program
and, in Lemma 3.1, give a lower bound on the resulting value of the objective
function of the primal program. Second, we choose initial values ŷ′

uvw and ŷ′′
uvw

for variables y′
uvw and y′′

uvw so that (2) holds. Finally, in Lemma 3.2, we give an
upper bound on the left-hand side of (1) for all u � v. Our bound is a constant
larger than 1 and independent of n. We obtain a feasible solution to the dual by
dividing the initial values of the variables (and, consequently, the value of the
objective function) by this constant.

Step 1. For a vector x = (x1, . . . , xd) ∈ [0, m − 1]d, let the volume V (x) denote∏
i∈[d](xi + 1). This corresponds to the number of hypergrid points inside a d-

dimensional box with corners u and v, where v − u = x. We start building a
solution to the dual by setting ŷuv = 1

V (v−u) for all u � v. This gives the value
of the objective function of the dual program, according to the following lemma.

Lemma 3.1
∑

u,v : u�v

ŷuv > md(ln m − 1)d.

Proof. Substituting 1/(V (v − u)) for ŷuv, we get:

∑
u,v : u�v

ŷuv =
∑

u,v : u�v

1
V (v − u)

=
∑

l∈[m]d

∏
i∈[d]

m − li + 1
li

=

⎛
⎝∑

l∈[m]

m − l + 1
l

⎞
⎠

d

> ((m + 1) ln(m + 1) − m)d > md(ln m − 1)d. 	

Step 2. The values of ŷ′
uvw and ŷ′′

uvw are set as follows to satisfy (2) tightly
(without any slack):

ŷ′
uvw = ŷuw

V (v−u)
V (v−u) + V (w−v)

, ŷ′′
uvw = ŷuw−ŷ′

uvw = ŷuw
V (w−v)

V (v−u) + V (w−v)
.

Steiner Transitive-Closure Spanners of Low-Dimensional Posets 769

Step 3. The initial values ŷ′
uvw and ŷ′′

uvw do not necessarily satisfy (1). The
following lemma, whose proof is deferred to the full version, gives an upper
bound on the left-hand side of all constraints in (1).

Lemma 3.2 For all u � v,
∑

w : v�w

ŷ′
uvw +

∑
w : w�u

ŷ′′
wuv ≤ (4π)d.

Finally, we obtain a feasible solution by dividing initial values ŷuv, ŷ′
uvw and

ŷ′′
uvw by the upper bound (4π)d from Lemma 3.2. Then Lemma 3.1 gives the

desired bound on the value of the objective function:

∑
u,v : u�v

ŷuv

(4π)d
> md

(
ln m − 1

4π

)d

.

This concludes the proof of Theorem 1.1. 	

4 Lower Bound for k-TC-Spanners for k > 2

In this section, we prove Theorem 1.3 that gives a lower bound on the size of
Steiner k-TC-spanners of d-dimensional posets for k > 2 and d ≥ 2.

Proof (of Theorem 1.3). Unlike in the previous section, the poset which attains
the lower bound is constructed probabilistically, not explicitly.

We consider n-element posets G embedded in the hypergrid Hn,d, where the
partial order is given by the dominance order x � y on Hn,d. The elements of
G are points p1, p2, . . . , pn ∈ [n]d, where the first coordinate of each pa is a. (By
Fact 2.1, each d-dimensional poset with n elements can be embedded into Hn,d,
so that the first coordinates of all points are distinct.) Let Gd be a distribution
on such posets G, where the last d − 1 coordinates of each point pa are chosen
uniformly and independently from [n].

Recall that Sk(G) denotes the size of the sparsest Steiner k-TC-spanner of
poset G. The following lemma gives a lower bound on the expected size of a
Steiner k-TC-spanner of a poset drawn from Gd.

Lemma 4.1 E
G←Gd

[Sk(G)] = Ω(n log d−1
k � n) for all k ≥ 3 and constant d ≥ 2.

In this extended abstract, we only prove the special case of Lemma 4.1 for 2-
dimensional posets (Lemma 4.2). The general case is deferred to the full version.
Since Lemma 4.1 implies the existence of a poset G, for which every Steiner
k-TC-spanner has Ω(n log(d−1)/k� n) edges, Theorem 1.3 follows. 	

The Case of d = 2. Next we prove a special case of Lemma 4.1 for 2-
dimensional posets, which illustrates many ideas used in the proof of Lemma 4.1.

Lemma 4.2 E
G←G2

[Sk(G)] = Ω(n log n) for all k ≥ 3 and d = 2.

770 P. Berman et al.

Proof. We can assume that � = log n is an integer. To analyze the expected
number of edges in a Steiner TC-spanner H of G, we consider � partitions of
[n]2 into horizontal strips. We call strips boxes for compatibility with the case of
general d.

Definition 4.1 (Box partition). For each i ∈ [�], define sets of equal size that
partition [n] into 2i intervals: the jth such set, for j ∈ [2i], is Ii

j = [(j −1)2�−i +
1, j2�−i]. Given i ∈ [�], and j ∈ [2i], the box B(i, j) is [n] × Ii

j and the box
partition BP(i) is a partition of [n]2 that contains boxes B(i, j) for all j ∈ [2i].

For each odd j, we group boxes B(i, j) and B(i, j + 1) into a box-pair. We call
j the index of the box-pair and refer to B(i, j) and B(i, j + 1) as the bottom
and the top box in the box-pair. Recall that a poset G consists of elements
p1, p2, . . . , pn ∈ [n]2, where the first coordinate of each pa is a. We analyze
the expected number of edges in a Steiner TC-spanner H of G that cross from
bottom to top boxes in all box-pairs. To do that, we identify pairs of poset
elements (pa, pb), called jumps, that force such edges to appear. By Lemma 2.3,
we can assume that all Steiner vertices of H are embedded into Hn,2. Therefore,
if pa is in the bottom box and pb is in the top box of the same box-pair then H
must contain an edge from the bottom to the top box. To ensure that we count
such an edge just once, we consider only pa and pb for which no other point pc

with c ∈ (a, b) is contained in this box pair. Next we define jumps formally. This
concept is also illustrated in Figure 1.

Definition 4.2 (Jumps). Given a poset G, embedded into Hn,2, and an index
i ∈ [�], a jump generated by the box partition BP(i) is a pair (pa, pb) of elements
of G, such that for some odd j ∈ [2i], the following holds: pa ∈ B(i, j), pb ∈
B(i, j + 1), but pc /∈ B(i, j) ∪ B(i, j + 1) for all c ∈ (a, b). The set of jumps
generated by all partitions BP(i) for i ∈ [�] is denoted by J .

B(2,1)

B(2,2)

B(2,3)

B(2,4)

dimension 1

di
m

en
sio

n
2

Fig. 1. Box partition BP(2) and
jumps it generates

Next we establish that the number of jumps
in a poset G is a lower bound on the num-
ber of edges in a Steiner TC-spanner of G
(Claim 4.3) and bound the expected number
of jumps from below (Claim 4.4).

Claim 4.3. Let G be a poset, embedded into
Hn,2, and H = (VH , EH) be a Steiner k-TC-
spanner of G. Then |EH | ≥ |J |.

To prove the claim, we establish an injec-
tive mapping from J to EH . The proof is
deferred to the full version.

Claim 4.4. When a poset G is drawn from
the distribution G2, the expected size of J is at least n(� − 1)/4.

Steiner Transitive-Closure Spanners of Low-Dimensional Posets 771

Proof. We first find the expected number of jumps generated by the partition
BP(i) for a specific i. Let λi(pa) be the index j of the box-pair B(i, j)∪B(i, j +1)
that contains pa. Let ρi(pa) be 0 if pa is in the bottom box of that box pair,
and 1 otherwise. One can think of λi(pa) as the location of pa, and of ρi(pa) as
its relative position within a box-pair. Importantly, when G is drawn from G2,
that is, the second coordinates of points pa for all a ∈ [n] are chosen uniformly
and independently from [n], then random variables ρi(pa) are independent and
uniform over {0, 1} for all a ∈ [n].

We group together points pa that have equal values of λi(pa), and sort points
within groups in increasing order of their first coordinate a. Since there are
2i−1 box-pairs, the number of groups is at most 2i−1. Observe that random
variables ρi(pa) within each group are uniform and independent because random
variables λi(pa) and ρi(pa) are independent for all a ∈ [n]. Now, if we list ρi(pa)
in the sorted order for all points in a particular group, we get a sequence of 0s
and 1s. Two consecutive entries correspond to a jump iff they are 01. The last
position in a group cannot correspond to the beginning of a jump. The number
of positions that can correspond to the beginning of a jump in all groups is
n minus the number of groups, which gives at least n − 2i−1. For each such
position, the probability that it starts a jump (i.e., the probability of 01) is 1/4.
Thus, the expected number of jumps generated by the partition BP(i) is at least
(n − 2i−1)/4.

Summing over all i ∈ [�], we get the expected number of jumps in all partitions:
(n� −∑�

i=1 2i−1)/4 > n(� − 1)/4 = Ω(n log n). 	

Claims 4.3 and 4.4 imply that, for a poset G drawn from G2, the expected
number of edges in a Steiner TC-spanner of G is Ω(n log n), concluding the
proof of Lemma 4.2. 	

References

1. Ailon, N., Chazelle, B., Comandur, S., Liu, D.: Property-preserving data recon-
struction. Algorithmica 51(2), 160–182 (2008)

2. Atallah, M.J., Blanton, M., Fazio, N., Frikken, K.B.: Dynamic and efficient key
management for access hierarchies. ACM Trans. Inf. Syst. Secur. 12(3) (2009)

3. Awerbuch, B.: Communication-time trade-offs in network synchronization. In:
PODC, pp. 272–276 (1985)

4. Bhattacharyya, A., Grigorescu, E., Jha, M., Jung, K., Raskhodnikova, S.,
Woodruff, D.P.: Lower bounds for local monotonicity reconstruction from
transitive-closure spanners. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.)
APPROX 2010, LNCS, vol. 6302, pp. 448–461. Springer, Heidelberg (2010)

5. Bhattacharyya, A., Grigorescu, E., Jung, K., Raskhodnikova, S., Woodruff, D.P.:
Transitive-closure spanners. In: Mathieu, C. (ed.) SODA, pp. 932–941. SIAM,
Philadelphia (2009)

6. Chandra, A.K., Fortune, S., Lipton, R.J.: Lower bounds for constant depth circuits
for prefix problems. In: Dı́az, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 109–117.
Springer, Heidelberg (1983)

772 P. Berman et al.

7. Chandra, A.K., Fortune, S., Lipton, R.J.: Unbounded fan-in circuits and associative
functions. J. Comput. Syst. Sci. 30(2), 222–234 (1985)

8. De Santis, A., Ferrara, A.L., Masucci, B.: New constructions for provably-secure
time-bound hierarchical key assignment schemes. Theor. Comput. Sci. 407(1-3),
213–230 (2008)

9. Dushnik, B., Miller, E.: Concerning similarity transformations of linearly ordered
sets. Bulletin Amer. Math. Soc. 46, 322–326 (1940)

10. Dushnik, B., Miller, E.W.: Partially ordered sets. Amer. J. Math. 63, 600–610
(1941)

11. Jha, M., Raskhodnikova, S.: Testing and reconstruction of Lipschitz functions with
applications to data privacy. Electronic Colloquium on Computational Complexity
(ECCC) TR11-057 (2011)

12. Peleg, D., Schäffer, A.A.: Graph spanners. J. Graph Theory 13(1), 99–116 (1989)
13. Raskhodnikova, S.: Transitive-closure spanners: A survey. In: Goldreich, O. (ed.)

Property Testing. LNCS, vol. 6390, pp. 167–196. Springer, Heidelberg (2010)
14. Saks, M.E., Seshadhri, C.: Local monotonicity reconstruction. SIAM J.

Comput. 39(7), 2897–2926 (2010)
15. Yannakakis, M.: The complexity of the partial order dimension problem. SIAM

Journal on Matrix Analysis and Applications 3(3), 351–358 (1982)

Solving the Chromatic Cone Clustering Problem

via Minimum Spanning Sphere�

Hu Ding and Jinhui Xu

Department of Computer Science and Engineering
State University of New York at Buffalo
{huding,jinhui}@buffalo.edu

Abstract. In this paper, we study the following Chromatic Cone Clus-
tering (CCC) problem: Given n point-sets with each containing k points
in the first quadrant of the d-dimensional space Rd, find k cones apexed
at the origin such that each cone contains at least one distinct point (i.e.,
different from other cones) from every point-set and the total size of the k
cones is minimized, where the size of a cone is the angle from any bound-
ary ray to its center line. CCC is motivated by an important biological
problem and finds applications in several other areas. Our approaches
for solving the CCC problem relies on solutions to the Minimum Span-
ning Sphere (MinSS) problem for point-sets. For the MinSS problem, we
present two (1+ε)-approximation algorithms based on core-sets and ε-net
respectively. With these algorithms, we then show that the CCC prob-
lem admits (1 + ε)-approximation solutions for constant k. Our results
are the first solutions to these problems.

Keywords: High Dimension, Chromatic, Clustering, Core-Set.

1 Introduction

In this paper, we consider the following Chromatic Cone Clustering (CCC) prob-
lem: Given n point-sets with each containing k points in the first quadrant of
Rd space, find k cones apexed at the origin such that each cone contains at least
one distinct point (i.e., different from other cones) from every point-set and the
total size of the k cones is minimized, where the size of a cone is the angle from
any boundary ray (emitting from the apex) to its center line. For a particular
point p, it is possible that more than one cone contains it. But p is viewed as
“belonging” to only one of them. Similarly, a cone could contain multiple points
from a point-set, but only one of them is viewed as “contained” by this cone. Es-
sentially, the k cones induce a k-coloring for the n point-sets with the constraint
that no pair of points in a point-set shares the same color. The CCC problem
is thus seeking to solve the k-coloring and k-clustering problems simultaneously.
In this paper, we consider the cases of k = 2 or a small constant number.

