
Chapter 14
BCS–BEC Crossover and Unconventional
Superfluid Order in One Dimension

A. E. Feiguin, F. Heidrich-Meisner, G. Orso and W. Zwerger

Abstract In this chapter we discuss the BCS–BEC crossover in one-dimensional
Fermi gases. We present exact results using the Bethe Ansatz as well as numerical
calculations of the correlation functions and the complete phase diagram. In a bal-
anced gas, a continuous crossover occurs from a BCS-type fermionic superfluid to
a BEC of pairs that are described by the Lieb-Liniger model. In the case of a finite
imbalance, superfluidity persists in the form of a Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state with finite-momentum pairs on the weak coupling side. For strong
attractive interactions, it is replaced by a Bose-Fermi mixture. The perspectives to
observe an FFLO-state with ultracold fermions in a harmonic trap are discussed.
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14.1 Introduction

Starting with the historic controversy between Bardeen and Schafroth about the
proper explanation of superconductivity, the crossover from a Bardeen–Cooper–
Schrieffer (BCS) superfluid with Cooper pairs, whose size is much larger than the
inter-particle spacing, to a Bose–Einstein Condensate (BEC) of molecules composed
of fermions tightly bound into pairs has been a fundamental issue in many-body
physics. The realization of fermionic superfluids with ultracold gases near a Feshbach
resonance has turned this more or less academic, fifty-year-old problem into one
that can be studied experimentally [1–3]. In the 3D situation, the crossover is well
understood for the balanced gas, despite the fact that no analytical results are available
for even the most basic quantities such as the ground-state energy or the critical
temperature of the superfluid to normal gas transition in the most interesting regime
near unitarity. In the situation with a finite imbalance, many questions are still open,
in particular, the issue of unconventional superfluids that are expected in some parts
of the phase diagram (see the chapters by Bulgac, Forbes and Magierski, by Diederix
and Stoof and by Recati and Stringari). It is therefore of considerable interest to have
an analytically solvable model of the BCS–BEC crossover that provides quantitative
results in a particular case and, moreover, a better understanding of the conditions
under which unconventional superfluid pairing may appear. Such an exact solution
of the problem is possible in one dimension (1D), both for the balanced [4, 5] and
the imbalanced gas [6, 7]. The importance of this solution goes beyond the generic
interest in solvable many-body problems because

1. 1D Fermi gases with a tunable attractive interaction and arbitrary values of the
imbalance have been realized experimentally [8, 9] and

2. the imbalanced 1D Fermi gas exhibits unconventional superfluid order of the
FFLO type [10, 11] in a wide range of the phase diagram [12–19].

In the FFLO state, the pairs that form the superfluid acquire a finite center-of-mass
momentum and thus lead to an order parameter that oscillates in real space. Such an
unconventional superfluid has been predicted by Fulde and Ferrell [10] and—in a
more general form—by Larkin and Ovchinnikov [11]. Despite intense research over
several decades, this state has never been seen unambiguously, neither in condensed
matter nor in the more exotic context of QCD at high densities, where FFLO-type
phases based on pairing of quarks are predicted [20]. There is only some indirect
evidence for an FFLO state from specific heat data on organic superconductors in a
very strong magnetic field parallel to the layer structure [21]. As will be shown below,
ultracold Fermi gases in 1D with a finite imbalance provide a rather simple realization
of a state with finite-momentum Cooper pairs and thus give rise to the hope that this
elusive unconventional superfluid can eventually be observed experimentally.

This chapter provides an introduction to FFLO-physics in one dimension and to
exactly solvable 1D Fermi gases with attractive interactions in general (see also the
recent reviews by Sheehy and Radzihovsky [22, 23]).
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14.2 BCS–BEC Crossover of a Balanced
One-Dimensional Fermi Gas

In a 3D gas, the BCS–BEC crossover is realized by changing the attractive contact
interaction between two different hyperfine states through a Feshbach resonance,
beyond which a bound state appears in the two-particle problem in free space. On
the BCS side of the crossover, pairs only exist in the many-body system due to the
Pauli blocking of states below the Fermi energy, which gives rise to a finite density
of states at effectively zero energy. In one and also in two dimensions, the situation
is quite different because any purely attractive interaction produces a bound state
already at the two particle level. In fact, the existence of a two-body bound state is
both a necessary and sufficient condition for a BCS instability [24]. At first sight,
this seems to exclude a crossover with a proper BCS-limit in 1D because a two-body
bound state is always present. Moreover, the BEC limit of tightly bound pairs is very
special in 1D, because the Pauli principle for the constituent fermions makes these
pairs behave like hard-core bosons. The bound pairs thus form a strongly interacting
Tonks–Girardeau gas, very different from the weakly interacting gas of dimers that
appears on the BEC side of the crossover in 3D. Remarkably, the situation in a real
physical context, where atoms are confined to individual ‘quantum wires’ of finite
width �⊥ by, e.g., a strong 2D optical lattice, is different. In this case, an analog of the
3D crossover can be achieved in 1D by exploiting a confinement induced resonance
(CIR) in a tight trap where the effective 1D scattering length exhibits a resonance
caused by the mixing with a closed-channel bound state in the trap [25].

The microscopic Hamiltonian that describes a Fermi gas with two different com-
ponents is the Gaudin–Yang (GY) model [26, 27]

H = − �
2

2m

⎛
⎝

N↑∑
i = 1

∂2

∂x2
i

+
N↓∑

j = 1

∂2

∂y2
j

⎞
⎠ + g1

N↑, N↓∑
i, j = 1

δ(xi − y j ). (14.1)

Here, xi and y j denote the coordinates of up- and down-spin fermions respectively,
whose total numbers N↑, N↓ are fixed but, in general, different. The interaction
between fermions of opposite spin is described by a contact potential g1δ(x − y).
Note that fermions of the same spin, which are never at the same point in space, have
no interaction whatsoever in this model. In a situation where the atoms are subject to a
transverse confinement, the strictly 1D model (14.1) is applicable provided that only
the lowest eigenstate of the quantized motion in the transverse direction is occupied.
For a harmonic confinement with radial frequency ω⊥/2π and associated oscillator
length �⊥ = √

�/mω⊥, this requires εF � �ω⊥ or—equivalently— n�⊥ � 1,
where n ≡ N/L is the 1D density at total particle number N = N↑ + N↓. In this low
density regime, the replacement of the actual interaction between ultracold atoms
by a 1D contact potential turns out to be valid over a rather wide range of coupling
constants. Indeed, the momenta for the scattering of two fermions are of the order of
the Fermi momentum kF =πn/2. The reflection amplitude
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f (k)= −1

1 + i cot(δ(k))
� −1

1 + ika1 + O
(
(k�⊥)3

) (14.2)

that describes two-particle scattering in 1D [1] can thus be replaced by its low-energy
limit −1/(1 + ika1) as long as k2

F � a1/�
3⊥. Here, a1 is the 1D scattering length,

which is the single parameter that describes low-energy scattering in 1D. For a δ-
function potential V (x)= g1δ(x), the low-energy expression −1/(1 + ika1) for the
reflection amplitude holds for arbitrary k, with scattering length a1 = − 2�

2/mg1,

which is positive for attractive interactions g1 < 0. The replacement of the actual
inter-atomic potential by an effective contact interaction in 1D thus requires the
density to be small enough such that the condition (n�⊥)2 � a1/�⊥ is obeyed.
Since n�⊥ � 1 in the single transverse mode limit, this condition is satisfied in a
rather wide range, except very close to the confinement induced resonance, where
a1 vanishes (see Eq. 14.4).

In the case of a uniform, balanced gas with total density n, the Hamiltonian (14.1) is
characterized by a single dimensionless coupling constant γ ≡ mg1/�

2n,which is
inversely proportional to the density. In 1D, the strong coupling limit |γ | 	 1
is therefore reached at low densities. This initially counterintuitive fact can be under-
stood by noting that low densities imply small momenta. Moreover, the 1D scattering
amplitude (14.2) has its maximum phase shift δ(0)=π/2 as k → 0 because 1D
potentials become impenetrable at zero energy, i.e. f (k → 0)= − 1. At low den-
sities, therefore, the interaction is strongest, quite in contrast to the 3D case where
the s-wave phase shift tan δ0(k)= − ka + . . . vanishes in the low-energy limit. The
dimensionless coupling constant γ = − π/(kF a1) is therefore large when the 1D
scattering length is much smaller than the Fermi wave-length.

