


Lecture Notes in Physics

Volume 836

For further volumes:
http://www.springer.com/series/5304

Founding Editors

W. Beiglböck
J. Ehlers
K. Hepp
H. Weidenmüller

Editorial Board

B.-G. Englert, Singapore
U. Frisch, Nice, France
F. Guinea, Madrid, Spain
P. Hänggi, Augsburg, Germany
W. Hillebrandt, Garching, Germany
M. Hjorth-Jensen, Oslo, Norway
R. A. L. Jones, Sheffield, UK
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Preface

The Fermionic many-body problem has been a major theme in physics since the
early days of quantum mechanics. Its applications span the range from the
microscale in nuclei and atoms to the macroscopic scale in condensed matter
physics and even beyond e.g. in the physics of neutron stars. Within the last ten
years, a completely new area has developed, in which some of the most basic
models that have been used to deal with the fermionic many-body problem can be
studied in an unprecedented clean manner: ultracold atoms, whose interactions can
be tuned over a wide range via Feshbach resonances. Despite the extreme
diluteness of these gaseous systems, ultracold atoms allow to reach a regime of
strong interactions once the scattering length exceeds the average interparticle
distance. In particular, ultracold Fermi gases near a Fesbach resonance provide a
perfect realization of the crossover between superfluids of the BCS type and a
Bose–Einstein-Condensate of strongly bound pairs, a subject that had been dis-
cussed theoretically for decades but had never been accessible in practice before.
The special case of the unitary gas at infinite scattering length exhibits additional
symmetries like scale and conformal invariance that have lead to new develop-
ments in both many-body physics and field theory. Moreover, the universality that
is connected with the fact that the interaction range is much shorter than the
average interparticle distance implies that results obtained with ultracold gases
also apply in a quite different context, e.g. to strongly interacting nucleons in the
core of neutron stars. Ultracold atoms thus provide a novel model system in which
basic questions in many-body physics can be addressed and—most importantly—a
quantitative comparison between theory and experiment is possible. The results
thus serve as a benchmark for judging the accuracy of methods used in many-body
theory as applied to the more complex problems that are of relevance in condensed
matter and nuclear physics. Ultracold atoms have opened a completely new area in
many-body physics whose implications reach far beyond the particular context of
dilute gases. In a situation, where an ever increasing specialization makes it more
and more difficult to see beyond the boundaries of one’s own subfield, such a new
field that spans a bridge between different areas of physics, is clearly extremely
valuable.
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The present book provides an overview of the present status of this field from
the ultracold atoms perspective. It covers a broad range of topics, including some
of the most recent experimental results as well as novel field-theoretic or
numerical methods developed in this context or the issue of a minimum viscosity
to entropy ratio that is deduced from the scaling flows of expanding atomic clouds.
Special efforts have been taken to make the individual chapters of the book self-
contained and accessible to non-experts in the field. It should be stressed that
despite a lot of progress over the last few years, many problems are still open, in
particular the issue of imbalanced Fermi gases and possible unconventional
superfluid phases as well as dynamical properties both near and far from equi-
librium. Hopefully, the contributions to this book will provide a valuable intro-
duction not only to the present state of knowledge but also to the still open
problems, perhaps providing motivation to address some of the many challenges
which remain.

It is a pleasure to thank Wolfram Weise for the initiative to edit a book on this
subject within the Lecture Notes in Physics series. My special thanks and appre-
ciation go to all the authors, who have taken off time from research, teaching and
many other obligations to write a chapter for this book which provides a self-
contained and up-to-date account of their original contributions to the subject.
I think they have all done an excellent job.
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Chapter 1
The BCS–BEC Crossover
and the Unitary Fermi Gas

M. Randeria, W. Zwerger and M. Zwierlein

1.1 Introduction

There has been great excitement about the recent experimental and theoretical
progress in elucidating the Bardeen-Cooper-Schrieffer (BCS) to Bose Einstein
condensation (BEC) crossover in ultracold Fermi gases. Prior to these cold atom
experiments, all known, and reasonably well understood, superconductors and super-
fluids were firmly in one of the two limits. Either they were well described by the
celebrated BCS theory of pairing in Fermi systems, or they could be understood in
terms of the BEC of bosons, with repulsive interactions. For the first time, the ultra-
cold Fermi gases exhibited behavior that, with the turn of a knob, could be made to
span the entire range from BCS to BEC. While such a crossover had been theoreti-
cally predicted, its actual realization in the laboratory was a major advance [1, 2], and
led to intense investigation of the properties of the very strongly interacting, unitary
regime that lies right in the middle of the crossover. We now understand that the
unitary Fermi gas has remarkable universal properties, arising from scale invariance,
and has connections with fields as diverse as nuclear physics and string theory.

Our goal in this introductory chapter is to convey the excitement of all these new
developments, and to give a brief overview of the field which should also serve to
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put the contributions in the rest of the book in proper context. Our emphasis is on
the theoretical developments, that are the focus of the rest of the book, but we also
mention some of the key experimental results.

It is appropriate to begin our discussion with the BCS theory of pairing in a Fermi
gas which has been one of the major paradigms of many-body physics since its
invention more than 50 years ago [3]. Despite the idealized nature of this model,
the BCS theory of fermionic superfluidity has proven to be remarkably successful.
In addition to providing a quantitative theory of conventional superconductors [4],
it has also given a successful qualitative description of many other more complex
systems. For example, it describes well the pairing interactions in atomic nuclei [5]
or in neutron stars [6]. Moreover, it can easily be generalized to nonconventional
superfluids, for instance to p-wave, spin-triplet pairing that occurs in Helium-3 [7],
some heavy Fermion compounds [8] or in the Ruthenates [9]. The basic physics of
BCS has even been applied to pairing of quarks in color superconducting phases
expected in the QCD phase diagram at high densities [10].

In quite simple terms, the BCS state of N fermions might be thought of as conden-
sation of N/2 fermion pairs that can all occupy the same state: a bound pair with zero
center-of-mass momentum. This naive picture of superconductivity as a BEC of pairs
has to be treated with great caution, however. Indeed, in the weak coupling regime
considered by BCS, the attractive interaction between electrons is much smaller than
the Fermi energy. Thus the size of a Cooper pair is larger than the average interpar-
ticle spacing by a factor that is of order 103 in conventional superconductors. Within
the volume occupied by a single pair, there are thus about a billion other pairs. It is
therefore impossible to picture the Cooper pairs of BCS theory as bosonic particles.
Historically, an explanation of superconductivity in terms of BEC of pairs was put
forward by Blatt, Butler and Schafroth [11, 12]. Their theory, however, did not apply
to superconducting metals known at that time. In particular, it implied a critical
temperature on the order of the Fermi temperature instead of the much smaller
observed Tc. It is a legitimate question, however, to ask whether there was some-
thing fundamentally wrong with this idea and, if not, whether there are systems in
nature that actually have an attractive interaction comparable to or even larger than
the Fermi energy.

The idea that a continuous crossover exists between the BCS and BEC limits
first arose in the 1960s with the work by Keldysh on exciton condensation (see
the contribution by Keldysh in [13]), although the long range Coulomb interaction
in that problem makes it somewhat different. In a pioneering paper, Eagles [14]
studied superconductivity in metals with a very low electron density, where the
attraction between electrons was no longer small compared with the Fermi energy.
Independently, Leggett attacked the problem of the BCS–BEC crossover in the
context of Helium 3 [15]. Although He-3 is very much in the BCS limit, Leggett
wanted to understand to what extent its properties, e.g., the total angular momentum
of the superfluid, might be similar to a BEC of diatomic molecules.

In these early papers [14, 15], which are discussed in the contribution by Leggett
and Zhang to this volume, it was shown that the BCS-wavefunction continues to
provide a qualitatively correct variational description of the pairing correlations
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for arbitrary strength of the attractive interaction. The T = 0 crossover mean field
theory differs from the standard BCS analysis in only one way. Unlike standard BCS,
where the chemical potential μ is essentially the non-interacting Fermi energy εF ,

in the crossover theory one has to solve for μ self-consistently, together with the gap
equation. One finds thatμ decreases monotonically with increasing attraction, going
from εF in the BCS limit to a negative value in the BEC limit, that is one-half the
pair binding energy. Thus one obtains a smooth crossover from the weak-coupling
BCS limit with large, overlapping Cooper pairs all the way to the strong-coupling
BEC regime of tightly bound dimers. There is no singularity in the many-body
ground state even at the threshold for a bound state in the two-body problem; collec-
tive Cooper pairs have already formed well before that in the many-body problem.
In fact, Leggett pointed out that the only possible singularity occurs when the chem-
ical potential goes through zero as a result of strong attraction. More precisely,
there is a critical coupling strength on the BEC-side of the crossover, beyond which
the fermionic quasiparticle excitations above the superfluid ground state have their
minimum at zero rather than at finite momentum.1 This change in the nature of the
fermionic excitation spectrum is of relevance for population imbalanced gases, where
it determines the location of the so-called splitting point [17]. For the balanced gas, in
turn, no thermodynamic singularities show up at this point unless pairing occurs in a
non-zero angular momentum channel. In this case, there is a true quantum phase tran-
sition along the crossover from weak to strong coupling, separating a phase where
part of the Fermi surface has no gap to one with a gap in the fermionic excitation
spectrum for all momenta [ 18–20].

The evolution of the critical temperature Tc across the BCS–BEC crossover was
first addressed by Nozieres and Schmitt-Rink [21], who also argued that pairing
preempts a possible gas-liquid instability that might be expected for strong attractive
interactions. With the discovery of high temperature superconductors in 1986 and the
realization that the pairing interaction in these systems is rather strong in the sense
that the pair size is only slightly larger than the average interparticle spacing, the
crossover from a BCS picture of fermionic superfluids to a BEC of strongly bound
pairs became of interest again [22]. The fact that superconductivity in the cuprates
appears upon doping a Mott-insulator with antiferromagnetic order [23], indicates,
however, that simple models which start from a Fermi gas with strong attractive
interactions are unable to describe these systems in any quantitative manner.

The qualitative structure of the phase diagram of the BCS–BEC crossover
in a dilute Fermi gas in the standard three dimensional (3D) case is shown in
Fig. 1.1 and was obtained well before the era of cold atom experiments [21–24, 26]
(the situation in two dimensions is similar, yet there are fundamental differences
compared to the 3D situation. This is due to the fact that the superfluid transition
in 2D is of the Berezinskii-Kosterlitz-Thouless type and, moreover, that there is no
equivalent of the unitarity limit in 2D, since pair binding appears at arbitrary weak

1 Within meanfield theory, this occurs when the chemical potential reaches zero. More precise
calculations, however, show that the critical coupling strength 1/(kF a)� 0.8 beyond which fermi-
onic excitations have their minimum at zero momentum appears at μ � − 0.54εF [16].
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Fig. 1.1 Qualitative phase diagram [24] of the BCS to BEC crossover as a function of the temper-
ature T/TF and the dimensionless coupling 1/(kF a), where kF is the Fermi momentum and a
the scattering length. The pictures show schematically the evolution of the ground state from the
BCS limit with large, spatially overlapping Cooper pairs to the BEC limit with tightly bound mole-
cules. The ground state at unitarity 1/(kF a)= 0 has strongly interacting pairs with size comparable
to 1/kF .As a function of increasing attraction, the pair-formation crossover scale T ∗ diverges away
from the transition temperature Tc below which a condensate exists (Figure from Ref. [25])

attractive interactions [19, 27, 28]). As will become evident from the contributions to
these Lecture Notes, many of its features have now been tested experimentally. More-
over, substantial progress has been made within the last few years in understanding
the crossover problem on a much deeper level, both in quantitative terms and also
conceptually. In dilute Fermi gases, where the range of the potential is much smaller
than the interparticle distance k−1

F , the interaction is characterized by a scattering
length a. The experimental method for changing a—the Feshbach resonance—is
explained in the following Section. At this point, we may simply think of a as being
tuned by varying the depth of an attractive square well. For weak attraction one has
a negative scattering length and for 1/kF a → −∞ we are in the BCS limit. The
scattering length diverges at the threshold for bound state formation in the two-body
problem; this is the unitary point 1/kF a = 0. Finally, for strong attraction, a > 0 is in
fact the size of the two-body bound state in vacuum and in the many-body problem,
one is in the BEC limit when 1/kF a → +∞.

An important point to emphasize here is that although the attraction increases
monotonically going from the BCS to BEC regimes (moving from left to right in
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Fig. 1.1), both limiting cases are actually weakly interacting. This is clear in the weak
attraction BCS limit, but less obvious in the BEC limit, where the strong attraction
is resolved by the formation of tightly bound dimers. They have a residual repul-
sive interaction that basically results from the Pauli exclusion of their constituents
[24, 27]. The associated scattering length add = 0.6a has been determined from
an exact solution of the four-body Schrödinger equation [29] and vanishes in the
deep BEC limit.2 The genuinely strongly interacting regime is therefore in the
middle of the crossover, near the unitary point |a| =∞. At this point, the super-
fluid transition temperature Tc/TF � 0.22 is expected to be an appreciable fraction
of the Fermi temperature [21, 24]. While more precise calculations based on stan-
dard Green function techniques [32, 33], field theoretic expansions around the upper
and lower critical dimension [34, 35] or on quantum Monte Carlo methods [36–38]
give values Tc/TF � 0.16 that are smaller than these early predictions, the point
still remains that such large ratios of the superfluid or superconducting Tc to the bare
Fermi energy are unheard of in known condensed matter systems. The unitary gas,
which is still basically a fermionic system, in fact has the highest Tc in units of the
bare Fermi temperature TF of all known fermionic superfluids.

A second point that should be stressed is that—as far as the ground state problem
is concerned—the BCS–BEC crossover problem is just a simple, smooth evolution
from a state with very large pairs to one with small, non-overlapping pairs that behave
like point Bosons. By contrast, the normal (i.e., non-superfluid) state crossover is in
many ways more subtle. On the BCS-side the formation of pairs and their conden-
sation appears simultaneously. Superfluid order is lost by breaking pairs and—
since Tc � TF —the corresponding normal state is an ordinary Landau Fermi liquid.
By contrast, superfluid order on the BEC side is lost by depleting the condensate but
not by destroying the bosons. Thus the state above Tc in this limit is a normal Bose
gas, where “pairing” still persists. One has to go to a much higher temperature scale
T ∗, determined by the binding energy, up to logarithmic entropy corrections [22, 24],
where the molecular bosons break up into their atomic constituents. The question of
how the system above Tc evolves from a normal Fermi liquid to a normal Bose liquid
is quite nontrivial and reliable experimental results on this problem have become
available only very recently (see the contribution by F. Chevy and C. Salomon in this
volume). It was proposed early on that it does so via a pairing pseudogap [39–41]
between Tc and T ∗. The existence of a pseudogap would be particularly exciting
near unitarity where the system can be in a degenerate regime and yet show marked
deviations from Fermi-liquid behavior in the temperature range between the phase
transition Tc and the the pairing crossover scale T ∗. We will say more about this
question in Sect. 1.7, where we discuss observable consequences and recent experi-
mental progress. We also discuss there the extent to which these considerations relate
to the more complex set of phenomena observed in high Tc superconductivity in the
copper-oxide based materials.

2 A similar result is obtained also in one dimension [30] not, however, in two dimensions, where
the repulsive interaction between strongly bound dimers stays finite in the BEC-limit [27, 31].
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An independent line of investigation of the problem to understand Fermi gases
with strong attractive interactions was started by G. Bertsch in 1999 in the nuclear
physics context [42]. As will be discussed in detail in the contribution by
Heiselberg, Bertsch suggested to study an attractive Fermi gas with an infinite value
of the scattering length as a model to describe low density neutron matter, e.g., in
neutron stars. He thus focussed attention on the unitary gas in particular, realizing
that–as a result of the zero range nature of the interaction–the Pauli pinciple still
guarantees stability despite the infinitely strong attractive interaction and, moreover,
that the ground state energy of the unitary gas is necessarily a universal number times
the bare Fermi energy [43]. Knowledge of the thermodynamics of the unitary gas
realized with ultracold atoms at typical densities n � 10−12 cm−3 thus has impli-
cations for understanding the equation of state of neutron stars at densities that are
about twentyfive orders of magnitude larger [44]!

1.2 Feshbach Resonance

Although conceptually important, the BCS–BEC crossover problem was of little
direct experimental interest before the era of ultracold atoms, largely because in
condensed matter and nuclear physics one has to live with whatever interaction nature
provides and there is no way to change it. This situation changed dramatically with
the realization that dilute gases of fermionic alkali atoms, such as 40K and 6Li, can
be cooled into the degenerate regime [45–50] and that their interatomic interaction
can be tuned via a Feshbach resonance [51, 52].

In the following we describe the basic physics of magnetically tunable Feshbach
resonances which allow to change the interaction between two different (hyperfine)
species of fermions simply by changing a magnetic field. For a more detailed presen-
tation of this subject see, e.g., the recent review by Chin et al. [53]. As we shall see
below, in general, one needs a two-channel model to describe a Feshbach resonance:
two fermions in the “open channel” coupled to a bound state in the “closed channel”.
However, essentially all crossover experiments are in the so-called ‘broad’ Feshbach
resonance limit where the width of the resonance is much larger than the Fermi energy.
In this limit, an effective single-channel model is sufficient. The two-body interaction
is then described by a scattering amplitude of the form f (k) � − a/ (1 + ika) that
only depends on the scattering length a as a single parameter. Typically the scattering
length between neutral atoms is of the order of the van der Waals length r0 � 50a0
and thus much smaller than the typical interparticle spacing n−1/3 � 0.5μm in cold
gases. Near a Feshbach resonance, however, it is possible that these lengths become
comparable.

Quite generally, a Feshbach resonance in a two-particle collision appears when-
ever a bound state in a closed channel is coupled resonantly with the scattering
continuum of an open channel. The ability to tune the scattering length by a change
of an external magnetic field B [54] relies on the difference in the magnetic moments
of the closed and open channels. Varying B thus changes the position of closed
channel bound states relative to the open channel threshold. On a phenomenological
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Fig. 1.2 Magnetic field dependence of the scattering length (blue curve) between the two lowest
magnetic sub-states of 6Li with a Feshbach resonance at B0 = 834 G and a zero crossing at B0 +
�B = 534 G. The background scattering length abg = − 1405 a0 is exceptionally large in this case
(where a0 is the Bohr radius). The energy of the bound state causing the Feshbach resonance is
shown in red

level, Feshbach resonances are described by an effective pseudopotential between
atoms in the open channel with scattering length

a(B)= abg

(
1 − �B

B − B0

)
. (1.1)

Here abg is the off-resonant background scattering length in the absence of the
coupling to the closed channel while �B and B0 describe the width and position of
the resonance expressed in magnetic field units (see Fig. 1.2).

Taking the specific example of fermionic 6Li atoms, which have electronic spin
S = 1/2 and nuclear spin I = 1, for typical magnetic fields above 500 G, the electron
spin is essentially fully polarized by the magnetic field, and aligned in the same
direction for the three lowest hyperfine states. Thus, two lithium atoms collide with
their electron spins aligned, hence in the triplet configuration. The “incoming” state
or open channel is thus part of the triplet interatomic potential. The closed channel
consists of states in the singlet potential. Due to the hyperfine interaction, that can
trade electron spin for nuclear spin, the two atoms can resonantly tunnel from the
triplet into bound states of the singlet potential. This coupling is described by an
off-diagonal potential W(r), whose range is on the order of the atomic scale.

As a result of the finite difference �μ of the magnetic moments in the open
and closed channels, a change in the magnetic field by δB amounts to shifting
the closed channel energy by�μδB with respect to the open channel (see Fig. 1.3).
Provided that the magnetic field is close to a resonant value B0 at which a bound
state φres(r) of the closed channel potential has an energy Eres(B)=�μ(B − B0)

close to zero, this state is resonantly coupled to the open channel scattering state at
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Energy

Interatomic Distance

Bound State

Δμ B

Magnetic Field

Energy

B0

Fig. 1.3 Atoms prepared in the open channel, corresponding to the interaction potential (in red),
undergo a collision at low incident energy. In the course of the collision the open channel is coupled
to the closed channel (in blue). When a bound state of the closed channel has an energy close to
zero, a scattering resonance occurs. The position of the closed channel can be tuned with respect to
the open one, e.g., by varying the magnetic field B

low energies. This coupling leads to a resonant contribution

tan δres(k)= �
2k

mr�ν
(1.2)

to the scattering phase shift at small momenta k → 0 which is inversely propor-
tional to the detuning ν=�μ(B − B0) away from resonance [55]. The associated
characteristic length r� > 0 is determined by the overlap between the open channel
scattering state |φ0〉 and the closed channel bound state |φres〉. More precisely, it is
connected to the off-diagonal coupling potential W(r) via [56]

〈φres|W |φ0〉= �
2

m

√
4π

r�
. (1.3)

Its inverse 1/r� is therefore a measure of how strongly the open and closed channels
are coupled. Including the phase shift tan δbg(k)= − kabg due to scattering in the
open channel potential, the total scattering length a = − limk→0 tan (δbg + δres)/k
is of the form

a = abg − �
2

mr�ν
(1.4)

as given in Eq. 1.1. In particular, the phenomenological width parameter�B is deter-
mined by the combination �μ�B = �

2/(mr�abg) of the two characteristic lengths
abg and r�.

In addition to the tunability of the scattering length, Feshbach resonances also
allow to form weakly bound dimers by an adiabatic change in the magnetic
field that starts from the side with a< 0 and slowly crosses the resonance into
the regime a> 0, where the pseudopotential exhibits a bound state at energy
εb = �

2/(ma2) [53]. The corresponding bound state has a finite closed channel
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admixture
√

Z φres. Close to the resonance, where the scattering length is domi-
nated by the resonant contribution in Eq. 1.4, the binding energy

εb = �
2

ma2 = (
�μ(B − B0)

)2
/ε� + . . . (1.5)

of the weakly bound state vanishes quadratically, with characteristic energy
ε�= �

2/m(r�)2. The associated closed channel admixture Z is thus given by

Z = − ∂εb

∂v
� = 2

|v|
ε∗

= 2
r∗

|abg|
|B − B0|

|�B| , (1.6)

remaining much smaller than one over the magnetic field range |B − B0| � |�B|
for the typical Feshbach resonances that obey r��|abg| [55].

The discussion so far is based on two-body scattering only. In order to define the
notion of a broad Feshbach resonance, however, we have to take into account that at
a finite density of the fermionic atoms, the typical relative momenta are of order kF .

Now, the two-particle scattering amplitude

f (k)= 1

k cot δ0(k)− ik
→ −1

1/a + r�k2 + ik
. (1.7)

near a Feshbach resonance has the parameter r� introduced in Eq. 1.2 as an effec-
tive range parameter [56]. The condition that the scattering amplitude f (kF ) near
the Fermi energy is only determined by the scattering length a and the universal
contribution ik that limits the scattering cross section to its maximum value 4π/k2

at a = ∞, therefore requires kFr�� 1. This is the condition for a ‘broad’ Feshbach
resonance, which only involves the many-body parameter kFr� [56]. In quantitative
terms, the Fermi wavelength λF = 2π/kF of dilute gases is of order μm, while r�

is typically on the order of or even smaller than the effective range re of the inter-
action. The condition kFr�� 1 is therefore very well obeyed and characterizes the
low density limit that is relevant in ultracold gases. A very important point to realize
in this context is that the broad Feshbach resonance limit is precisely opposite to
that encountered in conventional superconductors. In the latter case, the role of the
characteristic energy ε� beyond which the attractive interaction is cutoff is played
by the Debye energy �ωD. Since the ratio �ωD/εF is typically very small, pairing
in conventional superconductors is described by a model with kFr� 
 1, i.e. one
is in the high- rather than in the low-density limit. There is again a kind of univer-
sality in this limit provided one is the weak coupling regime where the resulting
pairs are much larger than the interparticle distance. This is connected with the fact
that in weak coupling only properties right at the Fermi surface are relevant. Then,
a reduced BCS model is applicable for which mean field theory becomes exact and
dimensionless ratios like the 2�/kB Tc = 3.52 are universal.

Experimentally, a crucial requirement for reaching the regime kF |a| 
 1 in prac-
tice is the stablity of fermionic gases near a Feshbach resonance. If two-body losses
are negligible, the lifetime of ultracold gases is limited by three-body losses, where
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two of the colliding atoms fall into a deeply bound state. To ensure energy-momentum
conservation, a third atom has to be present in order to take away the large excess
binding energy. For bosons, the three-body loss rate K3 ∼ (na2)2 increases strongly
with density and scattering length, thus preventing one from reaching the strongly
interacting regime n1/3a 
 1 with Feshbach resonances. Fortunately, for fermions
the situation is reversed. In fact, their lifetime is particularly large near Feshbach
resonances because the Pauli principle forbids two fermions of the same kind to be
at the same place [29]. Typical lifetimes can in fact reach over half a minute for
6Li [57].

1.3 Universality and Scale Invariance

As described above, the BCS–BEC crossover in dilute Fermi gases can be tuned
by changing the scattering length a. Since the interaction in the broad Feshbach
resonance limit has a as the single parameter, purely dimensional arguments imply
that all measurable quantities can be written in a “universal” form; for instance the
free energy per particle must be the form F(T, V, N )/N = εFF (T/TF , 1/kF a).
Here F (θ, x) is a dimensionless function of the scaled temperature θ = T/TF

and the dimensionless coupling x = 1/kF a, where kB TF = εF = �
2k2

F/2m is the
non-interacting Fermi energy (or temperature), and kF = (3π2n)1/3 is the Fermi
momentum corresponding to a density n. In concrete terms, universality in this
context implies that functions like F (θ, x) are independent of any microscopic
details up to corrections of order (kFr∗)2. Thus, for example, the equation of state of
40K and 6Li, which are both in the broad Feshbach resonance limit kFr�� 1, should
be identical across the entire crossover if expressed in scaled variables θ and x.

More generally, the notion of universality is usually associated with physics near
a continuous phase transition, where a diverging length scale gives rise to a behavior
that is insensitive to microscopic details. Phrased in these terms, the origin of univer-
sality of strongly interacting fermions near a Feshbach resonance was elucidated
by Nikolic and Sachdev [58]. As explained in detail in the contribution by Sachdev
to this volume, universality is tied to the existence of a quantum critical point at
unitarity when the chemical potential vanishes, i.e. the gas is at zero density. Asso-
ciated with the three relevant perturbations around this fixed point, the complete
thermodynamics and phase diagram is then a universal function of temperature T,
the deviation from unitarity, the chemical potential μ and the external field h that is
conjugate to an imbalance in the density of the two spin components [58].

As pointed out by Bertsch, a subject of particular interest in itself is the unitary
gas at infinite scattering length. At the two-body level, this is the critical coupling
for the appearance of a bound state. In the many-body problem, this point seems
not to have any special significance at first sight, since all the thermodynamic prop-
erties are continuous across the particular value 1/kF a = 0 of the dimensionless
coupling constant. A closer look however, reveals that there are additional symmetries
precisely at infinite scattering length. In fact, if the interaction near a Feshbach reso-
nance is modelled by a two-channel description in which two atoms are transformed
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into a closed channel ‘molecule’ and vice versa, the bosonic field associated with
the closed channel is massless at zero detuning v = 0. As a result, the unitary gas
is a non-relativistic field theory which is scale-invariant at kF a =∞, as realized by
Son and Nishida and by Werner and Castin [59–61]. The origin and consequences
of scale invariance, in particular in the presence of a harmonic trapping potential,
are discussed in detail in the contribution by Castin and Werner. In a homogeneous
situation, scale invariance implies that the kinetic and interaction energy terms in the
Hamiltonian have identical scaling dimension. A rescaling x → λx of the coordi-
nates by an arbitrary factor λ thus results in a simple change of the Hamiltonian by
H → H/λ2, as if the two-body interactions were of a pure power law form ∼ 1/r2.

Note, however, that in systems with pure 1/r2-interactions scale invariance holds for
any value of the interaction strength and for any dimension. For contact interactions
∼ gδ(x) in turn, scale invariance in three and also in one dimension requires either
zero or infinite coupling g = ∞, while in two dimensions it again holds for arbi-
trary coupling strength, as pointed out earlier by Pitaevskii and Rosch [62]. Within
a space-time formulation, scale-invariant, non-relativistic many-body problems are
invariant under the transformation x → λx and t → λ2t. More precisely, the full
symmetry group of the unitary gas is known as the Schrödinger group which is the
analogue, for Galilean invariant systems, of the conformal group.

Being a continuous symmetry, scale invariance leads to a conservation law by
Noether’s theorem. The associated conservation of the ‘dilaton current’ implies
that the trace of the energy-momentum tensor vanishes. As a result, the pressure
p = 2ε/3 of the non-relativistic, unitary Fermi gas is simply proportional to its energy
density ε, a relation which has first been derived using thermodynamic arguments by
Ho [63]. Note that the relation holds at arbitrary temperature and is identical to that
which is usually associated with an ideal (quantum or classical) gas, even though the
system is very strongly interacting. Apart from the simple relation between pressure
and energy density, the combination of scale and conformal invariance also has the
surprising consequence that the bulk viscosity ζ of the unitary gas vanishes identi-
cally [64, 65]. As a result, a unitary gas in an isotropic trap will expand without any
generation of entropy after the trap potential is removed. This is discussed in detail
in the contributions by Castin and Werner and by Nishida and Son.

1.4 Thermodynamics and Critical Temperature

Following the first experimental realizations of degenerate Fermi gases in the strongly
interacting regime near a Feshbach resonance [1, 2, 66–69], quite a lot of effort has
been spent to measure the thermodynamic properties and to precisely determine the
universal numbers that characterize the unitary gas in particular. From the theory point
of view, this is the most interesting and also challenging problem due to the absence
of a small expansion parameter. The ground state of a balanced gas with equal densi-
ties of the two spin components is a superfluid which is adiabatically connected to the
BCS-type superfluid in the weak coupling limit kF a → 0−. On purely dimensional
grounds, the ground state energy density ε= ξsε

(0) is a pure number ξs < 1—called
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the Bertsch parameter—times the energy density ε(0) = 3nεF/5 of the non-interacting
Fermi gas with the same density n (the subscript in ξs is a reminder of the fact that
the parameter refers to the superfluid state). Due to the relation p = 2ε/3 and the
Gibbs-Duhem relation Nμ= F + pV, the universal number ξs also determines
the factor by which the ground state pressure or the chemical potential of the
unitary gas is reduced compared to its value in an ideal, non-interacting Fermi gas.
Moreover, the zero temperature compressiblity κ = ∂n/∂μ is enhanced by a factor
1/ξs . As a result, the ratio cs = vF

√
ξs/3 between the speed of sound and the Fermi

velocity is again fixed by the single parameter ξs . Superfluid properties, in turn, are
associated with new and independent universal ratios. Of particular interest are the
critical temperature for the superfluid transition Tc/TF and the zero temperature gap
�/εF for fermionic quasiparticles.

There are a number of ways to determine the Bertsch parameter ξs experimentally,
for instance from a measurement of the release energy after expansion of the gas in
a trap [70] or—most directly—from in-situ absorption imaging of the density distri-
bution [66]. Indeed, the density profile at unitarity is that of a free Fermi gas with a
rescaled size. Due to the inhomogeneous density, the chemical potential μtrap in the
trapped gas is decreased by

√
ξs and not by ξs as in the homogeneous case. Since the

radius R ∼ √
μtrap of the atomic cloud scales with the square root of the chemical

potential, attractive interactions at unitarity give rise to a reduction of the cloud radius
by a factor ξ1/4

s . The values of ξs obtained from this and other measurements [71–73]
have a considerable uncertainty ξs = 0.4 ± 0.1, however, in part due to the difficulty
in extrapolating to zero temperature. An extensive analysis of the thermodynamics of
both the balanced and the imbalanced gas near unitarity has recently been performed
by the group at ENS [74, 75]. As discussed in the contribution by Chevy and Salomon,
these measurements indicate a value ξs = 0.41(1) for the Bertsch parameter which
is close to that obtained from a variety of analytical approximations [43, 76]. They
include diagrammatic techniques like the pair fluctuation approach discussed in detail
in the contribution by Strinati [77, 78] or Gaussian functional integrals [79, 80].
Very similar values for ξs are obtained from both T = 0 fixed-node Monte Carlo
calculations [81–83] and also from finite temperature Monte Carlo calculations [84].
The latter method is discussed in detail in the contribution by Bulgac, Forbes
and Magierski to this volume. The accuracy of this value is challenged, however,
both by recent precision experiments of the equation of state at MIT which give
ξs = 0.37 ± 0.01 and also by quantum Monte Carlo calculations which indicate an
upper bound ξs < 0.38 [85].

A remarkable consequence of the symmetries of the unitary gas that were
mentioned above is that, beyond the derivation of some exact relations, they also
provide an unexpected route to calculate its thermodynamic properties from a system-
atic expansion around an upper and a lower critical dimension. This idea is due to
Nishida and Son [34] and is explained in detail in their contribution to this volume.
It is based on the observation [86] that the unitary gas in four dimensions is an ideal
Bose gas while in two dimensions, it is an ideal Fermi gas. Both, in d = 4 and in
d = 2, the unitary Fermi gas is therefore an exactly soluble problem. This surprising



1 The BCS–BEC Crossover and the Unitary Fermi Gas 13

statement can be understood in physical terms by noting that in four dimensions a
two-particle bound state in a zero range potential only appears at infinitely strong
attraction. Thus, already at an arbitrary small value of the binding energy, the asso-
ciated dimer size vanishes, in strong contrast to the situation in d = 3,where the size
of the two-particle bound state is infinite at unitarity. The unitary Fermi gas in four
dimensions is thus a non-interacting BEC, similar to the limit a →0+ in three dimen-
sions. The d = 4 − ε expansion may be complemented by an expansion around the
lower critical dimension, which is two for the present problem [35, 86, 87]. Indeed,
for d ≤ 2 a bound state at zero binding energy appears for an arbitrary weak attractive
interaction and an expansion around d = 2+ε is thus effectively one around the non-
interacting Fermi gas. For quantitatively reliable results in the relevant case d = 3, the
ε= 4 − d expansion has been extended up to three loops [88]. Within a Pade resum-
mation that takes into account the known behavior in the limit d →2+, the resulting
value is ξs = 0.36 ± 0.02 [89] which agrees very well with the most precise experi-
mental number available at this point. The result ξs = 0.36 has in fact been obtained
within a diagrammatic calculation based on the Luttinger-Ward approach [33].
The conserving nature of the approximation guarantees that all thermodynamic rela-
tions are obeyed. Moreover, the approximation respects the exact Tan relations that
hold for Fermions with contact interactions, as discussed in the following section.
The Luttinger-Ward formulation thus provides an internally consistent and quanti-
tatively reliable picture of the thermodynamics along the full BCS–BEC crossover,
both in the normal and in the superfluid phase and at arbitrary values of the coupling
1/kF a.

With increasing temperature, superfluidity will eventually be lost. In the balanced
gas, the transition to the normal state is continuous along the full BCS–BEC
crossover and the associated critical exponents are those of the 3D XY-model.
At unitarity, the ratio Tc/TF between the critical temperature and the bare Fermi
temperature is again a universal number. Early calculations, based on including
Gaussian fluctuations beyond mean field theory, gave values Tc/TF � 0.22 [21, 24].
They are close to the result Tc/TF = 0.218 reached in the BEC-limit, where strongly
bound dimers undergo an ideal Bose-Einstein condensation. More precise results,
which take into account the interaction between non-condensed pairs, have been
obtained by Haussmann within the Luttinger-Ward approach [32, 33]. Depending
on whether the superfluid transition is approched from above or below, the critical
temperature of the unitary gas is found to be Tc/TF = 0.15 or 0.16, The apparent
first order nature of the transition is clearly an artefact of self-consistent Green func-
tion methods but, fortunately, the range of temperatures where the normal state still
appears stable in the presence of a finite superfluid order parameter is rather small
except on the BEC-side near kF a � 1 [33]. In fact, it is an unsolved challenge
to develop conserving approximations that properly account for both the gapless
nature of excitations in the symmetry broken phase and the continuous nature of
the superfluid transition, a problem that appears already in the classic theory of
weakly interacting Bose gases [33, 90]. The value Tc/TF � 0.16 is close to that
obtained by quantum Monte Carlo methods, which give Tc/TF = 0.152(7) [36, 37]
or Tc/TF = 0.171(5) in more recent calculations [38]. Note that in a trap, due to the
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increased density at the center, the ratio between Tc and the Fermi temperature of the
trap T̃F is higher, close to Tc/T̃F � 0.21 [91]. Similarly, since the local value of TF

decreases upon approaching the trap edge, the gas becomes less degenerate there.
The critical entropy S(Tc) � 1.6NkB necessary for reaching the superfluid transi-
tion is therefore considerably larger than the universal value S(Tc) � 0.7NkB of the
homogeneous gas [33]. As a final example of the universal numbers which char-
acterize the unitary gas, we mention the zero temperature excitation gap � for
fermionic excitations. The theoretically predicted value � � 0.46εF from both the
Luttinger-Ward approach [33] and Monte Carlo calculations [92] agrees rather well
with the experimental result � � 0.44εF obtained by RF-spectroscopy [93], as
discussed further in Sect. 1.7.

We conclude this Section with qualitative insights on why and how the quan-
titative results on crossover thermodynamics discussed above differ from those
obtained from the simplest BCS-Leggett mean field theory (MFT). In the BCS limit
1/kF a → −∞ there are two features that MFT fails to capture. First, the numerical
pre-factor in the gap� � εF exp(−π/2kF |a|) is overestimated. The polarization of
the medium, described diagramatically by particle-hole (p-h) fluctuations, effectively
weakens the attractive interaction [94, 95]. This reduces both the gap and the critical
temperature by a factor (4e)1/3 � 2.2, leaving the ratio 2�/Tc unchanged. (Remark-
ably, it seems that p-h fluctuations may not have a significant effect on Tc [96] at
unitarity.) Secondly, the weak-coupling MFT ground state energy omits corrections
perturbative in kF |a| but includes the exponentially small, non-perturbative pairing
contribution. The perturbative “Fermi liquid” corrections are correctly described by
Gaussian fluctuations [79] about mean field theory. They have the same form as the
classic Lee-Yang-Huang and Galitskii results for the repulsive Fermi gas, but now
with a negative scattering length.

In the opposite BEC limit 1/kF a 
 1, MFT does lead to dimers with a binding
energy �

2/ma2. However, the dimer-dimer scattering length is found to be [24, 26]
aMFT

dd = 2a as compared to the exact result add = 0.6a obtained by the solution of the
four-fermion problem [29]. This directly impacts the compressibility and the speed
of sound in the BEC limit. Gaussian fluctuation theories [79, 80, 97], that work across
the entire crossover, are able to approximately account for this renormalization in
the BEC limit.

At unitarity, MFT gives a value of ξMFT
s = 0.59 [26] that is much larger than the

best estimates ξs . This reduction in ground state energy [79] can be attributed to zero
point motion of the collective mode and virtual scattering of gapped quasiparticle
excitations missing in MFT. Simlarly, at unitarity, the MFT plus Gaussian fluctuation
Tc � 0.2TF [24] neglects critical fluctuations, and thus exceeds the best numerical
estimates of Tc.

1.5 Universal Tan Relations

The effort to understand strongly interacting Fermi gases near infinite scattering
length has led to a remarkable development in many-body physics that started in a
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series of papers by S. Tan in 2005 [98]. He found a number of relations that apply
quite generally to two-component fermions with an interaction that has zero range.
In particular, Tan has shown that the momentum distribution of each spin-component
falls off like C/k4 at large momenta. The associated constant C, which is called the
‘contact’, has a simple physical meaning: it is a measure for the probability that two
fermions with opposite spin are close together. The contact determines the change
of the energy with respect to the interaction strength by a Hellmann-Feynman like
relation, the Tan adiabatic theorem. It also allows to calculate the energy from the
momentum distribution [99]. A crucial feature of the Tan relations is the fact that
they apply to any state of the system, e.g., both to a Fermi-liquid or a superfluid
state, at zero or at finite temperature and also in a few-body situation. The only
change is the value of the contact C. The origin of this universality was elucidated by
Braaten and Platter [100]. As described in detail in the contribution by Braaten to this
volume, the Tan relations are a consequence of operator identities that follow from
a Wilson-Kadanoff operator product expansion of the one-particle density matrix.

The Tan relations have been tested in a number of experiments recently. In a
rather direct manner, they may be verified by observing the tail of the momentum
distribution obtained in a time-of-flight measurement [101]. Moreover, the fact that a
change in the magnetic field results in a linear shift of the closed channel eigenenergy
implies, via the Tan adiabatic theorem, that the contact C is proportional to the
number of closed channel molecules [102, 103]. As discussed in the contribution by
Castin and Werner, this allows to infer the value of the contact along the BCS–BEC
crossover from earlier measurements of the closed channel fraction at Rice [104].
A different way of getting access to the contact is via rf-spectroscopy, a method
discussed in more detail in Sect. 1.7 In particular, it turns out, that the average shift
of the transition frequency compared with those in a free atom due to the effects of
interaction, is directly proportional to C [105, 106]. The so-called ‘clock-shift’ thus
basically measures the probability for two atoms to be close together. This probability
is not very sensitive as to whether one considers a superfluid or a normal state.
In fact, for the unitary gas, the contact C is almost unchanged between the balanced
superfluid phase and a normal phase at strong imbalance [106]. This observation
provides an understanding of the observation that the average clock-shift hardly
changes with imbalance [107]. The contact also shows up as the coefficient of ω−3/2

power-law tail in the rf-spectrum at high frequencies [16, 108, 109], as discussed in
the contribution by Braaten. In the presence of non-vanishing final state interactions,
the proportionality to the contact still holds. The power law, however, is changed to
ω−5/2, which leads to a finite value of the average clockshift obtained from the first
moment of the rf spectrum [105, 106]. The consistency of the value for C obtained
from either the asymptotics of the momentum distribution or the high frequency part
of the rf-spectrum has been verified nicely in experiments performed at JILA [101].

An analog of the Tan relations also hold for Fermi gases in one dimension [110].
Similar to the 3D case, there is again a special value of the coupling where the
system is scale invariant, implying an equation of state with p = 2ε. Apart from
the trivial non-interacting gas, this appears at both infinite repulsion or attraction.
In either one of these limits, the thermodynamics is like that of a single component
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Fermi gas: in the repulsive case, the effective Fermi wave vector is doubled because
the many-body wave function has to vanish at coincident coordinates not only for
Fermions with equal but also for those with opposite spin. In the attractive case, the
resulting bound pairs are like hard core bosons due to the underlying Pauli exclusion
of their constituents. As discussed in detail in the contribution by Feiguin et al. on
the BCS–BEC crossover in one dimension, this is a Tonks-Girardeau gas of dimers.

An extension of the Tan relations has recently also been derived for Bosons
with zero range interactions [111]. In addition to the contact, which is a two-body
observable, the extended form of the Tan relations for Bosons also involves a
three-body parameter that is associated with a—sub-dominant—1/k5-tail of the
momentum distribution.

1.6 The Unitary Fermi Gas as a Perfect Fluid?

A quite surprising connection between the physics of ultracold atoms and recent
developments in field theory has opened up with the realization that not only equilib-
rium but also transport properties of the unitary Fermi gas should exhibit universal
features. These connections are motivated by the fact that the unitary gas is a non-
relativistic field theory which is both scale and conformally invariant [59, 60]. In the
relativistic domain, such field theories exhibit quite unique features in their dynam-
ical properties. For example, it has been shown by Policastro, Son and Starinets [112]
that the shear viscosity η and the entropy per volume s in a N = 4 supersym-
metric Yang-Mills theory in the limit of infinite’t Hooft coupling λ= g2 N → ∞ are
simply proportional to each other. Their ratio η/s = �/(4πkB) is a universal constant
independent of temperature. The supersymmetric version of Yang-Mills theory is
related by a duality transformation to a theory that involves gravity in a five dimen-
sional space with constant negative curvature called Anti-de Sitter space (AdS-CFT
correspondence). Perturbations away from this exactly soluble model typically give
rise to larger values of η/s. This observation has prompted Kovtun, Son and Starinets
(KSS) to conjecture that the constant �/(4πkB) is a lower bound on the shear
viscosity to entropy ratio for a large class of strongly interacting quantum field
theories [113] and has motivated the search for the ‘perfect fluid’ which realizes, or
at least comes close to, this bound [114]. A nontrivial example in this context is the
standard SU(3) Yang-Mills theory for which the associated η/s ratio turns out to be
rather close to the KSS bound [115]. Adding fermions to the pure gauge theory, the
ratio η/s becomes an experimentally accessible quantity in high-energy, non-central
collisions of heavy nuclei. The experimental estimate for the ratio η/s of the quark-
gluon plasma is around 0.4�/kB, i.e., a factor five above the KSS bound [114]. In
fact, the quark-gluon plasma appears to be the most perfect real fluid known so far.
Surprisingly, ultracold atoms near a Feshbach resonance, at temperatures almost
twenty orders of magnitude below that of the quark-gluon plasma, seem to be equally
perfect. Questions that were first raised in a string-theory context have thus become
of relevance for ultracold atoms. In particular, the unitary Fermi gas provides a
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Fig. 1.4 Shear viscosity to entropy ratio η/s (blue circles) in comparison with known asymptotes.
The dashed red line on the left is the phonon contribution η/s ∼ (T/TF )

−8 deep in the superfluid,
the solid red line on the right the classical limit η(T )∼ T 3/2 divided by the associated entropy from
the Sackur-Tetrode formula. The red diamond indicates Tc � 0.15TF . (From Ref. [123])

motivation to search for gravity-duals of non-relativistic, conformally invariant theo-
ries, currently an active subject in field theory [116, 117].

In the high-temperature limit T 
 TF , the transport properties of the unitary
gas may be described in terms of a Boltzmann equation, which predicts a power
law η(T )∼ T 3/2 for the shear viscosity at unitarity [118]. This power law depen-
dence, including the theoretical prediction for the associated prefactor, has recently
been verified in the temperature range between TF and about 7TF by measuring the
expansion dynamics of an anisotropic gas released from an optical trap [119], thus
extending earlier measurements of η based on the damping of the radial breathing
mode [120]. Extraction of the viscosity from the ‘elliptic’ flow that appears in the
transverse expansion from a deformed trap is discussed in detail in the contribu-
tion by Schäfer and Chafin to this volume. At low temperatures, in the superfluid
regime, a finite viscosity arises from the presence of a normal fluid component.
Asymptotically, phonon-phonon collisions dominate, giving rise to a rapid increase
η(T )∼ T −5 of the viscosity as the temperature approaches zero [121]. In fact, this
behavior is completely analogous to that of superfluid 4He, a problem that had been
solved by Landau and Khalatnikov in 1949 [122]. Unfortunately, the superfluid
regime and the expected rise in η have so far not been accessible experimentally. It
is certain, however, that both the viscosity and the ratio η/s of the unitary gas neces-
sarily exhibit a minimum, a behavior, which is in fact typical for any fluid [114].
Quantitative predictions for the viscosity of the unitary gas down to the superfluid
transition temperature have been obtained recently by Enss et al. [123]. They are
based on a diagrammatic evaluation of the exact Kubo-formula within a Luttinger-
Ward approach. The formalism respects all symmetries of the problem, in particular
scale invariance, and thus gives a vanishing bulk viscosity. Moreoever, it also obeys
an exact sum rule for the frequency dependent shear viscosity η(ω) derived by Taylor
and Randeria [65].
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The sum rule implies that η(ω) decays like ∼ Cη/
√
ω at large frequencies with

a prefactor Cη that is proportional to the Tan contact density C. The ratio η/s of the
unitary gas is shown in Fig. 1.4. It exhibits a shallow minimum just above the critical
temperature of the superfluid transition. The associated value η/s � 0.6�/kB is a
factor of about seven above the KSS bound, slightly larger than that found for the
relativistic quark-gluon plasma [114]. The unitary gas in fact appears to be the most
perfect of all non-relativistic fluids known so far!

A closely related issue is the behavior of shear- and spin-diffusion of a scale
invariant fluid. Indeed, as was shown by Hohenberg and Martin [90], there is a simple
Einstein relation η= ρn Dη that connects the shear viscosity η to the shear diffusion
constant Dη via the normal fluid mass density ρn . The minimum value η � 0.5�n
of the shear viscosity in the normal state just above the superfluid transition [123]
thus implies that the shear diffusion constant has a minimum value Dη � 0.5�/m
that only depends on fundamental constants. A similar result has been found recently
in an experiment which measures the spin diffusion constant Ds from the equilibra-
tion dynamics of two initally separated spin components of the unitary gas [124].
This diffusion constant is related to a spin conductivity σs by an Einstein relation of
the form Ds = σs/χs, where χs is the equilibrium spin-susceptibility. At tempera-
tures close to, but still above, the superfluid transition, Ds attains a minimum value
Ds � 6.3�/m [124].

1.7 RF Spectroscopy: Pairing Gap and Pseudogap

Atomic gases offer many internal (hyperfine) states. Superfluid mixtures are
prepared in two of these, which are labeled “up” and “down” or |1〉 and |2〉 ,while all
other internal states are empty. A radiofrequency pulse, properly tuned to the energy
difference between an occupied and an empty state, say state |3〉 , can transfer atoms
among internal states. For a single atom or a non-interacting collection of atoms, these
internal transition frequencies are known with the precision of atomic clocks—in fact,
atomic clocks probe such a hyperfine transition in cesium to keep our standard of
time. However, if the atom in the initial state, say |2〉 interacts with other atoms in
|1〉 , for example forming a molecular bound state, the rf photon has to first supply
the binding energy of the molecule before it can break the bond and transfer the
atom from state |2〉 to state |3〉 . Even in the absence of molecular binding, the atom
experiences an energy shift as it interacts with the surrounding gas, and the RF pulse
will have to be detuned by the difference in energy shifts between the final and intial
state. In atomic clocks, such density-dependent interaction shifts are a major source
of systematic error and are thus called clock shifts.

RF spectroscopy has given access to microscopic information on the strongly
interacting gas in the BEC-BCS crossover. Initial experiments traced the evolution
of the molecular spectrum all the way across resonance [125]. Although two-body
physics no longer supports a bound state beyond the resonance, the spectra were still
shifted and broad. However, interpretation of the spectra was made difficult by the
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fact that the final state |3〉 employed in these experiments was still strongly interacting
with atoms in state |1〉 . In addition, the averaging over the inhomogeneous density
in a trap and the associated spatial variation of the fermionic excitation gap � did
not allow to measure � directly. These problems were avoided in experiments that
employed locally resolved and 3D reconstructed rf spectroscopy [126]. Working with
a |1〉−|3〉 mixture and a rf-transfer to state |2〉 moreover allowed to essentially elim-
inate the final state effects [127]. In this manner, the pairing gap�= 0.44 ± 0.02εF

of the unitary gas was measured by injecting unpaired atoms into the superfluid in
a slightly imbalanced Fermi mixture [93]. Paired and unpaired atoms responded at
different frequencies, allowing to read off the pairing gap.

Detailed information about the excitation spectrum of strongly interacting Fermi
gases is provided by momentum resolved rf spectroscopy, first realized by the JILA
group [128]. This is the cold atom analog of angle-resolved photoemission spec-
troscopy (ARPES) [129, 130], one of the most powerful probes of correlated electrons
in solid-state materials. The energy and momentum of the excitation are deduced by
measuring energy and momentum of the outcoupled atoms, similar to the situa-
tion in an ARPES experiment which determines both the energy and momentum of
the outgoing electrons. On a microscopic level, the information gained by such an
experiment is the occupied or ‘hole’ part A−(k, ε) of the full single-particle spectral
function A(k, ε) of the initial, strongly correlated state [16, 108, 131]. The function
A−(k, ε), which is just the Fermi function times the A(k, ε), has a rather simple
physical interpretation: it is the probability density for removing a particle with
given momentum k in the many-body system with an energy ε. For free particles and
at zero temperature, therefore, A−(k, ε)= δ(ε − εk) for εk = �

2k2/2m<μ while it
vanishes for εk >μ.The spectral function thus directly reveals the energy-momentum
relationship of a fermionic excitation in the many-body system, including the appear-
ance of an energy gap. The rf spectrum I (ω)∼ ∑

k A−(k, εk −�ω) then follows by
integrating over all possible momenta of the outgoing atom.

We expect that the hole spectral function in the T = 0 superfluid state has a sharp
peak

A−(k, ε)= Zkδ(ε − E (−)k ) (1.8)

at an energy

E (−)k =μ−
√(

�2k2/2m∗ − μ̃
)2 +�2 (1.9)

with a weight Zk and renormalized dispersion similar in form to the usual Bogoliubov
quasiparticles with gap�. In the Leggett-BCS mean field theory of the crossover, the
parameter m∗ = m, the bare fermion mass, and μ̃=μ, the chemical potential, with
the weight Zk = v2

k, the occupation number. Thus the minimum in the dispersion is at
kμ= √

2mμ/� forμ > 0 (and k = 0 forμ < 0) within MFT. Note that, in contrast to
the normal state, the fact that v2

k is nonzero at arbitrary momentum in the superfluid
state, gives a finite probability to create a hole even for momenta above kμ.Moreover,
due to the sum over final momenta, the sharp onset of the rf-spectrum in the T = 0
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MFT appears at �ωmin = √
μ2 +�2 −μ, and not at the energy gap scale. In fact, in

the BCS limit �ωmin � �2/2μ, the condensation energy per particle, which is much
less than the gap. Beyond the crossover MFT, interaction effects lead to [16, 83, 92]
μ̃=μ − U, shifted away from the chemical potential, and m∗ = m. The predicted
negative shift in μ̃ of U � − 0.43εF at unitarity has been seen in the rf experiments
[93].

An important question is whether the energy gap, or more precisely, a strong
suppression of spectral weight near the chemical potential, called the pseudogap,
persists above Tc in the unitary regime. In this context, a crucial parameter is the
crossover temperature scale T � (see Fig. 1.1), below which pairing correlations
become manifest [39–41]. In the BCS limit, T � coincides with Tc, so that the forma-
tion of pairs and their condensation occur simultaneously. In the opposite extreme,
the BEC limit, T � is the temperature scale for molecular dissociation, which is much
larger than the Bose condensation Tc. The key quantitative issue near unitarity is the
extent of the temparature window Tc < T < T �, in which various anomalies in
spectroscopy and thermodynamics, arising from pairing correlations above Tc, are
predicted [39–41]. Since T � is a crossover scale, its estimate depends on the observ-
able being probed, in marked contrast with a phase transition. Early estimates [24]
and quantum Monte Carlo calculations [132, 133] indicate that T � is roughly 0.5TF

for the unitary gas, which is about three times Tc. Other theoretical approaches,
discussed below, suggest a much smaller window of temperatures [16] at unitarity,
though these effects can only increase as one moves to the BEC side. The experi-
ments at present are also not unequivocal on the extent of the temperature range or
the size of the pseudogap anomalies. The extent to which both theory and experiment
provide clear evidence for the existence of a well-defined a pseudogap regime in the
unitary gas is a subject of current debate, as we discuss next.

We first discuss angle-resolved rf spectroscopy above Tc. At a phenomenolog-
ical level [39, 134], one expects the spectral function in the pseudogap regime to
still show an energy gap, and a bending-back of the dispersion (analogous to the
Bogoliubov dispersion in the superfluid state) as in Eq. 1.9. This arises because of
the persistence of pairing correlations, or ‘preformed pairs’, above Tc. However, the
sharp peak in Eq. 1.8 will be greatly broadened, because one expects quasiparticles
to be quite ill-defined in this strongly interacting regime. The very short mean free
path, or equivalently short lifetime of fermionic excitations, is closely related to the
anomalously low shear viscosity η � 0.5�n of the unitary gas in the regime just
above Tc discussed in the previous section.

Gap-like features and the associated back-bending of the dispersion near kF have
been observed in a recent angle-resolved rf experiment [135]. Note that back-bending
far from kF , with small but non-zero spectral weight, is predicted to be a universal
feature [109] of Fermi gases with contact interactions in all phases, normal and
superfluid. This is a direct consequence of the 1/k4-tail in the momentum distribu-
tion discussed in Sect. 1.5 This is indeed what the experiments [135] find, with the
back-bending at large momenta persisting up to very high T, even when the near-
kF behavior no longer exhbits a pseudogap. A quantitative estimate of the energy
gap, either the pseudogap above Tc or the superconducting gap below Tc, requires
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Fig. 1.5 Density plots of the spectral function A(k, ε) at unitarity for different temperatures.
Momentum and energy are in units of kF or εF respectively. From top left to bottom right:
T/TF = 0.01, 0.06, 0.14, 0.160(Tc), 0.18, 0.30. The white horizontal lines mark the chemical
potential μ (From [16])

measuring the near kF feature with respect to the chemical potential. Eventually, such
measurements could help to answer the question whether or not sharp quasiparticle
excitations exist in the normal fluid regime above Tc.

The contributions by Strinati and by Bulgac, Forbes and Magierski, describe
two different microscopic approaches—the pair-fluctuation approach to the BCS–
BEC crossover [108, 131, 136] and quantum Monte Carlo calculations [133],
respectively—both of which lead to characteristic pseudogap spectral features.

The full spectral functions of the unitary gas as a function of momentum
and energy for temperatures across the superfluid transition as obtained from the
Luttinger-Ward approach [16] is shown in Fig. 1.5. Deep in the superfluid state,
the dispersion of both the hole (below μ) and particle branch (above μ) exhibits a
BCS-Bogoliubov-like dispersion, as expected from Eq. 1.9. The shift of μ̃ from the
chemical potential by the interaction-induced shift U � −0.46εF . is also observed.
With increasing temperature the gap closes and the two branches gradually merge.
Apparently, in this approach, the backbending very quickly disappears above
Tc � 0.16TF and there is no pronounced pseudogap regime.

Pairing corelations above Tc are also of relevance in understanding the thermody-
namics of the BCS–BEC crossover in the normal state. It was predicted [40, 41] in
early calculations of two dimensional lattice models of the BCS–BEC crossover that
in the temperature range Tc < T < T � (see Fig. 1.1), there is a strong suppression
of the spin susceptibility χs with lowering T, while the compressibility dn/dμ is
T-independent. This qualitative difference between the behaviors of χs and dn/dμ
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represent a marked deviation from conventional Fermi liquid behavior in a strongly
interacting, degenerate Fermi system. Whether these effects are significant in the
three dimensional continuum problem at unitarity depends on the separation between
Tc and T �, as already noted.

The expected strong reduction of the spin susceptibility below T � due to the forma-
tion of singlet pairs can, in principle, be measured with ultracold atoms by observing
the displacement of the two spin-components induced by a trapping potential which
acts differently on both hyperfine states [137]. In practice, unfortunately, this is
difficult because in the case of 6Li, the polarizabilities are essentially equal at the
magnetic fields of interest. A quite different method to determine the spin suscepti-
bility has opened up recently with the measurement of the spin diffusion constant Ds

mentioned above. Indeed, an independent mesasurement of Ds and the associated
spin conductivity σs allows to extract the equilibrium spin susceptibility χs = σs/Ds

as their ratio. The resulting χs(T ) of the unitary gas shows no clear suppression in the
regime above the superfluid transition, indicating that the characteristic temperature
T � may not be much higher than Tc at unitarity.

To conclude this section, it seems appropriate to point out similarities and
differences between the pairing pseudogap in the BCS–BEC crossover and the much
discussed—but still not well understood—pseudogap phase in underdoped high-T
superconductors. In fact, the early work [39–41] on pseudogaps in the crossover
problem was motivated by the desire to see if the normal state of a short coherence
length superconductor, with pair size comparable to interparticle distance, might
generically show deviations from Fermi liquid behavior. As emphasized in the intro-
duction, the high Tc superconductors (HTSC) differ from the ultracold Fermi gases in
essential microscopic details. In the HTSC the electrons live in the two-dimensional
copper-oxygen planes of a highly anisotropic crystal, and the dominant interactions
arise from Coulomb repulsion. d-wave pairing and superconductivity arises upon
doping—i.e., adding mobile carriers to—a parent antiferromagnetic Mott insulator.
The superfluid phase competes with a variety of different order parameters, including
antiferromagnetism and charge ordering. By contrast, the neutral atoms in a Fermi
gas have manifestly attractive interactions, the only instability is to s-wave pairing
and the superfluid state is free from competing order parameters or a proximity to a
Mott transition.

Despite these differences, there are insights from the much better understood
problem of the BCS–BEC crossover that may be useful for the HTSC cuprates.
In both systems one can be in strong interaction regimes where (1) the pair size is
comparable to interparticle spacing, (2) a simple mean-field description of the phase
transition fails, and (3) Tc is determined by the superfluid stiffness rather than the
pairing gap. In the underdoped cuprates, that lie between the highest Tc optimally
doped superconductor and the parent Mott Insulator, there is clear evidence for a
normal state pseudogap [23]. The associated loss of spectral weight above Tc has a
strong angular anisotropy revealed by ARPES measurements [129, 130]. Although
there are striking similarities between the anisotropy of the pseudogap above Tc and
the d-wave superconducting gap below Tc, the connection between the two gaps gap
remains controversial. The pseudogap regime in the HTSC exhibits features arising
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from competing order parameters, local pairing above Tc, and proximity to the Mott
insulator. The problem of the unitary Fermi gas, in turn, is in many ways simpler
with a single instability to s-wave pairing. Thus if a gap exists above Tc, it can only
be related to precursor pairing correlations.

1.8 Spin Imbalance and the Fermi Polaron

In standard BCS theory, pairs are formed in an s-wave state between fermions with
opposite spins. The question of what happens if not every spin up fermion can find a
spin down partner has intrigued physicists ever since the early days of BCS theory.
In conventional superconductors, unequal populations of up and down-spin electrons
are very difficult to create, essentially because superconductivity is destroyed by the
orbital effects in the presence of a magnetic field long before the Zeeman splitting is
able to induce an appreciable imbalance. In an early study, however, Chandrasekhar
and Clogston independently considered what would be the maximum critical field if
it enters a superconductor at all and no orbital effects were present [138, 139]. Such a
field would imbalance the chemical potentials of spin up and spin down electrons by
the Zeeman energy ±μB B, where μB is Bohr’s magneton. Eventually, it would be
energetically more favorable to form an imbalanced normal state than to force atoms
with vastly different Fermi energies to pair up. The critical field is reached when
the Zeeman energy overcomes the pairing gap, μB B>�/

√
2. In the weak coupling

limit, where 2�= 3.52 kB Tc, this gives B = 18.5 Tesla for Tc = 10 K. Conventional
superconductors do not reach such high critical fields, but heavy fermion supercon-
ductors [8, 140] or layered organic superconductors [141] may be in this “Pauli
limited” regime.

In atomic gases, the population imbalance can be chosen at will. In fact, imbalance
is yet another way, besides increasing the temperature or reducing the scattering
length, to probe how stable the superfluid is. A detailed discussion of the present
state of knowledge about the set of questions associated with imbalanced gases is
given in the contributions by Chevy and Salomon from an experimental and by
Diederix and Stoof as well as by Recati and Stringari from a theoretical perspective.
It turns out, that there is a critical value of the imbalance beyond which the superfluid
turns into a normal Fermi liquid. For the homogeneous unitary gas, the critical
imbalance σc = (n↑ −n↓)/(n↑ +n↓) � 0.4 in the ground state has been determined
from quantum Monte Carlo calculations by comparing the energy of the balanced
superfluid with that of an imbalanced normal state [142]. The superfluid-to-normal
transition at T = 0 is, to current knowledge, first order in nature as long as 1/kF a is
less than a critical value close to 0.8 [16]. This is the location of the splitting point
mentioned in the introduction. Beyond this point, on the BEC-side, single Fermions
can be added to a balanced superfluid in a continuous manner. With increasing
imbalance the system thus stays superfluid, effectively as a Bose-Fermi mixture
up until full polarization, where the gas is a trivial non-interacting Fermi gas. The
breakdown of superfluidity with increasing imbalance in a trap has been measured
by observing the disappearance of a vortex lattice [143]. As shown in Fig. 1.6, for
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Fig. 1.6 Observation of vortices in a strongly interacting Fermi gas with imbalanced spin
populations. The population imbalance (N↑ − N↓)/(N↑ + N↓) was (from left to right) 100, 90, 80,
62, 28, 18, 10 and 0%. From [143]

Fig. 1.7 Critical population
imbalance
δ= (N↑ − N↓)/(N↑ + N↓)
between the two spin states
for which the
superfluid-to-normal
transition is observed. The
profiles indicate the
distribution of the gas in the
harmonic trap. Data
from [143]
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the unitary gas superfluidity breaks down beyond a ratio of 85%/15% between the
two spin states.

Since vortices are difficult to create and observe near the phase boundaries, the
superfluid phase diagram has also been mapped out by using pair condensation as an
indicator for superfluidity. The resulting phase diagram is shown in Fig. 1.7. As was
mentioned above, on the BEC side the critical value of the imbalance where superflu-
idity is destroyed by the Chandrasekhar-Clogston mechanism of a mismatched Fermi
sphere between the two components approaches 100%. This can be understood by
noting that in this regime even a tiny concentration of minority atoms in a majority
Fermi sea will form bosonic molecules with the majority atoms, which then give rise
to a Bose-Einstein condensate.

The first order transition between the superfluid at equal spin population and
the imbalanced normal mixture gives rise to phase separation. First hints for
phase separation between the normal and superfluid phase were seen in Refs. [72,
143, 144]. Using tomographic techniques, a sharp separation between a superfluid
core and a partially polarized normal phase was found [145] (see Fig. 1.8 ). Finally,
the phase diagram of a spin-polarized Fermi gas at unitarity was obtained, by mapping
out the superfluid phase versus temperature and density imbalance [146]. Using tomo-
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Fig. 1.8 Direct observation of the phase transition in imbalanced gases. The images are of the
column density difference between spin up and spin down atoms. Below a critical temperature,
an “empty” core opens up, signalling superfluid pairing at equal densities [145]

graphic techniques, spatial discontinuities in the spin polarization were revealed.
This is the signature of a first-order phase transition which disappears at a tricritical
point, in agreement with theoretical predictions [142, 147]. A detailed discussion
of the structure of the phase diagram of the imbalanced unitary gas is given in the
contributions by Diederix and Stoof and by Recati and Stringari.

While a detailed understanding of whether imbalanced Fermi gases with strong
attractive interactions exhibit more complex phases than a normal Fermi liquid or
a mixed superfluid/normal Fermi gas is still missing (see section 9 below and the
contributions by Bulgac, Forbes and Magierski for a discussion of possible exotic
phases in this context), considerable progress has been made within the last few years
in the limit of a very large imbalance. In this limit, the two component Fermi gas can
be viewed as a small number of spin down, minority impurities swimming in a Fermi
sea of spin up particles. For a weakly-attractive interaction between the impurity and
the Fermi sea, the impurity propagates freely through the medium, experiencing
only a mean field energy shift 4π�

2an↑/m from forward-scattering, where n is the
majority density, a the scattering length between spin up and spin down. However, as
interactions increase and the mean free path becomes comparable to the interparticle
distance, momentum changing collisions become important. In the strong coupling
regime, the impurity dresses itself with a polarization cloud of majority atoms, giving
rise to a new type of quasiparticle: the Fermi polaron. The question of whether a single
added down-spin behaves like a proper quasiparticle can be addressed by calculating
the quasiparticle residue, the probability that an added bare particle with momentum
p will propagate with this very momentum for an arbitrary long time [148, 149].
For very strong attraction, this picture is expected to break down: Here, an added



26 M. Randeria et al.

43210432106543210

rf offset / F

at
om

 tr
an

sf
er

 / 
a.

u.

6420

a b c d

Fig. 1.9 RF spectroscopy on polarons. Shown are spatially resolved, 3D reconstructed rf spectra
of the environment (blue, state |1〉) and impurity (red, state |3〉) component in a highly imbalanced
spin-mixture. a Molecular limit. b, c Emergence of the polaron, a distinct peak exclusively in the
minority component. d At unitarity, the peak dominates the impurity spectrum. For the spectra
shown as dashed lines in d the roles of states |1〉 and |3〉 are exchanged. Impurity concentration
was x = 5(2)% for all spectra, the interaction strengths 1/kF a were a 0.76(2), b 0.43(1) c) 0.20(1),
d) 0 (Unitarity)

down-spin will form a spin-zero, mobile molecular bound state with the up-spin
Fermi sea. The fermionic quasiparticle will therefore vanish beyond a critical value
of the coupling 1/(kF↑a), via a discontiuous transition first predicted by Prokof’ev
and Svistunov [150].

Polarons have been observed via locally resolved RF spectroscopy [151]. In the
case of molecular binding, one finds the characteristic onset at the molecular binding
energy, and fully coincidal spectra for both the spin up and spin down atoms-as
binding is a purely two-body affair. For the polaron, a characteristic bimodal spectrum
is observed: A narrow, coherent quasi-particle peak, centered at the polaron binding
energy, which emerges from a broad, incoherent background (see Fig. 1.9).

The results for the ground state energy of the Fermi polaron are in quite good
agreement with the result of a variational Ansatz for the ground state wave function
due to Chevy, in which the single down spin is dressed with particle-hole excita-
tions of the up-spin Fermi sea [152, 153]. This approximate treatment is supported
by a more detailed analysis including multiple particle-hole pairs [154], and also
by Quantum Monte-Carlo calculations [150, 155]. The effective mass of Fermi
polarons at unitarity has been deduced from density profiles [156]. As discssed in the
contributions by Chevy and Salomon and by Recati and Stringari, it can be determined
in a direct manner from a dynamical measurement, by extrapolating frequencies of
collective excitations in strongly imbalanced Fermi mixtures to the single-impurity
limit [157]. The result of m∗ = 1.20(10)m is in good agreement with theoretical
predictions [150]. The polaron energy was observed to be largely independent of the
impurity density, i.e. interaction effects between the dressed particles must be weak.

At a critical interaction strength 1/(kF↑a)= 0.76, the Fermi Polaron peak
vanishes and a transition towards two-body binding is observed [151]. The disap-
pearance of the Fermi polaron as a spin 1/2 quasiparticle beyond a critical value of
the coupling was predicted by diagrammatic Monte Carlo calculations [148, 150]
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and was later studied by variational methods [149, 158]. At this point, a Fermi liquid
of polarons is replaced by a Bose liquid of molecules. At low enough temperatures,
this molecular cloud will form a Bose condensate that fully phase separates from the
normal state of unpaired atoms, as observed in [159]. Even further away from the
Feshbach resonance, when the interactions between molecules and atoms become
weaker, one might be able to observe fermionic atoms moving in a bath of bosons.
This would be an example of the “classical” polaron, a fermion (electron) dressed
by a boson bath (phonons).

1.9 FFLO Phases and Outlook

A remarkable proposal of what might happen in a fermionic superfluid in the presence
of a finite spin-imbalance was put forward almost fifty years ago by Fulde and Ferrell
and independently by Larkin and Ovchinnikov [160, 161]. The novel type of super-
fluidity, now often abbreviated as FFLO or LOFF states, predicts that Cooper pairs
acquire a non-vanishing center-of-mass momentum. As a result, the superfluid order
parameter exhbits a nontrivial periodic modulation in space, thereby spontaneously
breaking translation invariance. Due to the coexistence of fermionic superfluidity and
periodic order such a state has also been called a ‘Fermi supersolid’ [162]. In solid
state materials, the orbital effect of an external magnetic field usually overwhelms the
Zeeman effect causing spin imbalance. Despite decades of intensive search, there are
very few systems in which there is now some indirect experimental evidence for the
occurrence of FFLO order: layered organic superconductors with a strong parallel
magnetic field [141] and certain heavy fermion materials [8, 140]. A quite different
context where superfluid states with additional periodic order might show up are
color superfluids that are expected in the core of neutron stars [10]. In this case, the
imbalance arises as a result of the different chemical potentials due to different quark
masses.

As disussed in the previous section, ultracold atoms provide an ideal model system
to study attractive Fermi gases with an adjustable value of the spin-imbalance.
For a Fermi gas near unitarity, one expects in fact that for small imbalances the
ground state exhibits FFLO order. This conclusion is supported both on general
grounds [17] and also on a generalization of density functional theory that includes
superfluid ordering and a finite spin imbalance, as discussed in the contribution by
Bulgac et al. Unfortunately, in the 3D case, neither the precise type of spatial order,
nor the relevant range of stability of an FFLO phase with respect to temperature are
known. In addition, the inhomogeneous density in the trap leads to a situation where
an FFLO phase would appear sandwiched between a balanced superfluid in the center
and a polarized normal phase around it. This makes an observation very difficult if
not impossible. As is discussed in detail in the contribution by Feiguin et al. the situ-
ation is much more promising in a one-dimensional configuration for two reasons:
First of all, it turns out that in one dimension and for negative 3D scattering lengths
(i.e. essentially on the BCS-side of the crossover) the ground state of the attractive
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Fermi gas exhibits FFLO order at arbitrary values of the polarization. As a second
point, in contrast to the 3D case, the interesting phase with finite imbalance appears
in the center of the trap and not in its wings. From a theory point of view, the 1D
case has the additional advantage that a number of exact results are available through
the Bethe-Ansatz. For instance, a complete analytic solution can be given for the
BCS–BEC crossover of the balanced gas [163, 164]. Moreover, efficient numerical
methods like the density matrix renormalization group allow to obtain quantitatively
reliable results for realistic system sizes without the Fermionic sign problem.

Experimentally, attractive Fermi gases confined in 1D tubes have been realized by
the Rice group [165]. The observed spin-resolved density profiles show the predicted
phase separation into an imbalanced gas in the center and a balanced superfluid at
the edge of the trap. Unfortuately, so far experiments have not demonstrated that the
phase in the center of the trap indeed corresponds to a paired state with FFLO order.
This is not a trivial task and requires e.g. to resolve spin density modulations on a
rather small length scale or a time-of-flight measurement that reveals the momentum
distribution of the pairs. Due to their finite center-of-mass momentum, peaks should
appear at a nonzero momenta ±Q with Q increasing linearly with the imbalance.

As a result of a breathtaking sequence of experiments and new theoretical insights
over a short period of time, ultracold Fermi gases have developed into an exciting
new form of matter with unexpected properties. The realization of the BEC-BCS
crossover, the observation of vortex lattices in neutral fermionic superfluids and
precision measurements of universal numbers in the thermodynamics of the unitary
Fermi gas have come alongside with new theoretical concepts like the ε-expansion
for scale invariant many-body systems, the Tan relations or the Fermi polaron as
a novel type of a quantum impurity problem. Unconventional superfluids like the
FFLO phase or a quite subtle liquid of trions in a mixture of three-component Fermi
gases [166, 167] that resembles the hadrons of QCD [168] appear in reach within the
coming years. Ultracold Fermi gases present us with a model textbook system, that
did not exist before, with simple and controllable interactions, dimensionality and
spin composition. Eventually, the goal is to deepen our understanding of fermions,
the building blocks of matter, in the presence of strong interactions. The field has
taken the first important steps, but this is only the beginning.
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Chapter 2
The BEC–BCS Crossover: Some History
and Some General Observations

A. J. Leggett and S. Zhang

Abstract While the experimental realization in ultracold Fermi alkali gases of the
phenomenon we now call the “BEC–BCS crossover” was attained only in the last
few years, theoretical considerations of this issue go back a lot further, and refer to
other systems as well. In the first part of this chapter we review some of this history,
while in the second half we make some general comments on the current theoretical
situation with respect to the specific ultracold-gas implementation.

2.1 Introduction

It is by now well accepted that a system of Fermi particles with two different “species”
equally populated, and an attractive interspecies interaction, may exhibit a behav-
ior that as the strength of the interaction is decreased varies continuously from a
Bose-Einstein condensate of tightly bound di-fermionic molecules to Cooper pair-
ing of weakly attracting independent fermions. While the experimental realization,
in dilute ultracold Fermi alkali gases, of this so-called “BEC–BCS crossover” has
been attained only in the last few years, related theoretical considerations have
a much longer history and have been put forward also in the context of systems
other than the dilute ultracold gases (excitons, metallic superconductivity, nuclear
matter ...). In the first half of this chapter, we shall give a brief review, which is not
claimed to be exhaustive, of the early history of the theory, and in the second half
make some general comments on the current theoretical situation with respect to the
specific alkali-gas implementation.
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At the outset we would like to emphasize an important aspect in which the ultracold
Fermi gases that have been the subject of intense experimental study in the last few
years differ from the other physical systems in which a “BEC–BCS crossover” has
been studied theoretically: they are “naturally” dilute, in the sense that the inter-
fermion interaction is short-ranged, with an effective radius r0, which under typical
experimental conditions is orders of magnitude smaller than the average inter-fermion
separation. This permits a kind of theoretical simplification that does not in general
apply to these other systems, and is part of the subject of the second half of this
chapter.

2.2 Some Prehistory

While the many people who worked on the theory of Bose-Einstein condensation
(hereafter BEC) in liquid helium in the years between London’s proposal of this
phenomenon in 1938 and the work of BCS in 1957 were presumably conscious,
in the back of their minds, that the 4He atom is actually a composite of six fermi-
ons, no particular attention seems to have been paid to this state of affairs; with
hindsight this is hardly surprising, since the minimum energy scale relevant to dis-
sociation of the atom into its fermionic components (tens of eV) is several orders of
magnitude greater than that involved in BEC of the liquid (a few K), and thus it is
usually an excellent approximation, in the context of the latter, to treat the atom as
a simple structureless boson. The first person to make the explicit suggestion that
pairs of fermions (electrons) with an effectively attractive interaction might form a
molecular-like object with bosonic statistics and thus undergo BEC appears to have
been Ogg [1], in the context of a very specific superconducting system (an alkali
metal-ammonia solution); however, Ogg speculated that this mechanism might more
generally be the explanation of superconductivity. This idea was taken up a few years
later by Schafroth [2] and amplified in the paper of Schafroth et al. [3]; however, it
proved very difficult to use this approach to calculate specific experimental quanti-
ties. Following the work of Bardeen et al. [4] (hereafter BCS), further work was done,
mainly by Blatt and coworkers, along the lines developed in ref. [3]; see for example
ref. [5]. This work emphasized the point of view that Cooper pairing in a weakly
interacting Fermi gas could be viewed as a form of BEC (of pairs of electrons); the
qualitative considerations developed in it foreshadow some of those that resurfaced
subsequently in the context of the crossover problem. However, following the suc-
cessful explanation by the BCS theory of most of the experimental properties of the
then-known superconductors and its consequent rapid acceptance by the community,
there seems to have been a tendency in the late 1950s and early 1960s to emphasize
the differences rather than the similarities between the phenomena of BEC and of
Cooper pairing.

One important development that, at least with hindsight, pulls rather strongly in
the opposite direction is the seminal paper of Yang [6] on off-diagonal long-range
order (ODLRO). We will discuss the application of this idea (or rather of a closely



2 The BEC–BCS Crossover 35

related one) to the crossover problem in the second part of this chapter, but here note
that Yang in effect showed that the generalized definition of BEC given by Penrose
and Onsager [7] for a simple Bose system such as 4He could be generalized to apply
to a fermionic system provided one replaces the single-boson density matrix by the
two-fermion one. (For details, see below). However, it seems to have been some time
before the full significance of this observation was appreciated by the community.

Meanwhile, attempts were being made to apply BCS-like ideas to Fermi systems
other than the electrons in metals. In the case of liquid 3He and heavy nuclei, the
situation seemed to be fairly close to that envisaged in the original BCS work, in
the sense that the pairing interaction was likely to be so weak that the radius of any
pairs formed would be much greater than the inter-fermion distance, just as it is in
(pre-1970s) superconducting metals; in modern terminology, one is automatically in
the “BCS limit.” In the present context, a more interesting case is that of excitons in
semimetals or semiconductors. That the tightly-bound excitons in a semiconductor
are effectively bosons and might therefore undergo (nonequilibrium) BEC had been
pointed out in the early 1960s by Moskalenko [8] and by Blatt et al. [9]; however, in
1965 Keldysh and Kopaev [10], and independently des Cloizeaux [11], pointed out
that in a semimetal (a crystal in which the groundstate corresponds to partial filling
of the conduction band with partial depletion of the valence band), or in a narrow-
gap semiconductor where the exciton binding energy exceeds the gap, a process
analogous to Cooper pairing can take place, the components of the pair now bring
an electron and a hole. The resulting state is not superconducting (since the pair is
electrically neutral) but rather forms an “excitonic insulator.” It was appreciated that
in a real solid one might be in a regime intermediate between the “exciton BEC”
and “excitonic insulator” regimes, and in 1968 Keldysh and Kozlov [12] studied the
problem of exciton condensation taking explicit account of the fermionic nature of the
component electrons and holes. While they mainly concentrated on the corrections
to simple BEC behavior arising from the fermionic statistics, their technique, which
is diagrammatic in nature, can in principle be applied for arbitrary density of the
electron-hole liquid. Since then a great deal of work has been done along similar
lines for this system.

In the context of the ultracold alkali gases, however, it turns out that a rather
simple, and as far as present experiments go, at least qualitatively correct picture can
be obtained by a very simple generalization of the original BCS technique, which we
will refer to as the “naïve ansatz”. The motivation for this approach is the following
observation, which was certainly appreciated from very early days (see e.g. ref. [13],
and references cited therein), that the coordinate-space form of the standard BCS
wave function is formally identical to that of a Bose condensate of tightly bound
di-fermionic molecules, the only (but crucial!) difference being that the ratio of the
pair radius to the mean interparticle spacing is very small in the BEC case and very
large in the BCS one. In hindsight this might seem to lead naturally to the conjecture
that a reasonable description of the intermediate regime (the “crossover”) might be
obtained by simply using this form of wave function (or the corresponding BCS
particle-nonconserving one) as a variational ansatz over the whole of the range of
coupling.
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The first person to implement this program explicitly was Eagles in 1969 [14].
He was motivated by experiments that showed that the semiconductor SrTiO3 become
superconducting when doped with Zr. Eagles argued that in such a case the electron
gas might be very dilute, so that the size of any pairs formed might be much smaller
than the mean inter-electron distance; in that case the system would look like a
Bose condensate of tightly-bound di-electronic “molecules.” Using the BCS form of
inter-electron attraction with a cutoff that is tied to the chemical potential μ (“Fermi
energy” in the language of ref. [14]) he wrote down the BCS gap equation for an
arbitrary strength of interaction, and also the equation expressing the conservation
of total (average) particle member; he then solved this pair of equations numerically
over the whole crossover regime (in his notation the point where the quantity A of
Eq. 2.7 goes through zero is what would nowadays be called the unitarity limit).
While the specific choice of the form of interaction, which for μ > 0 depends
explicitly on the Fermi energy and hence on density, makes it difficult to compare
Eagles’ results quantitatively with those obtained subsequently in the context of the
dilute ultracold alkali gases, all the qualitative factors that appear in the latter—the
change in sign of μ on the “BEC” side of unitarity, the different significance of the
“gap”� on the two sides of this point, the fact that over much of the crossover regime
the superconducting transition temperature Tc is of the order of the free-gas Fermi
temperature, and the existence, in the BEC limit, of a wide temperature range where
pairing occurs without superconductivity—are to be found in this early paper.

By the late 1970s there had been a couple of experimental developments that
tended to focus attention on the crossover problem. First, the long-predicted phe-
nomenon of Cooper pairing in liquid 3He had been experimentally realized, and it
was discovered that there were not one but three different paired states, with differ-
ent structures of their internal wave functions; this tended to re-focus attention on
the similarities, rather than the differences, between diatomic molecules and Cooper
pairs. Secondly, since dilute spin-polarized atomic hydrogen (a Bose system) was
being cooled into a regime close to degeneracy, it was plausible that in the future it
would also be possible to cool atomic deuterium, a Fermi system, into the degeneracy
regime and possibly even down to the temperature for onset of pairing. (In the event,
deuterium turned out to be notoriously refractory in a cryogenic context, and to this
day it has not to our knowledge even been cooled into the quantum regime.)

Motivated by these considerations, and unaware at the time of Eagles’ work, one
of the present authors (A. J. L.) considered [15, 16] in 1980 the crossover problem
in the context of a dilute ultracold Fermi gas. The model studied was of a dilute
degenerate gas of fermions with the two spin species equally populated, interacting
by an interatomic potential that has a strong but finite short-range repulsion but a
fairly weak attraction at larger distances, and is tuned so that one is close to the onset
of a two-body bound state; thus the low-energy s-wave scattering length as is large
compared to the range r0 of the potential and can have either sign. It is intuitively
clear that in this limit there is only one physically relevant dimensionless ratio in
the problem, namely that of as to the mean interparticle spacing, or equivalently
kFas where kF is the Fermi wave vector of the noninteracting atomic gas, so that
rather generally one would expect that at T = 0 both the chemical potential μ and
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the gap (pairing field) � could have the form εF f (kFas), where εF is the Fermi
energy of the noninteracting gas. To obtain approximate forms of f (kFas), ref. [15]
wrote down explicitly the “naïve” ansatz for the many-body wave function (see part
2 of this chapter), argued that the Hartree and Fock terms in the energy contribute
only uninteresting constants and thus arrived at the standard BCS gap equation, with
however the more general form of the pairing matrix element Vkk′ corresponding to
the (semi)realistic form of interatomic potential. Eliminating the high-momentum
part of Vkk′ in favor of the experimentally measurable quantity as by a standard
renormalization procedure, and solving the resulting gap equation simultaneously
with the equation expressing number conservation in a way similar to that done
by Eagles earlier, one is able to obtain the general behavior of the dimensionless
functions fμ(kFas) and f�(kFas). As we will see in part 2, these results of the naïve
ansatz appear to contribute a good starting point for discussion of the realistic alkali
gas problem at T = 0.

At around the same time there occurred a development that, although little noticed
at the time, foreshadowed a central theme in the study of the BEC–BCS crossover:
in his thesis, Modawi [17] suggested the use of a Feshbach resonance to enhance the
transition temperature of atomic deuterium by several orders of magnitude (although
even after the enhancement it would still be depressingly low). For reasons uncon-
nected with physics, this work was never published (though cf. [18], pp. 626–627).

In 1985 Nozières and Schmitt-Rink [19] returned to the crossover problem and
generalized the earlier work to consider both the effects of a crystalline lattice and
the behavior of the critical temperature in the intermediate regime. They pointed out
that while in the BCS limit the presence of a lattice makes no qualitative difference,
in the BEC limit it changes the situation enormously, since the tightly-bound pairs
then sit on individual lattice sites and can move only by a “correlated hopping”
process involving as an intermediate stage the virtual ionization of a pair; for the
“negative-U Hubbard model” that they use the matrix element for motion of the
bosons is thus t2/U, which in this limit is much smaller than that (t) for the original
fermions, in contrast to the continuum case where the two quantities are of the same
order of magnitude. As to the behavior of the critical temperature, they carried out
a calculation that combines a simple “ring” approximation for the thermodynamic
potential with the standard Thouless criterion for the instability of the normal state
so as to obtain the behavior of Tc as a function of the coupling strength; while they
recover the expected results that Tc is given in the weak-coupling (BCS) limit by the
standard BCS formula and in the opposite limit by the expression for the condensation
temperature of a dilute Bose gas, their most important conclusion is that the transition
is, at least in this approximation, a continuous function of the coupling strength.

As is well known, a new ingredient was added to the mix with the discovery
in 1986 of the cuprate (high-temperature) superconductors, an electronic system in
which the (presumed) formation of Cooper pairs seems to take place at intermediate
values of coupling strength. This prompted an explosion of work on the crossover
problem that we will not attempt to review here; much of this work prior to 1995 is
reviewed in [20].
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2.3 Some General Remarks on the Crossover Problem

In this section we will discuss the “standard” model of the BEC–BCS crossover
problem, by which we mean the following. We consider an ultracold gas of N fermi-
onic atoms with two hyperfine species equally populated, in volume V, and take the
standard thermodynamic limit N , V → ∞, N/V ≡ n = const.; as is conventional,
we label the two relevant hyperfine species by a spin index σ = ±1. The atoms
are taken to interact via an interatomic central potential V (r), which will typically
consist of a strongly repulsive hard core, an attractive region of depth 1–5 eV at
2–3 Å, and a more weakly attractive Van der Waals tail of the form −C/r6; the “van
der Waals length” lVdW ≡ (mC/�2)1/4, which determines the “typical” radius of
the most weakly bound molecular state, will be taken to be 50–100 Å. We assume
that we can apply a variable uniform static magnetic field to the system so as to
tune it through a Feshbach resonance, that is, a value Hres of the field at which the
zero-energy scattering state of our two hyperfine species (which together define the
“open” channel) is degenerate with the most weakly bound molecular state of a sec-
ond pair of hyperfine species (the “closed” channel), which may or may not have
one species in common with the open channel; the detuning between these two states
will be denoted δ(H) = const.(H − Hres). For simplicity we shall assume that the
resonance is “broad”, i.e. that the Fermi energy of the gas calculated in the absence
of interaction is much smaller than the characteristic “width” δc of the two-body
resonance (for details, see e.g. ref. [21], Chap. 4); when this condition is satisfied,
there is a wide interval (δc � δ < 0) of magnetic field close to the resonance where
although molecules are formed, they are almost entirely in the open channel (see e.g.
Fig. 4.2 of ref. [21]); we will always assume unless otherwise noted that |δ| < δc.

Thus, except when we are explicitly considering the “closed-channel fraction,” it will
be adequate to eliminate the closed channel from the problem entirely, in favor of an
extra magnetic-field-dependent term in the open-channel potential V (r). The result-
ing zero-energy s-wave scattering length in the open channel, which is of course
a function of δ (or H) and tends to ±∞ at the position of the (normalized [21])
resonance (the “unitary limit”), will be denoted simply as .

It is convenient to introduce the dimensionless parameter ξ ≡ −1/(kFas), where
kF ≡ (3π2n)1/3 is the Fermi wave vector of the noninteracting gas; then the “BEC
limit” corresponds to ξ → −∞ and the “BCS limit” to ξ → +∞, and generally
speaking we expect the “crossover” to correspond to the regime |ξ | � 1. In the
following we shall always assume the dilute-gas limit, i.e. that kFlVdW � 1 (it would
probably actually be adequate for most of our purposes to assume another weaker
condition, but we may as well play safe). As we shall see, this condition simplifies
some aspects of the problem considerably; since the highest densities so far obtained
in the ultracold Fermi gases have been only ∼10−13cm−2, it has certainly been well
satisifed in all experiments to date.

A convenient general description of the crossover behavior, which does not assume
any particular ansatz for the many-body wave function or density matrix, may be
given in terms of the formalism developed by Yang [6]. Suppose that the energy
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eigenstates of the N-body system are �(n)N (r1σ1r2σ2 . . . rNσN ) with energies En

and the system is in thermal equilibrium at some inverse temperature β ≡ (kBT )−1.

(We could generalize the formalism also to discuss nonequilibrium states, but this is
not necessary for our present purposes). Then define the reduced two-body density
matrix

ρ2(r1σ1r2σ2 : r′
1σ

′
1r′

2σ
′
2) ≡ Z−1(β)

∑
n

exp(−βEn)

{ ∑
σ3...σN

∫∫
. . .dr3. . .drN

×�(n)N (r1σ1r2σ2. . .rNσN )�
∗(n)
N (r′

1σ
′
1r′

2σ
′
2. . .r

′
Nσ

′
N )

}

≡
〈
ψ†
σ1
(r1)ψ

†
σ2
(r2)ψσ ′

2
(r′

2)ψσ ′
1
(r′

1)
〉
, (2.1)

where Z(β) is the partition function. The quantity ρ2, regarded as a matrix function
of its indices, is Hermitian and thus can be diagonalized with real eigenvalues:

ρ2(r1σ1r2σ2 : r′
1σ1r′

2σ2) =
∑

i

niχi (r1σ1r2σ2)χ
∗
i (r

′
1σ

′
1r′

2σ
′
2), (2.2)

where the eigenfunctions χ(r1σ1, r2σ2) must be antisymmetric under the exchange
r1σ1 � r2, σ2.

As shown by Yang, the ni must satisfy the condition

∑
i

ni = N (N − 1). (2.3)

Intuitively, the eigenvalue ni can be interpreted as “the number of atomic pairs
which occupy the two-particle state χi (r1σ1r2σ2).” Assuming that the translational
symmetry of the Hamiltonian is not spontaneously broken, the quantity ρ2 must be
invariant under the total translation operation ri → ri + η, r′

j → r′
j + η(i, j = 1, 2),

and hence the eigenfunctions χi can be chosen to be eigenstates of the center-of-mass
momentum:

χi (r1σ1r2σ2) = exp iK · (r1 + r2)/2χ̃i (r1 − r2, σ1σ2). (2.4)

By a similar argument they can be chosen to be eigenfunctions of the total spin and
its z-component:

χ̃i (r1 − r2, σ1σ2) = ≈
χi (r1 − r2)ζi (S,m), (2.5)

where ζi (S,m) is one of the four simultaneous eigenstates of total spin S(= 0, 1)
and total z-projection of spin m(= 0, 1) of a pair of spin-1/2 particles. (It would also

be possible to use the rotational invariance of ρ2 to choose the functions
≈
χi (r1 − r2)

to be eigenstates of the relative orbital angular momentum, but it is convenient not to
do so, at least for the moment.) Evidently, one would expect not only the eigenvalues
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ni but also the eigenfunctions χi (or at least the
≈
χi -components thereof) to depend

both on the temperature and on the detuning δ (which controls the scattering length
as(δ)).

We can divide the possible forms of the eigenfunctions χ(r1σ1, r2σ2) (Eq. 2.4)
into three classes according to the center of mass momentum K and whether the
relative wave function χ̃(r1 − r2) is or is not bound as a function of |r1 − r2| ≡ r
(i.e. whether or not it tends to zero faster than r−2 as r → ∞). (A) χ̃ unbound, K
any (B) χ̃ bound, K = 0 (C) χ̃ bound, K 
= 0. It should be noted that the number
of eigenfunctions with eigenvalue ∼1 in class A is always of order N 2, even in the
extreme BEC limit; this is simply because even in this limit, if we pick two fermions
at random it is highly likely that they will belong to different molecules and will be
uncorrelated. Classes (B) and (C) together intuitively describe any bound pairs that
form in the system, and the number of relevant eigenfunctions in these two classes
can be at most of order N; crudely speaking, the onset of pairing, e.g. with decreasing
temperature, corresponds to the point at which the sum of eigenvalues NBC in these
two classes becomes of order N. The onset of condensation corresponds to the point,
if any, at which the quantity NB becomes of order N; the usual assumption is that there
is then only a single relevant form of χ̃ , i.e. one gets “simple” BEC or a generalization
of it. In this case the onset of condensation is equivalent, in our infinite geometry,
to the onset of off-diagonal long-range order as defined by Yang [6]. With these
definitions it is clear that there is no fundamental conceptual distinction between
BEC and Cooper pairing; the only differences (which are of course crucial in a
practical sense) lie in the ratio of the pair radius to the mean interparticle spacing
and in the nature of the low-lying excitation spectrum.

Before we enter the general discussion using Yang’s formulation, it is instructive
to revisit briefly the standard model of the BEC–BCS crossover at T = 0. There we
write the ground state wave function as

�
(0)
N (r1σ1, r2σ2, . . . , rNσN )

= A
[
φ(r1σ1, r2σ2)φ(r3σ3, r4σ4) . . . φ(rN−1σN−1, rNσN )

]
, (2.6)

where A is the antisymmetrization operator. The two-body wave function
φ(r1σ1, r2σ2) is regarded as a variational parameter. At this stage, no constraint has
yet been put on the form of φ(r1σ1, r2σ2) except that we require it to be antisymmet-
ric with respect to simultaneous exchange of (r1σ1) and (r2σ2). In the following, we
take the spin structure of φ(r1σ1, r2σ2) to be a singlet and write the relative spatial
wave function as

φ(r1 − r2) =
∑

k

ck exp ik · (r1 − r2) (2.7)

where c−k = ck and a†
k↑ is the fermion creation operator for momentum state k with

spin up. Now, if we follow the BCS trick and relax the constraint on the number of
particles, we can write the equation which results from minimizing the energy as a
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function of the coefficients ck, i.e. the gap equation, in the form (possibly unfamiliar,
but completely equivalent to the standard form)

2Ek Fk +
∑

k′
V (k − k′)Fk′ = 0, (2.8)

where Ek =
√
(εk − μ)2 + |�k|2 is the quasiparticle excitation energy and εk =

�2k2

2m is the free particle kinetic energy. Fk ≡ ck
1+|ck|2 is the pair wave function. If we

compare this with the two-body Schrödinger equation with energy E:

(2εk − E)ψk +
∑

k′
V (k − k′)ψk′ = 0, (2.9)

we find that for large |k|, Fk has the same structure as ψk, which suggests that the
short-range form of the pair function F(r) = ∑

k Fk exp(ik ·r) is the same as that of
the two-body wave function. (We shall give a more general argument concerning the
short-range form of many-body wave function in the following.) The gap equation
(2.9) can be conveniently written in terms of scattering length as by a standard
renormalization procedure,

1

V

∑
k

[
1

εk
− 1

Ek

]
= m

2π�2as
. (2.10)

This provides one equation for the gap�k (which we will take to be independent of
k) and the chemical potential μ. Another equation can be obtained by requiring that
the average number of particles be N, namely

1

V

∑
k

[
1 − εk − μ

Ek

]
= n. (2.11)

The solution of these two equations can be obtained easily in the BEC or BCS
limits and in the intermediate regime by numerical means. In the BEC limit, we
find that μ → − �2

2ma2
s

and � → 4εF√
3πkFas

∼ √
n. In the BCS limit, μ → εF and

� → 8εFe−2 exp
[
− π

2kF|as |
]
, the standard BCS results. At unitarity, we find that

the chemical potential μ = 0.59εF and � = 0.68εF. The chemical potential μ
goes through zero in the BEC side of the resonance at a value ξ∼1. The qualitative
behavior of the BEC–BCS crossover sketched above is quite satisfactorily tested in
experiments. However, there are important effects which are not accounted for in
the naïve ansatz even in the BEC and BCS limits. For example, in the BEC limit,
the scattering length between molecules turns out to be 0.6as rather than 2as as
one would get from the naïve ansatz [22]. In the BCS limit, as Gor’kov and Melik-
Barkhudarov have shown, there are important polarization contributions to the zero
temperature gap parameter [23].

To go beyond the naïve ansatz and discuss the general crossover problem,
we first have to examine the sort of approximations that one is allowed to make
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in the context of ultracold Fermi gases. In the BEC–BCS crossover model, the scat-
tering length as can assume an arbitrarily large value and thus the conventional
perturbative calculation using the small gaseousness parameter η ≡ kFas is clearly
inapplicable. On the other hand, as was pointed out earlier, the actual range of the
interaction potential lVdW is small such that kFlVdW � 1 is always guaranteed. This
suggests that an expansion in binary collisions should be possible. In fact, as we shall
see momentarily, such a formulation is exact to the extent that one can describe the
system entirely in terms of the s-wave scattering length as .

Let us consider then the energy eigenstates �(n)N (r1σ1, r2σ2, . . . , rNσN ) of the
system and ask the following question. Suppose we take two atoms of opposite spin,
say at positions r1 and r2 with σ1 
= σ2, close together such that |r1 − r2| � lVdW
while far away (compared with lVdW) to all the other atoms, what will the many-body
wave function �(n)N (r1σ1, r2σ2, . . . , rNσN ) look like? Obviously, in this case, since
atoms 1 and 2 cease to interact with the other atoms, the wave function factorizes
and we can write it as

�
(n)
N (r1σ1, r2σ2, . . . , rNσN ) = A φ(r1σ1, r2σ2)�

′(n)
N−2(r3σ3, r4σ4, . . . , rNσN )

(2.12)
where A is the antisymmetrization operator. φ(r1σ1, r2σ2) is determined by solving
the two-body Schrödinger equation in the region |r1 − r2| � lVdW. Any corrections
arise only if a third atom is within a distance ∼lVdW from atoms 1 and 2. Such an
event is unlikely for two reasons. Firstly, the phase space associated with this event
is a factor (kFlVdW)

3 less than that for the two-body encounters. Secondly, in the
spin- 1

2 system we are considering here, two of the three atoms close together must
have the same spin orientation, the probability of which is suppressed by the Pauli
principle. In fact, by the very formulation of the problem, we have already neglected
the higher partial wave scattering, which makes a contribution of order (kFlVdW)

2

or higher. Thus, to be consistent, we need not consider three-body processes and the
binary expansion becomes exact.1

Next, we have to discuss the form of the two-body wave function φ(r1σ1, r2σ2).

We first note that in the crossover model, the spin part of φ(r1σ1, r2σ2) is necessarily
a singlet and will be of no further interest to us. The spatial part of φ(r1σ1, r2σ2),

which we denote as φ̃(r1, r2), will have a complicated nodal structure in its relative
coordinates r = r1 − r2. However, its short-range form (|r| � lVdW) should be
insensitive to the energy scales of the problem, namely the Fermi energy εF and the
characteristic width δc of the Feshbach resonance. The reason for this is simple: The
form of φ̃(r1, r2) in the region |r1 − r2| � lVdW is determined by the competition
between the kinetic energy and the deep potential energy, each of which is much
larger than εF and δc. In the region lVdW � r � as, k−1

F , the form of φ̃(r1, r2) is
fixed by the scattering length. Up to a normalization constant, it is given by

φ̃(r1 − r2) = const.× 1

|r1 − r2|
(

1 − |r1 − r2|
as

)
, (2.13)

1 However, in discussing the stability of the system with respect to decay into deeply bound mole-
cular states, such processes are of primary importance.
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where we have suppressed the centre of mass dependence which is of no relevance
in the discussion below. The whole of the many-body problem can then be viewed
as an effort to enforce this particular boundary condition in the many-body wave
function. Two routes can be taken in principle. One is to reformulate this boundary
condition as a pseudopotential between atoms with opposite spins in the zero-range
limit. Another way is to deal with this boundary condition explicitly. We shall follow
the second route in the following.

The above discussions, when formulated in terms of density matrices, tell us
the following. First, in calculating any physical quantities of interest, knowledge
of the two-body density matrix is sufficient. Secondly, the short range form of the

eigenfunction
≈
χi (r) associated with the two-body density matrix defined before is

determined by the two-body physics only, while in the region lVdW � r � as, k−1
F ,

it is given by r
≈
χi (r) ≡ Ci (ξ, T )χ(r), where

χ(r) = 1 − r

as
, lVdW � r � as, k−1

F (2.14)

and Ci (ξ, T ) is the normalization constant, which in principle depends on ξ as well
as temperature T. Note that according to the classification used before, for classes
(B) and (C), Ci (ξ, T ) is of the form l−1/2, where l is some microscopic length scale
(to be identified later), while for class (A), Ci (ξ, T ) is normalized as L−1/2,where L
is the linear size of the system. We emphasize that χ(r) is of this particular form and

common to all
≈
χi (r) only for the region indicated; its short-range form is the same

as that of
≈
χi (r), except for the normalization Ci (ξ, T ). From a many-body point of

view, the complicated short-range physics is not interesting and furthermore, as the
discussion above has made clear, can be computed without reference to the many-
body state (except the normalizations Ci (ξ, T )which we shall take care of explicitly).
It is thus desirable to separate the short-range dependence in any physical quantity
that we might be interested in computing. The hope is that, once this is done, the
part that remains would be insensitive to the short-range complications and hence be
universal.

To do this, let us introduce an arbitrary short-range (∼lVdW) function s(r) that
operates only between the opposite spin states and consider the following integral:

A ≡
∫

dr1dr2s(r1 − r2)
〈
ψ

†
1 (r1)ψ

†
2 (r2)ψ2(r2)ψ1(r1)

〉
. (2.15)

Using Eqs. 2.2 and 2.5, we can write the above expression as

∑
i

ni

∫
drs(r)

∣∣∣ ≈
χi (r)

∣∣∣2
(2.16)

with the eigenfunction
≈
χi (r) appearing in the sum corresponding to the singlet spin

wave function ζ(S = 0,m = 0). Now using Eq. 2.14 above, we find
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A ≡
∑

i

ni |Ci (ξ, T )|2
∫

drs(r)|χ(r)|2

≡ h(ξ, T )kF N
∫

drs(r)|χ(r)|2. (2.17)

Here, we have defined a positive definite universal function

h(ξ, T ) ≡
∑

i

ni

NkF
|Ci (ξ, T )|2 > 0 (2.18)

and inserted a factor k−1
F to make h(ξ, T ) dimensionless. N is the total number of

atoms. The structure of h(ξ, T ) is clear. Apart from the constant (NkF)
−1, it is a

weighted sum of the eigenvalues of the two-body density matrix. We emphasize again
that all the ni ’s appearing in the sum correspond to singlet eigenfunctions. According
to the discussion before, if we have a simple BEC, where only one ni , say n0, is of
order of N, then this term will make the largest contribution ∼O(1), while all the
other terms contribute ∼O(1/N ).Note that the sum of the latter might still be larger
than the contribution from n0. Typically, as in the theory of superconductivity, n0 is
associated with the eigenfunction χ0 that is bound in space, namely C0(ξ, T )∼l−1/2,

where l in the case of superconductivity turns out to be given by the zero temperature
Ginzburg-Landau coherence length ξGL. This conclusion is also valid in the BCS
limit of the crossover, while in the BEC limit C0(ξ, T )∼a−1/2

s and around unitarity,
C0(ξ, T ) ∼ k1/2

F (see below).
We further note that the integral in Eq. 2.17 is a purely two-body quantity and

as such does not depend on the many-body parameters of the system, namely, tem-
perature T and Fermi energy εF. Depending on the form of s(r), it might depend
on the scattering length as in some complicated way, but as its normalization has
made clear, it displays no singularity as one approaches unitarity, as = ±∞. Thus,
to all intents and purposes, it can be regarded as a known parameter. The function
h(ξ, T ), on the other hand, incorporates only the many-body physics and thus one
expects it to be universal and independent of the particular alkali element under
consideration. The physical significance of h(ξ, T ) lies in the fact that as far as
the short-range physics is concerned, the many-body system looks just like a two-
body problem except that one has to normalize the corresponding two-body wave
function in the region lVdW � r � as, k−1

F by a value determined by h(ξ, T )
[see Eq. 2.17]. Once this is recognized, it is easy to see that h(ξ, T ) determines the
momentum distribution of the many-body system in the region kF, a−1

s � k � l−1
VdW,

nk = 4πkFnh(ξ, T )/k4, where n = N/V is the average density. In the literature,
the combination C = 4πkFnh(ξ, T ) is referred to as the “Contact" [24].

In the following, we consider two representative physical quantities in which the
universal function h(ξ, T ) plays a central role. Common to those physical quantities
is that they can be cast in the form of a short-range function, convoluted with the two-
body density matrix. Physically, this means that these physical quantities are sensitive
to short-range physics and the many-body physics only enters in the determination
of the overall amplitude. For more details, see ref. [25].
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As we have discussed before, once we eliminate the closed channel from the prob-
lem, the open channel potential V (r) acquires an additional magnetic field depen-
dence, which by appropriate rescaling, can be written in terms of a dimensionless
parameter λ and hence V (r; λ). Now, if we consider a process in which λ changes
adiabatically, then according to general arguments of thermodynamics

∂E

∂λ

∣∣∣∣
S

=
〈
∂H

∂λ

〉
=

〈
∂V (r; λ)
∂λ

〉
, (2.19)

where E and S are the total energy and entropy of the system, respectively. The
average includes both quantum mechanical and statistical ones. In the last step,
we have used the fact that only the interaction term in the Hamiltonian depends
on λ. Note that ∂V (r;λ)

∂λ
is a short-range function and we can use the decomposition

established before. Furthermore, by using a relation between the variation of the
scattering length as and that of the interaction potential (see ref. [21], p. 158),

δa−1
s = − m

�2

⎡
⎣

∞∫
0

dr
∂V (r; λ)

λ
|χ(r)|2

⎤
⎦ δλ, (2.20)

we find, for fixed density,

∂E

∂ξ

∣∣∣∣
S

= 2εF Nh(ξ, T ). (2.21)

The above relation can be conveniently written, using the theorem of small increments
(see ref. [26], p. 50), in terms of the free energy F of the system

∂F

∂ξ

∣∣∣∣
T

= 2εF Nh(ξ, T ). (2.22)

Several conclusions can be drawn immediately. Firstly, since h(ξ, T ) is positive
definite, the free energy F is a strictly increasing function of ξ. Secondly, if we
expand F around ξ = 0, taking note that h(ξ = 0, T ) is a well-defined quantity,
we find that in the vicinity of ξ = 0, F increases linearly with ξ. By using other
thermodynamic relations, one can write the specific heat, entropy and pressure of
the system in terms of the universal function h(ξ, T ). For more details, see ref. [25].

A second quantity we consider is the interaction energy of the system. For this
we simply replace s(r) by the interaction potential V (r) and we find that interaction
energy per particle is given by

〈V 〉
N

= CV (as)kFh(ξ, T ), (2.23)

where CV (as) = ∫
dr V (r)|χ(r)|2 is the extracted two-body factor. Note that at

unitarity, the interaction energy scales with kF, rather than εF (as a naïve dimension
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analysis would suggest). The reason for this lies in the fact that interaction energy
is sensitive to short-range physics and is not universal. A rough understanding of
the kF scaling might go as follows. Let us look at the many-body wave function
�
(n)
N (r1σ1, r2σ2, . . . , rNσN ) and ask what can possibly set the scale for the normal-

ization in the region lVdW � ∣∣ri − r j
∣∣ � as, k−1

F , σi 
= σ j . At unitarity, the only
scale that is relevant in the region indicated is k−1

F and since the radial wave function
has dimension [L]−1/2, we conclude

lim
lVdW�|ri −r j |�k−1

F

∣∣ri − r j
∣∣�(n)N (r1σ1, r2σ2, . . . , rNσN ) ∝ k1/2

F . (2.24)

The interaction energy, which depends on the modulus square amplitude of the
wave function, turns out to depend linearly on kF, as obtained above. We note that
the same reasoning leads to the conclusion that the average radio-frequency shift and
the population of closed channel molecules also scale with kF at unitarity. For more
details concerning the later two quantities, see Refs. [25, 27].

The realization of the existence of the universal function in the many-body physics
was first made by Tan based on an analysis of the many-body wave function and
some of his results were later re-derived by Braaten and Platter using the operator
product expansion, which is the ideal tool to explore the short-range physics in a
field theory context [28, 24]. Recently, Combescot et al. [29] have extended the same
consideration to two dimensions.

An important consequence of the considerations given above is that it should
be possible to check the mutual consistency of experimental results obtained on
different physical quantities. This should be particularly useful at unitarity, where
the dependence of such quantities on the details of the trap used should disappear.
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Chapter 3
Crossovers in Unitary Fermi Systems

Henning Heiselberg

Abstract Universality and crossover is described for attractive and repulsive inter-
actions where, respectively, the BCS–BEC and crossover takes place and a ferromag-
netic phase transition is claimed. Crossovers are also described for optical lattices and
multicomponent systems. The crossovers, universal parameters and phase transitions
are described within the Leggett and NSR models and calculated in detail within the
Jastrow-Slater approximation. The physics of ultracold Fermi atoms is applied to
neutron, nuclear and quark matter, nuclei and electrons in solids whenever possible.
Specifically, the differences between optical lattices and cuprates is discussed w.r.t.
antiferromagnetic, d-wave superfluid phases and phase separation.

3.1 Introduction and the Bertsch Problem

A decade ago at the 10th Manybody Conference G. Bertsch posed the problem
(see [1] for full text):

How does a system of Fermi particles with infinite s-wave scattering length but

vanishing interaction range behave?

This seemingly innocent question turned out to be rather fundamental and trig-
gered an explosion of interest and number of papers on physics now referred to
as universal physics, the unitarity limit, BCS–BEC crossover, and strongly inter-
acting and correlated systems in general. His question was partly motivated from
nuclear physics and the physics of neutron stars where dilute gases of neutrons exist
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in the inner crust. The neutron-neutron 1S0 scattering length a � −18.5 fm is long
(and negative) compared to the order of magnitude smaller interaction range R∼ 1 fm,
because two neutrons almost have a bound state. Admittably, Bertsch was also moti-
vated by expectations that cold gases of Fermi atoms might be created like the BEC a
few years earlier, and that it might be possible to tune interactions near Feshbach reso-
nances between two hyperfine states in order to make the scattering length truly go to
± ∞. Both were rapidly and successfully accomplished in a number of remarkable
experiments where also the BCS–BEC crossover, multicomponent systems, optical
lattices, etc. have been studied.

The solution to the Bertsch problem for two-component systems is as simple as
it is fundamental [2, 3]:

Since R → 0 and a → ± ∞ both parameters must vanish from the problem

leaving only one remaining length scale: the interparticle distance or equivalently

the inverse of the Fermi wavenumber k−1
F . All thermodynamic quantities become

universal.

The proof is a dimensional argument which will be described in detail below. As
an example, the energy per particle is an universal constant times the energy of a
non-interacting Fermi gas (3/5)EF = 3�

2k2
F/10 m. The a → ± ∞ limit is referred

to as the universal or unitarity limit and the gas as a unitary gas. The name comes from
scattering theory where e.g. the s-wave scattering cross section at relative momentum
k is limited by σ0 ≤ 4π/k2 due to unitarity of the scattering matrix. For weak inter-
actions σ0 = 4πa2 which would diverge like the energy per particle (see Eq. 3.3)—if
extrapolated to a → ± ∞. In the unitary gas the cross section and the thermodynamic
quantities are instead limited by unitarity and universality respectively.

In the neutron gas |a| is long but fixed and the unitarity limit is defined as
|a| � r0 � R, where r0 = (3n/4π)−1/3 ∼ k−1

F is the interparticle distance, kF the
Fermi wavenumber at density n = k3

F/3π
2 for two components/spin states. Thus the

unitarity limit ranges from nuclear saturation density nN M � 3/4πR3 � 0.15 fm−3,

and more than three orders of magnitude down in density to ∼|a|−3. In this region,
e.g. the energy per particle scales as an universal constant times EF . The unitarity
limit became easily accessible experimentally as it became possible to tune atomic
interaction strengths near Feshbach resonances [4], where a → ±∞ corresponding
to two-atom bound states at threshold. The scattering length could also be extended
to positive values corresponding to bound molecular states and for strongly bound
states a → 0+ even a molecular BEC.

The Bertsch problem described above was originally intended for two component
system as spin 1/2 neutrons or ultracold atoms in two hyperfine states but it is also
relevant for a nucleon gas, since the neutron and a proton have the weakly bound state
of deuterium and therefore a large positive scattering length a � + 20 fm. Isospin
symmetric nuclear matter, however, has two spin and two isospin states i.e. four
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components and does not have a unitarity limit. It is in fact unstable at subnuclear
matter densities where a liquid gas phase transition occurs. This was successfully
described in [3] where estimates showed that as Pauli blocking between same spins
is effectively reduced as the number of spin states increases, the Pauli pressure can no
longer overcome the unitary attraction. Only two component systems are stable and
provides a unitary gas. Three component systems are marginal and four and higher
component systems are unstable. Such multicomponent systems are now studied,
e.g. 6Li with three hyperfine states [5–7], 137Yb with six nuclear spin states [8],
and heteronuclear mixtures of 40K and 6Li [9, 10]. Multi-component systems have
intriguing similarities with neutron, nuclear and quark matter. In the latter color
superconductivity between the 2 spin, 8 color and 2–3 flavor states may occur [11].

When the interactions are varied, e.g. near a Feshbach resonance, the thermo-
dynamic quantities depend on the dimensionless parameter akF . All the thermo-
dynamic quantities become universal functions of the crossover parameter akF or
equivalently x = 1/akF in the sense that they do not depend on the system whether a
gas of atoms, neutrons, or any other Fermi particle as long as R � |a|, r0.The univer-
sality argument is intimately connected to the smooth approach to the unitarity limit
and crossover. At finite temperatures the universal thermodynamic functions depend
on T/EF as well. A decade earlier pairing models [12–15] had already described
the crossover from BCS to the BEC limit and calculated pairing gaps, transition
temperatures and chemical potentials.

In these lecture notes universality, crossover and correlations will be described.
Not only the BCS–BEC crossover in uniform system but also the repulsive “ferro-
magnetic” crossover, in multicomponent systems, traps and lattices. Mostly Fermi
atoms are discussed but applications to neutron, nuclear and quark matter, nuclei and
electrons in solids are made wherever possible.

3.2 Universality and Crossover

Universality is usually understood as the universal scaling in the unitarity (Bertsch)
limit where the interaction range (R → 0) and scattering length (a →±∞) are suffi-
ciently short and large respectively that the thermodynamic quantities are indepen-
dent of either or any other details of the interaction (such as effective ranges, etc.)
and only given by universal constants.

When only the interaction range is negligible (R → 0) but the scattering length
varies, as it is possible in ultracold atomic systems around Feshbach resonances, there
is another dimensionless parameter in the problem usually taken as akF or x = 1/akF .

The thermodynamic quantities are thus universal functions of this crossover para-
meter varying from weakly interacting x → −∞ over the unitarity limit x = 0 to the
strongly interacting molecular limit x → +∞. In pairing models [13–15] these limits
are named the BCS and BEC limits respectively and the crossover as BCS–BEC
crossover. When finite temperatures are considered the thermodynamic quantities
are universal functions of both x and T/EF [16].
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Fig. 3.1 Sketch of
correlations in a
two-component gas. Top row
shows the gradual pairing of
different components (spin
states) with increasing
attraction, i.e. the crossover
from BCS via unitary gas to
the molecular BEC. Bottom
row shows the crossover for
repulsive interactions from
the dilute gas to either a hard
sphere (Gutzwiller) or a
ferromagnetic phase
(see text)

BCS (a→ 0
−
 ) Unitarity (a→ −∞) mBEC

Dilute (a→ 0
+
 ) Gutzwiller Ferromagnet (a→ +∞)

It should be emphasized that there are several crossovers (see Fig. 3.1). The most
common one is that for increasingly attractive scattering lengths also known from
pairing models [13–15] and referred to as the BCS–BEC crossover. Here the cold
atoms start out in the weakly attractive limit with BCS pairing i.e. x = 1/akF → −∞
and goes over the unitarity limit x = 0 to the strongly attractive limit x → +∞,where
a molecular BEC forms. Another crossover starts out with weak repulsive interac-
tions, i.e. a small positive scattering length, and increasing it towards akF → + ∞.

A recent experiment claims to observe a phase transition in a 6Li gas to a ferro-
magnetic state for akF � 2 [17]. These two crossover are different because the
latter has a node in the short range correlation function [18]. In principle there are a
novel crossover for each number of nodes, however, they become increasingly short
lived due to three-body losses. The different crossovers have different universal
thermodynamic functions, universal parameters and quite different superfluid and
ferromagnetic phases.

We will in the following subsections describe universality and crossover mainly
for the BCS–BEC crossover and briefly for the “ferromagnetic” crossover. A number
of thermodynamic functions are described which are calculated within the Jastrow-
Slater approximation for the many-body wave function.

3.2.1 Universality in the Unitarity Limit

The dimensional argument implies that any thermodynamic function, for example
the energy per particle in units of the Fermi energy, can at zero temperature only
depend on one dimensionless scale such as x

E

N
= 3

5
EF (1 + β(x)). (3.1)
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Here, the ratio between the interaction and kinetic energy β(x) is a “universal” many-
body function in sense that it and all other thermodynamic functions are independent
of the system, e.g. dilute neutron matter, helium gases, atomic gases, etc. Earlier
definitions are η= (3/5)(1 + β) [19–21] and ν= (5/3)β [3].

The universality and crossover hypothesis implicitly assumes that the transition to
the unitarity limit and the crossover is smooth, i.e. the derivatives of β(x) are finite.
Taking the derivative with respect to density gives

∂E/N

∂n
= 3

5
(1 + β(x))

∂EG

∂n
− EF

5n
xβ ′(x) (3.2)

where β ′(x)= ∂β(x)/∂x . We observe that derivatives of β w.r.t. densities or kF :
kF∂/∂kF = − x∂/∂x, always brings a factor x or 1/a. In the unitarity limit x = 0,
such terms as the second term in Eq. 3.2 therefore vanishes and only the universal
parameter β(0) remains. By repeating the argument all density derivatives of the
energy such as chemical potential, pressure, first sound speed, compressibility, etc.
depend only on this one universal parameter β(0). Other thermodynamic variables
than density derivatives of E/N can, however, depend on higher derivatives β(n)(0)
as we shall see below.

The first estimates based on Pade’ approximants and Galitskii resummation gave
β(0) � −0.67 [2, 3] in the unitary limit whereas the Jastrow-Slater approximation
yielded β(0) � −0.54. The Leggett pairing model, which will be described in
detail in a later section, predicts β(0) � −0.40. Ground state energies have been
calculated more accurately numerically by Monte Carlo for systems with a finite
number of Fermions in a box. The earliest actually use the Jastrow-Slater as trial
wave functions for Green’s function [19–21] and diffusion [22] Monte Carlo. Since
pairing becomes important at crossover a more general BCS wave function based on
the Jastrow wave function was also employed. Extrapolating to a large number of
particles they obtained β(0)= −0.56 ± 0.01 and β(0)= −0.58 ± 0.01 respectively
in the unitary limit.

Recent measurements [4, 23–33] of β(0) confirm the unitarity limit near Fesh-
bach resonances. Several experiments with trapped Fermi atoms have recently
measured energies in the strongly interacting or dense limit near Feshbach reso-
nances. The energy in the trap (excluding that from the harmonic oscillator poten-
tial) is E/N = (3/8)EF

√
1 + β(0) where EF = (3N )1/3�ω is the Fermi energy

in a trapped non-interacting gas. The first measurements by the Duke group [4]
measured the energy of 6Li Fermi atoms near a Feshbach resonance from expan-
sion energies. These early measurements were later corrected for thermal ener-
gies and find β(0)= − 0.4 ± 0.1. [4, 28, 29]. With the discovery of a molecular
BEC the Innsbruck group [32, 33] has been able to measure the size of the atomic
cloud, which scales with (1 + β)1/4, around the Feshbach resonance at very low
temperatures, and find β(0)= − 0.68 ± 0.1. Recent accurate measurements find
β(0)= − 0.49 ± 0.02 [34].

Other thermodynamic variables may in the unitarity limit depend on other
universal parameters. For example, the number of closed channel molecules is propor-
tional to β ′(x) [35–37] and one obtains β ′(0) � −0.5. From the slope of collective
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modes near the unitarity limitβ ′(0) � −1.0 [4, 28, 29]. Generally, the universal func-
tion β(x) is given by a Taylor expansion in terms of an infinite number number of
derivativesβ(n)(0),which all are universal parameters that determine all the universal
thermodynamic functions.

Unlike neutrons, ultracold atoms can have many internal bound states and corre-
sponding Feshbach resonances as the background magnetic field is increased. Thus
solutions are multivalued for a given scattering length where the gas is in a metastable
state. For example, starting from a non-interacting gas (a = 0) and increasing the
scattering length a > 0 we also approach an unitarity limit a →+∞ [38], which
differs from that in the BCS–BEC crossover when the scattering length is decreased
a < 0. This unitarity limit is similar to that for bosons as a →+∞ [18], where
the scattering length must be positive in order for the system to be stable. As will
be described in detail the two-body wave function has a node and therefore the
universal functions differs from those in the BCS–BEC crossover. In principle a
new universal limit and crossover exist for each number of nodes, n = 1, 2, 3, . . . ,
in the two-body correlation function. These will, however, be increasingly unstable
towards three-body losses. The n = 1 has been observed for bosons in the atomic-
molecular transition in a 85Rb BEC [39–43] and is in agreement with the predicted
value from JS with κ1 = 2.80. For fermions the predicted value is calculated below
within the Jastrow-Slater approximations β1(0) � 2.93 which is compatible with a
recent experiment [17]. This value is about six times |β(0)| demonstrating that these
two universal limits are very different.

3.2.2 Thermodynamic Crossover Functions

As argued above any thermodynamic function can only depend on one dimensionless
scale such as x at zero temperature when the range of interaction is sufficiently small.
For example, the energy per particle in units of the Fermi energy is given in Eq. 3.1
in terms of the universal many-body crossover function β(x)= Eint/Ekin. It is well
known in the dilute limit for Fermions [44, 45]

E

N
= 3

5
EF + π�

2

m
an + · · · (3.3)

to leading orders, whereas for molecular bosons

E

N
= − �

2

2ma2 + π�
2

2m
aM n + · · · , (3.4)

where the molecular scattering length is aM � 0.6a [23–27, 46]. Thus we obtain

β(x)=

⎧⎪⎨
⎪⎩

10/(9πx)+ 4(11 − 2 ln 2)/(21π2x2)+ · · · x → − ∞
β(0)+ β ′(0)x + · · · x � 0

−5x2/3 − 1 + (aM/a)5/(18πx)+ · · · x → + ∞

⎫⎪⎬
⎪⎭ . (3.5)
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Fig. 3.2 The universal
functions β(x) and β1(x)
within JS. Also shown are
the BCS limit of Eq. 3.5 and
the chemical potential in the
Leggett crossover model
(see text). On the BEC side
(x > 0) the molecular
energy been subtracted
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In Fig. 3.2 various model calculations of the universal function β(x) are shown.
The chemical potential is in terms of the universal function

μ(x)=
(
∂E

∂N

)
V,S

= EF

(
1 + β − 1

5
xβ ′
)
. (3.6)

In both the hydrodynamic limit and for a superfluid gas the first sound is given
by the adiabatic sound speed

c2
S(x)=

n

m

(
∂μ

∂n

)
V,S

= 1

3
v2

F

[
1 + β − 3

5
xβ ′ + 1

10
x2β ′′

]
, (3.7)

where vF = �kF/m.
The compressibility κ = n−2(∂n/∂μ) is related to first sound as

κ−1 = n2
(
∂μ

∂n

)
V,S

= mnc2
S . (3.8)

The pressure P = n(μ− E/N )= n2 dE/dV is

P(x)= 2

5
EF n[1 + β − xβ ′/2]. (3.9)

The polytropic index P ∝ nγ+1 is defined as the logarithmic derivative of the
pressure

γ (x) ≡ n

P

dP

dn
− 1 =

2
3 (1 + β)− xβ ′/2 + x2β ′′/6

1 + β − xβ ′/2
. (3.10)

γ approaches 2/3 in both the dilute and unitarity limit whereas it approaches γ = 1
in the molecular limit. This index determines the frequency of collective modes in
traps [47].
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We notice that all the above thermodynamic derivatives w.r.t. density only depend
on one universal parameter β(0) in the unitarity limit x = 0 as argued above. Most
thermodynamic quantities behave in the unitary gas as in a free Fermi gas except for
the universal scaling factor (1+β(0)).This factor, however, cancels in the polytropic
index and therefore γ = 2/3 in both the unitarity and BCS limit and the collective
modes are the same as has been verified experimentally [4].