� This research was partially supported by NSF through CAREER Award CCF-
0546509 and grant IIS-0713489.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 773–784, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

774 H. Ding and J. Xu

The CCC problem is motivated by an important application in biology for de-
termining topologies of chromosomes. In such applications, the interested chro-
mosome is first labeled with a number of BAC probes along the DNA chain.
Each probe forms a point in the 3D nuclear images. To determine the existence
of any common spatial distribution pattern of probes among a population of
cells, the set of probes from each chromosome is first converted into a point in
the feature space, where each dimension is the distance between a particular pair
of probes. The feature points from the same chromosome are then clustered into
a cone apexed at the origin. Using feature points and cone clustering determines
how well a spatial distribution pattern of the probes is preserved among all cells.
Since each chromosome has two copies (or homologs) inside the nucleus, each
normal cell contributes two points in the feature space. For cancer cells, the num-
ber of chromosome homologs could be more than 2. Due to physical limitations,
it is in general difficult to identify the same homolog from all cells in a popu-
lation. Thus the problem of finding common spatial distribution pattern needs
to first classify (i.e., coloring) all feature points into (two or more) groups and
then cluster each of them using a minimum bounding cone apex at the origin,
which can be formulated as a CCC problem. The CCC problem also arises in
other pattern recognition, data mining, or machine learning applications where
each data item could have more than one independent copy.

CCC is a new and challenging problem. To our best knowledge, no previous
algorithm exists. The challenge mainly comes from the requirement on simulta-
neous coloring and clustering. Coloring could significantly change the proximity
of point-sets (since it is now determined by the distance of points with the same
color) and force the algorithm to take into consideration of all possible colorings.
To overcome this difficulty, Our main idea is to first reduce the problem to the
Minimum Spanning Sphere (MinSS) problem and then use the solution of the
MinSS to derive a solution to the CCC problem.

The MinSS is an interesting problem in its own right. It is a natural generaliza-
tion of the Minimum Enclosing Sphere (MinES) which has received considerable
attention in recent years [2,3,4,6,8,10]. For the MinSS problem, previous research
has focused on lower dimensional space (e.g., 2 and 3-D space) [1,5], and not
much work has done in higher dimensional space. In this paper, we first show
that the MinSS problem is NP-Complete and has no FPTAS unless P = NP .
Then we give two (1+ε)-approximation algorithms for MinSS based on core sets
and ε-net techniques respectively. For the CCC problem, we consider the case
that k is either 2 or some other small constant. Using the algorithms for MinSS
and a number of other interesting geometric techniques, we show that there exist
PTAS for both cases. Our algorithms are the first approximation solutions to
both MinSS and CCC problems.

2 Minimum Spanning Sphere

In this section, we study the MinSS problem. We first give some hardness results
and then present two PTAS algorithms for MinSS.

Solving the Chromatic Cone Clustering Problem 775

Definition 1 (MinSS). Let G = {G1, G2, . . . , Gn} be n point-sets (or groups)
in Rd space with each Gi = {pi

1, p
i
2, . . . , p

i
k}, 1 ≤ i ≤ n, consisting of k points,

k > 1. The minimum spanning sphere Bms of G is the sphere with the minimum
radius and containing at least one point from each point-set.

Existing techniques for the MinSS problem have mainly focused on lower dimen-
sional space (i.e., 2 or 3-D space). Huttenlocher et al. [7] introduced a Voronoi
diagram based method for the MinSS problem in 2 and 3-D space. Their method
first constructs the upper envelope of the Voronoi surfaces of each point, and
then shows that if a point is on the boundary of the MinSS, the center of the
MinSS must lie on the upper envelope (of the Voronoi surfaces). Based on this
observation, their algorithm searches the center of the MinSS on the upper en-
velope by first identifying a set of candidate points and then choosing the best
candidate as the center of MinSS. It is easy to see that the above observation
still holds for higher dimensional space. However, due to the high complexity
(exponential with respect to the dimensionality) associated with the upper en-
velope in higher dimensional space, such an approach would not lead to efficient
solution. Thus our main focus will be on deriving approximation solution to the
MinSS problem in higher dimensional space.

Definition 2 (Selection and Optimal Selection). Given n point-sets G =
{G1, G2, . . . , Gn} in Rd with each Gi of size k, a selection of G is a set S =
{p1, p2, . . . , pn} of n points with each pi ∈ Gi for 1 ≤ i ≤ n. A partial selection
of G is a subset of some selection. A selection S is an optimal selection if the
radius of the MinES of S is the same as that of the MinSS of G.

From the above definition, it is easy to see that optimal selection may not be
unique for a given instance of the MinSS problem.

Lemma 1. Finding an Optimal Selection for the MinSS problem is NP-Complete.

Definition 3. The distance from a point p to a point set S in Rd is dis(p, S) =
min{|p − s||s ∈ S}.

The following lemma is used in this paper and proved in [4].

Lemma 2. Given a point set S ∈ Rd,and Ball(c, r) is the minimum enclosing
sphere. Then any closed half space that contains the center c must also contain
one point from S that is at distance r from c.

Theorem 1. There is no FPTAS for MinSS when k ≥ 2, unless P = NP .

Proof. Suppose that the MinSS problem has an FPTAS algorithm. Below we
show that the 3-SAT problem can be solved in polynomial time by making use
of a construction in [9].

Let U = {±ei|i = 1, 2, · · · , d} be a set of 2d points in Rd space, where ei

(or −ei) is the point with its only non-zero coordinate 1 (or −1) in the i-th
dimension. For an instance of 3-SAT, E1 ∧ E2 · · · ∧ Em with Ei = xi ∨ yi ∨
zi and xi, yi, zi ∈ {μ1, μ1, · · · , μd−1, μd−1}, construct point sets P = {pj|j =

776 H. Ding and J. Xu

1, 2, · · · , m} and P = {−pj|pj ∈ P, j = 1, 2, · · · , m} in Rd space with pj
d = 3α

(i.e., the d-th coordinate of pj) and pj
i = α, −α or 0 depending on whether

Ej contains μi, μi, or neither of them, where α is a positive number satisfying
12α2 − 4d−1α + d−1 < 1 − d−1 < 12α2 + d−1. Points in P ∪ P ∪ U can be
partitioned into d + m point-sets, A1, · · · , Ad+m, with each containing 2 points
symmetric about the origin.

Let {A1, · · · , Ad} be the d point-sets from U , and {Ad+1, · · · , Ad+m} be
the m point-sets from P ∪ P . For any selection from {A1, · · · , Ad}, we know
that the minimum enclosing sphere has a radius of

√
1 − d−1, and a center at

(± 1
d , · · · ,± 1

d), where the sign of each coordinate is determined by the selection
of ei or −ei. Thus for any point in P ∪ P , its distance to the center is√

d − 4
d2

+ (
1
d
± α)

2

+ (
1
d
± α)

2

+ (
1
d
± α)

2

+ (
1
d
± 3α)

2

.

Depending on the sign of α, there are only at most 8 possible values for the dis-
tance from any point in P ∪P to the center. Furthermore, these 8 possible values
are independent from the selection of {A1, · · · , Ad} and the boolean formula of
E1 ∧ E2 · · · ∧ Em.

For any selection Sd of {A1, · · · , Ad}, let B(c,
√

1 − d−1) be its minimum en-
closing sphere (MinES). If the MinES of Sd is not the MinES of any optimal
selection of {A1, · · · , Ad+m}, there must exist a point-set in {Ad+1, · · · , Ad+m}
with a larger than

√
1 − d−1 distance to c. Since there are only 8 possible dis-

tances, we let {v1, · · · , v8} be the 8 distances and β = min{vi −
√

1 − d−1|vi >√
1 − d−1, i = 1, · · · , 8}.
Let S = {ai|ai ∈ Ai, i = 1, · · · , d + m} be an optimal selection of {A1, · · · ,

Ad+m}. If E1 ∧ E2 · · · ∧ Em is satisfiable, then the MinES of Sd = {a1, · · · , ad}
(i.e., the d points from U) is the MinES of S. Otherwise (i.e., E1 ∧ E2 · · · ∧
Em is unsatisfiable), the MinES of S must include Sd and one point, say q,
whose distance to the center c of the MinES of Sd is at least β +

√
1 − d−1.

By Lemma 2, we can show that the radius of the MinES of S is at least R =√
1 − d−1 + β2

2(
√

1−d−1+β)
. To see this, let r =

√
1 − d−1 be the radius of the

MinES B(c,
√

1 − d−1) of Sd, and B(c′, r′) be the MinES of Sd ∪ {q}. Let δ be
the distance dis(c, c′) between c and c′. By Lemma 2 and triangle inequaltity, we
know that r′ ≥ √

r2 + δ2 and r′ ≥ r+β−δ. Thus r′ ≥ max{√r2 + δ2, r+β−δ},
and achieves its minimum value r + β2

2(r+β) when
√

r2 + δ2 = r + β − δ and

δ = β2+2βr
2(r+β) . This means that R =

√
1 − d−1 + β2

2(
√

1−d−1+β)
. Thus, the minimum

radius difference between any satisfiable and any unsatisfiable 3-SAT instances
is R −√

1 − d−1 and the relative minimum radius difference is R−√
1−d−1√

1−d−1 .
From the definition of α, we know that β can be represented by an arbitrary

fraction of 1
d . Thus we can lower bound R−√

1−d−1√
1−d−1 as 1

dz , where z is some natural
number.

Let ε be 1
dz . If the radius of a (1+ε)-approximation of the MinSS is larger than

or equal to R, then E1 ∧ E2 · · · ∧ Em is unsatisfiable. Otherwise (i.e., the radius

Solving the Chromatic Cone Clustering Problem 777

is smaller than R) , E1 ∧E2 · · ·∧Em is satisfiable. This means that if there is an
FPTAS for the MinSS problem, there would exist an algorithm for the 3-SAT
problem with a polynomial running time in n and d (as 1/ε is a polynomial of
d). This can only happen if P = NP . 	

In the following part, we present two PTAS algorithms with running time

O((nkd + 2
2
ε d3)k

2
ε +1) and O(nk2d(1 + 1√

d
log 1

ε (
√

2eπ
ε)

d
)) respectively.

Our first algorithm uses core-sets techniques [3,4]. In [3], Badoiu and Clarkson
designed an elegant core-set-based algorithm for the minimum enclosing sphere
(MinES) problem for n points in Rd space. Their algorithm repeatedly finds the
farthest point from the current center and moves the center toward it. The set
of farthest points forms the core-set and its size is independent of n and d (i.e.,
2
ε + 1).

Since the MinSS problem shares a similar objective to the MinES problem,
i.e., both minimize the enclosing sphere of a set of points, we also use an iterative
approach for the MinSS problem. However, due to the different nature of the
MinSS problem, we cannot simply choose the farthest point in each step. This
is because we do not know in advance which subset of points will be spanned
by the MinSS. To overcome this difficulty, our main idea is to maintain a set
of possible partial solutions (i.e., selections) and for each partial solution, we
adopt a strategy similar to the MinES algorithm in [3]. In [3] the radius in each
iteration satisfies the following key inequalities.

Ri+1 ≥ R − Ki (1)

Ri+1 ≥
√

R2
i + K2

i , (2)

where Ri is the radius of the sphere in the i-th iteration, Ki is the distance
between the two centers in the i-th and (i+1)-th iterations, and R = (1+ε)Ropt.
The two inequalities can be proved by using triangle inequality and Lemma 2. For
the MinSS problem, we show that among the set of maintained partial solutions,
there exists a sequence of partial solutions which converges in a way similar to
the MinES algorithm.

Before we present our algorithm for the MinSS problem, we first observe that
in each step the algorithm in [3] chooses the farthest point to the current center
to expand its core-set. This is to ensure that in each step the radius will have
a significant improvement. However, if we take a close look at the proof in [3],
this is not always necessary. Actually as long as the next point could ensure
that Inequalities (1) and (2) are preserved, the number of needed iterations will
still be 2

ε + 1 (the same proof in [3] still works). The following lemma gives the
requirement on the next point.

Lemma 3. In the MinES algorithm in [3], if the next point has a distance to
the current center no smaller than R = (1+ε)Ropt, Inequalities (1) and (2) hold.

Proof. Let p be the next point and ci be the current center. By triangle inequal-
ity, we have Ri+1 + Ki ≥ dis{ci, p} ≥ R. Thus Inequality (1) holds. Inequality
(2) follows directly from Lemma 2. 	

778 H. Ding and J. Xu

MinSS Algorithm 1
Input: A set of point-sets G = {G1, G2, . . . , Gn} with each containing k points
in Rd space.
Output: A (1 + ε)-approximation of the MinSS.

1. Initialize a tree T with each node v of T associating with a partial selection
Sv of G and the MinES Bv(c, r) of Sv. Initially, T is a single-node (i.e., the
root) tree associated with an empty selection.

2. Create k children for the root, choose an arbitrary point-set, say G1, and
add the i-th point p1

i of G1 into the partial selection of the i-th child of the
root.

3. For each node v of the tree, recursively expand it in the following way.
(a) If the MinES Bv(c, r) of Sv covers at least one point from each group, v

is a leaf node of T .
(b) If the height of v is � 2

ε + 1, v is a leaf node of T .
(c) Otherwise, find the point-set Gt which has the largest distance (by def-

inition 3) to the center c of the MinES Bv(c, r). Let l be the distance.
Then create k children for v, with each child inheriting the partial selec-
tion Sv as its current partial selection, insert the i-th point pt

i of Gt into
the partial selection of the i-th child of v, and compute the MinES for
each child.

4. Search all nodes in tree T , find the node with the smallest l and its associated
B(c, r), and output B(c, l).

Theorem 2. MinSS Algorithm 1 returns a (1+ ε)-approximation of the MinSS,
and runs in O((nkd + 2

2
ε d3)k

2
ε +1) time.

Due to space limit, we omit the algorithm for another (1 + ε)-approximation for
the MinSS problem based on ε-net.

3 The Chromatic Cone Clustering Problem

Definition 4 (CCC). Let G = {G1, G2, · · · , Gn} be the n point-sets with each
Gi = {pi

1, · · · , pi
k} containing k points in the first quadrant of the Rd space. The

objective of the CCC problem is to find k cones, C1, C2, · · · , Ck, so that all cones
are apexed at the origin, each Ci contains a distinct point from every point-set
Gi, and the total angle

∑k
i=1 αi is minimized, where αi is the angle between any

bounding ray and the center line of Ci.

Without loss of generality, we assume that each point pi
j is located on the bound-

ary of the Rd unit sphere centered at the origin. Note that this can be easily
satisfied by projecting each point onto the unit sphere, without affecting the
solution. When k = 2, we denote the problem as 2-CCC.

