
Chapter 1
The BCS–BEC Crossover
and the Unitary Fermi Gas

M. Randeria, W. Zwerger and M. Zwierlein

1.1 Introduction

There has been great excitement about the recent experimental and theoretical
progress in elucidating the Bardeen-Cooper-Schrieffer (BCS) to Bose Einstein
condensation (BEC) crossover in ultracold Fermi gases. Prior to these cold atom
experiments, all known, and reasonably well understood, superconductors and super-
fluids were firmly in one of the two limits. Either they were well described by the
celebrated BCS theory of pairing in Fermi systems, or they could be understood in
terms of the BEC of bosons, with repulsive interactions. For the first time, the ultra-
cold Fermi gases exhibited behavior that, with the turn of a knob, could be made to
span the entire range from BCS to BEC. While such a crossover had been theoreti-
cally predicted, its actual realization in the laboratory was a major advance [1, 2], and
led to intense investigation of the properties of the very strongly interacting, unitary
regime that lies right in the middle of the crossover. We now understand that the
unitary Fermi gas has remarkable universal properties, arising from scale invariance,
and has connections with fields as diverse as nuclear physics and string theory.

Our goal in this introductory chapter is to convey the excitement of all these new
developments, and to give a brief overview of the field which should also serve to
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put the contributions in the rest of the book in proper context. Our emphasis is on
the theoretical developments, that are the focus of the rest of the book, but we also
mention some of the key experimental results.

It is appropriate to begin our discussion with the BCS theory of pairing in a Fermi
gas which has been one of the major paradigms of many-body physics since its
invention more than 50 years ago [3]. Despite the idealized nature of this model,
the BCS theory of fermionic superfluidity has proven to be remarkably successful.
In addition to providing a quantitative theory of conventional superconductors [4],
it has also given a successful qualitative description of many other more complex
systems. For example, it describes well the pairing interactions in atomic nuclei [5]
or in neutron stars [6]. Moreover, it can easily be generalized to nonconventional
superfluids, for instance to p-wave, spin-triplet pairing that occurs in Helium-3 [7],
some heavy Fermion compounds [8] or in the Ruthenates [9]. The basic physics of
BCS has even been applied to pairing of quarks in color superconducting phases
expected in the QCD phase diagram at high densities [10].

In quite simple terms, the BCS state of N fermions might be thought of as conden-
sation of N/2 fermion pairs that can all occupy the same state: a bound pair with zero
center-of-mass momentum. This naive picture of superconductivity as a BEC of pairs
has to be treated with great caution, however. Indeed, in the weak coupling regime
considered by BCS, the attractive interaction between electrons is much smaller than
the Fermi energy. Thus the size of a Cooper pair is larger than the average interpar-
ticle spacing by a factor that is of order 103 in conventional superconductors. Within
the volume occupied by a single pair, there are thus about a billion other pairs. It is
therefore impossible to picture the Cooper pairs of BCS theory as bosonic particles.
Historically, an explanation of superconductivity in terms of BEC of pairs was put
forward by Blatt, Butler and Schafroth [11, 12]. Their theory, however, did not apply
to superconducting metals known at that time. In particular, it implied a critical
temperature on the order of the Fermi temperature instead of the much smaller
observed Tc. It is a legitimate question, however, to ask whether there was some-
thing fundamentally wrong with this idea and, if not, whether there are systems in
nature that actually have an attractive interaction comparable to or even larger than
the Fermi energy.

The idea that a continuous crossover exists between the BCS and BEC limits
first arose in the 1960s with the work by Keldysh on exciton condensation (see
the contribution by Keldysh in [13]), although the long range Coulomb interaction
in that problem makes it somewhat different. In a pioneering paper, Eagles [14]
studied superconductivity in metals with a very low electron density, where the
attraction between electrons was no longer small compared with the Fermi energy.
Independently, Leggett attacked the problem of the BCS–BEC crossover in the
context of Helium 3 [15]. Although He-3 is very much in the BCS limit, Leggett
wanted to understand to what extent its properties, e.g., the total angular momentum
of the superfluid, might be similar to a BEC of diatomic molecules.

In these early papers [14, 15], which are discussed in the contribution by Leggett
and Zhang to this volume, it was shown that the BCS-wavefunction continues to
provide a qualitatively correct variational description of the pairing correlations



1 The BCS–BEC Crossover and the Unitary Fermi Gas 3

for arbitrary strength of the attractive interaction. The T = 0 crossover mean field
theory differs from the standard BCS analysis in only one way. Unlike standard BCS,
where the chemical potential μ is essentially the non-interacting Fermi energy εF ,

in the crossover theory one has to solve for μ self-consistently, together with the gap
equation. One finds that μ decreases monotonically with increasing attraction, going
from εF in the BCS limit to a negative value in the BEC limit, that is one-half the
pair binding energy. Thus one obtains a smooth crossover from the weak-coupling
BCS limit with large, overlapping Cooper pairs all the way to the strong-coupling
BEC regime of tightly bound dimers. There is no singularity in the many-body
ground state even at the threshold for a bound state in the two-body problem; collec-
tive Cooper pairs have already formed well before that in the many-body problem.
In fact, Leggett pointed out that the only possible singularity occurs when the chem-
ical potential goes through zero as a result of strong attraction. More precisely,
there is a critical coupling strength on the BEC-side of the crossover, beyond which
the fermionic quasiparticle excitations above the superfluid ground state have their
minimum at zero rather than at finite momentum.1 This change in the nature of the
fermionic excitation spectrum is of relevance for population imbalanced gases, where
it determines the location of the so-called splitting point [17]. For the balanced gas, in
turn, no thermodynamic singularities show up at this point unless pairing occurs in a
non-zero angular momentum channel. In this case, there is a true quantum phase tran-
sition along the crossover from weak to strong coupling, separating a phase where
part of the Fermi surface has no gap to one with a gap in the fermionic excitation
spectrum for all momenta [ 18–20].

The evolution of the critical temperature Tc across the BCS–BEC crossover was
first addressed by Nozieres and Schmitt-Rink [21], who also argued that pairing
preempts a possible gas-liquid instability that might be expected for strong attractive
interactions. With the discovery of high temperature superconductors in 1986 and the
realization that the pairing interaction in these systems is rather strong in the sense
that the pair size is only slightly larger than the average interparticle spacing, the
crossover from a BCS picture of fermionic superfluids to a BEC of strongly bound
pairs became of interest again [22]. The fact that superconductivity in the cuprates
appears upon doping a Mott-insulator with antiferromagnetic order [23], indicates,
however, that simple models which start from a Fermi gas with strong attractive
interactions are unable to describe these systems in any quantitative manner.

The qualitative structure of the phase diagram of the BCS–BEC crossover
in a dilute Fermi gas in the standard three dimensional (3D) case is shown in
Fig. 1.1 and was obtained well before the era of cold atom experiments [21–24, 26]
(the situation in two dimensions is similar, yet there are fundamental differences
compared to the 3D situation. This is due to the fact that the superfluid transition
in 2D is of the Berezinskii-Kosterlitz-Thouless type and, moreover, that there is no
equivalent of the unitarity limit in 2D, since pair binding appears at arbitrary weak

1 Within meanfield theory, this occurs when the chemical potential reaches zero. More precise
calculations, however, show that the critical coupling strength 1/(kF a) � 0.8 beyond which fermi-
onic excitations have their minimum at zero momentum appears at μ � − 0.54εF [16].
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Fig. 1.1 Qualitative phase diagram [24] of the BCS to BEC crossover as a function of the temper-
ature T/TF and the dimensionless coupling 1/(kF a), where kF is the Fermi momentum and a
the scattering length. The pictures show schematically the evolution of the ground state from the
BCS limit with large, spatially overlapping Cooper pairs to the BEC limit with tightly bound mole-
cules. The ground state at unitarity 1/(kF a) = 0 has strongly interacting pairs with size comparable
to 1/kF . As a function of increasing attraction, the pair-formation crossover scale T ∗ diverges away
from the transition temperature Tc below which a condensate exists (Figure from Ref. [25])

attractive interactions [19, 27, 28]). As will become evident from the contributions to
these Lecture Notes, many of its features have now been tested experimentally. More-
over, substantial progress has been made within the last few years in understanding
the crossover problem on a much deeper level, both in quantitative terms and also
conceptually. In dilute Fermi gases, where the range of the potential is much smaller
than the interparticle distance k−1

F , the interaction is characterized by a scattering
length a. The experimental method for changing a—the Feshbach resonance—is
explained in the following Section. At this point, we may simply think of a as being
tuned by varying the depth of an attractive square well. For weak attraction one has
a negative scattering length and for 1/kF a → −∞ we are in the BCS limit. The
scattering length diverges at the threshold for bound state formation in the two-body
problem; this is the unitary point 1/kF a = 0. Finally, for strong attraction, a > 0 is in
fact the size of the two-body bound state in vacuum and in the many-body problem,
one is in the BEC limit when 1/kF a → +∞.