3.2.3 Finite Temperature

At finite temperature the thermodynamic functions also depend on the parameter
T/EF (see, e.g., [3, 16, 48, 49]). Using (∂(E/N )/∂T )V,N = T (∂s/∂T )V,N = cV ,

where s = S/N is the entropy and cV the specific heat per particle, we obtain from
Eq. 3.1

β(x, T/EF )=β(x, 0)+ 5

3

T∫
0

cV

(
x,

T ′

EF

)
dT ′

EF
. (3.11)

The entropy is at temperatures well below the superfluid transition temperature
T � Tc given by phonon fluctuations

s = 2π2

45n

(
T

cS

)3

. (3.12)

Inserting in Eq. 3.11 gives at low temperatures.

β(x, T/EF )=β(x, 0)+ 5
T

EF
s. (3.13)

The temperature corrections scales as ∼(T/TF )
4 and since T � Tc � 0.19EF , the

temperature dependence is almost flat as also observed in [34].
In a Fermi liquid s = (π2m∗/2m)T/EF ,where m∗ is the effective mass, and thus

β(x, T/EF ) � β(x, Tc/EF )+ 5π2

6

m∗

m

T 2 − T 2
c

E2
F

, (3.14)

when Tc < T � EF . Recent accurate measurements find β(0, 0)= − 0.49 ± 0.01
and m∗/m = 1.13 ± 0.03 [34] in the unitarity limit. These allow us to extract the
Landau parameters at zero temperature Fs

0 = (1 + β(0, 0))m∗/m − 1 � −0.42 and
Fs

1 = 3(m∗/m −1) � 0.39. In the BCS limit m∗/m = 1+[8(7 ln 2−1)/15π2]a2k2
F

and F0 = 1 + (10/9π)akF .

As the temperature decreases towards the critical temperature the change in β(T )
from a Fermi liquid Eq. 3.14 towards a superfluid Eq. 3.13 allowed determination of
Tc/EF = 0.19 ± 0.02 [34].
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At temperatures below T < Tc the normal and superfluid components lead to
two (first and second) sound modes in the collisional limit. In the BCS and BEC
limit these are also referred to as the compressional and thermal sound modes. Their
velocities u1 and u2 are given by the positive and negative solutions respectively of
[50, 51]

u2 = c2
S + c2

2

2
±
√√√√
(

c2
S + c2

2

2

)2

− c2
T c2

2. (3.15)

The thermodynamic quantities entering are the adiabatic c2
S = (∂P/∂n)S and the

isothermal c2
T = (∂P/∂n)T compressional sound speed squared. The “thermal”

sound wave c2
2 = nss2T/nncV acts as a coupling or mixing term and is small in

the two limits. Here, n = nn + ns is the total, nn the normal and ns the superfluid
density. The difference between the adiabatic and isothermal sound speed squared
can also be expressed as

c2
S − c2

T =
(
∂s

∂n

)2

T

n2T

cV
. (3.16)

The mixing of the compressional and thermal sound modes is particular interesting
at crossover where they mix and couple strongly. They undergo avoided crossing,
i.e. the compressional change smoothly into a thermal sound mode and visa versa
around the unitarity limit [48].

3.2.4 Jastrow-Slater Approximation

The Jastrow and Jastrow-Slater (JS) approximation was among the earliest models
applied to the unitarity limit and crossover [3]. It has the advantage that it provides
analytical results for the universal parameters that are easy to understand and has
proven to be quite accurate when compared to experiment. It gives an ansatz for the
strongly correlated wavefunctions which is also the starting point as trial wavefunc-
tions in Monte Carlo calculations [22]. Finally, JS can be generalized to describe
both bosons and fermions with any number of spin states as well as other universal
limits.

The Jastrow and the JS approximation methods were developed for strongly inter-
acting and correlated Bose and Fermi fluids respectively such as 4He,3 He and nuclear
matter in [52–55] and has more recently been applied to kaon condensation [56], cold
atomic Fermi [38] and Bose [18] gases. As explained in these references the JS wave
function

�J S(r1, . . . , rN )=�S

∏
i, j ′
φ(ri − r j ′), (3.17)
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incorporates essential two-body correlations in the Jastrow function φ(r). The anti-
symmetric Slater wave function �S for free fermions �S insures that same spins
are spatially anti-symmetric. The Jastrow wave function only applies to particles
with different spins (indicated by the primes). The pair correlation function φ(r)
can be determined variationally by minimizing the expectation value of the energy,
E/N = 〈�|H |�〉 / 〈�|�〉, which may be calculated by Monte Carlo methods that
are fairly well approximated by including only two-body clusters. The basic idea
of this method is that at short distances r � r0 the Jastrow function φ(r) obeys the
Schrödinger equation for a pair of particles interacting through a potential U(r)[

−�
2

m

d2

dr2 + U (r)

]
rφ(r)= εMrφ(r), (3.18)

where the eigenvalue energy of two atoms εM = 2Eint/N . Many-body effects
become important, when r is comparable to r0, but are found to be small in lowest
order constrained variation (LOCV [3, 38, 52–56]). Here the boundary conditions
that φ(r > d) is constant and φ′(r = d)= 0 are imposed at the healing distance d,
which is determined self consistently from number conservation (see [38] for details)

ν − 1

ν
n

d∫
0

φ2(r)

φ2(d)
4πr2 dr = 1 (3.19)

Note that a given component only interact and correlate with the (ν − 1) other
components which explains the prefactor. In the dilute limit φ(r) � 1 and so
d = (ν/(ν − 1))1/3r0. In the unitary limit a → ± ∞ the healing length now
approaches d = r0(2ν/(ν − 1)3)1/3 = (3π/(ν − 1))1/3k−1

F . Generally d � r0.

The boundary condition at short distances is given by the scattering length
(rφ)′/rφ= − 1/a at r = 0.

3.2.4.1 Attractive Crossover

For negative scattering lengths or negative energies εM < 0 the solution to the
Schrödinger equation gives a wave-function rφ(r) ∝ sinh[k(r − b)] for weak inter-
actions which change to rφ(r) ∝ cosh[k(r − b)]) for stronger interactions (see
Fig. 3.4). The boundary conditions and number conservation determine the phase
kb, the energy and the healing length d. For small scattering lengths b = a whereas
b = 0 in the unitarity limit. The interaction energy Eint/N = − �

2k2/2m is given
by [57]

a

d
= κ−1 tanh κ − 1

1 − κ tanh κ
, (3.20)

with κ = kd. In the BCS limit Eq. 3.20 gives the correct interaction energy per
particle, Eq. 3.3. In contrast the negative energy solution to Eq. 3.20 reduces in the
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unitarity limit to κ tanh κ = 1 with solution κ0 = 1.1997 . . . As the scattering length
cross over from −∞ to +∞ the negative energy state is analytically continued
towards the molecular bound state with E/N = − �

2/2ma2 as a → + 0.
In addition to the interaction energy Eint = κ2/2md2 as calculated above a kinetic

energy (3/5)EF appears due to the Slater ground state. The total energy becomes

E

N
= 3

5
EF − �

2κ2

2m d2 . (3.21)

From the definition Eq. 3.5 we obtain the universal function

β = − 5

3

(
κ

d kF

)2

. (3.22)

In the unitarity limit κ = κ0 = 1.1997 and d kF = (3π/(ν − 1))1/3 and the universal
parameter is for a general number of spin states

β(0)= − 5

3

(
ν − 1

3π

)2/3

κ2
0 . (3.23)

Thus in a two-component system β(0)= − 0.54 which lies between Monte Carlo
results β(0) � −0.56 [22] and recent experimental data β(0) � −0.49 [34].

The universal function β(x) is shown in Fig. 3.2 for the JS approximation. Also
shown is the chemical potential within the Leggett crossover model which will be
discussed below in connection with pairing. The JS model includes self energies
and is therefore a better approximation on the BCS side (x < 0). On the BEC side
(x > 0) both models approach the molecular energy (subtracted in Fig. 3.2) but to
next orders both model overestimates the energy: the JS model by the Slater energy
and the Leggett model by overestimating the molecular scattering length aM by a
factor ∼3.

The dependence on the scattering length is given by Eq. 3.20. By taking the
derivative on both sides w.r.t. x we obtain

β ′(0)= − 10

3

1 − κ−2
0

(3π)1/3
� −0.48. (3.24)

This JS prediction is somewhat lower than that of Monte Carlo: β ′(0)=−1.0 ± 0.1
[19–22]. The slopes of the axial and longitudinal collective frequencies of trapped
unitary Fermi gases are directly proportional to β ′(0) and measurements also give
β ′(0) � −1.0 [4, 28, 29]. Analysis of the number of closed channel molecules
indicates β ′(0) � −0.5 [35–37]. In the Leggett pairing model β ′(0) � −1.0.

The universal parameter β ′(0) will be related to short range correlations in
Sect. 3.2.5.
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3.2.4.2 Repulsive Crossover

Starting from a positive scattering length and positive interaction energy the solu-
tion to the Schrödinger equation gives a wave-function rφ(r) ∝ sin[k(r − b)] (see
Fig. 3.4). The boundary conditions and number conservation gives [18]

a

d
= κ−1 tan κ − 1

1 + κ tan κ
. (3.25)

As in the BCS limit Eq. 3.25 gives the correct interaction energy per particle in
the dilute limit, Eq. 3.3. In the unitarity limit a →+∞, the positive energy solution
reduces to κ tan κ = −1 with multiple solutions κ1 = 2.798386 . . . , κ2 = 6.1212 . . . ,
etc., and asymptotically κn = nπ for integer n. Generally, n = 0, 1, 2, . . . is the
number of nodes in the JS wavefunction and each determines a new universal limit
with universal parameters depending on the number of nodes. The phase in the wave
function is kb =π(n − 1/2) whenever the unitarity limit of n nodes is encountered.

The resulting energy is

E

N
= 3

5
EF + �

2κ2

2md2 , (3.26)

and we obtain from Eq. 3.1

β(x)= 5

3

(
κ

dkF

)2

. (3.27)

Because Eq. 3.25 have a string of solutions for given a, κ and β are multivalued
functions for a given scattering length or x, which we distinguish by an index βn

referring to the number of nodes n = 0, 1, 2, . . . . The attractive case discussed
above is the n = 0 case, i.e. universal function in the BCS–BEC crossover is also
β =β0. n = 1 is the first weakly repulsive crossover where a ferromagnetic phase
transition may occur and is also shown in Figs. 3.2 and 3.3

The universal parameter in this repulsive unitarity limit is

β1(x = 0)= + 5

3

(
ν − 1

3π

)2/3

κ2
1 � 2.93(ν − 1)2/3. (3.28)

The index denotes that this universal parameter is for the wave function with
one node. It has recently been measured in a 6Li gas in two spin states [17]. The
chemical potential in the optical trap almost doubles going from the non-interacting
to the unitarity limit. As shown below it scales as μ ∝ √

1 + β1(0) giving β1(0)∼3
compatible with JS. However, the experiments also indicate a phase transition in
repulsive unitarity limit from a paramagnetic to a ferromagnetic phase. This phase
transition is supported by the JS models as will be shown in Sect. 3.2.7.



3 Crossovers in Unitary Fermi Systems 61

Fig. 3.3 κ2 vs. scattering
length in the JS model in
units of interparticle distance
r0
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As for the attractive crossover we calculate within JS the derivative from Eq. 3.25

β ′
1(0)= − 10

3

(1 − κ−2
1 )

(3π)1/3
� −1.38. (3.29)

3.2.5 Short Range Correlations

The short range two-body correlations are connected to thermodynamic quantities of
the system [58]. We shall here derive one important example at zero temperature and
use the Jastrow-Slater results above to actually calculate a new universal number.
We refer to [49, 59] for finite temperature extensions.

Following [49] we scale the two-body potential by a factor λ and obtain from
Feynmann-Hellmann

∂E/V

∂λ
= 1

V

〈
∂H

∂λ

〉
=
∫

d3rU (r)〈ψ†
1 (r)ψ

†
2 (0)ψ2(0)ψ1(r)〉λ. (3.30)

Here the correlation function at short ranges is

〈ψ†
1 (r)ψ

†
2 (0)ψ2(0)ψ1(r)〉λ=φ2

λ(r)= C

(
1

r
− 1

aλ

)2

, (3.31)

where φλ is the solution to the two-body Schrödinger equation (3.18) but with poten-
tial λU (r). C is a normalization factor such that (1/V )

∫
d3rφ2

λ(r)= (n/2)2, and
will later be interpreted as the correlation strength.

Taking the derivative of the Schrödinger equation w.r.t. λ, multiplying by rφλ,
and integrating over r we obtain
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rc∫
0

d rU (r)(rφλ(r))
2 = − C

m

∂a−1

∂λ
, (3.32)

where rc is any range between R � rc � r0. Combining Eqs. 3.30 and 3.32 gives

∂E/V

∂a−1 = − 4πC

m
. (3.33)

From Eq. 3.1 we can relate the correlation strength to the derivative of the universal
functions βn(x) as

Cn = − k4
F

40π3 β
′
n(x), (3.34)

where the node index n distinguishes the various universal functions as discussed
above. In the unitarity limits we can determine Cn(x = 0) by insertingβ ′

0(0)= −0.54
orβ ′

1(0)= −1.38 from JS Eqs. 3.24 and 3.29, etc. Cn(x) can also be obtained directly
from the JS wave-function, normalization and Eq. 3.31.

The Fourier transform of the wave-function at large momenta is determined by
the short range correlations φ(k)= ∫

d3reik·rφ(r) � 4π
√

C/k2. Therefore the
momentum distribution for a spin state has the tail

nσ (k)=φ2(k)= (4π)2C/k4, (3.35)

at large momenta as is well known for Fermi liquids [44, 45]. The correlation strength
is directly measured in the number of closed channel molecules [35, 36]

NM = ∂E

∂a−1

∂a−1

∂B

1

μM
, (3.36)

where μM is twice the magnetic moment of the atom. The scattering length depends
on the applied magnetic field as a � abg[1 − �B/(B − B0)] near a Feshbach
resonance at B0. Experiments find for the BCS–BEC crossover [35, 36] β ′

0(0) �
−0.5 which agrees well with that of JS and is compatible with model estimates [37].

3.2.6 Instability in Multicomponent Systems

The original Bersch problem was intended for two-component systems as neutron
matter or spin-balanced ultracold atoms in two hyperfine states. Early extrapolations
of the dilute energy of Eq. 3.3 to a → −∞ led to the belief that the unitarity limit was
unstable towards collapse [60] as a nuclear gas whereas in fact the two-component
system is the only stable unitary gas. The predicted scaling for the neutron gas at
subnuclear density as given by the unitary gas of Eq. 3.1 triggered the memory of
Vijay Pandharipande [61], who had the impression that Bethe and Brueckner were
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aware of this scaling when they looked at low density neutron matter in neutron star
context back in the ’50s [52, 62, 63].1 Calculations by Carlson et al. [19–21] have
later confirmed this scaling in neutron gases.

Multicomponent systems are now studied, e.g. 6Li with three hyperfine states
[5–7], 137Yb with six nuclear spin states [8], and heteronuclear mixtures of 40K and
6Li [9, 10]. Such multi-component systems have intriguing similarities with neutron,
nuclear and quark matter where color superconductivity between the 2 spin, 8 color
and 2–3 flavor states may occur [11].

For the gas to be stable towards collapse in the unitarity limit the energy must be
positive, i.e., 1 + β(0) > 0. In the JS approximation we obtain in the unitary limit
from Eq. 3.23 β(0)= 0,−0.54,−0.85,−1.12, . . . , for ν= 1, 2, 3, 4, . . . spin states
respectively. Therefore the JS approximation predicts that up to ν ≤ 3 spin states are
stable in the unitary limit whereas in the Galitskii approximation only ν= 1, 2 are
stable [3]. Pauli blocking is effectively reduced in many component system and can
only stabilize one, two and perhaps three component Fermi systems in the unitary
limit. The stability of two spin states towards collapse has been confirmed for a 6Li
and 40K gases near Feshbach resonances. The marginal case ν= 3 has been studied
with 6Li atoms, which have three spin states with broad and close lying Feshbach
resonances, and although the loss rate of atoms is large near Feshbach and Efimov
resonances [5–7] the gas is sufficiently long lived for measurements and does not
collapse. It has long been known that neutron star matter [64–67] with two spin states
likewise has positive energy at all densities whereas for symmetric nuclear matter
with two spin and two isospin states, i.e. ν= 4, the energy per particle is nega-
tive. Nuclear matter is therefore unstable towards collapse and subsequent implo-
sion, spinodal decomposition and fragmentation at subnuclear densities [68]. Above
nuclear saturation densities, kF R � 1, short range repulsion stabilizes matter up to
maximum masses of neutron stars ∼ 2.2 M�, where gravitation makes such heavy
neutron stars unstable towards collapse [64]. The conjecture is therefore that the
ν > 3 Fermi systems are unstable and non-universal in the unitarity limit a → −∞.

Bose atoms corresponds to ν= ∞, since no Pauli blocking applies, and are unstable
for negative scattering lengths.

The ν= 3 system is relevant for several reasons. Traps with ultracold 6Li atoms
with three hyperfine states are sufficiently stable and long lived [5–7] to be studied
in detail. The three Feshbach resonances are, however, separate in magnetic field so
that the unitarity limit is not simultaneous for the three components. The three body
system has interesting Efimov states which are non-universal [69–71], i.e. besides
the scattering length the system depends on an additional potential parameter such
as the effective range. This non-universality persists for three bosons confined in a
trap [72] and non-universality is therefore expected for a gas with three state Fermi
atoms as experiments for the 6Li system also indicates [5–7]. Therefore three compo-
nent systems do not have an universal limit and are only marginally stable, i.e. stable
towards collapse but suffer three-body losses.

1 However, no written reference has been found in the works of Bethe, Brueckner or Pandharipande
so far.
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In spin polarized systems or systems with different densities of the spin compo-
nents the stability conditions depends on the various component densities. Also the
system may undergo phase separation into a more symmetric phase and an asym-
metric phase as, e.g., nuclei and a neutron gas in the inner crust of neutron stars.
Similarly, spin polarized atoms at low temperature in traps may for strong attractive
interactions separate into a paired spin balanced phase in the centre with a mantle
of excess spin atoms. Likewise phase separation of strongly repulsive fermions may
separate into domains of ferromagnetic phases in the centre with a paramagnetic
mantle around.

3.2.7 Repulsive Interactions and Itinerant Ferromagnetism

For a small positive scattering length the Fermi gas is a paramagnet (PM). For stronger
repulsion Stoner [73] predicted a phase transition to a ferromagnet (FM) which a
recent experiment claim to have observed [17]. Stoner’s argument was based on the
dilute equation of state of Eq. 3.3 which generally for a spin polarized two-component
system of total density n = n↓ + n↑ and polarization η= (n↓ − n↑)/n is

E/N = 3

10
EF

[
(1 + η)5/3 + (1 − η)5/3 + 20

9π
(1 + η)(1 − η)kF a

]
. (3.37)

Expanding for small polarization gives an equation of the Ginzburg–Landau type

E/N EF � 3

5
+ 2

3π
akF + 1

3

(
1 − 2

π
akF

)
η2 + 3−4η4 + O(η6). (3.38)

It predicts a second order phase transition at akF =π/2 from a PM to a FM with
polarization η= ± √

27(2akF − 1/π). Due to the small fourth order coefficient it
quickly leads to a locally fully polarized system η= ± 1.

Unfortunately the predicted transition occurs close to the unitarity limit where the
dilute equation of state is not valid. Higher orders may be important as exemplified by
including the next order correction of order a2. It changes the transition from second
to first order [74] at low temperatures up to a tri-critical point at Tc � 0.2TF , where
the transition becomes second order again. However, the dilute expansion remains
invalid in the unitarity limit.

The Jastrow-Slater approximation extends to the unitarity limit also for positive
scattering lengths as discussed above. Number conservation of the various spin densi-
ties is automatically included in the healing length, see e.g. Eq. 3.19. As result the
energy is

E

N
= 3

10
EF

[
(1 + η)5/3 + (1 − η)5/3 + β1(1 + η)(1 − η)2/3

+ β1(1 + η)2/3(1 − η)
]

+ O(η6). (3.39)
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β1(x, η) is now also a function of polarization but for simplicity we shall ignore this
dependency as we expect it to be minor. Expanding for small polarization we find

E/N EF � 3

5
(1 + β1)+ 1

3

(
1 − 7

5
β1

)
η2 + 3−4(1 − β1)η

4. (3.40)

Truncating to order η4 would (erroneously) predict a second order phase transition
from a PM to a FM at β1(x)= 5/7 � 0.71. The fourth order term is even smaller
than the dilute prediction of Eq. 3.38, and it is therefore necessary to include higher
orders. By equating the energy of the unpolarized gas, ∼(1 +β1) with that of a fully
polarized gas, ∼22/3, we find a first order transition at β1 = 22/3 − 1 � 0.59, since
this value is smaller than 5/7. In view of the approximations made in this model
calculation and the proximity of the two β1 values for the first and second order
transitions, we can not reliably determine whether the order of the PM-FM transition
is first or second. However, since the repulsive interaction energy in the unitarity limit
β1(0) � κ2

1/(3π)
2/3 � 2.93 is much larger than the critical value β1 � 0.59 we can

safely conclude that the transition to a FM does take place at a value corresponding
to akF � 0.85.

In a recent experiment the transition is observed around ak0
F � 2.2 at temperatures

T/TF = 0.12 and ak0
F � 4.2 at T/TF = 0.22 [17]. Presumably, the critical value for

ak0
F is smaller at zero temperature. Also the Fermi wavenumber k0

F is the central
value for a non-interacting gas which is larger than the average value over the trap
of the gas that is further expanded due to repulsive interactions. More experiments
will determine β1(x), a possible ferromagnetic phase and critical value for akF .

When the number of atoms in the two spin states is balanced the ferromagnetic
domains of η= ±1 coexist. Their domain sizes may be to small to observe in present
experiments [17]. The densities of the two components will, however, have interesting
distributions for unbalanced two-component systems in traps, where the minority
component will be suppressed in the centre and both phase separation and ferro-
magnetism can occur. In three component systems, when there are more than one
Feshbach resonance as in 6Li,with Feshbach magnetic field such that two resonances
a12 and a13 are large but a23 small, the atoms will separate between a FM phase of
1 and a mixed FM phase of 2 + 3 with different densities.

It should be emphasized that for positive scattering lengths the wave function and
thus the correlations function between fermions of unlike spin and bosons χ = rφ ∼
sin(kr − b) has a node somewhere within the interparticle distance [0; r0] (see [18]
and Fig. 3.4). It does not vanish as r → 0 as does the wave function for a short
range repulsive potential as in hard sphere scattering, where a � R. Therefore the
Gutzwiller approximation discussed in [75] applies to hard sphere gases, strongly
correlated nuclear fluids and liquid helium but not to the repulsive unitarity limit of
ultracold gases (see Fig. 3.1).
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Fig. 3.4 The JS wave
function rφ(r)/dφ(d) in the
dilute limit (κ = 0), the
attractive unitarity limit (κ0),

towards the mBEC (κ = 2),
the repulsive unitarity limit
with one (κ1) and two nodes
(κ2)
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3.3 Pairing in Uniform Systems and the BCS–BEC Crossover

Experiments on superfluid Fermi gases have recenty confirmed the BCS to BEC
crossover models [12–15, 76, 77] for pairing that was developed after the invention of
BCS theory. The development of BCS–BEC crossover will be described historically
with increasing level of complexity.

3.3.1 BCS Limit

Bardeen, Cooper and Schriffer (BCS) first wrote down the famous gap equation [78]
for an attractive two-body interaction U (r) < 0

�p = − 1

V

∑
p′

U (p′,p)
1 − 2 f (E ′

p)

2Ep′
�p′ , (3.41)

which can be elegantly derived via the Bogoliubov transformation [79]. Here, f (ε) =
(exp(ε−μ)/T )+ 1)−1 is the Fermi distribution function, Ek =

√
(εk − μ)2 +�2

0

the quasi-particle energy and εk = �
2k2/2m the free particle energy. In the BCS

limit number conservation insures that μ= EF .U (p,p′)= U (p − p′) is the Fourier
transform of U (r). In metals phonons provide a small residual attractive interaction
U (p′,p) � −Vph with a cutoff of order the Debye frequencyωD.As result we obtain
from Eq. 3.41 the BCS s-wave gap �0 = 2�ωDe−1/N (0)Vph at zero temperature.

In the years immediately after BCS was developed the gap equation was gener-
alized in terms of scattering lengths [80, 81]. When the interaction U(r) is short
range, its Fourier transform U (p − p′) is long range in momentum. It is then conve-
nient to replace the interaction by its scattering matrix T = U + U G0T, where
G0 = 1/(2εk − iδ), is the vacuum propagator for two particles. At low momenta
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the scattering matrix is given by the s-wave scattering length T = 4π�
2a/m ≡ U0.

Eliminating U in the gap equation 3.1 gives

1 = U0

2V

∑
k

[
1

εk
− 1 − 2 f (Ek)

Ek

]
. (3.42)

Note that the difference between the vacuum and in medium Green’s functions auto-
matically cuts off the high momenta, which are now included in the scattering length.
Solving this gap equation at zero temperature for a Fermi gas interacting through an
attractive scattering length a < 0 gave a pairing gap in the dilute limit, |a|kF � 1,
[80, 81]

�0 = 8

e2 EF exp

[
π

2akF

]
. (3.43)

3.3.2 Induced Interactions

Gorkov2 pointed out that many-body effects (induced interactions) lead to the next
order correction in the interaction [82–86]

Uind(p′,p)= − U 2
12

M

∑
q

f (ξ1(k′ + q))− f (ξ1(q))
ξ1(k′ + q)− ξ1(q)

+
∑
j,q

U1 jU2 j

M

f (ξ3(k + q))− f (ξ3(q))
ξ3(k + q)− ξ3(q)

. (3.44)

f is the Fermi distribution of ξ j (q)= εq −μ j , k′ = p + p′ and k = p − p′, where pi

are the momenta of the two pairing spin states. Induced interactions due to particle-
hole loop diagrams from j = 3, ..., ν spin states are responsible for the second sum
in Eq. 3.44 and has opposite sign. For two components, however, it is absent.

In the two-component spin-balanced system the induced interactions effectively
leads to a second order correction to the scattering length a → a+(2/3π) ln(4e)kF a2

[82, 83], where a = a12 and U12 = U0 = 4π�
2a/m. Including this correction in

Eq. 3.43 reduces the gap by a factor (4e)1/3�2.2

�=
(

2

e

)7/3

EF exp

[
π

2akF

]
. (3.45)

The induced interactions consists of a repulsive direct part and an attractive part
due a loop diagram which is therefore proportional to the number of components ν.

2 Inquiring into details about their calculation some 40 years later Gorkov only remembered “...that
it was a particular difficult calculation!”



68 H. Heiselberg

The induced interactions therefore scale as (3 − ν) in a system of ν spin balanced
multi-components with the same scattering length. The corresponding gap is

�= (4e)ν/3−1�0. (3.46)

For spin polarized systems or for the 6Li systems with three different scattering
lengths the pairing gap is described in Ref. [84]. Adding bosons enhance
pairing [83].

In the unitary limit kF |a| � 1 the gap is of order the Fermi energy [13]. Extrap-
olating (3.2) to akF → ± ∞ [3] gives a number �= 0.49EF close to that found
from odd-even staggering binding energies �= 0.54EF calculated by Monte Carlo
[19–21]. The crossover model of Leggett described below gives a somewhat larger
gap�Leggett/EF = 0.69.Such values of order the Fermi energy are one or two orders
of magnitude larger those found in metals and high temperature superconductivity
and was met by disbelief among condensed matter physicist and the crossover was
considered academic. Only after the realization and confirmation of the BCS–BEC
crossover in experiments with ultracold atoms was its significance acknowledged.

It also follows from the BCS gap equation that the gap and thus superfluidity and
superconductivity all vanish at a critical temperature

Tc = eCE

π
� � 0.567�, (3.47)

for any weak interaction (CE = 0.577... is Euler’s constant). In the unitarity and BEC
limits the critical temperature is no longer proportional to the gap.

3.3.3 Leggett’s BCS–BEC Crossover

Eagles and Leggett made the important step of connecting BCS pairing to a BEC
of molecular bosons via crossover. Eagles gave an early treatment of the crossover
from BCS superconductivity to a BEC in the context of systems with low carrier
concentrations [12]. For pedagogical reasons we will follow Leggett who solved the
gap equation of Eq. 3.42 and number conservation

N =
∑

k

[
1 − εk − μ

Ek

]
, (3.48)

self consistently in the crossover. The beauty of Leggett’s crossover model
Eqs. 3.42 and 3.48 is that it describes the crossover continuously as function of
the parameter x = 1/akF from the BCS limit (x →−∞) over the unitarity limit
(x = 0) to the BEC limit (x →+∞). It is important to include (pairing) interactions
in the chemical potential through number conservation as it changes the chemical
potential dramatically.
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In the dilute (BCS) limit the gap equation leads to the standard BCS gap of
Eq. 3.43—not including the Gorkov correction. The chemical potential is μ= EF

and does not include the standard mean field Hartree-Fock correction of a dilute gas.
In the BEC limit the pairing gap approaches

�= 4EF/
√

3πakF . (3.49)

The chemical potential approaches half of the molecular binding energy
εM =−�

2/ma2,

μ= − �
2

2ma2 + π�
2na

m
, (3.50)

plus the BEC mean field corresponding to a molecular scattering length of aM = 2a.
Four-body [46], Monte Carlo calculations [22] and experiments [23] do, however,
indicate that aM � 0.6a.

On the BCS side the minimum quasiparticle energy is� and occur when k = kF .

On the BEC side the chemical potential is negative and the minimum quasiparticle
excitation energy is the quasiparticle energy for k = 0

Eqp =
√
μ2 +�2. (3.51)

The quasiparticle energy is observed in the spin excitation response function
[77, 87, 88].

In the Leggett model the gap vanishes in the BEC limit at a critical temperature
T dissoc

c = |εM |/ ln(|εM |/EF )
3/2, which is smaller than the quasi-particle excitation

energy. It is not the on-set temperature for superfluidity but rather a molecular pair
dissociation temperature [14, 15]. The onset of superfluidity occurs at a lower critical
temperature for a molecular BEC, T B EC

c .

The Leggett model fails in the BEC limit because of the basic assumption that only
opposite momenta fermions (zero total momentum pairs) can pair. Pairs with non-
zero momenta are thermal excitations of molecular bosons and including such degrees
of freedom lowers the critical temperatures increasingly towards the (molecular) BEC
limit.

3.3.4 NSR

The model of Noziéres & Schmit-Rink (NSR) [14, 15] extends the Leggett model
so that it correctly describes the critical temperature in the molecular BEC limit.
We will therefore give a brief outline of NSR with emphasis on how pair motion
is included and how it corrects the Leggett model in the BEC limit. Also, the NSR
approach is formulated such that it applies to optical lattices discussed in Sect. 3.5
with few but crucial differences.
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In the NSR model the (molecular) pair momentum q is included in the two-particle
correlation function. To lowest order it is given by the propagator for two free atoms

�(q, ων)= T

V

∑
k,ωm

G0(k, iωm)G0(q − k, iων − iωm)

= 1

V

∑
k

1 − f (εq/2+k)− f (εq/2−k)

ων + 2μ− εq/2+k − εq/2−k
, (3.52)

In Eq. 3.52 the Matsubara frequencies ωm = m2πT i have been summed over
integers m.

We now scale the potential by λ and sum up interactions energies (U�)n from
n = 1, 2, . . . ladders. We obtain for the expectation value of the interaction energy in
state λ gives

〈λU 〉= − T
∑
q,ων

λU�(q, ων)
1 − λU�(q, ων)

. (3.53)

From the Hellmann-Feynmann theorem we now obtain the interaction part of the
free energy

�int =
1∫

0

d x

λ
〈λU 〉= T

∑
q,ων

ln[1 − U�(q, ων)]. (3.54)

As in the gap equation (3.42) large momenta contributions are removed by replacing
U� by U0�r , where the renormalized propagator is

�r (q, ων)=�(q, ων)+ 1

V

∑
k

1

2εk
. (3.55)

Inserting into Eq. 3.54 gives the thermodynamic potential

� = �0 + T
∑
q,ων

ln[1 − U0�r (q, ων)], (3.56)

where �0 =−2T
∑

q ln[1 + e(εq−μ)/T ] is the free energy for non-interacting
Fermions. The frequency sum in Eq. 3.56 can, using the residue theorem, be converted
to an ω-integral of the Bose distribution function (exp(ω/T )− 1)−1 around the real
axis, where the logarithm in Eq. 3.56 has a cut.

In the BEC limit, where μ is large and negative, it follows from Eq. 3.52 that
1 − U0�r (q, ω) is proportional to ω − εM (q)+ 2μ, where

εM (q)= − �
2

ma2 + �
2q2

4m
, (3.57)
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Fig. 3.5 Superfluid
transition temperatures from
the Leggett crossover,
Gorkov and NSR
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is the molecular binding and kinetic energy of a pair with mass 2m and
momentum q. Therefore the derivative of ln[1 − U0�r (q, ων)] with respect to μ
has a pole at ω= εM (q) − 2μ with residue 2. Using the residue theorem again we
obtain the number equation

N � −d �

dμ
� 2

∑
q

1

e(εM (q)−2μ)/T − 1
. (3.58)

Here we have ignored the contribution to the thermodynamic potential �0 from free
Fermions which is negligible in the BEC limit. The number equation is simply that
of a free Bose gas as opposed to that of a Fermi gas Eq. 3.48 in the BCS limit.

Whereas the number equation changes qualitatively from free Fermi atoms to
free Bose molecules in the crossover, the gap equation is unchanged and given by
Eq. 3.42. In the BEC limit the gap equation simply yields that the chemical potential
is half the molecular binding energy, μ= −�

2/2ma2. The number equation now
gives

Tc = π

[2ζ(3/2)]2/3

�
2n2/3

m
� 0.218EF , (3.59)

i.e., the critical temperature is independent of the pairing interaction and given by
T B EC

c for the molecular BEC. At T B EC
c all bosons are thermally excited with none

remaining at zero momentum.
In general the gap equation (3.58) and number conservation N = d�/dμ with

�=�0 + �int from Eq. 3.54 have to be solved self-consistently for the critical
temperature and the chemical potential in the BCS–BEC crossover. The result
for Tc is shown in Fig. 3.5. One notices that NSR predicts a maximum near the
unitarity limit. Recent experiments find Tc/EF = 0.19 ± 0.02 [34] whereas earlier
found Tc/EF = 0.29 ± 0.03 [4]. This is compatible with the gap �= 0.44EF

found in [89].
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Fig. 3.6 Shells in a 3D
harmonic oscillator trap
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Although the NSR model is a qualitative improvement of the Leggett model by
correctly describing Tc in the BEC limit, it still omits a number of effects such as
particle-hole contributions, selfenergies and induced interactions from the medium.
Consequently, the Hartree field and Gorkov corrections are not included, and in the
BEC limit the molecule-molecule scattering length 2a implied by Eq. 3.50 is a factor
∼3 too large [46]. More elaborate models [76, 77, 90] include some of these effects
and do not find a maximum for Tc/EF around the unitarity limit (Fig. 3.6).

3.4 Atomic Traps and Nuclei

Traps are necessary for confining the atoms and creates a density distribution that is
maximal at central density and decrease towards the cloud size R where it vanishes.
Thus all densities are present at once which can be difficult to separate experimentally
in order to extract the (n,T) phase diagram.

From a nuclear point of view harmonic oscillator (HO) traps are wonderful toy
systems since they provide confined systems, which are a first approximation to the
nuclear mean field potential. Additionally we can tune the interactions and therefore
the level splitting and pairing. Also millions of Fermi atoms can be confined and not
just the � 250 neutron and protons in nuclei limited by fission. Therefore one can
study the crossover from few to infinite number of particles which is necessary in
order to e.g. link pairing in nuclei to that in neutron and nuclear matter. Similarities
between the (prolate) nuclear mean field and cigar shaped optical traps can also be
exploited in studies of shell structures, pairing and collective modes.
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3.4.1 Scaling in Atomic Traps

In a noninteracting two spin balanced Fermi gas in a spherically symmetric HO poten-
tial at zero temperature the particles fill HO shells of energy n�ω, n = 1, 2, . . . , nF

up to the Fermi shell nF = (3N )1/3 with Fermi energy EF = nF�ω. For a sufficiently
large number N of particles confined in a (shallow) trap the system size R is so long
that density variations and the extent of possible phase transition interfaces can be
ignored and one can apply the local density and the Thomas-Fermi approximation.
Here the total chemical potential is given by the sum of the harmonic oscillator (HO)
trap potential and the local chemical potential μi = d E/d Ni

μi (r)+ 1

2
mω2r2 = 1

2
mω2 R2

i , (3.60)

which must be constant over the lattice for all components i = 1, 2, . . . . It can there-
fore be set to its value at the its edge Ri , which gives the r.h.s. in Eq. 3.60. We shall
mainly discuss spin balanced two component systems where the chemical potential
and radii are equal. The equation of state determines μ(n) in terms of the universal
function of Eq. 3.60.

In the dilute limit and in the unitarity limits μ= ξ�2k2
F/2m, where ξ = 1 and

ξ = 1 + β(0) respectively. In both cases Eq. 3.60 gives n(r) = k3
F (r)/3π

2 = n0
(1 − r2/R2)3/2, where n0 = ξ−3/4(2nF )

3/2/3π2a3
osc is the central density and

R = ξ1/4√2nF aosc the cloud size; aosc = √
�/mω is the oscillator length. The

attraction contracts the gas to a higher central density such that R ∝ k−1
F (0) ∝ ξ1/4.

The total energy of the trapped gas is E/N = (3/8)ξ1/2nF�ω.

For a more general equation of state P ∝ nγ+1 or μ ∝ nγ with polytropic
index γ the equilibrium density is neq = n0(1 − r2/R2)1/γ , where R2 = 2(γ + 1)
P0/γ n0mω2. P0 and n0 are the pressure and density in the centre of the trap. In both
the non-interacting and the unitary limit γ = 2/3 whereas γ = 1 in the BEC limit
and for a bose gas.

As suggested in [16] it is convenient to measure the density along the axial axis
integrated over transverse cross section n(z)= ∫

n(r) dx dy.From the Gibbs-Duhem
equation (dP/dμ)T = n using Eq. 3.60 we obtain the pressure in the centre along
the axial axis by integrating over transverse coordinates

P(z)= mω⊥
2π

n(z). (3.61)

At the same time the chemical potentialμ(z)= mωz(R2
z −z2) is known by measuring

the size R(z) of the cloud along the z-axis. Thus P(μ) can be measured and the
equation of state extracted at any temperature.

In a Fermi liquid we obtain from Eqs. 3.9 and 3.14 that the pressure w.r.t. that in
a free Fermi gas is

P(x, T )/PFG = 1 + β(x)+ 5π2

8

m∗

m

T 2

E2
F

. (3.62)
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Detailed measurements of the intensive variables (T, P, μ) gives β(0)= − 0.49(2)
and m∗/m = 1.13(3) [34].

3.4.2 Collective Modes

Tickling the trapped atoms sets them into oscillations at certain eigen-frequencies
called collective modes. Such giant dipole and quadrupole modes have been impor-
tant for studying nuclei [91]. The collective modes can be calculated from the equa-
tion of state and the Euler equation

mn
∂v
∂t

= − ∇
(

P + nm
∑

i

ω2
i r2

i

)
, (3.63)

where v = ∂r/∂t is the local velocity. The last term is the gradient of a generally
deformed HO potential. The Euler equation can be solved analytically for polytropic
equation of states. For spherical symmetric 3D traps one finds collective modes at
eigen frequencies ωηl for a mode with η= 0, 1, 2, . . . nodes and angular momentum
l given by [47]

ω2
ηl

ω2
0

= l + 2η[γ (η + l + 1/2)+ 1]. (3.64)

Similar expressions exist for modes in deformed traps [92] which have been measured
in detail [4, 28].

For attractive interactions the system is superfluid at zero temperature and there-
fore irrotational with a quenched moment of inertia. As the temperature is increased
above Tc the moment of inertia increase to rigid value and hereby the critical temper-
ature Tc = 0.19(1)EF is found [93]. Deformed system can be rotated but has a
quenched moment of inertia I = δ2 Irigid [94].

3.4.3 Shell Structure and Pairing in Atomic Traps

The pairing gap generally increase with the level degeneracy or density of states [91].
For pairing in a single level of angular momentum l or shell nF the pairing gap scales
with the number of degenerate states (2l + 1) or (nF + 1)(nF + 2) respectively. If
levels are split or distributed the gap depends on the density of levels around the
Fermi level as in the uniform case of Eq. 3.43.

For very weak interactions the level splitting of single particle levels l = nF , nF −
2, . . . , 1 or 0 in the HO shell nF is smaller than the pairing gap when there are
sufficiently few (nF � 10) atoms in a HO potential. The pairing occurs between all
states in the shell leading to the supergap [95, 96]
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Fig. 3.7 Diagram displaying the regimes for the various pairing mechanisms (see text) at zero
temperature in HO traps vs. the number of particles N = n3

F/3 and the interaction strength a. The
dotted lines indicate the transitions between single-shell pairing �= G, multi-level, single-level,
and multi-shell pairing. At the dashed line determined by 2G ln(γ nF )= �ω the pairing gap is
� � �ω, and it marks the transition from multi-shell pairing to bulk superfluidity Eq. 3.45. The
pairing gap is�= 0.54EF above the full line ρ|a|3 ≥ 1, which separates the dilute from the dense
gas (From [95, 96])

G = 32
√

2nF + 3

15π2

|a|
aosc

�ω. (3.65)

For more particles or stronger interactions the situation becomes more compli-
cated depending on the gap size with respect to the level splitting as shown in
Fig. 3.7. Increasing the number of particles cause level splitting so that pairing is
reduced to multi-level and eventually single level pairing. Increasing the interaction
strength increase pairing to nearby shells [95, 96] referred to as multi-shell pairing in
Fig. 3.7. The general case can be solved within the Bogoliubov-deGennes equations
[57, 95, 96]. For stronger interactions and many particles the pairing approaches that
in a uniform or bulk system, and eventually dense system with |a|kF > 1 and the
unitarity limit is reached.

The various pairing mechanisms and phases of Fig. 3.7 can be studied at low
temperatures is which hopefully will be reached in the near future.

3.4.4 Pairing in Nuclei

We can exploit some interesting similarities between pairing in nuclei [91, 97] and
that of Fermi atoms in traps [57, 95, 96]. To a first approximation the nuclear mean
field is often taken as harmonic oscillator (HO) potential just as the optical traps.
Secondly, the residual pairing interaction between nucleons is taken as a short range
(delta function) interaction as for cold atoms.
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Before these result can be applied to nuclei there are, however, a number of
differences that must be taken into account. Large nuclei have approximately constant
central density ρ0 � 0.14 fm−3 and Fermi energy EF in bulk. Therefore the HO
frequency, which is fitted to the nuclear mean field, decreases with the number of
nucleons A = N + Z , where N now is the number of neutrons and Z the number of
protons in the nucleus, as �ω � EF/nF � 41MeV/A1/3. In the valley of β-stability
the number of protons is Z � A/(2 + 0.0155A2/3). Therefore in medium and large
nuclei the difference between the Fermi energies of protons and neutrons exceeds
the pairing gap so that pairing between protons and neutrons does not occur.

Secondly, the nuclear mean field deviates from a HO potential by being almost
constant inside the nucleus and vanish outside. The resulting net anharmonic nuclear
field is stronger and opposite in sign to the corresponding (anharmonic) mean field in
atomic traps. Therefore, the level splitting is larger and the ordering of the l-levels is
reversed. In addition, a strong spin-orbit force splits the single particle states of total
angular momentum j = l ± 1/2, such that the j = nF + 1/2 is lowered down to the
shell (nF − 1) below. The level splitting can be parametrized by a single parameter
taken from analyses of nuclear spectra. It increases with shell number up to nF � 6
for heavy nuclei. Due to the strong spin-orbit force the j = l ± 1/2 states are split
and the j = nF +1/2 is lowered down to the shell below. The magic numbers become
N , Z = 8, 14, 28, 50, 82, 126, 184, . . . , etc. rather than the h.o. filled shell particle
numbers N , Z = 2, 8, 20, 40, 70, 112, 168, 240, . . . , etc.

The pairing gaps and quasi-particle energies can now be calculated by solving
the Bogoliubov-deGennes gap equation [95, 96] which are shown in Fig. 3.8 for
neutrons. The strong level splitting in nuclei has the effect that pairing is strongest
when the shell is half filled and weak near closed shells simply because there are
fewer states available for pairing, i.e., the level density is smaller. Averaging over
several shells, however, the mean gap is well approximated by the supergap because
the reduction in pairing due to level splitting is compensated by additional pairing
to nearby shells. Since �ω scale as ∼ A−1/3 and aosc ∝ n1/2

F the single-shell pairing
gap also scales as G ∼ A−1/3. Therefore, the pairing gaps in light and medium mass
nuclei scale approximately as [57]

� � G � |a|
0.41 fm

5.5MeV

A1/3 . (3.66)

As shown in Fig. 3.8 the supergap does not depend on the level-splitting and is
therefore a robust prediction for the average magnitude and mass scaling of pairing
gaps in nuclei.

The data on neutron and proton pairing is obtained from the odd-even staggering of
nuclear binding energies B(N , Z). It has been shown that mean field contributions
can be removed [100] by using the three-point filter �(3)(N )= (−1)N [B(N − 1,
Z)/2 + B(N + 1, Z)/2 − B(N , Z)]. We compare in Fig. 3.8 to the experimental
�(3)(N ) averaged over isotopes with the calculated gaps. The analogous for protons
�(3)(Z) averaged over isotones compare similarly to Bogolibov-deGennes calcula-
tions
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Fig. 3.8 Neutron pairing energies versus the number of neutrons. The experimental odd-even stag-
gering energies �(3)(N ) are averaged over isotopes [98–100]. The calculated gaps � and quasi-
particle energies E are obtained from the gap equation (see text) with effective coupling strength
a = − 0.41 fm. The supergap G is shown with dashed line. See [57] for details and corresponding
plot for protons

[57, 95, 96]. In the calculations the effective coupling is the only adjustable parameter
which is fitted to the experimental data. For both neutrons and protons we extract
a � −0.41 fm.

Considering the simplicity of the model it describes a large number of experi-
mental gaps fairly well on average. In a number of cases, however, the calculated
pairing gaps differ significantly from the measured neutron gaps. Some of these
deviations can be attributed to the crude single particle level spectra assumed.

The pairing in nuclear matter can now be estimated once the effective interaction
has been determined using Eq. 3.43. Note that the effective interaction includes
induced interactions. Inserting a = −0.41 fm and kF = 1.3 fm−1 at nuclear saturation
density, ρ0 = 0.15 fm−3, we obtain the proton and neutron pairing gaps

� � 1.1MeV, (3.67)

in the bulk of very large nuclei and in symmetric nuclear matter at nuclear saturation
density. This number is compatible with earlier calculations [64–67] of the 1S0 pairing
gap in nuclear and neutron star matter around normal nuclear matter densities.

Neutron star matter has a wide range of densities and is asymmetric, Z/A ∼ 0.1,
above normal nuclear matter densities. One can attempt to estimate of the pairing
gaps as function of density from the gap in bulk, Eq. 3.43, with a � −0.41 fm
and the neutron or proton Fermi wave numbers k N ,Z

F = (3π2ρN ,Z )
1/3 as function

of densities. However, the effective interaction a is density dependent. At higher
densities we expect that the effective interaction becomes repulsive as is the case for
the nuclear mean field at a few times nuclear saturation density. At lower densities the
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effective scattering length should approach that in vacuum which for neutron-neutron
scattering is a(1S0) � −18 fm.

In spite of several simplifying approximations in this atomic trap model for nuclear
pairing it provides at least a qualitative description of pairing in most nuclei. The
effective interaction a = − 0.41 fm is the same for both neutrons and protons which
reflects that both are close to forming bound states. At central densities x = 1/akF �
−1.9, i.e. on the BCS side of the unitarity limit.

3.4.5 Quark and Gluon Matter

The Coulomb and QCD interactions ∼g2/r or their Fourier transform ∼g2/q2

are long range and therefore contrary to the short range interactions underlying
universality. The long range QED and QCD interactions requires screening of infrared
divergences [101] whereas in unitary gases ultraviolet cutoffs are provided by renor-
malizing the short range interaction in terms of the scattering length. Never the less
a number of similarities have appeared.

Confinement is caused by strong color fields between quarks and gluons which
forms bound state hadrons at temperatures below T � TQG P�160 MeV and densities
below a few times normal nuclear matter density, ρ0 = 0.15 fm−1. These may again
form a nuclear liquid at temperatures below the nucleon gas critical temperature
T � TN G�15 MeV for a four component nuclear system as discussed above. In
the hadron gas the interparticle distance is larger than the confinement interaction
range, and the quark molecules can therefore be viewed as a molecular gas. However,
color neutrality requires either Fermi molecules of three quarks (baryons) or quark-
antiquark Bose pairs (mesons). Of the two phase transitions in the molecular gas of
hadrons only the neutron gas can be viewed as a BCS–BEC crossover as discussed
in Sect. 3.2.6. The instability and first order transition of a four-component nuclear
gas was discussed in Sect. 3.2.6 can be viewed as multi-component crossover. Here
the effective scattering length is that between neutrons and protons a ∼ 20 fm,
i.e. on the molecular BEC side, and the nuclear matter is in the unitarity limit in
the sense that x = 1/akF∼0+ although they now are kept in place by short range
repulsive forces. The transition from nuclear to quark matter or a hadron gas to a
quark-gluon plasma is quite different because the interaction range is always of order
the interparticle distance. The strong short range repulsive forces between nucleons
leads to a strongly correlated wavefunction as in hard sphere scattering and the
strongly correlated nuclear fluid. In this case the Gutzwiller approximation of Ref.
[75] is valid and the matter does not undergo a ferromagnetic transition separating the
unlike components (see Fig. 3.1). As seen from the quark-gluon side one can define
a “crossover parameter” x ∼ �QCD/kF which at high densities is in the unitarity
limit. With decreasing densities the running coupling constant�QCD diverges when
the quark-gluon plasma undergoes a first order transition to a hadron gas with x � 1.

Quark pairing also have similarities to pairing in nuclear and multi-component
atomic gases. Color superconductivity between the 2 spin, 8 color and 2–3 flavor
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states is very sensitive to flavor imbalance [11]. If the strange quark mass is small the
up, down and strange quark Fermi levels are close. If pairing is sufficiently strong
such that the gap exceeds the Fermi level splitting all flavors can pair. It is amazing
that properties of pairing in quark matter, which may exist in unaccessible cores of
neutron stars, can be studied in tabletop experiments with ultracold multicomponent
spin-imbalanced Fermi atomic gases.

Another interesting similarity is elliptic flow. The overlap zone in semi-central
high energy nuclear collisions is prolate (cigar shaped) as are optical traps. In subse-
quent expansion the hydrodynamics forces stronger expansion in the direction where
systems is narrowest initially. This makes the momentum distribution azimuthally
asymmetric—referred to as elliptic flow. Results indicate that both “liquids”, the
QGP/hadronic and ultracold unitary atomic gas, expand as almost perfect fluids
initially i.e. their viscosities are record breaking low [102–104].

Correlations can reveal the quantum phase structure. Originally Hanbury-Brown
& Twiss measured the Bose-Einstein correlations between stellar photons and deter-
mined the diameters of nearby stars. Similar correlations between mesons in high
energy nuclear collisions have been exploited to determine the freezeout size of the
collision zones [105, 106]. Also Fermi anticorrelations have been observed between
baryons. In ultracold atomic systems analogous “noise” correlations have been found
near the BCS–BEC crossover due to pairing [23–26]. Bragg peaks have been observed
for bosons in 3D [107] and 2D [108] lattices, and dips for 3D fermions in [109].

3.5 Optical Lattices

A standing wave can be generated by shining lasers onto traps which generates a
3D cubic or 2D square lattice potential with spacing λ= 2π/k, which is half the
laser wavelength. The lattice height V0 varies with laser intensity and the scattering
length. In the tight binding approximation the onsite coupling

U = ERak
√

8/πξ3 (3.68)

and hopping parameter

t = ER(2/
√
π)ξ3e−2ξ2

, (3.69)

where ER = �
2k2/2m is the recoil energy and ξ = (V0/ER)

1/4. Varying V0 and
the scattering length a near Feshbach resonances allows us to tune the Hubbard
parameters U and t (Fig. 3.9).

The lattice constant λ introduces another lengths scale so that the thermody-
namic quantities generally depend on both density and interaction strength. There-
fore universality is broken except for low filling which corresponds to dilute Fermi
gases.

The Hubbard Hamiltonian on a D-dimensional lattice describes optical lattices
that are sufficiently deep for a one-band model to apply,
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Fig. 3.9 2D optical lattices loaded with fermions in two spin states (yellow and blue) at half filling.
For onsite attraction (U < 0, left) opposite spins tend to pair. For onsite repulsion (U > 0, right)
the ground state is an AF with virtual hopping J = 4t2/U

H =
∑

i,σ<σ ′
Uσ,σ ′ n̂iσ n̂iσ ′ − t

∑
〈i j〉,σ

â†
iσ â jσ . (3.70)

Here â†
iσ is the Fermi creation operator of the hyperspin states σ = 1, 2, . . . , ν,

niσ = â†
iσ âiσ the density and 〈i j〉 denotes nearest neighbours with hopping para-

meter t. Due to particle-hole symmetry results for a given site filling n also applies
to 2 − n.

The Hubbard model is of fundamental importance in condensed matter physics
where it explains properties of Mott insulators, antiferromagnets, d-wave supercon-
ductivity, etc. The Hubbard model can only be solved in 1D for fermions but a number
of models and numerical calculations have given insight in the various phases and
order parameters. Optical lattices may tell us the answers in a few years.

3.5.1 On-Site Attraction and Pairing

We start by investigating s-wave pairing between to spin balanced states due to
an attractive on-site interaction U < 0. The mean field gap equation for singlet
superfluidity at zero temperature is [110, 111]

�p′ = − 1

M

∑
p

U (p′,p)�p
tanh(Ep/2T )

2Ep
, (3.71)

where M is the number of lattice points and Ep =
√
(εp − μ)2 +�2

p with εp =
2t
∑

i=1,D(1 − cospi ).

The density n = 1 −∑p(εp/Ep) tanh(Ep/2T )/M, is also the filling fraction in
units where the lattice constant is unity. Momenta are in the first Brillouin zone only
|pi | ≤ π taking λ= 1 for convenience.
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Due to particle-hole symmetry results also apply replacing the density by (2 − n)
and chemical potentials by (4Dt −μ),where 4Dt is the bandwidth in D dimensions.
At low filling εp = tp2 and results also apply to uniform systems replacing t = 1/2m.

3.5.1.1 Pairing in the Dilute Limit

We first calculate the zero temperature gaps for weak attraction |U | � t excluding
induced interactions. The s-wave gap �p′ =�0 is then momentum-independent
because the interaction U is. The gap equation 3.71 reduces to: 1 = −(U0/M)

∑
p 1/2

Ep, from which the gap can be calculated analytically at low and half filling to leading
orders in 3D and 2D (for 1D see, e.g. [112]).

The 3D lattice has a critical coupling [87, 88]

Uc = − M

/⎛
⎝∑

q
1/2εq

⎞
⎠ = − 8

√
2t

/⎡
⎣ ∞∑

l = 0

P2l (
√

9/8)(2l − 1)!!/22l l!
⎤
⎦ � −7.913t,

(3.72)
where a two-body bound state can be formed at zero density (μ= 0). This threshold
corresponds to the unitarity limit of infinite scattering length in the uniform system
and naturally enters the sum in the gap equation. The dilute gap becomes to leading
orders

�3D
0 = 8

e2 μ exp

[
4π2t

kF

(
1

U
− 1

Uc

)]
, n � 1, (3.73)

at low densities where μ= t k2
F � t. The level density at the Fermi surface

N (μ)= kF/(4π2t) enters in the exponent as in standard BCS theory. Uc acts
as a cutoff in the one-band Hubbard model which in the uniform (continuum)
limit is absorbed into the scattering length a. Thus Eq. 3.73 is the finite lattice
equivalent of the gap in the uniform system �3D

0 = (8/e2)μ exp(π/2kF a), with
U−1 − U−1

c = U−1
0 , where U0 = 4πa/m as in the uniform case, such that threshold

U = Uc corresponds to |a| = ∞.

Near half filling the level density is surprisingly constant N (μ) � 0.143/t in
a wide range 4t ≤ μ ≤ 8t around half filling. To leading orders the gap becomes
[110, 111]

�3D
0 =α t exp

[
1

N (μ)U

]
, n � 1, (3.74)

where the prefactor α � 6.544 can be calculated numerically.
The 2D lattice has a superfluid s-wave gap that be calculated from the gap

equation [113]

�2D
0 =√8πμt exp

[
4π t

U

]
, n � 1, (3.75)
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when the density n = k2
F/2π is small. The 2D level density is N (μ)= 1/(4π t).

Eq. 3.75 assumes that the on-site coupling and the gap are small such that
�2D

0 � μ.This is not fulfilled at sufficiently low densities where instead�2D
0 = 4π t

exp (8π t/U ),which also is the two-body binding energy in 2D at zero density. There
is always a two-body bound state in 2D with purely attractive interaction and there-
fore Uc vanishes. In 3D a similar pair condensate (a molecular BEC) appears when
a > 0 corresponding to U < Uc.

For intermediate fillings the pairing is more complicated in 2D. Near half filling
n � 1 the level density N (ε)= ln(16t/|ε − 4t |)/(2π2t) has a logarithmic singu-
larity due to the van Hove singularity. Calculating the r.h.s. of the gap equation
therefore gives a double log: 1 = |U |/(4π2) ln2(32t/�2D

0 ), to leading logarithmic
orders, resulting in the gap when n � 1 [113]

�2D
0 = 32t exp(−2π

√
t/|U |). (3.76)

In the strong coupling limit �= |U |/2.

3.5.1.2 Induced Interactions on the Lattice

In 3D the induced interactions are at low densities n � 1 the same as in the uniform
case Eq. 3.44 and reduce gaps and Tc by a factor (4e)1/3 � 2.2. Near half filling the
reduction factor is ∼3.9 for weak interactions. For stronger interactions the induced
interactions are enhanced [84] leading to a reduction of the gap by a factor ∼25 when
U =−3t.

In 2D the induced interactions suppress the gap by a factor e in the dilute limit [114]
but are divergent at half filling due to the singular level density [84]. The induced
interactions have been calculated for general spin polarization and number of compo-
nents in 3D and 2D optical lattices [85].

3.5.1.3 Crossover and the BEC Limit

As the interactions become stronger the Fermi gas gradually undergoes crossover
to a molecular BEC. On the lattice, however, the finite bandwidth automatically
provides a cutoff which affects the crossover and changes the BEC limit on the lattice
qualitatively from the uniform case. We shall describe this crossover employing the
NSR model as above for the uniform case but with a finite bandwidth. Our starting
point is again the two-particle correlation function of Eq. 3.52. In the BEC limit (large
negative chemical potential) we find from Eq. 3.52 that 1−U�(q, ω) is proportional
to ω − εM (q)+ 2μ as in NSR, where now the molecular boson energy is

εM (q)= − U + J
∑

i = 1,3

[1 − cos(qi )] (3.77)
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Fig. 3.10 Superfluid
transition temperatures in a
3D lattice at half filling for
the NSR model, the
Heisenberg model within
(Weiss) mean field Tc = 1.5J
and Monte Carlo. “Gorkov”
is the weakly attractive limit
of Eq. 3.74 reduced by a
factor 3.9 due to induced
interactions
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with J = 4t2/U. Therefore the number equation reduces to the condition for BEC
in an ideal Bose gas as Eq. 3.58

N � −d�int

dμ
� 2

∑
q

1

e(εM (q)−2μ)/T − 1
, (3.78)

but with the molecular boson energy of Eq. 3.77 in stead of 3.57. The gap equation
at Tc yields a chemical potential μ=−U/2 in the BEC limit, and inserting this in
the number equation gives a critical temperature

Tc = 2π

[2ζ(3/2)]2/3 n2/3 J � 2.09n2/3 J, (3.79)

when n � 1. For n = 1 we obtain Tc = 1.71J.
The crossover in optical lattices is shown in Fig. 3.10 at half filling. The critical

temperature decreases with interaction strength in the BEC limit and thus differs
from uniform systems where it approaches a constant T B EC

c .

The Hubbard model can in the BEC limit be mapped onto the Heisenberg spin
model in a magnetic field for which accurate calculations exist, which allows us to
check the NSR and other models [115]. Half filling corresponds precisely to zero
magnetic field, i.e.,

H = J
∑
〈i j〉

Si · S j , (3.80)

and the Néel temperature corresponds to TN = Tc in the BEC limit. In (Weiss molec-
ular) mean field theory TN = 1.5J, quantum Monte Carlo TN = 0.95J, high tempera-
ture expansions TN = 0.90J, as compared to Tc = 1.71J in NSR. Extending the NSR
model with charge and spin density fluctuations gives a smaller value Tc � 0.4J
because molecular repulsion is overestimated [115].
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3.5.2 On-Site Repulsion

On-site repulsive interactions U > 0 generally disfavours doubly occupied sites and
lead to a Mott gap at half filling of order ∼U/2 at very low temperatures. Mott insu-
lator (MI) transitions are observed for bosons in traps at fillings n = 1, 2, 3, 4, 5, . . .
[23–27]. For fermions the phase diagram is more complex, an antiferromagnet (AF)
at and near half filling, a paramagnet (PM) otherwise and possible a ferromagnet
for very strong repulsion [116]. Furthermore the AF phase may be unstable towards
phase separation to two coexisting phases: an AF at half filling and a PM at filling
slightly below or above half filling. The co-existing phase may also be unstable
towards stripes. In 2D these phase also compete with d-wave superfluidity.

3.5.2.1 Antiferromagnetism

At half filling fermions are known to form a MI in 1D [117] whereas in two and higher
dimensions an antiferromagnetic (AF) insulator is found in Monte-Carlo calculations.
The AF alternating spin order on the lattice is driven by the simple fact that hopping
can occur to a neighbouring site only if it is occupied by an opposite spin, which
generates a super-exchange coupling.

We will here study the AF phase and its transition to a paramagnet at the Néel
temperature TN . Remarkably, it undergoes a crossover very similar to the critical
temperature described above for attractive interactions, i.e. TN ∼ Tc. For weak repul-
sion TN can be determined from the mean field gap equation

1 = U

M

∑
p

tanh(εp/2TN )

2εp
, (3.81)

which is identical to that for Tc of Eq. 3.71 except for the sign of U. Therefore TN = Tc

within mean field. Induced interactions can be included as for Tc as described above
and therefore reduce TN by a factor ∼3.7 at half filling [118, 119] which is very
similar to the reduction of Tc by induced interactions as discussed above.

For stronger coupling fluctuations reduce the mean field gap and TN as for the
NSR model of Tc. At very strong coupling the repulsive Hubbard model can at half
filling also be mapped onto the Heisenberg model with coupling J. Therefore TN

is also in this limit given by Tc as function of |U |, and the details of the crossover
[120, 121] are quite similar to the BCS–BEC crossover.

The AF phase transition masks a possible MI phase. By frustrating the system
one can, however, remove the AF order and observe the MI transition by a vanishing
conductivity or compressibility. Another way to suppress the AF order is to include
multi-components which naturally upsets the alternating spin up/down order in a
two-component AF. The limit of many components actually correspond to a Bose
system where MI transitions are found at every integer filling.
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3.5.2.2 Phase Separation

Mean field theory provides a first impression of the phases competing for the ground
state and has the advantage that it is computationally simple as compared to more
complicated theories. The MF equations for the Hubbard model are standard and we
refer to, e.g., Refs. [110, 111, 122]. The energy densities can be calculated within
the Hartree-Fock approximation for the paramagnetic (PM), ferromagnetic (FM),
antiferromagnetic (AF) and phase separation (PS).

At low density n � 1 the ground state is that of a dilute paramagnetic (PM) gas
with energy

εP M = − 4tn +
[
π

2
t + 1

4
U

]
n2 + O(n3). (3.82)

In units where the lattice spacing is unity (λ= 1) this energy per site is also the
energy density, and the density is the site filling fraction.

Near half filling εP M = −(4/π)2t + U/4, which becomes positive when the
repulsive interaction exceeds U/t ≥ 64/π2 � 6.5. The PM phase is then no longer
the ground state. In a state with only one spin the antisymmetry of the wavefunction
automatically removes double occupancy and the repulsive term Un2/4 in Eq. 3.82
disappears. Such a ferromagnetic (FM) state always has negative energy εF M ≤ 0 for
n ≤ 1 and is a candidate for the ground state. AF, linear AF [123] and stripe phases are
other competing candidates. Furthermore phase separation (PS) and mixed phases
can occur near half filling. When U � 7t the ground state of the 2D MF Hubbard
model undergoes transitions from an AF at half filling to a mixed AF + PM phase for
doping δ= 1 − n up to a finite (U dependent) value |δ| ≤ δs where after a pure PM
phase takes over [122]. For larger U the phase diagram is more complicated with
a pure as well as mixed FM phases between the AF and PM phases. A finite next
neighbour hopping term t ′ makes the phase diagram asymmetric around half filling,
extends the AF phase and changes the phase diagram considerably.

At half filling n = 1 the ground state is an AF. Near half filling 0 ≤ |δ| � 1 the
MF equations and AF energy can be expanded as

εAF = − J

[
1 + 3

2
δ + 2δ2 + · · ·

]
. (3.83)

The concave dependence on δ signals phase separation into a mixed phase of AF and
PM by the Maxwell construction. The PS extends from the AF phase with density
n = 1 to a PM phase. Dynamical mean field theory [116] find that for particle or
hole doping δ= 1 − n, phase separation occurs between an AF at half filling and
a paramagnet at a critical filling δs depending on the coupling. It has a maximum
δs � 0.14 around the coupling U � 9t where also TN is maximal. PS is not observed
in cuprates. It may be inhibited by long range Coulomb repulsion between electrons
in cuprates as will be discussed later.
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3.5.2.3 d-Wave Superfluidity in 2D

d-wave or dx2−y2 pairing is particular favoured on a square lattice with on-site
repulsion (which disfavours s-wave pairing) and nearest neighbour attraction as e.g.
provided by the super-exchange coupling in the Hubbard and Heisenberg models
with two spin components. The discussion below emphasizes how 2D and also 3D
optical lattices can resolve important issues as the existence of phase separation,
stripe phases and dSF.

Repulsive onsite interactions U > 0 inhibit s-wave pairing unless a longer range
attraction is added such as a nearest neighbour interaction V

∑
〈i j〉 ni n j . Super-

exchange in the Hubbard model generates a similar nearest neighbour (spin-spin)
interaction with coupling J = 4t2/U, which is believed to be responsible for high
temperature superconductivity [124]. In the limit U → ∞ extended s-wave pairing
can occur but requires a strong nearest neighbour attraction V < −π2t/2 [110, 125],
whereas d-wave pairing occurs naturally in 2D for even weak nearest neighbour
attraction. The d-wave mean field gap equation is (see, e.g., [110, 125])

1 = − V

4

∑
q

η2
q

2Eq
, (3.84)

where now Eq =
√
ε2

q +�2
dη

2
q and ηq = 2[cos qx −cos qy].At low filling the d-wave

gap can be calculated within mean field to leading orders in the density [126]

�d = t√
n

exp

[
4

πn2

(
t

V
+ c0 + c1n + c2n2

)]
, n � 1, (3.85)

The higher order corrections in density are: c0 = 4/π − 1 � 0.27, c1 =π/2 − 1 �
0.57 and c2 � 0.09.

At half filling we can calculate the d-wave gap within mean field as above if
correlations can be ignored, which requires that the on-site interaction is small. To
leading logarithmic orders the d-wave pairing gap is

�d = 8

e2 t exp
[
−π√t/|V |

]
, n = 1. (3.86)

where again the singular level density leads to a gap similar to Eq. 3.75. It is a
coincidence that the prefactor 8/e2 is the same as in Eq. 3.73. Correlations are,
however, expected to suppress the d-wave mean field gap of Eq. 3.86 near half filling
when the on-site repulsion is strong.

Tc can in 3D be calculated from the gap equation 3.71 whereas in 2D a Berezinskii–
Kosterlitz–Thouless transition occurs [127] at a lower temperature TBKT . At low
density the transition temperature is in 3D generally proportional to the gap with
the same prefactor Tc/�= eCE /π � 0.567 for both s- and d-wave superfluidity
with and without induced interactions [51]. In 2D a mean field critical temperature
TM F > TBKT [127], can be calculated from the gap equation as above and we find that
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Fig. 3.11 Order parameters
for dSF (�SC ), AF (m) and
double occupancy (d) vs.
doping δ= 1 − n for
J/t = 4t/U = 1/3 in RMFT
for the 2D t-J-U model.
From [126]
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the same ratio applies even near half filling where logarithmic singularities appear.
This implies that induced interactions change the mean field critical temperatures by
the same factor as the gap of Eq. (3.46).

3.5.2.4 t-J-U Model Predictions

The various competing phases can be studied in the 2D t-J-U model within the
Gutzwiller projection method and renormalized mean field theory (RMFT) [126].
This method approximates the strong correlations and generally agrees well with
full variational Monte Carlo calculations [128–131]. RMFT predicts phase separa-
tion near half filling between an antiferromagnetic (AF) Neél order and a d-wave
superfluid (dSF) phase for sufficiently strong onsite repulsion.

The t-J-U model was employed by Laughlin, Zhang and coworkers [129–131]
to study AF, HTc and “gossamer superconductivity” in cuprates and organic super-
conductors. Both the Hubbard and t-J models are included in the t-J-U Hamiltonian
H = HU + Ht + Hs or

H = U
∑

i

n̂i↑n̂i↓ − t
∑
〈i j〉σ

â†
iσ â jσ + J

∑
〈i j〉

SiSj, (3.87)

where âiσ is the usual Fermi creation operator, σ = (↑,↓) is the two hyperfine states(
e.g.
( − 9

2 ,− 7
2

)
for 40K

)
, niσ = â†

iσ âiσ the density, Si = ∑
σσ ′ â†

iσσ σσ ′ âiσ ′ and
〈i j〉 denotes nearest neighbours. U is the on-site repulsive interaction, t the nearest-
neighbour hopping parameter and J the spin-spin or super-exchange coupling.

The t-J-U model allows for doubly occupied sites and thereby also MI transitions.
As both are observed in optical lattices the t-J-U model is more useful as opposed
to the t-J model which allows neither. For large U/t the t-J-U and Hubbard models
reduce to the t-J model with spin-spin coupling J = 4t2/U due to virtual hopping.
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Fig. 3.12 Density distributions of Fermi atoms in a zero temperature 2D optical lattice confined by
a harmonic trap for U = 12t (J = t/3) filled with the number of particles N/Nc = 0.5, 1, 5, and10.
The density discontinuities from n � 1.14 and n � 0.86 to the antiferromagnetic insulator at n = 1
due to PS between dSF and AF are absent for stripe phases (see text). Thus the density distribution
changes to a Capitol form rather than the usual wedding cake form for Mott insulators

At finite J and U the t-J-U model is to some extent double counting with respect to the
Hubbard model with J = 0. However, when RMFT is applied the virtual hopping
and resulting spin-spin interaction vanishes in the Hubbard (t-U) model, i.e. J = 0,
which justifies the explicit inclusion of the spin Hamiltonian as done in the t-J-U
model.

The AF phase dominates near half filling suppressing the superfluid order para-
meter. The AF order parameter is m = (√3/2)

√
1 − T/TN at temperatures just below

the critical Neél temperature TN = 2J.The d-wave superfluid gap depends sensitively
on coupling, magnetization and double occupancy as seen in Fig. 3.11. It competes
with the AF order parameter and dominates slightly away from half filling as seen
in Fig. 3.11.

However, near half filling phase separation is found between an AF phase at
half filling coexisting with a dSC phase at a density |x | � 0.12 as determined by the
Maxwell construction. The PS is found to terminate at coupling J � 0.55t (U �
7.3t) where the double occupancy undergoes a first order transion from zero to a
finite value. The PS has a curious effect on the density distribution in a trap as shown
in Fig. 3.12. The trap size is of order Rc = √

8t/�ωaosc, and the number of trapped
particles N = 2π

∫ R
0 n(r)rdr is of order Nc =πR2

c in 2D.
The density distributions and MI plateaus have been measured experimentally

for Bose atoms in optical lattices by, e.g., differentiating between singly and doubly
occupied sites [107]. Recently Schneider et al. [132] have measured column densities
for Fermi atoms in optical lattices and find evidence for incompressible Mott and
band insulator phases. Even lower temperatures are required for observing the AF
and dSF phases and the density discontinuities due to PS.

Spin and charge density waves in form of stripes are not included in the above
RMFT calculations. Stripes are observed in several cuprates [133] whereas numerical
calculations are model dependent. Long range Coulomb frustration can explain why
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Fig. 3.13 Typical phase
diagram of high temperature
superconductors. Neél
temperatures (TN ) and
critical temperatures for
d-wave superconductivity
(Tc) are plotted vs. particle
(δ < 0) and hole (δ > 0)
doping. T ∗ is the pseudogap
(see text)
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PS is replaced by stripes and an AF phase at very low doping [126] as observed in
cuprates.

3.5.3 High Temperature Superconductivity in
Optical Lattices

After Kamerlingh Onnes discovered superconductivity in 1911 it took nearly half a
century before Bardeen, Cooper and Schriefer (BCS) in 1957 understood the physics
behind the manybody pairing mechanism. In comparison half the time has passed
since Bednorz & Müller in 1986 discovered high temperature superconductivity
(HTc). Although important progress has been made on the mechanisms behind this
important phenomenon, a full understanding is still lacking. Most agree that HTc is
d-wave and can probably be described by the one band Hubbard model on a two-
dimensional (2D) lattice with strong repulsive on-site interaction U ∼ 3t, but no
consensus has been reached on the origins and influence of the pseudogap, charge
and spin gaps, stripes, etc.

A sketch of a typical phase diagrams of HTc cuprates is shown in Fig. 3.13. The
antiferromagnetic phase extends around half filling and is asymmetric due to next
neighbour hopping terms t ′. The Neél temperature drops rapidly from its maximal
value TN (δ= 0) - somewhat lower than the Fermi temperature. The maximal Tc �
100K are collected in the “Uemura” plot [134]. It is typically between one and two
orders of magnitude lower than the Fermi energy which again is several orders of
magnitude larger than conventional superconductors as Nb, Sn, Al, Zn.

Optical lattices hold great promises for solving the HTc problem [135, 136] since
densities, temperatures, interactions, spins, etc. can be varied in a controlled manner
and studied in experiments, where the sub nanometer lattice constants in solids
are upscaled to micrometers in optical lattices. One serious experimental hindrance
remains, namely the extremely low temperatures required, but we have hopes that
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the experimentalists can overcome this problem rapidly as in so many other cases
with cold atoms—and it certainly does not hinder theoretical studies.

3.5.3.1 Stripes

Stripes have been discovered in low-energy magnetic neutron scattering in doped
cuprates at incommensurate longitudinal and horizontal charge and spin wave
numbers [133], e.g. Qc = (2π/λ)(0, ± δ/δs) and Qs = (π/λ)(1, 1 ± δ/δs) for the
longitudinal charge and spin wave numbers respectively. Here, the average doping or
holes are all in the stripes with hole filling δs embedded in an AF with filling no holes
(half filled) such that the average hole density is δ= 1 − n. The stripes are half filled
δs = 1/2 for low average dopings δ ≤ 1/8 but at larger doping it increases linearly
to filled stripes δs = 1 such that δ/δs = 1/4 remains constant. Therefore the charge
(spin) density stripes appear with periodic distance d (2d) depending on doping as
d = λδs/δ.The stripe distance decreases with increasing doping until δ ≥ 1/8,where
after the stripes remain at a distance d = 4λ. The stripes act as anti-phase domain
walls and the spin density wave therefore has periodicity twice the length of the
charge-density wave. When 1/8 ≤ δ ≤ 1/4 the 2D spin orientation therefore looks
like

· · · ↓↑↓ ◦ ↑↓↑ ◦ ↓↑↓ ◦ ↑↓↑ ◦ · · ·
· · · ↑↓↑ ◦ ↓↑↓ ◦ ↑↓↑ ◦ ↓↑↓ ◦ · · ·
· · · ↓↑↓ ◦ ↑↓↑ ◦ ↓↑↓ ◦ ↑↓↑ ◦ · · ·

etc., in case of vertical stripes ◦. They are spin-balanced at filling 1 − δs and occur
with periodicity d = 4λ.

Diagonal, horizontal/vertical, checkerboard stripe solutions have been found in a
number of models. In MF models Zaanen and Gunnarson [137–140] found stripes
of hole density δs = 1 that are vertical or horizontal for U/t � 3 − 4 and diagonal
otherwise. In DMRG calculations [141, 142] stripes with hole density δs = 1/2 are
found in agreement with experiments [133]. Stripes appear at temperatures above
HTc but below the pseudogap T ∗ [143, 144] and there are some evidence that charge
density waves appear at slightly higher temperatures than spin density waves.

The stripe phase is a specific ordered mixed AF and PM phase and is a continuous
transition between the two pure phases as function of density. Similar mixed phase
solutions are believed to occur in neutron star crusts between nuclear matter and a
neutron gas and possibly also between quark and nuclear matter [145, 146]. In both
cases Coulomb energies add complexity to the mixed phases by ordering them into
structured crystallic phases.

The various MI, AF, stripe, d- and s-wave superfluid phases have distinct density
and momentum correlation functions [23–27, 107–109, 126, 147, 148].
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3.5.3.2 Coulomb Frustration

Long range Coulomb interactions prevent phase separation into two bulk phases of
different charge density but may not inhibit the formation of localized holes, pairs and
stripes. The phase diagrams of cuprates with such Coulomb frustration and optical
lattices without may therefore be very different. Coulomb frustration in cuprates has
been discussed in connection with stripes (see e.g. [149–151]).

In the following we shall consider the stripes as rods with charge less than the
surrounding phase and calculate the additional Coulomb energy of such structures.
Coulomb energy densities have been calculated for structures of various dimension-
ality D and volume filling fraction f [145, 146]

εC = 2π

D + 2
�ρ2 R2 f

[
2

D − 2

(
1 − D

2
f 1−2/D

)
+ f

]
. (3.88)

Here, the charge density difference between the two phases is
�ρ= eδs/λ

3 for the stripes and the volume filling fraction is f = δ/δs = λ/d. The
dimensionality is D = 3 for spherical droplets or bubbles, D = 2 for rods and
tubes and D = 1 for plate-like structures. The diameter of the spheres, rods or the
thickness of the plates is of order the distance between layers 2R ∼ λ∼ 4 Å. The
stripes are rods in a 2D plane but are embedded in a 3D layered structure. For D = 2
the expression in the square bracket of Eq. 3.88 reduces to [ln(1/ f )− 1 + f ]. The
logarithm originates from the Coulomb integral

∫ l dz/z along the rod length z, which
is cutoff by other rods at a length scale l ∼ λ

√
f . For the cuprates we furthermore

reduce the Coulomb field by a dielectric constant of order εD ∼ 5. The resulting
Coulomb energy of stripe or rod-like structures D = 2 is

εC � π

8

δse2

λ4εD
f [ln(1/ f )− 1 + f ] . (3.89)

Energy costs associated with the interface structures are usually added. Such
surface energies are difficult to calculate for the stripes because their extent is only a
single lattice constant. In principle they are already included in the stripe models. We
will therefore just add the Coulomb energies given above. However, the Coulomb
energies and the energy of the systems as a whole, may be reduced by screening and
hole hopping into the AF whereby R increases but �ρ and f are reduced.

Inserting numbers e2/�c = 1/137, εD = 5, δs = 1/2, λ= 4Å, we find that
εc � 150meV(δ/λ3)[ln(1/ f )− 1 + f ]. In comparison the energy gain by changing
phase from an AF to a stripe or PM phase increases with doping as ∼Jδ/λ3,

where J � (0.1 − 0.2)t � 50 − 100meV in the cuprates. The Coulomb energy of
Eq. 3.89 thus dominates at small doping due to the logarithmic singularity and there-
fore the AF phase of density n � 1 is preferred.

The AF phase is the ground state as long as the Coulomb energy of Eq. 3.89
exceeds J x/λ3 corresponding to doping less than

δAF � δsexp

[
− 8

π

JλεD

δse2 − 1

]
. (3.90)
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Inserting the above numbers we find δAF � 0.1 which is within range of the observed
|δAF | � 0.03 for hole doped and δAF � 0.15 for particle doped cuprates. In MF the
particle-hole asymmetry arises from the next-nearest neighbour hopping t ′ � −0.3t
and leads to an AF phase extending from half filling up to a particle doped density
n > 1 [122].

In the above picture the incommensurate stripe phases at small doping arise due
to Coulomb frustration when t ′ = 0.At larger doping the stripes approach each other
and will eventually affect each other. Experimentally the stripes undergo a transition
from an incommensurate to a commensurate phase at δ � 1/8 corresponding to a
stripe periodicity of four lattice spacings.

The Mermin-Wagner theorem states that a continuous symmetry cannot be spon-
taneously broken at finite temperature in two and lower dimensional systems for
sufficiently short range interactions [152, 153], and as a consequence there can be
no phase transition at finite temperature. In stead a Berezinskii-Kosterlitz-Thouless
transition can occur as found in the 2D Hubbard model [127]. This is incompatible
with the phase diagram of HTc cuprates where AF, dSC and stripe phase transi-
tions are observed. These paradoxial transitions and the origin of the phases are
still unresolved problems which are largely avoided in the literature. Some suggest
that inter-planar couplings effectively increase the dimension above two. Others
that correlations lengths are so long that they effectively looks like real transitions.
Another suggestion in line with the Coulomb frustration discussed above is that
Coulomb interactions are responsible for the phase transitions to stripes and d-wave
superconductivity. The long range Coulomb interactions are not comprised in the
Mermin-Wagner theorem, which only applies to sufficiently short range interactions
U (r) ∝ r−α with α ≥ D + 2 [152, 153].

3.6 Summary and Outlook

In the last decade the physics of cold atoms has brought important understanding of
the unitarity limit, universality, the BCS–BEC crossover, and many other properties of
cold Fermi atomic systems as describe above and elsewhere in this volume. Presently
a number of other interesting phenomena are investigated such as the three component
system of 6Li and other multicomponent systems, the ferromagnetic transition at
large positive (repulsive) scattering lengths, spin polarized systems, phases in optical
lattices, etc.

In these lecture notes the main topic has been universality in crossover. Not only
the BCS–BEC crossover in uniform system but also in the repulsive “ferromagnetic”
crossover, in multicomponent systems, traps and lattices. The Fermi particles have
mostly been atoms but applications to neutron, nuclear and quark matter, nuclei and
electrons in solids have been made wherever possible.
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In view on the important impact that the question Bertsch posed a decade ago
made, we may attempt to ask new relevant questions:

What are the universal thermodynamic functions and parameters for positive

scattering lengths and is there a ferromagnetic phase transition as a → + ∞?

– in both uniform systems and traps. One opinion is given above but a dispute is
ongoing [16, 17].

A most promising direction is optical lattices where we may ask:

What are the phase diagrams of the two and three dimensional Hubbard models

as realized in optical lattices?

Attractive interactions will lead to a superfluid state with critical temperatures
that have been calculated in detail by Monte Carlo. For repulsive interactions the
phase diagram is not very well known in 2D or 3D even for the single band t-U or t-J
model. The antiferromagnetic phase may extend to densities near half filling before
undergoing a transition to a paramagnet but it is competing with phase separation,
stripe phases and a ferromagnetic phase for very strong repulsion. In 2D it also
competes with d-wave superconductivity.

A related question, which is particular relevant for HTc, is:

Does the 2D Hubbard model (as realized in optical lattices) exhibit high

temperature superconductivity (as seen in cuprates)?

Because the electrons in HTc have charge they cannot undergo phase separation in
bulk, which in turn may be responsible for stripe formation in cuprates in the region of
densities and temperatures where also d-wave superconductivity appears. Ultracold
Fermi atoms are neutral and can therefore undergo phase separation near half filling
as is predicted in some models, e.g. the t-J-U model with Gutzwiller projections
discussed above. If so, the region of densities near half filling with antiferromagnetic
and d-wave superconductivity do not exist in optical lattices. Cuprates may also
have multiband coupling and certainly has next nearest neighbour hoppings, which
cause asymmetries in the phase diagrams around half filling for both the AF and dSC
phases. In any case, the differences between the phase diagram of the cuprates and
the Hubbard model as realized in optical lattices will reveal the important driving
mechanisms and possible additional ingredients present in the phenomenon of HTc.
2D optical lattices may also resolve the Mermin-Wagner paradox.

In summary, we have good reasons to believe that ultracold Fermi atoms in traps
and optical lattices will in few years bring deeper understanding of strongly correlated
systems, its para-, ferro- and antiferromagnetic phases, Mott insulators, stripes, s-
and d-wave superfluidity, and high temperature superconductivity.
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Chapter 4
Pairing Fluctuations Approach
to the BCS–BEC Crossover

G. C. Strinati

Abstract This paper gives a survey of a diagrammatic approach for fermionic pairing
fluctuations, which are relevant to the BCS–BEC crossover realized with ultracold
Fermi gases. Emphasis will be given to the physical intuition about the relevant
physical processes that can be associated with this approach. Specific results will be
presented for thermodynamic and dynamical quantities, where a critical comparison
with alternative diagrammatic approaches will also be attempted.

4.1 Introduction

The BCS–BEC crossover has been of considerably interest over the last several years,
especially after its experimental realization with ultracold Fermi (6Li
and 40K) gases (for recent reviews about ultracold Fermi gases, see: [1, 2]). By
this approach, a continuous evolution is sought from a BCS-like situation whereby
Cooper pairs are highly overlapping, to a BEC-like situation where composite bosons
form out of fermion pairs and condense at sufficiently low temperature. Here, refer-
ence to composite bosons stems from the fact that the temperatures of formation
and condensation are in this case comparable with each other, in contrast with more
conventional point-like bosons for which the two temperatures are quite different
(reflecting the fact that their internal structure has no relevance to problems related
to condensation). Accordingly, a theoretical description of composite bosons should
take into account not only their overall bosonic structure associated with the center-
of-mass motion, but also their composite nature in terms of the degrees of freedom
of the constituent fermions.
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Fig. 4.1 Scattering length
for 6Li atoms versus
magnetic field. The inset
amplifies the behavior of the
narrow resonance (adapted
from Fig. 2 of Ref. [8])
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The key feature of ultracold Fermi atoms that has allowed the realization of the
BCS–BEC crossover is the possibility of varying essentially at will the strength
of the attractive interaction between fermions of different species [3], attraction
which results in the formation of Cooper pairs in a medium, on the one hand, and of
composite bosons in vacuum, on the other hand, out of the two fermion species. (In the
case of ultracold atoms, the spin of an electron is replaced by an analogous quantum
number associated with the atomic hyperfine levels.) Owing to this unique possibility,
ultracold atoms should be regarded as prototype systems, with respect to others in
Nature for which this possibility is hindered. Specifically, in ultracold atomic gases
the attractive interaction is varied through the use of the so-called Fano-Feshbach
resonances, which are characterized by a resonant coupling between the scattering
state of two atoms with near-zero energy and a bound state in a close channel
[4–6]. Changing (through the variation of a static magnetic field B) the position of
the bound state with respect to threshold in a suitable way, one can modify the value
of the (fermionic) scattering length aF from negative values before the formation of
the bound state in the two-body problem to positive values once the bound state is
formed [7]. As an example, Fig. 4.1 shows the scattering length for the collision of
two 6Li atoms versus B.

In this context, the dimensionless parameter (kF aF )
−1 acquires a special role

for the corresponding many-body system at finite density. Here, the Fermi wave
vector kF of the non-interacting system (which is defined as kF = √

2m EF

both for a homogeneous and a trapped system—see below) is a measure of the
(inverse of the) interparticle distance, m being the fermion mass and EF the Fermi
energy of non-interacting fermions (we set � = 1 throughout). When the Fano-
Feshbach resonance is sufficiently “broad” (like for 6Li and 40K atoms used in
experiments thus far), in fact, the many-body fermion problem can be described in a
simplified way by a single-channel Hamiltonian with an instantaneous short-range
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interaction [8]. The strength of this interaction, in turn, can be parametrized in terms
of the above scattering length aF of the two-body (molecular) problem, which shares
the same ultraviolet divergency associated with the short-range character of the two-
body potential [9, 10]. In this way one ends up with all physical quantities of interest
for the many-body system depending on the interaction only through the parameter
(kF aF )

−1.

In terms of this parameter, one finds that for most physical quantities the crossover
between the BCS and BEC regimes is exhausted, in practice, within a range ≈1 about
the unitary limit at (kF aF )

−1 = 0 where aF diverges. Outside this limited range,
the BCS and BEC regimes (whereby (kF aF )

−1 � −1 and 1 � (kF aF )
−1, in the

order) are characterized by the product kF |aF | being quite smaller than unity (corre-
sponding to a diluteness condition), so that theoretical approaches can in principle
be controlled in terms of this small quantity in these two separate regimes. No such
small parameter evidently exists, however, in the unitary regime about (kF aF )

−1 = 0,
whose theoretical description consequently constitutes a formidable task.

It is then clear that theoretical treatments of the BCS–BEC crossover should
provide as accurate as possible descriptions of the two regimes where the above
diluteness condition applies, either in terms of the constituent fermions (BCS regime)
or of the composite bosons (BEC regime). Specifically, this has to occur via a single
fermionic theory that bridges across these two limiting representations, by recovering
controlled approximations on both sides of the crossover and providing at the same
time a continuous evolution between them, thereby spanning also the unitary regime
where use of the theory could a priori not be justified.

The prototype of this kind of approach is represented by the BCS theory itself at
zero temperature. As remarked originally by Leggett [11] (see also Ref. [12]), the
BCS wave function is quite more general than originally thought, in the sense that it
contains as an appropriate limit the coherent state associated with a Bose–Einstein
condensate of composite bosons made up of opposite-spin fermions. This limit is
reached when the occupation numbers of all possible fermionic single-particle states
are much less than unity, so that the Fermi surface is completely washed out.

The argument can be made more quantitative by solving the coupled gap and
density equations provided by the BCS theory [13, 14] for a homogeneous system
at T = 0 (for which an analytic solution exists in terms of elliptic integrals [15]), to
obtain the gap (order) parameter�0 and fermionic chemical potentialμ0 as functions
of (kF aF )

−1 as shown in Fig. 4.2. Note that the chemical potential crosses over as
expected, from the value EF of the Fermi energy of non-interacting fermions in the
BCS limit, to (half the value of) the binding energy ε0 = (ma2

F )
−1 of the two-body

(molecular) problem within the single-channel model in the BEC limit. In both limits,
�0/|μ0| � 1 albeit for different physical reasons.

The BCS theory is a mean-field approximation which relies on the Cooper pairs
being highly overlapping in real space [13], so that their effects can be dealt with
“on the average”. As such, it is expected to be a valid approximation even at finite
temperature whenever this condition is satisfied. It should accordingly apply to
the BCS limit of the BCS–BEC crossover, but not to the unitary or BEC regimes
where the typical length scale for correlation between two fermions with different
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Fig. 4.2 a Gap parameter �0 and b chemical potential μ0 for a homogeneous system at zero
temperature versus the coupling parameter (kF aF )

−1, evaluated across the BCS–BEC crossover
within mean field

Fig. 4.3 Pair coherence
length ξpair (dashed line) and
phase coherence (healing)
length ξphase (full line) versus
(kF aF )

−1, evaluated at zero
temperature as in Ref. [15]
according to their definitions
given in Refs. [16, 17],
respectively

spins becomes comparable with the interparticle spacing k−1
F . This is shown in

Fig. 4.3 where the (zero-temperature) intra-pair coherence length ξpair is plotted
versus (kF aF )

−1.

It is then evident that, away from the BCS limit, inclusion of fluctuation corrections
beyond mean field becomes essential to account for the relevant physical properties of
the system. An equivalent way of stating the problem is that, away from the BCS limit,
the intra- and inter-pair coherence lengths are expected to differ considerably from
each other. This is also shown in Fig. 4.3 where the inter-pair coherence length ξphase
is reported for comparison. [In the BCS limit the two lengths differ by an irrelevant
numerical factor (ξpair � (3/

√
2)ξphase) owing to their independent definitions, so

that the two curves in Fig. 4.3 are parallel to each other in this coupling regime.]
In particular, in the BEC regime ξpair corresponds to the size of a composite boson
while ξphase represents the healing length associated with spatial fluctuations of the
center-of-mass wave function of composite bosons.
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It was indeed within this framework that the BCS–BEC crossover attracted atten-
tion also for high-temperature (cuprate) superconductors [18, 19], for which the
product kFξpair was estimated to be about 5 ÷ 10 in contrast with more conventional
superconductors for which it is of the order 103÷105. Several theoretical works were
then put forward on the BCS–BEC crossover in this context [16, 20–24], with the
limitations, however, that the origin and characteristics of the attractive interaction
at the basis of this crossover were not known for cuprate superconductors. These
limitations have eventually been fully removed with the advent of ultracold Fermi
atoms, to which we shall limit our considerations in the following.

One related reason to invoke the inclusion of fluctuation corrections beyond mean
field stems from the values obtained within BCS theory for the critical temperature
at which the order parameter vanishes. Only a numerical solution of the coupled
gap and density equations is amenable for generic values of (kF aF )

−1, but analytic
results can still be obtained in the BCS and BEC limits. One gets [9]:

kB Tc � 8EF eγ

πe2 exp{π/(2aF kF )} (4.1)

in the BCS limit (where kB is Boltzmann constant and γ Euler constant with eγ /π �
0.567), and

kB Tc � ε0

2 ln (ε0/EF )
3/2 (4.2)

in the BEC limit, respectively. While the result (4.1) corresponds to what is familiar
from BCS theory for weak coupling [13], the result (4.2) does not coincide with what
one would expect in the BEC limit, namely, the expression of the Bose–Einstein
condensation temperature kB TBEC = 3.31n2/3

B /(2m) where nB = n/2 is the density
of composite bosons in terms of the density n of the constituent fermions. On the
contrary, the expression (4.2) increases without bound when approaching the BEC
limit for 1 � (kF aF )

−1.

The points is that the critical temperature obtained from the solution of the mean-
field equations corresponds to the process of pair formation and not of pair conden-
sation. The two temperatures coincide only in the BCS (weak-coupling) limit (in the
weak-coupling limit, the diagrammatic corrections introduced by [25] modify the
expression (4.1) for Tc, reducing its prefactor by about 2.2.), where pairs form and
condense at the same time. In the BEC (strong-coupling) limit, on the other hand,
pairs form at a higher temperature than that at which they eventually condense owing
to quantum effects. Accordingly, the expression (4.2) signals the phenomenon of pair
dissociation, and as such it must be regarded as a “crossover” temperature T ∗ which
does not correspond to a true phase transition. The complete plot of T ∗ obtained by
solving numerically the mean-field gap and density equations throughout the BCS–
BEC crossover is shown for the homogeneous (h) and trapped (t) cases in Fig. 4.4,
where it corresponds to the upper dashed and full lines, respectively (the remaining
two curves labeled by Tc result instead beyond mean field and will be discussed in
Sect. 4.2).
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Fig. 4.4 Temperature versus coupling diagram for the trapped (full lines) and homogeneous (dashed
lines) system, where the critical temperature Tc and pair-breaking temperature T ∗ are shown. Each
temperature is normalized to the respective Fermi temperature TF (adapted from Fig. 1 of Ref. [26])

It is thus evident from the above discussion that the main limitation of the mean-
field description we have considered thus far is that it includes only the degrees
of freedom internal to the pairs which are associated with pair-breaking, but omits
completely the translational ones. The latter are responsible for the collective sound
mode, which represents the main source of elementary excitations in the BEC regime
[27]. To overcome this severe limitation for a sensible description of the BCS–BEC
crossover in terms of a fermionic theory, it is then necessary to go beyond mean field
and include pair-fluctuation effects as discussed in the next section.

4.2 Inclusion of Pairing Fluctuations

A diagrammatic approach for fermionic pairing fluctuations was first considered by
Galitskii [28] for a dilute Fermi gas with strong short-range repulsion [29]. There it
was shown that the relevant fermionic self-energy can be taken of the form depicted
in Fig. 4.5, where �0 is the pair propagator describing the repeated scattering in the
medium between two fermions of opposite spins.

The short-range nature of the potential requires one to introduce at the outset
a regularization procedure that eliminates the ultraviolet divergences. This is done
by exploiting the two-fermion problem in vacuum, which shares the same sort of
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Fig. 4.5 Single-particle fermionic self-energy in the normal phase (upper panel) expressed in terms
of the pair (ladder) propagator �0 between two fermions of opposite spins (lower panel). Full and
dashed lines represent the fermionic propagator and interaction potential, respectively, while the
labels k (k′) and q correspond to fermionic and bosonic four-vectors, in the order

divergences and for which the (positive) strength v0 of the repulsive interaction can
be related to the ultraviolet cutoff k0 in wave-vector space through the following
equation for the two-body t-matrix in the low-energy limit [30]:

m

4πaF
= 1

v0
+

k0∫
dk
(2π)3

m

k2 . (4.3)

This relation defines the (fermionic) scattering length aF ,which is positive in this
case and remains smaller than the range π/(2k0) of the potential if its strength v0 is
kept finite.

To the leading order in aF , this self-energy results in a repulsive “mean-field shift”
(4πaF/m)n/2 of the chemical potential, where n is the total fermion density for both
spin components. This is because, to the leading order in aF , �0(q) � (−4πaF/m)
and the loop in the upper panel of Fig. 4.5 gives half the fermionic density n
(we consider throughout the case of equal populations of spin up and down fermions).
Terms up to the second order in aF were also obtained by the Galitskii original
approach [28].

The above choice of the self-energy emphasizes pair-fluctuation effects via the
repeated scattering of two (opposite spin) fermions in the medium. As such, it has
been considered physically relevant also to the case of an attractive short-range
potential with a negative v0 [20, 31, 32], for which aF has the typical resonant
behavior of Fig. 4.1 associated with the BCS–BEC crossover. By this extrapolation,
the formal structure of the Galitskii self-energy is carried over to the domain of strong
coupling, and even further to the repulsive side of the resonance where a molecular
state forms (a firm basis for this extrapolation has recently been provided by [33]).
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Let’s write down explicitly the analytic expressions corresponding to the diagrams
depicted in Fig. 4.5, for the simplest case when all fermionic propagators appearing
therein are “bare” ones [31]. One has:

�(k, ωn)= − kB T
∑
ν

∫
dq
(2π)3

�0(q,�ν)G0(q − k,�ν − ωn) (4.4)

for the fermionic self-energy, and

(−1)

�0(q,�ν)
= m

4πaF
+

∫
dk
(2π)3

[
kB T

∑
n

G0(k, ωn)G0(q − k,�ν − ωn)− m

|k|2
]

(4.5)
for the (inverse of the) pair propagator. Here, G0(k, ωn)= [iωn −ξ(k)]−1 is the bare
fermion propagator (ξ(k)= k2/(2m)−μ being the free-particle dispersion measured
with respect to the chemical potential μ), while ωn =πkB T (2n + 1) (n integer)
and �ν = 2πkB T ν (ν integer) are fermionic and bosonic Matsubara frequencies at
temperature T, in the order. Note how the strength v0 of the attractive interparticle
potential has been eliminated in the expression (4.5) in favor of the scattering length
aF via the relation (4.3), which now admits also negative value for aF consistently
with the behavior shown in Fig. 4.1.

With the self-energy (4.4) one dresses the bare fermion propagator to obtain the
full propagator

G(k, ωn)= 1

G0(k, ωn)−1 −�(k, ωn)
, (4.6)

in terms of which the chemical potential can be eventually eliminated in favor of the
density via the expression (η= 0+):

n = 2kB T
∑

n

eiωnη

∫
dk
(2π)3

G(k, ωn). (4.7)

On physical grounds, the relevance of the expressions (4.4) and (4.5) to the BCS–
BEC crossover can be appreciated from the following considerations. While in the
BCS weak-coupling limit (where aF < 0 and (kF aF )

−1 � −1) the pair propagator
maintains formally the same expression �0(q) � −4πaF/m of the repulsive case,
in the BEC strong-coupling limit (where 0 < aF and 1 � (kF aF )

−1) it acquires the
polar structure of a free-boson propagator [10, 21]:

�0(q,�ν)= − 8π

m2aF

1

i�ν − q2/(4m)+ μB
(4.8)

where the bosonic chemical potential μB reduces to 2μ + ε0 in this limit when
the composite bosons have size ≈ aF . In this limit, we may expand the fermionic
propagator (4.6) to the lowest order in �
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G(k, ωn) � G0(k, ωn)+ G0(k, ωn)�(k, ωn)G0(k, ωn), (4.9)

and consistently approximate the self-energy (4.4) in the form:

�(k, ωn) � −G0(−k,−ωn)kB T
∑
ν

ei�νη

∫
dq
(2π)3

�0(q,�ν). (4.10)

In this way, we obtain for the density (4.7):

n � 2
∫

dk
(2π)3

1

eξ(k)/(kB T ) + 1
− 2

∫
dq
(2π)3

kB T
∑
ν

ei�νη

i�ν − q2/(4m)+ μB

(4.11)
where use has been made of the result

∫
dk
(2π)3

kB T
∑

n

G0(k, ωn)
2G0(−k,−ωn) � −m2aF

8π
(4.12)

which is valid when μ � −ε0/2 is the largest energy scale in the problem. Under
these circumstances, the first term on the right-hand side of Eq. 4.11 is strongly
suppressed by the smallness of the fugacity eμ/(kB T ), while the second term therein
represents the density nB of a non-interacting system of (composite) bosons with
chemical potential μB , yielding eventually n � 2nB . With the inclusion of pairing
fluctuations, the density equation (4.7) thus reproduces the standard result for the
Bose–Einstein condensation temperature kB TBEC = 3.31n2/3

B /m B where m B = 2m
is the mass of a composite boson.

Note further that, if only the first term on the right-hand side of Eq. 4.11 were
retained, one would get for the chemical potential:

μ

kB T
� ln

[
n

2

(
2π

mkB T

)3/2
]

(4.13)

which coincides with the classical expression at temperature T [29]. Setting in this
expression μ � −ε0/2 and T = Tc, the value (4.2) for the critical temperature Tc is
readily recovered.

Quite generally at any coupling across the BCS–BEC crossover, the critical
temperature is obtained from the normal phase by enforcing in Eq. 4.5 the insta-
bility condition 1/�0(q = 0,�ν = 0)= 0, in conjunction with the density equation
(4.7). The resulting values for Tc are plotted for the homogeneous (h) and trapped (t)
cases in Fig. 4.4, where they correspond the lower dashed and full lines, respectively.
In both cases, in the temperature window between Tc and T ∗ composite bosons are
formed but not yet condensed.

In the context of the BCS–BEC crossover, pairing fluctuations in the normal phase
were first considered by Nozières and Schmitt-Rink (NSR) [34], with the purpose
of obtaining a sensible extrapolation of the critical temperature from the BCS to the
BEC limit (in Ref. [34] the density equation was obtained by an alternative procedure
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via the thermodynamic potential). It was later remarked in Ref. [35] that the NSR
procedure corresponds to a t-matrix theory in which one keeps only the lowest-order
terms of Eq. 4.9 for all couplings and not just in the BEC limit. In practice, differences
between the numerical results, obtained alternatively by the NSR procedure or by
the approach based on Eqs. 4.4–4.7 where the expansion (4.9) is avoided, remain
sufficiently small even in the unitary region.

The approach for the normal phase based on Eqs. 4.4–4.7 was considered in
Ref. [31] to study fermionic single-particle properties above Tc in the homogeneous
case, and later extended to consider the effects of a trap. Owing to the presence
of two bare fermion propagator G0 in the particle–particle bubble of Eq. 4.5, this
approach is sometimes referred to as the “G0–G0 t-matrix”. This is to distinguish
it from alternative t-matrix approaches, notably: (i) the “G–G0 t-matrix” approach
[36] where one bare G0 and one self-consistent G enter the particle–particle bubble
defining the pair propagator, while a bare G0 is kept in the definition of the fermionic
self-energy (cf. Eq. 4.4); (ii) the “G–G t-matrix” approach [37] where all single-
particle Green’s functions are self-consistent ones. These alternative approaches were
both utilized recently to study the fermionic single-particle spectral function in the
normal phase [38, 39]. (It should be mentioned in this context that a t-matrix approach
formally similar to the G0–G0 one was proposed in Ref. [40], where the bare value
of the chemical potential for the non-interacting Fermi gas was inserted in the self-
energy in the spirit of a 1/N expansion.)

While the G–G0 and G–G t-matrix approaches have been implemented according
to their strict definitions, the pairing-fluctuation approach of Eqs. 4.4–4.7 can be
allowed to retain the original flexibility of the diagrammatic fermionic structure
which is “modular” in nature. In this sense, it can be progressively improved by
including additional self-energy corrections which are regarded important, especially
in the BCS and BEC regimes where the approximations can be controlled. This
implies, in particular, that the pair propagator in the expression (4.4) can be dressed
via “bosonic” self-energy insertions, which lead, for instance, to the Gorkov and
Melik-Barkudarov corrections [25] on the BCS side and to the Popov theory for
composite bosons [41] on the BEC side. Consideration of the latter is expected to be
especially important on physical grounds, since it effectively introduces a repulsive
interaction among the composite bosons which ensures, in particular, the stability of
the system under compression.

One major shortcoming of the pairing-fluctuation approach of Eqs. 4.4–4.7 is, in
fact, that it leads to a diverging compressibility when the temperature is lowered down
to Tc from the normal phase. This behavior is shown in Fig. 4.6 at unitarity, and can
be ascribed to the fact that the pair propagator (4.5) corresponds to non-interacting
composite bosons.

The price one has to pay, for setting up theoretical improvements over and above
the pairing-fluctuation approach discussed in the present section, is the unavoidable
increase of their numerical complexity when calculating physical quantities. Some
of these improvements will be discussed in the next section.

The above pairing-fluctuation approach can, in addition, be extended to the super-
fluid phase below Tc, whereby the pair propagator acquires a matrix structure that
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Fig. 4.6 The isothermal
compressibility dn/dμ (in
units of n/EF ) versus T/TF ,
as obtained at unitarity from
the pairing-fluctuation
approach based on Eqs.
4.4–4.7, is shown to diverge
at Tc (full line). In contrast,
the curve corresponding to
the free Fermi gas goes
smoothly through Tc (dashed
line)
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maps onto the bosonic normal and anomalous propagators within the Bogoliubov
theory [42, 43]. This extension (together with its Popov refinement [41]) will also
be considered in the next section.

4.3 Bogoliubov and Popov Approaches, and the Boson–Boson
Residual Interaction

A pairing-fluctuation approach was implemented on physical grounds below Tc in
Refs. [42, 43], by adopting a fermionic self-energy in the broken-symmetry phase
that represents fermions coupled to superconducting fluctuations in weak coupling
and to bosons described by the Bogoliubov theory in strong coupling. This approach
has allowed for a systematic study of the BCS–BEC crossover in the temperature
range 0 < T < Tc.

A diagrammatic theory for the BCS–BEC crossover below Tc was actually first
proposed by Haussmann [21], by extending the self-consistent t-matrix approxima-
tion to the broken-symmetry phase. While the ensuing coupled equations for the
chemical potential and order parameter were initially solved at Tc only, an improved
version of this self-consistent theory was recently implemented for the whole ther-
modynamics of the BCS–BEC crossover [37]. We postpone an explicit comparison
with this alternative approach to Sect. 4.4, where a selection of numerical results will
be presented.

By the approach of Refs. [42, 43], the pair propagator in the broken-symmetry
phase has the following matrix structure:

(
�11(q) �12(q)
�21(q) �22(q)

)
=

(
A(−q) B(q)
B(q) A(q)

)

A(q)A(−q)− B(q)2
(4.14)
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where

−A(q)= m

4πaF
+

∫
dk
(2π)3

[
kB T

∑
n

G11(k + q)G11(−k)− m

|k|2
]

(4.15)

B(q)=
∫

dk
(2π)3

kB T
∑

n

G12(k + q)G21(−k). (4.16)

This structure is represented diagrammatically in Fig. 4.7a, where only combina-
tions with L = ′L and R = ′R survive the regularization we have adopted for the
potential (cf. Eq. 4.3). It represents an approximation to the Bethe–Salpeter equation
for the fermionic two-particle Green’s function in the particle–particle channel. In
the above expressions, q = (q,�ν) and k = (k, ωn) are four-vectors, and

G11(k, ωn)= − ξ(k)+ iωn

E(k)2 + ω2
n

= − G22(−k,−ωn)

G12(k, ωn)= �

E(k)2 + ω2
n

= G21(k, ωn) (4.17)

are the BCS single-particle Green’s functions in Nambu notation [14], with
E(k)= √

ξ(k)2 +�2 for an isotropic (s-wave) order parameter � (which we take
to be real without loss of generality).

In analogy to what was done for obtaining the expression (4.8) in the strong-
coupling limit, one can show that the pair propagator (4.14) reduces in the same
limit to the following expressions:

�11(q)=�22(−q) � 8π

m2aF

μB + i�ν + q2/(4m)

EB(q)2 − (i�ν)2
(4.18)

and

�12(q)=�21(q) � 8π

m2aF

μB

EB(q)2 − (i�ν)2
, (4.19)

where

EB(q)=
√(

q2

2m B
+ μB

)2

− μ2
B (4.20)

has the form of the Bogoliubov dispersion relation [29], μB =�2/(4|μ|)= 2μ+ ε0
being the corresponding value of the bosonic chemical potential. Apart from
the overall factor −8π/(m2aF ) (and a sign difference in the off-diagonal
component [42]), the expressions (4.18) and (4.19) coincide, respectively, with the
normal and anomalous non-condensate bosonic propagators within the Bogoliubov
approximation [29].
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Fig. 4.7 Single-particle fermionic self-energy for the broken-symmetry phase (panel c), expressed
in terms of the pair propagator � with Nambu structure (panel a). The BCS contribution to the
self-energy is shown in panel d, and the corresponding self-energy for the normal-phase of Fig. 4.5
is also reported in panel b for comparison (reproduced from Fig. 1 of Ref. [43])

For any coupling, in Ref. [43] the corresponding fermionic self-energy was taken
of the form:

�11(k)= −�22(−k)= − kB T
∑
ν

∫
dq
(2π)3

�11(q, �ν)G11(q − k, �ν − ωn)

�12(k)=�21(k)= −� (4.21)

where�11 is shown diagrammatically in Fig. 4.7c (with L = ′L = R = ′R = 1) and
�12 in Fig. 4.7d.

With this choice of the self-energy, the fermionic propagator is then obtained by
solving Dyson’s equation in matrix form:

(
G−1

11 (k) G−1
12 (k)

G−1
21 (k) G−1

22 (k)

)
=

(
G0(k)−1 0

0 −G0(−k)−1

)
−

(
�11(k) �12(k)
�21(k) �22(k)

)
. (4.22)

Note that the BCS expressions (4.17) for the single-particle Green’s functions
result by neglecting in Eq. 4.22 the diagonal self-energy terms associated with pairing
fluctuations.

By the approach of Ref. [43], the “normal” propagator G11 is inserted in the
density equation
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n = 2kB T
∑

n

eiωnη

∫
dk
(2π)3

G11(k, ωn) (4.23)

which replaces Eq. 4.7 below Tc, while in the gap equation

�= − v0kB T
∑

n

∫
dk
(2π)3

G12(k, ωn) (4.24)

the BCS “anomalous” propagator (4.17) is maintained (albeit with modified numer-
ical values of the chemical potential and order parameter that result from the simul-
taneous solution of Eqs. 4.23 and 4.24). This ensures that the bosonic propagators
(4.14) remain gapless.

It is instructive to consider once more the BEC limit, whereby the diagonal part
of the self-energy acquires the following approximate form [43]:

�11(k, ωn) � 8π

m2aF

1

iωn + ξ(k)
n′

B(T ). (4.25)

Here,

n′
B(T )=

∫
dq
(2π)3

[
u2

B(q)b(EB(q))− v2
B(q)b(−EB(q))

]
(4.26)

represents the bosonic noncondensate density, with the Bose distribution
b(x)= {exp[x/(kB T )] − 1}−1 and the standard bosonic factors of the Bogoliubov
transformation [29]:

v2
B(q)= u2

B(q)− 1 =
q2

2m B
+ μB − EB(q)

2EB(q)
. (4.27)

In this case, solution of the Dyson’s equation (4.22) yields:

G11(k, ωn) � 1

iωn − ξ(k)− �2+�2
pg

iωn+ξ(k)
(4.28)

with the notation�2
pg = 8πn′

B(T )/(m
2aF ). When inserted into the density equation

(4.23) the above expression gives:

n � m2aF

4π

(
�2 +�2

pg

)
= 2

(
n0(T )+ n′

B(T )
)

(4.29)

where the condensate density n0(T ) is identified via �2 = 8πn0(T )/(m2aF ).

It is relevant to comment at this point on the value of the scattering length aB ,
which results in the BEC limit of the above approach from the residual interaction
between composite bosons. This value is obtained, for instance, by manipulating the
gap equation (4.24) in this limit, yielding:
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Fig. 4.8 a Effective
boson–boson interaction ū2.
b Additional terms
associated with the t-matrix
t̄B for composite bosons.
Light lines stand for
free-fermion propagator and
broken lines for fermionic
interaction potential. Spin
labels are not shown
explicitly (reproduced from
Fig. 2 of Ref. [41])

(a)

(b)

�2

4|μ| � 2
(√

2|μ|ε0 − 2|μ|
)

� μB . (4.30)

With the relation between�2 and n0 utilized in Eq. 4.29 and the asymptotic result
|μ| � (2ma2

F )
−1, the expression (4.30) can be cast in the form μB = 4πaBn0/m B

that corresponds to the value of the Bogoliubov theory with aB = 2aF .

This result can also be interpreted diagrammatically as being associated with the
lowest-order (Born approximation) value for the effective boson–boson interaction
[10]. This is represented in Fig. 4.8a and can be obtained from the following expres-
sion where all bosonic four-momenta qi (i = 1, . . . , 4) vanish:

ū2(0, 0, 0, 0)= kB T
∑

n

∫
dp
(2π)3

G0(p)
2G0(−p)2

�
∫

dp
(2π)3

1

4ξ(p)3
�

(
m2aF

8π

)2 (
4πaF

m

)
(4.31)

with the last line holding in the BEC limit. Apart from the overall factor (m2aF/(8π))2

(that compensates for the presence of the factor −8π/(m2aF ) in the expression (4.8)
of the free-boson propagator), the result (4.31) is indeed consistent with a residual
bosonic interaction corresponding to aB = 2aF .

The correct value for aB(=0.6aF ), which includes all possible scattering processes
between two composite bosons in isolation, was originally determined in Ref. [44]
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from the exact solution of the Schrödinger equation for dimer–dimer elastic scat-
tering, and later confirmed in Ref. [45] through a completely diagrammatic treat-
ment at zero density. In this context, even before this exact result was available, it
was shown in Ref. [10] that the scattering processes corresponding to the t-matrix
diagrams for composite bosons (the lowest ones of which are depicted in Fig. 4.8b)
lead by themselves to a considerable reduction of the value of aB(�0.75aF ) starting
from the value aB = 2aF of the Born approximation. As a matter of fact, the complete
diagrammatic treatment of Ref. [45] (that yields the exact value aB = 0.6aF) adds
to the diagram of Fig. 4.8a all other additional (zero density) processes which are
irreducible with respect to the propagation of two composite bosons, and then uses
the result in the place of the diagram of Fig. 4.8a as the new kernel of the integral
equation depicted in Fig. 4.8b.

The above considerations suggest us a way to improve on the Bogoliubov approx-
imation for composite bosons, in order to include the diagrammatic contributions
leading to a refined value of aB with respect to the Born approximation (in the
following, we shall limit ourselves to recovering the value aB � 0.75aF in the BEC
limit). To this end, we first approximately obtain the pair propagators �B for any
value of the fermionic coupling, by adopting the following Dyson’s type equation in
matrix form [41] in the place of the expressions (4.14):

�B(q)= �0
B(q)+ �0

B(q)�B(q)�B(q). (4.32)

Here, �0
B(q) is the free-boson propagator with inverse

�0
B(q)

−1 =
(
�0(q)−1 0

0 �0(−q)−1

)
(4.33)

where �0(q)−1 is given by Eq. 4.5, and

�B(q)=�2
(−2ū2(0, q, 0, q) ū2(0, 0,−q, q)

ū2(0, 0,−q, q) −2ū2(0, q, 0, q)

)
(4.34)

is the bosonic self-energy within the Bogoliubov approximation, which contains two
degenerate forms of the effective boson–boson interaction (cf. Fig. 4.8a):

ū2(q1, q2, q3, q4)= kB T
∑

n

∫
dp

(2π)3
G0(−p)G0(p + q2)G0(−p + q1 − q4)G0(p + q4).

(4.35)
To guarantee the ladder propagators �B(q) of Eq. 4.32 to be gapless when q = 0

for any value of the fermionic coupling, we impose the condition:

�0(q = 0)−1 −�11
B (q = 0)−�12

B (q = 0)= 0 (4.36)

which plays the role in the present context of the Hugenholtz–Pines theorem for
point-like bosons [29]. The Bogoliubov approximation for the composite bosons in
the BEC limit with an improved value of aB then results [10], by replacing in Eq. 4.34
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Fig. 4.9 Graphical
representation of the Popov
self-energy for composite
bosons, that results upon
dressing the upper fermionic
line in the particle–particle
channel. An analogous
dressing done for the lower
fermionic line accounts for
the factor of two in Eq. 4.38
(reproduced from Fig. 4 of
Ref. [41])

the boson–boson interaction ū2 with the following expression of the t-matrix for
composite bosons (cf. Fig. 4.8b):

t̄B(q1, q2, q3, q4)= ū2(q1, q2, q3, q4)− kB T
∑
ν5

∫
dq5

(2π)3

× ū2(q1, q2, q5, q1 + q2 − q5)�
0(q5)�

0(q1 + q2 − q5)t̄B(q1 + q2 − q5, q5, q3, q4).
(4.37)

Further improvements can be implemented by replacing the pair propagators
(4.14) with more refined descriptions of composite bosons in the BEC limit, and then
using these improved descriptions throughout the BCS–BEC crossover to modify the
fermionic single-particle self-energy accordingly. An example is the so-called Popov
approximation for composite bosons [41], whereby the bosonic self-energy repre-
sented diagrammatically in Fig. 4.9 is employed to modify the original Bogoliubov
propagators (4.14). In the broken-symmetry phase, this bosonic self-energy has the
form:

�
Pop
B (q)11 = − 2kB T

∑
n

∫
dp
(2π)3

kB T
∑
ν′

∫
dq′

(2π)3

× G11(p + q)2G11(−p)G11(q
′ − q − p)�11(q

′). (4.38)

The Popov propagators for composite bosons are then obtained as follows,
in terms of the corresponding Bogoliubov propagators (4.14):
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(
�

Pop
11 (q) �

Pop
12 (q)

�
Pop
21 (q) �

Pop
22 (q)

)
=

(
A(−q)−�

Pop
B (−q)11 B(q)

B(q) A(q)−�
Pop
B (q)11

)

[A(q)−�
Pop
B (q)11][A(−q)−�

Pop
B (−q)11] − B(q)2

(4.39)
where A(q) and B(q) are given by Eqs. 4.15 and 4.16, in the order. The propagators
(4.39) are gapless provided

A(q = 0)−�
Pop
B (q = 0)11 − B(q = 0)= 0. (4.40)

This generalizes to the present context the condition A(q = 0)− B(q = 0)= 0 for
gapless Bogoliubov propagators, and effectively replaces the gap equation (4.24) for
all practical purposes.

In addition, the same treatment that was made above to improve on the relation
aB = 2aF in the BEC limit can be applied here, by first rewriting the expression
(4.38) in terms of the bare boson–boson interaction (4.35)

�
Pop
B (q)11 � −2kB T

∑
ν′

∫
dq′

(2π)3
ū2(q

′, q, q ′, q)�11(q
′), (4.41)

and then replacing ū2 by the t-matrix t̄B for composite bosons of Eq. 4.37.
The final form of the fermionic self-energy is eventually obtained by reconsidering

the expressions (4.21), where now the Popov propagator �Pop
11 of Eq. 4.39 takes the

place of �11 while � satisfies the condition (4.40) in the place of the original gap
equation.

From a physical point of view, the relevance of the Popov approximation results
because it introduces an effective repulsion among the composite bosons through the
presence of their noncondensate density. The importance of this repulsion should
be especially evident in the normal phase, when the Bogoliubov propagators (4.14)
reduce to free-boson propagator (4.5) and miss accordingly this residual bosonic
interaction. While commenting on Fig. 4.6 we have already pointed out that this is
the reason for a diverging compressibility at Tc when only “bare” pairing fluctuations
are considered.

In the next section we shall discuss a number of thermodynamic as well as dynam-
ical results obtained by implementing the Popov approximation in the normal phase
throughout the BCS–BEC crossover (the unitary limit will specifically be consid-
ered). In this case, the (inverse of the) Popov propagator for composite bosons is
obtained from the relation �Pop(q)−1 =�0(q)−1 − �

Pop
B (q), where �Pop

B is given
by Eq. 4.41 with �0 replacing �11. In addition, to improve on the description of the
boson–boson scattering, we shall replace the bare ū2 in Eq. 4.41 by the t-matrix t̄Bfor
composite bosons given by Eq. 4.37. In this way, the 2-boson scattering will be dealt
with beyond the Born approximation.

In this context, it will be relevant to compare the results obtained by the above
approach in the normal phase for thermodynamic and dynamical quantities (F. Pales-
tini et al., unpublished), with those obtained by an alternative approach based on a
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self-consistent t-matrix approximation, as described in Ref. [37] for the thermody-
namics and in Ref. [39] for the dynamics of the BCS–BEC crossover, respectively.
(Results for a homogeneous system will only be presented.) Interest in this compar-
ison is also justified on physical grounds, by considering the different treatments
of the effective boson–boson interaction which result from the two approaches. As
remarked already, the Popov approach with t̄B replacing ū2 concentrates on 2-boson
scattering beyond the lowest order (Born) approximation, while the self-consistent
t-matrix approach includes a sequence of 3, 4, . . ., n-boson scattering processes,
where each process is dealt with at the lowest order. Although these alternative sets
of processes (namely, improved 2-boson versus n-boson scattering) can be clearly
identified by a diagrammatic analysis in the (BEC) strong-coupling limit [10], the
question of how the relevance of these processes extends to the unitarity limit remains
open and can be addressed only via numerical calculations. This question will be
partially addressed in the next section.

4.4 Results for Thermodynamic and Dynamical Quantities

Physical quantities that can be considered for a quantum many-body system are
conveniently organized as single- and two-particle properties, and are correspond-
ingly obtained in terms of single- and two-particles Green’s functions. In addition,
these properties may refer to the equilibrium state of the system or to excitations over
and above this state. In the first case they can be conveniently obtained within the
Matsubara formalism with discrete imaginary frequencies, while in the second case
a (sometimes nontrivial) analytic continuation to the real frequency axis is required
[29]. In the present context of a pairing-fluctuation diagrammatic approach to the
BCS–BEC crossover, we shall limit ourselves to considering the chemical potential
and the total energy per particle as examples of thermodynamic properties, and the
single-particle spectral function as an example of dynamical properties, for which
consideration of pairing fluctuations appears especially relevant.

This relevance is most evident in the normal phase, because the occurrence of
pairing fluctuations acts to extend above Tc characteristic effects of pairing (notably,
what is referred to as the “pseudogap physics” associated with the noncondensate
density like in Eq. 4.28), effects which would otherwise be peculiar of the broken-
symmetry phase below Tc only.

4.4.1 Thermodynamic Properties

For a homogeneous Fermi gas in the normal phase, the fermionic chemical potential
μ can be obtained from the density equation (4.7) and the total energy per particle
from the following expression [29]:
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E

N
= 1

n
kB T

∑
n

eiωnη

∫
dk
(2π)3

(
k2

2m
+ μ+ iωn

)
G(k, ωn) (4.42)

where N is the total particle number. In Eqs. 4.7 and 4.42, different approximations
are embodied in different forms of the fermionic single-particle Green’s function
G. In particular, we shall consider approximate forms of G obtained within: (i) the
t-matrix approach given by Eqs. 4.4–4.6; (ii) its further simplification (sometimes
referred to as the Nozières-Schmitt-Rink (NSR) approximation) whereby the fermi-
onic propagator is expanded like in Eq. 4.9 for any coupling (and not just in the
BEC limit); (iii) the Popov approach with an improved description of the boson–
boson scattering as discussed in Sect. 4.3; (iv) the fully self-consistent (sc) t-matrix
approach of Ref. [37] that was mentioned in Sect. 4.2.

At unitarity, the results of these diagrammatic approaches for μ and E/N can
also be compared with Quantum Monte Carlo (QMC) calculations, which are avail-
able over a wide temperature range. This comparison is shown in Fig. 4.10. Several
features are here apparent. At high enough temperatures, all data progressively merge
to the t-matrix approach, which is known to become exact in this limit where it
reduces to the virial expansion of Beth and Uhlenbeck [46]. While only minor differ-
ences appear between the t-matrix and the NSR approaches (with independent NRS
calculations yielding comparable results [47]), the Popov approach is seen to a add
positive contribution both to μ and E/N . This is in line with the expectation that
the Popov approach takes into account the residual (repulsive) interaction among
composite bosons [41], which is missed by the t-matrix approach. In addition, the
fully self-consistent t-matrix approach, which at high enough temperature should
also asymptotically reduce to the t-matrix approach without self-consistency, shows
deviations from the t-matrix and Popov approaches that are more marked inμ than in
E/N .No compelling conclusions can, therefore, apparently be drawn by comparing
self-consistent versus non-self-consistent pairing-fluctuation approaches as far as
the thermodynamic quantities are concerned. Quite generally, it can be stated that
good overall agreement results by comparing QMC calculations with diagrammatic
pairing-fluctuation approaches, signifying that the latter are able to capture the rele-
vant physical processes. Note finally from Fig. 4.10 that the progressively increasing
differences between the t-matrix and Popov approaches when lowering the temper-
ature reflects the fact that the divergence of the compressibility resulting from the
t-matrix approach (shown in Fig. 4.6) is suitably cut off by the Popov approach,
which yields a finite value for this quantity at Tc (F. Palestini et al., unpublished).

