
Chapter 4
Pairing Fluctuations Approach
to the BCS–BEC Crossover

G. C. Strinati

Abstract This paper gives a survey of a diagrammatic approach for fermionic pairing
fluctuations, which are relevant to the BCS–BEC crossover realized with ultracold
Fermi gases. Emphasis will be given to the physical intuition about the relevant
physical processes that can be associated with this approach. Specific results will be
presented for thermodynamic and dynamical quantities, where a critical comparison
with alternative diagrammatic approaches will also be attempted.

4.1 Introduction

The BCS–BEC crossover has been of considerably interest over the last several years,
especially after its experimental realization with ultracold Fermi (6Li
and 40K) gases (for recent reviews about ultracold Fermi gases, see: [1, 2]). By
this approach, a continuous evolution is sought from a BCS-like situation whereby
Cooper pairs are highly overlapping, to a BEC-like situation where composite bosons
form out of fermion pairs and condense at sufficiently low temperature. Here, refer-
ence to composite bosons stems from the fact that the temperatures of formation
and condensation are in this case comparable with each other, in contrast with more
conventional point-like bosons for which the two temperatures are quite different
(reflecting the fact that their internal structure has no relevance to problems related
to condensation). Accordingly, a theoretical description of composite bosons should
take into account not only their overall bosonic structure associated with the center-
of-mass motion, but also their composite nature in terms of the degrees of freedom
of the constituent fermions.
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Fig. 4.1 Scattering length
for 6Li atoms versus
magnetic field. The inset
amplifies the behavior of the
narrow resonance (adapted
from Fig. 2 of Ref. [8])
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The key feature of ultracold Fermi atoms that has allowed the realization of the
BCS–BEC crossover is the possibility of varying essentially at will the strength
of the attractive interaction between fermions of different species [3], attraction
which results in the formation of Cooper pairs in a medium, on the one hand, and of
composite bosons in vacuum, on the other hand, out of the two fermion species. (In the
case of ultracold atoms, the spin of an electron is replaced by an analogous quantum
number associated with the atomic hyperfine levels.) Owing to this unique possibility,
ultracold atoms should be regarded as prototype systems, with respect to others in
Nature for which this possibility is hindered. Specifically, in ultracold atomic gases
the attractive interaction is varied through the use of the so-called Fano-Feshbach
resonances, which are characterized by a resonant coupling between the scattering
state of two atoms with near-zero energy and a bound state in a close channel
[4–6]. Changing (through the variation of a static magnetic field B) the position of
the bound state with respect to threshold in a suitable way, one can modify the value
of the (fermionic) scattering length aF from negative values before the formation of
the bound state in the two-body problem to positive values once the bound state is
formed [7]. As an example, Fig. 4.1 shows the scattering length for the collision of
two 6Li atoms versus B.

In this context, the dimensionless parameter (kF aF )−1 acquires a special role
for the corresponding many-body system at finite density. Here, the Fermi wave
vector kF of the non-interacting system (which is defined as kF = √

2m EF

both for a homogeneous and a trapped system—see below) is a measure of the
(inverse of the) interparticle distance, m being the fermion mass and EF the Fermi
energy of non-interacting fermions (we set � = 1 throughout). When the Fano-
Feshbach resonance is sufficiently “broad” (like for 6Li and 40K atoms used in
experiments thus far), in fact, the many-body fermion problem can be described in a
simplified way by a single-channel Hamiltonian with an instantaneous short-range
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interaction [8]. The strength of this interaction, in turn, can be parametrized in terms
of the above scattering length aF of the two-body (molecular) problem, which shares
the same ultraviolet divergency associated with the short-range character of the two-
body potential [9, 10]. In this way one ends up with all physical quantities of interest
for the many-body system depending on the interaction only through the parameter
(kF aF )−1.

In terms of this parameter, one finds that for most physical quantities the crossover
between the BCS and BEC regimes is exhausted, in practice, within a range ≈1 about
the unitary limit at (kF aF )−1 = 0 where aF diverges. Outside this limited range,
the BCS and BEC regimes (whereby (kF aF )−1 � −1 and 1 � (kF aF )−1, in the
order) are characterized by the product kF |aF | being quite smaller than unity (corre-
sponding to a diluteness condition), so that theoretical approaches can in principle
be controlled in terms of this small quantity in these two separate regimes. No such
small parameter evidently exists, however, in the unitary regime about (kF aF )−1 = 0,
whose theoretical description consequently constitutes a formidable task.

It is then clear that theoretical treatments of the BCS–BEC crossover should
provide as accurate as possible descriptions of the two regimes where the above
diluteness condition applies, either in terms of the constituent fermions (BCS regime)
or of the composite bosons (BEC regime). Specifically, this has to occur via a single
fermionic theory that bridges across these two limiting representations, by recovering
controlled approximations on both sides of the crossover and providing at the same
time a continuous evolution between them, thereby spanning also the unitary regime
where use of the theory could a priori not be justified.

The prototype of this kind of approach is represented by the BCS theory itself at
zero temperature. As remarked originally by Leggett [11] (see also Ref. [12]), the
BCS wave function is quite more general than originally thought, in the sense that it
contains as an appropriate limit the coherent state associated with a Bose–Einstein
condensate of composite bosons made up of opposite-spin fermions. This limit is
reached when the occupation numbers of all possible fermionic single-particle states
are much less than unity, so that the Fermi surface is completely washed out.

The argument can be made more quantitative by solving the coupled gap and
density equations provided by the BCS theory [13, 14] for a homogeneous system
at T = 0 (for which an analytic solution exists in terms of elliptic integrals [15]), to
obtain the gap (order) parameter �0 and fermionic chemical potential μ0 as functions
of (kF aF )−1 as shown in Fig. 4.2. Note that the chemical potential crosses over as
expected, from the value EF of the Fermi energy of non-interacting fermions in the
BCS limit, to (half the value of) the binding energy ε0 = (ma2

F )−1 of the two-body
(molecular) problem within the single-channel model in the BEC limit. In both limits,
�0/|μ0| � 1 albeit for different physical reasons.

The BCS theory is a mean-field approximation which relies on the Cooper pairs
being highly overlapping in real space [13], so that their effects can be dealt with
“on the average”. As such, it is expected to be a valid approximation even at finite
temperature whenever this condition is satisfied. It should accordingly apply to
the BCS limit of the BCS–BEC crossover, but not to the unitary or BEC regimes
where the typical length scale for correlation between two fermions with different
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Fig. 4.2 a Gap parameter �0 and b chemical potential μ0 for a homogeneous system at zero
temperature versus the coupling parameter (kF aF )−1, evaluated across the BCS–BEC crossover
within mean field

Fig. 4.3 Pair coherence
length ξpair (dashed line) and
phase coherence (healing)
length ξphase (full line) versus
(kF aF )−1, evaluated at zero
temperature as in Ref. [15]
according to their definitions
given in Refs. [16, 17],
respectively

spins becomes comparable with the interparticle spacing k−1
F . This is shown in

Fig. 4.3 where the (zero-temperature) intra-pair coherence length ξpair is plotted
versus (kF aF )−1.

