
Chapter 13
Thermodynamics of Trapped Imbalanced
Fermi Gases at Unitarity

J. M. Diederix and H. T. C. Stoof

Abstract We present a theory for the low-temperature properties of a resonantly
interacting Fermi mixture in a trap, that goes beyond the local-density approximation.
The theory corresponds essentially to a Landau–Ginzburg-like approach that includes
self-energy effects to account for the strong interactions at unitarity. We show dia-
grammatically how these self-energy effects arise from fluctuations in the superfluid
order parameter. Gradient terms of the order parameter are included to account for
inhomogeneities. This approach incorporates the state-of-the-art knowledge of the
homogeneous mixture with a population imbalance exactly and gives good agree-
ment with the experimental density profiles of Shin et al. (Nature 451:689 (2008)).
This allows us to calculate the universal surface tension of the interface between the
equal-density superfluid and the partially polarized normal state of the mixture. We
also discuss the possibility of a metastable state to explain the deformation of the
superfluid core that is seen in the experiment of Partridge et al. (Science 311:503
(2006)).

13.1 Introduction

Ultracold atom experiments are always performed in a trap to avoid contact of the
atoms with the ‘hot’ material walls that would heat up the cloud. Due to this trapping
potential the atomic cloud is never homogeneous. However, typically the energy
splitting of the trap corresponds to a small energy scale, so that the inhomogeneity is
not very severe. In this case, we may use the so-called local-density approximation
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(LDA). It physically implies that the gas is considered to be locally homogeneous
everywhere in the trap. The density profile of the gas is then fully determined by the
condition of chemical equilibrium, which causes the edge of the cloud to follow an
equipotential surface of the trap.

But even if the trap frequency is small, the LDA may still break down. An important
example occurs when an interface is present in the trap due to a first-order phase
transition. For a resonantly interacting Fermi mixture with a population imbalance
in its two spin states [1, 2], such interfaces were encountered in the experiments
by Partridge et al. [2] and Shin et al. [3] at sufficiently low temperatures. Here the
LDA predicts the occurrence of a discontinuity in the density profiles of the two
spin states, which cost an infinite amount of energy when gradient terms are taken
into account. Experimental profiles are therefore never truly discontinuous, but are
always smeared out. An important goal of this chapter is to address this interesting
effect, which amounts to solving a strongly interacting many-body problem beyond
the LDA. Due to the rich physics of the interface, new phases can be stabilized that
are thermodynamically unstable in the bulk. This exciting aspect shares similarities
with the physics of superfluid helium-3 in a confined geometry [4] and spin textures
at the edge of a quantum Hall ferromagnet [5].

Note that the presence of an interface also can have further consequences. Namely,
in a very elongated trap, Partridge et al. observed a strong deformation of the minority
cloud at their lowest temperatures. At higher temperatures the shape of the atomic
clouds still followed the equipotential surfaces of the trap [6]. A possible interpreta-
tion of these results is that only for temperatures sufficiently far below the tricritical
point [3, 7–11], the gas shows a phase separation between a balanced superfluid
in the center of the trap and a fully polarized normal shell around this core. The
superfluid core is consequently deformed from the trap shape due to the surface ten-
sion of the interface between the two phases [6, 12, 13]. This causes an even more
dramatic breakdown of the LDA. Although the above interpretation leads to a good
agreement with the experiments of Partridge et al. [6], a microscopic understanding
of the value of the surface tension required to explain the observed deformations
has still not been obtained. Presumably closely related to this issue are a number
of fundamental differences with the study by Shin et al. [3]. Most importantly, the
latter observes no deformation and finds a substantially lower critical polarization,
which agrees with Monte Carlo calculations combined with a LDA. It appears that
the interfaces between the superfluid core and the normal state are fundamentally
different for the two experiments, which might play an important role in resolving the
remaining discrepancies. In order to investigate this interface we need to go beyond
the local-density approximation.

To study the details of the superfluid-normal interface we need a theory that can
describe the inhomogeneous and population imbalanced unitarity Fermi gas. For
this, we first need a theory that includes in the homogeneous case both the normal
state and the superfluid state in one quantitative correct description. Secondly, we
need to incorporate the inhomogeneous effects of the trapping potential. The aim
of this chapter is to give a simple and elegant way to achieve this. In the following
two sections, we fist arrive at an accurate, and to a large extent analytical descrip-
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tion of the thermodynamics of a population imbalanced unitarity Fermi gas. This is
achieved by constructing an appropriate thermodynamic potential � for the Fermi
mixture at unitarity. All desired thermodynamic quantities can then be obtained
by performing the appropriate differentiations of the thermodynamic potential that
are well known from statistical physics. The inhomogeneity effects of the trapping
potential are included by taking the energy penalty for large variations in the order
parameter into account. These gradient terms smoothen the jump of the order para-
meter that is predicted by the LDA at the location of the first-order phase transition.
We will see that this gives a more detailed explanation of the experimental data of
Shin et al. [3]. In the last section we then show how the surface tension can be com-
puted with this more detailed description of the interface. This surface tension turns
out to be relatively small. This does, therefore, not explain the dramatic deformation
seen in the experiment of Partridge et al. [6]. An alternative explanation may be that
there exists a metastable state with a deformed superfluid core [14]. At the end of this
chapter we briefly discuss this possibility. We find that the Landau–Ginzburg-like
theory derived here does not appear to contain such a metastable state.

13.2 Ultracold Quantum Fields

In order to properly study the unitary Fermi mixture, we derive a single thermody-
namic potential that in a quantitative correct manner describes both the normal and
the superfluid phases. As we will see, the normal state of the unitarity Fermi mixture
is straightforwardly incorporated by introducing two mean-field-like self-energies.
In particular, it is possible in this manner to completely reproduce the equation of
state known from Monte-Carlo calculations. However, including also the possibility
of superfluidity at low temperatures and low polarizations turns out to be more dif-
ficult. To understand better how this can nevertheless be achieved, we first give an
exact diagrammatic discussion of the superfluid state that is then in the next section
used to arrive at the desired thermodynamic potential of the unitarity Fermi mixture.

13.2.1 Bardeen-Cooper-Schrieffer Theory

In this section we outline the basic ingredients of a field-theoretical description for the
superfluid state of the imbalanced Fermi mixture [15]. We start with the essentially
exact action for such an atomic two-component mixture,

S[φ∗, φ; J ∗, J ] =
∑

σ=±

∫
dτdx φ∗

σ (x, τ )

(
�

∂

∂τ
− �

2∇2

2m
− μσ

)
φσ (x, τ )

+
∫

dτdx V0φ
∗+(x, τ )φ∗−(x, τ )φ−(x, τ )φ+(x, τ )

− �

∑

σ=±

∫
dτdx

(
J ∗
σ (x, τ )φσ (x, τ ) + φ∗

σ (x, τ )Jσ (x, τ )
)
.