Alternative theoretical approaches yield different values of the critical
temperature Tc, as shown in Table 4.1. These values can be compared with the
corresponding ones that are extracted from experiments, as reported in Table 4.2.
Although for this quantity the self-consistent t-matrix approach seems to perform
better than the non-self-consistent one(s), one should be aware of the fact that addi-
tional corrections to the pair propagator �0, like those introduced in Gor’kov and
Melik-Barkhudarov [25] in the weak-coupling (BCS) limit to represent the medium
polarization and shown to have a sizable effect on Tc in that limit, might still act to
reduce somewhat further the value of Tc even at unitarity. Definite comparison with
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Fig. 4.10 a Chemical
potential and b energy per
particle (in units of EF )
versus the temperature (in
units of TF ), as obtained:
In F. Palestini et al.
(unpublished) by the t-matrix
approach (dashed lines), the
NSR approximation
(dashed-dotted lines), and
the Popov approach (thick
full lines). In Ref. [37] by the
fully self-consistent t-matrix
approach (dotted lines). In
Ref. [48] (full squares) and
in Ref. [49] (full circles) by
QMC calculations. Results
obtained by the modified
virial expansion of Ref. [50]
(thin full lines) are also
shown for comparison
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the experimental values of Tc reported in Table 4.2 should then await for a proper
inclusion of these additional corrections. To elicit a more quantitative comparison
among theoretical and experimental thermodynamic quantities, Tables 4.1 and 4.2
list, in addition, the values of μ and E/N that are available both at zero temperature
and Tc.

The sizable effects that pairing fluctuations have on the thermodynamic quanti-
ties of Fig. 4.10 over and above the free-Fermi gas behavior can be appreciated by
sketching therein the plots of μ and E/N for the non-interacting Fermi gas (recall,
in particular, that μni(T = 0)/EF = 1, Eni(T = 0)/(N EF )= 0.6, μni(T = 0.6TF )/

EF = 0.625, and Eni(T = 0.6TF )/(N EF )= 1.15). The effects of pairing fluctua-
tions in these quantities are thus seen to extend over a wide temperature range up to
several times TF , being related to the high-energy scale�∞ introduced in Ref. [58]
in terms of the trace of the pair propagator �0.

There exists, however, an additional energy scale (usually referred to as the
pseudogap) which is also related to pairing fluctuations but is instead character-
istic of the low-energy physics about Tc. This energy scale is most evident when
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Table 4.2 Thermodynamic quantities obtained experimentally for a homogeneous Fermi system
at unitarity (references are specified)

Exp. [53] Exp. [54] Exp. [55] Exp. [50] Exp. [56] Exp. [57]

β −0.62(2) −0.68+0.13
−0.10 −0.54+0.05

−0.12 −0.58(1) −0.54(5)

μ(T = 0) 0.38(2) 0.32+0.13
−0.10 0.46+0.05

−0.12 0.42(1) 0.46(5)
Tc 0.157(15) ∼0.15
μ(Tc) 0.49(2)

Energies are in units of EF and temperatures of TF . The chemical potential at T = 0 is here obtained
via the relationμ(T = 0)/EF = 1+β that holds at unitarity, the parameterβ being directly measured.
(Experimental data for E(Tc)/N are not available for comparison with the theoretical values reported
in Table 4.1)

looking at the properties of the single-particle spectral function, to be considered
next.

4.4.2 Dynamical Properties

The spectral function A(k, ω) for single-particle fermionic excitations results after
analytic continuation of the fermion propagator G(k, ωn) from the Matsubara (ωn)
to the real (ω) frequency axis, via the relation A(k, ω)= − Im G R(k, ω)/π where
G R(k, ω) is the retarded fermion propagator. Through a related analytic continuation
of the fermionic self-energy �, A(k, ω) can be eventually cast in the form:

A(k, ω)= − 1

π

Im�(k, ω)
[ω − ξk − Re�(k, ω)]2 + [Im�(k, ω)]2 (4.43)

where again ξ(k)= k2/(2m)−μ. For any given wave vector k, the frequency struc-
ture of the real and imaginary parts of �(k, ω) thus determines the positions and
widths of the peaks in A(k, ω).

The archetype of a pairing-gap behavior for A(k, ω) is embodied in the two-peak
structure of the following expression (cf. Eq. 4.17):

A(k, ω)= u(k)2δ(ω − E(k))+ v(k)2δ(ω + E(k)) (4.44)

where E(k)= √
ξ(k)2 +�2 and v(k)2 = 1 − u(k)2 = (1 − ξ(k)/E(k))/2, which

holds at the mean-field level in the broken-symmetry phase. When pairing fluctu-
ations beyond mean field are included [31], a two-peak structure still persists in
the normal phase above Tc, although with broad and asymmetric peaks replacing
the delta spikes of Eq. 4.44 while the total area remains unity. Even in this case, the
positions of the two peaks in the spectral function follow quite closely the BCS-like

dispersions ±
√
ξ(k)2 +�2

pg, provided the value �pg of the pseudogap is inserted

in the place of the BCS gap � of Eq. 4.44. An example of this behavior is shown in
Fig. 4.11 for weak coupling.
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Fig. 4.11 Peak positions of
the spectral function at Tc for
negative (lower branch) and
positive (upper branch)
energies versus the wave
vector when (kF aF )

−1 =
−0.72. The spectral function
is here obtained within the
t-matrix approach of [31].
Full lines represent a
BCS-like fit (adapted from
Fig. 15 of [31])
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A systematic study of the single-particle spectral function in the normal phase
across the BCS–BEC crossover was originally performed in Ref. [31] within the
t-matrix approach given by Eq. 4.4–4.6. Interest in this study was recently revived by
the advent of a novel experimental technique for ultracold Fermi gases [59], whereby
the wave vector of photo-excited atoms is resolved in radio-frequency spectra taken
at different couplings and temperatures. One should mention in this context the
comparison made in Ref. [38] between theoretical results obtained by the t-matrix
and G–G0 approaches, as well as the calculation performed in Ref. [39] within the
fully self-consistent t-matrix approach.

Similarly to what was done in Sect. 4.4.1 for thermodynamic properties, here we
compare the results for A(k, ω) obtained alternatively by the t-matrix, the Popov,
and the fully self-consistent (sc) t-matrix approaches (while referring to F. Palestini
et al. (unpublished) for a more complete analysis of this comparison). We then show
in Fig. 4.12 the results obtained for A(k, ω) at unitarity and k = kF by the three
approaches, at the respective values of the critical temperature. (Analytic continua-
tion from Matsubara to real frequencies has been performed in panel (a) by the direct
substitution iωn → ω + iη, in panel (b) by the Padé approximants, and in panel (c)
by the maximum-entropy method.) Note how the two-peak structure that is evident in
panel (a) remains noticeable in panel (b), but has essentially disappeared in panel (c).
This is consistent with a general understanding [60] that non-self-consistent calcu-
lations favor pseudogap behavior while self-consistent calculations tend to suppress
it. As the other side of the medal, one would tend to attribute [39] to self-consistent
calculations a more precise description of thermodynamic properties with respect to
non-self-consistent approaches.

In this respect, it should be noticed that the Popov approach, while improving
considerably on the thermodynamic description with respect to the t-matrix approach
as discussed in Sect. 4.4.1, preserves also an evident pseudogap behavior in the single-
particle spectral function. This is made evident in Fig. 4.13, where the dispersion of
the two peaks of A(k, ω) is reported at unitarity and T = Tc for the t-matrix, the
Popov, and the sc t-matrix approaches. (Close to kF , where the two peaks in A(k, ω)
are broad and overlap each other, the position of the less intense peak was determined
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Fig. 4.12 Single-particle
spectral function at unitarity
when T = Tc and k = kF , as
obtained by: a the t-matrix
approach of Ref. [31], b the
Popov approach of
F. Palestini et al.,
(unpublished) c the sc
t-matrix approach of
Ref. [39]. (The plot of panel
c has been extracted from
Fig. 4 of Ref. [39])

(b)

(a)

(c)

by subtracting from A(k, ω) the profile of the most intense peak.) The value of the
pseudogap, identified by (half) the minimum energy separation between the upper
and lower branches, remains essentially unmodified when adding the Popov on top
of t-matrix fluctuations, but it closes up when full self-consistency is included.

Stringent comparison with both experimental data and QMC calculations will
eventually decide what version of pairing-fluctuation theories is able to provide
the closest agreement for thermodynamic as well as for dynamical quantities, in
systems like ultracold Fermi gases where only the mutual attractive interaction can
be responsible for their physical behavior.
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Fig. 4.13 Dispersion of the
two peaks of the spectral
function at unitarity and
T = Tc obtained by the
t-matrix approach (empty
squares), the Popov
approach (full dots), and the
sc t-matrix approach (stars).
(Stars have been extracted
from the curves in Fig. 4 of
Ref. [39])
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4.5 Concluding Remarks

A gas of ultracold Fermi atoms, whose mutual interaction is governed by a (broad)
Fano-Feshbach resonance, represents a physical system of fermions containing only
pairing degrees of freedom. This feature naturally conveys their theoretical descrip-
tion in terms of “pairing fluctuations” of several kinds in the particle–particle channel,
which extend characteristic two-body processes to a finite-density situation. The diffi-
culty here is that, at finite density, the relevant processes of the pairing type can be
unambiguously identified only in the weak-coupling (BCS) regime where a fermion
description is appropriate and in the strong-coupling (BEC) regime where a descrip-
tion in terms of composite bosons holds, because in both regimes the presence of
the small parameter kF |aF | guides the selection of the diagrammatic contributions
for dilute systems. In additions, in these regimes useful analytic approximations
can be quite generally derived from these diagrammatic contributions, which help
considerably one’s physical intuition in picturing the involved processes. This kind
of physical intuition is hard to emerge from more numerically oriented approaches
(like QMC calculations) or more abstract approaches (like the renormalization group
methods [61]), thus making diagrammatic approaches to the BCS–BEC crossover
more appealing in this respect. In principle, diagrammatic approaches may not be
controlled in the unitary region, which is intermediate between the BCS and BEC
regimes and where the diluteness condition does not apply owing to the divergence
of |aF |. Nevertheless, the good control of the approximations which can be achieved
separately in the BCS and BEC regimes and the limited extension of the unitary
region (−1 � (kF aF )

−1 � +1) enable one to formulate a single fermionic theory
that bridges across the BCS and BEC regimes and is able to furnish a good descrip-
tion of the unitary region for most practical purposes. This is the spirit with which
diagrammatic pairing-fluctuation approaches to the BCS–BEC crossover have been
formulated and applied to a variety of problems, both in the normal and superfluid
phases.
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It is finally relevant to mention that the interest in the physics brought about by
consideration of pairing fluctuations is not limited to a system of ultracold Fermi
atoms. In particular, the issue of the possible occurrence of a pseudogap in single-
particle excitations is of considerable interest both in condensed matter [62] and
nuclear physics [63]. This gives to ultracold Fermi gases the role of prototype systems,
in which issues of general interest can be conveniently addressed by exploiting the
unprecedented flexibility that they provide in the control of their physical parameters.

Acknowledgments The author is indebted to F. Palestini for a critical reading of the manuscript.
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Chapter 5
The Unitary Gas and its Symmetry Properties

Yvan Castin and Félix Werner

Abstract The physics of atomic quantum gases is currently taking advantage of a
powerful tool, the possibility to fully adjust the interaction strength between atoms
using a magnetically controlled Feshbach resonance. For fermions with two internal
states, formally two opposite spin states ↑ and ↓, this allows to prepare long lived
strongly interacting three-dimensional gases and to study the BEC–BCS crossover.
Of particular interest along the BEC–BCS crossover is the so-called unitary gas,
where the atomic interaction potential between the opposite spin states has virtually
an infinite scattering length and a zero range. This unitary gas is the main subject
of the present chapter: it has fascinating symmetry properties, from a simple scaling
invariance, to a more subtle dynamical symmetry in an isotropic harmonic trap,
which is linked to a separability of the N-body problem in hyperspherical coordinates.
Other analytical results, valid over the whole BEC–BCS crossover, are presented,
establishing a connection between three recently measured quantities, the tail of the
momentum distribution, the short range part of the pair distribution function and
the mean number of closed channel molecules. The chapter is organized as follows.
In Sect. 5.1, we introduce useful concepts, and we present a simple definition and
basic properties of the unitary gas, related to its scale invariance. In Sect. 5.2, we
describe various models that may be used to describe the BEC–BCS crossover, and
in particular the unitary gas, each model having its own advantage and shedding some
particular light on the unitary gas properties: scale invariance and a virial theorem
hold within the zero-range model, relations between the derivative of the energy with
respect to the inverse scattering length and the short range pair correlations or the
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tail of the momentum distribution are easily derived using the lattice model, and
the same derivative is immediately related to the number of molecules in the closed
channel (recently measured at Rice) using the two-channel model. In Sect. 5.3, we
describe the dynamical symmetry properties of the unitary gas in a harmonic trap,
and we extract their physical consequences for many-body and few-body problems.

5.1 Simple Facts About the Unitary Gas

5.1.1 What is the Unitary Gas?

First, the unitary gas is . . . a gas. As opposed to a liquid, it is a dilute system with
respect to the interaction range b: its mean number density ρ satisfies the constraint

ρb3� 1. (5.1)

For a rapidly decreasing interaction potential V(r), b is the spatial width of V(r). In
atomic physics, where V(r) may be viewed as a strongly repulsive core and a Van der
Waals attractive tail −C6/r6, one usually assimilates b to the Van der Waals length
(mC6/�

2)1/4.

The intuitive picture of a gas is that the particles mainly experience binary
scattering, the probability that more than two particles are within a volume b3 being
negligible. As a consequence, what should really matter is the knowledge of the
scattering amplitude fk of two particles, where k is the relative momentum, rather
than the r dependence of the interaction potential V(r). This expectation has guided
essentially all many-body works on the BEC–BCS crossover: One uses convenient
models for V(r) that are very different from the true atomic interaction potential, but
that reproduce correctly the momentum dependence of fk at the relevant low values
of k, such as the Fermi momentum or the inverse thermal de Broglie wavelength,
these relevant low values of k having to satisfy kb� 1 for this modelization to be
acceptable.

Second, the unitary gas is such that, for the relevant values of the relative momen-
tum k, the modulus of fk reaches the maximal value allowed by quantum mechan-
ics, the so-called unitary limit [1]. Here, we consider s-wave scattering between
two opposite-spin fermions, so that fk depends only on the modulus of the relative
momentum. The optical theorem, a consequence of the unitarity of the quantum
evolution operator [1], then implies

Im fk = k| fk |2. (5.2)

Dividing by | fk |2, and using fk/| fk |2 = 1/ f ∗k , one sees that this fixes the value of
the imaginary part of 1/ fk, so that it is strictly equivalent to the requirement that
there exists a real function u(k) such that
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fk = − 1

ik + u(k)
(5.3)

for all values of k. We then obtain the upper bound | fk | ≤ 1/k. Ideally, the unitary
gas saturates this inequality for all values of k:

f unitary
k = − 1

ik
. (5.4)

In reality, Eq. 5.4 cannot hold for all k. It is thus important to understand over
which range of k Eq. 5.4 should hold to have a unitary gas, and to estimate the
deviations from Eq. 5.4 in that range in a real experiment. To this end, we use the
usual low-k expansion of the denominator of the scattering amplitude [1], under
validity conditions specified in [2]:

u(k) = 1

a
− 1

2
rek2 + . . . (5.5)

The length a is the scattering length, the length re is the effective range of the
interaction. Both a and re can be of arbitrary sign. Even for 1/a = 0, even for an
everywhere non-positive interaction potential, re can be of arbitrary sign. As this last
property seems to contradict a statement in the solution of problem 1 in Sect. 131 of
[3], we have constructed an explicit example depicted in Fig. 5.1, which even shows
that the effective range may be very different in absolute value from the true potential
range b, i.e. re/b for a−1 = 0 may be in principle an arbitrarily large and negative
number. Let us assume that the . . . in Eq. 5.5 are negligible if kb� 1, an assumption
that will be revisited in Sect. 5.2.3.3. Noting ktyp a typical relative momentum in the
gas, we thus see that the unitary gas is in practice obtained as a double limit, a zero
range limit

ktypb� 1, ktyp|re|� 1 (5.6)

and an infinite scattering length limit:

ktyp|a| � 1. (5.7)

At zero temperature, we assume that ktyp = kF , where the Fermi momentum is
conventionally defined in terms of the gas total density ρ as for the ideal spin-1/2
Fermi gas:

kF = (3π2ρ)1/3. (5.8)

In a trap, ρ and thus kF are position dependent. Condition (5.7) is well satisfied
experimentally, thanks to the Feshbach resonance. The condition kF b� 1 is also
well satisfied at the per cent level, because b ≈ the Van der Waals length is in the
nanometer range. Up to now, there is no experimental tuning of the effective range
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Fig. 5.1 A class of non-positive potentials (of compact support of radius b) that may lead to a
negative effective range in the resonant case a−1 = 0. The resonant case is achieved when the three
parameters α, β and ε satisfy tan[(1−ε)α] tan(εβ) = α/β. Then from Smorodinskii’s formula, see
Problem 1 in Sect. 131 of [3], one sees that re/b≤ 2. One also finds that re/b ∼ − cos2 θ/(πε)2 →
−∞ when ε→ 0 with α = π, βε→ θ, where θ = 2.798386 . . . solves 1+ θ tan θ = 0

re, and there are cases where kF |re| is not small. However, to study the BEC–BCS
crossover, one uses in practice the so-called broad Feshbach resonances, which do
not require a too stringent control of the spatial homogeneity of the magnetic field,
and where |re| ∼ b; then Eq. 5.6 is also satisfied.

We note that the assumption ktyp = kF , although quite intuitive, is not auto-
matically correct. For example, for bosons, as shown by Efimov [4], an effective
three-body attraction takes place, leading to the occurrence of the Efimov trimers;
this attraction leads to the so-called problem of fall to the center [3], and one has
1/ktyp of the order of the largest of the two ranges b and |re|. Eq. 5.6 is then violated,
and an extra length scale, the three-body parameter, has to be introduced, breaking
the scale invariance of the unitary gas. Fortunately, for three fermions, there is no
Efimov attraction, except for the case of different masses for the two spin compo-
nents: if two fermions of mass m↑ interact with a lighter particle of mass m↓, the
Efimov effect takes place for m↑/m↓ larger than � 13.607 [5, 6]. If a third fermion
of mass m↑ is added, a four-body Efimov effect appears at a slightly lower mass ratio
m↑/m↓ � 13.384 [7]. In what follows we consider the case of equal masses, unless
specified otherwise.

At non-zero temperature T > 0, another length scale appears in the unitary gas
properties, the thermal de Broglie wavelength λdB, defined as

λ2
dB =

2π�
2

mkB T
. (5.9)

At temperatures larger than the Fermi temperature TF = �
2k2

F/(2mkB), one has to
take ktyp∼ 1/λdB in the conditions Eq. 5.7. In practice, the most interesting regime
is however the degenerate regime T < TF ,where the non-zero temperature does not
bring new conditions for unitarity.
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5.1.2 Some Simple Properties of the Unitary Gas

As is apparent in the expression of the two-body scattering amplitude Eq. 5.4, there
is no parameter or length scales issuing from the interaction. As a consequence, for a
gas in the trapping potential U (r), the eigenenergies Ei of the N-body problem only
depend on �

2/m and on the spatial dependence of U (r): the length scale required to
get an energy out of �

2/m is obtained from the shape of the container.
This is best formalized in terms of a spatial scale invariance. Qualitatively, if one

changes the volume of the container, even if the gas becomes arbitrarily dilute, it
remains at unitarity and strongly interacting. This is of course not true for a finite
value of the scattering length a: If one reduces the gas density, ρ1/3a drops eventually
to small values, and the gas becomes weakly interacting.

Quantitatively, if one applies to the container a similarity factor λ in all directions,
which changes its volume from V to λ3V , we expect that each eigenenergy scales as

Ei → Ei

λ2 (5.10)

and each eigenwavefunction scales as

ψi (X)→ ψi (X/λ)
λ3N/2 . (5.11)

Here X = (r1, . . . , rN ) is the set of all coordinates of the particles, and the λ-
dependent factor ensures that the wavefunction remains normalized. The properties
(5.10, 5.11), which are at the heart of what the unitary gas really is, will be put on
mathematical grounds in Sect. 5.2 by replacing the interaction with contact conditions
on ψ. Simple consequences may be obtained from these scaling properties, as we
now discuss.

In a harmonic isotropic trap, where a single particle has an oscillation angu-
lar frequency ω, taking as the scaling factor the harmonic oscillator length aho =
[�/(mω)]1/2, one finds that

Ei

�ω
= Fi (N ) (5.12)

where the functions Fi are universal functions, ideally independent of the fact that
one uses lithium 6 or potassium 40 atoms, and depending only on the particle number.

In free space, the unitary gas cannot have a N-body bound state (an eigenstate
of negative energy), whatever the value of N ≥ 2. If there was such a bound state,
which corresponds to a square integrable eigenwavefunction of the relative (Jacobi)
coordinates of the particles, one could generate a continuum of such square integrable
eigenstates using Eqs. 5.10, 5.11. This would violate a fundamental property of self-
adjoint Hamiltonians [8]. Another argument is that the energy of a discrete universal
bound state would depend only on � and m, which is impossible by dimensional
analysis.



132 Y. Castin and F. Werner

At thermal equilibrium in the canonical ensemble in a box, say a cubic box of
volume V = L3 with periodic boundary conditions, several relations may be obtained
if one takes the thermodynamic limit N →+∞, L3 →+∞ with a fixed density ρ
and temperature T, and if one assumes that the free energy F is an extensive quantity.
Let us consider for simplicity the case of equal population of the two spin states,
N↑ = N↓. Then, in the thermodynamic limit, the free energy per particle F/N ≡ f
is a function of the density ρ and temperature T. If one applies a similarity of factor
λ and if one change T to T/λ2 so as to keep a constant ratio Ei/(kB T ), that is a
constant occupation probability for each eigenstate, one obtains from Eq. 5.10 that

f (ρ/λ3, T/λ2) = f (ρ, T )/λ2. (5.13)

At zero temperature, f reduces to the ground state energy per particle e0(ρ). From
Eq. 5.13 it appears that e0(ρ) scales as ρ2/3, exactly as the ground state energy of
the ideal Fermi gas. One thus simply has

e0(ρ) = ξeideal
0 (ρ) = 3ξ

5

�
2k2

F

2m
(5.14)

where kF is defined by Eq. 5.8 and ξ is a universal number. This is also a simple
consequence of dimensional analysis [9]. Taking the derivative with respect to N or
to the volume, this shows that the same type of relation holds for the zero temperature
chemical potential, μ0(ρ) = ξμideal

0 (ρ), and for the zero temperature total pressure,
P0(ρ) = ξ P ideal

0 (ρ), so that

μ0(ρ) = ξ
�

2k2
F

2m
(5.15)

P0(ρ) = 2ξ

5
ρ

�
2k2

F

2m
. (5.16)

At non-zero temperature, taking the derivative of Eq. 5.13 with respect to λ in
λ = 1, and using F = E − TS, where E is the mean energy and S = −∂T F is the
entropy, as well as μ = ∂N F, one obtains

5

3
E − μN = T S. (5.17)

From the Gibbs-Duhem relation, the grand potential = F−μN is equal to−PV ,
where P is the pressure of the gas. This gives finally the useful relation

PV = 2

3
E, (5.18)

that can also be obtained from dimensional analysis [9], and that of course also holds
at zero temperature (see above). All these properties actually also apply to the ideal
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Fermi gas, which is obviously scaling invariant. The relation (5.18) for example was
established for the ideal gas in [10].

Let us finally describe at a macroscopic level, i.e. in a hydrodynamic picture, the
effect of the similarity Eq. 5.11 on the quantum state of a unitary gas, assuming that
it was initially at thermal equilibrium in a trap. In the initial state of the gas, consider
a small (but still macroscopic) element, enclosed in a volume dV around point r. It is
convenient to assume that dV is a fictitious cavity with periodic boundary conditions.
In the hydrodynamic picture, this small element is assumed to be at local thermal
equilibrium with a temperature T. Then one performs the spatial scaling transform
Eq. 5.10 on each many-body eigenstate ψ of the thermal statistical mixture, which
does not change the statistical weigths. How will the relevant physical quantities be
transformed in the hydrodynamic approach?

The previously considered small element is now at position λr, and occupies a
volume λ3dV, with the same number of particles. The hydrodynamic mean density
profile after rescaling, ρλ, is thus related to the mean density profile ρ before scaling
as

ρλ(λr) = ρ(r)/λ3. (5.19)

Second, is the small element still at (local) thermal equilibrium after scaling? Each
eigenstate of energy Eloc of the locally homogeneous unitary gas within the initial
cavity of volume dV is transformed by the scaling into an eigenstate within the cavity
of volume λ3dV, with the eigenenergy Eloc/λ

2. Since the occupation probabilities
of each local eigenstate are not changed, the local statistical mixture remains thermal
provided that one rescales the temperature as

Tλ = T/λ2. (5.20)

A direct consequence is that the entropy of the small element of the gas is unchanged
by the scaling, so that the local entropy per particle s in the hydrodynamic approach
obeys

sλ(λr) = s(r). (5.21)

Also, since the mean energy of the small element is reduced by the factor λ2 due to
the scaling, and the volume of the small element is multiplied by λ3, the equilibrium
relation Eq. 5.18 imposes that the local pressure is transformed by the scaling as

pλ(λr) = p(r)/λ5. (5.22)

5.1.3 Application: Inequalities on ξ and Finite-Temperature
Quantities

Using the previous constraints imposed by scale invariance of the unitary gas on
thermodynamic quantities, in addition to standard thermodynamic inequalities, we
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show that one can produce constraints involving both the zero-temperature quantity
ξ and finite-temperature quantities of the gas.

Imagine that, at some temperature T, the energy E and the chemical potentialμ of
the non-polarized unitary Fermi gas have been obtained, in the thermodynamic limit.
If one introduces the Fermi momentum Eq. 5.8 and the corresponding Fermi energy
EF = �

2k2
F/(2m), this means that on has at hand the two dimensionless quantities

A ≡ E

N EF
(5.23)

B ≡ μ

EF
. (5.24)

As a consequence of Eq. 5.18, one also has access to the pressure P. We now show
that the following inequalities hold at any temperature T:

(
3

5A

)2/3

B5/3≤ ξ ≤ 5A

3
. (5.25)

In the canonical ensemble, the mean energy E(N,T,V) is an increasing function
of temperature for fixed volume V and atom number N. Indeed one has the well-
known relation kB T 2∂T E(N , T, V ) = VarH, and the variance of the Hamiltonian
is non-negative. As a consequence, for any temperature T:

E(N , T, V ) ≥ E(N , 0, V ). (5.26)

From Eq. 5.14 we then reach the upper bound on ξ given in Eq. 5.25.
In the grand canonical ensemble, the pressure P(μ, T ) is an increasing function

of temperature for a fixed chemical potential. This results from the Gibbs-Duhem
relation(μ, T, V ) = −V P(μ, T )where is the grand potential and V the volume,
and from the differential relation ∂T(μ, T ) = −S where S≥ 0 is the entropy.
As a consequence, for any temperature T:

P(μ, T )≥ P(μ, 0). (5.27)

For the unitary gas, the left hand side can be expressed in terms of A using (5.18).
Eliminating the density between Eq. 5.15 and 5.16 we obtain the zero temperature
pressure

P(μ, 0) = 1

15π2ξ3/2

�
2

m

(
2mμ

�2

)5/2

. (5.28)

This leads to the lower bound on ξ given in Eq. 5.25.
Let us apply Eq. 5.25 to the Quantum Monte Carlo results of [11]: at the critical

temperature T = Tc, A = 0.310(10) and B = 0.493(14), so that
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Fig. 5.2 For the spin balanced uniform unitary gas at thermal equilibrium: assuming ξ = 0.41 in
Eq. 5.25 defines a zone (shaded in gray) in the plane energy–chemical potential that is forbidden
at all temperatures. The black disks correspond to the unbiased Quantum Monte Carlo results of
Burovski et al. [11], of Bulgac et al. [13], and of Goulko et al. [14] at the critical temperature. Taking
the unknown exact value of ξ, which is below the fixed node upper bound 0.41 [12], will shift the
forbidden zone boundaries as indicated by the arrows

0.48(3)≤ ξ[11] ≤ 0.52(2). (5.29)

This deviates by two standard deviations from the fixed node result ξ ≤ 0.40(1) [12].
The Quantum Monte Carlo results of [13], if one takes a temperature equal to the criti-
cal temperature of [11], give A = 0.45(1) and B = 0.43(1); these values, in clear dis-
agreement with [11], lead to the non-restrictive bracketing 0.30(2)≤ ξ[13] ≤ 0.75(2).
The more recent work [14] finds kB Tc/EF = 0.171(5) and at this critical tempera-
ture, A = 0.276(14) and B = 0.429(9), leading to

0.41(3)≤ ξ[14] ≤ 0.46(2). (5.30)

Another, more graphical application of our simple bounds is to assume some
reasonable value of ξ, and then to use Eq. 5.25 to construct a zone in the energy-
chemical potential plane that is forbidden at all temperatures. In Fig. 5.2 , we took
ξ = 0.41, inspired by the fixed node upper bound on the exact value of ξ [12]:
the shaded area is the resulting forbidden zone, and the filled disks with error bars
represent the in principle exact Quantum Monte Carlo results of various groups at
T = Tc. It is apparent that the prediction of [11] lies well within the forbidden zone
and thus violates thermodynamic inequalities. The prediction of [13] is well within
the allowed zone, whereas the most recent prediction of [14] is close to the boundary
between the forbidden and the allowed zones. If one takes a smaller value for ξ, the
boundaries of the forbidden zone will shift as indicated by the arrows on the figure.
All this shows that simple reasonings may be useful to test and guide numerical
studies of the unitary gas.
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5.1.4 Is the Unitary Gas Attractive or Repulsive?

According to a common saying, a weakly interacting Fermi gas (kF |a|� 1) experi-
ences an effective repulsion for a positive scattering length a > 0, and an effective
attraction for a negative scattering length a < 0. Another common fact is that, in the
unitary limit |a| → +∞, the gas properties do not depend on the sign of a. As the
unitary limit may be apparently equivalently obtained by taking the limit a →+∞
or the limit a → −∞, one reaches a paradox, considering the fact that the unitary
gas does not have the same ground state energy than the ideal gas and cannot be at
the same time an attractive and repulsive state of matter.

This paradox may be resolved by considering the case of two particles in an
isotropic harmonic trap. After elimination of the center of mass motion, and restric-
tion to a zero relative angular momentum to have s-wave interaction, one obtains the
radial Schrödinger equation

− �
2

2μ

[
ψ ′′(r)+ 2

r
ψ ′(r)

]
+ 1

2
μω2r2ψ(r) = Erelψ(r), (5.31)

with the relative mass μ = m/2. The interactions are included in the zero range
limit by the r = 0 boundary conditions, the so-called Wigner-Bethe-Peierls contact
conditions described in Sect. 5.2:

ψ(r) = A[r−1 − a−1] + O(r) (5.32)

that correctly reproduce the free space scattering amplitude

f zero range
k = − 1

a−1 + ik
. (5.33)

The general solution of Eq. 5.31 may be expressed in terms of Whittaker M et W
functions. For an energy Erel not belonging to the non-interacting spectrum {( 3

2 +
2n)�ω, n ∈ N}, the Whittaker function M diverges exponentially for large r and has
to be disregarded. The small r behavior of the Whittaker function W, together with
the Wigner-Bethe-Peierls contact condition, leads to the implicit equation for the
relative energy, in accordance with [15]:

�
(

3
4 − Erel

2�ω

)

�
(

1
4 − Erel

2�ω

) = arel
ho

2a
(5.34)

with the harmonic oscillator length of the relative motion, arel
ho = [�/(μω)]1/2.

The function �(x) is different from zero ∀x ∈ R and diverges on each non-
positive integers. Thus Eq. 5.34 immediately leads in the unitary case to the spectrum
Erel ∈ {(2n + 1/2)�ω, n ∈ N}. This can be readily obtained by setting in Eq. 5.31
ψ(r) = f (r)/r, so that f obeys Schrödinger’s equation for a 1D harmonic oscillator,
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Fig. 5.3 For the graphical solution of Eq. 5.34, which gives the spectrum for two particles in a
three-dimensional isotropic harmonic trap, plot of the function f3D(x) = �( 3

4 − x
2 )/�(
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2 ),
where x stands for Erel/(�ω)

with the constraint issuing from Eq. 5.32 that f (r = 0) �= 0, which selects the even
1D states.

The graphical solution of Eq. 5.34, see Fig. 5.3 , allows to resolve the para-
dox about the attractive or repulsive nature of the unitary gas. For example start-
ing with the ground state wavefunction of the ideal gas case, of relative energy
Erel = 3

2 �ω, it appears that the two adiabatic followings (i) a = 0+→ a = +∞
and (ii) a = 0−→ −∞ lead to different final eigenstates of the unitary case, to an
excited state Erel = 5

2 �ω for the procedure (i), and to the ground state Erel = 1
2 �ω

for procedure (ii).
The same explanation holds for the many-body case: the interacting gas has indeed

several energy branches in the BEC–BCS crossover, as suggested by the toy model1

of [16], see Fig. 5.4. Starting from the weakly attractive Fermi gas and ramping the
scattering length down to −∞ one explores a part of the ground energy branch,
where the unitary gas is attractive; this ground branch continuously evolves into a
weakly repulsive condensate of dimers [17] if 1/a further moves from 0− to 0+ and
then to+∞.The attractive nature of the unitary gas on the ground energy branch will
become apparent in the lattice model of Sect. 5.2. On the other hand, starting from
the weakly repulsive Fermi gas and ramping the scattering up to +∞, one explores
an effectively repulsive excited branch.

In the first experiments on the BEC–BCS crossover, the ground branch was
explored by adiabatic variations of the scattering length and was found to be sta-
ble. The first excited energy branch was also investigated in the early work [18],
and more recently in [19] looking for a Stoner demixing instability of the strongly
repulsive two-component Fermi gas. A difficulty for the study of this excited branch

1 This toy model replaces the many-body problem with the one of a matterwave interacting with a
single scatterer in a hard wall cavity of radius ∝ 1/kF .
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Fig. 5.4 In the toy model
of [16], for the homogeneous
two-component unpolarized
Fermi gas, energy per
particle on the ground branch
and the first excited branch
as a function of the inverse
scattering length. The Fermi
wavevector is defined in
Eq. 5.8, EF = �

2k2
F/(2m) is

the Fermi energy, and a is
the scattering length

-10 -5 0 5 10

-1/k
F
a

-2

-1

0

1

2

E
/N

 [
E

F]

is its metastable character: Three-body collisions gradually transfer the gas to the
ground branch, leading e.g. to the formation of dimers if 0 < kF a � 1.

5.1.5 Other Partial Waves, Other Dimensions

We have previously considered the two-body scattering amplitude in the s-wave
channel. What happens for example in the p-wave channel? This channel is relevant
for the interaction between fermions in the same internal state, where a Feshbach
resonance technique is also available [20, 21]. Can one also reach the unitarity limit
Eq. 5.4 in the p-wave channel?

Actually the optical theorem shows that relation Eq. 5.3 also holds for the p-wave
scattering amplitude fk .What differs is the low-k expansion of u(k), that is now given
by

u(k) = 1

k2Vs
+ α + . . . , (5.35)

where Vs is the scattering volume (of arbitrary sign) and α has the dimension of the
inverse of a length. The unitary limit would require u(k) negligible as compared to
k. One can in principle tune Vs to infinity with a Feshbach resonance. Can one then
have a small value of α at resonance? A theorem for a compact support interaction
potential of radius b shows however that [22, 23]

lim
|Vs |→+∞

α≥ 1/b. (5.36)

A similar conclusion holds using two-channel models of the Feshbach resonance
[23, 24]. α thus assumes a huge positive value on resonance, which breaks the scale
invariance and precludes the existence of a p-wave unitary gas. This does not prevent
however to reach the unitary limit in the vicinity of a particular value of k. For Vs
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large and negative, neglecting the . . . in Eq. 5.35 under the condition kb� 1, one
indeed has |u(k)|� k, so that fk � − 1/(ik), in a vicinity of

k0 = 1

(α|Vs |)1/2 . (5.37)

Turning back to the interaction in the s-wave channel, an interesting question is
whether the unitary gas exists in reduced dimensions.

In a one-dimensional system the zero range interaction may be modeled by a
Dirac potential V (x) = gδ(x). If g is finite, it introduces a length scale �

2/(mg)
that breaks the scaling invariance. Two cases are thus scaling invariant, the ideal
gas g = 0 and the impenetrable case 1/g = 0. The impenetrable case however
is mappable to an ideal gas in one dimension, it has in particular the same energy
spectrum and thermodynamic properties [25].

In a two-dimensional system, the scattering amplitude for a zero range interaction
potential is given by [26]

f 2D
k = 1

γ + ln(ka2D/2)− iπ/2
(5.38)

where γ = 0.57721566 . . . is Euler’s constant and a2D is the scattering length. For
a finite value of a2D, there is no scale invariance. The case a2D → 0 corresponds to
the ideal gas limit. At first sight, the opposite limit a2D →+∞ is a good candidate
for a two-dimensional unitary gas; however this limit also corresponds to an ideal
gas. This appears in the 2D version of the lattice model of Sect. 5.2 [27]. This can also
be checked for two particles in an isotropic harmonic trap. Separating out the center
of mass motion, and taking a zero angular momentum state for the relative motion,
to have interaction in the s-wave channel, one has to solve the radial Schrödinger
equation:

− �
2

2μ

[
ψ ′′(r)+ 1

r
ψ ′(r)

]
+ 1

2
μω2r2ψ(r) = Erelψ(r) (5.39)

where μ = m/2 is the reduced mass of the two particles, Erel is an eigenenergy of
the relative motion, and ω is the single particle angular oscillation frequency. The
interactions are included by the boundary condition in r = 0:

ψ(r) = A ln(r/a2D)+ O(r), (5.40)

which is constructed to reproduce the expression of the scattering amplitude Eq. 5.38
for the free space problem.

The general solution of Eq. 5.39 may be expressed in terms of Whittaker functions
M and W. Assuming that Erel does not belong to the ideal gas spectrum {(2n + 1)
�ω, n ∈ N}, one finds that the M solution has to be disregarded because it diverges
exponentially for r →+∞. From the small r behavior of the W solution, one obtains
the implicit equation
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Fig. 5.5 For the graphical
solution of Eq. 5.41, which
gives the spectrum for two
interacting particles in a
two-dimensional isotropic
harmonic trap, plot
of the function f2D(x) =
1
2ψ[(1− x)/2] + γ where x
stands for Erel/(�ω) and the
special function ψ is the
logarithmic derivative of the
� function
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+ γ = − ln(a2D/a

rel
ho ) (5.41)

where the relative harmonic oscillator length is arel
ho = [�/(μω)]1/2 and the digamma

function ψ is the logarithmic derivative of the � function. If a2D →+∞, one then
finds that Erel tends to the ideal gas spectrum {(2n + 1)�ω, n ∈ N} from below, see
Fig. 5.5, in agreement with the lattice model result that the 2D gas with a large and
finite a2D is a weakly attractive gas.

5.2 Various Models and General Relations

There are basically two approaches to model the interaction between particles for
the unitary gas (and more generally for the BEC–BCS crossover).

In the first approach, see Sect. 5.2.1 and Sect. 5.2.3, one takes a model with a
finite range b and a fixed (e.g. infinite) scattering length a. This model may be in
continuous space or on a lattice, with one or several channels. Then one tries to
calculate the eigenenergies, the thermodynamic properties from the thermal density
operator ∝ exp(−βH), etc, and the zero range limit b → 0 should be taken at
the end of the calculation. Typically, this approach is followed in numerical many-
body methods, such as the approximate fixed node Monte Carlo method [12, 28, 29]
or unbiased Quantum Monte Carlo methods [11, 13, 30]. A non-trivial question
however is whether each eigenstate of the model is universal in the zero range limit,
that is if the eigenenergy Ei and the corresponding wavefunction ψi converge for
b → 0. In short, the challenge is to prove that the ground state energy of the system
does not tend to −∞ when b → 0.

In the second approach, see Sect. 5.2.2 , one directly considers the zero range
limit, and one replaces the interaction by the so-called Wigner-Bethe-Peierls con-
tact conditions on the N-body wavefunction. This constitutes what we shall call the
zero-range model. The advantage is that only the scattering length appears in the
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problem, without unnecessary details on the interaction, which simplifies the prob-
lem and allows to obtain analytical results. For example the scale invariance of the
unitary gas becomes clear. A non-trivial question however is to know whether the
zero-range model leads to a self-adjoint Hamiltonian, with a spectrum then neces-
sarily bounded from below for the unitary gas (see Sect. 5.1.2), without having to
add extra boundary conditions. For N = 3 bosons, due to the Efimov effect, the
Wigner-Bethe-Peierls or zero-range model becomes self-adjoint only if one adds
an extra three-body contact condition, involving a so-called three-body parameter.
In an isotropic harmonic trap, at unitarity, there exists however a non-complete fam-
ily of bosonic universal states, independent from the three-body parameter and to
which the restriction of the Wigner-Bethe-Peierls model is hermitian [31, 32]. For
equal mass two-component fermions, it is hoped in the physics literature that the
zero-range model is self-adjoint for an arbitrary number of particles N. Surprisingly,
there exist works in mathematical physics predicting that this is not the case when
N is large enough [33, 34]; however the critical mass ratio for the appearance of
an Efimov effect in the unequal-mass 3 + 1 body problem given without proof in
[34] was not confirmed by the numerical study[7], and the variational ansatz used
in [33] to show that the energy is unbounded below does not have the proper fermionic
exchange symmetry. This mathematical problem thus remains open.

5.2.1 Lattice Models and General Relations

5.2.1.1 The Lattice Models

The model that we consider here assumes that the spatial positions are discretized
on a cubic lattice, of lattice constant that we call b as the interaction range. It is quite
appealing in its simplicity and generality. It naturally allows to consider a contact
interaction potential, opposite spin fermions interacting only when they are on the
same lattice site. Formally, this constitutes a separable potential for the interaction
(see Sect. 5.2.3 for a reminder), a feature known to simplify diagrammatic calcula-
tions [35]. Physically, it belongs to the same class as the Hubbard model, so that it
may truly be realized with ultracold atoms in optical lattices [36], and it allows to
recover the rich lattice physics of condensed matter physics and the corresponding
theoretical tools such as Quantum Monte Carlo methods [11, 30].

The spatial coordinates r of the particles are thus discretized on a cubic grid of
step b. As a consequence, the components of the wavevector of a particle have a
meaning modulo 2π/b only, since the plane wave function r→ exp(ik · r) defined
on the grid is not changed if a component of k is shifted by an integer multiple of
2π/b. We shall therefore restrict the wavevectors to the first Brillouin zone of the
lattice:

k ∈ D ≡
[
−π

b
,
π

b

]3
. (5.42)
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This shows that the lattice structure in real space automatically provides a cut-off
in momentum space. In the absence of interaction and of confining potential, eigen-
modes of the system are plane waves with a dispersion relation k → εk, supposed
to be an even and non-negative function of k. We assume that this dispersion relation
is independent of the spin state, which is a natural choice since the ↑ and ↓ particles
have the same mass. To recover the correct continuous space physics in the zero
lattice spacing limit b → 0, we further impose that it reproduces the free space
dispersion relation in that limit, so that

εk ∼ �
2k2

2m
for kb → 0. (5.43)

The interaction between opposite spin particles takes place when two particles are on
the same lattice site, as in the Hubbard model. In first quantized form, it is represented
by a discrete delta potential:

V = g0

b3 δr1,r2 . (5.44)

The factor 1/b3 is introduced because b−3δr,0 is equivalent to the Dirac distribution
δ(r) in the continuous space limit. To summarize, the lattice Hamiltonian in second
quantized form in the general trapped case is

H =
∑
σ=↑,↓

∫
D

d3k

(2π)3
εkc†

σ (k)cσ (k)+
∑
σ=↑,↓

∑
r

b3U (r)(ψ†
σψσ )(r)

+ g0

∑
r

b3(ψ
†
↑ψ

†
↓ψ↓ψ↑)(r).

(5.45)

The plane wave annihilation operators cσ (k) in spin state σ obey the usual continuous
space anticommutation relations {cσ (k), c†

σ ′(k
′)} = (2π)3δ(k − k′)δσσ ′ if k and

k′ are in the first Brillouin zone,2 and the field operators ψσ (r) obey the usual
discrete space anticommutation relations {ψσ (r), ψ†

σ ′(r
′)} = b−3δrr′δσσ ′ . In the

absence of trapping potential, in a cubic box with size L integer multiple of b, with
periodic boundary conditions, the integral in the kinetic energy term is replaced by
the sum

∑
k∈D εkc̃†

kσ c̃kσ where the annihilation operators then obey the discrete

anticommutation relations {c̃kσ , c̃†
k′σ ′ } = δkk′δσσ ′ for k,k′ ∈ D .

The coupling constant g0 is a function of the grid spacing b. It is adjusted to
reproduce the scattering length of the true interaction. The scattering amplitude of
two atoms on the lattice with vanishing total momentum, that is with incoming
particles of opposite spin and opposite momenta ±k0, reads

fk0 = − m

4π�2

[
g−1

0 −
∫
D

d3k

(2π)3
1

E + i0+ − 2εk

]−1

(5.46)

2 In the general case, δ(k − k′) has to be replaced with
∑

K δ(k − k′ −K) where K ∈ (2π/b)Z3

is any vector in the reciprocal lattice.
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as derived in details in [37] for a quadratic dispersion relation and in [38] for a general
dispersion relation. Here the scattering state energy E = 2εk0 actually introduces a
dependence of the scattering amplitude on the direction of k0 when the dispersion
relation εk is not parabolic. If one is only interested in the expansion of 1/ fk0 up to
second order in k0, e.g. for an effective range calculation, one may conveniently use
the isotropic approximation E = �

2k2
0/m thanks to (5.43). Adjusting g0 to recover

the correct scattering length gives from Eq. 5.46 for k0 → 0 :
1

g0
= 1

g
−

∫
D

d3k

(2π)3
1

2εk
, (5.47)

with g = 4π�
2a/m. The above formula Eq. 5.47 is reminiscent of the technique of

renormalization of the coupling constant [39, 40]. A natural case to consider is the
one of the usual parabolic dispersion relation,

εk = �
2k2

2m
. (5.48)

A more explicit form of Eq. 5.47 is then [41, 42]:

g0 = 4π�
2a/m

1− K a/b
(5.49)

with a numerical constant given by

K = 12

π

∫ π/4

0
dθ ln(1+ 1/ cos2 θ) = 2.442 749 607 806 335 . . . , (5.50)

and that may be expressed analytically in terms of the dilog special function.

5.2.1.2 Simple Variational Upper Bounds

The relation Eq. 5.49 is quite instructive in the zero range limit b → 0, for fixed non-
zero scattering length a and atom numbers Nσ : In this limit, the lattice filling factor
tends to zero, and the lattice model is expected to converge to the continuous space
zero-range model, that is to the Wigner-Bethe-Peierls model described in Sect. 5.2.2.
For each of the eigenenergies this means that

lim
b→0

Ei (b) = Ei , (5.51)

where in the right hand side the set of Ei ’s are the energy spectrum of the zero range
model. On the other hand, for a small enough value of b, the denominator in the right-
hand side of Eq. 5.49 is dominated by the term−K a/b, the lattice coupling constant
g0 is clearly negative, and the lattice model is attractive, as already pointed out in
[43]. By the usual variational argument, this shows that the ground state energy of
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the zero range interacting gas is below the one of the ideal gas, for the same trapping
potential and atom numbers Nσ :

E0≤ E ideal
0 . (5.52)

Similarly, at thermal equilibrium in the canonical ensemble, the free energy of the
interacting gas is below the one of the ideal gas:

F ≤ F ideal. (5.53)

As in [44] one indeed introduces the free-energy functional of the (here lattice model)
interacting gas, F [ρ̂] = Tr[H ρ̂] + kB T Tr[ρ̂ ln ρ̂], where ρ̂ is any unit trace system
density operator. Then

F [ρ̂ideal
th ] = F ideal(b)+ Tr[ρ̂ideal

th V ], (5.54)

where ρ̂ideal
th is the thermal equilibrium density operator of the ideal gas in the lattice

model, and V is the interaction contribution to the N-body Hamiltonian. Since the
minimal value of F [ρ̂] over ρ̂ is equal to the interacting gas lattice model free
energy F(b), the left hand side of Eq. 5.5 is larger than F(b). Since the operator V
is negative for small b, because g0 < 0, the right hand side of Eq. 5.53 is smaller
than F ideal(b). Finally taking the limit b → 0, one obtains the desired inequality.
The same reasoning can be performed in the grand canonical ensemble, showing that
the interacting gas grand potential is below the one of the ideal gas, for the same
temperature and chemical potentials μσ :

≤ideal. (5.55)

In [45], for the unpolarized unitary gas, this last inequality was checked to be obeyed
by the experimental results, but it was shown, surprisingly, to be violated by some
of the Quantum Monte Carlo results of [11]. For the particular case of the spatially
homogeneous unitary gas, the above reasonings imply that ξ ≤ 1 in Eq. 5.14, so that
the unitary gas is attractive (in the ground branch, see Sect. 5.1.4). Using the BCS
variational ansatz in the lattice model3 [46] one obtains the more stringent upper
bound [40]:

ξ ≤ ξBCS = 0.5906 . . . (5.56)

5.2.1.3 Finite-Range Corrections

For the parabolic dispersion relation, the expectation Eq. 5.51 was checked analyti-
cally for two opposite spin particles: for b → 0, in free space the scattering amplitude

3 One may check, e.g. in the sector N↑ = N↓ = 2, that the BCS variational wavefunction, which is
a condensate of pairs in some pair wavefunction, does not obey the Wigner-Bethe-Peierls boundary
conditions even if the pair wavefunction does, so it looses its variational character in the zero-range
model.
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Fig. 5.6 Diamonds: the first
low eigenenergies for three
(↑↑↓) fermions in a cubic
box with a lattice model, as
functions of the lattice
constant b [42]. The box size
is L, with periodic boundary
conditions, the scattering
length is infinite, the
dispersion relation is
parabolic Eq. 5.48. The unit
of energy is
E0 = (2π�)2/2mL2.

Straight lines: Linear fits
performed on the data over
the range b/L ≤ 1/15,
except for the energy branch
E � 2.89E0 which is linear
on a smaller range. Stars in
b = 0 : Eigenenergies
predicted by the zero-range
model
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(5.46), and in a box the lattice energy spectrum, converge to the predictions of the
zero-range model [42]. It was also checked numerically for N = 3 particles in a box,
with two ↑ particles and one ↓ particle: as shown in Fig. 5.6, for the first low energy
eigenstates with zero total momentum, a convergence of the lattice eigenenergies to
the Wigner-Bethe-Peierls ones is observed, in a way that is eventually linear in b for
small enough values of b. As discussed in [38], this asymptotic linear dependence
in b is expected for Galilean invariant continuous space models, and the first order
deviations of the eigenergies from their zero range values are linear in the effective
range re of the interaction potential, as defined in Eq. 5.5, with model-independent
coefficients:

d Ei

dre
(b → 0) is model-independent. (5.57)

However, for lattice models, Galilean invariance is broken and the scattering between
two particles depends on their center-of-mass momentum; this leads to a breakdown
of the universal relation (5.57), while preserving the linear dependence of the energy
with b at low b [47].

A procedure to calculate re in the lattice model for a general dispersion relation εk
in presented in Appendix 1. For the parabolic dispersion relation Eq. 5.47, its value
was given in [46] in numerical form. With the technique exposed in Appendix 1, we
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have now the analytical value:

rparab
e = b

12
√

2

π3 arcsin
1√
3
= 0.336 868 47 . . . b. (5.58)

The usual Hubbard model, whose rich many-body physics is reviewed in [48],
was also considered in [46]: It is defined in terms of the tunneling amplitude between
neighboring lattice sites, here t = −�

2/(2mb2) < 0, and of the on-site interaction
U = g0/b3. The dispersion relation is then

εk = �
2

mb2

∑
α=x,y,z

[1− cos(kαb)] (5.59)

where the summation is over the three dimensions of space. It reproduces the
free space dispersion relation only in a vicinity of k = 0. The explicit ver-
sion of Eq. 5.47 is obtained from Eq. 5.49 by replacing the numerical constant
K by K Hub = 3.175911 . . . . In the zero range limit this leads for a �= 0 to
U/|t | → −7.913552 . . . , corresponding as expected to an attractive Hubbard model,
lending itself to a Quantum Monte Carlo analysis for equal spin populations with no
sign problem [11, 13]. The effective range of the Hubbard model, calculated as in
Appendix 1, remarkably is negative [46]:

rHub
e � − 0.305718b. (5.60)

It becomes thus apparent that an ad hoc tuning of the dispersion relation εk may
lead to a lattice model with a zero effective range. As an example, we consider a
dispersion relation

εk = �
2k2

2m
[1− C(kb/π)2], (5.61)

where C is a numerical constant less than 1/3. From Appendix 1 we then find that

re = 0 for C = 0.2570224 . . . (5.62)

The corresponding value of g0 is given by Eq. 5.49 with K = 2.899952 . . . .
As pointed out in [47], additionally fine-tuning the dispersion relation to cancel

not only re but also another coefficient (denoted by B in [47]) may have some practical
interest for Quantum Monte Carlo calculations that are performed with a non-zero
b, by canceling the undesired linear dependence of thermodynamical quantities and
of the critical temperature Tc on b.

5.2.1.4 Energy Functional, Tail of the Momentum Distribution and Pair
Correlation Function at Short Distances

A quite ubiquitous quantity in the short-range or large-momentum physics of gases
with zero range interactions is the so-called “contact”, which, restricting here for
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simplicity to thermal equilibrium in the canonical ensemble, can be defined by

C ≡ 4πm

�2

(
d E

d(−1/a)

)
S
= 4πm

�2

(
d F

d(−1/a)

)
T
. (5.63)

For zero-range interactions, this quantity C determines the large-k tail of the momen-
tum distribution

nσ (k) ∼
k→∞

C

k4 (5.64)

as well as the short-distance behavior of the pair distribution function
∫

d3 Rg(2)↑↓
(

R + r
2
,R − r

2

)
∼

r→0

C

(4πr)2
. (5.65)

Here the spin-σ momentum distribution nσ (k) is normalised as
∫ d3k
(2π)3

nσ (k) = Nσ .
The relations (5.63–5.65) were obtained in [49, 50]. Historically, analogous relations
were first established for one-dimensional bosonic systems [51, 52] with techniques
that may be straightforwardly extended to two dimensions and three dimensions [38].
Another relation derived in [49] for the zero-range model expresses the energy as a
functional of the one-body density matrix:

E =
∑
σ=↑,↓

∫
d3k

(2π)3
�

2k2

2m

[
nσ (k)− C

k4

]
+ �

2C

4πma
+

∑
σ=↑,↓

∫
d3rU (r)ρσ (r)

(5.66)
where ρσ (r) is the spatial number density.

One usually uses (5.64) to define C, and then derives (5.63). Here we rather take
(5.63) as the definition of C. This choice is convenient both for the two-channel
model discussed in Sect. 5.2.3 and for the rederivation of (5.64–5.66) that we shall
now present, where we use a lattice model before taking the zero-range limit.

From the Hellmann-Feynman theorem (that was already put forward in [51]), the
interaction energy Eint is equal to g0(d E/dg0)S . Since we have d(1/g0)/d(1/g) = 1
[see the relation (5.47) between g0 and g], this can be rewritten as

Eint = �
4

m2

C

g0
. (5.67)

Expressing 1/g0 in terms of 1/g using once again (5.47), adding the kinetic energy,
and taking the zero-range limit, we immediately get the relation (5.66). For the
integral over momentum to be convergent, (5.64) must hold (in the absence of math-
ematical pathologies).

To derive (5.65), we again use (5.67), which implies that the relation

∑
R

b3g(2)↑↓ (R + r/2,R − r/2) = C

(4π)2
|φ(r)|2 (5.68)
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holds for r = 0, were φ(r) is the zero-energy two-body scattering wavefunction,
normalised in such a way that

φ(r)� 1

r
− 1

a
for r � b (5.69)

[see [38] for the straightforward calculation of φ(0)]. Moreover, in the regime where
r is much smaller than the typical interatomic distances and than the thermal de
Broglie wavelength (but not necessarily smaller than b), it is generally expected that
the r-dependence of g(2)↑↓(R+ r/2,R− r/2) is proportional to |φ(r)|2, so that (5.68)
remains asymptotically valid. Taking the limits b → 0 and then r → 0 gives the
desired (5.65).

Alternatively, the link (5.64, 5.65) between short-range pair correlations and large-
k tail of the momentum distribution can be directly deduced from the short-distance
singularity of the wavefunction coming from the contact condition (5.75) and the
corresponding tail in Fourier space [38], similarly to the original derivation in 1D [52].
Thus this link remains true for a generic out-of-equilibrium statistical mixture of
states satisfying the contact condition [49, 38].

5.2.1.5 Absence of Simple Collapse

To conclude this section on lattice models, we try to address the question of the
advantage of lattice models as compared to the standard continuous space model
with a binary interaction potential V (r) between opposite spin fermions. Apart from
practical advantages, due to the separable nature of the interaction in analytical
calculations, or to the absence of sign problem in the Quantum Monte Carlo methods,
is there a true physical advantage in using lattice models?

One may argue for example that everywhere non-positive interaction potentials
may be used in continuous space, such as a square well potential, with a range
dependent depth V0(b) adjusted to have a fixed non-zero scattering and no two-body
bound states. E.g. for a square well potential V (r) = −V0θ(b − r), where θ(x) is
the Heaviside function, one simply has to take

V0 = �
2

mb2

(π
2

)2
(5.70)

to have an infinite scattering length. For such an attractive interaction, it seems then
that one can easily reproduce the reasonings leading to the bounds Eqs. 5.52, 5.53. It
is known however that there exists a number of particles N, in the unpolarized case
N↑ = N↓, such that this model in free space has a N -body bound state, necessarily
of energy ∝ −�

2/(mb2) [28, 53, 54]. In the thermodynamic limit, the unitary gas is
thus not the ground phase of the system, it is at most a metastable phase, and this
prevents a derivation of the bounds Eqs. 5.52, 5.53. This catastrophe is easy to predict
variationally, taking as a trial wavefunction the ground state of the ideal Fermi gas
enclosed in a fictitious cubic hard wall cavity of size b/

√
3 [55]. In the large N limit,
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the kinetic energy in the trial wavefunction is then (3N/5)�2k2
F/(2m), see Eq. 5.14,

where the Fermi wavevector is given by Eq. 5.8 with a density ρ = N/(b/
√

3)3, so
that

Ekin ∝ N 5/3 �
2

mb2 . (5.71)

Since all particles are separated by a distance less than b, the interaction energy is
exactly

Eint = −V0(N/2)
2 (5.72)

and wins over the kinetic energy for N large enough, 2800 � N for the considered
ansatz. Obviously, a similar reasoning leads to the same conclusion for an everywhere
negative, non-necessarily square well interaction potential.4 One could imagine to
suppress this problem by introducing a hard core repulsion, in which case however
the purely attractive nature of V would be lost, ruining our simple derivation of
Eqs. 5.52, 5.53.

The lattice models are immune to this catastrophic variational argument, since
one cannot put more than two spin 1/2 fermions “inside" the interaction potential,
that is on the same lattice site. Still they preserve the purely attractive nature of the
interaction. This does not prove however that their spectrum is bounded from below
in the zero range limit, as pointed out in the introduction of this section.

5.2.2 Zero-Range Model, Scale Invariance and Virial Theorem

5.2.2.1 The Zero-Range Model

The interactions are here replaced with contact conditions on the N-body wavefunc-
tion. In the two-body case, the model, introduced already by Eq. 5.32, is discussed
in details in the literature, see e.g. [56] in free space where the scattering amplitude
fk is calculated and the existence for a > 0 of a dimer of energy −�

2/(2μa2) and
wavefunction φ0(r) = (4πa)−1/2exp(−r/a)/r is discussed, μ being the reduced
mass of the two particles. The two-body trapped case, solved in [15], was already
presented in Sect. 5.1.4. Here we present the model for an arbitrary value of N.

For simplicity, we consider in first quantized form the case of a fixed number
N↑ of fermions in spin state ↑ and a fixed number N↓ of fermions in spin state ↓,
assuming that the Hamiltonian cannot change the spin state. We project the N-body
state vector |�〉 onto the non-symmetrized spin state with the N↑ first particles in

4 In fixed node calculations, an everywhere negative interaction potential is used [12, 28, 29]. It is
unknown if N in these simulations exceeds the minimal value required to have a bound state. Note
that the imposed nodal wavefunction in the fixed node method, usually the one of the Hartree-Fock
or BCS state, would be however quite different from the one of the bound state.
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spin state ↑ and the N↓ remaining particles in spin state ↓, to define a scalar N -body
wavefunction:

ψ(X) ≡
(

N !
N↑!N↓!

)1/2

〈↑, r1| ⊗ . . . 〈↑, rN↑ |〈↓, rN↑+1| ⊗ . . . 〈↓, rN |�〉 (5.73)

where X = (r1, . . . , rN ) is the set of all coordinates, and the normalization factor
ensures that ψ is normalized to unity.5 The fermionic symmetry of the state vector
allows to express the wavefunction on another spin state (with any different order of
↑ and↓ factors) in terms ofψ . For the considered spin state, this fermionic symmetry
imposes that ψ is odd under any permutation of the first N↑ positions r1, . . . , rN↑ ,
and also odd under any permutation of the last N↓ positions rN↑+1, . . . , rN .

In the Wigner-Bethe-Peierls model, that we also call zero-range model, the Hamil-
tonian for the wavefunction ψ is simply represented by the same partial differential
operator as for the ideal gas case:

H =
N∑

i=1

[
− �

2

2m
�ri +U (ri )

]
, (5.74)

where U is the external trapping potential supposed for simplicity to be spin state
independent. As is however well emphasized in the mathematics of operators on
Hilbert spaces [8], an operator is defined not only by a partial differential operator, but
also by the choice of its so-called domain D(H). A naive presentation of this concept
of domain is given in the Appendix 2. Here the domain does not coincide with the
ideal gas one. It includes the following Wigner-Bethe-Peierls contact conditions: for
any pair of particles i,j, when ri j ≡ |ri−r j | → 0 for a fixed position of their centroid
Ri j = (ri + r j )/2, there exists a function Ai j such that

ψ(X) = Ai j (Ri j ; (rk)k �=i, j )(r
−1
i j − a−1)+ O(ri j ). (5.75)

These conditions are imposed for all values of Ri j different from the positions of the
other particles rk , k different from i and j. If the fermionic particles i and j are in the
same spin state, the fermionic symmetry imposes ψ(. . . , ri = r j , . . .) = 0 and one
has simply Ai j ≡ 0. For i and j in different spin states, the unknown functions Ai j

have to be determined from Schrödinger’s equation, e.g. together with the energy E
from the eigenvalue problem

Hψ = Eψ. (5.76)

Note that in Eq. 5.76 we have excluded the values of X where two particle positions
coincide. Since �ri r

−1
i j = −4πδ(ri − r j ), including these values would require

5 The inverse formula giving the full state vector in terms of ψ(X) is |�〉 =
(

N !
N↑!N↓!

)1/2
A|↑

〉N↑ |↓〉N↓ |ψ〉, where the projector A is the usual antisymmetrizing operator A = (1/N !)∑
σ∈SN

ε(σ )Pσ .
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a calculation with distributions rather than with functions, with regularized delta
interaction pseudo-potential, which is a compact and sometimes useful reformulation
of the Wigner-Bethe-Peierls contact conditions [6, 56, 57, 58].

As already pointed out below Eq. 5.75, Ai j ≡ 0 if i and j are fermions in the
same spin state. One may wonder if solutions exist such that Ai j ≡ 0 even if i and
j are in different spin states, in which case ψ would simply vanish when ri j → 0.
These solutions would then be common eigenstates to the interacting gas and to
the ideal gas. They would correspond in a real experiment to long lived eigenstates,
protected from three-body losses by the fact that ψ vanishes when two particles
or more approach each other. In a harmonic trap, one can easily construct such
“non-interacting" solutions, as for example the famous Laughlin wavefunction of the
Fractional Quantum Hall Effect. “Non-interacting" solutions also exists for spinless
bosons. These non-interacting states actually dominate the ideal gas density of states
at high energy [32, 55].

5.2.2.2 What is the Kinetic Energy?

The fact that the Hamiltonian is the same as the ideal gas, apart from the domain,
may lead physically to some puzzles. E.g. the absence of interaction term may give
the impression that the energy E is the sum of trapping potential energy and kinetic
energy only. This is actually not so. The correct definition of the mean kinetic energy,
valid for general boundary conditions on the wavefunction, is

Ekin =
∫

d3N X
�

2

2m
|∂Xψ |2. (5.77)

This expression in particular guaranties that Ekin ≥ 0. If Ai j �= 0 in Eq. 5.75, one
then sees that, although ψ is square integrable in a vicinity of ri j = 0 thanks to
the Jacobian ∝ r2

i j coming from three-dimensional integration, the gradient of ψ

diverges as 1/r2
i j and cannot be square integrable. Within the zero-range model one

then obtains an infinite kinetic energy

EWBP
kin = +∞. (5.78)

Multiplying Eq. 5.76 by ψ and integrating over X, one realizes that the total energy
is split as the trapping potential energy,

Etrap =
∫

d3N X |ψ(X)|2
N∑

i=1

U (ri ) (5.79)

and as the sum of kinetic plus interaction energy:

Ekin + Eint = −
∫

d3N X
�

2

2m
ψ∗�Xψ. (5.80)
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This means that the interaction energy is −∞ in the Wigner-Bethe-Peierls model.
All this means is that, in reality, when the interaction has a non-zero range, both
the kinetic energy and the interaction energy of interacting particles depend on the
interaction range b, and diverge for b → 0, in such a way however that the sum
Ekin+ Eint has a finite limit given by the Wigner-Bethe-Peierls model. We have seen
more precisely how this happens for lattice models in Sect. 5.2.1.4, see the expression
(5.67) of Eint and the subsequent derivation of (5.66).6

5.2.2.3 Scale Invariance and Virial Theorem

In the case of the unitary gas, the scattering length is infinite, so that one sets 1/a = 0
in Eq. 5.75. The domain of the Hamiltonian is then imposed to be invariant by any
isotropic rescaling Eq. 5.11 of the particle positions. To be precise, we define for any
scaling factor λ > 0 :

ψλ(X) ≡ ψ(X/λ)
λ3N/2 , (5.81)

and we impose that ψλ ∈ D(H) for all ψ ∈ D(H). This is the precise mathematical
definition of the scale invariance loosely introduced in Sect. 5.1.2. In particular, it is
apparent in Eq. 5.75 that, for 1/a = 0, ψλ obeys the Wigner-Bethe-Peierls contact
conditions if ψ does. On the contrary, if ψ obeys the contact conditions for a finite
scattering length a,ψλ obeys the contact condition for a different, fictitious scattering
length aλ = λa �= a and D(H) cannot be scaling invariant.

There are several consequences of the scale invariance of the domain of the Hamil-
tonian D(H) for the unitary gas. Some of them were presented in Sect. 5.1.2, other
ones will be derived in Sect. 5.3. Here we present another application, the derivation
of a virial theorem for the unitary gas. This is a first step towards the introduction of a
SO(2,1) Lie algebra in Sect. 5.3. To this end, we introduce the infinitesimal generator
D of the scaling transform Eq. 5.81, such that7

ψλ(X) = e−i D ln λψ(X). (5.82)

Taking the derivative of Eq. 5.81 with respect to λ in λ = 1, one obtains the hermitian
operator

D = 1

2i
(X · ∂X + ∂X · X) = 3N

2i
− iX · ∂X. (5.83)

6 For a continuous-space model with an interaction potential V(r), we have [76, 38] Eint =
C

(4π)2
∫

d3r V (r)|φ(r)|2 where C is still defined by (5.63) and φ(r) still denotes the zero-energy
two-body scattering state normalised according to (5.69).
7 The scaling transform (5.81) defines a unitary operator T (λ) such that ψλ = T (λ)ψ. One
has T (λ1)T (λ2) = T (λ1λ2). To recover the usual additive structure as for the group of spatial
translations, one sets λ = exp θ , so that T (θ1)T (θ2) = T (θ1 + θ2) and T (θ) = exp(−iθD) where
D is the generator. This is why ln λ appears in Eq. 5.82.
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The commutator of D with the Hamiltonian is readily obtained. From the relation
�Xψλ(X) = λ−2(�ψ)(X/λ), one has

ei D ln λ(H − Htrap)e
−i D ln λ = 1

λ2 (H − Htrap) (5.84)

where Htrap = ∑N
i=1 U (ri ) is the trapping potential part of the Hamiltonian. It

remains to take the derivative in λ = 1 to obtain

i[D, H − Htrap] = −2(H − Htrap). (5.85)

The commutator of D with the trapping potential is evaluated directly from Eq. 5.83:

i[D, Htrap] =
N∑

i=1

ri · ∂ri U (ri ). (5.86)

This gives finally

i[D, H ] = −2(H − Htrap)+
N∑

i=1

ri · ∂ri U (ri ). (5.87)

The standard way to derive the virial theorem in quantum mechanics [59], in a direct
generalization of the one of classical mechanics, is then to take the expectation value
of [D, H ] in an eigenstate ψ of H of eigenenergy E. This works here for the unitary
gas because the domain D(H) is preserved by the action of D. On one side, by having
H acting on ψ from the right or from the left, one trivially has 〈[D, H ]〉ψ = 0. On
the other side, one has Eq. 5.87, so that

E =
N∑

i=1

〈
U (ri )+ 1

2
ri · ∂ri U (ri )

〉
ψ
. (5.88)

This relation was obtained with alternative derivations in the literature (see [60] and
references therein). One of its practical interests is that it gives access to the energy
from the gas density distribution [61]. As already mentioned, the scale invariance of
the domain of H is crucial to obtain this result. If 1/a is non zero, a generalization of
the virial relation can however be obtained, that involves d E/d(1/a), see [62, 63].

5.2.3 Two-Channel Model and Closed-Channel Fraction

5.2.3.1 The Two-Channel Model

The lattice models or the zero-range model are of course dramatic simplifications of
the real interaction between two alkali atoms. At large interatomic distances, much
larger than the radius of the electronic orbitals, one may hope to realistically represent
this interactionby a function V(r) of the interatomic distance, with a van der Waals
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attractive tail V (r)� − C6/r6, a simple formula that actually neglects retardation
effects and long-range magnetic dipole–dipole interactions. As discussed below the
gas phase condition Eq. 5.1, this allows to estimate b with the so-called van der Waals
length, usually in the range of 1-10 nm.

At short interatomic distances, this simple picture of a scalar interaction potential
V(r) has to be abandoned. Following quantum chemistry or molecular physics meth-
ods, one has to introduce the various Born-Oppenheimer potential curves obtained
from the solution of the electronic eigenvalue problem for fixed atomic nuclei posi-
tions. Restricting to one active electron of spin 1/2 per atom, one immediately gets
two ground potential curves, the singlet one corresponding to the total spin S = 0,
and the triplet one corresponding to the total spin S = 1. An external magnetic field
B is applied to activate the Feshbach resonance. This magnetic field couples mainly
to the total electronic spin and thus induces different Zeeman shifts for the singlet
and triplet curves. In reality, the problem is further complicated by the existence of
the nuclear spin and the hyperfine coupling, that couples the singlet channel to the
triplet channel for nearby atoms, and that induces a hyperfine splitting within the
ground electronic state for well separated atoms.

A detailed discussion is given in [64, 65]. Here we take the simplified view
depicted in Fig. 5.7: the atoms interact via two potential curves, Vopen(r) and
Vclosed(r).At large distances, Vopen(r) conventionally tends to zero, whereas Vclosed(r)
tends to a positive value V∞, one of the hyperfine energy level spacings for a single
atom in the applied magnetic field. In the two-body scattering problem, the atoms
come from r = +∞ in the internal state corresponding to Vopen(r), the so-called
open channel, with a kinetic energy E � V∞. Due to a coupling between the two
channels, the two interacting atoms can have access to the internal state correspond-
ing to the curve Vclosed(r), but only at short distances; at long distances, the external
atomic wavefunction in this so-called closed channel is an evanescent wave that
decays exponentially with r since E < V∞.

Now assume that, in the absence of coupling between the channels, the closed
channel supports a bound state of energy Eb, called in what follows the molecular
state or the closed-channel molecule. Assume also that, by applying a judicious
magnetic field, one sets the energy of this molecular state close to zero, that is to the
dissociation limit of the open channel. In this case one may expect that the scattering
amplitude of two atoms is strongly affected, by a resonance effect, given the non-zero
coupling between the two channels. This is in essence how the Feshbach resonance
takes place.

The central postulate of the theory of quantum gases is that the short range details
of the interaction are unimportant, only the low-momentum scattering amplitude fk

between two atoms is relevant. As a consequence, any simplified model for the inter-
action, leading to a different scattering amplitude f model

k , is acceptable provided that

f model
k � fk (5.89)
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Fig. 5.7 Simple view of a Feshbach resonance. The atomic interaction is described by two curves
(solid line: open channel, dashed line: closed channel). When one neglects the interchannel coupling
�, the closed channel has a molecular state of energy Eb close to the dissociation limit of the open
channel. The energy spacing V∞ was greatly exaggerated, for clarity

for the relevant values of the relative momentum k populated in the gas. We insist
here that we impose similar scattering amplitudes over some momentum range, not
just equal scattering lengths a. For spin 1/2 fermions, typical values of k can be

ktyp ∈ {a−1, kF , λ
−1
dB } (5.90)

where the Fermi momentum is defined in Eq. 5.8 and the thermal de Broglie wave-
length in Eq. 5.9. The appropriate value of ktyp depends on the physical situation. The
first choice ktyp∼ a−1 is well suited to the case of a condensate of dimers (a > 0)
since it is the relative momentum of two atoms forming the dimer. The second choice
ktyp∼ kF is well suited to a degenerate Fermi gas of atoms (not dimers). The third
choice ktyp∼ λ−1 is relevant for a non-degenerate Fermi gas.

The strategy is thus to perform an accurate calculation of the “true” fk, to identify
the validity conditions of the simple models and of the unitary regime assumption
Eq. 5.4. One needs a realistic, though analytically tractable, model of the Feshbach
resonance. This is provided by the so-called two-channel models [65, 66, 67]. We
use here the version presented in [68], which is a particular case of the one used in
[64, 69] and Refs. therein: The open channel part consists of the original gas of spin
1/2 fermions that interact via a separable potential, that is in first quantized form for
two opposite spin fermions, in position space:

〈r1, r2|Vsep|r′1, r′2〉 = δ

(
r1 + r2

2
− r′1 + r′2

2

)
g0χ(r2 − r1)χ(r′2 − r′1). (5.91)

This potential does not affect the atomic center of mass, so it conserves total momen-
tum and respects Galilean invariance. Its matrix element involves the product of a
function of the relative position in the ket and of the same function of the relative
position in the bra, hence the name separable. The separable potential is thus in
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general non local. As we shall take a function χ of width ≈ b this is clearly not
an issue. The coupling constant g0 of the separable potential is well-defined by the
normalization condition for χ,

∫
d3rχ(r) = 1. In the presence of this open channel

interaction only, the scattering length between fermions, the so-called background
scattering length abg, is usually small, of the order of the potential range b, hence
the necessity of the Feshbach resonance to reach the unitary limit.

In the closed channel part, a single two-particle state is kept, the one corresponding
to the molecular state, of energy Eb and of spatial range � b. The atoms thus exist in
that channel not in the form of spin 1/2 fermions, but in the form of bosonic spinless
molecules, of mass twice the atomic mass. The coupling between the two channels
simply corresponds to the possibility for each boson to decay in a pair of opposite spin
fermions, or the inverse process that two opposite spin fermions merge into a boson,
in a way conserving the total momentum. This coherent Bose-Fermi conversion may
take place only if the positions r1 and r2 of the two fermions are within a distance b,
and is thus described by a relative position dependent amplitude�χ(r1−r2),where
for simplicity one takes the same cut-off function χ as in the separable potential. It is
important to realize that the Bose–Fermi conversion effectively induces an interaction
between the fermions, which becomes resonant for the right tuning of Eb and leads
to the diverging total scattering length a.

The model is best summarized in second quantized form [68], introducing the
fermionic field operators ψσ (r), σ =↑,↓, obeying the usual fermionic anticom-
mutation relations, and the bosonic field operator ψb(r) obeying the usual bosonic
commutation relations:

H =
∫

d3r

⎡
⎣ ∑
σ=↑,↓

ψ†
σ

(
− �

2

2m
�r +U

)
ψσ + ψ†

b

(
Eb − �

2

4m
�r +Ub

)
ψb

⎤
⎦

+�
∫

d3r1d3r2χ(r1 − r2)
{
ψ

†
b [(r1 + r2)/2]ψ↓(r1)ψ↑(r2)+ h. c.

}

+ g0

∫
d3Rd3rd3r ′χ(r)χ(r′)ψ†

↑(R − r/2)ψ†
↓(R + r/2)ψ↓(R + r′/2)ψ↑(R − r′/2),

(5.92)
where U (r) and Ub(r) are the trapping potentials for the fermions and the bosons,
respectively.

5.2.3.2 Scattering Amplitude and Universal Regime

In free space, the scattering problem of two fermions is exactly solvable for a Gaussian
cut-off function χ(r) ∝ exp[−r2/(2b2)] [64, 68]. A variety of parameterizations are
possible. To make contact with typical notations, we assume that the energy Eb of
the molecule in the closed channel is an affine function of the magnetic field B, a
reasonable assumption close to the Feshbach resonance:

Eb(B) = E0
b + μb(B − B0) (5.93)
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where B0 is the magnetic field value right on resonance and μb is the effective
magnetic moment of the molecule. Then the scattering length for the model Eq. 5.92
can be exactly written as the celebrated formula

a = abg

(
1− �B

B − B0

)
, (5.94)

where �B, such that E0
b +μb�B = �2/g0, is the so-called width of the Feshbach

resonance. As expected, for |B − B0| � |�B|, one finds that a tends to the back-
ground scattering length abg solely due to the open channel interaction. With �B
one forms a length R∗ [70] which is always non-negative:

R∗ ≡ �
2

mabgμb�B
=

(
�

2πbE0
b

)2

, (5.95)

where the factor 2π is specific to our choice of χ . Physically, the length R∗ is also
directly related to the effective range on resonance:

r res
e = −2R∗ + 4b√

π
, (5.96)

where the numerical coefficient in the last term depends on the choice of χ. The final
result for the scattering amplitude for the model Eq. 5.92 is

− 1

fk
= ik + ek2b2

a

[
1−

(
1− a

abg

)
k2

k2 − Q2

]
− ik erf(−ikb) (5.97)

where erf is the error function, that vanishes linearly in zero, and the wavevector Q,
such that

Q2 ≡ m

�2g0

(
g0 Eb −�2

)
= −1

abg R∗(1− abg/a)
, (5.98)

may be real or purely imaginary.
The unitary limit assumption Eq. 5.4 implies that all the terms in the right hand side

of Eq. 5.97 are negligible, except for the first one. We now discuss this assumption,
restricting for simplicity to an infinite scattering length a−1 = 0 (i.e. a magnetic field
sufficiently close to resonance) and a typical relative momentum ktyp = kF (i.e. a
degenerate gas). To satisfy Eq. 5.89, with f model

k = −1/(ik), one should then have,
in addition to the gas phase requirement kF b� 1, that

k R∗
|1+ k2abg R∗| � 1 ∀k ∈ [0, kF ]. (5.99)

Table 5.1 summarizes the corresponding conditions to reach the unitary limit.8, 9

Remarkably, the condition kF |r res
e |� 1 obtained in Eq. 5.6 from the expansion of

8 We discarded for simplicity the rather peculiar case where kF |abg|R∗ is ≤ 1 but not � 1.
9 An additional condition actually has to be imposed to have a universal gas, as we will see after
Eq. 5.106.
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Table 5.1 In the two-channel model, conditions deduced from Eq. 5.99 (supplementary to the gas
phase condition kF b� 1) to reach the unitary limit for a degenerate gas of spin 1/2 fermions of
Fermi momentum kF . It is assumed that the magnetic field is tuned right on resonance, so that the
scattering length is infinite. The last column corresponds to narrow Feshbach resonances satisfying
Eq. 5.100

kF
√|abg|R∗ � 1 kF

√|abg|R∗ > 1

abg > 0 kF R∗ � 1 (R∗/abg)
1/2 � 1

abg < 0 kF R∗ � 1 unreachable

1/ fk to order k2 is not the end of the story. In particular, if abg < 0, Q2
res ≡

−1/(abg R∗) is positive and 1/ fk diverges for k = Qres; if the location of this
divergence is within the Fermi sea, the unitary limit is not reachable. This funny
case however requires huge values of R∗abg, that is extremely small values of the
resonance width �B:

|μb�B| � �
2k2

F

2m
. (5.100)

This corresponds to very narrow Feshbach resonances [71], whose experimental
use requires a good control of the magnetic field homogeneity and is more deli-
cate. Current experiments rather use broad Feshbach resonances such as on lithium
6, where r res

e = 4.7 nm [72], abg = −74 nm, R∗ = 0.027 nm [73], leading to
1/(|abg|R∗)1/2 = 700(μm)−1 much larger than kF ≈ a few (μm)−1, so that the
unitary limit is indeed well reached.

5.2.3.3 Relation Between Number of Closed Channel Molecules
and “Contact”

The fact that the two-channel model includes the underlying atomic physics of the
Feshbach resonance allows to consider an observable that is simply absent from single
channel models, namely the number of molecules in the closed channel, represented
by the operator:

Nb ≡
∫

d3rψ†
b (r)ψb(r) (5.101)

where ψb is the molecular field operator. The mean number 〈Nb〉 of closed channel
molecules was recently measured by laser molecular excitation techniques [74].

This mean number can be calculated from a two-channel model by a direct appli-
cation of the Hellmann–Feynman theorem [75, 68] (see also [76]). The key point is
that the only quantity depending on the magnetic field in the Hamiltonian Eq. 5.92
is the internal energy Eb(B) of a closed channel molecule. At thermal equilibrium
in the canonical ensemble, we thus have
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(
d E

d B

)
S
= 〈Nb〉d Eb

d B
. (5.102)

Close to the Feshbach resonance, we may assume that Eb is an affine function of
B, see Eq. 5.93, so that the scattering length a depends on the magnetic field as in
Eq. 5.94. Parameterizing E in terms of the inverse scattering length rather than B, we
can replace d E/d B by d E/d(1/a) times d(1/a)/d B. The latter can be calculated
explicitly from (5.94). Thus

〈Nb〉 = C

4π
R∗

(
1− abg

a

)2
, (5.103)

where C is the contact defined in Eq. 5.63, and we introduced the length R∗ defined
in Eq. 5.95.

If the interacting gas is in the universal zero range regime, its energy E depends
on the interactions only via the scattering length, independently of the microscopic
details of the atomic interactions, and its dependence with 1/a may be calculated by
any convenient model. Then, at zero temperature, for the unpolarized case N↑ = N↓,
the equation of state of the homogeneous gas can be expressed as

e0 = eideal
0 f

(
1

kF a

)
, (5.104)

where e0 and eideal
0 are the ground state energy per particle for the interacting gas and

for the ideal gas with the same density, and the Fermi wavevector kF was defined
in Eq. 5.8. In particular, f (0) = ξ , where the number ξ was introduced in Eq. 5.14.
Setting ζ ≡ − f ′(0), we have for the homogeneous unitary gas

Chom

V
= ζ

2

5π
k4

F , (5.105)

so that

〈Nb〉hom

N
= 3

10
kF R∗ζ. (5.106)

This expression is valid for a universal gas consisting mainly of fermionic atoms,
which requires that 〈Nb〉hom/N � 1, i. e. kF R∗� 1. This condition was already
obtained in Sect. 5.2.3.2 for the broad resonances of the left column of Table 5.1. In
the more exotic case of the narrow resonances of the second column of Table 5.1,
this condition has to be imposed in addition to the ones of Table 5.1.

5.2.3.4 Application of General Relations: Various Measurements
of the Contact

The relation (5.103) allowed us to extract in [68] the contact C of the trapped gas
[related to the derivative of the total energy of the trapped gas via Eq. 5.63] from
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Fig. 5.8 The contact C = d E
d(−1/a)

4πm
�2 of a trapped unpolarized Fermi gas. The circles are obtained

from the measurements of 〈Nb〉 in [74], combined with the two channel model theory linking 〈Nb〉
to C [Eq. 5.103]. The cross was obtained in [78] by measuring the structure factor. The squares were
obtained in [79] by measuring the momentum distribution. Solid line: zero-temperature theoretical
prediction extracted from [29] as detailed in [68]. Here the Fermi wavevector ktrap

F of the trapped

gas is defined by �
2(ktrap

F )2/(2m) = (3N )1/3�ω̄,with ω̄ the geometric mean of the three oscillation
frequencies ωα and N the total atom number

the values of Nb measured in [74]. The result is shown in Fig. 5.8, together with a
theoretical zero-temperature curve resulting from the local density approximation in
the harmonically trapped case where U (r) = 1

2 m
∑
α ω

2
αx2
α, the function f of (5.104)

being obtained by interpolating between the fixed-node Monte-Carlo data of [29, 77]
and the known asymptotic expressions in the BCS and BEC limits.10

While this is the first direct measurements of the contact in the BEC–BCS
crossover, it has also been measured more recently:

• using Bragg scattering, via the large-momentum tail of the structure factor, directly
related by Fourier transformation to the short-distance singularity Eq. 5.65 of the
pair correlation function [78], see the cross at unitarity in Fig. 5.8

• via the tail of the momentum distribution Eq. 5.64 measured by abruptly turning
off both trapping potential and interactions [79], see the squares in Fig. 5.8

• via (momentum resolved) radio-frequency spectroscopy [79, 80].

For the homogeneous unitary gas, the contact is conveniently expressed in terms
of the dimensionless parameter ζ [see (5.105)]. The experimental value ζ = 0.91(5)
was obtained by measuring the equation of state of the homogeneous gas with the
technique proposed by [81] and taking the derivative of the energy with respect to
the inverse scattering length [Eq. 5.63] (see [82] and the contribution of F. Chevy
and C. Salomon in Chap. 11 of this volume). From the fixed-node Monte-Carlo
calculations, one gets ζ � 1 by taking a derivative of the data of [29] for the function

10 See [68] for details. The cusp at unitarity is of course an artefact of this interpolation procedure.

http://dx.doi.org/10.1007/978-3-642-21978-8_11
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f, while the data of [77] for the pair correlation function together with the relation
(65) give ζ � 0.95.11,12

In conclusion, the smallness of the interaction range leads to singularities; at
first sight this may seem to complicate the problem as compared to other strongly
interacting systems; however these singularities are well understood and have a useful
consequence: the existence of exact relations resulting from the Hellmann-Feynman
theorem [51] and from properties of the Fourier transform [52]. In particular this
provides a “useful check on mutual consistency of various experiments”, as foreseen
in [83].

5.3 Dynamical Symmetry of the Unitary Gas

In this section, we present some remarkable properties of the unitary gas, derived
from the zero-range model. The starting point is that the time evolution of the gas
in a time dependent isotropic harmonic trap may be expressed exactly in terms of a
gauge and scaling transform, see Sect. 5.3.1. This implies the existence of a SO(2,1)
dynamical (or hidden) symmetry of the system, a formal property that we shall link
to concrete consequences, such as the existence of an exactly decoupled bosonic
degree of freedom (the breathing mode of the gas), see Sect. 5.3.2, or the separability
of the N-body wavefunction in hyperspherical coordinates, see Sect. 5.3.3, which
holds both in an isotropic harmonic trap and in free space and has several important
consequences such as the analytical solution of the trapped three-body problem, see
Sect. 5.3.4. In Sect. 5.3.5 we use the existence of the undamped breathing mode to
rederive a remarkable property of the homogeneous unitary gas: its bulk viscosity
vanishes. Section 5.3.6 concerns short-range scaling laws, which are related to the
separability in hyperspherical coordinates, but hold for any scattering length and
external potential.

5.3.1 Scaling Solution in a Time-Dependent Trap

In this section, we shall assume that the trapping potential U (r) introduced in Eq. 5.74
is an isotropic harmonic potential. Whereas the hypothesis of harmonicity may be
a good approximation in present experiments for small enough atomic clouds, the
isotropy is not granted and requires some experimental tuning that, to our knowledge,
remains to be done. On the other hand, we allow a general time dependence of the

11 This value is also compatible with the data of [77] for the one-body density matrix, whose
short-range singular part is related by Fourier transformation to the large-k tail of the momentum
distribution [38].
12 At unitarity, the local density approximation can be done analytically, yielding a relation between
the contact C of the trapped gas and the one of the homogeneous gas: C

Nktrap
F

= 512
175

ζ

ξ1/4 [68].
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trap curvature, so that Schrödinger’s equation for the N-body wavefunction defined
in Eq. 5.73 is

i�∂tψ(X, t) =
[
− �

2

2m
�X + 1

2
mω2(t)X2

]
ψ(X, t), (5.107)

where we recall that X is the set of all particle coordinates, and ω(t) is the instanta-
neous angular oscillation frequency. The interaction between particles is described by
the contact conditions Eq. 5.75, written here for the unitary gas, that is for a−1 = 0:

ψ(X) = Ai j (Ri j ; (rk)k �=i, j )

ri j
+ O(ri j ). (5.108)

Let us consider the particular case, quite relevant experimentally, where the gas is
initially at equilibrium in a static trap ω(t = 0) = ω. The gas is then in a statistical
mixture of stationary states, so we can assume that the initial N-body wavefunction
is an eigenstate of the Hamiltonian with energy E. At t > 0, the trap curvature is
varied, which leads to an arbitrary time dependent ω(t). In typical experiments, one
either sets abruptly ω(t) to zero, to perform a time of flight measurement, or one
modulates ω(t) at some frequency to study the gas collective modes. Can we predict
the evolution of the system? As shown in [58], the answer is yes, as we now explain.

In the absence of interactions, it is well known [84] that ψ(X, t) is deduced from
the t = 0 wavefunction by a simple gauge plus scaling ansatz:

ψ(X, t) = eiθ(t)

λ3N/2(t)
exp

[
imλ̇(t)

2�λ(t)
X2

]
ψ(X/λ(t), 0), (5.109)

where λ̇(t) = dλ(t)/dt. At time t = 0, one clearly has θ(0) = 0,

λ(0) = 1 and λ̇(0) = 0. (5.110)

Inserting this ansatz into Schrödinger’s equation (5.107), we obtain a Newton like
equation of motion for λ:

λ̈(t) = ω2

λ3(t)
− ω2(t)λ(t) (5.111)

to be solved with the initial conditions (5.110). We recall that ω stands for the initial
angular oscillation frequency. The equation (5.111) is well studied in the literature,
under the name of the Ermakov equation [85], and is in particular amenable to a linear
form: one recognizes an equation for the distance to the origin for a two-dimensional
harmonic oscillator of angular frequency ω(t), as obtained from Newton’s equation
and from the law of equal areas. In particular, if ω(t) = ωct is a constant over some
time interval, λ(t) oscillates with a period π/ωct over that time interval.
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The global phase θ(t) is given by

θ(t) = − E

�

∫ t

0

dt ′

λ2(t ′)
. (5.112)

This suggests that θ still evolves at the stationary pace −E/� provided that one
introduces a modified time, as done in [86] in a bosonic mean field context:

τ(t) =
∫ t

0

dt ′

λ2(t ′)
. (5.113)

We shall come back to this point below.
In presence of interactions, one has to check that the ansatz (5.109) obeys the

contact conditions (5.108). First, the ansatz includes a scaling transform. As discussed
in Sect. 5.2.2, this preserves the contact conditions and the domain of the Hamiltonian
for the unitary gas. Second, the ansatz includes a quadratic gauge transform. Turning
back to the definition of the contact conditions, we select an arbitrary pair of particles
i and j and we take the limit ri j → 0 for a fixed centroid position Ri j = (ri + r j )/2.
In the gauge factor, the quantity X2 = ∑N

k=1 r2
k appears. The positions rk of the

particles other than i and j are fixed. What matters is thus r2
i + r2

j that we rewrite as

r2
i + r2

j = 2R2
i j +

1

2
r2

i j . (5.114)

Ri j is fixed. ri j varies but it appears squared in the gauge transform, so that

exp

[
imλ̇(t)

2�λ(t)
r2

i j/2

] [
1

ri j
+ O(ri j )

]
= 1

ri j
+ O(ri j ) (5.115)

and the contact conditions are preserved by the gauge transform, even if the scattering
length a was finite.

We thus conclude that the ansatz (5.109) gives the solution also for the unitary
gas. This has interesting practical consequences. For measurements in position space,
one has simple scaling relations, not only for the mean density ρσ (r, t) in each spin
component σ :

ρσ (r, t) = 1

λ3(t)
ρσ (r/λ(t), 0) (5.116)

but also for higher order density correlation functions: for example, the second order
density correlation function defined in terms of the fermionic field operators as

g(2)
σσ ′(r, r′) ≡ 〈ψ†

σ (r)ψ
†
σ ′(r

′)ψσ ′(r′)ψσ (r)〉, (5.117)

evolves in time according to the scaling

g(2)
σσ ′(r, r′, t) = 1

λ6(t)
g(2)
σσ ′(r/λ(t), r′/λ(t), 0). (5.118)
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As a consequence, if one abruptly switches off the trapping potential at t = 0+, the
gas experiences a ballistic expansion with a scaling factor

λ(t) = [1+ ω2t2]1/2, (5.119)

which acts as a perfect magnifying lens on the density distribution.
For non-diagonal observables in position space, some information is also obtained,

with the gauge transform now contributing. For example the first order coherence
function

g(1)σσ (r, r′) ≡ 〈ψ†
σ (r

′)ψσ (r)〉, (5.120)

which is simply the matrix element of the one-body density operator between 〈r, σ |
and |r′, σ 〉, evolves according to

g(1)σσ (r, r′, t) = 1

λ3(t)
exp

[
imλ̇(t)

2�λ(t)
(r2 − r ′2)

]
g(1)σσ (r/λ(t), r′/λ(t), 0). (5.121)

The momentum distribution nσ (k) in the spin component σ is the Fourier transform
over r− r′ and the integral over (r+ r′)/2 of the first order coherence function. For
a ballistic expansion, directly transposing to three dimensions the result obtained in
[87] from a time dependent scaling solution for the one-dimensional gas of impene-
trable bosons, one has that the momentum distribution of the ballistically expanding
unitary gas is asymptotically homothetic to the gas initial spatial density profile:

lim
t→+∞ nσ (k, t) =

(
2π�

mω

)3

ρσ

(
r = �k

mω
, 0

)
. (5.122)

We emphasize that the above results hold for an arbitrary gas polarization, that is
for arbitrary numbers of particles in each of the two spin states σ =↑,↓ . If the initial
state is thermal, they hold whatever the value of the temperature, larger or smaller
than the critical temperature Tc. These results however require the unitary limit (in
particular |a| = +∞) and a perfect isotropy of the harmonic trap. If the experimental
goal is simply to have the ballistic expansion as a perfect magnifying lens, these two
requirements remarkably may be removed, as shown in [88], if one is ready to impose
an appropriate time dependence to the scattering length a(t) and to the trap aspect
ratio, in which case the ansatz (5.109) holds at all times. In the particular case of an
isotropic trap, the procedure of [88] is straightforward to explain: If ψ(t = 0) obeys
the contact conditions with a finite scattering length a, the ansatz (5.109) obeys the
contact conditions for a scattering length λ(t)a so one simply has to adjust the actual
scattering length in a time dependent way:

a(t) = λ(t)a (5.123)

where λ evolves according to Eq. 5.111. As shown in the next section, the time depen-
dent solution in the unitary case, apart from providing convenient scaling relations
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on the density, is connected to several interesting intrinsic properties of the system,
whereas the procedure of [88] does not imply such properties.

To be complete, we finally address the general case where the initial wavefunction
of the unitary gas is not necessarily a stationary state but is arbitrary [89]. Then the
observables of the gas have in general a non-trivial time dependence, even for a fixed
trap curvature. If the trap curvature is time dependent, we modify the gauge plus
scaling ansatz as follows:

ψ(X, t) = 1

λ3N/2(t)
exp

[
imλ̇(t)

2�λ(t)
X2

]
ψ̃(X/λ(t), τ (t)), (5.124)

where τ(t) is the modified time introduced in Eq. 5.112, λ(t) evolves according to
Eq. 5.111 with the initial conditions (5.110), and the time-dependent wavefunction
ψ̃ coincides with ψ at time t = τ = 0 and obeys the unitary gas contact conditions.
Then this ansatz obeys the contact conditions. When inserted in the time dependent
Schrödinger equation (5.107), it leads to a Schrödinger equation for ψ̃ in the time
independent external potential fixed to the t = 0 trap:

i�∂τ ψ̃(X, τ ) =
[
− �

2

2m
�X + 1

2
mω2 X2

]
ψ̃(X, τ ). (5.125)

The gauge plus scaling transform, and the redefinition of time, have then totally
cancelled the time dependence of the trap. If the initial wavefunction is an eigenstate
of energy E, as was previously the case, one simple has ψ̃(τ ) = exp(−i Eτ/�)ψ(t =
0) and one recovers the global phase factor in Eq. 5.109.

5.3.2 SO(2,1) Dynamical Symmetry and the Decoupled
Breathing Mode

As shown in [90] for a two-dimensional Bose gas with 1/r2 interactions, the existence
of a scaling solution such as Eq. 5.109 reflects a hidden symmetry of the Hamiltonian,
the SO(2,1) dynamical symmetry. Following [89], we construct explicitly this dynam-
ical symmetry for the unitary gas and we show that it has interesting consequences
for the energy spectrum in a static isotropic harmonic trap.

Let us consider a gedankenexperiment: starting from the unitary gas is an energy
eigenstate ψ, we modify in an infinitesimal way the trap curvature during the time
interval [0, t f ], and for t > t f we restore the initial trap curvature,ω(t) = ω(0) = ω.

Linearizing Eq. 5.111 around λ = 1 for t > t f , we see that the resulting change in
the scaling parameter λ is

λ(t)− 1 = εe−2iωt + ε∗e2iωt + O(ε2) (5.126)

where ε is proportional to the infinitesimal curvature change. Since λ oscillates indef-
initely at frequency 2ω, this shows the existence of an undamped mode of frequency
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2ω. This conclusion actually extends to excitations during [0, t f ] of arbitrarily large
amplitudes, as noted below Eq. 5.111 [90].

We calculate the resulting change in the N-body wavefunction, expanding
Eq. 5.109 to first order in ε, putting in evidence the components that oscillate with
Bohr frequencies ±2ω:

ψ(X, t) =eiα
[
e−i Et/�− εe−i(E+2�ω)t/�L+ + ε∗e−i(E−2�ω)t/�L−

]

ψ(X, 0)+ O(ε2).

(5.127)

The time independent phase α depends on the details of the excitation procedure.
We have introduced the operators

L± = ±i D + H

�ω
− mω

�
X2 (5.128)

where D is the generator of the scaling transforms, as defined in Eq. 5.83, and L+ =
L†
−. We then read on Eq. 5.127 the remarkable property that the action of L+ on an

energy eigenstateψ of energy E produces an energy eigenstate of energy E+2�ω.13

Similarly, the action of L− onψ produces an energy eigenstate of energy E−2�ω, or
eventually gives zero since the spectrum is bounded from below by E ≥ 0 according
to the virial theorem (5.88) applied to U (r) = 1

2 mω2r2. We see that the spectrum
has thus a very simple structure, it is a collection of semi-infinite ladders, each
ladder being made of equidistant energy levels separated by 2�ω, see Fig. 5.9 , and
L± acting respectively as a raising/lowering operator in that structure. Within each
ladder, we call ψg the wavefunction corresponding to the ground step of that ladder,
such that

L−ψg = 0. (5.129)

As shown in [90], this structure implies a dynamical SO(2,1) symmetry, mean-
ing that the Hamiltonian H is part of the SO(2,1) Lie algebra. One starts with the
commutation relations:

[H, L±] = ±2�ωL± (5.130)

[L+, L−] = −4H/(�ω). (5.131)

The first relation was expected from the raising/lowering nature of L±.Both relations
can be checked from the commutation relations Eqs. 5.85, 5.86 and from

[
1

2
X2,−1

2
�X

]
= i D. (5.132)

13 As shown in [89], L+ψ cannot be zero.
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Fig. 5.9 The energy spectrum of the unitary gas in an isotropic harmonic trap is a collection of
semi-infinite ladders such as the one depicted in the figure, with various ground step energies Eg .

This structure is related to the existence of a decoupled bosonic mode, and holds whatever the
numbers of fermions in each of the two spin components

We emphasize again the crucial point that the operators L± preserve the domain
of the Hamiltonian in the present unitary case, since D and X2 do. Obtaining the
canonical commutation relations among the generators T1, T2 and T3 of the SO(2,1)
Lie algebra,

[T1, T2] ≡ −iT3, [T2, T3] ≡ iT1, [T3, T1] ≡ iT2, (5.133)

is then only a matter of rewriting:

T1 ± iT2 ≡ 1

2
L± and T3 = H

2�ω
. (5.134)

Note the sign difference in the first commutator of Eq. 5.133 with respect to the other
two commutators, and with respect to the more usual SO(3) or SU(2) Lie algebra.

Have we gained something in introducing the SO(2,1) Lie algebra, or is it simply
a formal rewriting of the ladder structure already apparent in the simple minded
approach Eq. 5.127, may ask a reader unfamiliar with dynamical symmetries. Well,
an advantage is that we can immediately exhibit the so-called Casimir operator C,

C ≡ −4[T 2
1 + T 2

2 − T 2
3 ] = H2 − 1

2
(�ω)2(L+L− + L−L+), (5.135)

guaranteed to commute with all the elements T1, T2 and T3 of the algebra, so that C
is necessarily a scalar within each ladder. Taking as a particularly simple case the
expectation value of C within the ground step ψg of the ladder of energy Eg, and
using Eq. 5.131 to evaluate 〈ψg|L−L+|ψg〉,we obtain C |ψg〉 = Eg(Eg−2�ω)|ψg〉.
Inverting this relation thanks to the property Eg ≥ 3�ω/2,14 we can define the ground
energy step operator Hg:

14 To obtain this inequality, one uses a virial theorem after separation of the center of mass motion
[89].
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Hg = �ω + [C + (�ω)2]1/2, (5.136)

which is scalar and equal to Eg within each ladder. A useful application of Hg

is to rescale the raising and lowering operator L± to obtain simpler commutation
relations: It appears that

b = [2(H + Hg)/(�ω)]−1/2L− (5.137)

is a bosonic annihilation operator, which obeys the usual bosonic commutation rela-
tions, in particular with its hermitian conjugate

[b, b†] = 1. (5.138)

b† and b have the same raising/lowering properties as L±, and commute with Hg.

They have the usual simple matrix elements, e.g. b†|n〉 = (n + 1)1/2|n + 1〉 where
|n〉 is the step number n of a ladder, n starting from 0. They allow an illuminating
rewriting of the Hamiltonian:

H = Hg + 2�ωb†b (5.139)

revealing that the unitary gas in a harmonic isotropic trap has a fully decoupled
bosonic degree of freedom. This bosonic degree of freedom, physically, is simply
the undamped breathing mode of the gas of frequency 2ω, identified for a different
system in [90].

We now give two simple applications of the above formalism [89]. First, one can
calculate the various moments of the trapping Hamiltonian Htrap = 1

2 mω2 X2, from
the identity

Htrap = 1

2
H − �ω

4
(L+ + L−) = �ω

2
A† A (5.140)

where A = [b†b + Hg/(�ω)]1/2 − b. Taking the expectation value of Eq. 5.140
within a given eigenstate of energy E, or within a statistical mixture of eigenstates,
immediately gives

〈Htrap〉 = 1

2
〈H〉, (5.141)

a particular case of the virial theorem Eq. 5.88. Taking the expectation value of H2
trap

for the thermal equilibrium density operator gives

4〈H2
trap〉 = 〈H2〉 + 〈H〉�ω[2〈b†b〉 + 1] (5.142)

where we used 〈Hgb†b〉 = 〈Hg〉〈b†b〉 for the thermal equilibrium. From the Bose
formula, one has also 〈b†b〉 = [exp(2β�ω)− 1]−1, with β = 1/(kB T ) and T is the
temperature.
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The second, more impressive, application is to uncover a very interesting structure
of the N-body wavefunction ψg(X) of the ground energy step of an arbitrary ladder.
We introduce hyperspherical coordinates (X,n = X/X), where n is a unit vector is
the space of 3N real coordinates. The innocent equation (5.129) becomes

[
−3N

2
− X∂X + Eg

�ω
− mω

�
X2

]
ψg(X) = 0. (5.143)

This is readily integrated for a fixed hyperdirection n:

ψg(X) = e−mωX2/(2�)X
Eg
�ω
− 3N

2 f (n) (5.144)

where f (n) is an unknown function of the hyperdirection. Eq. 5.144 has fascinating
consequences.

First, it shows that ψg, being the product of a function of the modulus X and
of a function of the hyperdirection, is separable in hyperspherical coordinates. The
physical consequences of this separability, in particular for the few-body problem,
are investigated in Sect. 5.3.4. Note that this separability holds for all the other steps
of the ladder, since L+ only acts on the hyperradius.

Second, we take the limitω→ 0 in Eq. 5.144: according to Eq. 5.12, Eg/(�ω) is a
constant, and Eg → 0,whereas the Gaussian factor tends to unity. n is dimensionless,
and we can take f (n) to be ω independent if we do not normalize ψg to unity. We
thus obtain in this limit a zero energy eigenstate of the free space problem,

ψ free(X) = X
Eg
�ω
− 3N

2 f (n) (5.145)

which is independent of ω. This zero energy eigenstate is scaling invariant, in the
sense that

ψ free
λ (X) = 1

λv
ψ free(X) ∀λ > 0, (5.146)

where ψλ is defined in Eq. 5.81 and

v = Eg

�ω
. (5.147)

In summary, starting from the wavefunction ψg of any ladder ground state of the
trapped gas spectrum, one gets a scaling-invariant zero-energy free-space eigenstate
ψ free
λ , simply by removing the gaussian factor e−mωX2/(2�) in the expression (5.144)

of ψg.

Remarkably, the reverse property is true. Let us imagine that we know a zero
energy eigenstate ψ free of the free space problem Hfree = − �2

2m�X,

�Xψ
free(X) = 0, (5.148)
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that of course also obeys the Wigner-Bethe-Peierls contact conditions for the uni-
tary gas. Since Hfree commutes with the generator D of the scaling transforms, we
generally expect ψ free to obey Eq. 5.146 with some exponent v, so that

i Dψ free = vψ free. (5.149)

Since ψ free is not square integrable, the hermiticity of D does not imply that v ∈ iR;
on the contrary, we will see that v ∈ R. Let us multiply ψ free with a Gaussian factor:

ψ(X) ≡ e−mωX2/(2�)ψ free(X). (5.150)

As we did for the gauge transform, see Eq. 5.115, we can show that ψ so defined
obeys the Wigner-Bethe-Peierls contact conditions. Calculating the action on ψ of
the Hamiltonian H of the trapped gas, and using Eq. 5.149, we directly obtain

Hψ = v�ωψ, (5.151)

i.e. ψ is indeed an eigenstate of the trapped gas with the eigenenergy v�ω. This
ψ corresponds to the ground energy step of a ladder. Repeated action of L+ will
generate the other states of the ladder.

We have thus constructed a mapping between the trapped case and the zero energy
free space case, for the unitary gas in an isotropic harmonic trap. A similar mapping
(restricting to the ground state) was constructed by Tan in an unpublished work [91].

5.3.3 Separability in Internal Hyperspherical Coordinates

As shown in Sect. 5.3.2, the SO(2,1) dynamical symmetry of the unitary gas in
an isotropic harmonic trap implies that the eigenstate wavefunctions ψ(X) may be
written as the product of a function of the modulus X and of a function of the direction
X/X . Here, following [89], we directly use this property at the level of the N -body
Schrödinger equation, for N > 2, and we derive an effective Schrödinger equation for
a hyperradial wavefunction, with interesting consequences discussed in Sect. 5.3.4.
The derivation is restricted here to the case of particles of identical masses, as in the
previous sections, but the separability in internal spherical coordinates may also hold
for particles of different masses, as detailed in Appendix 3.

First, we introduce a refinement to the separability of Sect. 5.3.2: in a harmonic
trap, the center of mass of the system is totally decoupled from the internal variables,
that is from the relative coordinates ri − r j of the particles. This is quite straightfor-
ward in Heisenberg picture, for an interaction modeled by a potential V (|ri − r j |).
The Heisenberg equations of motion for the center of mass position

C ≡ 1

N

N∑
i=1

ri (5.152)
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and the center of mass momentum P = ∑N
i=1 pi are indeed coupled only among

themselves, due in particular to the fact that the interaction potential cannot change
the total momentum P of the system:

d

dt
P̂(t) = −Nmω2Ĉ(t) (5.153)

d

dt
Ĉ(t) = P̂(t)

Nm
. (5.154)

The center of mass of the system thus behaves as a fictitious particle of mass Nm
trapped in the harmonic potential Nmω2C2/2, with a Hamiltonian

HCM = − �
2

2Nm
�C + 1

2
Nmω2C2. (5.155)

The center of mass has of course the same angular oscillation frequency as the
individual particles. This center of mass decoupling property clearly holds in the
general harmonic anisotropic case. It persists in the zero range limit so it holds also
for the zero-range model.

We can thus split the Hamiltonian Eq. 5.74 as the sum of the center of mass Hamil-
tonian HCM and the internal Hamiltonian Hinternal ≡ H − HCM. As a consequence,
we introduce as new spatial coordinates the center of mass position C and the set of
internal coordinates

R ≡ (r1 − C, . . . , rN − C), (5.156)

and we can seek eigenstates in the factorized form ψ(X) = ψCM(C)ψinternal(R).
The crucial step is then to define internal hyperspherical coordinates, consisting

in the hyperradius

R =
[

N∑
i=1

(ri − C)2
]1/2

(5.157)

and a convenient parameterization of the set of dimensionless internal coordinates
R/R. There is a technical subtlety due to the fact that the coordinates of R are
not independent variables: Since the sum of the components of R along each spa-
tial direction x, y and z is exactly zero, and since R/R is a unit vector, the vec-
tor R/R contains actually only 3N − 4 independent dimensionless real variables.
We then use the following result, that may be obtained with the appropriate Jacobi
coordinates15 [92]: There exists a parameterization of R/R by a set of 3N − 4 inter-
nal hyperangles that we call , such that the internal Hamiltonian takes the form

15 For particles of equal masses one introduces the Jacobi coordinates ui = ( N−i
N+1−i )

1/2[
ri − (N − i)−1 ∑N

j=i+1 r j

]
for 1≤ i ≤ N − 1. Then �X = N−1�C + ∑N−1

i=1 �ui and R2 =
X2 − NC2 = ∑N−1

i=1 u2
i . The general case of arbitrary masses is detailed in the Appendix 3.
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Hinternal = − �
2

2m

[
∂2

R +
3N − 4

R
∂R + 1

R2�

]
+ 1

2
mω2 R2, (5.158)

where� is the Laplacian on the unit sphere of dimension 3N − 4. The expression
between square brackets is the standard form for the usual Laplacian in dimension
d = 3N − 3, written in hyperspherical coordinates, which justifies the name of
“internal hyperspherical coordinates”.

The separability in internal spherical coordinates means that the internal
eigenstates in a trap can be written as products of a function of R and a function
of . This basically results from the reasoning below Eq. 5.148, with the little twist
that one can further assume that the zero-energy free space eigenstate ψ free(X) has
a zero total momentum, i. e. it is independent of the center of mass position.16 The
scale invariance Eq. 5.146 or equivalently Eq. 5.149 then implies

ψ free(X) = Rs−(3N−5)/2φ() (5.159)

with some exponent s shifted for convenience by (3N − 5)/2. The challenge is of
course to determine the unknown function φ() and the corresponding value of s.
From Schrödinger’s equation�Xψ

free = 0 and the expression of the internal Lapla-
cian in hyperspherical coordinates, see Eq. 5.158, one finds that s2 solves the eigen-
value problem

[
−� +

(
3N − 5

2

)2
]
φ() = s2φ(), (5.160)

whereφ() has to obey the Wigner-Bethe-Peierls contact conditions Eq. 5.108 refor-
mulated in hyperangular coordinates.17 The merit of the shift (3N − 5)/2 is thus to
reveal a symmetry s ↔ −s.

The generalization of the zero energy free space solution Eq. 5.159 to the finite
energy trapped problem is simply provided by the ansatz:

ψ(X) = ψCM(C)φ()R−(3N−5)/2 F(R). (5.161)

Here ψCM(C) is any center of mass eigenstate wavefunction of energy ECM, φ()

is any solution of the eigenvalue problem Eq. 5.160. Injecting the ansatz into Schrö-
dinger’s equation of eigenenergy E and using Eq. 5.158, one finds that

E = ECM + Einternal, (5.162)

16 The reasoning below Eq. 5.143 can also be adapted by putting the center of mass in its ground
state ψCM(C) ∝ exp[−NmωC2/(2�)] and by constructing purely internal raising and lowering
operators of an internal SO(2,1) dynamical symmetry, that do not excite the center of mass motion
contrarily to L+ and L− [89].
17 These reformulated contact conditions are given explicitly in [55], Eq. 1.38.
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where the hyperradial wavefunction F(R) and the internal eigenenergy Einternal solve
the eigenvalue problem:

− �
2

2m

[
F ′′(R)+ 1

R
F ′(R)

]
+

(
�

2s2

2m R2 +
1

2
mω2 R2

)
F(R) = Einternal F(R).

(5.163)
We note that, as detailed in the Appendix 3, this separability remarkably also holds
in the case where the N particles have different masses [89], provided that they all
have the same angular oscillation frequencyω in the trap, and that the Wigner-Bethe-
Peierls model still defines a self-adjoint Hamiltonian for the considered mass ratios.
The separability even holds when the Wigner-Bethe-Peierls model supplemented
with an additional boundary condition for R → 0 and fixed  is self-adjoint, as is
the case e.g. for N = 3 bosons, see below; indeed such a boundary condition only
affects the hyperradial problem.

In practice the explicit calculation of s is possible for the few-body problem. The
most natural approach in general is to try to calculate the functions Ai j in Eq. 5.108
in momentum space. From Eq. 5.108 it appears that Ai j is scaling invariant with an
exponent s + 1− (3N − 5)/2. Its Fourier transform18 is then also scaling invariant,
with an exponent given by a simple power-counting argument: Since Ai j is a function
of 3(N − 2) variables, if one takes into account the fact that it does not depend on
the center of mass position C, and since one has [s+1− (3N −5)/2]+3(N −2) =
s + (3N − 5)/2, its Fourier transform Ãi j scales as

Ãi j (K) = K−[s+(3N−5)/2] fi j (K/K ) (5.164)

where K collects all the 3(N − 2) variables of Ãi j and fi j denotes some functions
to be determined. Remarkably it is the same quantity (3N − 5)/2 which appears in
both Eqs. 5.159, 5.164.

This momentum space approach leads to integral equations. For N = 3, this
integral equation was obtained in [93]; it was solved analytically in [94], the allowed
values of s being the solutions of a transcendental equation. This transcendental
equation was rederived from a direct analytical solution of (5.160) in position space
in [4, 5], and generalised to arbitrary angular momenta, masses and statistics in [5];
for equal masses it is conveniently written in the form ([95] and refs. therein):

�
(
l + 3

2

)
�

( l+1+s
2

)
�

( l+1−s
2

) = η√
3π(−2)l

2 F1

(
l + 1+ s

2
,

l + 1− s

2
; l + 3

2
; 1

4

)

(5.165)
or alternatively [32]

18 Since the Fourier transform Ãi j (K) =
∫

d3(N−2)Y e−iK·Y Ai j (Y) may lead to non-absolutely
converging integrals at infinity, the calculation has to be performed using the language of distribu-
tions, with a regularizing factor e−ηY , η→ 0+.
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[
i l

l∑
k=0

(−l)k(l + 1)k
k!

(1−s)l
(1−s)k

(
2−k i(k − s)eis π2 + η(−1)l

4√
3

ei π6 (2k+s)
)]

−
[
(−i)l

l∑
k=0

(−l)k(l + 1)k
k!

(1−s)l
(1−s)k

(
2−k(−i)(k − s)e−is π2 + η(−1)l

4√
3

e−i π6 (2k+s)
)]
= 0

(5.166)
where l is the total internal angular momentum quantum number, η is−1 for fermions
(N↑ = 2, N↓ = 1) or+2 for spinless bosons, 2 F1 is a hypergeometric function, and
(x)n ≡ x(x + 1) . . . (x + n − 1) with (x)0 ≡ 1. The Eq. 5.165 has some spurious
integer solutions (l = 0, s = 2 for fermions; l = 0, s = 4 and l = 1, s = 3 for
bosons) which must be eliminated. For N = 4 there is no known analytical solution
of the integral equation. Using the scale invariance of Ãi j (K) as in Eq. 5.164 and
rotational symmetry however brings it to a numerically tractable integral equation
involving the exponent s, that allowed to predict a four-body Efimov effect for three
same-spin state fermions interacting with a lighter particle [7].

5.3.4 Physical Consequences of the Separability

As seen in the previous Sect. 5.3.3, the solution of the N-body problem (N > 2)
for the unitary gas in a harmonic isotropic trap boils down to (i) the calculation
of exponents s from zero-energy free space solutions, and (ii) the solution of the
hyperradial eigenvalue problem Eq. 5.163. Whereas (i) is the most challenging part
on a practical point of view, the step (ii) contains a rich physics that we now discuss.

Formally, the hyperradial problem Eq. 5.163 is Schrödinger’s equation for one
(fictitious) particle moving in two dimensions with zero angular momentum in the
(effective) potential

Ueff(R) = �
2

2m

s2

R2 +
1

2
mω2 R2. (5.167)

We will see that the nature of this problem is very different depending on the
sign of s2. The case s2 ≥ 0, i.e. s real, happens for N = 3 fermions (N↑ =
2, N↓ = 1), not only for equal masses, as can be tested numerically from (5.166)
and even demonstrated analytically from the corresponding hyperangular eigenvalue
problem [32] but also for unequal masses provided m↑/m↓ is below the critical value
13.60 . . .where one of the s (in the angular momentum l = 1 channel) becomes imag-
inary [5]. For N = 4 fermions with (N↑ = 3, N↓ = 1,) the critical mass ratio above
which one of the s (in the angular momentum l = 1 channel) becomes imaginary is
slightly smaller, m↑/m↓ � 13.384 [7]. In the physics literature, s is believed to be
real for fermions for any (N↑, N↓) for equal masses, this belief being supported by
numerical and experimental evidence. For 3 identical bosons, it is well-known that
one of the values of s (in the l = 0 channel) is imaginary [4], all other values being
real.
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5.3.4.1 Universal Case

In this section we assume that s is real and we can take the sign convention s ≥ 0.
We impose that the hyperradial wavefunction F(R) is bounded for R → 0; indeed,
allowing F(R) to diverge would physically correspond to a N-body resonance (see
Appendix 6). The spectrum and the corresponding hyperradial wavefunctions then
are [89]

Einternal = (s + 1+ 2q)�ω, q ∈ N (5.168)

F(R) =
√

2q!
�(s + 1+ q)

Rs

(aho)s+1 e
−

(
R

2aho

)2

L(s)q

((
R

aho

)2
)

(5.169)

where L(s)q is a generalised Laguerre polynomial of order q, aho ≡
√

�

mω is the

harmonic oscillator length, and the normalisation is such that
∫∞

0 d R RF(R)2 = 1.
Eq. 5.168 generalises to excited states the result obtained for the ground state in [91].

We thus recover the 2�ω spacing of the spectrum discussed in Sect. 5.3.2. We
can also reinterpret the scaling solution of Sect. 5.3.1 as a time-evolution of the
hyperradial wavefunction with a time-independent hyperangular wavefunction; in
particular, the undamped breathing mode corresponds to an oscillation of the fictitious
particle in the effective potential (5.167).19

The expression (5.169) of F(R) immediately yields the probability distribution
P(R) of the hyperradius via P(R) = F(R)2 R. This analytical prediction is in good
agreement with the numerical results obtained in [96] for up to 17 fermions.

In the large N limit (more precisely if N↑ and N↓ tend to infinity and their ratio
goes to a constant), the ground state energy of the trapped unitary gas is expected
to be given in an asymptotically exact way by hydrostatics (also called local density
approximation). Amusingly, this allows to predict the large-N asymptotics of the
smallest possible value of s. For N↑ = N↓ = N/2 →∞ this gives [91, 96]

s ∼ √
ξ
(3N )4/3

4
(5.170)

where ξ appears in the expression Eq. 5.14 for the ground state energy of the homo-
geneous unitary gas.

For spin-1/2 fermions, Eqs. 5.168, 5.169, combined with the transcendental equa-
tion (5.165) and the expression of the hyperangular wavefunctions [5], provide the
complete solution of the unitary three-body problem in an isotropic harmonic trap

19 Strictly speaking, such a time evolution of the wavefunction in internal hyperspherical coordi-
nates corresponds to an internal scaling solution where the center of mass wavefunction is constant,
whereas the scaling solution of Sect. 5.3.1 corresponds to a hyperradial motion in the hyperspherical
coordinates (X,n).
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[32] (for completeness, one also has to include the eigenstates which are com-
mon to the unitary and the non-interacting problem [32], mentioned at the end of
Sect. 5.2.2.1). This was first realised for the ground state in [91]. Remarkably, this
3-body spectrum in a trap allows to compute the third virial coefficient of the homo-
geneous unitary gas [97], whose value was confirmed experimentally (see [45] and
the contribution of F. Chevy and C. Salomon in Chap. 11 of this volume).

For spinless bosons, the unitary three-body problem in an isotropic harmonic trap
has two families of eigenstates (apart from the aforementioned common eigenstates
with the non-interacting problem) [31, 32]: the states corresponding to real solu-
tions s of the transcendental Equation 5.165, which we call universal states; and the
states corresponding to the imaginary solution for s, which we call efimovian. Equa-
tions. 5.168, 5.169 apply to universal states. The efimovian states are discussed in
the next section.

5.3.4.2 Efimovian Case

In this section we consider the case s2 < 0, i.e. s is purely imaginary. In this case, all
solutions of the Schrödinger-like equation 5.163 are bounded and oscillate more and
more rapidly when R → 0. In order to obtain a hermitian problem with a discrete
spectrum, one has to impose the boundary condition [94, 55]:

∃A/ F(R)∼ A Im

[(
R

Rt

)s]
for R → 0, (5.171)

where Rt is an additional three-body parameter. An equivalent form is:

∃A′/F(R)∼ A′sin

[
|s|ln

(
R

Rt

)]
for R → 0. (5.172)

The corresponding hyperradial wavefunctions are

F(R) = R−1WE/2,s/2(R
2/a2

ho) (5.173)

where W is a Whittaker function, and the spectrum is given by the implicit equation

arg�

[
1+ s − E/(�ω)

2

]
= −|s|ln(Rt/aho)+ arg�(1+ s)mod π (5.174)

obtained in [31], whose solutions form a discrete series, which is unbounded from
below, and can be labeled by a quantum number q ∈ Z.

In free space (ω = 0,) there is a geometric series of bound states

Eq = − 2�
2

m R2
t

exp

(
−q

2π

|s| +
2

|s|arg�(1+ s)

)
, q ∈ Z (5.175)

http://dx.doi.org/10.1007/978-3-642-21978-8_11
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F(R) = Ks

(
R
√

2m|E |/�2

)
(5.176)

where K is a Bessel function. For three particles this corresponds to the well-known
series of Efimov three-body bound states [4, 5]. This also applies to the four-body
bound states in the aforementioned case of (3 + 1) fermions with m↑/m↓ between
� 13.384 and 13.607 . . . [7]. As expected, in the limit E → −∞, the spectrum of
the efimovian states in the trap (5.174) approaches the free space spectrum (5.175).
The unboundedness of the spectrum in the zero-range limit is a natural consequence
of the Thomas effect and of the limit cycle behavior [55].

5.3.5 Vanishing Bulk Viscosity

In this section, we give a simple rederivation of the fact that the bulk viscosity of
the unitary gas in the normal phase is zero. This result was obtained in [98] (see
also [99]). It helps analysing e.g. the ongoing experimental studies of the shear vis-
cosity, whose value is of fundamental importance ([100] and refs. therein). Although
the superfluid regime was also treated in [98], we omit it here for simplicity. In our
rederivation we shall use the scaling solution and the existence of the undamped
breathing mode.20

In the hydrodynamic theory for a normal compressible viscous fluid [101, 98], the
(coarse-grained) evolution of the gas in a trapping potential U (r, t) is described by
the atom number density ρ(r, t), the velocity vector field v(r, t), and the entropy per
particle (in units of kB) s(r, t). These 5 scalar functions solve five equations which
are given for completeness in Appendix 4 although we will not directly use them
here. We will only need the equation for the increase of the total entropy S = ∫

ρsd3r
of the gas

d S

dt
=

∫
κ‖∇T ‖2

T 2 d3r +
∫

η

2T

∑
ik

(
∂vi

∂xk
+ ∂vk

∂xi
− 2

3
δik∇ · v

)2
d3r +

∫
ζ

T
‖∇ · v‖2d3r

(5.177)
which follows from the hydrodynamic equations (5.217, 5.215); note that the thermal
conductivity κ, the shear viscosity η and the bulk viscosity ζ have to be ≥ 0 so that
d S/dt ≥ 0 [101]. The hydrodynamic theory is expected to become exact in the limit
where the length (resp. time) scales on which the above functions vary are much
larger than microscopic length (resp. time) scales such as 1/kF (resp. �/EF ).

We consider the following gedankenexperiment: starting with the gas at thermal
equilibrium in a trap of frequency ω, we suddenly switch the trapping frequency at

20 In article [98], the vanishing of the bulk viscosity was deduced from the so-called general
coordinate and conformal invariance, the scaling solution being unknown to its author at the time
of writing (although it had been obtained in [58]). The scaling solution was recently rederived
using this general coordinate and conformal invariance [99]. Several other results presented in
Sects. 5.3.2–5.3.4 were also rederived using this field theoretical formalism ([99] and refs. therein).
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t = 0 to a different value ω+. As we have seen in Sect. 5.3.1 and at the beginning
of Sect. 5.3.2, this excites an undamped breathing mode: For t > 0, the size of the
gas oscillates indefinitely. This rigorously periodic evolution of the system implies
that the total entropy S(t) is periodic, and since it cannot decrease, it has to be
constant. Thus each of the terms in the right-hand-side of (5.177), and in particular the
last term, has to vanish. Thus ζ(r, t)‖∇ · v(r, t)‖2 ≡ 0. This implies that ζ is
identically zero, as we now check. From the scaling evolution (5.109) of each many-
body eigenstate, one can deduce (using the quantum-mechanical expression for the
particle flux) that

v(r, t) = λ̇

λ
r, (5.178)

so that ∇ · v = 3λ̇/λ. For t approaching 0 from above, we have λ̇(t) �= 0, as is
intuitively clear and can be checked from Eqs. 5.110, 5.111; thus ζ(r, t) = 0 and by
continuity ζ(r, t = 0) = 0. Since the central density and temperature in the initial
equilibrium state of the gas are arbitrary, we conclude that ζ(ρ, T ) = 0 for all ρ and
T. An alternative derivation of this result is presented in Appendix 5.

