
Chapter 12
Normal Phase of Polarised Strongly Interacting
Fermi Gases

Alessio Recati and Sandro Stringari

Abstract The theory of the normal phase of strongly interacting polarized atomic
Fermi gases at zero temperature is reviewed. We use the formalism of quasi-particles
to build up the equation of state of the normal phase with the relevant parameters cal-
culated via Monte-Carlo. The theory is used to discuss the phase diagram of polarized
Fermi gases at unitarity. The Fermi liquid nature of these configurations is pointed
out. The theory provides accurate predictions for many different quantities experi-
mentally measured, like the Chandrasekhar–Clogston limit of critical polarization,
the density profiles and the Radio-Frequency spectrum.

12.1 Introduction

The observation of superfluidity in ultra-cold Fermi gases has built a new bridge
between the field of atomic gases and condensed matter. Moreover the flexibility one
has in cold gases gives the possibility to explore new regimes and investigate new
phases [1–3]. Remarkably in cold gases it is also possible to change the strength
of the interatomic force between atoms. Due to the very low temperature and the
diluteness of the gas the interaction can be described as a contact potential with
strength g = 4π�

2a/m where m is the mass of the atoms and a the scattering length.
The latter depending on the atomic species can be changed by applying an external
magnetic field profiting of the so-called Fano-Feshbach resonances (see e.g., [2], the
article by Ketterle and Zwierlein in [1] and reference therein). Such a knob is one of
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the key feature in the recent development of the field of cold gases and in particular has
allowed to experimentally confirm the existence of a smooth crossover between the
so-called Bardeen–Cooper–Schrieffer (BCS) regime of weakly attractive fermions
and the Bose–Einstein condensation (BEC) of deeply bound pairs. The idea of a
crossover, rather than a phase transition, was proposed in the early 80s by Leggett [4],
Nozières and Schmitt-Rink [5].

While at T = 0 the state of a spin-1/2 Fermi gas with attractive interaction is a
superfluid, a very interesting issue is what happens in the presence of spin population
imbalance. In the standard BCS theory, superconductivity arises from Cooper pairing
of opposite spin fermions, and is therefore sensitive to a mismatch between the Fermi
surfaces of the two spin species. Indeed in a superconducting metal when we apply a
magnetic field the coupling to the orbital motion (responsible for the Meissner effect)
is negligible and the important effect is the coupling to the electron spins. The field
can lower the energy of the spin-polarized normal state and, if it is strong enough,
make the normal state energetically more favourable than the superconducting spin-
singlet state. The value of the field at which this transition takes place is known as the
Chandrasekhar–Clogston (CC) limit [6, 7] and, in a BCS superconductor, it requires
that the field (or, in neutral systems, the chemical potential difference between the
two spin states) be larger than�/

√
2 where� is the superconductor gap. Crucially,

this estimate assumes that the change in energy of the normal state due to polarization
is only kinetic in origin and neglects changes in the interaction energy. However, if
the system is strongly interacting, the value of the Chandrasekhar–Clogston field can
also depend on the interactions in the normal state, an effect that must be accurately
taken into account if we wish to study normal/superfluid coexistence.

Experimentally, the phase diagram of a polarized Fermi gas remained unexplored
until recent work at MIT [8–10], Rice University [11, 12] and ENS [13–15] on
ultra-cold Fermi gases, where experiments in the strongly interacting unitary limit
of two-component atomic Fermi gases have been carried out. Such gases can be
polarised leading to a state most naturally described as phase separated between a
normal and a superfluid component.

In what follows we review the Fermi liquid theory of the normal state which was
first introduced in [16] and its building block the Fermi polaron, i.e., a single impurity
in an otherwise non-interacting Fermi gas. The normal phase has received a number
of quite stringent experimental test. Its predictions for the critical polarization (related
to the CC limit), the detailed structure of the density profiles agree very well with
the experimental data obtained at MIT and ENS. The calculated value of the polaron
parameters also agree with the ones found in very recent experiments [15, 17].

The same theory provides explicit predictions for the frequencies of the spin
excitations in the normal phase and experiments in this direction would provide a
crucial test of the applicability of Landau theory to the dynamics of these strongly
interacting normal Fermi gases. We discuss this issue briefly at the end of the review.

In this review we do not follow the historical development of the understanding of
the phase diagram for strongly interacting imbalanced Fermi gases. We rather start
with the single impurity problem, then we consider the equation of state (EoS) for
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finite concentration and the resulting nature and properties of the superfluid/normal
phase transition. When possible we make comparison with experiments.

12.2 The N + 1 or Polaron Problem

12.2.1 Homogeneous Case

In this section we consider the extreme polarised case of a single impurity interacting
attractively with a bath of N non-interacting fermions. It is worth mentioning that such
a problem is the simplest realisation of the moving impurity problem, and it bears
a strong similarity with other old and notoriously difficult condensed matter prob-
lems, such as the Kondo problem, the x-ray singularity in metals [18], the mobility
of ions [19] and 4He atoms in 3He [20].

For later purpose let us identify with ↑ the atoms in the bath and with ↓ the impurity
atom. Pictorially the bath will dress the impurity. Since the interaction is attractive,
the impurity ↓ prefers staying in the bath, gaining an energy μ↓ and acquires a
renormalised mass m∗. Sometimes μ↓ is also called in literature binding energy
for the simple fact that it is negative. The dressed particle is called Fermi-polaron or
simply polaron in analogy with solid state physics concepts used to describe electrons
dressed by optical phonons, hence a bath of bosons.

For weak interaction one can easily calculate within perturbation theory the two
relevant parameters μ↓ and m∗. Introducing the Fermi momentum of the bath kF =
(6π2n)1/3, with n the density of the bath, one finds to second order in kF a the
expressions

μ↓ = EF

(
4kF a

3π
+ 2(kF a)2

π2

)
(12.1)

m∗ = m

(
1 + 4

3π2 (kF a)2
)
, (12.2)

where EF = �
2k2

F/(2m) is the Fermi energy. They are the analogue of the Galitskii
correction for the energy and the effective mass for a balanced weakly interacting
Fermi gas [21]. Usually it is not easy to do much better than this, but for the present
problem the fact that we are dealing with a single impurity in a non-interacting
fermionic bath allows to obtain reliable results till unitarity using a simple variational
approach. The starting point is to write the simplest non-trivial variational many-body
wave-function for such a system, namely the sum of a non-interacting system with
single particle-hole excitations. The trial wave function |ψ〉 for a system of total
momentum p is the following momentum eigenstate [22, 23]
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|ψ〉 = φ
p
0 |p〉↓ |0〉↑ +

k>kF∑
q<kF

φ
p
qk|p + q − k〉↓ c†

k↑cq↑ |0〉↑ (12.3)

where ck↑ and c†
k↑ are annihilation and creation operators of atoms in the bath with

momentum k. In the first term the free Fermi sea is in its ground state |0〉↑ =∏
k<kF

c†
k↑ |v〉 (|v〉 is the vacuum) and the impurity atom is in the plane-wave state

|p〉↓, while the second term is an excited state corresponding to the creation of a
particle-hole pair in the Fermi sea with momentum k and q respectively and the ↓-spin
atom carrying the rest of the momentum. The first part corresponds to free propagation
and, thus, |φ p

0 |2 is to the quasi-particle residue Z p [24]. The coefficients φ p
0 and φqk

are found by minimizing the total energy. In the minimisation procedure one has
to handle, as usual, with the zero range interaction potential and the corresponding
regularisation in terms of the scattering length (see, e.g., [21]). In this way one gets
for the energy change:

E = ε↓p +
∑

q<kF

f (E,p,q) (12.4)