For weak attractive interactions γ → 0−, the ground state of the Gaudin–Yang
model in the balanced case N↑ = N↓ is a BCS-like state with Cooper pairs, whose size
is much larger than the average inter-particle spacing. This is a direct consequence
of the fact that the binding energy of these pairs (or—more precisely—the so called
spin gap that separates the singlet ground state from the first triplet excited state) [4]

	= εF · 16

π

√ |γ |
π

e−π2/2|γ | (14.3)

is much smaller than the Fermi energy εF in the weak coupling limit kF a1 	 1.
At a given strength a1 of the attractive interaction, this gap decreases exponentially
as	 ∼ exp (−πkF a1/2)with increasing density n ∼ kF , in contrast to the 3D case,
where 	 ∼ exp (−π/2kF |a|) strongly increases as the density and therefore, kF

grows. This fundamental difference is the basic reason for the fact that the unbalanced
superfluid appears at the edge of a trapped gas with a finite overall imbalance and
not in its center, as in 3D (see Sect. 14.3.2). The origin of this can be understood as a
simple density-of-states effect. Indeed, the formation of pairs due to weak attractive
interactions in a Fermi gas is favored by a large density of states v(εF ) at the Fermi
energy. In 3D, v3D(εF ) ∼ √

εF ∼ kF increases linearly with kF while in 1D, due
to v1D(εF ) ∼ 1/

√
εF ∼ 1/kF , the situation is reversed and pairing is strong at low
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densities. In the strong coupling regime kF a1 � 1, the attractive interaction leads to
the formation of tightly bound molecules, whose binding energy coincides with the
binding energy of the two-body problem 	 ≡ εb. These pairs behave like a hard-
core Bose gas. In a strictly 1D situation, therefore, the BEC limit of the crossover
corresponds to a Tonks–Girardeau gas of dimers and one never reaches a weakly
interacting BEC as in 3D.

A rather different situation, however, is encountered for the physically relevant
case of 3D fermions that are confined in a quasi-1D geometry, such that their trans-
verse degrees of freedom are completely frozen. For simplicity, we assume the atoms
to be trapped in a harmonic waveguide with radial frequency ω⊥/2π and oscillator
length �⊥. As shown by Bergeman et al. [28], the exact solution of the two-body
scattering problem in such a waveguide always exhibits one and only one two-body
bound state with energy ε̃b, whatever the 3D scattering length a. Apart from this
bound state, the low energy scattering properties can be described by an effective 1D
delta potential g1δ(x) with strength [25]

g1(a)= 2�ω⊥a

1 − Aa/�⊥
↔ a1(a)

�⊥
= − �⊥

a
+ A. (14.4)

Here, A = − ζ(1/2)/√2 � 1.0326 is a numerical constant. As naively expected, an
attractive 3D interaction a < 0 implies a negative value of g1. The associated two-
particle bound state has energy εb = mg2

1/4�
2 and coincides with the exact bound

state energy ε̃b in the limit a/�⊥ → 0. Remarkably, g1 and also the binding energy
ε̃b = 0.606�ω⊥ remain finite at a Feshbach resonance a = ± ∞, a prediction that
has been verified experimentally [9]. Entering the positive side a > 0, the vanishing
of the 1D scattering length a1 at �⊥/a = A � 1.0326 leads to a CIR, where g1 jumps
from −∞ to +∞ just as in a standard 3D Feshbach resonance. For g1 > 0, the
short-range potential g1δ(x) no longer has a bound state. It is still present, however,
in the quasi-1D problem and its energy ε̃b is always larger than its value 2�ω⊥ at the
CIR [28].

For a 1D gas with a finite density, the condition that only the lowest eigenstate
of the transverse motion is occupied requires �ω⊥ to be much larger than the Fermi
energy εF . Beyond the CIR at 1/γ = 0, the true bound-state energy ε̃b ≥ 2�ω⊥ is
therefore the largest energy scale in the problem and the dimers in this regime are
essentially unbreakable bosons. In order to describe the resulting 1D Bose gas, one
needs to know the effective interaction between these composite bosons. This has
been studied by Mora et al. [29], who have solved the four-body scattering prob-
lem in 1D with delta-function interactions between the particles in the presence of
a harmonic, transverse confinement. It turns out that the effective interaction of the
dimers can again be described by a pseudo-potential gddδ(x),with a repulsive inter-
action constant gdd > 0. Far away from the CIR, were the dimer size a � �⊥ is
much smaller than the scale �⊥ of the transverse confinement, this interaction coin-
cides with that expected from the free space result for the dimer-dimer scattering
length add � 0.6a in 3D, which has been derived by Petrov et al. [30]. As a result,
gdd → 2�ω⊥add vanishes in the deep BEC limit a → 0 and one recovers—as in
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3D—a weakly interacting Bose gas of dimers. Close to the resonance, the effec-
tive gdd diverges, consistent with the expectation that the dimers near the CIR form
a Tonks–Girardeau gas of hard-core bosons. In a waveguide geometry, therefore,
there is a full BCS–BEC crossover in one dimension [4, 5] that is described by
a Gaudin–Yang model of attractively interacting fermions up to the CIR and
a Lieb–Liniger model [31] of repulsive bosons beyond the CIR. On a formal level, the
continuous evolution from an attractive Fermi to a repulsive Bose gas in one dimen-
sion is implicit in the Bethe-ansatz equations of these models, as noted already by
Gaudin [26]. Indeed, the ground-state energy per particle

E0

N
= εb

2
+ 2

B∫

−B

dλ

n
σ(λ)

�
2λ2

2m
(14.5)

of the attractive Fermi gas is obtained from the solution of the Bethe-ansatz integral
equation

πσ(λ)= 1 +
B∫

−B

dq

n

γ σ(q)

γ 2 + [(λ− q)/n]2 . (14.6)

Here,σ(λ) is the distribution function of the quasi-momenta (rapidities). They appear
in complex conjugate pairs k± = λ ± i/a1 and describe the N/2 bound states of
the balanced gas. The value of B is fixed by the normalization

∫ B
−B dλσ(λ)= n/2.

For the fermionic Gaudin–Yang problem, γ is negative. Remarkably, the identical
equation applies for the Lieb–Liniger gas of dimers, where γ is positive. Since
one is now dealing with dimers of mass 2m and density n/2, the dimensionless
parameter γ = 4mgdd/�

2n = − 4/(na1,dd) depends on the coupling constant gdd or
the associated scattering length a1,dd of the dimer-dimer interaction. Its dependence
on the experimentally accessible parameters a and �⊥ is determined by the exact
solution of the 1D dimer-dimer scattering problem in the presence of a transverse
confinement by Mora et al. [29]. As a function of the experimentally tunable ratio
�⊥/a, the resulting parameter 1/γ, which replaces the standard inverse coupling
constant 1/kF a for the 3D crossover problem, smoothly grows from 1/γ = 0 at the
CIR a � �⊥ to 1/γ 	 1 in the BEC limit a � �⊥, where the size of the dimers is
much smaller than the transverse confinement length. More precisely, the effective
dimer-dimer interaction gdd that determines the dimensionless coupling constant
γ > 0 on the BEC-side, does not diverge at the CIR of the atoms but close to the
3D Feshbach resonance, where the exact two-particle binding energy is close to
ε̃b � 0.6�ω⊥, see Fig. 1 in [29].

The qualitative physics of the BCS–BEC crossover in a balanced 1D Fermi gas
is now easy to understand: in the high-density, BCS limit −π/γ = kF a1 	 1, the
system consists of weakly bound Cooper pairs. In this regime, there is a gap between
the singlet ground state and the first excited triplet state that increases strongly with
decreasing density. In addition, there are gapless density fluctuations, describing
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Fig. 14.1 Velocity of the
Bogoliubov sound mode
along the 1D BCS–BEC
crossover

the Bogoliubov-Anderson mode of a neutral superfluid. The attractive Fermi gas
is thus a so called Luther-Emery liquid [32, 33]. At the confinement induced reso-
nance, when kF a1 = 0, the system is a Tonks–Girardeau gas of tightly bound dimers.
It still exhibits sound modes with a linear spectrum, however, the spin excitations
have disappeared because the spin gap is effectively infinite. For positive 3D scat-
tering lengths 0 < a � �⊥, the system is an interacting Bose gas of tightly bound
molecules. Its excitations are the standard Bogoliubov sound modes, whose velocity
vanishes asymptotically in the weak coupling (BEC) limit 1/γ 	 1, as shown in
Fig. 14.1. The possibility of separating the BCS–BEC crossover into a purely fermi-
onic problem on one side of the CIR and a purely bosonic one on the other side of the
resonance is a peculiar property of one dimension. It relies on the assumption of a
dilute system n�⊥ � 1,whose Fermi energy is much smaller than the binding energy
at resonance. Defining a characteristic length scale r by the two-particle binding
energy ε = �

2/m(r)2 at resonance, the low density condition kFr � 1 in 1D is
completely equivalent to the condition kFr � 1 of a broad Feshbach resonance in
3D [1]. In this form, the condition applies more generally also for a two-channel,
Bose-Fermi resonance model [34]. In the opposite, narrow Feshbach resonance limit
kFr 	 1, the physics near the CIR becomes more complicated. In particular, a new
phase appears where atoms and dimers, both in a superfluid state with algebraically
decaying correlations, coexist [35, 36].