(13.1)
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Here φσ is the fermion field of the atomic species in the hyperfine state |σ 〉,
μσ is the associated chemical potential, Jσ is a Grassmann-valued current source
that is convenient in the following, but which is put equal to zero at the end of the
calculations, and V0 is the strength of the unitarity-limited attractive interactions
between the two species. The grand-canonical partition function is then given by

Z [J, J ∗] =
∫ ∏

σ

d[φ∗
σ ]d[φσ ] exp

{
−1

�
S[φ∗, φ; J ∗, J ]

}
. (13.2)

This represents a functional integral over all the fermion fields that are antiperiodic
on the imaginary time interval [0, �β], with β = 1/kBT the inverse thermal energy.
The thermodynamic potential is ultimately given in terms of the partition function as

�(μ+, μ−, T, V ) = − 1

β
log Z [0, 0], (13.3)

with V the total volume of the system. To make the connection with thermodynamics
explicit, we note that the thermodynamic potential is related to the pressure p of the
gas by means of � = −pV .

In order to describe pairing of the fermions, we perform a Hubbard–Stratonovich
transformation to the complex pairing field �. For this field we have that

〈�(x, τ )〉 = V0〈φ−(x, τ )φ+(x, τ )〉. (13.4)

This transformation makes the action quadratic in the fermion fields. More precisely,
we have that

S[�∗,�, φ∗, φ; J ∗, J ] = −
∫

dτdx
|�(x, τ )|2

V0

− �

∫
dτdx dτ ′ dx′ 	†(x, τ ) · G−1

BCS(x, τ ; x′, τ ′;�) · 	(x′, τ ′)

+ �

∫
dτdx

(
J †(x, τ ) · 	(x, τ ) + 	†(x, τ ) · J (x, τ )

)
,

(13.5)
where we defined 	† = [φ∗+, φ−] and J † = [J ∗+, J−], which are vectors in a two-
dimensional space, known as Nambu space. In this space the 2 × 2 Green’s function
matrix is given by G−1

BCS(x, τ ; x′, τ ′;�) = G−1
0 (x, τ ; x′, τ ′) − 
BCS(x, τ ; x′, τ ′).

The first term in the right-hand side represents the noninteracting part and is given
by

G−1
0 (x, τ ; x′, τ ′) =

[
G−1

0;+(x, τ ; x′, τ ′) 0
0 −G−1

0;−(x′, τ ′; x, τ )

]
, (13.6)

with G0;σ the noninteracting Green’s function of species σ. The second term corre-
sponds to the BCS self-energy, which has only off-diagonal terms and reads
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�
BCS(x, τ ; x′, τ ′) =
[

0 �(x, τ )

�∗(x, τ ) 0

]
δ(x − x′)δ(τ − τ ′). (13.7)

The action now only contains quadratic terms in the fermion fields, which is some-
thing we can handle exactly. However, the tradeoff is an extra functional integral
over the � field. Starting with the easy part, we perform the functional integral over
the fermion fields. Since this is a standard Gaussian integral, we immediately obtain

Seff [�∗, �; J ∗, J ] = −
∫

dτdx
|�(x, τ )|2

V0
− �Tr

[
log

(
−G−1

BCS

)]

+ �

∫
dτdxdτ ′ dx′ J †(x, τ ) · GBCS(x, τ ; x′, τ ′; �) · J (x′, τ ′),

(13.8)
where the trace implies a summation over the Nambu space indices as well as an
integral over position and imaginary time. The second term in the action contains
all orders in |�|2 and as a result the theory is thus still very complex and impos-
sible to solve completely. In BCS theory, we make a saddle-point approximation
and replace the pairing field by its expectation value. In other words, we write
� = �0 + δ�, with �0 the expectation value 〈�〉 and δ� representing the fluc-
tuations, and subsequently neglect these fluctuations. The actual value of the BCS
gap �0 can then be determined by the gap equation in Eq. 13.4, which is equiva-
lent to δSeff [�∗,�; 0, 0]/δ�∗|�=�0 = 0, and is to be solved selfconsistently. This
procedure is of course only valid when the interaction strength is sufficiently small.

13.2.2 Fluctuations

But what happens when the interaction strength is not small, as is the case at unitarity?
In that case we cannot neglect the fluctuations. To deal with that situation we use in
Sect. 13.3.2 an approach inspired by Landau–Ginzburg theory, in which we try to find
an accurate self-energy matrix for the fermions that effectively takes all fluctuation
effects into account. In particular we need two self-energies that contribute to the
diagonal part of the exact inverse Green’s function matrix G−1, because otherwise
the normal state would correspond to an ideal Fermi mixture, which at unitarity is
not an accurate starting point for a discussion of the instability towards superfluidity.
However, the effective interaction between the two atomic species is not the same in
the normal and superfluid states of the gas. Therefore, also this diagonal part of the
self-energy must sufficiently deep in the superfluid state depend on the expectation
value of the pairing field or gap �0 and it is important to understand how this
dependence precisely comes about. In this section we show that in principle all
interaction effects can indeed be included in a self-energy matrix, and that also the
diagonal part of this self-energy depends explicitly on the gap. A nice and insightful
way to achieve this is by considering the appropriate Feynman diagrams.
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The diagonal parts of the Green’s function matrix, i.e., GBCS;11 and GBCS;22,

are dressed by the pairing field �. This is described by the Dyson equation. This
Dyson equation follows from inverting the relation G−1

BCS = G−1
0 −
BCS and can be

written as

GBCS = G0 + G0 · 
BCS · GBCS. (13.9)

Diagrammatically the diagonal part of this equation can be represented in the fol-
lowing way,

(13.10)

Here the dashed line represents the pairing field � and the direction of the arrow
depicts the difference between � and �∗. The solid line represents the noninteracting
fermionic propagators G0;σ , where in this case the direction of the arrow depicts
alternatingly the propagator of the two different fermion species. The first line of
the equation shows the recurrence relation for the full diagonal propagator and the
second line shows the first three elements originating from this Dyson equation by
iteration.

In the superfluid state, the pairing field � has a nonzero expectation value �0. In a
mean-field approximation we neglect the fluctuations and replace�by its expectation
value �0. In this approximation the diagonal propagators reduces to the standard form
known from BCS theory. However, when we take fluctuations into account we also
get self-energy corrections on the noninteracting fermion propagators in the Dyson
equation. This follows directly from the definition of the exact fermionic propagators,

G11(x, τ ; x′, τ ′) = −〈φ+(x, τ )φ∗+(x′, τ ′)〉
= 1

Z [0, 0]
δ

δ J ∗+(x, τ )

δ

δJ+(x′, τ ′)
Z [J ∗, J ]

∣∣∣∣
J∗=J=0

= 1

Z [0, 0]
∫

d[�∗]d[�]GBCS;11(x, τ ; x′, τ ′; �)e− 1
� Seff[�∗,�;0,0] ,

(13.11)
and similarly for G22. In BCS mean-field theory we thus have G11(x, τ, x′, τ ′) =
GBCS;11(x, τ, x′, τ ′;�0), but at unitarity we still have to perform a functional integral
over the pairing field to obtain the exact results.

