
Chapter 6
Universal Relations for Fermions
with Large Scattering Length

Eric Braaten

6.1 Introduction

Particles with short-range interactions that produce a large scattering length have
universal properties that depend only on the scattering length [1]. A system consisting
of such particles is strongly interacting in the sense that there are effects of the
interactions that must be treated nonperturbatively. These strong interactions give rise
to strong correlations among the particless. Many theoretical methods, even if they are
nonperturbative, are inadequate for dealing with such strong correlations. However,
such a system is also governed by universal relations that follow from the short-
distance and short-time dynamics associated with the large scattering length. These
universal relations provide powerful constraints on the behavior of the system. They
hold for any state of the system: few-body or many-body, ground state or nonzero
temperature, homogeneous or in a trapping potential, normal state or superfluid,
balanced in the two spin states or imbalanced. They connect various properties of
the system, ranging from thermodynamic variables to large-momentum and high-
frequency tails of correlation functions.

The systems for which the universal relations have been most extensively studied
are those consisting of fermions with two spin states. The universal relations that
have been derived thus far all involve a property of the system called the contact,
which measures the number of pairs of fermions in the two spin states with small sep-
arations. Many of these relation were first derived by Shina Tan, and they are known
as the Tan relations [2–4]. Tan derived these relations by exploiting the fact that the
large scattering length can be taken into account through boundary conditions on the
many-body Schrödinger wavefunction for otherwise noninteracting particles. The
universal relations can also be derived concisely within a quantum field theory
framework [5], where they follow from renormalization and from the operator
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product expansion. Such a framework facilitates the derivation of additional univer-
sal relations and the systematic inclusion of corrections associated with the nonzero
range of the interactions.

In this review, we summarize the current theoretical and experimental status of
universal relations for systems consisting of fermions with two spin states and a large
scattering length. We begin in Sect. 6.2 by presenting the Tan relations. In Sect. 6.3,
we discuss the physical interpretation of the contact and we provide some illustrative
examples. In Sect. 6.4, we present other universal relations that have been derived
more recently. In Sect. 6.5, we describe exciting recent developments in the field of
ultracold atoms involving measurements of the contact and experimental tests of the
universal relations. In Sect. 6.6, we discuss the derivation of the universal relations,
with an emphasis on quantum field theory methods.

6.2 The Tan Relations

The Tan relations were derived by Shina Tan in a series of three papers [2–4]. The
first two of these papers were written in 2005, but they were not published until 2008,
when all three papers were published back-to-back in Annals of Physics.

The Tan relations apply to systems consisting of fermions with two spin states
whose scattering length a is large compared to the range r0 of their interactions.
We will refer to the fermions as atoms and label the two spin states by an index σ with
values 1 and 2. In a many-body system, the number densities nσ and the temperature
T must also be small enough that the corresponding length scales are large compared
to the range: n−1/3

σ � r0 and λT � r0,where λT = (2π�
2/mkB T )1/2. If the system

is in an external trapping potential V (r) = 1
2 mω2r2, the length scale associated with

the trap should also be large compared to the range: (�/mω)1/2 � r0.

The Tan relations involve an extensive quantity, the contact C, which is the integral
over space of a local quantity, the contact density C(R) :

C =
∫

d3 RC(R). (6.1)

We proceed to present the Tan relations in chronological order.

6.2.1 Tails of Distributions

In the first of Tan’s two 2005 papers, he derived three universal relations [2]. The
first was for the tails of the momentum distributions nσ (k) for the two spin states
σ = 1, 2:

Tail of the momentum distribution. The distributions of the wavevector k have
power-law tails at large k:
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nσ (k) −→ C

k

4

. (6.2)

The coefficient C is the contact and it is the same for both spin states.
The asymptotic behavior in (6.2) actually applies only in the scaling region

|a|−1 � k � r−1
0 . The wavenumber must also be larger than the scales associ-

ated with the system, such as n1/3, λ−1
T , and (mω/�)1/2. The momentum distribu-

tions in Eq. 6.2 have been normalized so that the total number of atoms in the spin
state σ is

Nσ =
∫

d3k

(2π)3
nσ (k). (6.3)

The universal relation in Eq. 6.2 implies that the contact is positive definite and
has dimension (length)−1. Thus the contact density has dimensions (length)−4.

The total energy E of the system is the sum of the kinetic energy T, the interaction
energy U, and the energy V associated with an external potential:

E = T + U + V . (6.4)

The kinetic energy T (which should not be confused with the temperature) can be
expressed as an integral over the momentum distribution:

T ≡
∑
σ

∫
d3k

(2π)3

(
�

2k2

2m

)
nσ (k). (6.5)

The asymptotic behavior of the momentum distribution in Eq. 6.2 implies that T
is ultraviolet divergent. This divergence actually occurs only in the zero-range limit
r0 → 0. For interactions with a finite range, the integral in Eq. 6.5 is cut off by the
range and therefore has a contribution that behaves like 1/r0 as r0 → 0. Thus the
physical interpretation of the ultraviolet divergence is that T is sensitive to the range.
The second Tan relation in Ref. [2] implies that the sensitivity of the kinetic energy
to the range is cancelled by the interaction energy:

Energy relation. The sum of the kinetic and interaction energies is ultraviolet
finite and it is completely determined by the momentum distributions nσ (k) and the
contact C:

T + U =
∑
σ

∫
d3k

(2π)3
�

2k2

2m

(
nσ (k)− C

k4

)
+ �

2

4πma
C. (6.6)

In the integral on the right side, the subtraction term cancels the tail of the momen-
tum distribution and makes the integral convergent in the ultraviolet. The sum of the
two terms in Eq. 6.6 proportional to the contact C is the interaction energy. The first
of those two terms is ultraviolet divergent. Thus the interaction energy is sensitive
to the range, but that sensitivity is exactly cancelled by the kinetic energy. The last
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term in Eq. 6.6 is the interaction energy that remains after subtracting the divergent
term. Remarkably, it is also proportional to the contact.

The third Tan relation in Ref. [2] gives the asymptotic behavior of the correlation
function for the densities of the two spin states at short distances:

Density–density correlator at short distances. The correlation between the number
densities for the two spin states at points separated by a small distance r diverges as
1/r2 and the coefficient of the divergence is proportional to the contact density:

〈
n1

(
R + 1

2
r
)

n2

(
R − 1

2
r
)〉

−→ 1

16π2

(
1

r2 − 2

ar

)
C(R). (6.7)

Tan also pointed out that the contact density appears in the short-distance expan-
sion for the correlator of the quantum field operators that create and annihilate the
atoms. This expansion will be discussed in Sect. 6.6.4.4.

6.2.2 Changes in the Scattering Length

From the three universal relations described above, one might conclude that the
contact is an esoteric property of the system that has only to do with tails of distrib-
utions. In the second of Tan’s 2005 papers [3], he derived another universal relation
that makes it clear that the contact is an absolutely central property of the system:

Adiabatic relation. The rate of change of the energy due to a small change in the
inverse scattering length is proportional to the contact:

(
dE

da−1

)
S

= − �
2

4πm
C. (6.8)

The derivative is evaluated with the entropy S held fixed. The particle numbers
N1 and N2 are also implicitly held fixed.

In the simplest case, E is just an energy eigenvalue. The adiabatic relation also
holds for any statistical mixture of eigenstates if the derivative is evaluated with
the occupation numbers held fixed. By the adiabatic theorem of quantum mechanics,
if the scattering length changes sufficiently slowly with time, the occupation numbers
remain constant. Thus if the contact C is known as a function of a, the adiabatic
relation in Eq. 6.8 can be integrated to obtain the accumulated change in E.

The adiabatic relation can also be expressed in terms of the derivative of the free
energy F = E − T S with the temperature T held fixed:

(
dF

da−1

)
T

= − �
2

4πm
C. (6.9)

As pointed out by Tan, this implies that the contact determines the thermodynamics
of the system. Given the contact of a system as a function of the scattering length
a and other variables, such as N1, N2, and T, the free energy F can be obtained by
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integrating Eq. 6.9 with respect to a. A convenient boundary condition is provided by
the limit a → 0−, in which the atoms are noninteracting. From F, one can determine
all the other thermodynamic functions.

If one uses Eq. 6.2 to define the contact in terms of the tail of the momentum
distribution, this appears to be a case of the tail wagging the dog. The thermody-
namic behavior of the system seems to be determined by the tail of the momentum
distribution. However the proper interpretation is that the contact is a central property
of the system that determines both the thermodynamics and the tail of the momentum
distribution.

The adiabatic relation in Eq. 6.8 determines the change in the total energy when
the scattering length changes very slowly. Tan also considered the opposite limit in
which the scattering length changes very rapidly [3]:

Sudden change in the scattering length. If the scattering length is changed sud-
denly from a to a′, the change in the total energy is proportional to the contact:

�E = − �
2

4πm

(
1

a′ − 1

a

)
C, (6.10)

where C is the initial value of the contact.
This result requires the time scale for the sudden change in scattering length

to be much slower than the time scale mr2
0/� associated with the range. Tan also

presented a more general result for the change in the energy due to a rapid change
in the scattering length, which will be described in Sect. 6.4.5.

6.2.3 Additional Tan Relations

In Tan’s 2008 paper, he derived two additional universal relations that apply for
specific forms of the external potential [4].

Virial theorem. For a system in a harmonic trapping potential, the components of
the energy E in Eq. 6.4 satisfy

T + U − V = − �
2

8πma
C. (6.11)

The virial theorem for the unitary limit a = ±∞ was first derived and also verified
experimentally by Thomas, Kinast, and Turlapov [6]. The virial theorem in Eq. 6.11
is the generalization to finite scattering length.

Pressure relation. For a homogeneous system, the pressure and the energy density
are related by

P = 2

3
E + �

2

12πma
C. (6.12)
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The pressure relation was actually first derived in Ref. [3] for the special case of
a balanced gas in which the two spin states have equal populations. The derivation
was extended to the general case in Ref. [4].