14.3 Spin-Imbalanced Fermi Gas in One Dimension

In this section we discuss the extension of the Gaudin–Yang solution for a balanced
attractive Fermi gas to the situation with a finite imbalance, as presented in [6, 7].
We first discuss the quantum phase diagram for the homogeneous system, where
the underlying model is integrable by means of the Bethe ansatz. We then include
a longitudinal trapping potential via the local density approximation and derive the
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shell-structure of the density profiles of the two components. Effects of finite tem-
perature have been investigated using the Bethe ansatz in [37, 38] and will not be
covered here. A similar behavior at zero temperature is found for the case of optical
lattices at filling factors below one. This case is covered in [39].

14.3.1 Bethe-Ansatz Solution for the Homogeneous Gas

The Hamiltonian (14.1) can be diagonalized exactly also in the presence of a finite
spin polarization. For fixed values of the linear number densities n↑ = N↑/L and
n↓ = N↓/L , where L is the size of the system, the ground state energy E is given by

E

L
= 4�

2

ma3
1

⎡
⎢⎣

B∫

−B

(
2λ2 − 1

2

)
σ(λ)dλ+

Q∫

−Q

k2ρ(k)dk

⎤
⎥⎦, (14.7)

where a1 = − 2�
2/mg1 is the effective 1D scattering length, and B and Q are

non-negative numbers related to the particle densities by n↓a1 = 2
∫ B
−B σ(λ)dλ and

n↑a1 − n↓a1 = 2
∫ Q
−Q ρ(k)dk. The spectral functions σ(λ) and ρ(k) appearing in

Eq. 14.7 are solutions of two coupled integral equations [26]

σ(λ)= 1

π
−

B∫

−B

K1(λ, λ
′)σ (λ′)dλ′ −

Q∫

−Q

K2(λ, k)ρ(k)dk,

ρ(k)= 1

2π
−

B∫

−B

K2(λ, k)σ (λ)dλ, (14.8)

where the kernels are given by πK1(λ, λ
′)= 1/[1 + (λ′ − λ)2] and πK2(λ, k) =

2/[1 + 4(k − λ)2]. The need for a second distribution function ρ(k) beyond the
function σ(λ) introduced in Sect. 14.1 for the balanced gas is due to the presence
of uncompensated spins in the imbalanced case n↑ �= n↓. These uncompensated
spins are not bound in pairs and are thus described by real rapidities k j . In the
thermodynamic limit, this gives rise to a distribution function ρ(k). It is only for
n↑ = n↓ that no uncompensated spins exist. In this case, we have Q = 0 and the
coupled set of equations (14.8) reduces to a single integral equation for σ(λ) which
is identical to Eq. 14.6 discussed in Sect. 14.1 by a trivial rescaling.

For a fixed value of the total density n ≡ n↑ + n↓, the density difference
s ≡ n↑ − n↓ can vary in the range 0 ≤ s ≤ n. For s = 0, the ground state of the
Hamiltonian (14.1) is fully paired with a spin gap 	, corresponding to the energy
needed to break a pair in the many-body system, whereas in the opposite limit s = n,
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Fig. 14.2 Quantum phase diagram of attractively interacting fermions obtained from the Bethe-
ansatz solution of the Gaudin model. Here μ, h = (μ↑ ± μ↓)/2, where μ↑,↓ are the chemical
potentials of the two components, and εb is the binding energy of the pair. Reproduced from [7]

the system is a fully polarized gas of ↑ fermions. For 0 < s < n, the gas is partially
polarized and is a superfluid of the FFLO type [12–19].

Using the mean chemical potential μ and the effective magnetic field h,
defined as

μ= ∂(E/L)

∂n
, h = ∂(E/L)

∂s
(14.9)

as new independent variables, one obtains the universal phase diagram shown in
Fig. 14.2, where εb = �

2/ma2
1 is the binding energy of the molecule.

The phase boundary h = hc(μ) between the partially polarized and the fully paired
regions is calculated by setting s = 0 in Eq. 14.9. We see that hc is a decreasing
function of the chemical potential, being exponentially small at large particle density
and reaching its maximum value hc = εb/2 in the zero density limit. This behavior
can be understood by noticing that the critical magnetic field is related to the spin gap
	 of the unpolarized gas by hc =	/2, and therefore, it increases when one enters
into the low density regime (μ decreases), where interaction effects become stronger.
We emphasize that in higher dimensions the situation is completely reversed [40]
(see also the discussion in the previous section).

The boundary h = hs(μ) between the partially polarized and the fully polarized
phases in Fig. 14.2 is obtained by setting s = n in Eq. 14.9. This yields the implicit
formula hs = 2εb[Q2(1 − arctan(2Q)/π) + (2Q − arctan(2Q) + π)/4π ], with
Q = √

(μ+ hs)/2εb.The fully paired and fully polarized phases correspond, respec-
tively, to the paramagnetic and ferromagnetic states of a superconductor in a magnetic
field [41, 42].

The presence of a two-body bound state leads to a direct boundary μ= − εB/2
between the fully paired phase and the vacuum. In the fully polarized phase the atom
density vanishes in correspondence to μ↑ = (μ+ h)/2 = 0, as for the 3D case [40].
We stress that the partially polarized phase has no direct boundary with the vacuum,
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implying the absence of n-body bound states with n > 2. This feature will change
in the presence of a mass asymmetry, as we shall discuss in Sect. 14.5.

We see from Fig. 14.2 that the fully paired and fully polarized phases cannot
coexist for a fixed value of the magnetic field. In particular, for h < εb/2, only the
fully paired phase is allowed, whereas for h > εb/2, only the fully polarized phase
can occur. This property determines the shell structure of a trapped gas, as we shall
see next.

14.3.2 Phase Separation in a Trap

We now assume that particles are trapped longitudinally by a shallow harmonic poten-
tial Vho(z)= mω2

z z2/2,whereωz is the trapping frequency, and we calculate the den-
sity profiles of the two components via the local density approximation (LDA). This is
done by imposing the local equilibrium condition μσ [n↑(z), n↓(z)] + Vho(z)=μ0

σ ,

where μσ [n↑, n↓] are the corresponding chemical potentials of the homogeneous
system and μ0

σ are constants fixed by the normalization Nσ = ∫
nσ (z)dz. Taking

into account that μ, h = (μ↑ ± μ↓)/2, this reduces to

μ[n↑(z), n↓(z)] =μ0 − Vho(z),

h[n↑(z), n↓(z)] = h0,
(14.10)

where μ0, h0 = (μ0↑ ± μ0↓)/2. Equation 14.10 shows that the LDA trajectories cor-
respond to vertical lines in the phase diagram of Fig. 14.2, implying that the trapped
one-dimensional gas phase-separates into two shells: a partially polarized core and
either fully paired or fully polarized wings. This is a key difference with respect to
three-dimensional systems, where the trap induces a three-shell structure [40].

In Fig. 14.3 we show the calculated Thomas–Fermi radii Rin and R↑ of the inner
and outer shells, respectively. These are plotted as a function of the spin polarization
P ≡ (N↑ − N↓)/N ,where N = N↑ + N↓ is the total number of particles, and for dif-
ferent values of the interaction parameter λ= Na2

1/a
2
z . In the absence of interactions,

we find R↑, Rin =√
1 ± Paz N 1/2 which are monotonic functions of P (top curves).

