
Chapter 10
Scaling Flows and Dissipation in the Dilute
Fermi Gas at Unitarity

T. Schäfer and C. Chafin

Abstract We describe recent attempts to extract the shear viscosity of the dilute
Fermi gas at unitarity from experiments involving scaling flows. A scaling flow is
a solution of the hydrodynamic equations that preserves the shape of the density
distribution. The scaling flows that have been explored in the laboratory kflccare the
transverse expansion from a deformed trap (“elliptic flow”), the expansion from a
rotating trap, and collective oscillations. We discuss advantages and disadvantages
of the different experiments, and point to improvements of the theoretical analysis
that are needed in order to achieve definitive results. A conservative bound based on
the current data is that the minimum of the shear viscosity to entropy density ration
is η/s ≤ 0.5�/kB .

10.1 Introduction

A cold, dilute Fermi gas of non-relativistic spin 1/2 particles interacting via a short
range interaction tuned to infinite scattering length, commonly referred to as the
unitary Fermi gas, provides a new paradigm for many strongly correlated quantum
systems [1, 2]. In this contribution we focus on non-equilibrium aspects of the uni-
tary Fermi gas, in particular its shear viscosity [3]. The shear viscosity of a liquid
composed of weakly coupled quasi-particles can be estimated as

η = 1

3
nplm f p, (10.1)
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where n is the density, p is the average momentum of the particles, and lm f p is the
mean free path. The mean free path can be written as lm f p = 1/(nσ) where σ is
the transport cross section. Eq. 10.1 implies that the shear viscosity decreases as the
strength of the interaction increases. In the unitary gas the cross section saturates
the s-wave unitarity bound σ = 4π/k2, where k is the scattering momentum, and we
expect the shear viscosity to be unusually small.

Danielewicz and Gyulassy pointed out that the Heisenberg uncertainty relation
imposes a bound on the product of the average momentum and the mean free path,
plm f p ≥ �, and concluded that η/n ≥ � [4]. This is not a precise statement: The
kinetic estimate in Eq. 10.1 is not valid if the mean free path is on the order of
the mean momentum. A more precise bound has recently emerged from holographic
dualities in string theory. In this context the natural quantity to consider is not the ratio
η/n, but η/s, where s is the entropy density. Policastro, Son and Starinets showed
that in N = 4 supersymmetric QCD the strong coupling limit of η/s is equal to
�/(4πkB) [5]. It was later shown that the strong coupling limit is universal in a large
class of field theories, and it was conjectured that η/s ≥ �/(4πkB) is a general lower
bound, valid for all fluids [6].

Are there any fluids in nature that attain or possibly violate the proposed bound?
A fluid that saturates the bound has to be a quantum fluid (because η is on the order
of �s), and it has to be strongly interacting (because in a weakly interacting system
the mean free path is large). It is also known that many of the model field theories that
attain the bound in the strong coupling limit are scale invariant. All of these properties
point to the unitary Fermi gas as a plausible candidate for a “perfect fluid”.

Almost ideal hydrodynamic flow in the unitary Fermi gas was first observed in [7].
Since then, a number of experiments have been performed that provide constraints
on the shear viscosity of the unitary gas [8–15]. In this work we will provide an
overview of the hydrodynamic analysis of these experiments, and compare some
of the estimates that have been obtained. We emphasize the uncertainties of these
results, and point to improvements that need to be implemented.

10.2 Scaling Flows

We begin by studying the ideal (Eulerian) fluid dynamics of a non-relativistic gas
in the normal phase. We will introduce dissipative effects in Sects. 10.3.1–10.3.3.
In this contribution we will not discuss superfluid hydrodynamics. We will briefly
comment on dissipative effects in the superfluid phase in Sect. 10.3.1. The equations
of continuity and of momentum conservation are given by

∂n

∂t
+ �∇ · (n�v) = 0, (10.2)

mn
∂�v
∂t

+ mn
(
�v · �∇

)
�v = − �∇ P − n �∇V, (10.3)
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where n is the number density, m is the mass of the atoms, �v is the fluid velocity,
P is the pressure and V is the external potential. In the unitarity limit the equation of
state at zero temperature is of the form

P(n, T )= n5/3

m
f

(
mT

n2/3

)
, (10.4)

where f(y) is a universal function. We note that y = const · (T/T hom
F ), where

T hom
F = (3π2n)2/3/(2m) is the Fermi temperature of a homogeneous Fermi gas.

In the high temperature limit, y � 1, we have f (y)� y and in the low temperature
limit f (y)� (3π2)2/3ξ/5, where the parameter ξ = 0.40(2) has been determined in
quantum Monte Carlo calculations [16]. Monte Carlo methods have also been used
to determine f(y) for all values of y [17, 18]. The critical temperature for superfluidity
is Tc/T hom

F � 0.15, corresponding to yc � 0.72. An alternative representation of the
pressure is

P(μ, T )= μ5/2m3/2g

(
T

μ

)
, (10.5)

where g(z) is a universal function, related to f(y) by thermodynamic identities. In the
high temperature limit g(z)� 2z5/2e1/z/(2π)3/2 and in the low temperature limit
g(z)� 25/2/(15π2ξ3/2). The density is

n(μ, T )= μ3/2m3/2h

(
T

μ

)
, h(z)= 5

2
g(z) − zg′(z). (10.6)

The high and low temperature limits of the function h(z) are h(z)� 2z3/2e1/z/(2π)3/2

(z � 1) and h(z)� 23/2/(3π2ξ3/2)(z 	 1). The equilibrium distribution n0 of a
trapped atomic gas follows from the hydrostatic equation �∇ P0 = − n0 �∇V . The
trapping potential is approximately harmonic

V (x)= m

2

∑
i

ω2
i x2

i . (10.7)

Using the Gibbs-Duhem relation d P = ndμ + sdT together with the fact that the
equilibrium configuration is isothermal we can write the equation of hydrosta-
tic equilibrium as �∇μ= − �∇V . This implies that the equilibrium density is
n0(x)= n(μ(x), T ) with

μ(x)= μ0 − V (x)= μ0

(
1 −

∑
i

x2
i

R2
i

)
, R2

i = 2μ0

mω2
i

. (10.8)

A scaling flow is a solution of the hydrodynamic equations in which the shape of
the density distribution is preserved. Consider the ansatz n(x, t)= n(μ(x, t), T (t))
where
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μ(x, t)= μ0(t)

(
1 − x2

Rx (t)2 − y2

Ry(t)2 − z2

Rz(t)2 − xy

Rxy(t)

)
, (10.9)

and T (t)/T (0)= μ0(t)/μ0(0). Without loss of generality we have restricted the
ansatz to rotations in the xy-plane. We note that the fluid remains isothermal during
the expansion. Scale invariance implies that properties of the fluid only depend on
the dimensionless ratio T/μ. For any given fluid element this ratio does not change
during the expansion. In particular, if the fluid element was in the superfluid or normal
phase initially, it will stay in that phase throughout the expansion.

The velocity field created by the scaling expansion in Eq. 10.9 is linear in the
coordinates. We can write

�v(x, t)= 1

2
�∇

(
αx (t)x2 + αy(t)y2 + αz(t)z

2 + 2α(t)xy
)

+ 	(t)ẑ × �x . (10.10)

The parameters αi , α and 	 are related to the parameters Ri , Rxy and μ0 by the con-
tinuity equation. Remarkably, the continuity equation is independent of the universal
function h(z) in Eq. 10.6. Introducing the dimensionless scale parameters

μ̄(t)= μ0(t)

μ0(0)
, bi (t)= Ri (t)

Ri (0)
, a(t)= Rx (0)2

Rxy(t)
, (10.11)

the continuity equation can be written as

μ̄ + 2

3
μ̄

(
αx + αy + αz

) = 0, (10.12)

ȧ + 2(α − 	)

b2
x

+ 2(α + 	)

λ2b2
y

+ a(αx + αy)= 0, (10.13)

ḃx − bxαx − b3
x a

2
(α + 	)= 0, (10.14)

ḃy − byαy − b3
yλ

2a

2
(α − 	)= 0, (10.15)