If there are inelastic two-body scattering processes with a large energy release,
they will result in a decrease in the number of low-energy atoms. Tan realized that the
rate at which the number density of low-energy atoms decreases is proportional to
the contact density C (Tan S, private communication). The proportionality constant
was first given in Ref. [5]. If there are inelastic two-body scattering channels, the
scattering length a has a negative imaginary part. The proportionality constant in the
universal relation can be expressed in terms of that complex scattering length:

Inelastic two-body losses. If there are inelastic two-body scattering processes with
a large energy release, the number density of low-energy atoms decreases at a rate
that is proportional to the contact density:

d

dt
nσ (R) = −�(−Im a)

2πm|a|2 C(R). (6.13)

6.3 What is the Contact?

Given the Tan relations described in Sect. 6.2, it is evident that the contact is a
central property of the system. But what is it? In this section, we provide an intuitive
interpretation of the contact. We also provide additional insights into the contact by
giving analytic expressions in some simple cases.

6.3.1 Intuitive Interpretation

An intuitive interpretation of the contact density can be derived from the universal
relation for the density–density correlator in Eq. 6.7. That relation can be expressed
in the form

〈n1(R + r1) n2(R + r2)〉 −→ 1

16π2|r1 − r2|2 C(R). (6.14)

If we integrate both r1 and r2 over a ball of radius s, we obtain

Npair(R, s) −→ s4

4
C(R). (6.15)

The left side simply counts the number of pairs inside that ball, which is the
product N1 N2 of the number of atoms in the two spin states. The volume of that
ball is V = 4

3πs3. One might naively expect the number of pairs to scale as V 2

as V → 0. However, according to Eq. 6.15, it scales instead as V 4/3. That scaling



6 Universal Relations for Fermions with Large Scattering Length 199

behavior applies only for s smaller than |a| and also smaller than the length scales
associated with the system, such as n−1/3, λT , and (�/mω)1/2. The scaling behavior
extends down to s of order the range r0.

A naive definition of the density of pairs is the limit as V → 0 of N1 N2/V 2,

where N1 and N2 are the numbers of atoms in the volume V. This quantity has
dimensions (length)−6. The result in Eq. 6.15 implies that the combination with
a nontrivial small-volume limit is N1 N2/V 4/3, which has dimensions (length)−4.

Thus a more appropriate definition of the local pair density is the small-volume limit
of N1 N2/V 4/3, up to a normalization constant that can be chosen by convention.
The unusual dimensions of (length)−4 for this local pair density can be expressed
concisely by saying that this quantity has scaling dimension 4. The difference −2
between the scaling dimension and the naive dimension 6 is called the anomalous
dimension. This anomalous dimension comes from the strong correlations associated
with the large scattering length. This anomalous scaling behavior implies that the
number of pairs in a very small volume is much larger than one would naively expect
by extrapolating from larger volumes. The contact density is a measure of the local
pair density that takes into account this anomalous scaling behavior.

Further intuition for the contact can be gleaned from the universal relation for the
tail of the momentum distribution in Eq. 6.2. It implies that the number of atoms in
either spin state whose wavenumber k is larger than K is

Nσ (|k| > K ) = 1

2π2 K
C, (6.16)

provided K is in the scaling region 1/|a| � K � 1/r0 and is larger than the
wavenumber scales set by the system. Thus the contact is a measure of the number
of atoms with large momentum.

When interpreting the contact density as a measure of the local pair density, one
should not confuse those pairs with Cooper pairs, which are pairs with a specific
momentum correlation. Under conditions in which Cooper pairs are well defined,
the typical separation of the atoms in a Cooper pair is much larger than the interpar-
ticle spacing. The number of Cooper pairs in a volume V that is comparable to or
smaller than the volume per particle is not well defined. It certainly does not have
the anomalous scaling behavior V −4/3 of the total number of pairs.

6.3.2 Few-Body Systems

The adiabatic relation in Eq. 6.8 can be used as an operational definition of the
contact. If the energy of a system is known as a function of the scattering length, we
can simply differentiate to get an expression for the contact. A simple example in the
case a > 0 is the weakly-bound diatomic molecule, or shallow dimer, consisting of
two atoms with spins 1 and 2. The universal result for its binding energy is �

2/ma2.

Its energy is therefore
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Edimer = − �
2

ma2 . (6.17)

Using the adiabatic relation in Eq. 6.8, we find that the contact for the dimer is

Cdimer = 8π

a
. (6.18)

Blume and Daily have calculated the contact numerically for the ground state
of 4 fermions, 2 in each spin state, trapped in a harmonic potential and interacting
through a potential with a large adjustable scattering length a [7]. They determined
the contact as a function of a using four different universal relations: the tail of the
momentum distribution in Eq. 6.2, the density-density correlator at short distances
in Eq. 6.7, the adiabatic relation in Eq. 6.8, and the virial theorem in Eq. 6.11. The
small differences between the four determinations of the contact were compatible
with systematic errors associated with the nonzero range of the potential.

6.3.3 Balanced Homogeneous Gas

The contact density C for the homogeneous gas can be obtained by using the adiabatic
relation in Eq. 6.8 as an operational definition. Dividing both sides of the equation
by the volume, the relation can be expressed in the form

C = 4πma2

�2

dE
da
. (6.19)

Analytic results for the energy density ε are available in various limits, and they
can be used to obtain analytic expressions for the contact density.

We first consider the case of a balanced gas, in which the two spin states are equally
populated, at zero temperature. The total number density n = 2n1 = 2n2 determines
the Fermi momentum: kF = (3π2n)1/3. The ground state is determined by the
dimensionless interaction variable 1/kF a.As this variable changes from −∞ to 0 to
+∞, the ground state changes smoothly from a mixture of two weakly-interacting
Fermi gases to a Bose-Einstein condensate of diatomic molecules. The ground state
is always a superfluid. The mechanism for superfluidity evolves smoothly from the
BCS mechanism, which is the Cooper pairing of atoms in the two spin states, to the
BEC mechanism, which is the Bose-Einstein condensation of dimers.

In the BCS limit a → 0−, the energy density can be expanded in powers of kF a:

E = �
2k5

F

10π2m

(
1 + 10

9π
kF a + · · ·

)
. (6.20)

Using Eq. 6.19, we find that the contact density in the BCS limit is

C −→ 4π2n2a2. (6.21)
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This is proportional to the low-energy cross section 4πa2 and to the product (n/2)2

of the number densities of the two spin states. The contact density decreases to 0 as
a → 0−, but it decreases only as a2. This result emphasizes that the contact density
is not closely related to the density of Cooper pairs, which decreases exponentially
as exp(−π/kF |a|) as a → 0−.

In the unitary limit a → ±∞, the energy density can be expanded in powers of
1/kF a:

E = �
2k5

F

10π2m

(
ξ − ζ

kF a
+ · · ·

)
, (6.22)

where ξ and ζ are numerical constants. Using Eq. 6.19, we find that the contact
density in the unitary limit is

C −→ 2ζ

5π
(3π2n)4/3. (6.23)

Since the interaction provides no length scale in the unitary limit, the contact
density must be proportional to k4

F by dimensional analysis. An estimate ζ ≈ 1 for
the numerical constant in Eq. 6.23 can be obtained from numerical calculations of
the energy density near the unitary limit using quantum Monte Carlo methods [8, 9].
A more precise value can be obtained from numerical calculations of the density-
density correlator in the unitary limit using the fixed-node diffusion Monte Carlo
method [10]. Using the Tan relation for the density-density correlator in Eq. 6.7, we
obtain the value

ζ ≈ 0.95. (6.24)

In the BEC limit a → 0+, the energy density can be expanded in powers of
(kF a)3/2:

E = − �
2n

2ma2 + π�
2n2add

4m

(
1 + 128

15

√
na3

dd/2π + · · ·
)
, (6.25)

where add ≈ 0.60a is the dimer-dimer scattering length [11]. The leading term is the
total binding energy density for dimers with number density n/2 and binding energy
given by Eq. 6.17. The second term is the mean-field energy of a Bose-Einstein
condensate of dimers with dimer-dimer scattering length add . Using Eq. 6.19,
we find that the contact density in the BEC limit is

C −→ 4πn

a
. (6.26)

This is equal to the contact 8π/a for a dimer, which is given in Eq. 6.18, multiplied
by the dimer number density n/2. The contact density diverges as 1/a as a → 0+.
The first correction to the leading term in Eq. 6.26 is suppressed by a factor of (kF a)3.
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Fig. 6.1 The dimensionless
contact density s = C/k4

F for
the balanced homogeneous
gas as a function of the
dimensionless coupling
strength 1/kF a, from
Ref. [12]. The left dashed
line is the leading
contribution in the BCS limit
given by Eq. 6.21. The right
dashed line is the leading
contribution in the BEC limit
given by Eq. 6.26. The
contact density in the unitary
limit may be underpredicted
by about 16%

The contact density C for the ground state of the balanced homogeneous gas
can be expressed as k4

F multiplied by a monotonically-increasing dimensionless
function of 1/kF a. Haussmann, Punk, and Zwerger have calculated this function
numerically [12]. They used the Luttinger–Ward self-consistent formalism to cal-
culate the single particle spectral functions. The contact density was determined
using the Tan relation in Eq. 6.2 for the tail of the momentum distribution. Their
result for the contact density as a function of 1/kF a is shown in Fig. 6.1. It inter-
polates smoothly between the BCS limit in Eq. 6.21 and the BEC limit in Eq. 6.26.
Their result in the unitary limit corresponds to a value ζ ≈ 0.80 for the constant in
Eq. 6.23. This is about 16% smaller than the value in Eq. 6.24 that was obtained from
a fixed-node diffusion Monte Carlo calculation. This difference reflects a systematic
theoretical error in the calculational method of either Ref. [10] or Ref. [12] or both.

The dependence of the contact density on the temperature has been determined
analytically in various limits by Yu, Bruun, and Baym [13]. In the low-temperature
limit, the leading thermal contribution to the contact density comes from phonons.
The leading thermal correction at small T increases like T 4 [13]. It becomes sig-
nificant when T is comparable to the Fermi temperature: kB TF = �

2k2
F/2m. In the

BCS limit and in the unitary limit, the thermal contribution differs from the contact
at T = 0 by a factor of (T/TF )

4 multiplied by a numerical constant. In the BEC
limit, the thermal contribution is suppressed by a factor of (T/TF )

4 and by a further
factor of (kF a)1/2.