For finite attractive interactions, the two radii show instead a non-monotonic behavior
as a function of P, signaling the appearance of fully paired wings at low polarizations.
In particular, the cloud size (R↑) first decreases as P increases because the density
profiles of majority and minority components must match at the edge of the cloud.
Beyond a critical value P = Pc of the spin polarization, the outer shell becomes fully
polarized, implying that the cloud size must increase steadily for P > Pc, as shown
in Fig. 14.3. The critical spin polarization Pc increases going towards the strongly
interacting dilute regime, where it eventually saturates at Pc(λ= 0)= 1/5 (see [6, 7]
for details).
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Fig. 14.3 Thomas–Fermi radii of the outer (R↑) and of the inner (Rin) shell computed via LDA
from the exact solution for the homogeneous system. Radii versus P for values of the interaction
parameter λ=∞, 10, 1, 0.1, 0 (bottom to top). The non-monotonic behavior is a signature of the
fully paired wings at low spin polarization. Reproduced from [7] with permission of the author

14.4 FFLO Correlations in the Partially Polarized Phase

14.4.1 Predictions From Bosonization

So far, we have only discussed the thermodynamics of attractive 1D fermions at
zero temperature. As shown in the previous section, this allows one to determine the
density profiles of trapped gases within LDA. A detailed understanding of the order
that is present in the balanced and imbalanced attractive Fermi gas, however, requires
to calculate correlation functions. Of particular interest is the nature of superfluid
order in the ground state. It follows from the pair correlation

ρ
pair
i j =

〈
c†

i,↑c†
i,↓c j,↑c j,↓

〉
, (14.11)

which describes the tendency for singlet pairing as a function of separation x = i − j
(we use a continuum or discrete notation interchangeably, in particular since quantita-
tive results for correlation functions at arbitrary distances require using a lattice model
with discrete sites i, see the following section). In a standard singlet superconductor,
the pair correlation function approaches a finite constant at large separation x → ∞,

which is proportional to the square of the gap parameter in weak coupling. In one
dimension, long-range order is destroyed by quantum fluctuations even in the ground
state and at most algebraically decaying correlations may exist. For the balanced gas,
the correlation exponent 	SS for singlet pairing, defined by ρpair

i j ∼ |i − j |−	SS ,

turns out to be the inverse 	SS = 1/Kc of the (charge) Luttinger exponent Kc [32].
For attractive interactions, this implies 	SS < 1. The singlet pairing correlations
thus decay very slowly. They are, in fact, the dominant correlations in the system,
i.e., those with the smallest value of the correlation exponent 	 in the two-particle



514 A. E. Feiguin et al.

channel. In the case with a finite imbalance P �= 0, superfluid pairing still persists
in the ground state, however it changes both its nature and also decays more quickly
with distance. The fact that the nature of pairing is different can be understood most
easily from a mean-field description of pairing in the weak coupling limit. At finite
imbalance P = (n↑ − n↓)/n > 0, the two components have different Fermi wave
vectors kF,σ =πnσ .A BCS-instability of the free Fermi gas, which pairs an up-spin
fermion with a down-spin one at opposite sides of the respective Fermi ‘surfaces’
will thus lead to pairs with a finite total momentum

Q = kF↑ − kF↓ =πn P. (14.12)

This results in an oscillating superfluid correlation function of the form

|ρpair
i j | ∝ | cos(Qx)|/x	(p) (14.13)

which is characteristic of states of the FFLO-type (sometimes also denoted LOFF
in the literature) order. Fermionic superfluids with pairs that have a finite momentum
in the ground state were initially suggested for superconductors in the presence
of strong internal magnetic fields [10, 11]. In the present context of imbalanced
Fermi gases, the Hamiltonian is time-reversal invariant. The ground state therefore
necessarily has a vanishing net current. Pairs with net momentum Q and −Q are thus
equally probable and the superfluid order parameter is a real function ∼ cos(Qx),
up to an arbitrary overall phase. A peculiar feature of the situation in one dimension
is the fact that FFLO-type order is the dominant correlation (i.e. the one with the
smallest value of the correlation exponent 	) at arbitrary polarizations P > 0, up
to P = 1 where the system is a trivial fully polarized and non-interacting Fermi gas
[13, 16, 17]. (for early mean-field studies, see [43, 44]).

A convenient method to calculate the long-distance behavior of correlations in
1D quantum liquids is bosonization [32]. The attractive Fermi gas in the presence
of a finite effective field h that couples to the imbalance in a Zeeman-like form
H ′ = − h(N↑ − N↓) can thus be reduced to a sine-Gordon model for the spin-
density field φs(x) that determines the imbalance via p(x) ∼ ∂xφs(x) [12]. The
imbalance remains zero up to a critical value hc =	/2 of the effective field that is
determined by the spin gap 	 of the balanced gas. Beyond this critical field, a finite
density nsol = n↑ − n↓ = Q/π of solitons arises in φs(x) where the superfluid order
parameter changes by π at each soliton. The associated pair correlation function has
the form given in Eq. 14.13 with a correlation exponent 	SS(p)=	SS(p = 0) +
1/2. It is larger than the one of the balanced gas by an additional contribution 1/2
that arises from the fluctuations around the average periodic order of the soliton
lattice [12]. The appearance of an order parameter that is periodic in space can be
understood in simple physical terms by noting that the additional up-spins in the
imbalanced gas prefer to sit at the zeroes of the order parameter (naively associated
with a locally vanishing pairing gap), which are 1/nsol apart on average. These
results are supported by detailed numerical investigations of correlation functions in
the attractive Hubbard model on a 1D lattice, using density matrix renormalization
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Fig. 14.4 Exponents of
density-density correlations
and (s-wave) pair-pair
correlations functions,
calculated numerically from
the Bethe-ansatz, as a
function of polarization and
for several densities [16]

group (DMRG) or Quantum Monte Carlo (QMC) methods [12–19]. In particular,
the values of the correlation exponents for density-density correlations (denoted
by 	C DW ) which are dominant for repulsive interactions and those for superfluid
pairing of the FFLO-type are shown in Fig. 14.4. These results were obtained in [16]
by numerically solving the respective Bethe-ansatz equations [45, 46]. It is evident
that for attractive interactions, FFLO is the dominant instability at arbitrary values of
the polarization, also compared to other algebraically decaying correlation functions
such as, e.g., triplet superfluidity [16]. It is favored by small filling fractions on the
lattice. Moreover, there is hardly any dependence of the exponents on polarization
P beyond the initial jump by 1/2, in agreement with the predictions of bosonization.
There is one major caveat, however, of this method, which will be discussed in the
following.

The exact Bethe-ansatz solution of the imbalanced gas shows that the finite polar-
ization P(h) ∼ (h − hc) which appears beyond the critical field hc =	/2 starts
linearly with the deviation from the critical field. By contrast, bosonization predicts
a square root behavior P(h) ∼ √

h − hc of the polarization near the critical field [12].
This behavior is characteristic for the appearance of solitons in a Sine-Gordon model
with a finite tilt, as was found by Pokrovsky and Talapov [47] in the context of 2D
commensurate-incommensurate transitions. The failure of bosonization in this con-
text has been discussed by a number of authors [48–51] and is due to a breakdown of
spin-charge separation in this problem. To understand the physics behind this effect,
it is convenient to consider the strong coupling limit kF a1 → 0+ of the attractive
Fermi gas at given values of the total density n and density difference s = n↑ − n↓.
The ground-state is effectively a gas of dimers with density nd = n↓ = (n − s)/2
that coexists with a gas of unpaired fermions with density s. Since the dimers are
hard-core bosons, the ground-state energy density is of the form [7]

e0(n, s)= − εbnd + eT G
0 + eF

0 = − εbnd + �
2π2

12m

1

8
(n − s)3 + �

2π2

6m
s3. (14.14)

Here eT G
0 is the energy density of the Tonks–Girardeau gas of dimers with mass 2m

while eF
0 is that of a free Fermi gas. Note that there is no contribution gadnds from the
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atom-dimer repulsion here, because in one dimension the effective coupling constant
gad turns out to vanish like s2 [52]. Using h = ∂e0/∂s and the strong coupling result
2hc(n)= εb − εF/2 + . . . for the critical field, Eq. 14.14 leads to

h − hc = εF

2
P − εF

4
P2 + 4εF P2 + . . . . (14.15)

As a result, the dimensionless polarization P = 2(h −hc)/εF + . . . vanishes linearly
with h − hc, consistent with the Bethe-ansatz solution (see also [50, 53]). The linear
behavior is a result of a contribution εF P2/4 to the ground-state energy density
eT G