We can represent this functional integral over the fluctuations diagrammatically
by connecting some of the � fields with the pair propagator, which is determined
by the effective action Seff [�∗,�; 0, 0], put the other fields equal to the expectation
value �0, and then sum over all possible diagrams. Because of the U(1) symmetry
of the effective action, we can only draw a pair propagator between a � and a �∗,
as suggested by the arrows. The fully dressed diagonal propagators now become,
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(13.12)

Here the connected dashed lines represent the pair propagator and the cross represents
the expectation value. This series can be resummed such that we get the exact Dyson
equation

G = G0 + G0 · 
 · G, (13.13)

but now with an exact 2 × 2 self-energy matrix 
, which contains both diagonal
(normal) and off-diagonal (anomalous) elements. For instance, the second and fifth
terms drawn in the right-hand side of Eq. 13.12 contribute to the diagonal self-energy,
whereas the last term leads to an additional contribution to the off-diagonal self-
energy. These terms thus renormalize the BCS self-energy that is obtained from
Eq. 13.7 by replacing � by �0. From the expectation values of the gap inside the
loops in Eq. 13.12, we explicitly see that the normal self-energies can be written as a
series expansion in |�0|2. The same is in fact also true for the first diagram in the right-
hand side of Eq. 13.12, because the nonlinearities in the effective action make sure
that the pair propagator already contains all orders of |�0|2. These nonlinearities also
lead to more complicated Feynman diagrams containing higher-order (connected)
correlation functions of the pair field that are not shown here, but this does not affect
our main conclusions.

We just showed that fluctuation effects of the pair field can be incorporated in an
effective self-energy. The same discussion can be carried out for the gap equation.
This can also be very nicely illustrated diagrammatically. The gap equation in Eq. 13.4
is an equation between the expectation value of the gap and the off-diagonal or
anomalous propagator. We can again use the Dyson equation in Eq. 13.9 for the
anomalous propagator to study the effects of the fluctuations on the gap equation,

(13.14)
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Here the small dot on the left of all diagrams represents the fact that the gap only
depends on one space-time point, i.e., 〈�(x, τ )〉 = V0G12(x, τ ; x, τ ) due to the
point-like and instantaneous nature of the attractive interaction.

The fluctuation effects follow again from performing the functional integral over
the � field, since from Eq. 13.4 we have that

〈�(x, τ )〉 = V0

Z [0, 0]
δ

δ J ∗−(x, τ )

δ

δ J ∗+(x, τ )
Z [J ∗, J ]

∣∣∣∣
J∗ = J = 0

= V0

Z [0, 0]
∫

d[�∗]d[�]GBCS;12(x, τ ; x, τ ;�)e− 1
�

Seff [�∗,�,0,0] .

(13.15)
The diagrammatic representation of this equation follows from connecting some of
the pair lines in Eq. 13.14. Again also higher-order correlation functions of the pair
field contribute, but for simplicity we do not consider these as they do not change
our results. When we carry out this procedure we obtain

(13.16)

Notice that all terms are now proportional to �0 instead of |�0|2. The first three terms
in the right-hand side can again be incorporated in a fully dressed fermion propagator
by resumming this series. The last term, which for the gap equation behaves as a
vertex correction, is then again incorporated into the anomalous self-energy.

In the unitarity limit, these vertex corrections are important to find the correct
gap equation and, therefore, the expectation value for the gap. Also the diagonal part
of the self-energy is important for a determination of the energy and the densities
of the Fermi mixture. There is, however, no clear-cut way do derive these full self-
energies from first principles for the unitarity case. In this chapter, we therefore use
a more top–down approach. We will use the fact that these self-energies exist and
can be expanded in powers of |�0|2. Moreover, our previous renormalization group
theory [11] has shown that for thermodynamic quantities the self-energies can in
a good approximation be considered to be momentum and frequency independent.
Combining these observations we are ultimately able to derive an accurate approxi-
mation to the thermodynamic potential � of the unitarity Fermi mixture.

13.3 The Thermodynamic Potential

In the previous section we showed that interaction effects in the unitary Fermi gas can
be described by including appropriate normal and anomalous self-energies into the
theory. We also discussed that this, in principle well-known fact, can be understood
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as an effect of pair fluctuations. As a result the self-energies, and in particular the
normal self-energies, depend on the gap �0. In addition, we showed also that the gap
equation contains vertex corrections, which cannot be incorporated by dressing the
diagonal propagators alone. This is one important reason for deriving also the gap
equation from the thermodynamic potential, because the minimization condition then
automatically generates the correct vertex corrections. For our purposes it is therefore
crucial to realize that in principle there exists an exact thermodynamic potential that
describes the full thermodynamics of the unitarity-limited Fermi gas. It is, however,
impossible to derive this from first principles for this strongly interacting system,
and we therefore have to find an appropriate approximation. In this section we will
show how to arrive at such an accurate approximation to the exact thermodynamic
potential.

13.3.1 Normal State

Despite the strong interaction, it is now rather well established that BCS mean-field
theory gives the correct qualitative description of the unitarity limit, at least at the
temperatures accessible to the state-of-the-art experiments. Therefore a reasonable
starting point for the approximation of the thermodynamic potential is this mean-field
theory. From experiments, renormalization group theory, and several Monte-Carlo
calculations it is found that the phase diagram has the following features, as illus-
trated in Fig. 13.1. At zero temperature both experiments and theoretical calculations
find a first-order phase transition at a local critical polarization Pc � 0.4. In the bal-
anced situation P = 0 both find a second-order transition at a critical temperature
of about Tc � 0.15TF [16]. These second- and first-order transition lines should
then be connected by a tricritical point, which is confirmed in experiments and by
renormalization group theory.

The thermodynamic potential in BCS theory leads to exactly the same qualita-
tive behavior of the phase diagram, although the critical temperatures and critical
polarizations are off by almost an order of magnitude and would not be visible in
the window shown in Fig. 13.1. We therefore start with BCS theory, after which
we systematically include the dominant interaction effects that are still missing. At
unitarity the BCS energy functional is

�BCS[�;μ, h] =
∑

k

(
εk − μ − �ωk + |�|2

2εk

)

− kBT
∑

σ,k

log
(

1 + e−�ωk,σ /kBT
)

,

(13.17)

where εk = �
2k2/2m, m is the atomic mass, and the superfluid dispersion is given

by the well-known BCS formula, �ωk = √
(εk − μ)2 + |�|2. The second term in

the right-hand side contains also a sum over the pseudospin projection σ = ±, and
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Fig. 13.1 The phase diagram of the unitary Fermi mixture in the temperature-polarization plane.
The Fermi temperature of the majority species is denoted by TF+ and the polarization P equals
(N+ − N−)/(N+ + N−) with Nσ the number of atoms in hyperfine state |σ 〉. The phase diagram
consists of the normal phase (N), a forbidden region (FR) where phase separation takes place,
and the superfluid phase in which a crossover occurs between the gapless Sarma phase (S) and the
gapped BCS phase. The solid line depicts the line of second-order phase transitions [11], the dashed
line gives the boundary of the forbidden region associated with the first-order phase transitions, and
the black dot represents the tricritical point. The open squares and circles are experimental data
points [3]

represents the contribution due to an ideal gas of quasiparticles with the quasiparticle
dispersion of the two spin states given by �ωk,σ = �ωk −σh. Finally, we introduced
the average chemical potential μ = (μ+ + μ−)/2 and half the chemical potential
difference h = (μ+−μ−)/2 that acts as an effective magnetic field on the pseudospin
as the quasiparticle dispersion �ωk,σ clearly shows.