5.3.6 Short-Range Scaling Laws

As opposed to the previous sections, we now consider an arbitrary scattering length
and an arbitrary external potential, possibly with periodic boundary conditions. Of
all the particles 1, . . . , N , let us consider a subset J ⊂ {1, . . . , N } containing n↑
particles of spin ↑ and n↓ particles of spin ↓ . From the particle positions (ri )i∈J ,we
can define a hyperradius RJ and hyperanglesJ , and a center of mass position CJ .
The positions of all particles that do not belong to J are denoted by RJ = (ri )i /∈J .

In the absence of a (n↑ + n↓)-body resonance (see Appendix 6), one expects that,
for any eigenstate, in the limit RJ → 0 where all particles belonging to the subset
J approach each other while (J ,CJ ,RJ ) remain fixed, there exists a function AJ

such that

ψ(r1, . . . , rN ) = Rv
Jφ(�J )AJ (C j ,RJ )+ o(Rv

J ). (5.179)

Here, v = smin(n↑, n↓)− 3(n↑+n↓)−5
2 with smin(n↑, n↓) the smallest possible value of

s for the problem of n↑ particles of spin ↑ and n↓ particles of spin ↓ (s being defined
in Sect. 5.3.3) and φ(J ) is the corresponding hyperangular wavefunction (also
defined in Sect. 5.3.3). This statement is essentially contained in [17, 91]. It comes
from the intuition that, in the limit where the n↑+n↓ particles approach each other, the
N -body wavefunction should be proportional to the (n↑+n↓)-body zero-energy free
space wavefunction Eq. 5.159. This was used in [17] to predict that the formation rate
of deeply bound molecules by three-body recombination, � ≡ −Ṅ/N , behaves as
��/EF ∼ K · (kF b)2smin(2,1) in the low-density limit, with b on the order of the van
der Waals range and K a numerical prefactor which depends on short-range physics.
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The analytical solution of the hyperangular three-body problem [Eq. 5.166] yields
smin(2, 1) = 1.772724 . . . (this value is reached in the angular momentum l = 1
channel). Experimentally, this scaling has not been checked, but the smallness of
��/EF is one of the crucial in-gredients which allow to realise the unitary gas.
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Appendix 1: Effective Range in a Lattice Model

To calculate the effective range re [defined by Eq. 5.5] for the lattice model of
Sect. 5.2.1, it is convenient to perform in the expression (5.46) of the scattering
amplitude an analytic continuation to purely imaginary incoming wavevectors k0,
setting k0 = iq0 with q0 real and positive. Eliminating 1/g0 thanks to Eq. 5.47 we
obtain the useful expression:

− 1

fk0

= 1

a
+ 4π

∫
D

d3k

(2π)3

[
1

q2
0 + 2mεk/�2

− 1

2mεk/�2

]
. (5.180)

We first treat the case of the parabolic dispersion relation Eq. 5.48. A direct expan-
sion of Eq. 5.180 in powers of q0 leads to an infrared divergence. The trick is to use
the fact that the integral over D in Eq. 5.180 can be written as the integral of the same
integrand over the whole space minus the integral over the supplementary space
R

3 \D . The integral over the whole space may be performed exactly using

∫
R3

d3k

(2π)3

[
1

q2
0 + k2

− 1

k2

]
= − q0

4π
. (5.181)

This leads to the transparent expression, where the term corresponding to ik in Eq. 5.3,
and which is non-analytic in the energy E, is now singled out:

− 1

f parab
k0

= 1

a
− q0 − 4π

∫
R3\D

d3k

(2π)3

[
1

q2
0 + k2

− 1

k2

]
. (5.182)

This is now expandable in powers of q2
0 , leading to the effective range for the par-

abolic dispersion relation:

rparab
e = 1

π2

∫
R3\D

d3k

k4 . (5.183)

We now turn back to the general case. The trick is to consider the difference
between the inverse scattering amplitudes of the general case and the parabolic case
with a common value of the scattering length:
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1

f parab
k0

− 1

fk0

= 4π
∫
D

d3k

(2π)3

[
1

q2
0 + 2mεk/�2

− 1

q2
0 + k2

− 1

2mεk/�2 +
1

k2

]
.

(5.184)
This is directly expandable to second order in q0, leading to:

re − rparab
e = 8π

∫
D

d3k

(2π)3

[
1

k4 −
(

�
2

2mεk

)2
]
. (5.185)

The numerical evaluation of this integral for the Hubbard dispersion relation
Eq. 5.59 leads to the Hubbard model effective range Eq. 5.60.

Finally, we specialize the general formula to the parabolic plus quartic form
Eq. 5.61. Setting k = (π/b)q and using Eq. 5.183, we obtain

π3rmix
e

b
=

∫
R3\[−1,1]3

d3q

q4 +
∫
[−1,1]3

d3q

q4

[
1− 1

(1− Cq2)2

]
. (5.186)

The trick is to split the cube [−1, 1]3 as the union of B(0, 1), the sphere of center 0 and
unit radius, and of the set X = [−1, 1]3\B(0, 1).One has also

(
R

3 \ [−1, 1]3)∪X =
R

3 \ B(0, 1) so that

π3rmix
e

b
=

∫
R3\B(0,1)

d3q

q4 +
∫

B(0,1)

d3q

q4

[
1− 1

(1− Cq2)2

]
−

∫
X

d3q

q4

1

(1− Cq2)2
.

(5.187)
One then moves to spherical coordinates of axis z. The first two terms in the right
hand side may be calculated exactly. In particular, one introduces a primitive of
q−2(1− Cq2)−2, given by C1/2�(C1/2q) with

�(x) = x

2(1− x2)
+ 3

2
arctanh x − 1

x
. (5.188)

In the last term of Eq. 5.187 one integrates over the modulus q of q for a fixed
direction (θ, φ) where θ is the polar angle and φ the azimuthal angle. One then finds
that q ranges from 1 to some maximal value Q(θ, φ), and the integral over q provides
the difference �(C1/2 Q)−�(C1/2). Remarkably, the term −�(C1/2) cancels the
contribution of the first two integrals in the right hand side of Eq. 5.187, so that

rmix
e

b
= −C1/2

π3

∫ 2π

0
dφ

∫ 1

−1
du�[C1/2 Q(θ, φ)] (5.189)

where as usual we have set u = cos θ . Using the symmetry under parity along each
Cartesian axis, which adds a factor 8, and restricting to the face qx = 1 of the cube,
which adds a factor 3, the expression of Q(θ, φ) is readily obtained, leading to

rmix
e

b
= −24C1/2

π3

∫ π/4

0
dφ

∫ cosφ√
1+ cos2φ

0
du�

(
C1/2

cosφ
√

1− u2

)
. (5.190)
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In the limit C → 0, rmix
e → rparab

e , and Eq. 5.190 may be calculated analytically with
�(x)∼−1/x and with an exchange of the order of integration: This leads to Eq. 5.58.
For a general value of C ∈ [0, 1/3] we have calculated Eq. 5.190 numerically, and
we have identified the magic value of C leading to a zero effective range, see Eq. 5.62.
With the same technique, we can calculate the value of K appearing in Eq. 5.49 from
the expression

K = 12

πC1/2

∫ π/4

0
dφ

∫ cosφ√
1+ cos2φ

0
du arctanh

C1/2

cosφ
√

1− u2
. (5.191)

Appendix 2: What is the Domain of a Hamiltonian?

Let us consider a Hamiltonian H represented by a differential operator also called
H. A naive and practical definition of the domain D(H) of H is that it is the set of
wavefunctions over which the action of the Hamiltonian is indeed represented by
the considered differential operator. In other words, if a wavefunction ψbad does not
belong to D(H), one should not calculate the action of H on ψbad directly using the
differential operator H. If H if self-adjoint, one should rather expand ψbad on the
Hilbert basis of eigenstates of H and calculate the action of H in this basis.

For example, for a single particle in one dimension in a box with infinite walls in
x = 0 and x = 1, so that 0≤ x ≤ 1, one has the Hamiltonian

H = −1

2

d2

dx2 , (5.192)

with the boundary conditions on the wavefunction

ψ(0) = ψ(1) = 0 (5.193)

representing the effect of the box. To be in the domain, a wavefunction ψ(x) should
be twice differentiable for 0 < x < 1 and should obey the boundary conditions
(5.193). An example of a wavefunction which is not in the domain is the constant
wavefunction ψ(x) = 1. An example of wavefunction in the domain is

ψ(x) = 301/2x(1− x). (5.194)

If one is not careful, one may obtain wrong results. Let us calculate the mean energy
and the second moment of the energy for ψ given by (5.194). By repeated action of
H onto ψ , and calculation of elementary integrals, one obtains

〈H〉ψ = 5 (5.195)
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〈H2〉ψ = 0?! (5.196)

Eq. 5.195 is correct, but Eq. 5.196 is wrong (it would lead to a negative variance of
the energy) because Hψ is not in D(H) and the subsequent illicit action of H as the
differential operator (5.192) gives zero.

How to calculate the right value of 〈H2〉ψ? One introduces the orthonormal Hilbert
basis of eigenstates of H,

ψn(x) = 21/2sin[π(n + 1)x], n ∈ N, (5.197)

with the eigenenergy εn = π2

2 (n + 1)2. Then ψ of Eq. 5.194 may be expanded as∑
n cnψn(x), and the kth moment of the energy may be defined as

〈Hk〉ψ =
∑
n∈N

(εn)
k |cn|2. (5.198)

Since cn = 4
√

15[1+ (−1)n]/[π(n+ 1)]3, one recovers 〈H〉ψ = 5 and one obtains
the correct value 〈H2〉ψ = 30, that leads to a positive energy variance as it should
be. Also 〈Hk〉ψ = +∞ for k ≥ 3.

The trick of expanding ψ in the eigenbasis of H is thus quite powerful, it allows
to define the action of H on any wavefunction ψ in the Hilbert space (not belonging
to the domain). It may be applied of course only if H is self-adjoint, as it is the case
in our simple example.

Appendix 3: Separability and Jacobi Coordinates
for Arbitrary Masses

We here consider N ≥ 2 harmonically trapped particles interacting in the unitary
limit, with possibly different masses mi but with the same isotropic angular oscillation
frequency ω. The Hamiltonian reads

H =
N∑

i=1

[
− �

2

2mi
�ri +

1

2
miω

2r2
i

]
(5.199)

and the unitary interaction is described by the Wigner-Bethe-Peierls contact con-
ditions on the N-body wavefunction: For all pairs of particles (i, j), in the limit
ri j = |ri − r j | → 0 with a fixed value of the centroid of the particles i and j,
Ri j ≡ (mi ri + m j r j )/(mi + m j ), that differs from the positions rk of the other
particles, k �= i, j, there exists a function Ai j such that

ψ(r1, . . . , rN ) = Ai j (Ri j ; (rk)k �=i, j )

ri j
+ O(ri j ). (5.200)
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As is well known and as we will explain below, the internal Hamiltonian Hinternal =
H − HCM, where HCM = − �2

2M�C + 1
2 Mω2C2, takes the form

Hinternal =
N−1∑
i=1

[
− �

2

2m̄
�ui +

1

2
m̄ω2u2

i

]
(5.201)

in suitably defined Jacobi coordinates [see Eqs. 5.205, 5.214]. Here C = ∑N
i=1

mi ri/M is the center of mass position, M = ∑N
i=1 mi is the total mass, and m̄ is some

arbitray mass reference, for example the mean mass M/N . Then it is straightforward
to express Eq. 5.201 in hyperspherical coordinates, the vector (u1, . . . ,uN−1) with
3N − 3 coordinates being expressed in terms of its modulus R and a set of 3N − 4
hyperangles , so that

Hinternal = − �
2

2m̄

[
∂2

R +
3N − 4

R
∂R + 1

R2�

]
+ 1

2
m̄ω2 R2 (5.202)

where � is the Laplacian over the unit sphere of dimension 3N − 4. As we shall
see, the expression for the hyperradius is simply

R2 ≡
N−1∑
i=1

u2
i =

1

m̄

N∑
i=1

mi (ri − C)2. (5.203)

This form of the Hamiltonian is then useful to show the separability of Schrödinger’s
equation for the unitary gas in hyperspherical coordinates [55, 89] for N ≥ 3 and arbi-
trary masses. The separability Eq. 5.161 that was described for simplicity in the case
of equal mass particles in Sect. 5.3.3 indeed still holds in the case of different masses,
if the Wigner-Bethe-Peierls model defines a self-adjoint Hamiltonian.21 We recall
here the various arguments. First, for zero energy free space eigenstates, the form
Eq. 5.159 is expected from scale invariance, if the Hamiltonian is self-adjoint [89].
Second, the form Eq. 5.161 for the general case, including non-zero energy and
an isotropic harmonic trap, is expected because (i) the Hamiltonian (5.199), after
separation of the center of mass, has the separable form (5.202) in hyperspherical
coordinates, and (ii) Eq. 5.161 obeys the Wigner-Bethe-Peierls contact conditions if
Eq. 5.159 does. This point (ii) results from the fact that the Wigner-Bethe-Peierls
conditions are imposed, for each pair of particles (i,j), for ri j → 0 with a fixed
value of Ri j that differs from the positions rk of the other particles, k �= i, j. Using
ri = Ri j+[m j/(mi+m j )]ri j and r j = Ri j−[mi/(mi+m j )]ri j , with ri j ≡ ri−r j ,
we indeed find that

21 Strictly speaking, it is sufficient that the Laplacian on the unit sphere together with the Wigner-
Bethe-Peierls boundary conditions reexpressed in terms of hyperangles is self-adjoint, as extensively
used in [7]. This is less restrictive than having the full Hamiltonian self-adjoint, since it allows for
example to have a N-body Efimov effect while the N−1 zero-range model is perfectly well-defined
and does not experience any Efimov effect.
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m̄ R2 = mi m j

mi + m j
r2

i j + (mi + m j )(Ri j − C)2 +
∑

k �=i, j

mk(rk − C)2. (5.204)

For N ≥ 3, we see that limri j→0 R2 > 0, so that R varies only to second order in ri j

in that limit. Provided that the function F(R) in Eq. 5.161 has no singularity at non-
zero R, the Wigner-Bethe-Peierls contact conditions are preserved [similarly to the
argument Eq. 5.115]. Third, bosonic or fermionic exchange symmetries imposed on
the N-body wavefunction cannot break the separability in hyperspherical coordinates:
Exchanging the positions of particles of same mass does not change the value of the
hyperradius R, it only affects the hyperangles and thus the eigenvalues [(3N − 5)
/2]2 − s2 of the Laplacian on the unit sphere.

To derive the form Eq. 5.201 of the internal Hamiltonian, we introduce the usual
Jacobi coordinates given for example in [102]:

yi ≡ ri −
∑N

j=i+1 m j r j∑N
j=i+1 m j

for 1≤ i ≤ N − 1. (5.205)

We note that yi simply gives the relative coordinates of particle i with respect to the
center of mass of the particles from i + 1 to N. To simplify notations, we also set
yN ≡ C. Here we derive Eq. 5.201 in a pedestrian way. Note that a more elegant
derivation by recursion is given in page 63 of [55]. In compact form, the Jacobi
change of variables corresponds to setting yi = ∑N

j=1 Mi j r j for 1≤ i ≤ N , where
the non-symmetric matrix M is such that:

• In the case 1≤ i < N , one has: Mi j = 0 for 1≤ j < i , Mi j = 1 for j = i , and

Mi j = −m j/
(∑N

k=i+1 mk

)
for i < j ≤ N .

• MN j = m j/
(∑N

k=1 mk

)
for 1≤ j ≤ N .

From the formula giving the derivative of a composite function, the kinetic energy
operator writes

Hkin ≡
N∑

i=1

− �
2

2mi
�ri = −�

2

2

N∑
j=1

N∑
k=1

S jkgrady j
· gradyk

, (5.206)

where the symmetric matrix S is defined as S jk = ∑N
i=1 M ji Mki/mi . The explicit

calculation of the matrix elements S jk is quite simple. Taking advantage of the fact
that S is symmetric, one has to distinguish three cases, (i) 1≤ j, k ≤ N − 1, with
j = k and j < k as subcases, (ii) j = k = N , and (iii) j < N , k = N . One then
finds that S is purely diagonal, with Sii = 1/μi for 1≤ i ≤ N − 1 and SN N = 1/M .
Here μi is the reduced mass for the particle i and for a fictitious particle of mass
equal to the sum of the masses of the particles from i + 1 to N:

1

μi
= 1

mi
+ 1∑N

j=i+1 m j
for 1≤ i ≤ N − 1. (5.207)
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This results in the following form

Hkin = − �
2

2M
�C −

N−1∑
i=1

�
2

2μi
�yi . (5.208)

The next step is to consider the trapping potential energy term. Inspired by
Eq. 5.208 one may consider the guess

Htrap ≡
N∑

i=1

1

2
miω

2r2
i

?=1

2
Mω2C2 +

N−1∑
i=1

1

2
μiω

2 y2
i . (5.209)

Replacing each yi by their expression in the guess gives

MC2 +
N−1∑
i=1

μi y2
i =

N∑
j=1

N∑
k=1

Q jkr j · rk (5.210)

where Q is uniquely defined once it is imposed to be a symmetric matrix. Setting
Mi = ∑N

j=i+1 m j for 0≤ i ≤ N − 1, and MN = 0, we find for the off-diagonal
matrix elements

Q jk = −μmin( j,k)mmax( j,k)

Mmin( j,k)
+ m j mk

M
+ m j mk

min( j,k)−1∑
i=1

μi

M2
i

(5.211)

where 1≤ j, k ≤ N ,min( j, k) and max( j, k) respectively stand for the smallest and
for the largest of the two indices j and k. The key relation is then that

μi

M2
i

= 1

Mi
− 1

mi + Mi
= 1

Mi
− 1

Mi−1
(5.212)

since Mi + mi = Mi−1 for 1≤ i ≤ N . This allows to calculate the sum over i of
μi/M2

i , as all except the border terms compensate by pairs. E.g. for j < k:

j−1∑
i=1

μi

M2
i

= 1

M j−1
− 1

M
(5.213)

since M0 = M . One then finds that the off-diagonal elements of the matrix Q vanish.
The diagonal elements of Q may be calculated using the same tricks (5.212, 5.213),
one finds Qii = mi for 1≤ i ≤ N . As a consequence, the guess was correct and the
question mark can be removed from Eq. 5.209.

The last step to obtain Eq. 5.201 is to appropriately rescale the usual Jacobi coor-
dinates, setting

ui ≡ (μi/m̄)
1/2yi (5.214)

where m̄ is an arbitrarily chosen mass. A useful identity is the expression for the
square of the hyperradius, Eq. 5.203. Starting from the definition [first identity in
Eq. 5.203] we see that R2 = ∑N−1

i=1
μi
m̄ y2

i . Then the second identity in Eq. 5.203
results from the fact that the guess in Eq. 5.209 is correct.
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Appendix 4: Hydrodynamic Equations

The hydrodynamic equations for a normal compressible viscous fluid are (see [98],22

or Sect. 15 and Sect. 49 in [101] ):

• the continuity equation

∂ρ

∂t
+∇ · (ρv) = 0, (5.215)

• the equation of motion

mρ

(
∂vi

∂t
+ v ·∇vi

)
= − ∂p

∂xi
− ρ ∂U

∂xi
+

∑
k

∂

∂xk

[
η

(
∂vi

∂xk
+ ∂vk

∂xi
− 2

3
δik∇ · v

)]

+ ∂

∂xi
(ζ ∇ · v)

(5.216)
where m is the atomic mass, η is the shear viscosity, ζ is the bulk viscosity, and the
pressure p(r, t) [as well as the temperature T (r, t) appearing in the next equation]
is as always expressible in terms of ρ(r, t) and s(r, t) via the equation of state,23

• the entropy-production equation

ρT

(
∂s

∂t
+ v ·∇s

)
= ∇ · (κ∇T )+ η

2

∑
i,k

(
∂vi

∂xk
+ ∂vk

∂xi
− 2

3
δik∇ · v

)2

+ ζ‖∇ · v‖2

(5.217)
where κ is the thermal conductivity.

Appendix 5: Alternative Derivation of the Vanishing Bulk
Viscosity

Consider the particular case of a unitary gas initially prepared at thermal equilibrium
in an isotropic harmonic trap at a temperature T above the critical temperature. When
the harmonic trap becomes time dependent, U (r, t) = 1

2 mω2(t)r2, each many-
body eigenstate of the statistical mixture evolves under the combination Eq. 5.109
of a time dependent gauge transform and a time dependent scaling transform of
scaling factor λ(t). The effect of the gauge transform is to shift the momentum
operator pi of each particle i by the spatially slowly varying operator mri λ̇/λ. In

22 There is a typo in Eq. 5.10 of [98]: ∇i (ρv
i∂i s) should be replaced by ∇i (ρv

i s).
23 If we would neglect the position-dependence of η and ζ, (5.216) would reduce to the Navier-
Stokes equation.
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the hydrodynamic framework, this is fully included by the velocity field Eq. 5.178.24

Using the macroscopic consequences of a spatial scaling Eqs. 5.19–5.22, one a priori
obtains a time dependent solution of the hydrodynamic equations:

T (r, t) = T (t = 0)/λ2(t) (5.218)

ρ(r, t) = ρ(r/λ, 0)/λ3(t) (5.219)

s(r, t) = s(r/λ, 0) (5.220)

p(r, t) = p(r/λ, 0)/λ5(t) (5.221)

vi (r, t) = xi λ̇(t)/λ(t). (5.222)

One then may a posteriori check that Eq. 5.215 is inconditionally satisfied, and that
Eq. 5.217 is satisfied if ζ ≡ 0. Setting ζ ≡ 0 in Eq. 5.216, and using the hydrostatic
condition ∇ p = −ρ∇U at time t = 0, one finds that Eq. 5.216 holds provided that
λ(t) solves Eq. 5.111 as it should be.

Appendix 6: n-Body Resonances

Usually in quantum mechanics one takes the boundary condition that the wavefunc-
tion is bounded when two particles approach each other; in contrast, the Wigner-
Bethe-Peierls boundary condition (5.75) expresses the existence of a two-body res-
onance. If the interaction potential is fine-tuned not only to be close to a two-body
resonance (i.e. to have |a| � b) but also to be close to a n-body resonance (mean-
ing that a real or virtual n-body bound state consisting of n↑ particles of spin ↑
and n↓ particles of spin ↓ is close to threshold), then one similarly expects that, in

24 To formalize this statement, we consider a small but still macroscopic element of the equilib-
rium gas of volume dV around point r̄, with k−1

F � dV 1/3 � R where kF is the Fermi momen-
tum and R the Thomas-Fermi radius of the gas. We can define the density operator ρ̂elem of this
element by taking the trace of the full N-body density operator over the spatial modes outside
the element. Since the gauge transform in Eq. 5.109 is local in position space, ρ̂elem experiences
the same unitary gauge transform. It would be tempting to conclude from the general formula
dS = −kBTr[ρ̂elem ln ρ̂elem] that the entropy dS of the element is not changed by the gauge trans-
form. This is a valid conclusion however only if the gauge transform does not bring ρ̂elem too far
from local thermal equilibrium. To check this, we split the gauge transform for a single particle
of position r as mr2λ̇/(2�λ) = mλ̇/(2�λ)[r̄2 + 2r̄ · (r − r̄) + (r − r̄)2]. The first term is an
innocuous uniform phase shift. The second term performs a uniform shift in momentum space by
the announced value mv(r̄, t). Due to Galilean invariance, this has no effect on the thermodynamic
quantities of the small element, such as its temperature, its pressure, its density, its entropy. With the
estimate λ̇/λ∼ω, r̄ ∼ R,mωR∼�kF , this second term is of order kF dV 1/3 � 1, not negligible.
The third term is of order mωdV 2/3/�∼ N−1/3k2

F dV 2/3, negligible in the thermodynamic limit.
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the zero-range limit, the interaction potential can be replaced by the Wigner-Bethe-
Peierls boundary condition, together with an additional boundary condition in the
limit where any subset of n↑ particles of spin ↑ and n↓ particles of spin ↓ particles
approach each other. Using the notations of Sect. 5.3.6, this additional boundary
condition reads [55, 70, 89, 103]:

ψ(r1, . . . , rN ) =
(

R−s
J − ε

l2s
Rs

J

)
R
− 3n−5

2
J φ(J ) AJ (C j ,RJ )+ o(Rv

J ) (5.223)

where s = smin(n↑, n↓),while l > 0 and ε = ±1 are parameters of the model playing
a role analogous to the absolute value and the sign of the two-body scattering length.
This approach is only possible if the wavefunction remains square integrable, i.e. if
0 ≤ s < 1, which we assume in what follows. This condition is satisfied e.g. for
n↑ = 2, n↓ = 1 for a mass ratio m↑/m↓ ∈ [8.62 . . . ; 13.6 . . .] [5]. Moreover we
are assuming for simplicity that s �= 0.

Let us now consider the particular case where the two-body scattering length is
infinite, and the external potential is either harmonic isotropic, or absent. Then the
separability in internal hyperspherical coordinates of Sect. 5.3.3 still holds for n = N .
Indeed, Eq. 5.223 then translates into the boundary condition on the hyperradial
wavefunction

∃A ∈ R/ F(R) =
R→0

A ·
(

R−s − ε

l2s
Rs

)
+ O

(
Rs+2

)
(5.224)

and does not affect the hyperangular problem. Consequently [55],

• For the n-body bound state, which exists if ε = +1:

E = − 2�
2

m l2

[
�(1+ s)

�(1− s)

] 1
s

, (5.225)

F(R) = Ks

(
R

√
−2E

m

�2

)
. (5.226)

• For the eigenstates in a trap:

Esolves:− ε ·
(

�

mω l2

)s

=
�

(
1+s−E/(�ω)

2

)
�(−s)

�
(

1−s−E/(�ω)
2

)
�(s)

, (5.227)

F(R) = 1

R
W E

2�ω
, s

2

(
R2 mω

�

)
. (5.228)

In particular, for l = ∞, we are exactly at the n-body resonance, since the energy of
the n-body bound state vanishes. The spectrum in a trap then is E = (−s+1+2q)�ω
with q ∈ N.

Note that, most often, s≥ 1, in which case one would have to use an approach
similar to the one developped by Pricoupenko for the case of two-body resonances
in non-zero angular momentum channels, and to introduce a modified scalar product
[22, 104].
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Chapter 6
Universal Relations for Fermions
with Large Scattering Length

Eric Braaten

6.1 Introduction

Particles with short-range interactions that produce a large scattering length have
universal properties that depend only on the scattering length [1]. A system consisting
of such particles is strongly interacting in the sense that there are effects of the
interactions that must be treated nonperturbatively. These strong interactions give rise
to strong correlations among the particless. Many theoretical methods, even if they are
nonperturbative, are inadequate for dealing with such strong correlations. However,
such a system is also governed by universal relations that follow from the short-
distance and short-time dynamics associated with the large scattering length. These
universal relations provide powerful constraints on the behavior of the system. They
hold for any state of the system: few-body or many-body, ground state or nonzero
temperature, homogeneous or in a trapping potential, normal state or superfluid,
balanced in the two spin states or imbalanced. They connect various properties of
the system, ranging from thermodynamic variables to large-momentum and high-
frequency tails of correlation functions.

The systems for which the universal relations have been most extensively studied
are those consisting of fermions with two spin states. The universal relations that
have been derived thus far all involve a property of the system called the contact,
which measures the number of pairs of fermions in the two spin states with small sep-
arations. Many of these relation were first derived by Shina Tan, and they are known
as the Tan relations [2–4]. Tan derived these relations by exploiting the fact that the
large scattering length can be taken into account through boundary conditions on the
many-body Schrödinger wavefunction for otherwise noninteracting particles. The
universal relations can also be derived concisely within a quantum field theory
framework [5], where they follow from renormalization and from the operator
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product expansion. Such a framework facilitates the derivation of additional univer-
sal relations and the systematic inclusion of corrections associated with the nonzero
range of the interactions.

In this review, we summarize the current theoretical and experimental status of
universal relations for systems consisting of fermions with two spin states and a large
scattering length. We begin in Sect. 6.2 by presenting the Tan relations. In Sect. 6.3,
we discuss the physical interpretation of the contact and we provide some illustrative
examples. In Sect. 6.4, we present other universal relations that have been derived
more recently. In Sect. 6.5, we describe exciting recent developments in the field of
ultracold atoms involving measurements of the contact and experimental tests of the
universal relations. In Sect. 6.6, we discuss the derivation of the universal relations,
with an emphasis on quantum field theory methods.

6.2 The Tan Relations

The Tan relations were derived by Shina Tan in a series of three papers [2–4]. The
first two of these papers were written in 2005, but they were not published until 2008,
when all three papers were published back-to-back in Annals of Physics.

The Tan relations apply to systems consisting of fermions with two spin states
whose scattering length a is large compared to the range r0 of their interactions.
We will refer to the fermions as atoms and label the two spin states by an index σ with
values 1 and 2. In a many-body system, the number densities nσ and the temperature
T must also be small enough that the corresponding length scales are large compared
to the range: n−1/3

σ � r0 and λT � r0,where λT = (2π�
2/mkB T )1/2. If the system

is in an external trapping potential V (r) = 1
2 mω2r2, the length scale associated with

the trap should also be large compared to the range: (�/mω)1/2 � r0.

The Tan relations involve an extensive quantity, the contact C, which is the integral
over space of a local quantity, the contact density C(R) :

C =
∫

d3 RC(R). (6.1)

We proceed to present the Tan relations in chronological order.

6.2.1 Tails of Distributions

In the first of Tan’s two 2005 papers, he derived three universal relations [2]. The
first was for the tails of the momentum distributions nσ (k) for the two spin states
σ = 1, 2:

Tail of the momentum distribution. The distributions of the wavevector k have
power-law tails at large k:
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nσ (k) −→ C

k

4

. (6.2)

The coefficient C is the contact and it is the same for both spin states.
The asymptotic behavior in (6.2) actually applies only in the scaling region

|a|−1 � k � r−1
0 . The wavenumber must also be larger than the scales associ-

ated with the system, such as n1/3, λ−1
T , and (mω/�)1/2. The momentum distribu-

tions in Eq. 6.2 have been normalized so that the total number of atoms in the spin
state σ is

Nσ =
∫

d3k

(2π)3
nσ (k). (6.3)

The universal relation in Eq. 6.2 implies that the contact is positive definite and
has dimension (length)−1. Thus the contact density has dimensions (length)−4.

The total energy E of the system is the sum of the kinetic energy T, the interaction
energy U, and the energy V associated with an external potential:

E = T + U + V . (6.4)

The kinetic energy T (which should not be confused with the temperature) can be
expressed as an integral over the momentum distribution:

T ≡
∑
σ

∫
d3k

(2π)3

(
�

2k2

2m

)
nσ (k). (6.5)

The asymptotic behavior of the momentum distribution in Eq. 6.2 implies that T
is ultraviolet divergent. This divergence actually occurs only in the zero-range limit
r0 → 0. For interactions with a finite range, the integral in Eq. 6.5 is cut off by the
range and therefore has a contribution that behaves like 1/r0 as r0 → 0. Thus the
physical interpretation of the ultraviolet divergence is that T is sensitive to the range.
The second Tan relation in Ref. [2] implies that the sensitivity of the kinetic energy
to the range is cancelled by the interaction energy:

Energy relation. The sum of the kinetic and interaction energies is ultraviolet
finite and it is completely determined by the momentum distributions nσ (k) and the
contact C:

T + U =
∑
σ

∫
d3k

(2π)3
�

2k2

2m

(
nσ (k)− C

k4

)
+ �

2

4πma
C. (6.6)

In the integral on the right side, the subtraction term cancels the tail of the momen-
tum distribution and makes the integral convergent in the ultraviolet. The sum of the
two terms in Eq. 6.6 proportional to the contact C is the interaction energy. The first
of those two terms is ultraviolet divergent. Thus the interaction energy is sensitive
to the range, but that sensitivity is exactly cancelled by the kinetic energy. The last
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term in Eq. 6.6 is the interaction energy that remains after subtracting the divergent
term. Remarkably, it is also proportional to the contact.

The third Tan relation in Ref. [2] gives the asymptotic behavior of the correlation
function for the densities of the two spin states at short distances:

Density–density correlator at short distances. The correlation between the number
densities for the two spin states at points separated by a small distance r diverges as
1/r2 and the coefficient of the divergence is proportional to the contact density:

〈
n1

(
R + 1

2
r
)

n2

(
R − 1

2
r
)〉

−→ 1

16π2

(
1

r2 − 2

ar

)
C(R). (6.7)

Tan also pointed out that the contact density appears in the short-distance expan-
sion for the correlator of the quantum field operators that create and annihilate the
atoms. This expansion will be discussed in Sect. 6.6.4.4.

6.2.2 Changes in the Scattering Length

From the three universal relations described above, one might conclude that the
contact is an esoteric property of the system that has only to do with tails of distrib-
utions. In the second of Tan’s 2005 papers [3], he derived another universal relation
that makes it clear that the contact is an absolutely central property of the system:

Adiabatic relation. The rate of change of the energy due to a small change in the
inverse scattering length is proportional to the contact:

(
dE

da−1

)
S

= − �
2

4πm
C. (6.8)

The derivative is evaluated with the entropy S held fixed. The particle numbers
N1 and N2 are also implicitly held fixed.

In the simplest case, E is just an energy eigenvalue. The adiabatic relation also
holds for any statistical mixture of eigenstates if the derivative is evaluated with
the occupation numbers held fixed. By the adiabatic theorem of quantum mechanics,
if the scattering length changes sufficiently slowly with time, the occupation numbers
remain constant. Thus if the contact C is known as a function of a, the adiabatic
relation in Eq. 6.8 can be integrated to obtain the accumulated change in E.

The adiabatic relation can also be expressed in terms of the derivative of the free
energy F = E − T S with the temperature T held fixed:

(
dF

da−1

)
T

= − �
2

4πm
C. (6.9)

As pointed out by Tan, this implies that the contact determines the thermodynamics
of the system. Given the contact of a system as a function of the scattering length
a and other variables, such as N1, N2, and T, the free energy F can be obtained by
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integrating Eq. 6.9 with respect to a. A convenient boundary condition is provided by
the limit a → 0−, in which the atoms are noninteracting. From F, one can determine
all the other thermodynamic functions.

If one uses Eq. 6.2 to define the contact in terms of the tail of the momentum
distribution, this appears to be a case of the tail wagging the dog. The thermody-
namic behavior of the system seems to be determined by the tail of the momentum
distribution. However the proper interpretation is that the contact is a central property
of the system that determines both the thermodynamics and the tail of the momentum
distribution.

The adiabatic relation in Eq. 6.8 determines the change in the total energy when
the scattering length changes very slowly. Tan also considered the opposite limit in
which the scattering length changes very rapidly [3]:

Sudden change in the scattering length. If the scattering length is changed sud-
denly from a to a′, the change in the total energy is proportional to the contact:

�E = − �
2

4πm

(
1

a′ − 1

a

)
C, (6.10)

where C is the initial value of the contact.
This result requires the time scale for the sudden change in scattering length

to be much slower than the time scale mr2
0/� associated with the range. Tan also

presented a more general result for the change in the energy due to a rapid change
in the scattering length, which will be described in Sect. 6.4.5.

6.2.3 Additional Tan Relations

In Tan’s 2008 paper, he derived two additional universal relations that apply for
specific forms of the external potential [4].

Virial theorem. For a system in a harmonic trapping potential, the components of
the energy E in Eq. 6.4 satisfy

T + U − V = − �
2

8πma
C. (6.11)

The virial theorem for the unitary limit a = ±∞ was first derived and also verified
experimentally by Thomas, Kinast, and Turlapov [6]. The virial theorem in Eq. 6.11
is the generalization to finite scattering length.

Pressure relation. For a homogeneous system, the pressure and the energy density
are related by

P = 2

3
E + �

2

12πma
C. (6.12)
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The pressure relation was actually first derived in Ref. [3] for the special case of
a balanced gas in which the two spin states have equal populations. The derivation
was extended to the general case in Ref. [4].

If there are inelastic two-body scattering processes with a large energy release,
they will result in a decrease in the number of low-energy atoms. Tan realized that the
rate at which the number density of low-energy atoms decreases is proportional to
the contact density C (Tan S, private communication). The proportionality constant
was first given in Ref. [5]. If there are inelastic two-body scattering channels, the
scattering length a has a negative imaginary part. The proportionality constant in the
universal relation can be expressed in terms of that complex scattering length:

Inelastic two-body losses. If there are inelastic two-body scattering processes with
a large energy release, the number density of low-energy atoms decreases at a rate
that is proportional to the contact density:

d

dt
nσ (R) = −�(−Im a)

2πm|a|2 C(R). (6.13)

6.3 What is the Contact?

Given the Tan relations described in Sect. 6.2, it is evident that the contact is a
central property of the system. But what is it? In this section, we provide an intuitive
interpretation of the contact. We also provide additional insights into the contact by
giving analytic expressions in some simple cases.

6.3.1 Intuitive Interpretation

An intuitive interpretation of the contact density can be derived from the universal
relation for the density–density correlator in Eq. 6.7. That relation can be expressed
in the form

〈n1(R + r1) n2(R + r2)〉 −→ 1

16π2|r1 − r2|2 C(R). (6.14)

If we integrate both r1 and r2 over a ball of radius s, we obtain

Npair(R, s) −→ s4

4
C(R). (6.15)

The left side simply counts the number of pairs inside that ball, which is the
product N1 N2 of the number of atoms in the two spin states. The volume of that
ball is V = 4

3πs3. One might naively expect the number of pairs to scale as V 2

as V → 0. However, according to Eq. 6.15, it scales instead as V 4/3. That scaling
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behavior applies only for s smaller than |a| and also smaller than the length scales
associated with the system, such as n−1/3, λT , and (�/mω)1/2. The scaling behavior
extends down to s of order the range r0.

A naive definition of the density of pairs is the limit as V → 0 of N1 N2/V 2,

where N1 and N2 are the numbers of atoms in the volume V. This quantity has
dimensions (length)−6. The result in Eq. 6.15 implies that the combination with
a nontrivial small-volume limit is N1 N2/V 4/3, which has dimensions (length)−4.

Thus a more appropriate definition of the local pair density is the small-volume limit
of N1 N2/V 4/3, up to a normalization constant that can be chosen by convention.
The unusual dimensions of (length)−4 for this local pair density can be expressed
concisely by saying that this quantity has scaling dimension 4. The difference −2
between the scaling dimension and the naive dimension 6 is called the anomalous
dimension. This anomalous dimension comes from the strong correlations associated
with the large scattering length. This anomalous scaling behavior implies that the
number of pairs in a very small volume is much larger than one would naively expect
by extrapolating from larger volumes. The contact density is a measure of the local
pair density that takes into account this anomalous scaling behavior.

Further intuition for the contact can be gleaned from the universal relation for the
tail of the momentum distribution in Eq. 6.2. It implies that the number of atoms in
either spin state whose wavenumber k is larger than K is

Nσ (|k| > K ) = 1

2π2 K
C, (6.16)

provided K is in the scaling region 1/|a| � K � 1/r0 and is larger than the
wavenumber scales set by the system. Thus the contact is a measure of the number
of atoms with large momentum.

When interpreting the contact density as a measure of the local pair density, one
should not confuse those pairs with Cooper pairs, which are pairs with a specific
momentum correlation. Under conditions in which Cooper pairs are well defined,
the typical separation of the atoms in a Cooper pair is much larger than the interpar-
ticle spacing. The number of Cooper pairs in a volume V that is comparable to or
smaller than the volume per particle is not well defined. It certainly does not have
the anomalous scaling behavior V −4/3 of the total number of pairs.

6.3.2 Few-Body Systems

The adiabatic relation in Eq. 6.8 can be used as an operational definition of the
contact. If the energy of a system is known as a function of the scattering length, we
can simply differentiate to get an expression for the contact. A simple example in the
case a > 0 is the weakly-bound diatomic molecule, or shallow dimer, consisting of
two atoms with spins 1 and 2. The universal result for its binding energy is �

2/ma2.

Its energy is therefore
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Edimer = − �
2

ma2 . (6.17)

Using the adiabatic relation in Eq. 6.8, we find that the contact for the dimer is

Cdimer = 8π

a
. (6.18)

Blume and Daily have calculated the contact numerically for the ground state
of 4 fermions, 2 in each spin state, trapped in a harmonic potential and interacting
through a potential with a large adjustable scattering length a [7]. They determined
the contact as a function of a using four different universal relations: the tail of the
momentum distribution in Eq. 6.2, the density-density correlator at short distances
in Eq. 6.7, the adiabatic relation in Eq. 6.8, and the virial theorem in Eq. 6.11. The
small differences between the four determinations of the contact were compatible
with systematic errors associated with the nonzero range of the potential.

6.3.3 Balanced Homogeneous Gas

The contact density C for the homogeneous gas can be obtained by using the adiabatic
relation in Eq. 6.8 as an operational definition. Dividing both sides of the equation
by the volume, the relation can be expressed in the form

C = 4πma2

�2

dE
da
. (6.19)

Analytic results for the energy density ε are available in various limits, and they
can be used to obtain analytic expressions for the contact density.

We first consider the case of a balanced gas, in which the two spin states are equally
populated, at zero temperature. The total number density n = 2n1 = 2n2 determines
the Fermi momentum: kF = (3π2n)1/3. The ground state is determined by the
dimensionless interaction variable 1/kF a.As this variable changes from −∞ to 0 to
+∞, the ground state changes smoothly from a mixture of two weakly-interacting
Fermi gases to a Bose-Einstein condensate of diatomic molecules. The ground state
is always a superfluid. The mechanism for superfluidity evolves smoothly from the
BCS mechanism, which is the Cooper pairing of atoms in the two spin states, to the
BEC mechanism, which is the Bose-Einstein condensation of dimers.

In the BCS limit a → 0−, the energy density can be expanded in powers of kF a:

E = �
2k5

F

10π2m

(
1 + 10

9π
kF a + · · ·

)
. (6.20)

Using Eq. 6.19, we find that the contact density in the BCS limit is

C −→ 4π2n2a2. (6.21)
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This is proportional to the low-energy cross section 4πa2 and to the product (n/2)2

of the number densities of the two spin states. The contact density decreases to 0 as
a → 0−, but it decreases only as a2. This result emphasizes that the contact density
is not closely related to the density of Cooper pairs, which decreases exponentially
as exp(−π/kF |a|) as a → 0−.

In the unitary limit a → ±∞, the energy density can be expanded in powers of
1/kF a:

E = �
2k5

F

10π2m

(
ξ − ζ

kF a
+ · · ·

)
, (6.22)

where ξ and ζ are numerical constants. Using Eq. 6.19, we find that the contact
density in the unitary limit is

C −→ 2ζ

5π
(3π2n)4/3. (6.23)

Since the interaction provides no length scale in the unitary limit, the contact
density must be proportional to k4

F by dimensional analysis. An estimate ζ ≈ 1 for
the numerical constant in Eq. 6.23 can be obtained from numerical calculations of
the energy density near the unitary limit using quantum Monte Carlo methods [8, 9].
A more precise value can be obtained from numerical calculations of the density-
density correlator in the unitary limit using the fixed-node diffusion Monte Carlo
method [10]. Using the Tan relation for the density-density correlator in Eq. 6.7, we
obtain the value

ζ ≈ 0.95. (6.24)

In the BEC limit a → 0+, the energy density can be expanded in powers of
(kF a)3/2:

E = − �
2n

2ma2 + π�
2n2add

4m

(
1 + 128

15

√
na3

dd/2π + · · ·
)
, (6.25)

where add ≈ 0.60a is the dimer-dimer scattering length [11]. The leading term is the
total binding energy density for dimers with number density n/2 and binding energy
given by Eq. 6.17. The second term is the mean-field energy of a Bose-Einstein
condensate of dimers with dimer-dimer scattering length add . Using Eq. 6.19,
we find that the contact density in the BEC limit is

C −→ 4πn

a
. (6.26)

This is equal to the contact 8π/a for a dimer, which is given in Eq. 6.18, multiplied
by the dimer number density n/2. The contact density diverges as 1/a as a → 0+.
The first correction to the leading term in Eq. 6.26 is suppressed by a factor of (kF a)3.
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Fig. 6.1 The dimensionless
contact density s = C/k4

F for
the balanced homogeneous
gas as a function of the
dimensionless coupling
strength 1/kF a, from
Ref. [12]. The left dashed
line is the leading
contribution in the BCS limit
given by Eq. 6.21. The right
dashed line is the leading
contribution in the BEC limit
given by Eq. 6.26. The
contact density in the unitary
limit may be underpredicted
by about 16%

The contact density C for the ground state of the balanced homogeneous gas
can be expressed as k4

F multiplied by a monotonically-increasing dimensionless
function of 1/kF a. Haussmann, Punk, and Zwerger have calculated this function
numerically [12]. They used the Luttinger–Ward self-consistent formalism to cal-
culate the single particle spectral functions. The contact density was determined
using the Tan relation in Eq. 6.2 for the tail of the momentum distribution. Their
result for the contact density as a function of 1/kF a is shown in Fig. 6.1. It inter-
polates smoothly between the BCS limit in Eq. 6.21 and the BEC limit in Eq. 6.26.
Their result in the unitary limit corresponds to a value ζ ≈ 0.80 for the constant in
Eq. 6.23. This is about 16% smaller than the value in Eq. 6.24 that was obtained from
a fixed-node diffusion Monte Carlo calculation. This difference reflects a systematic
theoretical error in the calculational method of either Ref. [10] or Ref. [12] or both.

The dependence of the contact density on the temperature has been determined
analytically in various limits by Yu, Bruun, and Baym [13]. In the low-temperature
limit, the leading thermal contribution to the contact density comes from phonons.
The leading thermal correction at small T increases like T 4 [13]. It becomes sig-
nificant when T is comparable to the Fermi temperature: kB TF = �

2k2
F/2m. In the

BCS limit and in the unitary limit, the thermal contribution differs from the contact
at T = 0 by a factor of (T/TF )

4 multiplied by a numerical constant. In the BEC
limit, the thermal contribution is suppressed by a factor of (T/TF )

4 and by a further
factor of (kF a)1/2.

The contact density at high temperature can be calculated using the virial expan-
sion. The high-temperature limit1 was determined by Yu, Bruun, and Baym [13]:

1 In Ref. [13], the contact density was denoted by 16π2
�

2C and the total number density was
denoted by 2n instead of n.
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C −→ 8π2
�

2n2

mkB T
. (6.27)

Since the contact density increases as T 4 at small T and decreases as 1/T at suf-
ficiently large T, it must achieve a maximum somewhere in between. The maximum
occurs for T of order TF . The maximum is pronounced only when a is near the
unitary limit [13].

Palestini, Perali, Pieri, and Strinati have calculated the contact density for the
balanced homogeneous gas at nonzero temperature using a diagrammatic t-matrix
approximation [14]. They determined the contact from the high-momentum tail of
the momentum distribution in Eq. 6.2 and from the high-frequency tail of the radio-
frequency transition rate (which is discussed in Sect. 6.4.1).

Thus far, the calculational methods that have been used to calculate the contact
density numerically involve uncontrolled approximations. While they may be accu-
rate in certain limits, there may also be regions of kF a and T/TF in which the
systematic theoretical errors are not negligible.

6.3.4 Strongly-Imbalanced Homogeneous Gas

We now consider the strongly-imbalanced gas, in which a tiny population of minority
atoms in state 2 is immersed in a system of atoms in state 1. The minority atoms can
be considered as a dilute gas of impurities in the Fermi sea of majority atoms. In the
homogeneous gas with number densities n1 and n2, the ground state is determined
by the dimensionless interaction variable 1/kF1a, where kF1 = (6π2n1)

1/3 is the
Fermi wavenumber for the majority atoms. In the BCS limit a → 0−, the impurity
particle is an atom in state 2. In the BEC limit a → 0+, the impurity particle is
the dimer whose binding energy is given by Eq. 6.17. Using a diagrammatic Monte
Carlo method, Prokof’ev and Svistunov have shown that there is a phase transition
at a critical value ac of the scattering length given by 1/kF1ac = 0.90 ± 0.02 [15].
As 1/kF1a increases through this critical value, the impurity changes from a qua-
siparticle associated with the atom in state 2, which is called a polaron, to a dimer
quasiparticle.

Analytic expressions for the contact density for the ground state of the strongly-
imbalanced homogeneous gas can be obtained from the energy density using
Eq. 6.19. In the BCS limit a → 0−, the contact density is

C −→ 16π2n1n2a2. (6.28)

This is proportional to the low-energy cross section 4πa2 and to the product n1n2
of the two number densities. The contact density is an increasing function of 1/a
that is smooth except for a discontinuity at the phase transition at a = ac. In the BEC
limit a → 0+, the contact density is
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Fig. 6.2 The dimensionless contact density s = C/(6π2kF1n2) for the strongly-imbalanced homo-
geneous gas as a function of the dimensionless coupling strength 1/kF1a, from Ref. [16]. The
dashed line is the leading contribution in the BEC limit given by Eq. 6.29. The dotted and dash–
dotted lines are continuations of the solid line past the phase transition into metastable regions. The
position of the phase transition may be underpredicted by about 7%

C −→ 8πn2

a
. (6.29)

This is equal to the contact 8π/a for the dimer, which is given in Eq. 6.18, mul-
tiplied by the dimer number density n2.

The contact density C for the ground state of the strongly-imbalanced homo-
geneous gas can be expressed as kF1n2 multiplied by a monotonically-increasing
dimensionless function of 1/kF1a. This function has been calculated numerically
by Punk, Dumitrescu, and Zwerger [16]. They used the adiabatic relation in Eq. 6.19
to obtain the contact from the ground state energy density, which they calculated
using a variational method that gives a fairly good approximation to the results from
the diagrammatic Monte Carlo method [15]. The results of Ref. [16] for the contact
density as a function of 1/kF1a are shown in Fig. 6.2. For large negative values of
1/kF1a, the contact density can be approximated by the BCS limit in Eq. 6.28. It is
predicted to increase to about 5kF1n2 in the unitary limit ato ±∞ and then to about
20kF1n2 at the phase transition ac, where it is predicted to have a discontinuity of
about 20%. The prediction of the variational method for the position of the phase
transition is (kF1ac)

−1 ≈ 0.84, which is about 7% smaller than the diagrammatic
Monte Carlo result 0.90 ± 0.02. This difference reflects a systematic theoretical
error in the variational method of Ref. [12]. For large positive values of 1/kF1a, the
contact density can be approximated by the BEC limit in Eq. 6.29.
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6.4 Other Universal Relations

Many new universal relations involving the contact have been discovered in recent
years. They reveal that the contact plays a central role in many of the most important
probes for ultracold atoms.

6.4.1 RF Spectroscopy

Given a system of atoms in spin states 1 and 2, a radio-frequency (rf) signal that is
tuned to near the transition frequency between an atom in state 2 and an atom in a third
spin state 3 can transform the atoms in state 2 coherently into linear combinations of
atoms in states 2 and 3. These atoms can be subsequently transformed by decohering
processes into a mixture of atoms in states 2 and 3. The net effect is a transfer of
atoms from the state 2 to the state 3. The transition rate
(ω) for this process depends
on the frequency ω of the rf signal. It is convenient to choose the offset for ω to be
the transition frequency for a single atom. The transition rate for an extremely dilute
sample of N2 atoms is then a delta function at ω = 0:


(ω) −→ π�2δ(ω)N2, (6.30)

where� is the Rabi frequency associated with the transition. In a many-body system
consisting of atoms in states 1 and 2,
(ω) can be modified by initial-state interactions
between atoms in states 1 and 2 and by final-state interactions between atoms in state
3 and atoms in states 1 or 2. However the effects of these interactions are constrained
by a sum rule [17, 18]:

∞∫
−∞

dω
(ω) = π�2 N2. (6.31)

If the atoms interact through large pair scattering lengths a12 ≡ a, a13, and a23,

there are universal relations that govern the rf transition rate 
(ω). One of these
universal relations is a sum rule derived by Punk and Zwerger [19] and by Baym,
Pethick, Yu, and Zwierlein [20]:

∞∫
−∞

dωω
(ω) = ��2

4m

(
1

a12
− 1

a13

)
C12, (6.32)

where C12 ≡ C is the contact for atoms in states 1 and 2. The term proportional
to 1/a13 comes from final-state interactions between atoms in states 1 and 3. If we
divide the sum rule in Eq. 6.32 by the sum rule in Eq. 6.31, we get an expression for
the frequency shift 〈ω〉 averaged over the system. This frequency shift is called the
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clock shift. The universal relation for the clock shift has several interesting features.
If a13 = a12, the clock shift vanishes because of a symmetry relating atoms 2 and 3.
The clock shift has smooth behavior in the unitary limit a12 → ±∞. This behavior
was first observed in experiments on rf spectroscopy in 6Li atoms [21]. If we take the
limit a13 → 0 in Eq. 6.32, the sum rule diverges. This implies that if the scattering
length a13 is not large, the clock shift is sensitive to the range.

Another universal relation for rf spectroscopy is that the high-frequency tail of

(ω) is proportional to the contact. The general result for large scattering lengths
a12 and a13 was derived in Ref. [22]:


(ω) −→ �2(a−1
13 − a−1

12 )
2

4πω(mω/�)1/2(a−2
13 + mω/�)

C12. (6.33)

The asymptotic behavior in Eq. 6.33 holds when ω is much larger than the many-
body frequency scales �k2

F/m and kB T/�, but still much smaller than the frequency
scale �/mr2

0 associated with the range. If ω � �/ma2
13, the high-frequency tail

decreases asω−5/2. The result if the scattering length a13 is not large can be obtained
by taking the limit a13 → 0 in Eq. 6.33:


(ω) −→ �2

4πω(mω/�)1/2
C12. (6.34)

In this case, the high-frequency tail decreases asω−3/2. This scaling behavior was
derived in Ref. [23] and the coefficient was first calculated correctly by Schneider
and Randeria [24]. The scaling behavior was also pointed out in Ref. [25]. If 
(ω)
decreases asymptotically as ω−3/2, the sum rule in Eq. 6.32 diverges. Thus it is the
high-frequency tail in Eq. 6.34 that makes this sum rule sensitive to the range in the
case of a13 that is not large.

6.4.2 Photoassociation

Photoassociation uses a laser to transfer pairs of low-energy atoms into an excited
molecular state with very high energy. The wavefunction of the molecule has support
only over very short distances much smaller than the range r0, so the pair of atoms
must be very close together to have a reasonable probability of making the transition.
If there is a closed-channel molecule near the two-atom threshold that can be excited
by the laser, it can dominate the photoassociation rate. The rate is then proportional
to the number Nmol of closed-channel molecules:


 = �2

γ
Nmol, (6.35)

where � is the Rabi frequency of the laser and γ is the line width of the excited
molecule.
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Werner, Tarruel, and Castin [27] and Zhang and Leggett [28] pointed out that
if the large scattering length a comes from the tuning of the magnetic field B to
near a Feshbach resonance associated with this closed-channel molecule, then Nmol
is proportional to the contact. If the zero of energy is chosen to coincide with the
threshold for the atoms, the rate of change of the energy of the system with respect
to the magnetic field can be expressed as

dE

dB
= −μmol Nmol, (6.36)

where μmol is the difference between the magnetic moment of the closed-channel
molecule and twice the magnetic moment of an atom in the open channel. The
scattering length a(B) near a Feshbach resonance at B0 can be parametrized by

a(B) = abg

(
1 − �

B − B0

)
. (6.37)

Combining Eqs. 6.36 and 6.37 and using the adiabatic relation in Eq. 6.8,
we obtain an expression for the number of closed-channel molecules that is pro-
portional to the contact [27]:

Nmol = R∗�2

4π [�− (B − B0)]2 C, (6.38)

where R∗ is a positive length that characterizes the width of the Feshbach
resonance:

R∗ = − �
2

mμmolabg�
. (6.39)

That length can also be expressed as R∗ = − 1
2rs, where rs is the effective range

at the center of the resonance B = B0.

The universal relation between the number of closed-channel molecules and the
contact was previously derived formally by Braaten, Kang and Platter [29], but they
did not make the connection to photoassociation.

6.4.3 Structure Factors

Structure factors encode information about density-density correlations in a system.
For a many-body system of fermions with two spin states, the correlations between
the densities of the two spin states are particularly important. The corresponding
static structure factor S12(q) for a homogeneous system is the Fourier transform in
the separation vector r1 − r2 of the correlator 〈n1(r1)n2(r2)〉 of the two densities.
The dynamic structure factor S12(q, ω) is the Fourier transform in the separation
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vector and the time interval between the two densities. It encodes information about
the degrees of freedom that can be excited by density fluctuations. The static structure
factor can be obtained by integrating S12(q, ω) over ω.

If the scattering length is large, the static structure factor S12(q) has a high-
momentum tail that decreases like 1/q [30]. Hu, Liu, and Drummond have pointed
out that this tail is proportional to the contact density [31]:

S12(q) −→ 1

8

(
1

q
− 4

πaq2

)
C. (6.40)

The normalization of S12(q) in Ref. [31] differs from that in Eq. 6.40 by a factor
of 2/N , where N = N1 + N2 is the total number of atoms. The universal relation in
Eq. 6.40 follows simply by taking the Fourier transform of the Tan relation in Eq. 6.7
for the density-density correlation at short distances.

Son and Thompson have studied the dynamic structure factor S12(q, ω) in the
unitary limit [32]. They showed that the leading contribution in the scaling limit
ω → ∞ and q → ∞ with x = �q2/2mω fixed is proportional to the contact
density. The coefficient of C is (mω3/�)−1/2 multiplied by a complicated function of
the dimensionless scaling variable x, which they calculated analytically. For small x,
their result reduces to

S12(q, ω) −→ 4q4

45π2ω(mω/�)5/2
C. (6.41)

Taylor and Randeria have also determined the high-frequency tail of the dynamic
structure factor [33]. Their result for the limits q → 0 followed by ω → ∞ differs
from that in Eq. 6.41 by a factor of 3/2.

6.4.4 Viscosity Spectral Functions

Taylor and Randeria have derived universal relations for the viscosity spectral func-
tions of a homogeneous gas [33]. They found that the shear viscosity spectral function
η(ω) has a high-frequency tail that is proportional to the contact density. An error in
the coefficient was corrected by Enss, Haussmann, and Zwerger [34]:

η(ω) −→ �
2

15π(mω/�)1/2
C. (6.42)

Taylor and Randeria also derived a sum rule for η(ω):

∞∫
0

dω

(
η(ω)− �

2C
15π(mω/�)1/2

)
= π�

3

(
E − 3�

2

15πma
C
)
, (6.43)
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where E is the energy density. Given the high-frequency tail of η(ω) in Eq. 6.42,
the subtraction term on the left side of Eq. 6.43 is necessary to make the integral
convergent.

Taylor and Randeria have also derived a sum rule for the bulk viscosity spectral
function ζ(ω) [33]:

∞∫
0

dωζ(ω) = �
3

72ma2

(
dC

da−1

)
S/N

, (6.44)

where the derivative is taken with the entropy per particle held fixed. Since the
spectral function ζ(ω) is positive definite, the sum rule in Eq. 6.44 implies that the
contact density C is a strictly increasing function of a−1.

6.4.5 Rapid Change in the Scattering Length

In Ref. [3], Tan showed that if the scattering length a(t) is time dependent, the total
energy of the system changes at a rate that is proportional to the contact:

d

dt
E(t) = − �

2

4πm
C(t)ḃ(t), (6.45)

where b(t) = 1/a(t) and C (t) is the instantaneous contact at time t. If the external
potential V (r) is also changing with time, there is an additional term proportional
to V̇ (r) on the right side of Eq. 6.45. Tan referred to that equation as the dynamic
sweep theorem.

The simplest case of a time-dependent scattering length is a sudden change in a,
for which the change in the energy is given in Eq. 6.10. Tan also presented a more
general result for a scattering length a(t) that changes rapidly enough that the contact
does not have time to evolve significantly from its original value. If the scattering
length a(t) changes over a short time interval T from an initial value a(0) to a final
value a(T), the change in the total energy is

�E = − �
2

4πm

⎛
⎝ 1

a(T )
− 1

a(0)
+

√
8�

πm

T∫
0

dt

t∫
0

dt ′
√

t − t ′ḃ(t)ḃ(t ′)

⎞
⎠ C, (6.46)

where C is the contact at the initial time t = 0. The time interval T must be short
compared to the time scales for the evolution of the system. It must also be long
compared to the time scale mr2

0/� set by the range.
Son and Thompson have also considered rapid changes in the scattering length

for a system that is initially in the unitary limit [32]. The simplest case is a small-
amplitude oscillation of the inverse scattering length about the unitary limit: a(t)−1 =
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γ0 cos(ωt). Ifω is large compared to the Fermi frequency �k2
F/2m, the energy density

increases at a rate that is proportional to the contact density:

d

dt
E = γ 2

0 �
2

8πm

√
�ω

m
C. (6.47)

The frequency ω must also be small compared to the frequency scale �/mr2
0 set

by the range.
Another case of a rapidly varying scattering length considered in Ref. [32] is a

pulse a(t)−1 that differs from zero only during a short time interval. The change in
the total energy is proportional to the contact:

�E = �
5/2

4π2m3/2

⎛
⎝

∞∫
0

dω
√
ω |γ̃ (ω)|2

⎞
⎠ C, (6.48)

where γ̃ (ω) is the Fourier transform of the pulse: γ̃ (ω) = ∫ T
0 dt exp(iωt)a(t)−1.

This is consistent with the more general result in Eq. 6.46, which does not require
the unitary limit before and after the pulse.

6.5 Making Contact with Experiment

There are some exciting recent developments in the study of the universal relations
using experiments with ultracold atoms. They involve various measurements of the
contact and the experimental verification of some of the universal relations.

6.5.1 Photoassociation

The Hulet group at Rice University in Houston has measured the photoassociation
rate of a balanced mixture of 6Li atoms in the lowest two hyperfine spin states [35].
The scattering length was controlled by using the Feshbach resonance near 834 G.
They measured the photoassociation rate at various values of the scattering length,
with 1/kF a ranging from about −1.4 to about +5.4. The photoassociation laser can
excite the closed-channel molecule that is responsible for the Feshbach resonance.
The photoassociation rate can therefore be interpreted as a measurement of the num-
ber of closed-channel molecules. According to the universal relation in Eq. 6.38,
this is proportional to the contact. However, at the time of the experiment, the con-
cept of the contact was still unfamiliar. The number of closed-channel molecules
was expected to be proportional to the square of the order parameter |�|2 [35].
In the BEC limit, |�|2 ∝ kF/a, which has the same dependence on a as the con-
tact in Eq. 6.26. In the BCS limit, the order parameter decreases exponentially with
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Fig. 6.3 The derivative of the energy E with respect to 1/a determined from measurements of
the photoassociation rate of a trapped gas of 6Li atoms, from Ref. [27]. The data come from
measurements of the number of closed-channel molecules in Ref. [35]. The solid line is a theoretical
prediction using the local density approximation, with the contact density for the homogeneous
system obtained by interpolating between the BCS, unitary, and BEC limits. The symbol + indicates
the prediction for the contact in the unitary limit. The dashed lines are extrapolations from the BCS
and BEC limits

1/|a| : |�|2 ∝ k2
F exp(−π/(kF |a|)). This behavior is dramatically different from

the contact in Eq. 6.21, which decreases like a2 as a → 0−. Nevertheless, the mea-
surements of the photoassociation rate were compatible with the assumption that it
was proportional to |�|2, even for negative values of 1/kF a as large as −1.4.

The first analysis of the data from Ref. [35] in terms of the contact was carried out
by Werner, Tarruell, and Castin [27]. Their results are shown in Fig. 6.3. The contact
extracted from the measured number of closed-channel molecules was in reasonable
agreement with a theoretical prediction using the local density approximation, with
the contact density for the homogeneous system obtained by interpolating between
the BCS, unitary, and BEC limits.

6.5.2 Static Structure Factor

The static and dynamic structure factors for systems consisting of ultracold atoms
can be probed by using Bragg spectroscopy. Bragg scattering is a two-photon process
in which an atom absorbs a photon from one laser beam and emits a photon into a
second laser beam. The net effect is the transfer of a selected momentum �k and a
selected energy �ω to the atom, where k is the difference between the wavevectors
of the two lasers and ω is the difference between their frequencies.
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Fig. 6.4 The structure factor S(k) for a trapped gas of 6Li atoms as a function of kF/k for three
values of 1/kF a, from Ref. [37]. The solid lines are the universal predictions from Eq. 6.40 using
the contact obtained from a theoretical calculation. The dashed line is a linear fit to the data for
1/kF a = 0

The Vale group at Swinburne University of Technology in Melbourne has used
Bragg spectroscopy to study the static structure factor S12(k) [36]. They used a
balanced mixture of 6Li atoms in the lowest two hyperfine spin states. The scattering
length was controlled by using the Feshbach resonance near 834 G. In Ref. [37],
they reported measurements of the static structure factor S12(k) as a function of
a for k = 4.8kF . These measurements are in good agreement with the universal
relation for the large-momentum tail in Eq. 6.40, with the contact density for the
homogeneous sytem obtained by interpolating between the BCS, unitary, and BEC
limits. In Ref. [37], they also reported measurements of S12(k) as a function of k
for 1/kF a = −0.2, 0, and +0.3, which are shown in Fig. 6.4. The measurements
are linear in kF/k, as predicted by the universal relation in Eq. 6.40. The slope is
predicted to be proportional to the contact C. The contact for their trapped system at
zero temperature was calculated in Ref. [37] using the local density approximation
and a below-threshold Gaussian fluctuation theory for the homogeneous system.
For 1/kF a = −0.2 and +0.3, the slope agrees well the universal relation. In the
unitary limit 1/kF a = 0, the slope is smaller than predicted. The discrepancy could
be attributed to the effects of nonzero temperature.

6.5.3 Comparing Measurements of the Contact

The Jin group at JILA in Boulder has measured the contact C for a trapped gas of
atoms using three independent methods [38]. They used a balanced mixture of 40 K
atoms in the two lowest hyperfine spin states at a temperature of about 0.1TF . The
scattering length was controlled by using the Feshbach resonance near 201 G.
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The first method for measuring C used the Tan relation in Eq. 6.2 for the high-
momentum tail of the momentum distribution n2(k). The interactions between the
trapped atoms were turned off by changing the magnetic field to 209 G where the scat-
tering length vanishes. The trapping potential was then turned off, and the momentum
distribution was measured from the ballistic expansion of the cloud of atoms. The
contact C is the large-momentum limit of k4n2(k). It was measured for values of
1/kF a ranging from about −2.7 to about +0.2.

The second method for measuring the contact used the universal relation in
Eq. 6.34 for the high-frequency tail of the radio-frequency (rf) transition rate. The rf
signal was used to transfer atoms from state 2 into a third spin state 3 for which the
pair scattering length a13 is not large. The rf transition rate 
(ω) was determined by
measuring the number of atoms transferred. The contact was then determined from
the behavior of 
(ω) at large ω. It was measured for values of 1/kF a ranging from
about−1.7 to about +0.2.

The third method for measuring C also used the Tan relation in Eq. 6.2, but the tail
of the momentum distribution was determined by photoemission spectroscopy (PES).
This involves using momentum-resolved rf spectroscopy to measure the distribution
n2(k, ω) of the momentum and energy of atoms in state 2, and then integrating
over ω to determine the momentum distribution n2(k). The contact C is the large-
momentum limit of k4n2(k). It was measured for the same values of 1/kF a as the
second method.

The three sets of measurements of the contact by the Jin group [38] are shown
in Fig. 6.5. The results from the three methods are all consistent. They lie close
to the theoretical prediction of Ref. [27], which was based on the local density
approximation, with the contact density for the homogeneous system obtained by
interpolating between the BEC, unitary, and BCS limits. These results provide direct
experimental verification of the role of the contact in large-momentum and high-
frequency tails for a many-body system of fermions with a large scattering length.

6.5.4 Tests of the Thermodynamic Tan Relations

The adiabatic relation in Eq. 6.8 and the virial theorem in Eq. 6.11 relate different
contributions to the total energy E to the contact C. The adiabatic relation expresses
a derivative of (T +U )+ V in terms of the contact. The virial theorem expresses the
combination (T + U ) − V in terms of the contact. Thus measurements of T + U,
V, and C provide two nontrivial tests of the Tan relations for the thermodynamic
properties of the system.

The Jin group at JILA in Boulder has tested these Tan relations by measuring
T + Uand V for the same system of 40 K atoms for which they measured the contact
C [38], as described in Sect. 6.5.3. They measured the external potential energy V
by imaging the spatial distribution of the cloud of atoms, which was trapped in a
harmonic potential. They measured the combination T + U ,which can be called
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Fig. 6.5 Three measurements of the dimensionless contact C/kF for a trapped gas of 40 K atoms
as a function of 1/kF a, from Ref. [38]. The Fermi wavenumber kF is defined by the Fermi energy
for the trapped system: EF = �

2k2
F/2m. Two of the data sets are from the tail of the momentum

distribution measured directly by ballistic expansion (solid dots) and indirectly by photoemission
spectrometry (open dots). The third data set is from the high-frequency tail of the rf lineshape (stars)

the release energy, by turning off the trapping potential and observing the resulting
expansion of the cloud. They measured T + Uand V at values of 1/kF a ranging
from about −3 to about +0.3. For the contact C, they used their measurements from
photoemission spectroscopy described in Sect. 6.5.3. They found good agreement
between the two sides of the adiabatic relation in Eq. 6.8 as shown in Fig. 6.6. They
also found that the two sides of the virial theorem in Eq. 6.11 agreed to within
the errors, which were roughly 1% of the Fermi energy. These results provide direct
experimental verification of the role of the contact in the thermodynamics of a many-
body system of fermions with a large scattering length.

6.5.5 Contact Density Near Unitarity

The contact density for the homogeneous gas has been determined by the Salomon
group at École Normale Supérieure in Paris [39]. They used an imbalanced mixture
of 6Li atoms in the lowest two hyperfine spin states at a magnetic field near 834 G.
They determined the equation of state for the homogeneous gas by measuring the
number densities of the two spin states in a harmonic trapping potential integrated
over the two tranverse dimensions. Their result for the numerical constant in Eq. 6.23
was ζ = 0.93(5).This is consistent with the value in Eq. 6.24 obtained from diffusion
Monte Carlo calculations of the density–density correlator.
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Fig. 6.6 Test of the adiabatic relation in a trapped gas of 40 K atoms, from Ref. [38]. The dimen-
sionless contact C/kF as a function of 1/kF a determined from the derivative of the energy E with
respect to 1/a (solid dots) is compared to the measurements using photoemission spectrometry
(open dots). The Fermi wavenumber kF is defined by the Fermi energy for the trapped system:
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6.6 Derivations of Universal Relations

In this section, we give an overview of various derivations of the universal relations.
We begin by describing briefly the novel methods used in the original derivations
of the Tan relations. We then describe briefly various other approaches that have
been used to rederive the Tan relations. Finally, we describe in more detail how
universal relations can be derived using quantum field theory methods involving
renormalization and the operator product expansion.

6.6.1 Preliminaries

The scattering amplitude for S-wave atom–atom scattering can be written as

f (k)= 1

k cot δ0(k)− ik
, (6.49)

where k is the relative wavenumber and δ0(k) is the S-wave phase shift. If the interac-
tions have a finite range, the low-energy expansion of the phase shift can be expressed
as a power series in k2:

k cot δ0(k)= − 1/a + 1

2
rsk2 + · · · , (6.50)
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where rs is the effective range. The coefficient of (k2)n has dimensions (length)2n−1.

Generically, all these coefficients are comparable to the range raised to the appropriate
power. By fine tuning the interactions, the scattering length can be made much larger
than the range. This fine-tuning leads to universal properties that depend on the
interactions only through the scattering length.

The universality for large scattering length reflects a well-behaved zero-range
limit, in which all the terms on the right side of Eq. 6.50 go to zero except the leading
term. The phase shift reduces in this limit to

k cot δ0(k)= − 1/a. (6.51)

The model in which the phase shift has this simple form up to arbitrarily large
momentum is called the Zero-Range Model. The universal properties of a general
model with large scattering length are realized in the Zero-Range Model in a partic-
ularly simple form, because a is the only length scale that arises from interactions.
The price that must be paid is that the zero-range limit leads to divergences in some
observables. It also leads to singularities in intermediate steps of the derivations of
universal relations. An illustration is provided by the energy relation in Eq. 6.6. The
kinetic energy T and the interaction energy U are separately ultraviolet divergent,
but the divergences cancel in the sum T + U . The singularities associated with the
zero-range limit can be regularized by backing off from the zero-range limit or by
some equivalent device.

One way to represent the Zero-Range Model is in terms of the Schrödinger equa-
tion for noninteracting particles with peculiar boundary conditions. The Schrödinger
wavefunction for N1 fermions in state 1 and N2 fermions in state 2 is a complex
function �(r1, . . . , r N1; r ′

1, . . . , r ′
N1
) that is totally antisymmetric in the first N1

positions and totally antisymmetric in the last N2 positions. The proper normalization
of the wavefunction is

1

N1!N2!
∫

d3r1 . . .

∫
d3rN1

∫
d3r ′

1 . . .

∫
d3r ′

N2

∣∣�(r1, . . . , r N1; r ′
1, . . . , r ′

N2
)
∣∣2 = 1.

(6.52)
In the zero-range limit, this wavefunction diverges when the positions r i and r ′

j
of any pair of fermions with different spins coincide. Its behavior when r1 and r ′

1
are nearly equal is

�(R+1

2
r, r2, . . . , r N1; R−1

2
r, r ′

2, . . . , r′
N2
)

−→ φ(r)�(r2, . . . , rN1; r ′
2, . . . , r′

N2
; R), (6.53)

where� is a smooth function of R and φ(r) is the zero-energy scattering wavefunc-
tion for two particles interacting through a large scattering length:

φ(r)= 1

r
− 1

a
. (6.54)

The Fourier transform of this wavefunction is
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φ̃(k)= 4π

k2 − (2π)3

a
δ3(k). (6.55)

The Schrödinger equation for interacting particles with a large scattering length
reduces in the zero-range limit to the Schrödinger equation for non-interacting
particles with the wavefunction constrained to satisfy the Bethe–Peierls boundary
conditions in Eq. 6.53.

6.6.2 Tan’s Derivations

Tan derived many of his universal relations by using generalized functions,
or distributions, to deal with the singularities associated with the zero-range limit
[2, 3]. He introduced distributions �(k) and L(k) whose values at finite k are

�(k)= 1, |k| < ∞, (6.56a)

L(k)= 0, |k| < ∞, (6.56b)

and which have the following integrals over all k:

∫
d3k

(2π)3
1

k2�(k)= 0 (6.57a)

∫
d3k

(2π)3
1

k2 L(k)= 1. (6.57b)

Using these properties, it is easy to verify that the Fourier transform of the zero-
energy scattering wavefunction in Eq. 6.55 satisfies

∫
d3k

(2π)3

[
�(k)+ 1

4πa
L(k)

]
φ̃(k)= 0. (6.58)

This property allows the Bethe–Peierls boundary condition in Eq. 6.53 to be
expressed as an equality rather than as a limit:

∫
d3k

(2π)3

[
�(k)+ 1

4πa
L(k)

] ∫
d3re−i k·r

×�

(
R+1

2
r, r2, . . . , rN1; R−1

2
r, r ′

2, . . . , r′
N2

)
= 0. (6.59)

In addition to using �(k) and L(k) to impose the Bethe-Peierls boundary con-
ditions, Tan used the distribution �(k) to regularize the interaction term in the
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Hamiltonian. He derived many of his universal relations by simple manipulations
involving these distributions. They lead to an expression for the contact of the form

C = 1

2

∑
σ

∫
d3k

(2π)3
L(k)k2nσ (k). (6.60)

By the properties of the distribution L(k) in Eqs. 6.56b and 6.57b, the integral
extracts the coefficient of 1/k4 in the high-momentum tail of nσ (k).

6.6.3 Other Derivations

6.6.3.1 Braaten, Kang, and Platter

Braaten and Platter [5] used quantum field theory methods to rederive all the Tan
relations in Sect. 6.2 except for the relation in Eq. 6.10 for the sudden change in the
scattering length. They used the formulation of the Zero-Range Model as a local
quantum field theory, as described later in Sect. 6.6.4.1. The singularities associated
with the zero-range limit were regularized by imposing an ultraviolet cutoff on the
momenta of virtual particles. The contact density was identified as the expectation
value of a local operator. The universal relations were derived using renormalization,
as described in Sect. 6.6.4.2, and the operator product expansion, as described in
Sects. 6.6.4.4 and 6.6.4.5.

Braaten, Kang, and Platter [29] used quantum field theory methods to derive
universal relations for the Resonance Model, in which the S-wave scattering phase
shift is given by

k cot δ0(k)= −
(
λ+ g2

k2 − ν

)−1

. (6.61)

The Resonance Model is a two-channel model, in which the states in the two-atom
sector consist of a point-like molecule as well as the usual two-atom scattering states.
It provides a natural model for a Feshbach resonance. The scattering length a =
λ − g2/ν agrees with the expression in Eq. 6.37 if we set λ= abg, ν= − mμmol
(B − B0)/�

2, and g2 = 1/R∗, where R∗ is given in Eq. 6.39. Braaten, Kang, and
Platter found that in the various universal relations that correspond to the Tan rela-
tions, the contact density is replaced by various linear combinations of the expectation
values of three local operators. If the expression for k cot δ0(k) in Eq. 6.61 is well-
approximated by −1/a for all wavenumbers from 0 up to the scale set by the system,
the expectation values of the three local operators must coincide in order for the
universal relations to reduce to those of the Zero-Range Model. For a broad Fesh-
bach resonance, which is defined by |abg| � R∗, this requires only that |a| � r0
and kr0 � 1, where r0 is the range of interactions in the absence of the Feshbach
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resonance. For a narrow Feshbach resonance, which is defined by |abg| � R∗, this
requires also that k R∗ � 1.

6.6.3.2 Werner, Tarruell, and Castin

Werner [26] derived the virial theorem in Eq. 6.11 independently. The right side of
Eq. 6.11 was expressed not in terms of the contact C but in terms of the derivative
of the energy that appears in the adiabatic relation in Eq. 6.8.

Werner, Tarruell, and Castin [27] rederived the tail of the momentum distribution
in Eq. 6.2, the adiabatic relation, and the density-density correlator at short distances
in Eq. 6.7. The singularities associated with the zero-range limit were regularized by
using a lattice model in which the fermions occupy the sites of a three-dimensional
cubic lattice whose spacing b approaches 0. Werner, Tarruell and Castin also used a
two-channel model to derive the universal relation for the number of closed-channel
molecules in Eq. 6.38.

Werner and Castin [40] subsequently presented a much more thorough treat-
ment of the universal relations for the Zero-Range Model and for the lattice model.
In addition to the tail of the momentum distribution, the adiabatic relation, and the
density-density correlator at short distances, they rederived the energy relation in
Eq. 6.6 and the adiabatic sweep theorem, which is the generalization of Eq. 6.45 that
allows for a time-dependent external potential. They showed that for a system in
thermal equilibrium (which includes the ground state as a limiting case), the contact
is an increasing function of 1/a:

dC

da−1 > 0. (6.62)

This inequality holds whether the derivative is evaluated at fixed entropy or at fixed
temperature. The monotonic increase of the contact density with 1/a is illustrated
in Figs. 6.1 and 6.2 for the cases of a homogeneous gas at zero temperature that is
balanced and strongly imbalanced, respectively. Because the inequality in Eq. 6.62
does not hold in general, it should not be regarded as a universal relation.

Werner and Castin also generalized the universal relations to various other
systems [40]. They considered the effects of a nonzero range for the interaction
potential. They derived the generalizations of the universal relations to two spatial
dimensions, which had been considered previously by Tan [41]. They also derived
universal relations for two types of fermions with unequal masses m1 < m2, for
identical bosons, and for mixtures of fermions and bosons with various masses. In
some cases, including identical bosons and two types of fermions whose mass ratio
m2/m1 exceeds the critical value 13.7, the universal relations are complicated by the
Efimov effect [40].
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6.6.3.3 Zhang and Leggett

Zhang and Leggett [28] rederived the adiabatic relation in Eq. 6.8 and the pressure
relation in Eq. 6.12. They used a nonlocal quantum field theory with field operators
ψ1(r) and ψ2(r) and with a short-range interaction potential U (r). They restricted
their attention to a homogeneous many-body system in equilibrium. The equal-time
two-particle correlation function was expressed as a sum over eigenstates of the
operator ψ2(r2)ψ1(r1):

〈ψ†
1 (r1)ψ

†
2 (r2)ψ2(r2)ψ1(r1)〉=

∑
i

νiφ
(i)(r1, r2)

∗φ(i)(r1, r2), (6.63)

where νi is the average number of pairs with different spins in the eigenstate i and
the eigenfunctions φ(i)(r1, r2) are normalized accordingly in a large volume V. The
Bethe–Peierls boundary conditions together with translation invariance imply that
the limiting behavior of these eigenfunctions as the separation r = |r1 − r2| goes to
zero is

φ(i)
(

R+1

2
r, R−1

2
r
)

−→ C (i)ei P (i)·Rφ(r), (6.64)

where the normalization constant C (i) and the momentum vector P (i) depend on the
eigenstate i and φ(r) is the zero-energy scattering wavefunction defined in Eq. 6.54.
The integral of the correlation function weighted by an arbitrary short-distance func-
tion s(|r1 − r2|) therefore reduces to:

∫
d3r1

∫
d3r2 s(|r1 − r2|)〈ψ†

1 (r1)ψ
†
2 (r2)ψ2(r2)ψ1(r1)〉

= 1

4π
V C

∞∫
0

drr2s(r)|φ(r)|2, (6.65)

where C is the contact density, which is given by

C = 16π2
∑

i

νi |C (i)|2. (6.66)

Zhang and Leggett emphasized that the thermodynamics is universal and is
completely determined by the contact density C. Zhang and Leggett also used a
two-channel model to derive a universal relation for the number of closed-channel
molecules that can be reduced to Eq. 6.38 [28].

Zhang and Leggett derived a factorization formula for the interaction energy
density [28] that separates the dependence on a and thermodynamic variables, such
as the temperature and number densities, from the dependence on the short-distance
parameters that determine the shape of the interaction potential U(r). The interaction
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energy is the special case of Eq. 6.65 in which the short-range function s(r) is the
interaction potential U(r). The interaction energy density can be expressed as

U = 1

4π
C

∞∫
0

drr2U (r)|φ(r)|2. (6.67)

All the dependence on the thermodynamic variables and on the large scattering
length a resides in the contact density C.

6.6.3.4 Combescot, Alzetto, and Leyronas

Combescot, Alzetto, and Leyronas [42] rederived the tail of the momentum dis-
tribution in Eq. 6.2 and the energy relation in Eq. 6.6. They used the Schrödinger
formalism in the coordinate representation to describe a system consisting of N1+N2
fermions. The singularities associated with the zero-range limit were regularized by
imposing a cutoff |r i −r ′

j | > r0 on the separations of the two types of fermions. They
expressed the contact in terms of the Fourier transform of the function � defined
by the Bethe-Peierls boundary conditions in Eq. 6.53. By reverting to the coordinate
representation, the contact density can be expressed as

C(R)= 16π2

(N1 − 1)!(N2 − 1)!
∫

d3r2 . . .

∫
d3rN1

∫
d3r ′

2 . . .

∫
d3r ′

N2

× ∣∣�(r2, . . . , rN1; r ′
2, . . . , r′

N2
; R)

∣∣2
, (6.68)

provided the wavefunction� is properly normalized as in Eq. 6.52. This expression
for the contact density was originally derived by Tan [2].

Combescot, Alzetto, and Leyronas generalized the tail of the momentum distrib-
ution and the energy relation to various other systems [42]. They generalized them
to two spatial dimensions, which had been considered previously by Tan [41]. They
generalized them to two types of fermions with different masses m1 < m2. They did
not however consider the complications associated with the Efimov effect when the
mass ratio m2/m1 exceeds the critical value 13.7 [40].

6.6.4 Quantum Field Theory Derivations

We proceed to explain how universal relations can be derived concisely using the
methods of quantum field theory.
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6.6.4.1 Zero-Range Model

A quantum field theory that describe atoms with two spin states must have fundamen-
tal quantum fields ψσ (r), σ = 1, 2. The Hamiltonian operator for a local quantum
field theory can be expressed as the integral over space of a Hamiltonian density
operator: H = ∫

d3 RH. If the atoms are in an external potential V (r), the Hamil-
tonian density operator is the sum of a kinetic term T , an interaction term U , and an
external potential term V:

H = T + U + V. (6.69)

In the quantum field theory formulation of the Zero-Range Model, the three terms
in the Hamiltonian density operator are

T =
∑
σ

1

2m
∇ψ†

σ · ∇ψ(�)σ (R), (6.70a)

U = g0(�)

m
ψ

†
1ψ

†
2ψ2ψ

(�)
1 (R), (6.70b)

V = V (R)
∑
σ

ψ†
σψσ (R). (6.70c)

For simplicity, we have set � = 1. The superscripts (�) on the operators in
Eqs. 6.70a and 6.70b indicate that their matrix elements are ultraviolet divergent
and an ultraviolet cutoff is required to make them well defined. For the ultraviolet
cutoff, we impose an upper limit |k| < � on the momenta of virtual particles. In the
limit � → ∞, the Hamiltonian density in Eq. 6.69 describes atoms with the phase
shift given by Eq. 6.51 provided we take the bare coupling constant to be

g0(�)= 4πa

1 − 2a�/π
. (6.71)

In Ref. [5], Braaten and Platter identified the operator that measures the contact
density in the quantum field theory formulation of the Zero-Range Model. It is
convenient to introduce the diatom field operator � defined by

�(R)= g0(�)ψ2ψ
(�)
1 (R). (6.72)

This operator annihilates a pair of atoms at the point R. The superscript (�)
on the operator ψ1ψ2 indicates that its matrix elements are ultraviolet divergent.
Their dependence on � is exactly compensated by the prefactor g0(�), so � is
an ultraviolet finite operator. The contact density operator is �†� [5]. This is just
the interaction energy density operator multiplied by a constant that depends on the
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ultraviolet cutoff: �†�= mg0U . The contact is obtained by taking the expectation
value of the contact density operator and integrating over space:

C =
∫

d3 R〈�†�(R)〉. (6.73)

6.6.4.2 Renormalization

Several of the Tan relations follow very simply from the renormalization of the Zero-
Range Model [5]. The renormalization condition in Eq. 6.71 implies that the bare
coupling constant g0(�) satisfies

g0(�)=
(

1

4πa
− �

2π2

)
g2

0(�). (6.74)

Its derivative with respect to a is

d

da
g0(�)= 1

4πa2 g2
0(�). (6.75)

The energy relation in Eq. 6.6 and the adiabatic relation in Eq. 6.8 follow simply
from these properties of the bare coupling constant:

Energy relation. The kinetic and interaction terms T and U in the Hamiltonian
density operator are given in Eqs. 6.70a and 6.70b. After inserting the expression
in Eq. 6.74 for the bare coupling constant g0 into U , the sum of T and U can be
expressed as the sum of two finite operators:

T + U =
( ∑

σ

1

2m
∇ψ†

σ · ∇ψ(�)σ − �

2π2m
�†�

)
+ 1

4πma
�†�. (6.76)

By taking the expectation value of both sides of Eq. 6.76, integrating over space,
and using the expression for C in Eq. 6.73. we obtain the energy relation in Eq. 6.6.

Adiabatic relation. According to the Feynman-Hellman theorem, the rate of
change in the energy due to a change in the scattering length can be expressed
in the form

(
dE

da

)
S

=
∫

d3 R

〈
∂H
∂a

〉
. (6.77)

The Hamiltonian density H depends on a only through the factor of g0 in U .Using
the derivative of the bare coupling constant in Eq. 6.75, we obtain the derivative of
the Hamiltonian density:

∂H
∂a

= 1

4πma2�
†�. (6.78)
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By inserting this into Eq. 6.77 and using the expression for C in Eq. 6.73,
we obtain the adiabatic relation in Eq. 6.8.

The virial theorem in Eq. 6.73 and the pressure relation in Eq. 6.73 can be derived
by combining renormalization with dimensional analysis. For the purposes of dimen-
sional analysis, we can regard � = 1 and m simply as conversion constants that allow
any dimensionful quantity to be expressed as a length raised to an appropriate power.

Virial theorem. For a system in a harmonic trapping potential, the only parameters
that an energy eigenvalue can depend on are the scattering length a and the angular
frequencyω.The combinations with dimensions of length are a and (mω)−1/2. Since
an energy eigenvalue E has dimensions 1/(m length2), the constraint of dimensional
analysis can be expressed as the requirement that a differential operator that counts
the factors of length gives −2when acting on E = ∫

d3 R〈H〉:

(
a
∂

∂a
− 2ω

∂

∂ω

) ∫
d3 R〈H〉= − 2E . (6.79)

Using the Feynman-Hellman theorem, this equation can be written
∫

d3 R

(
1

4πma
〈�†�〉 − 4〈V〉

)
= − 2E . (6.80)

Using the expression for C in Eq. 6.73, we obtain the virial theorem in Eq. 6.11.
Pressure relation. For a homogeneous system, the only variables that the free

energy density F = E − T S can depend on are the scattering length a, the
temperature T, and the number densities ni . The combinations with dimensions
of length are a, (mkB T )−1/2, and n−1/3

i . Since F has dimensions 1/(m length5),

the constraint of dimensional analysis can be expressed as the requirement that a
differential operator that counts the factors of length gives −5 when acting on F :

(
a
∂

∂a
− 2T

∂

∂T
− 3n1

∂

∂n1
− 3n2

∂

∂n2

)
F = −5F . (6.81)

Using the adiabatic relation in Eq. 6.8, this can be written

1

4πma
C + 2T S − 3μ1n1 − 3μ2n2 = −5F , (6.82)

whereμi is the chemical potential for the spin state i. The pressure relation in Eq. 6.12
then follows from the thermodynamic identity F = − P + μ1n1 + μ2n2.

6.6.4.3 The Operator Product Expansion

Many universal relations are most concisely derived using the operator product
expansion (OPE) of quantum field theory. The OPE was invented independently
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in 1969 by three giants of theoretical physics: Leo Kadanoff [43],
Alexander Polyakov [44], and Ken Wilson [45]. It is an expansion for the prod-
uct of local operators at nearby points in terms of local operators at the same point:

OA

(
R + 1

2
r
)

OB

(
R − 1

2
r
)

=
∑

C

f C
A,B(r) OC (R). (6.83)

The Wilson coefficients f C
A,B(r) are ordinary functions of the separation vector r.

The local operators OC (R) include some that can be obtained by Taylor-expanding
the operators on the left side in powers of r, but they also include additional operators
that take into account effects from quantum fluctuations. The Wilson coefficients for
these operators are not necessarily analytic functions of the vector r, and they can
even diverge as r → 0. One particularly simple local operator is the unit operator I,
whose expectation value in any state is 1. The sum over C in Eq. 6.83 can be extended
to include all local operators if we allow Wilson coefficients that are 0.

The OPE is a natural tool for generating universal relations, because it is an
operator identity. By taking the expectation value of both sides of the OPE in Eq. 6.83
in some state of the system, we get an expression for the correlator of the operators
OA and OB in terms of the expectation values of local operators in that state. Since
this expansion holds for any state of the system, it is a universal relation.

A local operator OC (R) is assigned the scaling dimension dC if the correlation
function of OC and its hermitian conjugate at points separated by r decreases asymp-
totically as 1/r2dC at small r. The unit operator I is assigned scaling dimension 0. In a
weakly-interacting theory, the scaling dimensions can be obtained simply by dimen-
sional analysis. In a strongly-interacting theory, they can be significantly different.
The difference between the scaling dimension and its value in the corresponding non-
interacting theory is called the anomalous dimension. At very small r, the leading
behavior of a nontrivial Wilson coefficient is determined by the scaling dimensions
of the operators:

f C
A,B(r) ∼ rdC −dA−dB. (6.84)

In the OPE in Eq. 6.83, the Wilson coefficients of higher dimension operators go
to 0 more rapidly as r → 0. A Wilson coefficient can be suppressed by a further
power of r is there is an explicitly broken symmetry which, if exact, would require
f C

A,B(r) to vanish. The extra suppression factor is the dimensionless combination of
r and the symmetry breaking parameter.

The technical assumptions required to prove the OPE have been discussed by
Wilson and Zimmerman [46]. The OPE can be expressed more precisely as an asymp-
totic expansion in the separation r = |r|. The OPE in Eq. 6.83 can be organized into
an expansion in powers of r by expanding the Wilson coefficients as Laurent series
in r. The OPE is an asymptotic expansion if for any power p, there are only finitely
many terms that go to zero more slowly than r p. The scaling behavior of the Wilson
coefficients in Eq. 6.84 guarantees that the OPE is an asymptotic expansion provided
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every local operator OC (R) has a positive scaling dimension dC > 0 and there are
only finitely many local operators with scaling dimension dC < d for any positive
number d. These conditions are satisfied in the Zero-Range Model, the Resonance
Model, and other renormalizable local quantum field theories that are relevant to cold
atoms.

An illustration of the operator product expansion with anomalous dimensions is
provided by the Ising Model in 2 dimensions. The exact solution by Lars Onsager
in 1944 [47] implies that correlation functions in the continuum limit have scaling
behavior with anomalous dimensions. For example, the leading term in the correlation
function for two spin operators σ as their separation r goes to 0 has the form

〈
σ(R + 1

2
r)σ (R − 1

2
r)

〉
−→ A

|r|1/4 , (6.85)

where A is a constant that does not depend on the state of the system. This correlator
is singular as r → 0.The power law behavior suggests that the system becomes scale
invariant at short distances. The fractional power of r indicates that the spin operator
has an anomalous dimension.

Kadanoff generalized the result for the correlator in Eq. 6.85 to an operator relation
[43]:

σ

(
R + 1

2
r
)
σ

(
R − 1

2
r
)

= A

|r|1/4 I + B|r|3/4ε(R)+ · · · , (6.86)

where I is the identity operator, ε(R) is the energy fluctuation operator, and B is
another constant. The infinitely many terms that are not shown explicitly in Eq. 6.86
go to 0 more rapidly than r3/4 as r → 0. The short-distance tail of the correla-
tor in Eq. 6.85 can be obtained simply by taking the expectation value of Eq. 6.86.
Kadanoff showed that the critical exponents of the Ising model, such as the expo-
nent 1

4 of 1/|r| in Eq. 6.85, could be deduced simply from the knowledge of which
operator products have singular Wilson coefficients. From the OPE in Eq. 6.86,
we can deduce that the spin operator has scaling dimension 1

8 and the energy fluctu-
ation operator has scaling dimension 1.

The OPE in Eq. 6.83 can be described more precisely as a short-distance operator
product expansion, because it involves operators at the same time with small spatial
separation. It can be generalized to a short-time operator product expansion, in which
the operators also have a small separation in time:

OA

(
R+1

2
r, T +1

2
t

)
OB

(
R−1

2
r, T −1

2
t

)
=

∑
C

f C
A,B(r, t) OC (R, T ).

(6.87)
The Wilson coefficients f C

A,B(r, t) are functions of the separation vector
r and the time interval t. The short-time OPE is more subtle than the short-distance
OPE because of the possibility that a correlator can have oscillatory behavior in
t as t → 0 [46]. The possibility of oscillatory behavior is avoided in the Euclid-
ean version of the quantum field theory that corresponds to analytic continuation of
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the time t to Euclidean time: t → −iτ. Thus the short-time OPE in Eq. 6.87 can
be expressed most rigorously as an asymptotic expansion in (r,−iτ), where τ is
the Euclidean time separation obtained by the analytic continuation t → −iτ. In a
Galilean-invariant theory, the appropriate scaling of (r,−iτ) is such that τ scales in
the same way as |r|2.

6.6.4.4 Short-Distance Operator Product Expansion

Universal relations for fermions with large scattering length can be derived from
operator product expansions in the Zero-Range Model defined in Sect. 6.6.4.1. In this
model, the scattering length a is the only length scale that arises from interactions.
At distances much smaller than |a|, the model is scale invariant with nontrivial scaling
dimensions. In the unitary limit a → ±∞, the model is not only scale invariant at
all distances but also conformally invariant [48]. If a is finite, we can regard 1/a as
the symmetry-breaking parameter associated with the broken conformal symmetry.

The fundamental field operators ψ1 and ψ2 of the Zero-Range Model have the
same scaling dimensions as in a noninteracting theory. However there are com-
posite operators with anomalous scaling dimensions. The scaling dimension of an
operator OC can be deduced from its propagator at large momentum k, which in a
Galilean-invariant theory scales as k2dC −5. Since the propagator for ψ1 or ψ2 is sim-
ply (ω− k2/2m)−1, these fields have scaling dimensions 3

2 . The scaling dimension
of the number density operator ψ†

σψσ is twice that of ψσ , which is 3. If there were
no interactions, the scaling dimension of the composite operator ψ1ψ2, or equiva-
lently the diatom field operator� defined in Eq. 6.72, would also be 3. However the
propagator for � is

∫
dteiωt

∫
d3re−i k·r〈�(r, t)�†(0, 0)〉= −i4πm

−1/a + √−m(ω − k2/4m)
. (6.88)

We have dropped an additive constant that is independent ofω and k,which could
be removed by renormalization. Since the propagator in Eq. 6.88 scales as k−1 at
large k, � has scaling dimension 2 and therefore anomalous dimension −1. The
scaling dimension of the contact density operator�†� is twice that of�,which is 4.

The short-distance OPE can be used to derive the Tan relation for the tail of the
momentum distribution in Eq. 6.2. The momentum distribution nσ (k) for atoms in
the spin state σ can be expressed as

nσ (k)=
∫

d3 R
∫

d3re−i k·r
〈
ψ†
σ

(
R−1

2
r
)
ψσ

(
R+1

2
r
)〉
. (6.89)

The behavior at large k is dominated by the small-r region of the integral.
We can therefore apply the OPE to the product of the operators ψ†

σ and ψσ .

As shown in Ref. [5], the leading terms in the OPE are
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ψ†
σ

(
R−1

2
r
)
ψσ

(
R+1

2
r
)

=ψ†
σψσ (R)+ 1

2
r ·

[
ψ†
σ∇ψσ (R)− ∇ψ†

σψσ (R)
]

− r

8π
�†�(R)+ · · · . (6.90)

We have written explicitly all terms whose Wilson coefficients go to zero more
slowly than r2 as r → 0. The first two terms on the right side of the OPE in Eq. 6.90
can be obtained by multiplying the Taylor expansions of the two operators. The
third term arises from quantum fluctuations involving pairs of atoms with small
separations. That its Wilson coefficient is proportional to r can be predicted from
the scaling dimensions of the operators using Eq. 6.84. The coefficient of r can be
calculated using diagrammatic methods described in Ref. [29]. Note that this Wilson
coefficient is not an analytic function of the vector r = (x, y, z) at r = 0, because it
is proportional to r = √

x2 + y2 + z2. The expectation value of the OPE in Eq. 6.90
can be expressed as
〈
ψ†
σ

(
R−1

2
r
)
ψσ

(
R+1

2
r
)〉

= nσ (R)+ i r · Pσ (R)− r

8π
C(R)+ · · · , (6.91)

where Pσ is the momentum density of atoms in the state σ. This form of the OPE
was first written down by Tan [2].

Upon inserting the OPE in Eq. 6.90 into Eq. 6.89, the first two terms give a
delta function in k and the gradient of such a delta function. They correspond to
contributions to nσ (k) that decrease at large k faster than any power of k. In the third
term, the Fourier transform of the Wilson coefficient at nonzero values of k can be
obtained from the identity

∫
d3re−i k·rr = − 8π

k4 , (6.92)

which can be derived by differentiating the Fourier transform of a 1/r potential.
This term gives a power-law tail in the momentum distribution:

nσ (k) −→ 1

k4

∫
d3 R〈�†�(R)〉. (6.93)

Comparing with Eq. 6.2, we obtain the expression in Eq. 6.73 for the contact C in
the Zero-Range Model. This verifies that the contact density operator is�†�,where
� is the diatom field operator defined in Eq. 6.72.

The short-distance OPE can be used to derive the Tan relation in Eq. 6.7 for the
density-density correlator at short distances [5]. The OPE for the number density
operators ψ†

1ψ1 and ψ†
2ψ2 includes a term whose Wilson coefficient is singular as

r → 0:

ψ
†
1ψ1

(
R+1

2
r
)
ψ

†
2ψ2

(
R−1

2
r
)

= 1

16π2

(
1

r2 − 2

ar

)
�†�(R)+ · · · . (6.94)
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All the other terms in the OPE are regular at r = 0. Taking the expectation value
of both sides, we get the Tan relation in Eq. 6.7.

The OPE in Eq. 6.94 can also be used to derive the universal relation for the static
structure factor S12(q) in Eq. 6.40. That structure factor can be expressed as

S12(q)=
∫

d3 R
∫

d3re−iq·r〈ψ†
1ψ1

(
R−1

2
r
)
ψ

†
2ψ2

(
R+1

2
r
)

〉. (6.95)

According to the universal relation in Eq. 6.40, the high momentum tail has terms
proportional to 1/q and 1/q2. They come from the singular terms proportional to
1/r2 and 1/r in the OPE in Eq. 6.94.

6.6.4.5 Short-Time operator product expansion

Other universal relations can be derived using the short-time operator product expan-
sion in Eq. 6.87. We will illustrate the use of the short-time OPE by showing how
it can be used to derive the universal relations for radio-frequency (rf) spectroscopy
that were presented in Sect. 6.4.1.

The rf signal that causes a transition of an atom in spin state 2 into an atom in
spin state 3 corresponds to the action of an operator ψ†

3ψ2(r, t). The inclusive rate

(ω) for the production of atoms in state 3 can be expressed as


(ω)=�2Im i
∫

dtei(ω+iε)t
∫

d3 R
∫

d3r

〈
Tψ†

2ψ3

(
R+1

2
r, t

)
ψ

†
3ψ2

(
R−1

2
r, 0

)〉
.

(6.96)
The symbol T in the matrix element implies that the product of operators is time

ordered. For a large frequencyω, the integrals are dominated by small Euclidean time
intervals t = − iτ and by small separations r.We can therefore apply the short-time
OPE in Eq. 6.87 to the product of operatorsψ†

2ψ3 andψ†
3ψ2.The Wilson coefficients

of the leading one-body operatorψ†
2ψ2 and the leading two-body operator�†�were

determined in Ref. [22]:∫
dteiωt

∫
d3rψ†

2ψ3

(
R+1

2
r, t

)
ψ

†
3ψ2

(
R−1

2
r, 0

)

= i

ω
ψ

†
2ψ2(R)+ i(a−1

12 − a−1
13 )[a−1

12 − √−mω]
4πmω2[a−1

13 − √−mω] �†�(R)+ · · · . (6.97)

Upon inserting the OPE in Eq. 6.97 into Eq. 6.96, the ψ†
2ψ2 term gives a delta

function in ω. This corresponds to a contribution that decreases at large ω faster than
any power. The leading contribution to the high-frequency tail comes from the�†�

term:


(ω) −→ �2(a−1
13 − a−1

12 )
2

4πmω2 Im

(
−1

a−1
13 − √−m(ω + iε)

) ∫
d3 R〈�†�(R)〉.

(6.98)
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This reduces to the universal relation for the high-frequency tail in Eq. 6.33.
Sum rules for the rf transition rate 
(ω), such as those in Eqs. 6.31 and 6.32, can

be derived by expressing the integral along the real ω axis as a contour integral in the
complex ω plane that wraps around the real axis. If we allow for a general weighting
function f (ω), the sum rule becomes

∞∫
−∞

dω f (ω)
(ω)=�2
∮

dω

2π
f (ω)

∫
dteiωt

∫
d3 R

∫
d3r

×
〈
Tψ†

2ψ3

(
R+1

2
r, t)ψ†

3ψ2(R−1

2
r, 0

)〉
. (6.99)

If that contour is deformed into a circle whose radius approaches infinity, then
ω has a large imaginary part along most of the contour. This justifies the use of
the short-time OPE in Eq. 6.97. The sum rule can then be derived by evaluating the
contour integral along the circle at infinity for each of the Wilson coefficients. For
f (ω)= 1, the only nonzero contribution is from the ψ†

2ψ2 term and the sum rule
reduces to Eq. 6.31. For f (ω)=ω, the only nonzero contribution is from the �†�

term and the sum rule reduces to Eq. 6.32. The weighting function f (ω) does not
need to be a polynomial in ω. The Lorentzian function f (ω)= [(ω− ω0)

2 + γ 2]−1

gives a family of sum rules with two adjustable parameters that is less sensitive to
range corrections than that in Eq. 6.32 [22].

There are other universal relations that can be derived using the short-time OPE.
One example is the high-frequency behavior of the structure factor S12(ω, q), such
as the universal relation in Eq. 6.41. It can be derived from the short-time OPE for
the number density operators ψ†

1ψ1 and ψ†
2ψ2.

Acknowledgments This research was supported in part by a joint grant from the Army Research

Office and the Air Force Office of Scientific Research. I would like to acknowledge useful comments

by Lucas Platter, Shina Tan, Edward Taylor, Felix Werner, and Shizhong Zhang.

References

1. Braaten, E., Hammer, H.W.: Phys. Rept. 428, 259 (2006). arXiv:cond-mat/0410417
2. Tan, S.: Ann. Phys. 323, 2952 (2008). arXiv:cond-mat/0505200
3. Tan, S.: Ann. Phys. 323, 2971 (2008). arXiv:cond-mat/0508320
4. Tan, S.: Ann. Phys. 323, 2987 (2008). arXiv:0803.0841
5. Braaten, E., Platter, L.: Phys. Rev. Lett. 100, 205301 (2008). arXiv:0803.1125
6. Thomas, J.E., Kinast, J., Turlapov, A.: Rev. Lett. 95, 120402 (2005). arXiv:cond-mat/0503620
7. Blume, D., Daily, K.M.: Phys. Rev. A 80, 053626 (2009). arXiv:0909.2701
8. Chang, S.Y., Pandharipande, V.R., Carlson, J., Schmidt, K.E.: Phys. Rev. A 70, 043602 (2004).

arXiv:physics/0404115
9. Astrakharchik, G.E., Boronat, J., Casulleras, J., Giorgini, S.: Phys. Rev. Lett. 93, 200404 (2004).

arXiv:cond-mat/0406113



6 Universal Relations for Fermions with Large Scattering Length 231

10. Lobo, C., Carusotto, I., Giorgini, S., Recati, A., Stringari, S.: Phys. Rev. Lett. 97, 100405
(2006). arXiv:cond-mat/0604282

11. Petrov, D.S., Salomon, C., Shlyapnikov, G.V.: Phys. Rev. Lett. 93, 090404 (2004). arXiv:cond-
mat/0309010

12. Haussmann, R., Punk, M., Zwerger, W.: Phys. Rev. A 80, 063612 (2009). arXiv:0904.1333
13. Yu, Z., Bruun, G.M., Baym, G.: Phys. Rev. A 80, 023615 (2009). arXiv:0905.1836
14. Palestini, F., Perali, A., Pieri, P., Strinati, G.C.: Phys. Rev. A 82, 021605(R) (2010).

arXiv:1005.1158
15. Prokof’ev, N., Svistunov, B.: Phys. Rev. B 77, 020408(R) (2008). arXiv:0707.4259
16. Punk, M., Dumitrescu, P.T., Zwerger, W.: Phys. Rev. A 80, 053605 (2009). arXiv:0908.1343
17. Yu, Z., Baym, G.: Phys. Rev. A 73, 063601 (2006). arXiv:cond-mat/0510675
18. Zhang, S., Leggett, A.J.: Phys. Rev. A 77, 033614 (2008)
19. Punk, M., Zwerger, W.: Phys. Rev. Lett. 99, 170404 (2007). arXiv:0707.0792
20. Baym, G., Pethick, C.J., Yu, Z., Zwierlein, M.W.: Phys. Rev. Lett. 99, 190407 (2007).

arXiv:0707.0859
21. Zwierlein, M.W., Hadzibabic, Z„ Gupta, S., Ketterle, W.: Phys. Rev. Lett. 91, 250404 (2003).

arXiv:cond-mat/0306627
22. Braaten, E., Kang, D., Platter, L.: Phys. Rev. Lett. 104, 223004 (2010). arXiv:1001.4518
23. Schneider, W., Shenoy, V.B., Randeria, M.: Theory of radio frequency spectroscopy of polarized

Fermi gases. arXiv:0903.3006
24. Schneider, W., Randeria, M.: Phys. Rev. A 81, 021601(R) (2010). arXiv:0910.2693
25. Pieri, P., Perali, A., Strinati, G.C.: Nat. Phys. 5, 736 (2009). arXiv:0811.0770
26. Werner, F.: Phys. Rev. A 78, 025601 (2008). arXiv:0803.3277
27. Werner, F., Tarruell, L., Castin, Y.: Phys. J. B 68, 401 (2009). arXiv:0807.0078
28. Zhang, S., Leggett, A.J.: Phys. Rev. A 79, 023601 (2009). arXiv:0809.1892
29. Braaten, E., Kang, D., Platter, L.: Phys. Rev. A 78, 053606 (2008). arXiv:0806.2277
30. Combescot, R., Giorgini, S., Stringari, S.: Europhys. Lett. 75, 695 (2006). arXiv:cond-

mat/0512048
31. Hu, H., Liu, X.-J., Drummond, P.D.: Europhys. Lett. 91, 20005 (2010). arXiv:1003.3511
32. Son, D.T., Thompson, E.G.: Phys. Rev. A 81, 063634 (2010). arXiv:1002.0922
33. Taylor, E., Randeria, M.: Phys. Rev. A 81, 053610 (2010). arXiv:1002.0869
34. Enss, T., Haussmann, R., Zwerger, W.: Ann. Phys. 326, 770 (2011). arXiv:1008.0007
35. Partridge, G.B., Strecker, K.E., Kamar, R.I., Jack, M.W., Hulet, R.G.: Phys. Rev. Lett. 95,

020404 (2005). arXiv:cond-mat/0505353
36. Kuhnle, E., Veeravalli, G., Dyke, P., Vale, C.J.: Phys. Rev. Lett. 101, 250403 (2008).

arXiv:0809.2145
37. Hu, H., Kuhnle, E,D., Liu, X.-J., Dyke, P., Mark, M., Drummond, P.D., Hannaford, P., Vale,

C.J.: Phys. Rev. Lett. 105, 070402 (2010). arXiv:1001.3200
38. Stewart, J.T., Gaebler, J.P., Drake, T.E., Jin, D.S.: Phys. Rev. Lett. 104, 235301 (2010).

arXiv:1002.1987
39. Navon, N., Nascimbène, S., Chevy, F., Salomon, C.: Science 328, 729 (2010). arXiv:1004.1465
40. Werner, F., Castin ,Y.: Exact relations for quantum-mechanical few-body and many-body prob-

lems with short-range interactions in two and three dimensions. arXiv:1001.0774
41. Tan, S.: S-wave contact interaction problem: a simple description. arXiv:cond-mat/0505615
42. Combescot, R., Alzetto, F., Leyronas, X.: Phys. Rev. A 79, 053640 (2009). arXiv:0901.4303
43. Kadanoff, L.P.: Phys. Rev. Lett. 23 1430 (1969)
44. Wilson, K.G., Zimmermann, W.: Comm. Math. Phys. 24, 87 (1972)
45. Onsager, L.: Phys. Rev. 65, 117 (1944)
46. Son, D.T., Wingate, M.: Ann. Phys. 321, 197 (2006). arXiv:cond-mat/0509786



Chapter 7
Unitary Fermi Gas, ε Expansion,
and Nonrelativistic Conformal Field Theories

Yusuke Nishida and Dam Thanh Son

Abstract We review theoretical aspects of unitary Fermi gas (UFG), which has
been realized in ultracold atom experiments. We first introduce the ε expansion
technique based on a systematic expansion in terms of the dimensionality of space.
We apply this technique to compute the thermodynamic quantities, the quasiparti-
cle cum, and the criticl temperature of UFG. We then discuss consequences of the
scale and conformal invariance of UFG. We prove a correspondence between pri-
mary operators in nonrelativistic conformal field theories and energy eigenstates in a
harmonic potential. We use this correspondence to compute energies of fermions at
unitarity in a harmonic potential. The scale and conformal invariance together with
the general coordinate invariance constrains the properties of UFG. We show the
vanishing bulk viscosities of UFG and derive the low-energy effective Lagrangian
for the superfluid UFG. Finally we propose other systems exhibiting the nonrelativis-
tic scaling and conformal symmetries that can be in principle realized in ultracold
atom experiments.

7.1 Introduction

Interacting fermions appear in various subfields of physics. The Bardeen–Cooper–
Schrieffer (BCS) mechanism shows that if the interaction is attractive, the Fermi
surface is unstable toward the formation of Cooper pairs and the ground state of
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the system exhibits superconductivity or superfluidity. Such phenomena have been
observed in metallic superconductors, superfluid 3He, and high-Tc superconductors.
Possibilities of superfluid nuclear matter, color superconductivity of quarks, and
neutrino superfluidity are also discussed in literatures; some of these states might be
important to the physics of neutron stars.

In 2004, a new type of fermionic superfluid has been realized in ultracold atomic
gases of 40K and 6Li in optical traps [1, 2]. Unlike the previous examples, these
systems have a remarkable feature that the strength of the attraction between fermi-
ons can be arbitrarily tuned through magnetic field induced Feshbach resonances.
The interatomic interaction at ultracold temperature is dominated by binary s-wave
collisions, whose strength is characterized by the s-wave scattering length a. Across
the Feshbach resonance, a−1 can, in principle, be tuned to any value from −∞ to
+∞. Therefore, the ultracold atomic gases provide an ideal ground for studying
quantum physics of interacting fermions from weak coupling to strong coupling.

In cold and dilute atomic gases, the interatomic potential is well approximated
by a zero-range contact interaction: the potential range, r0 ∼ 60a0 for 40K and
r0 ∼ 30a0 for 6Li, is negligible compared to the de Broglie wavelength and the mean
interparticle distance (n−1/3 ∼ 5000–10000a0). The properties of such a system are
universal, i.e., independent of details of the interaction potential. By regarding the
two different hyperfine states of fermionic atoms as spin-↑ and spin-↓ fermions, the
atomic gas reduces to a gas of spin- 1

2 fermions interacting by the zero-range potential
with the tunable scattering length a. The question we would like to understand is
the phase diagram of such a system as a function of the dimensionless parameter
−∞<(akF )

−1<∞, where kF ≡ (3π2n)1/3 is the Fermi momentum.
The qualitative understanding of the phase diagram is provided by picture of

a BCS–BEC crossover [3–6] (the horizontal axis in Fig. 7.1). When the attraction
between fermions is weak (BCS limit where akF < 0 and |akF | � 1), the system is
a weakly interacting Fermi gas. Its ground state is superfluid by the BCS mechanism,
where (loosely bound) Cooper pairs condense. On the other hand, when the attraction
is strong (BEC limit where 0< akF � 1), two fermions form a bound molecule and
the system becomes a weakly interacting Bose gas of such molecules. Its ground
state again exhibits superfluidity, but by the Bose–Einstein condensation (BEC) of
the tightly bound molecules. These two regimes are smoothly connected without
phase transitions, which implies that the ground state of the system is a superfluid
for any (akF )

−1.Both BCS and BEC limits can be understood quantitatively by using
the standard perturbative expansion in terms of the small parameter |akF | � 1.

In contrast, a strongly interacting regime exists in the middle of the
BCS–BEC crossover, where the scattering length is comparable to or exceeds the
mean interparticle distance; |akF | � 1. In particular, the limit of infinite scattering
length |akF | → ∞, which is often called the unitarity limit, has attracted intense
attention by experimentalists and theorists alike. Beside being experimentally real-
izable in ultracold atomic gases using the Feshbach resonance, this regime is an
idealization of the dilute nuclear matter, where the neutron–neutron scattering length
ann 	 − 18.5 fm is larger than the typical range of the nuclear force r0 	 1.4 fm.
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Fig. 7.1 Extended phase diagram of the BCS–BEC crossover in the plane of the inverse scattering
length (akF)

−1 and the spatial dimension d. There are four limits where the system becomes
noninteracting; akF → ± 0 and d → 4, 2. The system is strongly interacting in the shaded region

Theoretical treatments of the Fermi gas in the unitarity limit (unitary Fermi gas)
suffer from the difficulty arising from the lack of a small expansion parameter: the
standard perturbative expansion in terms of |akF | is obviously of no use. Mean-
field type approximations, with or without fluctuations, are often adopted to obtain
a qualitative understanding of the BCS–BEC crossover, but they are not necessarily
controlled near the unitarity limit. Therefore an important and challenging problem
for theorists is to establish a systematic approach to investigate the unitary Fermi
gas.

In Sect. 7.2 we describe one of such approaches. It is based on an expansion
over a parameter which depends on the dimensionality of space [7–9]. In this
approach, one extends the problem to arbitrary spatial dimension d, keeping the
scattering length infinite |akF | → ∞ (the vertical axis in Fig. 7.1). Then we can find
two noninteracting limits on the d axis, which are d = 4 and d = 2. Accordingly,
slightly below four or slightly above two spatial dimensions, the unitary Fermi gas
becomes weakly interacting and thus a “perturbative expansion” is available. We
show that the unitary Fermi gas near d = 4 is described by a weakly interacting
gas of bosons and fermions, while near d = 2 it reduces to a weakly interacting
Fermi gas. A small parameter for the perturbative expansion is ε ≡ 4 − d near
four spatial dimensions or ε̄ ≡ d − 2 near two spatial dimensions. After per-
forming all calculations treating ε or ε̄ as a small expansion parameter, results
for the physical case of d = 3 are obtained by extrapolating the series expansions
to ε(ε̄)= 1, or more appropriately, by matching the two series expansions. We
apply this technique, the ε expansion, to compute the thermodynamic quantities
[7, 8, 10, 11] (Sect. 7.2.3), the quasiparticle spectrum [7, 8] (Sect. 7.2.4), and the
critical temperature [9] (Sect. 7.2.5). The main advantage of this method is that all
calculations can be done analytically; its drawback is that interpolations to d = 3 are
needed to achieve numerical accuracy.

Then in Sects. 7.3 and 7.4, we focus on consequences of another important char-
acteristic of the unitary Fermi gas, namely, the scale and conformal invariance
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[12–14]. We introduce the notion of nonrelativistic conformal field theories (NRCFTs)
as theories describing nonrelativistic systems exhibiting the scaling and conformal
symmetries. In Sect. 7.3.1, we describe a nonrelativistic analog of the conformal
algebra, the so-called Schrödinger algebra [15, 16], and show in Sect. 7.3.2 that there
is an operator-state correspondence [12]: a primary operator in NRCFT corresponds
to an energy eigenstate of a few-particle system in a harmonic potential. The scal-
ing dimension of the primary operator coincides with the energy eigenvalue of the
corresponding state, divided by the oscillator frequency. We use the operator-state
correspondence to compute the energies of two and three fermions at unitarity in a
harmonic potential exactly (Sect. 7.3.3 with Appendix) and more fermions with the
help of the ε expansion (Sect. 7.3.4).

The enlarged symmetries of the unitary Fermi gas also constrain its properties.
By requiring the scale and conformal invariance and the general coordinate invariance
of the hydrodynamic equations, we show that the unitary Fermi gas has the vanishing
bulk viscosity in the normal phase [13] (Sect. 7.4.1). In the superfluid phase, two of
the three bulk viscosities have to vanish while the third one is allowed to be nonzero.
In Sect. 7.2, we derive the most general effective Lagrangian for the superfluid uni-
tary Fermi gas that is consistent with the scale, conformal, and general coordinate
invariance in the systematic momentum expansion [14]. To the leading and next-to-
leading orders, there are three low-energy constants which can be computed using
the ε expansion. We can express various physical quantities through these constants.

Finally in Sect. 7.5, we discuss other systems exhibiting the nonrelativistic scaling
and conformal symmetries, to which a part of above results can be applied. Such
systems include a mass-imbalanced Fermi gas with both two-body and three-body
resonances [17] and Fermi gases in mixed dimensions [18]. These systems can be in
principle realized in ultracold atom experiments.

7.2 ε Expansion for the Unitary Fermi Gas

In this section, we develop an analytical approach for the unitary Fermi gas based
on a systematic expansion in terms of the dimensionality of space by using special
features of four or two spatial dimensions for the zero-range and infinite scattering
length interaction.

7.2.1 Why Four and Two Spatial Dimensions are Special?

7.2.1.1 Nussinovs’ Intuitive Arguments

The special role of four and two spatial dimensions for the zero-range and infinite
scattering length interaction has been first recognized by Nussinov and Nussinov
[19]. At infinite scattering length, which corresponds to a resonance at zero energy,
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the two-body wave function at a short distance r → 0 behaves like

R(r) ∝ 1

rd−2 + O(r4−d), (7.1)

where r is the separation between two fermions with opposite spins. The first singular
term ∼1/rd−2 is the spherically symmetric solution to the Laplace equation in d
spatial dimensions. Accordingly the normalization integral of the wave function has
the form ∫

d r R(r)2 ∝
∫
0

dr
1

rd−3 , (7.2)

which diverges at the origin r → 0 in higher dimensions d ≥ 4.Therefore, in the limit
d → 4, the two-body wave function is concentrated at the origin and the fermion pair
should behave like a point-like composite boson. This observation led Nussinov and
Nussinov to conclude that the unitary Fermi gas at d → 4 becomes a noninteracting
Bose gas.

On the other hand, the singularity in the wave function (7.1) disappears in the limit
d → 2, which means that the interaction between the two fermions also disappears.
This can be understood intuitively from the fact that in lower dimensions d ≤ 2,
any attractive potential possesses at least one bound state and thus the threshold of
the appearance of the first bound state (infinite scattering length) corresponds to the
vanishing potential. Therefore the unitary Fermi gas at d → 2 should reduce to a
noninteracting Fermi gas [19].

The physical case, d = 3, lies midway between these two limits d = 2 and d = 4.
It seems natural to try to develop an expansion around these two limits and then
extrapolate to d = 3. For this purpose, we need to employ a field theoretical approach.

7.2.1.2 Field Theoretical Approach

Spin- 1
2 fermions interacting by the zero-range potential is described by the following

Lagrangian density (here and below � = kB = 1):

L=
∑

σ = ↑,↓
ψ†
σ

(
i∂t + ∂2

2m
+ μ

)
ψσ + c0ψ

†
↑ψ

†
↓ψ↓ψ↑. (7.3)

In d = 3, the bare coupling c0 is related to the physical parameter, the scattering
length a, by

1

c0
= − m

4πa
+

∫
dk
(2π)d

1

2εk

(
εk ≡ k2

2m

)
. (7.4)

In dimensional regularization, used in this section, the second term vanishes and
therefore the unitarity limit a → ∞ corresponds to c0 → ∞.
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Fig. 7.2 Two-fermion scattering in vacuum in the unitarity limit. The scattering amplitude iA near
d = 4 is expressed by the propagation of a boson with the small effective coupling g, while it reduces
to a contact interaction with the small effective coupling ḡ2 near d = 2

In order to understand the specialty of d = 4 and d = 2,we first study the scattering
of two fermions in vacuum (μ= 0) in general d spatial dimensions. The two-body
scattering amplitude iA is given by the geometric series of bubble diagrams depicted
in Fig. 7.2. In the unitarity limit, we obtain

iA(p0, p)= − i

( 4π
m

)d/2

�
(
1 − d

2

) (−p0 + ε p
2 − i0+)d/2−1 , (7.5)

which vanishes when d → 4 and d → 2 because of the poles in�
(
1 − d

2

)
.This means

that those dimensions correspond to the noninteracting limits and is consistent with
the Nussinovs’ arguments in Sect. 7.2.1.1.

Furthermore, by expanding iA in terms of ε= 4 − d � 1, we can obtain further
insight. The scattering amplitude to the leading order in ε becomes

iA(p0, p)= − 8π2ε

m2

i

p0 − ε p
2 + i0+ + O(ε2)

≡(ig)2i D(p0, p)+ O(ε2),

(7.6)

where we have defined g2 = 8π2ε
m2 and D(p0, p)= (

p0 − ε p
2 + i0+)−1

. The latter is
the propagator of a particle of mass 2m. This particle is a boson, which is the point-
like composite of two fermions. Equation (7.6) states that the two-fermion scattering
near d = 4 can be thought of as occurring through the propagation of an intermediate
boson, as depicted in Fig. 7.2. The effective coupling of the two fermions with the
boson is g ∼ ε1/2, which becomes small near d = 4. This indicates the possibility
to formulate a systematic perturbative expansion for the unitary Fermi gas around
d = 4 as a weakly interacting fermions and bosons.

Similarly, by expanding iA in ε̄= d − 2 � 1, the scattering amplitude becomes

iA(p0, p)= i
2π

m
ε̄ + O(ε̄2) ≡ i ḡ2 + O(ε̄2), (7.7)

where we have defined ḡ2 = 2π
m ε̄. Equation (7.7) shows that the two-fermion scat-

tering near d = 2 reduces to that caused by a contact interaction with the effective
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coupling ḡ2 (Fig. 7.2). Because ḡ2 ∼ ε̄ is small near d = 2, it will be possible to for-
mulate another systematic perturbative expansion for the unitary Fermi gas around
d = 2 as a weakly interacting fermions.

7.2.2 Feynman Rules and Power Counting of ε

The observations in Sect. 7.2.1.2 reveal how we should construct the systematic
expansions for the unitary Fermi gas around d = 4 and d = 2. Here we provide their
formulations and power counting rules of ε (ε̄).The detailed derivations of the power
counting rules can be found in Ref. [8].