0 of the Tonks–Girardeau gas in Eq. 14.14. For small polarization P → 0, this
term dominates the kinetic energy eF

0 ∼ P3 of the Fermi gas of unpaired atoms that
gives rise to the last, irrelevant contribution on the rhs of Eq. 14.15. The failure of
bosonization is that it does not account for the change in the energy density eT G

0
that is associated with the creation of unpaired fermions from the gas of bound
pairs. Bosonization pretends they are created out of a vacuum state whose energy is
unaffected by a finite polarization. Only the kinetic energy ∼ P3 due to the filling
of an initially empty band in the spin sector is included. A different way to see that
bosonization cannot describe the correct linear dependence P(h)= 2(h − hc)/εF +
. . . is that it does not account for an energy scale of order εF , ‘knowing’ only about
the Fermi momentum, which is proportional to

√
εF . Also note that the coupling

between spin and charge that results from the nontrivial dependence of eT G
0 on n and

s changes the effective interaction between individual unpaired fermions (i.e., the
solitons of the Sine-Gordon theory) from the standard 1/x3-behavior discussed in
the context of 2D commensurate-incommensurate transitions [47] to a longer range
1/x2-dependence.

14.4.2 Exact Numerical Results

In this section we wish to demonstrate that the FFLO correlations predicted from
bosonization [12] indeed exist in the partially polarized phase of 1D systems of
attractively interacting fermions. While both the Gaudin–Yang and the 1D Hubbard
model, the lattice version, are integrable models, the calculation of correlation func-
tions is notoriously difficult, and one therefore has to resort to numerically exact
methods such as DMRG or QMC.

For concreteness, we consider the 1D attractive Hubbard model:

H0 = − t
L−1∑

i = 1, σ

(
c†

iσ ci+1σ + h.c.
)

+ U
L∑

i = 1

ni↑ni↓ (14.16)

with an attractive onsite interaction U and open boundary conditions. Here ciσ anni-
hilates a fermion with spin σ at site i and niσ is the local density of the fermions with
spin σ. The phase diagram for the 1D attractive Hubbard model for n ≤ 1 has the



14 BCS–BEC Crossover and Unconventional Superfluid Order in One Dimension 517

0 π/2 π
momentum k

0

50

100

150

200

n kpa
ir

0 0.2 0.4 0.6 0.8
P

0

0.5

1

1.5

k m
ax

Q=πnP(a) U=-8t, L=80, n=0.5

increasing P=0,0.1,0.2,...,0.9

kmax

(b)

Fig. 14.5 Momentum distribution function of pairs in the 1D Hubbard model with U = − 8t
and n = 0.5. In Eq. 14.18, i0 = L/2. Inset: the position of the maximum in npair

k shows the expected
scaling with Q = kF↑ − kF↓ =πn P. Compare also [14, 17] for the case of optical lattices and [15]
for the case of the continuum

same phases as the continuum model: vacuum, partially polarized phase, fully paired
phase, fully polarized phase [39, 54]. Additional phases emerge at larger densities
that, however, are related to the aforementioned ones by means of a particle-hole
transformation.

We use DMRG [55, 56] to compute the pair-pair correlation functions Eq. 14.11
[13, 17, 18]. Similar results can be obtained with QMC for both optical lattices [14]
(there, the particle numbers are smaller than what can be accessed with DMRG [39],
though) and the continuum case [15].

It is illustrative to go to momentum space by computing the associated momentum
distribution function:

npair
k = (1/L)

∑
lm

exp[ik(l − m)]ρpair
lm . (14.17)

Typical results for a homogeneous system with open boundary conditions are
shown in the main panel of Fig. 14.5. At zero polarization P = 0, the MDF has a
maximum at zero momentum, which, upon polarizing the system, shifts to finite
momenta. The smoking gun for the presence of FFLO correlations is the scaling of
the position Q of the finite-momentum maximum with polarization: in the case of
1D we expect Eq. 14.12 to hold. This is verified in the inset of Fig. 14.5, where we
find Q =πn P, as expected (compare [13–15, 17, 18]). Note that this behavior is
seen up to full polarization.

The next questions to address are the actual functional form of the spatial decay of
pair correlations and the stability of FFLO correlations in the presence of a harmonic
trap. We address both points by considering a trapped system

H = H0 + V
∑

i

ni (i − i0)
2, (14.18)

summarizing key results from [13, 39] (see also [15, 18, 57]).
In Sect. 14.3, we emphasized that in the case of one dimension, the partially

polarized phase always (i.e., at all U and P > 0) sits in the core of a trapped two-
component Fermi gas, which can be predicted by applying LDA to the exactly known
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phase diagram of either the continuum [6, 7] or the lattice case [39]. This prediction
was verified by exact numerical DMRG results in the case of an optical lattice
[13, 18] and QMC simulations for the continuum [15] case. For illustration, we
show DMRG results for the particle and the spin density profiles of a trapped Fermi
gas at small polarizations P < Pc and large polarizations P > Pc in Fig. 14.6 [39],
for which we have numerically obtained the ground-state of Eq. 14.18 with H0 from
Eq. 14.16 and realistic particle numbers of N = 160. Note that we display the spatial
coordinate in units of the oscillator length ξ = 1/

√
V . Figure 14.6 clearly shows that

the core is partially polarized and that the wings are fully paired for P < Pc and fully
polarized for P > Pc. Furthermore, for this particle number, the corresponding LDA
result obtained from the exact Bethe-ansatz solution for the 1D attractive Hubbard
model agrees quantitatively with the exact DMRG results (see [39] for a discussion
and [15] for a similar analysis of the continuum case).

Turning now to the question of pair correlations in the trapped system, Fig. 14.8
shows the pairs’ MDF for a trapped Fermi gas: similar to the homogeneous case, a
finite-momentum instability emerges upon polarizing the system. In order to verify
the relation Eq. 14.12 in the trapped case, one has to take into account that for P > Pc,

part of the total polarization goes into the fully polarized wings. In other words, the
FFLO correlations are driven by a smaller effective polarization Peff < P. In order
to extract Peff < P, we explain the strategy of [13]: the spatial extension Leff of the
quasi-condensate can be extracted by computing the highest occupied natural orbital
φ0 of the matrix ρpair

i j Eq. 14.11 (i.e., the eigenvector corresponding to the largest

eigenvalue). An example for the spatial form of |φ0|2, taken from [13], is shown in
Fig. 14.7, which yields an illustration of the node structure in the 1D FFLO state.
Note that the spin density takes maxima in the nodes of the quasi-condensate [44]
(an analogous result for the spin density was obtained with QMC for the continuum
case [15]).
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The effective polarization is then obtained by integrating 〈si 〉 = 〈ni↑ − ni↓〉 over

the spatial extent of |φ0.| By plotting the position Q of the maximum in npair
k vs

neff Peff , one recovers the expected linear dependence in agreement with Eq. 14.12
(see Fig. 14.8c). Finally, the spatial decay of pair correlations at large |U | indeed
follows the prediction from bosonization, Eq. 14.13 [12], as we show in Fig. 14.8b.

Using DMRG, a variety of other correlation functions can be obtained as well
in the partially polarized phase, including spin-spin correlations [17, 58], density-
density correlations [17], and noise correlations [16]. The FFLO state leaves distinct
fingerprints in these correlations and their respective Fourier transforms. For instance,
the 2kF peak/kink present in the structure factor for density-density correlations in
the unpolarized case splits into two peaks at 2kF↑ and 2kF↓ [17]. The spin structure
factor, as a consequence of the 2Q spin density wave that accompanies the FFLO
state (see Fig. 14.7) has a pronounced kink at 2Q = 2(kF↑ − kF↓) [58]. A proposal
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for the experimental measurement of spin correlations in a spin-polarized Fermi gas
has been put forward in [58]. Finally, the FFLO correlations induce the presence of
peaks in noise correlations whose distance is given by Q (for a detailed discussion,
see [16]).

14.5 Spin- and Mass-Imbalanced Fermi Mixtures

So far we have discussed situations in which up and down fermions have the same
mass (or effective mass) and are described by integrable models. In this section
we address the more general problem in which pairing occurs between particles of
different species, for example 6 Li and 40 K atoms [59–61]. In this case the masses
of spin up and down fermions are different and the underlying Hamiltonian is no
longer integrable. For lattice systems, the simplest model is the 1D asymmetric
Fermi-Hubbard:

H = −
∑
iσ

tσ
(

c†
i,σ ci+1,σ + h.c.