In BCS theory, the normal state is treated as an ideal Fermi gas, thus no interactions
are taken into account. This is not correct in the unitarity limit. As discussed above,
these interaction effects can be described by two self-energies. The imbalanced nor-
mal phase in the unitary limit, has been studied with Monte-Carlo methods [17].
From this, the equation of state can be determined. If we can find the self-energies
such that it reproduces the same equation of state for the theory, we have effectively
taken all interaction effect in the normal phase into account.

For momentum and frequency independent self-energies, the self-energies can
be incorporated in the theory of an ideal Fermi gas, by just changing the chemical
potential. We thus replace the chemical potentials as

μ′
σ = μσ − �
σ . (13.18)

Here μ′
σ is the effective chemical potential and 
σ the self-energy for species σ.

Inspired by Hartree–Fock theory we would write down an ansatz for the self-energy
of species σ that is proportional to the density of species −σ [10]. However, the
densities are in a grand-canonical setting calculated by taking the derivative of � with
respect to the chemical potentials, i.e., Nσ = −∂�/∂μσ . It is therefore preferable to
write the self-energies as a function of the chemical potentials only. By considering
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Fig. 13.2 The equation of state of the normal phase at zero temperature, with on the horizontal axis
the polarization and on the vertical axis the energy. The dots are the Monte-Carlo data from Ref.
[17] and the line is the equation of state found with the use of the effective chemical potentials as
defined in Eq. 13.20. The energy is given by E = �+μ+ N+ +μ− N− and is scaled with the ideal
gas energy of the majority component of the mixture EFG+ = 3

5 EF+ N+ and EF+ the Fermi energy
of the majority species

terms with the correct units that incorporate the Hartree–Fock-like feature mentioned
above, we find that the following self-energies gives rise to the correct equation of
state of the strongly interacting normal phase,

μ′
σ = μσ + 3

5
A

(μ′−σ )2

μ′+ + μ′−
. (13.19)

The prefactor can be determined from the self-energy of a single minority atom in
the presence of a Fermi sea of majority atoms and equals A � 0.96 [11, 17–19].
Explicitly in terms of μ and h, these relations imply that

μ′ = μ

⎛

⎝1 − 5 − 3A

10 − 3A
+ 5

√
(5 + 3A)2 + 3A(10 − 3A)(h/μ)2

(10 − 3A)(5 + 3A)

⎞

⎠ ,

h′ = h

(
1 − 3A

5 + 3A

)
.

(13.20)

In Fig. 13.2 the resulting energy of the mixture determined from the thermody-
namic potential �(μ, h, T, V ) = �BCS[0;μ′, h′] at zero temperature is plotted as
a function of the polarization. This figure shows the excellent agreement between
the Monte-Carlo data and the ansatz from Eq. 13.20. In the next section we discuss
how these self-energies can be further improved when we also consider the effects
of pairing in the superfluid state.
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13.3.2 Superfluid State

When the temperature is low enough and the imbalance not too large, the unitary
Fermi gas becomes superfluid. In the unitarity limit, the scattering length goes to
infinity and is no longer a relevant length scale. In fact, in the homogeneous situation,
the (average) Fermi energy is the only energy scale in the problem. This makes the
system universal and as a result, we can write most thermodynamic properties of the
system in terms of this Fermi energy [18].

In Sect. 13.2 we showed that the self-energies can be explicitly written as a power
series in |�|2. The straightforward first step to incorporate these superfluid gap
corrections to the self-energy is to take the first term in |�|2 into account [20]. We
subtract this from the effective chemical potential in Eq. 13.20 as

μ′(μ, h,�) = μ′(μ, h, 0) − B
|�|2

μ′(μ, h, 0)
(13.21)

and B a constant to be determined next. For this we use one simple but important
piece of information, namely the value of the thermodynamic potential in the balanced
superfluid minimum. From experiments and Monte-Carlo calculations this minimum
is known to be

� = − 4
√

2μ5/2m3/2

15π2�3(1 + β)3/2 V ≡ �cr, (13.22)

with V the volume and β � −0.58 a universal number. Matching the energy in the
minimum is important, because this ensures a correct energy balance between the
(imbalanced) normal state and the superfluid state and therefore the correct location
of the first-order phase transition at low temperature. From experiments and several
theoretical calculations, it is now believed that at low temperatures the superfluid state
is balanced. Thus, to find the transition we should compare the energy in the balanced
superfluid with the normal state energy, for which we have already a description that
agrees with the Monte-Carlo equation of state and thus has the correct energy. This
condition fixes the unknown constant to B � 0.21, which follows directly from the
zero-temperature minimum of �BCS[�;μ′, 0] in Eq. 13.17 with both self-energy
corrections subtracted from the chemical potential.

At this point our construction, where everything is explicitly written in terms of
the chemical potentials μ and h, gives rise to a problem: The superfluid in the mini-
mum of the thermodynamic potential turns out not to be balanced at low temperatures
for h 
= 0. This problem originates from the normal self-energies in Eq. 13.20 which
explicitly depends on the chemical potential difference h. It is in particular the renor-
malization of the average chemical potential which depends on h, thus μ′(μ, h,�).

This problem could have been avoided by making an ansatz in terms of the densities
instead of the chemical potentials, which would automatically have resulted in a
balanced superfluid [21]. This follows directly from the fact that BCS theory already
gives a balanced superfluid at low temperature and the dependence on imbalance
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in the self-energies is thus suppressed in the superfluid state. Physically, the prob-
lem is that the formation of a Bose–Einstein condensate of Cooper pairs gives the
superfluid state a strong preference for equal densities of the two spin states, which
is not present in the normal state. To incorporate this extra piece of physics into the
theory, we need to add an extra |�|2 dependence to the model to ensure a balanced
superfluid in the minimum of the thermodynamic potential. There are several ways
to achieve this, but an exponential suppression of the h dependence in μ′ turns out
to give the best interpolation between the various known regimes. Technically this
is achieved, by replacing h in μ′(μ, h,�) by h exp (−|4�|2/μ2). The factor of 4
in the exponent is somewhat arbitrary, but should be large enough to make the h
dependence in the ground-state superfluid minimum negligible.

We now have included the self-energy effects in both the normal state as well
as in the superfluid state. This results in an approximation for the thermodynamic
potential which has the correct equation of state in the normal phase, the correct
energy minimum for the superfluid phase, and interpolates between these two in a
manner that incorporates all the known physical properties of the system. In Fig. 13.3
the resulting thermodynamic potential is plotted for several values of h and at zero
temperature. As a check we can compute the critical polarization which gives about
P � 0.4 as desired. Also the universal number ζ = �0/μ of the balanced superfluid
ground state has a very reasonable value. Here we find 0.97 while Monte-Carlo
gives 1.07 ± 0.15 [22, 23]. In principle, we can easily correct for this difference by
including a small correction to the anomalous self-energy, but in view of the already
rather good agreement with the Monte-Carlo results we refrain from doing so in the
following.