It is then evident that, away from the BCS limit, inclusion of fluctuation corrections
beyond mean field becomes essential to account for the relevant physical properties of
the system. An equivalent way of stating the problem is that, away from the BCS limit,
the intra- and inter-pair coherence lengths are expected to differ considerably from
each other. This is also shown in Fig. 4.3 where the inter-pair coherence length ξphase
is reported for comparison. [In the BCS limit the two lengths differ by an irrelevant
numerical factor (ξpair � (3/

√
2)ξphase) owing to their independent definitions, so

that the two curves in Fig. 4.3 are parallel to each other in this coupling regime.]
In particular, in the BEC regime ξpair corresponds to the size of a composite boson
while ξphase represents the healing length associated with spatial fluctuations of the
center-of-mass wave function of composite bosons.
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It was indeed within this framework that the BCS–BEC crossover attracted atten-
tion also for high-temperature (cuprate) superconductors [18, 19], for which the
product kFξpair was estimated to be about 5 ÷ 10 in contrast with more conventional
superconductors for which it is of the order 103÷105. Several theoretical works were
then put forward on the BCS–BEC crossover in this context [16, 20–24], with the
limitations, however, that the origin and characteristics of the attractive interaction
at the basis of this crossover were not known for cuprate superconductors. These
limitations have eventually been fully removed with the advent of ultracold Fermi
atoms, to which we shall limit our considerations in the following.

One related reason to invoke the inclusion of fluctuation corrections beyond mean
field stems from the values obtained within BCS theory for the critical temperature
at which the order parameter vanishes. Only a numerical solution of the coupled
gap and density equations is amenable for generic values of (kF aF )−1, but analytic
results can still be obtained in the BCS and BEC limits. One gets [9]:

kB Tc � 8EF eγ

πe2 exp{π/(2aF kF )} (4.1)

in the BCS limit (where kB is Boltzmann constant and γ Euler constant with eγ /π �
0.567), and

kB Tc � ε0

2 ln (ε0/EF )3/2 (4.2)

in the BEC limit, respectively. While the result (4.1) corresponds to what is familiar
from BCS theory for weak coupling [13], the result (4.2) does not coincide with what
one would expect in the BEC limit, namely, the expression of the Bose–Einstein
condensation temperature kB TBEC = 3.31n2/3

B /(2m) where nB = n/2 is the density
of composite bosons in terms of the density n of the constituent fermions. On the
contrary, the expression (4.2) increases without bound when approaching the BEC
limit for 1 � (kF aF )−1.

The points is that the critical temperature obtained from the solution of the mean-
field equations corresponds to the process of pair formation and not of pair conden-
sation. The two temperatures coincide only in the BCS (weak-coupling) limit (in the
weak-coupling limit, the diagrammatic corrections introduced by [25] modify the
expression (4.1) for Tc, reducing its prefactor by about 2.2.), where pairs form and
condense at the same time. In the BEC (strong-coupling) limit, on the other hand,
pairs form at a higher temperature than that at which they eventually condense owing
to quantum effects. Accordingly, the expression (4.2) signals the phenomenon of pair
dissociation, and as such it must be regarded as a “crossover” temperature T ∗ which
does not correspond to a true phase transition. The complete plot of T ∗ obtained by
solving numerically the mean-field gap and density equations throughout the BCS–
BEC crossover is shown for the homogeneous (h) and trapped (t) cases in Fig. 4.4,
where it corresponds to the upper dashed and full lines, respectively (the remaining
two curves labeled by Tc result instead beyond mean field and will be discussed in
Sect. 4.2).
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Fig. 4.4 Temperature versus coupling diagram for the trapped (full lines) and homogeneous (dashed
lines) system, where the critical temperature Tc and pair-breaking temperature T ∗ are shown. Each
temperature is normalized to the respective Fermi temperature TF (adapted from Fig. 1 of Ref. [26])

It is thus evident from the above discussion that the main limitation of the mean-
field description we have considered thus far is that it includes only the degrees
of freedom internal to the pairs which are associated with pair-breaking, but omits
completely the translational ones. The latter are responsible for the collective sound
mode, which represents the main source of elementary excitations in the BEC regime
[27]. To overcome this severe limitation for a sensible description of the BCS–BEC
crossover in terms of a fermionic theory, it is then necessary to go beyond mean field
and include pair-fluctuation effects as discussed in the next section.

4.2 Inclusion of Pairing Fluctuations

A diagrammatic approach for fermionic pairing fluctuations was first considered by
Galitskii [28] for a dilute Fermi gas with strong short-range repulsion [29]. There it
was shown that the relevant fermionic self-energy can be taken of the form depicted
in Fig. 4.5, where �0 is the pair propagator describing the repeated scattering in the
medium between two fermions of opposite spins.

The short-range nature of the potential requires one to introduce at the outset
a regularization procedure that eliminates the ultraviolet divergences. This is done
by exploiting the two-fermion problem in vacuum, which shares the same sort of
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Fig. 4.5 Single-particle fermionic self-energy in the normal phase (upper panel) expressed in terms
of the pair (ladder) propagator �0 between two fermions of opposite spins (lower panel). Full and
dashed lines represent the fermionic propagator and interaction potential, respectively, while the
labels k (k′) and q correspond to fermionic and bosonic four-vectors, in the order

divergences and for which the (positive) strength v0 of the repulsive interaction can
be related to the ultraviolet cutoff k0 in wave-vector space through the following
equation for the two-body t-matrix in the low-energy limit [30]:

m

4πaF
= 1

v0
+

k0∫
dk

(2π)3

m

k2 . (4.3)

This relation defines the (fermionic) scattering length aF , which is positive in this
case and remains smaller than the range π/(2k0) of the potential if its strength v0 is
kept finite.

To the leading order in aF , this self-energy results in a repulsive “mean-field shift”
(4πaF/m)n/2 of the chemical potential, where n is the total fermion density for both
spin components. This is because, to the leading order in aF , �0(q) � (−4πaF/m)

and the loop in the upper panel of Fig. 4.5 gives half the fermionic density n
(we consider throughout the case of equal populations of spin up and down fermions).
Terms up to the second order in aF were also obtained by the Galitskii original
approach [28].