)
+ U

∑
i

ni↑ni↓, (14.19)

where tσ are spin-dependent tunneling rates. The model (14.19) has been studied
recently by the bosonization method in [62], assuming equal densities of the two
components, n↑ = n↓. The extension to spin-imbalanced gases was first investigated
numerically in [63, 64].

For equal masses, t↓ = t↑, the exact solution of the Hubbard model shows that
fermions can bind in pairs, but n-body bound states with n > 2 are generally forbid-
den. For unequal masses, it has recently been shown [65, 66] that three-body bound
states, hereafter called trimers, exist and can considerably affect the many-body
picture. Here we outline the key results of [65, 66].

The trimer gap, namely the energy needed to break a single trimer at finite density,
is defined as

	tr = − lim
L→∞

[
EL(N↑ + 1, N↓ + 2)+ EL(N↑, N↓)

−EL(N↑ + 1, N↓ + 1)− EL(N↑, N↓ + 1)
]
, (14.20)

where EL(N↑, N↓) is the ground state energy of a system with atom numbers N↑, N↓
in a chain of size L. The limit in Eq. 14.20 is taken assuming Nσ → ∞ with
nσ ≡ Nσ /L being fixed. Equation 14.20 has been evaluated by DMRG on lattices
of up to L = 160 sites and the thermodynamic limit was extrapolated via finite-size
scaling.

For equal masses, t↓ = t↑, no trimers exist and therefore, 	tr = 0. For t↓ < t↑,
the trimer gap (14.20) is finite only when the two concentrations are commensurate,
i.e., n↓ = 2n↑. It is plotted in Fig. 14.9 as a function of n↓ and for different values of
the interaction strength. We see that the gap is a decreasing function of the density
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Fig. 14.9 Trimer energy gap (20) in unit of t↑ plotted versus density n↓ and different values of
U = − 2t↑ (bottom) and U = − 4t↑. The mass anisotropy is t↓ = 0.3. Inset: superconducting
correlations as a function of the distance from the center of the chain for different values of the
density n↓ = 0.7 (upper curve), where	tr = 0, and n↓ = 0.3,where	tr > 0.The parameters used
are U = − 4t↑, t↓ = 0.3t↑ and L = 200 and the densities are commensurate, n↑ = n↓/2. Notice
the change from an algebraic to an exponential decay. Reproduced from [66]

and vanishes at a critical concentration n↓ = ncr↓ —in sharp contrast with the case of
equal densities, n↑ = n↓,where the associated pairing gap is always positive for any
filling. This result is consistent with the bosonization analysis performed in [65]. In
particular, for densities satisfying the constraint pn↑ − qn↓ = 0, with p, q integer
numbers, the bosonized action includes the following interaction term

Hint = A
∫

cos 2(pφ↑(z)− qφ↓(z)), (14.21)

where A is an amplitude and φσ (z) the phase operator of each component. For
p = q = 1, the operator (14.21) describes pair superconductivity and is a relevant
perturbation, implying that the pairing gap opens at any U < 0. For trimers, corre-
sponding to p = 1, q = 2, the perturbation (14.21) is instead irrelevant, and the trimer
gap only opens beyond a critical interaction strength, U < Uc < 0 or, equivalently,
only at sufficiently low density.

The phase with 	tr �= 0 corresponds to a Luttinger liquid of trimers. Since pairs
are bound into these composite objects and cannot propagate freely, the long dis-
tance behavior of the superconducting FFLO correlations changes from algebraic to
exponential decay, as shown in the inset of Fig. 14.9.

Next, we discuss the grand-canonical phase diagram of the asymmetric Hubbard
model, which is obtained by replacing the densities n↑ and n↓ by two new variables,
corresponding to the mean chemical potential μ= ∂E/∂(N↑ + N↓) and the effective
magnetic field h = ∂E/∂(N↑−N↓),where E is the ground state energy calculated by
DMRG. This is shown in Fig. 14.10, for fixed parameters t↓/t↑ = 0.3 and U = −4t↑.
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Fig. 14.10 Phase diagram of the asymmetric Hubbard model for t↓ = 0.3t↑ and U = − 4t↑. The
novel line boundary between partially polarized phase and vacuum is a consequence of the existence
of n-body bound states with n > 2. Inset: a zoom-in of the low density region of the PP phase. The
locus of commensurate densities n↑ = n↓/2 is shown by the shaded area. Reproduced from [66]

For clarity, only the h < 0 part of the phase diagram is displayed, corresponding to
a majority of heavy (↓) fermions.

The evolution of the overall shape of the phase diagram with changing t↓ has
been presented in [64]. Here we concentrate on the topological changes induced by
trimers. In particular, the boundary with the vacuum is given by the formula

μvac = minp,q
E(p, q)− (p − q)h

p + q
, (14.22)

where p, q are non negative integers and the size of the chain is sufficiently large.
At the integrable point, where no trimer exists, the boundary (14.22) reduces to two
lines, E(0, 1)−μ+h = 0 and E(1, 1)−2μ= 0, separating the vacuum from the fully
polarized (FP) and fully paired (ED) phases, respectively. The existence of additional
bound states in the asymmetric Hubbard model implies that the partially polarized
phase (PP) has a direct line boundary with the vacuum, as shown in Fig. 14.10. In
particular, trimers are represented by the line E(1, 2)− 3μ+ h = 0.

It is also instructive to consider the locus of n↑ = n↓/2 on the phase diagram.
At low density (n↓ < ncr↓ ), the trimer gap is non-zero and the locus corresponds to
the shaded area in the inset of Fig. 14.10. At higher density (n↓ > ncr↓ ), the energy
gap closes and the locus shrinks to a single line.

Finally, we would like to mention that trimers, though of a different origin, appear
also in three-component Fermi gases [67–70] and in Bose gases [71, 72], leading to
equally interesting many-body effects.
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14.6 A Two-Channel Model: The Bose-Fermi
Resonance Model

The previous sections focussed on one-channel models, i.e., attractively interact-
ing fermions described by either the Gaudin–Yang model Eq. 14.1 or the 1D Hub-
bard model Eq. 14.16. Several aspects of the one-dimensional BCS–BEC crossover,
though, cannot be captured by one-channel models. First, in the BEC limit, such
models result in a Tonks–Girardeau gas of dimers. Therefore, the regime of weakly
interacting bosons, which is reached when the characteristic length scale of the
two-body bound state is smaller than the transverse oscillator length, is not cap-
tured. Second, models of attractively interacting fermions, in the case of a population
imbalance, always feature the 1D FFLO state, for any interaction strength. In reality,
both close to and beyond resonance, i.e., upon entering the BEC regime, minority
fermions get bound into closed-channel molecules, and are thus not available any-
more for pairing that would result in the FFLO state. Therefore, one expects a com-
petition between the FFLO phase, stable on the BCS side, with a Bose-Fermi mixture
in which the bosons are composite molecules in the closed channel, immersed into
a fully polarized gas of fermions.

This second aspect can be incorporated in the framework of the so-called Bose-
Fermi resonance (BFRM) model [73, 74]:

Ĥ ′ = Ĥ − μN̂ =
∫

dx

( ∑
σ = ↑,↓

ψ̂†
σ

[
− �

2

2m
∂2

x − μ
]
ψ̂σ

+ ψ̂
†
B

[
− �

2

4m
∂2

x − 2μ+ v
]
ψ̂B + g

(
ψ̂

†
Bψ̂↑ψ̂↓ + h.c.

))
(14.23)

where ψ̂σ (x) (resp. ψ̂B(x)) are fermionic (resp. bosonic) field operators describing
atoms (resp. the bound state in the closed channel, i.e., bare dimers),μ is the chemical
potential, m (resp. 2m) is the mass of the atoms (resp. of the bare dimers), v is the
detuning in energy of one bare dimer with respect to two atoms and g is the coupling
constant for the conversion of two atoms into a bare dimer and vice-versa. In principle,
there is also a direct background interaction between fermions of opposite spin. Our
key interest here is in the behavior close to resonance, where the interactions mediated
by the Feshbach coupling g dominate any background interaction. For a negative
detuning v < 0 of the molecular level, g gives rise to an attractive two-particle
interaction g2/v < 0 between the fermions [34].