Definition 5 (Chromatic Partition). For a given CCC problem instance G,
a chromatic partition of G is a partition of the nk points into k sets, U1, · · · , Uk,
such that each Ui contains a distinct point from each Gj for j = 1, 2, · · · , n.
A chromatic partition is optimal if the total angle of the MinEC of each Ui is
minimized among all possible chromatic partitions.

Solving the Chromatic Cone Clustering Problem 779

Definition 6 (Chromatic Condition). For a given CCC problem instance
G, a set of k selections or partial selections, S1, · · · , Sk, satisfies the chromatic
condition if there exists a chromatic partition, U1, · · · , Uk, such that Si ⊆ Ui for
i ∈ {1, · · · , k}.

Definition 7. Given a point p in Rd and an angle α, the cone centered at the
ray emitting from the origin and passing through p and with angle α is denoted
as C(p, α).

The following two lemmas reveal some relation between the problems of com-
puting minimum enclosing spheres and minimum enclosing cones.

Lemma 4. Let S be a set of points in the first quadrant of Rd and on the unit
sphere centered at the origin. The minimum enclosing sphere(MinES) of S has
radius of r if and only if the angle of the minimum enclosing cone(MinEC) of
S is arcsin(r).

Lemma 5. Let S be a set of points in the first quadrant of Rd and on the unit
sphere centered at the origin. If B(c, r) is a (1 + ε)-approximation of MinES of
S, then C(c, arcsin r) is a (1 + θ

π
2 −θ)-approximation of MinEC of S, where θ =

arcsin(
√

2ε+ε2

1+ε). Furthermore, if the angle of the MinEC of S is upper bounded
by a small constant β (i.e., significantly smaller than π

2), then C(c, arcsin r) is
a (1 + tan β

β
1√

1−(2ε+ε2) tan2 β
ε)- approximation of the MinEC of S.

3.1 Constant Ratio Approximation Algorithm for k = 2

In this section, we present a constant ratio approximation algorithm for yielding
upper and lower bounds for the optimal solution and then use them to design a
(1 + ε)-approximation algorithm for the CCC problem when k = 2.

2-CCC Algorithm 1
Input: A set of point-sets G = {G1, G2, . . . , Gn} with each containing 2 points
in the first quadrant of the Rd space and on the unit sphere centered at the
origin, and a constant ε ∈ (0, 1].
Output: A constant approximation solution to the CCC problem.

1. Let j = 1, and repeat Step (2) 2 times.
2. Compute a (1 + ε)-approximation of the MinSS for G, and let Sj be the

resulting sphere with center cj and radius rj . Delete the points covered by
Sj from each point-set. If more than one point from a point-set is covered
by Sj , arbitrarily delete one of them. Let j = j + 1.

3. Output the 2 cones, C(ci, arcsin ri), i = 1, 2, corresponding to the 2 spheres.

Lemma 6. 2-CCC Algorithm 1 gives a (π
2 (2 + ε

2)(1 + ε))-approximation of the
2-CCC problem.

780 H. Ding and J. Xu

U ′
1

S ′
1

S1

U ′
2

S ′
2

S2

Fig. 1. An example for illustrating Lemma 6:
Case 1

c′1 c′2

c1

Fig. 2. An example for illustrating
Lemma 6: Case 2

Proof. First it is obvious that C(c1, arcsin r1) and C(c2, arcsin r2) form a feasi-
ble (may not be optimal) solution to the 2-CCC problem. The corresponding
chromatic partition for the 2n points of G are U1 and U2. We assume U ′

1 and
U ′

2 are the optimal chromatic partition according to Definition 5. The MinES
for U ′

1 and U ′
2 are S′

1 and S′
2, the centers are c′1 and c′2, and the radii are r′1 and

r′2 respectively. Let RL be the radius of the MinSS of G, and RU be the radius
of the MinES of all points in G. There are two cases to consider. (See Figures 1
and 2).

1. U1 = U ′
1 or U1 = U ′

2. Without loss of generality, assume that U1 = U ′
1. This

means that U2 = U ′
2. Since S1 is a (1+ε)-approximation of the MinSS of G, we

know that r1 ≤ (1 + ε)RL ≤ (1 + ε)r′1, where the last inequality is due to the
fact that S′

1 is a spanning sphere of G. Also since S2 is a (1+ε)-approximation
of the MinES of U2 and S′

2 is the MinES of U ′
2, we have r2 ≤ (1+ ε)r′2. Thus,

r1 + r2 ≤ (1+ ε)(r′1 + r′2). It is easy to get arcsin r1 +arcsinr2 ≤ π
2 (r1 + r2) ≤

π
2 (1 + ε)(r′1 + r′2) ≤ π

2 (1 + ε)(arcsin r′1 + arcsin r′2). Hence C(c1, arcsin r1) and
C(c2, arcsin r2) form a π

2 (1 + ε)-approximation.
2. U1 overlaps with both U ′

1 and U ′
2. In this case, S1 must intersect with both

S′
1 and S′

2. Let h = dis(c′1, c
′
2). By triangle inequality, we have h ≤ ||c1 −

c′1|| + ||c1 − c′2|| ≤ r1 + r′1 + r1 + r′2 = 2r1 + r′1 + r′2. Also, r2 ≤ (1 + ε)RU ≤
(1 + ε) r′

1+r′
2+h

2 ≤ (1 + ε)(r1 + r′1 + r′2). Thus, r1+r2
r′
1+r′

2
≤ r1+(1+ε)(r1+r′

1+r′
2)

r′
1+r′

2
=

1+ε+ (2+ε)r1
r′
1+r′

2
. Since S′

1 and S′
2 are both spanning spheres for G, we know that

r1 ≤ (1+ε)r′1 and r1 ≤ (1+ε)r′2. Hence, r1+r2
r′
1+r′

2
≤ (1+ε)(2+ ε

2). From this, we
immediately have arcsin r1+arcsin r2 ≤ π

2 (r1+r2) ≤ π
2 (1+ε)(2+ ε

2)(r′1+r′2) ≤
π
2 (1 + ε)(2 + ε

2)(arcsin r′1 + arcsin r′2). This means that C(c1, arcsin r1) and
C(c2, arcsin r2) are π

2 (1 + ε)(2 + ε
2)-approximation of the 2-CCC problem.

	

3.2 (1 + ε) Algorithms for the Case of k = 2

In the 2-CCC problem, each point-set Gi in G contains two points {pi
1, p

i
2}. Let

U1 and U2 be an optimal chromatic partition of G, C1 and C2 be the MinEC,
and S1(c1, r1) and S2(c2, r2) be the MinES of U1 and U2 respectively.

Definition 8 ((t, δ, b)-Sequence). Let t, b and δ be three positive numbers with
t ≤ 2b and 0 ≤ δ ≤ 1. The (t, δ, b)-sequence consists of � 1

δ pairs of numbers

Solving the Chromatic Cone Clustering Problem 781

(βi
1, β

i
2), i = 1, · · · , � 1

δ , and is defined as follows. If t ≤ b, then βi
1 = i t

 1
δ �

and βi
2 = t − (i − 1) t

 1
δ �

; otherwise (i.e., t > b), βi
1 = t − b + i t−2(t−b)

 1
δ �

and

βi
2 = b − (i − 1) t−2(t−b)

 1
δ �

for i = 1, · · · , � 1
δ .

t

t

x

y (
β1
1 , β

1
2

)

t ≤ b

(b, b)

t

t

b

b x

y

(
β1
1 , β

1
2

)

t > b

Fig. 3. An example for illustrating
Definition 8

q1 q2

q1

q2

q1

q2

B1

B2
B2

B1

B1 B2

Type 1 Type 2

Type 3 Type 4

Fig. 4. Four types of configurations for a
pair of points and a pair of spheres not
forming a 2-Match

Lemma 7. For any pair of positive numbers x and y satisfying the conditions of
x ≤ b, y ≤ b, and x+y ≤ t, there exists a pair of (βi

1, β
i
2) in the (t, δ, b)-sequence

such that x ≤ βi
1 and y ≤ βi

2.

Proof. It follows directly from the definition of (t, δ, b)-sequence and Figure 3.
	

Definition 9 (2-Match). Given two points q1 and q2, and two spheres B1 and
B2, the points and spheres form a 2-Match if q1 is covered by B1 and q2 is
covered by B2, or vice verse.

If q1, q2 and B1, B2 do not form a 2-match, it is easy to see that their configu-
ration falls in one or more of the following 4 types (see Figure 4).

– Type1: q1 is outside of both B1 and B2.
– Type2: q2 is outside of both B1 and B2.
– Type3: Both q1 and q2 are outside of B1.
– Type4: Both q1 and q2 are outside of B2.

Note that in the above classification, we do not care about the position of the
other point in Types 1 and 2. It may or may not be inside any of the two spheres.
For Types 3 and 4, we do not care about the other sphere. It may or may not
contain any of the two points.

We assume that the optimal solution for the two angles are α1 and α2.
The following algorithm uses the concept of 2-Match to determine whether a
guess (β1, β2) on the values of α1 and α2 is correct (i.e. to determine whether
α1 ≤ β1 ≤ π

2 and α2 ≤ β2 ≤ π
2). Our main idea of the algorithm is that if the

guess (β1, β2) is correct, then the optimal chromatic partition U1 and U2 can be

782 H. Ding and J. Xu

covered by two spheres of radii (1+ ε) sinβ1 and (1+ ε) sinβ2 respectively. Thus,
we can convert the problem of determining the correctness of a guess on α1 and
α2 to a problem of determining whether there exists a chromatic partition whose
two sets can be covered by spheres of the above radii. To check the existence, we
build a tree T of height 2� 2

ε and use two sets, S1 and S2, to guess how U1 and
U2 partition each point-set Gj . In each level of the tree, there will be at least
one guess that is correct about U1 and U2.

Guess-Verifier Algorithm
Input: A set of point-sets G = {G1, G2, . . . , Gn} with each containing 2 points
in the first quadrant of the Rd space, an ε ∈ (0, 1], and a guess (β1, β2) on α1

and α2 with β1 < π
2 and β2 < π

2 .
Output: An answer on whether α1 ≤ β1 and α2 ≤ β2.

1. Initialize 2 empty sets S1 and S2. Put p1
1 into S1 and p1

2 into S2. Let B1(c1, r1)
and B2(c2, r2) be the MinES of S1 and S2 respectively.

2. Build a tree T with root u, associate u with S1, S2, B1(c1, r1) and B2(c2, r2),
and recursively construct the tree in the following way until no node is
growable.

3. Let v be the current node of T .
(a) If for each Gi, i = 1, 2, · · · , n, pi

1, pi
2 and B(c1, (1 + ε) sin β1), B(c2, (1 +

ε) sin β2) are a 2-Match, return ’yes’, along with B(c1, (1 + ε) sin β1) and
B(c2, (1 + ε) sin β2).

(b) If the height of v is 2� 2
ε , v is a leaf node and go to another growable

node.
(c) If r1 > (1 + ε) sin β1 or r2 > (1 + ε) sin β2, v is a leaf node and go to

another growable node.
(d) Choose a point-set Gj which does not form a 2-Match with B(c1, (1 +

ε) sin β1) and B(c2, (1 + ε) sin β2), determine the type of their configura-
tion. If they belong to multiple types, arbitrarily select one as their type
and perform the following operation accordingly.

Type 1: pj
1 is outside of the two spheres. Create a left and a right child for

v, and let them inherit S1, S2, B1(c1, r1) and B2(c2, r2) from v. For
the left child, add pj

1 into S1 and re-compute B1(c1, r1); for the right
child, add pj

1 into S2 and re-compute B2(c2, r2). For each child, if its
|S1| > � 2

ε , |S2| > � 2
ε , or S1 and S2 violate the chromatic condition,

it will not be created.
Type 2: Perform a similar operation as in Type 1.
Type 3: Both pj

1 and pj
2 are outside of B1. Create a left and a right child for

v, and let them inherit S1, S2, B1(c1, r1) and B2(c2, r2) from v. For
the left child, add pj

1 into S1, and re-compute B1(c1, r1); for the right
child, add pj

2 into S1, and re-compute B1(c1, r1). For each child, if
its |S1| > � 2

ε or S1 and S2 violate the chromatic condition, it will
not be created.

Type 4 Perform a similar operation as in Type 3.
4. Return ’no’.

Solving the Chromatic Cone Clustering Problem 783

Lemma 8. The above algorithm correctly returns a “yes” answer in O((nd +
2

2
ε �d3) 22 2

ε �) time, if α1 ≤ β1 ≤ π
2 and α2 ≤ β2 ≤ π

2 .

For the limited of space, we omit the proof for lemma 8, the rough idea is: We can
consider the Guess-Verifier Algorithm as finding 2� 2

ε points one by one. In each
step, there are two requirements, one for preserving Inequalities (1) and (2), the
other for satisfying the chromatic condition. If α1 ≤ β1 ≤ π

2 and α2 ≤ β2 ≤ π
2 ,

the algorithm will find such 2� 2
ε points.

With the above algorithm and lemma, we can now present our PTAS algo-
rithm for the 2-CCC problem.

2-CCC Algorithm
Input: A set of point-sets G = {G1, G2, . . . , Gn} with each containing 2 points
in the first quadrant of the Rd space and on the unit sphere centered at the
origin, three constant ε1, ε2, ε3 ∈ (0, 1].
Output: An approximation solution to the 2-CCC problem.

1. Use the algorithm in Lemma 6 to obtain upper and lower bounds, L1 and
L2, for the optimal solution with L1

L2
being a constant.

2. Let Rlow = L2, Rup = L1. Repeat Steps 3 and 4 until Rup − Rlow ≤ ε3L2.

3. Let R = Rlow+Rup

2 . Construct a (R, ε2, arcsin
√

1 − 1
d)-Sequence.

4. For each pair of guessing angles in the (R, ε2, arcsin
√

1 − 1
d)-Sequence and

ε1, run the Guess-Verifier Algorithm. If there is one guess leading to a “yes”
answer, let Rup = R and keep the returning two spheres from the Guess-
verifier Algorithm. Otherwise (i.e., no “yes” answer), let Rlow = R. Go to
Step 3.

5. Output the two cones corresponding to the two spheres from Guess-Verifier
Algorithm returned along with the last “yes” answer.

By Lemmas 5 to 8, we immediately have the following theorem.