The above choice of the self-energy emphasizes pair-fluctuation effects via the
repeated scattering of two (opposite spin) fermions in the medium. As such, it has
been considered physically relevant also to the case of an attractive short-range
potential with a negative v0 [20, 31, 32], for which aF has the typical resonant
behavior of Fig. 4.1 associated with the BCS–BEC crossover. By this extrapolation,
the formal structure of the Galitskii self-energy is carried over to the domain of strong
coupling, and even further to the repulsive side of the resonance where a molecular
state forms (a firm basis for this extrapolation has recently been provided by [33]).
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Let’s write down explicitly the analytic expressions corresponding to the diagrams
depicted in Fig. 4.5, for the simplest case when all fermionic propagators appearing
therein are “bare” ones [31]. One has:

�(k, ωn)= − kB T
∑
ν

∫
dq

(2π)3 �0(q,�ν)G0(q − k,�ν − ωn) (4.4)

for the fermionic self-energy, and

(−1)

�0(q,�ν)
= m

4πaF
+

∫
dk

(2π)3

[
kB T

∑
n

G0(k, ωn)G0(q − k,�ν − ωn) − m

|k|2
]

(4.5)
for the (inverse of the) pair propagator. Here, G0(k, ωn)= [iωn −ξ(k)]−1 is the bare
fermion propagator (ξ(k)= k2/(2m)−μ being the free-particle dispersion measured
with respect to the chemical potential μ), while ωn = πkB T (2n + 1) (n integer)
and �ν = 2πkB T ν (ν integer) are fermionic and bosonic Matsubara frequencies at
temperature T, in the order. Note how the strength v0 of the attractive interparticle
potential has been eliminated in the expression (4.5) in favor of the scattering length
aF via the relation (4.3), which now admits also negative value for aF consistently
with the behavior shown in Fig. 4.1.

With the self-energy (4.4) one dresses the bare fermion propagator to obtain the
full propagator

G(k, ωn)= 1

G0(k, ωn)−1 − �(k, ωn)
, (4.6)

in terms of which the chemical potential can be eventually eliminated in favor of the
density via the expression (η = 0+):

n = 2kB T
∑

n

eiωnη

∫
dk

(2π)3 G(k, ωn). (4.7)

On physical grounds, the relevance of the expressions (4.4) and (4.5) to the BCS–
BEC crossover can be appreciated from the following considerations. While in the
BCS weak-coupling limit (where aF < 0 and (kF aF )−1 � −1) the pair propagator
maintains formally the same expression �0(q) � −4πaF/m of the repulsive case,
in the BEC strong-coupling limit (where 0 < aF and 1 � (kF aF )−1) it acquires the
polar structure of a free-boson propagator [10, 21]:

�0(q,�ν)= − 8π

m2aF

1

i�ν − q2/(4m) + μB
(4.8)

where the bosonic chemical potential μB reduces to 2μ + ε0 in this limit when
the composite bosons have size ≈ aF . In this limit, we may expand the fermionic
propagator (4.6) to the lowest order in �
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G(k, ωn) � G0(k, ωn) + G0(k, ωn)�(k, ωn)G0(k, ωn), (4.9)

and consistently approximate the self-energy (4.4) in the form:

�(k, ωn) � −G0(−k,−ωn)kB T
∑
ν

ei�νη

∫
dq

(2π)3 �0(q,�ν). (4.10)

In this way, we obtain for the density (4.7):

n � 2
∫

dk
(2π)3

1

eξ(k)/(kB T ) + 1
− 2

∫
dq

(2π)3 kB T
∑
ν

ei�νη

i�ν − q2/(4m) + μB

(4.11)
where use has been made of the result

∫
dk

(2π)3 kB T
∑

n

G0(k, ωn)2G0(−k,−ωn) � −m2aF

8π
(4.12)

which is valid when μ � −ε0/2 is the largest energy scale in the problem. Under
these circumstances, the first term on the right-hand side of Eq. 4.11 is strongly
suppressed by the smallness of the fugacity eμ/(kB T ), while the second term therein
represents the density nB of a non-interacting system of (composite) bosons with
chemical potential μB , yielding eventually n � 2nB . With the inclusion of pairing
fluctuations, the density equation (4.7) thus reproduces the standard result for the
Bose–Einstein condensation temperature kB TBEC = 3.31n2/3

B /m B where m B = 2m
is the mass of a composite boson.

Note further that, if only the first term on the right-hand side of Eq. 4.11 were
retained, one would get for the chemical potential:

μ

kB T
� ln

[
n

2

(
2π

mkB T

)3/2
]

(4.13)

which coincides with the classical expression at temperature T [29]. Setting in this
expression μ � −ε0/2 and T = Tc, the value (4.2) for the critical temperature Tc is
readily recovered.

Quite generally at any coupling across the BCS–BEC crossover, the critical
temperature is obtained from the normal phase by enforcing in Eq. 4.5 the insta-
bility condition 1/�0(q = 0,�ν = 0)= 0, in conjunction with the density equation
(4.7). The resulting values for Tc are plotted for the homogeneous (h) and trapped (t)
cases in Fig. 4.4, where they correspond the lower dashed and full lines, respectively.
In both cases, in the temperature window between Tc and T ∗ composite bosons are
formed but not yet condensed.

In the context of the BCS–BEC crossover, pairing fluctuations in the normal phase
were first considered by Nozières and Schmitt-Rink (NSR) [34], with the purpose
of obtaining a sensible extrapolation of the critical temperature from the BCS to the
BEC limit (in Ref. [34] the density equation was obtained by an alternative procedure
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via the thermodynamic potential). It was later remarked in Ref. [35] that the NSR
procedure corresponds to a t-matrix theory in which one keeps only the lowest-order
terms of Eq. 4.9 for all couplings and not just in the BEC limit. In practice, differences
between the numerical results, obtained alternatively by the NSR procedure or by
the approach based on Eqs. 4.4–4.7 where the expansion (4.9) is avoided, remain
sufficiently small even in the unitary region.

The approach for the normal phase based on Eqs. 4.4–4.7 was considered in
Ref. [31] to study fermionic single-particle properties above Tc in the homogeneous
case, and later extended to consider the effects of a trap. Owing to the presence
of two bare fermion propagator G0 in the particle–particle bubble of Eq. 4.5, this
approach is sometimes referred to as the “G0–G0 t-matrix”. This is to distinguish
it from alternative t-matrix approaches, notably: (i) the “G–G0 t-matrix” approach
[36] where one bare G0 and one self-consistent G enter the particle–particle bubble
defining the pair propagator, while a bare G0 is kept in the definition of the fermionic
self-energy (cf. Eq. 4.4); (ii) the “G–G t-matrix” approach [37] where all single-
particle Green’s functions are self-consistent ones. These alternative approaches were
both utilized recently to study the fermionic single-particle spectral function in the
normal phase [38, 39]. (It should be mentioned in this context that a t-matrix approach
formally similar to the G0–G0 one was proposed in Ref. [40], where the bare value
of the chemical potential for the non-interacting Fermi gas was inserted in the self-
energy in the spirit of a 1/N expansion.)