A large region of the trapped unitary Fermi gas can be well described using
the local-density approximation. However, near the interface of a first-order phase
transition, this approximation always breaks down, as it leads to an unphysical dis-
continuity in the density profiles. The thermodynamic potential we constructed so
far also describes the system out of equilibrium, i.e., with � not in a minimum of the
thermodynamic potential, which is precisely what happens near the interface. But in
order to describe the interface properly, we need to go beyond the LDA by including
also a gradient term for � in the thermodynamic potential,

�[�;μ, h] =
∫

dx
(

1

2
γ (μ, h)|∇�(x)|2 + ωBCS[�(x);μ′, h′]

)
, (13.23)

where ωBCS denoted the homogeneous thermodynamic potential density �BCS/V
and �γ (μ, h)

√
μ/m is a positive function of the ratio h/μ only, due to the univer-

sal nature of the Fermi mixture at unitarity. The functional minimum of this new
thermodynamic potential gives a smooth transition at the interface, instead of the
discontinuous step obtained within the LDA. A careful inspection of the interface in
the data of Shin et al. [3], cf. Fig. 13.4, also reveals that the interface is not a sharp
step. This is most clear in the data for the density difference, since the noise in the
density difference is much smaller than in the total density. This has to do with the
experimental procedure used, which only measures the density difference directly.
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Fig. 13.3 The zero-temperature thermodynamical potential functional as a function of the order
parameter �. The upper panel illustrates the balanced case, where the dash-dotted line is the usual
BCS result, the dashed line incorporates only the normal-state self-energy effects, and the solid
line includes also the superfluid self-energy correction. In the lower panel the energy functional is
shown for various values of the chemical potential difference h, with hcr � 0.94μ its critical value

Such a smooth transition arises also in the self-consistent Bogoliubov–de Gennes
equations. But these lead then also to oscillations in the order parameter and the den-
sities, due to the proximity effect [24]. This is not observed experimentally. Oscil-
lations will also occur in our Landau–Ginzburg approach if γ (μ, h) < 0. However,
we have checked both with the above theory as well as with renormalization group
calculations [11] that γ (μ, h) is positive. This agrees with the phase diagram of the
imbalanced Fermi mixture containing a tricritical point and not a Lifshitz point in the
unitarity limit [25].

We restrict ourselves here to a gradient term that is of second order in � and
also of second order in the gradients. There are of course higher-order gradient
terms that may contribute quantitatively [26], but the leading-order physics is cap-
tured in this way due to the absence of a Lifshitz transition. One way to compute
the coefficient γ (μ, h) is to use the fact that in equilibrium this coefficient can be
exactly related to the superfluid stiffness, and therefore the superfluid mass den-
sity ρs, by γ = �

2ρs/4m2|〈�〉|2. At zero temperature it gives the simple result that
γ (μ, h) = √

m/2μ/6π2
�ζ 2(1+β)3/2, with β and ζ universal constants as defined

earlier. With this result for γ our thermodynamic potential functional in Eq. 13.23
contains no longer any free parameters and can now be confronted with experi-
ments. The result of this comparison, at a realistic temperature of about one third the
tricritical temperature Tc3, is shown in Fig. 13.4 and turns out to be excellent.
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Fig. 13.4 (Color online) The density profiles of a unitary mixture with polarization P � 0.44 in
a harmonic trap. The upper figure shows the majority and minority densities as a function of the
position in the trap. The lower figure shows the density difference, where the theoretical curves
show the results both within the LDA (dashed line) and for our theory (solid line) that goes beyond
this approximation and, therefore, allows for a substantial better agreement with experiment. The
inset shows the BCS gap parameter �0(r)/�0(0) both for the LDA (dashed line) and our theory
(solid line). The experimental data points and scaling are from Shin et al. [3]

13.4 Applications

We have thus constructed an accurate approximation to the exact thermodynamic
potential of the imbalanced Fermi mixture at unitarity. With a simple ansatz for the
self-energies we can describe both the homogeneous normal and superfluid phase
at zero and nonzero temperatures. Moreover, the description is also valid out of
equilibrium, i.e., when the value of the gap is not in a minimum of the thermodynamic
potential. By including also the energy cost for gradients of the gap parameter we
have a Landau–Ginzburg-like theory that can describe the inhomogeneous situation
that is used in experiments [2, 3] in a manner that goes beyond the local-density
approximation.

In this section we use the thermodynamic potential �[�;μ, h] from Eq. 13.23 to
investigate the properties of the superfluid-normal interface. First, we consider the
trap to be spherically symmetric and in that case calculate the surface tension of the
interface. This is an important quantity that has been put forward [2, 12] as a possible
explanation for the deformations of the superfluid core observed by Partridge et al.
[2]. Second, we then show how the anisotropy of the trap can be incorporated and
study the effect of this anisotropy on the equilibrium gap profile �0(x). In this section
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we for simplicity always take the gap �0(x) to be real, which does not lead to any
loss of generality for the applications that we consider here.

13.4.1 Interface and Surface Tension

The fact that we are able to study the superfluid-normal interface beyond the LDA,
makes it possible for us to also determine the surface tension. The surface tension is
determined by the difference in thermodynamic potential between a one-dimensional
LDA result with a discontinuous step in �0(x) and our Landau–Ginzburg theory with
a smooth profile for the order parameter �0(x). In actual experiments, however, the
width of the interface is rather small compared to the size of the whole atomic
cloud. This makes it possible to compute the surface tension by considering a flat
interface in a homogeneous system rather than a curved interface in the trap. In the
homogeneous case, such an interface occurs only when the imbalance is critical,
i.e., when h = hcr(μ) = κμ with κ another universal number, for which we have
obtained κ � 0.94. This means that the thermodynamic potential of the normal state
minimum is exactly equal to the thermodynamic potential of the superfluid state
minimum. The surface tension is then the difference in thermodynamic potential
between a system that stays in one minimum and one that goes near the interface
from one minimum to the other.

How the system achieves the latter is determined by minimizing the thermody-
namic potential,

δ�[�;μ, hcr]
δ�(z)

∣∣∣∣
�=�0

= ∂ωBCS[�0(z);μ′, h′]
∂�

− γ (μ, hcr)
∂2

∂z2 �0(z) = 0.

(13.24)
In principle, this highly nonlinear equation can be numerically solved, to get a
hyperbolic tangent-like function for �0(z) that on the normal side of the interface
approaches zero and on the superfluid side approaches the equilibrium position of
the superfluid minimum that we simply denote by �0. Fortunately, however, this
solution is not needed to compute the surface tension, because the surface tension
can be conveniently written as

σ(μ) =
∞∫

−∞
dz

(
ω[�0(z);μ, hcr] − ω[0;μ, hcr]

)
, (13.25)

where ω = �/V is the thermodynamic potential density. This equation can be
rewritten as an integral over �, knowing that �0(z) is a monotonically increasing
function between zero and �0. Using also the first integral of Eq. 13.24, we end up
with

σ(μ) = √
2γ (μ, hcr)

�0∫

0

d�
√

ωBCS[�;μ′, h′] − ωBCS[0;μ′, h′] . (13.26)
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Fig. 13.5 The surface tension as a function of the temperature, computed in the homogeneous case
at unitarity. The temperature is scaled by the temperature of the tricritical point Tc3. The dashed line
shows the value used to compare with experiments in Fig. 13.4. The inset shows the gap around the
interface for several temperatures 0.9, 0.7, 0.5, 0.25 and 0.01 Tc3, respectively

This is clearly independent of the actual shape of the interface. The surface tension
thus only depends directly on

√
γ (μ, hcr) and on the shape of the barrier in between

the two minima of the thermodynamic potential. It is useful to write the surface
tension in a dimensionless form. We define this as σ(μ) = η(m/�

2)μ2, with η a
dimensionless number. This number depends only on the temperature. In a trap, the
relevant chemical potential is the one at the position of the interface. This location is
also dependent on the polarization of the mixture and in that manner also the surface
tension will inherit in a trap a dependence on the polarization [13].