The contact density at high temperature can be calculated using the virial expan-
sion. The high-temperature limit1 was determined by Yu, Bruun, and Baym [13]:

1 In Ref. [13], the contact density was denoted by 16π2
�

2C and the total number density was
denoted by 2n instead of n.
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C −→ 8π2
�

2n2

mkB T
. (6.27)

Since the contact density increases as T 4 at small T and decreases as 1/T at suf-
ficiently large T, it must achieve a maximum somewhere in between. The maximum
occurs for T of order TF . The maximum is pronounced only when a is near the
unitary limit [13].

Palestini, Perali, Pieri, and Strinati have calculated the contact density for the
balanced homogeneous gas at nonzero temperature using a diagrammatic t-matrix
approximation [14]. They determined the contact from the high-momentum tail of
the momentum distribution in Eq. 6.2 and from the high-frequency tail of the radio-
frequency transition rate (which is discussed in Sect. 6.4.1).

Thus far, the calculational methods that have been used to calculate the contact
density numerically involve uncontrolled approximations. While they may be accu-
rate in certain limits, there may also be regions of kF a and T/TF in which the
systematic theoretical errors are not negligible.

6.3.4 Strongly-Imbalanced Homogeneous Gas

We now consider the strongly-imbalanced gas, in which a tiny population of minority
atoms in state 2 is immersed in a system of atoms in state 1. The minority atoms can
be considered as a dilute gas of impurities in the Fermi sea of majority atoms. In the
homogeneous gas with number densities n1 and n2, the ground state is determined
by the dimensionless interaction variable 1/kF1a, where kF1 = (6π2n1)

1/3 is the
Fermi wavenumber for the majority atoms. In the BCS limit a → 0−, the impurity
particle is an atom in state 2. In the BEC limit a → 0+, the impurity particle is
the dimer whose binding energy is given by Eq. 6.17. Using a diagrammatic Monte
Carlo method, Prokof’ev and Svistunov have shown that there is a phase transition
at a critical value ac of the scattering length given by 1/kF1ac = 0.90 ± 0.02 [15].
As 1/kF1a increases through this critical value, the impurity changes from a qua-
siparticle associated with the atom in state 2, which is called a polaron, to a dimer
quasiparticle.

Analytic expressions for the contact density for the ground state of the strongly-
imbalanced homogeneous gas can be obtained from the energy density using
Eq. 6.19. In the BCS limit a → 0−, the contact density is

C −→ 16π2n1n2a2. (6.28)

This is proportional to the low-energy cross section 4πa2 and to the product n1n2
of the two number densities. The contact density is an increasing function of 1/a
that is smooth except for a discontinuity at the phase transition at a = ac. In the BEC
limit a → 0+, the contact density is
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Fig. 6.2 The dimensionless contact density s = C/(6π2kF1n2) for the strongly-imbalanced homo-
geneous gas as a function of the dimensionless coupling strength 1/kF1a, from Ref. [16]. The
dashed line is the leading contribution in the BEC limit given by Eq. 6.29. The dotted and dash–
dotted lines are continuations of the solid line past the phase transition into metastable regions. The
position of the phase transition may be underpredicted by about 7%

C −→ 8πn2

a
. (6.29)

This is equal to the contact 8π/a for the dimer, which is given in Eq. 6.18, mul-
tiplied by the dimer number density n2.

The contact density C for the ground state of the strongly-imbalanced homo-
geneous gas can be expressed as kF1n2 multiplied by a monotonically-increasing
dimensionless function of 1/kF1a. This function has been calculated numerically
by Punk, Dumitrescu, and Zwerger [16]. They used the adiabatic relation in Eq. 6.19
to obtain the contact from the ground state energy density, which they calculated
using a variational method that gives a fairly good approximation to the results from
the diagrammatic Monte Carlo method [15]. The results of Ref. [16] for the contact
density as a function of 1/kF1a are shown in Fig. 6.2. For large negative values of
1/kF1a, the contact density can be approximated by the BCS limit in Eq. 6.28. It is
predicted to increase to about 5kF1n2 in the unitary limit ato ±∞ and then to about
20kF1n2 at the phase transition ac, where it is predicted to have a discontinuity of
about 20%. The prediction of the variational method for the position of the phase
transition is (kF1ac)

−1 ≈ 0.84, which is about 7% smaller than the diagrammatic
Monte Carlo result 0.90 ± 0.02. This difference reflects a systematic theoretical
error in the variational method of Ref. [12]. For large positive values of 1/kF1a, the
contact density can be approximated by the BEC limit in Eq. 6.29.
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6.4 Other Universal Relations

Many new universal relations involving the contact have been discovered in recent
years. They reveal that the contact plays a central role in many of the most important
probes for ultracold atoms.

6.4.1 RF Spectroscopy

Given a system of atoms in spin states 1 and 2, a radio-frequency (rf) signal that is
tuned to near the transition frequency between an atom in state 2 and an atom in a third
spin state 3 can transform the atoms in state 2 coherently into linear combinations of
atoms in states 2 and 3. These atoms can be subsequently transformed by decohering
processes into a mixture of atoms in states 2 and 3. The net effect is a transfer of
atoms from the state 2 to the state 3. The transition rate
(ω) for this process depends
on the frequency ω of the rf signal. It is convenient to choose the offset for ω to be
the transition frequency for a single atom. The transition rate for an extremely dilute
sample of N2 atoms is then a delta function at ω = 0:


(ω) −→ π�2δ(ω)N2, (6.30)

where� is the Rabi frequency associated with the transition. In a many-body system
consisting of atoms in states 1 and 2,
(ω) can be modified by initial-state interactions
between atoms in states 1 and 2 and by final-state interactions between atoms in state
3 and atoms in states 1 or 2. However the effects of these interactions are constrained
by a sum rule [17, 18]:

∞∫

−∞
dω
(ω) = π�2 N2. (6.31)

If the atoms interact through large pair scattering lengths a12 ≡ a, a13, and a23,

there are universal relations that govern the rf transition rate 
(ω). One of these
universal relations is a sum rule derived by Punk and Zwerger [19] and by Baym,
Pethick, Yu, and Zwierlein [20]:

∞∫

−∞
dωω
(ω) = ��2

4m

(
1

a12
− 1

a13

)
C12, (6.32)

where C12 ≡ C is the contact for atoms in states 1 and 2. The term proportional
to 1/a13 comes from final-state interactions between atoms in states 1 and 3. If we
divide the sum rule in Eq. 6.32 by the sum rule in Eq. 6.31, we get an expression for
the frequency shift 〈ω〉 averaged over the system. This frequency shift is called the
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clock shift. The universal relation for the clock shift has several interesting features.
If a13 = a12, the clock shift vanishes because of a symmetry relating atoms 2 and 3.
The clock shift has smooth behavior in the unitary limit a12 → ±∞. This behavior
was first observed in experiments on rf spectroscopy in 6Li atoms [21]. If we take the
limit a13 → 0 in Eq. 6.32, the sum rule diverges. This implies that if the scattering
length a13 is not large, the clock shift is sensitive to the range.

Another universal relation for rf spectroscopy is that the high-frequency tail of

(ω) is proportional to the contact. The general result for large scattering lengths
a12 and a13 was derived in Ref. [22]:


(ω) −→ �2(a−1
13 − a−1

12 )
2

4πω(mω/�)1/2(a−2
13 + mω/�)

C12. (6.33)

The asymptotic behavior in Eq. 6.33 holds when ω is much larger than the many-
body frequency scales �k2

F/m and kB T/�, but still much smaller than the frequency
scale �/mr2

0 associated with the range. If ω � �/ma2
13, the high-frequency tail

decreases asω−5/2. The result if the scattering length a13 is not large can be obtained
by taking the limit a13 → 0 in Eq. 6.33:


(ω) −→ �2

4πω(mω/�)1/2
C12. (6.34)

In this case, the high-frequency tail decreases asω−3/2. This scaling behavior was
derived in Ref. [23] and the coefficient was first calculated correctly by Schneider
and Randeria [24]. The scaling behavior was also pointed out in Ref. [25]. If 
(ω)
decreases asymptotically as ω−3/2, the sum rule in Eq. 6.32 diverges. Thus it is the
high-frequency tail in Eq. 6.34 that makes this sum rule sensitive to the range in the
case of a13 that is not large.

6.4.2 Photoassociation

Photoassociation uses a laser to transfer pairs of low-energy atoms into an excited
molecular state with very high energy. The wavefunction of the molecule has support
only over very short distances much smaller than the range r0, so the pair of atoms
must be very close together to have a reasonable probability of making the transition.
If there is a closed-channel molecule near the two-atom threshold that can be excited
by the laser, it can dominate the photoassociation rate. The rate is then proportional
to the number Nmol of closed-channel molecules:


 = �2

γ
Nmol, (6.35)

where � is the Rabi frequency of the laser and γ is the line width of the excited
molecule.
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Werner, Tarruel, and Castin [27] and Zhang and Leggett [28] pointed out that
if the large scattering length a comes from the tuning of the magnetic field B to
near a Feshbach resonance associated with this closed-channel molecule, then Nmol
is proportional to the contact. If the zero of energy is chosen to coincide with the
threshold for the atoms, the rate of change of the energy of the system with respect
to the magnetic field can be expressed as

dE

dB
= −μmol Nmol, (6.36)

where μmol is the difference between the magnetic moment of the closed-channel
molecule and twice the magnetic moment of an atom in the open channel. The
scattering length a(B) near a Feshbach resonance at B0 can be parametrized by

a(B) = abg

(
1 − �

B − B0

)
. (6.37)

Combining Eqs. 6.36 and 6.37 and using the adiabatic relation in Eq. 6.8,
we obtain an expression for the number of closed-channel molecules that is pro-
portional to the contact [27]:

Nmol = R∗�2

4π [�− (B − B0)]2 C, (6.38)

where R∗ is a positive length that characterizes the width of the Feshbach
resonance:

R∗ = − �
2

mμmolabg�
. (6.39)

That length can also be expressed as R∗ = − 1
2rs, where rs is the effective range

at the center of the resonance B = B0.