Theorem 3. The 2-CCC Algorithm generates a (1 + θ
π
2 −θ)(1 + ε2)(1 + ε3)-

approximation solution in O(1
ε2

log 1
ε3

(nd+2
2

ε1
�
d3)22 2

ε1
�) time, where θ is deter-

mined by the equation sin θ =
√

2ε1+ε21
1+ε1

. Furthermore, if the angle of each optimal
cone is upper bounded by a small constant β, the approximation ratio improves
to (1+ tan β

β
1√

1−(2ε1+ε21) tan2 β
ε1) (1+ε2)(1+ε3) within the same time bound, and

angle of each returning cone is no more than (1 + tan β
β

1√
1−(2ε1+ε21) tan2 β

ε1)β.

3.3 A (1 + ε)-Approximation Algorithm for k > 2

For the case of k > 2, we first extend the constant ratio approximate algorithm
for k = 2 to get a upper and lower bounds. Then, we generalize the concepts of
(t, δ, b)-Sequence to (t, δ, b)-Net and 2-Match to k-Match, and show that there
exists a similar Guess-Verifier algorithm for this case. With this algorithm, we

784 H. Ding and J. Xu

perform a binary search between the upper and lower bounds to obtain a (1+ε)-
approximation solution to the CCC problem. Below is the main theorem of our
algorithm.

Theorem 4. When k > 2, it is possible to obtain a (1 + θ
π
2 −θ)(1 + ε2)(1 +

ε3)-approximation for the CCC problem in O(
(k−1

ε2
�

k−1

)
(log 1

ε3
+ k log k)(nk2d +

nk2.5+2
2

ε1
�d3)(k2−(k+1))k(2

ε1
�−1)) time, where θ satisfies the equation sin θ =√

2ε1+ε21
1+ε1

. Furthermore, if the angle of each optimal cone is upper bounded by a
small constant β, the approximation ratio improves to

(1 +
tan β

β

1√
1 − (2ε1 + ε21) tan2 β

ε1)(1 + ε2)(1 + ε3).

Acknowledgments. The authors would like to thank Professor Pankaj K. Agar-
wal for very helpful discussion and suggestions on this problem.

References

1. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop,
B., Sacristan, V.: The Farthest Color Voronoi Diagram and Related Problems. In:
Abstracts 17th European Workshop Comput. Geom. (2001)

2. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Geometric Approximation via
Coresets. Combinatorial and Computational Geometry 52, 1–30 (2005)

3. Badoiu, M., Clarkson, K.: Smaller core-sets for balls. In: Proceedings of the Four-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 801–802 (2003)

4. Badoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In:
Proceedings of the 34th Symposium on Theory of Computing, pp. 250–257 (2002)

5. Cheong, O., Everett, H., Glisse, M., Gudmundsson, J., Hornus, S., Lazard, S.,
Lee, M., Na, H.: Farthest-Polygon Voronoi Diagrams. In: Proceedings of the 15th
Annual European Conference on Algorithms, pp. 407-418 (2007)

6. Clarkson, K.: Coresets, sparse greedy approximation, and the Frank-Wolfe algo-
rithm. In: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pp. 922–931 (2008)

7. Huttenlocher, D.P., Kedem, K., Sharir, M.: The Upper Envelope of Voronoi Sur-
faces and its Application. In: Proceedings of the Seventh Annual Symposium on
Computational Geometry, pp. 194–203 (1991)

8. Kumar, P., Mitchell, J., Yildirim, A.: Computing Core-Sets and Approximate
Smallest Enclosing Hyperspheres in High Dimensions (2002) (manuscript)

9. Megiddo, N.: On the Complexity of Some Geometric Problems in Unbounded Di-
mension. J. Symb. Comput. 10, 327–334 (1990)

10. Panigrahy, R.: Minimum enclosing polytope in high dimensions, CoRR
cs.CG/0407020 (2004)

11. Micali, S., Vazirani, V.V.: An O(
√|V ||E|) algorithm for finding maximum match-

ing in general graphs. In: Proceedings of 21st IEEE Symp. Foundations of Com-
puter Science, pp. 17–27 (1980), doi:10.1109/SFCS

Clustering with Local Restrictions

Daniel Lokshtanov1 and Dániel Marx2,	

1 University of California, San Diego, USA
dlokshtanov@cs.ucsd.edu

2 Humboldt-Universität zu Berlin, Berlin, Germany
dmarx@cs.bme.hu

Abstract. We study a family of graph clustering problems where each
cluster has to satisfy a certain local requirement. Formally, let μ be
a function on the subsets of vertices of a graph G. In the (μ, p, q)-
Partition problem, the task is to find a partition of the vertices into
clusters where each cluster C satisfies the requirements that (1) at most
q edges leave C and (2) μ(C) ≤ p. Our first result shows that if μ is an
arbitrary polynomial-time computable monotone function, then (μ, p, q)-
Partition can be solved in time nO(q), i.e., it is polynomial-time solvable
for every fixed q. We study in detail three concrete functions μ (num-
ber of nonedges in the cluster, maximum number of non-neighbours a
vertex has in the cluster, the number of vertices in the cluster), which
correspond to natural clustering problems. For these functions, we show
that (μ, p, q)-Partition can be solved in time 2O(p) · nO(1) and in ran-
domized time 2O(q) ·nO(1), i.e., the problem is fixed-parameter tractable
parameterized by p or by q.

1 Introduction

Partitioning objects into clusters or similarity classes is an important task in
various applications such as data mining, facility location, interpreting experi-
mental data, VLSI design, and many more. The partition has to satisfy certain
constraints: typically, we want to ensure that objects in a cluster are “close” or
“similar” to each other and/or objects in different clusters are “far” or “dissim-
ilar.” Additionally, we may want to partition the data into a certain prescribed
number k of clusters, or we may have upper/lower bounds on the size of the
clusters. Different objectives and different distance/similarity measures give rise
to specific combinatorial problems.

Correlation clustering [14,1,3,15] deals with a specific form of similarity mea-
sure: for each pair of objects, we know that either they are similar or dissimilar.
This means that the similarity information can be expressed as an undirected
graph, where the vertices represent the objects and similar objects are adjacent.
In the ideal situation every connected component of the graph is a clique, in
which case the components form a clustering that completely agrees with the
� Research supported by the Alexander von Humboldt Foundation and OTKA grant

67651.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part I, LNCS 6755, pp. 785–797, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

786 D. Lokshtanov and D. Marx

similarity information. However, due to inconsistencies in the data or experimen-
tal errors, such a perfect partitioning might not always be possible. The goal in
correlation clustering is to partition the vertices into an arbitrary number of
clusters in a way that agrees with the similarity information as much as possi-
ble: we want to minimize the number of pairs for which the clustering disagrees
with the input data (i.e., similar pairs that are put into different clusters, or
dissimilar pairs that are clustered together).

In many cases, such as in variants of the correlation clustering problem defined
in the previous paragraph, the objective is to minimize the total error of the
solution. Thus the goal is to find a solution that is good in a global sense, but
this does not rule out the possibility that the solution contains clusters that
are very bad. In this paper, the opposite approach is taken: we want to find a
partition where each cluster is “good” in a certain local sense. This means that
the partition has to satisfy a set of local constraints on each cluster, but we do
not try to optimize the total fitness of clusters.

The setting in this paper is the following. We want to partition the graph into
an arbitrary number of clusters such that (1) at most q edges leave each cluster,
and (2) each cluster induces a graph that is “cluster-like.” Defining what we mean
by the abstract notion of cluster-like gives rise to a family of concrete problems.
Formally, let μ be a function that assigns a nonnegative integer to each subset
of vertices in the graph and let us require μ(X) ≤ p for every cluster X of the
partition. There are many reasonable choices for the measure μ that correspond
to natural problems. In particular, in this paper we will obtain concrete results
for the following three measures:

1. nonedge(X): number of nonedges induced by X ,
2. nondeg(X): maximum degree of the complement of the graph induced by X .
3. size(X) = |X |: number of vertices of X .

The first two functions express that each cluster should induce a graph that is
close to being a clique. The third function only requires that each cluster is small.
For a given function μ and integers p and q, we denote by (μ, p, q)-Partition

the problem of partitioning the vertices into clusters such that at most q edges
leave each cluster and μ(X) ≤ p for every cluster.

Our first result is very simple yet powerful. Let μ be a function satisfying the
mild technical conditions that it is polynomial-time computable and monotone
(i.e., if X ⊆ Y , then μ(X) ≤ μ(Y)). Observe that for example all three func-
tions defined above satisfy these conditions. Our first result shows that for every
function μ satisfying these conditions and every fixed integer q, the problem
(μ, p, q)-Partition can be solved in polynomial time (the value p is considered
to be part of the input). For example, it can be decided in polynomial time if
there is a clustering where at most 13 edges leave each cluster and each clus-
ter induces at most 27 nonedges (or even the more general question, where the
maximum number p of nonedges is given in the input). This might be surprising:
we believe that most people would guess that this problem is NP-hard. The al-
gorithm is based on a simple application of uncrossing of posimodular functions
and on the fact that for fixed q we can enumerate every (connected) cluster with

Clustering with Local Restrictions 787

at most q outgoing edges. The crucial observation is that if every vertex can be
covered by a good cluster, then the vertices can be partitioned into good clusters.
Thus the problem boils down to checking if a given v is contained in a suitable
cluster.

While the algorithm is simple in hindsight, considerable efforts have been
spent on solving some very particular special cases. For example, Heggernes
et al. [9] gave a polynomial-time algorithm for (nonedge, 1, 3)-Partition and
Langston and Plaut [10] argued that the very deep results of Robertson and
Seymour on graph minors and immersions imply that (size, p, q)-Partition is
polynomial-time solvable for every fixed p and q. These results follow as straight-
forward corollaries from our first result.

Although this simple algorithm is polynomial for every fixed q, the running
time is about nO(q), thus it is not efficient even for small values of q. To improve
the running time, we look at the problem from the viewpoint of parameterized
complexity. We show that for several natural measures μ, including the three
defined above, the clustering problem can be solved in randomized time 2O(q) ·
nO(1), that is, the problem is fixed-parameter tractable (FPT) parameterized by
the bound q on the number of edges leaving a cluster. Moreover, the bound p
can be assumed to be part of the input. Thus this algorithm can be efficient for
small values of q (say, O(log n)) even if p is large. The algorithm has constant
probability of error, but it can be derandomized at the cost of worse dependence
on q in the running time (details will appear in the full version). The problem
(size, p, q)-Partition appears in the open problem list of the 1999 monograph
of Downey and Fellows [8] under the name “Minimum Degree Partition,” where
it is suggested that the problem is probably W[1]-hard parameterized by q. Our
result answers this question by showing that the problem is FPT, contrary to
the expectation of Downey and Fellows.

A crucial ingredient of our parameterized algorithm is the notion of impor-
tant separators, which has been used (implicitly or explicitly) to obtain fixed-
parameter tractability results for various cut or separator related problems. In
particular, we use the “randomized selection of important sets” argument that
was introduced very recently in [13] to prove the fixed-parameter tractability of
(edge and vertex) multicut. With these tools at hand, we can reduce (μ, p, q)-
Partition to a special case that we call the “Satellite Problem.” We show that
if the Satellite Problem is fixed-parameter tractable parameterized by q for a
particular function μ, then (μ, p, q)-Partition is also fixed-parameter tractable
parameterized by q. It seems that for many reasonable functions μ, the Satel-
lite Problem can be solved by dynamic programming techniques. In particular,
this is true for the three functions defined above, and this results in randomized
algorithms with running time 2O(q) ·nO(1). Note that the reduction to the Satel-

lite Problem works for every monotone μ, and we need arguments specific to
a particular μ only in the algorithms for Satellite Problem.

788 D. Lokshtanov and D. Marx

2 Clustering and Uncrossing

Given an undirected graph G, we denote by Δ(X) the set of edges between X
and V (G) \ X , and define d(X) = |Δ(X)|. We will use two well-known and
easily checkable properties of the function d: for X, Y ⊆ V (G), d satisfies the
submodular and posimodular inequalities

d(X) + d(Y) ≥ d(X ∩ Y) + d(Y ∪ X) and d(X) + d(Y) ≥ d(X \ Y) + d(Y \ X).

Let μ : 2V (G) → Z
+ be a function assigning nonegative integers to sets of

vertices of G. Let p and q be two integers. We say that a set C ⊆ V (G) is
a (μ, p, q)-cluster if μ(C) ≤ p and d(C) ≤ q. A (μ, p, q)-partition of G is a
partition of V (G) into (μ, p, q)-clusters. The main problem considered in this
paper is finding such a partition. A necessary condition for the existence of
(μ, p, q)-partition is that for every vertex v ∈ V (G) there is a (μ, p, q)-cluster
that contains v. Therefore, we are also interested in the problem of finding a
cluster containing a vertex v.

(μ, p, q)-Partition

Input: A graph G, integers p, q.
Find: A (μ, p, q)-partition of G.

(μ, p, q)-cluster

Input: Graph G, integers p, q, vertex v.
Find: A (μ, p, q)-cluster C containing v.

The main observation of this section is that if μ is monotone (i.e., μ(X) ≤ μ(Y)
for every X ⊆ Y), then this is actually a sufficient condition. Therefore, in these
cases, it is sufficient to solve (μ, p, q)-cluster.

Lemma 1. Let G be a graph, let p, q ≥ 0 be two integers, and let μ : 2V (G) → Z
+

be a monotone function. If every v ∈ V (G) is contained in some (μ, p, q)-cluster,
then G has a (μ, p, q)-partition, and given a set of (μ, p, q)-clusters C1, . . . , Cn

whose union is V (G), a (μ, p, q)-partition can be found in polynomial time.

Proof. Let us consider a collection C1, . . . , Cn of (μ, p, q)-clusters whose union
is V (G). If the sets are pairwise disjoint, then they form a partition of V (G) and
we are done. If Ci ⊆ Cj , then the union remains V (G) even after throwing away
Ci. Thus we can assume that no set is contained in another. Suppose that Ci

and Cj intersect. Now either d(Ci) ≥ d(Ci \ Cj) or d(Cj) ≥ d(Cj \ Ci) must be
true: it is not possible that both d(Ci) < d(Ci \Cj) and d(Cj) < d(Cj \Ci) hold,
as this would violate the posimodularity of d. Suppose that d(Cj) ≥ d(Cj \ Ci).
Now the set Cj \ Ci is also a (μ, p, q)-cluster: we have d(Cj \ Ci) ≤ d(Cj) ≤ q
by assumption and μ(Cj \ Ci) ≤ μ(Cj) ≤ p from the monotonicity of μ. Thus
we can replace Cj by Cj \ Ci in the collection: the union of the clusters is still
V (G). Similarly, if d(Cj) ≥ d(Cj \ Ci), then we can replace Cj by Cj \ Ci.