1

f (E,p,q)
= m

4πa
−

∑
k

m

k2 +
∑

k>kF

1

ε↑k +ε↓p+q−k − ε↑q −E

where ε↑,↓k = k2/2m is the kinetic energy of the ↑ and ↓ atoms. For p = 0 we have
E = μ↓, while the variation of E for small p gives the effective mass. In Fig. 12.1
we report the results for the energy of the polaron as a function of the inverse of
the interaction 1/kF a. In the same figure we report the perturbative result (12.2)
as well as the results (Stefano Giorgini, private communication) obtained by using
Fixed-Node Diffusion Monte-Carlo (FN-DMC) simulations. The latter technique is
a zero-temperature Monte-Carlo technique based on a trial wave function which fixes
the nodal surface, used as an ansatz in the DMC. We restrict the analysis to the case
where there are no bound states between the ↑ and the ↓ atoms. Such a bound state
clearly exists in the BEC limit 1/kF a → +∞, where molecules are present. While
the present approach recovers this limiting behavior, the effect of a bound state in
the intermediate regime has to be properly taken into account [25–27] and it is not
well described by the variational ansatz (12.3). The point is that, as it was first shown
in [28], the polaron is not the lowest energy state any more for 1/kF a ≤ 1. At the
many-body level this would imply that at T = 0 one has a BEC of molecule almost
for any polarization of the system. It is worth noticing that moreover as soon as the
molecules are formes the the ssystem prefers to phase separate in a BEC of molecule
and an ideal Fermi gas [29]. Thus the study of the physics of the molecular state
embedded in an ideal Fermi gas [25–27] is experimentally challenging.

Going back to the results at unitarity (kF a → ∞), as can be seen from Fig. 12.1,
the impurity chemical potential appraches the value ∼3/5EF which means that the
bath “dresses” the impurity with just a single atom. The effect on the mass is even
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Fig. 12.1 Polaron energy as a function of the inverse of the interaction between the impurity and
the fermionic bath kF a, with kF the Fermi momentum of the ideal Fermi gas and a the scattering
length between ↑ and ↓ atoms. Solid (black) line: the variational result solving Eq. 12.5; dot-dashed
(red) line: first order correction; dashed (green) line: second order perturbation theory; diamonds:
Fixed-Node Monte-Carlo
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Fig. 12.2 Polaron effective mass m∗ as a function of the inverse of the interaction between the
impurity and the fermionic bath kF a,with kF the Fermi momentum of the ideal Fermi gas and a the
scattering length between ↑ and ↓ atoms. Solid (black) line: the variational result solving Eq. 12.5;
dashed (green) line: second order perturbation theory; diamonds: Fixed-Node Monte-Carlo

smaller, being the effective mass less than 20% bigger than the bare one. In Fig. 12.2
we report the variational and perturbative results (12.2) for the effective mass.

The fact that we can thrust the variational calculation is many-fold. Indeed, as can
be seen in Fig. 12.1, it agrees very well with the Monte-Carlo calculation, further-
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more it has been shown that the inclusion of essentially any number of particle-hole
excitation does not significantly change the results [30]. Finally where applied to
a one-dimensional system [23, 31] it gives results that are in very good agreement
with the exact solution explored by McGuire [32]. It is also worth mentioning that
the variational approach is equivalent to a more standard many-body treatment via a
T-matrix approximation also known as Brueckner-Hartree-Fock [23, 33].

12.2.2 Non-Homogeneous/Trapped Case

Up to now we have considered the system as being homogeneous. In a real experiment
the atoms are trapped by an external electromagnetic field, which in most of the cases
can be included in the Hamiltonian by means of a harmonic potential of the form

Vho(x) = 1

2
m(ω2

x x2 + ω2
y y2 + ω2

z z2). (12.5)

The bath can be considered not altered by the presence of the impurity and can be
described by an ideal Fermi gas in an harmonic trap. Moreover, most of the times,
local density approximation (LDA) [2] is applicable. In such approximation one
defines the local chemical potential as μ↑(x) = (6π2n↑)2/3 = μ↑ − V (x), where
μ↑ is fixed by the number of ↑-atoms, i.e., μ↑ = (6N↑)1/3�ω̄, with ω̄3 = ωxωyωz

the frequency geometrical average. The impurity is dressed by the bath as described
above and can be described by a particle of mass m∗ in an effective external potential.
Its Hamiltonian is easily written as [34]

Hsp = p2

2m∗ + Vho(x)
(

1 + 3

5
A

)
, (12.6)

where, for later convenience, we have introduced the dimensionless polaron energy
parameter A = −μ↓/(3/5EF ) > 0, which is � 1 at unitarity. The impurity feels a
potential stronger than the bare one with the renormalised oscillator frequencies

ω̃i = ωi

√(
1 + 3

5
A

)
m

m∗ . (12.7)

This means, e.g., that the dipole (sloshing) mode of the impurity along, let us
say, the x-axis has a larger frequency with respect to the one of the harmonic
confinement ωx , namely

ω
(s)
D = ωx

√(
1 + 3

5
A

)
m

m∗ . (12.8)

For example taking the values obtained by the variational ansatz at unitarity, i.e.,
A � 1.01 and m∗/m � 1.17 we have ω(s)D /ωx � 1.2, i.e., an increase of 20% with
respect to the bare harmonic oscillator frequency.
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It is clear from the above equation that the frequency of the impurity dipole mode
(or (s)pin-Dipole) provides information about the polaron parameters. First measure-
ments along this line have been reported in [13] and are discussed in Sect. 12.6.

In most of the present chapter we assume that the atoms forming the bath and
the impurity atom are just different hyperfine levels of the same atomic specie, thus
they are both fermions, have the same mass and they feel the same external potential.
It is worth mentioning that the discussion is easily generalised to different atomic
species. The value of the polaron parameters A (or μ↓) and m∗↓/m↓ depend on the
mass ratio m↓/m↑ [23], which eventually affect the possible configuration in the trap
when considering the many-polaron case as we briefly discuss in the Sect. 12.3.3.

12.3 Unbalanced Fermi Gas or Many-Polaron Problem

In this section we discuss what does happen when the concentration of the impurities
is finite and the atoms are trapped by an harmonic confinement. We stress that the
impurities are also fermions. This fact does not affect clearly the N + 1 problem, but
it makes a huge difference for the kind of phase one has in the finite concentration
case. We define the concentration as x = n↓/n↑ where n↓ and n↑ are the densities
of the minority spin-↓ atoms and of the majority spin-↑ atoms, respectively. We also
introduce the polarisation of the system as

P = N↑ − N↓
N↑ + N↓

, (12.9)

where N↑ (N↓) is the number of spin-↑ (− ↓) atoms. Moreover we mainly discuss
the case when the gas is at unitarity, i.e., a → ∞.