The universal relation between the number of closed-channel molecules and the
contact was previously derived formally by Braaten, Kang and Platter [29], but they
did not make the connection to photoassociation.

6.4.3 Structure Factors

Structure factors encode information about density-density correlations in a system.
For a many-body system of fermions with two spin states, the correlations between
the densities of the two spin states are particularly important. The corresponding
static structure factor S12(q) for a homogeneous system is the Fourier transform in
the separation vector r1 − r2 of the correlator 〈n1(r1)n2(r2)〉 of the two densities.
The dynamic structure factor S12(q, ω) is the Fourier transform in the separation



208 E. Braaten

vector and the time interval between the two densities. It encodes information about
the degrees of freedom that can be excited by density fluctuations. The static structure
factor can be obtained by integrating S12(q, ω) over ω.

If the scattering length is large, the static structure factor S12(q) has a high-
momentum tail that decreases like 1/q [30]. Hu, Liu, and Drummond have pointed
out that this tail is proportional to the contact density [31]:

S12(q) −→ 1

8

(
1

q
− 4

πaq2

)
C. (6.40)

The normalization of S12(q) in Ref. [31] differs from that in Eq. 6.40 by a factor
of 2/N , where N = N1 + N2 is the total number of atoms. The universal relation in
Eq. 6.40 follows simply by taking the Fourier transform of the Tan relation in Eq. 6.7
for the density-density correlation at short distances.

Son and Thompson have studied the dynamic structure factor S12(q, ω) in the
unitary limit [32]. They showed that the leading contribution in the scaling limit
ω → ∞ and q → ∞ with x = �q2/2mω fixed is proportional to the contact
density. The coefficient of C is (mω3/�)−1/2 multiplied by a complicated function of
the dimensionless scaling variable x, which they calculated analytically. For small x,
their result reduces to

S12(q, ω) −→ 4q4

45π2ω(mω/�)5/2
C. (6.41)

Taylor and Randeria have also determined the high-frequency tail of the dynamic
structure factor [33]. Their result for the limits q → 0 followed by ω → ∞ differs
from that in Eq. 6.41 by a factor of 3/2.

6.4.4 Viscosity Spectral Functions

Taylor and Randeria have derived universal relations for the viscosity spectral func-
tions of a homogeneous gas [33]. They found that the shear viscosity spectral function
η(ω) has a high-frequency tail that is proportional to the contact density. An error in
the coefficient was corrected by Enss, Haussmann, and Zwerger [34]:

η(ω) −→ �
2

15π(mω/�)1/2
C. (6.42)

Taylor and Randeria also derived a sum rule for η(ω):

∞∫

0

dω

(
η(ω)− �

2C
15π(mω/�)1/2

)
= π�

3

(
E − 3�

2

15πma
C
)
, (6.43)
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where E is the energy density. Given the high-frequency tail of η(ω) in Eq. 6.42,
the subtraction term on the left side of Eq. 6.43 is necessary to make the integral
convergent.

Taylor and Randeria have also derived a sum rule for the bulk viscosity spectral
function ζ(ω) [33]:

∞∫

0

dωζ(ω) = �
3

72ma2

(
dC

da−1

)
S/N

, (6.44)

where the derivative is taken with the entropy per particle held fixed. Since the
spectral function ζ(ω) is positive definite, the sum rule in Eq. 6.44 implies that the
contact density C is a strictly increasing function of a−1.

6.4.5 Rapid Change in the Scattering Length

In Ref. [3], Tan showed that if the scattering length a(t) is time dependent, the total
energy of the system changes at a rate that is proportional to the contact:

d

dt
E(t) = − �

2

4πm
C(t)ḃ(t), (6.45)

where b(t) = 1/a(t) and C (t) is the instantaneous contact at time t. If the external
potential V (r) is also changing with time, there is an additional term proportional
to V̇ (r) on the right side of Eq. 6.45. Tan referred to that equation as the dynamic
sweep theorem.

The simplest case of a time-dependent scattering length is a sudden change in a,
for which the change in the energy is given in Eq. 6.10. Tan also presented a more
general result for a scattering length a(t) that changes rapidly enough that the contact
does not have time to evolve significantly from its original value. If the scattering
length a(t) changes over a short time interval T from an initial value a(0) to a final
value a(T), the change in the total energy is

�E = − �
2

4πm

⎛
⎝ 1

a(T )
− 1

a(0)
+

√
8�

πm

T∫

0

dt

t∫

0

dt ′
√

t − t ′ḃ(t)ḃ(t ′)

⎞
⎠ C, (6.46)

where C is the contact at the initial time t = 0. The time interval T must be short
compared to the time scales for the evolution of the system. It must also be long
compared to the time scale mr2

0/� set by the range.
Son and Thompson have also considered rapid changes in the scattering length

for a system that is initially in the unitary limit [32]. The simplest case is a small-
amplitude oscillation of the inverse scattering length about the unitary limit: a(t)−1 =
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γ0 cos(ωt). Ifω is large compared to the Fermi frequency �k2
F/2m, the energy density

increases at a rate that is proportional to the contact density:

d

dt
E = γ 2

0 �
2

8πm

√
�ω

m
C. (6.47)

The frequency ω must also be small compared to the frequency scale �/mr2
0 set

by the range.
Another case of a rapidly varying scattering length considered in Ref. [32] is a

pulse a(t)−1 that differs from zero only during a short time interval. The change in
the total energy is proportional to the contact:

�E = �
5/2

4π2m3/2

⎛
⎝

∞∫

0

dω
√
ω |γ̃ (ω)|2

⎞
⎠ C, (6.48)

where γ̃ (ω) is the Fourier transform of the pulse: γ̃ (ω) = ∫ T
0 dt exp(iωt)a(t)−1.

This is consistent with the more general result in Eq. 6.46, which does not require
the unitary limit before and after the pulse.

6.5 Making Contact with Experiment

There are some exciting recent developments in the study of the universal relations
using experiments with ultracold atoms. They involve various measurements of the
contact and the experimental verification of some of the universal relations.

6.5.1 Photoassociation

The Hulet group at Rice University in Houston has measured the photoassociation
rate of a balanced mixture of 6Li atoms in the lowest two hyperfine spin states [35].
The scattering length was controlled by using the Feshbach resonance near 834 G.
They measured the photoassociation rate at various values of the scattering length,
with 1/kF a ranging from about −1.4 to about +5.4. The photoassociation laser can
excite the closed-channel molecule that is responsible for the Feshbach resonance.
The photoassociation rate can therefore be interpreted as a measurement of the num-
ber of closed-channel molecules. According to the universal relation in Eq. 6.38,
this is proportional to the contact. However, at the time of the experiment, the con-
cept of the contact was still unfamiliar. The number of closed-channel molecules
was expected to be proportional to the square of the order parameter |�|2 [35].
In the BEC limit, |�|2 ∝ kF/a, which has the same dependence on a as the con-
tact in Eq. 6.26. In the BCS limit, the order parameter decreases exponentially with
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Fig. 6.3 The derivative of the energy E with respect to 1/a determined from measurements of
the photoassociation rate of a trapped gas of 6Li atoms, from Ref. [27]. The data come from
measurements of the number of closed-channel molecules in Ref. [35]. The solid line is a theoretical
prediction using the local density approximation, with the contact density for the homogeneous
system obtained by interpolating between the BCS, unitary, and BEC limits. The symbol + indicates
the prediction for the contact in the unitary limit. The dashed lines are extrapolations from the BCS
and BEC limits

1/|a| : |�|2 ∝ k2
F exp(−π/(kF |a|)). This behavior is dramatically different from

the contact in Eq. 6.21, which decreases like a2 as a → 0−. Nevertheless, the mea-
surements of the photoassociation rate were compatible with the assumption that it
was proportional to |�|2, even for negative values of 1/kF a as large as −1.4.

The first analysis of the data from Ref. [35] in terms of the contact was carried out
by Werner, Tarruell, and Castin [27]. Their results are shown in Fig. 6.3. The contact
extracted from the measured number of closed-channel molecules was in reasonable
agreement with a theoretical prediction using the local density approximation, with
the contact density for the homogeneous system obtained by interpolating between
the BCS, unitary, and BEC limits.

6.5.2 Static Structure Factor

The static and dynamic structure factors for systems consisting of ultracold atoms
can be probed by using Bragg spectroscopy. Bragg scattering is a two-photon process
in which an atom absorbs a photon from one laser beam and emits a photon into a
second laser beam. The net effect is the transfer of a selected momentum �k and a
selected energy �ω to the atom, where k is the difference between the wavevectors
of the two lasers and ω is the difference between their frequencies.
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Fig. 6.4 The structure factor S(k) for a trapped gas of 6Li atoms as a function of kF/k for three
values of 1/kF a, from Ref. [37]. The solid lines are the universal predictions from Eq. 6.40 using
the contact obtained from a theoretical calculation. The dashed line is a linear fit to the data for
1/kF a = 0

The Vale group at Swinburne University of Technology in Melbourne has used
Bragg spectroscopy to study the static structure factor S12(k) [36]. They used a
balanced mixture of 6Li atoms in the lowest two hyperfine spin states. The scattering
length was controlled by using the Feshbach resonance near 834 G. In Ref. [37],
they reported measurements of the static structure factor S12(k) as a function of
a for k = 4.8kF . These measurements are in good agreement with the universal
relation for the large-momentum tail in Eq. 6.40, with the contact density for the
homogeneous sytem obtained by interpolating between the BCS, unitary, and BEC
limits. In Ref. [37], they also reported measurements of S12(k) as a function of k
for 1/kF a = −0.2, 0, and +0.3, which are shown in Fig. 6.4. The measurements
are linear in kF/k, as predicted by the universal relation in Eq. 6.40. The slope is
predicted to be proportional to the contact C. The contact for their trapped system at
zero temperature was calculated in Ref. [37] using the local density approximation
and a below-threshold Gaussian fluctuation theory for the homogeneous system.
For 1/kF a = −0.2 and +0.3, the slope agrees well the universal relation. In the
unitary limit 1/kF a = 0, the slope is smaller than predicted. The discrepancy could
be attributed to the effects of nonzero temperature.