7.2.2.1 Around Four Spatial Dimensions

In order to organize a systematic expansion around d = 4, we make a Hubbard-
Stratonovich transformation and rewrite the Lagrangian density (7.3) as

L→
∑

σ = ↑,↓
ψ†
σ

(
i∂t + ∂2

2m
+ μ

)
ψσ − 1

c0
φ†φ + ψ

†
↑ψ

†
↓φ + φ†ψ↓ψ↑ (7.8a)

=
†
(

i∂t + σ3
∂2

2m
+ σ3μ

)

 − 1

c0
φ†φ +
†σ+
φ + φ†
†σ−
, (7.8b)

where
 ≡ (ψ↑, ψ†
↓)T is a two-component Nambu-Gor’kov field,σ± ≡ 1

2 (σ1 ± iσ2),

and σ1,2,3 are the Pauli matrices. Because the ground state of the system at
finite density is a superfluid, we expand φ around its vacuum expectation value
φ0 ≡ 〈φ〉> 0 as

φ=φ0 + gϕ with g ≡
(
8π2ε

)1/2

m

(
mφ0

2π

)ε/4
. (7.9)

Here we introduced the effective coupling g and chose the extra factor (mφ0/2π)ε/4

so that ϕ has the same dimension as a nonrelativistic field.1

Because the Lagrangian density (7.8b) does not have the kinetic term for the boson
field ϕ, we add and subtract its kinetic term by hand and rewrite the Lagrangian
density as a sum of three parts, L= L0 + L1 + L2, where

L0 =
†
(

i∂t + σ3
∂2

2m
+ σ1φ0

)

 + ϕ†

(
i∂t + ∂2

4m

)
ϕ, (7.10a)

1 The choice of the extra factor is arbitrary, if it has the correct dimension, and does not affect final
results because the difference can be absorbed by the redefinition of ϕ. The particular choice of g
in Eq. 7.9 [or ḡ in Eq. 7.13] simplifies expressions for loop integrals in the intermediate steps.
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(a)

(c) (d)

(b)

Fig. 7.3 Power counting rule of ε. The 1/ε singularity in the boson self-energy diagram a or c can
be canceled by combining it with the vertex from L2, b or d, to achieve the simple ε counting.
Solid (dotted) lines are the fermion (boson) propagators iG (iD). The fermion loop in c goes around
clockwise and counterclockwise and the cross symbol represents the μ insertion

L1 = g
†σ+
ϕ + gϕ†
†σ−
 + μ
†σ3
 + 2μϕ†ϕ, (7.10b)

L2 = − ϕ†
(

i∂t + ∂2

4m

)
ϕ − 2μϕ†ϕ. (7.10c)

Here we set 1/c0 = 0 in the unitarity limit. We treat L0 as the unperturbed part and
L1 as a small perturbation. Note that the chemical potential μ is also treated as a
perturbation because we will find it small, μ/φ0 ∼ ε, by solving the gap equation.
Physically, L0+L1 is the Lagrangian density describing weakly interacting fermions

 and bosons ϕ with a small coupling g ∼ ε1/2. L2 plays a role of counter terms
that cancel 1/ε singularities of loop integrals in certain types of diagrams (Fig. 7.3).

The unperturbed part L0 generates the fermion propagator,

G(p0, p)= 1

p2
0 − E2

p + i0+

(
p0 + ε p −φ0
−φ0 p0 − ε p

)
, (7.11)

with E p ≡
√
ε2

p + φ2
0 and the boson propagator

D(p0, p)= 1

p0 − ε p
2 + i0+ . (7.12)

The first two terms in the perturbation part L1 generate the fermion–boson vertices
whose coupling is g in Eq. 7.9. The third and fourth terms are the chemical poten-
tial insertions to the fermion and boson propagators. The two terms in L2 provide
additional vertices, −i�0 and −2iμ in Fig. 7.3b, d, to the boson propagator, where
�0(p0, p) ≡ p0 − ε p

2 .
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The power counting rule of ε is simple and summarized as follows:

1. We regard φ0 as O(1) and hence μ ∼ εφ0 as O(ε).
2. We write down Feynman diagrams for the quantity of interest using the propaga-

tors from L0 and the vertices from L1.

3. If the written Feynman diagram includes any subdiagram of the type in Fig. 7.3a
or c, we add the same Feynman diagram where the subdiagram is replaced by the
vertex from L2 in Fig. 7.3b or d.

4. The power of ε for the given Feynman diagram is O(εNg/2+Nμ), where Ng is the
number of couplings g and Nμ is the number of chemical potential insertions.

5. The only exception is the one-loop vacuum diagram with one μ insertion (the
second diagram in Fig. 7.5), which is O(1) instead of O(ε) due to the 1/ε singu-
larity arising from the loop integral.
The same or similar power counting rule can be derived for the cases with unequal
chemical potentials μ↑ �= μ↓ [8], unequal masses m↑ �= m↓ [20], at finite tem-
perature T �= 0 [9], and in the vicinity of the unitarity limit c0 �= 0 [8].

7.2.2.2 Around Two Spatial Dimensions

The systematic expansion around d = 2 in terms of ε̄ can be also organized in a
similar way. Starting with the Lagrangian density (7.8b), we expand φ around its
vacuum expectation value φ̄0 ≡ 〈φ〉> 0 as

φ= φ̄0 + ḡϕ with ḡ ≡
(

2πε̄

m

)1/2 (mμ

2π

)−ε̄/4
. (7.13)

Here we introduced the effective coupling ḡ and chose the extra factor (mμ/2π)−ε̄/4
so that ϕ†ϕ has the same dimension as the Lagrangian density.2

In the unitarity limit 1/c0 = 0,we rewrite the Lagrangian density as a sum of three
parts, L= L̄0 + L̄1 + L̄2, where

L̄0 =
†
(

i∂t + σ3
∂2

2m
+ σ3μ+ σ1φ̄0

)

, (7.14a)

L̄1 = − ϕ†ϕ + ḡ
†σ+
ϕ + ḡϕ†
†σ−
, (7.14b)

L̄2 =ϕ†ϕ. (7.14c)

We treat L̄0 as the unperturbed part and L̄1 as a small perturbation. Physically,
L̄0 + L̄1 is the Lagrangian density describing weakly interacting fermions
. Indeed,
if we did not have L̄2, we could integrate out the auxiliary fields ϕ and ϕ†,

2 See the footnote after Eq. 7.9.
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(a) (b)

Fig. 7.4 Power counting rule of ε̄. The 1/ε̄ singularity in the self-energy diagram of ϕ field (a) can
be canceled by combining it with the vertex from L̄2 (b) to achieve the simple ε̄ counting. Solid
(dotted) lines are the fermion (auxiliary field) propagators i Ḡ (i D̄)

L̄1 → ḡ2
†σ+

†σ−
 = ḡ2ψ
†
↑ψ

†
↓ψ↓ψ↑, (7.15)

which is the contact interaction between fermions with a small coupling ḡ2 ∼ ε̄.
L̄2 plays a role of a counter term that cancels 1/ε̄ singularities of loop integrals in a
certain type of diagrams (Fig. 7.4).

The unperturbed part L̄0 generates the fermion propagator

Ḡ(p0, p)= 1

p2
0 − Ē2

p + i0+

(
p0 + ε p − μ −φ̄0

−φ̄0 p0 − ε p + μ

)
(7.16)

with Ē p ≡
√
(ε p − μ)2 + φ̄2

0 . The first term in the perturbation part L̄1 generates

the propagator of ϕ field, D̄(p0, p)= − 1, and the last two terms generate the
vertices between fermions and ϕ field with the coupling ḡ in Eq. 7.13. L̄2 provides
an additional vertex i in Fig. 7.4b to the ϕ propagator.

The power counting rule of ε̄ is simple and summarized as follows:

1. We regard μ as O(1).
2. We write down Feynman diagrams for the quantity of interest using the propagator

from L̄0 and the vertices from L̄1.

3. If the written Feynman diagram includes any subdiagram of the type in Fig. 7.4a,
we add the same Feynman diagram where the subdiagram is replaced by the vertex
from L̄2 in Fig. 7.4b.

4. The power of ε̄ for the given Feynman diagram is O(ε̄Nḡ/2), where Nḡ is the
number of couplings ḡ.

7.2.3 Zero Temperature Thermodynamics

We now apply the developed ε expansion to compute various physical quantities of
the unitary Fermi gas. Because of the absence of scales in the zero-range and infi-
nite scattering interaction, the density n is the only scale of the unitary Fermi gas at
zero temperature. Therefore all physical quantities are determined by simple dimen-
sional analysis up to dimensionless constants of proportionality. Such dimensionless
parameters are universal depending only on the dimensionality of space.
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A representative example of the universal parameters is the ground state energy
of the unitary Fermi gas normalized by that of a noninteracting Fermi gas with the
same density:

ξ ≡ Eunitary

Efree
. (7.17)

ξ, sometimes called the Bertsch parameter, measures how much energy is gained due
to the attractive interaction in the unitarity limit. In terms of ξ, the pressure P, the
energy density E, the chemical potential μ, and the sound velocity vs of the unitary
Fermi gas are given by

P

εFn
= 2

d + 2
ξ

E
εFn

= d

d + 2
ξ

μ

εF
= ξ vs

vF
=

√
ξ

d
, (7.18)

where εF ≡ k2
F/2m and vF ≡ kF/m are the Fermi energy and velocity with

kF ≡ [
2d−1πd/2�

( d
2 + 1

)
n
]1/d

being the Fermi momentum in d spatial dimensions.
ξ is thus a fundamental quantity characterizing the zero temperature thermodynamics
of the unitary Fermi gas.

7.2.3.1 Next-to-Leading Orders

ξ can be determined systematically in the ε expansion by computing the effective
potential Veff(φ0), whose minimum with respect to the order parameter φ0 provides
the pressure P = − min Veff(φ0). To leading and next-to-leading orders in ε, the
effective potential receives contributions from three vacuum diagrams depicted in
Fig. 7.5. The third diagram, fermion loop with one boson exchange, results from the
summation of fluctuations around the classical solution and is beyond the mean field
approximation. Any other diagrams are suppressed near d = 4 by further powers of ε.
Performing the loop integrations, we obtain

Veff(φ0)=
[
φ0

3

{
1 + 7 − 3(γ + ln 2)

6
ε − 3Cε

}

− μ

ε

{
1 + 1 − 2(γ − ln 2)

4
ε

}] (
mφ0

2π

)d/2

+ O(ε2), (7.19)

where C ≈ 0.14424 is a numerical constant. The minimization of Veff(φ0) with
respect to φ0 gives the gap equation, ∂Veff/∂φ0 = 0, which is solved by

φ0(μ)= 2μ

ε

[
1 + (3C − 1 + ln 2) ε + O(ε2)

]
. (7.20)

The effective potential at its minimum provides the pressure P(μ)= − Veff(φ0(μ))

as a function of μ. From Eq. 7.18 and n = ∂P/∂μ, we obtain ξ expanded in terms
of ε:
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Fig. 7.5 Vacuum diagrams contributing to the effective potential near d = 4 to leading and next-
to-leading orders in ε. The boson one-loop diagram vanishes at zero temperature

ξ |d → 4 = ε3/2

2
exp

(
ε ln ε

8 − 2ε

)[
1 −

{
3C − 5

4
(1 − ln 2)

}
ε + O(ε2)

]

= 1

2
ε3/2 + 1

16
ε5/2 ln ε − 0.0246ε5/2 + O(ε7/2).

(7.21)

Although our formalism is based on the smallness of ε, we find that the next-to-
leading-order correction is quite small compared to the leading term even at ε= 1.
The naive extrapolation to the physical dimension d = 3 gives

ξ → 0.475 (ε→ 1), (7.22)

which is already close to the result from the Monte Carlo simulation ξ ≈ 0.40(1)
(S. Zhang et al., Private communication). For comparison, the mean field approxi-
mation yields ξ ≈ 0.591.

The above result can be further improved by incorporating the expansion around
d = 2. Because we can find by solving the gap equation that the order parameter is
exponentially small [8]

φ̄0(μ)= 2μe−1/ε̄−1+O(ε̄), (7.23)

its contribution to the pressure is negligible compared to any powers of ε̄. To leading
and next-to-leading orders in ε̄, the effective potential receives contributions from
two vacuum diagrams depicted in Fig. 7.6. Any other diagrams are suppressed near
d = 2 by further powers of ε̄. From the pressure

P = − V̄eff(0)=
[
1 + ε̄ + O(ε̄2)

] 2μ

�
( d

2 + 2
) (mμ

2π

)d/2
, (7.24)

we obtain ξ expanded in terms of ε̄:
ξ |d → 2 = 1 − ε̄ + O(ε̄2). (7.25)

The value of ξ in d = 3 can be extracted by interpolating the two expansions around
d = 4 and d = 2. The simplest way to do so is to employ the Padé approximants. We
write ξ in the form
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Fig. 7.6 Vacuum diagrams contributing to the effective potential near d = 2 to leading and next-
to-leading orders in ε̄
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Fig. 7.7 ξ as a function of the spatial dimension d. Left panel: The upper (lower) curve is the
extrapolation from the NLO expansion around d = 4 in Eq. 7.21 [d = 2 in Eq. 7.25]. The middle
three curves show the Padé interpolations of the two NLO expansions. The symbol at d = 3 indicates
the result ξ ≈ 0.40(1) from the Monte Carlo simulation (S. Zhang et al., Private communication).
Right panel: The same as the left panel but including the NNLO corrections in Eq. 7.29 and Eq. 7.30

ξ = ε3/2

2
exp

(
ε ln ε

8 − 2ε

)
F(ε), (7.26)

where F(ε) is an unknown function and the trivial nonanalytic dependence on ε was
factored out.3 We approximate F(ε) by ratios of two polynomials (Padé approxi-
mants) and determine their coefficients so that ξ in Eq. 7.26 has the correct next-
to-leading-order (NLO) expansions both around d = 4 Eq. 7.21 and d = 2 Eq. 7.25.
The left panel of Fig. 7.7 shows the behavior of ξ as a function of d. The middle
three curves are the Padé interpolations of the two NLO expansions. In d = 3, these
interpolations give

ξ ≈ 0.391, 0.366, 0.373, (7.27)

which span a small interval ξ ≈ 0.377 ± 0.014.

3 It has been shown that F(ε) has a nonanalytic term − 3
8 ε

3 ln ε to the next-to-next-to-next-to-
leading order in ε [10]. Because we are working up to O(ε2), we neglect such a nonanalytic
contribution.
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We can also employ different interpolation schemes, for example, by applying
the Borel transformation to F(ε)= 1

ε

∫ ∞
0 dte−t/εG(t) and approximating the Borel

transform G(t) by the Padé approximants [8]. These Borel-Padé interpolations of
the two NLO expansions give

ξ ≈ 0.391, 0.364, 0.378 (7.28)

in d = 3,which again span a small interval ξ ≈ 0.378 ± 0.013.Comparing the results
in Eq. 7.27 and Eq. 7.28, we find that the interpolated values do not depend much
on the choice of the Padé approximants and also on the employment of the Borel
transformation.

7.2.3.2 Next-to-Next-to-Leading Orders

The systematic calculation of ξ has been carried out up to the next-to-next-to-leading-
order (NNLO) corrections in terms of ε [10]:

ξ |d → 4 = ε3/2

2
exp

(
ε ln ε

8 − 2ε

) [
1 − 0.04916ε − 0.95961ε2 + O(ε3)

]
(7.29)

and in terms of ε̄ [11, 20]:

ξ |d → 2 = 1 − ε̄ + 0.80685ε̄2 + O(ε̄3). (7.30)

The middle four curves in the right panel of Fig. 7.7 are the Padé interpolations of
the two NNLO expansions. In d = 3, these interpolations give

ξ ≈ 0.340, 0.372, 0.370, 0.357, (7.31)

which span an interval ξ ≈ 0.360 ± 0.020. 4 In spite of the large NNLO corrections
both near d = 4 and d = 2, the interpolated values are roughly consistent with the
previous interpolations of the NLO expansions (compare the two panels in Fig. 7.7).
This indicates that the interpolated results are stable to inclusion of higher-order
corrections and thus the ε expansion has a certain predictive power even in the
absence of the knowledge on the higher-order corrections.

Finally we note that the limit ξ |d → 4 → 0 is consistent with the Nussinovs’ picture
of the unitary Fermi gas as a noninteracting Bose gas and ξ |d → 2 → 1 is consistent
with the picture as a noninteracting Fermi gas in Sect. 7.2.1.1. It would be interesting
to consider how ξ should be continued down to d → 1.The unitary Fermi gas in d = 3
is analytically continued to spin- 1

2 fermions with a hard-core repulsion in d = 1,
which is equivalent for the thermodynamic quantities to free identical fermions with
the same total density [21]. Therefore it is easy to find

4 If we excluded the interpolation by the simple polynomial (ξ ≈ 0.340) as was done in Ref. [10],
we would obtain 0.367 ± 0.010, which is consistent with the Borel-Padé interpolations without the
NNLO correction near d = 2 [10].
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ξ |d → 1 → 4. (7.32)

The incorporation of this constraint on the Padé interpolations of the two NNLO
expansions yields ξ ≈ 0.365 ± 0.010 in d = 3.

7.2.4 Quasiparticle Spectrum

The ε expansion is also useful to compute other physical quantities of the unitary
Fermi gas. Here we determine the spectrum of fermion quasiparticles in a superfluid.
To leading order in ε, the dispersion relationω( p) is given by the pole of the fermion

propagator in Eq. 7.11; ω( p)= E p =
√
ε2

p + φ2
0 . It has a minimum at | p| = 0 with

the energy gap equal to �=φ0 = 2μ/ε.
To the next-to-leading order in ε, the fermion propagator receives corrections

from three self-energy diagrams depicted in Fig. 7.8. We can find that � ∼ O(ε) is
diagonal with the elements

�11(p0, p)= − g2

2

∫
dk
(2π)d

Ek − εk

Ek(Ek + εk− p
2 − p0 − i0+)

(7.33)

and �22(p0, p)= − �11(−p0,− p). From the pole of the fermion propagator,
det

[
G−1(ω, p)+ μσ3 −�(ω, p)

] = 0, we obtain the dispersion relation

ω( p)= E p + �11 +�22

2
+ �11 −�22 − 2μ

2E p
ε p + O(ε2), (7.34)

where �11 and �22 are evaluated at p0 = E p. The minimum of ω( p) will appear at
small momentum ε p ∼ O(ε). By expanding ω( p) with respect to ε p, we find that
the dispersion relation around its minimum has the form

ω( p)	�+ (ε p − ε0)
2

2φ0
. (7.35)

Here � is the energy gap of the fermion quasiparticle given by

�|d → 4 =φ0

[
1 − (8 ln 3 − 12 ln 2) ε + O(ε2)

]

= 2μ

ε

[
1 + (3C − 1 − 8 ln 3 + 13 ln 2) ε + O(ε2)

]
.

(7.36)

The minimum of the dispersion relation is located at ε p = ε0> 0 with

ε0|d → 4 =μ+ εφ0

2
+ O(ε2)= 2μ+ O(ε2), (7.37)

where the solution of the gap equation (7.20) was substituted to φ0.
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Fig. 7.8 Fermion
self-energy diagrams near
d = 4 to the order O(ε)

We can see that the next-to-leading-order correction is reasonably small compared
to the leading term at least for�/μ= 2/ε (1 − 0.345ε) . The naive extrapolation to
the physical dimension d = 3 gives

�

μ
→ 1.31 and

ε0

μ
→ 2 (ε→ 1), (7.38)

both of which are quite close to the results from the Monte Carlo simulation�/μ ≈
1.2 and ε0/μ ≈ 1.9 [22]. For comparison, the mean field approximation yields
�/μ ≈ 1.16 and ε0/μ ≈ 1.

Frequently � and ε0 are normalized by the Fermi energy εF. By multiplying
Eqs. 7.36 and 7.37 by μ/εF = ξ obtained previously in Eq. 7.21, we find

�

εF
→ 0.604 and

ε0

εF
→ 1 (ε→ 1). (7.39)

For comparison, the Monte Carlo simulation gives �/εF ≈ 0.50 and ε0/εF
≈ 0.8 [22] and the mean field approximation yields �/εF ≈ 0.686 and ε0/εF ≈
0.591.

7.2.5 Critical Temperature

The formulation of the ε expansion can be extended to finite temperature T �= 0 by
using the imaginary time prescription [9]. Here we determine the critical temperature
Tc for the superfluid phase transition of the unitary Fermi gas.

The leading contribution to Tc/εF in terms of ε can be obtained by the following
simple argument. In the limit d → 4, the unitary Fermi gas reduces to a noninter-
acting fermions and bosons with their chemical potentials μ and 2μ, respectively
[see Eq. 7.10]. Because the boson’s chemical potential vanishes at the BEC critical
temperature, the density at T = Tc is given by

n = 2
∫

d p
(2π)4

[
fF(ε p)+ fB(ε p/2)

] + O(ε)

=
[
π2

6
+ 8π2

6

] (
mTc

2π

)2

+ O(ε)= 3π2

2

(
mTc

2π

)2

+ O(ε).

(7.40)

Comparing the contributions from Fermi and Bose distributions, we can see that
only 8 of 9 fermion pairs form the composite bosons while 1 of 9 fermion pairs is

dissociated. With the use of εF ≡ 2π
m

[
�

( d
2 + 1

) n
2

]2/d
at d = 4, we obtain
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Tc

εF

∣∣∣∣
d → 4

=
√

2

3π2 + O(ε). (7.41)

In order to compute the O(ε) correction to Tc/εF,we need to evaluate the effective
potential Veff(φ0) at finite temperature. The effective potential to leading order in ε
is given by the fermion one-loop diagrams with and without one μ insertion and the
boson one-loop diagram. Near T 	 Tc, we can expand Veff(φ0) in φ0/T and obtain

Veff(φ)− Veff(0)	
[
T ln 2 − μ

ε

](
mφ0

2π

)2

+ φ2
0

16T

(
mφ0

2π

)2

+ · · · . (7.42)

The second order phase transition occurs when the coefficient of the quadratic term
in φ0 vanishes. Accordingly, at T = Tc, the chemical potential is found to be

μ= εTc ln 2 + O(ε2). (7.43)

We then compute the O(ε) correction to the density n = − ∂Veff/∂μ in Eq. 7.40
at T = Tc and hence φ0 = 0. For this purpose, we need to evaluate the fermion and
boson one-loop diagrams with two μ insertions and the two-loop diagrams with one
μ insertion to the fermion and boson propagators (Fig. 7.9). Performing the loop
integrations and substituting Eq. 7.43, we can find

n =
[

3π2

2
−

{
3π2 ln 2 + 18ζ ′(2)

4
+ D − 2(ln 2)2

}
ε

] (
mTc

2π

)d/2

, (7.44)

where D ≈ 1.92181 is a numerical constant. From the definition
εF ≡ 2π

m

[
�

( d
2 + 1

) n
2

]2/d
, we obtain Tc/εF up to the next-leading order in ε:

Tc

εF

∣∣∣∣
d → 4

= 0.260 − 0.0112ε + O(ε2). (7.45)

On the other hand, because the unitary Fermi gas near d = 2 reduces to a weakly
interacting Fermi gas, the critical temperature is provided by the usual BCS for-
mula Tc = (eγ /π)�, where � is the energy gap of the fermion quasiparticle
at zero temperature. Because � in the expansion over ε̄ is already obtained by
φ̄0 = 2μe−1/ε̄−1+O(ε̄) in Eq. 7.23, we easily find

Tc

εF

∣∣∣∣
d → 2

= 2eγ

π
e−1/ε̄−1+O(ε̄), (7.46)

where we used μ/εF = ξ = 1 + O(ε) Eq. 7.25. The exponential e−1/ε̄ is equivalent
to the mean field result while the correction e−1 corresponds to the Gor’kov–Melik-
Barkhudarov correction in d = 3.

Now the value of Tc/εF in d = 3 can be extracted by interpolating the two expan-
sions around d = 4 and d = 2 just as has been done for ξ in Sect. 7.2.3.1. We write
Tc/εF in the form
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Fig. 7.9 Three types of diagrams contributing to the effective potential at finite temperature near
d = 4 to leading and next-to-leading orders in ε. Each μ (2μ) insertion to the fermion (boson)
line increases the power of ε by one. Note that at T ≥ Tc where φ0 = 0, the μ insertion to the first
diagram does not produce the 1/ε singularity
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Fig. 7.10 Critical temperature Tc as a function of the spatial dimension d. The upper (lower) curve
is the extrapolation from the NLO expansion around d = 4 in (7.45) [d = 2 in (7.46)]. The middle
three curves show the Padé and Borel-Padé interpolations of the two NLO expansions. The symbol
at d = 3 indicates the result Tc/εF = 0.152(7) from the Monte Carlo simulation [23]

Tc

εF
= 2eγ

π
e−1/ε̄−1 F(ε̄), (7.47)

where F(ε̄) is an unknown function and the nonanalytic dependence on ε̄was factored
out. We approximate F(ε̄) or its Borel transform G(t) by ratios of two polynomials
and determine their coefficients so that Tc/εF in Eq. 7.47 has the correct NLO expan-
sions both around d = 4 Eq. 7.45 and d = 2 Eq. 7.46. Figure 7.10 shows the behavior
of Tc/εF as a function of d. The middle three curves are the Padé and Borel-Padé
interpolations of the two NLO expansions. In d = 3, these interpolations give

Tc

εF
≈ 0.173, 0.175, 0.192, (7.48)

which span an interval Tc/εF ≈ 0.180 ± 0.012. Our interpolated values are not
too far from the result of the Monte Carlo simulation Tc/εF = 0.152(7) [23]. For
comparison, the mean field approximation yields Tc/εF ≈ 0.496.
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7.2.6 Phase Diagram of an Imbalanced Fermi Gas

The phase diagram of a density- and mass-imbalanced Fermi gas was studied using
the ε expansion in Refs. [8, 20].

7.3 Aspects as a Nonrelativistic Conformal Field Theory

Because of the absence of scales in the zero-range and infinite scattering interaction,
the theory describing fermions in the unitarity limit is a nonrelativistic conformal
field theory (NRCFT). In this section, after deriving the Schrödinger algebra and the
operator-state correspondence in NRCFTs, we compute the scaling dimensions of
few-body composite operators exactly or with the help of the ε expansion, which
provide the energies of a few fermions at unitarity in a harmonic potential.

7.3.1 Schrödinger Algebra

We start with a brief review of the Schrödinger algebra [15, 16]. For the latter
application, we allow spin-↑ and ↓ fermions to have different masses m↑ and m↓.
We define the mass density:

ρ(x) ≡
∑

σ =↑,↓
mσψ

†
σ (x)ψσ (x) (7.49)

and the momentum density:

ji (x) ≡ − i

2

∑
σ =↑,↓

[
ψ†
σ (x)∂iψσ (x)− ∂iψ

†
σ (x)ψσ (x)

]
, (7.50)

where i = 1, . . . , d and the arguments of time are suppressed. The Schrödinger alge-
bra is formed by the following set of operators:

mass : M ≡
∫

dxρ(x) (7.51)

momentum : Pi ≡
∫

dx ji (x) (7.52)

angular momentum : Ji j ≡
∫

dx
[
xi j j (x)− x j ji (x)

]
(7.53)

Galilean boost : Ki ≡
∫

dxxiρ(x) (7.54)
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dilatation : D ≡
∫

dxx · j(x) (7.55)

special conformal : C ≡
∫

dx
x2

2
ρ(x) (7.56)

and the Hamiltonian:

H =
∑

σ =↑,↓

∫
dx

∂ψ†
σ (x) · ∂ψσ (x)

2mσ

+
∫

dx
∫

d yψ†
↑(x)ψ

†
↓( y)V (|x − y|)ψ↓( y)ψ↑(x).

(7.57)

D and C are the generators of the scale transformation (x → eλx, t → e2λt) and the
special conformal transformation [x → x/(1 + λt), t → t/(1 + λt) ], respectively.
In a scale invariant system such as fermions in the unitarity limit, these operators
form a closed algebra.5

Commutation relations of the above operators are summarized in Table 7.1. The
rest of the algebra is the commutators of M, which commutes with all other operators;
[M, any] = 0. The commutation relations of Ji j with other operators are determined
by their transformation properties under rotations:

[Ji j , N ] = [Ji j , D] = [Ji j ,C] = [Ji j , H ] = 0, (7.58a)

[Ji j , Pk] = i(δik Pj − δ jk Pi ), [Ji j , Kk] = i(δik K j − δ jk Ki ), (7.58b)

[Ji j , Jkl ] = i(δik J jl + δ jl Jik − δil J jk − δ jk Jil). (7.58c)

These commutation relations can be verified by direct calculations, while only the
commutator of [D, H ] = 2i H requires the scale invariance of the Hamiltonian in
which the interaction potential has to satisfy V (eλr)= e−2λV (r).

7.3.2 Operator-State Correspondence

7.3.2.1 Primary Operators

We then introduce local operators O(t, x) as operators that depend on the position
in time and space (t, x) so that

O(t, x)= ei Ht−i Pi xi O(0)e−i Ht+i Pi xi . (7.59)

5 One potential that realizes the unitarity interaction is V (r)= (π/2)2 limr0 → 0 θ(r0 − r)/(2m↑ ↓
r2

0 ), where m↑ ↓≡ m↑m↓/(m↑ + m↓) is the reduced mass.
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Table 7.1 Part of the Schrödinger algebra (the values of [X, Y] are shown below)

X\Y Pj K j D C H

Pi 0 −iδi j M −i Pi −i Ki 0
Ki iδi j M 0 i Ki 0 i Pi

D i Pj −i K j 0 −2iC 2i H
C i K j 0 2iC 0 iD
H 0 −i Pj -2iH -iD 0

A local operator O is said to have a scaling dimension �O and a mass MO if it
satisfies

[D,O(0)] = i�OO(0) and [M,O(0)] = MOO(0). (7.60)

With the use of the commutation relations in Table 7.1, we find that if a given local
operator O has the scaling dimension�O, then the scaling dimensions of new local
operators [Pi ,O], [H,O], [Ki ,O], and [C,O] are given by �O + 1, �O + 2,
�O −1, and�O −2, respectively. Therefore, by repeatedly taking the commutators
with Ki and C, one can keep to lower the scaling dimensions. However, this procedure
has to terminate because the scaling dimensions of local operators are bounded from
below as we will show in Sect. 7.3.2.3. The last operator Opri obtained in this way
must have the property

[Ki ,Opri(0)]= [C,Opri(0)] = 0. (7.61)

Such operators that at t = 0 and x = 0 commute with Ki and C will be called primary
operators. Below the primary operator Opri is simply denoted by O.

Starting with an arbitrary primary operator O(t, x), one can build up a tower of
local operators by taking its commutators with Pi and H, in other words, by taking
its space and time derivatives (left tower in Fig. 7.11). For example, the operators
with the scaling dimension �O + 1 in the tower are [Pi ,O] = i∂iO. At the next
level with the scaling dimension �O + 2, the following operators are possible;[
Pi ,

[
Pj ,O

]] = − ∂i∂ jO and [H,O] = − i∂tO. Commuting those operators with
Ki and C, we can get back the operators into the lower rungs of the tower. The task
of finding the spectrum of scaling dimensions of all local operators thus reduces to
finding the scaling dimensions of all primary operators.

It is worthwhile to note that two-point correlation functions of the primary
operators are constrained by the scale and Galilean invariance up to an overall con-
stant [24]. For example, the two-point correlation function of the primary operator
O with its Hermitian conjugate is given by

〈T O(t, x)O†(0)〉 ∝ θ(t)t−�O exp

(
i MO†

|x|2
2t

)
. (7.62)
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Fig. 7.11 Correspondence between the spectrum of scaling dimensions of local operators in
NRCFT (left tower) and the energy spectrum of states in a harmonic potential (right tower). The
bottom of each tower corresponds to the primary operator Opri (primary state |
Opri 〉)

This formula or its Fourier transform ∝
(
−p0 + p2

2MO†
− i0+

)�O−d/2−1
will be

useful to read off the scaling dimension �O.

7.3.2.2 Correspondence to States in a Harmonic Potential

We now show that each primary operator corresponds to an energy eigenstate of
the system in a harmonic potential. The Hamiltonian of the system in a harmonic
potential is

Hω ≡ H + ω2C, (7.63)

where ω is the oscillator frequency. We consider a primary operator O(t, x) that is
composed of annihilation operators in the quantum field theory so that O†(t, x) acts
nontrivially on the vacuum: O†|0〉 �= 0. We construct the following state using O†

put at t = 0 and x = 0:
|
O〉 ≡ e−H/ωO†(0)|0〉. (7.64)

If the mass of O† is MO† > 0, then |
O〉 is a mass eigenstate with the mass eigenvalue
MO† : M |
O〉= MO† |
O〉. Furthermore, with the use of the commutation relations
in Table 7.1, it is straightforward to show that |
O〉 is actually an energy eigenstate
of the Hamiltonian Hω with the energy eigenvalue E =�Oω:

Hω|
O〉=
(

H + ω2C
)

e−H/ωO†(0)|0〉
= e−H/ω

(
ω2C − iωD

)
O†(0)|0〉=ω�O|
O〉,

(7.65)

where we used [C,O†(0)] = 0 and [D,O†(0)] = i�O and the fact that both C and
D annihilate the vacuum.

Starting with the primary state |
O〉, one can build up a tower of energy eigen-
states of Hω by acting the following raising operators (right tower in Fig. 7.11):
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Table 7.2 Commutation relations of the Hamiltonian and the raising and lowering operators in the
oscillator space (the values of [X, Y] are shown below)

X\Y Q†
j Q j Hω/ω L L†

Q†
i 0 −δi j M −Q†

i −Qi 0
Qi δi j M 0 Qi 0 Q†

i

Hω/ω Q†
j −Q j 0 -2L 2L†

L Q j 0 2L 0 Hω/ω
L† 0 −Q†

j −2L† −Hω/ω 0

Q†
i = Pi√

2ω
+ i

√
ω

2
Ki and L† = H

2ω
− ω

2
C + i

2
D. (7.66)

From the commutation relations [Hω, Q†
i ] =ωQ†

i and [Hω, L†] = 2ωL†, Q†
i or L†

acting on |
O〉 raise its energy eigenvalue by ω or 2ω. For example, the states
(Q†

i )
n|
O〉 with n = 0, 1, 2, . . . have their energy eigenvalues E = (

�O + n
)
ω

and correspond to excitations of the center-of-mass motion in the i-direction, while
(L†)n|
O〉 have E = (

�O + 2n
)
ω and correspond to excitations of the breathing

mode [25, 26]. The primary state |
O〉 is annihilated by the lowering operators Qi

and L:

Qi |
O〉= 0 and L|
O〉= 0. (7.67)

Therefore |
O〉 corresponds to the bottom of each semi-infinite tower of energy
eigenstates, which is the ground state with respect to the center-of-mass and breathing
mode excitations.

The commutation relations of the Hamiltonian and the raising and lowering oper-
ators in the oscillator space are summarized in Table 7.2. It is clear from the above
arguments and also from Tables 7.1 and 7.2 that the roles of (Pi , Ki , D,C, H) in the
free space is now played by (Q†

i , Qi , Hω, L , L†) in the oscillator space. Figure 7.11
illustrates the correspondence between the spectrum of scaling dimensions of local
operators in NRCFT and the energy spectrum of states in a harmonic potential.

The operator-state correspondence elucidated here allows us to translate the prob-
lem of finding the energy eigenvalues of the system in a harmonic potential to
another problem of finding the scaling dimensions of primary operators in NRCFT.
In Sect. 7.3.3, we use this correspondence to compute the energies of fermions at
unitarity in a harmonic potential. We note that the similar correspondence between
quantities in a harmonic potential and in a free space has been discussed in the
quantum-mechanical language in Refs. [25, 27].

7.3.2.3 Unitarity Bound of Scaling Dimensions

As we mentioned in Sect. 7.3.2.1, the scaling dimensions of local operators are
bounded from below. The lower bound is equal to d/2, which can be seen from
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the following intuitive physical argument. According to the operator-state corre-
spondence, the scaling dimension of a primary operator is the energy eigenvalue of
particles in a harmonic potential. The latter can be divided into the center of mass
energy and the energy of the relative motion. The ground state energy of the cen-
ter of mass motion is (d/2) ω, while the energy of the relative motion has to be
non-negative [25]. Thus, energy eigenvalues, and hence operator dimensions, are
bounded from below by d/2.

More formally, the lower bound can be derived from the requirement of non-
negative norms of states in our theory (Y. Tachikawa, Private communication). We
consider the primary state |
O〉 whose mass and energy eigenvalues are given by
MO† and �Oω:

M |
O〉= MO† |
O,> and Hω|
O〉=�Oω|
O〉. (7.68)

We then construct the following state:

|�〉 ≡
(

L† −
d∑

i = 1

Q†
i Q†

i

2MO†

)
|
O〉, (7.69)

and require that it has a non-negative norm 〈�|�〉≥ 0. With the use of the com-
mutation relations in Table 7.2 and Eq. 7.67, the norm of |�〉 can be computed as

〈�|�〉=
(
�O − d

2

)
〈
O|
O〉≥ 0. (7.70)

Therefore we find the lower bound on the scaling dimensions of arbitrary primary
operators:

�O ≥ d

2
. (7.71)

The lower bound d/2 multiplied by ω coincides with the ground state energy of a
single particle in a d-dimensional harmonic potential.

When the primary state |
O〉 saturates the lower bound�O = d/2, the vanishing
norm of 〈�|�〉= 0 means that the state itself is identically zero; |�〉 ≡ 0. Accord-
ingly, the state created by the corresponding primary operator O(t, x) obeys the free
Schrödinger equation:

[
i∂t − ∂2

2MO†

]
O†(t, x)|0〉= 0. (7.72)

In addition to the trivial one-body operator ψσ , we will see nontrivial examples of
primary operators that saturate the lower bound of the scaling dimensions.

If a theory contains an operator O with its scaling dimension between d/2 and
(d + 2)/2, then O†O is a relevant deformation: �O†O < d + 2. Therefore, such a
theory should contain a fine tuning in the O†O channel. We will see this pattern
explicitly below.
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7.3.2.4 Nonuniversality of p-Wave Resonances

One consequence of the unitarity bound on operator dimensions is the impossibility
of achieving universality in p-wave resonances in three spatial dimensions. This
issue was raised in connection with the α − n scattering [28]. Theoretically, such a
resonance would be described by the following Lagrangian density:

L=ψ†
σ

(
i∂t + ∂2

2m

)
ψσ + c1φ

†
i

(
i∂t + ∂2

4m

)
φi + c2φ

†
i φi (7.73)

+(
ψ

†
↑∂ iψ

†
↓ − ∂ iψ

†
↑ψ

†
↓
)
φi + φ

†
i

(
ψ↓∂ iψ↑ − ∂ iψ↓ψ↑

)
, (7.74)

where c1 and c2 are bare couplings chosen to cancel out the divergences in the
one-loop self-energy of φi . (In contrast to the s-wave resonance case, the loop inte-
gral is cubic divergent and requires two counter terms to regularize, corresponding
to two simultaneous fine tunings of the scattering length and the effective range.
In dimensional regularization, c1 = c2 = 0.) The field φi now has a finite propagator

∫
dtdxeip0t−i p·x〈Tφi (t, x)φ†

i (0)〉 ∝
(

−p0 + p2

4m
− i0+

)−d/2

. (7.75)

Such a theory might appear healthy but the scaling dimension of φi , as one can see
explicitly by comparing Eq. 7.75 with the Fourier transform of Eq. 7.62, is �φ = 1
which is below the unitarity bound of d/2 in d = 3. (In a free theory �φ = d + 1,
but the fine tunings “reflect” �φ with respect to (d + 2)/2 so that �φ becomes 1.)
Thus, p-wave resonances cannot be universal in three spatial dimensions. The proof
given here is more general than that of Ref. [29, 30]. Other examples considered in
Refs. [29] can also be analyzed from the light of the unitarity bound.

7.3.3 Scaling Dimensions of Composite Operators

All results derived in Sects. 7.3.1 and 7.3.2 can be applied to any NRCFTs. Here
we concentrate on the specific system of spin- 1

2 fermions in the unitarity limit and
study various primary operators and their scaling dimensions. The simplest pri-
mary operator is the one-body operator ψσ (x) whose scaling dimension is trivially
given by

�ψσ = d

2
. (7.76)

This value multiplied by ω indeed matches the ground state energy of one fermion
in a d-dimensional harmonic potential.
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7.3.3.1 Two-Body Operator

The first nontrivial primary operator is the two-body composite operator: φ(x) ≡
c0ψ↓ψ↑(x), which also appears as an auxiliary field of the Hubbard-Stratonovich
transformation (7.8a). The presence of the prefactor c0 ∼ �2−d guarantees that
matrix elements of φ(x) between two states in the Hilbert space are finite. Accord-
ingly its scaling dimension becomes

�φ =�ψ↑ +�ψ↓ + (2 − d)= 2. (7.77)

This result can be confirmed by computing the two-point correlation function of φ
and comparing it with the Fourier transform of Eq. 7.62:

∫
dtdxeip0t−i p·x〈Tφ(t, x)φ†(0)〉=

(
2π

m↑↓
)d/2

�
(
1 − d

2

) [
−p0 + p2

2(m↑+m↓) − i0+
]d/2−1 .

(7.78)
According to the operator-state correspondence, the ground state energy of two

fermions at unitarity in a harmonic potential is exactly 2ω for an arbitrary spatial
dimension d. This result is consistent with our intuitive pictures of spin-↑ and ↓ fermi-
ons in the unitarity limit as a single point-like composite boson in d = 4, two nonin-
teracting fermions in d = 2, and two identical fermions in d = 1 (see discussions in
Sects. 7.2.1.1 and 7.2.3.2). Note that φ(x) in d = 4 saturates the lower bound (7.71)
and thus obeys the free Schrödinger equation (7.72) with mass Mφ† = m↑ + m↓.
The same result in d = 3 has been obtained by directly solving the two-body
Schrödinger equation with a harmonic potential [31], which is consistent with the
experimental measurement [32].

7.3.3.2 Three-Body Operators

We then consider three-body composite operators. The formula to compute their
scaling dimensions for arbitrary mass ratio m↑/m↓, angular momentum l, and spatial
dimension d is derived in Appendix. Here we discuss its physical consequences in
d = 3. Three-body operators composed of two spin-↑ and one spin-↓ fermions with
orbital angular momentum l = 0 and l = 1 are

O(l = 0)
↑↑↓ (x) ≡ Z−1

0 φψ↑(x) (7.79)

and

O(l = 1)
↑↑↓ (x) ≡ Z−1

1

[(
m↑ + m↓

)
φ∂iψ↑ − m↑(∂iφ)ψ↑

]
(x), (7.80)

where i = 1, 2, 3 and Zl ∼ �−γl is the renormalization factor. The mass factors in
Eq. 7.80 are necessary so that the operator is primary; [Ki ,O(l = 1)

↑↑↓ (0)] = 0.
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Fig. 7.12 Scaling dimensions of three-body composite operators O(l)
↑↑↓ with angular momentum

l = 0 (left panel) and l = 1 (right panel) as functions of the mass ratio m↑/m↓. In the right panel,
the real part (solid curve) and the imaginary part shifted by +2.5 (dashed curve) are plotted

Their scaling dimensions �(l)↑↑↓ = 7
2 + l + γl obtained by solving Eq. 7.135 are

plotted in Fig. 7.12 as functions of the mass ratio m↑/m↓. For l = 0 (left panel),

�
(l)
↑↑↓ increases as m↑/m↓ is increased indicating the stronger effective repulsion

in the s-wave channel. On the other hand, �(l)↑↑↓ for l = 1 (right panel) decreases
with increasing m↑/m↓ and eventually, when the mass ratio exceeds the critical

value m↑/m↓> 13.607, it becomes complex as�(l = 1)
↑↑↓ = 5

2 ± iIm(γ1).
6 In this case,

the Fourier transform of Eq. 7.62 implies that the two-point correlation function of
O(l = 1)

↑↑↓ behaves as

∝ sin

[
Im(γ1) ln

(
p2 − (4m↑ + 2m↓)p0 − i0+

�2

)
+ θ

]
. (7.81)

Now the full scale invariance of the original NRCFT is broken down to a discrete
scaling symmetry,

p → enπ/Im(γ1) p and p0 → e2nπ/Im(γ1) p0, (7.82)

with n being an integer. This is a characteristic of the renormalization-group
limit cycle and related to the existence of an infinite set of three-body bound
states in the p-wave channel. Their energy eigenvalues form a geometric spectrum
En+1/En = e−2π/|Im(γ1)|, which is known as the Efimov effect [33, 34]. Because
the system develops deep three-body bound states, the corresponding many-body
system cannot be stable toward collapse.

We note that, in the range of the mass ratio 8.6186<m↑/m↓< 13.607, the scaling

dimension ofO(l = 1)
↑↑↓ satisfies 5

2 <�
(l = 1)
↑↑↓ < 7

2 .Accordingly the following three-body
interaction term

L3-body = c1O(1)†
↑↑↓(t, x)O(1)

↑↑↓(t, x) (7.83)

6 This situation illustrates a general feature: onsets of the Efimov effect occur when the ground state
energy of the corresponding few-body system in a harmonic potential is equal to d+2

2 ω.
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becomes renormalizable because now the coupling has the dimension −2< [c1]< 0.
The Lagrangian density (7.8a) with L3-body added defines a new renormalizable the-
ory. In particular, when the coupling c1 is tuned to its nontrivial fixed point (c1 �= 0)
that describes a three-body resonance in the p-wave channel, the resulting theory
provides a novel NRCFT. The corresponding system is that of spin- 1

2 fermions with
both two-body (↑↓) and three-body (↑↑↓) resonances and its many-body physics
was studied in Ref. [17].

7.3.4 Application of the ε Expansion

It would be difficult to determine exact scaling dimensions of composite operators
with more than three fermions in d = 3.However, it is possible to estimate them with
the help of the ε expansions around d = 4 and d = 2. The formulations developed in
Sect. 7.2.2 can be used for the few-body problems as well just by setting μ=φ0 = 0.
Here we concentrate on the equal mass case m↑ = m↓.

7.3.4.1 Scaling Dimensions Near Four Spatial Dimensions

The scaling dimensions of composite operators can be determined by studying their
renormalizations. We start with the simplest three-body operator φψ↑ near d = 4,
which has zero orbital angular momentum l = 0. The leading-order diagram that
renormalizes φψ↑ is O(ε) and depicted in Fig. 7.13 (left). Performing the loop
integration, we find that this diagram is logarithmically divergent at d = 4 and thus
the renormalized operator differs from the bare one by the renormalization factor;
(φψ↑)ren = Z−1

φψ↑φψ↑, where Zφψ↑ = 1 − 4
3ε ln �. From the anomalous dimension

γφψ↑ = − ln Zφψ↑/ ln �= 4
3ε,we obtain the scaling dimension of the renormalized

operator up to the next-to-leading order in ε:

�φψ↑ =�φ +�ψ↑ + γφψ↑ = 4 + 5

6
ε + O(ε2). (7.84)

According to the operator-state correspondence, there is a three-fermion state in a
harmonic potential with l = 0 and energy equal to E (0)3 =�φψ↑ω, which continues
to the first excited state in d = 3. Even within the leading correction in ε, the naive
extrapolation to ε→ 1 yields E (0)3 → 4.83ω, which is already close to the true first
excited state energy 4.66622ω in d = 3 [27].

The ground state of three fermions in a harmonic potential has l = 1 in d = 3.
The corresponding primary operator near d = 4 is 2φ∂ψ↑ − (∂φ)ψ↑,which is renor-
malized by the same diagram in Fig. 7.13 (left). From its anomalous dimension
γ = − ln Z/ ln �= − 1

3ε, we obtain the scaling dimension of the renormalized
operator up to the next-to-leading order in ε:
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Fig. 7.13 Leading-order Feynman diagrams to renormalize the composite operators φψ↑ (left) and
φφ (middle) near d = 4 and ψ↑ψ↓ (right) near d = 2. These operators are inserted at ⊗

�2φ∂ψ↑−(∂φ)ψ↑ =�φ +�ψ↑ + 1 + γ = 5 − 5

6
ε + O(ε2). (7.85)

The operator-state correspondence tells us that the three-fermion state in a harmonic
potential with l = 1 has the energy E (1)3 =�2φ∂ψ↑−(∂φ)ψ↑ω. The naive extrapolation

to ε→ 1 yields E (1)3 → 4.17ω,which is already close to the true ground state energy
4.27272ω in d = 3 [27].

We now turn to the lowest four-body operatorφφwith zero orbital angular momen-
tum l = 0. The first nontrivial correction to its scaling dimension is O(ε2) given by
the diagram depicted in Fig. 7.13 (middle). The two-loop integral can be done analyt-
ically and we obtain the renormalization factor; Zφφ = 1−8ε2 ln 27

16 ln �. Therefore
we find the scaling dimension of the renormalized operator (φφ)ren = Z−1

φφφφ to be

�φφ = 2�φ + γφφ = 4 + 8ε2 ln
27

16
+ O(ε3). (7.86)

According to the operator-state correspondence, the ground state of four fermions
in a harmonic potential has the energy E (0)4 =�φφω. Because the O(ε2) correction
turns out to be large, we shall not directly extrapolate Eq. 7.86 to ε→ 1 but will
combine it with an expansion near d = 2.

The above results can be easily extended to a general number of fermions by
evaluating the diagrams in Fig. 7.13 with more boson lines attached. The primary
operators having N fermion number and orbital angular momentum l are summarized
in Table 7.3 with their scaling dimensions computed in the ε expansion. The energy
of the corresponding state in a harmonic potential is simply given by E (l)N =�Oω.
The leading-order results [E (0)N = Nω for even N and E (0)N = (N + 1)ω and E (1)N =
(N + 2)ω for odd N] can be intuitively understood by recalling that fermion pairs at
unitarity in d = 4 form point-like bosons and they do not interact with each other or
with extra fermions. Therefore the ground state of N = 2n fermions consists of n free
composite bosons occupying the same lowest energy state in a harmonic potential
with the energy 2ω in d = 4.When N = 2n+1, the ground state has l = 0 and consists
of n composite bosons and one extra fermion occupying the same lowest energy state
again. In order to create an l = 1 state, one of the n + 1 particles has to be excited to
the first excited state, which costs the additional energy 1ω.The leading correction to
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Table 7.3 N-body composite operators with angular momentum l near d = 4 and their scaling
dimensions in the ε expansion

N (l) O(l)
N �O

2n (l = 0) φn N + N (N − 2)ε2 ln 27
16 + O(ε3)

2n + 1 (l = 0) φnφ↑ N + 1 + 4N−7
6 ε + O(ε2)

2n + 1 (l = 1) 2φn∂ψ↑ − φn−1(∂φ)ψ↑ N + 2 + 2N−21
18 ε + O(ε2)

the energy, which is represented by the anomalous dimension in NRCFT, originates
from the weak boson–fermion [O(ε)] or boson–boson [O(ε2)] interaction. Finally
we note that in d = 4, we can observe the odd–even staggering in the ground state
energy; E (0)N − (

E (0)N−1 + E (0)N+1

)
/2 = 1ω for odd N.

7.3.4.2 Scaling Dimensions Near Two Spatial Dimensions

Similarly, we can determine the scaling dimensions of composite operators near
d = 2 by studying their renormalizations. Here we consider the three-body operators
ψ↑ψ↓∂tψ↑ and ψ↑ψ↓∂ψ↑, which are primary and have the orbital angular momen-
tum l = 0 and l = 1, respectively. The leading-order diagrams that renormalize them
are O(ε̄) and depicted in Fig. 7.13 (right) with one more fermion line attached.
Performing the loop integrations, we find that these diagrams are logarithmically
divergent at d = 2 and thus the renormalized operators differ from the bare ones by
the renormalization factors; Zψ↑ψ↓∂tψ↑ = 1+ 3

2 ε̄ ln � and Zψ↑ψ↓∂ψ↑ = 1+ 3
2 ε̄ ln �.

From the anomalous dimensions γO = −ln ZO/ ln �= − 3
2 ε̄,we obtain the scaling

dimensions of the renormalized operators up to the next-to-leading order in ε̄:
�ψ↑ψ↓∂tψ↑ = 3�ψσ + 2 + γψ↑ψ↓∂tψ↑ = 5 + O(ε̄2) (7.87)

and

�ψ↑ψ↓∂ψ↑ = 3�ψσ + 1 + γψ↑ψ↓∂ψ↑ = 4 + O(ε̄2). (7.88)

The operator-state correspondence tells us that the three-fermion states in a har-
monic potential with l = 0 and l = 1 have the energies E (0)3 =�ψ↑ψ↓∂tψ↑ω and

E (1)3 =�ψ↑ψ↓∂ψ↑ω, respectively.
We can develop the same analysis for composite operators with more than three

fermions by evaluating the diagram in Fig. 7.13 (right) with more fermion lines
attached. The primary operators having N ≤ 6 fermion number and orbital angular
momentum l are summarized in Table 7.4 with their scaling dimensions computed in
the ε̄ expansion. Note that composite operators having the same classical dimension
can mix under the renormalization and thus the primary operator with the well-
defined scaling dimension may have a complicated form such as for N = 5 and l = 0.
The leading order results for the corresponding energies E (l)N =�Oω in a harmonic
potential can be easily understood by recalling that fermions at unitarity become
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Table 7.4 N-body composite operators with angular momentum l near d = 2 and their scaling
dimensions in the ε̄ expansion

N (l) O(l)
N �O E/�ω in d = 3

2 (l = 0) ψ↑ψ↓ 2 2 [31]
3 (l = 0) ψ↑ψ↓(∂tψ↑) 5 + O(ε̄2) 4.66622 [27]
3 (l = 1) ψ↑ψ↓(∂ψ↑) 4 + O(ε̄2) 4.27272 [27]
4 (l = 0) ψ↑ψ↓(∂ψ↑·∂ψ↓) 6 − ε̄ + (ε̄2) ≈5.028 [35]

5 (l = 0) (∗) 9 − 11 ±√
105

16 ε̄ + O(ε̄2) ≈8.03 [35]
5 (l = 1) ψ↑ψ↓(∂ψ↑·∂ψ↓)∂ψ↑ 8 − ε̄ + O(ε̄2) ≈7.53 [35]
6 (l = 0) ψ↑ψ↓(∂ψ↑·∂ψ↓)2 10 − 2ε̄ + (ε̄2) ≈8.48 [35]

Known values for the energies of N fermions in a harmonic potential in d = 3 are also shown in
units of �ω (∗)= aψ↑ψ↓(∂ψ↑·∂ψ↓)∂2ψ↑ +bψ↑∂iψ↓(∂ψ↑·∂ψ↓)∂iψ↑ +cψ↑ψ↓((∂i ∂ψ↑)·∂ψ↓)∂i

ψ↑ − dψ↑ψ↓(∂ψ↑·∂ψ↓)i∂tψ↑ with (a, b, c, d)= (±19
√

3 − 5
√

35,∓16
√

3,−6
√

35 ∓ 6
√

3,
16

√
35)

noninteracting in d = 2. Therefore the energy eigenvalue of each N-fermion state is
just a sum of single particle energies in a harmonic potential in d = 2, and obviously,
the ground state energy shows the shell structure. The O(ε̄) correction to the energy,
which is represented by the anomalous dimension in NRCFT, originates from the
weak fermion–fermion interaction. We can see in Table 7.4 the rough agreement of
the naive extrapolations of �O to ε̄→ 1 with the known values in d = 3.

7.3.4.3 Interpolations of ε Expansions

We now extract the energy of N fermions in a harmonic potential in d = 3 by inter-
polating the two expansions around d = 4 and d = 2 just as has been done for
ξ in Sect. 7.2.3 and Tc/εF in Sect. 7.2.5. We approximate E (l)N /ω by ratios of two
polynomials (Padé approximants) and determine their unknown coefficients so that
the correct expansions both around d = 4 (Table 7.3) and d = 2 (Table 7.4) are
reproduced.

Figure 7.14 shows the behaviors of the three-fermion energies E (l)N = 3 with orbital
angular momentum l = 0 (left panel) and l = 1 (right panel) as functions of d. The
middle four curves are the Padé interpolations of the two NLO expansions. Because
the exact results for arbitrary d can be obtained from Eq. 7.135 and 7.136, we can use
this case as a benchmark test of our interpolation scheme. We find that the behaviors
of the interpolated curves are quite consistent with the exact results even within the
leading corrections in ε and ε̄. In d = 3, these interpolations give

E (l = 0)
N = 3

ω
≈ 4.71, 4.7, 4.72, 4.72 (7.89)

and

E (l = 1)
N = 3

ω
≈ 4.29, 4.3, 4.32, 4.29, (7.90)
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Fig. 7.14 Energies of three fermions in a harmonic potential in the s-wave channel l = 0 (left panel)
and in the p-wave channel l = 1 (right panel) as functions of the spatial dimension d. The dashed
(dotted) lines are the extrapolations from the NLO expansions around d = 4 in (7.84) and (7.85)
[d = 2 in (7.87) and (7.88)]. The four solid curves show the Padé interpolations of the two NLO
expansions. The symbols (×) indicate the exact values for each d obtained from (7.135) and (7.136)

which span very small intervals E (0)3 /ω ≈ 4.71 ± 0.01 and E (1)3 /ω ≈ 4.30 ± 0.02.
Our interpolated values are reasonably close to the exact results 4.66622ω and
4.27272ω in d = 3 [27].

Here we comment on the convergence of the ε expansions around d = 4 and
d = 2. By performing the expansions up to O(ε50) with the use of the exact formula
in (7.135) and studying their asymptotic behaviors, we can find that the ε expansions
are convergent at least for these three-body problems. Their radii of convergence
are estimated to be |ε| � 0.48 and |ε̄| � 1.0 for the l = 0 case and |ε| � 1.4 and
|ε̄| � 1.0 for the l = 1 case.

The same analysis can be done for the energies of more than three fermions in a
harmonic potential where exact results are not available. The Padé interpolations of
the two NLO expansions for N = 5 yield

E (l = 0)
N = 5

ω
≈ 7.71, 7.64, 7.66, 7.82 (7.91)

and

E (l = 1)
N = 5

ω
≈ 7.10, 7.16, 7.19, 7.09 (7.92)

in d = 3, which span relatively small intervals E (0)5 /ω ≈ 7.73 ± 0.09 and E (1)5 /ω ≈
7.14 ± 0.05. On the other hand, the Padé interpolations of the two NLO expansions
for N = 4, 6 yield

E (l = 0)
N = 4

ω
≈ 5.55, 4.94, 4.94, 4.90, 6.17 (7.93)

and
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E (l = 0)
N = 6

ω
≈ 10.1, 7.92, 7.92, 7.80, 16.4 (7.94)

in d = 3. The first and last values corresponding to the Padé approximants where
all terms are distributed to the numerator or denominator are considerably off from
the other three values. This would be because of the large NLO corrections near
d = 4. If such two extreme cases are excluded, the other three values span rather
small intervals E (0)4 /ω ≈ 4.92 ± 0.02 and E (0)6 /ω ≈ 7.86 ± 0.06. For comparison,
the numerical results obtained by using a basis set expansion technique are shown
in Table 7.4 [35].

7.4 General Coordinate and Conformal Invariance

Some nontrivial results can be obtained for the unitary Fermi gas using general
symmetry arguments. For this end it is convenient to couple the unitary Fermi gas
to an external gauge field Aμ (μ= 0, 1, 2, 3) and to an external metric gi j . Both Aμ
and gi j can be functions of time and space. Now the action of the unitary Fermi gas
becomes

S =
∫

dtdx
√

g

(
i

2
ψ†
σ Dtψσ − i

2
Dtψ

†
σψσ − 1

2m
gi j Diψ

†
σ D jψσ + ψ

†
↑ψ

†
↓φ + φ†ψ↓ψ↑

)
,

(7.95)
where Dt = ∂t − i A0 and Di = ∂i − i Ai are covariant derivatives. We can see that A0
plays the role of the external trapping potential. Recall that when the dimensional
regularization is used, the term ∝ φ†φ is absent in the unitarity limit.

By direct calculations, one can verify that this action is invariant under the
following transformations:

• Gauge transforms

ψ→ eiα(t,x)ψ, φ→ e2iα(t,x)φ (7.96a)

A0 → A0 − ∂tα, Ai → Ai − ∂iα (7.96b)

• General coordinate transformations

xi → xi ′ , xi = xi (t, xi ′) (7.97a)

ψ(t, x)→ψ ′(t, x′)=ψ(t, x) (7.97b)

φ(t, x)→φ′(t, x′)=φ(t, x) (7.97c)

gi j (t, x)→ gi ′ j ′(t, x′)= ∂xi

∂xi ′
∂x j

∂x j ′ gi j (t, x) (7.97d)
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A0(t, x)→ A0′(t, x′)= A0(t, x)+ ẋ i Ai − 1

2
ẋ i ẋ j gi j (7.97e)

Ai (t, x)→ Ai ′(t, x′)= ∂xi

∂xi ′ Ai (t, x)− ∂xi

∂xi ′ ẋ j gi j (t, x) (7.97f)

• Conformal transformations

t → t ′, t = t (t ′) (7.98a)

ψ(t, x)→ψ ′(t ′, x)=
(
∂t

∂t ′
)3/4

ψ(t, x) (7.98b)

φ(t, x)→φ′(t ′, x)=
(
∂t

∂t ′
)
φ(t, x) (7.98c)

A0(t, x)→ A′
0(t

′, x)=
(
∂t

∂t ′
)

A0(t, x) (7.98d)

Ai (t, x)→ A′
i (t

′, x)= Ai (t, x) (7.98e)

gi j (t, x)→ g′
i j (t

′, x)=
(
∂t

∂t ′
)−1

gi j (t
′, x). (7.98f)

These symmetries allow one to transform the unitary Fermi gas in a free space
into that in a harmonic potential with an arbitrary time-dependent frequency ω(t).
This is done by a combination of a conformal transformation t = f (t ′), a general
coordinate transformation

xi = λ−1(t)xi ′ with λ(t)= [ f ′(t)]−1/2, (7.99)

and a gauge transformation with

α= 1

2

λ̇

λ
x2. (7.100)

If one starts with Aμ= 0 and gi j = δi j , these three transformations leave the gauge
vector potential Ai and the metric gi j unchanged, but generate a scalar potential A0:

A0 = 1

2
ω2(t)x2 with ω2(t)= − 1

2

λ̈

λ
x2. (7.101)
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The transformed field operator is

ψ ′(t, x)= exp

(
i

2

λ̇

λ
x2

)
λ−3/2(t)ψ( f (t), λ−1(t)x). (7.102)

This map between the unitary Fermi gas in the free space and that in the harmonic
potential with the time-dependent frequency was previously found in Ref. [36].

In future applications, we only need the infinitesimal forms of the transformations.
For reference, they are

δψ = iαψ − ξ k∂kψ, (7.103a)

δA0 = − α̇ − ξ k∂k A0 − Ak ξ̇
k, (7.103b)

δAi = − ∂iα − ξ k∂k Ai − Ak∂iξ
k + mgik ξ̇

k, (7.103c)

δgi j = − ξ k∂k gi j − gik∂ jξ
k − gkj∂iξ

k (7.103d)

for the gauge and general coordinate transformations, and

δO = − β Ȯ − 1

2
�[O]β̇O (7.104)

for the conformal transformations, where �[O] is the dimension of a field O;
�[ψ] = 3

2 , �[φ] = 2, �[A0] = 2, �[Ai ] = 0, and δ[gi j ] = − 2.

7.4.1 Vanishing Bulk Viscosities

One consequence of the general coordinate and conformal invariance is the vanishing
of the bulk viscosity of the unitarity Fermi gas in the normal phase, and the vanishing
of two (out of three) bulk viscosities in the superfluid phase. These conclusions come
from the requirement that hydrodynamic equations describing the motion of a fluid
in the external gauge field and metric possess the same set of symmetries as the
microscopic theory.

7.4.1.1 Normal Phase

In the normal phase, the hydrodynamic equations are written in term of the local
mass density ρ, the local velocity vi , and the local entropy per unit mass s. These
equations are

1√
g
∂t (

√
gρ)+ ∇i (ρvi )= 0, (7.105)



268 Y. Nishida and D. T. Son

1√
g
∂t (

√
gρvi )+ ∇k�

k
i = ρ

m
(Ei − Fikvk), (7.106)

1√
g
∂t (

√
gρs)+ ∇i

(
ρvi∂i s − κ

T
∂ i T

)
= 2R

T
, (7.107)

where �ik is the stress tensor, κ is the thermal conductivity, and R is the dissipative
function. Compared to the usual equations written for the flat metric and in the
absence of the gauge field, we have replaced the derivatives ∂i by the covariant
derivatives ∇i and added the force term in the momentum conservation equation
(7.106), which comes from the electric force (Ei = ∂t Ai − ∂i A0) and the magnetic
Lorentz force (Fik = ∂i Ak − ∂k Ai ). The stress tensor can be written as

�ik = ρvi vk + pgik − σ ′
ik, (7.108)

where p is the pressure and σ ′
ik is the viscous stress tensor. The information about

the kinetic coefficients is contained in σ ′
ik and R.

In the dissipationless limit (σ ′ = R = 0), the hydrodynamic equations are invariant
with respect to the general coordinate transformations, provided that ρ, s, and vi

transform as

δρ= − ξ k∂kρ, (7.109)

δs = − ξ k∂ks, (7.110)

δvi = − ξ k∂kvi + vk∂kξ
i + ξ̇ i . (7.111)

Now consider the dissipative terms. To keep the equations consistent with the
diffeomorphism invariance, one must require that σ ′

i j and R transform as a two-index
tensor and a scalar, respectively:

δσ ′
i j = − ξ k∂kσ

′
i j − σk j∂iξ

k − σik∂ jξ
k, (7.112)

δR = − ξ k∂k R. (7.113)

In a flat space the viscous stress tensor is given by

σ ′
i j = η(∂i v j + ∂ j vi )+ (

ζ − 2
3η

)
δi j∂kvk, (7.114)

where η and ζ are the shear and bulk viscosities. In the naive extension to the curved
space where one simply covariantizes the spatial derivatives, σ ′

i j is not a pure two-
index tensor; its variation under the diffeomorphism contains extra terms proportional
to ξ̇ k . The correct extension is
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σ ′
i j = η(∇i v j + ∇ j vi + ġi j )+

(
ζ − 2

3
η

)
gi j

(
∇kvk + ġ

2g

)
. (7.115)

Similarly, the dissipative function R in the curved space becomes

2R = η

2

(
∇i v j + ∇ j vi − 2

3
gi j∇kvk + ġi j − 1

3
gi j

ġ

g

)2

+ ζ

(
∇i v

i + ġ

2g

)2

+ κ

T
∂i T ∂

i T . (7.116)

We then turn to the conformal invariance. The dissipationless hydrodynamic equa-
tions are invariant under (7.104), if the dimensions of different fields are

�[ρ] = 2�[ψ] = 3, �[s] = 0, �[vi ] = 2. (7.117)

Now let us consider the dissipation terms. From dimensional analysis, one finds that
one has to set

�[η] =�[ζ ] =�[κ] = 3
2 (7.118)

for the hydrodynamic equations to be scale invariant. However, the conformal invari-
ance is not preserved generically. The culprit is ġi j that transforms as

δġi j = − β g̈i j + β̈gi j , (7.119)

which leads to σ ′
i j and R not to conform to the pattern of (7.104), unless the bulk

viscosity ζ vanishes. Thus the requirement of the conformal invariance of the hydro-
dynamic equations implies ζ = 0.

7.4.1.2 Superfluid Phase

Similarly, we can repeat the argument for the superfluid case. The hydrodynamics of
superfluids contains an additional degree of freedom, which is the condensate phase
θ, whose gauge-covariant gradient is the superfluid velocity:

vs
i = �

m
(∂iθ + Ai ). (7.120)

It transforms in the same way as the normal velocity vi ≡ vn
i under the general coor-

dinate and conformal transformations. Its consequence is that the relative velocity
between the superfluid and normal components wi = vi

s − vi transforms as a pure
vector under the diffeomorphism:

δwi = − ξ k∂kw
i + wk∂kξ

i . (7.121)
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The ξ̇ i term in the variation cancels between δvs and δv.
The diffeomorphism-invariant dissipative function in the curved space is

2R = η

2

(
∇i v j + ∇ j vi − 2

3
gi j∇kvk + ġi j − 1

3
gi j

ġ

g

)2

+ 2ζ1

(
∇i v

i + ġ

2g

)
∇ j (ρsw

j )+ ζ2

(
∇i v

i + ġ

2g

)2

+ ζ3[∇i (ρsw
i )]2 + κ

T
∂i T ∂

i T .

(7.122)

Under the conformal transformations, R transforms as

δR = − β Ṙ − 7

2
β̇R + 3

2
ζ1β̈∇i (ρw

i )+ 3

2
ζ2β̈

(
∇i v

i + ġ

2g

)
. (7.123)

The requirement of the conformal invariance of the superfluid hydrodynamics implies
that the β̈ terms must have vanishing coefficients, i.e., ζ1 = ζ2 = 0.

In conclusion, we find that in the unitary limit, the bulk viscosity vanishes in the
normal phase. In the superfluid phase, two of the three bulk viscosities vanish.

7.4.2 Superfluid Effective Field Theory

At zero temperature, the long-distance dynamics of the unitary Fermi gas is described
by an effective field theory, with some effective action Seff . The effective theory
should inherit the general coordinate invariance of the microscopic theory. This
means that the effective action is invariant under the general coordinate transforma-
tions, which in its turn means that

δL= − ξ k∂kL. (7.124)

The low-energy degree of freedom is the phase of the condensate θ.The time reversal
symmetry means that the effective theory is invariant under

t → − t and θ → − θ. (7.125)

Since θ is a Nambu-Goldstone field, it should always appear with derivatives
in the effective Lagrangian. Therefore, for power counting purposes, we can set
θ̇ , ∂iθ ∼ O(p0). The leading-order effective Lagrangian should be

L= L(θ̇ , ∂iθ, A0, Ai , gi j ). (7.126)

The gauge invariance and the invariance with respect to three-dimensional general
coordinate transformations (with time-independent ξ i ) limit the Lagrangian to be a
function of two variables:
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L= L
(

Dtθ, gi j DiθD jθ
)
, (7.127)

where

Dtθ = θ̇ − A0 and Diθ = ∂iθ − Ai . (7.128)

The invariance of the effective theory with respect to general coordinate transfor-
mations requires

L= P(X) with X = Dtθ − gi j

2m
DiθD jθ. (7.129)

If we now set the metric to be flat and the external field to be zero, we find the most
general form of the Lagrangian for superfluids:

L= P

(
θ̇ − (∂iθ)

2

2m

)
, (7.130)

which was previously found by Greiter et al. [37] using a different line of arguments.
Moreover, by studying the thermodynamics of the effective theory one finds that the
function P(X) is the same function that determines the dependence of the pressure
on the chemical potential. To the next-to-leading order, the effective Lagrangian
contains terms with two additional derivatives. The symmetries restrict the number
of independent terms in the Lagrangian to two. This allows one to relate different
physical quantities with each other [14].

7.5 Other Scale and Conformal Invariant Systems

We have discussed various theoretical aspects of the unitary Fermi gas. Finally we
conclude this chapter by introducing other systems exhibiting the nonrelativistic
scaling and conformal symmetries, to which a part of above results can be applied.
One such system is a mass-imbalanced Fermi gas with both two-body and three-body
resonances, which is already mentioned in Sect. 7.3.3.2. Its many-body physics is
studied in Ref. [17].

The other systems are multi-species Fermi gases in mixed dimensions [18]. In all
systems listed in Table 7.5, the coupling of the contact interaction term that involves
all species has the dimension [c0] = −1 and thus the theory with such an interaction
term is renormalizable. In particular, when the coupling c0 is tuned to its nontrivial
fixed point (c0 �= 0) that describes an interspecies resonance, the resulting system
becomes scale invariant. We can derive the reduced Schrödinger algebra and the
operator-state correspondence for such a system [38]. The few-body and many-
body physics of multi-species Fermi gases in mixed dimensions are studied in Refs.
[18, 38–41]. Some of these systems can be in principle realized in ultracold atom
experiments. Indeed the 2D–3D mixture has been recently realized using 41K and
87Rb and the interspecies scattering resonances were observed [42].
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Table 7.5 Eight classes of scale invariant nonrelativistic systems proposed in Ref. [18]

# of species and dimensions Spatial configurations Symmetries +M, D, C, H

2 species in pure 3D x A = x B = (x, y, x) Pi , Ki , Ji j with i, j = x, y, z
2 species in 2D–3D mixture x A = (x, y) x B = (x, y, z) Pi , Ki , Ji j with i, j = x, y
2 species in 1D–3D mixture x A = (z) x B = (x, y, z) Pz, Kz, Jxy

2 species in 2D–2D mixture x A = (x, z) x B = (y, z) Pz, Kz

2 species in 1D–2D mixture x A = (z) x B = (x, y) Jxy

3 species in 1D–1D–1D mixture x A = (x) x B = (y) xC = (z) None
3 species in 1D2–2D mixture x A = x B = (x) xC = (x, y) Px , Kx

4 species in pure 1D x A = x B = xC = x D = (x) Px , Kx

In all cases, the coupling of the interspecies contact interaction term has the dimension [c0]= − 1
and can be tuned to the nontrivial fixed point describing an interspecies resonance

Appendix: Scaling Dimensions of Three-Body Operators

In this Appendix, we derive the formula to compute the scaling dimensions of three-
body composite operators for arbitrary mass ratio m↑/m↓, angular momentum l, and
spatial dimension d from a field theory perspective. We first consider a three-body
operator composed of two spin-↑ and one spin-↓ fermions with zero orbital angular
momentum l = 0:

O(l = 0)
↑↑↓ (x) ≡ Z−1

� φψ↑(x), (7.131)

where Z� is a cutoff-dependent renormalization factor. We study the renormalization
of the composite operator φψ↑ by evaluating its matrix element 〈0|φψ↑(x)|p,−p〉.
Feynman diagrams to renormalize φψ↑ is depicted in Fig. 7.15. The vertex function
Z(p0, p) in Fig. 7.15 satisfies the following integral equation:

Z(p0, p)= 1 − i
∫

dk0dk
(2π)d+1 G↑(k)G↓(−p − k)D(−k)Z(k0, k)

= 1 −
∫

dk
(2π)d

G↓(−p − k)D(−k)Z(k0, k)
∣∣
k0 = k2

2m↑
,

(7.132)

where we used the analyticity of Z(k0, k)on the lower half plane of

k0. Gσ (p) ≡
(

p0 − p2

2mσ
+ 0+

)−1
is the fermion propagator and D(p) is the

resumed propagator ofφ field given in Eq. 7.78. If we set p0 = p2

2m↑ ,Eq. 7.132 reduces

to the integral equation for z( p) ≡ Z
(

p2

2m↑ , p
)
.

Because of the scale and rotational invariance of the system, we can assume the

form of z( p) to be z( p) ∝
( | p|
�

)γ
, where � is a momentum cutoff. Accordingly

the renormalization factor becomes Z� ∝ �−γ with γ = − ∂lnZ�/∂ln� being the
anomalous dimension of the composite operator φψ↑. In terms of γ, the scaling

dimension of the renormalized operator O(l = 0)
↑↑↓ is given by
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Fig. 7.15 Feynman diagrams to renormalize three-body composite operators. The solid lines are
the propagators of ψ↑ and ψ↓ fields while the dotted lines are the resumed propagators of φ field.
The shaded bulbs represent the vertex function Z(p)

�
(l = 0)
↑↑↓ =�φ +�ψ↑ + γ = 2 + d

2
+ γ. (7.133)

Substituting the expression of z( p) into Eq. 7.132 and performing the integration
over |k| at �→ ∞, we obtain the following equation to determine γ :

1 =
2π1/2

[
m↓(2m↑+m↓)
(m↑+m↓)2

]1−d/2

�
(
1 − d

2

)
�

( d−1
2

)
sin[(γ + 1)π ]

π∫
0

dθ sind−2 θ
sin[(γ + 1)χ ]

sin χ
(7.134)

with cos χ ≡ m↑
m↑+m↓ cos θ.The integration over θ can be done analytically in d = 3,

but otherwise, has to be done numerically.
Similarly, for general orbital angular momentum l, we can derive the equation

satisfied by the anomalous dimension γl :

1 =
2π1/2

[
m↓(2m↑+m↓)
(m↑+m↓)2

]1−d/2

�
(
1 − d

2

)
�

( d−1
2

)
sin[(γl + l + 1)π]

π∫
0

dθ sind−2 θ P̃l(cos θ)
sin[(γl + l + 1)χ]

sin χ
,

(7.135)
where P̃l(z) is a Legendre polynomial generalized to d spatial dimensions.7 The
scaling dimension of the renormalized operatorO(l)

↑↑↓ with orbital angular momentum
l is now given by

�
(l)
↑↑↓ =�φ +�ψ↑ + l + γl = 2 + d

2
+ l + γl . (7.136)

�
(l)
↑↑↓ for l = 0, 1 in d = 3 are plotted as functions of the mass ratio m↑/m↓ in

Fig. 7.12, while�(l)↑↑↓ for l = 0, 1 with equal masses m↑ = m↓ are plotted in Fig. 7.14
as functions of the spatial dimension d.

7 P̃0(z)= 1, P̃1(z)= z, . . . .
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Chapter 8
Dilute Fermi and Bose Gases

Subir Sachdev

Abstract We give a unified perspective on the properties of a variety of quantum
liquids using the theory of quantum phase transitions. A central role is played by a
zero density quantum critical point which is argued to control the properties of the
dilute gas. An exact renormalization group analysis of such quantum critical points
leads to a computation of the universal properties of the dilute Bose gas and the
spinful Fermi gas near a Feshbach resonance.

8.1 Introduction

It is not conventional to think of dilute quantum liquids as being in the vicinity of
a quantum phase transition. However, there is a simple sense in which they are,
although there is often no broken symmetry or order parameter associated with this
quantum phase transition. We shall show below that the perspective of such a quantum
phase transition allows a unified and efficient description of the universal properties
of quantum liquids.

Stated most generally, consider a quantum liquid with a global U(1) symmetry.
We shall be particularly interested in the behavior of the conserved density, gener-
ically denoted by Q (usually the particle number), associated with this symmetry.
The quantum phase transition is between two phases with a specific T = 0 behavior
in the expectation value of Q. In one of the phases, 〈Q〉 is pinned precisely at a quan-
tized value (often zero) and does not vary as microscopic parameters are varied. This
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quantization ends at the quantum critical point with a discontinuity in the derivative
of 〈Q〉 with respect to the tuning parameter (usually the chemical potential), and
〈Q〉 varies smoothly in the other phase; there is no discontinuity in the value of 〈Q〉,
however.

The most familiar model exhibiting such a quantum phase transition is the dilute
Bose gas. We express its coherent state partition function, Z B, in terms of complex
field �B(x, τ ), where x is a d-dimensional spatial co-ordinate and τ is imaginary
time:

Z B =
∫

D�B(x, τ ) exp

⎛
⎜⎝−

1/T∫
0

dτ
∫

dd xLB

⎞
⎟⎠ ,

LB =�∗
B
∂�B

∂τ
+ 1

2m
|∇�B |2 − μ|�B |2 + u0

2
|�B |4. (8.1)

We can identify the charge Q with the boson density �∗
B�B

〈Q〉= − ∂FB

∂μ
= 〈|�B |2〉, (8.2)

with FB = − (T/V ) ln Z B . The quantum critical point is precisely at μ= 0 and
T = 0, and there are no fluctuation corrections to this location from the terms in LB .

So at T = 0, 〈Q〉 takes the quantized value 〈Q〉= 0 for μ < 0, and 〈Q〉 > 0 for
μ > 0; we will describe the nature of the onset at μ= 0 and finite-T crossovers in
its vicinity.

Actually, we will begin our analysis in Sect. 8.2 by a model simpler than Z B,

which displays a quantum phase transition with the same behavior in a conserved
U(1) density 〈Q〉 and has many similarities in its physical properties. The model is
exactly solvable and is expressed in terms of a continuum canonical spinless fermion
field �F ; its partition function is

Z F =
∫

D�F (x, τ ) exp

⎛
⎜⎝−

1/T∫
0

dτ
∫

dd xLF

⎞
⎟⎠ ,

LF =�∗
F
∂�F

∂τ
+ 1

2m
|∇�F |2 − μ|�F |2. (8.3)

LF is just a free field theory. Like Z B, Z F has a quantum critical point
atμ= 0, T = 0 and we will discuss its properties; in particular, we will show that all
possible fermionic nonlinearities are irrelevant near it. The reader should not be mis-
led by the apparently trivial nature of the model in (8.3); using the theory of quantum
phase transitions to understand free fermions might seem like technological overkill.
We will see that Z F exhibits crossovers that are quite similar to those near far more
complicated quantum critical points, and observing them in this simple context leads
to considerable insight.
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In general spatial dimension, d, the continuum theories Z B and Z F have different,
though closely related, universal properties. However, we will argue that the quantum
critical points of these theories are exactly equivalent in d = 1. We will see that the
bosonic theory Z B is strongly coupled in d = 1, and will note compelling evidence
that the solvable fermionic theory Z F is its exactly universal solution in the vicinity
of the μ= 0, T = 0 quantum critical point. This equivalence extends to observable
operators in both theories, and allows exact computation of a number of universal
properties of Z B in d = 1.

Our last main topic will be a discussion of the dilute spinful Fermi gas in Sect. 8.4.
This generalizes Z F to a spin S = 1/2 fermion �Fσ , with σ = ↑,↓ . Now Fermi
statistics do allow a contact quartic interaction, and so we have

Z Fs =
∫

D�F↑(x, τ )D�F↓(x, τ ) exp

⎛
⎜⎝−

1/T∫
0

dτ
∫

dd xLFs

⎞
⎟⎠ ,

LFs =�∗
Fσ
∂�Fσ

∂τ
+ 1

2m
|∇�Fσ |2 − μ|�Fσ |2 + u0�

∗
F↑�∗

F↓�F↓�F↑. (8.4)

This theory conserves fermion number, and has a phase transition as a func-
tion of increasing μ from a state with fermion number 0 to a state with non-zero
fermion density. However, unlike the above two cases of Z B and Z F , the transition
is not always at μ= 0. The problem defined in (8.4) has recently found remarkable
experimental applications in the study of ultracold gases of fermionic atoms. These
experiments are aslo able to tune the value of the interaction u0 over a wide range of
values, extended from repulsive to attractive. For the attractive case, the two-particle
scattering amplitude has a Feshbach resonance where the scattering length diverges,
and we obtain the unitarity limit. We will see that this Feshbach resonance plays a
crucial role in the phase transition obtained by changing μ, and leads to a rich phase
diagram of the so-called “unitary Fermi gas”.

Our treatment of Z Fs in the experimental important case of d = 3 will show that
it defines a strongly coupled field theory in the vicinity of the Feshbach resonance
for attractive interactions. It therefore pays to find alternative formulations of this
regime of the unitary Fermi gas. One powerful approach is to promote the two fermion
bound state to a separate canonical Bose field. This yields a model, Z F B with both
elementary fermions and bosons; i.e., it is a combination of Z B and Z Fs with inter-
actions between the fermions and bosons. We will define Z F B in Sect. 8.4, and use
it to obtain a number of experimentally relevant results for the unitary Fermi gas.

Section 8.2 will present a thorough discussion of the universal properties of Z F .

This will be followed by an analysis of Z B in Sect. 8.3, where we will use renor-
malization group methods to obtain perturbative predictions for universal properties.
The spinful Fermi gas will be discussed in Sect. 8.4.
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8.2 The Dilute Spinless Fermi Gas

This section will study the properties of Z F in the vicinity of its μ= 0, T = 0
quantum critical point. As Z F is a simple free field theory, all results can be obtained
exactly and are not particularly profound in themselves. Our main purpose is to show
how the results are interpreted in a scaling perspective and to obtain general lessons
on the nature of crossovers at T > 0.

First, let us review the basic nature of the quantum critical point at T = 0.
A useful diagnostic for this is the conserved density Q, which in the present model
we identify as �†

F�F . As a function of the tuning parameter μ, this quantity has a
critical singularity at μ= 0:

〈
�

†
F�F

〉 =
{
(Sd/d)(2mμ)d/2, μ > 0,
0, μ < 0,

(8.5)

where the phase space factor Sd = 2/[�(d/2)(4π)d/2].
We now proceed to a scaling analysis. Notice that at the quantum critical point

μ= 0, T = 0, the theory LF is invariant under the scaling transformations:

x ′ = xe−�,
τ ′ = τe−z�,

� ′
F = �F ed�/2,

(8.6)

provided we make the choice of the dynamic exponent

z = 2. (8.7)

The parameter m is assumed to remain invariant under the rescaling, and its
role is simply to ensure that the relative physical dimensions of space and time are
compatible. The transformation (8.6) also identifies the scaling dimension

dim[�F ] = d/2. (8.8)

Now turning on a nonzeroμ, it is easy to see thatμ is a relevant perturbation with

dim[μ] = 2. (8.9)

There will be no other relevant perturbations at this quantum critical point, and
so we have for the correlation length exponent

ν= 1/2. (8.10)

We can now examine the consequences of adding interactions to LF . A contact
interaction such as

∫
dx(�†

F (x)�F (x))2 vanishes because of the fermion anticom-
mutation relation. (A contact interaction is however permitted for a spin-1/2 Fermi
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gas and will be discussed in Sect. 8.4). The simplest allowed term for the spinless
Fermi gas is

L1 = λ(�†
F

(
x, τ

)∇�†
F

(
x, τ

)
�F

(
x, τ

)∇�F
(
x, τ

))
, (8.11)

where λ is a coupling constant measuring the strength of the interaction. However, a
simple analysis shows that

dim[λ] = −d. (8.12)

This is negative and so λ is irrelevant and can be neglected in the computation of
universal crossovers near the point μ= T = 0. In particular, it will modify the result
(8.5) only by contributions that are higher order in μ.

Turning to nonzero temperatures, we can write down scaling forms. Let us define
the fermion Green’s function

G F (x, t)= 〈
�F (x, t)�†

F (0, 0)
〉; (8.13)

then the scaling dimensions above imply that it satisfies

G F (x, t)= (2mT )d/2�G F

(
(2mT )1/2x, T t,

μ

T

)
, (8.14)

where �G F is a fully universal scaling function. For this particularly simple theory
LF we can of course obtain the result for G F in closed form:

G F (x, t)=
∫

ddk

(2π)d
eikx−i(k2/(2m)−μ)t

1 + e−(k2/(2m)−μ)/T
, (8.15)

and it is easy to verify that this obeys the scaling form (8.14). Similarly the free
energy FF has scaling dimension d + z, and we have

FF = T d/2+1�FF

(μ
T

)
(8.16)

with �FF a universal scaling function; the explicit result is, of course,

FF = −
∫

ddk

(2π)d
ln

(
1 + e(μ−k2/(2m))/T )

, (8.17)

which clearly obeys (8.16). The crossover behavior of the fermion density

〈Q〉= 〈
�

†
F�F

〉 = − ∂FF

∂μ
(8.18)

follows by taking the appropriate derivative of the free energy. Examination of these
results leads to the crossover phase diagram of Fig. 8.1. We will examine each of
the regions of the phase diagram in turn, beginning with the two low-temperature
regions.
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0

T

0

Lattice high T

Continuum
high T

Fermi liquidDilute classical
gas

Fig. 8.1 Phase diagram of the dilute Fermi gas Z F (Eq. 8.3) as a function of the chemical potential
μ and the temperature T. The regions are separated by crossovers denoted by dashed lines, and their
physical properties are discussed in the text. The full lines are contours of equal density, with higher
densities above lower densities; the zero density line is μ < 0, T = 0. The line μ > 0, T = 0 is a
line of z = 1 critical points that controls the longest scale properties of the low-T Fermi liquid region.
The critical end point μ= 0, T = 0 has z = 2 and controls global structure of the phase diagram.
In d = 1, the Fermi liquid is more appropriately labeled a Tomonaga–Luttinger liquid. The shaded
region marks the boundary of applicability of the continuum theory and occurs at μ, T ∼ w

8.2.1 Dilute Classical Gas, kBT � |µ|, µ < 0

The ground state forμ < 0 is the vacuum with no particles. Turning on a nonzero tem-
perature produces particles with a small nonzero density ∼e−|μ|/T . The de Broglie
wavelength of the particles is of order T −1/2, which is significantly smaller than
the mean spacing between the particles, which diverges as e|μ|/dT as T → 0. This
implies that the particles behave semiclassically. To leading order from (8.15), the
fermion Green’s function is simply the Feynman propagator of a single particle

G F (x, t)=
( m

2π i t

)d/2
exp

(
− imx2

2t

)
, (8.19)

and the exclusion of states from the other particles has only an exponentially small
effect. Notice that G F is independent of μ and T and (8.19) is the exact result for
μ= T = 0. The free energy, from (8.16) and (8.17), is that of a classical Boltzmann
gas

FF = −
(

mT

2π

)d/2

e−|μ|/T . (8.20)
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8.2.2 Fermi Liquid, kBT � µ, µ > 0

The behavior in this regime is quite complex and rich. As we will see, and as noted
in Fig. 8.1, the line μ > 0, T = 0 is itself a line of quantum critical points. The
interplay between these critical points and those of theμ= 0, T = 0 critical end point
is displayed quite instructively in the exact results for G F and is worth examining in
detail. It must be noted that the scaling dimensions and critical exponents of these two
sets of critical points need not (and indeed will not) be the same. The behavior of the
μ > 0, T = 0 critical line emerges as a particular scaling limit of the global scaling
functions of the μ= 0, T = 0 critical end point. Thus the latter scaling functions are
globally valid everywhere in Fig. 8.1, and describe the physics of all its regimes.

First it can be argued, for example, by studying asymptotics of the integral in
(8.15), that for very short times or distances, the correlators do not notice the con-
sequences of other particles present because of a nonzero T or μ and are therefore
given by the single-particle propagator, which is the T =μ= 0 result in (8.19). More
precisely we have

G(x, t) is given by (8.19) for |x | � (2mμ)−1/2 , |t | � 1

μ
. (8.21)

With increasing x or t, the restrictions in (8.21) are eventually violated and the
consequences of the presence of other particles, resulting from a nonzero μ, become
apparent. Notice that because μ is much larger than T, it is the first energy scale to
be noticed, and as a first approximation to understand the behavior at larger x we
may ignore the effects of T.

Let us therefore discuss the ground state for μ > 0. It consists of a filled Fermi
sea of particles (a Fermi liquid) with momenta k < kF = (2mμ)1/2. An important
property of the this state is that it permits excitations at arbitrarily low energies (i.e., it
is gapless). These low energy excitations correspond to changes in occupation num-
ber of fermions arbitrarily close to kF .As a consequence of these gapless excitations,
the points μ > 0 (T = 0) form a line of quantum critical points, as claimed earlier.
We will now derive the continuum field theory associated with this line of critical
points. We are interested here only in x and t values that violate the constraints in
(8.21), and so in occupation of states with momenta near ±kF .So let us parameterize,
in d = 1,

�(x, τ )= eikF x�R(x, τ )+ e−ikF x�L(x, τ ), (8.22)

where�R,L describe right- and left-moving fermions and are fields that vary slowly
on spatial scales∼1/kF = (1/2mμ)1/2 and temporal scales∼1/μ;most of the results
discussed below hold, with small modifications, in all d. Inserting the above para-
meterization in LF , and keeping only terms lowest order in spatial gradients, we
obtain the “effective” Lagrangean for the Fermi liquid region, LF L in d = 1:

LF L =�†
R

(
∂

∂τ
− ivF

∂

∂x

)
�R +�

†
L

(
∂

∂τ
+ ivF

∂

∂x

)
�L , (8.23)
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where vF = kF/m = (2μ/m)1/2 is the Fermi velocity. Now notice that LF L is
invariant under a scaling transformation, which is rather different from (8.6) for
the μ= 0, T = 0 quantum critical point:

x ′ = xe−�,
τ ′ = τe−�,

� ′
R,L(x

′, τ ′) = �R,L(x, τ )e
�/2,

v′
F = vF .

(8.24)

The above results imply

z = 1, (8.25)

unlike z = 2 (Eq. 8.7) at the μ= 0 critical point, and

dim[�R,L ] = 1/2, (8.26)

which actually holds for all d and therefore differs from (8.8). Further notice that
vF , and therefore μ, are invariant under rescaling, unlike (8.9) at the μ= 0 critical
point. Thus vF plays a role rather analogous to that of m at the μ= 0 critical point:
it is simply the physical units of spatial and length scales. The transformations (8.24)
show that LL F is scale invariant for each value of μ, and we therefore have a line
of quantum critical points as claimed earlier. It should also be emphasized that the
scaling dimension of interactions such as λ will also change; in particular not all
interactions are irrelevant about the μ �= 0 critical points. These new interactions
are, however, small in magnitude provided μ is small (i.e., provided we are within
the domain of validity of the global scaling forms (8.14) and (8.16), and so we will
neglect them here. Their main consequence is to change the scaling dimension of
certain operators, but they preserve the relativistic and conformal invariance of LF L .

This more general theory of d = 1 fermions is the Tomonaga–Luttinger liquid.

8.2.3 High-T Limit, kBT � |µ|

This is the last, and in many ways the most interesting, region of Fig. 8.1. Now T
is the most important energy scale controlling the deviation from the μ= 0, T = 0
quantum critical point, and the properties will therefore have some similarities to
the “quantum critical region” of other strongly interacting models [17]. It should be
emphasized that while the value of T is significantly larger than |μ|, it cannot be so
large that it exceeds the limits of applicability for the continuum action LF . If we
imagine that LF was obtained from a model of lattice fermions with bandwidth w,
then we must have T � w.

We discuss first the behavior of the fermion density. In the high-T limit of the
continuum theory LF , |μ| � T � w,we have from (8.17) and (8.18) the universal
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result

〈
�

†
F�F

〉= (2mT )d/2
∫

dd y

(2π)d
1

ey2 + 1
= (2mT )d/2 ζ(d/2)

(1 − 2d/2)

(4π)d/2
. (8.27)

This density implies an interparticle spacing that is of order the de Broglie wave-
length = (1/2mT )1/2. Hence thermal and quantum effects are to be equally impor-
tant, and neither dominate.

For completeness, let us also consider the fermion density for T  w (the region
above the shaded region in Fig. 8.1), to illustrate the limitations on the continuum
description discussed above. Now the result depends upon the details of the nonuni-
versal fermion dispersion; on a hypercubic lattice with dispersion εk −μ, we obtain

〈
�

†
F�F

〉=
π/a∫

−π/a

ddk

(2π)d
1

e(εk−μ)/T + 1

= 1

2ad
− 1

4T

π/a∫
−π/a

ddk

(2π)d
(εk − μ)+ O(1/T 2). (8.28)

The limits on the integration, which extend from −π/a toπ/a for each momentum
component, had previously been sent to infinity in the continuum limit a → 0.
In the presence of lattice cutoff, we are able to make a naive expansion of the integrand
in powers of 1/T, and the result therefore only contains negative integer powers of T.
Contrast this with the universal continuum result (8.27) where we had noninteger
powers of T dependent upon the scaling dimension of �.

We return to the universal high-T region, |μ| � T � w, and describe the behavior
of the fermionic Green’s function G F , given in (8.15). At the shortest scales we again
have the free quantum particle behavior of the μ= 0, T = 0 critical point:

G F (x, t) is given by (8.19) for |x | � (2mT )−1/2 , |t | � 1

T
. (8.29)

Notice that the limits on x and t in (8.29) are different from those in (8.21),
in that they are determined by T and not μ. At larger |x | or t the presence of the
other thermally excited particles becomes apparent, and G F crosses over to a novel
behavior characteristic of the high-T region. We illustrate this by looking at the
large-x asymptotics of the equal-time G in d = 1 (other d are quite similar):

G F (x, 0)=
∫

dk

2π

eikx

1 + e−k2/2mT
. (8.30)

For large x this can be evaluated by a contour integration, which picks up contri-
butions from the poles at which the denominator vanishes in the complex k plane.
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The dominant contributions come from the poles closest to the real axis, and give
the leading result

G F (|x | → ∞, 0)= −
(
π2

2mT

)1/2

exp
(
−(1 − i) (mπT )1/2 x

)
. (8.31)

Thermal effects therefore lead to an exponential decay of equal-time correlations,
with a correlation length ξ = (mπT )−1/2 .Notice that the T dependence is precisely
that expected from the exponent z = 2 associated with the μ= 0 quantum critical
point and the general scaling relation ξ ∼ T −1/z . The additional oscillatory term
in (8.31) is a reminder that quantum effects are still present at the scale ξ, which is
clearly of order the de Broglie wavelength of the particles.

8.3 The Dilute Bose Gas

This section will study the universal properties quantum phase transition of the dilute
Bose gas model Z B in (8.1) in general dimensions. We will begin with a simple
scaling analysis that will show that d = 2 is the upper-critical dimension. The first
subsection will analyse the case d < 2 in some more detail, while the next subsection
will consider the somewhat different properties in d = 3. Some of the results of this
section were also obtained by Kolomeisky and Straley [9, 10].

We begin with the analog of the simple scaling considerations presented at the
beginning of Sect. 8.2. At the coupling u = 0, the μ= 0 quantum critical point of
LB is invariant under the transformations (8.6), after the replacement �F → �B,

and we have as before z = 2 and

dim[�B] = d/2, dim[μ] = 2; (8.32)

these results will shortly be seen to be exact in all d. We can easily determine the
scaling dimension of the quartic coupling u at the u = 0, μ= 0 fixed point under the
bosonic analog of the transformations (8.6); we find

dim[u0] = 2 − d. (8.33)

Thus the free-field fixed point is stable for d > 2, in which case it is suspected
that a simple perturbative analysis of the consequences of u will be adequate. How-
ever, for d < 2, a more careful renormalization group–based resummation of the
consequences of u is required. This identifies d = 2 as the upper-critical dimension
of the present quantum critical point.

Our analysis of the case d < 2 for the dilute Bose gas quantum critical point will
find, somewhat surprisingly, that all the renormalizations, and the associated flow
equations, can be determined exactly in closed form. We begin by considering the
one-loop renormalization of the quartic coupling u0 at the μ= 0, T = 0 quantum
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Fig. 8.2 The ladder series of
diagrams that contribute the
renormalization of the
coupling u in Z B for d < 2

+

+ +  ...

critical point. It turns out that only the ladder series of Feynman diagrams shown
in Fig. 8.2 need be considered (the T matrix). Evaluating the first term of the series
in Fig. 8.2 for the case of zero external frequency and momenta, we obtain the
contribution

−u2
0

∫
dω

2π

∫
ddk

(2π)d
1

(−iω + k2/(2m))

1

(iω + k2/(2m))
= − u2

0

∫
ddk

(2π)d
m

k2

(8.34)
(the remaining ladder diagrams are powers of (8.34) and form a simple geometric
series). Notice the infrared singularity for d < 2, which is cured by moving away
from the quantum critical point, or by external momenta.

We can proceed further by a simple application of the momentum shell RG. Note
that we will apply cutoff � only in momentum space. The RG then proceeds by
integrating all frequencies, and momentum modes in the shell between�e−� and�.
The renormalization of the coupling u0 is then given by the first diagram in Fig. 8.2,
and after absorbing some phase space factors by a redefinition of interaction coupling

u0 = �2−d

2mSd
u, (8.35)

we obtain [6, 7]

du

d�
= εu − u2

2
. (8.36)

Here Sd = 2/(�(d/2)(4π)d/2) is the usual phase space factor, and

ε= 2 − d. (8.37)

Note that for ε > 0, there is a stable fixed point at

u∗ = 2ε, (8.38)

which will control all the universal properties of Z B .

The flow equation (8.36), and the fixed point value (8.38) are exact to all orders
in u or ε, and it is not necessary to consider u-dependent renormalizations to the
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field scale of �B or any of the other couplings in Z B . This result is ultimately a
consequence of a very simple fact: The ground state of Z B at the quantum critical
point μ= 0 is simply the empty vacuum with no particles. So any interactions that
appear are entirely due to particles that have been created by the external fields.
In particular, if we introduce the bosonic Green’s function [the analog of (8.15)]

G B(x, t)= 〈
�B(x, t)�†

B(0, 0)
〉
, (8.39)

then for μ ≤ 0 and T = 0, its Fourier transform G(k, ω) is given exactly by the free
field expression

G B(k, ω)= 1

−ω + k2/(2m)− μ
. (8.40)

The field �†
B creates a particle that travels freely until its annihilation at (x, t)

by the field �B; there are no other particles present at T = 0, μ ≤ 0, and so the
propagator is just the free field one. The simple result (8.40) implies that the scaling
dimensions in (8.32) are exact. Turning to the renormalization of u, it is clear from
the diagram in Fig. 8.2 that we are considering the interactions of just two particles.
For these, the only nonzero diagrams are the one shown in Fig. 8.2, which involve
repeated scattering of just these particles. Formally, it is possible to write down many
other diagrams that could contribute to the renormalization of u; however, all of these
vanish upon performing the integral over internal frequencies for there is always one
integral that can be closed in one half of the frequency plane where the integrand has
no poles. This absence of poles is of course just a more mathematical way of stating
that there are no other particles around.

We will consider application of these renormalization group results separately for
the cases below and above the upper-critical dimension of d = 2.

8.3.1 d < 2

First, let us note some important general implications of the theory controlled by the
fixed point interaction (8.38). As we have already noted, the scaling dimensions of�B

andμ are given precisely by their free field values in (8.32), and the dynamic exponent
z also retains the tree-level value z = 2. All these scaling dimensions are identical to
those obtained for the case of the spinless Fermi gas in Sect. 8.2. Further, the presence
of a nonzero and universal interaction strength u∗ in (8.38) implies that the bosonic
system is stable for the caseμ > 0 because the repulsive interactions will prevent the
condensation of infinite density of bosons (no such interaction was necessary for the
fermion case, as the Pauli exclusion was already sufficient to stabilize the system).
These two facts imply that the formal scaling structure of the bosonic fixed point
being considered here is identical to that of the fermionic one considered in Sect. 8.2
and that the scaling forms of the two theories are identical. In particular, G B will
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obey a scaling form identical to that for G F in (8.14) (with a corresponding scaling
function �G B ), while the free energy, and associated derivatives, obey (8.16) (with
a scaling function�FB ). The universal functions �G B and�FB can be determined
order by order in the present ε= 2 − d expansion, and this will be illustrated shortly.

Although the fermionic and bosonic fixed points share the same scaling dimen-
sions, they are distinct fixed points for general d < 2.However, these two fixed points
are identical precisely in d = 1 [19]. Evidence for this was presented in Ref. [5], where
the anomalous dimension of the composite operator �2

B was computed exactly in
the ε expansion and was found to be identical to that of the corresponding fermionic
operator. Assuming the identity of the fixed points, we can then make a stronger
statement about the universal scaling function: those for the free energy (and all its
derivatives) are identical�FB =�FF in d = 1. In particular, from (8.17) and (8.18)
we conclude that the boson density is given by

〈Q〉= 〈
�

†
B�B

〉=
∫

dk

2π

1

e(k2/(2m)−μ)/T + 1
(8.41)

in d = 1 only. The operators�B and�F are still distinct and so there is no reason for
the scaling functions of their correlators to be the same. However, in d = 1, we can
relate the universal scaling function of �B to those of �F via a continuum version
of the Jordan-Wigner transformation

�B(x, t)= exp

⎛
⎝iπ

x∫
−∞

dy�†
F (y, t)�F (y, t)

⎞
⎠�F (x, t). (8.42)

This identity is applied to numerous exact results in Ref. [17]
As not all observables can be computed exactly in d = 1 by the mapping to the free

fermions, we will now consider the ε= 2 − d expansion. We will present a simple ε
expansion calculation [18] for illustrative purposes. We focus on density of bosons
at T = 0. Knowing that the free energy obeys the analog of (8.16), we can conclude
that a relationship like (8.5) holds:

〈
�

†
B�B

〉=
{

Cd(2mμ)d/2, μ > 0,
0, μ < 0,

(8.43)

at T = 0, with Cd a universal number. The identity of the bosonic and fermi-
onic theories in d = 1 implies from (8.5) or from (8.41) that C1 = S1/1 = 1/π.
We will show how to compute Cd in the ε expansion; similar techniques can be used
for almost any observable.

Even though the position of the fixed point is known exactly in (8.38), not all
observables can be computed exactly because they have contributions to arbitrary
order in u. However, universal results can be obtained order-by-order in u, which
then become a power series in ε= 2 − d. As an example, let us examine the low
order contributions to the boson density. To compute the boson density for μ > 0,
we anticipate that there is condensate of the boson field �B, and so we write
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�B(x, τ )=�0 +�1(x, t), (8.44)

where �1 has no zero wavevector and frequency component. Inserting this into LB

in (8.1), and expanding to second order in �1, we get

L1 = − μ|�0|2 + u0

2
|�0|4 −�∗

1
∂�1

∂τ
+ 1

2m
|∇�1|2

− μ|�1|2 + u0

2

(
4|�0|2|�1|2 +�2

0�
∗2
1 +�∗2

0 �
2
1

)
. (8.45)

This is a simple quadratic theory in the canonical Bose field�1, and its spectrum
and ground state energy can be determined by the familiar Bogoliubov transforma-
tion. Carrying out this step, we obtain the following formal expression for the free
energy density F as a function of the condensate �0 at T = 0:

F (�0)= − μ|�0|2 + u0

2
|�0|4

+ 1

2

∫
ddk

(2π)d

[{(
k2

2m
− μ+ 2u0|�0|2

)2

− u2
0|�0|4

}1/2

−
(

k2

2m
− μ+ 2u0|�0|2

)]
. (8.46)

To obtain the physical free energy density, we have to minimize F with respect
to variations in �0 and to substitute the result back into (8.46). Finally, we can take
the derivative of the resulting expression with respect to μ and obtain the required
expression for the boson density, correct to the first two orders in u0:

〈
�

†
B�B

〉 = μ

u0
+ 1

2

∫
ddk

(2π)d

[
1 − k2√

k2(k2 + 4mμ)

]
. (8.47)

To convert (8.47) into a universal result, we need to evaluate it at the coupling
appropriate to the fixed point (8.38). This is most easily done by the
field-theoretic RG. So let us translate the RG equation (8.36) into this language.
We introduce a momentum scale μ̃ (the tilde is to prevent confusion with the chem-
ical potential) and express u0 in terms of a dimensionless coupling u R by

u0 = u R
(2m)μ̃ε

Sd

(
1 + u R

2ε

)
. (8.48)

The motivation behind the choice of the renormalization factor in (8.48) is that
the renormalized four-point coupling, when expressed in terms of u R, and evaluated
in d = 2 − ε, is free of poles in ε as can easily be explicitly checked using (8.34)
and the associated geometric series. Then, we evaluate (8.47) at the fixed point value
of u R, compute any physical observable as a formal diagrammatic expansion in u0,

substitute u0 in favor of u R using (8.48), and expand the resulting expression in
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powers of ε. All poles in ε should cancel, but the resulting expression will depend
upon the arbitrary momentum scale μ̃.At the fixed point value u∗

R, dependence upon
μ̃ then disappears and a universal answer remains. In this manner we obtain from
(8.47) a universal expression in the form (8.43) with

Cd = Sd

[
1

2ε
+ ln 2 − 1

4
+ O(ε)

]
. (8.49)

8.3.2 d = 3

Now we briefly discuss 2 < d < 4: details appear elsewhere [17]. In d = 2, the
upper critical dimension, there are logarithmic corrections which were computed by
Prokof’ev et al. [15]. Related results, obtained through somewhat different methods,
are available in the literature [6, 13, 14, 19].

The quantum critical point at μ= 0, T = 0 is above its upper-critical dimension,
and we expect mean-field theory to apply. The analog of the mean-field result in the
present context is the T = 0 relation for the density

〈
�

†
B�B

〉 =
{
μ/u0 + · · · , μ > 0,
0, μ < 0,

(8.50)

where the ellipses represents terms that vanish faster as μ → 0. Notice that this
expression for the density is not universally dependent upon μ; rather it depends
upon the strength of the two-body interaction u0 (more precisely, it can be related to
the s-wave scattering length a by u0 = 4πa/m).The crossovers and phase transitions
at T > 0 are sketched in Fig. 8.3. These are similar to those of the spinless Fermi gas,
but now there can be a phase transition within one of the regions. Explicit expressions
for the crossovers [17] have been presented by Rasolt et al. [16], Weichman et al. [29]
and also addressed in earlier work [3, 22, 23].

8.4 The Dilute Spinful Fermi Gas: The Feshbach Resonance

This section turns to the case of the spinful Fermi gas with short-range interac-
tions; as we noted in the introduction, this is a problem which has acquired renewed
importance because of the new experiments on ultracold fermionic atoms.

The partition function of the theory examined in this section was displayed in
(8.4). The renormalization group properties of this theory in the zero density limit are
identical to those the dilute Bose gas considered in Sect. 8.3. The scaling dimensions
of the couplings are the same, the scaling dimension of �Fσ is d/2 as for �B in
(8.32), and the flow of the u is given by (8.36). Thus for d < 2, a spinful Fermi gas
with repulsive interactions is described by the stable fixed point in (8.38).

However, for the case of spinful Fermi gas case, we can consider another regime
of parameters which is of great experimental importance. We can also allow u to
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Dilute
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Fig. 8.3 Crossovers of the dilute Bose gas in d = 3 as a function of the chemical potential μ and
the temperature T. The regimes labeled A, B, C are described in Ref. [17]. The solid line is the
finite-temperature phase transition where the superfluid order disappears; the shaded region is where
there is an effective classical description of thermal fluctuations. The contours of constant density
are similar to those in Fig. 8.1 and are not displayed

0 u*

u

d < 2

0u*

u

d > 2

(a)

(b)

Fig. 8.4 The exact RG flow of (8.36). a For d < 2 (ε > 0), the infrared stable fixed point at
u = u∗ > 0 describes quantum liquids of either bosons or fermions with repulsive interactions
which are generically universal in the low density limit. In d = 1 this fixed point is described by the
spinless free Fermi gas (‘Tonks’ gas), for all statistics and spin of the constituent particles. b For
d > 2 (ε < 0) the infrared unstable fixed point at u = u∗ < 0 describes the Feshbach resonance
which obtains for the case of attractive interactions. The relevant perturbation (u −u∗) corresponds
to the the detuning from the resonant interaction

be attractive: unlike the Bose gas case, the u < 0 case is not immediately unstable,
because the Pauli exclusion principle can stabilize a Fermi gas even with attractive
interactions. Furthermore, at the same time we should also consider the physically
important case with d > 2,when ε < 0.The distinct nature of the RG flows predicted
by (8.36) for the two signs of ε are shown in Fig. 8.4.

Notice the unstable fixed point present for d > 2 and u < 0. Thus accessing
the fixed point requires fine-tuning of the microscopic couplings. As discussed in
[11, 12], this fixed point describes a Fermi gas at a Feshbach resonance, where the
interaction between the fermions is universal. For u < u∗, the flow is to u → −∞:
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this corresponds to a strong attractive interaction between the fermions, which then
bind into tightly bound pairs of bosons, which then Bose condense; this corresponds
to the so-called ‘BEC’ regime. On the other hand, for u > u∗, the flow is to u ↗ 0,
and the weakly interacting fermions then form the Bardeen-Cooper-Schrieffer (BCS)
superconducting state.

Note that the fixed point at u = u∗ for Z Fs has two relevant directions for
d > 2. As in the other problems considered earlier, one corresponds to the chemical
potential μ. The other corresponds to the deviation from the critical point u − u∗,
and this [from (8.36)] has RG eigenvalue −ε= d − 2 > 0. This perturbation corre-
sponds to the “detuning” from the Feshbach resonance, ν (not to be confused with
the symbol for the correlation length exponent); we have ν ∝ u − u∗. Thus we have

dim[μ] = 2, dim[ν] = d − 2. (8.51)

These two relevant perturbations will have important consequences for the phase
diagram, as we will see shortly.

For now, let us understand the physics of the Feshbach resonance better. For this,
it is useful to compute the two body T matrix exactly by summing the graphs in
Fig. 8.2, along with a direct interaction first order in u0. The second order term was
already evaluated for the bosonic case in (8.34) for zero external momentum and
frequency, and has an identical value for the present fermionic case. Here, however,
we want the off-shell T-matrix, for the case in which the incoming particles have
momenta k1,2, and frequencies ω1,2. Actual for the simple momentum-independent
interaction u0, the T matrix depends only upon the sums k = k1+k2 andω=ω1+ω2,

and is independent of the final state of the particles, and the diagrams in Fig. 8.2 form
a geometric series. In this manner we obtain

1

T (k, iω)
= 1

u0

+
∫

d�

2π

∫
dd p

(2π)d
1

(−i(�+ ω)+ (p + k)2/(2m))

1

(i�+ p2/(2m))

= 1

u0
+

�∫
0

dd p

(2π)d
m

p2 + �(1 − d/2)

(4π)d/2
md/2

[
−iω + k2

4m

]d/2−1

.

(8.52)
In d = 3, the s-wave scattering amplitude of the two particles, f0, is related to

the T-matrix at zero center of mass momentum and frequency k2/m by f0(k) =
−mT (0, k2/m)/(4π), and so we obtain

f0(k)= 1

−1/a − ik
(8.53)

where the scattering length, a, is given by

1

a
= 4π

mu0
+

�∫
0

d3 p

(2π)3
4π

p2 . (8.54)
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Fig. 8.5 Universal phase diagram at zero temperature for the spinful Fermi gas in d = 3 as a function
of the chemical potential μ and the detuning ν. The vacuum state (shown hatched) has no particles.
The position of the ν < 0 phase boundary is determined by the energy of the two-fermion bound
state in (8.56): μ= − ν2/(2m). The density of particles vanishes continuously at the second
order quantum phase transition boundary of the superfluid phase, which is indicated by the thin
continuous line. The quantum multicritical point at μ= ν= 0 (denoted by the filled circle) controls
all the universal physics of the dilute spinful Fermi gas near a Feshbach resonance. The universal
properties of the critical lineμ= 0, ν > 0 map onto the theory of Sect. 8.2, while those of the critical
lineμ= −ν2/(2m), ν < 0 map onto the theory of Sect. 8.3. This implies that the T > 0 crossovers
in Fig. 8.1 apply for ν > 0 (the “Fermi liquid” region of Fig. 8.1 now has BCS superconductivity
at an exponentially small T), while those of Fig. 8.3 apply for ν < 0

For u0 < 0, we see from (8.54) that there is a critical value of u0 where
the scattering length diverges and changes sign: this is the Feshbach resonance.
We identify this critical value with the fixed point u = u∗ of the RG flow (8.36).
It is conventional to identify the deviation from the Feshbach resonance by the
detuning ν

ν ≡ −1

a
. (8.55)

Note that ν ∝ u − u∗, as claimed earlier. For ν > 0, we have weak attractive
interactions, and the scattering length is negative. For ν < 0,we have strong attractive
interactions, and a positive scattering length. Importantly, for ν < 0, there is a two-
particle bound state, whose energy can be deduced from the pole of the scattering
amplitude; recalling that the reduced mass in the center of mass frame is m/2, we
obtain the bound state energy, Eb

Eb = − ν2

m
. (8.56)

We can now draw the zero temperature phase diagram [11] of Z Fs as a function
of μ and ν, and the result is shown in Fig. 8.5.
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For ν > 0, there is no bound state, and so no fermions are present for
μ < 0. At μ= 0, we have an onset of non-zero fermion density, just as in the
other sections. These fermions experience a weak attractive interaction, and so expe-
rience the Cooper instability once there is a finite density of fermions for μ > 0. So
the ground state for μ > 0 is a paired BCS superfluid, as indicated in Fig. 8.5. For
small negative scattering lengths, the BCS state modifies the fermion state only near
the Fermi level. Consequently asμ ↘ 0 (specifically forμ < ν2/m,) we can neglect
the pairing in computing the fermion density. We therefore conclude that the univer-
sal critical properties of the line μ= 0, ν > 0 map precisely on to two copies (for
the spin degeneracy) of the non-interacting fermion model Z F studied in Sect. 8.2.
In particular the T > 0 properties for ν > 0 will map onto the crossovers in Fig. 8.1.
The only change is that the BCS pairing instability will appear below an exponen-
tially small T in the “Fermi liquid” regime. However, the scaling functions for the
density as a function of μ/T will remain unchanged.

For ν < 0, the situation changes dramatically. Because of the presence of the
bound state (8.56), it will pay to introduce fermions even for μ < 0. The chemical
potential for a fermion pair is 2μ, and so the threshold for having a non-zero density
of paired fermions is μ= Eb/2. This leads to the phase boundary shown in Fig. 8.5
at μ= − ν2/(2m). Just above the phase boundary, the density of fermion pairs
in small, and so these can be treated as canonical bosons. Computations of the
interactions between these bosons [11] show that they are repulsive. Therefore we
map their dynamics onto those of the dilute Bose gas studied in Sect. 8.3. Thus the
universal properties of the critical lineμ= −ν2/(2m) are equivalent to those of Z B .

Specifically, this means that the T > 0 properties across this critical line map onto
those of Fig. 8.3.

Thus we reach the interesting conclusion that the Feshbach resonance atμ= ν= 0
is a multicritical point separating the density onset transitions of Z F (Sect. 8.2) and
Z B (Sect. 8.3). This conclusion can be used to sketch the T > 0 extension of Fig. 8.5,
on either side of the ν= 0 line.

We now need a practical method of computing universal properties of Z Fs near
the μ= ν= 0 fixed point, including its crossovers into the regimes described by Z F

and Z B . The fixed point (8.36) of Z Fs provides an expansion of the critical theory in
the powers of ε= 2 − d. However, observe from Fig. 8.4, the flow for u < u∗ is to
u → −∞.The latter flow describes the crossover into the dilute Bose gas theory, Z B ,

and so this cannot be controlled by the 2 − d expansion. The following subsections
will propose two alternative analyses of the Feshbach resonant fixed point which will
address this difficulty.

8.4.1 The Fermi-Bose Model

One successful approach is to promote the two fermion bound state in (8.56) to a
canonical boson field �B . This boson should also be able to mix with the scattering
states of two fermions. We are therefore led to consider the following model
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Z F B =
∫

D�F↑(x, τ )D�F↓(x, τ )D�B(x, τ ) exp

(
−

∫
dτdd xLF B

)
,

LF B =�∗
Fσ
∂�Fσ

∂τ
+ 1

2m
|∇�Fσ |2 − μ|�Fσ |2

+�∗
B
∂�B

∂τ
+ 1

4m
|∇�Fσ |2 + (δ − 2μ)|�B |2

− λ0

(
�∗

B�F↑�F↓ +�B�
∗
F↓�∗

F↑
)
. (8.57)

Here we have taken the bosons to have mass 2 m, because that is the expected mass
of the two-fermion bound state by Galilean invariance. We have omitted numerous
possible quartic terms between the bosons and fermions above, and these will turn
out to be irrelevant in the analysis below.

The conserved U(1) charge for Z F B is

Q =�∗
F↑�F↑ +�∗

F↓�F↓ + 2�∗
B�B, (8.58)

and so Z F B is in the class of models being studied here. The factor of 2 in (8.58)
accounts for the 2μ chemical potential for the bosons in (8.57). For μ sufficiently
negative it is clear that Z F B will have neither fermions nor bosons present, and so
〈Q〉= 0. Conversely for positive μ, we expect 〈Q〉 �= 0, indicating a transition as a
function of increasing μ. Furthermore, for δ large and positive, the Q density will be
primarily fermions, while for δ negative the Q density will be mainly bosons; thus
we expect a Feshbach resonance at intermediate values of δ, which then plays the
role of detuning parameter.

We have thus argued that the phase diagram of Z F B as a function of μ and δ is
qualitatively similar to that in Fig. 8.5, with a Feshbach resonant multicritical point
near the center. The main claim of this section is that the universal properties of Z F B

and Z Fs are identical near this multicritical point [11, 12]. Thus, in a strong sense,
the theories Z F B and Z Fs are equivalent. Unlike the equivalence between Z B and
Z F , which held only in d = 1, the present equivalence applies for d > 2.

We will establish the equivalence by an exact RG analysis of the zero density
critical theory. We scale the spacetime co-ordinates and the fermion field as in (8.6),
but allow an anomalous dimension ηb for the boson field relative to (8.32):

x ′ = xe−�,
τ ′ = τe−z�,

� ′
Fσ = �Fσ ed�/2,

� ′
B = �Be(d+ηb)�/2

λ′
0 = λ0e(4−d−ηb)�/2

(8.59)

where, as before, we have z = 2. At tree level, the theory Z F B with μ= δ= 0 is
invariant under the transformations in (8.59) with ηb = 0. At this level, we see that
the coupling λ0 is relevant for d < 4, and so we will have to consider the influence
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Fig. 8.6 Feynman diagram contributing to the RG. The dark triangle is the λ0 vertex, the full line
is the �B propagator, and the dashed line is the �F propagator

of λ0. This also suggests that we may be able to obtain a controlled expansion in
powers of (4 − d).

Upon considering corrections in powers ofλ0 in the critical theory, it is not difficult
to show that there is a non-trivial contribution from only a single Feynman diagram:
this is the self–energy diagram for�B which is shown in Fig. 8.6. All other diagrams
vanish in the zero density theory, for reasons similar to those discussed for Z B below
(8.38). This diagram is closely related to the integrals in the T-matrix computation
in (8.52), and leads to the following contribution to the boson self energy �B :
�B(k, iω)

= λ2
0

∫
d�

2π

�∫

�e−�

dd p

(2π)d
1

(−i(�+ ω)+ (p + k)2/(2m))

1

(i�+ p2/(2m))

= λ2
0

�∫

�e−�

dd p

(2π)d
1

(−iω + (p + k)2/(2m)+ p2/(2m))

= λ2
0

�∫

�e−�

dd p

(2π)d
m

p2 − λ2
0

(
−iω + k2

4m

(
2 − 4

d

)) �∫

�e−�

dd p

(2π)d
m2

p4 . (8.60)

The first term is a constant that can absorbed into a redefinition of δ. For the first
time, we see above a special role for the spatial dimension d = 4,where the momen-
tum integral is logarithmic. Our computations below will turn to be an expansion in
powers of (4 − d), and so we will evaluate the numerical prefactors in (8.60) with
d = 4.The result turns out to be correct to all orders in (4−d), but to see this explicitly
we need to use a proper Galilean-invariant cutoff in a field theoretic approach [11].
The simple momentum shell method being used here preserves Galilean invariance
only in d = 4.

With the above reasoning, we see that the second term in the boson self-energy in
(8.60) can be absorbed into a rescaling of the boson field under the RG. We therefore
find a non-zero anomalous dimension

ηb = λ2, (8.61)

where we have absorbed phase space factors into the coupling λ by
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Fig. 8.7 Feynman diagram
for the mixing between the
renormalization of the
�

†
F�F and �†

B�B
operators. The filled circle is
the �†

F�F source. Other
notation is as in Fig. 8.6

λ0 = �2−d/2

m
√

Sd
λ. (8.62)

With this anomalous dimension, we use (8.59) to obtain the exact RG equation
for λ:

dλ

d�
= (4 − d)

2
λ− λ3

2
. (8.63)

For d < 4, this flow has a stable fixed point at λ= λ∗ = √
(4 − d). The central

claim of this subsection is that the theory Z F B at this fixed point is identical to the
theory Z Fs at the fixed point u = u∗ for 2 < d < 4.

Before we establish this claim, note that at the fixed point, we obtain the exact
result for the anomalous dimension of the the boson field

ηb = 4 − d. (8.64)

Let us now consider the spectrum of relevant perturbations to the λ= λ∗ fixed
point. As befits a Feshbach resonant fixed point, there are 2 relevant perturbations
in Z F B, the detuning parameter δ and the chemical potential μ. Apart from the tree
level rescalings, at one loop we have the diagram shown in Fig. 8.7. This diagram
has a �†

Fσ�Fσ source, and it renormalizes the co-efficient of �†�; it evaluates to

2λ2
0

∫
d�

2π

�∫

�e−�

dd p

(2π)d
1

(−i�+ p2/(2m))2(i�+ p2/(2m))

= 2λ2
0

�∫

�e−�

dd p

(2π)d
m2

p4 . (8.65)

Combining (8.65) with the tree-level rescalings, we obtain the RG flow equations

dμ

d�
= 2μ

d

d�
(δ − 2μ)= (2 − ηb)(δ − 2μ)− 2λ2μ, (8.66)
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where the last term arises from (8.65). With the value of ηb in (8.61), the second
equation simplifies to

dδ

d�
= (2 − λ2)δ. (8.67)

Thus we see thatμ and δ are actually eigen-perturbations of the fixed point at λ= λ∗,
and their scaling dimensions are

dim[μ] = 2, dim[δ] = d − 2. (8.68)

Note that these eigenvalues coincide with those of Z Fs in (8.51), with δ identified
as proportional to the detuning ν. This, along with the symmetries of Q conser-
vation and Galilean invariance, establishes the equivalence of the fixed points of
Z F B and Z Fs .

The utility of the present Z F B formulation is that it can provide a description of
universal properties of the unitary Fermi gas in d = 3 via an expansion in (4 − d).
Further details of explicit computations can be found in [12].

8.4.2 Large N Expansion

We now return to the model Z Fs in (8.4), and examine it in the limit of a large number
of spin components [11, 27]. We also use the structure of the large N perturbation
theory to obtain exact results relating different experimental observable of the unitary
Fermi gas.

The basic idea of the large N expansion is to endow the fermion with an additional
flavor index a = 1 . . . N/2, to the fermion field is �Fσa, where we continue to have
σ = ↑,↓ . Then, we write Z Fs as

Z Fs =
∫

D�Fσa(x, τ ) exp

⎛
⎜⎝−

1/T∫
0

dτ
∫

dd xLFs

⎞
⎟⎠ ,

LFs =�∗
Fσa

∂�Fσa

∂τ
+ 1

2m
|∇�Fσa |2 − μ|�Fσa |2

+ 2u0

N
�∗

F↑a�
∗
F↓a�F↓b�F↑b. (8.69)

where there is implied sum over a, b = 1 . . . N/2. The case of interest has N = 2,
but we will consider the limit of large even N, where the problem becomes tractable.

As written, there is an evident O(N/2) symmetry in Z Fs corresponding to rotations
in flavor space. In addition, there is U(1) symmetry associated with Q conservation,
and a SU(2) spin rotation symmetry. Actually, the spin and flavor symmetry combine
to make the global symmetry U(1)× Sp(N), but we will not make much use of this
interesting observation.
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The large N expansion proceeds by decoupling the quartic term in (8.69) by a
Hubbard-Stratanovich transformation. For this we introduce a complex bosonic field
�B(x, τ ) and write

Z Fs =
∫

D�Fσa(x, τ )D�B(x, τ ) exp

⎛
⎜⎝−

1/T∫
0

dτ
∫

dd xL̃Fs

⎞
⎟⎠ ,

L̃Fs =�∗
Fσa

∂�Fσa

∂τ
+ 1

2m
|∇�Fσa |2 − μ|�Fσa |2

+ N

2|u0| |�B |2 −�B�
∗
F↑a�

∗
F↓a −�∗

B�F↓a�F↑a .
(8.70)

Here, and below, we assume u0 < 0, which is necessary for being near the
Feshbach resonance. Note that �B couples to the fermions just like the boson field
in the Bose-Fermi model in (8.57), which is the reason for choosing this notation.
If we perform the integral over �B in (8.70), we recover (8.69), as required. For
the large N expansion, we have to integrate over �Fσa first and obtain an effective
action for �B . Because the action in (8.70) is Gaussian in the �Fσa, the integration
over the fermion field involves evaluation of a functional determinant, and has the
schematic form

ZFs =
∫

D�B(x, τ ) exp (−NSeff [�B(x, τ )]) , (8.71)

where Seff is the logarithm of the fermion determinant of a single flavor. The key
point is that the only N dependence is in the prefactor in (8.71), and so the theory of
�B can controlled in powers of 1/N .