While the G–G0 and G–G t-matrix approaches have been implemented according
to their strict definitions, the pairing-fluctuation approach of Eqs. 4.4–4.7 can be
allowed to retain the original flexibility of the diagrammatic fermionic structure
which is “modular” in nature. In this sense, it can be progressively improved by
including additional self-energy corrections which are regarded important, especially
in the BCS and BEC regimes where the approximations can be controlled. This
implies, in particular, that the pair propagator in the expression (4.4) can be dressed
via “bosonic” self-energy insertions, which lead, for instance, to the Gorkov and
Melik-Barkudarov corrections [25] on the BCS side and to the Popov theory for
composite bosons [41] on the BEC side. Consideration of the latter is expected to be
especially important on physical grounds, since it effectively introduces a repulsive
interaction among the composite bosons which ensures, in particular, the stability of
the system under compression.

One major shortcoming of the pairing-fluctuation approach of Eqs. 4.4–4.7 is, in
fact, that it leads to a diverging compressibility when the temperature is lowered down
to Tc from the normal phase. This behavior is shown in Fig. 4.6 at unitarity, and can
be ascribed to the fact that the pair propagator (4.5) corresponds to non-interacting
composite bosons.

The price one has to pay, for setting up theoretical improvements over and above
the pairing-fluctuation approach discussed in the present section, is the unavoidable
increase of their numerical complexity when calculating physical quantities. Some
of these improvements will be discussed in the next section.

The above pairing-fluctuation approach can, in addition, be extended to the super-
fluid phase below Tc, whereby the pair propagator acquires a matrix structure that
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Fig. 4.6 The isothermal
compressibility dn/dμ (in
units of n/EF ) versus T/TF ,
as obtained at unitarity from
the pairing-fluctuation
approach based on Eqs.
4.4–4.7, is shown to diverge
at Tc (full line). In contrast,
the curve corresponding to
the free Fermi gas goes
smoothly through Tc (dashed
line)

 0

 1

 2

 3

 4

 5

 6

 7

 0  0.5  1  1.5  2  2.5
dn

/d
 [n

/E
F
]

T/TF

maps onto the bosonic normal and anomalous propagators within the Bogoliubov
theory [42, 43]. This extension (together with its Popov refinement [41]) will also
be considered in the next section.

4.3 Bogoliubov and Popov Approaches, and the Boson–Boson
Residual Interaction

A pairing-fluctuation approach was implemented on physical grounds below Tc in
Refs. [42, 43], by adopting a fermionic self-energy in the broken-symmetry phase
that represents fermions coupled to superconducting fluctuations in weak coupling
and to bosons described by the Bogoliubov theory in strong coupling. This approach
has allowed for a systematic study of the BCS–BEC crossover in the temperature
range 0 < T < Tc.

A diagrammatic theory for the BCS–BEC crossover below Tc was actually first
proposed by Haussmann [21], by extending the self-consistent t-matrix approxima-
tion to the broken-symmetry phase. While the ensuing coupled equations for the
chemical potential and order parameter were initially solved at Tc only, an improved
version of this self-consistent theory was recently implemented for the whole ther-
modynamics of the BCS–BEC crossover [37]. We postpone an explicit comparison
with this alternative approach to Sect. 4.4, where a selection of numerical results will
be presented.

By the approach of Refs. [42, 43], the pair propagator in the broken-symmetry
phase has the following matrix structure:

(
�11(q) �12(q)

�21(q) �22(q)

)
=

(
A(−q) B(q)

B(q) A(q)

)

A(q)A(−q) − B(q)2 (4.14)
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where

−A(q)= m

4πaF
+

∫
dk

(2π)3

[
kB T

∑
n

G11(k + q)G11(−k) − m

|k|2
]

(4.15)

B(q)=
∫

dk
(2π)3 kB T

∑
n

G12(k + q)G21(−k). (4.16)

This structure is represented diagrammatically in Fig. 4.7a, where only combina-
tions with 
L = 
′

L and 
R = 
′
R survive the regularization we have adopted for the

potential (cf. Eq. 4.3). It represents an approximation to the Bethe–Salpeter equation
for the fermionic two-particle Green’s function in the particle–particle channel. In
the above expressions, q = (q,�ν) and k = (k, ωn) are four-vectors, and

G11(k, ωn)= − ξ(k) + iωn

E(k)2 + ω2
n

= − G22(−k,−ωn)

G12(k, ωn)= �

E(k)2 + ω2
n

= G21(k, ωn) (4.17)

are the BCS single-particle Green’s functions in Nambu notation [14], with
E(k)= √

ξ(k)2 + �2 for an isotropic (s-wave) order parameter � (which we take
to be real without loss of generality).

In analogy to what was done for obtaining the expression (4.8) in the strong-
coupling limit, one can show that the pair propagator (4.14) reduces in the same
limit to the following expressions:

�11(q)= �22(−q) � 8π

m2aF

μB + i�ν + q2/(4m)

EB(q)2 − (i�ν)2 (4.18)

and

�12(q)= �21(q) � 8π

m2aF

μB

EB(q)2 − (i�ν)2 , (4.19)

where

EB(q)=
√(

q2

2m B
+ μB

)2

− μ2
B (4.20)

has the form of the Bogoliubov dispersion relation [29], μB = �2/(4|μ|)= 2μ + ε0
being the corresponding value of the bosonic chemical potential. Apart from
the overall factor −8π/(m2aF ) (and a sign difference in the off-diagonal
component [42]), the expressions (4.18) and (4.19) coincide, respectively, with the
normal and anomalous non-condensate bosonic propagators within the Bogoliubov
approximation [29].
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Fig. 4.7 Single-particle fermionic self-energy for the broken-symmetry phase (panel c), expressed
in terms of the pair propagator � with Nambu structure (panel a). The BCS contribution to the
self-energy is shown in panel d, and the corresponding self-energy for the normal-phase of Fig. 4.5
is also reported in panel b for comparison (reproduced from Fig. 1 of Ref. [43])

For any coupling, in Ref. [43] the corresponding fermionic self-energy was taken
of the form:

�11(k)= − �22(−k)= − kB T
∑
ν

∫
dq

(2π)3 �11(q, �ν)G11(q − k, �ν − ωn)

�12(k)= �21(k)= − � (4.21)

where �11 is shown diagrammatically in Fig. 4.7c (with 
L = 
′
L = 
R = 
′

R = 1) and
�12 in Fig. 4.7d.

With this choice of the self-energy, the fermionic propagator is then obtained by
solving Dyson’s equation in matrix form:

(
G−1

11 (k) G−1
12 (k)

G−1
21 (k) G−1

22 (k)

)
=

(
G0(k)−1 0

0 −G0(−k)−1

)
−

(
�11(k) �12(k)

�21(k) �22(k)

)
. (4.22)

Note that the BCS expressions (4.17) for the single-particle Green’s functions
result by neglecting in Eq. 4.22 the diagonal self-energy terms associated with pairing
fluctuations.