6.5.3 Comparing Measurements of the Contact

The Jin group at JILA in Boulder has measured the contact C for a trapped gas of
atoms using three independent methods [38]. They used a balanced mixture of 40 K
atoms in the two lowest hyperfine spin states at a temperature of about 0.1TF . The
scattering length was controlled by using the Feshbach resonance near 201 G.
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The first method for measuring C used the Tan relation in Eq. 6.2 for the high-
momentum tail of the momentum distribution n2(k). The interactions between the
trapped atoms were turned off by changing the magnetic field to 209 G where the scat-
tering length vanishes. The trapping potential was then turned off, and the momentum
distribution was measured from the ballistic expansion of the cloud of atoms. The
contact C is the large-momentum limit of k4n2(k). It was measured for values of
1/kF a ranging from about −2.7 to about +0.2.

The second method for measuring the contact used the universal relation in
Eq. 6.34 for the high-frequency tail of the radio-frequency (rf) transition rate. The rf
signal was used to transfer atoms from state 2 into a third spin state 3 for which the
pair scattering length a13 is not large. The rf transition rate 
(ω) was determined by
measuring the number of atoms transferred. The contact was then determined from
the behavior of 
(ω) at large ω. It was measured for values of 1/kF a ranging from
about−1.7 to about +0.2.

The third method for measuring C also used the Tan relation in Eq. 6.2, but the tail
of the momentum distribution was determined by photoemission spectroscopy (PES).
This involves using momentum-resolved rf spectroscopy to measure the distribution
n2(k, ω) of the momentum and energy of atoms in state 2, and then integrating
over ω to determine the momentum distribution n2(k). The contact C is the large-
momentum limit of k4n2(k). It was measured for the same values of 1/kF a as the
second method.

The three sets of measurements of the contact by the Jin group [38] are shown
in Fig. 6.5. The results from the three methods are all consistent. They lie close
to the theoretical prediction of Ref. [27], which was based on the local density
approximation, with the contact density for the homogeneous system obtained by
interpolating between the BEC, unitary, and BCS limits. These results provide direct
experimental verification of the role of the contact in large-momentum and high-
frequency tails for a many-body system of fermions with a large scattering length.

6.5.4 Tests of the Thermodynamic Tan Relations

The adiabatic relation in Eq. 6.8 and the virial theorem in Eq. 6.11 relate different
contributions to the total energy E to the contact C. The adiabatic relation expresses
a derivative of (T +U )+ V in terms of the contact. The virial theorem expresses the
combination (T + U ) − V in terms of the contact. Thus measurements of T + U,
V, and C provide two nontrivial tests of the Tan relations for the thermodynamic
properties of the system.

The Jin group at JILA in Boulder has tested these Tan relations by measuring
T + Uand V for the same system of 40 K atoms for which they measured the contact
C [38], as described in Sect. 6.5.3. They measured the external potential energy V
by imaging the spatial distribution of the cloud of atoms, which was trapped in a
harmonic potential. They measured the combination T + U ,which can be called
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Fig. 6.5 Three measurements of the dimensionless contact C/kF for a trapped gas of 40 K atoms
as a function of 1/kF a, from Ref. [38]. The Fermi wavenumber kF is defined by the Fermi energy
for the trapped system: EF = �

2k2
F/2m. Two of the data sets are from the tail of the momentum

distribution measured directly by ballistic expansion (solid dots) and indirectly by photoemission
spectrometry (open dots). The third data set is from the high-frequency tail of the rf lineshape (stars)

the release energy, by turning off the trapping potential and observing the resulting
expansion of the cloud. They measured T + Uand V at values of 1/kF a ranging
from about −3 to about +0.3. For the contact C, they used their measurements from
photoemission spectroscopy described in Sect. 6.5.3. They found good agreement
between the two sides of the adiabatic relation in Eq. 6.8 as shown in Fig. 6.6. They
also found that the two sides of the virial theorem in Eq. 6.11 agreed to within
the errors, which were roughly 1% of the Fermi energy. These results provide direct
experimental verification of the role of the contact in the thermodynamics of a many-
body system of fermions with a large scattering length.

6.5.5 Contact Density Near Unitarity

The contact density for the homogeneous gas has been determined by the Salomon
group at École Normale Supérieure in Paris [39]. They used an imbalanced mixture
of 6Li atoms in the lowest two hyperfine spin states at a magnetic field near 834 G.
They determined the equation of state for the homogeneous gas by measuring the
number densities of the two spin states in a harmonic trapping potential integrated
over the two tranverse dimensions. Their result for the numerical constant in Eq. 6.23
was ζ = 0.93(5).This is consistent with the value in Eq. 6.24 obtained from diffusion
Monte Carlo calculations of the density–density correlator.
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Fig. 6.6 Test of the adiabatic relation in a trapped gas of 40 K atoms, from Ref. [38]. The dimen-
sionless contact C/kF as a function of 1/kF a determined from the derivative of the energy E with
respect to 1/a (solid dots) is compared to the measurements using photoemission spectrometry
(open dots). The Fermi wavenumber kF is defined by the Fermi energy for the trapped system:
EF = �
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6.6 Derivations of Universal Relations

In this section, we give an overview of various derivations of the universal relations.
We begin by describing briefly the novel methods used in the original derivations
of the Tan relations. We then describe briefly various other approaches that have
been used to rederive the Tan relations. Finally, we describe in more detail how
universal relations can be derived using quantum field theory methods involving
renormalization and the operator product expansion.

6.6.1 Preliminaries

The scattering amplitude for S-wave atom–atom scattering can be written as

f (k)= 1

k cot δ0(k)− ik
, (6.49)

where k is the relative wavenumber and δ0(k) is the S-wave phase shift. If the interac-
tions have a finite range, the low-energy expansion of the phase shift can be expressed
as a power series in k2:

k cot δ0(k)= − 1/a + 1

2
rsk2 + · · · , (6.50)
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where rs is the effective range. The coefficient of (k2)n has dimensions (length)2n−1.

Generically, all these coefficients are comparable to the range raised to the appropriate
power. By fine tuning the interactions, the scattering length can be made much larger
than the range. This fine-tuning leads to universal properties that depend on the
interactions only through the scattering length.

The universality for large scattering length reflects a well-behaved zero-range
limit, in which all the terms on the right side of Eq. 6.50 go to zero except the leading
term. The phase shift reduces in this limit to

k cot δ0(k)= − 1/a. (6.51)

The model in which the phase shift has this simple form up to arbitrarily large
momentum is called the Zero-Range Model. The universal properties of a general
model with large scattering length are realized in the Zero-Range Model in a partic-
ularly simple form, because a is the only length scale that arises from interactions.
The price that must be paid is that the zero-range limit leads to divergences in some
observables. It also leads to singularities in intermediate steps of the derivations of
universal relations. An illustration is provided by the energy relation in Eq. 6.6. The
kinetic energy T and the interaction energy U are separately ultraviolet divergent,
but the divergences cancel in the sum T + U . The singularities associated with the
zero-range limit can be regularized by backing off from the zero-range limit or by
some equivalent device.

One way to represent the Zero-Range Model is in terms of the Schrödinger equa-
tion for noninteracting particles with peculiar boundary conditions. The Schrödinger
wavefunction for N1 fermions in state 1 and N2 fermions in state 2 is a complex
function �(r1, . . . , r N1; r ′

1, . . . , r ′
N1
) that is totally antisymmetric in the first N1

positions and totally antisymmetric in the last N2 positions. The proper normalization
of the wavefunction is

1

N1!N2!
∫

d3r1 . . .

∫
d3rN1

∫
d3r ′

1 . . .

∫
d3r ′

N2

∣∣�(r1, . . . , r N1; r ′
1, . . . , r ′

N2
)
∣∣2 = 1.

(6.52)
In the zero-range limit, this wavefunction diverges when the positions r i and r ′

j
of any pair of fermions with different spins coincide. Its behavior when r1 and r ′

1
are nearly equal is

�(R+1

2
r, r2, . . . , r N1; R−1

2
r, r ′

2, . . . , r′
N2
)

−→ φ(r)�(r2, . . . , rN1; r ′
2, . . . , r′

N2
; R), (6.53)

where� is a smooth function of R and φ(r) is the zero-energy scattering wavefunc-
tion for two particles interacting through a large scattering length:

φ(r)= 1

r
− 1

a
. (6.54)

The Fourier transform of this wavefunction is
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φ̃(k)= 4π

k2 − (2π)3

a
δ3(k). (6.55)

The Schrödinger equation for interacting particles with a large scattering length
reduces in the zero-range limit to the Schrödinger equation for non-interacting
particles with the wavefunction constrained to satisfy the Bethe–Peierls boundary
conditions in Eq. 6.53.

6.6.2 Tan’s Derivations

Tan derived many of his universal relations by using generalized functions,
or distributions, to deal with the singularities associated with the zero-range limit
[2, 3]. He introduced distributions �(k) and L(k) whose values at finite k are

�(k)= 1, |k| < ∞, (6.56a)

L(k)= 0, |k| < ∞, (6.56b)

and which have the following integrals over all k:

∫
d3k

(2π)3
1

k2�(k)= 0 (6.57a)

∫
d3k

(2π)3
1

k2 L(k)= 1. (6.57b)

Using these properties, it is easy to verify that the Fourier transform of the zero-
energy scattering wavefunction in Eq. 6.55 satisfies

∫
d3k

(2π)3

[
�(k)+ 1

4πa
L(k)

]
φ̃(k)= 0. (6.58)

This property allows the Bethe–Peierls boundary condition in Eq. 6.53 to be
expressed as an equality rather than as a limit:

∫
d3k

(2π)3

[
�(k)+ 1

4πa
L(k)

] ∫
d3re−i k·r

×�

(
R+1

2
r, r2, . . . , rN1; R−1

2
r, r ′

2, . . . , r′
N2

)
= 0. (6.59)

In addition to using �(k) and L(k) to impose the Bethe-Peierls boundary con-
ditions, Tan used the distribution �(k) to regularize the interaction term in the
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Hamiltonian. He derived many of his universal relations by simple manipulations
involving these distributions. They lead to an expression for the contact of the form

C = 1

2

∑
σ

∫
d3k

(2π)3
L(k)k2nσ (k). (6.60)

By the properties of the distribution L(k) in Eqs. 6.56b and 6.57b, the integral
extracts the coefficient of 1/k4 in the high-momentum tail of nσ (k).