We can expand Seff in powers of �B : the p’th term has a fermion loop with p
external �B insertions. Details can be found in [11, 27]. Here, we only note that
the expansion to quadratic order at μ= δ= T = 0, in which case the co-efficient is
precisely the inverse of the fermion T-matrix in (8.52):

Seff [�B(x, τ )] = − 1

2

∫
dω

2π

ddk

(2π)d
1

T (k, iω)
|�B(k, ω)|2 + . . . (8.72)

Given Seff , we then have to find its saddle point with respect to �B . At T = 0,
we will find the optimal saddle point at a �B �= 0 in the region of Fig. 8.5 with a
non-zero density: this means that the ground state is always a superfluid of fermion
pairs. The traditional expansion about this saddle point yields the 1/N expansion,
and many experimental observables have been computed in this manner [11, 27, 28].

We conclude our discussion of the unitary Fermi gas by deriving an exact rela-
tionship between the total energy, E, and the momentum distribution function, n(k),
of the fermions [25, 26]. We will do this using the structure of the large N expansion.
However, we will drop the flavor index a below, and quote results directly for the
physical case of N = 2. As usual, we define the momentum distribution function by
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n(k)= 〈�†
Fσ (k, t)�Fσ (k, t)〉, (8.73)

with no implied sum over the spin label σ. The Hamiltonian of the system in
(8.69) is the sum of kinetic and interaction energies: the kinetic energy is clearly an
integral over n(k) and so we can write

E = 2V
∫

ddk

(2π)d
k2

2m
n(k)+ u0V 〈�†

F↑�
†
F↓�F↓�F↑〉

= 2V
∫

ddk

(2π)d
k2

2m
n(k)− u0

∂ ln Z Fs

∂u0
. (8.74)

where V is the system volume, and all the �F fields are at the same x and t. Now let
us evaluate the u0 derivative using the expression for Z Fs in (8.70); this leads to

E

V
= 2

∫
ddk

(2π)d
k2

2m
n(k)+ 1

u0

〈
�∗

B(x, t)�B(x, t)
〉
. (8.75)

Now using the expression (8.54) relating u0 to the scattering length a in d = 3,
we can write this expression as

E

V
= m

4πa

〈
�∗

B�B
〉 + 2

∫
d3k

(2π)3
k2

2m

(
n(k)−

〈
�∗

B�B
〉
m2

k4

)
(8.76)

This is the needed universal expression for the energy, expressed in terms of
n(k) and the scattering length, and independent of the short distance structure of the
interactions.

At this point, it is useful to introduce “Tan’s constant” C, defined by [25, 26]

C = lim
k→∞ k4n(k). (8.77)

The requirement that the momentum integral in (8.76) is convergent in the ultra-
violet implies that the limit in (8.77) exists, and further specifies its value

C = m2 〈
�∗

B�B
〉
. (8.78)

We now note that the relationship n(k) → m2
〈
�∗

B�B
〉
/k4 at large k is also as

expected from a scaling perspective. We saw in Sect. 8.1 that the fermion field �F

does not acquire any anomalous dimensions, and has scaling dimension d/2. Conse-
quently n(k) has scaling dimension zero. Next, note that the operator �∗

B�B is con-
jugate to the detuning from the Feshbach critical point; from (8.68) the detuning has
scaling dimension d −2, and so�∗

B�B has scaling dimension d + z − (d − 2)= 4.
Combining these scaling dimensions, we explain the k−4 dependence of n(k).

It now remains to establish the claimed exact relationship in (8.78) as a general
property of a spinful Fermi gas near unitarity. As a start, we can examine the large
k limit of n(k) in the BCS mean field theory of the superfluid phase: the reader can
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Fig. 8.8 Order 1/N
correction to the fermion
Green’s function. Notation is
as in Fig. 8.6

easily verify that the text-book BCS expressions for n(k) do indeed satisfy (8.78).
However, the claim of [1, 24] is that (8.78) is exact beyond mean field theory, and also
holds in the non-superfluid states at non-zero temperatures. A general proof was given
in [24], and relied on the operator product expansion (OPE) applied to the field the-
ory (8.70). The OPE is a general method for describing the short distance and time
(or large momentum and frequency) behavior of field theories. Typically, in the
Feynman graph expansion of a correlator, the large momentum behavior is domi-
nated by terms in which the external momenta flow in only a few propagators, and the
internal momentum integrals can be evaluated after factoring out these favored prop-
agators. For the present situation, let us consider the 1/N correction to the fermion
Green’s function given by the diagram in Fig. 8.8. Representing the bare fermion
and boson Green’s functions by G F and G B respectively, Fig. 8.8 evaluates to

G2
F (k, ω)

∫
dd p

(2π)d
d�

2π
G B(p,�)G F (−k + p,−ω +�). (8.79)

Here G B is the propagator of the boson action Seff specified by (8.72). In the limit
of large k and ω, the internal p and � integrals are dominated by p and � much
smaller than k and ω; so we can approximate (8.79) by

G2
F (k, ω)G F (−k,−ω)

∫
dd p

(2π)d
d�

2π
G B(p,�)

= G2
F (k, ω)G F (−k,−ω) 〈�∗

B�B
〉
. (8.80)

This analysis can now be extended to all orders in 1/N . Among these higher order
contributions are terms which contribute self energy corrections to the boson prop-
agator G B in (8.80): it is clear that these can be summed to replace the bare G B

in (8.80) by the exact G B . Then the value of
〈|�B |2〉 in (8.80) also becomes the

exact value. All remaining contributions can be shown [24] to fall off faster at large
k and ω than the terms in (8.80). So (8.80) is the exact leading contribution to the
fermion Green’s function in the limit of large k and ω after replacing

〈|�B |2〉 by
its exact value. We can now integrate (8.80) over ω to obtain n(k) at large k. Actu-
ally the ω integral is precisely that in (8.65), which immediately yields the needed
relation (8.78).

Similar analyses can be applied to determine the the spectral functions of other
observables [2, 4, 8, 20, 21, 24, 28].

Determining of the specific value of Tan’s constant requires numerical compu-
tations in the 1/N expansion of (8.71). From the scaling properties of the Feshbach
resonant fixed point in d = 3, we can deduce the result obeys a scaling form similar
to (8.14):
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C = (2mT )2�C

(
μ

T
,

ν√
2mT

)
, (8.81)

where�C is a dimensionless universal function of its dimensionless arguments; note
that the arguments represent the axes of Fig. 8.5. The methods of Ref. [11, 27] can
now be applied to (8.78) to obtain numerical results for �C in the 1/N expansion.
We illustrate this method here by determining C to leading order in the 1/N expansion
at μ= ν= 0. For this, we need to generalize the action (8.72) for �B to T > 0 and
general N. Using (8.52) we can modify (8.72) to

Seff = N T
∑
ωn

∫
d3k

8π3 [D0(k, ωn)+ D1(k, ωn)] |�B(k, ωn)|2, (8.82)

where D0 is the T = 0 contribution, and D1 is the correction at T > 0:

D0(k, ωn)= m3/2

16π

√
−iωn + k2

4m

D1(k, ωn)= 1

2

∫
d3 p

8π3

1

(ep2/(2mT ) + 1)

1(−iω + p2/(2m)+ (p + k)2/(2m)
) .

(8.83)
We now have to evaluate

〈
�∗

B�B
〉

using the Gaussian action in (8.82). It is useful to
do this by separating the D0 contribution, which allows us to properly deal with the
large frequency behavior. So we can write

〈
�∗

B�B
〉 = 1

N
T

∑
ωn

∫
d3k

8π3

[
1

D0(k, ωn)+ D1(k, ωn)
− 1

D0(k, ωn)

]
+ D00.

(8.84)
In evaluating D00 we have to use the usual time-splitting method to ensure that the
bosons are normal-ordered, and evaluate the frequency summation by analytically
continuing to the real axis:

D00 = 1

N

∫
d3k

8π3 lim
η→0

T
∑
ωn

eiωnη

D0(k, ωn)

= 16π

Nm3/2

∫
d3k

8π3

∞∫
k2
4m

d�

π

1

(e�/T − 1)

1√
�− k2/(4m)

.

= 8.37758

N
T 2 (8.85)

The frequency summation in (8.84) can be evaluated directly on the imaginary fre-
quency axis: the series is convergent at large ωn, and is easily evaluated by a direct
numerical summation. Numerical evaulation of (8.84) now yields
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C = (2mT )2
(

0.67987

N
+ O(1/N 2)

)
(8.86)

at μ= ν= 0.
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Chapter 9
The Unitary Fermi Gas: From Monte Carlo
to Density Functionals

Aurel Bulgac, Michael McNeil Forbes and Piotr Magierski

Abstract In this chapter, we describe three related studies of the universal physics
of two-component unitary Fermi gases with resonant short-ranged interactions. First
we discuss an ab initio auxiliary field quantum Monte Carlo technique for calculating
thermodynamic properties of the unitary gas from first principles. We then describe
in detail a Density Functional Theory (DFT) fit to these thermodynamic properties:
the Superfluid Local Density Approximation (SLDA) and its Asymmetric (ASLDA)
generalization. We present several applications, including vortex structure, trapped
systems, and a supersolid Larkin–Ovchinnikov (FFLO/LOFF) state. Finally, we dis-
cuss the time-dependent extension to the density functional (TDDFT) which can
describe quantum dynamics in these systems, including non-adiabatic evolution,
superfluid to normal transitions and other modes not accessible in traditional frame-
works such as a Landau–Ginzburg, Gross–Pitaevskii, or quantum hydrodynamics.

9.1 Introduction

The question of how pairing correlations between two types of fermions develop
with interaction strength has fascinated physicists for decades, beginning with the
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papers of Eagles [1] and Leggett [2], and followed by many others [3–6]. These
initial studies focused on the inter-species pairing gap at various temperatures as the
pairing interaction varied throughout the entire BCS–BEC crossover from weak to
strong attraction.

Eagles and Leggett [1, 2] solved the Bardeen–Cooper–Schrieffer (BCS) mean-
field equations only in the particle–particle (pairing) channel: The prevailing attitude
(influenced by electronic systems) was that the pairing gap is much smaller than the
self-energy (exponentially suppressed in weak-coupling), and that the presence or
absence of pairing correlations was a tiny effect compared to the background density
which determined the self-energy. Subsequent improvements to the theory focused
only on a more accurate description of the pairing channel [3–11], neglecting the so
called “Hartree–Fock” contributions to the total energy of such a system.

However, even in the weak coupling limit (a < 0 and kF |a| � 1 where the
Fermi energy εF = p2

F/2m, the Fermi momentum pF = �kF = �(3π2n)1/3,
n is the total density, and a is the two-body s-wave scattering length)—which was
rather thoroughly studied in the 1950s [12, 13]—it was evident that the “Hartree–
Fock” and higher order particle-hole contributions dominate in the total energy. These
contributions can be described perturbatively in terms of the small parameter kF a (in
both BCS and BEC limits). In the BCS limit, for example, the leading contributions
enter at linear order ∝ εF kF a while the particle–particle pairing contributions are
exponentially suppressed ∝ εF exp(π/kF a).

Despite neglecting the dominant particle-hole contributions, these mean-field
studies correctly captured many of the qualitative features of the BCS–BEC crossover.
This can be partially attributed to the fact that the particle–particle channel correctly
accounts for the two-body bound state that dominates in the extreme BEC limit at
strong attraction (however, higher order effects—describing the dimer–dimer inter-
action for example—are not correct [14–17]).

At unitarity, the majority of the interaction energy is due to the particle-hole chan-
nel: see [18] where the energy of the normal state at T = 0 was evaluated for the
first time and the discussion in Sect. 9.2.6. In particular—above the critical temper-
ature Tc, for example—the total energy of the normal phase exceeds the ground
state energy by only about 20% or so [19]: This means that the condensation energy
gained by the particle–particle pairing interaction is a relatively small contribution to
the total interaction energy. A quantitative description of unitary physics must thus
include these “Hartree–Fock” contributions and go beyond the simple mean-field
models used initially to study the crossover.

In 1999, G.F. Bertsch [20] emphasized the special role played by the problem
of a two-species Fermi gas at unitarity with large scattering length. In the crust of
neutron stars one can find a situation where the scattering length a of the interaction
is anomalously large compared to the other length scales, the average interparticle
separation n−1/3, and the range r0 of the interaction: r0 � n−1/3 � |a|. Since
the Fermi momentum is small (kFr0 � 1), the neutrons effectively interact only in
the relative s-partial wave, and the ground state energy should be some function of
the physical parameters defining the system Egs = f (N , V, r0, a, �,m), where N
is the particle number contained in a volume V of the system. In the formal limit of
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kFr0 → 0 and 1/kF a → 0 this function simplifies:

Egs = f (N , V, �,m) = 3

5
εF Nξ, (9.1)

and all the non-perturbative effects are described by a single dimensionless constant:
ξ (often referred to as the Bertsch parameter). At finite temperatures the total energy
of the system becomes a slightly more complicated function, since now it depends
also on the temperature T:

E(T ) = f (N , V, T, �,m) = 3

5
εF Nξ

(
T

εF

)
. (9.2)

The Bertsch parameter (along with all other thermodynamic properties) becomes a
“universal” function of the dimensionless variable T/εF [21].

In 1999 it was not yet clear whether this limit existed: One might expect such a
system to collapse, since the naïve coupling constant g = 4π�

2a/m is infinite at
unitarity. Baker [22–24] provided the first clue that this system was actually stable.
Carlson and collaborators [18] subsequently calculated the energy of this system,
proving that it was stable, and showing that the superfluid paring gap was very large.
Meanwhile, using a Feshbach resonance to induce an extremely large scattering
length, J.E. Thomas and his collaborators [25] produce for the first time a quantum
degenerate unitary gas of cold-atoms in a trap, thus providing experimental evidence
that this system is indeed stable.

There has since been an explosion in both theoretical and experimental stud-
ies of resonant Fermi gases near the unitary regime (see for example the reviews
[26–31]). On one hand, cold-atom experiments can simulate other systems of inter-
est; for example, dilute superfluid neutron matter which can only exist in the crust of
neutron stars, various condensed matter systems (the unitary gas exhibits a pseudo-
gap that might shed light on the pseudogap in high-temperature superconductors),
and quantum systems with extremely low viscosity similar to quark-gluon plasmas
observed in ultra-relativistic heavy-ion collisions. On the other hand, the simplicity
of the system provides an excellent vehicle through which the plethora of many-
body techniques can be put to rigorous test, including both traditional approaches, as
well as modern developments such as the ε-expansion and AdS/CFT correspondence
[32, 33].

We shall not provide a cursory review of current theoretical techniques, but will
instead focus on a couple of theoretical methods that have produced a large reliable
set of information about the properties of unitary Fermi gases. The first approach
is an ab initio Quantum Monte Carlo (QMC) method that has accurately evaluated
many properties of these systems, and has been confirmed by experiments. The
second approach is Density Functional Theory (DFT), which is in principle, an exact
approach commonly used for describing “normal” systems (no superfluidity). We
show how to extend the DFT to describe both superfluid systems and time-dependent
phenomena, and how the DFT allows us to address phenomena that are essentially
impossible to describe within a QMC approach.
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9.2 The Quantum Monte Carlo Approach

9.2.1 From the Physical Problem to the Lattice Formulation

Atomic collisions in a trap occur at very low relative velocities (due to the diluteness
of the gas) and this fact allows us to restrict the description to using the lowest
partial waves only. In practice, the s-wave scattering phase shift fully determines the
properties of a unitary Fermi gas, for which r0 � n−1/3 � |a|. The detailed physics
of the collision is more complicated since atoms are not point-like objects and can
appear in various configurations. Roughly speaking, these can be associated with
various valence electronic configurations. For example, atoms with a single valence
electron (such as 6Li) can form two possible electronic configurations in a binary
system: a singlet and a triplet configuration. The inter-atomic potential describing a
singlet configuration corresponds to the symmetric spatial wave function. It admits
the existence of a bound state and corresponds to the closed (inaccessible) scattering
channel. The triplet channel, on the other hand, is open and shallow: due to large
(mainly electronic) magnetic moment, its energy can be easily tuned with respect
to the closed singlet channel threshold by adjusting an external magnetic field. This
allows experimentalists to use a Feshbach resonance to tune the effective interaction
in the open channel to virtually any value: in particular, experiments with dilute
clouds of cold atoms can directly probe the unitary regime.

A typical Hamiltonian describing the two channel atom-atom collision is of the
form [34–38]:

H = p2

2Mr
+

2∑
i=1

(V h f
i + V Z

i )+ V c + V d , (9.3)

where Mr is the reduced mass of two atoms, V h f = ah f Se · Sn/�2 is a hyper-
fine interaction term for each atom (with hyperfine constant ah f ), and Se and Sn

are the total electron spin and the total nuclear spin respectively. The Zeeman term
V Z = (γe Se

z + γn S p
z )B describes the interaction with the external magnetic field

B which is assumed to be parallel to the z-axis. The terms V c and V d denote the
Coulomb interaction and dipole–dipole magnetic interaction, respectively. The dipole
term contributes weakly to the interaction and can be neglected. The Coulomb term
distinguishes singlet and triplet channels (due to different symmetry properties of
electronic wave function) and produces different interaction potentials in both chan-
nels. Consequently, the continuum of the singlet channel lies above the continuum
of the incident triplet channel. At very low collision energies, only the singlet chan-
nel is open. However the hyperfine interaction couples the singlet and triplet states
and consequently, resonant scattering may occur due to the bound state of the singlet
potential (see reviews [39–41] and references therein). An external magnetic field can
thus be used as an experimental knob to control the resonance position, effectively



9 The Unitary Fermi Gas: From Monte Carlo to Density Functionals 309

altering the atom-atom collision cross-section. In the limit of low collisional energy,
the effective scattering length for two colliding atoms is well described by

a(B) = a0 + C

B − Bres
, (9.4)

where a0 is the triplet channel off-resonant background scattering length, and C > 0.
The second term results from the coupling to the closed channel, and Bres is the value
of the magnetic field where the Feshbach resonance occurs. In this way, experiments
may realized the unitary Fermi gas by considering dilute systems (r0 � n−1/3) and
tuning the scattering length (9.4) near the resonance (n−1/3 � |a|).

To determine the thermodynamic properties of an ensemble of fermionic atoms in
a non-perturbative manner, we consider the system on a three dimensional (3D) cubic
spatial lattice with periodic boundary conditions. The system consists of two species
of fermions that we shall denote “a” and “b”. In dilute neutron matter these would
correspond to the two spin states of the neutrons, while in cold atom experiments
these are the two populated hyperfine states. Although there are physical processes
that can convert one species to another, for the purposes of the experiments we shall
describe, these transitions are highly suppressed and one can consider each species
to be independently conserved.

The lattice spacing l and size L = Nsl introduce natural ultraviolet (UV) and
infrared (IR) momentum cut-offs given by �kc = π�/ l and ��0 = 2π�/L , respec-
tively. The momentum space has the shape of a cubic lattice, but in order to simplify
the analysis, we place a spherically symmetric UV cut-off, including only momenta
satisfying k ≤ kc ≤ π/ l. In order to minimize the discretization errors, the absolute
value of scattering length must be much larger than the lattice spacing: a � l.

9.2.2 Effective Hamiltonian

As discussed in the introduction, it has by now been well established that the unitary
regime exists and is stable. Hence, any sufficiently short-ranged interaction with
large scattering length will exhibit the same universal physics. Here we use a contact
(zero-range) interaction V (r1 −r2) = −gδ(r1 −r2) regularized by the lattice, which
defines a momentum cut-off �kc. (We require all two-body matrix elements to vanish
if the relative momentum of the incoming particles exceeds this cutoff.) The second
quantized Hamiltonian of this system is

Ĥ =
∫

d3r

⎛
⎝−

∑
σ = a,b

ψ̂+
σ (r)

�
2∇2

2m
ψ̂σ (r)+ gn̂a(r)n̂b(r)

⎞
⎠ , (9.5)

where n̂σ (r) = ψ̂+
σ (r)ψ̂σ (r). Once the cutoff is imposed, the value of the bare

coupling g can be tuned to fix the value of the renormalized physical coupling—in
this case, the s-wave scattering length a. The relation between a and the coupling
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constant g can be obtained from T matrix describing two-particle scattering induced
by the interaction (9.5) with the s-wave phase shift:

k cot δ = −4π�
2

gm
− 2

π
kc − k

π
ln

∣∣∣∣kc − k

kc + k

∣∣∣∣ . (9.6)

The low-momentum expansion of the scattering amplitude reads:

f (k) ≈
[
−ik + 4π�

2

gm
− 2kc

π
+ 2k2

πkc
+ O(k3)

]−1

. (9.7)

At low momentum we have f (k) = [−ik −1/a +reff k2/2+ O(k3)]−1,which gives
the relation between the bare coupling constant g and the scattering length a at a
given momentum cutoff �kc:

1

g
= m

4π�2a
− kcm

2π2�2 = m

4π�2a

(
1 − 2kca

π

)
. (9.8)

One has to remember, however, that the value of the coupling constant g has been
determined for the two body system in its center of mass frame. On the other hand
the Hamiltonian (9.5) is supposed to describe an ensemble of fermions in the box.
Consequently, only a fraction of interacting pairs have their center of mass at rest with
respect to the box. Most of the interaction processes will occur for pairs for which
the center of mass velocity is nonzero. It implies that their mutual interaction will
be characterized by a slightly different scattering length than (9.8). Consequently,
the Hamiltonian will generate a systematic error in the description of interacting
fermions. This error will scale as kF/kc and in order to minimize its influence one
should keep the particle density as small as possible. Another source of systematic
error is related to the nonzero effective range, which is generated by the interaction
and is independent of the coupling constant reff = 4/(πkc). Note however that the
choice of kc described above implies that reff < l.

9.2.3 The Hubbard–Stratonovich Transformation

Since we are interested in the finite temperature thermodynamic properties of the
system, it is natural to use the grand canonical ensemble to evaluate physical quanti-
ties. This is equivalent to considering a small portion of volume V = L3 in thermal
and chemical equilibrium with the larger system. Consequently we allow for energy
and particle exchange between our subsystem and the larger system, fixing only the
average values of these quantities in the box. The thermodynamic variables are thus
the temperature T, the chemical potentialμ, and the volume V. The partition function
and average of an observable Ô are calculated according to
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Z(β, μ, V ) = Tr
{

exp[−β(Ĥ − μN̂ )]
}
,

O(β, μ, V ) =
Tr
{

Ô exp[−β(Ĥ − μN̂ )]
}

Z(β, μ, V )
,

(9.9)

where β = 1/T (in this work we will take Boltzmann’s constant to be kB = 1 so that
temperature is expressed in units of energy). In order to be able to calculate these
quantities we first factorize the statistical weight using the Trotter formula:

exp[−β(Ĥ − μN̂ )] =
Nτ∏
j=1

exp[−τ(Ĥ − μN̂ )] (9.10)

where β = Nτ τ. The next step is to decompose the exponentials on the right hand
side into exponentials that depend separately on the kinetic and potential energy
operators. The second order expansion is (higher orders require more effort, see
[42–45]):

exp[−τ(Ĥ − μN̂ )] = exp

[
− τ(K̂ − μN̂ )

2

]
exp(−τ V̂ ) exp

[
− τ(K̂ − μN̂ )

2

]
+ O(τ3),

(9.11)
where K̂ is the kinetic energy operator, whose dispersion relation, for momenta
smaller than the cut-off, is given by εk = �

2k2/2m. Since τ has the dimen-
sion of inverse energy, the above approximate representation makes sense only if
τmax||V̂ || � 1 and τmax||K̂ −μN̂ || � 1. Since both the interaction and kinetic ener-
gies are extensive quantities, this restriction might appear as very strict. However,
after performing a Hubbard–Stratonovich transformation (see below), this restric-
tion is considerably eased and both the kinetic and the interaction energies in these
inequalities are replaced by the corresponding intensive energies per particle. It is
important to note that, because we have used the expansion up to O(τ 3),when calcu-
lating the partition function the error becomes O(τ 2). Indeed, the statistical weight
involves a product of Nτ factors and is given by the following expression:

exp[−β(Ĥ − μN̂ )]

= exp

[
−τ(K̂ − μN̂ )

2

]
×
⎛
⎝ Nτ∏

j=1

exp[−τ V̂ ] exp[−τ(K̂ − μN̂ )]
⎞
⎠

× exp

[
+τ(K̂ − μN̂ )

2

]
+ O(τ 2) (9.12)

Note also that this approach does not depend on the choice of dispersion relation
in the kinetic energy term. However various choices of representation of derivatives
on the lattice may lead to different discretization errors [46]. In our case we shall
consider the kinetic energy operator in momentum space, ε(k) = �

2k2/2m, which
minimizes the discretization errors.
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In order to efficiently evaluate the term containing the interaction, one has to
replace it by the sum (or integral) of one body terms. This can be done with the
Hubbard–Stratonovich transformation [47]. The transformation is not unique, and
we take advantage of this freedom to ensure an efficient summation (or integration)
scheme. In our case, due to the simplicity of the interaction term, a discrete Hubbard–
Stratonovich transformation can be applied, similar to that in [48]:

exp[−gτ n̂a(r)n̂b(r)] = 1

2

∑
σ(r,τ j )=±1

[1 + Aσ(r, τ j )n̂a(r)][1 + Aσ(r, τ j )n̂b(r)],

(9.13)
where A = √

exp(−gτ)− 1, τ j labels the location on the imaginary time axis,
j = 1, . . . , Nτ , and σ(r, τ j ) is a field that can take values ±1 at each point on
the space-time lattice. This identity can be proved simply by evaluating both sides
at n̂{a,b}(r) = 0, 1. This discrete Hubbard–Stratonovich transformation is sensible
only for A < 1,which means that the imaginary time step cannot exceed |g|−1 log 2.
The advantages of this transform is discussed, for example, in [46, 48].

Taking all this into account, the grand canonical partition function becomes

Z(β, μ, V ) = Tr
{

exp[−β(Ĥ − μN̂ )]
}

=
∫ ∏

r,τ j

Dσ(r, τ j )Tr Û ({σ }), (9.14)

where we define

Û ({σ }) =
Nτ∏
j=1

Ŵ j ({σ }) (9.15)

and

Ŵ j ({σ }) = exp

[
−τ(K̂ − μN̂ )

2

]
×
(∏

i

[1 + Aσ(r, τ j )n̂a(r)][1 + Aσ(r, τ j )n̂b(r)]
)

× exp

[
−τ(K̂ − μN̂ )

2

]
.

(9.16)
Since σ(r, τ ) is discrete, the integration is in fact a summation:

∫ ∏
r,τ j

Dσ(r, τ j ) ≡
∑
{σ }

1

2N 3
s Nτ

∑
{σ(r,τ1)}=±1

∑
{σ(r,τ2)}=±1

· · ·
∑

{σ(r,τNτ )}=±1

, (9.17)

where
∑

{σ(r,τ j )}=±1

=
∑

σ((1,0,0),τ j )=±1

∑
σ((2,0,0),τ j )=±1

· · ·
∑

σ((Ns ,Ns ,Ns ),τ j )=±1

. (9.18)
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In a shorthand notation we will write

Û ({σ }) = Tτ exp

{
−
∫

dτ [ĥ({σ })− μN̂ ]
}
,

where Tτ stands for an imaginary time ordering operator and ĥ({σ }) is a resulting σ -
dependent one-body Hamiltonian. It is crucial to note that Û ({σ }) can be expressed
as a product of two operators which describe the imaginary time evolution of two
species of fermions:

Û ({σ }) = Ûb({σ })Ûa({σ }), (9.19a)

Ûb({σ }) =
Nτ∏
j=1

Ŵ jb({σ }), Ûa({σ }) =
Nτ∏
j=1

Ŵ ja({σ }). (9.19b)

As we only consider unpolarized systems, for which μa = μb = μ, the operators
for both species a and b are identical.

The expectation values of operators take the form:

O(β, μ, V ) =
Tr
{

Ô exp[−β(Ĥ − μN̂ )]
}

Z(β, μ, V )
=
∫ ∏

i j Dσ(r, τ j )Tr Û ({σ })
Z(β, μ, V )

Tr ÔÛ ({σ })
Tr Û ({σ }) ,

(9.20)
where we have introduced Tr Û ({σ }) for convenience: in the numerator it represents
the probability measure used in our simulations (see below), and in the denominator
it serves the purpose of moderating the variations of Tr ÔÛ ({σ }) as a function of
the auxiliary field σ.

All of the above traces over Fock space acquire very simple forms [49, 50], and
can be easily evaluated. In particular, Tr Û ({σ }) can be written as

Tr Û ({σ }) = det[1 + U ({σ })] = det[1 + Ub({σ })] det[1 + Ua({σ })], (9.21)

where U (without the hat) is the representation of Û in the single-particle Hilbert
space. The second equality is a result of the decomposition (9.19a, b) and is easy to
prove by expanding both sides. For symmetric (unpolarized) systems the chemical
potentials μa = μb are the same for both species of fermion, so it follows that
det[1 + Ub({σ })] = det[1 + Ua({σ })]. This implies that Tr Û ({σ }) is positive, i.e.,
that there is no fermion sign problem. Indeed, this allows to define a positive definite
probability measure:

P({σ }) = Tr Û ({σ })
Z(β, μ, V )

= {det[1 + Ua({σ })]}2

Z(β, μ, V )
= 1

Z(β, μ, V )
exp(2 tr (log[1 + Ua({σ })]))

(9.22)
where the exponent in the last equation defines the negative of the so-called effective
action. The positive definite probability measure is crucial for Monte Carlo (MC)
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treatment, allowing for statistical sampling of the σ space. When considering the
polarized system, the sign problem inevitably occurs, making the Monte Carlo pro-
cedure very difficult. The sign problem appears also when more complicated forms
of interaction are applied. In such a case one can sometimes cure the problem by
properly choosing the Hubbard–Stratonovich transformation [51].

The many-fermion problem is thus reduced to an Auxiliary Field Quantum Monte
Carlo problem (AFQMC), to which the standard Metropolis algorithm can be applied,
using (9.22) as a probability measure. Before moving on to the details of our Monte
Carlo algorithm, we briefly discuss the expressions used to compute a few specific
thermal averages.

Let us consider the one body operator

Ô =
∑

s,t=b,a

∫
d3r1d3r2ψ̂

+
s (r1)Ost (r1, r2)ψ̂t (r2) (9.23)

From (9.20) it follows that

〈Ô〉 =
∑
{σ }

P({σ })TrÔÛ ({σ })
Tr Û ({σ }) =

∑
{σ }

P({σ }) Tr ÔÛ ({σ })
det[1 + U ({σ })] . (9.24)

The calculation of the last term requires the evaluation of

Tr
[
ψ̂+

s (r1)ψ̂t (r2)Û ({σ })
]

= δst det[1 + U ({σ })]2ns(r1, r2, {σ }) (9.25)

where s and t run over both species (a or b), and

ns(r1, r2, {σ }) =
∑

k1,k2≤kc

ϕk1(r1)

[
Us({σ })

1 + Us({σ })
]

k1,k2

ϕ∗
k2
(r2) (9.26)

Here ϕk(r) = exp(ik · r)/L3/2 are the single-particle orbitals on the lattice with
periodic boundary conditions, and hence quantized momenta k = 2πn/L .This holds
for any 1-body operator Ô, if U is a product of exponentials of 1-body operators,
as is the case once the Hubbard–Stratonovich transformation is performed. It is then
obvious that the momentum representation of the one-body density matrix has the
form

ns(k1,k2, {σ }) =
[

Us({σ })
1 + Us({σ })

]
k1,k2

(9.27)

which, for a non-interacting homogeneous Fermi gas, is diagonal and equal to the
occupation number probability 1/(exp[β(εk − μ)] + 1) of a state with the energy
εk = �

2k2/(2m).
Summarizing, the expectation value of any one-body operator may be calculated

by summing over samples of the auxiliary field σ(r, τ j ):
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〈Ô〉 =
∫ ∏

r,τ j

Dσ(r, τ j )P({σ })
∑
r1,r2

∑
s = a,b

Oss(r1, r2)ns(r1, r2, {σ }) (9.28)

In particular, the kinetic energy can be calculated according to:

〈K̂ 〉 =
∫ ∏

r,τ j
Dσ(r, τ j )TrU ({σ })

Z(β, μ, V )

TrK̂U ({σ })
Tr U ({σ })

=
∫ ∏

r,τ j

Dσ(r, τ j )P({σ })
k≤kc∑

k

∑
s = a,b

[
ns(k,k, {σ })�

2k2

2m

]
(9.29)

Analogously, for a generic two-body operator:

Ô =
∑

s,t,u,v = b,a

∫
d3r′

1d3r′
2d3r1d3r2ψ̂

+
s (r

′
1)ψ̂

+
t (r

′
2)Ostuv(r′

1, r′
2, r1, r2)ψ̂v(r2)ψ̂u(r1).

(9.30)
In order to calculate 〈Ô〉 one needs to evaluate the expression

Tr
[
ψ̂+

s (r
′
1)ψ̂

+
t (r

′
2)ψ̂v(r2)ψ̂u(r1)Û ({σ })

]

= (det[1 + U ({σ })])2 (δsuδtvns(r′
1, r1, {σ })nt (r′

2, r2, {σ })
−δsvδtuns(r′

1, r2, {σ })nt (r′
2, r1, {σ })) . (9.31)

Hence, for the expectation value of the two body operator we get

〈Ô〉 =
∫ ∏

r,τ j

Dσ(r, τ j )P({σ })×
∑

r′
1,r

′
2,r1,r2

∑
s,t = a,b[

Ostst (r′
1, r′

2, r1, r2)ns(r′
1, r1, {σ })nt (r′

2, r2, {σ })
−Ostts(r′

1, r′
2, r1, r2)ns(r′

1, r2, {σ })nt (r′
2, r1, {σ })] . (9.32)

In particular, the expectation value of the interaction energy reads:

〈V̂ 〉 = −g
∫ ∏

r,τ j

Dσ(r, τ j )P({σ })
∑

r

na(r, r, {σ })nb(r, r, {σ }) (9.33)

It should be noted that in the symmetric system (μa = μb)

na(r, r′, {σ }) = nb(r, r′, {σ }). (9.34)

Hence,

〈V̂ 〉 = −g
∫ ∏

r,τ j

Dσ(r, τ j )P({σ })
∑

r

[na(r, r, {σ })]2 (9.35)
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It is useful to introduce the correlation function

g2(r) =
(

2

N

)2 ∫
d3r1d3r2〈ψ†

a (r1 + r)ψ†
b (r2 + r)ψb(r2)ψa(r1)〉

=
(

2

N

)2 ∫ ∏
r,τ j

Dσ(r, τ j )P({σ })

×
∫

d3r1d3r2na(r1 + r, r1, {σ })nb(r2 + r, r2, {σ }), (9.36)

(where N is the average particle number) which is normalized in such a way that for
a non-interacting homogeneous Fermi gas g2(r) = 3 j1(kFr)/(kFr) and g2(0) = 1.

9.2.4 Stabilization of the Algorithm for Small Temperatures

Once we have written the observables as in (9.20), the next step is to sum over all
possible configurations of σ(r, τ j ). This is still an impossible task, as for example, a
lattice size N 3

x × Nτ (where typically Nx = 8 and Nτ � 1000), requires performing

the sum over the 2N 3
x ×Nτ points in configuration space. It is in these cases that a

Monte Carlo approach becomes essential. By generating N independent samples of
the field σ(r, τ j ) with probability given by (9.22), and adding up the values of the
integrand at those samples, one can estimate averages of observables with O(1/

√
N )

accuracy.
The standard Metropolis algorithm is used to generate the samples. Namely, at

every MC step, the sign of σ is changed at random locations of the space-time lattice
(see [19, 46, 52] for details). This procedure allows to probe the sigma space, in order
to collect the set of statistically uncorrelated samples.

In order to compute the probability of a given σ configuration, it is necessary
to find the matrix elements of U , which entails applying it to a complete set of
single-particle wave-functions. For the latter we chose plane waves (with momenta
�k ≤ �kc). This choice is particularly convenient because one can compute the
overlap of any given function with the whole basis of plane waves by performing a
single Fast Fourier Transform (FFT) on that function [46].

The procedure described above requires many matrix multiplications to
calculate U . In particular at low temperatures the number of matrix multiplica-
tions grows rapidly and the matrices have elements that vary over a large range of
magnitudes. To avoid numerical instabilities it is necessary to separate the scales
when multiplying the matrices, and a more costly but robust algorithm such as the
Singular Value Decomposition (SVD) is required. In this section we follow the same
approach developed in [49] to introduce the SVD to our calculations.
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Let us write the matrix U ({σ }) more explicitly:

U ({σ }) =
Nτ∏
j=1

W j ({σ }) = WNτWNτ−1 · · · W2W1, (9.37)

where the Wk({σ }) are N × N matrices, for a single-particle basis of dimension N.
Let us then define

U0 = 1

U1 = W1

U2 = W2W1

...

Un = WnWn−1 · · · W1 = WnUn−1. (9.38)

To separate the scales one decomposes the matrix Un−1 before multiplying it by
Wn to get Un . This process begins as follows

U0 = 1

U1 = W1 = S1D1V1

U2 = W2W1 = (W2S1D1)V1 = S2D2V2V1 (9.39)

where S1 and V1 are orthogonal matrices (not necessarily inverses of each other), and
D1 is a diagonal positive matrix containing the singular values of U1. The idea is that
the actual multiplication should be done by first computing the factor in parenthesis
in the last equation. This factor is then decomposed into S2D2V2, in preparation for
the multiplication by W3, and so on. A generic step in this process looks like:

Un = WnUn−1 = WnSn−1Dn−1Vn−1Vn−2 · · ·V1, (9.40)

so that in the end

UNτ = U ({σ }) = SNτDNτVNτVNτ−1 · · ·V1 = S DV , (9.41)

where we have decomposed the full product in the last step. Calculating the deter-
minant, and therefore of the probability measure, is straightforward if we perform
one final more SVD in the following chain of identities:

det(1 + U ({σ })) = det(1 + S DV ) = det(S (S †V † + D)V )

= det(S S̃ D̃Ṽ V ) = det(S S̃ ) det(D̃) det(Ṽ V ) (9.42)

For equal densities (the symmetric case) we need this determinant squared, so we
only care about the factor in the middle of the last expression: the other two factors
have unit magnitude. Indeed, in that case we can write the probability measure as
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P({σ }) = exp

(
M∑

i=1

log d̃i

)
(9.43)

where d̃i > 0 are the elements in the diagonal of D̃, and M is the dimension of
the single particle Hilbert space. The number of SVD’s required to stabilize the
calculation grows as we increase β. In our calculations we have made limited use
of the SVD, ranging from 2 decompositions at the highest T to 8 decompositions at
low T’s.

9.2.5 Finite Size Scaling

The Monte Carlo calculations are performed in a box of finite size with a finite
average number of particles. We are interested, however, in the thermodynamic limit
N → ∞, V → ∞ and N/V = const, so we need to consider the finite size scaling
of the system so we can properly relate the values calculated in the box to their
thermodynamic counterparts. This becomes particularly important in the vicinity
of phase transitions where the correlation length ξcorr characterizing the non-local
degree of correlation of a system diverges:

ξcorr ∝ |t |−ν, (9.44)

where t = 1− T/Tc, Tc is the critical temperature, and ν is a universal critical expo-
nent. For the U(1) universality class, (which contains superfluid phase transitions),
this exponent is well-known: ν = 0.671.

When dealing with systems that have a finite size L3, the theory of the renor-
malization group (RG) predicts a very specific behavior for the correlation functions
close enough to the transition temperature (see e.g. [53]). In particular, the two-body
density matrix K(L, T) that gives the order parameter for off-diagonal long-range
order, scales as

R(L , T ) = L1+ηK (L , T ) = f (x)(1 + cL−ω + · · · ), (9.45)

where η = 0.038 is another universal critical exponent, f (x) is a universal analytic
function, x = (L/ξcorr )

1/ν, and c is a non-universal constant, and ω � 0.8 is the
critical exponent of the leading irrelevant field. One should keep in mind that typically
one knows neither c nor Tc, but is interested in finding the latter.

In a typical Monte Carlo calculation K(L, T) is computed for various lengths
Li and temperatures T. The procedure to locate the critical point (characterized
by scale invariance) involves finding the “crossing” temperatures Ti j , for which
R(Li , Ti j ) = R(L j , Ti j ) at two given lengths Li and L j .Assuming that one is close
to the transition (so that the correlation length is large compared to any other scale),
one can expand f (x(|t |)) = f (0) + f ′(0)L1/νb|t | (where we set ξcorr = b|t |−ν),
and derive the relation
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|Tc − Ti j | = κg(Li , L j ), (9.46)

where

g(Li , L j ) = L−(ω+1/ν)
j

⎡
⎢⎣
(

L j
Li

)ω − 1

1 −
(

Li
L j

)1/ν

⎤
⎥⎦ (9.47)

and κ = cTc f (0)/b f ′(0). If there were no non-universal corrections to scaling (i.e. if
c = 0), then κ = 0 and Tc = Ti j , which means that, upon scaling by the appropriate
factor (as above) all the curves K (L , T ) corresponding to different L’s would cross
exactly at Tc. In general these corrections are present, and it is therefore necessary
to perform a linear fit of Ti j vs. g(Li , L j ) and extrapolate to infinite L in order to
determine the true Tc [46].

9.2.6 Results: The Energy and the Entropy

The results of our Monte Carlo simulations are shown in Figs. 9.1 and 9.2 [19,
46, 52]. The Monte Carlo autocorrelation length was estimated (by computing the
autocorrelation function of the total energy) to be approximately 200 Metropolis
steps at T ≈ 0.2εF . Therefore, the statistical errors are of the order of the size of
the symbols in the figure. The chemical potential was chosen so as to have a total of
about 45 particles for the 83 lattice. We have also performed calculations for particle
numbers ranging from 30 to 80, for lattice sizes 83 and 103, and various temperatures:
in all cases, the results agree to within the aforementioned errors.

According to the theory [54, 55] the asymptotic behavior in the limit of large
momenta n(k) ∝ C(kF/k)n should at all temperatures be governed by the same
exponent, namely n = 4. This is consistent with a value of the exponent n = 4.5(5)
extracted from the MC data. Both the energy 1 and the entropy 2 exhibit a definite
transition between low and a high temperature regimes separated by a characteristic
temperature T0:

T0 = 0.23(2)εF . (9.48)

We shall discuss the relation between T0, the superfluid critical temperature Tc, and
the pair breaking temperature T ∗ in Sect. 9.2.8. First we focus on the low temperature
limit.

At T = 0, several interesting quantities describe the symmetric unitary system:
one is the energy as expressed through the Bertsch parameter ξ = ESF/EFG; related
is the somewhat fictitious energy of the interacting normal state ξN = EN/EFG;
finally, there is the pairing gap � = ηεF . The T = 0 value of these quantities have
been obtained to high precision by other groups using the variational fixed-node
Monte Carlo techniques [18, 56–58]. Unlike our approach, these T = 0 techniques
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Fig. 9.1 The total energy
E(T ) with open circles, and
the chemical potential μ(T )
with squares, both for the
case of an 83 lattice. The
combined
Bogoliubov-Anderson
phonon and fermion
quasiparticle contributions
Eph+qp(T ) (Eq. 9.50) is
shown as a dashed line. The
solid line represents the
energy of a free Fermi gas,
with an offset (see text).
From [46]

Fig. 9.2 The entropy per
particle with circles for 83

lattice, and with a dashed
line the entropy of a free
Fermi gas with a slight
vertical offset. The statistical
errors are the size of the
symbol or smaller. From [46]
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suffer from a sign problem that is overcome by using a fixed-node constraint: This
formally provides only an upper bound on the energy. Our result ξ = 0.37(5) (see
Table 9.1 agrees with these variational bounds, ξ = 0.44(1) [18, 56], ξ = 0.42(1)
[57, 58], and with more recently quoted AFQMC results ξ = 0.40(1) [59]
(S. Zhang, K. E. Schmidt, J. Carlson. Private communication). Although not as
precise, our method is truly ab initio and hence provide a non-trivial validation of
these variational results.
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Table 9.1 Results for the ground state energy, the characteristic temperature T0, and the corre-
sponding chemical potential and energy, from the caloric curves E(T ) and the upper bounds on
the critical temperature Tc from finite size scaling and the corresponding chemical potentials and
energies [46]

1/kF a E(0)/EF T0 μ0/εF E0/EF Tc < μc/εF Ec/EF

−0.5 0.60(4) 0.14(1) 0.685(5) 0.77(2) – – –
−0.4 0.59(4) 0.15(1) 0.65(1) 0.75(1) – – –
−0.3 0.55(4) 0.165(10) 0.615(10) 0.735(10) 0.105(10) 0.61(1) 0.64(2)
−0.2 0.51(4) 0.19(1) 0.565(10) 0.725(10) 0.125(10) 0.56(1) 0.61(2)
−0.1 0.42(4) 0.21(2) 0.51(1) 0.71(2) 0.135(10) 0.50(1) 0.54(2)
0 0.37(5) 0.23(2) 0.42(2) 0.68(5) 0.15(1) 0.43(1) 0.45(1)
0.1 0.24(8) 0.26(3) 0.34(1) 0.56(8) 0.17(1) 0.35(1) 0.41(1)
0.2 0.06(8) 0.26(3) 0.22(1) 0.39(8) 0.19(1) 0.21(1) 0.25(1)

The quantity ξN for the normal state—though not precisely defined (since the
normal state is not the ground state)—provides a useful description of the physics.
For example, in the high temperature regime T > T0, the energy is described well
by the energy of a free Fermi gas shifted down by 1 − ξN (shown as a solid line
in Fig. 9.1), where ξN = ξ + δξ ≈ 0.52 can be found by determining what shift is
necessary to make the solid curve coincide with the high temperature data (where
the gas is expected to become normal).

Taking ξ ≈ 0.4 this gives the condensation energy δξ ≈ 0.12 which is roughly
consistent with the estimate

δξ = δE
3
5εF N

= 5

8

(
�

εF

)2

� 0.15 (9.49)

based on the BCS expression for δE = 3
8
�2

εF
N (see [60]) and the QMC value of

the pairing gap where � � 0.50εF [18, 58] and confirmed by us in [61] (which
turns out to be very close to the weak-coupling prediction of Gorkov and Melik-
Barkhudarov [13, 62]). Our estimate should also be compared with the results ξN ≈
0.54 of [18, 63] and ξN ≈ 0.56 of [64] obtained by considering only normal state
nodal constraints. Finally, a similar result ξN ≈ 0.57(2) (see Eq. 9.95e) arises from
fitting the Superfluid Local Density Approximation (SLDA) density functional to be
discussed in ‘Symmetric Superfluid State na = nb ’.

At low temperatures, T < T0, temperature dependence of the energy can be
accounted for by the elementary excitations present in the superfluid phase: boson-
like Bogoliubov-Anderson phonons and fermion-like gapped Bogoliubov quasipar-
ticles. Their contributions are given by

Eph+qp(T ) = 3

5
εF N

[
ξ +

√
3π4

16ξ3/2

(
T

εF

)4

+ 5

2

√
2π�3T

ε4
F

exp

(
−�

T

)]
, (9.50)
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� ≈
(

2

e

)7/3

εF exp

(
π

2kF a

)
, (9.51)

The sum of the contributions from these excitations is plotted in Fig. 9.1 as a dashed
line: Both of these contributions are comparable in magnitude over most of the
temperature interval (T0/2, T0). Since the above expressions are only approximate
for T � Tc, the agreement with our numerical results may be coincidental.

At T > Tc the system is expected to become normal. If T0 and Tc are identified,
then the fact that the specific heat is essentially that of a normal Fermi liquid EF (T )
above T0 is somewhat of a surprise: one would expect the presence of a large fraction
of non-condensed but unbroken pairs. Indeed, the pair-breaking temperature has been
estimated to be T ∗ � 0.55εF , based on fluctuations around the mean-field, see [1–4,
6, 65, 66]. This implies that for Tc < T < T ∗ there should be a noticeable fraction
of non-condensed pairs. In the next sections we will show that this is indeed the
case and that above the superfluid critical temperature, the fermionic spectrum still
contains a gap, giving rise to the so-called pseudogap phase.

From the data for the energy E and chemical potential μ, one can compute the
entropy S using the unitary relation PV = 2

3 E (true of a free gas as well) which holds,
where P is the pressure, V is the volume and E is the energy. It is straightforward to
show that

S

N
= E + PV − μN

N T
= ξ(x)− ζ(x)

x
, (9.52)

where ζ(x) = μ/εF and x = T/εF determines the entropy per particle in terms
of quantities extracted from our simulation. As shown in Fig. 9.2, the entropy also
departs from the free gas behavior below T0.

This data can be used to calibrate the temperature scale at unitarity [19, 52].
Indeed, extending the suggestion of [67], from a known temperature in the BCS
limit, the corresponding S(TBCS) can be determined. Then, by adiabatically tuning
the system to the unitary regime, one can uses S(TBCS) = S(Tunitary) to determine
T at unitarity. (In practice the experimental procedure goes in the opposite direction,
namely measurements are performed at unitarity, and then the system is tuned to the
deep BCS side, see [68]).

On the other hand, knowledge of the chemical potential as a function of temper-
ature allows for the construction of density profiles by using of the Local Density
Approximation (LDA) (see the next section). In turn, this makes it possible to deter-
mine S(E) for the system in a trap, fixing the temperature scale via ∂S/∂E = 1/T .
Direct comparison with experiment shows remarkable agreement with our data (we
discuss this later in Fig. 9.6)[69].

In the following we present a brief summary of our results near unitarity on both
the BCS a < 0 and BEC a > 0 sides, (see Fig. 9.3 and Table 9.1). The coupling
strength was varied in the range −0.5 ≤ 1/kF a ≤ 0.2 (where kF = (3π2n)1/3),
limited on the negative (BCS) side by the finite volume V (which becomes comparable
to the size of the Cooper pairs), and on the positive (BEC) side by the finite lattice
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Fig. 9.3 The critical temperature Tc (squares either error bars) and the characteristic temperature T0
(circles with error bars) around the unitary point determined in QMC and using finite size analysis.
On the far left BCS side of the critical point we show (solid green line) the expected BCS critical
temperature, including the corrections due to induced interactions [13, 62], and on the far right side
of the BEC side of the unitary point we show (solid green line) the expect critical temperature in
the BEC limit. For more details see [46]

spacing l (which becomes comparable to the size a = O(l) of the localized dimers,
manifesting as poor convergence of observables).

9.2.7 Response to External Probes and the Spectral Function

In order to get an insight into basic degrees of freedom which contribute to the low
energy excitations of the system one has to investigate the response of the system
to various external probes. Here we will present the simplest possible probe: adding
a particle to the system and calculating the probability amplitude of finding it in a
given single particle state. This requires calculating the one-body finite temperature
(Matsubara) Green’s function [70]:

G (p, τ ) = 1

Z
Tr{exp[−(β−τ)(H −μN )]ψ†(p) exp[−τ(H −μN )ψ(p)]}, (9.53)

where β = 1/T is the inverse temperature and τ > 0.The trace is performed over the
Fock space, and Z = Tr{exp[−β(H −μN )]}. The spectral weight function A(p, ω)
can be extracted from the finite temperature Green’s function using the relation:

G (p, τ ) = − 1

2π

∞∫
−∞

dωA(p, ω)
exp(−ωτ)

1 + exp(−ωβ) . (9.54)
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By definition, A(p, ω) fulfills the following constraints:

A(p, ω) ≥ 0,

∞∫
−∞

dω

2π
A(p, ω) = 1. (9.55)

Since our study focuses on the symmetric (unpolarized) system and the
Hamiltonian is symmetric under a ↔ b, G (p, τ ) is block diagonal and the species
index is suppressed in all formulae. The numerical evaluation of the one-body
temperature propagator (9.53) is performed as described above, using a Trotter
expansion of exp[−τ(H − μN )] followed by a Hubbard–Stratonovich transforma-
tion and Metropolis importance sampling. Details can be found in [61].

The numerical determination of A(p, ω) by inverting (9.54) is an ill-posed prob-
lem that requires special methods. We have used two, based on completely different
approaches. The first approach is the maximum entropy method [71–74], which is
based on Bayes’ theorem. QMC calculations provide us with a discrete set of val-
ues G̃ (p, τi ), where i = 1, 2, . . . ,Nτ = 50. We treat them as normally distributed
random numbers around the true values G (p, τi ). The Bayesian strategy consists in
maximizing the posterior probability

P(A|G̃) ∝ P(G̃|A)P(A) (9.56)

of finding the right A(p, ω) under the condition that G̃ (p, τi ) are known. Here,

P(G̃|A) ∝ exp

(
−1

2
χ2
)

(9.57)

is the likelihood function, where

χ2 =
Nτ∑
i=1

[
G̃ (p, τi )− G (p, τi )

]2
/σ 2. (9.58)

The quantity G (p, τi ) is determined by the spectral weight function in the discretized
form of (9.54) at frequenciesωk .The prior probability P(A), describing our ignorance
about the spectral weight function, is defined as P(A) ∝ exp(αS(M )),where α > 0
and S(M ) is the relative information entropy with respect to the assumed model M :

S(M ) = −
∑

k

�ω

[
A(p, ωk)− M (ωk)− A(p, ωk) ln

(
A(p, ωk)

M (ωk)

)]
. (9.59)

Hence the maximization of P(A|G̃) leads in practice to the minimization of the
quantity 1

2χ
2 − αS(M ) with respect to A [61].

The second approach is based on the SVD of the integral kernel K of (9.54),
which can be rewritten in operator form as
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G (p, τi ) = (K A)(p, τi ). (9.60)

The operator K possesses a singular subspace

K ui = λi vi , K ∗vi = λi ui , (9.61)

where K ∗ denotes the adjoint of K , λi are the singular values, and ui and vi are
right-singular functions and left-singular vectors respectively. The singular subspace
forms a suitable basis for the expansion of the spectral weight function [75–77], which
we can then write as

A(p, ω) =
r∑

i=1

bi (p)ui (ω), bi (p) = 1

λi
(G (p) · vi ), (9.62)

where (_·_) is a scalar product and r is the rank of the operator K K ∗.Since G (p, τi )

is affected by Monte Carlo errors σi , the coefficients bi carry some uncertainty�bi .

Each set of expansion coefficients b̃i ∈ (bi − �bi , bi + �bi ) reproduces G (p, τi )

within its error bars. We use this flexibility of choosing the expansion coefficients to
produce a solution satisfying constraints (9.55)[78]. The relative advantages of each
method will be discussed elsewhere [79].

A sample of calculated spectral weight functions at unitarity are shown in Fig. 9.4.
In order to characterize the quasiparticle excitation spectrum we have associated with
the maximum of A(p, ω) the quasiparticle energy E(p):

E(p) = ±
√(

p2

2m∗ + U − μ

)2

+�2, (9.63)

where the effective mass m∗, the effective potential U, and the “pairing” gap�depend
on temperature, and μ is an input parameter. In Fig. 9.5 we compare the spectrum
of elementary fermionic excitations evaluated in [58], with the one extracted by us
from our lowest temperature spectral weight function.

9.2.8 The Pairing Gap, Pseudogap, and Critical Temperature

In order to find the critical temperature for the superfluid-normal transition one has
to perform the finite size analysis discussed in the previous section. Following this
procedure, our data for the condensate fraction of the unitary Fermi gas indicates
that Tc � 0.15(1)εF , considerably lower than the characteristic temperature T0 =
0.23(2) found by studying the behavior of the energy and the chemical potential (see
Fig. 9.3 and Table 9.1). Even though this result for Tc is close to estimates by other
groups (see e.g. [80–82]), it should be pointed out that the experimental data of [68]
shows a distinctive feature in the energy versus entropy curve at a temperature close
to T0 (see [69]).
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Fig. 9.4 Spectral weight
function A(p, ω) for three
temperatures:
T = 0.15εF ≈ Tc (upper
panel), T = 0.18εF ≈ Tc
(middle panel) and
T = 0.20εF (lower panel).
The presence of a gap in
clearly seen in the upper two
panels. From [61]

It is notable that both methods (the maximum entropy method and the SVD
method) admit a “gapped” spectral function above the critical temperature Tc: a situ-
ation commonly called a pseudogap. It characterizes the range of temperatures where
the system exists in an exotic state which is neither normal, nor superfluid, and defies
a conventional BCS description. Therefore the onset of pairing and superfluidity can
occur at different temperatures. On the other hand, the pseudogap is easy to under-
stand in the BEC limit where stable dimers exist well above the critical temperature.
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Fig. 9.5 Quantities extracted from the spectral weight function A(p, ω) at T = 0.1εF at unitarity
(from [61]). Left: Quasiparticle energies E(p) (squares). The line corresponds to the fit to (9.63).
The circles are the results of Carlson and Reddy [58]. (See also Fig. 9.10 where the same data is
used to fit the SLDA density functional.) Right: The single-particle parameters. One should note
that while the effective mans and the self-energy show a very weak temperature dependence across
the phase transition, the pairing gap halves in value at Tc and vanishes around T0

This gives rise to a pseudogap phase, where the system share a BCS-like dispersion
and a partially gapped density of states, but does not exhibit superfluidity. Several
groups have been advocating various aspects of pseudogap physics in the unitary
Fermi gas for the past few years [4, 66, 83–86].

There have been several experimental attempts to extract the pairing gap in
ultra-cold dilute Fermi gases [87–89] and a theoretical explanation of these spec-
tra was given in [90, 91]. It was later shown in [92–95] that these initial interpre-
tations of the rf-spectra ignored the strong final state interaction effects. Recent
experimental measurement of pair condensation in momentum space and a mea-
surement of the single-particle spectral function using an analog to photo-emission
spectroscopy, directly probed the pseudogap phase and revealed its existence for
1/(kF a) ≈ 0.15 [96]. Although this lies on the BEC side, there are indications that
the pseudogap persists well into the unitary regime [97, 98].

Our calculations show that the spectral function reveals the presence of a gap
in the spectrum up to about T ∗ ≈ 0.20εF (see Fig. 9.5), and a two peak structure
around the Fermi level at temperatures above Tc [61, 99]. We note that T ∗ is close
to T0 (not surprising in hindsight), the temperature at which the caloric curve E(T)
has a shoulder [19, 52] (called T0 in [46]).

9.2.9 Describing Trapped Systems with Quantum
Monte Carlo Results

The Monte Carlo calculations presented above assume that the system is uniform.
In experiment, however, this condition is not fulfilled since atoms are trapped in
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an external potential which induces inhomogeneity of density distribution. Most of
the atomic trapping potentials used in these experiments can be approximated rather
well with harmonic potential wells. Such potentials can be shown to satisfy the virial
theorem at unitarity, namely E(T, N ) = 2N 〈U 〉 = 3mω2

z 〈z2〉 [100], and therefore
simply measuring the spatial shape of the cloud allows for a unique determination
of the unitary gas energy at any temperature. One of the main goals is therefore
to provide a link between the results of experiment [68] and the available finite
temperature QMC calculations.

At unitarity (1/kF a = 0) the pressure of a homogeneous unitary gas is determined
by a universal convex function hT (z):

P(T, μ) = 2

5
β
[
T hT

(μ
T

)]5/2
, β = 1

6π2

(
2m

�2

)3/2

, (9.64)

where T andμ are the temperature and the chemical potential, respectively. P(T, μ)
is a convex function of its arguments (second law of thermodynamics) if and only if
hT (z) is convex. One can show [101] that thermodynamic stability implies positivity
hT (z) ≥ 0, monotonicity h′

T (z) ≥ 0, and convexity h′′
T (z) ≥ 0. Remembering that

the grand canonical potential is �(V, T, μ) = −V P(T, μ) one can show that the
energy of the system reads: E = 3PV/2, where V is the volume of the system.
As it was mentioned before, this relation between energy and pressure is identical in
form to the one corresponding to non-interacting particles. In the high-temperature
limit μ → −∞ and P(T, μ) tends from above to the free Fermi gas pressure.
In the low-temperature limit P(T, μ) tends from above to P(0, ξεF ) = 4βε5/2

F ξ/5.
Standard manipulations show that all the thermodynamic potentials for the unitary

Fermi gas can be expressed in terms of a single function of one variable, a property
known as universality [19, 21, 52, 80, 81]. This property was incorporated in our
interpolation. At high temperatures we notice that our results smoothly approach
the corresponding free Fermi gas results with some offsets for the energy, chemical
potential and entropy [19, 52].

At this point we assume that the LDA can be used to describe the properties of an
atomic cloud in a trap. We will neglect the gradient corrections as one can show that
for the mostly-harmonic traps used in typical experiments the role of the gradient
corrections is relatively small [69], as the average interparticle distance, and thus the
Fermi wave length, is much smaller than the harmonic oscillator length.

In this approach, the grand canonical thermodynamic potential for a unitary Fermi
gas confined by an external potential U (r) is a functional of the local density n(r)
given by

� =
∫

d3r
[

3

5
εF (r)ϕ(x)n(r)+ U (r)n(r)− λn(r)

]
, (9.65)

where

x = T

εF (r)
, εF (r) = �

2

2m
[3π2n(r)]2/3, (9.66)
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Fig. 9.6 Entropy as a
function of energy for the
unitary Fermi gas in the
Duke trap [68]: experiment
(points with error bars) and
present work (solid curve),
where E0 = NεH O

F . Inset:
log–log plot of E(T ) as
results from our calculations
and as derived from
experimental data [68]. The
temperature is units of the
corresponding Fermi energy
at the center of the trap:
εF (0). From [69] 0 0.2 0.4 0.6 0.8 1 1.2 1.4
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and we have used the universal form for the free energy per particle F/N in the
unitary regime:

F

N
= E − T S

N
= 3

5
εFϕ(x) = 3

5
εF [ξ(x)− xσ(x)], (9.67)

where for a homogeneous system ξ(x) = 5E/3εF N , σ (x) = S/N is the entropy
per particle and x = T/εF . The overall chemical potential λ and the temperature T
are constant throughout the system. The density profile will depend on the shape of
the trap as dictated by δ�/δn(r) = 0, which results in:

δ�

δn(r)
= δ(F − λN )

δn(r)
= μ(x(r))+ U (r)− λ = 0. (9.68)

At a given T and λ, (9.66) and (9.68) completely determine the density profile
n(r) (and consequently both E(T, N) and S(T, N)) in a given trap for a given total
particle number. The only experimental input we have used is the particle number,
the trapping potential and the scattering length at B = 1,200 G, taken from [68]. The
potential was assumed to be an ‘isotropic’ Gaussian, as suggested by the experimental
group [68], although it is not entirely clear to us to what extent this is accurate,
especially in the axial direction. We have approximated the properties of the atomic
cloud at B = 840 G with those at unitarity (B = 834 G), where we have MC data.
For B = 840 G and for the parameters of the Duke experiment [68] one obtains
1/kF a = −0.06, using data of [102], if the Fermi momentum corresponds to the
central density of the cloud at T = 0.

Our results for the entropy of the cloud and the density profiles for several temper-
atures, are shown in Figs. 9.6 and 9.7. In all the figures the temperature is measured
in natural units of εF (0), corresponding to the actual central density of the cloud
at that specific temperature. In [68, 103] the temperature is expressed in units of
the Fermi energy at T = 0 in a harmonic trap: εho

F = ��(3N )1/3. It is clear from
Fig. 9.7 that the central density decreases with T and that the superfluid core disap-
pears at Tc = 0.23(2)εF (0), which translates into Tc = 0.27(3)εho

F to be compared
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Fig. 9.7 The radial (along shortest axis) density profiles of the Duke cloud at various temperatures,
as determined theoretically using the QMC results [19, 52]. The dotted blue line shows the superfluid
part of the cloud, for which x(r) = T/εF (r) ≤ 0.23. The solid red line shows the part of the system
that is locally normal. Here a2
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to Tc = 0.29(2)εho
F of [68]. There is a noticeable systematic difference between the-

ory and experiment at high energies, see Fig. 9.6. This discrepancy can be attributed
to the fact that the experiment was performed slightly off resonance, on the BCS
side, where 1/kF a = −0.06.

Recently a couple of new experiments have been published, one by the Paris
group [104] and another by the Tokyo group [105]. Using new techniques these
groups were able to extract directly from cloud images the pressure as a function of the
fugacity. While the Paris group has observed a very good agreement with our QMC
results,
see Fig. 9.8, they have also noticed that the results of the Tokyo group show sys-
tematic differences [106].

One can summarize that so far the bulk of the theoretical predictions obtained
in ab initio QMC have been confirmed experimentally with impressive accuracy in
most cases, often at a level of a few percent, which is the accuracy of both theoretical
calculations and of many experimental results as well. The emergence of a pseudogap
in the unitary gas is a fascinating new feature, but still in its infancy both theoretically
and experimentally.

9.3 Density Functional Theory for the Unitary Fermi Gas

The idea of DFT originated with Hohenberg and Kohn [107] and Kohn and Sham
[108] (see the monographs [109, 110] for an overview) where they proved that the
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Fig. 9.8 The comparison between the ration of the pressure versus fugacity of a unitary Fermi gas
and the pressure of a free Fermi gas: measured in [106] (red filled circles) and calculated in QMC
in [69] (blue filled diamonds)

ground state energy and the density of a system of interacting fermions in an arbitrary
external potential Vext(r) may be found by minimizing a functional

E[n(r)] +
∫

d3r Vext(r)n(r). (9.69)

The utility of this approach is that the functional E[n(r)] depends only on the inter-
actions of the system and is independent of the external potential. Thus, if we were
able to deduce E[n(r)] for the unitary Fermi gas, then by simply minimizing a single
functional, we could determine the ground state in any external potential, including
arbitrary trapping geometries and optical lattices.

The challenge is that the Hohenberg–Kohn theorem is an existence theorem. The
exact form of the functional E[n(r)] is unknown, and in general it may be extremely
complicated and highly non-local. In problems that are under perturbative control, the
functional can be formally derived (see [111]), but in highly non-perturbative prob-
lems such as the unitary gas, one must choose a physically motivated approximate
functional and check its accuracy.

Our strategy is thus:

1. Postulate simple functional forms capturing the relevant physics with a small
number of parameters.
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2. Use ab initio results to fix these parameters.
3. Validate the functional with different ab initio and experimental results.
4. Make interesting and verifiable physical predictions.

The computational cost of minimizing the density functional is much less than
solving for many-body wavefunctions, and one may consider substantially larger
systems, untenable with ab initio methods. This allows one to make direct contact
with typical mesoscopic experiments for example. In this way, one may view the
density functional as a bridge between microscopic and mesoscopic physics.

As we have noted, although DFT is exact in principle, for non-trivial systems
we must postulate a form for the functional. Nevertheless, it provides a substantial
improvement to the ad hoc mean-field methods typically employed to study the
properties of large non-perturbative many-body systems. Without a program for
systematically correcting the functional, the DFT approach will not be the final
word. However, judging from the success of the approach in quantum chemistry, and
from the results presented here, we expect that without too much effort one should
be able to obtain percent level accuracy for a wide range of systems, which should
be sufficient for quite some time.

The qualitative success of the Eagles–Leggett [1, 2] mean-field model describing
the BCS–BEC crossover suggests a functional description of the unitary Fermi gas
in terms of quasi-particle fermionic states (see (9.76)). As discussed in Sect. 9.1,
although the Bogoliubov de-Gennes (BdG) approximation is quite successful, it is
quantitatively inaccurate as it describes all interaction effects through the conden-
sation energy (pairing) alone, completely omitting the “Hartree–Fock” contribution
which dominates the energetics. To see this, consider the typical local interaction
ga†b†ba between species a (spin up) and species b (spin down). The mean-field
approximation retains the pairing term g〈a†b†〉〈ba〉 = gν†ν and the Hartree term
g〈a†a〉〈b†b〉 = gnanb. (The other quadratic Fock term 〈a†b〉〈b†a〉 has zero expec-
tation.) The problem arises upon renormalization: As discussed below, the anom-
alous density ν is formally divergent, and regularization requires taking the coupling
g → 0 to keep the gap parameter � = −gν finite. Since the densities remain finite,
the Hartree contribution gnanb → 0 vanishes.

In weak coupling, one can carefully take the zero-range limit while summing lad-
ders [12, 70], obtaining the well known form ananb of the Hartree interaction, which
is clearly invalid in the unitary limit |a| → ∞. In particular, for the symmetric phase
na = nb = n, there is no additional length scale, and so we must have a dependence
∼ n5/3 as dictated by dimensional analysis. This physics—the dominant contribution
to the energetics (see the discussion below (9.49))—is completely missing from the
BdG (mean-field) approach and is one of the main deficiencies we hope to overcome
within an improved DFT description.

We shall first discuss an improved local DFT for symmetric systems na = nb = n:
the SLDA. This is a generalization of the Kohn-Sham LDA to includes pairing effects
and subsumes the BdG form, adding an n5/3 Hartree interaction term.

We subsequently extent the SLDA to study asymmetric systems na �= nb through
the use of the Asymmetric SLDA (ASLDA) functional that subsumes the SLDA.
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The approach of both these approximations is to introduce as few parameters as
possible that are consistent with the scaling and symmetries of the problem, then
to determine the coefficients of these terms by matching to ab initio properties in
the thermodynamic limit. The form of the functionals is described in Sect. 9.3.1, the
fitting of the parameters is discussed in Sect. 9.3.2, and some physical applications
are presented in Sect. 9.3.3.

9.3.1 The Energy Density Functional

We start with the most restrictive conditions of a cold (T = 0) symmetric
(na = nb, ma = mb) unitary (|a| = ∞) Fermi gas. As discussed in Sect. 9.1,
the only dimensionful scale in the problem is the density n, so dimensional analysis
provides significant constraints on the form of the functional and thermodynamic
functions, allowing us to postulate a simple functional form characterized by only
three dimensionless parameters. Relaxing any of these conditions will introduce
additional dimensionless parameters. In particular, we consider the dimensionless
polarization p = (na − nb)/(na + nb) to formulate ASLDA [101, 112]. The gener-
alized ASLDA functional promotes the dimensionless parameters to dimensionless
functions of this asymmetry parameter p.

9.3.1.1 Local Density Approximation

In general, the energy functional might be a highly non-local and extremely com-
plicated object. One major simplification is to assume that the functional is local
and can be represented by a function of various types of densities. This amounts to
introducing the energy density E which is a function (as opposed to a functional) of
the local densities and their derivatives (referred to as gradient corrections):

EK S =
∫

d3r EK S[n(r), τ (r),∇n(r), . . .] + U (r)n(r)+ · · · , (9.70)

where U (r) represents an external (trapping) potential. This LDA has met with
remarkable success in quantum chemistry applications [109, 110, 113].

The simplest function contains a single term E ∝ n5/3.This—along with gradient
corrections—has been explored in [114, 115], and, while it can model the energetics
of the symmetric gas, it does not include information about pairing correlations. The
extensions we describe here include both kinetic terms and an anomalous pairing
density.

9.3.1.2 Densities and Currents

The first task is to construct the densities and currents. In the SLDA, we con-
sider five types of densities: the standard particle densities na(r) ∝ 〈a†(r)a(r)〉
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and nb(r) ∝ 〈b†(r)b(r)〉, the kinetic densities τa(r) ∝ 〈a†(r)�a(r)〉 and τb(r) ∝
〈b†(r)�b(r)〉, and an anomalous density ν(r) ∝ 〈a(r)b(r)〉.When considering time
dependence (Sect. 9.2.4), we must also include the currents ja(r) ∝ 〈a†(r)∇a(r)〉
and jb(r) ∝ 〈b†(r)∇b(r)〉 to restore Galilean invariance as discussed in Sect. 9.4.2.
In principle, these densities may be non-local, but to simplify the functional we wish
to consider only local quantities. The local form of the anomalous density ν leads to
UV divergences that we must regularize as we discuss in Sect. 9.3.1.4.

The formal analysis proceeds with a four-component formalism discussed in
‘Single Particle Hamiltonian’, but the symmetries of the cold atom systems allow
everything to be expressed in terms of two-component wavefunctions (see Appendix)

�n(r) =
(

un(r)
vn(r)

)
(9.71)

with energy En . The densities and currents are constructed from these as

na(r) =
∑

n

|un(r)|2 fβ(En), nb(r) =
∑

n

|vn(r)|2 fβ(−En),

τa(r) =
∑

n

|∇un(r)|2 fβ(En), τb(r) =
∑

n

|∇vn(r)|2 fβ(−En),
(9.72a)

ν(r) = 1

2

∑
n

un(r)v∗
n(r)

(
fβ(−En)− fβ(En)

)
,

ja(r) = i

2

∑
n

[
u∗

n(r)∇un(r)− un(r)∇u∗
n(r)

]
fβ(En),

jb(r) = i2
∑

n

[
v∗

n(r)∇vn(r)− vn(r)∇v∗
n(r)

]
fβ(−En),

(9.72b)

where fβ(En) = 1/(exp(βEn) + 1) is the Fermi distribution and β = 1/T is the
inverse temperature. Even though we shall only discuss the zero temperature limit of
SLDA it is convenient for numerical purposes to introduce a very small temperature
(much smaller than any other energy scale in the system) so that E (μ) is a smooth
function.

9.3.1.3 Functional Form

Our functionals generically include a kinetic term and a pairing term of the form

E = �
2

m

(
τa + τb

2

)
+ gν†ν + · · · , (9.73)

along with additional density dependent terms, where all of the densities and currents
n(r) etc. are functions of position but have no non-local structure. (Note that here
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and in many of the following formulae we suppress the explicit dependence on
position r.) In the superfluid, this local approximation has formal difficulties since
the anomalous density ν(r, r′) ∼ ∑

un(r)v∗
n(r

′) ∼ |r − r′|−1 diverges for small
|r − r′| if the pairing field is taken to be a multiplicative operator �(r). The kinetic
energy densities τa,b(r) diverge as well. A proper local formulation thus requires
regularization [116] as discussed in Sect. 9.3.1.4. We introduce an energy cutoff Ec—
νc(r) ∼ ∑

|E |<Ec
un(r)v∗

n(r)—and a cutoff dependent effective interaction geff such
that

� = −gν = −geffνc (9.74)

is finite and independent of the cutoff as Ec → ∞. Once this is done, we can write
the functional as

E = �
2

m

(
τa + τb

2

)
−�†ν + · · · . (9.75)

Note that ν is still formally divergent, but will cancel with a similar divergence in
the kinetic piece such that the energy density is finite. The full forms of the local
functionals considered here are thus:

Bogoliubov de-Gennes [117]:

EBdG = �
2τa

2ma
+ �

2τb

2mb
+ gν†ν. (9.76)

For homogeneous systems, this is equivalent to the Eagles–Leggett mean-field theory
where the parameters here represent the bare parameters (elsewhere we shall only
consider ma = mb = m) and the coupling constant is tuned to reproduce the vacuum
two-body scattering length a. Note the absence of a self-energy: all of the interaction
effects are modelled through the pairing interaction. One unphysical consequence is
that the normal state is described as completely non-interacting in this model. While
this may capture some qualitative features of the theory, and provides a rigorous
variational bound on the energy, it cannot be trusted for quantitative results beyond
the rather poor variational upper bound.

SLDA:

ESLDA = �
2

m

(
α

2
(τa + τb)+ β

3

10
(3π2)2/3(na + nb)

5/3
)

+ gν†ν. (9.77)

This may be thought of as the unitary generalization of the symmetric BdG func-
tional for symmetric matter na = nb = n+/2 to include a self-energy term
n5/3

+ (whose form is fixed by simple dimensional analysis) and an effective mass
meff = m/α. The three parameters here α, β, and the pairing interaction g must
be fixed by matching to experiments or ab initio calculations as discussed in
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‘Symmetric Superfluid State na = nb’. Since g is formally zero in the large cou-
pling limit, we characterize it with a dimensionless constant γ such that g−1

eff =
(na + nb)

1/3/γ −� where � is the cutoff discussed in Sect. 9.3.1.4.
ASLDA:

EASLDA = �
2

m

(
αa(na, nb)

τa

2
+ αb(na, nb)

τb

2
+ D(na, nb)

)
+ gν†ν. (9.78)

Here we allow for polarization na �= nb and so we must generalize the para-
meters such as the effective masses and self-interaction to be functions of the
local polarization p = (na − nb)/(na + nb). Dimensional analysis restricts these
αa,b(λna, λnb) = α(na, nb) and D(λna, λnb) = λ5/3 D(na, nb) so that we need
only to parametrize functions of the single variable p as discussed in Sect. 9.3.2.1.

To fully define these functionals, we must now regularize the pairing interaction
g (Sect. 9.3.1.4) and then specify the values and functional forms of the parameters
and parametric functions (Sect. 9.3.2).

9.3.1.4 Regularization

As formulated, the local theory is ultraviolet divergent due to the well known behav-
iour of the anomalous density:

ν(r, r′) ∼
∑

n

un(r)v∗
n(r

′) ∝ 1

|r − r′| . (9.79)

There are many ways of dealing with this. For example, physical potentials are always
non-local, and the non-locality naturally regulates the theory. However, in the unitary
gas, the non-local (range of the interaction) is much smaller than any other length
scale in the system and the stability of the system (see Sect. 9.1) indicates that the
low-energy large-distance physics should be independent of the short-range details.

As a result, one can choose any sort of regularization scheme that is conve-
nient and obtain the universal results with an appropriate limiting procedure. In the
homogeneous case, one can use a variety of techniques: some interesting choices
include dimensional regularization [118] and selective distribution functions [119].
The most straightforward is to use a momentum cutoff, but for inhomogeneous sys-
tems, momentum is not a good quantum number. Instead, an energy cutoff Ec suffices.
All quantities—especially the divergent anomalous density—can be computed from
states with energies below this cutoff:

νc =
∑

|En |<Ec

unv∗
n

fβ(En)− fβ(−En)

2
. (9.80)

(To improve the behaviour, we actually use a smooth cutoff so that discontinuities
are not introduced when levels cross in and out of the sum during the self-consistent
iterations).
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To better understand the nature of these divergences, consider the ultraviolet limit
where the length scale is much smaller than any other scale in the system. In this
limit, the semi-classical Thomas-Fermi approximation may be applied locally. The
linear divergences in both the symmetric combination of the kinetic energy and in
the anomalous density have the form

τ+(k) = τa(k)+ τb(k) → 2(m∗)2�†�

�4k2 , ν(k) → m∗�
�2k2 , (9.81)

where the average effective mass m∗ = m/α+ = 2m/(αa + αb) enters explicitly
through the equations of motion. From this it is clear that the combination

�
2τ+

2m∗ −�†ν = �
2

m

(αaτa

2
+ αbτb

2

)
+ gν†ν

remains finite if we regularize the theory such that the gap parameter remains finite
for all values of the cutoff

� = −geffνc. (9.82)

When regularizing the BdG equations (9.76), we hold fixed the vacuum two-body
scattering length,

m

4π�2a
= 1

g
+ 1

2

∫
− d3k
(2π)3

1
�2k2

2m + i0+ (9.83)

where
∫ − is the principal value integral. This may be easily derived from the pseudo-

potential approach (see for example [120, 121] or for higher partial waves [122, 123]).
In the other DFTs (9.77) and (9.78), g does not represent the physical interaction,

but is simply another parameter of the theory. Thus, we define a similar regulariza-
tion scheme by introducing a finite function C̃(na, nb) that must be fit in order to
characterize the pairing interaction and correlations.1

C̃(na, nb) = −α+ν
�

+ 1

2

∫
− d3k
(2π)3

1
�2k2

2m − μ+
α+ + i0+ = α+

geff
+�. (9.84)

This differs from (9.83) in two ways: (1) we have included a factor of the effective
mass parameter α+ to ensure that the divergences (9.81) cancel and, (2) we have
shifted the pole of the integral by the average local chemical potential μ+ = (μa

−va +μb +vb)/2 to improve convergence. As pointed out in [116], the shift does not
change the integral in the limit of infinite cutoff, but greatly improves the convergence
if a cutoff is used. Given a fixed momentum cutoff k < kc, the integral� in the second
term can be performed exactly

1 We have changed notations slightly from [124] using C̃(na, nb) = α+C(na, nb)which simplifies
the equations because, in the limit of infinite cutoff,� is independent of any densities and functional
parameters.
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� = m

�2

kc

2π2

{
1 − k0

2kc
ln

kc + k0

kc − k0

}
(9.85)

where �
2k2

0/(2m) = μ+/α+ defines the location of the pole. In general, translational
invariance is not preserved, and so we must use the fixed energy cutoff |E(k)| < Ec

that enters (9.80) rather than a momentum cutoff as the latter is not a good quantum
number. To relate the two we used the local quasiparticle dispersion relationship:

�
2

2m
α+(r)k2

0(r)− μ+(r) = 0, (9.86a)

�
2

2m
α+(r)k2

c (r)− μ+(r) = Ec. (9.86b)

This defines a position-dependent momentum cutoff kc(r) and effective coupling
constant g(r) that can be used to regulate the anomalous density at any point in
space:

�(r) = m

�2

kc(r)
2π2

{
1 − k0(r)

2kc(r)
ln

kc(r)+ k0(r)
kc(r)− k0(r)

}
, (9.87a)

α+(r)
geff(r)

= C̃
(

na(r), nb(r)
)

−�(r), (9.87b)

�(r) = −geff(r)νc(r). (9.87c)

Varying the functional with respect to the occupation numbers (see Appendix
‘Formal Description of the DFT’ for a formal description) allows us to derive the
self-consistency conditions. Recall that the functional has the form

α−(na, nb)
�

2τ−
2m

+ α+(na, nb)

(
�

2τ+
2m

+ geff

α+
ν†

c νc

)
+ �

2

m
D(na, nb), (9.88)

and that, in the limit of infinite cutoff, � has no dependence on the functional para-
meters so that2

dC̃ = d

(
α+
geff

)
⇒ d

(
geff

α+

)
= −

(
geff

α+

)2

dC̃ . (9.89)

Thus, we have the following equations:
(

Ka − μa + va �
†

� −Kb + μb − vb

)(
un

vn

)
= En

(
un

vn

)

2 There is a small correction due to the residual density dependence of � at finite cutoff but in
practice this is insignificant.
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where

Kau = − �
2

2m
∇i (αa(na, nb)∇i u)

Kbv = − �
2

2m
∇i (αb(na, nb)∇i v)

va = ∂α−(na, nb)

∂na

�
2τ−
2m

+ ∂α+(na, nb)

∂na

(
�

2τ+
2m

− �†ν

α+(na, nb)

)

− ∂C̃(na, nb)

∂na

�†�

α+
+ �

2

m

∂D(na, nb)

∂na
+ Ua(r),

α±(na, nb) = 1

2
[αa(na, nb)± αb(na, nb)],

τ± = τa ± τb.

and similarly with a ↔ b.

9.3.2 Determining the SLDA and ASLDA Energy Density
Functionals

Unless one has perturbative control over the theory, one cannot in general deter-
mine the correct functional from first principles. Instead, the functional must be
treated as a model incorporating the most relevant physics for the application at hand.
As such, one must determine some parameters in order to make predictions about
other properties of the system. Here we use properties of homogeneous matter in
the thermodynamic limit to determine the parameters of our functional, and then use
the functional to compute the properties of non-uniform systems such as trapped
gases. Our hope is that the single particle states in the self-consistent approach will
provide a good description of the finite size (shell) effects missing in the Thomas
Fermi approximation.

Fortunately, the thermodynamic functions describing the unitary Fermi gas are
tightly constrained [101], and have both calculational and experimental verification.
We shall now describe how to use these constraints to determine the form of the
dimensionless parameters describing the functional.

9.3.2.1 Homogeneous Matter

A simple Thomas-Fermi calculation can be employed to describe states of homoge-
neous matter by exploiting the translational invariance of the system. This allows us
to fix all non-gradient terms in the functional. The only remaining term—the effec-
tive mass—must be fixed by other means and we use the quasiparticle properties to
determine this coefficient.
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Normal Phase

The energy-density for the normal phase of homogeneous matter has the form

E [na, nb] = �
2

m

(
6π2(na + nb)

)5/3

20π2 G(p), p = na − nb

na + nb
∈ [−1, 1]. (9.90a)

where

G(p) = α(p)

(
1 + p

2

)5/3

+ α(−p)

(
1 − p

2

)5/3

+ 2−2/3β(p) (9.90b)

and β(p) is defined through

D(na, nb) =
(

6π2(na + nb)
)5/3

20π2 2−2/3β(p). (9.90c)

The function G(p) will be the main function that enters our numerical formulae.3

We shall define the dimensionless function G(p) by fitting a simple even poly-
nomial to the Monte-Carlo data tabulated for f [p(x)].4 From this, the function
D(na, nb) may be directly expressed in terms of the inverse effective mass α(p),
which may be independently parametrized:

D(na, nb) =
(

6π2(na + nb)
)5/3

20π2

[
G(p)− α(p)

(
1 + p

2

)5/3
− α(−p)

(
1 − p

2

)5/3
]
.

The function G(p) describing the normal state has been well-constrained by
Monte-Carlo data [64] (see Fig. 9.9). As shown in Fig. 9.9, the function G(p) is
very well parametrized by a simple quadratic polynomial:

G(p) = 0.357 + 0.642p2. (9.91)

3 In our previous calculations [124, 125], we used a more complicated parametrization: the present
form G(p) is just as good and much simpler and we advocate its use instead.
4 G(p) is related to the other dimensionless functions f(x) and g(x) discussed in the literature as:

G(p) =
(

1 + p

2
g(p)

)5/3

=
(

1 + p

2

)5/3

f (p), x = nb

na
∈ [0,∞].

The function g(x) = g[p(x)] introduced in [101] has the necessary and sufficient requirement of
convexity to satisfy the second law of thermodynamics; and the function f (x) = f [p(x)] was
introduced in [126] and has been tabulated using Monte-Carlo methods [64].
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Fig. 9.9 Monte Carlo data used to fit the function G(p) (top) and in its raw form f (x) = g5/2(x)
(bottom) representing the energy of the normal state with respect to the energy of the free system.
We excluded the red points from our fit because we suspect that they slightly contaminated by the
superfluid state (and hence have a lower energy). Fitting these close to the superfluid state would
require a double hump structure in G(p) for which we do not yet see any physical motivation. To
anchor the solution in the superfluid phase, we include a datum βp = 0 extracted from the symmetric
state (9.95b). The value here depends slightly on whether or not we also extract an effective mass, or
hold α = 1 constant. Both fits are shown (but lie on top of each other). The present fit is the simple
two-parameter quadratic given in (9.91). At the lower-right of the lower plot we have shown the
values of fx=1 for the superfluid state (black point). Finally, for comparison, we have included the
function f (x) obtained using the standard mean-field (Eagles–Leggett) approximation as a dotted
yellow line to show that it bears little resemblance to the physical curves

Symmetric Superfluid State na = nb

As suggested in [127], by considering the calculated properties of the fully paired
symmetric superfluid, one may determine the values of the functions α(p),
C̃(na, nb), and D(na, nb) at the point p = 0 where the energy density functional
depends only on the symmetric combination of parameters na = nb and τa = τb.
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For any value of the inverse effective mass α = αp = 0, one can uniquely determine
the self-energy β = βp = 0 and pairing interaction γ by requiring that the energy and
gap satisfy

ESF = E (n, n) = ξEFG = ξ
�

2

m

(6π2n)5/3

10π2 , (9.92a)

� = ηεF = η
�

2

m

(6π2n)2/3

2
. (9.92b)

The parameters ξ and η = �/εF have been calculated using several Monte-Carlo
techniques [18, 46, 58, 61] (S. Zhang, K. E. Schmidt, J. Carlson. Private communi-
cation). We take the following values in our estimates [58] (S. Zhang, K. E. Schmidt,
J. Carlson. Private communication):

ξ = E (n, n)

EFG(n, n)
= 0.40(1), η = �

εF
= 0.504(24). (9.93)

In order to determine the effective mass, we consider the quasiparticle dispersion
relationship [58]. Within our density functional, this has the form

Eqp(k) =
√(

�2k2

2meff
− μeff

)2

+�2 (9.94)

where na +nb = k3
F/3π

2 is the Fermi wave-vector andμeff is the effective chemical
potential. It turns out thatμeff also depends on�/εF , so the quasiparticle dispersion
relation is really a function of only two parameters: the effective mass and �/εF .

The fit to the Carlson–Reddy data [128] is shown in Fig. 9.10 and gives the fol-
lowing parameter values5:

αp = 0 = m−1
eff /m−1 = 1.094(17), (9.95a)

βp = 0 = −0.526(18), (9.95b)

γ−1 = −0.0907(77), (9.95c)

η = �/εF = 0.493(12), (9.96d)

ξN = α + β = 0.567(24). (9.95e)

where ξN EFG is the energy of the interacting normal state predicted by the functional.
Note that this agrees very well with the value given by G(p) in Fig. 9.9 (we have used
this parameter as an additional point in the fitting of G(p)).

5 We have performed a simple two-parameter non-linear least-squares fit which has a reduced
χ2

red = 1.1, indicating a very good fit.
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Fig. 9.10 Fit of the Monte-Carlo data for the quasiparticle dispersions from [58] with the BCS
form (9.94). The solid blue curve is the full two-parameter fit including the mass as a parameter.
This is used to determine the effective mass of the fully paired symmetric matter meff = 0.91(1).
The dashed red curve is a one-parameter fit holding the mass fixed to m = 1

In principle, one should use some form of ab initio calculation or experimental
measurement for polarized systems to determine the dependence of the parameters
α, β, and γ on the polarization p = nb/na .Unfortunately, the fermion sign problem
has made this difficult and there is presently insufficient quality data to perform such
a fit. Instead, we simply fix

γ (p) = γp = 0 = −11.11(94). (9.96)

If high quality data about polarized superfluid states become available, one might
consider promoting this parameter to a polarization dependent function similarly to
α(p) and G(p). This fixes the pairing interaction:

C̃(na, nb) = m

�2

α+(p)(na + nb)
1/3

γ (p)
. (9.97)

Effective Mass Parametrization: α(na, nb)

As discussed above, the effective mass cannot be determined solely from the prop-
erties of homogeneous matter. It is also clear in DFT’s developed perturbatively
[129, 130] that the effective mass is arbitrary. In the ASLDA, however, the only gra-
dient terms that enter the functional are the kinetic terms τ whose coefficients are the
effective masses. To allay the need for additional gradient corrections, one must pro-
vide a parametrization of the effective mass. Fortunately, three values are well deter-
mined: In a fully polarized system, the effective mass of the majority species remains
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Fig. 9.11 Inverse effective
mass α(p) = m/meff (p) as
a function of the polarization
p = (na − nb)/(na + nb).

The functional fit is the
polynomial (9.98).

unchanged, m p = 1 = 1.0m, while in the minority species, the effective “polaron”
mass m p =−1 = 1.20m [131]. We use this value, but note that there are other esti-
mates: Monte Carlo calculations give m−1 = 1.04(3) [64] and m−1 = 1.09(2) [132],
and experiments measure m−1 = 1.06 (no error given)[133] and m−1 = 1.17(10)
[134]. The third value for symmetric matter m0 = m/αp = 0 is determined in (9.95a).

We now have three data-points constraining the effective mass parametrization
of α(p). For numerical reasons, in order to ensure that the effective potentials va,b

approach zero as the density falls to zero, we impose the additional constraint that the
first and second derivatives of α(p) vanish at the end-points p = ±1. Taken together,
this fixes a sixth order, two parameter polynomial approximation (Fig. 9.11) for
α(p):

α(p) = 1.094 + 0.156p(1 − 2p2/3 + p4/5)− 0.532p2(1 − p2 + p4/3). (9.98)

9.3.2.2 Summary

Here we summarize the complete definition of the ASLDA functional. The SLDA
functional follows by setting the local polarization

p(r) = na(r)− nb(r)
na(r)+ nb(r)

(9.99)

to zero. First, fitting the quasiparticle dispersion relationships, gap and energy for
the superfluid state gives the SLDA parameters at p = 0:

αp = 0 = 1.094(17), βp = 0 = −0.526(18), γ−1
p = 0 = −0.0907(77). (from (9.95))

Using this derived effective mass, and the energy data for the normal state from
Monte Carlo data we obtain the following polynomial fits defining the polarization
dependence of the effective mass and self-energy:

α(p) = 1.094 + 0.156p

(
1 − 2p2

3
+ p4

5

)
− 0.532p2

(
1 − p2 + p4

3

)
, (from (9.98))
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G(p) = 0.357 + 0.642p2, (from (9.91))

γ (p) = γp = 0 = −11.11(94). (from (9.96))

These fix the specification of the functional parameters

αa(na, nb) = α(p), αb(na, nb) = α(−p), C̃(na, nb) = m

�2
α+(p)(na + nb)

1/3

γ (p)
,

D(na, nb) =
(

6π2(na + nb)
)5/3

20π2

[
G(p)− α(p)

(
1 + p

2

)5/3
− α(−p)

(
1 − p

2

)5/3
]
,

in terms of the densities

na(r) =
∑

|En |<Ec

|un(r)|2 fβ(En), nb(r) =
∑

|En |<Ec

|vn(r)|2 fβ(−En),

τa(r) =
∑

|En |<Ec

|∇un(r)|2 fβ(En), τb(r) =
∑

|En |<Ec

|∇vn(r)|2 fβ(−En),

ν(r) = 1

2

∑
|En |<Ec

un(r)v∗
n(r)

(
fβ(−En)− fβ(En)

)
,

ja(r) = i

2

∑
|En |<Ec

[
u∗

n(r)∇un(r)− un(r)∇u∗
n(r)

]
fβ(En),

jb(r) = i

2

∑
|En |<Ec

[
v∗

n(r)∇vn(r)− vn(r)∇v∗
n(r)

]
fβ(−En),

in the form

EASLDA = �
2

m

(
αa(na, nb)

τa

2
+ αb(na, nb)

τb

2
+ D(na, nb)

)
+ geffν

†ν

together with the renormalization conditions

�(r) = −geff(r)νc(r),
α+(r)
geff(r)

= C̃(r)−�(r)

�(r) = m

�2

kc(r)
2π2

{
1 − k0(r)

2kc(r)
ln

kc(r)+ k0(r)
kc(r)− k0(r)

}
,

�
2

2m
α+(r)k2

0(r)− μ+(r) = 0,
�

2

2m
α+(r)k2

c (r)− μ+(r) = Ec

where α+ = (αa +αb)/2 and μ+ = (μa − va +μb + vb)/2 is the average chemical
potential defined through the equations:

(
Ka − μa + va �

†

� −Kb + μb − vb

)(
un

vn

)
= En

(
un

vn

)
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where

Kau = − �
2

2m
∇i
(
αa(na, nb)∇i u

)

Kbv = − �
2

2m
∇i
(
αb(na, nb)∇i v

)

va = ∂α−(na, nb)

∂na

�
2τ−
2m

+ ∂α+(na, nb)

∂na

(
�

2τ+
2m

− �†ν

α+(na, nb)

)

− ∂C̃(na, nb)

∂na

�†�

α+
+ �

2

m
∂D(na, nb)∂na + Ua(r),

α±(na, nb) = 1

2
[αa(na, nb)± αb(na, nb)],

τ± = τa ± τb.

and similarly with a ↔ b.

9.3.3 Using the SLDA and ASLDA

Once the form of the DFT and its parameters have been fixed, the function needs to be
tested and applied. Since we fit the parameters using QMC results for homogeneous
matter, a non-trivial test is to compare it with ab initio results in inhomogeneous situ-
ations. This will asses the accuracy of the approximation we have made in neglecting
gradient corrections beyond the kinetic term. In Sect. 9.3.3.1 we compare the predic-
tions of the DFTs with QMC calculations of trapped systems. Next we show how the
functionals can be used to explore mesoscopic physics inaccessible to QMC analysis
techniques: we consider the structure of superfluid vortices in Sect. 9.3.3.2, and the
prediction of a supersolid phase in the asymmetric case in Sect. 9.3.3.3.

9.3.3.1 Trapped Systems

The functional form of both the SLDA and ASLDA have been completely fixed by
considering only homogeneous matter. Hence, a non-trivial test of the theory is to
compare the energy of trapped systems with Monte Carlo calculations. This was first
done for the SLDA in [127] and the results are shown in Fig. 9.12. Even for systems
with only a few particles—which have large gradients—the agreement is within 10%.
This rapidly improves to the percent level as one move to larger systems.

The agreement is somewhat remarkable. In particular, we have included no gradi-
ent corrections in the theory beyond the Kohn-Sham kinetic energy. These gradient
corrections will contribute at some level, but in the present system the coefficients are
extremely tiny (the leading gradient correction ∼ (∇n)2/n should give corrections
that scale as E ∝ N 2/3 for which there is no evidence in the Monte Carlo data).
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Fig. 9.12 The comparison
between the GFMC [135],
FN-DMC [136] and SLDA
total energies E(N ). The
clear odd–even staggering of
the energies is due to the
onset of the pairing
correlations. The inset shows
the discrepancy between the
GFMC and FN-DMC and
SLDA energies, δE(N ) =
EMC (N )/ESLDA(N )− 1,
where EMC (N ) stands for
the energies obtained in
GFMC or FN-DMC
respectively
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In any case, the agreement provides strong evidence that the SLDA captures the
relevant energetics to provide a quantitative model of the unitary Fermi gas.

We should point out that the gradient terms in the SLDA are completely
characterized by the kinetic terms. Thus, finite size effects are highly
sensitive to the inverse effective mass parameter α. As mentioned in
‘Symmetric Superfluid State na = nb’, the energy and gap can be fit with α = 1,
but the resulting parametrization demonstrates a marked systematic deviation from
the trap energies shown in Fig. 9.12. It is reassuring that the agreement is restored
when the effective mass is chosen (9.95a) to reproduce the quasiparticle spectrum.

We have validated the ASLDA in a similar manner for trapped systems in Table 9.2.
Again, the agreement is at the few percent level in virtually all cases. In general,
the formulation of the unitary DFT has a remarkable ability to capture the finite
size effects in systems down to even a few particles [138], lending credence to the
approximation of neglecting further gradients beyond the standard kinetic terms.
This was somewhat anticipated since the kinetic terms completely describe finite
size (shell) effects in the non-interacting system, but is non-trivial in the strongly
interacting case of the unitary gas.

Note that the BdG and SLDA functionals have also been considered in larger
trapped systems [139, 140].

9.3.3.2 Vortex Structure

The first use of the SLDA was to determine the structure of superfluid
vortices [60]. In this work, two forms of SLDA (slightly different parameter values)
were considered, and the solution for an axial symmetric vortex with unit circula-
tion was found. The method of solution uses a technique that properly treats the
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Table 9.2 Comparison between the ASLDA density functional as described in this section and the
FN-DMC calculations [136, 137] for a harmonically trapped unitary gas at zero temperature

(Na,Nb) EFNDMC EASLDA (error) (%)

Normal State

(3,1) 6.6 ± 0.01 6.687 1.3

(4,1) 8.93 ± 0.01 8.962 0.36

(5,1) 12.1 ± 0.1 12.22 0.97

(5,2) 13.3 ± 0.1 13.54 1.8

(6,1) 15.8 ± 0.1 15.65 0.93

(7,2) 19.9 ± 0.1 20.11 1.1

(7,3) 20.8 ± 0.1 21.23 2.1

(7,4) 21.9 ± 0.1 22.42 2.4

(8,1) 22.5 ± 0.1 22.53 0.14

(9,1) 25.9 ± 0.1 25.97 0.27

(9,2) 26.6 ± 0.1 26.73 0.5

(9,3) 27.2 ± 0.1 27.55 1.3

(9,5) 30 ± 0.1 30.77 2.6

(10,1) 29.4 ± 0.1 29.41 0.034

(10,2) 29.9 ± 0.1 30.05 0.52

(10,6) 35 ± 0.1 35.93 2.7

(20,1) 73.78 ± 0.01 73.83 0.061

(20,4) 73.79 ± 0.01 74.01 0.3

(20,10) 81.7 ± 0.1 82.57 1.1

(20,20) 109.7 ± 0.1 113.8 3.7

(35,4) 154 ± 0.1 154.1 0.078

(35,10) 158.2 ± 0.1 158.6 0.27

(35,20) 178.6 ± 0.1 180.4 1

Superfluid State

( 1, 1) 2.002 ± 0 2.302 15

( 2, 2) 5.051 ± 0.009 5.405 7

( 3, 3) 8.639 ± 0.03 8.939 3.5

( 4, 4) 12.573 ± 0.03 12.63 0.48

( 5, 5) 16.806 ± 0.04 16.19 3.7

( 6, 6) 21.278 ± 0.05 21.13 0.69

( 7, 7) 25.923 ± 0.05 25.31 2.4

( 8, 8) 30.876 ± 0.06 30.49 1.2

( 9, 9) 35.971 ± 0.07 34.87 3.1

(10, 10) 41.302 ± 0.08 40.54 1.8

(11, 11) 46.889 ± 0.09 45 4

(12, 12) 52.624 ± 0.2 51.23 2.7

(13, 13) 58.545 ± 0.18 56.25 3.9

(14, 14) 64.388 ± 0.31 62.52 2.9

(15, 15) 70.927 ± 0.3 68.72 3.1

( 1, 0) 1.5 ± 0.0 1.5 0

( 2, 1) 4.281 ± 0.004 4.417 3.2

( 3, 2) 7.61 ± 0.01 7.602 0.1

( 4, 3) 11.362 ± 0.02 11.31 0.49

( 7, 6) 24.787 ± 0.09 24.04 3

(11, 10) 45.474 ± 0.15 43.98 3.3

(15, 14) 69.126 ± 0.31 62.55 9.5

The normal state energies are obtained by fixing � = 0 in the functional: In the FN-DMC cal-
culations, this is obtained by choosing a nodal ansatz without any pairing. In the case of small
asymmetry, the resulting “normal states” may be a somewhat artificial construct as there is no clear
way of preparing a physical system in this “normal state” when the ground state is superfluid
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Fig. 9.13 Density profile (left) and gap parameter (right) from [60] for a superfluid vortex in the
symmetric na = nb unitary Fermi gas with unit circulation. The solid curve corresponds to a
parametrization of the SLDA with no self-energy β = 0 but including an effective mass correction.
The dotted curve corresponds to a version with unit effective mass α = 1. The other two parameters
were fixed to reproduce the best approximation to energies of the normal and superfluid states
known at the time: ξN = 0.54 and ξSF = 0.44. The current parameter set (9.95a, b, c, d, e) should
be preferred, but gives similar results. Note: The solid curve does not have the required currents to
restore Galilean invariance (see Sect. 9.4.2), but the effect should be small here. Since the dotted
curve has no effective mass correction, Galilean corrections are not required

infinite boundary conditions without truncating the physical space and introducing
finite-size artifacts (see [141, 142] for details). The profile for this vortex is shown
in Fig. 9.13. In particular, it was predicted that the vortices should have a significant
density depletion in the core—something that is not observed in the weak-coupling
limit where pairing is exponentially suppressed. This predicted core depletion allows
for the direct imaging of vortices in rotating trapped gasses [143], providing direct
evidence for superfluidity in these systems.

9.3.3.3 FFLO/LOFF

The first application of the ASLDA was to consider the energetic stability of a Larkin–
Ovchinnikov–Fulde-Ferrell (LOFF) [146–148] polarized superfluid state [125]. The
density functional as constructed naturally supports a strong first-order phase transi-
tion between the fully paired superfluid state and the interacting normal state (dashed
line in Fig. 9.14). We seed the functional with a periodic solution of the form shown
in Fig. 9.15 with a node in the gap �(z). Allowing the system to relax to the opti-
mal period L we find that this Larkin–Ovchinnikov type of solution has significantly
lower energy than the competing pure and mixed phases over a large range of the
phase diagram.

This is a qualitatively new prediction of the ASLDA: such states are only meta-
stable in the BdG. The effect of the self-energy corrections is to reduce the energy of
these states to favor them over the homogeneous phases. It is interesting to note that
the density contrast of these states is comparable to the density contrast in vortices
(see Fig. 9.13). Such states have yet to be observed in experiments: this may be
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Fig. 9.14 The dimensionless convex function g(x) [101] that defines the energy density

E (na, nb) = 3
5

�
2

2m (6π
2)2/3 [na g(x)]5/3 as a function of the asymmetry x = nb/na (this plot is

very similar to Fig. 9.9). The points with error-bars (blue online) are the Monte Carlo data from [64,
132, 144]. The fully-paired solution g(1) = (2ξ)3/5 is indicated to the bottom right, and the recent
MIT data [133] is shown (light ×) for comparison. The phase separation discussed in [64, 101, 132,
144] is shown by the Maxwell construction (thin black dashed line) of the first-order transition. The
LO state (thick red curve) has lower energy than all pure states and phase separations previously
discussed. The Maxwell construction of the weakly first-order transition between the superfluid and
LOFF phase is shown by the thick dashed line (red)

because the physical region in which the LO state is favoured exists only in a thin
shell. Also, the one-dimensional structure discussed here will be unstable at any
finite temperature [149] (see also [150]) but might be stabilized in traps. The ground
state will most likely be some sort of three-dimensional lattice structure (see for
example [151]) which will likely require a fairly large physical volume to exists
without significant frustration. The ideal situation would be a very flat trap tuned so
that the LO region occupies a large physical space at the center of this trap, however,
the construction of such traps presently poses some experimental difficulties that we
hope will be overcome in the near future.

9.4 Time-Dependent Superfluid Local
Density Approximation

9.4.1 Time-Dependent Equations for the Quasiparticle
Wave Functions

The equations for the time-dependent quasiparticle wave functions un,σ (r, t),
vn,σ (r, t) have the time-dependent Bogoliubov-de Gennes form
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Fig. 9.15 A single LO period showing the spatial dependence of the pairing field�(z) (top) and the
number densities of the majority (dotted) and minority (solid) species (bottom) at the values. Units
are fixed so that μ− = μa −μb is held fixed as it is for trapped systems. We normalize everything
in terms of the density n0 = na = nb, interparticle spacing l0 = n0

−1/3, and superfluid pairing
gap �0 of the fully paired superfluid at the superfluid/LO transition point close to the center of the
cloud. At the superfluid/LO transition, the character of the solution is that of widely spaced domain
walls (see for example [145]). As one proceeds outward in the trap, the period and amplitude of the
solution decreases until it is almost sinusoidal at the transition point to the interacting normal phase

i�
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⎞
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⎛
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ub
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vb

⎞
⎟⎟⎠ . (9.100)

For the sake of simplicity, we have dropped the arguments (r, t) for all functions
in these equations. Note also that the external potentials Uσ (r, t) are real. The only
difference with the static SLDA in the structure of hσ (r, t) are the contributions
arising from the variation of the current density correction to the kinetic energy
density τ̃ (r, t) (104,110), which are required by Galilean invariance to be discussed in
Sect. 9.4.2. The chemical potentialsμa,b,which can always be thought of as external
constraints, are implicitly included in Uσ (r, t). The chemical potentials can also be
removed by a simple gauge transformation of the quasi-particle wave functions. It is
straightforward to show that these equations conserve the total particle number for
arbitrary time-dependent external fields and also for arbitrary time variations of the
coupling constant g(t). As expected however, in the presence of an external pairing
field, particle number is not conserved: particles can be exchanged with the coupled
system implied by the source of the external pairing field.
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9.4.2 Galilean Invariance

The functionals as expressed in Sect. 9.2.3 are not manifestly covariant under Galilean
transformation (a subset of the general coordinate invariance discussed in [152]
which restrict the form of higher-order gradient terms). To restore this covariance,
the currents currents ja(r) and jb(r) described in (9.72a, b) must be included. These
vanish in time-reversal invariant ground states, but are crucial for discussing states
that break time reversal and for the general time-dependent analysis. In nuclear
physics Galilean covariance have been considered for quite some time [153–156],
and the contribution of these currents is often essential for describing the properties
of excited states.

We start by expressing the Galilean invariance of the Lagrangian density for a
single Fermi species (see [152] for a more general discussion)

L = ψ†
(

i�∂t − (−i�∇)2
2m

)
ψ. (9.101)

This is invariant under the following Galilean transformation:

ψ(x, t) → exp
[
−i
(

1
2 m|v|2t + mv · x

)]
ψ(x + vt, t). (9.102)

From this, we see that the currents and kinetic densities transform as

j = i

2
(ψ†∇ψ + h.c.) → j + mvn, (9.103a)

τ = 1

2m
∇ψ†∇ψ → τ + v · j + 1

2 m|v|2n. (9.103b)

It follows directly that for a two-component system, the following combinations are
Galilean invariant:

τ̃σ = τσ − |jσ |2
2mσnσ

,
jb

mbnb
− ja

mana
. (9.104)

We would like to separate out the center of mass motion from the intrinsic functional,
so we introduce the total mass current and density:

j+ = ja + jb, ρ+ = mana + mbnb. (9.105)

We may then write the functional in the following way:

E = |j+|2
2ρ+

+ Ẽ . (9.106)

The first term captures the energy of the center of mass motion and Ẽ describes the
remaining intrinsic energy of the system, and should be strictly Galilean invariant.
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Excited states may be described by an extension of the DFT method commonly
referred to as Time-Dependent Density Functional Theory (TDDFT) [157–160]. This
theory describes the evolution of the one-body number density in the presence of
an arbitrary one-body external field. As in the case of static DFT, one can prove an
existence theorem [157–159]. This states that a functional exists from which one can
determine the exact time-dependent number density for a given quantum system, and
can be expressed in the form

S = i�

2

∫
dtd3r

∑
n,σ

{
vn,σ (r, t)

∂v∗
n,σ (r, t)

∂t
− v∗

n,σ (r, t)
∂vn,σ (r, t)

∂t

}

−
∫

dtd3r

{
�

2

2m

∑
σ

τσ (r, t)+
∑
σ

Uσ (r, t)nσ (r, t)

+ E
[
na(r, t), τ̃a(r, t), nb(r, t), τ̃b(r, t), |ν(r, t)|2, g(r, t)

]}
. (9.107)

Here σ = a, b labels the two fermion species. The existence proof for superfluid
systems is analogous to the proof for normal systems [157–159]. Here Uσ (r, t) are
arbitrary time-dependent one-body external fields, which couple to the conserved
number densities of the fermion species nσ (r, t). These external fields can represent
couplings to the laboratory environment, such as a trapping potential, which can be
used to manipulate and study these systems.

The direct coupling of an external gauge field to the electric charge and magnetic
moments of the particles can also be incorporated in a straightforward manner, by
the usual process of converting the global particle number symmetry to a local sym-
metry by invoking the principle of gauge invariance. We can also couple an arbitrary
time-dependent external pairing field as well to represent interactions with another
superfluid system brought into the proximity of the system under study. As men-
tioned above, this will violate the conservation of particle number as particles are
now able to be exchanged with the other system. Finally, the last argument g(r, t)
of the interaction term E represents the possibility of varying the coupling constants
in space and time. In particular, as discussed in Sect. 9.1, by means of a Feshbach
resonance an external magnetic field can be used to directly control the scattering
length, providing yet another handle to manipulate and study these systems.

In the functional S we have separated the kinetic energy �
2∑

σ τa(r, t)/2m
from the interaction energy in order to disentangle the dependence on the refer-
ence frame. The interaction energy encoded in the functional E should be inde-
pendent of the motion of the system as a whole. By default, the properties of
the ground states of a physical system are typically discussed in the center of
mass reference frame. When the system is excited by various external probes,
inevitably currents appear. In the LDA it is natural to assume that the energy den-
sity separates into the kinetic energy of center of mass (which depends only on its
local center of mass velocity and its corresponding mass) and the internal energy
(which should not depend on the local center of mass velocity). The energy den-
sity E

[
na(r, t), τ̃a(r, t), nb(r, t), τ̃b(r, t), |ν(r, t)|2, g(r, t)

]
is the same as in the
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static SLDA, with the only difference that the dependence on the modified kinetic
energy density τ̃σ (r, t) now includes the current densities (9.72b) to satisfy Galilean
invariance

jσ (r, t) = i�

2

∑
n

[∇vn,σ (r, t)v∗
n,σ (r, t)− vn,σ (r, t)∇v∗

n,σ (r, t)
]
. (9.108)

Here we will describe a slightly different philosophy in implementing the Galilean
invariance than discussed at the beginning of this section, which leads to a somewhat
different definition of the modified kinetic energy densities τ̃σ (r, t) than those intro-
duced in (9.104) above. This ambiguity illustrates the freedom one has in introducing
currents and using no other restriction except Galilean invariance.

Upon boosting the system to a frame with a velocity V, the current density changes
jσ (r, t) → jσ (r, t) + mn(r, t)V. We introduce the velocity of the local center of
mass frame (ma = mb = m)

V(r, t) = j+(r, t)

ρ+(r, t)
, (9.109)

where we have introduced the total current j+ and density ρ+ from (9.105). Conse-
quently, the following combination of the kinetic energy density, current density and
number density

τ̃σ (r, t) = τσ (r, t)− jσ (r, t) · V(r, t)+ mnσ (r, t)V2(r, t)

2
, (9.110)

renders the energy density locally Galilean invariant [127]. τ̃σ (r, t) is therefore the
internal kinetic energy density in the local center of mass frame, which is differ-
ent from the form of modified kinetic energy introduced in (9.104). The difference
between the two approaches to enforcing the Galilean invariance amounts to terms
proportional to |jb/mbnb − ja/mana |2, see (9.104).

It is worth noticing that because the Galilean invariance is built in, one of the
famous relations in the Landau’s Fermi liquid theory linking the effective mass of
the quasiparticles with the p-wave interaction (denoted F1) is automatically satisfied
(see [12]).

Note also that if terms arise of the form ja(r, t) · jb(r, t), a new physical effect
appears whereby the local velocity of one species depends also on the velocity of
the other species. In other words, the inverse mass becomes a tensor in the spin
(“isospin”) space. By including terms of the form |(ja(r, t) · ∇nσ (r, t))|2, the effec-
tive mass becomes a tensor in real space. This was discussed in [161] in connection
with the construction of the optimal local Schrödinger equation to represent a non-
local equation. In particular, it seems that, in order to describe some rather subtle
level orderings of the single-particle spectrum found in the a non-local Schrödinger
equation, one needs a tensor effective mass in the local equations. This is also related
to the discussion of superfluid mixtures, where it was observed long ago that one
superfluid can drag the other one without any dissipation: the Andreev-Bashkin effect
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Fig. 9.16 The profile of the energy of a unitary Fermi gas as a function of the pairing gap with
respect to the energy of the ground state. One would naïely expect that this system if released from
a point almost at the tip of the “Mexican hat” will roll down along the radial direction, past the
equilibrium value �0 = 0.5εF and oscillate indefinitely back and forth

[162, 163]. Similar effects arise when one considers the terms induced by Galilean
invariance (9.110) or ja(r, t) · jb(r, t), when the presence of a current of one species
induces a current of the other species.

9.4.3 The Excitation of the Pairing Higgs Mode

We shall illustrate the power of the Time-Dependence SLDA (TD-SLDA) by exam-
ining the response of a superfluid unitary gas to the time variation of the scattering
length [164]. This problem has been studied extensively in the weak coupling regime
when kF |a| � 1 and a < 0, see [165–184]. The initial state of the system will be the
ground state, and at subsequent times, the evolution will be adiabatic in the sense that
no entropy production is allowed. To some extent this is a rather strong limitation
of this time-dependent description of the quantum evolution, a restriction which can
be lifted if one would consider a further extension of the formalism, the Stochastic
TD-SLDA [185] which will not be discussed here.

Consider the following scenario [164]: start with a homogeneous unitary Fermi gas
in its ground state. At first slowly reduce the coupling constantγ from its unitary value
to a very small but still negative value. If this change is slow enough, then the system
tracks the ground state into the ground state of the system with an exponentially
small pairing gap. Now rapidly ramp the coupling γ back to its unitary value and let
the system evolve. This essentially looks at the evolution of an almost normal system
with the unitary DFT. The behavior we observe is rather surprising.

Many approaches have been developed to describe the dynamics of a fermionic
superfluid at or near T = 0 including superfluid hydrodynamics, a Landau–Ginzburg
or Gross–Pitaevskii (LG/GP) like description, and effective field theory, see [26, 32,
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Fig. 9.17 The panels a,b and c display response of the homogeneous system to an initial switching
time interval t0εF = 160, 10 and 160 and values of the gap corresponding to γs are γs/γ =
0.005, 0.005 and 0.5 respectively, where γ is the coupling constant controlling the magnitude of
the pairing gap and �0 ≈ 0.5εF is the gap equilibrium value, both at unitarity. The panels a and b
show that when the system is released from the neighborhood of the tip of the “Mexican hat” potential
the pairing gap oscillates back and forth, but never past the equilibrium value�0. At the same time
the system will rotate around the origin as the phase of the pairing field (not shown here) will
monotonically evolve in time as well. However, when the system is released from an initial position
closer to the minimum at �0 the oscillation is damped, �(t) = �∞ + A sin(2�∞t + φ)/

√
�∞t,

with a mean frequency 2�∞ and around a value smaller than the equilibrium�∞ < �0, a behavior
which was first studied in [165] in the BCS limit, when the coupling is weak

115, 152, 186–190]. The common thread in all these approaches is the desire to
identify a significantly smaller set of relevant degrees of freedom, and achieve an
accurate description of the phenomena within a reduced framework. As a rule, when
reducing the number of the degrees of freedom, one assumes that the system evolves
through states where local equilibrium is maintained. In this instance, one would
naïvely expect that the system dynamics are governed by an effective “Mexican
hat” potential, Fig. 9.16, representing the energy of the system as a function of the
complex pairing field. The system is brought adiabatically from the minimum of
the potential to almost the “tip of the Mexican hat”, and released with zero initial
“velocity”. The naïve picture is that the system will “roll” down along the radial
direction accelerating until it reaches the minimum of the potential, pass through the
minimum, and oscillate back and forth along the “radial” direction without damping.
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One might also inspect the LG/GP description of the dynamics of the system
using the nonlinear Schrödinger equation

i�
∂�(r, t)

∂t
= −�

2��(r, t)

4m
+ U (|�(r, t)|2)�(r, t). (9.111)

Since there are no spatial gradients in this system (we have changed the coupling in
a uniform manner so as not to break the translational invariance), only the second
term on the right hand side of this equation contributes, and the solution is a simple
monotonic evolution of the condensate phase �(r, t) in time and the magnitude
of “wave function” �(r, t) remains constant. In lieu of a better simple alternative,
many authors have used this approach to characterize dynamics of Fermi superfluids
at essentially zero temperatures, even though the LG/GP description is only justified
near the critical temperature.

Another approach is to use the zero-temperature limit of Landau’s two fluid hydro-
dynamics, which reduces to the following two equations at zero temperature

ṅ(r, t)+ ∇ · [v(r, t)n(r, t)] = 0, mv̇(r, t)+ ∇
{

mv2(r, t)

2m
+ μ[n(r, t)]

}
= 0.

(9.112)
Here v(r, t) is the hydrodynamic velocity and μ[n(r, t)] is the local thermodynamic
potential. Since there are no spatial gradients, these two equation simply predict that
the number density will remain constant and nothing else will happen.

Apart from the fact that the number density will remain constant and spatially
uniform, these three different naïve pictures lead to drastically different predictions.
The actual time evolution of the system, shown in Fig. 9.17, is qualitatively different
from any individual picture, but demonstrates a combination of the expected features.
The pairing gap does increase from almost zero towards the equilibrium value, and
it oscillates, but it never crosses the minimum equilibrium value�0 of the “Mexican
hat” potential. At the same time, the phase of the pairing gap increases monotonically
in time and the number density is constant.

By preparing the initial state slightly differently one can excite different types of
these modes that have been dubbed “Higgs” modes of the pairing field. One can vary
the upper and the lower values between which the pairing field oscillates, and also
adjust the period of these oscillations. It is remarkable, however, that the frequencies
of these modes are always smaller than 2�0,where�0 is the equilibrium value of the
pairing gap at unitarity, even though the excitation energy is large. These are indeed
very collective excitations of the system, of extremely low frequency, but with an
excitation energy per particle significantly less than pairing gap.

It is still an unresolved question of how these modes will eventually decay and
how the system will thermalize. It is also instructive to examine the time dependent
population of the various single-particle momentum states of these collective modes
as shown in Fig. 9.18. When the value of the pairing gap is very small the occupation
probabilities are essentially those of a system in equilibrium. However, when the
system reaches a pairing gap essentially equal to the equilibrium value �0, the
occupation probabilities are clearly very different from those in the ground state,
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Fig. 9.18 Panels a and b display the instantaneous occupation probabilities of the mode shown in
upper panel of Fig. 9.17 corresponding to times t > 0 when the pairing field is at its minimum
and maximum values respectively with circles joined by a solid (blue with circles) line. With (red)
dots we plotted the equilibrium occupation probabilities corresponding to the same instantaneous
values of the pairing gap. In panels c and d we show the maximum and minimum values of the
oscillating pairing field and the corresponding excitation energy as a function of the frequency of
the Higgs-like modes, see Fig.9.17 a and b

which clearly points to a non-equilibrium state. This aspect should clarify why neither
LG/GP nor quantum hydrodynamics are valid as both assume local equilibrium is
maintained.

9.4.4 Generation and Dynamics of Vortices

A number of results concerning the generation and dynamics of vortices in a unitary
Fermi gas by an external time-dependent perturbation can be found at [191]. As
far as we are aware, this problem has been studied in one paper for a pure 2D
systems [192]. As in the previous example, we do not yet consider entropy production
in these simulations.

In order to illustrate further the power of the TD-SLDA as well as the limitations
of traditional approaches such as superfluid hydrodynamics or a LG/GP analysis,
we now consider the quantum dynamics of a stirred unitary Fermi gas [191]. We
start with the gas in its ground state in a cylindrical trap, uniform and with periodic
boundary conditions in the third spatial direction. We then subject the system to a
time-dependent external stirring field which breaks the cylindrical symmetry. When
implemented numerically [193], if one places the system on a spatial lattice with Ns
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spatial lattice points in one direction, one can show that the size of the problem scales
as ∝ N 5

s . When the limitation of spatial homogeneity in the z-direction is lifted the
size of the problem scales as ∝ N 6

s , which as a rule requires an implementation on
the largest leadership class supercomputers available. For example, if Ns = 50 an
efficient solution of the TD-SLDA equations becomes possible only on the JaguarPF
Cray XT5,6 which we are currently utilizing to its full extent.

When homogeneity along the z-direction is enforced, the quasiparticle wave func-
tions have the structure (un(x, y, t) exp(ikz), vn(x, y, t) exp(ikz))while self-energy
U (x, y, t) and the pairing potential �(x, y, t) are translationally invariant along z.
We adiabatically introduce a vertical rod into this “soup can” and stir the gas with a
constant angular velocity. One can vary both the stirring radius R and stirring angular
frequency ω to control the speed vrod = Rω of the rod.

One might expect that if vrod � vc, where vc is the critical velocity of a unitary
Fermi gas, then the system will return to its initial state after the stirring is turned
off. However, if vrod > vc, then one might destroy the superfluid order, resulting in a
normal Fermi gas. If v1 < vrod < vc,where v1 is some minimal stirring velocity, one
expects that vortices will be created. Unfortunately, none of the simple theories can
shed much light on the outcome: superfluid hydrodynamics cannot describe quantum
vortices as there is no intrinsic quantization or Planck’s constant in its formulation:
vortex quantization must be imposed by hand, and there is nothing in principle to
prevent decay of a quantized vortex into two fractionally quantized vortices. The
time dependent LG/GP approach will also fail to describe the normal state and the
transition from superfluid to normal state, as it is formulated explicitly in terms of
the order parameter alone, which vanishes in the normal state. Thus, it seems that
the only viable solution is to forgo a reduction in the degrees of freedom and deal
directly with the quasiparticles included in the DFT.

A unitary Fermi gas is a special system in quite a number of ways: in particular, it
appears to have the highest critical velocity of all known superfluids [194, 195]. On
the BCS side of the Feshbach resonance, if stirred fast enough, the system can loose
superfluidity by the breaking of the Cooper pairs vqp = min(Ek, k). On the BEC
side of the Feshbach resonance, the dominant mechanism for the loss of superfluidity
is the excitation of the Anderson-Bogoliubov sound modes c = vF

√
ξ/3. In the a

unitary Fermi gas, these two different critical velocities appear to be essentially
identical, and exactly at unitarity one obtains

vc = min(c, vqp) = vF min

(√
ξ

3
,

√
α

√
(β − ξ)2 + η2 + (β − ξ)

)
≈ 0.365vF .

Since the amount of information one extracts in a TD-SLDA simulation of this type is
very large, it is not sufficient to display only a few pictures such as those in Figs. 9.19
and 9.20. We invite the interested reader to explore some of the movies made of these
simulations [191]. We shall comment here only on a few selected aspects of these
results, most of which will be prepared for a publication at a later time.

6 JaguarPF is a Cray XT5 supercomputer with 224,256 processing cores, see http://ww.nccs.gov.

http://ww.nccs.gov
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Fig. 9.19 The contour density profiles of a unitary Fermi gas in a cylindrical container, stirred with
a uniformly rotating rod, which is inserted and extracted adiabatically from the system. The position
(and intensity) of the rod can be inferred as the deepest density depletion in the system, and it is
actually visible only in panels 2–4. Initialy the gas shows an almost uniform density distribution,
and subsequently it is gathered almost entirely in front of the stirring rod. The magnitude of the
density is in units of the unperturbed central initial density of the cloud and the colorbar on the right
decodes the meaning of each color used. By the end of the simulation there are 13 vortices forming
an almost perfect triangular Abrikosov lattice in this confined geometry

Our expectation that, under gentle stirring, the unitary Fermi gas will return to
its initial superfluid state is supported by the simulations [191], and is in line with
how one would expect a superfluid to respond to such an external probe. The other
expectation, that vigorous stirring can destroy the superfluid order is also confirmed.
Within TD-SLDA, the dynamic generation of vortices as well as formation of the
celebrated Abrikosov vortex lattice are also readily demonstrated. By varying shape,
the number and the stirring velocity we generated a plethora of quantized vortices in
this “soup can” of superfluid unitary Fermi gas [191].

While we expected to generate a relatively small number of vortices at low stirring
velocity, and that the number of vortices will increase with more vigorous stirring,
many of the features of dynamic vortex generation are quite surprising. The fact that
this system is compressible results in surprisingly large time-dependent variations of
the local number density. Often the entire mass of the system is gathered in front of the
stirrer, leaving little matter behind it: The gas can occupy less than half of the available
volume, even though the volume excluded by the stirrer is quite small. It also comes as
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Fig. 9.20 The corresponding contour profiles of the pairing field |�(x, y, t)| a unitary Fermi gas
in a cylindrical container, stirred with a uniformly rotating rod. A plot (not shown here) of the
phase of the pairing field arg�(x, y, t) shows that as one circles a vortex core the phase changes
by 2π, thus each of these vortices carries exactly �/2 units of angular momentum per particle and
both the number (normal) density and the pairing field are significantly depleted in the core of the
vortex [60]

a great surprise that the system does not loose quantum coherence under such a violent
perturbation. Moreover, it organizes itself in an almost perfect vortex lattice after the
stirring is turned off. Even more surprising is that the system remains superfluid,
even when stirred at supercritical speeds! We have observed that the system forms a
vortex lattice even if stirred with speeds up to vs = 0.60vF > vc ≈ 0.365vF (see the
case of 7 vortices with a large radius stirrer at [191]). We attribute this behavior to
the fact that an increased density of the cloud during the stirring process corresponds
to an increased local critical velocity, since the local Fermi velocity increases as well
accordingly.