An important point to emphasize here is that although the attraction increases
monotonically going from the BCS to BEC regimes (moving from left to right in
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Fig. 1.1), both limiting cases are actually weakly interacting. This is clear in the weak
attraction BCS limit, but less obvious in the BEC limit, where the strong attraction
is resolved by the formation of tightly bound dimers. They have a residual repul-
sive interaction that basically results from the Pauli exclusion of their constituents
[24, 27]. The associated scattering length add = 0.6a has been determined from
an exact solution of the four-body Schrödinger equation [29] and vanishes in the
deep BEC limit.2 The genuinely strongly interacting regime is therefore in the
middle of the crossover, near the unitary point |a| =∞. At this point, the super-
fluid transition temperature Tc/TF � 0.22 is expected to be an appreciable fraction
of the Fermi temperature [21, 24]. While more precise calculations based on stan-
dard Green function techniques [32, 33], field theoretic expansions around the upper
and lower critical dimension [34, 35] or on quantum Monte Carlo methods [36–38]
give values Tc/TF � 0.16 that are smaller than these early predictions, the point
still remains that such large ratios of the superfluid or superconducting Tc to the bare
Fermi energy are unheard of in known condensed matter systems. The unitary gas,
which is still basically a fermionic system, in fact has the highest Tc in units of the
bare Fermi temperature TF of all known fermionic superfluids.

A second point that should be stressed is that—as far as the ground state problem
is concerned—the BCS–BEC crossover problem is just a simple, smooth evolution
from a state with very large pairs to one with small, non-overlapping pairs that behave
like point Bosons. By contrast, the normal (i.e., non-superfluid) state crossover is in
many ways more subtle. On the BCS-side the formation of pairs and their conden-
sation appears simultaneously. Superfluid order is lost by breaking pairs and—
since Tc � TF —the corresponding normal state is an ordinary Landau Fermi liquid.
By contrast, superfluid order on the BEC side is lost by depleting the condensate but
not by destroying the bosons. Thus the state above Tc in this limit is a normal Bose
gas, where “pairing” still persists. One has to go to a much higher temperature scale
T ∗, determined by the binding energy, up to logarithmic entropy corrections [22, 24],
where the molecular bosons break up into their atomic constituents. The question of
how the system above Tc evolves from a normal Fermi liquid to a normal Bose liquid
is quite nontrivial and reliable experimental results on this problem have become
available only very recently (see the contribution by F. Chevy and C. Salomon in this
volume). It was proposed early on that it does so via a pairing pseudogap [39–41]
between Tc and T ∗. The existence of a pseudogap would be particularly exciting
near unitarity where the system can be in a degenerate regime and yet show marked
deviations from Fermi-liquid behavior in the temperature range between the phase
transition Tc and the the pairing crossover scale T ∗. We will say more about this
question in Sect. 1.7, where we discuss observable consequences and recent experi-
mental progress. We also discuss there the extent to which these considerations relate
to the more complex set of phenomena observed in high Tc superconductivity in the
copper-oxide based materials.

2 A similar result is obtained also in one dimension [30] not, however, in two dimensions, where
the repulsive interaction between strongly bound dimers stays finite in the BEC-limit [27, 31].
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An independent line of investigation of the problem to understand Fermi gases
with strong attractive interactions was started by G. Bertsch in 1999 in the nuclear
physics context [42]. As will be discussed in detail in the contribution by
Heiselberg, Bertsch suggested to study an attractive Fermi gas with an infinite value
of the scattering length as a model to describe low density neutron matter, e.g., in
neutron stars. He thus focussed attention on the unitary gas in particular, realizing
that–as a result of the zero range nature of the interaction–the Pauli pinciple still
guarantees stability despite the infinitely strong attractive interaction and, moreover,
that the ground state energy of the unitary gas is necessarily a universal number times
the bare Fermi energy [43]. Knowledge of the thermodynamics of the unitary gas
realized with ultracold atoms at typical densities n � 10−12 cm−3 thus has impli-
cations for understanding the equation of state of neutron stars at densities that are
about twentyfive orders of magnitude larger [44]!

1.2 Feshbach Resonance

Although conceptually important, the BCS–BEC crossover problem was of little
direct experimental interest before the era of ultracold atoms, largely because in
condensed matter and nuclear physics one has to live with whatever interaction nature
provides and there is no way to change it. This situation changed dramatically with
the realization that dilute gases of fermionic alkali atoms, such as 40K and 6Li, can
be cooled into the degenerate regime [45–50] and that their interatomic interaction
can be tuned via a Feshbach resonance [51, 52].

In the following we describe the basic physics of magnetically tunable Feshbach
resonances which allow to change the interaction between two different (hyperfine)
species of fermions simply by changing a magnetic field. For a more detailed presen-
tation of this subject see, e.g., the recent review by Chin et al. [53]. As we shall see
below, in general, one needs a two-channel model to describe a Feshbach resonance:
two fermions in the “open channel” coupled to a bound state in the “closed channel”.
However, essentially all crossover experiments are in the so-called ‘broad’ Feshbach
resonance limit where the width of the resonance is much larger than the Fermi energy.
In this limit, an effective single-channel model is sufficient. The two-body interaction
is then described by a scattering amplitude of the form f (k) � − a/ (1 + ika) that
only depends on the scattering length a as a single parameter. Typically the scattering
length between neutral atoms is of the order of the van der Waals length r0 � 50a0
and thus much smaller than the typical interparticle spacing n−1/3 � 0.5 μm in cold
gases. Near a Feshbach resonance, however, it is possible that these lengths become
comparable.

Quite generally, a Feshbach resonance in a two-particle collision appears when-
ever a bound state in a closed channel is coupled resonantly with the scattering
continuum of an open channel. The ability to tune the scattering length by a change
of an external magnetic field B [54] relies on the difference in the magnetic moments
of the closed and open channels. Varying B thus changes the position of closed
channel bound states relative to the open channel threshold. On a phenomenological
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Fig. 1.2 Magnetic field dependence of the scattering length (blue curve) between the two lowest
magnetic sub-states of 6Li with a Feshbach resonance at B0 = 834 G and a zero crossing at B0 +
�B = 534 G. The background scattering length abg = − 1405 a0 is exceptionally large in this case
(where a0 is the Bohr radius). The energy of the bound state causing the Feshbach resonance is
shown in red

level, Feshbach resonances are described by an effective pseudopotential between
atoms in the open channel with scattering length

a(B)= abg

(
1 − �B

B − B0

)
. (1.1)

Here abg is the off-resonant background scattering length in the absence of the
coupling to the closed channel while �B and B0 describe the width and position of
the resonance expressed in magnetic field units (see Fig. 1.2).

Taking the specific example of fermionic 6Li atoms, which have electronic spin
S = 1/2 and nuclear spin I = 1, for typical magnetic fields above 500 G, the electron
spin is essentially fully polarized by the magnetic field, and aligned in the same
direction for the three lowest hyperfine states. Thus, two lithium atoms collide with
their electron spins aligned, hence in the triplet configuration. The “incoming” state
or open channel is thus part of the triplet interatomic potential. The closed channel
consists of states in the singlet potential. Due to the hyperfine interaction, that can
trade electron spin for nuclear spin, the two atoms can resonantly tunnel from the
triplet into bound states of the singlet potential. This coupling is described by an
off-diagonal potential W(r), whose range is on the order of the atomic scale.

As a result of the finite difference �μ of the magnetic moments in the open
and closed channels, a change in the magnetic field by δB amounts to shifting
the closed channel energy by �μδB with respect to the open channel (see Fig. 1.3).
Provided that the magnetic field is close to a resonant value B0 at which a bound
state φres(r) of the closed channel potential has an energy Eres(B)= �μ(B − B0)

close to zero, this state is resonantly coupled to the open channel scattering state at
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Fig. 1.3 Atoms prepared in the open channel, corresponding to the interaction potential (in red),
undergo a collision at low incident energy. In the course of the collision the open channel is coupled
to the closed channel (in blue). When a bound state of the closed channel has an energy close to
zero, a scattering resonance occurs. The position of the closed channel can be tuned with respect to
the open one, e.g., by varying the magnetic field B

low energies. This coupling leads to a resonant contribution

tan δres(k)= �
2k

mr�ν
(1.2)

to the scattering phase shift at small momenta k → 0 which is inversely propor-
tional to the detuning ν = �μ(B − B0) away from resonance [55]. The associated
characteristic length r� > 0 is determined by the overlap between the open channel
scattering state |φ0〉 and the closed channel bound state |φres〉. More precisely, it is
connected to the off-diagonal coupling potential W(r) via [56]

〈φres|W |φ0〉= �
2

m

√
4π

r�
. (1.3)

Its inverse 1/r� is therefore a measure of how strongly the open and closed channels
are coupled. Including the phase shift tan δbg(k)= − kabg due to scattering in the
open channel potential, the total scattering length a = − limk→0 tan (δbg + δres)/k
is of the form

a = abg − �
2

mr�ν
(1.4)

as given in Eq. 1.1. In particular, the phenomenological width parameter �B is deter-
mined by the combination �μ�B = �

2/(mr�abg) of the two characteristic lengths
abg and r�.