12.3.1 Homogeneous Case

The main assumption in describing a system with finite concentration is that even at
unitarity the impurities behave as a (almost) non interacting Fermi gas of polarons,
or in other words they preserve they fermionic nature and the dressed particles
are weakly interacting [16]. Let us start again considering a homogeneous system.
The energy functional of the system can be written in the form of the Landau-
Pomeranchuk Hamiltonian [16]

E(x)

N↑
= 3

5
EF↑

(
1 − Ax + m

m∗ x5/3 + Bx2
)

≡ 3

5
EF↑ε(x), (12.10)

where N↑ is the number of spin-↑ atoms and EF↑ = �
2/2m(6π2n↑)2/3 is the Fermi

energy of the spin-↑ gas. We repeat again that the first term in Eq. 12.10 corresponds
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Fig. 12.3 Equation of state of a normal Fermi gas as a function of the concentration x (circles),
from [16]. The solid line is a best fit to the FN-DMC results, from which the value B of the energy
(12.10) is extracted. The dashed line corresponds to the non interacting gas of polaron, i.e., Eq. 12.10
with B = 0. The dot-dashed line is the coexistence line between the normal and the unpolarized
superfluid states and the arrow indicates the critical concentration xc above which the system phase
separates. For x = 1, both the energy of the normal and of the superfluid (diamond) states are
shown. In the inset we report the results of a “naive-BCS” theory (see text), in which the superfluid
is much more robust

to the energy per particle of the non-interacting gas. The linear term in x gives the
single-particle energy of the spin-down particles, while the x5/3 term represents
the quantum pressure of a Fermi gas of quasi-particles with an effective mass m∗.
Eventually, the last term includes the corrections to the free polaron energy. The
form of the latter term has been first found by fitting the Monte-Carlo results for
finite concentration up to x = 1 [16, 29]. The (fitted) energy functional (12.10) is
shown in Fig. 12.3, together with the Monte Carlo data and the free polaron energy
functional, B = 0 (dashed line). The physical interpretation of the x2 term is still
not completely clear, but it can be thought as a quasi-particle forward interaction
[35, 36]. It is worth remarking that, while Eq. 12.10 is thought as an expansion of
the normal state energy for small concentration, it agrees very well with Monte-
Carlo calculations for any values of x [16]. In the present work we use the values
A = 0.99(1), m∗ = 1.09(2) and B = 0.14 calculated in [29], using Fixed-Node
Monte-Carlo techniques.

On the other hand we know in the balance case, x = 1, and at T = 0, the
system is superfluid. The equation of state of a homogeneous unpolarized superfluid
at unitarity is simply given by the energy of an ideal Fermi gas multiplied by an
universal parameter (see, e.g., [2, 3])

ES

NS
= ξS

3

5

�
2

2m
(6π2nS)

2/3 ≡ εS(nS), (12.11)
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where NS is the number of atoms in the superfluid phase and the universal parameter
ξS has been calculated by different techniques, e.g., employing Quantum Monte Carlo
simulations [37, 38] or diagrammatic techniques [39]. It has been also measured
experimentally. We rely in what follows on the Monte Carlo value ξS � 0.42. It
means that if we assume that the system admits only these two phases, namely the
unpolarized superfluid and the partially polarized normal phase, there exists a critical
value of the concentration, xc, at which the superfluid starts to be nucleated in the
normale state. The transition between the normal and the superlfluid phase is of first
order nature and the equilibrium of the two phases is found by imposing chemical
and mechanical equilibrium. At constant volume V a further increase of the number
of the minority atoms turns in a increase of the superfluid part. The equilibrium
pressure reads

∂E(x)

∂V
= ∂ES

∂V
(12.12)

and using Eqs. 12.11 and 12.10, it provides the relation between the superfluid density
and the majority atom density in the normal phase

nS

n↑
=

(
ε(x)

2ξS

)3/5

. (12.13)

The chemical potential equilibrium is equivalent to state that the chemical potential of
the superfluid is equal to the sum of the chemical potential of the majority,μ↑, and of
the minority,μ↓, atoms. From Eq. 12.11 one has ξS�

2/(2m)(6π2nS)
2/3 = μ↑ +μ↓.

Eventually one finds that the critical concentration is given by the solution of the
equation

3

5
(xc − 1)ε′(xc) = ε(xc)− 2ξS

(
ε(xc)

2ξS

)2/5

, (12.14)

where the prime means the derivative with respect to the concentration x. In this way
we determine the critical concentration to be xc � 0.44 and interestingly enough
the density jump between the superfluid and the majority component is almost not
existent being nS/n↑ � 1.02. This is peculiar of the equal mass case, while for
different masses the jump can be pretty large (see Sect. 12.3.3). The coexistence line,
shown also in Fig. 12.3 by the dashed-dot line, is obtained by minimizing the energy at
a constant volume of a superfluid coexisting with a normal phase with concentration
xc. To show the importance of properly including the interaction in the normal phase,
in the inset of Fig. 12.3 we report the same results but using the most “naive-BCS”
theory. Namely we take the BCS result for the superfluid energy at unitarity (i.e.,
without any Hartree term) and the normal phase is just a two-component unbalance
free Fermi gas. The normal phase would be practically never realised.

Before moving to the trapped case, a couple of remarks on the unstable strongly
interacting normal phase at x = 1. are due. Such a phase has an energy which, being
at unitarity, can be written as the one for the superfluid
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En

N
= ξn

3

5

�
2

2m
(6π2n)2/3 ≡ εn(n), (12.15)

with a different universal interaction parameter ξn that was also calculated via
Monte-Carlo technique in [37, 38]. Such a phase is difficult to get in the lab, although
it was suggested that it could emerge as an equilibrium phase in a rotating trap
[40–42]. However, such a phase is not just of academic interest. Indeed it turns
out that it is possible to probe such a phase experimentally, being connected to the
T �= 0, P = 0 and to the T = 0, P �= 0 normal phase of the gas. This has been
shown by the very recent analysis of some extrapolated quantities measured by the
ENS group (C. Salomon, private communication).

12.3.2 Non-Homogeneous/Trapped Case

In a trap the local chemical potential fixes the sequence of phases present as a function
of the distance from the trap centre. A good way to understand this feature is to
convert the density relations to the chemical potential ones, i.e., to draw the grand
canonical phase diagram in terms of total chemical potential μ = (μ↑ + μ↓)/2
and effective magnetic field h = (μ↑ − μ↓)/2 as sketched in Fig. 12.4. In this
respect the superfluid to normal phase transition is characterise by (h/μ)c = 0.96
(continuous red line in Fig. 12.4) or ηc = (μ↓/μ↑)c = 0.02. The earlier value is
precisely the Chandrasekhar–Clogston limit for our unitary Fermi gas. We also draw
the line of the transition between the normal mixed phase and the fully polarised one
which corresponds to the chemical potential ratio for a single impurity h/μ = (1
− 3/5A)/(1 + 3/5A) = 3.94 (dashed green line in Fig. 12.4). We call μ0↑,↓ the

chemical potentials in the centre of the trap. The chemical potential μ = (μ0↑ +
μ0↓)/2 − V (x) decreases going outward in the trap, while h = (μ0↑ − μ0↓)/2 is
constant, and thus in a trap we explore the phase diagram along a straight line parallel
to μ. In other words we can explore the whole phase diagram in a single shot and
this represents a very stringent test for any theory. It is clear that it could be that some
of these phases occupy a very narrow space region that are not detectable in actual
experiments.

We see from Fig. 12.4 that if h is not too large we expect to have a superfluid in
the centre of the trap surrounded by a shell of normal phase with decreasing concen-
tration x going outward in the trap. When h is large enough no superfluid is present.
This T = 0 behaviour is in agreement with what has been found experimentally
[8–10, 13, 15, 43].