ḃz − bzαz = 0, (10.16)

where λ = Ry(0)/Rx (0)= ωx/ωy . These equations can be solved directly in the case
that there is no rotation, a(t)= 0. Then α = 	= 0 and

(αx , αy, αz)=
(

ḃx

bx
,

ḃy

by
,

ḃz

bz

)
, μ̄ = 1

(bx bybz)2/3 . (10.17)

The velocity field is a simple “Hubble flow”, �v = (αx x, αy y, αz z). Finally, we note
that the entropy density is given by s = (mμ)3/2g′(T/μ). Since the entropy density
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has the same functional form as the particle density we conclude that, in the case of
scaling flows, the continuity equation implies entropy conservation,

∂s

∂t
+ �∇ · (�vs)= 0. (10.18)

10.3 Elliptic Flow

The simplest scaling flow is the expansion of the cloud after the trapping potential is
removed [19]. Since the cloud remains isothermal the Euler equation can be derived
using the Gibbs-Duhem relation d P = ndμ. This implies that the equation of motion
is independent of the universal function f(y) defined in Eq. 10.4. We get

b̈i = ω2
i

(bx bybz)2/3

1

bi
, (10.19)

The total energy of the expanding system is given by the sum of internal energy and
kinetic energy,

E = Eint + Ekin =
∫

d3x

(
E (x) + 1

2
mn�v2

)
. (10.20)

For the Fermi gas at unitarity the energy density E is related to the pressure by
E = 3

2 P. We find

E = Eint(0)

{
1

(bx bybz)2/3 + 1

3

(
ḃ2

x

ω2
x

+ ḃ2
y

ω2
y

+ ḃ2
z

ω2
z

)}
, (10.21)

where Eint (0) is the internal energy at t = 0. Conservation of energy immediately
follows from the equation of motion, Eq. 10.19. We note that the equation of hydro-
static equilibrium, �∇ P = − n �∇V, implies the Virial theorem 〈E 〉 = 〈V 〉 [20], where
〈V 〉 denotes the integral of the potential energy over the trap. This means that the
total energy of the trapped gas is E0 = 2Eint(0), where the factor 2 is due to the
contribution of the potential energy.

We are interested in an axially symmetric trap with ωy = ωz = ω⊥ and ωx = λω⊥.

In this case we end up with two coupled equations for b⊥ and bx . If λ � 1 the
evolution in the transverse direction is much faster and the equation for b⊥ can be
approximately decoupled,

b̈⊥ = ω2⊥
b7/3
⊥

. (10.22)
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This equation has to be integrated numerically. The behavior at early and late times
can be found analytically. We get

b⊥(t)�
{

1 + 1
2ω2⊥t2 + O(t4) ω⊥t 	 1,

ω⊥t√
γ

+ c0 + O(t−1/3) ω⊥t � 1,
, (10.23)

where γ = 2/3 and c0 is a constant that can be determined by matching the early and
late time behavior. Numerically, we find c0 � − 1.3. For the longitudinal expansion
the early time behavior is bx (t)� 1 + (λω⊥t)2/2, and at late times bx (t)� const ·
λ2ω⊥t.

The signature effect of hydrodynamics is that transverse pressure gradients cause
the transverse radius to expand much faster than the longitudinal radius. This means
that the two radii will eventually cross. This happens at a time

tcross =
√

γ

ωx
(1 + O(λ)) . (10.24)

We note that the crossing time only depends on the trap parameters, and is indepen-
dent of the initial energy or the number of particles. We also note that at t � tcross

the expansion is still two-dimensional, that means the volume of the system grows
as vol ∼ t2. The expansion becomes three-dimensional, vol ∼ t3, at t3d ∼ (λ2ω⊥)−1.

10.3.1 Energy Dissipation

We wish to understand how the expansion is affected by dissipation. The energy
momentum tensor of a dissipative fluid is �i j = Pδi j + mnvi v j + δ�i j with

δ�ij = η

(
∇i v j + ∇ j vi − 2

3
δij∇ · v

)
+ ζ δij (∇ · v) . (10.25)

The energy current is jεi = vi (w+ 1
2 mnv2)+δ jεi with w = E + P and δ jεi = δ�ijv j −

κ∇i T . The unitary gas is scale invariant and ζ = 0 [21]. Also, for an isentropic
scaling expansion the temperature remains independent of position, and there is no
contribution from the thermal conductivity κ. We will therefore concentrate on the
role of shear viscosity.

Since the shear viscosity is small, we can take it into account perturbatively. The
simplest idea it compute the amount of kinetic energy that is converted to heat.
We have

Ė = − 1

2

∫
d3xη

(
∇i v j + ∇ j vi − 2

3
δij∇ · v

)2

. (10.26)

For the scaling expansion given in Eq. 10.10 the result is particularly simple. We get
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Ė = − 4

3

(
ḃ⊥
b⊥

− ḃx

bx

)2 ∫
d3xη(x). (10.27)

The total energy dissipated is given by the integral of Eq. 10.27 over time. We first
show that the spatial integral over η(x) does not depend on time. In the local density
approximation η(x)= η(μ(x), T ). Scale invariance implies that

η(μ, T )= n(μ, T )αn

(
T

μ

)
, (10.28)

where αn(z) is a universal function, and we have set � = 1. In order to compare with
the string theory bound it is also useful to define η(μ, T )= s(μ, T )αs(T/μ), where
we have also set kB = 1. We can write

∫
d3xη(x)= N 〈αn〉, (10.29)

where

〈αn〉= 1

N

∫
d3xn(x, t)αn

(
T (t)

μ(x, t)

)
= 1

N

∫
d3xn0(x)αn

(
T0

μ(x, 0)

)
(10.30)

is an average of αn over the initial density distribution. Analogously, we can write
the integral over η(x) as S〈αs〉, where S is the total entropy and 〈αs〉 is an average
of αs over the initial entropy density.

The time integral over (ḃ⊥/b⊥− ḃx/bx )
2 is dominated by the regime ω⊥t ∼ 1 and

converges rapidly – the integral reaches 80% of its asymptotic value at tdiss � 5.9ω−1
⊥ .

In the limit λ 	 1 we can neglect the contribution from ḃx . On dimensional grounds
the integral over (ḃ⊥/b⊥)2 must be proportional to ω⊥. The constant of proportion-
ality can be determined numerically. We find

∞∫

0

dt

(
ḃ⊥
b⊥

)2

= 0.87ω⊥. (10.31)

We can now compute the ratio �E/Eint of the dissipated energy to the initial internal
energy of the system. In order to express the result in terms of experimentally mea-
sured quantities it is useful to introduce the energy EF = NεF where εF = ω̄(3N )1/3

is the Fermi energy of the trapped gas and ω̄ = (ωxωyωz)
1/3. We find

�E

Eint (0)
= − 8

3
· 0.87 · β = − 2.32 · β (10.32)

where the parameter β is defined given by

β = 〈αn〉
(3Nλ)1/3

1

(E0/EF )
= 〈αs〉

(3Nλ)1/3

(S/N )

(E0/EF )
. (10.33)
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Fig. 10.1 Expansion of the transverse and longitudinal radii after release from a harmonic trap.
The data points are taken from [7]. The solid and dashed lines correspond to solutions of the
Navier–Stokes equation with 〈αs〉= 0 (solid lines) and 〈αs〉= 0.5 (dashed lines)

Dissipation slows down the transverse expansion of the system. For (ω⊥t) � 1
we have (δḃ⊥/ḃ⊥)= (�E/E)/2 and, up to terms that are higher order in λ, the
change in the crossing time is directly related to the change in the expansion rate,
(δt/t)cross = (δḃ⊥/ḃ⊥).

The thermodynamic quantities S/N and E0/EF as a function of T/TF were
determined experimentally in [22]. Just above the critical temperature S/N � 2.2
and E0/EF � 0.83. The double ratio [(S/N )/(E0/EF )] is only weakly dependent
on T, changing by less than 15% between Tc and 4Tc. In the flow experiment carried
out by O’Hara et al. [7] the cloud contained N = 2 · 105 atoms and the asymmetry
parameter was λ = 0.045. The predicted sensitivity of the crossing time to dissipative
effects is

(
δt

t

)

cross
= 0.008

( 〈αs〉
1/(4π)

) (
2 · 105

N

)1/3 (
0.045

λ

)1/3 (
S/N

2.2

) (
0.83

E0/EF

)
.