The surface tension of this model is plotted in Fig. 13.5 as a function of the
temperature. Here the surface tension is plotted in its dimensionless form. In this
form it was previously found that for the experiment of Partridge et al. η � 0.6 [6].
This was extracted from the large deformations of the superfluid core observed in
that experiment. The experiment of Shin et al. does not show any deformation, which
puts an upper bound on η of about 0.1 [13, 27]. At the tricritical point the surface
tension vanishes and at zero temperature it is about η � 0.03. For a more realistic
temperature of about 0.3Tc3 we find η � 0.02 which is significantly smaller than the
surface tension that would cause a substantial deformation. This is thus in agreement
with the experiment of Shin et al. [3].

We now give a more detailed discussion of our analysis of the density profiles
observed by Shin et al. In experiments the cloud is trapped in an anisotropic har-
monic potential, which is cigar shaped, and in the axial direction less steep than
in the radial direction. However, since the atomic cloud shows no deformations in
this case we can in a good approximation take the trap to be spherically symmetric.
The order parameter then depends only on the radius, and the total thermodynamic
potential is given by integrating our Landau–Ginzburg-like thermodynamic potential
density over the trap volume. To account for the trap potential in the energy func-
tional we let the average chemical potential depend on the radius, such that we have
μ(r) = μ − V (r), with V (r) the effectively isotropic harmonic potential.
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To find the order parameter as a function of the radius we have to mini-
mize the energy functional with respect to the order parameter, or δ�[�;μ, h]/
δ�(r)|�=�0 = 0. This gives a second-order differential equation for �0(r) as we
have seen. Solving this Euler-Lagrange equation, with the proper boundary condi-
tions in the center of the trap, gives a profile for �0 that is shown in the inset of
Fig. 13.4. This profile of the order parameter is much smoother than the discontin-
uous step one obtains within the LDA that is also shown in Fig. 13.4. Besides this,
there are two more aspects that deserve some attention. First, we notice that the value
of the gap at the original LDA-interface is decreased by almost a factor of three and,
second, the gap penetrates into the area originally seen as the normal phase. This
behavior makes the gap for a small region smaller than h′, giving locally rise to a
gapless superfluid, which implies a stabilization of the Sarma phase.

Before discussing this particular physics, we focus first on the density differ-
ence. To obtain the density profiles within our theory, the thermodynamic relation
nσ (r) = ∂ωBCS/∂μσ (r) is used, where nσ = Nσ /V is the density of particles in
state |σ 〉 and μσ (r) = μσ − V (r) the associated local chemical potential. It is
important that, because of the self-energy effects, we cannot use the standard BCS
formulas for the density, but really have to differentiate the thermodynamic poten-
tial. In BCS theory this would of course be equivalent. Given the density profiles, the
comparison between theory and experiment can be made and is ultimately shown in
Fig. 13.4. Overall the agreement is very good. Theoretically the interface appears to
be somewhat sharper than observed. This can be due to higher-order gradient terms,
that are neglected in the calculation and that would give an additional energy penalty
for a spatial variation of the order parameter. There are also experimental effects that
could make the interface appear broader, for instance, the spatial resolution of the
tomographic reconstruction or the accuracy of the elliptical averaging (Ketterle W.,
Shin Y., Private communication).

The Landau–Ginzburg-like approach presented here, shows some new features
compared to the LDA. One interesting feature is the kink, that is visible in the
majority density profile shown in Fig. 13.4. Notice that this kink appears before the
original (LDA) phase transition from the superfluid to the normal phase. This kink
signals a crossover to a new exotic phase, namely the gapless Sarma phase. Note
that at zero temperature this crossover becomes a true quantum phase transition. At
the crossover, the order parameter becomes smaller than the renormalized chemical
potential difference h′ and the unitarity limited attraction is no longer able to fully
overcome the frustration induced by the imbalance. As a result the gas becomes
a polarized superfluid. Because the gap � is smaller than h′ this corresponds to a
gapless superconductor. In a homogeneous situation this can, far below the tricritical
temperature, never be a stable state as shown in Fig. 13.1. However, because of the
inhomogeneity induced by the confinement of the gas, the gap is at the interface
forced to move away from the local minimum of the thermodynamic potential and
ultimately becomes smaller than h′. The Sarma state is now locally stabilized even at
these low temperatures. Notice that this is a feature of the smooth behavior of the gap
and that the presence of the Sarma phase thus does not depend on the quantitative
details of the energy functional �[�;μ, h].
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13.4.2 Deformation

When the surface tension is sufficiently small or when the aspect ratio of the external
potential of the system is close to one, the gap profile �0(x) will closely follow the
equipotential surfaces of the external trap and can be reasonably well approximated
by a function of a single variable only. This can be achieved by scaling away the
anisotropy of the external potential and introducing the effective radius

R2 = x2 + y2 +
( z

α

)2
, (13.27)

with α the aspect ratio of the trap. However, when the aspect ratio is large, this
might not always be valid. In the experiment of Partridge et al. [6], an aspect ratio of
about 45 is used, and dramatic deviations between the equipotential surfaces and the
shape of the superfluid core are observed. This can be explained by a large surface
tension [13], but as we have just seen the required large value of η cannot yet be
understood from a microscopic theory. Another possibility is that the gas has ended
up in a metastable state in which the shape of the gap parameter differs from the
equipotential surfaces of the external potential [14].

The latter possibility is something that can also be investigated using the ther-
modynamic potential that we have just derived. To do so, we first study the linear
response of the system when we also allow the gap profile to depend on more (angu-
lar) variables then the effective radius R. After that we also look at gap profiles with
a different aspect ratio than the external potential. It appears from our analysis that
our present Landau–Ginzburg-like approach gives indeed rise to small deviations in
the gap shape. However, it does not exhibit a metastable state with a deviation that
is as large as seen in the experiment of Partridge et al.

13.4.2.1 Linear Response

The harmonic potential used in the experiments has an elliptical symmetry, which
means that it can be written as a function of a single coordinate R as defined in
Eq. 13.27. As a consequence, the local thermodynamic potential also only depends
explicitly on this R. Therefore, in the local-density approximation, the gap parameter
can only depend on R as well. When we go beyond the LDA, by including gradient
terms in the theory, this symmetry is explicitly broken.

In this section we first perform the above-mentioned scaling of the axial coor-
dinate. After that we can treat the beyond-LDA corrections of the gap profile as
perturbations on the symmetric solution that can be expanded in the form of spheri-
cal harmonics as

�0(x) =
∑

l

Dl(R)

R
Yl0(θ, φ) . (13.28)
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Since the trap is rotationally symmetric around the z-axis, the gap profile does not
depend on the azimuthal angle φ and we are allowed to take m = 0 in the expansion
in Eq. 13.28. Also the mirror symmetry in the x–y plane causes all coefficients with
odd l to be zero. We will now assume that the elliptically symmetric part D0(R) is
much larger than the part with coefficients l > 0 and for simplicity only look at the
first anisotropic perturbation D2(R).