A quantitative comparison with experiments can be done by calculating the density
profiles, which in a trap are given by the following LDA expression

μ0↑ + μ0↓
2

= ξS
�

2

2m
(6π2nS)

2/3 + V (r) (12.16)

in the superfluid region and by
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Fig. 12.4 Theμ−h phase diagram. The first order phase transition is indicated by a continuous line
and where we report also the second order transition between the mixed normal phase and the fully
polarised gas. The straight black line are the phases present in the trapped gas. The total chemical
potential μ decreases moving outward in the trap, while h is constant and fixed by the polarization
P. If P is not too large one has a superfluid in the center of the trap, then a normal mixed phase and
eventually a fully polarised Fermi gas of the majority atoms

μ0↑ =
(
ε(x)− 3

5
xε′(x)

)
�

2

2m
(6π2n↑)2/3 + V (r), (12.17)

μ0↓ = 3

5
ε′(x) �

2

2m
(6π2n↑)2/3 + V (r), (12.18)

in the region occupied by the normal phase. The value of μ0↑ and μ0↓ are determined,
as usual, by fixing the number of atoms N↑ and N↓.The border between the superfluid
and the normal phase region is given by the locus of points R satisfying

μ0↓ − V (R)
μ0↑ − V (R) = ηc. (12.19)

In a spherical trap (ωx = ωy = ωz = ω0) we can identify R with the radius of the
superfluid, RS . The first result one can get is the critical polarization above which the
superfluid disappears from the trap. It happens when the density ratio in the centre of
the trap is equal to the critical value xc. It turns out that Pc = 0.77 and this prediction
is in very good agreement with experiments. An even stronger test for the theory is
the direct comparison of the density profiles, which can be obtained experimentally
via the so called Abel transform [44]. In Fig. 12.5 we show the comparison between
theory and experiment. The agreement is extremely good and the jump in going from
the equal density superfluid to the mixed normal phase is evident and in agreement
with the CC limit xc � 0.44.

A deeper insight in the density profiles and a link with the single polaron problem
can be obtained by solving Eqs. 12.17 and 12.18 in the high polarisation case, i.e.,
N↑ � N↓. To the leading order in x, we get
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Fig. 12.5 Density profiles
for a polarization P = 44%.
Theory: solid black line
(dashed red line) is the
spin-↑ (spin-↓) density.
Experiment: the black (red)
line is the spin-↑ (spin-↓)
density as reported in [10].
The density jump in the ↓
component is clearly visible
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μ0↑ = �
2

2m
(6π2n↑)2/3 + V (r), (12.20)

μ0↓ + 3

5
Aμ0↑ = �

2

2m∗ (6π
2n↓)2/3 + V (r)

(
1 + 3

5
A

)
, (12.21)

yielding the non-interacting value μ0↑ = (6N↑)1/3�ω0 for the chemical potential of
the majority component. The above equations show that both the majority and the
minority components have an ideal Fermi gas profile, the latter being described by a
renormalised mass m∗ and feeling a renormalised external potential. The radius of
the minority component is hence quenched by the interaction to the value

R↓ = R0↓
[

m∗

m

(
1 + 3

5
A

)]−1/4

, (12.22)

where R0↓ = (48N↓)1/6
√

�/(mω0) is the Thomas-Fermi radius of the ideal Fermi
gas. These results are easily understood in terms of the effective single quasi-particle
Hamitonian (12.6).

12.3.3 Different Mass Case: Fermi Mixture

The analysis developed in the previous sections can be extended to Fermi mixtures,
where the two spin species correspond to different atoms, as, e.g., 6Li−40 K [45, 46].
We will focus mainly on the unitarity regime. Since we are interested in describing
the normal phase of the system, we assume again that the only two possible phases
are an unpolarised superfluid and a mixed normal phase [47], whose description is
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based on the polaron concept. The calculation of the polaron parameters is the same
as the one explained in Sect. 12.2 just with the impurity mass m↓ different from the
mass m↑ of the atoms forming the bath. In this case we have a new parameter given
by the mass ratio r = m↓/m↑.

Let us here make two remarks on the polaron energy. First of all there exists an
approximate easy expression for the binding energy as a function of kF a and r, which
is obtained in the limit for large ratio ρ = |μ↓|/μ↑ [23]

1

kF a
=

√
ρr

1 + r
− 2

3π

1 + r

ρr
, (12.23)

Althuogh it has been obtained in the largeρ limit, the above expression (i) recovers the
weakly interacting result (12.2) (with the proper reduced mass), (ii) is in pretty good
agreement with the known value at unitarity where it reads ρ = (1 + 1/r)(2/3π)2/3

and (iii) recovers the correct two-body binding energy ρ = (1 + 1/r)(1/kF a)2 for
small positive-a. Second, the infinite mass ratio case admits an exact solution. Indeed,
since the impurity is static in this case we can use the Fumi’s theorem [48] which
relates the impurity energy to an integral over the phase shifts δl of the scattering
states of the atoms in the bath:

μ↓ = − �
2

mπ

kF∫
0

k
∑

l

δl(k)dk. (12.24)

For low energy atoms only s-wave phase shifts are relevant and tan(δ0(k)) = −ka.
From (12.24) we get

ρ = 1

π

(
1

kF a
−

(
1 + 1

(kF a)2

)
arctan(kF a)

)
. (12.25)

In Figs. 12.6 and 12.7 the absolute value of the polaron energy and effective mass,
respectively, are shown for different values of r. The main message is that the lighter
is the impurity, the larger the effect of the bath on it. This behaviour is shown at
unitarity in the insets, where for the polaron energy we show also the approximate
result obtained from Eq. 12.23 for kF a → ∞.

Once the polaron parameters are known one can write a Landau-Pomeranchuck
energy as for the equal mass case

E(x, κ)

N↑
= 3

5
EF↑

(
1 − A(κ)x + F(κ)−1

κ
x5/3 + B(κ)x2

)

= 3

5
EF↑g(x, κ) ≡ εn(x, κ), (12.26)

where the term in x2 has been added in analogy with the equal mass case, and its
coefficient determined by imposing that at x = 1 Eq. 12.26 reduces to the energy
of the normal (balanced) state Eq. 12.15. Indeed for both the unpolarised superfluid
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Fig. 12.6 Polaron energy as a function of 1/kF a for various mass ratios r. Black curves from top to
bottom: polaron energy for mass ratio r = 0.25, 0.5, 1 (solid thick line), and ∞ (lower solid line).
The dashedtriple dotted blue line above the equal mass line is the interpolating approximation
Eq. 12.23. The dotted red line just above the infinity mass impurity line is the exact result Eq. 12.25.
The inset compares, at unitarity, the approximation Eq. 12.23 (dashed line) with the numerical
results (solid line) as a function of the mass ratio r

Fig. 12.7 Relative effective
mass m∗/m↓ as a function of
1/kF a for various mass
ratios r. Same conventions as
in Fig. 12.6 for
r = 0.25, 0.5, and 1. The
dashed-dotted line is r = 4,
and the dashedtriple-dotted
line is r = 10. The inset
shows the effective mass as a
function of r at unitarity
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phase at unitarity and the normal x = 1 phase the universal parameter ξS,n depends
very weakly on the mass ratio once the free Fermi gas energy is expressed in terms
of the reduced mass.

Following the procedure explained in Sect. 12.3 one finds the critical concen-
tration at which the system starts nucleating a superfluid. The results are reported
in Fig. 12.8. For comparison we also report the result obtained by the naive-BCS
mean-field calculation, as discussed in the previous section, where the interaction
in the normal phase is not taken into account and the BCS value ξS(BCS) = 0.59
for the superfluid phase is consistently used. Interesting enough, within the present
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Fig. 12.8 Critical
concentration xc(κ) for a
homogeneous system as a
function of the mass ratio κ:
upper line is obtained using
the equation of state (12.26),
while the lower dashed line
is derived from the BCS
mean-field solutions at
unitarity (see text)

Fig. 12.9 (Color online) For
κ = 2.2 the phase diagram is
asymmetric. Shown are the
superfluid S (solid red lines),
partially polarized PP
(dashed green) and fully
polarized FP (dot-dashed
blue) regions

approach—and also within BCS mean-field theory—the critical concentration has a
non-monotonic behaviour. The range of values is also pretty limited. It is more inter-
esting the behaviour of the density change between the superfluid and the normal
phase. For the equal mass case is given by Eq. 12.13 and it is very close to unity. For
the unequal mass case Eq. 12.13 reads

n↑(x, κ)
nS(κ)

=
(
(1 + 1

κ
)ξS

g(x, κ)

)3/5

. (12.27)

For instance for a mixture 6Li −40 K with more Lithium present, i.e., κ � 6.67, one
has xc(6.67) = 0.24 and a density jump nLi/nS = 0.71.