Repeating these steps (throwing away subsets and resolving intersections), we
eventually arrive at a pairwise disjoint collection of (μ, p, q)-clusters. Each step
decreases the number of cluster pairs Ci, Cj that have non-empty intersection.
Therefore, this process terminates after a polynomial number of steps. 	

Clustering with Local Restrictions 789

In light of Lemma 1, it is sufficient to find a (μ, p, q)-cluster Cv for each vertex
v ∈ V (G). If there is a vertex v for which there is no such cluster Cv, then
obviously there is no (μ, p, q)-partition; if we have such a Cv for every vertex
v, then Lemma 1 gives us a (μ, p, q)-partition in polynomial time. For fixed q,
(μ, p, q)-Cluster can be solved by brute force if μ is polynomial-time com-
putable:enumerate every set F of at most q edges and check if the component of
G \ F containing v is a (μ, p, q)-cluster. If Cv is a (μ, p, q)-cluster containing v,
then we find it when F = Δ(Cv) is considered by the enumeration procedure.

Theorem 2. Let μ be a polynomial-time computable monotone function. Then
for every fixed q, there is an nO(q) time algorithm for (μ, p, q)-Partition.

As we have seen, an algorithm for (μ, p, q)-Cluster gives us an algorithm for
(μ, p, q)-Partition. In the rest of the paper, we devise more efficient algorithms
for (μ, p, q)-Cluster than the nO(q) time brute force method described above.

3 Parameterization by q

The main result of this section is that (μ, p, q)-Partition is (randomized) FPT
parameterized by q for the three functions nonedge, nondeg, and size.

Theorem 3. There is an algorithm for (size, p, q)-Partition, (nonedge, p, q)-
Partition and (nondeg, p, q)-Partition using 2O(q)|V (G)|O(1) randomized time.
If the input instance is a yes-instance the algorithm incorrectly returns no with
probability less than 1

2 . On no-instances the algorithm always answers no.

By Lemma 1, all we need to show is that (μ, p, q)-cluster is fixed-parameter
tractable parameterized by q. We introduce a somewhat technical variant of this
question, the Satellite Problem, and show that for every monotone function
μ, if Satellite Problem is FPT, then (μ, p, q)-cluster is FPT as well. Thus
we need arguments specific to a particular μ only for the Satellite Problem.

Satellite Problem

Input: A graph G, integers p, q, a vertex v ∈ V (G), a partition V0, V1,
. . . , Vn of V (G) such that v ∈ V0 and there is no edge between
Vi and Vj for any 1 ≤ i < j ≤ n.

Find: A (μ, p, q)-cluster C with V0 ⊆ C such that for every 1 ≤ i ≤ n,
either C ∩ Vi = ∅ or Vi ⊆ C.

That is, for every Vi, we have to decide whether to include or exclude it from
the solution C. If we exclude Vi from C, then d(C) increases by the number of
edges between V0 and Vi. If we include Vi into C, then μ(C) increases accordingly.
Thus we need to solve the knapsack-like problem of including sufficiently many
Vi such that d(C) ≤ q, but not including too many to ensure μ(C) ≤ p. As we
shall see in Section 3.3, in many cases this problem can be solved by dynamic
programming (and some additional arguments). The important fact that we use
is that there are no edges between Vi and Vj , thus for many reasonable functions

790 D. Lokshtanov and D. Marx

μ, the way μ(C) increases by including Vi is fairly independent from whether Vj

is included in C or not.
The reduction to Satellite Problem uses the concept of important sepa-

rators (Section 3.1). The reduction itself is given in Section 3.2. In Section 3.3,
we show how the Satellite Problem can be solved for the three functions
nonedge, nondeg, size.

3.1 Important Separators and Important Sets

The notion of important separators was introduced in [12] to prove the fixed-
parameter tractability of multiway cut problems. This notion turned out to be
useful in other applications as well [5,6,17]. The basic idea is that in many
problems where terminals need to be separated in some way, it is sufficient to
consider separators that are “as far as possible” from one of the terminals. Let
s, t be two vertices of a graph G. An s − t separator is a set S ⊆ E(G) of edges
separating s and t, i.e., there is no s − t path in G \ S. An s − tseparator is
inclusionwise minimal if there is an s − t path in G \ S′ for every S′ ⊂ S.

Definition 4. Let s, t ∈ V (G) be vertices, S ⊆ E(G) be an s− t separator, and
let K be the component of G \ S containing s. We say that S is an important
s − t separator if it is inclusionwise minimal and there is no s − t separator S′

with |S′| ≤ |S| such that K ⊂ K ′ for the component K ′ of G \ S′ containing s.

We now define important sets, which are natural companions to important sep-
arators.

Definition 5. We say that a set X ⊆ V (G), v �∈ X is important if (1) d(X) ≤
q, (2) G[X] is connected and (3) there is no Y ⊃ X, v �∈ Y such that d(Y) ≤
d(X) and G[Y] is connected.

It is easy to see that X is an important set if and only if Δ(X) is an important
u−v separator for every u ∈ X . As there are differences between edge and vertex
separators, and some of the results appear only implicitly in previous papers,
the full version of this article [11] contains proofs of Theorem 6 and Lemma 7.
Since X is an important set if and only if Δ(X) is an important u− v separator,
we can use Theorem 6 and Lemma 7 to enumerate important sets.

Theorem 6 (�). 1 Let s, t ∈ V (G) be two vertices in graph G. For every k ≥ 0,
there are at most 4k important s − t separators of size at most k. Furthermore,
these important separators can be enumerated in time 4k · nO(1).

Lemma 7 (�). Let s, t ∈ V (G). If S is the set of all important s− t separators,
then

∑
S∈S 4−|S| ≤ 1. Thus S contains at most 4k separators of size at most k.

3.2 Reduction to the Satellite Problem

In this section we reduce (μ, p, q)-Cluster to the Satellite Problem.
1 Proofs of results labelled with � have been omitted due to space restrictions.

Clustering with Local Restrictions 791

Lemma 8. If Satellite Problem can be solved in time f(q) ·nO(1) for some
monotone μ, then there is a randomized 2O(q) ·f(q)·nO(1) algorithm with constant
error probability that finds a (μ, p, q)-cluster containing v (if one exists).

The following lemma establishes the connection between important sets and
finding (μ, p, q)-clusters: we can assume that the components of G \ C for the
solution C are important sets. In Lemma 10, we show that by randomly choosing
important sets, with some probability we can obtain an instance of the Satel-

lite Problem where V1, . . . , Vn contain all the components of G\C. This gives
us the reduction stated in Lemma 8 above.

Lemma 9. Let C be an inclusionwise minimal (μ, p, q)-cluster containing v.
Then every component of G \ C is an important set.

Proof. Let X be a component of G \ C. It is clear that X satisfies the first two
properties of Definition 5 (note that Δ(X) ⊆ Δ(C)). Thus let us suppose that
there is a Y ⊃ X , v �∈ Y such that d(Y) ≤ d(X) and G[Y] is connected. Let
C′ := C \ Y . Note that C′ is a proper subset of C: every neighbor of X is in C,
thus a connected superset of X has to contain at least one vertex of C. It is easy
to see that C′ is a (μ, p, q)-cluster: we have Δ(C′) ⊆ (Δ(C) \Δ(X))∪Δ(Y) and
therefore d(C′) ≤ d(C) − d(X) + d(Y) ≤ d(C) ≤ q and μ(C′) ≤ μ(C) ≤ p (by
the monotonicity of μ). This contradicts the minimality of C. 	

Lemma 10. Given a graph G, vertex v ∈ V (G), integers p, q, and a monotone
function μ : 2V (G) → Z

+, we can construct in time 2O(q) ·nO(1) an instance I of
the Satellite Problem such that

– If some (μ, p, q)-cluster contains v, then I is a yes-instance with probability
2−O(q),

– If there is no (μ, p, q)-cluster containing v, then I is a no-instance.

Proof. For every u ∈ V (G), u �= v, let us use the algorithm of Lemma 7 to
enumerate every important u − v separator of size at most q. For every such
separator S, let us put the component K of G\S containing u into the collection
S. Note that a component K can be obtained for more than one vertex u, but
we put only one copy into S.

Let S′ be a subset of S, where each member K of S is chosen with probability
2−d(K) independently at random. Let Z be the union of the sets in S′, let V1, . . . ,
Vn be the connected components of G[Z], and let V0 = V (G) \Z. It is clear that
V0, V1, . . . , Vn give an instance I of Satellite Problem, and a solution for I
gives a (μ, p, q)-cluster containing v. Thus we only need to show that if there is a
(μ, p, q)-cluster C containing v, then I is a yes-instance with probability 2−O(q).

Let C be an inclusionwise minimal (μ, p, q)-cluster containing v. Let B be the
vertices on the boundary of C, i.e., the vertices of C incident to Δ(C). Let K1,
. . . , Kt be the components of G \ C. Note that every edge of Δ(C) enters some
Ki, thus

∑t
i=1 d(Ki) = d(C) ≤ q. By Lemma 9, every Ki is an important set,

and hence it is in S. Consider the following two events:

792 D. Lokshtanov and D. Marx

(1) Every component Ki of G \ C is in S′ (and hence Ki ⊆ Z).
(2) Z ∩ B = ∅.

The probability that (1) holds is
∏t

i=1 4−d(Ki) = 4−
∑ t

i=1 d(Ki) ≥ 4−q. Event
(2) holds if for every b ∈ B, no set K ∈ S with b ∈ K is selected into S′.
It follows directly from the definition of important separators that for every
K ∈ S with b ∈ K, Δ(K) is an important b − v separator. Thus by Lemma 7,∑

K∈S,b∈K 4−|d(K)| ≤ 1. The probability that Z ∩ B = ∅ can be bounded by

∏
K∈S,K∩B �=∅

(1 − 4−d(K)) ≥
∏
b∈B

∏
K∈S,b∈K

(1 − 4−d(K)) ≥
∏
b∈B

∏
K∈S,b∈K

exp(
−4−d(K)

(1 − 4−d(K))
)

≥
∏
b∈B

∏
K∈S,b∈K

exp(−4

3
·4−d(K)) =

∏
b∈B

exp

⎛
⎝−4

3
·

∑
K∈S,b∈K

4−d(K)

⎞
⎠ ≥ (e−

4
3)|B| ≥ e−4q/3.

In the first inequality, we use that every term is less than 1 and every term on
the right hand side appears at least once on the left hand side; in the second
inequality, we use that 1 + x ≥ exp(x/(1 + x)) for every x > −1. Events (1)
and (2) are independent: (1) is a statement about the selection of subsets of S
that are disjoint from B, while (2) involves only sets intersecting B. Thus by
probability 2−O(q), both (1) and (2) hold.

Suppose that both (1) and (2) hold, we show that instance I of the Satellite

Problem is a yes-instance. In this case, every component Ki of G \ C is a
component Vj of G[Z]: Ki ⊆ Z by (1) and every neighbor of Ki is outside Z.
Thus C is a solution of I, as it can be obtained as the union of V0 and some
components of G[Z]. 	

3.3 Solving the Satellite Problem

In this section, we give efficient algorithms for solving the Satellite Problem

when the function μ is size, nonedge and nondeg. We describe the three algo-
rithms by increasing difficulty. In the case when μ is size, solving the Satellite

Problem turns out to be equivalent to the classical Knapsack problem with
polynomial bounds on the values and weights of the items.

Recall that the input to the Satellite Problem is a graph G, integers p,
q, a vertex v ∈ V (G), a partition V0, V1, . . . , Vn of V (G) such that v ∈ V0

and there is no edge between Vi and Vj for any 1 ≤ i < j ≤ n. The task is to
find a vertex set C, such that C = V0 ∪ ⋃i∈S Vi for a subset S of {1, . . . , n}
and C satisfies d(C) ≤ q and μ(C) ≤ p. For a subset S of {1, . . . , n} we define
C(S) = V0 ∪⋃i∈S Vi.

Lemma 11. The Satellite Problem for measure size can be solved in time
O(q|V (G)| log |V (G)|).
Proof. Notice that d(C) = d(V0) −∑i∈S d(Vi). Hence, we can reformulate the
Satellite Problem with μ = size as finding a subset S of {1, . . . , n} such that

Clustering with Local Restrictions 793

∑
i∈S d(Vi) ≥ d(V0) − q and

∑
i∈S |Vi| ≤ p − |V0|. Thus, we can associate with

every i an item with value d(Vi) and weight |Vi|. The objective is to find a set of
items with total value at least d(V0) − q and total weight at most p − |V0|. This
problem is known as Knapsack and can be solved in O(nv log w) time by a
classical dynamic programming [4,7] algorithm, where n is the number of items,
v is the value we seek to attain and w is the weight limit. Since the value is
bounded from above by q and the weight by |V (G)|, the statement of the lemma
follows. 	

The case that μ = nonedge is slightly more complicated, however we can still
solve it using a dynamic programming algorithm. For the version of Satellite

Problem when μ = nondeg we do not have a polynomial time algorithm. Instead,
we give a 2q|V (G)|O(1) time randomized algorithm.

Lemma 12 (�). The Satellite Problem for nonedge can be solved in time
O(pn|E(G)||V (G)|). There is a randomized algorithm which given an instance of
nondeg-Satellite Problem runs in 2q|V (G)|O(1) time, correctly answers no on
all no-instances and answers yes on yes-instances with probability at least e−2q.

Repeating the algorithm for nondeg-Satellite Problem O(e2q) times will de-
crease the probability of false negatives from 1 − e−2q to 1

2 . Lemmata 10, 11,
and 12 give Theorem 3.

4 Parameterization by p

Theorem 13. There is a 8ep+o(p)|V (G)|O(1) time algorithm for the problem
(size, p, q)-Partition and a 8e3p+o(p)|V (G)|O(1) time algorithm for the problems
(nonedge, p, q)-Partition and (nondeg, p, q)-Partition.

Because of Lemma 1, it is sufficient to solve the corresponding (μ, p, q)-Cluster

problem within the same time bound. The setting is as follows. We are given a
graph G, integers p and q and a vertex v in G. The objective is to find a set
C not containing v such that d(C ∪ {v}) ≤ q and, depending on which problem
we are solving, either |C ∪ {v}| = size(C ∪ {v}) ≤ p, nonedge(C ∪ {v}) ≤ p or
nondeg(C ∪ {v}) ≤ p.