(10.34)
For 〈αs〉= 1/(4π) this is at the limit of what can be resolved experimentally, but
for 〈αs〉= 0.5 the effect reaches about 5%. An example is shown in Fig. 10.1. The
solid lines show the solution of the Euler equation (10.19), and the dashed lines
show a solution of the Navier–Stokes equation (see Sect. 10.3.2) with 〈αs〉= 0.5.

The main effect of shear viscosity is a suppression of the transverse expansion of
the system. We find (δt/t)cross = 6.5%, in fairly good agreement with the estimate
(δt/t)cross = 5% from Eq. 10.34.

The best fit to the data is provided by ideal hydrodynamics with 〈αs〉= 0. This
is probably related to the fact that the data were taken significantly below Tc,

at T/TF = 0.13 ± 0.05. In this regime the system is described by two-fluid hydro-
dynamics. The superfluid component has no shear viscosity but the viscosity of
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the normal component becomes very large as T/TF → 0 [23]. In a finite system,
however, the large viscosity of the normal phase is likely to be suppressed by relax-
ation time effects, see Sect. 10.3.5. As a consequence one observes perfect superfluid
hydrodynamics. The data in Fig. 10.1 show some deviations from hydrodynamics at
very early and very late times. Discrepancies at early times are probably related to
experimental resolution [7], while the differences at late times may be connected to
the breakdown of hydrodynamics in the late stages of the expansion.

We can also compute the amount of entropy generated by dissipative effects.
Using d S = d Q/T we find

�S

N
= 4

3

〈αn〉
(3Nλ)1/3

1

(T0/TF )
IS (10.35)

with

IS = ω−1
⊥

τ∫

0

dtb−2/3
⊥

(
ḃ⊥

)2
. (10.36)

For τ � tdiss we find Is � 2.6 and the produced entropy is small, (�S/N )� 0.27
for the conditions given above. However, the integral diverges as Is ∼ (ω⊥τ)1/3 for
τ → ∞. This result is not reliable since we expect hydrodynamics to break down at
late times, see Sect. 10.3.4.

10.3.2 Moments of the Navier–Stokes Equation

It is clearly desirable to study the role of dissipation more directly by solving the
Navier–Stokes equation. The Navier–Stokes equation differs from the Euler equation
by an extra term on the right hand side,

mn

(
∂vi

∂t
+

(
�v · �∇

)
vi

)
= − ∇i P − ∇ jδ�i j . (10.37)

We will assume that the viscosity is small, so that derivatives with respect to thermo-
dynamic variables can be computed at constant entropy. We will also assume that the
entropy conservation equation, Eq. 10.18, is not modified. Physically, this implies
that we assume that there is a reservoir that removes the heat generated by dissipa-
tive effects. In this case, the only correction to the equations of hydrodynamics is the
viscous force in the Navier–Stokes equation.

In general the inclusion of the Navier–Stokes term will break the simple scaling
form of the flow. The Navier–Stokes equation also depends on the functional form
of the pressure and the viscosity, that means we have to specify the functions f (y) in
Eq. 10.4 and αn(z) in Eq. 10.28. A simple approach that avoids extensive numerical
work as well as model assumptions about f(y) and αn(z) is to take moments of the
Navier–Stokes equation. Consider the linear moments
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m
∫

d3xxkn(x)

(
∂vi

∂t
+

(
�v · �∇

)
vi

)
= −

∫
d3xxk

(
∇i P + ∇ jδ�i j

)
, (10.38)

with k = 1, 2, 3. Since the velocity field is linear in the coordinates we find that the
ideal fluid terms involve second moments of the density. These moments are related
to the potential energy in a harmonic trap and, by the virial theorem, to the total
energy of the system. The Navier–Stokes term can be integrated by parts and is
proportional to the integral over η(x). As a consequence, the first moment of the
Navier–Stokes equation depends only on the parameter β defined in Eq. 10.33. We
get

b̈⊥ = ω2⊥
(b2⊥bx )2/3b⊥

− 2βω⊥
b⊥

(
ḃ⊥
b⊥

− ḃx

bx

)
(10.39)

b̈x = ω2
x

(b2⊥bx )2/3bx
+ 4βλωx

bx

(
ḃ⊥
b⊥

− ḃx

bx

)
. (10.40)

These equations of motion are consistent with the result in the previous section.
We can compute the amount of energy dissipated from Eqs. 10.21 and
(10.39, 10.40). We find

Ė = − 8

3
βEint (0)

(
ḃ⊥
b⊥

− ḃx

bx

)2

. (10.41)

We note that b⊥(t) and bz(t) are solutions of the Navier–Stokes equation and have an
implicit dependence on β. As long as this dependence is smooth, bi (t, β) → bi (t, 0)

as β → 0, Eq. 10.41 reduces to Eq. 10.27 at leading order in β. Since typical values
of β are quite small, we expect the estimates in the previous section to be very
accurate. This is studied in more detail in Fig. 10.2. We observe that the dissipated
energy (�E)/E is very linear in β even for values of (�E)/E as large as 25%.
We note that because of turbulence solutions of the Navier–Stokes equation do not in
general approach solutions of the Euler equation in the limit that the shear viscosity
goes to zero. Turbulence is not present in our analysis because we do not consider
small fluctuations. We also note that there is no continuous forcing in the case of an
expanding gas and it is not clear whether turbulence can develop even if fluctuations
are included. We will estimate the Reynolds number of the flow in Sect. 10.3.4.

10.3.3 Scaling Solution of the Navier–Stokes Equation

In this section we discuss a specific model for the density dependence of the shear
viscosity that preserves the scaling nature of the flow even if the viscosity is not
zero. This model allows to compute the local amount of heat that is generated by
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Fig. 10.2 This figure show the ratio (�E)/Eint of the dissipated energy to the initial internal
energy as a function of the parameter β defined in Eq. 10.33. The dots show the result of a numerical
solution of the Navier–Stokes equation (10.39, 10.40) in the limit ωz/ω⊥ → 0 and the line shows
the estimate given in Eq. 10.32

dissipation, and to understand some of the shortcomings of the method discussed in
Sects. 10.3.1 and 10.3.2. Consider

η(n, T )= η0(mT )3/2 + η1
P(n, T )

T
, (10.42)

where η0,1 are constants and P(n,T) is the pressure. The first term dominates in the
low density, high temperature limit. This is the regime in which a kinetic description
in terms of weakly coupled atoms is applicable. Kinetic theory gives [24, 25]

η0 = 15

32
√

π
. (10.43)

The second term dominates in the high density, low temperature regime. The func-
tional form of this term is not motivated by kinetic theory. We note, however, that
η/n has a minimum as a function of T, as expected on theoretical [23] and phenom-
enological grounds [3].

The model given in Eq. 10.42 has two remarkable features: first, the η0 term
does not contribute to the Navier–Stokes equation at all. The Navier–Stokes term
∇ j [η0(mT )3/2(∇i v j + · · · )] vanishes since both T and ∇i v j are constant. Sec-
ond, the η1 term preserves the scaling flow. Using T,∇i v j ∼ const we see that
∇ j [η1 P(n, T )/T (∇i v j + · · · )] scales like the contribution from the pressure of an
ideal fluid, ∇i P(n, T ). We get

b̈⊥ = ω2⊥
(b2⊥bx )2/3b⊥

− 2η1ω
2⊥

3T0b⊥

(
ḃ⊥
b⊥

− ḃx

bx

)
(10.44)
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b̈x = ω2
x

(b2⊥bx )2/3bx
+ 4η1ω

2
x

3T0bx

(
ḃ⊥
b⊥

− ḃx

bx

)
. (10.45)

We observe that these equations are identical to the moment Eqs. 10.39, 10.40 with
β = η1ω⊥/(3T0). This is not a surprise – the η1 contribution to η(n, T ) vanishes as
n → 0 and the assumptions underlying the moment method are satisfied. The η0
term, on the other hand, does not vanish as n → 0, and it cannot be included in the
moment equations (it makes an infinite contribution to the integral over η(x)).