In addition to the tunability of the scattering length, Feshbach resonances also
allow to form weakly bound dimers by an adiabatic change in the magnetic
field that starts from the side with a < 0 and slowly crosses the resonance into
the regime a > 0, where the pseudopotential exhibits a bound state at energy
εb = �

2/(ma2) [53]. The corresponding bound state has a finite closed channel
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admixture
√

Z φres. Close to the resonance, where the scattering length is domi-
nated by the resonant contribution in Eq. 1.4, the binding energy

εb = �
2

ma2 = (
�μ(B − B0)

)2
/ε� + . . . (1.5)

of the weakly bound state vanishes quadratically, with characteristic energy
ε� = �

2/m(r�)2. The associated closed channel admixture Z is thus given by

Z = − ∂εb

∂v
� = 2

|v|
ε∗ = 2

r∗

|abg|
|B − B0|

|�B| , (1.6)

remaining much smaller than one over the magnetic field range |B − B0| � |�B|
for the typical Feshbach resonances that obey r� �|abg| [55].

The discussion so far is based on two-body scattering only. In order to define the
notion of a broad Feshbach resonance, however, we have to take into account that at
a finite density of the fermionic atoms, the typical relative momenta are of order kF .

Now, the two-particle scattering amplitude

f (k)= 1

k cot δ0(k) − ik
→ −1

1/a + r�k2 + ik
. (1.7)

near a Feshbach resonance has the parameter r� introduced in Eq. 1.2 as an effec-
tive range parameter [56]. The condition that the scattering amplitude f (kF ) near
the Fermi energy is only determined by the scattering length a and the universal
contribution ik that limits the scattering cross section to its maximum value 4π/k2

at a = ∞, therefore requires kFr� � 1. This is the condition for a ‘broad’ Feshbach
resonance, which only involves the many-body parameter kFr� [56]. In quantitative
terms, the Fermi wavelength λF = 2π/kF of dilute gases is of order μm, while r�

is typically on the order of or even smaller than the effective range re of the inter-
action. The condition kFr� � 1 is therefore very well obeyed and characterizes the
low density limit that is relevant in ultracold gases. A very important point to realize
in this context is that the broad Feshbach resonance limit is precisely opposite to
that encountered in conventional superconductors. In the latter case, the role of the
characteristic energy ε� beyond which the attractive interaction is cutoff is played
by the Debye energy �ωD. Since the ratio �ωD/εF is typically very small, pairing
in conventional superconductors is described by a model with kFr� 
 1, i.e. one
is in the high- rather than in the low-density limit. There is again a kind of univer-
sality in this limit provided one is the weak coupling regime where the resulting
pairs are much larger than the interparticle distance. This is connected with the fact
that in weak coupling only properties right at the Fermi surface are relevant. Then,
a reduced BCS model is applicable for which mean field theory becomes exact and
dimensionless ratios like the 2�/kB Tc = 3.52 are universal.

Experimentally, a crucial requirement for reaching the regime kF |a| 
 1 in prac-
tice is the stablity of fermionic gases near a Feshbach resonance. If two-body losses
are negligible, the lifetime of ultracold gases is limited by three-body losses, where
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two of the colliding atoms fall into a deeply bound state. To ensure energy-momentum
conservation, a third atom has to be present in order to take away the large excess
binding energy. For bosons, the three-body loss rate K3 ∼ (na2)2 increases strongly
with density and scattering length, thus preventing one from reaching the strongly
interacting regime n1/3a 
 1 with Feshbach resonances. Fortunately, for fermions
the situation is reversed. In fact, their lifetime is particularly large near Feshbach
resonances because the Pauli principle forbids two fermions of the same kind to be
at the same place [29]. Typical lifetimes can in fact reach over half a minute for
6Li [57].

1.3 Universality and Scale Invariance

As described above, the BCS–BEC crossover in dilute Fermi gases can be tuned
by changing the scattering length a. Since the interaction in the broad Feshbach
resonance limit has a as the single parameter, purely dimensional arguments imply
that all measurable quantities can be written in a “universal” form; for instance the
free energy per particle must be the form F(T, V, N )/N = εFF (T/TF , 1/kF a).

Here F (θ, x) is a dimensionless function of the scaled temperature θ = T/TF

and the dimensionless coupling x = 1/kF a, where kB TF = εF = �
2k2

F/2m is the
non-interacting Fermi energy (or temperature), and kF = (3π2n)1/3 is the Fermi
momentum corresponding to a density n. In concrete terms, universality in this
context implies that functions like F (θ, x) are independent of any microscopic
details up to corrections of order (kFr∗)2. Thus, for example, the equation of state of
40K and 6Li, which are both in the broad Feshbach resonance limit kFr� � 1, should
be identical across the entire crossover if expressed in scaled variables θ and x.

More generally, the notion of universality is usually associated with physics near
a continuous phase transition, where a diverging length scale gives rise to a behavior
that is insensitive to microscopic details. Phrased in these terms, the origin of univer-
sality of strongly interacting fermions near a Feshbach resonance was elucidated
by Nikolic and Sachdev [58]. As explained in detail in the contribution by Sachdev
to this volume, universality is tied to the existence of a quantum critical point at
unitarity when the chemical potential vanishes, i.e. the gas is at zero density. Asso-
ciated with the three relevant perturbations around this fixed point, the complete
thermodynamics and phase diagram is then a universal function of temperature T,
the deviation from unitarity, the chemical potential μ and the external field h that is
conjugate to an imbalance in the density of the two spin components [58].

As pointed out by Bertsch, a subject of particular interest in itself is the unitary
gas at infinite scattering length. At the two-body level, this is the critical coupling
for the appearance of a bound state. In the many-body problem, this point seems
not to have any special significance at first sight, since all the thermodynamic prop-
erties are continuous across the particular value 1/kF a = 0 of the dimensionless
coupling constant. A closer look however, reveals that there are additional symmetries
precisely at infinite scattering length. In fact, if the interaction near a Feshbach reso-
nance is modelled by a two-channel description in which two atoms are transformed
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into a closed channel ‘molecule’ and vice versa, the bosonic field associated with
the closed channel is massless at zero detuning v = 0. As a result, the unitary gas
is a non-relativistic field theory which is scale-invariant at kF a =∞, as realized by
Son and Nishida and by Werner and Castin [59–61]. The origin and consequences
of scale invariance, in particular in the presence of a harmonic trapping potential,
are discussed in detail in the contribution by Castin and Werner. In a homogeneous
situation, scale invariance implies that the kinetic and interaction energy terms in the
Hamiltonian have identical scaling dimension. A rescaling x → λx of the coordi-
nates by an arbitrary factor λ thus results in a simple change of the Hamiltonian by
H → H/λ2, as if the two-body interactions were of a pure power law form ∼ 1/r2.

Note, however, that in systems with pure 1/r2-interactions scale invariance holds for
any value of the interaction strength and for any dimension. For contact interactions
∼ gδ(x) in turn, scale invariance in three and also in one dimension requires either
zero or infinite coupling g = ∞, while in two dimensions it again holds for arbi-
trary coupling strength, as pointed out earlier by Pitaevskii and Rosch [62]. Within
a space-time formulation, scale-invariant, non-relativistic many-body problems are
invariant under the transformation x → λx and t → λ2t. More precisely, the full
symmetry group of the unitary gas is known as the Schrödinger group which is the
analogue, for Galilean invariant systems, of the conformal group.

Being a continuous symmetry, scale invariance leads to a conservation law by
Noether’s theorem. The associated conservation of the ‘dilaton current’ implies
that the trace of the energy-momentum tensor vanishes. As a result, the pressure
p = 2ε/3 of the non-relativistic, unitary Fermi gas is simply proportional to its energy
density ε, a relation which has first been derived using thermodynamic arguments by
Ho [63]. Note that the relation holds at arbitrary temperature and is identical to that
which is usually associated with an ideal (quantum or classical) gas, even though the
system is very strongly interacting. Apart from the simple relation between pressure
and energy density, the combination of scale and conformal invariance also has the
surprising consequence that the bulk viscosity ζ of the unitary gas vanishes identi-
cally [64, 65]. As a result, a unitary gas in an isotropic trap will expand without any
generation of entropy after the trap potential is removed. This is discussed in detail
in the contributions by Castin and Werner and by Nishida and Son.

1.4 Thermodynamics and Critical Temperature

Following the first experimental realizations of degenerate Fermi gases in the strongly
interacting regime near a Feshbach resonance [1, 2, 66–69], quite a lot of effort has
been spent to measure the thermodynamic properties and to precisely determine the
universal numbers that characterize the unitary gas in particular. From the theory point
of view, this is the most interesting and also challenging problem due to the absence
of a small expansion parameter. The ground state of a balanced gas with equal densi-
ties of the two spin components is a superfluid which is adiabatically connected to the
BCS-type superfluid in the weak coupling limit kF a → 0−. On purely dimensional
grounds, the ground state energy density ε = ξsε

(0) is a pure number ξs < 1—called
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the Bertsch parameter—times the energy density ε(0) = 3nεF/5 of the non-interacting
Fermi gas with the same density n (the subscript in ξs is a reminder of the fact that
the parameter refers to the superfluid state). Due to the relation p = 2ε/3 and the
Gibbs-Duhem relation Nμ= F + pV, the universal number ξs also determines
the factor by which the ground state pressure or the chemical potential of the
unitary gas is reduced compared to its value in an ideal, non-interacting Fermi gas.
Moreover, the zero temperature compressiblity κ = ∂n/∂μ is enhanced by a factor
1/ξs . As a result, the ratio cs = vF

√
ξs/3 between the speed of sound and the Fermi

velocity is again fixed by the single parameter ξs . Superfluid properties, in turn, are
associated with new and independent universal ratios. Of particular interest are the
critical temperature for the superfluid transition Tc/TF and the zero temperature gap
�/εF for fermionic quasiparticles.