For a set S and vertex v, define Δ(S, v) to be the set of edges with one
endpoint in S and one in {v}. Define Δ(S, v) to be Δ(S) \ Δ(S, v), and let
d(S, v) = |Δ(S, v)| and d(S, v) = |Δ(S, v)|. We will say that a set C is v-minimal
if v /∈ C and d(C′ ∪ {v}) > d(C ∪ {v}) for every C′ ⊂ C. As size, nonedge and
nondeg are monotone we can focus on v-minimal sets C. The following fact uses
that there are no parallel edges:

Observation 14. Let C be a v-minimal set. Then d(C, v) < d(C, v) ≤ |C|
In particular, if d(C, v) ≥ d(C, v), then d(v) ≤ d(C ∪ {v}), contradicting that C
is minimal. Since d(C, v) < |C|, it follows that C must contain a vertex u such
that N [u] ⊆ C ∪ {v}. Now we show that there are not too many v-minimal sets
C of size at most p such that G[C] is connected.

794 D. Lokshtanov and D. Marx

Lemma 15. For any graph G, vertex v and integer p, there are at most 4p|V (G)|
v-minimal sets C such that |C| ≤ p and G[C] is connected. Furthermore, all such
sets can be listed in O(4p|V (G)|) time.

Proof. By Observation 14, any v-minimal set C of size at most p satisfies d(C, v) <
p. Let S be a set such that |S| ≤ p and G[S] is connected. Let F be a subset of
N(S) \ {v} of size at most p − 1. We prove by downward induction on |S| and
|F | that there are at most 22p−|S|−|F |−1 v-minimal sets such that |C| ≤ p , G[C]
is connected, S ⊆ C, and F ∩ C = ∅. If |S| = p then the only possibility for
C is S, while 22p−|S|−|F |−1 ≥ 1. Similarly, consider the case that |F | = p − 1.
Now, every vertex of F has at least one edge into C and hence d(C, v) = p − 1.
Hence N(C) = F ∪ {v} and the only possibility for C is the connected compo-
nent of G \ (F ∪ {v}) that contains S. Hence there is one possibility for C and
22p−|S|−|F |−1 ≥ 1.

For the inductive step, consider a set S such that |S| ≤ p and G[S] is connected
and a subset F of N(S) \ {v} of size at most p − 1. We want to bound the
number of v-minimal sets such that |C| ≤ p and G[C] is connected, S ⊆ C and
F∩C = ∅. If N(S)\(F∪{v}) is empty, then there is only one choice for C, namely
S, and 22p−|S|−|F |−1 ≥ 1. Otherwise, consider a vertex u ∈ N(S) \ (F ∪ {v}).
By the induction hypothesis, the number of v-minimal sets such that |C| ≤ p
and G[C] is connected, S ∪ {u} ⊆ C and F ∩ C = ∅ is at most 22p−|S|−|F |−2.
Similarly, the number of v-minimal sets such that |C| ≤ p and G[C] is connected,
S ⊆ C and (F ∪ {u}) ∩ C = ∅ is at most 22p−|S|−|F |−2. Since either u ∈ C or
u /∈ C, the two cases cover all possibilities for C and hence there are at most
2 · 22p−|S|−|F |−2 = 22p−|S|−|F |−1 possibilities for C.

For a fixed S and F , the above proof can be translated into a procedure which
lists all v-minimal sets such that |C| ≤ p and G[C] is connected, S ⊆ C and
F ∩ C = ∅. We run the procedure for S = {u} and F = ∅ for every possible
choice of u. Hence, there are at most 4p|V (G)| v-minimal sets C such that |C| ≤ p
and G[C] is connected, and the sets can be efficiently listed. This concludes the
proof. 	

Observation 16. Let C be a v-minimal set of G and G[S] be a connected
component of G[C]. Then S is a v-minimal set.

In particular, if S is not a v-minimal set, then it contains a v-minimal set S′ ⊂ S
and it is easy to see that d({v} ∪ (C \ S) ∪ S′) ≤ d({v} ∪ C), contradicting the
minimality of C. Observation 16 tells us that any v-minimal set is the union
of connected v-minimal sets. This makes it possible to use Lemma 15. We are
now ready to give an algorithm for (size, p, q)-Cluster, the easiest of the three
clustering problems. Our algorithm is based on a combination of color coding [2]
with a dynamic programming algorithm which uses the observations made in
this section.

Proposition 17 ([16]). For every n, k there is a family of functions F of size
O(ek ·kO(log k) ·log n) such that every function f ∈ F is a function from {1, . . . , n}
to {1, . . . , k} and for every subset S of {1, . . . , n} there is a function f ∈ F that

Clustering with Local Restrictions 795

is bijective when restricted to S. Furthermore, given n and k, F can be computed
in time O(ek · kO(log k) · log n).

Lemma 18. (size, p, q)-Cluster can be solved in time 2O(p)|V (G)|O(1).

Proof. We are given as input a graph G together with a vertex v and integers
p and q. The task is to find a vertex set C of size at most p − 1 such that
d({v} ∪ C) ≤ q. It is sufficient to search for a v-minimal set C satisfying these
properties. By Observation 16, C can be decomposed into C = S1 ∪ S2 . . . ∪ St

such that Si is a connected v-minimal set for every i, Si ∩Sj = ∅ for every i �= j
and no edge of G has one endpoint in Si and the other in Sj for every i �= j. The
algorithm of Lemma 15 can be used to list all connected v-minimal sets S1 . . . Sn;
we have n ≤ 4p|V (G)|. For a subset Z of {1, . . . , n}, define C(Z) = {v}∪⋃i∈Z Si.
Let Z ⊆ {1, . . . , n} be such that for every i, j ∈ Z with i �= j, we have Si∩Sj = ∅.
We have that |C(Z)| = 1 +

∑
i∈Z |Si| and

d
(
C(Z)

) ≤ d(v) +
∑
i∈Z

(d(Si, v) − d(Si, v)).

If there is no edge with one endpoint in Si and the other in Sj for some i �= j,
i, j ∈ Z, then the inequality above holds with equality. Our algorithm will select
a Z such that C =

⋃
i∈Z Si. To ensure that the algorithm picks Z such that

the sets Si and Sj will be disjoint for every pair of distinct integers i, j ∈ Z we
will use color coding. In particular, we construct a family F of functions from
V (G) \ {v} to {1, . . . , p − 1} as described in Proposition 17. The family F has
size O(ep · pO(log p) · log |V (G)|).

For each function f ∈ F we will think of the function as a coloring of V (G)\{v}
with colors from {1, . . . , p − 1}. We will only look for a v-minimal set C whose
vertices have different colors. This will not only ensure that any two sets Si and
Sj that we pick will be disjoint, it also automatically ensures that the size of the
set C we return is at most p − 1. If the input instance was a yes-instance then
a solution set C exists, and the construction of F ensures that there will be a
function f ∈ F which colors all vertices in C with different colors.

When considering a particular coloring f , we discard all sets from S1, . . . Sn

which have two vertices of the same color, so from this point, without loss of
generality, all sets in S1, . . . Sn have at most one vertex of each color. For a vertex
set S, define colors(S) to be the set of colors occuring on vertices on G. For every
0 ≤ i ≤ n, 0 ≤ j ≤ |E(G)| and R ⊆ {1, . . . , p − 1}, we define T [i, j, S] to be true

if there is a set Z ⊆ {1, . . . , i} such that all vertices of C(Z) have distinct colors,
d(v) +

∑
i∈Z(d(Si, v) − d(Si, v)) = j and colors(C(Z)) ⊆ R. Clearly, there is a

v-minimal set C such that d({v} ∪ C) ≤ q and all vertices of C have different
color if and only if T [n, j, {1, . . . , p − 1}] is true for some j ≤ q. We can fill the
table T using the following recurrence.

T [i, j, R] =

⎧⎪⎨
⎪⎩

T [i − 1, j, R] if colors(Si) \ R �= ∅
T [i − 1, j, R] ∨ T [i − 1,

j + d(Si, v) − d(Si, v), R \ colors(Si)] otherwise
(1)

796 D. Lokshtanov and D. Marx

Here we initialize T [0, d(v), ∅] to true. The table has size 4p|V (G)|O(1)·2p|V (G)|O(1)

= 8p|V (G)|O(1) and can be filled in time proportional to its size. Hence the total
running time for the algorithm is (8e)p+o(p)|V (G)|O(1). 	

For (size, p, q)-Cluster the size of the set C we look for is already bounded by
p. For (nonedge, p, q)-Cluster and (nondeg, p, q)-Cluster, we cannot make this
assumption, thus further arguments are needed to obtain Theorem 13.

4.1 Hardness Results

The algorithmic results in Section 3 still hold when parallel edges are allowed.
Interestingly, the positive results in Section 4 do not: in particular, Observa-
tion 14 breaks done if there are parallel edges. The following hardness result
shows that allowing parallel edges indeed make the problems more difficult:

Theorem 19 (�). (nonedge, p, q)-Partition and (nondeg, p, q)-Partition are
NP-complete for p = 0 on graphs with parallel edges. (size, p, q)-Partition is
W[1]-hard parameterized by p on graphs with parallel edges.

References

1. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: rank-
ing and clustering. In: STOC 2005, pp. 684–693 (2005)

2. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
3. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56(1-

3), 89–113 (2004)
4. Bellman, R.: Dynamic programming treatment of the travelling salesman problem.

J. ACM 9(1), 61–63 (1962)
5. Chen, J., Liu, Y., Lu, S.: An improved parameterized algorithm for the minimum

node multiway cut problem. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007.
LNCS, vol. 4619, pp. 495–506. Springer, Heidelberg (2007)

6. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm
for the directed feedback vertex set problem. J. ACM 55(5) (2008)

7. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to algorithms (2001)
8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg

(1999)
9. Heggernes, P., Lokshtanov, D., Nederlof, J., Paul, C., Telle, J.A.: Generalized graph

clustering: Recognizing (o,q)-cluster graphs. In: Thilikos, D.M. (ed.) WG 2010.
LNCS, vol. 6410, pp. 171–183. Springer, Heidelberg (2010)

10. Langston, M.A., Plaut, B.C.: On algorithmic applications of the immersion or-
der: An overview of ongoing work presented at the third slovenian international
conference on graph theory. Discrete Mathematics 182(1-3), 191–196 (1998)

11. Lokshtanov, D., Marx, D.: Clustering with local restrictions. In: preparation,
http://www.ii.uib.no/~daniello/papers/clusteringLocal.pdf

12. Marx, D.: Parameterized graph separation problems. Theoret. Comput. Sci. 351(3),
394–406 (2006)

13. Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by
the size of the cutset. To appear in STOC (2011)

http://www.ii.uib.no/~daniello/papers/clusteringLocal.pdf

Clustering with Local Restrictions 797

14. Mathieu, C., Sankur, O., Schudy, W.: Online correlation clustering. In: STACS,
pp. 573–584 (2010)

15. Mathieu, C., Schudy, W.: Correlation clustering with noisy input. In: SODA, pp.
712–728 (2010)

16. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomiza-
tion. In: FOCS, pp. 182–191 (1995)

17. Razgon, I., O’Sullivan, B.: Almost 2-sat is fixed-parameter tractable (extended
abstract). In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125,
pp. 551–562. Springer, Heidelberg (2008)

Author Index

Aaronson, Scott I-61
Abraham, Ittai I-690
Adamaszek, Anna I-25
Adler, Isolde I-110
Ahn, Kook Jin II-526
Allender, Eric I-293, I-736
Alur, Rajeev II-1
Alvim, Mário S. II-60
Anand, S. I-232
Anderson, Matthew II-368
Andrés, Miguel E. II-60
Arora, Sanjeev I-403
Austrin, Per I-474

Badanidiyuru, Ashwinkumar Varadaraja
I-379

Bárány, Vince II-356
Beecken, Malte II-137
Benedikt, Michael II-234
Berman, Piotr I-1, I-760
Bertrand, Nathalie II-246
Beyersdorff, Olaf I-630
Bhattacharyya, Arnab I-1, I-760
Böckenhauer, Hans-Joachim I-207
Bodlaender, Hans L. I-437
Bordewich, Magnus I-533
Boros, Endre I-147
Bouajjani, Ahmed II-428
Bouyer, Patricia II-246
Bova, Simone II-344
Brázdil, Tomáš II-319, II-332
Brihaye, Thomas II-246, II-416
Brodal, Gerth Stølting I-256
Brožek, Václav II-332
Bulatov, Andrei A. I-424
Bulteau, Laurent I-654

Canzar, Stefan I-98
Cardelli, Luca II-380
Carton, Olivier II-125
Cate, Balder ten II-356
Chailloux, André I-73
Chakraborty, Sourav I-545
Chan, Sze-Hang I-219

Chan, T-H. Hubert II-514
Chatzikokolakis, Konstantinos II-60
Chechik, Shiri II-101
Chekuri, Chandra I-354
Chen, Hubie II-344
Cheng, Christine I-678
Chimani, Markus I-122
Chlebus, Bogdan S. II-613
Clemente, Lorenzo II-258
Clifford, Raphaël I-593
Coja-Oghlan, Amin I-305
Colcombet, Thomas II-125
Cominetti, Roberto II-552
Cord-Landwehr, Andreas II-650
Correa, José R. II-552
Crafa, Silvia II-295
Cygan, Marek I-449
Czumaj, Artur I-25

Dams, Johannes II-637
Degener, Bastian II-650
Delacourt, Martin II-89
Delling, Daniel I-690
Deng, Yuxin II-307
Deshmukh, Jyotirmoy V. II-1
Ding, Hu I-773
Doerr, Benjamin II-502
Doyen, Laurent II-416
Drucker, Andrew I-61, I-581
Durocher, Stephane I-244
Dyer, Martin I-159

Elbassioni, Khaled I-98, I-147
Elsässer, Robert I-171
Ene, Alina I-354
Epstein, Leah I-195
Etessami, Kousha II-332

Farzan, Arash I-268
Faust, Sebastian I-391
Feige, Uriel I-486
Feldman, Moran I-342
Fertin, Guillaume I-654
Fiat, Amos I-690
Filmus, Yuval I-618

800 Author Index

Fischer, Diana II-404
Fischer, Matthias II-650
Fortnow, Lance I-569
Fouz, Mahmoud I-147, II-502
Friedman, Luke I-293