Using the identification β = η1ω⊥/(3T0) we can write

β = η1

3(3λN )1/3

1

(T0/TF )
, (10.46)

which shows that any bound on 〈αn〉 obtained using the methods of Sect. 10.3.2 can
be translated into an estimate of η1, η1 = 3(T0/E0)〈αn〉. Near Tc this implies that
η1 � 0.76〈αn〉. We note that the relation between η1 and 〈αn〉 is precisely what one
obtains if the trap average of η(x) is computed from the η1-term only. The situation
is more complicated if the contribution from η0 is taken into account. The ratio η/n
is given by

η(n, T )

n
= η0 y3/2 + η1

y
f (y) (10.47)

with y = (mT )/n2/3. Since f (0)= const and f (y)� y for y � 1 this function has
a minimum, see Fig. 10.3. The figure also shows that (η/n)min receives significant
contributions from η0. It is clearly unsatisfactory that our analysis has no sensitivity
to this term. We will return to this issue in Sect. 10.3.5.

Using the explicit form of η(n, T ) we can also address the question where the
energy is being dissipated and how much reheating is taking place. We first consider
the contribution from η1. The energy dissipated is

Ė = − 4η1

3

(
ḃ⊥
b⊥

)2
P(n, T )

T
. (10.48)

For a Fermi gas at unitarity the energy density is related to the pressure by
E (n, T )= (3/2)P(n, T ). Equation (10.48) implies that the energy dissipated is pro-
portional to the local internal energy density. The source of the dissipated energy is
the reduction in the kinetic energy density relative to its value in ideal hydrodynamics.
The local kinetic energy density is

Ekin = m

2
n

(
ḃ⊥
b⊥

)2

x2⊥. (10.49)

Since the kinetic energy density differs from the spatial distribution of the dissipated
energy there has to be a dissipative contribution to the energy current. This current
is given by δ �j ε = (0, δ jεy , δ jεz ) with
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Fig. 10.3 Ratio η/n as a function of y = (mT )/n2/3 for the model defined in Eq. 10.42. The two
curves correspond to (from bottom to top) η1 = 1/(4π), 2/(4π) with η0 = 15/(32

√
π). The dashed

line shows the contribution from η1, which is the term that contributes directly to the Navier–Stokes
equation, and the dotted line is the contribution from η0. Note that the critical point for the onset of
superfluidity is yc � 0.72

δ jεz = vzδ�zz = − z
2η1 P(n, T )

3T

(
ḃ⊥
b⊥

)2

, (10.50)

and δ jεy = δ jεz (z ↔ y). The dissipative current flows from the outer edge of the cloud,
where the kinetic energy is peaked, to the center of the cloud, where the pressure is
largest.

Energy dissipation leads to reheating. The change in temperature is �T =
(�E )/cV . The time evolution of the temperature is governed by

Ṫ = − 4T0

3b4/3
⊥

(
ḃ⊥
b⊥

)
+ η1 P

cV T

(
ḃ⊥
b⊥

)2

, (10.51)

where the first term is related to the adiabatic expansion of the system, and the
second term is the dissipative correction. Note that if cV ∼ E /T, which is the case
in the high temperature limit, then reheating will preserve the fact that the cloud
is isothermal. In general the behavior of the specific heat is more complicated and
dissipation produces a temperature gradient. The relative importance of reheating is
governed by the parameter (η1ω⊥/T0)(P/(cV T )). In the high temperature limit we
can use P ∼ cV T and this expression reduces to the parameter β defined in Eq. 10.46.
Reheating becomes important at a time ω⊥t ∼ β−3. Since β is typically very small,
this occurs very late during the evolution of the system.

A similar analysis of the effects of η0 leads to a number of puzzles. The energy
dissipated is independent of density, and the total energy dissipated over all space
is infinite. There is no change in the kinetic energy, and the source of the dissipated
energy is the viscous correction to the energy current. This current flows into the
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system from spatial infinity. The relative importance of reheating is governed by
the parameter (η0ω⊥/T0)((mT )3/2/n), which is always large in the dilute region of
the cloud.

10.3.4 Breakdown of Hydrodynamics

The constant term η ∼ η0(mT )3/2 in the shear viscosity dominates in the dilute outer
regions of the cloud, and the difficulty in understanding the effects of this term
must be related to the breakdown of hydrodynamics in the dilute regime. A standard
criterion for the applicability of hydrodynamics is the condition that the Knudsen
number K n = lm f p/L , the ratio of the mean free path to the system size, is much
less than one. In the dilute regime the mean free path is given by

lm f p = 1

nσ
= 3

4π

mT

n
. (10.52)

The density is given by Eq. 10.6. In the dilute regime we can use the high temperature
limit of h(z), but the scaling arguments in the following are independent of the
functional form of h(z). For a comoving observer the density scales as n ∼ (mμ)3/2,

and the mean free path scales as lm f p ∼ T/(m1/2μ3/2). The evolution of T and μ is
governed by the scaling relations discussed in Sect. 10.2. We may use, in particular,
that T/μ∼ const and μ∼ μ(0)/(b2⊥bx )

2/3. We conclude that in a comoving fluid
cell

K n = lm f p

L
∼

(
bx

b⊥

)1/3

. (10.53)

During the two-dimensional expansion the Knudsen number is dropping, which
implies that the hydrodynamic description is becoming more accurate. In the late,
three-dimensional stage, the Knudsen number is constant.

A more accurate criterion can be obtained by using a characteristic length or time
scale derived from the flow profile. Hydrodynamics is based on a derivative expansion
of the energy momentum tensor, and the validity of hydrodynamics requires that δ�i j

is small compared to the ideal fluid stress tensor. Consider the ratio of the moments
of the ideal and dissipative terms on the RHS of the Navier–Stokes equation

〈xk∇k P〉〈
xk∇ jδ�k j

〉 = 〈P〉〈 4
3η(∇kvk)

〉 (10.54)

where 〈.〉 denotes an integral over d3x and the index k is fixed. The ratio (η/P)(∇ ·v)
has a simple interpretation in kinetic theory. For a dilute gas η ∼ nplm f p ∼ ρu2τm f t

and P ∼ ρu2, where n is the particle density, ρ is the mass density, p is the average
quasi-particle momentum, u the average velocity, and τm f t the mean free time. The
ratio ∇ · v ∼ τ−1

exp defines a characteristic expansion time. The quantity
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η

P
(∇ · v)∼ τm f t

τexp
(10.55)

measures the ratio of the mean free time over the expansion time. Hydrodynamics is
valid if τm f t 	 τexp. We observe that for η ∼ P the freezeout criterion is independent
of position and only a function of time. We get

η

P
(∇zvz)= η1

T0
(bx b⊥)1/3 ḃ⊥ � η1

(3N )1/3λ1/3

1

(T0/TF )
(ω⊥t)1/3 , (10.56)

where we have assumed that the expansion is two-dimensional. We note that the
relevant parameter is the quantity β defined in Eq. 10.46. Freezeout occurs at
(ω⊥t f r )∼ β−3. For typical values of β we find that t f r � tcross � tdiss, where
tcross ∼ (ω⊥λ)−1 is the crossing time, and tdiss∼5.9ω−1

⊥ is the characteristic time
for dissipative effects.

The freezeout time defined by Eq. 10.56 is very long, and the physical freezeout
is determined by the viscous effects in the dilute part of the cloud. In the case of a
spatially constant shear viscosity we find

η

P
(∇zvz)= η0(mT )3/2

P

(
ḃ⊥
b⊥

)
� 45π

8
√

2

(T0/TF )2

(3λN )1/3 b1/3
⊥ ḃ⊥ exp

(∑
i

x2
i

b2
i R̄2

i

)
,

(10.57)
where we have used P = nT as well as the low density (high temperature) limit
of n0(x), see Eq. 10.6. The radius parameter R̄i is defined as R̄2

i = 2T0/(mω2
i ).

The condition (η/P)(∇zvz) determines a freezeout surface x f r (t). This surface is
initially at xi � Ri , but it moves inward as time increases and reaches the origin at
a time t f r ∼ ω−1

⊥ (3λN )(TF/T0)
6. This time is also parametrically very long, but the

freezeout time at a characteristic distance xi � bi R̄i is significantly smaller.
Finally, we wish to mention one more quantity that characterizes a viscous flow.