An important insight into the properties of the BCS–BEC crossover of a spin
imbalanced gas in 1D was gained by Baur et al. [75], who studied the associated
three-body problem. In the Sec. 14.2, we pointed out that the BCS–BEC crossover
of a balanced Fermi gas is smooth. This changes once one goes to a finite imbal-
ance, which can be captured already on the three-body level, as pointed out by Baur
et al. [75]. By writing the wave function as
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|ψ〉=
⎛
⎝∑

K

fK b†
K c†

−K +
∑
k,K

gk,K c†
K↓ck−K/2↑c−k−K/2↑|0〉

⎞
⎠ (14.24)

where b†
K creates a molecule with momentum K, one can show that the function fK

is either symmetric, namely on the BEC side, or antisymmetric, namely on the BCS
side, upon exchanging the position of the molecule and the fermion [75]. This change
in the symmetry of the wave-function occurs at v′ = v/g4/3 ≈ 0.635, i.e., on the BEC
side of the resonance, and can be traced back to a level-crossing of the symmetric
and anti-symmetric wave-functions [75]. Baur et al. further used Quantum Monto
Carlo simulations to compute the thermal density matrix on the three-body level,
finding results consistent with their analytical predictions.

14.6.1 Phase Diagram of the Bose-Fermi Resonance Model
at Finite Imbalance

The analytical results by Baur et al. suggest that a phase transition could be present
in the many-body case at a finite imbalance, separating the FFLO phase from a
Bose-Fermi mixture. Such a transition would eventually be characterized by a com-
plete depletion of the minority fermions and consequently, the corresponding Fermi
volume vanishes. A general discussion of the possible phases along the crossover
depending on the number of Fermi surfaces is given in [76].

The BFRM, unlike the one-channel model discussed before, does not allow for
an analytically exact solution. One therefore has to resort to numerical approaches,
which in one dimension can still provide us with exact results. In the present case,
DMRG can be applied, yet it requires a discretization of the model (14.23). Thus,
we rewrite the Hamiltonian in a real-space version:

H = − t
L−1∑
i = 1

(c†
i,σ ci+1,σ + h.c.)

− tmol

L−1∑
i = 1

(m†
i mi+1 + h.c.)− (v + 3t)

L∑
i = 1

m†
i mi

+ g
L∑

i = 1

(m†
i ci,↑ci,↓ + h.c.).

(14.25)

Here, m†
i creates a composite boson on site i. The boson energy is shifted with respect

to that of single fermions by an effective detuning v + 3t. It is chosen such that the
energies for adding two fermions or one boson, each at zero momentum, coincide
at resonance v = 0. The hopping matrix elements for fermions and molecules are
denoted by t and tmol = t/2, respectively. The only conserved particle number is
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N = N f + 2Nmol, where Nmol = ∑
i 〈nmol

i 〉; nmol
i = m†

i mi and N f = N↑ + N↓.We
use n = N/L to denote the filling factor. Note that at maximum one molecule can sit
on a single site, i.e., the molecules behave as hard-core bosons.

The phase diagram can be obtained by calculating various quantities, including
the MDF of pairs, molecules and the fermionic components, as well as polarization
curves and the density in the molecular channel as a function of polarization P and
detuning v. While details on such calculations are given in [19], we here wish to
focus on the discussion of the emergent phases. A typical phase diagram is shown in
Fig. 14.11a as magnetic field h′ = h/ε∗ versus dimensionless detuning v′ = v/ε∗. h
is defined as the difference in chemical potential for spin up and down while ε∗ is the
binding energy at resonance v = 0 [19]. For h′ < hc, the system remains balanced,
and we thus recover the BCS–BEC crossover of a balanced mixture, discussed in
Sec. 14.2. For h′ > hsat, the system is fully polarized with n↑ = n. As expected, the
FFLO phase is stable on the BCS side in the imbalanced case hc < h′. The system
then undergoes two consecutive phase transitions, either at a fixed polarization P > 0
or at a fixed detuning in the vicinity of the resonance v′ � 0, at two critical fields
h1 and h2. The phase boundary of the FFLO phase is given by h′ = h1(v′) [19], or
by P = P ′

1(v
′), respectively. The intermediate phase, labeled BEC + PP LL (BEC

plus partially polarized Luttinger liquid), still has oscillatory correlations, yet there
are instabilities in the pairs’ MDF at both finite and zero momentum [19]. While in
the FFLO and in the BEC + PP LL phase, n↓ > 0, the transition into the Bose-Fermi
mixture phase BEC + FP FG (BEC plus fully polarized Fermi gas) occurs at the point
at which n↓ = 0 [19]. The BEC + FP FG has smooth algebraically decaying dimer-
dimer correlations (and consequently, pair-pair correlations), with no oscillatory
component. Note that in a one-channel model, in contrast to the BFRM, the line with
n↓ = 0 is equivalent to full polarization n = n↑. Therefore, the upper limit for the
stability of the FFLO state is the maximum polarization possible, suggesting that
FFLO is more stable in one-channel models (compare the discussion in Sect. 14.4).

In the example shown here (g = t, filling n = 0.6), the FFLO phase breaks down
before resonance v′ < 0 on the BCS side and the phase boundary exhibits a significant
dependence on polarization. In general, the critical detuning, which is the detuning
at which FFLO correlations disappear in the P → 0 limit, depends on both the
filling and the Feshbach coupling g. For instance, at a fixed value of g, sending the
density to zero moves the phase boundary towards larger v′. In the example shown
in the figure, the critical detuning, approaches v′ ≈ 0.97 as n → 0 [19], which is
beyond resonance on the BEC side, consistent with the results by Baur et al. for the
associated three-body problem in the continuum [75].

So far we have not specified a specific realization of the model (14.23) since we
have treated v and g as model parameters. It could, for instance, model a resonance due
to photoassociation or a confinement-induced resonance (see the discussion in [34]).
To allow a discussion of the phase diagram in terms of experimentally accessible
parameters, it is useful to replace the detuning v′ by the parameter γ = √

εb(v′)/εF

where εb(v) is the two-body binding energy and εF = 2t (1 − cos(kF )) is the Fermi
energy of a noninteracting gas at the same density. In the continuum limit, this
yields the usual definition of the interaction parameter γ.The corresponding behavior
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is displayed in Fig. 14.11c as a polarization vs. γ phase diagram. We only show
the phase boundary P = P1 (corresponding to h′ = h1) of the 1D FFLO phase, for
different densities n. Obviously, for a given n, the ratio of binding energy over Fermi
energy determines the range of stability for FFLO. By decreasing n at a fixed g,
FFLO becomes stable at arbitrarily large values of γ.

Finally, we emphasize that the limit of a broad resonance, characterized by nr∗�1
(compare the discussion of Sec. 14.2) can be reached by either decreasing density or
by increasing g such that the binding energy at resonance ε∗b = εb(v = 0) increases.
For the parameters of Fig. 14.11a (g = t, n = 0.6), the system is not in this regime
since nr∗ ≈ 1.21, yet enters into this limit as n decreases (compare Fig. 14.11b, c).

14.7 Beyond 1D, Other Variations

The FFLO phase occupies a tiny sliver of the T = 0 phase diagram in three dimensions
and this region shrinks with increasing temperature, making it very difficult for the
experimentalist to detect it. In one dimension, on the contrary, nesting effects are
pervasive at all fillings and polarization, the FFLO instability becomes enhanced,
and the phase more robust. In experiments with cold atoms, low dimensions are now
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within reach [1, 8, 9], paving the way to its realization. Strictly in one dimension,
the FFLO phase occupies large regions of the phase diagram as we have illustrated
in this chapter.