These two cases of exciting and monitoring the unitary Fermi gas by two dras-
tically different methods illustrate both the power and flexibility of this framework,
as well as the richness of the phenomena waiting to be fully explored. One potential
topic to be explored by these techniques that has mesmerized the low temperature
community during the past few decades is quantum turbulence [196–198]. Hopefully
this can also be replicated in experiments with cold atomic fermionic gases. Due to
the complexity of the full 3D time-dependent Bogoliubov-de Gennes equations, this
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aspect has never been theoretically addressed for fermionic systems. The TD-SLDA
appears as a framework of choice in this respect. In particular one can address on a
fully microscopic basis for vortex reconnection dynamics, which is likely at the heart
of quantum turbulence at zero temperature, where dissipative processes are greatly
inhibited.

9.5 Concluding Remarks

We have reviewed here three methods to describe the properties of many-body sys-
tems starting from the bare Hamiltonian, and building a practical framework for
studying nontrivial properties of mesoscopic systems and quantum dynamics.

The QMC method is particularly suited to calculate properties of the homogeneous
phase of matter in an unbiased fashion. It also can be used for inhomogeneous
systems, but is limited by system size and can not handle large number of Fermions.
It is also generally plagued by the infamous sign problem (except in exceptionally
symmetric contexts) and so far has not been used to describe systems in the time
dependent domain.

The complimentary approach of DFT through the use of the SLDA and ASLDA
can be applied to extend these results to mesoscopic systems with larger number of
particles and a wide variety of geometries. The time dependent TDDFT (TD-SLDA)
extension brings these techniques to bear on time-dependent quantum dynamics. The
main difficulty with the DFT is that there is no well defined procedure to construct
the functional. However, in the particular case of a unitary Fermi gas, the form of
the SLDA and ASLDA functionals is sufficiently restricted by dimensional analysis,
QMC results, and Galilean invariance as to be able to make testable predictions with
relatively small uncertainties. This has been validated with both ab initio theoretical
and experimental results.

The next step is to use such tools to make predictions about the properties of
the unitary gas under various conditions: by changing the geometry and even the
Hamiltonian as a function of time, by probing the system with a variety of external
probes and exciting a plethora of modes—both linear and nonlinear—and by studying
both the equilibrium and non-equilibrium dynamics. We have illustrated a few of
these applications, but it is clear that we have barely scratched the surface of this
subject.

The Fermi gas in the unitary regime proves to be an extraordinarily rich physical
system to study, not only because one can both theoretically and experimentally
address many of its properties with both precision and accuracy, but because it has
so many truly unexpected phases and dynamical phenomena.

Many fascinating features of this systems are still waiting to be revealed in experi-
ments in their full glory, including: the pseudogap phase, the supersolid LOFF phase,
p-wave superfluidity [199, 200], the Higgs mode of the pairing field, the behavior and
response to various spatial and time varying trapping fields and probes, the dynam-
ics of vortices which opens a window to quantum turbulence both theoretically and
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experimentally, the existence of supercritical superflow, and its kinetic properties—
in particular its viscosity. One can safely state that the most extraordinary features
of the unitary gas are still waiting to be demonstrated.

Perhaps the most captivating part of the story of the unitary Fermi gas is that it
provides a link to an abundance of widespread fields of physics, from optics and
atomic physics, to condensed matter physics, to nuclear physics and the physics of
neutron stars, color superconductivity in QCD and dark matter, relativistic heavy ion
collisions, and the AdS/CFT approaches in quantum field theory.
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NERSC Franklin Cray XT4 supercomputer under grant B-AC02-05CH11231 and at
the Interdisciplinary Centre for Mathematical and Computational Modelling (ICM)
at Warsaw University. This document is unclassified with LANL release number
LA-UR 10-05509.

Appendix

Formal Description of the DFT

Here we present a somewhat formal derivation of the variational property of the
Kohn-Sham equations. Consider a general free-energy functional of the following
form

F = E(n A, nB, · · · )+ T Tr (ρ ln ρ) (9.113)

where

n A = Tr
(
ρAT

)
,

nB = Tr
(
ρBT

)
,

...

are the various densities, anomalous densities, etc. expressed linearly in terms of the
one-body density matrix ρ. By varying the functional with respect to the density
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matrix ρ subject to the appropriate constraints on density matrix form (discussed in
‘Fermions’), one obtains a solution of the form

ρ = fβ(H[ρ]) (9.114)

where fβ(E) is the appropriate thermal distribution for the particles of interest, and
H is a single-particle Hamiltonian that depends on ρ:

H[ρ] = ∂En AA + ∂EnBB + · · · . (9.115)

The typical Kohn-Sham equations follow by diagonalizing the self-consistency con-
dition (9.114) with a set of normalized Kohn-Sham eigenfunctions of definite energy:

H|n〉 = En|n〉. (9.116)

The density matrix is diagonal in this basis and expressed in terms of the appropriate
distribution functions fβ(E):

ρ =
∑

n

fβ(En)|n〉〈n|. (9.117)

All of the functionals considered in this chapter may be expressed in this form. Once
the appropriate matrix structures A, B etc. are described, the form of the Kohn-Sham
equations and potentials follows directly from these expressions.

Fermions

The only remaining complication is to impose the appropriate constraint on the den-
sity matrix ρ. This ensures that the appropriate statistics of the particles is enforces.
As we shall be interested in ‘Fermions’, the relevant constraint on the density matrix
(dictated by the canonical commutation relationships) is

ρ + CρT C = 1 (9.118)

where C = CT is the charge conjugation matrix:

C|ψ〉 = |ψ〉∗. (9.119)

This follows from the anti-commutation relationship for fermions and is discussed
further in the ‘Single Particle Hamiltonian’. The constrained minimization of the
functional F(ρ) results in the standard Fermi distribution7

7 Formally, this constraint can be implemented using a Lagrange multiplier, but it is much easier to
see the results by letting ρ = 1/2 + x − CxT C where x is unconstrained, and then performing the
variation with respect to x.
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ρ = 1

1 + eβ(H[ρ]−CHT [ρ]C) , (9.120)

which is the fermionic form of the self-consistency condition (9.114) for the density
matrix ρ. In practise, one does not iterate the entire density matrix. Instead, one
stores only the densities n A, nB, etc. Through (9.115), these define the Kohn-Sham
Hamiltonian H, which is then diagonalized to form the new density matrix and finally
the new densities. If, for example, symmetries allow the Hamiltonian H to be block
diagonalized, then one can construct and accumulate the densities in parallel over
each block. Finally, the densities represent far fewer parameters than the full density
matrix. Thus, more sophisticated root-finding techniques such as Broyden’s method
[201] may be efficiently employed: Applying these techniques to the full density
matrix would be significantly more expensive.

Single Particle Hamiltonian

It is convenient to express these concepts in the language of second quantization.
The Hamiltonian will appear as a quadratic operator of the form

Hs = 1

2
�†Hs� (9.121)

where� has several components and Hs is a matrix. The factor of 1/2 accounts for
the double counting to be discussed below. For a two component system, the most
general � that allows for all possible pairings has four components:

� =

⎛
⎜⎜⎝

a
b
a†

b†.

⎞
⎟⎟⎠ . (9.122)

In terms of components of the wavefunction, we will write Hsψ = Eψ where:

ψ =

⎛
⎜⎜⎝

ua

ub

va

vb

⎞
⎟⎟⎠ . (9.123)

The naming of these components is conventional (see for example [117]) and the
functions u and v are typically called “Coherence Factors”. Note that the conven-
tion is that v∗

a,b(r, t) are the wavefunctions of the particles. In this formulation the
Hamiltonian has the form presented in (9.100):

Hs =

⎛
⎜⎜⎝

ha + Ua 0 0 �

0 hb + Ub −� 0
0 −�∗ −h∗

a − Ua 0
�∗ 0 0 −h∗

b − Ub

⎞
⎟⎟⎠ (9.124)
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Four-Component Formalism

We shall start with this full four-component formalism but soon utilized a reduction:
If the superfluid pairing � ∼ 〈ab〉 channel is attractive, then often the “Fock”
channel is repulsive so we can take 〈a†b〉 = 0. In combination with the double-
counting discussed below, this will allow us to fully express the system in terms of
two components.

The four-component formalism double counts the degrees of freedom:� contains
both a and a†. This degeneracy is described in terms of the charge conjugation
matrix C :

�† = C� where C =
(

0 1
1 0

)
. (9.125)

The operator � will satisfy the single-particle Shrödinger equations

Hs |�〉 = E |�〉 (9.126)

where the Hamiltonian Hs = �†Hs� can be chosen to satisfy (the sign implements
Fermi statistics)

C H T
s C = −Hs . (9.127)

In this form, the charge conjugation symmetry ensures that the eigenstates will appear
in ±E pairs.8 Keeping only one set of pairs will ensure that we do not double count.
Using this symmetry, we can formally diagonalize the Hamiltonian by a unitary
transformation U such that:

U †HsU = 1

2

(
E 0
0 −E

)
(9.128)

where E = diag(Ei ) is diagonal. The columns of the matrix U are the (ortho)
normalized wave-functions and describe the “coherence” factors. To determine the
correct expressions for the densities in terms of the wavefunctions we form them in
the diagonal basis and then transform back to the original basis using U .

Despite this formal degeneracy of eigenstates, we are not aware of a general
technique to block-diagonalize the original Hamiltonian in the presence of non-zero
terms of the form 〈a†b〉, though perhaps the symmetry might be incorporated into
the eigensolver.

8 Suppose Hsψ = εψ. Applying (9.127), using C 2 = 1, and taking the transpose imply that
ψT C T Hs = −εψT C T . Since left and right eigenvalues are the same, this implies that there is
some other state such that Hsψ̃ = −εψ̃. For Hermitian Hamiltonians, Hs = H †

s , hence, the other
state can be directly constructed as ψ̃ = Cψ∗.
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Two-Component Formalism

If 〈a†b〉 = 0, however, then the Hamiltonian is naturally block diagonal:

Hs = 1

2

(
Hs 0
0 −HT

s

)
, Hs = ψ†Hsψ + const, (9.129)

and one may consider only a single block in terms of the reduced set of operators

ψ =
(

a
b†

)
. (9.130)

This directly avoids any double counting issues. This system may be diagonalized:

HsU = UE. (9.131)

The matrix U defines the single “quasi”-particle operators φ as linear combination
of the physical particle operators contained in ψ :

φ = U†ψ. (9.132)

The Hamiltonian is diagonal in this basis

Hs = φ† · E · φ (9.133)

and hence expectation values may be directly expressed

〈φφ†〉 = θβ(E) =

⎛
⎜⎜⎜⎝
θβ(E0)

θβ(E1)

. . .

θβ(En)

⎞
⎟⎟⎟⎠

where 1 − θβ(E) = fβ(E) is the appropriate distribution function: For fermions we
have

θβ(E) = 1

1 + e−βE
. (9.134)

At T = 0 this reduces to θ0(E) = θ(E) and is equivalent to the zero-temperature
property that negative energy states are filled while positive energy states are empty.
This may be simply transformed back into the original densities (on the diagonal)
and anomalous densities (off-diagonal):

F+ = 〈ψψ†〉 =
( 〈aa†〉 〈ab〉

〈b†a†〉 〈b†b〉
)

= Uθβ(E)U†,

FT− = 〈ψ∗ψT 〉 =
( 〈a†a〉 〈a†b†〉

〈ba〉 〈bb†〉
)

= U∗θβ(−E)UT .
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Fermi statistics demands F− + F+ = 1 but we may have to relax this requirement
somewhat in order to regulate the theory in terms of an energy cutoff θc(E). The
columns of Un of U correspond to the single-particle “wavefunctions” for the state
with energy En . We partition these into two components sometimes referred to as
“coherence factors”

Un =
(

un

vn

)
. (9.135)

The unitarity of U imposes the conditions that

u†
mun + v†

mvn = δmn (9.136a)

∑
n

unu†
n =

∑
n

vnv†
n = 1, (9.136b)

∑
n

unv†
n =

∑
n

vnu†
n = 0. (9.136c)

From this we may read off the expressions for the densities

na = 〈a†a〉 =
∑

n

u∗
nuT

n θβ(−En), (9.137a)

nb = 〈b†b〉 =
∑

n

vnv†
nθβ(En), (9.137b)

ν = 〈ab〉 =
∑

n

unv†
nθβ(En) (9.137c)

= −
∑

n

unv†
nθβ(−En) (9.137d)

=
∑

n

unv†
n
θβ(En)− θβ(−En)

2
. (9.137e)

The last form for ν must be used if the regulator is implemented such that θc(E)+
θc(−E) �= 1, in particular, if θc(E) = 0 for |E > Ec|. Note that these expressions
are basis independent, e.g. in position space:

na(r, r′) =
∑

n

un(r)∗un(r′)T θβ(−En). (9.138)

The energy En here is the energy determined by solving these equations and will
contain both positive and negative energies.
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Chapter 10
Scaling Flows and Dissipation in the Dilute
Fermi Gas at Unitarity

T. Schäfer and C. Chafin

Abstract We describe recent attempts to extract the shear viscosity of the dilute
Fermi gas at unitarity from experiments involving scaling flows. A scaling flow is
a solution of the hydrodynamic equations that preserves the shape of the density
distribution. The scaling flows that have been explored in the laboratory kflccare the
transverse expansion from a deformed trap (“elliptic flow”), the expansion from a
rotating trap, and collective oscillations. We discuss advantages and disadvantages
of the different experiments, and point to improvements of the theoretical analysis
that are needed in order to achieve definitive results. A conservative bound based on
the current data is that the minimum of the shear viscosity to entropy density ration
is η/s ≤ 0.5�/kB .

10.1 Introduction

A cold, dilute Fermi gas of non-relativistic spin 1/2 particles interacting via a short
range interaction tuned to infinite scattering length, commonly referred to as the
unitary Fermi gas, provides a new paradigm for many strongly correlated quantum
systems [1, 2]. In this contribution we focus on non-equilibrium aspects of the uni-
tary Fermi gas, in particular its shear viscosity [3]. The shear viscosity of a liquid
composed of weakly coupled quasi-particles can be estimated as

η= 1

3
nplm f p, (10.1)
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where n is the density, p is the average momentum of the particles, and lm f p is the
mean free path. The mean free path can be written as lm f p = 1/(nσ) where σ is
the transport cross section. Eq. 10.1 implies that the shear viscosity decreases as the
strength of the interaction increases. In the unitary gas the cross section saturates
the s-wave unitarity bound σ = 4π/k2,where k is the scattering momentum, and we
expect the shear viscosity to be unusually small.

Danielewicz and Gyulassy pointed out that the Heisenberg uncertainty relation
imposes a bound on the product of the average momentum and the mean free path,
plm f p ≥ �, and concluded that η/n ≥ � [4]. This is not a precise statement: The
kinetic estimate in Eq. 10.1 is not valid if the mean free path is on the order of
the mean momentum. A more precise bound has recently emerged from holographic
dualities in string theory. In this context the natural quantity to consider is not the ratio
η/n, but η/s, where s is the entropy density. Policastro, Son and Starinets showed
that in N = 4 supersymmetric QCD the strong coupling limit of η/s is equal to
�/(4πkB) [5]. It was later shown that the strong coupling limit is universal in a large
class of field theories, and it was conjectured that η/s ≥ �/(4πkB) is a general lower
bound, valid for all fluids [6].

Are there any fluids in nature that attain or possibly violate the proposed bound?
A fluid that saturates the bound has to be a quantum fluid (because η is on the order
of �s), and it has to be strongly interacting (because in a weakly interacting system
the mean free path is large). It is also known that many of the model field theories that
attain the bound in the strong coupling limit are scale invariant. All of these properties
point to the unitary Fermi gas as a plausible candidate for a “perfect fluid”.

Almost ideal hydrodynamic flow in the unitary Fermi gas was first observed in [7].
Since then, a number of experiments have been performed that provide constraints
on the shear viscosity of the unitary gas [8–15]. In this work we will provide an
overview of the hydrodynamic analysis of these experiments, and compare some
of the estimates that have been obtained. We emphasize the uncertainties of these
results, and point to improvements that need to be implemented.

10.2 Scaling Flows

We begin by studying the ideal (Eulerian) fluid dynamics of a non-relativistic gas
in the normal phase. We will introduce dissipative effects in Sects. 10.3.1–10.3.3.
In this contribution we will not discuss superfluid hydrodynamics. We will briefly
comment on dissipative effects in the superfluid phase in Sect. 10.3.1. The equations
of continuity and of momentum conservation are given by

∂n

∂t
+ �∇ · (n�v) = 0, (10.2)

mn
∂�v
∂t

+ mn
(
�v · �∇

)
�v = − �∇ P − n �∇V, (10.3)
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where n is the number density, m is the mass of the atoms, �v is the fluid velocity,
P is the pressure and V is the external potential. In the unitarity limit the equation of
state at zero temperature is of the form

P(n, T )= n5/3

m
f

(
mT

n2/3

)
, (10.4)

where f(y) is a universal function. We note that y = const · (T/T hom
F ), where

T hom
F = (3π2n)2/3/(2m) is the Fermi temperature of a homogeneous Fermi gas.

In the high temperature limit, y � 1, we have f (y)� y and in the low temperature
limit f (y)� (3π2)2/3ξ/5, where the parameter ξ = 0.40(2) has been determined in
quantum Monte Carlo calculations [16]. Monte Carlo methods have also been used
to determine f(y) for all values of y [17, 18]. The critical temperature for superfluidity
is Tc/T hom

F � 0.15, corresponding to yc � 0.72. An alternative representation of the
pressure is

P(μ, T )=μ5/2m3/2g

(
T

μ

)
, (10.5)

where g(z) is a universal function, related to f(y) by thermodynamic identities. In the
high temperature limit g(z)� 2z5/2e1/z/(2π)3/2 and in the low temperature limit
g(z)� 25/2/(15π2ξ3/2). The density is

n(μ, T )=μ3/2m3/2h

(
T

μ

)
, h(z)= 5

2
g(z)− zg′(z). (10.6)

The high and low temperature limits of the function h(z) are h(z)� 2z3/2e1/z/(2π)3/2

(z � 1) and h(z)� 23/2/(3π2ξ3/2)(z 	 1). The equilibrium distribution n0 of a
trapped atomic gas follows from the hydrostatic equation �∇ P0 = − n0 �∇V . The
trapping potential is approximately harmonic

V (x)= m

2

∑
i

ω2
i x2

i . (10.7)

Using the Gibbs-Duhem relation d P = ndμ + sdT together with the fact that the
equilibrium configuration is isothermal we can write the equation of hydrosta-
tic equilibrium as �∇μ= − �∇V . This implies that the equilibrium density is
n0(x)= n(μ(x), T ) with

μ(x)=μ0 − V (x)=μ0

(
1 −

∑
i

x2
i

R2
i

)
, R2

i = 2μ0

mω2
i

. (10.8)

A scaling flow is a solution of the hydrodynamic equations in which the shape of
the density distribution is preserved. Consider the ansatz n(x, t)= n(μ(x, t), T (t))
where
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μ(x, t)=μ0(t)

(
1 − x2

Rx (t)2
− y2

Ry(t)2
− z2

Rz(t)2
− xy

Rxy(t)

)
, (10.9)

and T (t)/T (0)=μ0(t)/μ0(0). Without loss of generality we have restricted the
ansatz to rotations in the xy-plane. We note that the fluid remains isothermal during
the expansion. Scale invariance implies that properties of the fluid only depend on
the dimensionless ratio T/μ. For any given fluid element this ratio does not change
during the expansion. In particular, if the fluid element was in the superfluid or normal
phase initially, it will stay in that phase throughout the expansion.

The velocity field created by the scaling expansion in Eq. 10.9 is linear in the
coordinates. We can write

�v(x, t)= 1

2
�∇

(
αx (t)x

2 + αy(t)y
2 + αz(t)z

2 + 2α(t)xy
)

+	(t)ẑ × �x . (10.10)

The parameters αi , α and	 are related to the parameters Ri , Rxy and μ0 by the con-
tinuity equation. Remarkably, the continuity equation is independent of the universal
function h(z) in Eq. 10.6. Introducing the dimensionless scale parameters

μ̄(t)= μ0(t)

μ0(0)
, bi (t)= Ri (t)

Ri (0)
, a(t)= Rx (0)2

Rxy(t)
, (10.11)

the continuity equation can be written as

μ̄+ 2

3
μ̄

(
αx + αy + αz

) = 0, (10.12)

ȧ + 2(α −	)

b2
x

+ 2(α +	)

λ2b2
y

+ a(αx + αy)= 0, (10.13)

ḃx − bxαx − b3
x a

2
(α +	)= 0, (10.14)

ḃy − byαy − b3
yλ

2a

2
(α −	)= 0, (10.15)

ḃz − bzαz = 0, (10.16)

where λ= Ry(0)/Rx (0)=ωx/ωy .These equations can be solved directly in the case
that there is no rotation, a(t)= 0. Then α=	= 0 and

(αx , αy, αz)=
(

ḃx

bx
,

ḃy

by
,

ḃz

bz

)
, μ̄= 1

(bx bybz)2/3
. (10.17)

The velocity field is a simple “Hubble flow”, �v = (αx x, αy y, αz z). Finally, we note
that the entropy density is given by s = (mμ)3/2g′(T/μ). Since the entropy density
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has the same functional form as the particle density we conclude that, in the case of
scaling flows, the continuity equation implies entropy conservation,

∂s

∂t
+ �∇ · (�vs)= 0. (10.18)

10.3 Elliptic Flow

The simplest scaling flow is the expansion of the cloud after the trapping potential is
removed [19]. Since the cloud remains isothermal the Euler equation can be derived
using the Gibbs-Duhem relation d P = ndμ. This implies that the equation of motion
is independent of the universal function f(y) defined in Eq. 10.4. We get

b̈i = ω2
i

(bx bybz)2/3

1

bi
, (10.19)

The total energy of the expanding system is given by the sum of internal energy and
kinetic energy,

E = Eint + Ekin =
∫

d3x

(
E (x)+ 1

2
mn�v2

)
. (10.20)

For the Fermi gas at unitarity the energy density E is related to the pressure by
E = 3

2 P. We find

E = Eint(0)

{
1

(bx bybz)2/3
+ 1

3

(
ḃ2

x

ω2
x

+ ḃ2
y

ω2
y

+ ḃ2
z

ω2
z

)}
, (10.21)

where Eint (0) is the internal energy at t = 0. Conservation of energy immediately
follows from the equation of motion, Eq. 10.19. We note that the equation of hydro-
static equilibrium, �∇ P = − n �∇V, implies the Virial theorem 〈E 〉 = 〈V 〉 [20], where
〈V 〉 denotes the integral of the potential energy over the trap. This means that the
total energy of the trapped gas is E0 = 2Eint(0), where the factor 2 is due to the
contribution of the potential energy.

We are interested in an axially symmetric trap withωy =ωz =ω⊥ and ωx = λω⊥.
In this case we end up with two coupled equations for b⊥ and bx . If λ � 1 the
evolution in the transverse direction is much faster and the equation for b⊥ can be
approximately decoupled,

b̈⊥ = ω2⊥
b7/3
⊥
. (10.22)
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This equation has to be integrated numerically. The behavior at early and late times
can be found analytically. We get

b⊥(t)�
{

1 + 1
2ω

2⊥t2 + O(t4) ω⊥t 	 1,
ω⊥t√
γ

+ c0 + O(t−1/3) ω⊥t � 1,
, (10.23)

where γ = 2/3 and c0 is a constant that can be determined by matching the early and
late time behavior. Numerically, we find c0 � − 1.3. For the longitudinal expansion
the early time behavior is bx (t)� 1 + (λω⊥t)2/2, and at late times bx (t)� const ·
λ2ω⊥t.

The signature effect of hydrodynamics is that transverse pressure gradients cause
the transverse radius to expand much faster than the longitudinal radius. This means
that the two radii will eventually cross. This happens at a time

tcross =
√
γ

ωx
(1 + O(λ)) . (10.24)

We note that the crossing time only depends on the trap parameters, and is indepen-
dent of the initial energy or the number of particles. We also note that at t � tcross

the expansion is still two-dimensional, that means the volume of the system grows
as vol ∼ t2. The expansion becomes three-dimensional, vol ∼ t3, at t3d ∼ (λ2ω⊥)−1.

10.3.1 Energy Dissipation

We wish to understand how the expansion is affected by dissipation. The energy
momentum tensor of a dissipative fluid is �i j = Pδi j + mnvi v j + δ�i j with

δ�ij = η
(

∇i v j + ∇ j vi − 2

3
δij∇ · v

)
+ ζ δij (∇ · v) . (10.25)

The energy current is jεi = vi (w+ 1
2 mnv2)+δ jεi with w = E + P and δ jεi = δ�ijv j −

κ∇i T . The unitary gas is scale invariant and ζ = 0 [21]. Also, for an isentropic
scaling expansion the temperature remains independent of position, and there is no
contribution from the thermal conductivity κ. We will therefore concentrate on the
role of shear viscosity.

Since the shear viscosity is small, we can take it into account perturbatively. The
simplest idea it compute the amount of kinetic energy that is converted to heat.
We have

Ė = − 1

2

∫
d3xη

(
∇i v j + ∇ j vi − 2

3
δij∇ · v

)2

. (10.26)

For the scaling expansion given in Eq. 10.10 the result is particularly simple. We get
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Ė = − 4

3

(
ḃ⊥
b⊥

− ḃx

bx

)2 ∫
d3xη(x). (10.27)

The total energy dissipated is given by the integral of Eq. 10.27 over time. We first
show that the spatial integral over η(x) does not depend on time. In the local density
approximation η(x)= η(μ(x), T ). Scale invariance implies that

η(μ, T )= n(μ, T )αn

(
T

μ

)
, (10.28)

where αn(z) is a universal function, and we have set � = 1. In order to compare with
the string theory bound it is also useful to define η(μ, T )= s(μ, T )αs(T/μ), where
we have also set kB = 1. We can write

∫
d3xη(x)= N 〈αn〉, (10.29)

where

〈αn〉= 1

N

∫
d3xn(x, t)αn

(
T (t)

μ(x, t)

)
= 1

N

∫
d3xn0(x)αn

(
T0

μ(x, 0)

)
(10.30)

is an average of αn over the initial density distribution. Analogously, we can write
the integral over η(x) as S〈αs〉, where S is the total entropy and 〈αs〉 is an average
of αs over the initial entropy density.

The time integral over (ḃ⊥/b⊥− ḃx/bx )
2 is dominated by the regimeω⊥t ∼ 1 and

converges rapidly – the integral reaches 80% of its asymptotic value at tdiss � 5.9ω−1
⊥ .

In the limit λ	 1 we can neglect the contribution from ḃx . On dimensional grounds
the integral over (ḃ⊥/b⊥)2 must be proportional to ω⊥. The constant of proportion-
ality can be determined numerically. We find

∞∫
0

dt

(
ḃ⊥
b⊥

)2

= 0.87ω⊥. (10.31)

We can now compute the ratio�E/Eint of the dissipated energy to the initial internal
energy of the system. In order to express the result in terms of experimentally mea-
sured quantities it is useful to introduce the energy EF = NεF where εF = ω̄(3N )1/3

is the Fermi energy of the trapped gas and ω̄= (ωxωyωz)
1/3. We find

�E

Eint (0)
= − 8

3
· 0.87 · β = − 2.32 · β (10.32)

where the parameter β is defined given by

β = 〈αn〉
(3Nλ)1/3

1

(E0/EF )
= 〈αs〉
(3Nλ)1/3

(S/N )

(E0/EF )
. (10.33)
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Fig. 10.1 Expansion of the transverse and longitudinal radii after release from a harmonic trap.
The data points are taken from [7]. The solid and dashed lines correspond to solutions of the
Navier–Stokes equation with 〈αs〉= 0 (solid lines) and 〈αs〉= 0.5 (dashed lines)

Dissipation slows down the transverse expansion of the system. For (ω⊥t) � 1
we have (δḃ⊥/ḃ⊥)= (�E/E)/2 and, up to terms that are higher order in λ, the
change in the crossing time is directly related to the change in the expansion rate,
(δt/t)cross = (δḃ⊥/ḃ⊥).

The thermodynamic quantities S/N and E0/EF as a function of T/TF were
determined experimentally in [22]. Just above the critical temperature S/N � 2.2
and E0/EF � 0.83. The double ratio [(S/N )/(E0/EF )] is only weakly dependent
on T, changing by less than 15% between Tc and 4Tc. In the flow experiment carried
out by O’Hara et al. [7] the cloud contained N = 2 · 105 atoms and the asymmetry
parameter was λ= 0.045.The predicted sensitivity of the crossing time to dissipative
effects is

(
δt

t

)
cross

= 0.008

( 〈αs〉
1/(4π)

) (
2 · 105

N

)1/3 (
0.045

λ

)1/3 (
S/N

2.2

) (
0.83

E0/EF

)
.

(10.34)
For 〈αs〉= 1/(4π) this is at the limit of what can be resolved experimentally, but
for 〈αs〉= 0.5 the effect reaches about 5%. An example is shown in Fig. 10.1. The
solid lines show the solution of the Euler equation (10.19), and the dashed lines
show a solution of the Navier–Stokes equation (see Sect. 10.3.2) with 〈αs〉= 0.5.
The main effect of shear viscosity is a suppression of the transverse expansion of
the system. We find (δt/t)cross = 6.5%, in fairly good agreement with the estimate
(δt/t)cross = 5% from Eq. 10.34.

The best fit to the data is provided by ideal hydrodynamics with 〈αs〉= 0. This
is probably related to the fact that the data were taken significantly below Tc,

at T/TF = 0.13 ± 0.05. In this regime the system is described by two-fluid hydro-
dynamics. The superfluid component has no shear viscosity but the viscosity of
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the normal component becomes very large as T/TF → 0 [23]. In a finite system,
however, the large viscosity of the normal phase is likely to be suppressed by relax-
ation time effects, see Sect. 10.3.5. As a consequence one observes perfect superfluid
hydrodynamics. The data in Fig. 10.1 show some deviations from hydrodynamics at
very early and very late times. Discrepancies at early times are probably related to
experimental resolution [7], while the differences at late times may be connected to
the breakdown of hydrodynamics in the late stages of the expansion.

We can also compute the amount of entropy generated by dissipative effects.
Using d S = d Q/T we find

�S

N
= 4

3

〈αn〉
(3Nλ)1/3

1

(T0/TF )
IS (10.35)

with

IS =ω−1
⊥

τ∫
0

dtb−2/3
⊥

(
ḃ⊥

)2
. (10.36)

For τ � tdiss we find Is � 2.6 and the produced entropy is small, (�S/N )� 0.27
for the conditions given above. However, the integral diverges as Is ∼ (ω⊥τ)1/3 for
τ → ∞. This result is not reliable since we expect hydrodynamics to break down at
late times, see Sect. 10.3.4.

10.3.2 Moments of the Navier–Stokes Equation

It is clearly desirable to study the role of dissipation more directly by solving the
Navier–Stokes equation. The Navier–Stokes equation differs from the Euler equation
by an extra term on the right hand side,

mn

(
∂vi

∂t
+

(
�v · �∇

)
vi

)
= − ∇i P − ∇ jδ�i j . (10.37)

We will assume that the viscosity is small, so that derivatives with respect to thermo-
dynamic variables can be computed at constant entropy. We will also assume that the
entropy conservation equation, Eq. 10.18, is not modified. Physically, this implies
that we assume that there is a reservoir that removes the heat generated by dissipa-
tive effects. In this case, the only correction to the equations of hydrodynamics is the
viscous force in the Navier–Stokes equation.

In general the inclusion of the Navier–Stokes term will break the simple scaling
form of the flow. The Navier–Stokes equation also depends on the functional form
of the pressure and the viscosity, that means we have to specify the functions f (y) in
Eq. 10.4 and αn(z) in Eq. 10.28. A simple approach that avoids extensive numerical
work as well as model assumptions about f(y) and αn(z) is to take moments of the
Navier–Stokes equation. Consider the linear moments
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m
∫

d3xxkn(x)

(
∂vi

∂t
+

(
�v · �∇

)
vi

)
= −

∫
d3xxk

(
∇i P + ∇ jδ�i j

)
, (10.38)

with k = 1, 2, 3. Since the velocity field is linear in the coordinates we find that the
ideal fluid terms involve second moments of the density. These moments are related
to the potential energy in a harmonic trap and, by the virial theorem, to the total
energy of the system. The Navier–Stokes term can be integrated by parts and is
proportional to the integral over η(x). As a consequence, the first moment of the
Navier–Stokes equation depends only on the parameter β defined in Eq. 10.33. We
get

b̈⊥ = ω2⊥
(b2⊥bx )2/3b⊥

− 2βω⊥
b⊥

(
ḃ⊥
b⊥

− ḃx

bx

)
(10.39)

b̈x = ω2
x

(b2⊥bx )2/3bx
+ 4βλωx

bx

(
ḃ⊥
b⊥

− ḃx

bx

)
. (10.40)

These equations of motion are consistent with the result in the previous section.
We can compute the amount of energy dissipated from Eqs. 10.21 and
(10.39, 10.40). We find

Ė = − 8

3
βEint (0)

(
ḃ⊥
b⊥

− ḃx

bx

)2

. (10.41)

We note that b⊥(t) and bz(t) are solutions of the Navier–Stokes equation and have an
implicit dependence on β.As long as this dependence is smooth, bi (t, β) → bi (t, 0)
as β → 0, Eq. 10.41 reduces to Eq. 10.27 at leading order in β. Since typical values
of β are quite small, we expect the estimates in the previous section to be very
accurate. This is studied in more detail in Fig. 10.2. We observe that the dissipated
energy (�E)/E is very linear in β even for values of (�E)/E as large as 25%.
We note that because of turbulence solutions of the Navier–Stokes equation do not in
general approach solutions of the Euler equation in the limit that the shear viscosity
goes to zero. Turbulence is not present in our analysis because we do not consider
small fluctuations. We also note that there is no continuous forcing in the case of an
expanding gas and it is not clear whether turbulence can develop even if fluctuations
are included. We will estimate the Reynolds number of the flow in Sect. 10.3.4.

10.3.3 Scaling Solution of the Navier–Stokes Equation

In this section we discuss a specific model for the density dependence of the shear
viscosity that preserves the scaling nature of the flow even if the viscosity is not
zero. This model allows to compute the local amount of heat that is generated by
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Fig. 10.2 This figure show the ratio (�E)/Eint of the dissipated energy to the initial internal
energy as a function of the parameter β defined in Eq. 10.33. The dots show the result of a numerical
solution of the Navier–Stokes equation (10.39, 10.40) in the limit ωz/ω⊥ → 0 and the line shows
the estimate given in Eq. 10.32

dissipation, and to understand some of the shortcomings of the method discussed in
Sects. 10.3.1 and 10.3.2. Consider

η(n, T )= η0(mT )3/2 + η1
P(n, T )

T
, (10.42)

where η0,1 are constants and P(n,T) is the pressure. The first term dominates in the
low density, high temperature limit. This is the regime in which a kinetic description
in terms of weakly coupled atoms is applicable. Kinetic theory gives [24, 25]

η0 = 15

32
√
π
. (10.43)

The second term dominates in the high density, low temperature regime. The func-
tional form of this term is not motivated by kinetic theory. We note, however, that
η/n has a minimum as a function of T, as expected on theoretical [23] and phenom-
enological grounds [3].

The model given in Eq. 10.42 has two remarkable features: first, the η0 term
does not contribute to the Navier–Stokes equation at all. The Navier–Stokes term
∇ j [η0(mT )3/2(∇i v j + · · · )] vanishes since both T and ∇i v j are constant. Sec-
ond, the η1 term preserves the scaling flow. Using T,∇i v j ∼ const we see that
∇ j [η1 P(n, T )/T (∇i v j + · · · )] scales like the contribution from the pressure of an
ideal fluid, ∇i P(n, T ). We get

b̈⊥ = ω2⊥
(b2⊥bx )2/3b⊥

− 2η1ω
2⊥

3T0b⊥

(
ḃ⊥
b⊥

− ḃx

bx

)
(10.44)
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b̈x = ω2
x

(b2⊥bx )2/3bx
+ 4η1ω

2
x

3T0bx

(
ḃ⊥
b⊥

− ḃx

bx

)
. (10.45)

We observe that these equations are identical to the moment Eqs. 10.39, 10.40 with
β = η1ω⊥/(3T0). This is not a surprise – the η1 contribution to η(n, T ) vanishes as
n → 0 and the assumptions underlying the moment method are satisfied. The η0
term, on the other hand, does not vanish as n → 0, and it cannot be included in the
moment equations (it makes an infinite contribution to the integral over η(x)).

Using the identification β = η1ω⊥/(3T0) we can write

β = η1

3(3λN )1/3
1

(T0/TF )
, (10.46)

which shows that any bound on 〈αn〉 obtained using the methods of Sect. 10.3.2 can
be translated into an estimate of η1, η1 = 3(T0/E0)〈αn〉. Near Tc this implies that
η1 � 0.76〈αn〉. We note that the relation between η1 and 〈αn〉 is precisely what one
obtains if the trap average of η(x) is computed from the η1-term only. The situation
is more complicated if the contribution from η0 is taken into account. The ratio η/n
is given by

η(n, T )

n
= η0 y3/2 + η1

y
f (y) (10.47)

with y = (mT )/n2/3. Since f (0)= const and f (y)� y for y � 1 this function has
a minimum, see Fig. 10.3. The figure also shows that (η/n)min receives significant
contributions from η0. It is clearly unsatisfactory that our analysis has no sensitivity
to this term. We will return to this issue in Sect. 10.3.5.

Using the explicit form of η(n, T ) we can also address the question where the
energy is being dissipated and how much reheating is taking place. We first consider
the contribution from η1. The energy dissipated is

Ė = − 4η1

3

(
ḃ⊥
b⊥

)2
P(n, T )

T
. (10.48)

For a Fermi gas at unitarity the energy density is related to the pressure by
E (n, T )= (3/2)P(n, T ). Equation (10.48) implies that the energy dissipated is pro-
portional to the local internal energy density. The source of the dissipated energy is
the reduction in the kinetic energy density relative to its value in ideal hydrodynamics.
The local kinetic energy density is

Ekin = m

2
n

(
ḃ⊥
b⊥

)2

x2⊥. (10.49)

Since the kinetic energy density differs from the spatial distribution of the dissipated
energy there has to be a dissipative contribution to the energy current. This current
is given by δ �j ε = (0, δ jεy , δ jεz ) with
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Fig. 10.3 Ratio η/n as a function of y = (mT )/n2/3 for the model defined in Eq. 10.42. The two
curves correspond to (from bottom to top) η1 = 1/(4π), 2/(4π)with η0 = 15/(32

√
π). The dashed

line shows the contribution from η1,which is the term that contributes directly to the Navier–Stokes
equation, and the dotted line is the contribution from η0. Note that the critical point for the onset of
superfluidity is yc � 0.72

δ jεz = vzδ�zz = − z
2η1 P(n, T )

3T

(
ḃ⊥
b⊥

)2

, (10.50)

and δ jεy = δ jεz (z ↔ y).The dissipative current flows from the outer edge of the cloud,
where the kinetic energy is peaked, to the center of the cloud, where the pressure is
largest.

Energy dissipation leads to reheating. The change in temperature is �T =
(�E )/cV . The time evolution of the temperature is governed by

Ṫ = − 4T0

3b4/3
⊥

(
ḃ⊥
b⊥

)
+ η1 P

cV T

(
ḃ⊥
b⊥

)2

, (10.51)

where the first term is related to the adiabatic expansion of the system, and the
second term is the dissipative correction. Note that if cV ∼ E /T, which is the case
in the high temperature limit, then reheating will preserve the fact that the cloud
is isothermal. In general the behavior of the specific heat is more complicated and
dissipation produces a temperature gradient. The relative importance of reheating is
governed by the parameter (η1ω⊥/T0)(P/(cV T )). In the high temperature limit we
can use P ∼ cV T and this expression reduces to the parameter β defined in Eq. 10.46.
Reheating becomes important at a time ω⊥t ∼β−3. Since β is typically very small,
this occurs very late during the evolution of the system.

A similar analysis of the effects of η0 leads to a number of puzzles. The energy
dissipated is independent of density, and the total energy dissipated over all space
is infinite. There is no change in the kinetic energy, and the source of the dissipated
energy is the viscous correction to the energy current. This current flows into the
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system from spatial infinity. The relative importance of reheating is governed by
the parameter (η0ω⊥/T0)((mT )3/2/n), which is always large in the dilute region of
the cloud.

10.3.4 Breakdown of Hydrodynamics

The constant term η∼ η0(mT )3/2 in the shear viscosity dominates in the dilute outer
regions of the cloud, and the difficulty in understanding the effects of this term
must be related to the breakdown of hydrodynamics in the dilute regime. A standard
criterion for the applicability of hydrodynamics is the condition that the Knudsen
number K n = lm f p/L , the ratio of the mean free path to the system size, is much
less than one. In the dilute regime the mean free path is given by

lm f p = 1

nσ
= 3

4π

mT

n
. (10.52)

The density is given by Eq. 10.6. In the dilute regime we can use the high temperature
limit of h(z), but the scaling arguments in the following are independent of the
functional form of h(z). For a comoving observer the density scales as n ∼ (mμ)3/2,
and the mean free path scales as lm f p ∼ T/(m1/2μ3/2). The evolution of T and μ is
governed by the scaling relations discussed in Sect. 10.2. We may use, in particular,
that T/μ∼ const and μ∼μ(0)/(b2⊥bx )

2/3. We conclude that in a comoving fluid
cell

K n = lm f p

L
∼

(
bx

b⊥

)1/3

. (10.53)

During the two-dimensional expansion the Knudsen number is dropping, which
implies that the hydrodynamic description is becoming more accurate. In the late,
three-dimensional stage, the Knudsen number is constant.

A more accurate criterion can be obtained by using a characteristic length or time
scale derived from the flow profile. Hydrodynamics is based on a derivative expansion
of the energy momentum tensor, and the validity of hydrodynamics requires that δ�i j

is small compared to the ideal fluid stress tensor. Consider the ratio of the moments
of the ideal and dissipative terms on the RHS of the Navier–Stokes equation

〈xk∇k P〉〈
xk∇ jδ�k j

〉 = 〈P〉〈 4
3η(∇kvk)

〉 (10.54)

where 〈.〉 denotes an integral over d3x and the index k is fixed. The ratio (η/P)(∇ ·v)
has a simple interpretation in kinetic theory. For a dilute gas η∼ nplm f p ∼ ρu2τm f t

and P ∼ ρu2, where n is the particle density, ρ is the mass density, p is the average
quasi-particle momentum, u the average velocity, and τm f t the mean free time. The
ratio ∇ · v ∼ τ−1

exp defines a characteristic expansion time. The quantity
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η

P
(∇ · v)∼ τm f t

τexp
(10.55)

measures the ratio of the mean free time over the expansion time. Hydrodynamics is
valid if τm f t 	 τexp.We observe that for η∼ P the freezeout criterion is independent
of position and only a function of time. We get

η

P
(∇zvz)= η1

T0
(bx b⊥)1/3 ḃ⊥ � η1

(3N )1/3λ1/3

1

(T0/TF )
(ω⊥t)1/3 , (10.56)

where we have assumed that the expansion is two-dimensional. We note that the
relevant parameter is the quantity β defined in Eq. 10.46. Freezeout occurs at
(ω⊥t f r )∼β−3. For typical values of β we find that t f r � tcross � tdiss, where
tcross ∼ (ω⊥λ)−1 is the crossing time, and tdiss∼5.9ω−1

⊥ is the characteristic time
for dissipative effects.

The freezeout time defined by Eq. 10.56 is very long, and the physical freezeout
is determined by the viscous effects in the dilute part of the cloud. In the case of a
spatially constant shear viscosity we find

η

P
(∇zvz)= η0(mT )3/2

P

(
ḃ⊥
b⊥

)
� 45π

8
√

2

(T0/TF )
2

(3λN )1/3
b1/3
⊥ ḃ⊥ exp

(∑
i

x2
i

b2
i R̄2

i

)
,

(10.57)
where we have used P = nT as well as the low density (high temperature) limit
of n0(x), see Eq. 10.6. The radius parameter R̄i is defined as R̄2

i = 2T0/(mω2
i ).

The condition (η/P)(∇zvz) determines a freezeout surface x f r (t). This surface is
initially at xi � Ri , but it moves inward as time increases and reaches the origin at
a time t f r ∼ω−1

⊥ (3λN )(TF/T0)
6. This time is also parametrically very long, but the

freezeout time at a characteristic distance xi � bi R̄i is significantly smaller.
Finally, we wish to mention one more quantity that characterizes a viscous flow.

The Reynolds number Re is defined as the ratio of inertial and viscous forces in the
system. In the case of a scaling flow with η∼ P this ratio is independent of position
and only a function of time. We find

Re = T0

η1ω
2⊥

b⊥ḃ⊥ � ω⊥t

β
. (10.58)

The Reynolds number is zero initially, but it grows quickly, reaching Re �β−1 at
(ω⊥t)= 1. For typical experimental parameters β−1 ∼ 100, which is large but not
large enough to cause instabilities. At later times even larger values of Re are reached,
but at these late times the system is simply free streaming. A constant contribution
to the viscosity does not lead to a viscous force, and does not directly contribute to
the Reynolds number.
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10.3.5 Relaxation Time Approach

The discussion in the previous section does not fully resolve the problems caused by
the dilute regions of the cloud. If the shear viscosity is proportional to the pressure
then the system freezes out at some time t f r . For values of η/P implied by the
data this time is much larger than the characteristic time for dissipative effects in
the evolution of the system, and the estimates in Sects. 10.3.1–10.3.3 are internally
consistent. If the shear viscosity is constant then there is a freezeout surface which
moves inward as a function of time. This implies that the integral in Eqs. 10.27 and
10.38 should be restricted to the region enclosed by the freezeout surface. However,
in order for energy to be conserved, and for viscosity to have an effect on the evolution
of the system, we would have to include an external force on the freezeout surface.

An approach that can describe the effects of freezeout without the need to introduce
an artificial surface is second order viscous hydrodynamic [26]. The second order
formalism takes into account terms with two derivatives of the thermodynamic vari-
ables in the dissipative correction to the stress tensor and energy current. In general,
the second order formalism contains a large number of new transport coefficients.
A phenomenological ansatz that has proven to be useful in many different applica-
tions is to treat the viscous part of the stress tensor as an independent hydrodynamical
variable which satisfies a relaxation equation

τR
∂

∂t
δ�i j = − δ�i j + δ�N S

i j , (10.59)

where τR is the relaxation time and δ�N S
i j is the Navier–Stokes expression for the

viscous contribution to the stress tensor, Eq. 10.25. An equation of this type was
first introduced by Maxwell and Cattaneo in the context of heat transport. More
recently, time or frequency dependent viscosities were considered in the study of
Bose condensed gases in [27, 28]. In relativistic hydrodynamics relaxation equations
for the viscous stress tensor are used in order to restore causality, see the review [29].

Scale invariance implies that τR(n, T )= w(mT/n2/3)/T where w(y) is a universal
function. In the dilute limit y � 1 the function w(y) can be calculated in kinetic theory
which gives τR = η/(nT ) [30]. This result corresponds to the estimate for τm f t given
in Eq. 10.55. The relaxation equation (10.59) requires an initial condition for the
viscous stress δ�i j . If is natural to assume that δ�i j = 0 at t = 0. In the center of the
cloud τR is small and the viscous stress quickly relaxes to the Navier–Stokes result.
In the dilute region τR → ∞ and the viscous contribution to the stress tensor remains
zero. This implies that even a spatially constant shear viscosity leads to a spatially
varying δ�i j and a non-zero drag force. This drag force is largest near the freezeout
surface and breaks the scaling nature of the flow. This means that a detailed study of
the Israel-Stewart equations will require numerical solutions of the hydrodynamic
equations. We can estimate the effect of the relaxation time by computing the energy
dissipation. We have

Ė = − 1

2

∫
d3xδ�i j

(
∇i v j + ∇ j vi − 2

3
δi j∇ · v

)
, (10.60)
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Fig. 10.4 Trap average 〈αn〉 = 〈η〉/N computed from a relaxation time equation with
η= η0(mT )3/2 and τR = η/(nT ). Contrary to the pure Navier–Stokes case τR → 0 the ratio 〈η〉/N
depends on the number of particles and the trap geometry. Here we have chosen N = 2 · 105 and
λ= 0.045. The solid shows the result for the elliptic flow field, and the dashed line corresponds to
the transverse collective mode, see Sect. 10.5

where δ�i j is determined by Eq. 10.59. The simplest approximation is to set
δ�i j = δ�N S

i j inside the freezeout surface and δ�i j = 0 outside.
In order to obtain more accurate estimates we have to solve the differential equa-

tion (10.59). As in Sect. 10.3.1 we may compute δ�N S
i j from the solution of ideal

hydrodynamics. The relaxation time can be calculated using the high temperature
result for the density profile. We find

ω⊥τR = 45π

8
√

2

1

(3λN )1/3

(
T

TF

)2

b4/3
⊥ exp

(
x2⊥

b2⊥ R̄2⊥
+ x2

z

R̄2
z

)
, (10.61)

which has the same functional form as the freezeout criterion in Eq. 10.57. The
viscous stress tensor δ�i j is determined by integrating Eq. 10.59 and the dissipated
energy can be computed from Eq. 10.60. By comparing �E with Eq. 10.27 we can
express the result in terms of an effective 〈αn〉. This quantity is shown in Fig. 10.4.
We observe that 〈αn〉 grows with temperature as 〈αn〉∼ T 3, much faster than one
would expect from the relation η∼ T 3/2.

There are no data for elliptic flow at temperatures above Tc, but we will compare
the relaxation time result to collective mode data in Sect. 10.5. We note that at low
temperature the effective 〈αn〉 is the same for expanding and oscillating systems, but
that at high temperature the two systems behave differently. In the expanding system
the hydrodynamic expansion time τexp continues to increase during the expansion,
whereas the period of the oscillation provides a fixed hydrodynamic time scale in
the case of the collective mode. The viscous relaxation time τR increases with tem-
perature. This implies that for the collective mode we eventually get τR > τexp and
the effective 〈αn〉 starts to decrease. In the expanding system, on the other hand, the
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relaxation time can always match the expansion time and 〈αn〉 continues to grow
with temperature.

10.4 Expansion From a Rotating Trap

The expansion from a rotating trap was studied in [14]. Rotating gases are of interest
for a number of reasons. The quenching of the moment of inertia in a superfluid Bose
gas was used as a signature of superfluidity [31]. The remarkable discovery in [14]
is that in a Fermi gas at unitarity the suppression of the moment of inertia is also
observed in the normal phase. It is clearly of interest to determine to what extent this
discovery places constraints on the shear viscosity [32].

10.4.1 Ideal Fluid Dynamics

The Euler equations for a Bose gas with P ∼ n were derived in [31]. The result is
easily generalized to a Fermi gas at unitarity [14]. As in the case of a non-rotating
trap the equations are independent of the temperature and the universal function f(y)
in Eq. 10.4. We have

α̇x + α2
x + α2 −	2 = μ̄ω2

x

b2
x

(10.62)

α̇y + α2
y + α2 −	2 = μ̄ω2

y

b2
y

(10.63)

α̇z + α2
z = μ̄ω2

z

b2
z

(10.64)

α̇ + α
(
αx + αy

) = μ̄aω2
x

2
(10.65)

	̇+	
(
αx + αy

) = 0. (10.66)

These equations have to be solved together with the continuity Eqs. (10.12–10.16).
In all there are ten coupled equations. In the case of a rotating trap there is no initial
expansion, αi (0)= 0, but either α(0) or 	(0) (or both) are non-zero. If the initial
flow is purely irrotational then α(0)=ωrot ,where ωrot is the angular velocity of the
trap. If the flow corresponds to rigid rotation then 	(0)=ωrot . Below the critical
temperature the flow of the superfluid component must be irrotational, but above Tc

both rotational and irrotational flows are possible.
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The equations simplify in the experimentally relevant case of strongly deformed,
slowly rotating traps, ωrot < ωx 	 ω⊥ with ω⊥ =ωy �ωz . In this limit the motion
of the fluid is dominated by the transverse expansion of the system. Up to corrections
of order O(λ2) or O((ωrot/ω⊥)2) we have

b⊥(t)�
{

1 + 1
2ω

2⊥t2 + O(t4) ω⊥t 	 1,
ω⊥t√
γ

+ c0 + O(t−1/3) ω⊥t � 1,
(10.67)

as in the case of a stationary trap. The orientation of the expanding cloud is described
by the parameter a defined in Eq. 10.11. We find

a(t)�
⎧⎨
⎩

− 2ωrot t
λ2 ω⊥t 	 1,

− caωrot
λ2ω2⊥t

ω⊥t � 1 (t < t3d),
(10.68)

where ca is a constant. Below we will show that ca = γ. At very late times, t >
t3d ∼ 1/(λ2ω⊥), we find a(t)∼ 1/t2. The result (10.68) holds irrespective of the
nature of the initial rotational flow. The parameter a(t) can be related to the angle of
the cloud with respect to the x-axis,

tan(2θ)= − aλ2b2
x b2

y

b2
x − λ2b2

y
. (10.69)

At early times, ωx t 	 1, the angle is proportional to the rotational frequency of the
trap, θ =ωrot t. The angular motion speeds up as byλ approaches bx . The angle goes
through 45◦ at

t45◦ =
√
γ

ωx
(10.70)

which is the identical to the crossing time in Eq. 10.24. At late times, and up to
corrections of O(ωrot/ω⊥), the angle approaches 90◦.The velocity field is dominated
by the transverse expansion of the system. In the limit ωrot < ωx 	 ω⊥ the velocity
fields αi are identical to those in the non-rotating case. We have

αy,z �
{
ω2⊥t ω⊥t 	 1,
1/t ω⊥t � 1,

(10.71)

and αx = O(λ2). The rotational components of the velocity field decay quickly.
If the initial flow is irrotational, α(0)=ωrot , then

α(t)�ωrot

(
1 − ω2⊥t2

)
(10.72)

for (ω⊥t) < 1. For (ω⊥t) > 1 the rotational component of the flow is small,
(α/ωrot ) 	 1, but the remaining flow decays slowly,α∼ t−1 for t < t3d andα∼ t−2
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for t > t3d . In ideal hydrodynamics an initially irrotational flow will remain irrota-
tional,	(t)= 0, for all t. If the initial flow corresponds to rigid rotation,	(0)=ωrot ,

then the early time behavior is given by

	(t)�ωrot

(
1 − 1

2
ω2⊥t2

)
. (10.73)

An initially rigid rotating flow induces a non-zero irrotational flow. For (ω⊥t) > 1
both components of the velocity field become much smaller than ωrot .

The angular momentum is given by

Lz =αm〈n(x2 − y2)〉 +	m〈n(x2 + y2)〉 + (
αx − αy

)
m〈nxy〉, (10.74)

where n is the density and 〈.〉 is an integral over the cloud. The moment of inertia of
a rigid rotor is Irig = m〈x2 + y2〉, and the irrotational moment of inertia is Iirr =
m〈x2 − y2〉. We have

m〈nx2〉= b2
x

1 − λ2

4 (abx by)2

L0

ωx
, (10.75)

m〈ny2〉= λ2b2
y

1 − λ2

4 (abx by)2

L0

ωx
, (10.76)

m〈nxy〉= −λ2

2 ab2
x b2

y

1 − λ2

4 (abx by)2

L0

ωx
, (10.77)

where the scale is set by

L0 = N

6

(3N )1/3

λ2/3

(
E0

EF

)
. (10.78)

In the experiment of Clancy et al. (ωrot/ωx )� 0.4 and L0/N � 131(E0/EF ). For
E0/EF = 1,which is in the normal phase, the angular momentum per particle is 50�.

At early times the trap is strongly deformed and Irig � Iirr . When the cloud
becomes almost spherical the irrotational moment is much smaller than the rigid
moment of inertia, Iirr 	 Irig. However, at times (ω⊥t) > 1 the angular momen-
tum is mainly carried by the last term in Eq. 10.74, which is related to the trans-
verse expansion of the system. This is true irrespective of the nature of the initial
rotational flow. For (ω⊥t) > 1 we have αym〈nxy〉� (ca/γ )(ωrot/ωx )L0. Angular
momentum conservation then fixes the constant ca in Eq. 10.68, ca = γ.At very late
time, t > t3d , the angular momentum is shared among all the terms in Eq. 10.74,
and the relative size of the different contributions depends on the initial conditions.
In practice, of course, hydrodynamics is no longer applicable at t > t3d .
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10.4.2 Dissipation

The effects of dissipation on the expansion from a rotating trap can be studied in
close analogy with Sects. 10.3.1–10.3.5. The rate of energy dissipation is

Ė = − 4

3

(
α2

x + α2
y + α2

z − αxαy − αxαz − αyαz + 3α2
) ∫

d3xη(x). (10.79)

For αx �αy � αz, α this expression reduces to the energy dissipated by the trans-
verse expansion of cloud, see Eq. 10.27. This implies that the main effect of dis-
sipation is to slow the transverse expansion of the cloud, and to delay the time
t45◦ . This delay is exactly the same as the delay in the crossing time in Eq. 10.34.
We have

(
δt

t

)
45◦

= 0.009

( 〈αs〉
1/(4π)

) (
1.3 · 105

N

)1/3 (
0.3

λ

)1/3 (
S/N

4.8

) (
2.1

E0/EF

)
.

(10.80)
We can confirm this estimate by solving the Navier–Stokes equation. The Navier–
Stokes equation can be derived using the moment method described in Sect. 10.3.2.
As before, an equivalent set of equations can be obtained from the viscosity model
given in Eq. 10.42. We get [33]

α̇x + α2
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x
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(
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]}
(10.81)
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(10.82)
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(10.83)
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]
. (10.85)

These equations are independent of the functional form of the pressure. A solution
of the Navier–Stokes equation for the trap parameters and initial conditions in [14] is
shown in Fig. 10.5. The experimental data were taken at E/EF = 0.56 which is in the
superfluid phase, and E/EF = 2.1 which is significantly above the phase transition.
Similar to the low temperature data for pure transverse expansion in Fig. 10.1 the
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Fig. 10.5 Time evolution of the angle of the major axis of a rotating expanding cloud after release
from the trapping potential. The data are taken from [14]. The two data sets were obtained with
initial energies E/EF = 0.56 and 2.1. The solid line shows the prediction of ideal fluid dynamics,
and the dashed lines shows the solution of the Navier–Stokes equation for β = 0.061. Using an
entropy per particle S/N � 4.8 this value of β implies a shear viscosity to entropy density ratio
〈αs〉= 0.60

low temperature result for a rotating cloud shows no dissipative effects, and the best
fit to the data is provided by ideal fluid dynamics.

The data for E/EF = 2.1 clearly show a delayed expansion. We find
(δt/t)45◦ � 0.063.Using (δt/t)� 1.16β from Eq. 10.32 we estimateβ � 0.057.This
estimate is quite accurate, the best fit of the Navier–Stokes solution to the data is
obtained for β = 0.061.Using N = 1.3 ·105, λ= 0.03 [14] and (S/N )� 4.8 [22] we
obtain 〈αs〉� 0.60. The measurements were extended to values of E/EF between
0.56 and 2.1 in [32]. This work reports values of η/s as small as 〈αs〉� (0.0 − 0.4).
Note that in this regime it becomes very difficult to measure the viscosity accurately.
A value of 〈αs〉= 0.1 affects the measured angle of the cloud by less than the with
of the lines in Fig. 10.5.

A more detailed study of viscous effects on the evolution of the system is shown
in Figs. 10.6, 10.7 10.8. We observe that viscosity slows down the evolution of the
scale parameters by, bz and a. More interesting is the effect on the velocity fields
α and	.Viscosity converts a fraction of the irrotational velocity field α into the rota-
tional velocity field	. This is also seen in the breakdown of the angular momentum,
see Fig. 10.8. The rotational component of Lz is not large, but it does lead to an
observable effect in the angular velocity of the cloud. Figure 10.9 shows that viscos-
ity leads to a decrease in �̇. During most of the evolution this effect is dominated
by the delayed expansion, but for t � t45◦ there is an extra reduction which is due
to an increase of the effective moment of inertia I = L/�̇ caused by the rotational



10 Scaling Flows and Dissipation in the Dilute Fermi Gas at Unitarity 397

0.0001 0.0002 0.0003 0.0004 0.0005

6

4

2

0

2

4

6

8

Fig. 10.6 Time evolution of the parameters a, bx , by , bz that characterize the scaling expansion
out of a rotating trap. Note that in this caseωy andωz are not exactly equal, and that the time scale is
different from Fig. 10.5. Here, we only show the early evolution of the system. Solid lines show the
solution of the Euler equation, and dashed lines show the solution of the Navier–Stokes equation
for β = 0.077
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Fig. 10.7 Time evolution of the parameters α and 	 which control the irrotational and rotational
components of the velocity field. Parameters were chosen as in Fig. 10.6. Solid lines show the
solution of the Euler equation, and dashed lines show the solution of the Navier–Stokes equation
for β = 0.077

flow. Unfortunately, the experimental data are for �(t) are not sufficiently accurate
to demonstrate this effect.
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Fig. 10.8 This figure shows different contribution to the total angular momentum of the expanding
cloud as a function of time. The angular momentum is given in units of the quantity L0 defined
in the text. The curves labeled irrotational, rigid, and expansion show the 〈x2 − y2〉, 〈x2 + y2〉,
and 〈xy〉 contributions. The solid and dashed lines correspond to ideal and viscous hydrodynamics,
respectively. The solid black line shows the (conserved) total angular momentum
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Fig. 10.9 This figure shows the angular velocity of the rotating cloud as a function of time. The solid
line shows the solution of the Euler equation, and the dashed line is the solution of the Navier–Stokes
equation for β = 0.077. The thin dashed line shows the result for the angular velocity obtained by
rescaling the solution of the Euler equation by a factor 1+(δt/t)45◦ � 1.1.The discrepancy between
the Navier–Stokes prediction and the rescaled Euler result in the regime where �̇ is large is due to
the rotational component of the flow. We note that I = L/�̇ is the moment of inertia

10.5 Collective Oscillations

In order to study collective oscillations we consider the Euler equation (10.19) in the
presence of the trapping potential. The equation of motion is
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b̈i = ω2
i

(bx bybz)2/3

1

bi
− ω2

i bi . (10.86)

The equilibrium solution is bx = by = bz = 1. We now consider small oscillations
around the equilibrium, bi (t)= 1 + ai eiωt . The linearized equation of motion gives

ω2ai =ω2
i

⎛
⎝2ai + γ

∑
j

a j

⎞
⎠ , (10.87)

which was derived in [34, 35, 36] using slightly different methods. For the radial
breathing mode ay = az = a⊥, ax = 0 we get ω2 = 2(1 + γ )ω2⊥ = (10/3)ω2⊥.
The energy dissipated can be computed from Eq. 10.27. We find

�E

Eosc
= − 4π

√
3

10
β � − 6.88 · β, (10.88)

where �E is the energy dissipated per period, Eosc is the energy of the collective
mode, and β is the parameter defined in Eq. 10.33. We note that the amount of energy
dissipated in one period of the transverse breathing mode is about three times larger
than the energy dissipated by transverse expansion, see Eq. 10.32.

We can also derive a Navier–Stokes equation, either by taking moments as in
Sect. 10.3.2, or by using a simple scaling form of the shear viscosity as in Sect. 10.3.3.
For the transverse breathing mode we find

b̈⊥ = ω2⊥
b7/3
⊥

− ω2⊥b⊥ − 2βω⊥ḃ⊥
b2⊥

. (10.89)

If β is small then this equation is approximately solved by a damped oscillating
function. We have

b⊥(t)= 1 + a⊥ cos(ωt) exp(−�t). (10.90)

Comparison with Eq. 10.88 gives �=βω⊥. The main feature of collective modes
is that the viscous term exponentiates so that even very small values of β are exper-
imentally accessible. In Fig. 10.10 we show a comparison between an exact solu-
tion of Eq. 10.89 for β = 0.05, a⊥(0)= 0.25 and the approximate solution (10.90).
We observe that the approximate solution is extremely accurate.

The experimentally measured damping rate can be used to estimate 〈αs〉.We have

〈αs〉= (3λN )1/3
(
�

ω⊥

) (
E0

EF

) (
N

S

)
. (10.91)

In Fig. 10.11 we show an analysis of the data obtained by Kinast et al. [9] using
Eq. 10.91. This plot is very similar to our earlier analysis [37] (see also [38, 39]),
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Fig. 10.10 Time evolution of the amplitude of the transverse breathing mode. The black line shows
the solution of the Euler equation and the solid green line is the solution of the Navier–Stokes
equation for β = 0.05. The dashed green line is the damped cosine function given in Eq. 10.90. The
trap frequency was chosen to be ω⊥ = 1696 Hz as in [10]

0.0 0.2 0.4 0.6 0.8

0.5

1.0

1.5

Fig. 10.11 Trap average 〈αs〉 = 〈η/s〉 extracted from the damping of the radial breathing mode.
The data points were obtained using Eq. 10.91 to analyze the data published by Kinast et al. [9].
The thermodynamic quantities (S/N ) and E0/EF were taken from [22]. The solid red and blue
lines show the expected low and high temperature limits. Both theory curves include relaxation
time effects. The blue dashed curve is a phenomenological two-component model explained in the
text

except that the temperature calibration and thermodynamic data have been updated
using the recent analysis published in [22].
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There are a number of important checks on the interpretation of the damp-
ing date in terms of viscous hydrodynamics that should be, or have already been,
performed. Viscous hydrodynamics predicts that the monopole mode in a spherical
trap is not damped at all. This prediction is quite striking, but it has never been tested.
Viscous hydrodynamics also predicts simple relationships between the damping con-
stant of the radial breathing mode and the radial quadrupole as well as the scissors
mode [37]. These predictions agree qualitatively with the data obtained by the Inns-
bruck group, but there are some structures in the data that do not fit a simple hydrody-
namic description. Finally, hydrodynamics predicts that the damping rate decreases
as N−1/3. This prediction does not agree with the data published in [9]. We note,
however, that Kinast et al. only checked the scaling behavior at very low temperature,
and that relaxation time effects may modify the particle number scaling.

We can also compare the results in Fig. 10.11 to theoretical prediction for the
shear viscosity in the low and high temperature limit. In the high temperature limit
the viscosity is independent of density and the main source of dissipation is the finite
relaxation time, see Sect. 10.3.5. In the case of periodic motion the relaxation time
equation (10.59) is easily solved. The dissipated energy is given by Eqs. 10.33, 10.88
with

〈αn〉= η0(mT )3/2
∫

d3x
1

1 + ω2τR(n(x))2
. (10.92)

We will use the kinetic theory result τR(n)= η/(nT )with η= η0(mT )3/2. In the high
temperature (low density) limit we can use the classical expression for the density
profile n(x). In this case the integral over x can be done analytically. We find

〈αn〉= − 45π

32

(
T

TF

)3

Li3/2

⎛
⎝−

[
const

(λN )2/3

(
T

TF

)4
]−1

⎞
⎠ , (10.93)

where const = 1125 · 31/3π2/64 � 250.1, and Liα(x) is the polylogarithm func-
tion. In the limit T 	 TF the result scales as 〈αn〉∼ y3 log(y)3/2 with y = T/TF . For
T � TF we get 〈αn〉∼ y−1. These results imply that both the temperature scaling
and the particle number scaling differ from naive expectations. The shear viscosity
scales as η∼ T 3/2, but 〈αn〉∼ T 3 log(T )3/2 at low T, and 〈αn〉∼ T −1 at high T.
Also, the scaling of the damping rate with N is �∼ N−1/3 log(N )3/2 at low T and
�∼ N 1/3 at high T, see Fig. 10.12. This implies that there are temperature regions
in which the dependence of the damping rate on N is small.

The prediction of Eq. 10.93 is shown as the solid blue line in Fig. 10.11.
We observe that the relaxation time model agrees well with the data for T ∼ (0.5 −
0.8)TF . For temperature less than 0.5TF the observed damping rate is bigger than
the prediction of the relaxation model. At very low temperature the shear viscosity
is expected to be dominated by the phonon contribution [23]

η= 0.018n

(
n2/3

mT

)5

. (10.94)
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Fig. 10.12 Damping rate of the radial breathing mode in units of the transverse trapping frequency.
This figure only shows the contribution from the dilute corona, computed using the relaxation time
approach. The solid line corresponds to N ≡ N0 = 2 · 105, λ= 0.045 as in [9]. The long dashed
and short dashed lines corresponds to N = 5N0 and N = 0.2N0, respectively

At low temperature we can compute the trap average by using the zero temper-
ature profile. We find 〈αn〉� 1.5 · 10−5(TF/T )5. This result becomes large for
T/TF < 0.1. In this regime relaxation time effects are important, and 〈αn〉 at finite
frequency goes to zero as T → 0.

Neither the low temperature nor the high temperature result provide a good
description of the data in the regime T � (0.15 − 0.40)TF . The dashed blue
line in Fig. 10.11 shows a purely phenomenological fit based on the functional
form η= η0(mT )3/2 + η1n5/3/(mT ) with η0 = 15/(32

√
π)� 0.264 and η1 � 0.06.

In this case the minimum value of η/n is 0.24 which occurs below the phase transition
at mT/n2/3 � 0.47.

10.6 Summary and Outlook

A special feature of the hydrodynamics of a unitary Fermi gas is the existence of
simple scaling solutions of the equations of ideal fluid dynamics. These solutions
are independent of the equation of state, the initial temperature and the number of
particles. The only time scales in the problem are the trap frequencies, see Fig. 10.13.
The existence of scaling solutions is related to the constraints imposed by scale
invariance on the equation of state, and to the harmonic character of the confinement
potential.

The properties mentioned above make scaling flows an ideal class of solution to
study the effects of shear viscosity. In this contribution we focused on three classes
of experiments, expansion from a deformed trap (“elliptic flow”), expansion from
a rotating trap, and damping of collective oscillations. These experiments provide



10 Scaling Flows and Dissipation in the Dilute Fermi Gas at Unitarity 403

0.5 1 1.5 2

100

200

300

Fig. 10.13 Time scales relevant to the expansion of a unitary Fermi gas from a deformed trap.
The inverse trap frequency is ω−1

⊥ = 0.024 ms. The scale tacc is the characteristic time for hydrody-
namic acceleration, where we have defined t = tacc to be the time when 80% of the initial internal
energy has been converted to kinetic energy. The characteristic time for viscous effects, tdis , is deter-
mined by the condition that the dissipated energy �E has reached 80% of its asymptotic value.
The freezeout time t f r is quite uncertain. Here, we show the time at which, for T0/TF = 0.21, the
freezeout surface reaches the point x⊥ = b⊥ R⊥.The crossing time tcr is the time at which the system
becomes spherical. The time t3d at which the expansion becomes three-dimensional is bigger by
another factor λ−1

somewhat complementary information, and they have different advantages and dis-
advantages:

• In the case of collective modes the effect of shear viscosity exponentiates, and as a
consequence the damping of collective modes is sensitive to very small values of
the shear viscosity. Collective modes also have the advantage that qualitatively the
effect of dissipation is very simple: The kinetic energy of the collective mode is
converted to heat, so that at the end of the evolution the system is again stationary,
but the temperature is increased. In the case of flow experiments the situation is
more complicated. Dissipation converts kinetic energy into heat but unless the
system freezes out first, the internal energy is eventually converted back to kinetic
energy. Because of the second law of thermodynamics, the final state of viscous
hydrodynamics must differ from that of ideal hydrodynamics, but the differences
can be subtle, manifesting themselves in violations of the simple scaling formulas
for the density and the velocity field.
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• The transverse expansion experiments provide detailed information about the time
dependence of the density and flow profiles. This information can be used to under-
stand the breakdown of hydrodynamics, for example by studying deviations from
the simple linear velocity profile predicted by ideal fluid dynamics. Transverse
flow experiments may also show a different, and possibly smaller, sensitivity to
relaxation effects. Figure 10.4 shows that, for T/TF < 0.4, the relaxation time
estimate of the trap averaged dissipation due to the spatially constant part of the
shear viscosity is similar for transverse flow and transverse collective modes. How-
ever, the local response of a rapidly expanding cloud is likely to be different from
that of an oscillating system.

• The expansion of a rotating cloud is sensitive to a new viscous effect, the conversion
of an irrotational flow �v ∼ �∇(xy) to a rotational flow �v ∼ ẑ × �x . Contrary to the
slowdown of the transverse expansion, which could in principle be due to scale-
breaking terms in the pressure or residual external potentials, this is a genuine
dissipative effect, since vorticity is conserved in ideal hydrodynamics.

The main difficulty in extracting the shear viscosity from the analysis of scaling
flows is associated with the role of the dilute corona of the cloud. Kinetic theory
predicts that in the dilute limit the shear viscosity is independent of density and only
depends on temperature. A simple analysis of the type presented in Sect. 10.3.3 then
implies that the dilute corona does not generate a dissipative force. It nevertheless
dissipates a large amount of energy. The analysis also suggests that freezeout only
occurs very late, see Sect. 10.3.4. There are a number of aspects of this analysis that
need to be improved:

• The Navier–Stokes equation is based on the assumption that the viscous correction
to the stress tensor appears instantaneously. This is particularly problematic in the
case of scaling flows, because the viscous contribution is spatially constant. The fact
that the ideal stresses propagate outward with the expansion of the system whereas
the dissipative stresses appear immediately indicates that causality is violated. This
problem can be addressed by including a finite relaxation time, or by solving a more
complete set of second order hydrodynamic equations.

• We have studied the effect of dissipative forces in the Navier–Stokes equations,
but we have computed the non-dissipative forces (pressure gradients) based on
an approximately isentropic expansion. This procedure neglects reheating, and
violates energy conservation. Reheating is important in the dilute corona, and
breaks the scaling nature of the expansion.

In addition to implementing these technical improvements it is important to con-
sider other experimental setups that are directly sensitive to the spatially constant
part of the shear viscosity. One option would be to measure the attenuation of sound
propagating in a very long elongated trap. Another idea would be to directly measure
the decay of a shear flow in a long channel.

Finally, we summarize the existing experimental constraints on the shear viscosity
of the unitary Fermi gas:
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• The damping of collective oscillations constrains the trap average 〈η〉/S ≡ 〈αs〉.
We find that this quantity varies between 〈αs〉� 1 at T/TF � 0.8 and 〈αs〉� 0.5
at T/TF � 0.2. In the regime 0.4 ≤ T/TF ≤ 0.8 the temperature dependence
is consistent with η∼ (mT )3/2 and a relaxation time that scales as τR ∼ η/(nT ).
At lower temperatures an additional contribution is needed. In a simple model the
minimum of the shear viscosity to density ratio is η/n � 0.2.

• The expansion of a rotating cloud gives 〈αs〉� 0.8 at T/TF � 0.8, and 〈αs〉� (0.0−
0.4) at T/TF � 0.2 [32]. The latter results are smaller than the values extracted
from collective oscillations, although the errors are also somewhat larger. It will be
important to determine whether this discrepancy is due to the effects of the dilute
corona, and whether the smaller values of 〈αs〉 are more representative of the shear
viscosity to entropy density ratio in the core.

Note added: After the initial version of this contribution was finished dissipative
effects in the expansion of a dilute Fermi gas at temperatures T � TF were stud-
ied experimentally by Cao et al. [40]. This work nicely demonstrates the scaling
〈αn〉∼ T 3 predicted in Fig. 10.4. Numerical solutions to the equations of dissipative
hydrodynamics were studied in [41]. This work shows that quantitative estimates of
the shear viscosity have to take into account the effects of reheating.

Acknowledgments This work was supported in parts by the US Department of Energy grant

DE-FG02-03ER41260. We are grateful to John Thomas for many useful discussions, and to Jiunn-

Wei Chen for pointing out an error in an earlier version of this contribution.

References

1. Bloch, I., Dalibard J., Zwerger, W.: Rev. Mod. Phys. 80, 885 (2008) [arXiv:0704.3011]
2. Giorgini, S., Pitaevskii, L.P., Stringari, S.: Rev. Mod. Phys. 80, 1215 (2008) [arXiv:0706.3360]
3. Schäfer, T., Teaney, D.: Rept. Prog. Phys. 72, 126001 (2009) [arXiv:0904.3107 [hep-ph]]
4. Danielewicz, P., Gyulassy, M.: Phys. Rev. D 31:53 (1985)
5. Policastro, G., Son, D.T., Starinets, A.O.: Phys. Rev. Lett. 87, 081601 (2001) [arXiv:hep-th/

0104066]
6. Kovtun, P., Son, D.T., Starinets, A.O.: Phys. Rev. Lett. 94, 111601 (2005) [arXiv:hep-th/

0405231]
7. O’Hara, K.M., Hemmer, S.L., Gehm, M.E., Granade, S.R., Thomas, J.E.: Science. 298, 2179

(2002) [cond-mat/0212463]
8. Kinast, J., Hemmer, S.L., Gehm, M.E., Turlapov, A., Thomas, J.E.: Phys. Rev. Lett. 92, 150402

(2004) [cond-mat/0403540]
9. Kinast, J., Turlapov, A., Thomas, J.E.: Phys. Rev. A 70, 051401(R) (2004) [cond-mat/0408634]

10. Kinast, J., Turlapov, A., Thomas, J.E.: Phys. Rev. Lett. 94, 170404 (2005) [cond-mat/0502507]
11. Altmeyer, A., Riedl, S., Kohstall, C., Wright, M., Geursen, R., Bartenstein, M., Chin, C., Hecker

Denschlag, J., Grimm, R.: Phys. Rev. Lett. 98, 040401 (2007) [cond-mat/0609390]
12. Altmeyer, A., Riedl, S., Kohstall, C., Wright, M., Hecker Denschlag, J., Grimm, R.: Phys. Rev.

Lett. 98, 103602 (2007) [cond-mat/0611285]
13. Wright, M.J., Riedl, S., Altmeyer, A., Kohstall, C., Sanchez Guajardo, E.R., Hecker Denschlag,

J., Grimm, R.: Phys. Rev. Lett. 99, 150403 (2007) [arXiv:0707.3593[cond-mat.other]]



406 T. Schäfer and C. Chafin

14. Clancy, B., Luo, L., Thomas, J.E.: Phys. Rev. Lett. 99, 140401 (2007) [arXiv:0705.2782 [cond-
mat.other]]

15. Riedl, S., Sanchez Guajardo, E.R., Kohstall, C., Altmeyer, A., Wright, M.J., Hecker Denschlag,
J., Grimm, R., Bruun, G.M., Smith, H. Phys. Rev. A 78, 053609 (2008) [arXiv:0809.1814[cond-
mat.other]]

16. Carlson, J., Reddy, S.: Phys. Rev. Lett. 95, 060401 (2005) [cond-mat/0503256]
17. Bulgac, A., Drut, JE., Magierski, P.: Phys. Rev. A 78, 023625 (2008) [arXiv:0803.3238 [cond-

mat.stat-mech]]
18. Nascimbene, S., Navon, N., Jiang, K., Chevy, F., Salomon, C. [arXiv:0911.0747[cond-mat.

quant-gas]]
19. Menotti, C., Pedri, P., Stringari, S.: Phys. Rev. Lett. 89, 250402 (2002) [cond-mat/0208150]
20. Thomas, J.E., Kinast, J., Turlapov, A.: Phys. Rev. Lett. 95, 120402 (2005) [cond-mat/0503620]
21. Son, D.T.: Phys. Rev. Lett. 98, 020604 (2007) [arXiv:cond-mat/0511721]
22. Luo, L., Thomas, J.E.: J. Low Temp. Phys. 154, 1 (2009) [arXiv:0811.1159[cond-mat.other]]
23. Rupak, G., Schäfer, T.: Phys. Rev. A 76, 053607 (2007) [arXiv:0707.1520 [cond-mat.other]]
24. Bruun, G.M., Smith, H.: Phys. Rev. A 72, 043605 (2005) [cond-mat/0504734]
25. Bruun, G.M., Smith, H.: Phys. Rev. A 75, 043612 (2007) [cond-mat/0612460]
26. Garcia-Colina, L.S., Velascoa, R.M., Uribea, F.J.: Phys. Rep. 465, 149 (2008)
27. Nikuni, T., Griffin, A.: Phys. Rev. A 69, 023604 (2004) [cond-mat/0309269]
28. Griffin, A., Nikuni, T., Zaremba, E.: Bose-condensed gases at finite temperature. Cambridge

University Press, Cambridge (2009)
29. Romatschke, P.: Int. J. Mod. Phys. E 19, 1–53 (2010) [arXiv:0902.3663 [hep-ph]]
30. Bruun, G.M., Smith, H.: Phys. Rev. A 76, 045602 (2007) [arXiv:0709.1617]
31. Edwards, M., Clark, C.W., Pedri, P., Pitaevskii, L., Stringari, S.: Phys. Rev. Lett. 88, 070405

(2002)
32. Thomas, J.E.: Nucl. Phys. A 830, 665C–672C (2009) [arXiv:0907.0140v2 [cond-mat.quant-

gas]]
33. Clancy, B.: Ph.D. thesis, Duke University (2008)
34. Heiselberg, H.: Phys. Rev. Lett. 93, 040402 (2004) [cond-mat/0403041]
35. Stringari, S.: Europhys. Lett. 65, 749 (2004) [cond-mat/0312614]
36. Bulgac, A., Bertsch, G.F.: Phys. Rev. Lett. 94, 070401 (2005) [cond-mat/0404687]
37. Schäfer, T.: Phys. Rev. A 76, 063618 (2007) [arXiv:cond-mat/0701251]
38. Gelman, B.A., Shuryak, E.V., Zahed, I.: Phys. Rev. A 72, 043601 (2005) [nucl-th/0410067]
39. Turlapov, A., Kinast, J., Clancy, B., Luo, L., Joseph, J., Thomas, J.E.: J. Low Temp. Phys. 150,

567 (2008) [arXiv:0707.2574]
40. Cao, C., Elliott, E., Joseph, J., Wu, H., Petricka, J., Schäfer, T., Thomas, J.E.: Science 331, 5

(2011) [arXiv:1007.2625 [cond-mat.quant-gas]]
41. Schäfer, T.: Phys. Rev. A 82, 063629 (2010) [arXiv:1008.3876 [cond-mat.quant-gas]]



Chapter 11
Thermodynamics of Fermi Gases

F. Chevy and C. Salomon

11.1 Introduction

Recently, ultra-cold atoms have established a very fruitful connection with condensed
matter physics, nuclear physics, astrophysics, and high energy physics on many-
body problems in strongly correlated systems. Starting from the pioneering work
of Popov and Eagles in the 1970s [1], the connection between superfluidity in a
fermionic system with attractive interaction and superfluidity of bosonic pairs of
fermions has been the subject of intense theoretical activity (See for instance [2, 3]
and other contributions in this book). While the two limiting cases, weakly attractive
Fermi gas and weakly repulsive Bose gas are well described by mean field theories,
the so-called BEC–BCS crossover region where the gas is strongly correlated poses
a challenging theoretical problem. A flurry of theoretical works (see for instance
[2, 4–9]) have been developed in order to address the properties of this seemingly
simple many-body system of a fermionic species with two spin states interacting
with purely s-wave contact potential, but with tunable strength.

On the experimental side the field of ultracold Fermi gases started soon after
Bose–Einstein condensation in dilute gases was first observed in 1995 [10]. Quan-
tum degeneracy in a gas of fermionic atoms was obtained in 1999 [11]. Spectacular
progress has been achieved since then because strong interactions in a stable sys-
tem could be produced thanks to the Fano-Feshbach resonance mechanism and the
unexpected stability of the gas provided by the Pauli exclusion principle [2, 12, 13].
In these systems, the strong interactions within the gas required the development of
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new probes. For instance, the usual thermometry used in dilute Bose gases based
on time of flight expansion could no longer be used because of the strongly hydro-
dynamic behavior of the gas [14, 15]. The transition from the normal phase to a
superfluid state could not be observed as easily as in Bose gases and superfluidity
was first produced for diatomic molecules formed for positive values of the scattering
length [16–19]. In a strongly interacting, spin balanced Fermi gas, the formation of
the superfluid is accompanied only by minute changes of the density profile of the
trapped sample [20]. The pair-projection method has been used to study the conden-
sation of fermionic pairs by projection onto molecular states [21, 22]. A direct proof
of superfluidity was beautifully given by the observation of vortex lattices produced
by stirring the gas into rotation [23]. Collective excitation modes have also been a
very useful probe of the system to identify deviations from mean-field predictions
across the BEC–BCS crossover [24, 25]. Radio-frequency spectroscopy has also
revealed the formation of pairs [20, 26] and provided information on the pairing
gap. Momentum resolved radio-frequency (RF) spectroscopy has been used to mea-
sure the spectral function in the strongly interacting gas [27]. Bragg spectroscopy
has probed the short-range pair correlation function in the strongly interacting
regime [28] and checked the universality of Tan’s relations [29] through measure-
ments of the static structure factor in the BEC–BCS crossover. Tan’s universal rela-
tions have also been checked by RF spectroscopy and measurement of the high
momentum tail of the k distribution [28, 30].

The possibility to prepare imbalanced spin systems (polarized superfluid) has
revealed the robustness of Cooper pairs to the mismatch of the Fermi surfaces and
the Clogston–Chandrasekhar limit of superfluidity. Phase separation of the superfluid
core and the polarized normal phase has been observed [31, 32] unveiling in the dilute
normal phase Fermi polaron physics directly comparable with theoretical models
[33, 34].

In this Chapter, we focus on the macroscopic probes of strongly interacting Fermi
gases. These techniques give access to the thermodynamics of these systems, and
allow in particular the determination of their equation of state. Recent progress has
led to a detailed and quantitative comparison with advanced theoretical models.
We show that these quantities have close connections with microscopic properties of
the cloud, such as the momentum distribution or the low energy excitation spectrum.

This chapter is organized as follows. We first introduce the experimental scheme
used to measure the equation of state of the gas in the Grand-Canonical Ensem-
ble. We then focus on the zero temperature regime and show that this method
reveals the Lee-Yang and Lee-Huang-Yang corrections. We then address the effect
of spin imbalance and the robustness of the superfluid against spin polarizing fields.
We show that the macroscopic thermodynamic properties of the spin imbalanced
Fermi gas can be simply described from the properties of the Fermi-polaron. Finally,
we describe the finite temperature phase diagram and discuss the Fermi Liquid nature
of the normal phase. Considering the amount of theoretical work on the subject on the
last three decades, it is impossible to refer accurately to all contributions. Additional
information can be found in the other chapters of this book.
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11.2 Thermodynamics of Strongly Interacting Fermi Gases

Thermodynamic properties of this gas in the crossover have been explored through
specific heat, entropy, collective mode, sound velocity, critical velocity, and moment
of inertia studies [19, 24, 35–41].In these measurements only quantities that are
averaged over the inhomogeneous density in the trap have been derived making
comparison with many-body theories developed for a uniform system often diffi-
cult. A further difficulty resides, as stated above, in the precise determination of the
gas temperature, and in particular of the superfluid critical temperature. This has
been solved by different means. A first solution uses spin imbalanced gases where
the in-trap phase separation enabled a fit of the temperature on the wings of the
Thomas-Fermi distribution of the majority spin component [20]. A second solution
implemented in [42–44] uses as a thermometer a third species that is is thermal con-
tact with, but minimally disturbs, the strongly interacting gas. Recently, a new probe
for these ultracold Fermi gases has been introduced. It is based on the study of local
density [45, 46] or spin fluctuations [47]. This probe was first validated on weakly
interacting Fermi gases providing an independent measure of temperature. The spin
fluctuations provide access to the gas magnetic susceptibility and pair formation, and
are vastly reduced in the paired SF phase [47].

A particularly interesting case is achieved for resonant interaction, the so-called
unitary limit where 1/a = 0. In this situation the scattering length is irrelevant.
As first pointed out in [48], the only energy scale is the Fermi energy EF and distance
scale the average inter particle distance k−1

F . Thermodynamic properties of the gas
such as entropy, energy, compressibility, and specific heat, are universal and depend
only on the ratio μ/T where μ is the chemical potential and T the temperature.
In particular, in the limit of very low temperature, the relation between μ and EF
should read:

μ= ξs EF, (11.1)

where ξs is a pure number and the index s refers to the superfluid phase. Several
measurements and theoretical predictions for this important parameter have been
reported with increasing precision pointing, as we will see below, towards a value of
0.40(2). This universality is valid under the assumption that no short range parameter
other than a is involved in the description of the interactions.

11.2.1 Thermodynamics in the Grand Canonical Ensemble
and the Local Density Approximation

The thermodynamic equation of state (EoS) is a central quantity for describing
the macroscopic properties of a system in thermal equilibrium. Thermodynamic
potentials contain all global information over the system and we will see below that
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expressing the EoS in the grand canonical ensemble enables a very simple connection
with experimental quantities such as the in-trap position distribution.

In the local density approximation (LDA), one assumes the existence of a meso-
scopic length �, smaller than the size of the system, but larger than the interparticle
distance, over which the system can be considered homogeneous and at thermo-
dynamical equilibrium. Let us consider an imaginary box of size � centered on a
position r. According to the local equilibrium hypothesis, it is possible to define
local intensive properties such as pressure, temperature or chemical potential. This
box can exchange energy and atoms with the rest of the cloud which acts as a reser-
voir, suggesting that the grand canonical ensemble is the most suitable formalism to
describe the properties of a trapped system.

The equilibrium state in the mesoscopic volume is given by the minimization
of the grand-potential �(T, μ, V )= E − T S − ∑

i μi Ni , where V is the volume,
E the energy, S the entropy, and Ni the number of particles of species i. Differentiating
this relation using well known thermodynamical identities

d�= − SdT − PdV −
∑

i

Ni dμi (11.2)

According to this identity, T, μi and V are the natural variables characterizing the
grand-potential. Interestingly, among them, V is the only extensive quantity. More-
over, using the extensivity of the grand potential, we know that if the size of the
system is multiplied by λ, � is scaled by the same factor. Using Euler’s relation, it
is then possible to show that

�= V
∂�

∂V μi ,T
= − PV . (11.3)

In other words, the pressure is proportional to the grand-potential and minimizing
� is equivalent with maximizing P. Another consequence is the celebrated Gibbs-
Duhem relation that we obtain by plugging �= − PV into Eq. 11.2, that is

V dP = SdT +
∑

i

Ni dμi . (11.4)

Let us now go back to the case of a trapped system and we define Uσ (r) as the local
potential trapping particles of spin σ. Locally, we can assume that the gas contained
by the mesoscopic volume centered on r is homogeneous and its energy spectrum is
simply shifted by

∑
σ Uσ (r)Nσ . In that case the grand canonical partition function

is simply

�=
∑
α

e−β(E0
α−

∑
σ [(μσ−Uσ (r))Nσ,α], (11.5)

where the sum spans the eigenstates |α〉 of the grand-canonical Hilbert space and E0
α

is the spectrum of the untrapped system. Just like the energy, the chemical potential
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of the system is simply shifted by the trapping potential, and using the identity
−PV =�= − kBT ln�, we can write the grand-potential as

P = Ph(T, μσ − Uσ (r)), (11.6)

where Ph is the pressure of the untrapped homogeneous system.
To calculate the density of spin σ particles, we use the Gibbs-Duhem identity

nσ = (∂P/∂μσ )T thus yielding

nσ (r)= nσ,h(T, μσ − Uσ (r)), (11.7)

with nσ,h = (∂Ph/∂μσ )T .Knowing the EoS of the homogeneous system, this equa-
tion allows one to reconstruct the density profile of the trapped gas. This equation is
usually written in a more transparent form by introducing μσ,h(nσ , T ) as the chem-
ical potential of a homogeneous untrapped system of density nσ and temperature T.
Inverting Eq. 11.7 thus yields the condition

μσ =μh,σ (nσ (r), T )+ Uσ (r), (11.8)

which can be interpreted as stating that the total chemical potential μσ is the sum
of that of a homogeneous gas and the trapping potential. This approximation is
known as the Local Density Approximation and its validity ranges from trapped
Fermi gases [44, 49], as described here, to bosonic systems, mixtures, and optical
lattices [50]. In the last case, it is at the origin of the now famous wedding cake
structure characterizing Mott insulator phases, with a particularly simple EoS in the
grand canonical ensemble [50].

11.2.2 Measuring the Local Pressure of a Trapped Fermi Gas

In situ absorption images are particularly well suited to accessing the local pressure
of a harmonically trapped gas when assuming the LDA is valid. Letωx , ωy, ωz be the
trap frequencies. Assume the absorption of a two component Fermi gas (σ = 1, 2)
is imaged by a probe beam propagating along the y direction onto a CCD camera
in the z, x plane. The two spin states are imaged independently by two successive
short (10μs) pulses of resonant light. Let us introduce the doubly-integrated optical
density:

n̄σ (z)=
∫

dxdyn(x, y, z), (11.9)

and

μσ z =μ0
σ z − 1

2
mω2

z z2 (11.10)
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Then, it was shown in [51–53] that the local pressure of the gas along the z axis is
simply given by:

P(μ1z, μ2z, T )= mωxωy

2π
(n̄1(z)+ n̄2(z)) (11.11)

In contrast to the Abel transform method introduced first in [54] to derive an equation
of state, the pressure along the z axis results from a double integration that consid-
erably reduces technical noise. When the temperature T and the chemical potentials
at the trap center μ0

1, μ
0
2 are known, each abscissa z provides a realization of the

equation of state P(μ1z, μ2z, T ). Thus a single image provides a large number of
realizations of the EoS over the interval [−∞, μ0

1] and [−∞, μ0
2]. Further averaging

of successive images can be performed leading to a low noise equation of state of
the homogeneous gas. Several methods can be employed to measure μ0

1 and μ0
2 and

T and we refer the reader to [44] and [50] for further details. Many systematic errors
can be compensated when using this method so that the overall accuracy (statistical
+ systematic) of the method currently reaches the 5% level. The method can also
be generalized to anharmonic potentials. Quantitative comparisons with advanced
theoretical models and numerical calculations developed for homogeneous gases can
now readily be performed.

11.3 The Zero Temperature Phase Diagram

11.3.1 The BEC–BCS Crossover

We first study the low temperature equation of state of an unpolarized two com-
ponent Fermi gas. In the weakly attractive limit (a small and negative), the system
is described by the celebrated BCS theory that was introduced first by Bardeen,
Cooper and Schrieffer to understand the microscopic mechanisms of superconduc-
tivity in metals [55]. This mean-field theory stipulates that superfuidity arises from
the pairing of opposite-spin fermions into so-called Cooper pairs. In the early 80’s
an extension to the strongly attractive regime was proposed by Leggett [56], Noz-
ières and Schmitt-Rink [57]. In this BEC–BCS crossover theory, they suggested that
by changing the strength of interactions, it would be possible to connect the BCS
regime to the strongly attractive limit where the Cooper pairs turn into tightly bound
dimers and the system behaves at low temperature as a Bose-Einstein Condensate of
molecules.

Since it is difficult to change the interaction strength between electrons in metals,
this theory remained untested for twenty years, despite a revival of interest in the
90’s with the study of high critical temperature superconductors which are thought
to operate in an intermediate regime of interaction similar to that of the BEC–BCS
crossover.

The equation of state of an unpolarized, two component Fermi gas is presented
in Fig. 11.1 (taken from [49]). Dimensionally, the grand canonical equation of state
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Fig. 11.1 Equation of state of a T = 0 Fermi gas in the BEC–BCS crossover, data: black circles; blue
and red solid lines: Padé expansion. Left Comparison with analytical expansions: MF: mean-field,
LY: Lee-Yang, LHY: Lee-Huang-Yang. Right comparison with advanced many-body calculations:
quantum Monte-Carlo (red open circles) [7]; Diagrammatic (green open square) [8]; Nozières-
Schmitt-Rink (blue triangle) [9]; mean-field theory (blue solid line)

of the gas can be parameterized by a single universal function uS defined by

P(μ)= 2P0
F (μ)uS(δ̃), (11.12)

where

P0
F (μ)=

1

15π2

(
2m

�2

)3/2

μ5/2 (11.13)

is the pressure of a zero temperature, single component, ideal Fermi gas of chemical
potential μ given by δ̃= �/

√
2mμ̃a and μ̃=μ + Eb is the chemical potential cor-

rected by the binding energy of the dimers,1 when they exist (i.e. for a> 0 in which
case Eb = �

2/2ma2). δ̃ measures the strength of the interactions, and generalizes
1/kF a in the grand canonical ensemble. In particular, the two quantities are equal
for an ideal Fermi gas at zero temperature for which μ̃= EF , and δ̃= 1/kF a.

The dimensionless function uS was measured using the experimental scheme
presented above and is displayed in Fig. 11.1, where it is compared with advanced
theoretical calculations. As predicted, the transition between the two limiting cases is
smooth and confirms the BEC–BCS crossover scenario. We now discuss its different
limits.

Let us start with the weakly attractive BCS regime where a is small and negative.
In this regime, the condensation energy (defined as the difference between the ener-
gies of the normal and superfluid phases) is proportional to �2, where � is the gap

1 This guarantees that μ̃ stays positive, by contrast with μ which becomes negative in the BEC
limit due to the large contribution of the binding energy.
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which vanishes exponentially in the BCS limit. As a consequence, the correction
to the energy of the superfluid is essentially the same as that of the normal gas and
can be obtained from a perturbative expansion in the weakly interacting limit [58].
The expansion to second order of the Fermi gas was obtained for the first time by
Lee and Yang [59] and was extended to third order in Baker [60]. At this level of
approximation, the energy E of an ensemble of N = N↑ + N↓ spin 1/2 particles in a
box of volume V is given by

E

N
= 3

5
EF

[
1 + 10

9π
kF a + 4

21π2 (11 − 2 ln 2) (kF a)2 + 0.03(kF a)3 + ...

]
,

(11.14)
where kF = (3π2n)1/3 is the Fermi wave-vector, n = N/V is the total particle density
and EF = �

2k2
F/2m is the Fermi energy. In the far BEC limit where the size of the

dimers becomes small compared to the interparticle distance, the gas behaves as a
Bose gas of point-like particles. The equation of state of a gas of weakly interacting
bosons was first obtained by Lee, Huang and Yang who demonstrated that up to
second order in the boson-boson scattering length abb, the energy E of an ensemble
of Nb repulsive bosons of mass mb is [61]

E

Nb
= gbbnb

2

(
1 + 128

15
√
π

√
nba3

bb + ...

)
, (11.15)

with nb = Nb/V the density of bosons and gbb = 4π�
2abb/mb. Beyond the Lee-

Huang-Yang correction, the equation of state is no longer universal and depends
on the microscopic details of the potential, in particular the characterization of
the 3-body interactions [62, 63]. Using diagrammatic techniques, one can show
that the equation of state of the fermionic superfluid in the BEC limit is given by
Eq. 11.15 [64] with the correct value of the dimer-dimer scattering length abb∼0.6a
[12, 65], Nb = N/2 and the mass mb = 2m. This result is confirmed by analysis of
the equation state obtained using Fixed Node Monte Carlo simulations [6].

As displayed in Fig. 11.1, the two limiting cases corresponding to Eq. 11.14 and
11.15 can be recast in the grand canonical ensemble and compared to experimental
data obtained by the scheme presented above. In the two cases, we find that the
mean-field corrections are not sufficient to interpret the data and the Lee-Yang and
Lee-Huang-Yang corrections are necessary to recover agreement between theory and
experiment.

The third region of interest is unitarity where |a| = ∞, and hence δ̃= 0. In this
case, Eq. 11.12 takes a remarkably simple form, since we have

P(μ)= P0
F (μ)

ξ
3/2
S

, (11.16)

where ξ−3/2
S = uS(0) is a numerical constant.2 We see that the equation of state of

the unitary gas is thus very simple, since within a numerical factor, it is identical

2 The definition is chosen so as to write the chemical potential as μ= ξs EF as discussed above.
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to that of an ideal gas. Despite the high microscopic complexity of the unitary gas,
the value of ξS is thus the only ingredient necessary to the understanding of its
macroscopic behavior. As a consequence, its precise determination has attracted an
intense theoretical [6, 66–68] and experimental [14, 19, 31, 36, 49, 69] effort, and
its accepted value is now ξS = 0.40(2).

We conclude our discussion of the BEC–BCS crossover at zero temperature by
noting that, although the equation of state presented in Fig. 11.1 gives information on
the macroscopic behavior of the system, it can be related to microscopic properties
of the system using an intriguing relationship between the energy of the gas and its
momentum distribution as uncovered by S. Tan [70]. Indeed, in the case of a contact
potential, the momentum distribution nk of the gas scales at large momenta like

nk ∼ C

k4 . (11.17)

S. Tan demonstrated that C could be related to several macroscopic quantities of the
system, with in particular

C = − 4πm

�2

dE

d(1/a)
. (11.18)

The knowledge of the thermodynamic equation of state thus gives access to some
microscopic features of the equation of state of the system which can be compared
to experiments measuring directly the momentum distribution or the static structure
factor [28, 30]. The figure presents several determinations of the contact coefficient in
the limit of zero temperature in the crossover. This relationship between macroscopic
and microscopic properties was also confirmed by the analysis of photoassociation
measurements [71, 72] (Fig. 11.2).

11.3.2 Spin Imbalanced Gases
and the Clogston–Chandrasekhar Limit

The most salient feature of fermionic superfluidity is the existence of a pairing gap
which is responsible for most properties of these systems. In principle, its experimen-
tal determination requires using microscopic probes (such as tunneling microscopes
in solid state devices or radio-frequency spectroscopy with cold atoms [26, 73]).
However, Clogston and Chandrasekhar pointed out a subtle relationship between the
gap and the spin susceptibility of the system [74, 75]. Indeed, in the presence of a
chemical potential imbalance h = (μ↑ −μ↓)/2> 0, it is in principle more favorable
to spin flip down atoms into spin up state. However, this also breaks a Cooper pair
and thus costs an energy � corresponding to the pairing gap. A careful thermody-
namic study shows that, as a consequence, a spin imbalanced superfluid remains a
local energy minimum at low temperature as long as |h| stays smaller than � (see
section 9.1). Beyond that limit, it is no longer locally stable and the ground state must



416 F. Chevy and C. Salomon

JILA Momentum

RF

PES

ENS

0

0

0.1

0.2

0.3

0.4

3 2 1

Fig. 11.2 Comparison between thermodynamic and microscopic determination of Tan’s contact in
the limit of zero temperature. The JILA data include momentum distribution, radiofrequency (RF)
spectroscopy and photoemission spectroscopy (PES) and are measured over the whole trapped
sample. The ENS data is taken from the homogeneous gas equation of state (from Fig. 11.1) and
averaged over the harmonic trap following the approach of [72]

become spin-polarized. This phase transition can be illustrated in the far BEC limit
where the polarized system behaves like a Bose-Fermi mixtures of nearly point-like
dimers and unpaired atoms, as demonstrated in [76, 77] and observed experimen-
tally in [78]. Assuming N↑> N↓, we can form Nb = N↓ bosonic dimers, leaving
thus Na = N↑ − N↓ unpaired atoms. In the far BEC limit where interactions can be
treated within mean-field approximation, the equation of state of the corresponding
Bose-Fermi mixture is [79]

E

V
= − nb

�
2

ma2 + gbbn2
b

2
+ gabnanb + 3na

5
EFa, (11.19)

where V is the volume of the system, nα = Nα/V is the density of particles α ∈
{a, b}, EFa is the Fermi energy of the remaining atoms and gab is the coupling con-
stant describing s-wave atom-dimer interactions, with a scattering length aab = 1.2a
[80]. As discussed already, it is natural to describe the Clogston–Chandrasekhar limit
in the grand canonical ensemble by introducing two chemical potentials μ↑ and μ↓
as well as the grand potential�= E −∑

σ μσ Nσ . In terms of the chemical potential
imbalance h and μ̄= (μ↑ + μ↓)/2, the grand potential is thus given by

�

V
= − nb

�
2

ma2 + gbbn2
b

2
+ gabnanb + 3na

5
EFa − 2μ̄nb − (μ̄+ h)na . (11.20)

At given chemical potentials (μ̄, h), the equilibrium configuration of the system is
given by the pair (na, nb) minimizing �. Following the aforementioned argument,
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we first discuss the local stability of the unpolarized superfluid, corresponding to
na = 0. A first equilibrium condition is given by ∂nb�= 0, yielding

μ̄= − �
2

2ma2 + gbbnb

2
, (11.21)

which sets the relation between the chemical potential μ̄ and the density of molecules
in an unpolarized system.

Let us now study the stability of the pairing against spin polarization by consid-
ering the addition of a small amount of unpaired atoms in the system. In this case,
the energy can be expanded as

�

V
(na, nb)= �

V
(0, nb)− (h + μ̄− gabnb)na + 3na

5
EFa + ... (11.22)

The coefficient between parenthesis can be written as h − �, where by def-
inition 2�= �

2/ma2 + 2gabnb − gbbnb is the energy required to break a dimer
including the variation of mean-field energy due to the different scattering lengths
associated with atom-dimer and dimer-dimer interactions. As a consequence, we see
first that, as described in the Appendix Spin Susceptibility of a Gapped System at
Zero Temperature, the molecular BEC is locally stable against an external magnetic
field as long as h ≤ �. Moreover, close to threshold, the polarization of the sam-
ple obtained by looking for the minimum of �(na, nb) is given by the asymptotic
behavior na ∼ (h −�)3/2 and confirms the second-order nature of the transition.

Up to now, we have only discussed the local stability of the paired superfluid. As
a matter of fact this second-order transition between the unpolarized and polarized
superfluids occurring at h =� exists only in the far-BEC limit and turns into a first
order transition somewhere in the BEC–BCS crossover. Indeed, following Clogston
and Chandrasekhar’s original argument, we study now the global stability of the
unpolarized superfluid in the far BCS limit. In this regime, the energy difference
between the superfluid and normal phases is given by ESF = E0 − N0�

2/2,with N0
the density of state at the Fermi level, while the energy of a polarized normal gas is
E = E0−N0h2.The comparison of the two formulas shows that for h> h′

c =�/√2,
the superfluid is no longer the absolute ground state of the system. Since h′

c <�,

the unpolarized state is nevertheless still a local minimum of the energy landscape.
To confirm the existence of this transition between the first and second order

Clogston–Chandrasekhar limits and locate its position in the BEC–BCS crossover,
we turn back to the mean-field BEC equation of state 11.19, and we compare the
grand-potentials of the paired superfluid (na = 0) and of the ideal Fermi gas (nb = 0)
for h =�= gabnb − μ̄. As for the molecular condensate, the atom density of the
non interacting Fermi gas is given by the condition ∂na�= 0 for nb = 0, and hence
EFa = μ̄ + h. Using this condition, we see that the energy difference between the
superfluid (�SF) and the normal phase (�0

F) is given by

(
�SF

V
− �NIFG

V

)
h =�

= − gbbn2
b

2
+ 1

15π2

(
2m

�2

)3/2

(gabnb)
5/2 , (11.23)
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Fig. 11.3 Dependence of the grand-potential with spin population imbalance P = M/N , with
M = N↑ − N↓ and N = N↑ + N↓. a For 1/kF a>(1/kF a)c the Clogston–Chandrasekhar limit
corresponds to a second order transition where the paired superfluid becomes locally unstable for
h> hc =�. b Grand potential as a function of polarisation at h = hc for different values of 1/kF a.
From top to bottom, 1/kF a>(1/kF a)c, 1/kF a = (1/kF a)c and 1/kF a<(1/kF a)c. The transi-
tion becomes first order and the CC-limit located at h′

c ≤ � is associated with a phase transition
between a fully paired superfluid (P = 0) and a fully polarized ideal gas (P = 1)

which is negative as long as

1/kF a>

(
1

kF a

)
c

=
[

36a5
ab

25π3a3a2
bb

]1/3

� 0.66, (11.24)

where kF is the Fermi wave-vector in the unpolarized superfluid. From this argument,
we see that in the strongly interacting regime, although the paired superfluid is
still a local energetic minimum at h =�, it is no longer the absolute minimum
of the Hilbert space. As a consequence, the critical field is lowered at a value hc

smaller than�, and the transition becomes first order. The existence of this transition
between first and second order is confirmed by a more accurate determination using
Fixed Node Monte-Carlo simulations [76]. This calculation locates the transition at
(1/kF a)c = 0.53, which, using the equation of state of the unpolarized supefluid
corresponds to δ= �/

√
2mμ̄a = 1.4 in the grand canonical ensemble.

In the regime where the transition is first order, the nature of the polarized phase
is still debated. Based on general argument by Kohn and Luttinger [81], the sys-
tem should stay superfluid at zero temperature. Several exotic superfluid mech-
anisms were proposed to described the weakly interacting polarized superfluid,
from inhomogeneous Fulde-Ferrell-Larkin and Ovshinikov phases [82, 83] to Sarma
phases [84] or p-wave superfluids [85] (Fig. 11.3).

To test this prediction with solid state systems, one might suggest to spin polarize
electrons in superconductors using an external magnetic field in which case Zeeman
shifts would play the role of the chemical potential imbalance. However, magnetic
field also acts on the center of mass motion of the electrons. Unfortunately, the
resulting electric current expels the magnetic field out of the superconductors (the
Meissner Effect) and thus prevents spin polarization. As a consequence, signature of
the Clogston–Chandrasekhar limit could only be observed in exotic heavy fermion
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Fig. 11.4 Left Density profile n↑ − n↓ measured using inverse Abel transform techniques at MIT
(Fig. from [90]). Despite a spin population imbalance, the center of the cloud stays fully paired
with n↑ = n↓. Right equation of state of a spin imbalanced Fermi gas measured using the dou-
bly integrated density profile (data from [44]). h = P/P0

F (μ↑) is the pressure normalized to the
zero temperature ideal gas. η=μ↓/μ↑ is the chemical potential imbalance. Full line superfluid
phase Eq. 11.26; Dashed line Normal Fermi mixture Eq. 11.35; Dotted line Landau Pomeranchuck
equation of state Eq. 11.36. Inset density ratio x = n↓/n↑ deduced from the Gibbs-Duhem relation
nσ = ∂μσ P. The density jump occuring atμ↓/μ↑ = ηc � 0.06 shows that at unitarity the Clogston–
Chandrasekhar limit corresponds to a first order transition between a polarized an an unpolarized
phase. η= A � −0.6 marks the disappearance of the last spin down atom

materials, like UPt3 where the large electron effective mass reduces the effect of
the external magnetic field on their motion [86], in aluminium films of thickness
smaller than the coherence length [87] or by proximity effects at the frontier with
ferromagnetic compounds [88].

In cold atoms, the Clogston–Chandrasekhar limit of fermionic superfluidity was
observed experimentally by the groups of Rice and MIT [31, 89] which demonstrated
that in a trap the cloud was organized in shells, with at center a superfluid core with
equal spin densities, surrounded by a spin imbalanced rim (see Fig. 11.4a for a density
profile obtained at MIT using an inverse Abel transform [90]). From these density
profiles, it is possible to extract the equation of state of a spin imbalanced Fermi
case. In Fig. 11.4, we present the corresponding dimensionless equation of state at
unitarity obtained at ENS using this method and presented in ref. [44]. In this regime,
the equation of state is rather simple. Indeed, since the superfluid cannot be polarized,
it equation of state satisfies the constraint n↑ = n↓ or, using the Gibbs-Duhem relation
nσ = ∂μσ P,

∂P

∂μ↑
= ∂P

∂μ↓
. (11.25)

According to this condition, P is thus a function of μ= (μ↑ + μ↓)/2 only [34].
In the particular caseμ↑ =μ↓,we should recover the spin balanced unitary equation
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of state (11.16), yielding thus

P(μ↑, μ↓)= 1

15π2

(
m

ξ�2

)3/2 (
μ↑ + μ↓

)5/2
, (11.26)

which is represented in Fig. 11.4 (solid red line) and fits the experimental data down
to ηc ∼ 0.06. This point marks the Clogston–Chandrasekhar limit. Indeed, using the
experimental equation of state, one can calculate the density ratio n↓/n↓ : above ηc,

the two spin densities are equal, showing that, as expected, the fully paired superfluid
is stabilized by the pairing gap. At η= ηc, the density varies abruptly (See inset of
Fig. 11.9), which indicates the presence of the first order transition mentioned above
that we locate here at hc ∼ 0.9μ̄.

As discussed previously, the intermediate phase at zero temperature is expected to
be a polarized superfluid. However, vortex nucleation experiments indicate that the
imbalanced phase is normal [89] and suggest that the critical temperature of these
exotic superfluids is probably smaller than the one currently achieved experimen-
tally (T/TF � 0.05). For a review of imbalanced gases in cold atomic systems,
see [91, 92].

11.4 Beyond the Clogston–Chandrasekhar Limit

As we have seen in the previous section, an attractive Fermi gas starts to polar-
ize only when the spin polarizing field h becomes larger than a critical value hc.

In this section, we discuss the phase diagram of the system beyond the Clogston–
Chandrasekhar limit. This topic is very vast and is not yet fully understood. As a
consequence, the determination of the phase diagram of a zero temperature Fermi
gas at zero temperature has triggered a heap of theoretical works based on various
approximation schemes, from general qualitative considerations on the topology of
the phase diagram [93] to more quantitative mean-field techniques [94–96] and dia-
grammatic Monte-Carlo simulations [76]. We will not be able to address here all
its aspects, and for additional details, we refer the reader to more comprehensive
reviews such as [91, 92].

We describe here the phase diagram in the grand canonical ensemble. In this
description, the state of the system can be characterized by two dimensionless num-
bers h̃ = h/μ↑ and δ= �/

√
2mμ↑a describing respectively the chemical potential

imbalance and the interaction strength. From the previous section, we know that for
h< hc(δ), the system is an unpolarized superfluid (SF0). The behavior of hc in the
BEC and BCS limits are rather simple. Indeed, as we have seen earlier, in the BEC
region of the phase diagram, the CC-limit is a second order transition taking place
at hc =� ∼ �

2/2ma2, yielding h̃c(δ) ∝ δ2. Conversely, in the BCS sector, the gas
polarizes through a first order transition taking place at hc =�/√2. Since in this
limit the gap is exponentially small, h̃c vanishes. The transition from first order to
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second order CC limit takes place at a point that Monte-Carlo simulations locate at
δ= 1.4.

11.4.1 The Impurity Problem
and the Polaron/Molecule Transition

As stated earlier, for h̃> h̃c, the gap no longer protects the superfluid against spin
polarization. At very high “magnetic field", the system becomes fully polarized. We
call hS(δ) the corresponding value of the chemical potential imbalance at which the
last spin down atom vanishes. By definition, the value of hS can be obtained by the
study of the chemical potential μp of a single spin down impurity immersed in an
Fermi sea of spin-up particles. Indeed, since the majority atoms are only weakly
perturbed by the presence of the impurity, the chemical potential of the majority
satisfies μ↑ = EF↑, hence h̃S = (1 − A)/2, with A =μp/EF↑.

Let us start by the BCS limit. In this case the spin down atom dresses with
particle/hole excitations of the surrounding Fermi sea. Its forms a quasi-particle
called a Fermi polaron, in analogy with condensed matter where the polaron is an
electron dressed by excitations of the crystal lattice.

The properties of the Fermi polaron were studied theoretically by Monte-Carlo
simulations [97, 98] and a variational ansatz restricted to one [99, 100] and
two [101] particle/hole pairs. These studies of the Fermi polaron have demonstrated
that its dispersion relation in the limit of small momenta was very similar to that of
a free particle with renormalized parameters [97, 98, 100]

εk,↓(p)=μp + �
2k2

2m∗ + ... (11.27)

where m∗ is the effective mass and μp corresponds to a “Hartree” term shifting the
overall impurity spectrum. At unitarity, the values obtained by the various theoretical
estimates are consistent with A � −0.61 and agree with a study of the Fermi-
polaron at MIT made by measuring the shift of radio-frequency resonances induced
by the interaction with majority atoms [102]. As shown in Fig. 11.5, we see that
this agreement can be extended to the BCS side of the BEC–BCS crossover. The
effective mass can be probed experimentally by the study of the collective modes of
the system [97]. Indeed, in the regime of strong polarizations, the Fermi polarons
are independent from each other and evolve as free particles. From Eq. 11.27 the
dynamics of the Fermi polaron in a trap can be described by the quasi-classical
Hamiltonian

H(r, p) ∼ AEF↑(r)+ p2

2m∗ + Utrap(r), (11.28)

where Utrap is the trapping potential and is supposed identical for the two internal
states. In the local density approximation, and under the assumption that the spin
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(a) (b)

Fig. 11.5 a Chemical potential of an impurity immersed in a Fermi sea. Circles experimen-
tal measurements of Schirotzek et al. [102] compared to various theoretical predictions for the
polaron and molecule energies. Full (empty) diamonds Monte-Carlo simulations of the molecule
(polaron). Full (dashed) line, variational ansatz in the fermionic [99, 100] (bosonic [103–105])
sector. b Effective mass of the Fermi polaron in the BEC–BCS crossover measured at ENS (black
dots). The blue dashed line is a calculation from [100], red open squares [98], green dot-dashed
line [76], and blue solid line [104]. Measurements at unitarity through density profile analysis
(blue triangle [54]) and collective modes study (brown empty circle [106]) are also displayed

imbalance is large enough that majority atoms are not affected by the minority, we
can write that EF↑(r)= E0

F↑ − Utrap(r). We then see readily that the Hamiltonian
(11.28) is equivalent to that of a particle of mass m∗ trapped in a renormalized
potential U∗

trap(r)= (1− A)Utrap(r).Moreover, if the trapping potential is harmonic,
then the effective frequency in the direction i is simply

ω∗
i =ωi

√
m

m∗ (1 − A), (11.29)

where ωi is the “bare” oscillation frequency of a single particle in the potential Utrap.

This relation shows that, combined with the knowledge of A, a measurement of the
oscillation frequency of an impurity immersed in a Fermi sea gives access to the
polaron effective mass. Such an experiment is presented in Nascimbène et al. [106]
in the case of the lowest lying breathing mode, and gave at unitarity m∗ = 1.17(10)m,
in agreement with theoretical estimates.

This description of the impurity problem in terms of a fermionic quasi-particle
fails in the BEC limit. Indeed, in the strongly attractive regime, the spin down atom
forms a dimer by binding with a spin-up particle. When the scattering length is small
and positive, the size of the molecule is vanishingly small and as in the BEC–BCS
crossover, the dimer can be considered as a point-like bosonic object weakly interact-
ing with the surrounding Fermi sea. Using approaches similar to those developped
in the study of the Fermi polaron, it was possible to extract the properties of the
molecule dressed by the particle/hole excitations of the Fermi sea [98, 103–105,
107]. These studies show that for a large range of values of the scattering length, the
energy of the molecule is simply
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Fig. 11.6 Zero temperature phase diagram from [105]. When the spin polarizing field h is below
hc, the fully paired superfluid SF0 is stable. For h> hc the gas starts to polarize. At point S, the
fully paired/partially polarized transition turns from first order (for 1/kF a � 0.5 to second order
(for 1/kF a � 0.5.In the BCS limit the partially polarized phase NPP is a mixture of ideal gases of
majority atoms and polarons. In the BEC limit, this phase can be described as a mixture between a
Bose-Einstein condensate of molecules and a Fermi Sea of remaining atoms (SFP). The nature of
the frontier between the two phases is not yet clarified. Above the hs line, the system becomes fully
polarized (Nfp). Note that in M the partially polarized/fully polarized turns from first order in the
BCS limit to second order in the BEC regime. Point M is also an endpoint of a finite temperature
tricritical line

E = − �
2

ma2 − EF↑ + gabn↑, (11.30)

where the first term is the binding energy of the free molecule, the second is the
energy required to remove one spin up atom from the Fermi surface to create the
dimer and the last one is the mean-field energy describing the interaction between
the bosonic dimer and the Fermi sea.

The comparison between the energies of the polaron and the molecule shows that
they cross at 1/kF↑a � 0.91(2), marking the transition between the molecular and
fermionic behavior of the impurity (Fig. 11.6).

11.4.2 The Polarized Superfluid

Between the hc and hs lines, the system is partially polarized. According to Kohn and
Luttinger’s argument [81], attractive interactions between fermions lead to the for-
mation of a superfluid at zero temperature. As we have discussed earlier, in the BEC
limit, the equation of state is the same as that of a Bose-Fermi mixture Eq. (11.19)
[77] and we can use it to address the stability of the atom/dimer mixture. Thermody-
namically, the gas is stable against demixion if the compressibility matrix ∂NαNβ E
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is positive. After some straightforward algebra, we see that the molecule can stay
immersed inside the majority Fermi sea as long as

1

kF↑a
≥ 9

4π

(
a2

ab

aabb

)
� 1.7. (11.31)

Above this threshold, the transition between the polarized superfluid and the fully
polarized Fermi gas is second order, meaning that the density of molecules goes
smoothly to zero across the critical line. Below this point, the transition becomes first
order and the density of molecules drops from a finite value to zero on the critical
line. Monte-Carlo simulations [76] suggest that this first order behavior disappears
again at 1/kFa � 0.73, when it meets the polaron line. One consequence is that
around the polaron/molecule transition, the single molecule immersed in the Fermi
sea is actually unstable against demixion. The transition between the fermionic and
bosonic behaviors of the impurity is thus driven by a thermodynamic instability and
not the microscopic behavior.

Interestingly, RF studies at MIT show that the fermionic behavior of the impurity
vanishes at 1/kF↑a = 0.74(1) [102], in good agreement with the value calculated for
the position of the endpoint of the polaron line and confirming the collective nature
of the polaron/molecule transition.

In the BCS region, the nature of the superfluid and the structure of the phase
diagram is still debated, the reason being that the standard Cooper pairing mechanism
requires equal densities of spin up and spin down particles. One can then imagine
a pairing between same spin atoms, using interactions mediated by the opposite
spin Fermi sea [85]. Other proposals suggest the formation of singlet pairs of zero
momentum (Sarma phases [84]), or with non-zero momentum - the Fulde-Ferrell-
Larkin and Ovchinikov state [82, 83].

11.5 The Normal Phase

Rotation experiments show that the partially polarized region of the cloud is normal
around unitarity, suggesting that in practice the critical temperature towards superflu-
idity is lower than the critical temperature of the (balanced)unpolarized superfluid.

11.5.1 Landau’s Fermi Liquid Theory

Fermi Liquid’s Theory is a powerful phenomenological model allowing one to
describe complex strongly correlated systems in terms of a nearly ideal gas of fermi-
onic excitations [108]. As such, it provides a precise description of properties of
systems such as liquid helium 3 or electron in metals above the critical temperature.
In a nutshell, this model assumes that the excitations of an interacting system can
be obtained from those of a non-interacting Fermi by adiabatically switching on the
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interactions. In a non-interacting system, the elementary excitations are either parti-
cles (of momentum k> kFσ ) or holes (of momentum k< kFσ ), with k3

Fσ = 6π2nσ
and nσ is the density of particles carrying a spin σ. Since particle number, spin,
and linear momentum are conserved by interactions, the excitations of the inter-
acting system will therefore also be characterized by particle (hole) excitations for
k> kFσ (k< kFσ ), implying in particular that the Fermi level, separating the par-
ticle/hole excitations is located at the same value as for a non-interacting system.3

At low temperatures, the system is weakly excited and the number δNk,σ of quasi-
particles of momentum k and spin σ is small. The energy of the system can thus
be expanded in nk . As demonstrated below, a self-consistent description of the ther-
modynamic properties of the system requires one to work up to second order in
excitation population, and we thus write to this approximation

E[nk] = E0 +
∑
k,σ

εk,σ δNk,σ + 1

2V

∑
kk′

fσ,σ ′(k, k′)δNk,σ δNk′,σ ′ + ..., (11.32)

where E0 is the energy of the normal ground state, εk the dispersion relation of
the quasi-particles and the coefficients fσ,σ ′(k, k′) describe effective interactions
between quasi-particles. Since particle/hole pairs can be arbitrarily created, the num-
ber of excitations is not conserved and the system must be described in the grand
canonical ensemble. In this case, the grand potential takes the form

�[nk] = E −
∑
σ

μσ Nσ (11.33)

=�0 +
∑
k,σ

(
εk,σ − μσ

)
δNk,σ + 1

2V

∑
kk′

fσ,σ ′(k, k′)δNk,σ δNk′,σ ′ + .... (11.34)

This form justifies the necessity of pursuing the expansion up to second order.
Indeed, at low temperature, excitations are located close to the Fermi level. As a
consequence, the (εk − μσ ) term is small, and the term linear in δNk is actually of
second order.

In general, the properties of the excitations depend on the number of spin up and
spin down particles, and here we will study two extreme cases for which N↓ � N↓
(strongly polarized limit) and N↑ = N↓ (unpolarized limit).

11.5.2 The Gas of Polarons

The full understanding of the equation of state of the mixed normal phase requires the
study of the behavior of an ensemble of Fermi polarons, and can be interpreted within
the framework of the Fermi liquid formalism described above. At unitarity, where the

3 This argument constitutes a heuristic demonstration of the Luttinger theorem [109].
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Fig. 11.7 Samples of Equation of State u = P(μ↑, μ↓)/P0(μ↑) of a spin imbalanced Fermi gas as a
function of the ratio η= μ↓

μ↑ for various values of the scattering length (Figure from [49]). Unitarity is
at 834G; lower field values correspond to positive a values, higher field values correspond to negative
a values. The gray area marks the SF/normal phase transition. The black solid lines correspond to
Eq. 11.35 without adjustable parameter

Fermi wavelength is the only length scale in the problem, the size of the particle-hole
cloud shrouding the Fermi polaron is of the order of 1/kF↑. In other words, if the
distance between two impurities is bigger than 1/kF↑, or equivalently if the ratio
n↓/n↑ is small, then the Fermi polarons do not overlap and can be considered as
independent point-like fermions obeying Fermi-Dirac statistics. This intuitive picture
was confirmed first by the analysis of Fixed Node Monte Carlo simulations [97] and
later on by an analytic expansion of the equation of state in the low impurity density
limit [110]. The grand canonical equation of state of the system is in this case

P(μ↑, μ↓)= 1

15π2

[( m

�2

)3/2
μ

5/2
↑ +

(
m∗

�2

)3/2 (
μ↑ − μp

)5/2

]
, (11.35)

where, in the spirit of Fermi Liquid Theory, the pressure of the gas is the sum of the
pressures of ideal gases of spin up and down particles, the former being expressed in
terms of the renormalized physical quantities m∗ and μp. This equation of state was
confirmed experimentally in [49] using the values of A and m∗ calculated from the
different theoretical approaches described above, as seen in Fig. 11.4b at unitarity
and Fig. 11.7 in the BEC–BCS crossover.