The Reynolds number Re is defined as the ratio of inertial and viscous forces in the
system. In the case of a scaling flow with η ∼ P this ratio is independent of position
and only a function of time. We find

Re = T0

η1ω
2⊥

b⊥ḃ⊥ � ω⊥t

β
. (10.58)

The Reynolds number is zero initially, but it grows quickly, reaching Re � β−1 at
(ω⊥t)= 1. For typical experimental parameters β−1 ∼ 100, which is large but not
large enough to cause instabilities. At later times even larger values of Re are reached,
but at these late times the system is simply free streaming. A constant contribution
to the viscosity does not lead to a viscous force, and does not directly contribute to
the Reynolds number.
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10.3.5 Relaxation Time Approach

The discussion in the previous section does not fully resolve the problems caused by
the dilute regions of the cloud. If the shear viscosity is proportional to the pressure
then the system freezes out at some time t f r . For values of η/P implied by the
data this time is much larger than the characteristic time for dissipative effects in
the evolution of the system, and the estimates in Sects. 10.3.1–10.3.3 are internally
consistent. If the shear viscosity is constant then there is a freezeout surface which
moves inward as a function of time. This implies that the integral in Eqs. 10.27 and
10.38 should be restricted to the region enclosed by the freezeout surface. However,
in order for energy to be conserved, and for viscosity to have an effect on the evolution
of the system, we would have to include an external force on the freezeout surface.

An approach that can describe the effects of freezeout without the need to introduce
an artificial surface is second order viscous hydrodynamic [26]. The second order
formalism takes into account terms with two derivatives of the thermodynamic vari-
ables in the dissipative correction to the stress tensor and energy current. In general,
the second order formalism contains a large number of new transport coefficients.
A phenomenological ansatz that has proven to be useful in many different applica-
tions is to treat the viscous part of the stress tensor as an independent hydrodynamical
variable which satisfies a relaxation equation

τR
∂

∂t
δ�i j = − δ�i j + δ�N S

i j , (10.59)

where τR is the relaxation time and δ�N S
i j is the Navier–Stokes expression for the

viscous contribution to the stress tensor, Eq. 10.25. An equation of this type was
first introduced by Maxwell and Cattaneo in the context of heat transport. More
recently, time or frequency dependent viscosities were considered in the study of
Bose condensed gases in [27, 28]. In relativistic hydrodynamics relaxation equations
for the viscous stress tensor are used in order to restore causality, see the review [29].

Scale invariance implies that τR(n, T )= w(mT/n2/3)/T where w(y) is a universal
function. In the dilute limit y � 1 the function w(y) can be calculated in kinetic theory
which gives τR = η/(nT ) [30]. This result corresponds to the estimate for τm f t given
in Eq. 10.55. The relaxation equation (10.59) requires an initial condition for the
viscous stress δ�i j . If is natural to assume that δ�i j = 0 at t = 0. In the center of the
cloud τR is small and the viscous stress quickly relaxes to the Navier–Stokes result.
In the dilute region τR → ∞ and the viscous contribution to the stress tensor remains
zero. This implies that even a spatially constant shear viscosity leads to a spatially
varying δ�i j and a non-zero drag force. This drag force is largest near the freezeout
surface and breaks the scaling nature of the flow. This means that a detailed study of
the Israel-Stewart equations will require numerical solutions of the hydrodynamic
equations. We can estimate the effect of the relaxation time by computing the energy
dissipation. We have

Ė = − 1

2

∫
d3xδ�i j

(
∇i v j + ∇ j vi − 2

3
δi j∇ · v

)
, (10.60)
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Fig. 10.4 Trap average 〈αn〉 = 〈η〉/N computed from a relaxation time equation with
η = η0(mT )3/2 and τR = η/(nT ). Contrary to the pure Navier–Stokes case τR → 0 the ratio 〈η〉/N
depends on the number of particles and the trap geometry. Here we have chosen N = 2 · 105 and
λ = 0.045. The solid shows the result for the elliptic flow field, and the dashed line corresponds to
the transverse collective mode, see Sect. 10.5

where δ�i j is determined by Eq. 10.59. The simplest approximation is to set
δ�i j = δ�N S

i j inside the freezeout surface and δ�i j = 0 outside.
In order to obtain more accurate estimates we have to solve the differential equa-

tion (10.59). As in Sect. 10.3.1 we may compute δ�N S
i j from the solution of ideal

hydrodynamics. The relaxation time can be calculated using the high temperature
result for the density profile. We find

ω⊥τR = 45π

8
√

2

1

(3λN )1/3

(
T

TF

)2

b4/3
⊥ exp

(
x2⊥

b2⊥ R̄2⊥
+ x2

z

R̄2
z

)
, (10.61)

which has the same functional form as the freezeout criterion in Eq. 10.57. The
viscous stress tensor δ�i j is determined by integrating Eq. 10.59 and the dissipated
energy can be computed from Eq. 10.60. By comparing �E with Eq. 10.27 we can
express the result in terms of an effective 〈αn〉. This quantity is shown in Fig. 10.4.
We observe that 〈αn〉 grows with temperature as 〈αn〉∼ T 3, much faster than one
would expect from the relation η ∼ T 3/2.

There are no data for elliptic flow at temperatures above Tc, but we will compare
the relaxation time result to collective mode data in Sect. 10.5. We note that at low
temperature the effective 〈αn〉 is the same for expanding and oscillating systems, but
that at high temperature the two systems behave differently. In the expanding system
the hydrodynamic expansion time τexp continues to increase during the expansion,
whereas the period of the oscillation provides a fixed hydrodynamic time scale in
the case of the collective mode. The viscous relaxation time τR increases with tem-
perature. This implies that for the collective mode we eventually get τR > τexp and
the effective 〈αn〉 starts to decrease. In the expanding system, on the other hand, the
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relaxation time can always match the expansion time and 〈αn〉 continues to grow
with temperature.

10.4 Expansion From a Rotating Trap

The expansion from a rotating trap was studied in [14]. Rotating gases are of interest
for a number of reasons. The quenching of the moment of inertia in a superfluid Bose
gas was used as a signature of superfluidity [31]. The remarkable discovery in [14]
is that in a Fermi gas at unitarity the suppression of the moment of inertia is also
observed in the normal phase. It is clearly of interest to determine to what extent this
discovery places constraints on the shear viscosity [32].

10.4.1 Ideal Fluid Dynamics

The Euler equations for a Bose gas with P ∼ n were derived in [31]. The result is
easily generalized to a Fermi gas at unitarity [14]. As in the case of a non-rotating
trap the equations are independent of the temperature and the universal function f(y)
in Eq. 10.4. We have

α̇x + α2
x + α2 − 	2 = μ̄ω2

x

b2
x

(10.62)

α̇y + α2
y + α2 − 	2 = μ̄ω2

y

b2
y

(10.63)

α̇z + α2
z = μ̄ω2

z

b2
z

(10.64)

α̇ + α
(
αx + αy

) = μ̄aω2
x

2
(10.65)

	̇ + 	
(
αx + αy

) = 0. (10.66)

These equations have to be solved together with the continuity Eqs. (10.12–10.16).
In all there are ten coupled equations. In the case of a rotating trap there is no initial
expansion, αi (0)= 0, but either α(0) or 	(0) (or both) are non-zero. If the initial
flow is purely irrotational then α(0)= ωrot , where ωrot is the angular velocity of the
trap. If the flow corresponds to rigid rotation then 	(0)= ωrot . Below the critical
temperature the flow of the superfluid component must be irrotational, but above Tc

both rotational and irrotational flows are possible.
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The equations simplify in the experimentally relevant case of strongly deformed,
slowly rotating traps, ωrot < ωx 	 ω⊥ with ω⊥ = ωy � ωz . In this limit the motion
of the fluid is dominated by the transverse expansion of the system. Up to corrections
of order O(λ2) or O((ωrot/ω⊥)2) we have

b⊥(t)�
{

1 + 1
2ω2⊥t2 + O(t4) ω⊥t 	 1,

ω⊥t√
γ

+ c0 + O(t−1/3) ω⊥t � 1,
(10.67)

as in the case of a stationary trap. The orientation of the expanding cloud is described
by the parameter a defined in Eq. 10.11. We find

a(t)�
⎧⎨
⎩

− 2ωrot t
λ2 ω⊥t 	 1,

− caωrot
λ2ω2⊥t

ω⊥t � 1 (t < t3d),
(10.68)

where ca is a constant. Below we will show that ca = γ. At very late times, t >

t3d ∼ 1/(λ2ω⊥), we find a(t)∼ 1/t2. The result (10.68) holds irrespective of the
nature of the initial rotational flow. The parameter a(t) can be related to the angle of
the cloud with respect to the x-axis,

tan(2θ)= − aλ2b2
x b2

y

b2
x − λ2b2

y
. (10.69)