The grand-canonical phase diagram is in this case asymmetric with respect to the
change h → −h and for κ = 2.2 is shown in Fig. 12.9. This feature together with the
possibility to have different confinement potentials for the two atomic species, i.e.,
different trapping frequencies for a harmonic confinementωi,↑ �= ωi,↓, i = x, y, z,
allows for more available configurations for trapped gases, with respect to the homo-
nuclear case described before [47]. Even for equal trapping potentials interesting
configurations can appear. As an example here we consider the case of a 6Li −40 K
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Fig. 12.10 (Color online) a
Phase diagram for κ = 6.7,
corresponding to a
40K − 6Li mixture. b
Density profiles in units of
the central density of the
noninteracting ↑-gas (dashed
line) for P = −0.13. The
inset shows a zoom of the
outer superfluid-“light”
normal border

(a)

(b)

mixture. Generally ifμ↓/μ↑ > 1/ηc(1/κ) the trapped system will consist of a three-
shell configuration, where the superfluid is sandwiched between a “heavy” normal
phase (heavy spin-↓ are the majority) at the center of the trap, and a “light” normal
phase (light spin-↑ are the minority) in the outer trap region [47, 49–51].

The phase diagram and the relative density profiles of the system are shown in
Fig. 12.10, for a polarization P = −0.13. The density jump between the superfluid
and both normal phases previously discussed are clearly visible.

Another interesting case, in view of studying the normal phase of a strongly
interacting Fermi mixture, is when one of the component is not trapped, but just
confined due to interatomic forces as shown in Fig. 12.11.

In order to get a better insight into such configuration we can again refer to the
highly unbalanced case N↓ � N↑ (black solid line in Fig. 12.11a). The densities are
easily found to be

μ0↓ = �
2

2m
(6π2n↓(r))2/3 + V↓(r), (12.28)

μ0′
↑ = �

2

2m∗ (6π
2n↑(r))2/3 + V ′↑(r), (12.29)
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Fig. 12.11 (Color online)
No trapping for the spin-↑
component, i.e., ω↑, i = 0
and κ = 1. a Phase diagram.
b Density profiles in units of
the central density of the
noninteracting gas for a
polarization P = −0.5

(a)

(b)

where μ0′↑ = μ0↑ + 3
5 Aμ0↓, V ′↑(r) = V↑(r) + 3

5 AV↓(r) and A ≡ A(κ = 1).
From these equations it is clear that if V↑ → 0, the ↑-atoms feel neverthelsess the
renormalized potential 3

5 AV↓(r) and are confined due to the interaction with the
↓-component.

12.4 RF Spectroscopy

An invaluable tool to prepare, manipulate and probe ultracold gases is the RF
spectroscopy. There have been quite a number of experimental and theoretical
papers discussing it to which the reader is refer to for all the details and subtleties
(see [52] and references therein). In the following we present a short digression on
RF spectroscopy as a tool to probe polaron properties.

Let us consider as usual in this review that the bath and the impurity are labelled
by | ↑〉 and | ↓〉, respectively, and that the RF field couples the latter with a third
state |3〉 which does not interact with the bath. Since the RF field has a very long
wavelength (zero momentum transferred) and is constant over the size of the atomic
cloud the RF operator reads



464 A. Recati and S. Stringari

Ô = ��R

∫
d3x ψ̂†

3 (x)ψ̂↓(x)+ h.c., (12.30)

where �R is the Rabi frequency and ψ̂3(x) and ψ̂↓(x) are the field operators for the
atoms in the internal state |3〉 and | ↓〉, respectively. According to Fermi’s golden
rule the RF spectrum �(ω) for the system prepared in the state |�〉 is

�(ω) = 2π

�

∑
f

|〈 f |Ô|�〉|2δ(�ω − E f + Ei ), (12.31)

where the sum is over all the possible final states | f 〉 and ω is measured with respect
to the bare frequency ω↓3 of the | ↓〉 → |3〉 atomic transition. The spectrum is easily
calculated assuming a single impurity and the variational state Eq. 12.3. We are left
with two contribution for the spectrum [17]

�(ω) = 2π��2
R

⎡
⎣|φ p

0 |2δ
(

�ω + ε↓ + p2

2m∗ − p2

2m

)
(12.32)

+
k>kF∑
q<kF

|φ p
qk |2δ

(
�ω + ε↓ + p2

2m∗ − ε↑k + ε↑q − ε↓p+q−k

)⎤
⎦ , (12.33)

where ε↓ is the single polaron energy. The first contribution is a delta-peak at
ε↓ − (1 − m/m∗)p2/2m [34], i.e., at the polaron rest energy plus the contribu-
tion due to the fact that the effective mass is different from the bare one, and with a
weight given by the quasi-particle residue |φ p

0 |2 = Z p. Since ε↓ < 0 the RF field
has to supply additional energy for the transition to occur with respect to the bare
one �ω↓3. The second term instead consists of a continuum of frequencies. Such a
structure is typical in Landau theory of Fermi liquids. Indeed for free particles one
has only the first term, since the spectral function is simply a delta function. For
an interacting Fermi system the spectral function of a quasi-particle in the limit of
infinite life-time can be written as a coherent delta-function term plus an incoher-
ent part. In actual experiments one has always a finite concentration of the minority
component and, due to the effective mass this leads to a broadening of the delta peak.
Indeed, as we have seen in the previous sections, the system can be described as a
free Fermi gas of polarons. The spectrum is then just the sum of the single polaron
spectrum (12.33). The coherent part reads [17]

�coh(ω) = 2π��2
R

∑
p<kF↓

|φ p
0 |2δ

(
�ω + μ↓ + p2

2m∗ − p2

2m

)
. (12.34)

where pF↓ is the Fermi momentum of the minority component. Thus the spectrum
starts at ε↓ and goes again to zero at �ω = −ε↓ + (1 − m/m∗)p2

F↓/2m. A more
detailed and refine description of the behaviour of RF-spectrum at finite concentration
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can be found in, e.g., [53, 54]. The RF-spectrum measurement has been indeed
carried out and in this way was possible to obtain the first observation of Fermi
polaron physics with the measurement of its energy, effective mass and quasi-particle
residue [17].

12.5 Collisional Properties of the Normal Phase

In the previous sections we introduced the polaron concept as an infinite life-time
quasi-particle. In the same spirit we have briefly discussed the out of phase oscil-
lations of the impurity with respect to the ideal Fermi gas (that are be extensively
discussed in Sect. 12.6) and we extended the analysis to finite concentration. We con-
sidered the system as being perfectly collisionless, by assuming that the only effect
of the bath is to renormalise the potential and the mass of the impurity. Generally
this is not the case and when the impurity moves with a relative speed in the bath we
have a damping of the counterflow determined by the rate at which momentum is
transferred between the two components. Such a rate is related to the quasi-particle
scattering amplitude which, in the weakly interacting regime, is proportional to the
scattering length a. In the strongly interacting case one expects that the system is
more easily in a collisional (hydrodynamic) regime. At finite temperature even the
polaron at rest has a finite life-time since real collisions can take place. A finite
life-time changes the delta-peak in the coherent part of the spectral function to just a
function peaked around the polaron energy and, thus, it could be extracted from RF
measurements as described in the previous Section.