Even though the FFLO phase is more robust in 1D, long-range order is not present,
and one can only describe a quasi long-range order with algebraically decaying cor-
relations. Moreover, in order to realize this physics one should effectively be able
to reach zero temperature. However, this obstacle can be remedied in part by turn-
ing on a weak coupling between 1D chains. Cold atoms experiments are carried
out by loading the fermions onto 1D tubes, formed by the interference pattern of
sets of counter-propagating lasers. By tuning the intensity of the lasers one could
adiabatically turn on the coupling between the tubes, allowing one to study the
dimensional crossover from 1D to 3D (or 2D) [51, 77]. Unfortunately, this scenario
is out of reach for DMRG (at least as far as the crossover from 1D to 3D is con-
cerned) and has so far only been studied within an effective field theory [51], by
a mean-field treatment [77], or by feeding in the exactly known instabilities of the
1D system into an RPA analysis [16]. Both approaches [16, 51] show that depending
on polarization, interaction strength, and inter-tube coupling, the system is either
in the FFLO phase or becomes a polarized Fermi liquid. In [77] the authors raised
the possibility of finding two distinct FFLO phases as one increases the tunneling
between chains: In a 1D system and within a mean-field description, the order para-
meter possesses nodes, or domain walls, resembling a soliton-like structure, with the
excess fermions concentrated at these nodes. One can imagine coupling chains into
a higher dimensional array. The excess Fermions would feel the soliton structure as
a superimposed lattice and will form a band of Andreev bound states that is filled,
similar to a band insulator. This phase is called a commensurate FFLO phase in [77].
A plausible scenario is that at intermediate inter-chain couplings, the system could
undergo a transition to an incommensurate FFLO phase where the band of Andreev
bound states is partially filled. This is a mean-field scenario that has not been further
explored.

An alternative path was taken in [78]. A “poor man’s” version of the dimensional
crossover could be achieved by arranging the tubes into a super-lattice, coupling
pairs of them into ladders (basically two one-dimensional chains coupled in the
transverse direction). Interestingly enough, most of the two-dimensional physics
already manifests itself in these systems: At low densities only one band is occu-
pied for each flavor of spin, and the physics reduces to the that of one dimension.
This in turn can be associated to the rotational symmetric situation in higher dimen-
sions, in which the Fermi surfaces are spheres, and the order parameter can be
described by a single wave vector |Q|. As the density is increased, more bands
start being occupied, and multiple Fermi points contribute to pairing. As a conse-
quence, a multi-nodal FFLO order parameter is required to describe the new scenario.
The ladder geometry is still highly nested, making the FFLO phase very robust.
However, in two dimensions, particularly at high densities or magnetic fields, the
nesting between bands with opposite spin is weak, with Fermi surfaces with differ-
ent shapes, and large mismatch in Fermi velocities. This makes pairing—and the
FFLO state—unfavorable, giving room for a normal polarized phase.
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As discussed in earlier sections, in a trapped gas in 3D and also in 2D [79],
the partially polarized phase and thus the FFLO phase is in the core of the trapped
cloud, according to mean-field calculations. This behavior can already be seen on
the two-leg geometry at small polarizations [78], suggesting this one as a useful toy
system to understand aspects of the dimensional crossover in a model that allows for
a numerically exact solution.

An additional motivation for studying the attractive Hubbard model comes from
the fact that the knowledge on the phases of the spin-imbalanced, attractive model
also gives information on the ground states of the repulsive model via a particle-
hole transformation. This could become relevant for 2D systems where in general,
the ground states are not known, calling for experiments in this direction (see the
discussion in [80, 81]).

Interesting possibilities arise when multi-band pairing is considered [82]. Con-
sider a setup with anisotropic Fermi surfaces, in which the tunnelling along the x
direction is much weaker than the other two (transverse) directions. This leads to
a multi-band scenario in which one spin species populates only the s-band, while
the other partially occupies the px band directly above, with Fermi surfaces lying
on different bands. This gives rise to a new unconventional FFLO-like paired state,
with the main difference that the pairs have p-wave center-of-mass momenta, and an
order parameter modulated by a wave-vector Q = k↑

F + k↓
F .

Remarkably, optical lattices can potentially be tuned independently for both hyper-
fine species [83]. This technique could provide another knob for tuning their relative
masses, or changing the shape and relative orientation of the Fermi surfaces. For
instance, in [84], the authors proposed rotating the Fermi surfaces for each spin
flavor by 90 degrees with respect to one another. Then, FFLO-like physics with a
modulated order parameter can be realized in unpolarized mixtures. A similar idea
has been discussed to realize exotic unpolarized phases in 1D, using a multi-band
setup [85].

Other authors [70, 86–90] have also considered multi-flavor systems, in which
three hyperfine species are present, interacting via attractive interactions. This gives
rise to a rich variety of possibilities beyond FFLO, such as molecules (trions),
and a competition between three pairing tendencies with different center-of-mass
momenta. Moreover, the BCS–BEC crossover of a balanced mixture of a four-
component gas has recently been discussed in [91]. Finally, FFLO-like phases can
also be stable in the case of repulsive interactions on the ladder geometry [92, 93].

14.8 Proposals for the Experimental Observation
of FFLO Correlations

One of the main open experimental challenges is the actual characterization of the
partially polarized phase as the FFLO phase. While the phase-separated profiles
observed in the Rice experiment [8] show a remarkable agreement with the theoretical
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predictions obtained from the Bethe ansatz combined with LDA [6, 7], experiments
have not unambiguously demonstrated that the phase indeed corresponds to a paired
state with a finite center-of-mass momentum. This is not a trivial task, since the num-
ber of available techniques to probe cold atomic systems remains limited. However,
the quest for the FFLO state has certainly presented an extraordinary motivation and
the breeding ground for novel and clever ideas. The most straightforward possibil-
ity is to take snapshots trying to resolve the spin density modulations [13, 15, 44].
Another possibility is to probe the spin–spin correlations using spatially resolved
quantum polarization spectroscopy [58]. While the spin modulations are character-
istic of the FFLO state, they are no direct evidence of pairing. One way to identify
pairing may be using a time-of-flight (TOF) measurement to observe the velocity
distribution of the condensate. Since the pairs have finite center-of-mass momenta,
they would imprint a characteristic signature [94].

The latter work also has proposed to use noise correlations, and mean-field [95]
and DMRG studies [16] show that this technique would indeed produce a clear
and unambiguous signal. Although spectroscopic techniques to probe cold atomic
systems are under development and are not widely available [96], FFLO signatures
should also be evident in the rf-spectra [97, 98] and angle resolved photo-emission
spectra [84]. An interesting recent proposal consists of studying the response of
the system to time-dependent potentials [99], which would excite the spin-dipole
modes. When the oscillation of the potential is in resonance with the excitations, a
dramatic response at the proper momenta would indicate FFLO physics. Another
idea exploiting time-dependent perturbations using modulation spectroscopy [100]
consists of measuring the response of the double occupancy [101]. At present, the
only relevant experiment is the one by Yiao et al. [8], which realizes 1D tubes
in the continuum. Therefore, for this particular system, proposals that assume the
presence of an optical lattice along the 1D direction may not be applicable [101]. It
should further be stressed that some of the ideas put forward here have only been
substantiated by mean-field theory [95, 97, 99]. While one may argue that mean-field
theory gives qualitatively reasonable results for the phase diagram of attractively
interacting fermions in 1D [22, 102], there are considerable quantitative deficiencies
already on the level of density profiles [98] and it is by no means obvious that
mean-field theory is valid for the description of time-dependent detection schemes
[97, 99].

Finally, for the question of whether FFLO can be observed in an actual experiment,
the accessible temperatures may play a crucial role [15, 37, 103, 104]. The effect
of temperature on density profiles in traps was studied with Bethe-ansatz methods
in [37] and numerically using QMC in [15, 104]. In [104], the visibility of the finite-
momentum peak in the pairs’ MDF was also discussed as a function of temperature.

In conclusion, while all these ideas can potentially provide the smoking gun that
would signal the presence of the FFLO phase in experiments, their implementation
still remains challenging, and some have shortcomings. However, it is very likely
that some of these techniques may routinely be used in the future.
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14.9 Summary

The recent realization of 1D Fermi gases with ultracold atoms in the vicinity of a
Feshbach resonance [8] opens the possibility to investigate the physics of strongly
correlated fermions in a situation, where exact analytical or numerical results are
available. As shown above, this makes accessible the physics of solvable models
such as those of Gaudin, Yang, Lieb and Wu and others. It also provides a means to
study unconventional pairing of the FFLO-type in a simple example. Compared to
the BCS–BEC crossover in 3D, where a number of open questions still exists for the
imbalanced gas, the 1D case is rather well understood, at least as far as equilibrium
quantities are concerned. Issues such as equilibration or the expansion dynamics,
or the effects of finite temperature are, however, still open and topics of ongoing
research. The physics of 1D fermions will thus remain of interest for some time to
come, in particular, because ultracold atoms provide an experimental realization that
allows one to investigate physics in one dimension over a wide range of parameters.
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