At early times, ωx t 	 1, the angle is proportional to the rotational frequency of the
trap, θ = ωrot t. The angular motion speeds up as byλ approaches bx . The angle goes
through 45◦ at

t45◦ =
√

γ

ωx
(10.70)

which is the identical to the crossing time in Eq. 10.24. At late times, and up to
corrections of O(ωrot/ω⊥), the angle approaches 90◦.The velocity field is dominated
by the transverse expansion of the system. In the limit ωrot < ωx 	 ω⊥ the velocity
fields αi are identical to those in the non-rotating case. We have

αy,z �
{

ω2⊥t ω⊥t 	 1,

1/t ω⊥t � 1,
(10.71)

and αx = O(λ2). The rotational components of the velocity field decay quickly.
If the initial flow is irrotational, α(0)= ωrot , then

α(t)� ωrot

(
1 − ω2⊥t2

)
(10.72)

for (ω⊥t) < 1. For (ω⊥t) > 1 the rotational component of the flow is small,
(α/ωrot ) 	 1, but the remaining flow decays slowly, α ∼ t−1 for t < t3d and α ∼ t−2
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for t > t3d . In ideal hydrodynamics an initially irrotational flow will remain irrota-
tional, 	(t)= 0, for all t. If the initial flow corresponds to rigid rotation, 	(0)= ωrot ,

then the early time behavior is given by

	(t)� ωrot

(
1 − 1

2
ω2⊥t2

)
. (10.73)

An initially rigid rotating flow induces a non-zero irrotational flow. For (ω⊥t) > 1
both components of the velocity field become much smaller than ωrot .

The angular momentum is given by

Lz = αm〈n(x2 − y2)〉 + 	m〈n(x2 + y2)〉 + (
αx − αy

)
m〈nxy〉, (10.74)

where n is the density and 〈.〉 is an integral over the cloud. The moment of inertia of
a rigid rotor is Irig = m〈x2 + y2〉, and the irrotational moment of inertia is Iirr =
m〈x2 − y2〉. We have

m〈nx2〉= b2
x

1 − λ2

4 (abx by)2

L0

ωx
, (10.75)

m〈ny2〉= λ2b2
y

1 − λ2

4 (abx by)2

L0

ωx
, (10.76)

m〈nxy〉= −λ2

2 ab2
x b2

y

1 − λ2

4 (abx by)2

L0

ωx
, (10.77)

where the scale is set by

L0 = N

6

(3N )1/3

λ2/3

(
E0

EF

)
. (10.78)

In the experiment of Clancy et al. (ωrot/ωx )� 0.4 and L0/N � 131(E0/EF ). For
E0/EF = 1, which is in the normal phase, the angular momentum per particle is 50�.

At early times the trap is strongly deformed and Irig � Iirr . When the cloud
becomes almost spherical the irrotational moment is much smaller than the rigid
moment of inertia, Iirr 	 Irig. However, at times (ω⊥t) > 1 the angular momen-
tum is mainly carried by the last term in Eq. 10.74, which is related to the trans-
verse expansion of the system. This is true irrespective of the nature of the initial
rotational flow. For (ω⊥t) > 1 we have αym〈nxy〉� (ca/γ )(ωrot/ωx )L0. Angular
momentum conservation then fixes the constant ca in Eq. 10.68, ca = γ. At very late
time, t > t3d , the angular momentum is shared among all the terms in Eq. 10.74,
and the relative size of the different contributions depends on the initial conditions.
In practice, of course, hydrodynamics is no longer applicable at t > t3d .
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10.4.2 Dissipation

The effects of dissipation on the expansion from a rotating trap can be studied in
close analogy with Sects. 10.3.1–10.3.5. The rate of energy dissipation is

Ė = − 4

3

(
α2

x + α2
y + α2

z − αxαy − αxαz − αyαz + 3α2
) ∫

d3xη(x). (10.79)

For αx � αy � αz, α this expression reduces to the energy dissipated by the trans-
verse expansion of cloud, see Eq. 10.27. This implies that the main effect of dis-
sipation is to slow the transverse expansion of the cloud, and to delay the time
t45◦ . This delay is exactly the same as the delay in the crossing time in Eq. 10.34.
We have

(
δt

t

)

45◦
= 0.009

( 〈αs〉
1/(4π)

) (
1.3 · 105

N

)1/3 (
0.3

λ

)1/3 (
S/N

4.8

) (
2.1

E0/EF

)
.

(10.80)
We can confirm this estimate by solving the Navier–Stokes equation. The Navier–
Stokes equation can be derived using the moment method described in Sect. 10.3.2.
As before, an equivalent set of equations can be obtained from the viscosity model
given in Eq. 10.42. We get [33]

α̇x + α2
x + α2 − 	2 = ω2

x

b2
x

{
μ̄ − 6β

ω⊥

[
2

3
αx − 1

3

(
αy + αz

) + 1

2
ab2

xα

]}
(10.81)

α̇y + α2
y + α2 − 	2 = ω2

y

b2
y

{
μ̄ − 6β

ω⊥

[
2

3
αy − 1

3
(αx + αz) + 1

2
aλ2b2

yα

]}
(10.82)

α̇z + α2
z = ω2

z

b2
z

{
μ̄ − 6β

ω⊥

[
2

3
αz − 1

3

(
αx + αy

)]}
(10.83)

α̇ + α
(
αx + αy

) = ω2
x

{
μ̄a

2
− 3β

ω⊥

[
a

6

(
αx + αy − 2αz

) + b2
x + λ2b2

y

λ2b2
x b2

y
α

]}

(10.84)

	̇ + 	
(
αx + αy

) = 3βω2
x

ω⊥

[
a

2

(
αx − αy

) + b2
x − λ2b2

y

λ2b2
x b2

y
α

]
. (10.85)

These equations are independent of the functional form of the pressure. A solution
of the Navier–Stokes equation for the trap parameters and initial conditions in [14] is
shown in Fig. 10.5. The experimental data were taken at E/EF = 0.56 which is in the
superfluid phase, and E/EF = 2.1 which is significantly above the phase transition.
Similar to the low temperature data for pure transverse expansion in Fig. 10.1 the



396 T. Schäfer and C. Chafin

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035

20

40

60

80

Fig. 10.5 Time evolution of the angle of the major axis of a rotating expanding cloud after release
from the trapping potential. The data are taken from [14]. The two data sets were obtained with
initial energies E/EF = 0.56 and 2.1. The solid line shows the prediction of ideal fluid dynamics,
and the dashed lines shows the solution of the Navier–Stokes equation for β = 0.061. Using an
entropy per particle S/N � 4.8 this value of β implies a shear viscosity to entropy density ratio
〈αs〉= 0.60

low temperature result for a rotating cloud shows no dissipative effects, and the best
fit to the data is provided by ideal fluid dynamics.

The data for E/EF = 2.1 clearly show a delayed expansion. We find
(δt/t)45◦ � 0.063. Using (δt/t)� 1.16β from Eq. 10.32 we estimate β � 0.057. This
estimate is quite accurate, the best fit of the Navier–Stokes solution to the data is
obtained for β = 0.061. Using N = 1.3 ·105, λ = 0.03 [14] and (S/N )� 4.8 [22] we
obtain 〈αs〉� 0.60. The measurements were extended to values of E/EF between
0.56 and 2.1 in [32]. This work reports values of η/s as small as 〈αs〉� (0.0 − 0.4).