In this section we use the concepts of Fermi liquid theory to describe the scatter-
ing amplitude and the momentum relaxation time (see e.g., [55]). The elementary
excitations of our system are quasi-particles with effective mass m∗↓. We take the
minority component to have a mean velocity v with respect to the majority compo-
nent corresponding to a total momentum per unit volume P↓ = n↓m∗↓v.

We define the momentum relaxation time τP by the relation

dP ↓
dt

= −P ↓
τP

. (12.35)

and calculate τP by assuming that both components are in thermal equilibrium.
Introducing the single particle energies εp′↑ = p′2/2m↑ and εp↓ = p2/2m∗↓ the
thermal equilibrium is described by the distribution functions np′↑ = f [β(εp′↑−μ↑)]
and np↓ = f [β(εp↓ −p ·v−μ↓)] with β = 1/kB T and where f (x) = 1/(ex +1) is
the Fermi distribution function. The term p·v boosts the ↓-atom distribution function
by a velocity v. The momentum of the impurities changes due to collisions with the
majority atoms according to

p ↓ +p′ ↑−→ (p − q) ↓ +(p′ + q) ↑ (12.36)

If we call U the momentum independent scattering amplitude for such a process the
rate of change of the minority momentum may be written as
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dP ↓
dt

= − 2π |U |2
V 3

∑
p,p′,q

p[np↓np′↑(1 − np−q↓)(1 − np′+q↑)

− np−q↓np′+q↑(1 − np↓)(1 − np′↑)]δ(εp↓ + εp′↑ − εp−q↓ − εp′+q↑),
(12.37)

where V is the volume of the system. The second term on the right hand side of
(12.37) correspond to the inverse of the process (12.36).

The effective interaction U may be estimated from thermodynamic arguments.
Since the momenta of the ↓-atoms are assumed to be much less than the Fermi
momentum of the ↑-atoms, the quasiparticle interaction may be taken to be inde-
pendent of the angle between the quasiparticle momenta. To estimate the scattering
amplitudes in terms of Landau parameters it is generally necessary to allow for addi-
tional processes due to screening by particle–hole pairs [56]. However, since we
assume that n↓ � n↑, these processes may be neglected, and we take the scattering
amplitude to be independent of the direction of the momenta of the quasiparticles and
equal to the Landau quasiparticle interaction averaged over the angle between the
momenta of the two quasiparticles, i.e., U = f 0↑↓ in the standard notation of Landau
Fermi liquid theory. The latter may be determined from the energy as a function of
the densities of the two components:

U = f 0↑↓ = ∂2 E(x)/V

∂n↑∂n↓
= ∂μ↓
∂n↑

−→ U = 2π2

m↑kF↑
γ, (12.38)

where E(x) is the energy (12.10) of the polarised system, kFσ = (6π2nσ )1/3 and we
define

γ = −3

5
A

(
1 + 3n↑

2A

∂A

∂n↑

)
. (12.39)

For the case of a resonant interaction, γ = −3/5A and U = −(6π2 A/5)/(m↑kF↑).
This is very different from the effective interaction at low densities (weak interacting
case), which is proportional to a. The previous result tell us already that there exists
a range of temperature for which the unitary polarised Fermi gas is collisionless.

It is convenient to rewrite the expression (12.37) in terms of response
function. By introducing the quantity ωq = q · v, using the relation np(1 − np−q) =
(np − np−q)/

{
1 − exp[β(εp − εp−q)]

}
, and taking the continuum limit we obtain

dP ↓
dt

= −|U |2
∫

d3qq
(2π)2

∞∫
−∞

dω
Imχ↓(q, ωqω)Imχ↑(q, ω)
(1 − eβ(ω−ωq))(1 − e−βω)

, (12.40)

where

Imχσ (q, ω) =
∫

d3 p

(2π)3
(npσ − np+qσ )δ(ω + εmσ − εp+qσ ) (12.41)
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is, apart from a factor of π, the imaginary part of the Lindhard function, and the
distribution functions are now global equilibrium ones without the boost for the
down-atoms.

12.5.1 T = 0

Let us start by considering the zero-temperature momentum relaxation rate. Due
to the Bose factors in (12.40) one has the condition 0 ≤ ω ≤ ωq. Depending on
the ratio between the momentum of the minority cloud and its Fermi momentum,
i.e., m∗↓v/kF↓, it is possible to distinguish two important limiting regimes for which
simple expressions for τP can be obtained.

12.5.1.1 Low Velocity Regime, m∗
↓v � kF↓

In this case the significant contribution to (12.40) comes from q ≤ 2kF↓ with a small
energy transfer ωq � k2

F↓/2m∗↓ We can then use Imχσ (q, ω) = m∗
σ

2ω/(4π2q) and
the resulting integrals in (12.40) yield

1

τP
= 4π

25
|γ |2

(
kF↓
kF↑

)2

m∗↓v2 = 4π

25

1

τ0

(
m∗↓v
kF↓

)2

, (12.42)

where 1/τ0 = |γ |2k4
F↓/m∗↓k2

F↑.

12.5.1.2 High Velocity Regime, kF↓ � m∗
↓v � kF↑

In this case we can again carry out the integrations in (12.40) and obtain

1

τP
= 2π

35
|γ |2 m∗↓

3v4

k2
F↑

= 2π

35

1

τ0

(
m∗↓v
kF↓

)4

. (12.43)

More generally, the scaled relaxation time τ̃P ≡ τP/τ0 depends only on the variable
ṽ = m∗↓v/kF↓ provided m∗↓v � kF↑ and its dependence, aside from the prefactors,
is the same as the one obtained for a (balanced) neutral Fermi liquid (see, e.g., [55]).

12.5.2 T �= 0

We now turn to non-zero temperature. Although current experiments on polarised
gases achieve very low temperatures in the highly polarised case it can happen that
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the actual temperature is much smaller than the larger Fermi temperature, related
to the majority component, but still of the same order or larger than the smaller
one, related to the polaron gas. In the following we analyse only the case when
both components are degenerate, i.e., T � TF↓ � TF↑ with kB TF↓ = k2

F↓/2m∗↓
and kB TF↑ = k2

F↑/2m↑. For a discussion on the high-temperature and intermediate
regimes the reader can consult Ref. [57].

For small relative velocities, vkF↓ � kT, it is sufficient to expand the inte-
grand in (12.40) to first order in βωq. Using the symmetry property Imχσ (q, ω) =
−hχσ (q,−ω) we obtain

dP ↓
dt

= − v
π |U |2
3kT

∫
d3q

(2π)3
q2

×
∞∫

−∞
dω

Imχ↓(q,−ω)Imχ↑(q, ω)
(1 − eβω)(1 − e−βω)

. (12.44)

Since T � TF↓, we can again use the result Imχσ (q, ω) = m∗
σ

2ω/(4π2q) which
yields for the relaxation rate in the limit of low velocities the expression

1

τP
= 4π3

9
|γ |2 m∗↓

k2
F↑
(kT )2 = π3

9

1

τ0

(
T

TF↓

)2

. (12.45)

The T 2-dependence is due to the fact that the phase space for scattering increases with
temperature and it is also the same as for a Fermi liquid [55]. Equation (12.45) shows
that for equal masses of the two components and at unitarity 1/τP ∼ kT 2/TF↑, as
one would expect on dimensional grounds because the effective interaction measured
in terms of the density of states of the up-atoms is of the order of unity.

12.5.3 Experimental Consequences for Collective Modes

The previous sections considered the momentum relaxation time for a homogeneous
gas. In this section we study the possible consequences on experiments devoted to
measure collective mode frequencies in harmonically confined systems. For the sake
of concreteness let us analyse the spin dipole mode of a Fermi gas above the critical
polarisation where, as previously discussed, the system is normal. We assume that
the cloud of minority atoms is displaced by a distance δX from the centre equilibrium
position in the harmonic trap. Depending on the amplitude of the displacement (and
consequently on the velocity acquired by the minority component due to the external
force) as well as on the value of temperature, the cloud either oscillates with weak
damping around δX = 0 (collisionless regime) or it relaxes towards equilibrium
without any oscillations (hydrodynamic regime).