6.6.3 Other Derivations

6.6.3.1 Braaten, Kang, and Platter

Braaten and Platter [5] used quantum field theory methods to rederive all the Tan
relations in Sect. 6.2 except for the relation in Eq. 6.10 for the sudden change in the
scattering length. They used the formulation of the Zero-Range Model as a local
quantum field theory, as described later in Sect. 6.6.4.1. The singularities associated
with the zero-range limit were regularized by imposing an ultraviolet cutoff on the
momenta of virtual particles. The contact density was identified as the expectation
value of a local operator. The universal relations were derived using renormalization,
as described in Sect. 6.6.4.2, and the operator product expansion, as described in
Sects. 6.6.4.4 and 6.6.4.5.

Braaten, Kang, and Platter [29] used quantum field theory methods to derive
universal relations for the Resonance Model, in which the S-wave scattering phase
shift is given by

k cot δ0(k)= −
(
λ+ g2

k2 − ν

)−1

. (6.61)

The Resonance Model is a two-channel model, in which the states in the two-atom
sector consist of a point-like molecule as well as the usual two-atom scattering states.
It provides a natural model for a Feshbach resonance. The scattering length a =
λ − g2/ν agrees with the expression in Eq. 6.37 if we set λ= abg, ν= − mμmol
(B − B0)/�

2, and g2 = 1/R∗, where R∗ is given in Eq. 6.39. Braaten, Kang, and
Platter found that in the various universal relations that correspond to the Tan rela-
tions, the contact density is replaced by various linear combinations of the expectation
values of three local operators. If the expression for k cot δ0(k) in Eq. 6.61 is well-
approximated by −1/a for all wavenumbers from 0 up to the scale set by the system,
the expectation values of the three local operators must coincide in order for the
universal relations to reduce to those of the Zero-Range Model. For a broad Fesh-
bach resonance, which is defined by |abg| � R∗, this requires only that |a| � r0
and kr0 � 1, where r0 is the range of interactions in the absence of the Feshbach



6 Universal Relations for Fermions with Large Scattering Length 219

resonance. For a narrow Feshbach resonance, which is defined by |abg| � R∗, this
requires also that k R∗ � 1.

6.6.3.2 Werner, Tarruell, and Castin

Werner [26] derived the virial theorem in Eq. 6.11 independently. The right side of
Eq. 6.11 was expressed not in terms of the contact C but in terms of the derivative
of the energy that appears in the adiabatic relation in Eq. 6.8.

Werner, Tarruell, and Castin [27] rederived the tail of the momentum distribution
in Eq. 6.2, the adiabatic relation, and the density-density correlator at short distances
in Eq. 6.7. The singularities associated with the zero-range limit were regularized by
using a lattice model in which the fermions occupy the sites of a three-dimensional
cubic lattice whose spacing b approaches 0. Werner, Tarruell and Castin also used a
two-channel model to derive the universal relation for the number of closed-channel
molecules in Eq. 6.38.

Werner and Castin [40] subsequently presented a much more thorough treat-
ment of the universal relations for the Zero-Range Model and for the lattice model.
In addition to the tail of the momentum distribution, the adiabatic relation, and the
density-density correlator at short distances, they rederived the energy relation in
Eq. 6.6 and the adiabatic sweep theorem, which is the generalization of Eq. 6.45 that
allows for a time-dependent external potential. They showed that for a system in
thermal equilibrium (which includes the ground state as a limiting case), the contact
is an increasing function of 1/a:

dC

da−1 > 0. (6.62)

This inequality holds whether the derivative is evaluated at fixed entropy or at fixed
temperature. The monotonic increase of the contact density with 1/a is illustrated
in Figs. 6.1 and 6.2 for the cases of a homogeneous gas at zero temperature that is
balanced and strongly imbalanced, respectively. Because the inequality in Eq. 6.62
does not hold in general, it should not be regarded as a universal relation.

Werner and Castin also generalized the universal relations to various other
systems [40]. They considered the effects of a nonzero range for the interaction
potential. They derived the generalizations of the universal relations to two spatial
dimensions, which had been considered previously by Tan [41]. They also derived
universal relations for two types of fermions with unequal masses m1 < m2, for
identical bosons, and for mixtures of fermions and bosons with various masses. In
some cases, including identical bosons and two types of fermions whose mass ratio
m2/m1 exceeds the critical value 13.7, the universal relations are complicated by the
Efimov effect [40].
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6.6.3.3 Zhang and Leggett

Zhang and Leggett [28] rederived the adiabatic relation in Eq. 6.8 and the pressure
relation in Eq. 6.12. They used a nonlocal quantum field theory with field operators
ψ1(r) and ψ2(r) and with a short-range interaction potential U (r). They restricted
their attention to a homogeneous many-body system in equilibrium. The equal-time
two-particle correlation function was expressed as a sum over eigenstates of the
operator ψ2(r2)ψ1(r1):

〈ψ†
1 (r1)ψ

†
2 (r2)ψ2(r2)ψ1(r1)〉=

∑
i

νiφ
(i)(r1, r2)

∗φ(i)(r1, r2), (6.63)

where νi is the average number of pairs with different spins in the eigenstate i and
the eigenfunctions φ(i)(r1, r2) are normalized accordingly in a large volume V. The
Bethe–Peierls boundary conditions together with translation invariance imply that
the limiting behavior of these eigenfunctions as the separation r = |r1 − r2| goes to
zero is

φ(i)
(

R+1

2
r, R−1

2
r
)

−→ C (i)ei P (i)·Rφ(r), (6.64)

where the normalization constant C (i) and the momentum vector P (i) depend on the
eigenstate i and φ(r) is the zero-energy scattering wavefunction defined in Eq. 6.54.
The integral of the correlation function weighted by an arbitrary short-distance func-
tion s(|r1 − r2|) therefore reduces to:

∫
d3r1

∫
d3r2 s(|r1 − r2|)〈ψ†

1 (r1)ψ
†
2 (r2)ψ2(r2)ψ1(r1)〉

= 1

4π
V C

∞∫

0

drr2s(r)|φ(r)|2, (6.65)

where C is the contact density, which is given by

C = 16π2
∑

i

νi |C (i)|2. (6.66)

Zhang and Leggett emphasized that the thermodynamics is universal and is
completely determined by the contact density C. Zhang and Leggett also used a
two-channel model to derive a universal relation for the number of closed-channel
molecules that can be reduced to Eq. 6.38 [28].

Zhang and Leggett derived a factorization formula for the interaction energy
density [28] that separates the dependence on a and thermodynamic variables, such
as the temperature and number densities, from the dependence on the short-distance
parameters that determine the shape of the interaction potential U(r). The interaction
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energy is the special case of Eq. 6.65 in which the short-range function s(r) is the
interaction potential U(r). The interaction energy density can be expressed as

U = 1

4π
C

∞∫

0

drr2U (r)|φ(r)|2. (6.67)

All the dependence on the thermodynamic variables and on the large scattering
length a resides in the contact density C.

6.6.3.4 Combescot, Alzetto, and Leyronas

Combescot, Alzetto, and Leyronas [42] rederived the tail of the momentum dis-
tribution in Eq. 6.2 and the energy relation in Eq. 6.6. They used the Schrödinger
formalism in the coordinate representation to describe a system consisting of N1+N2
fermions. The singularities associated with the zero-range limit were regularized by
imposing a cutoff |r i −r ′

j | > r0 on the separations of the two types of fermions. They
expressed the contact in terms of the Fourier transform of the function � defined
by the Bethe-Peierls boundary conditions in Eq. 6.53. By reverting to the coordinate
representation, the contact density can be expressed as

C(R)= 16π2

(N1 − 1)!(N2 − 1)!
∫

d3r2 . . .

∫
d3rN1

∫
d3r ′

2 . . .

∫
d3r ′

N2

× ∣∣�(r2, . . . , rN1; r ′
2, . . . , r′

N2
; R)

∣∣2
, (6.68)

provided the wavefunction� is properly normalized as in Eq. 6.52. This expression
for the contact density was originally derived by Tan [2].

Combescot, Alzetto, and Leyronas generalized the tail of the momentum distrib-
ution and the energy relation to various other systems [42]. They generalized them
to two spatial dimensions, which had been considered previously by Tan [41]. They
generalized them to two types of fermions with different masses m1 < m2. They did
not however consider the complications associated with the Efimov effect when the
mass ratio m2/m1 exceeds the critical value 13.7 [40].