Note that in this regime it becomes very difficult to measure the viscosity accurately.
A value of 〈αs〉= 0.1 affects the measured angle of the cloud by less than the with
of the lines in Fig. 10.5.

A more detailed study of viscous effects on the evolution of the system is shown
in Figs. 10.6, 10.7 10.8. We observe that viscosity slows down the evolution of the
scale parameters by, bz and a. More interesting is the effect on the velocity fields
α and 	. Viscosity converts a fraction of the irrotational velocity field α into the rota-
tional velocity field 	. This is also seen in the breakdown of the angular momentum,
see Fig. 10.8. The rotational component of Lz is not large, but it does lead to an
observable effect in the angular velocity of the cloud. Figure 10.9 shows that viscos-
ity leads to a decrease in �̇. During most of the evolution this effect is dominated
by the delayed expansion, but for t � t45◦ there is an extra reduction which is due
to an increase of the effective moment of inertia I = L/�̇ caused by the rotational
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Fig. 10.6 Time evolution of the parameters a, bx , by , bz that characterize the scaling expansion
out of a rotating trap. Note that in this case ωy and ωz are not exactly equal, and that the time scale is
different from Fig. 10.5. Here, we only show the early evolution of the system. Solid lines show the
solution of the Euler equation, and dashed lines show the solution of the Navier–Stokes equation
for β = 0.077
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Fig. 10.7 Time evolution of the parameters α and 	 which control the irrotational and rotational
components of the velocity field. Parameters were chosen as in Fig. 10.6. Solid lines show the
solution of the Euler equation, and dashed lines show the solution of the Navier–Stokes equation
for β = 0.077

flow. Unfortunately, the experimental data are for �(t) are not sufficiently accurate
to demonstrate this effect.
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Fig. 10.8 This figure shows different contribution to the total angular momentum of the expanding
cloud as a function of time. The angular momentum is given in units of the quantity L0 defined
in the text. The curves labeled irrotational, rigid, and expansion show the 〈x2 − y2〉, 〈x2 + y2〉,
and 〈xy〉 contributions. The solid and dashed lines correspond to ideal and viscous hydrodynamics,
respectively. The solid black line shows the (conserved) total angular momentum
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Fig. 10.9 This figure shows the angular velocity of the rotating cloud as a function of time. The solid
line shows the solution of the Euler equation, and the dashed line is the solution of the Navier–Stokes
equation for β = 0.077. The thin dashed line shows the result for the angular velocity obtained by
rescaling the solution of the Euler equation by a factor 1+(δt/t)45◦ � 1.1. The discrepancy between
the Navier–Stokes prediction and the rescaled Euler result in the regime where �̇ is large is due to
the rotational component of the flow. We note that I = L/�̇ is the moment of inertia

10.5 Collective Oscillations

In order to study collective oscillations we consider the Euler equation (10.19) in the
presence of the trapping potential. The equation of motion is
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b̈i = ω2
i

(bx bybz)2/3

1

bi
− ω2

i bi . (10.86)

The equilibrium solution is bx = by = bz = 1. We now consider small oscillations
around the equilibrium, bi (t)= 1 + ai eiωt . The linearized equation of motion gives

ω2ai = ω2
i

⎛
⎝2ai + γ

∑
j

a j

⎞
⎠ , (10.87)

which was derived in [34, 35, 36] using slightly different methods. For the radial
breathing mode ay = az = a⊥, ax = 0 we get ω2 = 2(1 + γ )ω2⊥ = (10/3)ω2⊥.

The energy dissipated can be computed from Eq. 10.27. We find

�E

Eosc
= − 4π

√
3

10
β � − 6.88 · β, (10.88)

where �E is the energy dissipated per period, Eosc is the energy of the collective
mode, and β is the parameter defined in Eq. 10.33. We note that the amount of energy
dissipated in one period of the transverse breathing mode is about three times larger
than the energy dissipated by transverse expansion, see Eq. 10.32.

We can also derive a Navier–Stokes equation, either by taking moments as in
Sect. 10.3.2, or by using a simple scaling form of the shear viscosity as in Sect. 10.3.3.
For the transverse breathing mode we find

b̈⊥ = ω2⊥
b7/3
⊥

− ω2⊥b⊥ − 2βω⊥ḃ⊥
b2⊥

. (10.89)

If β is small then this equation is approximately solved by a damped oscillating
function. We have

b⊥(t)= 1 + a⊥ cos(ωt) exp(−�t). (10.90)

Comparison with Eq. 10.88 gives � =βω⊥. The main feature of collective modes
is that the viscous term exponentiates so that even very small values of β are exper-
imentally accessible. In Fig. 10.10 we show a comparison between an exact solu-
tion of Eq. 10.89 for β = 0.05, a⊥(0)= 0.25 and the approximate solution (10.90).
We observe that the approximate solution is extremely accurate.

The experimentally measured damping rate can be used to estimate 〈αs〉. We have

〈αs〉= (3λN )1/3
(

�

ω⊥

) (
E0

EF

) (
N

S

)
. (10.91)

In Fig. 10.11 we show an analysis of the data obtained by Kinast et al. [9] using
Eq. 10.91. This plot is very similar to our earlier analysis [37] (see also [38, 39]),
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Fig. 10.10 Time evolution of the amplitude of the transverse breathing mode. The black line shows
the solution of the Euler equation and the solid green line is the solution of the Navier–Stokes
equation for β = 0.05. The dashed green line is the damped cosine function given in Eq. 10.90. The
trap frequency was chosen to be ω⊥ = 1696 Hz as in [10]
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Fig. 10.11 Trap average 〈αs〉 = 〈η/s〉 extracted from the damping of the radial breathing mode.
The data points were obtained using Eq. 10.91 to analyze the data published by Kinast et al. [9].
The thermodynamic quantities (S/N ) and E0/EF were taken from [22]. The solid red and blue
lines show the expected low and high temperature limits. Both theory curves include relaxation
time effects. The blue dashed curve is a phenomenological two-component model explained in the
text

except that the temperature calibration and thermodynamic data have been updated
using the recent analysis published in [22].
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There are a number of important checks on the interpretation of the damp-
ing date in terms of viscous hydrodynamics that should be, or have already been,
performed. Viscous hydrodynamics predicts that the monopole mode in a spherical
trap is not damped at all. This prediction is quite striking, but it has never been tested.
Viscous hydrodynamics also predicts simple relationships between the damping con-
stant of the radial breathing mode and the radial quadrupole as well as the scissors
mode [37]. These predictions agree qualitatively with the data obtained by the Inns-
bruck group, but there are some structures in the data that do not fit a simple hydrody-
namic description. Finally, hydrodynamics predicts that the damping rate decreases
as N−1/3. This prediction does not agree with the data published in [9]. We note,
however, that Kinast et al. only checked the scaling behavior at very low temperature,
and that relaxation time effects may modify the particle number scaling.

We can also compare the results in Fig. 10.11 to theoretical prediction for the
shear viscosity in the low and high temperature limit. In the high temperature limit
the viscosity is independent of density and the main source of dissipation is the finite
relaxation time, see Sect. 10.3.5. In the case of periodic motion the relaxation time
equation (10.59) is easily solved. The dissipated energy is given by Eqs. 10.33, 10.88
with

〈αn〉= η0(mT )3/2
∫

d3x
1

1 + ω2τR(n(x))2 . (10.92)

We will use the kinetic theory result τR(n)= η/(nT ) with η = η0(mT )3/2. In the high
temperature (low density) limit we can use the classical expression for the density
profile n(x). In this case the integral over x can be done analytically. We find

〈αn〉= − 45π

32

(
T

TF

)3

Li3/2

⎛
⎝−

[
const

(λN )2/3

(
T

TF

)4
]−1

⎞
⎠ , (10.93)

where const = 1125 · 31/3π2/64 � 250.1, and Liα(x) is the polylogarithm func-
tion. In the limit T 	 TF the result scales as 〈αn〉∼ y3 log(y)3/2 with y = T/TF . For
T � TF we get 〈αn〉∼ y−1. These results imply that both the temperature scaling
and the particle number scaling differ from naive expectations. The shear viscosity
scales as η ∼ T 3/2, but 〈αn〉∼ T 3 log(T )3/2 at low T, and 〈αn〉∼ T −1 at high T.
Also, the scaling of the damping rate with N is � ∼ N−1/3 log(N )3/2 at low T and
� ∼ N 1/3 at high T, see Fig. 10.12. This implies that there are temperature regions
in which the dependence of the damping rate on N is small.