Galesi, Nicola I-630
Garćıa-Soriano, David I-545
Garg, Naveen I-232
Gasarch, William I-293
Ge, Rong I-403
Geeraerts, Gilles II-416
Goldberg, Andrew V. I-690
Goldberg, Leslie Ann I-521
Goodrich, Michael T. II-576
Gotsman, Alexey II-453
Grigorescu, Elena I-760
Guha, Sudipto II-526
Guo, Heng I-712
Gurvich, Vladimir I-147

Halldórsson, Magnús M. II-625
Harkins, Ryan C. I-416
Harrow, Aram W. I-86
Hasuo, Ichiro II-392
He, Meng I-244
Hennessy, Matthew II-307
Hermanns, Holger II-271
Hermelin, Danny I-462, II-490
Hirt, Martin I-281
Hitchcock, John M. I-416
Hliněný, Petr I-122
Hoefer, Martin II-113, II-637
Hopkins, David II-149
Huang, Chien-Chung I-666, II-564
Huang, Lei I-605
Hüllmann, Martina II-650
Husfeldt, Thore II-42
Hutařová Vařeková, Ivana II-319

Imreh, Csanád I-195
Ioannidis, Stratis II-601

Jalsenius, Markus I-593
Jansen, Bart M.P. I-437
Jansen, David N. II-271
Jansen, Maurice I-724
Jerrum, Mark I-521

Kaiser, �Lukasz II-404
Kakimura, Naonori I-367

Kamali, Shahin I-268
Kang, Ross J. I-533
Kapoutsis, Christos A. II-198
Karbasi, Amin II-601
Katsumata, Shin-ya II-174
Kavitha, Telikepalli I-666
Kawarabayashi, Ken-ichi I-135
Kempkes, Barbara II-650
Kerenidis, Iordanis I-73
Kesselheim, Thomas II-637
Khot, Subhash I-474
Kiefer, Stefan II-319, II-466
Klaas, Alexander II-650
Klau, Gunnar W. I-98
Klein, Philip N. I-135
Kling, Peter II-650
Kollias, Konstantinos II-441, II-539
Kolliopoulos, Stavros G. I-110
Komm, Dennis I-207
Kowalski, Dariusz R. II-613
Královič, Rastislav I-207
Královič, Richard I-207
Kratsch, Stefan I-437
Krause, Philipp Klaus I-110
Kučera, Antońın II-319, II-332
Kuhn, Fabian I-498
Kurras, Sven II-650

Laekhanukit, Bundit I-13
Laird, Jim II-186
Lam, Tak-Wah I-219
Larré, Omar II-552
Larsen, Kim G. II-380
Lauria, Massimo I-630
Lee, Lap-Kei I-219
Levin, Asaf I-195
Levy, Avivit II-490
Li, Shi II-77
Libert, Benôıt II-588
Lingas, Andrzej I-25
Liu, Chi-Man I-219
Lohrey, Markus II-210
Lokshtanov, Daniel I-110, I-785
Lu, Pinyan I-712

Magniez, Frédéric I-317
Makarychev, Konstantin I-1, I-510
Makino, Kazuhisa I-147, I-367
Manthey, Bodo I-147
Manzonetto, Giulio II-186

Author Index 801

Mardare, Radu II-380
Märtens, Marcus II-650
Marx, Dániel I-424, I-785
Massoulié, Laurent II-601
Mastrolilli, Monaldo I-498
Mathissen, Christian II-210
Matsliah, Arie I-545
McCusker, Guy II-186
McDermid, Eric I-678
Megow, Nicole I-232, II-478
Mehlhorn, Kurt II-478
Mengel, Stefan I-700
Mestre, Julián I-98
Meyer, Roland II-428
Meyer auf der Heide, Friedhelm II-650
Mitra, Pradipta II-625
Mittmann, Johannes II-137
Mitzenmacher, Michael II-576
Mnich, Matthias I-462
Mohanaraj, Velumailum I-159
Möhlmann, Eike II-428
Moldenhauer, Carsten I-748
Montanaro, Ashley I-86
Munro, J. Ian I-244
Murawski, Andrzej S. II-149, II-466

Nagy-György, Judit I-195
Naor, Joseph (Seffi) I-342
Nayak, Ashwin I-317
Ngo, Hung Q. I-557
Nicholson, Patrick K. I-244
Nielson, Flemming II-271
Ning, Li II-514
Nonner, Tim I-183
Nordström, Jakob I-642

O’Donnell, Ryan I-330
Ong, C.-H. Luke II-149
Ouaknine, Joël II-416, II-466

Pachon-Pinzon, Angelica Y. I-305
Palamidessi, Catuscia II-60
Pelc, Andrzej II-613
Pietrzak, Krzysztof I-391
Pilipczuk, Marcin I-449
Pilipczuk, Micha�l I-449
Pitassi, Toniann I-605, I-618
Porat, Ely I-557
Puppis, Gabriele II-125, II-234

Qian, Jiawei I-37

Ranzato, Francesco II-295
Raskhodnikova, Sofya I-1, I-760
Raskin, Jean-François II-416
Raupach, Christoph II-650
Razborov, Alexander I-630, I-642
Reichman, Daniel I-486
Riveros, Cristian II-234
Rokicki, Mariusz A. II-613
Rosgen, Bill I-73
Roughgarden, Tim II-441, II-539
Rudra, Atri I-557
Rusu, Irena I-654

Salvati, Sylvain II-162
Santha, Miklos I-317
Santhanam, Rahul I-569, I-618, I-724
Saurabh, Saket I-110
Saxena, Nitin II-137
Schmitz, Sylvain II-441
Schnoebelen, Philippe II-441
Schwartz, Roy I-342
Schweikardt, Nicole II-368
Schweitzer, Pascal II-478
Segoufin, Luc II-356, II-368
Shaltiel, Ronen II-21
Short, Anthony J. I-86
Skala, Matthew I-244
Sommer, Christian I-135
Stainer, Amélie II-246
Suenaga, Kohei II-392
Suzuki, Ichiro I-678
Sviridenko, Maxim I-510
Swierkot, Kamil II-650

Thilikos, Dimitrios I-110
Ting, Hing-Fung I-219
Tsakalidis, Konstantinos I-256
Tscheuschner, Tobias I-171

Valeriote, Matthew II-344
Valiant, Leslie G. I-712
van Breugel, Franck II-283
van Leeuwen, Erik Jan I-462
van Melkebeek, Dieter II-368
Venturi, Daniele I-391

Walukiewicz, Igor II-162
Wang, Fengming I-736
Warner, Daniel II-650

802 Author Index

Weddemann, Christoph II-650
Weimann, Oren II-490
Werneck, Renato F. I-690
Williamson, David P. I-37
Woeginger, Gerhard J. I-462
Wojtaszczyk, Jakub Onufry I-25, I-449
Wonisch, Daniel II-650
Woodruff, David P. I-760
Worrell, James II-416, II-466
Wright, John I-330

Xiao, David I-317
Xu, Jinhui I-773

Yang, Hongseok II-453

Yaroslavtsev, Grigory I-1, I-760

Yung, Moti II-588

Yuster, Raphael II-490

Zetzsche, Georg II-222

Zhang, Lijun II-271, II-466

Zhang, Shengyu I-49

Zhang, Xin II-283

Zhou, Yuan I-330

Zikas, Vassilis I-281

	Title
	Preface
	Organization
	Table of Contents
	Session A1: Network Design Problems
	Improved Approximation for the Directed Spanner Problem
	Introduction
	An ${\tilde O}(\sqrt{n})$-Approximation for \directedspanner
	Sampling
	Antispanners, LP and the Separation Oracle

	LP and Rounding for Graphs with Unit-Length Edges
	An $\tilde O (n^{1/3})$-Approximation for {\sc Directed 3-Spanner} with
	Conclusion
	References

	An Improved Approximation Algorithm for Minimum-Cost Subset k-Connectivity
	Introduction
	Preliminaries and Results
	An Approximation Algorithm
	Subset -Connected Graphs: Deficient Sets, Cores, Halo-Families and Halo-Sets
	Covering Halo-Families via Rooted Subset (+1)-Connectivity
	Preprocessing to Decrease the Number of Cores
	Thickness of Terminals
	An O(klog2k)-Approximation Algorithm for |T|2k
	An O(klogk)-Approximation Algorithm for |T|k2

	References

	Approximation Schemes for Capacitated Geometric Network Design
	Introduction
	Preliminaries
	Bounding the Number of Steiner Points in Optimal Solution
	Vertex Types of a Minimizer
	Graph Analysis and Cycle Argument

	Quasi-Polynomial Time Approximation Scheme
	Polynomial-Time Approximation Scheme for Single Sink
	Final Remarks
	References

	An O(log n)-Competitive Algorithm for Online Constrained Forest Problems
	Introduction
	Preliminaries
	The Algorithm and Its Analysis
	The Primal-Dual Online Algorithm

	The Online Prize-Collecting Steiner Tree Problem
	Conclusion
	References

	Session A2: Quantum Computing
	On the Power of Lower Bound Methods for One-Way Quantum Communication Complexity
	Introduction
	Preliminaries
	The Partition Tree Method
	Comparisons between the Powers
	On the Advantage of the Factorization Norm Method over the Trace Distance Method
	On the Advantage of the Trace Distance Method over the Partition Tree Method
	Other Discussions of the Power Comparisons

	Concluding Remarks and Open Questions
	References

	Advice Coins for Classical and Quantum Computation
	Introduction
	The Distinguishing Problem
	The Quantum Case
	Coins as Advice

	Preliminaries
	Superoperators and Linear Algebra
	Advice Coin Complexity Classes

	Quantum Mechanics Nullifies the Hellman-Cover Theorem
	Upper-Bounding the Power of Advice Coins
	OpenProblems
	References

	Quantum Commitments from Complexity Assumptions
	Introduction
	Definitions
	Quantum Interactive Complexity Classes
	Quantum Computational Distinguishability
	Quantum Commitments

	Quantum Commitments Unless $\class{QSZK} \subseteq \class{QMA}$
	Quantum Commitments Unless $\class{QIP} \subseteq \class{QMA}$
	References

	Limitations on Quantum Dimensionality Reduction
	Introduction
	The JL Lemma in Quantum Information Theory
	Our Results

	Dimensionality Reduction in the 2-Norm
	Operational Meaning of the 2-Norm
	Equality Testing without a Reference Frame
	Performing a Random Measurement

	Dimensionality Reduction in the Trace Norm
	Upper Bound
	Lower Bound

	Conclusions
	References

	Session A3: Graph Algorithms
	On Tree-Constrained Matchings and Generalizations
	Introduction
	Our Results

	Matching Trees
	A 3-Approximation by Fractional Local Ratio
	A 2-Approximation
	Hardness and Inapproximability Results

	Matching Posets
	A Fractional Local Ratio Algorithm
	Hardness

	References

	Tight Bounds for Linkages in Planar Graphs
	Introduction
	Preliminaries
	Upper Bounds
	Basic Definitions
	Simple Properties of a Cheap Solution P
	Bounding the Number of Segment Types
	Bounding the Size of Segment Types

	The Lower Bound
	References

	A Tighter Insertion-Based Approximation of the Crossing Number
	Introduction
	Preliminaries
	Decomposition Trees
	Single Edge Insertion with Variable Embedding

	MEI Approximation Algorithm
	Embedding Preferences and Estimating Additional Crossings via Dirty Passes
	Combining All Embedding Preferences
	Runtime Analysis of Algorithm 3.1

	Crossing Number Approximations
	A Note on the Planarization Heuristic
	Conclusions
	References

	Linear-Space Approximate Distance Oracles for Planar, Bounded-Genus and Minor-Free Graphs
	Introduction
	Previous Work on Approximate Distance Oracles
	Tunable Approximate Distance Oracle for Planar Graphs
	Review of Thorup's Distance Oracle
	Our Compact Distance Oracle

	Improved Preprocessing Algorithm
	Approximate Distance Oracles for Genus g Graphs
	References

	Session A4: Games, Approximation Schemes, Smoothed Analysis
	Stochastic Mean Payoff Games: Smoothed Analysis and Approximation Schemes
	Introduction
	Our Results and Some Related Work

	Preliminaries, Notation and Basic Properties
	Approximation Schemes
	Absolute Approximation
	Relative Approximation
	Uniformly Relative ε-Approximation for BW-Games

	Smoothed Analysis
	References

	Pairwise-Interaction Games
	Introduction
	Overview
	Our Results
	Related Work

	Preliminaries
	Notations
	Strategic Games

	Symmetric Payoff Matrices
	Zero-Sum Games
	Some Further Results
	Open Problems
	References

	Settling the Complexity of Local Max-Cut (Almost) Completely
	Introduction
	Preliminaries
	Substituting Certain Nodes of Unbounded Degree
	Proof of PLS-Completeness
	Smoothed Complexity of Local Max-Cut
	Conclusion and Open Problems
	References

	Clique Clustering Yields a PTAS for max-Coloring Interval Graphs
	Introduction
	Preliminaries
	Overlap Structure

	PTAS via Dynamic Programming
	DP Array
	Recurrence Relation
	Approximate DP

	Proof of Lemma 2
	Hierarchical Clique Partition
	Clique Clustering for a Single Clique

	References

	Session A5: Online Algorithms
	On Variants of File Caching
	Introduction
	Reducing the Problem with Rejection to the Problem with Bypassing
	Deterministic Algorithms
	Caching with Rejection
	An Improved Algorithm for Several Cases

	Randomized Algorithms
	References

	On the Advice Complexity of the k-Server Problem
	Introduction
	A Lower Bound on the Optimality
	An Upper Bound for the Euclidean Case
	An Upper Bound for the General Case
	Relation between Randomization and Advice
	References

	Sleep Management on Multiple Machines for Energy and Flow Time
	Introduction
	Sleep Management for Fixed-Speed Machines
	Algorithm POOL
	Potential Analysis of Fw

	Sleep Management and Speed Scaling
	Transformation of Offline Schedule
	References

	Meeting Deadlines: How Much Speed Suffices?
	Introduction
	The Yardstick Schedule
	A Best Possible Deadline Ordered Online Algorithm
	Description of the Algorithm
	Analysis of the Algorithm

	A Lower Bound for LLF
	A Lower Bound for EDZL
	Concluding Remarks
	References

	Session A6: Data Structures, Distributed Computing
	Range Majority in Constant Time and Linear Space
	Introduction
	Related Work
	Our Results