6.6.4 Quantum Field Theory Derivations

We proceed to explain how universal relations can be derived concisely using the
methods of quantum field theory.
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6.6.4.1 Zero-Range Model

A quantum field theory that describe atoms with two spin states must have fundamen-
tal quantum fields ψσ (r), σ = 1, 2. The Hamiltonian operator for a local quantum
field theory can be expressed as the integral over space of a Hamiltonian density
operator: H = ∫

d3 RH. If the atoms are in an external potential V (r), the Hamil-
tonian density operator is the sum of a kinetic term T , an interaction term U , and an
external potential term V:

H = T + U + V. (6.69)

In the quantum field theory formulation of the Zero-Range Model, the three terms
in the Hamiltonian density operator are

T =
∑
σ

1

2m
∇ψ†

σ · ∇ψ(�)σ (R), (6.70a)

U = g0(�)

m
ψ

†
1ψ

†
2ψ2ψ

(�)
1 (R), (6.70b)

V = V (R)
∑
σ

ψ†
σψσ (R). (6.70c)

For simplicity, we have set � = 1. The superscripts (�) on the operators in
Eqs. 6.70a and 6.70b indicate that their matrix elements are ultraviolet divergent
and an ultraviolet cutoff is required to make them well defined. For the ultraviolet
cutoff, we impose an upper limit |k| < � on the momenta of virtual particles. In the
limit � → ∞, the Hamiltonian density in Eq. 6.69 describes atoms with the phase
shift given by Eq. 6.51 provided we take the bare coupling constant to be

g0(�)= 4πa

1 − 2a�/π
. (6.71)

In Ref. [5], Braaten and Platter identified the operator that measures the contact
density in the quantum field theory formulation of the Zero-Range Model. It is
convenient to introduce the diatom field operator � defined by

�(R)= g0(�)ψ2ψ
(�)
1 (R). (6.72)

This operator annihilates a pair of atoms at the point R. The superscript (�)
on the operator ψ1ψ2 indicates that its matrix elements are ultraviolet divergent.
Their dependence on � is exactly compensated by the prefactor g0(�), so � is
an ultraviolet finite operator. The contact density operator is �†� [5]. This is just
the interaction energy density operator multiplied by a constant that depends on the
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ultraviolet cutoff: �†�= mg0U . The contact is obtained by taking the expectation
value of the contact density operator and integrating over space:

C =
∫

d3 R〈�†�(R)〉. (6.73)

6.6.4.2 Renormalization

Several of the Tan relations follow very simply from the renormalization of the Zero-
Range Model [5]. The renormalization condition in Eq. 6.71 implies that the bare
coupling constant g0(�) satisfies

g0(�)=
(

1

4πa
− �

2π2

)
g2

0(�). (6.74)

Its derivative with respect to a is

d

da
g0(�)= 1

4πa2 g2
0(�). (6.75)

The energy relation in Eq. 6.6 and the adiabatic relation in Eq. 6.8 follow simply
from these properties of the bare coupling constant:

Energy relation. The kinetic and interaction terms T and U in the Hamiltonian
density operator are given in Eqs. 6.70a and 6.70b. After inserting the expression
in Eq. 6.74 for the bare coupling constant g0 into U , the sum of T and U can be
expressed as the sum of two finite operators:

T + U =
( ∑

σ

1

2m
∇ψ†

σ · ∇ψ(�)σ − �

2π2m
�†�

)
+ 1

4πma
�†�. (6.76)

By taking the expectation value of both sides of Eq. 6.76, integrating over space,
and using the expression for C in Eq. 6.73. we obtain the energy relation in Eq. 6.6.

Adiabatic relation. According to the Feynman-Hellman theorem, the rate of
change in the energy due to a change in the scattering length can be expressed
in the form

(
dE

da

)
S

=
∫

d3 R

〈
∂H
∂a

〉
. (6.77)

The Hamiltonian density H depends on a only through the factor of g0 in U .Using
the derivative of the bare coupling constant in Eq. 6.75, we obtain the derivative of
the Hamiltonian density:

∂H
∂a

= 1

4πma2�
†�. (6.78)
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By inserting this into Eq. 6.77 and using the expression for C in Eq. 6.73,
we obtain the adiabatic relation in Eq. 6.8.

The virial theorem in Eq. 6.73 and the pressure relation in Eq. 6.73 can be derived
by combining renormalization with dimensional analysis. For the purposes of dimen-
sional analysis, we can regard � = 1 and m simply as conversion constants that allow
any dimensionful quantity to be expressed as a length raised to an appropriate power.

Virial theorem. For a system in a harmonic trapping potential, the only parameters
that an energy eigenvalue can depend on are the scattering length a and the angular
frequencyω.The combinations with dimensions of length are a and (mω)−1/2. Since
an energy eigenvalue E has dimensions 1/(m length2), the constraint of dimensional
analysis can be expressed as the requirement that a differential operator that counts
the factors of length gives −2when acting on E = ∫

d3 R〈H〉:

(
a
∂

∂a
− 2ω

∂

∂ω

) ∫
d3 R〈H〉= − 2E . (6.79)

Using the Feynman-Hellman theorem, this equation can be written
∫

d3 R

(
1

4πma
〈�†�〉 − 4〈V〉

)
= − 2E . (6.80)

Using the expression for C in Eq. 6.73, we obtain the virial theorem in Eq. 6.11.
Pressure relation. For a homogeneous system, the only variables that the free

energy density F = E − T S can depend on are the scattering length a, the
temperature T, and the number densities ni . The combinations with dimensions
of length are a, (mkB T )−1/2, and n−1/3

i . Since F has dimensions 1/(m length5),

the constraint of dimensional analysis can be expressed as the requirement that a
differential operator that counts the factors of length gives −5 when acting on F :

(
a
∂

∂a
− 2T

∂

∂T
− 3n1

∂

∂n1
− 3n2

∂

∂n2

)
F = −5F . (6.81)

Using the adiabatic relation in Eq. 6.8, this can be written

1

4πma
C + 2T S − 3μ1n1 − 3μ2n2 = −5F , (6.82)

whereμi is the chemical potential for the spin state i. The pressure relation in Eq. 6.12
then follows from the thermodynamic identity F = − P + μ1n1 + μ2n2.

6.6.4.3 The Operator Product Expansion

Many universal relations are most concisely derived using the operator product
expansion (OPE) of quantum field theory. The OPE was invented independently
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in 1969 by three giants of theoretical physics: Leo Kadanoff [43],
Alexander Polyakov [44], and Ken Wilson [45]. It is an expansion for the prod-
uct of local operators at nearby points in terms of local operators at the same point:

OA

(
R + 1

2
r
)

OB

(
R − 1

2
r
)

=
∑

C

f C
A,B(r) OC (R). (6.83)

The Wilson coefficients f C
A,B(r) are ordinary functions of the separation vector r.

The local operators OC (R) include some that can be obtained by Taylor-expanding
the operators on the left side in powers of r, but they also include additional operators
that take into account effects from quantum fluctuations. The Wilson coefficients for
these operators are not necessarily analytic functions of the vector r, and they can
even diverge as r → 0. One particularly simple local operator is the unit operator I,
whose expectation value in any state is 1. The sum over C in Eq. 6.83 can be extended
to include all local operators if we allow Wilson coefficients that are 0.

The OPE is a natural tool for generating universal relations, because it is an
operator identity. By taking the expectation value of both sides of the OPE in Eq. 6.83
in some state of the system, we get an expression for the correlator of the operators
OA and OB in terms of the expectation values of local operators in that state. Since
this expansion holds for any state of the system, it is a universal relation.

A local operator OC (R) is assigned the scaling dimension dC if the correlation
function of OC and its hermitian conjugate at points separated by r decreases asymp-
totically as 1/r2dC at small r. The unit operator I is assigned scaling dimension 0. In a
weakly-interacting theory, the scaling dimensions can be obtained simply by dimen-
sional analysis. In a strongly-interacting theory, they can be significantly different.
The difference between the scaling dimension and its value in the corresponding non-
interacting theory is called the anomalous dimension. At very small r, the leading
behavior of a nontrivial Wilson coefficient is determined by the scaling dimensions
of the operators:

f C
A,B(r) ∼ rdC −dA−dB. (6.84)

In the OPE in Eq. 6.83, the Wilson coefficients of higher dimension operators go
to 0 more rapidly as r → 0. A Wilson coefficient can be suppressed by a further
power of r is there is an explicitly broken symmetry which, if exact, would require
f C

A,B(r) to vanish. The extra suppression factor is the dimensionless combination of
r and the symmetry breaking parameter.

The technical assumptions required to prove the OPE have been discussed by
Wilson and Zimmerman [46]. The OPE can be expressed more precisely as an asymp-
totic expansion in the separation r = |r|. The OPE in Eq. 6.83 can be organized into
an expansion in powers of r by expanding the Wilson coefficients as Laurent series
in r. The OPE is an asymptotic expansion if for any power p, there are only finitely
many terms that go to zero more slowly than r p. The scaling behavior of the Wilson
coefficients in Eq. 6.84 guarantees that the OPE is an asymptotic expansion provided
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every local operator OC (R) has a positive scaling dimension dC > 0 and there are
only finitely many local operators with scaling dimension dC < d for any positive
number d. These conditions are satisfied in the Zero-Range Model, the Resonance
Model, and other renormalizable local quantum field theories that are relevant to cold
atoms.

An illustration of the operator product expansion with anomalous dimensions is
provided by the Ising Model in 2 dimensions. The exact solution by Lars Onsager
in 1944 [47] implies that correlation functions in the continuum limit have scaling
behavior with anomalous dimensions. For example, the leading term in the correlation
function for two spin operators σ as their separation r goes to 0 has the form

〈
σ(R + 1

2
r)σ (R − 1

2
r)

〉
−→ A

|r|1/4 , (6.85)

where A is a constant that does not depend on the state of the system. This correlator
is singular as r → 0.The power law behavior suggests that the system becomes scale
invariant at short distances. The fractional power of r indicates that the spin operator
has an anomalous dimension.

Kadanoff generalized the result for the correlator in Eq. 6.85 to an operator relation
[43]:

σ

(
R + 1

2
r
)
σ

(
R − 1

2
r
)

= A

|r|1/4 I + B|r|3/4ε(R)+ · · · , (6.86)

where I is the identity operator, ε(R) is the energy fluctuation operator, and B is
another constant. The infinitely many terms that are not shown explicitly in Eq. 6.86
go to 0 more rapidly than r3/4 as r → 0. The short-distance tail of the correla-
tor in Eq. 6.85 can be obtained simply by taking the expectation value of Eq. 6.86.
Kadanoff showed that the critical exponents of the Ising model, such as the expo-
nent 1

4 of 1/|r| in Eq. 6.85, could be deduced simply from the knowledge of which
operator products have singular Wilson coefficients. From the OPE in Eq. 6.86,
we can deduce that the spin operator has scaling dimension 1

8 and the energy fluctu-
ation operator has scaling dimension 1.

The OPE in Eq. 6.83 can be described more precisely as a short-distance operator
product expansion, because it involves operators at the same time with small spatial
separation. It can be generalized to a short-time operator product expansion, in which
the operators also have a small separation in time:

OA

(
R+1

2
r, T +1

2
t

)
OB

(
R−1

2
r, T −1

2
t

)
=

∑
C

f C
A,B(r, t) OC (R, T ).