In the collisionless limit ωDτP � 1 the dipole mode is well defined and its
frequency ωD can be derived within Landau theory of Fermi liquid (see Sect. 12.6).
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Fig. 12.12 The quantity
1/ω0τP determining the
damping of the dipole mode
as a function of the
amplitude of the oscillation
for T = 0 and T = 0.03TF↑
(For details see text.)
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The latter coincides with (12.8) in the extreme imbalance case. The mode becomes
over-damped in the hydrodynamic regime ωDτP � 1 since the spin current is not
conserved by collisions [58].

In order to estimateωDτP we assume that the displacement of the ↓-atom cloud is
sufficiently small with respect to the majority cloud size, R↑, i.e., we consider δX �
R↑, such that the density of ↑-atoms may be regarded as uniform when estimating
the relaxation rate. Moreover we consider that both component are degenerate and a
highly polarised case such that the majority cloud remains essentially at rest during
the motion of minority component. The relative velocity of the two components is
in this case given by v = ωDδX. Within our assumption we can use the low-speed
Eq. 12.42 and low-temperature Eq. 12.45 results which, expressed in terms of the
new quantities, read

1

ω0τP
= 81π

252 (6N↑)1/3 A2
m∗↓
m↑

(
TF↓
TF↑

)2 (
δX

R↑

)2

, (12.46)

1

ω0τP
= 2π3

25
(6N↑)1/3 A2

m∗↓
m↑

(
T

TF↑

)2

, (12.47)

respectively, where we have used the result γ = −3/5A for a resonant interaction,
the fact that kTF↑ = k2

F↑/2m↑ = (6N↑)1/3ω0 and that ωD is close to ω0.

In Fig. 12.12 we report the full result for the relaxation time of the dipole mode
at zero (lower full line) and finite (upper full line) temperature using the values
N↑ = 107, and N↓/N↑ = 0.026 (correspondingly TF↓/TF↑ = 0.3) which are the
conditions achieved in the MIT experiment [9] for a mixture of 6Li-atoms in two
different hyperfine states. The lower dashed line is the expression (12.46), while the
upper dashed line is the sum of the results (12.46) and (12.47) in the spirit of Landau
theory [55]. We see that the analytical results are a good approximation to those
obtained by direct numerical integration in the regimes of experimental interest.

The calculated values of ω0τP demonstrate that, for the experimental conditions
now attainable, the polarised normal phase is easily in a regime intermediate between
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collisionless and hydrodynamic behaviour, implying significant damping of the spin
dipole mode. At lower temperature, the gas enters the collisionless regime. Indeed
such behaviour has been experimentally seen at ENS as reported in [13] (see also
Sect. 12.6).

How important collisions are in a given mode is sensitive to the anisotropy of the
trap, which we have neglected so far. For instance, cigar-shaped trap (ωz < ω⊥) the
transverse mode will be more collisionless, the value of 1/ωDτP being multiplied
by a factor ωz/ω⊥ for a fixed value of τP and by a factor (ωz/ω⊥)1/3, for a fixed
value of the trapping frequency geometric average (ω2⊥ωz)

1/3.When the two atomic
species are different, the value of ω0τP will be depend on the trapping potentials of
the two species, which can be varied independently of each other.

For low velocity, m∗↓v � kF↓, one sees from (12.42) and (12.45) that the momen-
tum relaxation rate scales as m∗↓. Consequently, since m∗↓ ≈ m↓ the spin motion
can be made more collisionless by trapping an atom mixture with a lighter minority
component. However, calculations indicate that this effect is reduced due to the fact
that, at unitarity, the scattering amplitude for the case of extreme imbalance increases
with decreasing m↓/m↑ < 1 [23]. For m↓/m↑ > 1 the scattering amplitude is pre-
dicted to be approximately constant and therefore 1/τP ∝ m↓ in this regime. Thus,
the spin motion becomes more hydrodynamic for m↓/m↑ > 1.

12.6 Collective Oscillations: The Quadrupole Mode

We have seen that there exists a very good agreement between experiments and the
theory developed for the polarised normal phase, when static properties are con-
sidered. The theory is essentially based on Landau theory of Fermi liquid, which
was built mainly for describing dynamical properties of an interacting Fermi system.
Thus a crucial question is whether Landau theory is applicable to the dynamics of
strongly interacting normal Fermi gases. In the previous sections we have practi-
cally considered only the single particle out of phase motion. The aim of the present
section is to study the collective mode frequencies of the unitary normal phase as a
function of the polarisation. To this purpose we develop the proper Landau formalism
to describe the collisionless regime of the polarised Fermi gas.

We face the problem by a lagrangian variational principle to derive the collective
modes in the collisionless regime. Such a method has been widely used in nuclear
physics to describe collective excitations in an elastic theory of nuclei (see e.g., [59]
and reference therein). The variational principle δS = 0 is applied to the action
integral

S =
∫

dt〈�|H − i�∂t |�〉

=
∫

dt (E − 〈�|i�∂t |�〉), (12.48)
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where |�〉 is a multi-parameter many-body wave-function and E = 〈�|H |�〉 is the
energy functional of the system. The latter on the basis of the Landau-Pomeranchuk
energy (12.10) can be written in the form

E =
∑
σ

∫
dx

( τσ
2m

+ m

2
(ω2⊥r2 + ω2

z z2)nσ
)

+ 3

5
A

�
2(6π2)2/3

2m

∫
dxn↓n2/3

↑ + a
∫

dx

(
τ↓
2m

− n↓
2m

j2↑
n2↑

)
, (12.49)

where τσ /2m is the kinetic energy density of the species σ. The functional (12.49)
accounts for the interaction between the majority and the minority component
through the local term in A and the last integral, which is necessary in order to
keep into account that the polarons (↓-particles) acquires an effective mass due to
interaction effects and that galilean invariance implies the presence of a counter cur-
rent term j2↑ of the majority component. We include the latter term for completeness,
although, since the effective mass is just 10−20% larger than the bare one, the effect
of the current term on the frequencies turns out to be fairly small. Expression (12.49)
corresponds to a typical energy functional to be used in time-dependent Hartree-Fock
approaches in the context of small amplitude and low energy oscillations. It is worth
noticing that this approach is equivalent to Landau’s theory of Fermi liquid.

At equilibrium the kinetic energy density in Eq. 12.49 reduces to
τσ = �

2(6π2nσ )2/3nσ and j↑ = 0 and, thus, the energy functional Eq. 12.49 can be
used to calculate the density profiles using standard variational procedures. The cal-
culation at equilibrium shows that at very high polarization the majority component
is scarcely affected by the interaction and, in particular, its radius is in practice given
by the ideal gas value

R0↑,i = (48N↑)1/6
√

�ω̄

mω2
i

, i = x, y, z (12.50)

with ω̄3 = ωxωyωz . Instead the radius of the minority component is quenched with
respect to the non interacting gas due to the attractive nature of the force. By taking
a Thomas-Fermi description for the minority component (which holds with good
accuracy for a large class of experimentally available configurations), one finds that
the radius of the minority component is given by the simple expression

R↓/R0↑ =
(

1 − P

1 + P

)1/6 ((
1 + 3

5
A

)
m∗

m

)−1/4

. (12.51)

From Eq. 12.51 it is seen that the minority radius is quite flat as a function of P
except at very high polarization when it goes to zero as the inset of Fig. 12.13 shows.
We find that this behavior is reflected in the collective mode frequencies.