There are a number of ways to determine the Bertsch parameter ξs experimentally,
for instance from a measurement of the release energy after expansion of the gas in
a trap [70] or—most directly—from in-situ absorption imaging of the density distri-
bution [66]. Indeed, the density profile at unitarity is that of a free Fermi gas with a
rescaled size. Due to the inhomogeneous density, the chemical potential μtrap in the
trapped gas is decreased by

√
ξs and not by ξs as in the homogeneous case. Since the

radius R ∼ √
μtrap of the atomic cloud scales with the square root of the chemical

potential, attractive interactions at unitarity give rise to a reduction of the cloud radius
by a factor ξ

1/4
s . The values of ξs obtained from this and other measurements [71–73]

have a considerable uncertainty ξs = 0.4 ± 0.1, however, in part due to the difficulty
in extrapolating to zero temperature. An extensive analysis of the thermodynamics of
both the balanced and the imbalanced gas near unitarity has recently been performed
by the group at ENS [74, 75]. As discussed in the contribution by Chevy and Salomon,
these measurements indicate a value ξs = 0.41(1) for the Bertsch parameter which
is close to that obtained from a variety of analytical approximations [43, 76]. They
include diagrammatic techniques like the pair fluctuation approach discussed in detail
in the contribution by Strinati [77, 78] or Gaussian functional integrals [79, 80].
Very similar values for ξs are obtained from both T = 0 fixed-node Monte Carlo
calculations [81–83] and also from finite temperature Monte Carlo calculations [84].
The latter method is discussed in detail in the contribution by Bulgac, Forbes
and Magierski to this volume. The accuracy of this value is challenged, however,
both by recent precision experiments of the equation of state at MIT which give
ξs = 0.37 ± 0.01 and also by quantum Monte Carlo calculations which indicate an
upper bound ξs < 0.38 [85].

A remarkable consequence of the symmetries of the unitary gas that were
mentioned above is that, beyond the derivation of some exact relations, they also
provide an unexpected route to calculate its thermodynamic properties from a system-
atic expansion around an upper and a lower critical dimension. This idea is due to
Nishida and Son [34] and is explained in detail in their contribution to this volume.
It is based on the observation [86] that the unitary gas in four dimensions is an ideal
Bose gas while in two dimensions, it is an ideal Fermi gas. Both, in d = 4 and in
d = 2, the unitary Fermi gas is therefore an exactly soluble problem. This surprising
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statement can be understood in physical terms by noting that in four dimensions a
two-particle bound state in a zero range potential only appears at infinitely strong
attraction. Thus, already at an arbitrary small value of the binding energy, the asso-
ciated dimer size vanishes, in strong contrast to the situation in d = 3, where the size
of the two-particle bound state is infinite at unitarity. The unitary Fermi gas in four
dimensions is thus a non-interacting BEC, similar to the limit a →0+ in three dimen-
sions. The d = 4 − ε expansion may be complemented by an expansion around the
lower critical dimension, which is two for the present problem [35, 86, 87]. Indeed,
for d ≤ 2 a bound state at zero binding energy appears for an arbitrary weak attractive
interaction and an expansion around d = 2+ε is thus effectively one around the non-
interacting Fermi gas. For quantitatively reliable results in the relevant case d = 3, the
ε = 4 − d expansion has been extended up to three loops [88]. Within a Pade resum-
mation that takes into account the known behavior in the limit d →2+, the resulting
value is ξs = 0.36 ± 0.02 [89] which agrees very well with the most precise experi-
mental number available at this point. The result ξs = 0.36 has in fact been obtained
within a diagrammatic calculation based on the Luttinger-Ward approach [33].
The conserving nature of the approximation guarantees that all thermodynamic rela-
tions are obeyed. Moreover, the approximation respects the exact Tan relations that
hold for Fermions with contact interactions, as discussed in the following section.
The Luttinger-Ward formulation thus provides an internally consistent and quanti-
tatively reliable picture of the thermodynamics along the full BCS–BEC crossover,
both in the normal and in the superfluid phase and at arbitrary values of the coupling
1/kF a.

With increasing temperature, superfluidity will eventually be lost. In the balanced
gas, the transition to the normal state is continuous along the full BCS–BEC
crossover and the associated critical exponents are those of the 3D XY-model.
At unitarity, the ratio Tc/TF between the critical temperature and the bare Fermi
temperature is again a universal number. Early calculations, based on including
Gaussian fluctuations beyond mean field theory, gave values Tc/TF � 0.22 [21, 24].
They are close to the result Tc/TF = 0.218 reached in the BEC-limit, where strongly
bound dimers undergo an ideal Bose-Einstein condensation. More precise results,
which take into account the interaction between non-condensed pairs, have been
obtained by Haussmann within the Luttinger-Ward approach [32, 33]. Depending
on whether the superfluid transition is approched from above or below, the critical
temperature of the unitary gas is found to be Tc/TF = 0.15 or 0.16, The apparent
first order nature of the transition is clearly an artefact of self-consistent Green func-
tion methods but, fortunately, the range of temperatures where the normal state still
appears stable in the presence of a finite superfluid order parameter is rather small
except on the BEC-side near kF a � 1 [33]. In fact, it is an unsolved challenge
to develop conserving approximations that properly account for both the gapless
nature of excitations in the symmetry broken phase and the continuous nature of
the superfluid transition, a problem that appears already in the classic theory of
weakly interacting Bose gases [33, 90]. The value Tc/TF � 0.16 is close to that
obtained by quantum Monte Carlo methods, which give Tc/TF = 0.152(7) [36, 37]
or Tc/TF = 0.171(5) in more recent calculations [38]. Note that in a trap, due to the
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increased density at the center, the ratio between Tc and the Fermi temperature of the
trap T̃F is higher, close to Tc/T̃F � 0.21 [91]. Similarly, since the local value of TF

decreases upon approaching the trap edge, the gas becomes less degenerate there.
The critical entropy S(Tc) � 1.6NkB necessary for reaching the superfluid transi-
tion is therefore considerably larger than the universal value S(Tc) � 0.7NkB of the
homogeneous gas [33]. As a final example of the universal numbers which char-
acterize the unitary gas, we mention the zero temperature excitation gap � for
fermionic excitations. The theoretically predicted value � � 0.46εF from both the
Luttinger-Ward approach [33] and Monte Carlo calculations [92] agrees rather well
with the experimental result � � 0.44εF obtained by RF-spectroscopy [93], as
discussed further in Sect. 1.7.

We conclude this Section with qualitative insights on why and how the quan-
titative results on crossover thermodynamics discussed above differ from those
obtained from the simplest BCS-Leggett mean field theory (MFT). In the BCS limit
1/kF a → −∞ there are two features that MFT fails to capture. First, the numerical
pre-factor in the gap � � εF exp(−π/2kF |a|) is overestimated. The polarization of
the medium, described diagramatically by particle-hole (p-h) fluctuations, effectively
weakens the attractive interaction [94, 95]. This reduces both the gap and the critical
temperature by a factor (4e)1/3 � 2.2, leaving the ratio 2�/Tc unchanged. (Remark-
ably, it seems that p-h fluctuations may not have a significant effect on Tc [96] at
unitarity.) Secondly, the weak-coupling MFT ground state energy omits corrections
perturbative in kF |a| but includes the exponentially small, non-perturbative pairing
contribution. The perturbative “Fermi liquid” corrections are correctly described by
Gaussian fluctuations [79] about mean field theory. They have the same form as the
classic Lee-Yang-Huang and Galitskii results for the repulsive Fermi gas, but now
with a negative scattering length.

In the opposite BEC limit 1/kF a 
 1, MFT does lead to dimers with a binding
energy �

2/ma2. However, the dimer-dimer scattering length is found to be [24, 26]
aMFT

dd = 2a as compared to the exact result add = 0.6a obtained by the solution of the
four-fermion problem [29]. This directly impacts the compressibility and the speed
of sound in the BEC limit. Gaussian fluctuation theories [79, 80, 97], that work across
the entire crossover, are able to approximately account for this renormalization in
the BEC limit.

At unitarity, MFT gives a value of ξMFT
s = 0.59 [26] that is much larger than the

best estimates ξs . This reduction in ground state energy [79] can be attributed to zero
point motion of the collective mode and virtual scattering of gapped quasiparticle
excitations missing in MFT. Simlarly, at unitarity, the MFT plus Gaussian fluctuation
Tc � 0.2TF [24] neglects critical fluctuations, and thus exceeds the best numerical
estimates of Tc.