To describe the deformations we have thus chosen spherical coordinates, but with
the z-coordinate defined as z = αR cos θ. This coordinate system is not orthogonal
and gives rise to a coupling between the spherical harmonics due to the gradient
terms. The Jacobian is given by αR2 sin θ. The gradient terms in the thermodynamic
potential can be written in these coordinates as

�gr[�0] ≡
∫

dx
γ (x)

2
|∇�0(x)|2

� −α

2

∞∫

0

dR

{
γ0 D0(R)

d2

d R2 D0(R) + γ2 D2(R)

(
d2

d R2 D2(R) − 6

R2 D2(R)

)

+ γ02 D0(R)

(
2

d2

d R2 D2(R) + 6

R

d

d R
D2(R) + 3

R2 D2(R)

)}
.

(13.29)
Here we suppressed for convenience the dependence on the chemical potentials and
approximated the stiffness γ (x) by its value at the location of the interface, that
we from now on denote simply by γ. The latter is a very good approximation in
practice, because for the traps of interest the width of the superfluid-normal interface
is much smaller that the typical length scale on which the trapping potential varies.
Furthermore, we defined the various different effective stiffnesses as

γ0 =
(

2

3
+ 1

3

1

α2

)
γ, γ2 =

(
10

21
+ 11

21

1

α2

)
γ, γ02 = − 2

3
√

5

(
1 − 1

α2

)
γ.

(13.30)
This can naturally be extended to general l, where every Dl is coupled to Dl+2, but
we do not need that extension here.

As indicated above, we want to treat D2 as a small perturbation in linear-response
theory. To achieve this we need to expand the local part of the thermodynamic
potential in terms of D2. This is straightforward and is given by,

�loc[�0] = α

∞∫

0

d R

{
4π R2ωBCS[�0(R); R] + 1

2

∂2ωBCS[�0(R); R]
∂�0

2 D2(R)2 + . . .

}
.

(13.31)
We find the elliptical symmetric part �0(R) = D0(R)/R

√
4π of the gap by neglect-

ing the D2 contribution and minimizing the thermodynamic potential with respect
to �0(R). This gives a spherical symmetric equation similar to Eq. 13.24, but now
with a slightly smaller gradient coefficient, given by γ0 in Eq. 13.30. When we have
obtained a solution for D0 we can minimize the thermodynamic potential with respect
to D2, which gives the following linear-response equation
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L D2(R) = S (D0(R); R) , (13.32)

with the linear operator

L = 1

2

∂2ωBCS[�0(R); R]
∂�0

2 − γ2

2

(
d2

d R2 − 6

R2

)
(13.33)

and the inhomogeneous term that acts as a source for the quadrupole deformations

S (D0(R); R) = γ02

2

(
d2

d R2 D0(R) − 3

R

d

d R
D0(R) + 3

2R2 D0(R)

)
. (13.34)

In Dirac notation the solution of this equation is formally given by
|D2〉 = L −1|S(D0)〉. Inverting the operator L can be accomplished by first diago-
nalizing this operator, which we can do by finding all its eigenfunctions and eigen-
values. Interestingly, these are determined by a Schrödinger equation

{
− �

2

2m∗
d2

d R2 + V eff(R)

}
φn(R) = Enφn(R) , (13.35)

with an effective mass given by m∗ = �
2/γ2 and an effective potential V eff(R)

V eff(R) = 1

2

∂2ωBCS[�0(R); R]
∂�0

2 + �
2

2m∗
6

R2 . (13.36)

A typical example of this effective potential with its eigenstates and energies is shown
in Fig. 13.6. Given these eigenfunctions the solution for D2 can in Dirac notation
finally be written as |D2〉 = ∑

n(1/En)|φn〉〈φn|S(D0)〉, which amounts to

D2(R) =
∑

n

φn(R)

En

∞∫

0

d R′ φn(R′)S
(
D0(R′); R′) . (13.37)

In Fig. 13.6 also the corresponding solution for D2 is shown. This solution is centered
around the interface and is also roughly of the same width as the interface. This is
as expected, since the terms in the thermodynamic potential that do not obey the
elliptical symmetry and are the source for the quadrupole deformations, are most
significant near the interface. Formally, this comes about because the sum in the
right-hand side of Eq. 13.37 is, due to the energy denominator, dominated by the
eigenstates with low energies that are localized in the dimple of the effective potential
V eff(R).

The outcome of our linear-response analysis gives only rise to small deformations
from the elliptical symmetry. In fact, this a posteriori makes this approach self-
consistent and confirms the assumption that the gap can be well described with
a solution that has the same symmetry as the trap. While this symmetric solution
gives roughly speaking the average shape of the interface, the small quadrupole
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Fig. 13.6 The left panel shows the solutions for the eigenfunctions (thin lines) and eigenvalues
(line height) of Eq. 13.36. The thick line is the effective potential in Eq. 13.36, which shows a
pronounced dimple at the location of the interface. The right panel shows the elliptically symmetric
solution �0(R) (dashed line) and the quadrupole correction D2(R) (solid line). Here we have taken
α = 45 and P = 0.4, which are typical values for the experiments of Partridge et al. [6]

deformations correct for this and widen the interface in the radial direction and
shrink it in axial direction. This effect becomes bigger for larger aspect ratios, but
never gives rise to such large deformations as is seen in the experiments of Partridge
et al. For an aspect ratio of one, the deformation disappears, because the source term
S (�0(R), R) is proportional to γ02, which becomes zero at α = 1. In principle, a
deformation could then occur spontaneously, if one or more eigenvalues En become
negative. However, for typical experimental parameters, this never happens.

In this section we discussed the linear response of the superfluid-normal inter-
face shape. This is a nice application for our Landau–Ginzburg-like thermodynamic
potential functional that can be used to study in detail the effect of the aspect ratio
of the trap on the experiment of Shin et al. However, we cannot use it to describe the
large deformations observed by Partridge et al. A possible way to handle this situation
requires beyond linear-response methods that are covered in the next section.

13.4.2.2 Metastable States

In the previous section we assumed that the deviations from the elliptically symmetric
solution for the gap are small and therefore validates the use of linear response. But
since we have the full thermodynamic potential at our disposal we can also consider
large deviations by using a variational approach. In the experiment of Partridge et
al. the observed deformation of the superfluid core is indeed large. This deformation
can be modelled by giving the superfluid core a different aspect ratio than that of
the trap [13] and by letting the polarized normal shell follow the shape of the trap.
It is still unclear whether this represents the true energy minimum of the system or
corresponds to a metastable state [14]. We can use our thermodynamic potential to
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investigate this, and we will see that there appears to be no metastable state in the
Landau–Ginzburg-like theory presented in this chapter.