The proper variational ansatz for the wave function depends on the modes we
want to study. We focus on the compressional modes, since the easiest experimental
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Fig. 12.13 Frequency of the axial compressional mode as a function of the polarization P. Dashed
line: the single polaron mode frequency. Solid line: the collisionless value of the mode frequency
obtained via the variational principle described in the present work. Points: experimental data
reported in [13]. Inset: the behaviour of the minority radius as a function of P, r(P) = ((1
− P)/(1 + P))1/6 (see (12.51))

way of exciting the spin modes in trapped Fermi gases is through a sudden change
of the value of scattering length. This procedure, which mainly affects the motion
of the impurities, is not able to excite other important oscillations like, e.g., the
dipole mode of the minority component and it is the actual procedure employed
in the recent experiment reported in Ref. [13]. The starting point are variational
single-particle wavefunctions that are then used to built the many-body state as a
Slater determinant. In order to study the compressional modes and assuming that the
equilibrium configuration is axially symmetric we write the scaling transformation

ψσ (r, z, t) = e−1/2(2ασ+βσ )ψ0
σ (e

−ασ r, e−βσ z)ei
(
χσ r2+ξσ z2

)
. (12.52)

applied to the single particle wave-functions ψσ of the two spin species σ =↑, ↓,
and where r2 = x2 + y2 and z are the radial and the axial coordinate, respectively.
The scaling transformation depends on 4 + 4 time-dependent parameters and the
corresponding equations are obtained by imposing the variation δS = 0 with S as in
(12.48) with 〈�|H |�〉 given by Eq. 12.49. With respect to a typical hydrodynamic
energy functional, Eq. 12.49 accounts for the deformation of the Fermi surface pro-
duced by the scaling ansatz. This effect arises from the kinetic energy density term
τσ and exploits the elastic nature exhibited by a Fermi liquid in the collisionless
regime. The use of hydrodynamic theory would actually yield wrong predictions for
the oscillations of these Fermi gases.

The collective modes are small oscillations around equilibrium, i.e., solutions
of the equations of motion derived from the action expanded to second order in the
scaling parameters. The first order expansion of the action S with respect to the scaling
parameters takes contribution only from the energy functional Eq. 12.49. Then, the
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condition δS = 0 provides a relation between the kinetic and the interaction energy
equivalent to the virial theorem. Defining the effective mass as m/m∗ = (1 + a) and
the averages Nσ 〈 f 〉σ = ∫

f (r, z)nσ (r, z), we obtain

− 4

3

∫
τ↑
2m

+ N↑mω2⊥〈r2〉↑ − N↓
�

2(6π2)2/3

2m
A

(
〈r∂r n2/3

↑ 〉↓ + 4

3
〈n2/3

↑ 〉↓
)

= 0,

− 2

3

∫
τ↑
2m

+ N↑mω2
z 〈z2〉↑ − N↓

�
2(6π2)2/3

2m
A

(
〈z∂zn2/3

↑ 〉↓ + 4

3
〈n2/3

↑ 〉↓
)

= 0,

− 4

3

∫
τ↓

2m∗ + N↓mω2⊥〈r2〉↓ + N↓
�

2(6π2)2/3

2m
A〈r∂r n2/3

↑ 〉↓ = 0,

− 2

3

∫
τ↓

2m∗ + N↓mω2
z 〈z2〉↓ + N↓

�
2(6π2)2/3

2m
A〈z∂zn2/3

↑ 〉↓ = 0, (12.53)

where all the densities are to be calculated at equilibrium. Note that in the low-
concentration or high polarisation limit N↓/N↑ → 0 Eq. 12.53 decouples and one
recover correctly the result for the free polaron case. Defining EKσ the kinetic energy
of the σ -component (including the mass m∗ for the minority spin-↓ component),
Eq. 12.53 becomes the standard virial theorem for the majority component

−2

3
EK↑ + N↑mω2⊥〈r2〉↑ = 0, (12.54)

−1

3
EK↑ + N↑mω2

z 〈z2〉↑ = 0 (12.55)

and the virial theorem for a free gas of particles of mass m∗ feeling an effective
potential for the minority component

−2

3
EK↓ + N↓mω2⊥

(
1 + 3

5
A

)
〈r2〉↓ = 0, (12.56)

−1

3
EK↓ + N↓mω2

z

(
1 + 3

5
A

)
〈z2〉↓ = 0. (12.57)

The term in the action which depends on the time derivative of the wave-function
does not give rise to linear terms due to time reversal symmetry. The corresponding
quadratic term reads

〈�|i�∂t |�〉(2) = 2
∑
σ

Nσ (〈r2〉σ ασ ξ̇σ + 〈z2〉σ βσ χ̇σ ). (12.58)

Summing up all the contributions and imposing the variational procedure δS = 0,we
get eight coupled equations of motion. Four of them represent continuity equations
and are relations between the current parameters ξσ , χσ and the density ones ασ , βσ .
In this way we are left to solve a linear system of 4 equations.

We find that the two lowest frequency are almost independent of the ratio N↓/N↑
and they are very close to the ideal gas values ω = 2ω⊥ and ω = 2ωz . We call
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them the in phase modes since the majority and the minority components move in
phase. The frequencies of the other two modes, that we name out of phase or spin
modes, can be written as ω = 2C1ω⊥ and ω = 2C2ωz, where the renormalization
factors are very close to each other, i.e., C1 � C2. Such modes correspond to the
radial and axial motion of the minority component moving in opposite phase with
respect to the majority one. In the limit of a single impurity we recover the value
C1 = C2 = √

(1 + 3/5A)m/m∗ of Eq. 12.7.
In Fig. 12.13 we report (solid blue line) the result for the axial spin mode as a

function of the polarisation of the system as calculated with the above described
variational approach, using for the polaron parameters the values A = 1.01 and
m∗/m = 1.17 [23]. We notice that at high polarisation the correction to the polaron
frequency Eq. 12.7, as a function of the polarisation, follows the law (1 − P)1/6

characterising the radius of the minority component (see inset in Fig. 12.13 and
Eq. 12.51). In Fig. 12.13 we also put the experimental data of [13] and one sees that
there is a qualitative difference between the present theory and the experiment [13].
A possible explanation is by invoking the collisional properties of the strongly inter-
acting system even at the lowest achievable temperature as we have discussed in
Sect. 12.5. Indeed our prediction was derived in the collisionless regime, while the
experiment clearly shows that the in phase mode frequency is strongly affected by
collisions even for the highest polarisation available. Understanding the discrepancy
between theory and experiment in terms of collisional effects is not however obvi-
ous. In fact collisions usually reduce the value of the frequencies with respect to their
collisionless values. Thus the question of how the observed frequency in Fig. 12.13
can be compared with our prediction has not an obvious answer.

The Landau theory prediction agrees better with the experimental data at the high-
est polarisation points, where the collisionless approximation is better satisfied as it
can also be inferred from the measurement of the majority component compressional
mode frequency reported in [13]. One would then expect that a measurement of the
radial compressional mode, would give a much better insight into the problem, since,
as we pointed out in Sect. 12.5 for a fixed relaxation time τ, if the radial frequency
is much higher than the axial one, the collisions for the radial dipole mode are less
effective, being ω⊥τ � ωzτ. As a last comment, we should remind that the energy
functional (12.49) is strictly valid only at high polarization, being an expansion in
the concentration n↓/n↑. It works however quite well when applied to investigate
the static properties even till the critical concentration. For instance the inclusion
of the next term proportional to (n↓/n↑)2 introduces only small corrections to the
values of the radii, even close to the critical polarization limit PC = 0.77. Thus one
can think that such a term does not change the picture previously described.
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