1.5 Universal Tan Relations

The effort to understand strongly interacting Fermi gases near infinite scattering
length has led to a remarkable development in many-body physics that started in a



1 The BCS–BEC Crossover and the Unitary Fermi Gas 15

series of papers by S. Tan in 2005 [98]. He found a number of relations that apply
quite generally to two-component fermions with an interaction that has zero range.
In particular, Tan has shown that the momentum distribution of each spin-component
falls off like C/k4 at large momenta. The associated constant C, which is called the
‘contact’, has a simple physical meaning: it is a measure for the probability that two
fermions with opposite spin are close together. The contact determines the change
of the energy with respect to the interaction strength by a Hellmann-Feynman like
relation, the Tan adiabatic theorem. It also allows to calculate the energy from the
momentum distribution [99]. A crucial feature of the Tan relations is the fact that
they apply to any state of the system, e.g., both to a Fermi-liquid or a superfluid
state, at zero or at finite temperature and also in a few-body situation. The only
change is the value of the contact C. The origin of this universality was elucidated by
Braaten and Platter [100]. As described in detail in the contribution by Braaten to this
volume, the Tan relations are a consequence of operator identities that follow from
a Wilson-Kadanoff operator product expansion of the one-particle density matrix.

The Tan relations have been tested in a number of experiments recently. In a
rather direct manner, they may be verified by observing the tail of the momentum
distribution obtained in a time-of-flight measurement [101]. Moreover, the fact that a
change in the magnetic field results in a linear shift of the closed channel eigenenergy
implies, via the Tan adiabatic theorem, that the contact C is proportional to the
number of closed channel molecules [102, 103]. As discussed in the contribution by
Castin and Werner, this allows to infer the value of the contact along the BCS–BEC
crossover from earlier measurements of the closed channel fraction at Rice [104].
A different way of getting access to the contact is via rf-spectroscopy, a method
discussed in more detail in Sect. 1.7 In particular, it turns out, that the average shift
of the transition frequency compared with those in a free atom due to the effects of
interaction, is directly proportional to C [105, 106]. The so-called ‘clock-shift’ thus
basically measures the probability for two atoms to be close together. This probability
is not very sensitive as to whether one considers a superfluid or a normal state.
In fact, for the unitary gas, the contact C is almost unchanged between the balanced
superfluid phase and a normal phase at strong imbalance [106]. This observation
provides an understanding of the observation that the average clock-shift hardly
changes with imbalance [107]. The contact also shows up as the coefficient of ω−3/2

power-law tail in the rf-spectrum at high frequencies [16, 108, 109], as discussed in
the contribution by Braaten. In the presence of non-vanishing final state interactions,
the proportionality to the contact still holds. The power law, however, is changed to
ω−5/2, which leads to a finite value of the average clockshift obtained from the first
moment of the rf spectrum [105, 106]. The consistency of the value for C obtained
from either the asymptotics of the momentum distribution or the high frequency part
of the rf-spectrum has been verified nicely in experiments performed at JILA [101].

An analog of the Tan relations also hold for Fermi gases in one dimension [110].
Similar to the 3D case, there is again a special value of the coupling where the
system is scale invariant, implying an equation of state with p = 2ε. Apart from
the trivial non-interacting gas, this appears at both infinite repulsion or attraction.
In either one of these limits, the thermodynamics is like that of a single component
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Fermi gas: in the repulsive case, the effective Fermi wave vector is doubled because
the many-body wave function has to vanish at coincident coordinates not only for
Fermions with equal but also for those with opposite spin. In the attractive case, the
resulting bound pairs are like hard core bosons due to the underlying Pauli exclusion
of their constituents. As discussed in detail in the contribution by Feiguin et al. on
the BCS–BEC crossover in one dimension, this is a Tonks-Girardeau gas of dimers.

An extension of the Tan relations has recently also been derived for Bosons
with zero range interactions [111]. In addition to the contact, which is a two-body
observable, the extended form of the Tan relations for Bosons also involves a
three-body parameter that is associated with a—sub-dominant—1/k5-tail of the
momentum distribution.

1.6 The Unitary Fermi Gas as a Perfect Fluid?

A quite surprising connection between the physics of ultracold atoms and recent
developments in field theory has opened up with the realization that not only equilib-
rium but also transport properties of the unitary Fermi gas should exhibit universal
features. These connections are motivated by the fact that the unitary gas is a non-
relativistic field theory which is both scale and conformally invariant [59, 60]. In the
relativistic domain, such field theories exhibit quite unique features in their dynam-
ical properties. For example, it has been shown by Policastro, Son and Starinets [112]
that the shear viscosity η and the entropy per volume s in a N = 4 supersym-
metric Yang-Mills theory in the limit of infinite’t Hooft coupling λ = g2 N → ∞ are
simply proportional to each other. Their ratio η/s = �/(4πkB) is a universal constant
independent of temperature. The supersymmetric version of Yang-Mills theory is
related by a duality transformation to a theory that involves gravity in a five dimen-
sional space with constant negative curvature called Anti-de Sitter space (AdS-CFT
correspondence). Perturbations away from this exactly soluble model typically give
rise to larger values of η/s. This observation has prompted Kovtun, Son and Starinets
(KSS) to conjecture that the constant �/(4πkB) is a lower bound on the shear
viscosity to entropy ratio for a large class of strongly interacting quantum field
theories [113] and has motivated the search for the ‘perfect fluid’ which realizes, or
at least comes close to, this bound [114]. A nontrivial example in this context is the
standard SU(3) Yang-Mills theory for which the associated η/s ratio turns out to be
rather close to the KSS bound [115]. Adding fermions to the pure gauge theory, the
ratio η/s becomes an experimentally accessible quantity in high-energy, non-central
collisions of heavy nuclei. The experimental estimate for the ratio η/s of the quark-
gluon plasma is around 0.4�/kB, i.e., a factor five above the KSS bound [114]. In
fact, the quark-gluon plasma appears to be the most perfect real fluid known so far.
Surprisingly, ultracold atoms near a Feshbach resonance, at temperatures almost
twenty orders of magnitude below that of the quark-gluon plasma, seem to be equally
perfect. Questions that were first raised in a string-theory context have thus become
of relevance for ultracold atoms. In particular, the unitary Fermi gas provides a
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Fig. 1.4 Shear viscosity to entropy ratio η/s (blue circles) in comparison with known asymptotes.
The dashed red line on the left is the phonon contribution η/s ∼ (T/TF )−8 deep in the superfluid,
the solid red line on the right the classical limit η(T ) ∼ T 3/2 divided by the associated entropy from
the Sackur-Tetrode formula. The red diamond indicates Tc � 0.15TF . (From Ref. [123])

motivation to search for gravity-duals of non-relativistic, conformally invariant theo-
ries, currently an active subject in field theory [116, 117].

In the high-temperature limit T 
 TF , the transport properties of the unitary
gas may be described in terms of a Boltzmann equation, which predicts a power
law η(T )∼ T 3/2 for the shear viscosity at unitarity [118]. This power law depen-
dence, including the theoretical prediction for the associated prefactor, has recently
been verified in the temperature range between TF and about 7TF by measuring the
expansion dynamics of an anisotropic gas released from an optical trap [119], thus
extending earlier measurements of η based on the damping of the radial breathing
mode [120]. Extraction of the viscosity from the ‘elliptic’ flow that appears in the
transverse expansion from a deformed trap is discussed in detail in the contribu-
tion by Schäfer and Chafin to this volume. At low temperatures, in the superfluid
regime, a finite viscosity arises from the presence of a normal fluid component.
Asymptotically, phonon-phonon collisions dominate, giving rise to a rapid increase
η(T )∼ T −5 of the viscosity as the temperature approaches zero [121]. In fact, this
behavior is completely analogous to that of superfluid 4He, a problem that had been
solved by Landau and Khalatnikov in 1949 [122]. Unfortunately, the superfluid
regime and the expected rise in η have so far not been accessible experimentally. It
is certain, however, that both the viscosity and the ratio η/s of the unitary gas neces-
sarily exhibit a minimum, a behavior, which is in fact typical for any fluid [114].
Quantitative predictions for the viscosity of the unitary gas down to the superfluid
transition temperature have been obtained recently by Enss et al. [123]. They are
based on a diagrammatic evaluation of the exact Kubo-formula within a Luttinger-
Ward approach. The formalism respects all symmetries of the problem, in particular
scale invariance, and thus gives a vanishing bulk viscosity. Moreoever, it also obeys
an exact sum rule for the frequency dependent shear viscosity η(ω) derived by Taylor
and Randeria [65].
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The sum rule implies that η(ω) decays like ∼ Cη/
√

ω at large frequencies with
a prefactor Cη that is proportional to the Tan contact density C. The ratio η/s of the
unitary gas is shown in Fig. 1.4. It exhibits a shallow minimum just above the critical
temperature of the superfluid transition. The associated value η/s � 0.6�/kB is a
factor of about seven above the KSS bound, slightly larger than that found for the
relativistic quark-gluon plasma [114]. The unitary gas in fact appears to be the most
perfect of all non-relativistic fluids known so far!