By the approach of Ref. [43], the “normal” propagator G11 is inserted in the
density equation
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n = 2kB T
∑

n

eiωnη

∫
dk

(2π)3 G11(k, ωn) (4.23)

which replaces Eq. 4.7 below Tc, while in the gap equation

�= − v0kB T
∑

n

∫
dk

(2π)3 G12(k, ωn) (4.24)

the BCS “anomalous” propagator (4.17) is maintained (albeit with modified numer-
ical values of the chemical potential and order parameter that result from the simul-
taneous solution of Eqs. 4.23 and 4.24). This ensures that the bosonic propagators
(4.14) remain gapless.

It is instructive to consider once more the BEC limit, whereby the diagonal part
of the self-energy acquires the following approximate form [43]:

�11(k, ωn) � 8π

m2aF

1

iωn + ξ(k)
n′

B(T ). (4.25)

Here,

n′
B(T )=

∫
dq

(2π)3

[
u2

B(q)b(EB(q)) − v2
B(q)b(−EB(q))

]
(4.26)

represents the bosonic noncondensate density, with the Bose distribution
b(x)= {exp[x/(kB T )] − 1}−1 and the standard bosonic factors of the Bogoliubov
transformation [29]:

v2
B(q)= u2

B(q) − 1 =
q2

2m B
+ μB − EB(q)

2EB(q)
. (4.27)

In this case, solution of the Dyson’s equation (4.22) yields:

G11(k, ωn) � 1

iωn − ξ(k) − �2+�2
pg

iωn+ξ(k)

(4.28)

with the notation �2
pg = 8πn′

B(T )/(m2aF ). When inserted into the density equation
(4.23) the above expression gives:

n � m2aF

4π

(
�2 + �2

pg

)
= 2

(
n0(T ) + n′

B(T )
)

(4.29)

where the condensate density n0(T ) is identified via �2 = 8πn0(T )/(m2aF ).

It is relevant to comment at this point on the value of the scattering length aB ,
which results in the BEC limit of the above approach from the residual interaction
between composite bosons. This value is obtained, for instance, by manipulating the
gap equation (4.24) in this limit, yielding:
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Fig. 4.8 a Effective
boson–boson interaction ū2.
b Additional terms
associated with the t-matrix
t̄B for composite bosons.
Light lines stand for
free-fermion propagator and
broken lines for fermionic
interaction potential. Spin
labels are not shown
explicitly (reproduced from
Fig. 2 of Ref. [41])

(a)

(b)

�2

4|μ| � 2
(√

2|μ|ε0 − 2|μ|
)

� μB . (4.30)

With the relation between �2 and n0 utilized in Eq. 4.29 and the asymptotic result
|μ| � (2ma2

F )−1, the expression (4.30) can be cast in the form μB = 4πaBn0/m B

that corresponds to the value of the Bogoliubov theory with aB = 2aF .

This result can also be interpreted diagrammatically as being associated with the
lowest-order (Born approximation) value for the effective boson–boson interaction
[10]. This is represented in Fig. 4.8a and can be obtained from the following expres-
sion where all bosonic four-momenta qi (i = 1, . . . , 4) vanish:

ū2(0, 0, 0, 0)= kB T
∑

n

∫
dp

(2π)3 G0(p)2G0(−p)2

�
∫

dp
(2π)3

1

4ξ(p)3 �
(

m2aF

8π

)2 (
4πaF

m

)
(4.31)

with the last line holding in the BEC limit. Apart from the overall factor (m2aF/(8π))2

(that compensates for the presence of the factor −8π/(m2aF ) in the expression (4.8)
of the free-boson propagator), the result (4.31) is indeed consistent with a residual
bosonic interaction corresponding to aB = 2aF .

The correct value for aB(=0.6aF ), which includes all possible scattering processes
between two composite bosons in isolation, was originally determined in Ref. [44]
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from the exact solution of the Schrödinger equation for dimer–dimer elastic scat-
tering, and later confirmed in Ref. [45] through a completely diagrammatic treat-
ment at zero density. In this context, even before this exact result was available, it
was shown in Ref. [10] that the scattering processes corresponding to the t-matrix
diagrams for composite bosons (the lowest ones of which are depicted in Fig. 4.8b)
lead by themselves to a considerable reduction of the value of aB(�0.75aF ) starting
from the value aB = 2aF of the Born approximation. As a matter of fact, the complete
diagrammatic treatment of Ref. [45] (that yields the exact value aB = 0.6aF) adds
to the diagram of Fig. 4.8a all other additional (zero density) processes which are
irreducible with respect to the propagation of two composite bosons, and then uses
the result in the place of the diagram of Fig. 4.8a as the new kernel of the integral
equation depicted in Fig. 4.8b.

The above considerations suggest us a way to improve on the Bogoliubov approx-
imation for composite bosons, in order to include the diagrammatic contributions
leading to a refined value of aB with respect to the Born approximation (in the
following, we shall limit ourselves to recovering the value aB � 0.75aF in the BEC
limit). To this end, we first approximately obtain the pair propagators �B for any
value of the fermionic coupling, by adopting the following Dyson’s type equation in
matrix form [41] in the place of the expressions (4.14):

�B(q)= �0
B(q) + �0

B(q)�B(q)�B(q). (4.32)

Here, �0
B(q) is the free-boson propagator with inverse

�0
B(q)−1 =

(
�0(q)−1 0

0 �0(−q)−1

)
(4.33)

where �0(q)−1 is given by Eq. 4.5, and

�B(q)= �2
(−2ū2(0, q, 0, q) ū2(0, 0,−q, q)

ū2(0, 0,−q, q) −2ū2(0, q, 0, q)

)
(4.34)

is the bosonic self-energy within the Bogoliubov approximation, which contains two
degenerate forms of the effective boson–boson interaction (cf. Fig. 4.8a):

ū2(q1, q2, q3, q4)= kB T
∑

n

∫
dp

(2π)3 G0(−p)G0(p + q2)G0(−p + q1 − q4)G0(p + q4).