(6.87)
The Wilson coefficients f C

A,B(r, t) are functions of the separation vector
r and the time interval t. The short-time OPE is more subtle than the short-distance
OPE because of the possibility that a correlator can have oscillatory behavior in
t as t → 0 [46]. The possibility of oscillatory behavior is avoided in the Euclid-
ean version of the quantum field theory that corresponds to analytic continuation of
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the time t to Euclidean time: t → −iτ. Thus the short-time OPE in Eq. 6.87 can
be expressed most rigorously as an asymptotic expansion in (r,−iτ), where τ is
the Euclidean time separation obtained by the analytic continuation t → −iτ. In a
Galilean-invariant theory, the appropriate scaling of (r,−iτ) is such that τ scales in
the same way as |r|2.

6.6.4.4 Short-Distance Operator Product Expansion

Universal relations for fermions with large scattering length can be derived from
operator product expansions in the Zero-Range Model defined in Sect. 6.6.4.1. In this
model, the scattering length a is the only length scale that arises from interactions.
At distances much smaller than |a|, the model is scale invariant with nontrivial scaling
dimensions. In the unitary limit a → ±∞, the model is not only scale invariant at
all distances but also conformally invariant [48]. If a is finite, we can regard 1/a as
the symmetry-breaking parameter associated with the broken conformal symmetry.

The fundamental field operators ψ1 and ψ2 of the Zero-Range Model have the
same scaling dimensions as in a noninteracting theory. However there are com-
posite operators with anomalous scaling dimensions. The scaling dimension of an
operator OC can be deduced from its propagator at large momentum k, which in a
Galilean-invariant theory scales as k2dC −5. Since the propagator for ψ1 or ψ2 is sim-
ply (ω− k2/2m)−1, these fields have scaling dimensions 3

2 . The scaling dimension
of the number density operator ψ†

σψσ is twice that of ψσ , which is 3. If there were
no interactions, the scaling dimension of the composite operator ψ1ψ2, or equiva-
lently the diatom field operator� defined in Eq. 6.72, would also be 3. However the
propagator for � is

∫
dteiωt

∫
d3re−i k·r〈�(r, t)�†(0, 0)〉= −i4πm

−1/a + √−m(ω − k2/4m)
. (6.88)

We have dropped an additive constant that is independent ofω and k,which could
be removed by renormalization. Since the propagator in Eq. 6.88 scales as k−1 at
large k, � has scaling dimension 2 and therefore anomalous dimension −1. The
scaling dimension of the contact density operator�†� is twice that of�,which is 4.

The short-distance OPE can be used to derive the Tan relation for the tail of the
momentum distribution in Eq. 6.2. The momentum distribution nσ (k) for atoms in
the spin state σ can be expressed as

nσ (k)=
∫

d3 R
∫

d3re−i k·r
〈
ψ†
σ

(
R−1

2
r
)
ψσ

(
R+1

2
r
)〉
. (6.89)

The behavior at large k is dominated by the small-r region of the integral.
We can therefore apply the OPE to the product of the operators ψ†

σ and ψσ .

As shown in Ref. [5], the leading terms in the OPE are
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ψ†
σ

(
R−1

2
r
)
ψσ

(
R+1

2
r
)

=ψ†
σψσ (R)+ 1

2
r ·

[
ψ†
σ∇ψσ (R)− ∇ψ†

σψσ (R)
]

− r

8π
�†�(R)+ · · · . (6.90)

We have written explicitly all terms whose Wilson coefficients go to zero more
slowly than r2 as r → 0. The first two terms on the right side of the OPE in Eq. 6.90
can be obtained by multiplying the Taylor expansions of the two operators. The
third term arises from quantum fluctuations involving pairs of atoms with small
separations. That its Wilson coefficient is proportional to r can be predicted from
the scaling dimensions of the operators using Eq. 6.84. The coefficient of r can be
calculated using diagrammatic methods described in Ref. [29]. Note that this Wilson
coefficient is not an analytic function of the vector r = (x, y, z) at r = 0, because it
is proportional to r = √

x2 + y2 + z2. The expectation value of the OPE in Eq. 6.90
can be expressed as
〈
ψ†
σ

(
R−1

2
r
)
ψσ

(
R+1

2
r
)〉

= nσ (R)+ i r · Pσ (R)− r

8π
C(R)+ · · · , (6.91)

where Pσ is the momentum density of atoms in the state σ. This form of the OPE
was first written down by Tan [2].

Upon inserting the OPE in Eq. 6.90 into Eq. 6.89, the first two terms give a
delta function in k and the gradient of such a delta function. They correspond to
contributions to nσ (k) that decrease at large k faster than any power of k. In the third
term, the Fourier transform of the Wilson coefficient at nonzero values of k can be
obtained from the identity

∫
d3re−i k·rr = − 8π

k4 , (6.92)

which can be derived by differentiating the Fourier transform of a 1/r potential.
This term gives a power-law tail in the momentum distribution:

nσ (k) −→ 1

k4

∫
d3 R〈�†�(R)〉. (6.93)

Comparing with Eq. 6.2, we obtain the expression in Eq. 6.73 for the contact C in
the Zero-Range Model. This verifies that the contact density operator is�†�,where
� is the diatom field operator defined in Eq. 6.72.

The short-distance OPE can be used to derive the Tan relation in Eq. 6.7 for the
density-density correlator at short distances [5]. The OPE for the number density
operators ψ†

1ψ1 and ψ†
2ψ2 includes a term whose Wilson coefficient is singular as

r → 0:

ψ
†
1ψ1

(
R+1

2
r
)
ψ

†
2ψ2

(
R−1

2
r
)

= 1

16π2

(
1

r2 − 2

ar

)
�†�(R)+ · · · . (6.94)
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All the other terms in the OPE are regular at r = 0. Taking the expectation value
of both sides, we get the Tan relation in Eq. 6.7.

The OPE in Eq. 6.94 can also be used to derive the universal relation for the static
structure factor S12(q) in Eq. 6.40. That structure factor can be expressed as

S12(q)=
∫

d3 R
∫

d3re−iq·r〈ψ†
1ψ1

(
R−1

2
r
)
ψ

†
2ψ2

(
R+1

2
r
)

〉. (6.95)

According to the universal relation in Eq. 6.40, the high momentum tail has terms
proportional to 1/q and 1/q2. They come from the singular terms proportional to
1/r2 and 1/r in the OPE in Eq. 6.94.

6.6.4.5 Short-Time operator product expansion

Other universal relations can be derived using the short-time operator product expan-
sion in Eq. 6.87. We will illustrate the use of the short-time OPE by showing how
it can be used to derive the universal relations for radio-frequency (rf) spectroscopy
that were presented in Sect. 6.4.1.

The rf signal that causes a transition of an atom in spin state 2 into an atom in
spin state 3 corresponds to the action of an operator ψ†

3ψ2(r, t). The inclusive rate

(ω) for the production of atoms in state 3 can be expressed as


(ω)=�2Im i
∫

dtei(ω+iε)t
∫

d3 R
∫

d3r

〈
Tψ†

2ψ3

(
R+1

2
r, t

)
ψ

†
3ψ2

(
R−1

2
r, 0

)〉
.

(6.96)
The symbol T in the matrix element implies that the product of operators is time

ordered. For a large frequencyω, the integrals are dominated by small Euclidean time
intervals t = − iτ and by small separations r.We can therefore apply the short-time
OPE in Eq. 6.87 to the product of operatorsψ†

2ψ3 andψ†
3ψ2.The Wilson coefficients

of the leading one-body operatorψ†
2ψ2 and the leading two-body operator�†�were

determined in Ref. [22]:
∫

dteiωt
∫

d3rψ†
2ψ3

(
R+1

2
r, t

)
ψ

†
3ψ2

(
R−1

2
r, 0

)

= i

ω
ψ

†
2ψ2(R)+ i(a−1

12 − a−1
13 )[a−1

12 − √−mω]
4πmω2[a−1

13 − √−mω] �†�(R)+ · · · . (6.97)

Upon inserting the OPE in Eq. 6.97 into Eq. 6.96, the ψ†
2ψ2 term gives a delta

function in ω. This corresponds to a contribution that decreases at large ω faster than
any power. The leading contribution to the high-frequency tail comes from the�†�

term:


(ω) −→ �2(a−1
13 − a−1

12 )
2

4πmω2 Im

(
−1

a−1
13 − √−m(ω + iε)

) ∫
d3 R〈�†�(R)〉.

(6.98)
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This reduces to the universal relation for the high-frequency tail in Eq. 6.33.
Sum rules for the rf transition rate 
(ω), such as those in Eqs. 6.31 and 6.32, can

be derived by expressing the integral along the real ω axis as a contour integral in the
complex ω plane that wraps around the real axis. If we allow for a general weighting
function f (ω), the sum rule becomes

∞∫

−∞
dω f (ω)
(ω)=�2

∮
dω

2π
f (ω)

∫
dteiωt

∫
d3 R

∫
d3r

×
〈
Tψ†

2ψ3

(
R+1

2
r, t)ψ†

3ψ2(R−1

2
r, 0

)〉
. (6.99)

If that contour is deformed into a circle whose radius approaches infinity, then
ω has a large imaginary part along most of the contour. This justifies the use of
the short-time OPE in Eq. 6.97. The sum rule can then be derived by evaluating the
contour integral along the circle at infinity for each of the Wilson coefficients. For
f (ω)= 1, the only nonzero contribution is from the ψ†

2ψ2 term and the sum rule
reduces to Eq. 6.31. For f (ω)=ω, the only nonzero contribution is from the �†�

term and the sum rule reduces to Eq. 6.32. The weighting function f (ω) does not
need to be a polynomial in ω. The Lorentzian function f (ω)= [(ω− ω0)

2 + γ 2]−1

gives a family of sum rules with two adjustable parameters that is less sensitive to
range corrections than that in Eq. 6.32 [22].

There are other universal relations that can be derived using the short-time OPE.
One example is the high-frequency behavior of the structure factor S12(ω, q), such
as the universal relation in Eq. 6.41. It can be derived from the short-time OPE for
the number density operators ψ†

1ψ1 and ψ†
2ψ2.
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