A closely related issue is the behavior of shear- and spin-diffusion of a scale
invariant fluid. Indeed, as was shown by Hohenberg and Martin [90], there is a simple
Einstein relation η = ρn Dη that connects the shear viscosity η to the shear diffusion
constant Dη via the normal fluid mass density ρn . The minimum value η � 0.5�n
of the shear viscosity in the normal state just above the superfluid transition [123]
thus implies that the shear diffusion constant has a minimum value Dη � 0.5�/m
that only depends on fundamental constants. A similar result has been found recently
in an experiment which measures the spin diffusion constant Ds from the equilibra-
tion dynamics of two initally separated spin components of the unitary gas [124].
This diffusion constant is related to a spin conductivity σs by an Einstein relation of
the form Ds = σs/χs, where χs is the equilibrium spin-susceptibility. At tempera-
tures close to, but still above, the superfluid transition, Ds attains a minimum value
Ds � 6.3�/m [124].

1.7 RF Spectroscopy: Pairing Gap and Pseudogap

Atomic gases offer many internal (hyperfine) states. Superfluid mixtures are
prepared in two of these, which are labeled “up” and “down” or |1〉 and |2〉 , while all
other internal states are empty. A radiofrequency pulse, properly tuned to the energy
difference between an occupied and an empty state, say state |3〉 , can transfer atoms
among internal states. For a single atom or a non-interacting collection of atoms, these
internal transition frequencies are known with the precision of atomic clocks—in fact,
atomic clocks probe such a hyperfine transition in cesium to keep our standard of
time. However, if the atom in the initial state, say |2〉 interacts with other atoms in
|1〉 , for example forming a molecular bound state, the rf photon has to first supply
the binding energy of the molecule before it can break the bond and transfer the
atom from state |2〉 to state |3〉 . Even in the absence of molecular binding, the atom
experiences an energy shift as it interacts with the surrounding gas, and the RF pulse
will have to be detuned by the difference in energy shifts between the final and intial
state. In atomic clocks, such density-dependent interaction shifts are a major source
of systematic error and are thus called clock shifts.

RF spectroscopy has given access to microscopic information on the strongly
interacting gas in the BEC-BCS crossover. Initial experiments traced the evolution
of the molecular spectrum all the way across resonance [125]. Although two-body
physics no longer supports a bound state beyond the resonance, the spectra were still
shifted and broad. However, interpretation of the spectra was made difficult by the
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fact that the final state |3〉 employed in these experiments was still strongly interacting
with atoms in state |1〉 . In addition, the averaging over the inhomogeneous density
in a trap and the associated spatial variation of the fermionic excitation gap � did
not allow to measure � directly. These problems were avoided in experiments that
employed locally resolved and 3D reconstructed rf spectroscopy [126]. Working with
a |1〉−|3〉 mixture and a rf-transfer to state |2〉 moreover allowed to essentially elim-
inate the final state effects [127]. In this manner, the pairing gap �= 0.44 ± 0.02εF

of the unitary gas was measured by injecting unpaired atoms into the superfluid in
a slightly imbalanced Fermi mixture [93]. Paired and unpaired atoms responded at
different frequencies, allowing to read off the pairing gap.

Detailed information about the excitation spectrum of strongly interacting Fermi
gases is provided by momentum resolved rf spectroscopy, first realized by the JILA
group [128]. This is the cold atom analog of angle-resolved photoemission spec-
troscopy (ARPES) [129, 130], one of the most powerful probes of correlated electrons
in solid-state materials. The energy and momentum of the excitation are deduced by
measuring energy and momentum of the outcoupled atoms, similar to the situa-
tion in an ARPES experiment which determines both the energy and momentum of
the outgoing electrons. On a microscopic level, the information gained by such an
experiment is the occupied or ‘hole’ part A−(k, ε) of the full single-particle spectral
function A(k, ε) of the initial, strongly correlated state [16, 108, 131]. The function
A−(k, ε), which is just the Fermi function times the A(k, ε), has a rather simple
physical interpretation: it is the probability density for removing a particle with
given momentum k in the many-body system with an energy ε. For free particles and
at zero temperature, therefore, A−(k, ε)= δ(ε − εk) for εk = �

2k2/2m < μ while it
vanishes for εk > μ.The spectral function thus directly reveals the energy-momentum
relationship of a fermionic excitation in the many-body system, including the appear-
ance of an energy gap. The rf spectrum I (ω)∼ ∑

k A−(k, εk −�ω) then follows by
integrating over all possible momenta of the outgoing atom.

We expect that the hole spectral function in the T = 0 superfluid state has a sharp
peak

A−(k, ε)= Zkδ(ε − E (−)
k ) (1.8)

at an energy

E (−)
k = μ −

√(
�2k2/2m∗ − μ̃

)2 + �2 (1.9)

with a weight Zk and renormalized dispersion similar in form to the usual Bogoliubov
quasiparticles with gap �. In the Leggett-BCS mean field theory of the crossover, the
parameter m∗ = m, the bare fermion mass, and μ̃ = μ, the chemical potential, with
the weight Zk = v2

k, the occupation number. Thus the minimum in the dispersion is at
kμ = √

2mμ/� for μ > 0 (and k = 0 for μ < 0) within MFT. Note that, in contrast to
the normal state, the fact that v2

k is nonzero at arbitrary momentum in the superfluid
state, gives a finite probability to create a hole even for momenta above kμ. Moreover,
due to the sum over final momenta, the sharp onset of the rf-spectrum in the T = 0
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MFT appears at �ωmin = √
μ2 + �2 − μ, and not at the energy gap scale. In fact, in

the BCS limit �ωmin � �2/2μ, the condensation energy per particle, which is much
less than the gap. Beyond the crossover MFT, interaction effects lead to [16, 83, 92]
μ̃ = μ − U, shifted away from the chemical potential, and m∗ 
= m. The predicted
negative shift in μ̃ of U � − 0.43εF at unitarity has been seen in the rf experiments
[93].

An important question is whether the energy gap, or more precisely, a strong
suppression of spectral weight near the chemical potential, called the pseudogap,
persists above Tc in the unitary regime. In this context, a crucial parameter is the
crossover temperature scale T � (see Fig. 1.1), below which pairing correlations
become manifest [39–41]. In the BCS limit, T � coincides with Tc, so that the forma-
tion of pairs and their condensation occur simultaneously. In the opposite extreme,
the BEC limit, T � is the temperature scale for molecular dissociation, which is much
larger than the Bose condensation Tc. The key quantitative issue near unitarity is the
extent of the temparature window Tc < T < T �, in which various anomalies in
spectroscopy and thermodynamics, arising from pairing correlations above Tc, are
predicted [39–41]. Since T � is a crossover scale, its estimate depends on the observ-
able being probed, in marked contrast with a phase transition. Early estimates [24]
and quantum Monte Carlo calculations [132, 133] indicate that T � is roughly 0.5TF

for the unitary gas, which is about three times Tc. Other theoretical approaches,
discussed below, suggest a much smaller window of temperatures [16] at unitarity,
though these effects can only increase as one moves to the BEC side. The experi-
ments at present are also not unequivocal on the extent of the temperature range or
the size of the pseudogap anomalies. The extent to which both theory and experiment
provide clear evidence for the existence of a well-defined a pseudogap regime in the
unitary gas is a subject of current debate, as we discuss next.

We first discuss angle-resolved rf spectroscopy above Tc. At a phenomenolog-
ical level [39, 134], one expects the spectral function in the pseudogap regime to
still show an energy gap, and a bending-back of the dispersion (analogous to the
Bogoliubov dispersion in the superfluid state) as in Eq. 1.9. This arises because of
the persistence of pairing correlations, or ‘preformed pairs’, above Tc. However, the
sharp peak in Eq. 1.8 will be greatly broadened, because one expects quasiparticles
to be quite ill-defined in this strongly interacting regime. The very short mean free
path, or equivalently short lifetime of fermionic excitations, is closely related to the
anomalously low shear viscosity η � 0.5�n of the unitary gas in the regime just
above Tc discussed in the previous section.

Gap-like features and the associated back-bending of the dispersion near kF have
been observed in a recent angle-resolved rf experiment [135]. Note that back-bending
far from kF , with small but non-zero spectral weight, is predicted to be a universal
feature [109] of Fermi gases with contact interactions in all phases, normal and
superfluid. This is a direct consequence of the 1/k4-tail in the momentum distribu-
tion discussed in Sect. 1.5 This is indeed what the experiments [135] find, with the
back-bending at large momenta persisting up to very high T, even when the near-
kF behavior no longer exhbits a pseudogap. A quantitative estimate of the energy
gap, either the pseudogap above Tc or the superconducting gap below Tc, requires
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Fig. 1.5 Density plots of the spectral function A(k, ε) at unitarity for different temperatures.
Momentum and energy are in units of kF or εF respectively. From top left to bottom right:
T/TF = 0.01, 0.06, 0.14, 0.160(Tc), 0.18, 0.30. The white horizontal lines mark the chemical
potential μ (From [16])

measuring the near kF feature with respect to the chemical potential. Eventually, such
measurements could help to answer the question whether or not sharp quasiparticle
excitations exist in the normal fluid regime above Tc.

The contributions by Strinati and by Bulgac, Forbes and Magierski, describe
two different microscopic approaches—the pair-fluctuation approach to the BCS–
BEC crossover [108, 131, 136] and quantum Monte Carlo calculations [133],
respectively—both of which lead to characteristic pseudogap spectral features.