(4.35)
To guarantee the ladder propagators �B(q) of Eq. 4.32 to be gapless when q = 0

for any value of the fermionic coupling, we impose the condition:

�0(q = 0)−1 − �11
B (q = 0) − �12

B (q = 0)= 0 (4.36)

which plays the role in the present context of the Hugenholtz–Pines theorem for
point-like bosons [29]. The Bogoliubov approximation for the composite bosons in
the BEC limit with an improved value of aB then results [10], by replacing in Eq. 4.34
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Fig. 4.9 Graphical
representation of the Popov
self-energy for composite
bosons, that results upon
dressing the upper fermionic
line in the particle–particle
channel. An analogous
dressing done for the lower
fermionic line accounts for
the factor of two in Eq. 4.38
(reproduced from Fig. 4 of
Ref. [41])

the boson–boson interaction ū2 with the following expression of the t-matrix for
composite bosons (cf. Fig. 4.8b):

t̄B(q1, q2, q3, q4) = ū2(q1, q2, q3, q4) − kB T
∑
ν5

∫
dq5

(2π)3

× ū2(q1, q2, q5, q1 + q2 − q5)�
0(q5)�

0(q1 + q2 − q5)t̄B(q1 + q2 − q5, q5, q3, q4).
(4.37)

Further improvements can be implemented by replacing the pair propagators
(4.14) with more refined descriptions of composite bosons in the BEC limit, and then
using these improved descriptions throughout the BCS–BEC crossover to modify the
fermionic single-particle self-energy accordingly. An example is the so-called Popov
approximation for composite bosons [41], whereby the bosonic self-energy repre-
sented diagrammatically in Fig. 4.9 is employed to modify the original Bogoliubov
propagators (4.14). In the broken-symmetry phase, this bosonic self-energy has the
form:

�
Pop
B (q)11 = − 2kB T

∑
n

∫
dp

(2π)3 kB T
∑
ν′

∫
dq′

(2π)3

× G11(p + q)2G11(−p)G11(q
′ − q − p)�11(q

′). (4.38)

The Popov propagators for composite bosons are then obtained as follows,
in terms of the corresponding Bogoliubov propagators (4.14):
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(
�

Pop
11 (q) �

Pop
12 (q)

�
Pop
21 (q) �

Pop
22 (q)

)
=

(
A(−q) − �

Pop
B (−q)11 B(q)

B(q) A(q) − �
Pop
B (q)11

)

[A(q) − �
Pop
B (q)11][A(−q) − �

Pop
B (−q)11] − B(q)2

(4.39)
where A(q) and B(q) are given by Eqs. 4.15 and 4.16, in the order. The propagators
(4.39) are gapless provided

A(q = 0) − �
Pop
B (q = 0)11 − B(q = 0)= 0. (4.40)

This generalizes to the present context the condition A(q = 0)− B(q = 0)= 0 for
gapless Bogoliubov propagators, and effectively replaces the gap equation (4.24) for
all practical purposes.

In addition, the same treatment that was made above to improve on the relation
aB = 2aF in the BEC limit can be applied here, by first rewriting the expression
(4.38) in terms of the bare boson–boson interaction (4.35)

�
Pop
B (q)11 � −2kB T

∑
ν′

∫
dq′

(2π)3 ū2(q
′, q, q ′, q)�11(q

′), (4.41)

and then replacing ū2 by the t-matrix t̄B for composite bosons of Eq. 4.37.
The final form of the fermionic self-energy is eventually obtained by reconsidering

the expressions (4.21), where now the Popov propagator �
Pop
11 of Eq. 4.39 takes the

place of �11 while � satisfies the condition (4.40) in the place of the original gap
equation.

From a physical point of view, the relevance of the Popov approximation results
because it introduces an effective repulsion among the composite bosons through the
presence of their noncondensate density. The importance of this repulsion should
be especially evident in the normal phase, when the Bogoliubov propagators (4.14)
reduce to free-boson propagator (4.5) and miss accordingly this residual bosonic
interaction. While commenting on Fig. 4.6 we have already pointed out that this is
the reason for a diverging compressibility at Tc when only “bare” pairing fluctuations
are considered.

In the next section we shall discuss a number of thermodynamic as well as dynam-
ical results obtained by implementing the Popov approximation in the normal phase
throughout the BCS–BEC crossover (the unitary limit will specifically be consid-
ered). In this case, the (inverse of the) Popov propagator for composite bosons is
obtained from the relation �Pop(q)−1 = �0(q)−1 − �

Pop
B (q), where �

Pop
B is given

by Eq. 4.41 with �0 replacing �11. In addition, to improve on the description of the
boson–boson scattering, we shall replace the bare ū2 in Eq. 4.41 by the t-matrix t̄Bfor
composite bosons given by Eq. 4.37. In this way, the 2-boson scattering will be dealt
with beyond the Born approximation.

In this context, it will be relevant to compare the results obtained by the above
approach in the normal phase for thermodynamic and dynamical quantities (F. Pales-
tini et al., unpublished), with those obtained by an alternative approach based on a
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self-consistent t-matrix approximation, as described in Ref. [37] for the thermody-
namics and in Ref. [39] for the dynamics of the BCS–BEC crossover, respectively.
(Results for a homogeneous system will only be presented.) Interest in this compar-
ison is also justified on physical grounds, by considering the different treatments
of the effective boson–boson interaction which result from the two approaches. As
remarked already, the Popov approach with t̄B replacing ū2 concentrates on 2-boson
scattering beyond the lowest order (Born) approximation, while the self-consistent
t-matrix approach includes a sequence of 3, 4, . . ., n-boson scattering processes,
where each process is dealt with at the lowest order. Although these alternative sets
of processes (namely, improved 2-boson versus n-boson scattering) can be clearly
identified by a diagrammatic analysis in the (BEC) strong-coupling limit [10], the
question of how the relevance of these processes extends to the unitarity limit remains
open and can be addressed only via numerical calculations. This question will be
partially addressed in the next section.

4.4 Results for Thermodynamic and Dynamical Quantities

Physical quantities that can be considered for a quantum many-body system are
conveniently organized as single- and two-particle properties, and are correspond-
ingly obtained in terms of single- and two-particles Green’s functions. In addition,
these properties may refer to the equilibrium state of the system or to excitations over
and above this state. In the first case they can be conveniently obtained within the
Matsubara formalism with discrete imaginary frequencies, while in the second case
a (sometimes nontrivial) analytic continuation to the real frequency axis is required
[29]. In the present context of a pairing-fluctuation diagrammatic approach to the
BCS–BEC crossover, we shall limit ourselves to considering the chemical potential
and the total energy per particle as examples of thermodynamic properties, and the
single-particle spectral function as an example of dynamical properties, for which
consideration of pairing fluctuations appears especially relevant.

This relevance is most evident in the normal phase, because the occurrence of
pairing fluctuations acts to extend above Tc characteristic effects of pairing (notably,
what is referred to as the “pseudogap physics” associated with the noncondensate
density like in Eq. 4.28), effects which would otherwise be peculiar of the broken-
symmetry phase below Tc only.