The prediction of Eq. 10.93 is shown as the solid blue line in Fig. 10.11.
We observe that the relaxation time model agrees well with the data for T ∼ (0.5 −
0.8)TF . For temperature less than 0.5TF the observed damping rate is bigger than
the prediction of the relaxation model. At very low temperature the shear viscosity
is expected to be dominated by the phonon contribution [23]

η = 0.018n

(
n2/3

mT

)5

. (10.94)
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Fig. 10.12 Damping rate of the radial breathing mode in units of the transverse trapping frequency.
This figure only shows the contribution from the dilute corona, computed using the relaxation time
approach. The solid line corresponds to N ≡ N0 = 2 · 105, λ = 0.045 as in [9]. The long dashed
and short dashed lines corresponds to N = 5N0 and N = 0.2N0, respectively

At low temperature we can compute the trap average by using the zero temper-
ature profile. We find 〈αn〉� 1.5 · 10−5(TF/T )5. This result becomes large for
T/TF < 0.1. In this regime relaxation time effects are important, and 〈αn〉 at finite
frequency goes to zero as T → 0.

Neither the low temperature nor the high temperature result provide a good
description of the data in the regime T � (0.15 − 0.40)TF . The dashed blue
line in Fig. 10.11 shows a purely phenomenological fit based on the functional
form η = η0(mT )3/2 + η1n5/3/(mT ) with η0 = 15/(32

√
π)� 0.264 and η1 � 0.06.

In this case the minimum value of η/n is 0.24 which occurs below the phase transition
at mT/n2/3 � 0.47.

10.6 Summary and Outlook

A special feature of the hydrodynamics of a unitary Fermi gas is the existence of
simple scaling solutions of the equations of ideal fluid dynamics. These solutions
are independent of the equation of state, the initial temperature and the number of
particles. The only time scales in the problem are the trap frequencies, see Fig. 10.13.
The existence of scaling solutions is related to the constraints imposed by scale
invariance on the equation of state, and to the harmonic character of the confinement
potential.

The properties mentioned above make scaling flows an ideal class of solution to
study the effects of shear viscosity. In this contribution we focused on three classes
of experiments, expansion from a deformed trap (“elliptic flow”), expansion from
a rotating trap, and damping of collective oscillations. These experiments provide
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Fig. 10.13 Time scales relevant to the expansion of a unitary Fermi gas from a deformed trap.
The inverse trap frequency is ω−1

⊥ = 0.024 ms. The scale tacc is the characteristic time for hydrody-
namic acceleration, where we have defined t = tacc to be the time when 80% of the initial internal
energy has been converted to kinetic energy. The characteristic time for viscous effects, tdis , is deter-
mined by the condition that the dissipated energy �E has reached 80% of its asymptotic value.
The freezeout time t f r is quite uncertain. Here, we show the time at which, for T0/TF = 0.21, the
freezeout surface reaches the point x⊥ = b⊥ R⊥. The crossing time tcr is the time at which the system
becomes spherical. The time t3d at which the expansion becomes three-dimensional is bigger by
another factor λ−1

somewhat complementary information, and they have different advantages and dis-
advantages:

• In the case of collective modes the effect of shear viscosity exponentiates, and as a
consequence the damping of collective modes is sensitive to very small values of
the shear viscosity. Collective modes also have the advantage that qualitatively the
effect of dissipation is very simple: The kinetic energy of the collective mode is
converted to heat, so that at the end of the evolution the system is again stationary,
but the temperature is increased. In the case of flow experiments the situation is
more complicated. Dissipation converts kinetic energy into heat but unless the
system freezes out first, the internal energy is eventually converted back to kinetic
energy. Because of the second law of thermodynamics, the final state of viscous
hydrodynamics must differ from that of ideal hydrodynamics, but the differences
can be subtle, manifesting themselves in violations of the simple scaling formulas
for the density and the velocity field.
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• The transverse expansion experiments provide detailed information about the time
dependence of the density and flow profiles. This information can be used to under-
stand the breakdown of hydrodynamics, for example by studying deviations from
the simple linear velocity profile predicted by ideal fluid dynamics. Transverse
flow experiments may also show a different, and possibly smaller, sensitivity to
relaxation effects. Figure 10.4 shows that, for T/TF < 0.4, the relaxation time
estimate of the trap averaged dissipation due to the spatially constant part of the
shear viscosity is similar for transverse flow and transverse collective modes. How-
ever, the local response of a rapidly expanding cloud is likely to be different from
that of an oscillating system.

• The expansion of a rotating cloud is sensitive to a new viscous effect, the conversion
of an irrotational flow �v ∼ �∇(xy) to a rotational flow �v ∼ ẑ × �x . Contrary to the
slowdown of the transverse expansion, which could in principle be due to scale-
breaking terms in the pressure or residual external potentials, this is a genuine
dissipative effect, since vorticity is conserved in ideal hydrodynamics.

The main difficulty in extracting the shear viscosity from the analysis of scaling
flows is associated with the role of the dilute corona of the cloud. Kinetic theory
predicts that in the dilute limit the shear viscosity is independent of density and only
depends on temperature. A simple analysis of the type presented in Sect. 10.3.3 then
implies that the dilute corona does not generate a dissipative force. It nevertheless
dissipates a large amount of energy. The analysis also suggests that freezeout only
occurs very late, see Sect. 10.3.4. There are a number of aspects of this analysis that
need to be improved:

• The Navier–Stokes equation is based on the assumption that the viscous correction
to the stress tensor appears instantaneously. This is particularly problematic in the
case of scaling flows, because the viscous contribution is spatially constant. The fact
that the ideal stresses propagate outward with the expansion of the system whereas
the dissipative stresses appear immediately indicates that causality is violated. This
problem can be addressed by including a finite relaxation time, or by solving a more
complete set of second order hydrodynamic equations.

• We have studied the effect of dissipative forces in the Navier–Stokes equations,
but we have computed the non-dissipative forces (pressure gradients) based on
an approximately isentropic expansion. This procedure neglects reheating, and
violates energy conservation. Reheating is important in the dilute corona, and
breaks the scaling nature of the expansion.

In addition to implementing these technical improvements it is important to con-
sider other experimental setups that are directly sensitive to the spatially constant
part of the shear viscosity. One option would be to measure the attenuation of sound
propagating in a very long elongated trap. Another idea would be to directly measure
the decay of a shear flow in a long channel.

Finally, we summarize the existing experimental constraints on the shear viscosity
of the unitary Fermi gas:
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• The damping of collective oscillations constrains the trap average 〈η〉/S ≡ 〈αs〉.
We find that this quantity varies between 〈αs〉� 1 at T/TF � 0.8 and 〈αs〉� 0.5
at T/TF � 0.2. In the regime 0.4 ≤ T/TF ≤ 0.8 the temperature dependence
is consistent with η ∼ (mT )3/2 and a relaxation time that scales as τR ∼ η/(nT ).

At lower temperatures an additional contribution is needed. In a simple model the
minimum of the shear viscosity to density ratio is η/n � 0.2.

• The expansion of a rotating cloud gives 〈αs〉� 0.8 at T/TF � 0.8, and 〈αs〉� (0.0−
0.4) at T/TF � 0.2 [32]. The latter results are smaller than the values extracted
from collective oscillations, although the errors are also somewhat larger. It will be
important to determine whether this discrepancy is due to the effects of the dilute
corona, and whether the smaller values of 〈αs〉 are more representative of the shear
viscosity to entropy density ratio in the core.

Note added: After the initial version of this contribution was finished dissipative
effects in the expansion of a dilute Fermi gas at temperatures T � TF were stud-
ied experimentally by Cao et al. [40]. This work nicely demonstrates the scaling
〈αn〉∼ T 3 predicted in Fig. 10.4. Numerical solutions to the equations of dissipative
hydrodynamics were studied in [41]. This work shows that quantitative estimates of
the shear viscosity have to take into account the effects of reheating.
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