The full spectral functions of the unitary gas as a function of momentum
and energy for temperatures across the superfluid transition as obtained from the
Luttinger-Ward approach [16] is shown in Fig. 1.5. Deep in the superfluid state,
the dispersion of both the hole (below μ) and particle branch (above μ) exhibits a
BCS-Bogoliubov-like dispersion, as expected from Eq. 1.9. The shift of μ̃ from the
chemical potential by the interaction-induced shift U � −0.46εF . is also observed.
With increasing temperature the gap closes and the two branches gradually merge.
Apparently, in this approach, the backbending very quickly disappears above
Tc � 0.16TF and there is no pronounced pseudogap regime.

Pairing corelations above Tc are also of relevance in understanding the thermody-
namics of the BCS–BEC crossover in the normal state. It was predicted [40, 41] in
early calculations of two dimensional lattice models of the BCS–BEC crossover that
in the temperature range Tc < T < T � (see Fig. 1.1), there is a strong suppression
of the spin susceptibility χs with lowering T, while the compressibility dn/dμ is
T-independent. This qualitative difference between the behaviors of χs and dn/dμ
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represent a marked deviation from conventional Fermi liquid behavior in a strongly
interacting, degenerate Fermi system. Whether these effects are significant in the
three dimensional continuum problem at unitarity depends on the separation between
Tc and T �, as already noted.

The expected strong reduction of the spin susceptibility below T � due to the forma-
tion of singlet pairs can, in principle, be measured with ultracold atoms by observing
the displacement of the two spin-components induced by a trapping potential which
acts differently on both hyperfine states [137]. In practice, unfortunately, this is
difficult because in the case of 6Li, the polarizabilities are essentially equal at the
magnetic fields of interest. A quite different method to determine the spin suscepti-
bility has opened up recently with the measurement of the spin diffusion constant Ds

mentioned above. Indeed, an independent mesasurement of Ds and the associated
spin conductivity σs allows to extract the equilibrium spin susceptibility χs = σs/Ds

as their ratio. The resulting χs(T ) of the unitary gas shows no clear suppression in the
regime above the superfluid transition, indicating that the characteristic temperature
T � may not be much higher than Tc at unitarity.

To conclude this section, it seems appropriate to point out similarities and
differences between the pairing pseudogap in the BCS–BEC crossover and the much
discussed—but still not well understood—pseudogap phase in underdoped high-T
superconductors. In fact, the early work [39–41] on pseudogaps in the crossover
problem was motivated by the desire to see if the normal state of a short coherence
length superconductor, with pair size comparable to interparticle distance, might
generically show deviations from Fermi liquid behavior. As emphasized in the intro-
duction, the high Tc superconductors (HTSC) differ from the ultracold Fermi gases in
essential microscopic details. In the HTSC the electrons live in the two-dimensional
copper-oxygen planes of a highly anisotropic crystal, and the dominant interactions
arise from Coulomb repulsion. d-wave pairing and superconductivity arises upon
doping—i.e., adding mobile carriers to—a parent antiferromagnetic Mott insulator.
The superfluid phase competes with a variety of different order parameters, including
antiferromagnetism and charge ordering. By contrast, the neutral atoms in a Fermi
gas have manifestly attractive interactions, the only instability is to s-wave pairing
and the superfluid state is free from competing order parameters or a proximity to a
Mott transition.

Despite these differences, there are insights from the much better understood
problem of the BCS–BEC crossover that may be useful for the HTSC cuprates.
In both systems one can be in strong interaction regimes where (1) the pair size is
comparable to interparticle spacing, (2) a simple mean-field description of the phase
transition fails, and (3) Tc is determined by the superfluid stiffness rather than the
pairing gap. In the underdoped cuprates, that lie between the highest Tc optimally
doped superconductor and the parent Mott Insulator, there is clear evidence for a
normal state pseudogap [23]. The associated loss of spectral weight above Tc has a
strong angular anisotropy revealed by ARPES measurements [129, 130]. Although
there are striking similarities between the anisotropy of the pseudogap above Tc and
the d-wave superconducting gap below Tc, the connection between the two gaps gap
remains controversial. The pseudogap regime in the HTSC exhibits features arising
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from competing order parameters, local pairing above Tc, and proximity to the Mott
insulator. The problem of the unitary Fermi gas, in turn, is in many ways simpler
with a single instability to s-wave pairing. Thus if a gap exists above Tc, it can only
be related to precursor pairing correlations.

1.8 Spin Imbalance and the Fermi Polaron

In standard BCS theory, pairs are formed in an s-wave state between fermions with
opposite spins. The question of what happens if not every spin up fermion can find a
spin down partner has intrigued physicists ever since the early days of BCS theory.
In conventional superconductors, unequal populations of up and down-spin electrons
are very difficult to create, essentially because superconductivity is destroyed by the
orbital effects in the presence of a magnetic field long before the Zeeman splitting is
able to induce an appreciable imbalance. In an early study, however, Chandrasekhar
and Clogston independently considered what would be the maximum critical field if
it enters a superconductor at all and no orbital effects were present [138, 139]. Such a
field would imbalance the chemical potentials of spin up and spin down electrons by
the Zeeman energy ±μB B, where μB is Bohr’s magneton. Eventually, it would be
energetically more favorable to form an imbalanced normal state than to force atoms
with vastly different Fermi energies to pair up. The critical field is reached when
the Zeeman energy overcomes the pairing gap, μB B > �/

√
2. In the weak coupling

limit, where 2�= 3.52 kB Tc, this gives B = 18.5 Tesla for Tc = 10 K. Conventional
superconductors do not reach such high critical fields, but heavy fermion supercon-
ductors [8, 140] or layered organic superconductors [141] may be in this “Pauli
limited” regime.

In atomic gases, the population imbalance can be chosen at will. In fact, imbalance
is yet another way, besides increasing the temperature or reducing the scattering
length, to probe how stable the superfluid is. A detailed discussion of the present
state of knowledge about the set of questions associated with imbalanced gases is
given in the contributions by Chevy and Salomon from an experimental and by
Diederix and Stoof as well as by Recati and Stringari from a theoretical perspective.
It turns out, that there is a critical value of the imbalance beyond which the superfluid
turns into a normal Fermi liquid. For the homogeneous unitary gas, the critical
imbalance σc = (n↑ −n↓)/(n↑ +n↓) � 0.4 in the ground state has been determined
from quantum Monte Carlo calculations by comparing the energy of the balanced
superfluid with that of an imbalanced normal state [142]. The superfluid-to-normal
transition at T = 0 is, to current knowledge, first order in nature as long as 1/kF a is
less than a critical value close to 0.8 [16]. This is the location of the splitting point
mentioned in the introduction. Beyond this point, on the BEC-side, single Fermions
can be added to a balanced superfluid in a continuous manner. With increasing
imbalance the system thus stays superfluid, effectively as a Bose-Fermi mixture
up until full polarization, where the gas is a trivial non-interacting Fermi gas. The
breakdown of superfluidity with increasing imbalance in a trap has been measured
by observing the disappearance of a vortex lattice [143]. As shown in Fig. 1.6, for
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Fig. 1.6 Observation of vortices in a strongly interacting Fermi gas with imbalanced spin
populations. The population imbalance (N↑ − N↓)/(N↑ + N↓) was (from left to right) 100, 90, 80,
62, 28, 18, 10 and 0%. From [143]

Fig. 1.7 Critical population
imbalance
δ = (N↑ − N↓)/(N↑ + N↓)

between the two spin states
for which the
superfluid-to-normal
transition is observed. The
profiles indicate the
distribution of the gas in the
harmonic trap. Data
from [143]
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the unitary gas superfluidity breaks down beyond a ratio of 85%/15% between the
two spin states.

Since vortices are difficult to create and observe near the phase boundaries, the
superfluid phase diagram has also been mapped out by using pair condensation as an
indicator for superfluidity. The resulting phase diagram is shown in Fig. 1.7. As was
mentioned above, on the BEC side the critical value of the imbalance where superflu-
idity is destroyed by the Chandrasekhar-Clogston mechanism of a mismatched Fermi
sphere between the two components approaches 100%. This can be understood by
noting that in this regime even a tiny concentration of minority atoms in a majority
Fermi sea will form bosonic molecules with the majority atoms, which then give rise
to a Bose-Einstein condensate.

The first order transition between the superfluid at equal spin population and
the imbalanced normal mixture gives rise to phase separation. First hints for
phase separation between the normal and superfluid phase were seen in Refs. [72,
143, 144]. Using tomographic techniques, a sharp separation between a superfluid
core and a partially polarized normal phase was found [145] (see Fig. 1.8 ). Finally,
the phase diagram of a spin-polarized Fermi gas at unitarity was obtained, by mapping
out the superfluid phase versus temperature and density imbalance [146]. Using tomo-
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Fig. 1.8 Direct observation of the phase transition in imbalanced gases. The images are of the
column density difference between spin up and spin down atoms. Below a critical temperature,
an “empty” core opens up, signalling superfluid pairing at equal densities [145]

graphic techniques, spatial discontinuities in the spin polarization were revealed.
This is the signature of a first-order phase transition which disappears at a tricritical
point, in agreement with theoretical predictions [142, 147]. A detailed discussion
of the structure of the phase diagram of the imbalanced unitary gas is given in the
contributions by Diederix and Stoof and by Recati and Stringari.