4.4.1 Thermodynamic Properties

For a homogeneous Fermi gas in the normal phase, the fermionic chemical potential
μ can be obtained from the density equation (4.7) and the total energy per particle
from the following expression [29]:
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E

N
= 1

n
kB T

∑
n

eiωnη

∫
dk

(2π)3

(
k2

2m
+ μ + iωn

)
G(k, ωn) (4.42)

where N is the total particle number. In Eqs. 4.7 and 4.42, different approximations
are embodied in different forms of the fermionic single-particle Green’s function
G. In particular, we shall consider approximate forms of G obtained within: (i) the
t-matrix approach given by Eqs. 4.4–4.6; (ii) its further simplification (sometimes
referred to as the Nozières-Schmitt-Rink (NSR) approximation) whereby the fermi-
onic propagator is expanded like in Eq. 4.9 for any coupling (and not just in the
BEC limit); (iii) the Popov approach with an improved description of the boson–
boson scattering as discussed in Sect. 4.3; (iv) the fully self-consistent (sc) t-matrix
approach of Ref. [37] that was mentioned in Sect. 4.2.

At unitarity, the results of these diagrammatic approaches for μ and E/N can
also be compared with Quantum Monte Carlo (QMC) calculations, which are avail-
able over a wide temperature range. This comparison is shown in Fig. 4.10. Several
features are here apparent. At high enough temperatures, all data progressively merge
to the t-matrix approach, which is known to become exact in this limit where it
reduces to the virial expansion of Beth and Uhlenbeck [46]. While only minor differ-
ences appear between the t-matrix and the NSR approaches (with independent NRS
calculations yielding comparable results [47]), the Popov approach is seen to a add
positive contribution both to μ and E/N . This is in line with the expectation that
the Popov approach takes into account the residual (repulsive) interaction among
composite bosons [41], which is missed by the t-matrix approach. In addition, the
fully self-consistent t-matrix approach, which at high enough temperature should
also asymptotically reduce to the t-matrix approach without self-consistency, shows
deviations from the t-matrix and Popov approaches that are more marked in μ than in
E/N . No compelling conclusions can, therefore, apparently be drawn by comparing
self-consistent versus non-self-consistent pairing-fluctuation approaches as far as
the thermodynamic quantities are concerned. Quite generally, it can be stated that
good overall agreement results by comparing QMC calculations with diagrammatic
pairing-fluctuation approaches, signifying that the latter are able to capture the rele-
vant physical processes. Note finally from Fig. 4.10 that the progressively increasing
differences between the t-matrix and Popov approaches when lowering the temper-
ature reflects the fact that the divergence of the compressibility resulting from the
t-matrix approach (shown in Fig. 4.6) is suitably cut off by the Popov approach,
which yields a finite value for this quantity at Tc (F. Palestini et al., unpublished).

Alternative theoretical approaches yield different values of the critical
temperature Tc, as shown in Table 4.1. These values can be compared with the
corresponding ones that are extracted from experiments, as reported in Table 4.2.
Although for this quantity the self-consistent t-matrix approach seems to perform
better than the non-self-consistent one(s), one should be aware of the fact that addi-
tional corrections to the pair propagator �0, like those introduced in Gor’kov and
Melik-Barkhudarov [25] in the weak-coupling (BCS) limit to represent the medium
polarization and shown to have a sizable effect on Tc in that limit, might still act to
reduce somewhat further the value of Tc even at unitarity. Definite comparison with
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Fig. 4.10 a Chemical
potential and b energy per
particle (in units of EF )
versus the temperature (in
units of TF ), as obtained:
In F. Palestini et al.
(unpublished) by the t-matrix
approach (dashed lines), the
NSR approximation
(dashed-dotted lines), and
the Popov approach (thick
full lines). In Ref. [37] by the
fully self-consistent t-matrix
approach (dotted lines). In
Ref. [48] (full squares) and
in Ref. [49] (full circles) by
QMC calculations. Results
obtained by the modified
virial expansion of Ref. [50]
(thin full lines) are also
shown for comparison
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the experimental values of Tc reported in Table 4.2 should then await for a proper
inclusion of these additional corrections. To elicit a more quantitative comparison
among theoretical and experimental thermodynamic quantities, Tables 4.1 and 4.2
list, in addition, the values of μ and E/N that are available both at zero temperature
and Tc.

The sizable effects that pairing fluctuations have on the thermodynamic quanti-
ties of Fig. 4.10 over and above the free-Fermi gas behavior can be appreciated by
sketching therein the plots of μ and E/N for the non-interacting Fermi gas (recall,
in particular, that μni(T = 0)/EF = 1, Eni(T = 0)/(N EF )= 0.6, μni(T = 0.6TF )/

EF = 0.625, and Eni(T = 0.6TF )/(N EF )= 1.15). The effects of pairing fluctua-
tions in these quantities are thus seen to extend over a wide temperature range up to
several times TF , being related to the high-energy scale �∞ introduced in Ref. [58]
in terms of the trace of the pair propagator �0.

There exists, however, an additional energy scale (usually referred to as the
pseudogap) which is also related to pairing fluctuations but is instead character-
istic of the low-energy physics about Tc. This energy scale is most evident when
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Table 4.2 Thermodynamic quantities obtained experimentally for a homogeneous Fermi system
at unitarity (references are specified)

Exp. [53] Exp. [54] Exp. [55] Exp. [50] Exp. [56] Exp. [57]

β −0.62(2) −0.68+0.13
−0.10 −0.54+0.05

−0.12 −0.58(1) −0.54(5)

μ(T = 0) 0.38(2) 0.32+0.13
−0.10 0.46+0.05

−0.12 0.42(1) 0.46(5)

Tc 0.157(15) ∼0.15
μ(Tc) 0.49(2)

Energies are in units of EF and temperatures of TF . The chemical potential at T = 0 is here obtained
via the relationμ(T = 0)/EF = 1+β that holds at unitarity, the parameterβ being directly measured.
(Experimental data for E(Tc)/N are not available for comparison with the theoretical values reported
in Table 4.1)

looking at the properties of the single-particle spectral function, to be considered
next.

4.4.2 Dynamical Properties

The spectral function A(k, ω) for single-particle fermionic excitations results after
analytic continuation of the fermion propagator G(k, ωn) from the Matsubara (ωn)
to the real (ω) frequency axis, via the relation A(k, ω)= − Im G R(k, ω)/π where
G R(k, ω) is the retarded fermion propagator. Through a related analytic continuation
of the fermionic self-energy �, A(k, ω) can be eventually cast in the form:

A(k, ω)= − 1

π

Im �(k, ω)

[ω − ξk − Re �(k, ω)]2 + [Im �(k, ω)]2 (4.43)

where again ξ(k)= k2/(2m)−μ. For any given wave vector k, the frequency struc-
ture of the real and imaginary parts of �(k, ω) thus determines the positions and
widths of the peaks in A(k, ω).