The superfluid core is described by a nonzero gap function, which is determined
by minimizing the thermodynamic potential. The case of a metastable state then
corresponds to a local, but not a global minimum of the thermodynamic potential.
We want to find such minima by using a variational approach. This implies that we
somehow have to parameterize a likely functional form of the gap, and then vary the
thermodynamic potential with respect to these parameters. To find a appropriate trial
function that describes the gap well, let us start with the following function that very
accurately describes the gap in the elliptically symmetric case

�0(R) = �0

(
1 − R2

ρR2
TF

)
tanh

(
R0−R
�R

)
+ 1

2
. (13.38)

Here ρ, R0 and �R are variational parameters. These parameters can be understood
as follows. In the homogeneous theory the gap is proportional to the chemical poten-
tial �0 = ζμ � 0.97μ, as discussed before, and in the trap the chemical potential
is given by μ − V (x) ≡ μ(1 − R2/R2

TF). This explains the first factor in the right-
hand side of Eq. 13.38, where the parameter ρ is needed to incorporate beyond-LDA
effects. The function [tanh((R0 − R)/�R) + 1]/2 with center R0 and width �R
describes the interface profile, since this is approximately equal to the usual soli-
ton solution for an interface in Landau–Ginzburg theory. For specific temperatures
and polarizations a minimum of the thermodynamic potential with respect to these
variational parameters can easily be found numerically.

Let us now also include the aspect ratio in this variational approach. We want to
see how the thermodynamic potential changes when the superfluid core has a smaller
aspect ratio than the normal shell. Since we consider this in a variational manner, we
need a proper function with a parameter to describe this. Let us first simply vary the
aspect ratio of the gap profile. This can be achieved by performing in Eq. 13.38 the
substitution R → Rsf , with Rsf the scaled coordinate of Eq. 13.27 with aspect ratio
αsf . This then results in

�(αsf) =
∫

dx
(

1

2
γ (x)|∇�0(Rsf)|2 + ωBCS[�0(Rsf); x]

)
. (13.39)

In Fig. 13.7 the solid line (curve A) shows the total thermodynamic potential as a
function ofαsf .For this plot, we choose the trap aspect ratio to beα = 45,because this
is a typical value for the experiments of Partridge et al. where deformation is clearly
visible. Also a polarization should be taken and we choose P = 0.4 in the elliptically
symmetric case for these figures. The thermodynamic potential, however, does not
show any signs of a dramatic metastable deformation. Yet the energy minimum is at
a slightly smaller aspect ratio for the superfluid core then the trap. We find that for
these parameters we have αsf � 0.99α. This very small deformation is consistent
with the linear-response result from the previous section.
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Fig. 13.7 The total thermodynamic potential of the system as a function of the deformation αsf/α

of the superfluid core. The different lines correspond to different choices for the deformation of
the superfluid core as discussed in the text. The solid line shows a simple change in aspect ratio
for the superfluid core only, as in Eq. 13.39. This corresponds to a change in the axial direction
only. For the dashed and dash-dotted line the gap profile also changes in the radial direction. For an
appropriate scaling of the thermodynamic potential we have introduced the radial trap frequency ω

In the experiment of Partridge et al., not only the superfluid-normal interface
deforms, but also the partially polarized shell appears to be absent. To some extent,
this can be reproduced with a gap parameter that is nonzero further to the outside of
the trap in a region where the LDA would predict it to be zero. Since a nonzero gap
forces the system to be balanced, the majority species will be forced to the outside,
and the gas resembles what is seen in the experiment. In order to look for a metastable
state that does exactly this, we can parameterize a gap function in different ways.
One possibility (option B) is to change the aspect ratio of the gap, not by shrinking
it in the axial direction, but by enlarging it in the radial direction. This means we
replace the radius Rsf in Eq. 13.39 by

(Rsf)
2 =

(αsf

α

)2
(x2 + y2) +

( z

α

)2
, (13.40)

with again αsf the variational parameter that we can change. An even better option
(option C) is to actually shift the location of the interface while changing the aspect
ratio simultaneously. This can be done by using again Rsf as in Eq. 13.39 and sub-
stituting R0 → R0α/αsf in Eq. 13.38.

The thermodynamic potential for both options is again plotted in Fig. 13.7, with
the same aspect ratio α and polarization as for option A. The thermodynamic potential
for option B has clearly no features and only one minimum near the elliptically
symmetric solution. The result for option C, however, seems to have a feature that
looks like a metastable point near αsf = 0.57α. A closer look reveals that it is
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not a local minimum but a saddle point. This point is a result of our choice of
parametrization, since this is exactly the point where the center of the interface in
Eq. 13.38 is equal to the point where the factor 1 − R2

sf/ρR2
TF becomes zero. At this

value of αsf the interface thus disappears.
For the different trial functions of the gap that we considered here, we can conclude

that there is no metastable solution with a dramatic deformation in this system.
There are of course many more possible trial functions conceivable, but at present
it appears unlikely that any of these contain a clear and deep enough metastable
solution that can explain the dramatic deformation of Partridge et al. [2]. Because
of the large deformations that we are looking for, higher-order gradient effects in
the gap, or even density gradient effects, may be very important. We can therefore
not conclude that we should reject metastability as the solution to this outstanding
problem, but it remains a challenge to find such metastable solutions in a theory that
is simultaneously also able to accurately describe the experiments of Shin et al.

13.5 Conclusions

In this chapter we discussed a Landau–Ginzburg-like approach to the unitarity Fermi
gas problem, that we believe is both simple and elegant. This approach is based on
the existence of an exact thermodynamic potential functional. By taking the most
important interaction contributions into account, we showed that in this way all
known thermodynamic properties of the homogeneous imbalanced Fermi mixture
can be accounted for. When also the gradient energy of the gap is incorporated,
the theory can be extended to describe inhomogeneity effects of a Fermi mixture
trapped in an external potential in a manner that goes beyond the usual local-density
approximation.

We showed in the first part of this chapter that the interactions can be incorporated
in two frequency and momentum independent self-energies. We showed that these
self-energies naturally depend on the superfluid gap. The topology of the phase
diagram of the unitary Fermi mixture is correctly captured by the mean-field BCS-
theory. The self-energy corrections do not change this topology, but change the critical
lines in the phase diagram quantitatively. The results from experiments and various
Monte-Carlo calculations uniquely determine the two parameters in the self-energy.
This results in a parameter free thermodynamic potential that contains all known
features and has the correct energies and equation of state for the homogeneous
Fermi mixture.

The homogeneous result can be used in a local-density approximation. To go
beyond this approximation, the energy cost of gradients in the gap needs to be taken
into account. With this additional contribution to the thermodynamic potential we can
describe the superfluid-normal interface in more detail. The experimental data from
Shin et al. [3], which shows a rather smooth interface, is very well explained in this
way. The smooth interface leads also to a local stabilization of a gapless superfluid,
the Sarma phase. This interesting prediction of the theory, however, still needs to
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be corroborated by further experiments. The surface tension of the interface can be
calculated and turns out to be rather small. This is consistent with the observation
of Shin et al., who see experimentally no deformation of the superfluid core, but it
is in sharp contrast with the observations of Partridge et al. [6], who see a dramatic
deformation. This deformation actually suggests a much larger surface tension, but
another explanation may be that in their case the system is in a metastable minimum
of the thermodynamic potential. In a variational approach we showed, however, that
the Landau-Ginzburg-like model derived in this chapter, most likely does not contains
such a local minimum. Because the deformation is large, higher-order gradient effects
in the gap, or even density gradient effects, may be very important. These effects
are more complicated to include in the thermodynamic potential, and are beyond the
scope of this chapter.
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