While a detailed understanding of whether imbalanced Fermi gases with strong
attractive interactions exhibit more complex phases than a normal Fermi liquid or
a mixed superfluid/normal Fermi gas is still missing (see section 9 below and the
contributions by Bulgac, Forbes and Magierski for a discussion of possible exotic
phases in this context), considerable progress has been made within the last few years
in the limit of a very large imbalance. In this limit, the two component Fermi gas can
be viewed as a small number of spin down, minority impurities swimming in a Fermi
sea of spin up particles. For a weakly-attractive interaction between the impurity and
the Fermi sea, the impurity propagates freely through the medium, experiencing
only a mean field energy shift 4 π�

2an↑/m from forward-scattering, where n is the
majority density, a the scattering length between spin up and spin down. However, as
interactions increase and the mean free path becomes comparable to the interparticle
distance, momentum changing collisions become important. In the strong coupling
regime, the impurity dresses itself with a polarization cloud of majority atoms, giving
rise to a new type of quasiparticle: the Fermi polaron. The question of whether a single
added down-spin behaves like a proper quasiparticle can be addressed by calculating
the quasiparticle residue, the probability that an added bare particle with momentum
p will propagate with this very momentum for an arbitrary long time [148, 149].
For very strong attraction, this picture is expected to break down: Here, an added
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Fig. 1.9 RF spectroscopy on polarons. Shown are spatially resolved, 3D reconstructed rf spectra
of the environment (blue, state |1〉) and impurity (red, state |3〉) component in a highly imbalanced
spin-mixture. a Molecular limit. b, c Emergence of the polaron, a distinct peak exclusively in the
minority component. d At unitarity, the peak dominates the impurity spectrum. For the spectra
shown as dashed lines in d the roles of states |1〉 and |3〉 are exchanged. Impurity concentration
was x = 5(2)% for all spectra, the interaction strengths 1/kF a were a 0.76(2), b 0.43(1) c) 0.20(1),
d) 0 (Unitarity)

down-spin will form a spin-zero, mobile molecular bound state with the up-spin
Fermi sea. The fermionic quasiparticle will therefore vanish beyond a critical value
of the coupling 1/(kF↑a), via a discontiuous transition first predicted by Prokof’ev
and Svistunov [150].

Polarons have been observed via locally resolved RF spectroscopy [151]. In the
case of molecular binding, one finds the characteristic onset at the molecular binding
energy, and fully coincidal spectra for both the spin up and spin down atoms-as
binding is a purely two-body affair. For the polaron, a characteristic bimodal spectrum
is observed: A narrow, coherent quasi-particle peak, centered at the polaron binding
energy, which emerges from a broad, incoherent background (see Fig. 1.9).

The results for the ground state energy of the Fermi polaron are in quite good
agreement with the result of a variational Ansatz for the ground state wave function
due to Chevy, in which the single down spin is dressed with particle-hole excita-
tions of the up-spin Fermi sea [152, 153]. This approximate treatment is supported
by a more detailed analysis including multiple particle-hole pairs [154], and also
by Quantum Monte-Carlo calculations [150, 155]. The effective mass of Fermi
polarons at unitarity has been deduced from density profiles [156]. As discssed in the
contributions by Chevy and Salomon and by Recati and Stringari, it can be determined
in a direct manner from a dynamical measurement, by extrapolating frequencies of
collective excitations in strongly imbalanced Fermi mixtures to the single-impurity
limit [157]. The result of m∗ = 1.20(10)m is in good agreement with theoretical
predictions [150]. The polaron energy was observed to be largely independent of the
impurity density, i.e. interaction effects between the dressed particles must be weak.

At a critical interaction strength 1/(kF↑a)= 0.76, the Fermi Polaron peak
vanishes and a transition towards two-body binding is observed [151]. The disap-
pearance of the Fermi polaron as a spin 1/2 quasiparticle beyond a critical value of
the coupling was predicted by diagrammatic Monte Carlo calculations [148, 150]



1 The BCS–BEC Crossover and the Unitary Fermi Gas 27

and was later studied by variational methods [149, 158]. At this point, a Fermi liquid
of polarons is replaced by a Bose liquid of molecules. At low enough temperatures,
this molecular cloud will form a Bose condensate that fully phase separates from the
normal state of unpaired atoms, as observed in [159]. Even further away from the
Feshbach resonance, when the interactions between molecules and atoms become
weaker, one might be able to observe fermionic atoms moving in a bath of bosons.
This would be an example of the “classical” polaron, a fermion (electron) dressed
by a boson bath (phonons).

1.9 FFLO Phases and Outlook

A remarkable proposal of what might happen in a fermionic superfluid in the presence
of a finite spin-imbalance was put forward almost fifty years ago by Fulde and Ferrell
and independently by Larkin and Ovchinnikov [160, 161]. The novel type of super-
fluidity, now often abbreviated as FFLO or LOFF states, predicts that Cooper pairs
acquire a non-vanishing center-of-mass momentum. As a result, the superfluid order
parameter exhbits a nontrivial periodic modulation in space, thereby spontaneously
breaking translation invariance. Due to the coexistence of fermionic superfluidity and
periodic order such a state has also been called a ‘Fermi supersolid’ [162]. In solid
state materials, the orbital effect of an external magnetic field usually overwhelms the
Zeeman effect causing spin imbalance. Despite decades of intensive search, there are
very few systems in which there is now some indirect experimental evidence for the
occurrence of FFLO order: layered organic superconductors with a strong parallel
magnetic field [141] and certain heavy fermion materials [8, 140]. A quite different
context where superfluid states with additional periodic order might show up are
color superfluids that are expected in the core of neutron stars [10]. In this case, the
imbalance arises as a result of the different chemical potentials due to different quark
masses.

As disussed in the previous section, ultracold atoms provide an ideal model system
to study attractive Fermi gases with an adjustable value of the spin-imbalance.
For a Fermi gas near unitarity, one expects in fact that for small imbalances the
ground state exhibits FFLO order. This conclusion is supported both on general
grounds [17] and also on a generalization of density functional theory that includes
superfluid ordering and a finite spin imbalance, as discussed in the contribution by
Bulgac et al. Unfortunately, in the 3D case, neither the precise type of spatial order,
nor the relevant range of stability of an FFLO phase with respect to temperature are
known. In addition, the inhomogeneous density in the trap leads to a situation where
an FFLO phase would appear sandwiched between a balanced superfluid in the center
and a polarized normal phase around it. This makes an observation very difficult if
not impossible. As is discussed in detail in the contribution by Feiguin et al. the situ-
ation is much more promising in a one-dimensional configuration for two reasons:
First of all, it turns out that in one dimension and for negative 3D scattering lengths
(i.e. essentially on the BCS-side of the crossover) the ground state of the attractive
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Fermi gas exhibits FFLO order at arbitrary values of the polarization. As a second
point, in contrast to the 3D case, the interesting phase with finite imbalance appears
in the center of the trap and not in its wings. From a theory point of view, the 1D
case has the additional advantage that a number of exact results are available through
the Bethe-Ansatz. For instance, a complete analytic solution can be given for the
BCS–BEC crossover of the balanced gas [163, 164]. Moreover, efficient numerical
methods like the density matrix renormalization group allow to obtain quantitatively
reliable results for realistic system sizes without the Fermionic sign problem.

Experimentally, attractive Fermi gases confined in 1D tubes have been realized by
the Rice group [165]. The observed spin-resolved density profiles show the predicted
phase separation into an imbalanced gas in the center and a balanced superfluid at
the edge of the trap. Unfortuately, so far experiments have not demonstrated that the
phase in the center of the trap indeed corresponds to a paired state with FFLO order.
This is not a trivial task and requires e.g. to resolve spin density modulations on a
rather small length scale or a time-of-flight measurement that reveals the momentum
distribution of the pairs. Due to their finite center-of-mass momentum, peaks should
appear at a nonzero momenta ±Q with Q increasing linearly with the imbalance.

As a result of a breathtaking sequence of experiments and new theoretical insights
over a short period of time, ultracold Fermi gases have developed into an exciting
new form of matter with unexpected properties. The realization of the BEC-BCS
crossover, the observation of vortex lattices in neutral fermionic superfluids and
precision measurements of universal numbers in the thermodynamics of the unitary
Fermi gas have come alongside with new theoretical concepts like the ε-expansion
for scale invariant many-body systems, the Tan relations or the Fermi polaron as
a novel type of a quantum impurity problem. Unconventional superfluids like the
FFLO phase or a quite subtle liquid of trions in a mixture of three-component Fermi
gases [166, 167] that resembles the hadrons of QCD [168] appear in reach within the
coming years. Ultracold Fermi gases present us with a model textbook system, that
did not exist before, with simple and controllable interactions, dimensionality and
spin composition. Eventually, the goal is to deepen our understanding of fermions,
the building blocks of matter, in the presence of strong interactions. The field has
taken the first important steps, but this is only the beginning.
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