The archetype of a pairing-gap behavior for A(k, ω) is embodied in the two-peak
structure of the following expression (cf. Eq. 4.17):

A(k, ω)= u(k)2δ(ω − E(k)) + v(k)2δ(ω + E(k)) (4.44)

where E(k)= √
ξ(k)2 + �2 and v(k)2 = 1 − u(k)2 = (1 − ξ(k)/E(k))/2, which

holds at the mean-field level in the broken-symmetry phase. When pairing fluctu-
ations beyond mean field are included [31], a two-peak structure still persists in
the normal phase above Tc, although with broad and asymmetric peaks replacing
the delta spikes of Eq. 4.44 while the total area remains unity. Even in this case, the
positions of the two peaks in the spectral function follow quite closely the BCS-like

dispersions ±
√

ξ(k)2 + �2
pg, provided the value �pg of the pseudogap is inserted

in the place of the BCS gap � of Eq. 4.44. An example of this behavior is shown in
Fig. 4.11 for weak coupling.
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Fig. 4.11 Peak positions of
the spectral function at Tc for
negative (lower branch) and
positive (upper branch)
energies versus the wave
vector when (kF aF )−1 =
−0.72. The spectral function
is here obtained within the
t-matrix approach of [31].
Full lines represent a
BCS-like fit (adapted from
Fig. 15 of [31])
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A systematic study of the single-particle spectral function in the normal phase
across the BCS–BEC crossover was originally performed in Ref. [31] within the
t-matrix approach given by Eq. 4.4–4.6. Interest in this study was recently revived by
the advent of a novel experimental technique for ultracold Fermi gases [59], whereby
the wave vector of photo-excited atoms is resolved in radio-frequency spectra taken
at different couplings and temperatures. One should mention in this context the
comparison made in Ref. [38] between theoretical results obtained by the t-matrix
and G–G0 approaches, as well as the calculation performed in Ref. [39] within the
fully self-consistent t-matrix approach.

Similarly to what was done in Sect. 4.4.1 for thermodynamic properties, here we
compare the results for A(k, ω) obtained alternatively by the t-matrix, the Popov,
and the fully self-consistent (sc) t-matrix approaches (while referring to F. Palestini
et al. (unpublished) for a more complete analysis of this comparison). We then show
in Fig. 4.12 the results obtained for A(k, ω) at unitarity and k = kF by the three
approaches, at the respective values of the critical temperature. (Analytic continua-
tion from Matsubara to real frequencies has been performed in panel (a) by the direct
substitution iωn → ω + iη, in panel (b) by the Padé approximants, and in panel (c)
by the maximum-entropy method.) Note how the two-peak structure that is evident in
panel (a) remains noticeable in panel (b), but has essentially disappeared in panel (c).
This is consistent with a general understanding [60] that non-self-consistent calcu-
lations favor pseudogap behavior while self-consistent calculations tend to suppress
it. As the other side of the medal, one would tend to attribute [39] to self-consistent
calculations a more precise description of thermodynamic properties with respect to
non-self-consistent approaches.

In this respect, it should be noticed that the Popov approach, while improving
considerably on the thermodynamic description with respect to the t-matrix approach
as discussed in Sect. 4.4.1, preserves also an evident pseudogap behavior in the single-
particle spectral function. This is made evident in Fig. 4.13, where the dispersion of
the two peaks of A(k, ω) is reported at unitarity and T = Tc for the t-matrix, the
Popov, and the sc t-matrix approaches. (Close to kF , where the two peaks in A(k, ω)

are broad and overlap each other, the position of the less intense peak was determined
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Fig. 4.12 Single-particle
spectral function at unitarity
when T = Tc and k = kF , as
obtained by: a the t-matrix
approach of Ref. [31], b the
Popov approach of
F. Palestini et al.,
(unpublished) c the sc
t-matrix approach of
Ref. [39]. (The plot of panel
c has been extracted from
Fig. 4 of Ref. [39])

(b)

(a)

(c)

by subtracting from A(k, ω) the profile of the most intense peak.) The value of the
pseudogap, identified by (half) the minimum energy separation between the upper
and lower branches, remains essentially unmodified when adding the Popov on top
of t-matrix fluctuations, but it closes up when full self-consistency is included.

Stringent comparison with both experimental data and QMC calculations will
eventually decide what version of pairing-fluctuation theories is able to provide
the closest agreement for thermodynamic as well as for dynamical quantities, in
systems like ultracold Fermi gases where only the mutual attractive interaction can
be responsible for their physical behavior.
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Fig. 4.13 Dispersion of the
two peaks of the spectral
function at unitarity and
T = Tc obtained by the
t-matrix approach (empty
squares), the Popov
approach (full dots), and the
sc t-matrix approach (stars).
(Stars have been extracted
from the curves in Fig. 4 of
Ref. [39])
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4.5 Concluding Remarks

A gas of ultracold Fermi atoms, whose mutual interaction is governed by a (broad)
Fano-Feshbach resonance, represents a physical system of fermions containing only
pairing degrees of freedom. This feature naturally conveys their theoretical descrip-
tion in terms of “pairing fluctuations” of several kinds in the particle–particle channel,
which extend characteristic two-body processes to a finite-density situation. The diffi-
culty here is that, at finite density, the relevant processes of the pairing type can be
unambiguously identified only in the weak-coupling (BCS) regime where a fermion
description is appropriate and in the strong-coupling (BEC) regime where a descrip-
tion in terms of composite bosons holds, because in both regimes the presence of
the small parameter kF |aF | guides the selection of the diagrammatic contributions
for dilute systems. In additions, in these regimes useful analytic approximations
can be quite generally derived from these diagrammatic contributions, which help
considerably one’s physical intuition in picturing the involved processes. This kind
of physical intuition is hard to emerge from more numerically oriented approaches
(like QMC calculations) or more abstract approaches (like the renormalization group
methods [61]), thus making diagrammatic approaches to the BCS–BEC crossover
more appealing in this respect. In principle, diagrammatic approaches may not be
controlled in the unitary region, which is intermediate between the BCS and BEC
regimes and where the diluteness condition does not apply owing to the divergence
of |aF |. Nevertheless, the good control of the approximations which can be achieved
separately in the BCS and BEC regimes and the limited extension of the unitary
region (−1 � (kF aF )−1 � +1) enable one to formulate a single fermionic theory
that bridges across the BCS and BEC regimes and is able to furnish a good descrip-
tion of the unitary region for most practical purposes. This is the spirit with which
diagrammatic pairing-fluctuation approaches to the BCS–BEC crossover have been
formulated and applied to a variety of problems, both in the normal and superfluid
phases.
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It is finally relevant to mention that the interest in the physics brought about by
consideration of pairing fluctuations is not limited to a system of ultracold Fermi
atoms. In particular, the issue of the possible occurrence of a pseudogap in single-
particle excitations is of considerable interest both in condensed matter [62] and
nuclear physics [63]. This gives to ultracold Fermi gases the role of prototype systems,
in which issues of general interest can be conveniently addressed by exploiting the
unprecedented flexibility that they provide in the control of their physical parameters.

Acknowledgments The author is indebted to F. Palestini for a critical reading of the manuscript.
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