	Range Majority Data Structure
	Quadruple Decomposition
	Candidates
	Data Structures for Counting

	Generalization to Range α-Majority Queries
	Definitions
	Relaxed Triples
	Handling Large Alphabets

	Concluding Remarks
	References

	Dynamic Planar Range Maxima Queries
	Introduction
	Preliminaries
	Pointer-Based Data Structure
	Data Structure
	Query
	Update

	4-Sided Range Maxima Queries and Rectangular Visibility
	3-sided Range Maxima in the RAM Model
	Conclusion
	References

	Compact Navigation and Distance Oracles for Graphs with Small Treewidth
	Introduction
	Contribution

	Tree Decompositions and Variations
	Lower Bound
	Navigation Oracles
	Representing the Tree Decomposition
	Neighbor Report

	Distance Oracles
	Conclusion
	References

	Player-Centric Byzantine Agreement
	Introduction
	The Model
	Definition and Reductions
	Perfect Security
	Statistical and Computational Security (With Setup)
	PCBA ({p}) (Broadcast with Sender p)
	PCBA (C) for an Arbitrary |C |1

	Extension: Adding Fail Corruption
	Conclusions and Open Problems
	References

	Session A7: Complexity, Randomness
	Limits on the Computational Power of Random Strings
	Introduction
	Derandomization from Uniform Hardness Assumptions

	Background and Definitions
	Main Results
	Description of the Game

	Perspective and Open Problems
	References

	The Decimation Process in Random k-SAT
	Introduction
	Results
	Related Work
	Analyzing the Decimation Process
	Shattering, Pairwise Distances, and Ferromagnetism
	Rigid Variables
	References

	Improved Bounds for the Randomized Decision Tree Complexity of Recursive Majority
	Introduction
	Preliminaries
	Distributional Complexity
	The 3-MAJh Function and the Hard Distribution
	The Jayram-Kumar-Sivakumar Lower Bound

	Improved Lower Bound
	Improved Depth-Two Algorithm
	References

	The Fourier Entropy–Influence Conjecture for Certain Classes of Boolean Functions
	Introduction
	Applications of the Conjecture
	Prior Work
	Our Results and Approach
	Outline for the Rest of the Paper

	Definitions and Notation
	Basics of Boolean Fourier Analysis
	Some Boolean Function Classes

	Symmetric and d-Part-Symmetric Functions
	Theorem 4: Derivatives of Symmetric Functions are Noise-Sensitive
	Theorem 5: Spectral Level Entropy Versus Influence
	Theorem 2: Extension to d-Part-Symmetric Functions

	Closing Remarks
	References

	Session A8: Submodular Optimization, Matroids
	Nonmonotone Submodular Maximization via a Structural Continuous Greedy Algorithm
	Introduction
	The Structural Continuous Greedy Algorithm
	Taking Advantage of the Structural Continuous Greedy
	Related Work

	Preliminaries
	The Structural Continuous Greedy Algorithm
	Simulated Annealing Algorithm
	References

	Submodular Cost Allocation Problem and Applications
	Introduction
	Problems Related to MSCA
	Overview of Results and Techniques

	Monotone MSCA
	Submodular Multiway Partition
	A 1.5-Approximation for Hypergraph Multiway Partition
	Algorithms for Hypergraph Multiway Cut

	References

	Robust Independence Systems
	Introduction
	Previous and Our Main Results for the Robustness

	Exchangeable Independence Systems
	Examples of Exchangeable Independence Systems
	Exchangeability and Rank Quotient

	Robust Independence Systems in Boolean Lattice
	The Proof Outline of Lemma 4
	The Proof of Theorem 2

	References

	Buyback Problem - Approximate Matroid Intersection with Cancellation Costs
	Introduction
	Preliminaries
	Model
	Algorithm

	Analysis of the Algorithm
	Charging Scheme

	Lower Bound
	Contradiction
	Construction of Sequence

	References

	Session A9: Cryptography, Learning
	Tamper-Proof Circuits: How to Trade Leakage for Tamper-Resilience
	Introduction
	Definitions
	A Compiler Secure against (∞,δ,q)-Adversaries
	References

	New Algorithms for Learning in Presence of Errors
	Introduction
	Learning Parities with Structured Noise
	Problem Definition
	Constraints and Linearization
	Proof for White Noise Case

	Learning with Errors
	Learning the Majority of Parities Function
	Conclusions
	References

	Exact Learning Algorithms, Betting Games, and Circuit Lower Bounds
	Introduction
	Preliminaries
	Betting Games
	Exact Learning

	Exact Learning and Betting Games
	References

	Session A10: Fixed Parameter Tractability
	Constraint Satisfaction Parameterized by Solution Size
	Introduction
	Preliminaries
	Properties of Constraints
	Weak Separability
	Morphisms
	Components
	Multivalued Morphism Gadgets
	Frequent Instances

	Classification for Size Constraints
	Classification for Cardinality Constraints
	References

	Preprocessing for Treewidth: A Combinatorial Analysis through Kernelization
	Introduction
	Preliminaries
	Kernelization with Respect to Vertex Cover Number: Eliminating Simplicial Vertices
	A Polynomial Kernel for Treewidth Parameterized by Feedback Vertex Set
	Almost Simplicial Vertices
	Clique-Seeing Paths
	The Kernelization

	Kernelization Lower Bounds
	Conclusions
	References

	Subset Feedback Vertex Set Is Fixed-Parameter Tractable
	Introduction
	EDGE-SUBSET-FVS Parameterized by |S|
	The Outer–Abundant Lemma
	Bubbles
	The Leaf Bubble Reduction

	References

	Domination When the Stars Are Out
	Introduction
	Algorithmic View of the Structure of Claw-Free Graphs
	Application to Parameterized Algorithms
	Polynomial Kernel for Dominating Set
	References

	Session A11: Hardness of Approximation
	A Simple Deterministic Reduction for the Gap Minimum Distance of Code Problem
	Introduction
	Organization

	Preliminaries
	Codes
	Hardness of Constraint Satisfaction

	The Binary Case
	Reduction to Nearest Codeword
	Reduction to Minimum Distance

	Interlude: Linear Approximations to Nonlinear Codes
	Reduction to Min Dist(q) for q \geq 3
	References

	Recoverable Values for Independent Sets
	Introduction
	Our Results
	Related Work
	Our Techniques

	Handling Low Degree Vertices
	Algorithms for MWIS
	Algorithms for MIS
	MISink-Colored Graphs
	References

	Vertex Cover in Graphs with Locally Few Colors
	Introduction
	Vertex Cover Using Bounded Local Biclique Colorings
	Vertex Cover in Graphs with Bounded Local Chromatic Number
	The Scheduling Application
	References

	Maximizing Polynomials Subject to Assignment Constraints
	Introduction
	Overview of the Results
	Tensor Triangle Inequality

	Linear Programming Relaxation
	Problems Satisfying the Tensor Triangle Inequality
	Koopmans–Beckman Case: The Problem with Decomposable Coefficients
	References

	Session A12: Counting, Testing
	A Polynomial-Time Algorithm for Estimating the Partition Function of the Ferromagnetic Ising Model on a Regular Matroid
	Introduction
	Matroid Preliminaries
	Tutte Polynomial and Decomposition
	Signatures
	The Algorithm
	References

	Rapid Mixing of Subset Glauber Dynamics on Graphs of Bounded Tree-Width
	Introduction
	Definitions
	λ-Multiplicative Weight Functions
	Glauber Dynamics for Edge Subsets

	Results
	Proof Outline
	Vertex Subset Mixing for Bounded Tree-Width
	Conclusion
	References

	Efficient Sample Extractors for Juntas with Applications
	Introduction
	Notation
	Results
	Upper Bounds
	Lower Bounds

	Proof of Theorem 1
	Overview
	Main Lemmas and Proof of Theorem 1
	Additional Definitions and Lemmas
	Junta Testers, Smoothness, and Tolerance
	Obtaining a Good Pair (I, J)
	Proof of Lemma 2

	References

	Efficiently Decodable Error-Correcting List Disjunct Matrices and Applications
	Introduction
	List Disjunct Matrices and Our Main Results
	Applications and Other Results

	Error-Correcting List-Disjunct/Separable Matrices
	Intuition behind the Blackbox Conversion Procedures
	Bounds
	Constructions
	Black-Box Conversion Using List Recoverability
	Black-Box Conversion Using Recursion

	Applications
	References

	Session A13: Complexity
	Robust Simulations and Significant Separations
	Introduction
	Intuition and Techniques

	Preliminaries
	Complexity Classes, Promise Problems and Advice

	Robust Simulations
	Significant Separations
	Hierarchies
	Circuit Lower Bounds
	Time-Space Tradeoffs

	References

	A PCP Characterization of AM
	Introduction
	CSPs, PCPs, and Complexity Classes
	Our Results
	Our Methods
	Questions for Future Work

	Preliminaries
	Promise Problems and prAM

	An Augmented PCPP
	Proof of Theorem 1
	Proof of Theorem 5
	References

	Lower Bounds for Online Integer Multiplication and Convolution in the Cell-Probe Model
	Introduction
	Previous Results and Upper Bounds
	The Cell-Probe Model

	Online Convolution
	Information Transfer
	Recovering Information
	The Lower Bound for Online Convolution

	Online Multiplication
	Retrorse Numbers and the Lower Bound

	References

	Session A14: Proof Complexity
	Automatizability and Simple Stochastic Games
	Introduction
	Definitions
	Main Result
	Arithmetic Formulas
	Proof of Uniqueness
	Proving Max-Node$_n$
	Removing the Bottom Fan-In

	Consequences and Open Problems
	References

	Exponential Lower Bounds for AC0-Frege Imply Superpolynomial Frege Lower Bounds
	Introduction
	Proof Overview

	Proof Systems
	Reducing Formula Depth
	Proof of Main Theorem
	Moving Down the Depth Vector
	Putting It Together

	Applications and Consequences
	Tightness of Our Simulation
	Weak Automatizability

	References

	Parameterized Bounded-Depth Frege Is Not Optimal
	Introduction
	Parameterized Proof Complexity
	Parameterized Versions of Ordinary Proof Systems

	Parameterized Bounded-Depth Frege Is Not Weakly fpt-Bounded
	Cores and Small Refutations
	Discussion and Open Problems
	References

	On Minimal Unsatisfiability and Time-Space Trade-offs for k-DNF Resolution
	Introduction
	Preliminaries
	An Improved Lower Bound for Minimal Unsatisfiability
	A Weight Constraint k-DNF Formula Set
	The Minimally Unsatisfiable k-DNF Set

	Implications for k-DNF Resolution Trade-offs
	Concluding Remarks and Open Problems
	References

	Session A15: Sorting, Matchings, Paths
	Sorting by Transpositions Is Difficult
	Preliminaries
	3-Deletion and Transposition Operations
	3DT-Collapsibility Is NP-Hard to Decide
	Block Structure
	Basic Blocks
	Construction of I

	Sorting by Transpositions Is NP-Hard
	Conclusion
	References

	Popular Matchings in the Stable Marriage Problem
	Introduction
	Structural Results
	Good Matchings

	The Algorithm
	Conclusions
	References

	Center Stable Matchings and Centers of Cover Graphs of Distributive Lattices
	Introduction
	Preliminaries
	Finding a Center of G(L)
	The Center Set of G(L)
	References

	VC-Dimension and Shortest Path Algorithms
	Introduction
	Definitions
	VC-Dimension and USP Systems
	Highway Dimension and Shortest Path Covers
	Improved Bounds
	Extensions
	Labeling Algorithm and Average Dimension
	Cardinality-Based Highway Dimension

	Concluding Remarks
	References

	Session A16: Constraint Satisfaction, Algebraic Complexity
	Characterizing Arithmetic Circuit Classes by Constraint Satisfaction Problems
	Introduction and Related Work
	Preliminaries
	Arithmetic Circuit Complexity
	CSPs…
	…and Their Polynomials
	Treewidth

	Statement of the Results
	Lower Bounds
	Upper Bounds on the Complexity
	References

	The Complexity of Symmetric Boolean Parity Holant Problems
	Introduction
	Preliminaries
	Tractable Families
	Affine Signatures
	Fibonacci Signatures and [0,1,0]
	Matchgate Signatures

	Hardness Results and Dichotomy for Holantc
	An Initial Hard Problem
	More Hardness Results and the Dichotomy

	Vanishing Signature Sets
	Dichotomy for the Whole Holant Family
	References

	Permanent Does Not Have Succinct Polynomial Size Arithmetic Circuits of Constant Depth
	Introduction
	Techniques

	Preliminaries
	Representing Arithmetic Circuits over Z by Boolean Circuits Succinctly
	Conditional Lower Bound for Permanent
	Proving a Weak Derandomization Hypothesis Unconditionally
	Proof of Theorem 1
	References

	On the Power of Algebraic Branching Programs of Width Two
	Introduction
	Preliminaries
	IMM2,n under Homogeneous Projections
	Classification of H2 2Indg
	Structure of H2 2Indg-SLPs and Its Implications
	Limitation of H2 2-SLPs

	Extensions to Regular Projections
	References

	Session A17: Steiner Problems, Clustering
	Primal-Dual Approximation Algorithms for Node-Weighted Steiner Forest on Planar Graphs
	Introduction
	Preliminaries

	The Primal-Dual Algorithm
	A 3-Approximation on Planar Graphs
	Lower Bound
	A 9/4-Approximation Algorithm on Planar Graphs
	References

	Steiner Transitive-Closure Spanners of Low-Dimensional Posets
	Introduction
	Our Results
	Applications

	Definitions and Observations
	Lower Bound for 2-TC-spanners of the Hypergrid
	Lower Bound for k-TC-Spanners for k>2
	References

	Solving the Chromatic Cone Clustering Problem via Minimum Spanning Sphere
	Introduction
	Minimum Spanning Sphere
	The Chromatic Cone Clustering Problem
	Constant Ratio Approximation Algorithm for k=2
	(1+) Algorithms for the Case of k=2
	A (1+)-Approximation Algorithm for k>2

	References

	Clustering with Local Restrictions
	Introduction
	Clustering and Uncrossing
	Parameterization by q
	Important Separators and Important Sets
	Reduction to the Satellite Problem
	Solving the Satellite Problem

	Parameterization by p
	Hardness Results

	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