Interestingly, the equation of state (11.35) can be recast in the canonical form
E(n↑, n↓) as a Landau-Pomeranchuk functional [97]

E(N↑, N↓)= 3

5
N↑EF↑

(
1 + 5A

3
x + m

m∗ x5/3 + Fx2
)
, (11.36)

with x = N↓/N↑ and A = μp
EF↑ as defined above. The first three terms describe an

ideal mixture of non-interacting fermions, while the last one can be interpreted as
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an effective interaction between polarons. In [110], it is shown that, using Eq. 11.36,
the interaction parameter F is simply given by

F = 5

9

(
dμp

dμ↑

)2

, (11.37)

a relationship that can also be derived from a direct Fermi-liquid analysis of
the problem [111] and that was confirmed by comparison with Monte-Carlo sim-
ulations [112].

We can reinterpret these results in the language of the Fermi liquid [113, 114].
Indeed, in the case δN↓,k = 0, we simply recover an ideal gas of majority atoms, for
which εk,↑ = �

2k2/2m. Conversely, the dispersion relation of the spin down particle
can be obtained by adding a single spin down impurity, in which case εk↓ is simply
given by the polaron dispersion relation (11.27).

Thanks to Eq. 11.36, it is possible to determine the interaction parameters of the
Fermi liquid models (the f coefficients). First, we see that, as aforementioned, for
x = 0, we have an ideal gas of spin up particles, meaning an absence of interactions
between them and implying f↑↑ = 0. For the other interaction parameters, we make
use of the fact that k′ (the momentum of the minority) is small, and k (the momen-
tum of the majority excitations) remains close to the Fermi level. Using rotational
invariance, we see that, at leading order, the fσσ ′ are actually constant, and we can
thus simplify Fermi liquid formula (11.32) as

E[nk] = E0(N↑)+
∑
k,σ

εk,σ δNk,σ + 1

2V

∑
σ,σ ′

f 0
σ,σ ′δNσ δNσ ′ + ..., (11.38)

where E0(N↑)= 3N↑EF↑/5 is the energy of an ideal gas of spin up particles, the
f 0
σσ ′ coefficients depend on spin only and δNσ = ∑

k δNk,σ is the variation of the
spin σ atom number.4 Let us consider first a situation where we add polarons without
adding majority atoms. In this case, we have δN↑ = 0 and we recover the Landau-
Pomeranchuk equation of state, with

f 0↓↓ = 6F

5

(
EF↑
n↑

)
. (11.39)

Finally, we determine the crossed term by considering a variation of the majority
atom number, without perturbing the minority distribution. By considering the equi-
librium configuration containing N↑ + δN↑, we can then write on the one hand that

E = E0(N↑ + δN↑)+
∑

k

εk↓(N↑ + δN↑)δNk,↓ + f 0↓↓
2V

δN 2↓. (11.40)

4 Since we start the expansion from N↓ = 0, δN↓ is actually the number of minority atoms.
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On the other hand, one can obtain the same situation starting from a system
containing N↓and adding δN↑particle excitations, which in the second case would
yield

E = E0(N↑)+
∑
k1σ

εkσ (N↑)δNkσ + 1

2v

∑
σσ ′

f 0
σσ ′δNσ N ′

σ (11.41)

By definition, Eq. 11.40 and 11.41 must give the same answer up to second order
in excitation number. Focusing on the cross terms, we see that we have within this
approximation

∑
k

∂εk,↓
∂N↑

δNk,↓ = f 0↑↓
V
δN↓. (11.42)

The characteristic momentum k of the impurities is fixed by the Fermi wavevec-
tor kF↓ which vanishes in the limit of small impurity densities. This implies that
to leading order in spin down excitation number, one can replace εk,↓ by its zero
momentum value μp, hence

f 0↑↓ = ∂μp

∂n↑
. (11.43)

Beyond providing an intuitive microscopic justification of the equation of state
(11.35), the Fermi-Liquid model gives access to some of the out of equilibrium
properties of the system. For instance, in the case of 3He, it was used originally
to predict the temperature dependence of thermal conductivity or viscosity in the
normal phase [115]. In ultra cold fermions, it can be used to study the damping of
excitations, such as Fermi polarons [113], or also to address recent measurements of
the viscosity of a strongly interacting Fermi gas performed at Duke University [116].

11.5.3 The Fermi Liquid in the Unpolarized Limit

Let us consider now the case of a spin balanced system with N↑ = N↓ which consti-
tutes the usual framework of the Fermi liquid theory.

Compared to the previous paragraph, spin up and spin down particles have now a
symmetric behaviour, and in particular both possess a well defined Fermi surface at
k = kF .

In the absence of an excitation gap, the particle and hole dispersion branches
merge at k = kF , and for k ∼ kF the dispersion relation can be expanded as

εk,σ = εkF + �kF (k − kF )

m∗ + ...,

where m∗ is called the effective mass of the quasi-particle, defined in analogy
with the dispersion relation of a free particle. Similarly to the strongly imbalanced
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situation, one can expand the interaction parameters around the Fermi surface. Using
again the fact that at low temperature excitations remain close to the Fermi surface,
one can make the assumption |k| = |k′| = kF , in which case, fσ,σ ′(k, k′) depends
only on the angle θ between k and k′ and can be expanded as

fσσ ′(kk′)= 1

2NF

∞∑
�= 0

(
Fs
� + σσ ′Fa

�

)
P�(cos θ), (11.44)

where P� is a Legendre polynomial, NF is the density of states at the Fermi level,
σσ ′ = 1 for parallel spin and −1 for anti-parallel spins.

As aforementioned, at low temperature, the system is weakly perturbed and a
small number of quasi-particles are excited. In this limit, the population of each
mode (k, σ ) is given by the Fermi-Dirac distribution and leads to the following
macroscopic properties5:

1. The specific heat CV varies linearly with temperature and CV /C0
V = m∗/m,

where C0
V is the specific heat of the ideal gas.

2. The compressibility κT of the system is finite at T = 0, with

κT = κ0
T

m∗/m

1 + Fs
0
, (11.45)

where κ0
T is the compressibility of an ideal gas.

3. The magnetic susceptibility χ is finite at zero temperature, with

χ =χ0
m∗/m

1 + Fa
0
, (11.46)

where as above χ0 is the spin susceptibility of an ideal Fermi gas.

As we have seen at the beginning of the chapter, the grand canonical ensemble
provides a natural description of trapped gases. In this framework, the three macro-
scopic properties given above translate into the following equation of state at low
temperature and weak chemical potential imbalance (see Appendix Fermi Liquid
Theory in the Grand Canonical Ensemble)

P = P0(μ̄)+ χh2

2
+ γ T 2

2
, (11.47)

and is thus quadratic in chemical potential imbalance and temperature. We recall that
μ̄= (μ↑ + μ↓)/2.

At unitarity, dimensional analysis yields an even simpler form since one can
parameterize Eq. 11.46 using universal dimensionless numbers generalizing ξS .We
can indeed write

5 As a comparison, for an ideal Boltzmann gas of distinguishable particles, the specific heat is
constant, while the susceptibility and the compressibility diverge at low temperature as 1/T
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P = 2P0
F (μ̄)

(
1

ξ
3/2
N

+ χ̃b2

2
+ γ̃ t2

2

)
, (11.48)

with b = h/μ̄, t = kB T/μ̄ and ξN , χ̃ and κ̃ are three numerical coefficients. γ̃ and
χ̃ are related to the specific heat and spin susceptibility by

CV

T
= γ̃ μ̄2

2k2
B P0

F (μ̄)
, (11.49)

χ = χ̃ μ̄2

2PF(μ̄)
. (11.50)

The measurement of the equation of state of the unitary normal phase using the exper-
imental scheme described in the previous version is presented in Fig. 11.8 from Ref.
[44, 50] for a spin balanced system at finite temperature, and a spin imbalanced gas at
zero temperature. We see that the quadratic dependence with chemical potential and
temperature is indeed satisfied and supports the Fermi liquid description of the normal
phase. These measurements yield for the universal coefficient, ξN = 0.51 in agree-
ment with the Fixed Node Monte-Carlo result of ref. [97], γ̃ = 19 and χ̃ = 2.8, to be
compared with the ideal gas values ξ0

N = 1, χ̃0 = 15/4 = 3.75 and γ̃0 = 5π2/4 ∼ 12.
The determination of these dimensionless numbers gives access to the parameters
of the underlying Fermi liquid. For instance, the effective mass is obtained from the
specific heat and is given by

m∗

m
= ξ1/2

N
γ̃

γ̃0
= 1.1. (11.51)

11.5.4 The Normal/Superfluid Transition Line

The knowledge of the equation of state of both the superfluid and normal phases gives
access to the position of the critical line separating the two regime. We can extend the
discussion to the full temperature/imbalance phase diagram. In that case the normal
to superfluid transition is represented by a critical line joining the second order phase
transition of the unpolarized gas and the first order Clogston–Chandrasekhar limit
(Fig. 11.9). Assuming the Fermi-liquid behavior (11.46), it is possible to bound the
critical region at unitarity.

Indeed, the critical line is given by the equality of pressure and chemical potentials
in the normal and superfluid phases

PN(μ↑, μ↓, T )= PSF(μ↑, μ↓, T ). (11.52)

Using Gibbs-Duhem relation, ∂T P = S and is thus positive according to the Sec-
ond Law of Thermodynamics. Applying this property to the equation of state of the
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(a) (b)

Fig. 11.8 Fermi liquid behavior at unitarity. a Specific heat. b Spin susceptibility at very low
temperature from [117] t = kB T/μ and b = μ↑ − μ↓/μ↑ + μ↓

Fig. 11.9 Sketch of the finite temperature phase diagram in (T/T 0
c , h/μ), where T 0

c is the critical
temperature of the spin balanced gas. The grey region is the superfluid region. The second order
phase transition line (solid line) between the superfluid (SF) and normal (N) phases stops at a
tricritical point and turns into a first order critical line (dashed line). Note that in this graph we did
not represent the FFLO phase

superfluid, we have PSF(μ↑, μ↓, T )> PSF(μ↑, μ↓, 0). Since we know that, accord-
ing to the Clogston–Chandrasekhar scenario, the pairing gap renders the superfluid
insensitive to chemical potential imbalance, we have

PSF(μ↑, μ↓, T ) ≥ P0
SF(μ̄), (11.53)
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with P0
SF given by Eq. 11.26, and μ̄= (μ↑ + μ↓)/2. Using the expression of the

equation of state of the Fermi liquid we thus have on the critical line

P0
N(μ̄)+ γ T 2

2
+ χb2

2
≥ P0

SF(μ̄), (11.54)

where this inequality becomes an equality at T = 0. Writing this zero-temperature
equation, we see that P0

SF − P0
N is simply χb2

c/2, where bc is the dimensionless
chemical potential at the Clogston–Chandrasekhar limit.6 This allows one to write
the inequality as

γ T 2

χb2
c

+ b2

b2
c

≥ 1. (11.55)

Interestingly, the knowledge of χ, γ and bc from the Fermi liquid parameters
yields the following lower bound for the spin balanced gas

(
kBT

μ

)
c

≥ bc

√
χ̃

γ̃
� 0.32. (11.56)

This value is actually very close to the one obtained directly from the analysis
of the equation of state of the finite temperature balanced gas [44] or by Monte-
Carlo simulations [7, 118, 119]. The inequality in Eq. 11.55 is therefore nearly an
equality, which suggests that PSF depends only weakly on temperature. This feature
is actually not surprising. Indeed, excitations in the superfluid are of two kinds. First,
single-particle excitations are exponentially suppressed below Tc by the pairing gap.
Second, collective excitations associated with phonons follow at low temperature a
Rayleigh-Jeans behavior and give a contribution ∝ T 4 to the energy. Both of them
vary slowly with T and are then strongly suppressed at low temperature.

11.5.5 The Tricritical Point

Since the two limiting cases of the critical lines correspond to phase transitions of
different orders, there is a point (called a tricritical point) where the order of the
phase transition changes from first to second.

A similar phenomenon is present in 3He-4He mixtures the phase diagram of which
attracted a lot of attention in the 1970s for the development of dilution refrigerators
[120–122]. This work was then extended to cold atoms in [123] using Nozières-
Schmitt-Rink approximation and at unitarity using a renormalization scheme [124].
Experimentally, the tricritical point was observed at unitarity in [125], with T3 �
0.09TF↑, in agreement with the prediction of [124].

6 This relations is similar to the the one existing between the condensation energy and the critical
magnetic field in superconductors.
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Mean-field analysis of the phase diagram unveils an intriguing connection between
the tricritical point and the inhomogeneous FFLO phase [84, 126] since in the weakly
attractive limit, the tricritical point corresponds also to the disappearance of the FFLO
phase.

When varying interactions from the BCS to the BEC region of the phase dia-
gram, the temperature of the tricritical point decreases [123] and for some particular
value of the interaction parameter 1/kF↑a ∼ 1.7, T3 even vanishes. As a conse-
quence, the critical line of Fig. 11.9 becomes fully second order, and the first order
Clogston–Chandrasekhar transition disappears. The physical interpretation of this
zero-temperature phase transition is actually rather intuitive. Indeed, in this regime,
the system behaves as a Bose-Fermi mixture of atoms and molecules repelling each
other with a scattering length aad = 0.6a [80]. Using a mean-field description of the
mixture it was demonstrated that, in the low bosonic density limit, a demixing insta-
bility can happen at large density of fermions [79], in our case for 1/kF↑a = 1.88.

11.6 Fermi Liquid Versus Non-Fermi Liquid

11.6.1 Molecular Limit

As mentioned earlier for the superfluid or the impurity, in the far BEC limit the
physics of the gas is dominated by the existence of dimers imparting a bosonic
nature to the excitations of the systems and as such invalidating the Fermi-liquid
picture used to describe the normal phase in the BCS and unitarity regimes. Indeed,
on the one hand molecules start to form at a temperature T ∗ of the order of the
binding energy �

2/ma2 which goes to infinity when a vanishes. On the other hand
for a weakly interacting Bose gas, the critical temperature does not depend on the
temperature. As a consequence, when a is large enough, T ∗ becomes larger than Tc

and pre-formed molecules exist in the normal phase. This scenario was confirmed
by theoretical studies of the normal phase in a lattice using the Dynamic Mean-Field
Theory (DMFT) [127, 128], as well as Fixed Node Monte-Carlo simulations of the
normal Fermi gas [117].

Experimentally, it is possible to address this transition by studying the spin suscep-
tibility of the system which is reduced by the presence of the molecules. Indeed, being
spin singlet, the dimers are not affected by the spin polarizing field h and, just like
Cooper pairs, are protected by their molecular binding energy. In the far BEC limit,
the spin susceptibility can be calculated using a chemical balance model showing that
indeed, the spin susceptibility decreases exponentially as soon as T/T ∗ � 1, where
a significant number of dimers start to form. In contrast with its fermionic counter-
part, the Bose liquid is thus characterized by a cancelation of the zero temperature
spin susceptibility. Although this Fermi to Bose liquid transition has not yet been
observed, experimental evidence as well as Fixed Node Monte-Carlo simulations
indicate that such transition should happen around 1/kFa = 0.7 [117]. Interestingly,
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Fig. 11.10 Density of states at T = Tc calculated within the self-consistent T -matrix approximation
in the BCS (a) and BEC (b) sectors—Figure from [130]

this value is close to the one for which the polaron vanishes (see section 1). This
coincidence supports the fact that the properties of quasi-particles depend relatively
little on the spin imbalance. Let us illustrate this point in the case where T ∗ � TF .

In the quantum degenerate regime T/TF � 1, the susceptibility of an ideal Fermi
gas is proportional to the density of states at the Fermi level. At finite temperature,
the excitations span an energy range T around EF . If T � T ∗, the distribution is
only weakly sensitive to the energy states in the pseudogap dip. On the contrary, for
T � T ∗, the quasi-particles are mostly inside the dip and the spin susceptibility is
thus sensitive to the reduction of the density of state at the Fermi level.

11.6.2 Pseudogap

The cancellation of the spin susceptibility of the low temperature normal phase in
the BEC limit is a consequence of the existence of a gap in the density of states of
the molecular gas associated with the binding energy of the dimers. At 1/kF a = 0.7
this gap vanishes but a dip remains in the density of states and smears out when one
varies the interaction strength towards the BCS-limit of the BEC–BCS crossover (see
Fig. 11.10). This dip is sometimes called a pseudogap, in analogy with a characteristic
feature of the normal phase of high-critical temperature superconductors where a gap
starts to open at the Fermi surface in precise crystallographic directions even above
Tc [129]. By analogy with the molecular behavior we call T ∗ the characteristic width
of the dip, which will quantify the energy scale of the pseudogap features 7 (see for
instance [130–132]).

Most naturally, the first proposals to study this pseudo gap physics involved
microscopic probes, in particular RF-spectroscopy [27, 133]. We show here that
this physics can also be explored by the study of the thermodynamic properties of

7 Note that here our definition of the pseudo-gap characteristic energy T ∗ is based on the properties
of the normal phase at T = 0. Another definition is the temperature T ∗∗ at which the dip vanishes
[130].
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Fig. 11.11 Spin
susceptibility in the
BEC–BCS crossover χ
normalized to the zero
temperature susceptibility χ0
of an ideal Fermi gas. Full
line ideal Fermi gas; Dotted
line Curie’s law (1/T );
Dashed line ideal molecular
mixture (see Appendix
Susceptibility of a Molecular
Gas) for T ∗ = 2TF

the normal phase, and in particular the temperature dependence of the spin suscep-
tibility. Indeed, in the BEC–BCS crossover, χ(T ) evolves between the two limits
displayed in Fig. 11.11. In the BEC limit, we recover that the spin susceptibility is
zero at T = 0, with a maximum located at T ∝ T ∗. In the BCS limit, the system
behaves like an ideal Fermi gas, with a saturation of Curie’s Law when T � TF .

In between, we expect a crossover between the two behaviors, with a non monoto-
nous evolution, and a maximum at T ∼ T ∗, and a finite susceptibility at T = 0.
The temperature dependence of the spin susceptibility has been very recently mea-
sured in [134] and further investigation will be required to clarify the existence of a
pseudogap.

11.7 High Temperature Expansion

In the non degenerate regime, the Fermi liquid description is no longer valid. In this
limit, an asymptotic expansion of the equation of state can be obtained using a virial
expansion based on the analyticity of the grand canonical partition function with
the fugacity z = exp(βμ). Generally speaking, it is indeed possible to write (see
Appendix Virial Expansion)

P(μ, T )=
∑
n≥1

bnzn (11.57)

where bn is related to the properties of the n-body system. As a consequence, n = 1
corresponds to the ideal gas and interaction effects enter the game for n ≥ 2. For
an ideal gas, quantum correlations impose b0

n = (−1)n+1/n5/2. To study the effect
of interactions we thus set bn = b′

n + b0
n . The coefficient b′

2 was calculated first in
[48, 135] and gives b′

2 = 1/
√

2.The calculation of higher order terms is more involved
and is related to the study of the few-body problem whose interest was renewed by the
recent observation of Efimov trimers in cold atoms [136] (for a review see [137]). Two
contradicting theoretical values of b′

3 can be found in literature b′
3 = − 0.355 [138]

and b′
3 = 1.05 [139]. Experimental data of Fig. 11.12 yielding a value b′

3 = −0.35(2)
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Fig. 11.12 High
temperature equation of state
of the normal phase. We plot
here the dimensionless
pressure uN = P/P0(μ)

versus the inverse of
fugacity. Comparison
between experimental points
of ref. [44] and virial
expansions of second
(dotted), third (dashed) and
fourth (solid) order

validates the result of ref. [138]. The analysis of the Fig. 11.12 allows in addition
to extract the value of fourth virial coefficient the value of which is b′

4 = 0.096(15).
As already mentioned, the ab-initio calculation of b4 involves the full resolution of
the 4-body problem, a challenging task that has been addressed in some specific
cases (calculation of the dimer-dimer scattering length [12, 65] or the equation of
state of a dilute BEC of dimers [64]) but has not been undertaken for a normal gas
at high temperature.

The virial expansion is valid only in the high temperature regime. To make the
connexion with the low temperature behavior discussed in the Fermi Liquid section,
more advanced calculations are required [8, 40, 108]. Detailed comparison with
experiment is presented in ref. [44].

11.8 Conclusion

In this contribution we have shown that the study of the thermodynamics of a strongly
interacting spin-1/2 system is a powerful tool to address its macroscopic properties
as well as its low energy excitations. In situ absorption images provide direct access
to the gas pressure and to the equation of state at thermal equilibrium. We have
presented several simple models to analyze this EoS in various limiting cases and
could perform a quantitative comparison with more advanced theoretical models.
A number of open issues remain on this seemingly simple many-body system. For
instance the predicted FFLO (Fulde-Ferrell-Larkin and Ovshinikov) inhomogeneous
superfluid phases in the imbalanced gas are yet to be observed [82, 83], the inves-
tigation of critical phenomena, and the complete phase diagram as a function of
temperature and spin imbalance would reveal additional features. The measurement
of the spin susceptibility as a function of temperature and interaction strength, and
the precise determination of the critical temperature would enable one to further test
advanced theoretical models. The measurement of the EoS through the local pres-
sure is not restricted to Fermi gases [50]. It applies equally well to ultracold bosons,
Bose-Fermi mixtures and atoms confined in optical lattices [50], provided the local
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density approximation is valid. We believe that the simplicity of implementation of
this measurement scheme will help in the understanding of challenging many-body
problems in the future, deepening the connection between this research on cold atoms
and that on condensed matter.
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Appendix

Spin Susceptibility of a Gapped System
at Zero Temperature

Let us consider a system containing N↑ and N↓ spin up and spin down particles.
We define M = N↑ − N↓ and N = N↑ + N↓ the polarization and the total atom
number and we denote E(N,M) as the energy of the system. If one assumes that the
energy can be expanded in M then by symmetry the linear term vanishes and one gets
E(N ,M)= E(N , 0)+ M2/2χ + ... (see also below). With this definition, χ is then
the spin susceptibility of the system. Indeed, adding a magnetic field h contributes
to a −hM term to the energy and we immediately see that the energy minimum is
shifted from M = 0 to M =χh.

This argument is no longer true in the case of a gapped system. Indeed, polarizing
a spin balanced system costs the binding energy of the broken pairs. This definition
applies to any system composed of spin-singlet dimers, from a fermionic superfluid
composed of Cooper pairs, or a pure gas of uncondensed molecules, and leads to the
following leading order expansion

E(N ,M)= E(N , 0)+ |M |�+ ...

To evaluate the spin susceptibility, we add as above a magnetic field h changing the
energy into E − hM. We see that for h �= 0, the potential is tilted but the energy
minimum stays located at M = 0, as long as |h|<� corresponding to the Pauli limit
below which pairing can resist spin polarization (see Fig. 11.13).

Fermi Liquid Theory in the Grand Canonical Ensemble

At the macroscopic level, the Fermi liquid is characterized by three properties

1. The specific heat CV varies linearly with temperature and CV /C0
V = m∗/m,

where C0
V is the specific heat of the ideal gas. By definition, the heat transfer
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Fig. 11.13 Energy E of a
gapped system versus spin
polarization M. Solid line:
the spin polarizing field h is
0 and the slope of the energy
is given by the gap �.
Dotted line: non zero spin
polarizing field. The energy
is tilted but as long as
|h|<�, the ground state
remains unpolarized

δQ at constant volume and atom number reads δQ = CV dT + hdV, and we
thus have

d S = δQ

T
= CV

T
dT + h

T
dV . (11.58)

Using the thermodynamic identity d F = − SdT − PdV +∑
σ μσd Nσ for the

free energy F, we have finally

CV = − T

(
∂2 F

∂T 2

)
. (11.59)

2. The compressibility of the system is finite at T=0. We have by definition of
pressure

P = −
(
∂F

∂V

)
T,N ,M

, (11.60)

hence for a compression at constant temperature and atom number

d P = −
(
∂2 F

∂V 2

)
T,N ,M

dV (11.61)

From the definition of the isotherme compressibility, we have

κT = −1

V

(
∂V

∂P

)
T,N ,M

, (11.62)

and we have finally

κ−1
T = V

(
∂2 F

∂V 2

)
T,N ,M

. (11.63)
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3. The magnetic susceptibility is finite at zero temperature. This calculation is
very similar to the previous one. Indeed, we have

h =
(
∂F

∂M

)
N ,T,V

, (11.64)

with M = (N↑−N↓)/2 and N = (N↑+N↓)/2.Polarizing the system at constant
atom number, we have

dh =
(
∂2 F

∂M2

)
N ,V,T

d M. (11.65)

Defining the susceptibility of the gas has

χ = 1

V

(
∂M

∂h

)
N ,T,V

, (11.66)

and we have the identity

χ−1 = V

(
∂2 F

∂M2

)
(11.67)

At low temperature and spin imbalance, we can expand the free energy with
respect to T and M. To second order, we have

F(T, V, N ,M)= F0(T, V, N )+ T

(
∂F

∂T

)
0
+ M

(
∂F

∂M

)
0

+ T 2

2

(
∂2 F

∂T 2

)
0
+ M2

2

(
∂2 F

∂M2

)
0
+ MT

(
∂2 F

∂T ∂M

)
0
.

(11.68)

According to the Third Law of Thermodynamics, entropy is zero at zero temper-
ature. From the previous expansion, we thus have

S = −
(
∂F

∂T

)
V,N ,M

=
(
∂F

∂T

)
0
+ T

(
∂2 F

∂T 2

)
0
+ M

(
∂2 F

∂T ∂M

)
0

= 0. (11.69)

We then obtain readily

(
∂F

∂T

)
0

=
(
∂2 F

∂T ∂M

)
0

= 0, (11.70)

and thus

F(T, V, N ,M)= F0(T, V, N )+ T 2

2

(
∂2 F

∂T 2

)
0
+ M2

2

(
∂2 F

∂M2

)
0
. (11.71)
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Let us set CV = V γ T at low temperature. According to the previous discussion
we therefore have

F = F0 − γ T 2

2
+ M2

2χ
+ ... (11.72)

Let us now consider the grand potential �= F − μN − hM. We have using the
relation h =χM in the weakly polarized limit

�(μ, h, T, V )= F0 − μN − V
γ T 2

2
− V

χh2

2
, (11.73)

which can be recast as

�(μ, h, T, V )=�0(μ, V )−
(
γ T 2

2
+ χh2

2

)
V, (11.74)

where �0 is the value of the grand potential for T = h = 0. Let us introduce P1(μ)

the pressure of a single species Fermi gas at zero temperature. We then have using
�= − PV

P

P1
= P0(μ)

P1(μ)

[
1 + γ T 2

2P0
+ χh2

2P0

]
. (11.75)

Susceptibility of a Molecular Gas

Let us consider a mixture of spin-1/2 fermions in the BEC side of a Feshbach res-
onance and in this regime a> 0, so two atoms can form a stable dimer of energy
�

2/ma2. Let us consider the free energy F(N↑, N↓, Nb). Since the formation of δNb

dimers requires the disappearance of a same number of spin-up and down atoms, the
free energy varies at fixed temperature as

δF = (
∂Nb F − ∂N↑ F − ∂N↓ F

)
δNb. (11.76)

At equilibrium, δF = 0 to first order, yielding the condition

μb =μ↑ + μ↓ = 2μ̄, (11.77)

where as before μ̄= (μ↑ +μ↓)/2. Let us consider the BEC limit, where the binding
energy of the dimers is −�

2/ma2 and the atom-atom, atom-dimer and dimer-dimer
interactions are negligible. In this case we can describe the system as a mixture of
ideal gases. Moreover, if we work above the quantum degenerate regime, we can
use classical thermodynamics to describe the system. In this regime the partition
function of an ensemble of N non-interacting particles described by a dispersion
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relation E(p)= E0
α + p2/2mα, where the α encapsulates the nature and the internal

state of the particle, is given by

Z = 1

N !
[∫

V d3 p
(2π�)3

e−βE(p)
]

= 1

N !

(
V e−βE0

λ3
th

)N

, (11.78)

where λth = √
2π�2/mαkB T is the thermal wavelength and the factor N ! was intro-

duced to take into account the classical indiscernibility of the particles.8 We deduce
the chemical potential from the definition μ= ∂N F with F = − kB T ln Z . After a
straightforward calculation we obtain

μ= E0 + kB T
(

ln(nλ3
th)− 1

)
. (11.79)

for the gases of atom (mα = m, E0
α = 0) and molecules (mα = 2m and

E0
α = − �

2/ma2), we have

μσ = kB T
[
ln

(
nσ λ

3
T

)
− 1

]
(11.80)

μb = − �
2

ma2 + kB T
[
ln

(
nσ λ

3
T /2

3/2
)

− 1
]
, (11.81)

where λth is the thermal wavelength of the atoms.
Let us consider first the balanced case, n↑ = n↓ = na . Writing the condition

(11.75), we recover the law of mass action

n2
a

nb
= e−T ∗/T

23/2λ3
th

, (11.82)

with kB T ∗ = �
2/ma2. As expected, we see that this ratio goes to zero when the

temperature becomes much smaller than T ∗. In this limit, we have in particular
N = N↑ + N↓ + 2Nb ∼ 2Nb, hence

n2
a ∼ 2ne−T ∗/T

23/2λ3
th

. (11.83)

Let us now consider the imbalanced case. Using Eq. 11.78, we see that

h = kB T

2
ln

(
n↑
n↓

)
. (11.84)

8 Note that without this factor the free energy is not an extensive quantity.
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Inverting this relation, we see that when h is small we have

n↑ − n↓ = 2na

kBT
h, (11.85)

where na is given by (11.81) and is exponentially small in the low temperature limit
T/T ∗ � 1. The spin susceptibility is thus given by

χ = 1

V

(
∂M

∂h

)
N

∝ e−T ∗/2T

T
. (11.86)

In the opposite limit T/T ∗ � 1, we have nb � na hence na ∼ n/2 and

χ ∝ 1

T
, (11.87)

where we recover Curie’s law.

Virial Expansion

Let us consider the Grand canonical partition function of a many-body system

Z =
∑
α∈H

e−β(Eα−μNα),

where the |α〉 are the eigenstates of the hamiltonian H and span the whole grand
canonical Hilbert space H. Let us now decompose this sum over Fock states of fixed
atom number N. We thus have

Z =
∑

N

⎛
⎝eβμN

∑
α∈HN

e−β(Eα)
⎞
⎠ .

We see in this case that the partition function can be expanded with the
fugacity z = exp(βμ), a result known as the Virial expansion. The grand-potential
�= − PV = − kB T ln Z is also analytical with fugacity z and can therefore be
expanded as

P(μ, T )=
∑
n≥1

bnzn (11.88)

where bn can be obtained from the knowledge of the spectrum of the Hamiltonian at
a number n′ ≤ n 0 of particles.
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Chapter 12
Normal Phase of Polarised Strongly Interacting
Fermi Gases

Alessio Recati and Sandro Stringari

Abstract The theory of the normal phase of strongly interacting polarized atomic
Fermi gases at zero temperature is reviewed. We use the formalism of quasi-particles
to build up the equation of state of the normal phase with the relevant parameters cal-
culated via Monte-Carlo. The theory is used to discuss the phase diagram of polarized
Fermi gases at unitarity. The Fermi liquid nature of these configurations is pointed
out. The theory provides accurate predictions for many different quantities experi-
mentally measured, like the Chandrasekhar–Clogston limit of critical polarization,
the density profiles and the Radio-Frequency spectrum.

12.1 Introduction

The observation of superfluidity in ultra-cold Fermi gases has built a new bridge
between the field of atomic gases and condensed matter. Moreover the flexibility one
has in cold gases gives the possibility to explore new regimes and investigate new
phases [1–3]. Remarkably in cold gases it is also possible to change the strength
of the interatomic force between atoms. Due to the very low temperature and the
diluteness of the gas the interaction can be described as a contact potential with
strength g = 4π�

2a/m where m is the mass of the atoms and a the scattering length.
The latter depending on the atomic species can be changed by applying an external
magnetic field profiting of the so-called Fano-Feshbach resonances (see e.g., [2], the
article by Ketterle and Zwierlein in [1] and reference therein). Such a knob is one of
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the key feature in the recent development of the field of cold gases and in particular has
allowed to experimentally confirm the existence of a smooth crossover between the
so-called Bardeen–Cooper–Schrieffer (BCS) regime of weakly attractive fermions
and the Bose–Einstein condensation (BEC) of deeply bound pairs. The idea of a
crossover, rather than a phase transition, was proposed in the early 80s by Leggett [4],
Nozières and Schmitt-Rink [5].

While at T = 0 the state of a spin-1/2 Fermi gas with attractive interaction is a
superfluid, a very interesting issue is what happens in the presence of spin population
imbalance. In the standard BCS theory, superconductivity arises from Cooper pairing
of opposite spin fermions, and is therefore sensitive to a mismatch between the Fermi
surfaces of the two spin species. Indeed in a superconducting metal when we apply a
magnetic field the coupling to the orbital motion (responsible for the Meissner effect)
is negligible and the important effect is the coupling to the electron spins. The field
can lower the energy of the spin-polarized normal state and, if it is strong enough,
make the normal state energetically more favourable than the superconducting spin-
singlet state. The value of the field at which this transition takes place is known as the
Chandrasekhar–Clogston (CC) limit [6, 7] and, in a BCS superconductor, it requires
that the field (or, in neutral systems, the chemical potential difference between the
two spin states) be larger than�/

√
2 where� is the superconductor gap. Crucially,

this estimate assumes that the change in energy of the normal state due to polarization
is only kinetic in origin and neglects changes in the interaction energy. However, if
the system is strongly interacting, the value of the Chandrasekhar–Clogston field can
also depend on the interactions in the normal state, an effect that must be accurately
taken into account if we wish to study normal/superfluid coexistence.

Experimentally, the phase diagram of a polarized Fermi gas remained unexplored
until recent work at MIT [8–10], Rice University [11, 12] and ENS [13–15] on
ultra-cold Fermi gases, where experiments in the strongly interacting unitary limit
of two-component atomic Fermi gases have been carried out. Such gases can be
polarised leading to a state most naturally described as phase separated between a
normal and a superfluid component.

In what follows we review the Fermi liquid theory of the normal state which was
first introduced in [16] and its building block the Fermi polaron, i.e., a single impurity
in an otherwise non-interacting Fermi gas. The normal phase has received a number
of quite stringent experimental test. Its predictions for the critical polarization (related
to the CC limit), the detailed structure of the density profiles agree very well with
the experimental data obtained at MIT and ENS. The calculated value of the polaron
parameters also agree with the ones found in very recent experiments [15, 17].

The same theory provides explicit predictions for the frequencies of the spin
excitations in the normal phase and experiments in this direction would provide a
crucial test of the applicability of Landau theory to the dynamics of these strongly
interacting normal Fermi gases. We discuss this issue briefly at the end of the review.

In this review we do not follow the historical development of the understanding of
the phase diagram for strongly interacting imbalanced Fermi gases. We rather start
with the single impurity problem, then we consider the equation of state (EoS) for
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finite concentration and the resulting nature and properties of the superfluid/normal
phase transition. When possible we make comparison with experiments.

12.2 The N + 1 or Polaron Problem

12.2.1 Homogeneous Case

In this section we consider the extreme polarised case of a single impurity interacting
attractively with a bath of N non-interacting fermions. It is worth mentioning that such
a problem is the simplest realisation of the moving impurity problem, and it bears
a strong similarity with other old and notoriously difficult condensed matter prob-
lems, such as the Kondo problem, the x-ray singularity in metals [18], the mobility
of ions [19] and 4He atoms in 3He [20].

For later purpose let us identify with ↑ the atoms in the bath and with ↓ the impurity
atom. Pictorially the bath will dress the impurity. Since the interaction is attractive,
the impurity ↓ prefers staying in the bath, gaining an energy μ↓ and acquires a
renormalised mass m∗. Sometimes μ↓ is also called in literature binding energy
for the simple fact that it is negative. The dressed particle is called Fermi-polaron or
simply polaron in analogy with solid state physics concepts used to describe electrons
dressed by optical phonons, hence a bath of bosons.

For weak interaction one can easily calculate within perturbation theory the two
relevant parameters μ↓ and m∗. Introducing the Fermi momentum of the bath kF =
(6π2n)1/3, with n the density of the bath, one finds to second order in kF a the
expressions

μ↓ = EF

(
4kF a

3π
+ 2(kF a)2

π2

)
(12.1)

m∗ = m

(
1 + 4

3π2 (kF a)2
)
, (12.2)

where EF = �
2k2

F/(2m) is the Fermi energy. They are the analogue of the Galitskii
correction for the energy and the effective mass for a balanced weakly interacting
Fermi gas [21]. Usually it is not easy to do much better than this, but for the present
problem the fact that we are dealing with a single impurity in a non-interacting
fermionic bath allows to obtain reliable results till unitarity using a simple variational
approach. The starting point is to write the simplest non-trivial variational many-body
wave-function for such a system, namely the sum of a non-interacting system with
single particle-hole excitations. The trial wave function |ψ〉 for a system of total
momentum p is the following momentum eigenstate [22, 23]
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|ψ〉 = φ
p
0 |p〉↓ |0〉↑ +

k>kF∑
q<kF

φ
p
qk|p + q − k〉↓ c†

k↑cq↑ |0〉↑ (12.3)

where ck↑ and c†
k↑ are annihilation and creation operators of atoms in the bath with

momentum k. In the first term the free Fermi sea is in its ground state |0〉↑ =∏
k<kF

c†
k↑ |v〉 (|v〉 is the vacuum) and the impurity atom is in the plane-wave state

|p〉↓, while the second term is an excited state corresponding to the creation of a
particle-hole pair in the Fermi sea with momentum k and q respectively and the ↓-spin
atom carrying the rest of the momentum. The first part corresponds to free propagation
and, thus, |φ p

0 |2 is to the quasi-particle residue Z p [24]. The coefficients φ p
0 and φqk

are found by minimizing the total energy. In the minimisation procedure one has
to handle, as usual, with the zero range interaction potential and the corresponding
regularisation in terms of the scattering length (see, e.g., [21]). In this way one gets
for the energy change:

E = ε↓p +
∑

q<kF

f (E,p,q) (12.4)

1

f (E,p,q)
= m

4πa
−

∑
k

m

k2 +
∑

k>kF

1

ε↑k +ε↓p+q−k − ε↑q −E

where ε↑,↓k = k2/2m is the kinetic energy of the ↑ and ↓ atoms. For p = 0 we have
E = μ↓, while the variation of E for small p gives the effective mass. In Fig. 12.1
we report the results for the energy of the polaron as a function of the inverse of
the interaction 1/kF a. In the same figure we report the perturbative result (12.2)
as well as the results (Stefano Giorgini, private communication) obtained by using
Fixed-Node Diffusion Monte-Carlo (FN-DMC) simulations. The latter technique is
a zero-temperature Monte-Carlo technique based on a trial wave function which fixes
the nodal surface, used as an ansatz in the DMC. We restrict the analysis to the case
where there are no bound states between the ↑ and the ↓ atoms. Such a bound state
clearly exists in the BEC limit 1/kF a → +∞, where molecules are present. While
the present approach recovers this limiting behavior, the effect of a bound state in
the intermediate regime has to be properly taken into account [25–27] and it is not
well described by the variational ansatz (12.3). The point is that, as it was first shown
in [28], the polaron is not the lowest energy state any more for 1/kF a ≤ 1. At the
many-body level this would imply that at T = 0 one has a BEC of molecule almost
for any polarization of the system. It is worth noticing that moreover as soon as the
molecules are formes the the ssystem prefers to phase separate in a BEC of molecule
and an ideal Fermi gas [29]. Thus the study of the physics of the molecular state
embedded in an ideal Fermi gas [25–27] is experimentally challenging.

Going back to the results at unitarity (kF a → ∞), as can be seen from Fig. 12.1,
the impurity chemical potential appraches the value ∼3/5EF which means that the
bath “dresses” the impurity with just a single atom. The effect on the mass is even
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Fig. 12.1 Polaron energy as a function of the inverse of the interaction between the impurity and
the fermionic bath kF a, with kF the Fermi momentum of the ideal Fermi gas and a the scattering
length between ↑ and ↓ atoms. Solid (black) line: the variational result solving Eq. 12.5; dot-dashed
(red) line: first order correction; dashed (green) line: second order perturbation theory; diamonds:
Fixed-Node Monte-Carlo
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Fig. 12.2 Polaron effective mass m∗ as a function of the inverse of the interaction between the
impurity and the fermionic bath kF a,with kF the Fermi momentum of the ideal Fermi gas and a the
scattering length between ↑ and ↓ atoms. Solid (black) line: the variational result solving Eq. 12.5;
dashed (green) line: second order perturbation theory; diamonds: Fixed-Node Monte-Carlo

smaller, being the effective mass less than 20% bigger than the bare one. In Fig. 12.2
we report the variational and perturbative results (12.2) for the effective mass.

The fact that we can thrust the variational calculation is many-fold. Indeed, as can
be seen in Fig. 12.1, it agrees very well with the Monte-Carlo calculation, further-
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more it has been shown that the inclusion of essentially any number of particle-hole
excitation does not significantly change the results [30]. Finally where applied to
a one-dimensional system [23, 31] it gives results that are in very good agreement
with the exact solution explored by McGuire [32]. It is also worth mentioning that
the variational approach is equivalent to a more standard many-body treatment via a
T-matrix approximation also known as Brueckner-Hartree-Fock [23, 33].

12.2.2 Non-Homogeneous/Trapped Case

Up to now we have considered the system as being homogeneous. In a real experiment
the atoms are trapped by an external electromagnetic field, which in most of the cases
can be included in the Hamiltonian by means of a harmonic potential of the form

Vho(x) = 1

2
m(ω2

x x2 + ω2
y y2 + ω2

z z2). (12.5)

The bath can be considered not altered by the presence of the impurity and can be
described by an ideal Fermi gas in an harmonic trap. Moreover, most of the times,
local density approximation (LDA) [2] is applicable. In such approximation one
defines the local chemical potential as μ↑(x) = (6π2n↑)2/3 = μ↑ − V (x), where
μ↑ is fixed by the number of ↑-atoms, i.e., μ↑ = (6N↑)1/3�ω̄, with ω̄3 = ωxωyωz

the frequency geometrical average. The impurity is dressed by the bath as described
above and can be described by a particle of mass m∗ in an effective external potential.
Its Hamiltonian is easily written as [34]

Hsp = p2

2m∗ + Vho(x)
(

1 + 3

5
A

)
, (12.6)

where, for later convenience, we have introduced the dimensionless polaron energy
parameter A = −μ↓/(3/5EF ) > 0, which is � 1 at unitarity. The impurity feels a
potential stronger than the bare one with the renormalised oscillator frequencies

ω̃i = ωi

√(
1 + 3

5
A

)
m

m∗ . (12.7)

This means, e.g., that the dipole (sloshing) mode of the impurity along, let us
say, the x-axis has a larger frequency with respect to the one of the harmonic
confinement ωx , namely

ω
(s)
D = ωx

√(
1 + 3

5
A

)
m

m∗ . (12.8)

For example taking the values obtained by the variational ansatz at unitarity, i.e.,
A � 1.01 and m∗/m � 1.17 we have ω(s)D /ωx � 1.2, i.e., an increase of 20% with
respect to the bare harmonic oscillator frequency.



12 Normal Phase of Polarised Strongly Interacting Fermi Gases 453

It is clear from the above equation that the frequency of the impurity dipole mode
(or (s)pin-Dipole) provides information about the polaron parameters. First measure-
ments along this line have been reported in [13] and are discussed in Sect. 12.6.

In most of the present chapter we assume that the atoms forming the bath and
the impurity atom are just different hyperfine levels of the same atomic specie, thus
they are both fermions, have the same mass and they feel the same external potential.
It is worth mentioning that the discussion is easily generalised to different atomic
species. The value of the polaron parameters A (or μ↓) and m∗↓/m↓ depend on the
mass ratio m↓/m↑ [23], which eventually affect the possible configuration in the trap
when considering the many-polaron case as we briefly discuss in the Sect. 12.3.3.

12.3 Unbalanced Fermi Gas or Many-Polaron Problem

In this section we discuss what does happen when the concentration of the impurities
is finite and the atoms are trapped by an harmonic confinement. We stress that the
impurities are also fermions. This fact does not affect clearly the N + 1 problem, but
it makes a huge difference for the kind of phase one has in the finite concentration
case. We define the concentration as x = n↓/n↑ where n↓ and n↑ are the densities
of the minority spin-↓ atoms and of the majority spin-↑ atoms, respectively. We also
introduce the polarisation of the system as

P = N↑ − N↓
N↑ + N↓

, (12.9)

where N↑ (N↓) is the number of spin-↑ (− ↓) atoms. Moreover we mainly discuss
the case when the gas is at unitarity, i.e., a → ∞.

12.3.1 Homogeneous Case

The main assumption in describing a system with finite concentration is that even at
unitarity the impurities behave as a (almost) non interacting Fermi gas of polarons,
or in other words they preserve they fermionic nature and the dressed particles
are weakly interacting [16]. Let us start again considering a homogeneous system.
The energy functional of the system can be written in the form of the Landau-
Pomeranchuk Hamiltonian [16]

E(x)

N↑
= 3

5
EF↑

(
1 − Ax + m

m∗ x5/3 + Bx2
)

≡ 3

5
EF↑ε(x), (12.10)

where N↑ is the number of spin-↑ atoms and EF↑ = �
2/2m(6π2n↑)2/3 is the Fermi

energy of the spin-↑ gas. We repeat again that the first term in Eq. 12.10 corresponds
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Fig. 12.3 Equation of state of a normal Fermi gas as a function of the concentration x (circles),
from [16]. The solid line is a best fit to the FN-DMC results, from which the value B of the energy
(12.10) is extracted. The dashed line corresponds to the non interacting gas of polaron, i.e., Eq. 12.10
with B = 0. The dot-dashed line is the coexistence line between the normal and the unpolarized
superfluid states and the arrow indicates the critical concentration xc above which the system phase
separates. For x = 1, both the energy of the normal and of the superfluid (diamond) states are
shown. In the inset we report the results of a “naive-BCS” theory (see text), in which the superfluid
is much more robust

to the energy per particle of the non-interacting gas. The linear term in x gives the
single-particle energy of the spin-down particles, while the x5/3 term represents
the quantum pressure of a Fermi gas of quasi-particles with an effective mass m∗.
Eventually, the last term includes the corrections to the free polaron energy. The
form of the latter term has been first found by fitting the Monte-Carlo results for
finite concentration up to x = 1 [16, 29]. The (fitted) energy functional (12.10) is
shown in Fig. 12.3, together with the Monte Carlo data and the free polaron energy
functional, B = 0 (dashed line). The physical interpretation of the x2 term is still
not completely clear, but it can be thought as a quasi-particle forward interaction
[35, 36]. It is worth remarking that, while Eq. 12.10 is thought as an expansion of
the normal state energy for small concentration, it agrees very well with Monte-
Carlo calculations for any values of x [16]. In the present work we use the values
A = 0.99(1), m∗ = 1.09(2) and B = 0.14 calculated in [29], using Fixed-Node
Monte-Carlo techniques.

On the other hand we know in the balance case, x = 1, and at T = 0, the
system is superfluid. The equation of state of a homogeneous unpolarized superfluid
at unitarity is simply given by the energy of an ideal Fermi gas multiplied by an
universal parameter (see, e.g., [2, 3])

ES

NS
= ξS

3

5

�
2

2m
(6π2nS)

2/3 ≡ εS(nS), (12.11)
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where NS is the number of atoms in the superfluid phase and the universal parameter
ξS has been calculated by different techniques, e.g., employing Quantum Monte Carlo
simulations [37, 38] or diagrammatic techniques [39]. It has been also measured
experimentally. We rely in what follows on the Monte Carlo value ξS � 0.42. It
means that if we assume that the system admits only these two phases, namely the
unpolarized superfluid and the partially polarized normal phase, there exists a critical
value of the concentration, xc, at which the superfluid starts to be nucleated in the
normale state. The transition between the normal and the superlfluid phase is of first
order nature and the equilibrium of the two phases is found by imposing chemical
and mechanical equilibrium. At constant volume V a further increase of the number
of the minority atoms turns in a increase of the superfluid part. The equilibrium
pressure reads

∂E(x)

∂V
= ∂ES

∂V
(12.12)

and using Eqs. 12.11 and 12.10, it provides the relation between the superfluid density
and the majority atom density in the normal phase

nS

n↑
=

(
ε(x)

2ξS

)3/5

. (12.13)

The chemical potential equilibrium is equivalent to state that the chemical potential of
the superfluid is equal to the sum of the chemical potential of the majority,μ↑, and of
the minority,μ↓, atoms. From Eq. 12.11 one has ξS�

2/(2m)(6π2nS)
2/3 = μ↑ +μ↓.

Eventually one finds that the critical concentration is given by the solution of the
equation

3

5
(xc − 1)ε′(xc) = ε(xc)− 2ξS

(
ε(xc)

2ξS

)2/5

, (12.14)

where the prime means the derivative with respect to the concentration x. In this way
we determine the critical concentration to be xc � 0.44 and interestingly enough
the density jump between the superfluid and the majority component is almost not
existent being nS/n↑ � 1.02. This is peculiar of the equal mass case, while for
different masses the jump can be pretty large (see Sect. 12.3.3). The coexistence line,
shown also in Fig. 12.3 by the dashed-dot line, is obtained by minimizing the energy at
a constant volume of a superfluid coexisting with a normal phase with concentration
xc. To show the importance of properly including the interaction in the normal phase,
in the inset of Fig. 12.3 we report the same results but using the most “naive-BCS”
theory. Namely we take the BCS result for the superfluid energy at unitarity (i.e.,
without any Hartree term) and the normal phase is just a two-component unbalance
free Fermi gas. The normal phase would be practically never realised.

Before moving to the trapped case, a couple of remarks on the unstable strongly
interacting normal phase at x = 1. are due. Such a phase has an energy which, being
at unitarity, can be written as the one for the superfluid
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En

N
= ξn

3

5

�
2

2m
(6π2n)2/3 ≡ εn(n), (12.15)

with a different universal interaction parameter ξn that was also calculated via
Monte-Carlo technique in [37, 38]. Such a phase is difficult to get in the lab, although
it was suggested that it could emerge as an equilibrium phase in a rotating trap
[40–42]. However, such a phase is not just of academic interest. Indeed it turns
out that it is possible to probe such a phase experimentally, being connected to the
T �= 0, P = 0 and to the T = 0, P �= 0 normal phase of the gas. This has been
shown by the very recent analysis of some extrapolated quantities measured by the
ENS group (C. Salomon, private communication).

12.3.2 Non-Homogeneous/Trapped Case

In a trap the local chemical potential fixes the sequence of phases present as a function
of the distance from the trap centre. A good way to understand this feature is to
convert the density relations to the chemical potential ones, i.e., to draw the grand
canonical phase diagram in terms of total chemical potential μ = (μ↑ + μ↓)/2
and effective magnetic field h = (μ↑ − μ↓)/2 as sketched in Fig. 12.4. In this
respect the superfluid to normal phase transition is characterise by (h/μ)c = 0.96
(continuous red line in Fig. 12.4) or ηc = (μ↓/μ↑)c = 0.02. The earlier value is
precisely the Chandrasekhar–Clogston limit for our unitary Fermi gas. We also draw
the line of the transition between the normal mixed phase and the fully polarised one
which corresponds to the chemical potential ratio for a single impurity h/μ = (1
− 3/5A)/(1 + 3/5A) = 3.94 (dashed green line in Fig. 12.4). We call μ0↑,↓ the

chemical potentials in the centre of the trap. The chemical potential μ = (μ0↑ +
μ0↓)/2 − V (x) decreases going outward in the trap, while h = (μ0↑ − μ0↓)/2 is
constant, and thus in a trap we explore the phase diagram along a straight line parallel
to μ. In other words we can explore the whole phase diagram in a single shot and
this represents a very stringent test for any theory. It is clear that it could be that some
of these phases occupy a very narrow space region that are not detectable in actual
experiments.

We see from Fig. 12.4 that if h is not too large we expect to have a superfluid in
the centre of the trap surrounded by a shell of normal phase with decreasing concen-
tration x going outward in the trap. When h is large enough no superfluid is present.
This T = 0 behaviour is in agreement with what has been found experimentally
[8–10, 13, 15, 43].

A quantitative comparison with experiments can be done by calculating the density
profiles, which in a trap are given by the following LDA expression

μ0↑ + μ0↓
2

= ξS
�

2

2m
(6π2nS)

2/3 + V (r) (12.16)

in the superfluid region and by
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Fig. 12.4 Theμ−h phase diagram. The first order phase transition is indicated by a continuous line
and where we report also the second order transition between the mixed normal phase and the fully
polarised gas. The straight black line are the phases present in the trapped gas. The total chemical
potential μ decreases moving outward in the trap, while h is constant and fixed by the polarization
P. If P is not too large one has a superfluid in the center of the trap, then a normal mixed phase and
eventually a fully polarised Fermi gas of the majority atoms

μ0↑ =
(
ε(x)− 3

5
xε′(x)

)
�

2

2m
(6π2n↑)2/3 + V (r), (12.17)

μ0↓ = 3

5
ε′(x) �

2

2m
(6π2n↑)2/3 + V (r), (12.18)

in the region occupied by the normal phase. The value of μ0↑ and μ0↓ are determined,
as usual, by fixing the number of atoms N↑ and N↓.The border between the superfluid
and the normal phase region is given by the locus of points R satisfying

μ0↓ − V (R)
μ0↑ − V (R) = ηc. (12.19)

In a spherical trap (ωx = ωy = ωz = ω0) we can identify R with the radius of the
superfluid, RS . The first result one can get is the critical polarization above which the
superfluid disappears from the trap. It happens when the density ratio in the centre of
the trap is equal to the critical value xc. It turns out that Pc = 0.77 and this prediction
is in very good agreement with experiments. An even stronger test for the theory is
the direct comparison of the density profiles, which can be obtained experimentally
via the so called Abel transform [44]. In Fig. 12.5 we show the comparison between
theory and experiment. The agreement is extremely good and the jump in going from
the equal density superfluid to the mixed normal phase is evident and in agreement
with the CC limit xc � 0.44.

A deeper insight in the density profiles and a link with the single polaron problem
can be obtained by solving Eqs. 12.17 and 12.18 in the high polarisation case, i.e.,
N↑ � N↓. To the leading order in x, we get
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Fig. 12.5 Density profiles
for a polarization P = 44%.
Theory: solid black line
(dashed red line) is the
spin-↑ (spin-↓) density.
Experiment: the black (red)
line is the spin-↑ (spin-↓)
density as reported in [10].
The density jump in the ↓
component is clearly visible
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μ0↑ = �
2

2m
(6π2n↑)2/3 + V (r), (12.20)

μ0↓ + 3

5
Aμ0↑ = �

2

2m∗ (6π
2n↓)2/3 + V (r)

(
1 + 3

5
A

)
, (12.21)

yielding the non-interacting value μ0↑ = (6N↑)1/3�ω0 for the chemical potential of
the majority component. The above equations show that both the majority and the
minority components have an ideal Fermi gas profile, the latter being described by a
renormalised mass m∗ and feeling a renormalised external potential. The radius of
the minority component is hence quenched by the interaction to the value

R↓ = R0↓
[

m∗

m

(
1 + 3

5
A

)]−1/4

, (12.22)

where R0↓ = (48N↓)1/6
√

�/(mω0) is the Thomas-Fermi radius of the ideal Fermi
gas. These results are easily understood in terms of the effective single quasi-particle
Hamitonian (12.6).

12.3.3 Different Mass Case: Fermi Mixture

The analysis developed in the previous sections can be extended to Fermi mixtures,
where the two spin species correspond to different atoms, as, e.g., 6Li−40 K [45, 46].
We will focus mainly on the unitarity regime. Since we are interested in describing
the normal phase of the system, we assume again that the only two possible phases
are an unpolarised superfluid and a mixed normal phase [47], whose description is
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based on the polaron concept. The calculation of the polaron parameters is the same
as the one explained in Sect. 12.2 just with the impurity mass m↓ different from the
mass m↑ of the atoms forming the bath. In this case we have a new parameter given
by the mass ratio r = m↓/m↑.

Let us here make two remarks on the polaron energy. First of all there exists an
approximate easy expression for the binding energy as a function of kF a and r, which
is obtained in the limit for large ratio ρ = |μ↓|/μ↑ [23]

1

kF a
=

√
ρr

1 + r
− 2

3π

1 + r

ρr
, (12.23)

Althuogh it has been obtained in the largeρ limit, the above expression (i) recovers the
weakly interacting result (12.2) (with the proper reduced mass), (ii) is in pretty good
agreement with the known value at unitarity where it reads ρ = (1 + 1/r)(2/3π)2/3

and (iii) recovers the correct two-body binding energy ρ = (1 + 1/r)(1/kF a)2 for
small positive-a. Second, the infinite mass ratio case admits an exact solution. Indeed,
since the impurity is static in this case we can use the Fumi’s theorem [48] which
relates the impurity energy to an integral over the phase shifts δl of the scattering
states of the atoms in the bath:

μ↓ = − �
2

mπ

kF∫
0

k
∑

l

δl(k)dk. (12.24)

For low energy atoms only s-wave phase shifts are relevant and tan(δ0(k)) = −ka.
From (12.24) we get

ρ = 1

π

(
1

kF a
−

(
1 + 1

(kF a)2

)
arctan(kF a)

)
. (12.25)

In Figs. 12.6 and 12.7 the absolute value of the polaron energy and effective mass,
respectively, are shown for different values of r. The main message is that the lighter
is the impurity, the larger the effect of the bath on it. This behaviour is shown at
unitarity in the insets, where for the polaron energy we show also the approximate
result obtained from Eq. 12.23 for kF a → ∞.

Once the polaron parameters are known one can write a Landau-Pomeranchuck
energy as for the equal mass case

E(x, κ)

N↑
= 3

5
EF↑

(
1 − A(κ)x + F(κ)−1

κ
x5/3 + B(κ)x2

)

= 3

5
EF↑g(x, κ) ≡ εn(x, κ), (12.26)

where the term in x2 has been added in analogy with the equal mass case, and its
coefficient determined by imposing that at x = 1 Eq. 12.26 reduces to the energy
of the normal (balanced) state Eq. 12.15. Indeed for both the unpolarised superfluid
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Fig. 12.6 Polaron energy as a function of 1/kF a for various mass ratios r. Black curves from top to
bottom: polaron energy for mass ratio r = 0.25, 0.5, 1 (solid thick line), and ∞ (lower solid line).
The dashedtriple dotted blue line above the equal mass line is the interpolating approximation
Eq. 12.23. The dotted red line just above the infinity mass impurity line is the exact result Eq. 12.25.
The inset compares, at unitarity, the approximation Eq. 12.23 (dashed line) with the numerical
results (solid line) as a function of the mass ratio r

Fig. 12.7 Relative effective
mass m∗/m↓ as a function of
1/kF a for various mass
ratios r. Same conventions as
in Fig. 12.6 for
r = 0.25, 0.5, and 1. The
dashed-dotted line is r = 4,
and the dashedtriple-dotted
line is r = 10. The inset
shows the effective mass as a
function of r at unitarity
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phase at unitarity and the normal x = 1 phase the universal parameter ξS,n depends
very weakly on the mass ratio once the free Fermi gas energy is expressed in terms
of the reduced mass.

Following the procedure explained in Sect. 12.3 one finds the critical concen-
tration at which the system starts nucleating a superfluid. The results are reported
in Fig. 12.8. For comparison we also report the result obtained by the naive-BCS
mean-field calculation, as discussed in the previous section, where the interaction
in the normal phase is not taken into account and the BCS value ξS(BCS) = 0.59
for the superfluid phase is consistently used. Interesting enough, within the present
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Fig. 12.8 Critical
concentration xc(κ) for a
homogeneous system as a
function of the mass ratio κ:
upper line is obtained using
the equation of state (12.26),
while the lower dashed line
is derived from the BCS
mean-field solutions at
unitarity (see text)

Fig. 12.9 (Color online) For
κ = 2.2 the phase diagram is
asymmetric. Shown are the
superfluid S (solid red lines),
partially polarized PP
(dashed green) and fully
polarized FP (dot-dashed
blue) regions

approach—and also within BCS mean-field theory—the critical concentration has a
non-monotonic behaviour. The range of values is also pretty limited. It is more inter-
esting the behaviour of the density change between the superfluid and the normal
phase. For the equal mass case is given by Eq. 12.13 and it is very close to unity. For
the unequal mass case Eq. 12.13 reads

n↑(x, κ)
nS(κ)

=
(
(1 + 1

κ
)ξS

g(x, κ)

)3/5

. (12.27)

For instance for a mixture 6Li −40 K with more Lithium present, i.e., κ � 6.67, one
has xc(6.67) = 0.24 and a density jump nLi/nS = 0.71.

The grand-canonical phase diagram is in this case asymmetric with respect to the
change h → −h and for κ = 2.2 is shown in Fig. 12.9. This feature together with the
possibility to have different confinement potentials for the two atomic species, i.e.,
different trapping frequencies for a harmonic confinementωi,↑ �= ωi,↓, i = x, y, z,
allows for more available configurations for trapped gases, with respect to the homo-
nuclear case described before [47]. Even for equal trapping potentials interesting
configurations can appear. As an example here we consider the case of a 6Li −40 K
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Fig. 12.10 (Color online) a
Phase diagram for κ = 6.7,
corresponding to a
40K − 6Li mixture. b
Density profiles in units of
the central density of the
noninteracting ↑-gas (dashed
line) for P = −0.13. The
inset shows a zoom of the
outer superfluid-“light”
normal border

(a)

(b)

mixture. Generally ifμ↓/μ↑ > 1/ηc(1/κ) the trapped system will consist of a three-
shell configuration, where the superfluid is sandwiched between a “heavy” normal
phase (heavy spin-↓ are the majority) at the center of the trap, and a “light” normal
phase (light spin-↑ are the minority) in the outer trap region [47, 49–51].

The phase diagram and the relative density profiles of the system are shown in
Fig. 12.10, for a polarization P = −0.13. The density jump between the superfluid
and both normal phases previously discussed are clearly visible.

Another interesting case, in view of studying the normal phase of a strongly
interacting Fermi mixture, is when one of the component is not trapped, but just
confined due to interatomic forces as shown in Fig. 12.11.

In order to get a better insight into such configuration we can again refer to the
highly unbalanced case N↓ � N↑ (black solid line in Fig. 12.11a). The densities are
easily found to be

μ0↓ = �
2

2m
(6π2n↓(r))2/3 + V↓(r), (12.28)

μ0′
↑ = �

2

2m∗ (6π
2n↑(r))2/3 + V ′↑(r), (12.29)
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Fig. 12.11 (Color online)
No trapping for the spin-↑
component, i.e., ω↑, i = 0
and κ = 1. a Phase diagram.
b Density profiles in units of
the central density of the
noninteracting gas for a
polarization P = −0.5

(a)

(b)

where μ0′↑ = μ0↑ + 3
5 Aμ0↓, V ′↑(r) = V↑(r) + 3

5 AV↓(r) and A ≡ A(κ = 1).
From these equations it is clear that if V↑ → 0, the ↑-atoms feel neverthelsess the
renormalized potential 3

5 AV↓(r) and are confined due to the interaction with the
↓-component.

12.4 RF Spectroscopy

An invaluable tool to prepare, manipulate and probe ultracold gases is the RF
spectroscopy. There have been quite a number of experimental and theoretical
papers discussing it to which the reader is refer to for all the details and subtleties
(see [52] and references therein). In the following we present a short digression on
RF spectroscopy as a tool to probe polaron properties.

Let us consider as usual in this review that the bath and the impurity are labelled
by | ↑〉 and | ↓〉, respectively, and that the RF field couples the latter with a third
state |3〉 which does not interact with the bath. Since the RF field has a very long
wavelength (zero momentum transferred) and is constant over the size of the atomic
cloud the RF operator reads
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Ô = ��R

∫
d3x ψ̂†

3 (x)ψ̂↓(x)+ h.c., (12.30)

where �R is the Rabi frequency and ψ̂3(x) and ψ̂↓(x) are the field operators for the
atoms in the internal state |3〉 and | ↓〉, respectively. According to Fermi’s golden
rule the RF spectrum �(ω) for the system prepared in the state |�〉 is

�(ω) = 2π

�

∑
f

|〈 f |Ô|�〉|2δ(�ω − E f + Ei ), (12.31)

where the sum is over all the possible final states | f 〉 and ω is measured with respect
to the bare frequency ω↓3 of the | ↓〉 → |3〉 atomic transition. The spectrum is easily
calculated assuming a single impurity and the variational state Eq. 12.3. We are left
with two contribution for the spectrum [17]

�(ω) = 2π��2
R

⎡
⎣|φ p

0 |2δ
(

�ω + ε↓ + p2

2m∗ − p2

2m

)
(12.32)

+
k>kF∑
q<kF

|φ p
qk |2δ

(
�ω + ε↓ + p2

2m∗ − ε↑k + ε↑q − ε↓p+q−k

)⎤
⎦ , (12.33)

where ε↓ is the single polaron energy. The first contribution is a delta-peak at
ε↓ − (1 − m/m∗)p2/2m [34], i.e., at the polaron rest energy plus the contribu-
tion due to the fact that the effective mass is different from the bare one, and with a
weight given by the quasi-particle residue |φ p

0 |2 = Z p. Since ε↓ < 0 the RF field
has to supply additional energy for the transition to occur with respect to the bare
one �ω↓3. The second term instead consists of a continuum of frequencies. Such a
structure is typical in Landau theory of Fermi liquids. Indeed for free particles one
has only the first term, since the spectral function is simply a delta function. For
an interacting Fermi system the spectral function of a quasi-particle in the limit of
infinite life-time can be written as a coherent delta-function term plus an incoher-
ent part. In actual experiments one has always a finite concentration of the minority
component and, due to the effective mass this leads to a broadening of the delta peak.
Indeed, as we have seen in the previous sections, the system can be described as a
free Fermi gas of polarons. The spectrum is then just the sum of the single polaron
spectrum (12.33). The coherent part reads [17]

�coh(ω) = 2π��2
R

∑
p<kF↓

|φ p
0 |2δ

(
�ω + μ↓ + p2

2m∗ − p2

2m

)
. (12.34)

where pF↓ is the Fermi momentum of the minority component. Thus the spectrum
starts at ε↓ and goes again to zero at �ω = −ε↓ + (1 − m/m∗)p2

F↓/2m. A more
detailed and refine description of the behaviour of RF-spectrum at finite concentration
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can be found in, e.g., [53, 54]. The RF-spectrum measurement has been indeed
carried out and in this way was possible to obtain the first observation of Fermi
polaron physics with the measurement of its energy, effective mass and quasi-particle
residue [17].

12.5 Collisional Properties of the Normal Phase

In the previous sections we introduced the polaron concept as an infinite life-time
quasi-particle. In the same spirit we have briefly discussed the out of phase oscil-
lations of the impurity with respect to the ideal Fermi gas (that are be extensively
discussed in Sect. 12.6) and we extended the analysis to finite concentration. We con-
sidered the system as being perfectly collisionless, by assuming that the only effect
of the bath is to renormalise the potential and the mass of the impurity. Generally
this is not the case and when the impurity moves with a relative speed in the bath we
have a damping of the counterflow determined by the rate at which momentum is
transferred between the two components. Such a rate is related to the quasi-particle
scattering amplitude which, in the weakly interacting regime, is proportional to the
scattering length a. In the strongly interacting case one expects that the system is
more easily in a collisional (hydrodynamic) regime. At finite temperature even the
polaron at rest has a finite life-time since real collisions can take place. A finite
life-time changes the delta-peak in the coherent part of the spectral function to just a
function peaked around the polaron energy and, thus, it could be extracted from RF
measurements as described in the previous Section.

In this section we use the concepts of Fermi liquid theory to describe the scatter-
ing amplitude and the momentum relaxation time (see e.g., [55]). The elementary
excitations of our system are quasi-particles with effective mass m∗↓. We take the
minority component to have a mean velocity v with respect to the majority compo-
nent corresponding to a total momentum per unit volume P↓ = n↓m∗↓v.

We define the momentum relaxation time τP by the relation

dP ↓
dt

= −P ↓
τP

. (12.35)

and calculate τP by assuming that both components are in thermal equilibrium.
Introducing the single particle energies εp′↑ = p′2/2m↑ and εp↓ = p2/2m∗↓ the
thermal equilibrium is described by the distribution functions np′↑ = f [β(εp′↑−μ↑)]
and np↓ = f [β(εp↓ −p ·v−μ↓)] with β = 1/kB T and where f (x) = 1/(ex +1) is
the Fermi distribution function. The term p·v boosts the ↓-atom distribution function
by a velocity v. The momentum of the impurities changes due to collisions with the
majority atoms according to

p ↓ +p′ ↑−→ (p − q) ↓ +(p′ + q) ↑ (12.36)

If we call U the momentum independent scattering amplitude for such a process the
rate of change of the minority momentum may be written as
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dP ↓
dt

= − 2π |U |2
V 3

∑
p,p′,q

p[np↓np′↑(1 − np−q↓)(1 − np′+q↑)

− np−q↓np′+q↑(1 − np↓)(1 − np′↑)]δ(εp↓ + εp′↑ − εp−q↓ − εp′+q↑),
(12.37)

where V is the volume of the system. The second term on the right hand side of
(12.37) correspond to the inverse of the process (12.36).

The effective interaction U may be estimated from thermodynamic arguments.
Since the momenta of the ↓-atoms are assumed to be much less than the Fermi
momentum of the ↑-atoms, the quasiparticle interaction may be taken to be inde-
pendent of the angle between the quasiparticle momenta. To estimate the scattering
amplitudes in terms of Landau parameters it is generally necessary to allow for addi-
tional processes due to screening by particle–hole pairs [56]. However, since we
assume that n↓ � n↑, these processes may be neglected, and we take the scattering
amplitude to be independent of the direction of the momenta of the quasiparticles and
equal to the Landau quasiparticle interaction averaged over the angle between the
momenta of the two quasiparticles, i.e., U = f 0↑↓ in the standard notation of Landau
Fermi liquid theory. The latter may be determined from the energy as a function of
the densities of the two components:

U = f 0↑↓ = ∂2 E(x)/V

∂n↑∂n↓
= ∂μ↓
∂n↑

−→ U = 2π2

m↑kF↑
γ, (12.38)

where E(x) is the energy (12.10) of the polarised system, kFσ = (6π2nσ )1/3 and we
define

γ = −3

5
A

(
1 + 3n↑

2A

∂A

∂n↑

)
. (12.39)

For the case of a resonant interaction, γ = −3/5A and U = −(6π2 A/5)/(m↑kF↑).
This is very different from the effective interaction at low densities (weak interacting
case), which is proportional to a. The previous result tell us already that there exists
a range of temperature for which the unitary polarised Fermi gas is collisionless.

It is convenient to rewrite the expression (12.37) in terms of response
function. By introducing the quantity ωq = q · v, using the relation np(1 − np−q) =
(np − np−q)/

{
1 − exp[β(εp − εp−q)]

}
, and taking the continuum limit we obtain

dP ↓
dt

= −|U |2
∫

d3qq
(2π)2

∞∫
−∞

dω
Imχ↓(q, ωqω)Imχ↑(q, ω)
(1 − eβ(ω−ωq))(1 − e−βω)

, (12.40)

where

Imχσ (q, ω) =
∫

d3 p

(2π)3
(npσ − np+qσ )δ(ω + εmσ − εp+qσ ) (12.41)
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is, apart from a factor of π, the imaginary part of the Lindhard function, and the
distribution functions are now global equilibrium ones without the boost for the
down-atoms.

12.5.1 T = 0

Let us start by considering the zero-temperature momentum relaxation rate. Due
to the Bose factors in (12.40) one has the condition 0 ≤ ω ≤ ωq. Depending on
the ratio between the momentum of the minority cloud and its Fermi momentum,
i.e., m∗↓v/kF↓, it is possible to distinguish two important limiting regimes for which
simple expressions for τP can be obtained.

12.5.1.1 Low Velocity Regime, m∗
↓v � kF↓

In this case the significant contribution to (12.40) comes from q ≤ 2kF↓ with a small
energy transfer ωq � k2

F↓/2m∗↓ We can then use Imχσ (q, ω) = m∗
σ

2ω/(4π2q) and
the resulting integrals in (12.40) yield

1

τP
= 4π

25
|γ |2

(
kF↓
kF↑

)2

m∗↓v2 = 4π

25

1

τ0

(
m∗↓v
kF↓

)2

, (12.42)

where 1/τ0 = |γ |2k4
F↓/m∗↓k2

F↑.

12.5.1.2 High Velocity Regime, kF↓ � m∗
↓v � kF↑

In this case we can again carry out the integrations in (12.40) and obtain

1

τP
= 2π

35
|γ |2 m∗↓

3v4

k2
F↑

= 2π

35

1

τ0

(
m∗↓v
kF↓

)4

. (12.43)

More generally, the scaled relaxation time τ̃P ≡ τP/τ0 depends only on the variable
ṽ = m∗↓v/kF↓ provided m∗↓v � kF↑ and its dependence, aside from the prefactors,
is the same as the one obtained for a (balanced) neutral Fermi liquid (see, e.g., [55]).

12.5.2 T �= 0

We now turn to non-zero temperature. Although current experiments on polarised
gases achieve very low temperatures in the highly polarised case it can happen that
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the actual temperature is much smaller than the larger Fermi temperature, related
to the majority component, but still of the same order or larger than the smaller
one, related to the polaron gas. In the following we analyse only the case when
both components are degenerate, i.e., T � TF↓ � TF↑ with kB TF↓ = k2

F↓/2m∗↓
and kB TF↑ = k2

F↑/2m↑. For a discussion on the high-temperature and intermediate
regimes the reader can consult Ref. [57].

For small relative velocities, vkF↓ � kT, it is sufficient to expand the inte-
grand in (12.40) to first order in βωq. Using the symmetry property Imχσ (q, ω) =
−hχσ (q,−ω) we obtain

dP ↓
dt

= − v
π |U |2
3kT

∫
d3q

(2π)3
q2

×
∞∫

−∞
dω

Imχ↓(q,−ω)Imχ↑(q, ω)
(1 − eβω)(1 − e−βω)

. (12.44)

Since T � TF↓, we can again use the result Imχσ (q, ω) = m∗
σ

2ω/(4π2q) which
yields for the relaxation rate in the limit of low velocities the expression

1

τP
= 4π3

9
|γ |2 m∗↓

k2
F↑
(kT )2 = π3

9

1

τ0

(
T

TF↓

)2

. (12.45)

The T 2-dependence is due to the fact that the phase space for scattering increases with
temperature and it is also the same as for a Fermi liquid [55]. Equation (12.45) shows
that for equal masses of the two components and at unitarity 1/τP ∼ kT 2/TF↑, as
one would expect on dimensional grounds because the effective interaction measured
in terms of the density of states of the up-atoms is of the order of unity.

12.5.3 Experimental Consequences for Collective Modes

The previous sections considered the momentum relaxation time for a homogeneous
gas. In this section we study the possible consequences on experiments devoted to
measure collective mode frequencies in harmonically confined systems. For the sake
of concreteness let us analyse the spin dipole mode of a Fermi gas above the critical
polarisation where, as previously discussed, the system is normal. We assume that
the cloud of minority atoms is displaced by a distance δX from the centre equilibrium
position in the harmonic trap. Depending on the amplitude of the displacement (and
consequently on the velocity acquired by the minority component due to the external
force) as well as on the value of temperature, the cloud either oscillates with weak
damping around δX = 0 (collisionless regime) or it relaxes towards equilibrium
without any oscillations (hydrodynamic regime).

In the collisionless limit ωDτP � 1 the dipole mode is well defined and its
frequency ωD can be derived within Landau theory of Fermi liquid (see Sect. 12.6).
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Fig. 12.12 The quantity
1/ω0τP determining the
damping of the dipole mode
as a function of the
amplitude of the oscillation
for T = 0 and T = 0.03TF↑
(For details see text.)
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The latter coincides with (12.8) in the extreme imbalance case. The mode becomes
over-damped in the hydrodynamic regime ωDτP � 1 since the spin current is not
conserved by collisions [58].

In order to estimateωDτP we assume that the displacement of the ↓-atom cloud is
sufficiently small with respect to the majority cloud size, R↑, i.e., we consider δX �
R↑, such that the density of ↑-atoms may be regarded as uniform when estimating
the relaxation rate. Moreover we consider that both component are degenerate and a
highly polarised case such that the majority cloud remains essentially at rest during
the motion of minority component. The relative velocity of the two components is
in this case given by v = ωDδX. Within our assumption we can use the low-speed
Eq. 12.42 and low-temperature Eq. 12.45 results which, expressed in terms of the
new quantities, read

1

ω0τP
= 81π

252 (6N↑)1/3 A2
m∗↓
m↑

(
TF↓
TF↑

)2 (
δX

R↑

)2

, (12.46)

1

ω0τP
= 2π3

25
(6N↑)1/3 A2

m∗↓
m↑

(
T

TF↑

)2

, (12.47)

respectively, where we have used the result γ = −3/5A for a resonant interaction,
the fact that kTF↑ = k2

F↑/2m↑ = (6N↑)1/3ω0 and that ωD is close to ω0.

In Fig. 12.12 we report the full result for the relaxation time of the dipole mode
at zero (lower full line) and finite (upper full line) temperature using the values
N↑ = 107, and N↓/N↑ = 0.026 (correspondingly TF↓/TF↑ = 0.3) which are the
conditions achieved in the MIT experiment [9] for a mixture of 6Li-atoms in two
different hyperfine states. The lower dashed line is the expression (12.46), while the
upper dashed line is the sum of the results (12.46) and (12.47) in the spirit of Landau
theory [55]. We see that the analytical results are a good approximation to those
obtained by direct numerical integration in the regimes of experimental interest.

The calculated values of ω0τP demonstrate that, for the experimental conditions
now attainable, the polarised normal phase is easily in a regime intermediate between
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collisionless and hydrodynamic behaviour, implying significant damping of the spin
dipole mode. At lower temperature, the gas enters the collisionless regime. Indeed
such behaviour has been experimentally seen at ENS as reported in [13] (see also
Sect. 12.6).

How important collisions are in a given mode is sensitive to the anisotropy of the
trap, which we have neglected so far. For instance, cigar-shaped trap (ωz < ω⊥) the
transverse mode will be more collisionless, the value of 1/ωDτP being multiplied
by a factor ωz/ω⊥ for a fixed value of τP and by a factor (ωz/ω⊥)1/3, for a fixed
value of the trapping frequency geometric average (ω2⊥ωz)

1/3.When the two atomic
species are different, the value of ω0τP will be depend on the trapping potentials of
the two species, which can be varied independently of each other.

For low velocity, m∗↓v � kF↓, one sees from (12.42) and (12.45) that the momen-
tum relaxation rate scales as m∗↓. Consequently, since m∗↓ ≈ m↓ the spin motion
can be made more collisionless by trapping an atom mixture with a lighter minority
component. However, calculations indicate that this effect is reduced due to the fact
that, at unitarity, the scattering amplitude for the case of extreme imbalance increases
with decreasing m↓/m↑ < 1 [23]. For m↓/m↑ > 1 the scattering amplitude is pre-
dicted to be approximately constant and therefore 1/τP ∝ m↓ in this regime. Thus,
the spin motion becomes more hydrodynamic for m↓/m↑ > 1.

12.6 Collective Oscillations: The Quadrupole Mode

We have seen that there exists a very good agreement between experiments and the
theory developed for the polarised normal phase, when static properties are con-
sidered. The theory is essentially based on Landau theory of Fermi liquid, which
was built mainly for describing dynamical properties of an interacting Fermi system.
Thus a crucial question is whether Landau theory is applicable to the dynamics of
strongly interacting normal Fermi gases. In the previous sections we have practi-
cally considered only the single particle out of phase motion. The aim of the present
section is to study the collective mode frequencies of the unitary normal phase as a
function of the polarisation. To this purpose we develop the proper Landau formalism
to describe the collisionless regime of the polarised Fermi gas.

We face the problem by a lagrangian variational principle to derive the collective
modes in the collisionless regime. Such a method has been widely used in nuclear
physics to describe collective excitations in an elastic theory of nuclei (see e.g., [59]
and reference therein). The variational principle δS = 0 is applied to the action
integral

S =
∫

dt〈�|H − i�∂t |�〉

=
∫

dt (E − 〈�|i�∂t |�〉), (12.48)
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where |�〉 is a multi-parameter many-body wave-function and E = 〈�|H |�〉 is the
energy functional of the system. The latter on the basis of the Landau-Pomeranchuk
energy (12.10) can be written in the form

E =
∑
σ

∫
dx

( τσ
2m

+ m

2
(ω2⊥r2 + ω2

z z2)nσ
)

+ 3

5
A

�
2(6π2)2/3

2m

∫
dxn↓n2/3

↑ + a
∫

dx

(
τ↓
2m

− n↓
2m

j2↑
n2↑

)
, (12.49)

where τσ /2m is the kinetic energy density of the species σ. The functional (12.49)
accounts for the interaction between the majority and the minority component
through the local term in A and the last integral, which is necessary in order to
keep into account that the polarons (↓-particles) acquires an effective mass due to
interaction effects and that galilean invariance implies the presence of a counter cur-
rent term j2↑ of the majority component. We include the latter term for completeness,
although, since the effective mass is just 10−20% larger than the bare one, the effect
of the current term on the frequencies turns out to be fairly small. Expression (12.49)
corresponds to a typical energy functional to be used in time-dependent Hartree-Fock
approaches in the context of small amplitude and low energy oscillations. It is worth
noticing that this approach is equivalent to Landau’s theory of Fermi liquid.

At equilibrium the kinetic energy density in Eq. 12.49 reduces to
τσ = �

2(6π2nσ )2/3nσ and j↑ = 0 and, thus, the energy functional Eq. 12.49 can be
used to calculate the density profiles using standard variational procedures. The cal-
culation at equilibrium shows that at very high polarization the majority component
is scarcely affected by the interaction and, in particular, its radius is in practice given
by the ideal gas value

R0↑,i = (48N↑)1/6
√

�ω̄

mω2
i

, i = x, y, z (12.50)

with ω̄3 = ωxωyωz . Instead the radius of the minority component is quenched with
respect to the non interacting gas due to the attractive nature of the force. By taking
a Thomas-Fermi description for the minority component (which holds with good
accuracy for a large class of experimentally available configurations), one finds that
the radius of the minority component is given by the simple expression

R↓/R0↑ =
(

1 − P

1 + P

)1/6 ((
1 + 3

5
A

)
m∗

m

)−1/4

. (12.51)

From Eq. 12.51 it is seen that the minority radius is quite flat as a function of P
except at very high polarization when it goes to zero as the inset of Fig. 12.13 shows.
We find that this behavior is reflected in the collective mode frequencies.

The proper variational ansatz for the wave function depends on the modes we
want to study. We focus on the compressional modes, since the easiest experimental
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Fig. 12.13 Frequency of the axial compressional mode as a function of the polarization P. Dashed
line: the single polaron mode frequency. Solid line: the collisionless value of the mode frequency
obtained via the variational principle described in the present work. Points: experimental data
reported in [13]. Inset: the behaviour of the minority radius as a function of P, r(P) = ((1
− P)/(1 + P))1/6 (see (12.51))

way of exciting the spin modes in trapped Fermi gases is through a sudden change
of the value of scattering length. This procedure, which mainly affects the motion
of the impurities, is not able to excite other important oscillations like, e.g., the
dipole mode of the minority component and it is the actual procedure employed
in the recent experiment reported in Ref. [13]. The starting point are variational
single-particle wavefunctions that are then used to built the many-body state as a
Slater determinant. In order to study the compressional modes and assuming that the
equilibrium configuration is axially symmetric we write the scaling transformation

ψσ (r, z, t) = e−1/2(2ασ+βσ )ψ0
σ (e

−ασ r, e−βσ z)ei
(
χσ r2+ξσ z2

)
. (12.52)

applied to the single particle wave-functions ψσ of the two spin species σ =↑, ↓,
and where r2 = x2 + y2 and z are the radial and the axial coordinate, respectively.
The scaling transformation depends on 4 + 4 time-dependent parameters and the
corresponding equations are obtained by imposing the variation δS = 0 with S as in
(12.48) with 〈�|H |�〉 given by Eq. 12.49. With respect to a typical hydrodynamic
energy functional, Eq. 12.49 accounts for the deformation of the Fermi surface pro-
duced by the scaling ansatz. This effect arises from the kinetic energy density term
τσ and exploits the elastic nature exhibited by a Fermi liquid in the collisionless
regime. The use of hydrodynamic theory would actually yield wrong predictions for
the oscillations of these Fermi gases.

The collective modes are small oscillations around equilibrium, i.e., solutions
of the equations of motion derived from the action expanded to second order in the
scaling parameters. The first order expansion of the action S with respect to the scaling
parameters takes contribution only from the energy functional Eq. 12.49. Then, the
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condition δS = 0 provides a relation between the kinetic and the interaction energy
equivalent to the virial theorem. Defining the effective mass as m/m∗ = (1 + a) and
the averages Nσ 〈 f 〉σ = ∫

f (r, z)nσ (r, z), we obtain

− 4

3

∫
τ↑
2m

+ N↑mω2⊥〈r2〉↑ − N↓
�

2(6π2)2/3

2m
A

(
〈r∂r n2/3

↑ 〉↓ + 4

3
〈n2/3

↑ 〉↓
)

= 0,

− 2

3

∫
τ↑
2m

+ N↑mω2
z 〈z2〉↑ − N↓

�
2(6π2)2/3

2m
A

(
〈z∂zn2/3

↑ 〉↓ + 4

3
〈n2/3

↑ 〉↓
)

= 0,

− 4

3

∫
τ↓

2m∗ + N↓mω2⊥〈r2〉↓ + N↓
�

2(6π2)2/3

2m
A〈r∂r n2/3

↑ 〉↓ = 0,

− 2

3

∫
τ↓

2m∗ + N↓mω2
z 〈z2〉↓ + N↓

�
2(6π2)2/3

2m
A〈z∂zn2/3

↑ 〉↓ = 0, (12.53)

where all the densities are to be calculated at equilibrium. Note that in the low-
concentration or high polarisation limit N↓/N↑ → 0 Eq. 12.53 decouples and one
recover correctly the result for the free polaron case. Defining EKσ the kinetic energy
of the σ -component (including the mass m∗ for the minority spin-↓ component),
Eq. 12.53 becomes the standard virial theorem for the majority component

−2

3
EK↑ + N↑mω2⊥〈r2〉↑ = 0, (12.54)

−1

3
EK↑ + N↑mω2

z 〈z2〉↑ = 0 (12.55)

and the virial theorem for a free gas of particles of mass m∗ feeling an effective
potential for the minority component

−2

3
EK↓ + N↓mω2⊥

(
1 + 3

5
A

)
〈r2〉↓ = 0, (12.56)

−1

3
EK↓ + N↓mω2

z

(
1 + 3

5
A

)
〈z2〉↓ = 0. (12.57)

The term in the action which depends on the time derivative of the wave-function
does not give rise to linear terms due to time reversal symmetry. The corresponding
quadratic term reads

〈�|i�∂t |�〉(2) = 2
∑
σ

Nσ (〈r2〉σ ασ ξ̇σ + 〈z2〉σ βσ χ̇σ ). (12.58)

Summing up all the contributions and imposing the variational procedure δS = 0,we
get eight coupled equations of motion. Four of them represent continuity equations
and are relations between the current parameters ξσ , χσ and the density ones ασ , βσ .
In this way we are left to solve a linear system of 4 equations.

We find that the two lowest frequency are almost independent of the ratio N↓/N↑
and they are very close to the ideal gas values ω = 2ω⊥ and ω = 2ωz . We call
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them the in phase modes since the majority and the minority components move in
phase. The frequencies of the other two modes, that we name out of phase or spin
modes, can be written as ω = 2C1ω⊥ and ω = 2C2ωz, where the renormalization
factors are very close to each other, i.e., C1 � C2. Such modes correspond to the
radial and axial motion of the minority component moving in opposite phase with
respect to the majority one. In the limit of a single impurity we recover the value
C1 = C2 = √

(1 + 3/5A)m/m∗ of Eq. 12.7.
In Fig. 12.13 we report (solid blue line) the result for the axial spin mode as a

function of the polarisation of the system as calculated with the above described
variational approach, using for the polaron parameters the values A = 1.01 and
m∗/m = 1.17 [23]. We notice that at high polarisation the correction to the polaron
frequency Eq. 12.7, as a function of the polarisation, follows the law (1 − P)1/6

characterising the radius of the minority component (see inset in Fig. 12.13 and
Eq. 12.51). In Fig. 12.13 we also put the experimental data of [13] and one sees that
there is a qualitative difference between the present theory and the experiment [13].
A possible explanation is by invoking the collisional properties of the strongly inter-
acting system even at the lowest achievable temperature as we have discussed in
Sect. 12.5. Indeed our prediction was derived in the collisionless regime, while the
experiment clearly shows that the in phase mode frequency is strongly affected by
collisions even for the highest polarisation available. Understanding the discrepancy
between theory and experiment in terms of collisional effects is not however obvi-
ous. In fact collisions usually reduce the value of the frequencies with respect to their
collisionless values. Thus the question of how the observed frequency in Fig. 12.13
can be compared with our prediction has not an obvious answer.

The Landau theory prediction agrees better with the experimental data at the high-
est polarisation points, where the collisionless approximation is better satisfied as it
can also be inferred from the measurement of the majority component compressional
mode frequency reported in [13]. One would then expect that a measurement of the
radial compressional mode, would give a much better insight into the problem, since,
as we pointed out in Sect. 12.5 for a fixed relaxation time τ, if the radial frequency
is much higher than the axial one, the collisions for the radial dipole mode are less
effective, being ω⊥τ � ωzτ. As a last comment, we should remind that the energy
functional (12.49) is strictly valid only at high polarization, being an expansion in
the concentration n↓/n↑. It works however quite well when applied to investigate
the static properties even till the critical concentration. For instance the inclusion
of the next term proportional to (n↓/n↑)2 introduces only small corrections to the
values of the radii, even close to the critical polarization limit PC = 0.77. Thus one
can think that such a term does not change the picture previously described.
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Chapter 13
Thermodynamics of Trapped Imbalanced
Fermi Gases at Unitarity

J. M. Diederix and H. T. C. Stoof

Abstract We present a theory for the low-temperature properties of a resonantly
interacting Fermi mixture in a trap, that goes beyond the local-density approximation.
The theory corresponds essentially to a Landau–Ginzburg-like approach that includes
self-energy effects to account for the strong interactions at unitarity. We show dia-
grammatically how these self-energy effects arise from fluctuations in the superfluid
order parameter. Gradient terms of the order parameter are included to account for
inhomogeneities. This approach incorporates the state-of-the-art knowledge of the
homogeneous mixture with a population imbalance exactly and gives good agree-
ment with the experimental density profiles of Shin et al. (Nature 451:689 (2008)).
This allows us to calculate the universal surface tension of the interface between the
equal-density superfluid and the partially polarized normal state of the mixture. We
also discuss the possibility of a metastable state to explain the deformation of the
superfluid core that is seen in the experiment of Partridge et al. (Science 311:503
(2006)).

13.1 Introduction

Ultracold atom experiments are always performed in a trap to avoid contact of the
atoms with the ‘hot’ material walls that would heat up the cloud. Due to this trapping
potential the atomic cloud is never homogeneous. However, typically the energy
splitting of the trap corresponds to a small energy scale, so that the inhomogeneity is
not very severe. In this case, we may use the so-called local-density approximation
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(LDA). It physically implies that the gas is considered to be locally homogeneous
everywhere in the trap. The density profile of the gas is then fully determined by the
condition of chemical equilibrium, which causes the edge of the cloud to follow an
equipotential surface of the trap.

But even if the trap frequency is small, the LDA may still break down. An important
example occurs when an interface is present in the trap due to a first-order phase
transition. For a resonantly interacting Fermi mixture with a population imbalance
in its two spin states [1, 2], such interfaces were encountered in the experiments
by Partridge et al. [2] and Shin et al. [3] at sufficiently low temperatures. Here the
LDA predicts the occurrence of a discontinuity in the density profiles of the two
spin states, which cost an infinite amount of energy when gradient terms are taken
into account. Experimental profiles are therefore never truly discontinuous, but are
always smeared out. An important goal of this chapter is to address this interesting
effect, which amounts to solving a strongly interacting many-body problem beyond
the LDA. Due to the rich physics of the interface, new phases can be stabilized that
are thermodynamically unstable in the bulk. This exciting aspect shares similarities
with the physics of superfluid helium-3 in a confined geometry [4] and spin textures
at the edge of a quantum Hall ferromagnet [5].

Note that the presence of an interface also can have further consequences. Namely,
in a very elongated trap, Partridge et al. observed a strong deformation of the minority
cloud at their lowest temperatures. At higher temperatures the shape of the atomic
clouds still followed the equipotential surfaces of the trap [6]. A possible interpreta-
tion of these results is that only for temperatures sufficiently far below the tricritical
point [3, 7–11], the gas shows a phase separation between a balanced superfluid
in the center of the trap and a fully polarized normal shell around this core. The
superfluid core is consequently deformed from the trap shape due to the surface ten-
sion of the interface between the two phases [6, 12, 13]. This causes an even more
dramatic breakdown of the LDA. Although the above interpretation leads to a good
agreement with the experiments of Partridge et al. [6], a microscopic understanding
of the value of the surface tension required to explain the observed deformations
has still not been obtained. Presumably closely related to this issue are a number
of fundamental differences with the study by Shin et al. [3]. Most importantly, the
latter observes no deformation and finds a substantially lower critical polarization,
which agrees with Monte Carlo calculations combined with a LDA. It appears that
the interfaces between the superfluid core and the normal state are fundamentally
different for the two experiments, which might play an important role in resolving the
remaining discrepancies. In order to investigate this interface we need to go beyond
the local-density approximation.

To study the details of the superfluid-normal interface we need a theory that can
describe the inhomogeneous and population imbalanced unitarity Fermi gas. For
this, we first need a theory that includes in the homogeneous case both the normal
state and the superfluid state in one quantitative correct description. Secondly, we
need to incorporate the inhomogeneous effects of the trapping potential. The aim
of this chapter is to give a simple and elegant way to achieve this. In the following
two sections, we fist arrive at an accurate, and to a large extent analytical descrip-
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tion of the thermodynamics of a population imbalanced unitarity Fermi gas. This is
achieved by constructing an appropriate thermodynamic potential � for the Fermi
mixture at unitarity. All desired thermodynamic quantities can then be obtained
by performing the appropriate differentiations of the thermodynamic potential that
are well known from statistical physics. The inhomogeneity effects of the trapping
potential are included by taking the energy penalty for large variations in the order
parameter into account. These gradient terms smoothen the jump of the order para-
meter that is predicted by the LDA at the location of the first-order phase transition.
We will see that this gives a more detailed explanation of the experimental data of
Shin et al. [3]. In the last section we then show how the surface tension can be com-
puted with this more detailed description of the interface. This surface tension turns
out to be relatively small. This does, therefore, not explain the dramatic deformation
seen in the experiment of Partridge et al. [6]. An alternative explanation may be that
there exists a metastable state with a deformed superfluid core [14]. At the end of this
chapter we briefly discuss this possibility. We find that the Landau–Ginzburg-like
theory derived here does not appear to contain such a metastable state.

13.2 Ultracold Quantum Fields

In order to properly study the unitary Fermi mixture, we derive a single thermody-
namic potential that in a quantitative correct manner describes both the normal and
the superfluid phases. As we will see, the normal state of the unitarity Fermi mixture
is straightforwardly incorporated by introducing two mean-field-like self-energies.
In particular, it is possible in this manner to completely reproduce the equation of
state known from Monte-Carlo calculations. However, including also the possibility
of superfluidity at low temperatures and low polarizations turns out to be more dif-
ficult. To understand better how this can nevertheless be achieved, we first give an
exact diagrammatic discussion of the superfluid state that is then in the next section
used to arrive at the desired thermodynamic potential of the unitarity Fermi mixture.

13.2.1 Bardeen-Cooper-Schrieffer Theory

In this section we outline the basic ingredients of a field-theoretical description for the
superfluid state of the imbalanced Fermi mixture [15]. We start with the essentially
exact action for such an atomic two-component mixture,

S[φ∗, φ; J ∗, J ] =
∑
σ=±

∫
dτdx φ∗

σ (x, τ )
(

�
∂

∂τ
− �

2∇2

2m
− μσ

)
φσ (x, τ )

+
∫

dτdx V0φ
∗+(x, τ )φ∗−(x, τ )φ−(x, τ )φ+(x, τ )

− �

∑
σ=±

∫
dτdx

(
J ∗
σ (x, τ )φσ (x, τ )+ φ∗

σ (x, τ )Jσ (x, τ )
)
.

(13.1)
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Here φσ is the fermion field of the atomic species in the hyperfine state |σ 〉,
μσ is the associated chemical potential, Jσ is a Grassmann-valued current source
that is convenient in the following, but which is put equal to zero at the end of the
calculations, and V0 is the strength of the unitarity-limited attractive interactions
between the two species. The grand-canonical partition function is then given by

Z [J, J ∗] =
∫ ∏

σ

d[φ∗
σ ]d[φσ ] exp

{
−1

�
S[φ∗, φ; J ∗, J ]

}
. (13.2)

This represents a functional integral over all the fermion fields that are antiperiodic
on the imaginary time interval [0, �β], with β = 1/kBT the inverse thermal energy.
The thermodynamic potential is ultimately given in terms of the partition function as

�(μ+, μ−, T, V ) = − 1

β
log Z [0, 0], (13.3)

with V the total volume of the system. To make the connection with thermodynamics
explicit, we note that the thermodynamic potential is related to the pressure p of the
gas by means of � = −pV .

In order to describe pairing of the fermions, we perform a Hubbard–Stratonovich
transformation to the complex pairing field �. For this field we have that

〈�(x, τ )〉 = V0〈φ−(x, τ )φ+(x, τ )〉. (13.4)

This transformation makes the action quadratic in the fermion fields. More precisely,
we have that

S[�∗,�, φ∗, φ; J ∗, J ] = −
∫

dτdx
|�(x, τ )|2

V0

− �

∫
dτdx dτ ′ dx′ 	†(x, τ ) · G−1

BCS(x, τ ; x′, τ ′;�) ·	(x′, τ ′)

+ �

∫
dτdx

(
J †(x, τ ) ·	(x, τ )+	†(x, τ ) · J (x, τ )

)
,

(13.5)
where we defined 	† = [φ∗+, φ−] and J † = [J ∗+, J−], which are vectors in a two-
dimensional space, known as Nambu space. In this space the 2 × 2 Green’s function
matrix is given by G−1

BCS(x, τ ; x′, τ ′;�) = G−1
0 (x, τ ; x′, τ ′) − 
BCS(x, τ ; x′, τ ′).

The first term in the right-hand side represents the noninteracting part and is given
by

G−1
0 (x, τ ; x′, τ ′) =

[
G−1

0;+(x, τ ; x′, τ ′) 0
0 −G−1

0;−(x
′, τ ′; x, τ )

]
, (13.6)

with G0;σ the noninteracting Green’s function of species σ. The second term corre-
sponds to the BCS self-energy, which has only off-diagonal terms and reads
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�
BCS(x, τ ; x′, τ ′) =
[

0 �(x, τ )
�∗(x, τ ) 0

]
δ(x − x′)δ(τ − τ ′). (13.7)

The action now only contains quadratic terms in the fermion fields, which is some-
thing we can handle exactly. However, the tradeoff is an extra functional integral
over the� field. Starting with the easy part, we perform the functional integral over
the fermion fields. Since this is a standard Gaussian integral, we immediately obtain

Seff [�∗,�; J ∗, J ] = −
∫

dτdx
|�(x, τ )|2

V0
− �Tr

[
log

(
−G−1

BCS

)]

+ �

∫
dτdxdτ ′ dx′ J †(x, τ ) · GBCS(x, τ ; x′, τ ′;�) · J (x′, τ ′),

(13.8)
where the trace implies a summation over the Nambu space indices as well as an
integral over position and imaginary time. The second term in the action contains
all orders in |�|2 and as a result the theory is thus still very complex and impos-
sible to solve completely. In BCS theory, we make a saddle-point approximation
and replace the pairing field by its expectation value. In other words, we write
� = �0 + δ�, with �0 the expectation value 〈�〉 and δ� representing the fluc-
tuations, and subsequently neglect these fluctuations. The actual value of the BCS
gap �0 can then be determined by the gap equation in Eq. 13.4, which is equiva-
lent to δSeff [�∗,�; 0, 0]/δ�∗|�=�0 = 0, and is to be solved selfconsistently. This
procedure is of course only valid when the interaction strength is sufficiently small.

13.2.2 Fluctuations

But what happens when the interaction strength is not small, as is the case at unitarity?
In that case we cannot neglect the fluctuations. To deal with that situation we use in
Sect. 13.3.2 an approach inspired by Landau–Ginzburg theory, in which we try to find
an accurate self-energy matrix for the fermions that effectively takes all fluctuation
effects into account. In particular we need two self-energies that contribute to the
diagonal part of the exact inverse Green’s function matrix G−1, because otherwise
the normal state would correspond to an ideal Fermi mixture, which at unitarity is
not an accurate starting point for a discussion of the instability towards superfluidity.
However, the effective interaction between the two atomic species is not the same in
the normal and superfluid states of the gas. Therefore, also this diagonal part of the
self-energy must sufficiently deep in the superfluid state depend on the expectation
value of the pairing field or gap �0 and it is important to understand how this
dependence precisely comes about. In this section we show that in principle all
interaction effects can indeed be included in a self-energy matrix, and that also the
diagonal part of this self-energy depends explicitly on the gap. A nice and insightful
way to achieve this is by considering the appropriate Feynman diagrams.
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The diagonal parts of the Green’s function matrix, i.e., GBCS;11 and GBCS;22,

are dressed by the pairing field �. This is described by the Dyson equation. This
Dyson equation follows from inverting the relation G−1

BCS = G−1
0 −
BCS and can be

written as

GBCS = G0 + G0 ·
BCS · GBCS. (13.9)

Diagrammatically the diagonal part of this equation can be represented in the fol-
lowing way,

(13.10)

Here the dashed line represents the pairing field � and the direction of the arrow
depicts the difference between� and�∗.The solid line represents the noninteracting
fermionic propagators G0;σ , where in this case the direction of the arrow depicts
alternatingly the propagator of the two different fermion species. The first line of
the equation shows the recurrence relation for the full diagonal propagator and the
second line shows the first three elements originating from this Dyson equation by
iteration.

In the superfluid state, the pairing field� has a nonzero expectation value�0. In a
mean-field approximation we neglect the fluctuations and replace�by its expectation
value�0. In this approximation the diagonal propagators reduces to the standard form
known from BCS theory. However, when we take fluctuations into account we also
get self-energy corrections on the noninteracting fermion propagators in the Dyson
equation. This follows directly from the definition of the exact fermionic propagators,

G11(x, τ ; x′, τ ′) = −〈φ+(x, τ )φ∗+(x′, τ ′)〉
= 1

Z [0, 0]
δ

δ J ∗+(x, τ )
δ

δJ+(x′, τ ′)
Z [J ∗, J ]

∣∣∣∣
J∗=J=0

= 1

Z [0, 0]
∫

d[�∗]d[�]GBCS;11(x, τ ; x′, τ ′;�)e− 1
� Seff[�∗,�;0,0] ,

(13.11)
and similarly for G22. In BCS mean-field theory we thus have G11(x, τ, x′, τ ′) =
GBCS;11(x, τ, x′, τ ′;�0),but at unitarity we still have to perform a functional integral
over the pairing field to obtain the exact results.

We can represent this functional integral over the fluctuations diagrammatically
by connecting some of the � fields with the pair propagator, which is determined
by the effective action Seff [�∗,�; 0, 0], put the other fields equal to the expectation
value �0, and then sum over all possible diagrams. Because of the U(1) symmetry
of the effective action, we can only draw a pair propagator between a � and a �∗,
as suggested by the arrows. The fully dressed diagonal propagators now become,
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(13.12)

Here the connected dashed lines represent the pair propagator and the cross represents
the expectation value. This series can be resummed such that we get the exact Dyson
equation

G = G0 + G0 ·
 · G, (13.13)

but now with an exact 2 × 2 self-energy matrix 
, which contains both diagonal
(normal) and off-diagonal (anomalous) elements. For instance, the second and fifth
terms drawn in the right-hand side of Eq. 13.12 contribute to the diagonal self-energy,
whereas the last term leads to an additional contribution to the off-diagonal self-
energy. These terms thus renormalize the BCS self-energy that is obtained from
Eq. 13.7 by replacing � by �0. From the expectation values of the gap inside the
loops in Eq. 13.12, we explicitly see that the normal self-energies can be written as a
series expansion in |�0|2.The same is in fact also true for the first diagram in the right-
hand side of Eq. 13.12, because the nonlinearities in the effective action make sure
that the pair propagator already contains all orders of |�0|2.These nonlinearities also
lead to more complicated Feynman diagrams containing higher-order (connected)
correlation functions of the pair field that are not shown here, but this does not affect
our main conclusions.

We just showed that fluctuation effects of the pair field can be incorporated in an
effective self-energy. The same discussion can be carried out for the gap equation.
This can also be very nicely illustrated diagrammatically. The gap equation in Eq. 13.4
is an equation between the expectation value of the gap and the off-diagonal or
anomalous propagator. We can again use the Dyson equation in Eq. 13.9 for the
anomalous propagator to study the effects of the fluctuations on the gap equation,

(13.14)
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Here the small dot on the left of all diagrams represents the fact that the gap only
depends on one space-time point, i.e., 〈�(x, τ )〉 = V0G12(x, τ ; x, τ ) due to the
point-like and instantaneous nature of the attractive interaction.

The fluctuation effects follow again from performing the functional integral over
the � field, since from Eq. 13.4 we have that

〈�(x, τ )〉 = V0

Z [0, 0]
δ

δ J ∗−(x, τ )
δ

δ J ∗+(x, τ )
Z [J ∗, J ]

∣∣∣∣
J∗ = J = 0

= V0

Z [0, 0]
∫

d[�∗]d[�]GBCS;12(x, τ ; x, τ ;�)e− 1
�

Seff [�∗,�,0,0] .
(13.15)

The diagrammatic representation of this equation follows from connecting some of
the pair lines in Eq. 13.14. Again also higher-order correlation functions of the pair
field contribute, but for simplicity we do not consider these as they do not change
our results. When we carry out this procedure we obtain

(13.16)

Notice that all terms are now proportional to�0 instead of |�0|2.The first three terms
in the right-hand side can again be incorporated in a fully dressed fermion propagator
by resumming this series. The last term, which for the gap equation behaves as a
vertex correction, is then again incorporated into the anomalous self-energy.

In the unitarity limit, these vertex corrections are important to find the correct
gap equation and, therefore, the expectation value for the gap. Also the diagonal part
of the self-energy is important for a determination of the energy and the densities
of the Fermi mixture. There is, however, no clear-cut way do derive these full self-
energies from first principles for the unitarity case. In this chapter, we therefore use
a more top–down approach. We will use the fact that these self-energies exist and
can be expanded in powers of |�0|2.Moreover, our previous renormalization group
theory [11] has shown that for thermodynamic quantities the self-energies can in
a good approximation be considered to be momentum and frequency independent.
Combining these observations we are ultimately able to derive an accurate approxi-
mation to the thermodynamic potential � of the unitarity Fermi mixture.

13.3 The Thermodynamic Potential

In the previous section we showed that interaction effects in the unitary Fermi gas can
be described by including appropriate normal and anomalous self-energies into the
theory. We also discussed that this, in principle well-known fact, can be understood
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as an effect of pair fluctuations. As a result the self-energies, and in particular the
normal self-energies, depend on the gap�0. In addition, we showed also that the gap
equation contains vertex corrections, which cannot be incorporated by dressing the
diagonal propagators alone. This is one important reason for deriving also the gap
equation from the thermodynamic potential, because the minimization condition then
automatically generates the correct vertex corrections. For our purposes it is therefore
crucial to realize that in principle there exists an exact thermodynamic potential that
describes the full thermodynamics of the unitarity-limited Fermi gas. It is, however,
impossible to derive this from first principles for this strongly interacting system,
and we therefore have to find an appropriate approximation. In this section we will
show how to arrive at such an accurate approximation to the exact thermodynamic
potential.

13.3.1 Normal State

Despite the strong interaction, it is now rather well established that BCS mean-field
theory gives the correct qualitative description of the unitarity limit, at least at the
temperatures accessible to the state-of-the-art experiments. Therefore a reasonable
starting point for the approximation of the thermodynamic potential is this mean-field
theory. From experiments, renormalization group theory, and several Monte-Carlo
calculations it is found that the phase diagram has the following features, as illus-
trated in Fig. 13.1. At zero temperature both experiments and theoretical calculations
find a first-order phase transition at a local critical polarization Pc � 0.4. In the bal-
anced situation P = 0 both find a second-order transition at a critical temperature
of about Tc � 0.15TF [16]. These second- and first-order transition lines should
then be connected by a tricritical point, which is confirmed in experiments and by
renormalization group theory.

The thermodynamic potential in BCS theory leads to exactly the same qualita-
tive behavior of the phase diagram, although the critical temperatures and critical
polarizations are off by almost an order of magnitude and would not be visible in
the window shown in Fig. 13.1. We therefore start with BCS theory, after which
we systematically include the dominant interaction effects that are still missing. At
unitarity the BCS energy functional is

�BCS[�;μ, h] =
∑

k

(
εk − μ− �ωk + |�|2

2εk

)

− kBT
∑
σ,k

log
(

1 + e−�ωk,σ /kBT
)
,

(13.17)

where εk = �
2k2/2m,m is the atomic mass, and the superfluid dispersion is given

by the well-known BCS formula, �ωk = √
(εk − μ)2 + |�|2. The second term in

the right-hand side contains also a sum over the pseudospin projection σ = ±, and
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Fig. 13.1 The phase diagram of the unitary Fermi mixture in the temperature-polarization plane.
The Fermi temperature of the majority species is denoted by TF+ and the polarization P equals
(N+ − N−)/(N+ + N−) with Nσ the number of atoms in hyperfine state |σ 〉. The phase diagram
consists of the normal phase (N), a forbidden region (FR) where phase separation takes place,
and the superfluid phase in which a crossover occurs between the gapless Sarma phase (S) and the
gapped BCS phase. The solid line depicts the line of second-order phase transitions [11], the dashed
line gives the boundary of the forbidden region associated with the first-order phase transitions, and
the black dot represents the tricritical point. The open squares and circles are experimental data
points [3]

represents the contribution due to an ideal gas of quasiparticles with the quasiparticle
dispersion of the two spin states given by �ωk,σ = �ωk −σh. Finally, we introduced
the average chemical potential μ = (μ+ + μ−)/2 and half the chemical potential
difference h = (μ+−μ−)/2 that acts as an effective magnetic field on the pseudospin
as the quasiparticle dispersion �ωk,σ clearly shows.

In BCS theory, the normal state is treated as an ideal Fermi gas, thus no interactions
are taken into account. This is not correct in the unitarity limit. As discussed above,
these interaction effects can be described by two self-energies. The imbalanced nor-
mal phase in the unitary limit, has been studied with Monte-Carlo methods [17].
From this, the equation of state can be determined. If we can find the self-energies
such that it reproduces the same equation of state for the theory, we have effectively
taken all interaction effect in the normal phase into account.

For momentum and frequency independent self-energies, the self-energies can
be incorporated in the theory of an ideal Fermi gas, by just changing the chemical
potential. We thus replace the chemical potentials as

μ′
σ = μσ − �
σ . (13.18)

Here μ′
σ is the effective chemical potential and 
σ the self-energy for species σ.

Inspired by Hartree–Fock theory we would write down an ansatz for the self-energy
of species σ that is proportional to the density of species −σ [10]. However, the
densities are in a grand-canonical setting calculated by taking the derivative of�with
respect to the chemical potentials, i.e., Nσ = −∂�/∂μσ . It is therefore preferable to
write the self-energies as a function of the chemical potentials only. By considering
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Fig. 13.2 The equation of state of the normal phase at zero temperature, with on the horizontal axis
the polarization and on the vertical axis the energy. The dots are the Monte-Carlo data from Ref.
[17] and the line is the equation of state found with the use of the effective chemical potentials as
defined in Eq. 13.20. The energy is given by E = �+μ+ N+ +μ− N− and is scaled with the ideal
gas energy of the majority component of the mixture EFG+ = 3

5 EF+ N+ and EF+ the Fermi energy
of the majority species

terms with the correct units that incorporate the Hartree–Fock-like feature mentioned
above, we find that the following self-energies gives rise to the correct equation of
state of the strongly interacting normal phase,

μ′
σ = μσ + 3

5
A
(μ′−σ )2

μ′+ + μ′−
. (13.19)

The prefactor can be determined from the self-energy of a single minority atom in
the presence of a Fermi sea of majority atoms and equals A � 0.96 [11, 17–19].
Explicitly in terms of μ and h, these relations imply that

μ′ = μ

⎛
⎝1 − 5 − 3A

10 − 3A
+ 5

√
(5 + 3A)2 + 3A(10 − 3A)(h/μ)2

(10 − 3A)(5 + 3A)

⎞
⎠ ,

h′ = h

(
1 − 3A

5 + 3A

)
.

(13.20)

In Fig. 13.2 the resulting energy of the mixture determined from the thermody-
namic potential �(μ, h, T, V ) = �BCS[0;μ′, h′] at zero temperature is plotted as
a function of the polarization. This figure shows the excellent agreement between
the Monte-Carlo data and the ansatz from Eq. 13.20. In the next section we discuss
how these self-energies can be further improved when we also consider the effects
of pairing in the superfluid state.
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13.3.2 Superfluid State

When the temperature is low enough and the imbalance not too large, the unitary
Fermi gas becomes superfluid. In the unitarity limit, the scattering length goes to
infinity and is no longer a relevant length scale. In fact, in the homogeneous situation,
the (average) Fermi energy is the only energy scale in the problem. This makes the
system universal and as a result, we can write most thermodynamic properties of the
system in terms of this Fermi energy [18].

In Sect. 13.2 we showed that the self-energies can be explicitly written as a power
series in |�|2. The straightforward first step to incorporate these superfluid gap
corrections to the self-energy is to take the first term in |�|2 into account [20]. We
subtract this from the effective chemical potential in Eq. 13.20 as

μ′(μ, h,�) = μ′(μ, h, 0)− B
|�|2

μ′(μ, h, 0)
(13.21)

and B a constant to be determined next. For this we use one simple but important
piece of information, namely the value of the thermodynamic potential in the balanced
superfluid minimum. From experiments and Monte-Carlo calculations this minimum
is known to be

� = − 4
√

2μ5/2m3/2

15π2�3(1 + β)3/2
V ≡ �cr, (13.22)

with V the volume and β � −0.58 a universal number. Matching the energy in the
minimum is important, because this ensures a correct energy balance between the
(imbalanced) normal state and the superfluid state and therefore the correct location
of the first-order phase transition at low temperature. From experiments and several
theoretical calculations, it is now believed that at low temperatures the superfluid state
is balanced. Thus, to find the transition we should compare the energy in the balanced
superfluid with the normal state energy, for which we have already a description that
agrees with the Monte-Carlo equation of state and thus has the correct energy. This
condition fixes the unknown constant to B � 0.21, which follows directly from the
zero-temperature minimum of �BCS[�;μ′, 0] in Eq. 13.17 with both self-energy
corrections subtracted from the chemical potential.

At this point our construction, where everything is explicitly written in terms of
the chemical potentials μ and h, gives rise to a problem: The superfluid in the mini-
mum of the thermodynamic potential turns out not to be balanced at low temperatures
for h 
= 0. This problem originates from the normal self-energies in Eq. 13.20 which
explicitly depends on the chemical potential difference h. It is in particular the renor-
malization of the average chemical potential which depends on h, thus μ′(μ, h,�).
This problem could have been avoided by making an ansatz in terms of the densities
instead of the chemical potentials, which would automatically have resulted in a
balanced superfluid [21]. This follows directly from the fact that BCS theory already
gives a balanced superfluid at low temperature and the dependence on imbalance
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in the self-energies is thus suppressed in the superfluid state. Physically, the prob-
lem is that the formation of a Bose–Einstein condensate of Cooper pairs gives the
superfluid state a strong preference for equal densities of the two spin states, which
is not present in the normal state. To incorporate this extra piece of physics into the
theory, we need to add an extra |�|2 dependence to the model to ensure a balanced
superfluid in the minimum of the thermodynamic potential. There are several ways
to achieve this, but an exponential suppression of the h dependence in μ′ turns out
to give the best interpolation between the various known regimes. Technically this
is achieved, by replacing h in μ′(μ, h,�) by h exp (−|4�|2/μ2). The factor of 4
in the exponent is somewhat arbitrary, but should be large enough to make the h
dependence in the ground-state superfluid minimum negligible.

We now have included the self-energy effects in both the normal state as well
as in the superfluid state. This results in an approximation for the thermodynamic
potential which has the correct equation of state in the normal phase, the correct
energy minimum for the superfluid phase, and interpolates between these two in a
manner that incorporates all the known physical properties of the system. In Fig. 13.3
the resulting thermodynamic potential is plotted for several values of h and at zero
temperature. As a check we can compute the critical polarization which gives about
P � 0.4 as desired. Also the universal number ζ = �0/μ of the balanced superfluid
ground state has a very reasonable value. Here we find 0.97 while Monte-Carlo
gives 1.07 ± 0.15 [22, 23]. In principle, we can easily correct for this difference by
including a small correction to the anomalous self-energy, but in view of the already
rather good agreement with the Monte-Carlo results we refrain from doing so in the
following.

A large region of the trapped unitary Fermi gas can be well described using
the local-density approximation. However, near the interface of a first-order phase
transition, this approximation always breaks down, as it leads to an unphysical dis-
continuity in the density profiles. The thermodynamic potential we constructed so
far also describes the system out of equilibrium, i.e., with� not in a minimum of the
thermodynamic potential, which is precisely what happens near the interface. But in
order to describe the interface properly, we need to go beyond the LDA by including
also a gradient term for � in the thermodynamic potential,

�[�;μ, h] =
∫

dx
(

1

2
γ (μ, h)|∇�(x)|2 + ωBCS[�(x);μ′, h′]

)
, (13.23)

where ωBCS denoted the homogeneous thermodynamic potential density �BCS/V
and �γ (μ, h)

√
μ/m is a positive function of the ratio h/μ only, due to the univer-

sal nature of the Fermi mixture at unitarity. The functional minimum of this new
thermodynamic potential gives a smooth transition at the interface, instead of the
discontinuous step obtained within the LDA. A careful inspection of the interface in
the data of Shin et al. [3], cf. Fig. 13.4, also reveals that the interface is not a sharp
step. This is most clear in the data for the density difference, since the noise in the
density difference is much smaller than in the total density. This has to do with the
experimental procedure used, which only measures the density difference directly.
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Fig. 13.3 The zero-temperature thermodynamical potential functional as a function of the order
parameter�. The upper panel illustrates the balanced case, where the dash-dotted line is the usual
BCS result, the dashed line incorporates only the normal-state self-energy effects, and the solid
line includes also the superfluid self-energy correction. In the lower panel the energy functional is
shown for various values of the chemical potential difference h, with hcr � 0.94μ its critical value

Such a smooth transition arises also in the self-consistent Bogoliubov–de Gennes
equations. But these lead then also to oscillations in the order parameter and the den-
sities, due to the proximity effect [24]. This is not observed experimentally. Oscil-
lations will also occur in our Landau–Ginzburg approach if γ (μ, h) < 0. However,
we have checked both with the above theory as well as with renormalization group
calculations [11] that γ (μ, h) is positive. This agrees with the phase diagram of the
imbalanced Fermi mixture containing a tricritical point and not a Lifshitz point in the
unitarity limit [25].

We restrict ourselves here to a gradient term that is of second order in � and
also of second order in the gradients. There are of course higher-order gradient
terms that may contribute quantitatively [26], but the leading-order physics is cap-
tured in this way due to the absence of a Lifshitz transition. One way to compute
the coefficient γ (μ, h) is to use the fact that in equilibrium this coefficient can be
exactly related to the superfluid stiffness, and therefore the superfluid mass den-
sity ρs, by γ = �

2ρs/4m2|〈�〉|2. At zero temperature it gives the simple result that
γ (μ, h) = √

m/2μ/6π2
�ζ 2(1+β)3/2, with β and ζ universal constants as defined

earlier. With this result for γ our thermodynamic potential functional in Eq. 13.23
contains no longer any free parameters and can now be confronted with experi-
ments. The result of this comparison, at a realistic temperature of about one third the
tricritical temperature Tc3, is shown in Fig. 13.4 and turns out to be excellent.
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Fig. 13.4 (Color online) The density profiles of a unitary mixture with polarization P � 0.44 in
a harmonic trap. The upper figure shows the majority and minority densities as a function of the
position in the trap. The lower figure shows the density difference, where the theoretical curves
show the results both within the LDA (dashed line) and for our theory (solid line) that goes beyond
this approximation and, therefore, allows for a substantial better agreement with experiment. The
inset shows the BCS gap parameter �0(r)/�0(0) both for the LDA (dashed line) and our theory
(solid line). The experimental data points and scaling are from Shin et al. [3]

13.4 Applications

We have thus constructed an accurate approximation to the exact thermodynamic
potential of the imbalanced Fermi mixture at unitarity. With a simple ansatz for the
self-energies we can describe both the homogeneous normal and superfluid phase
at zero and nonzero temperatures. Moreover, the description is also valid out of
equilibrium, i.e., when the value of the gap is not in a minimum of the thermodynamic
potential. By including also the energy cost for gradients of the gap parameter we
have a Landau–Ginzburg-like theory that can describe the inhomogeneous situation
that is used in experiments [2, 3] in a manner that goes beyond the local-density
approximation.

In this section we use the thermodynamic potential�[�;μ, h] from Eq. 13.23 to
investigate the properties of the superfluid-normal interface. First, we consider the
trap to be spherically symmetric and in that case calculate the surface tension of the
interface. This is an important quantity that has been put forward [2, 12] as a possible
explanation for the deformations of the superfluid core observed by Partridge et al.
[2]. Second, we then show how the anisotropy of the trap can be incorporated and
study the effect of this anisotropy on the equilibrium gap profile�0(x). In this section
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we for simplicity always take the gap �0(x) to be real, which does not lead to any
loss of generality for the applications that we consider here.

13.4.1 Interface and Surface Tension

The fact that we are able to study the superfluid-normal interface beyond the LDA,
makes it possible for us to also determine the surface tension. The surface tension is
determined by the difference in thermodynamic potential between a one-dimensional
LDA result with a discontinuous step in�0(x) and our Landau–Ginzburg theory with
a smooth profile for the order parameter �0(x). In actual experiments, however, the
width of the interface is rather small compared to the size of the whole atomic
cloud. This makes it possible to compute the surface tension by considering a flat
interface in a homogeneous system rather than a curved interface in the trap. In the
homogeneous case, such an interface occurs only when the imbalance is critical,
i.e., when h = hcr(μ) = κμ with κ another universal number, for which we have
obtained κ � 0.94. This means that the thermodynamic potential of the normal state
minimum is exactly equal to the thermodynamic potential of the superfluid state
minimum. The surface tension is then the difference in thermodynamic potential
between a system that stays in one minimum and one that goes near the interface
from one minimum to the other.

How the system achieves the latter is determined by minimizing the thermody-
namic potential,

δ�[�;μ, hcr]
δ�(z)

∣∣∣∣
�=�0

= ∂ωBCS[�0(z);μ′, h′]
∂�

− γ (μ, hcr)
∂2

∂z2�0(z) = 0.

(13.24)
In principle, this highly nonlinear equation can be numerically solved, to get a
hyperbolic tangent-like function for �0(z) that on the normal side of the interface
approaches zero and on the superfluid side approaches the equilibrium position of
the superfluid minimum that we simply denote by �0. Fortunately, however, this
solution is not needed to compute the surface tension, because the surface tension
can be conveniently written as

σ(μ) =
∞∫

−∞
dz

(
ω[�0(z);μ, hcr] − ω[0;μ, hcr]

)
, (13.25)

where ω = �/V is the thermodynamic potential density. This equation can be
rewritten as an integral over �, knowing that �0(z) is a monotonically increasing
function between zero and �0. Using also the first integral of Eq. 13.24, we end up
with

σ(μ) = √
2γ (μ, hcr)

�0∫
0

d�
√
ωBCS[�;μ′, h′] − ωBCS[0;μ′, h′] . (13.26)
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Fig. 13.5 The surface tension as a function of the temperature, computed in the homogeneous case
at unitarity. The temperature is scaled by the temperature of the tricritical point Tc3. The dashed line
shows the value used to compare with experiments in Fig. 13.4. The inset shows the gap around the
interface for several temperatures 0.9, 0.7, 0.5, 0.25 and 0.01 Tc3, respectively

This is clearly independent of the actual shape of the interface. The surface tension
thus only depends directly on

√
γ (μ, hcr) and on the shape of the barrier in between

the two minima of the thermodynamic potential. It is useful to write the surface
tension in a dimensionless form. We define this as σ(μ) = η(m/�2)μ2, with η a
dimensionless number. This number depends only on the temperature. In a trap, the
relevant chemical potential is the one at the position of the interface. This location is
also dependent on the polarization of the mixture and in that manner also the surface
tension will inherit in a trap a dependence on the polarization [13].

The surface tension of this model is plotted in Fig. 13.5 as a function of the
temperature. Here the surface tension is plotted in its dimensionless form. In this
form it was previously found that for the experiment of Partridge et al. η � 0.6 [6].
This was extracted from the large deformations of the superfluid core observed in
that experiment. The experiment of Shin et al. does not show any deformation, which
puts an upper bound on η of about 0.1 [13, 27]. At the tricritical point the surface
tension vanishes and at zero temperature it is about η � 0.03. For a more realistic
temperature of about 0.3Tc3 we find η � 0.02 which is significantly smaller than the
surface tension that would cause a substantial deformation. This is thus in agreement
with the experiment of Shin et al. [3].

We now give a more detailed discussion of our analysis of the density profiles
observed by Shin et al. In experiments the cloud is trapped in an anisotropic har-
monic potential, which is cigar shaped, and in the axial direction less steep than
in the radial direction. However, since the atomic cloud shows no deformations in
this case we can in a good approximation take the trap to be spherically symmetric.
The order parameter then depends only on the radius, and the total thermodynamic
potential is given by integrating our Landau–Ginzburg-like thermodynamic potential
density over the trap volume. To account for the trap potential in the energy func-
tional we let the average chemical potential depend on the radius, such that we have
μ(r) = μ− V (r), with V (r) the effectively isotropic harmonic potential.
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To find the order parameter as a function of the radius we have to mini-
mize the energy functional with respect to the order parameter, or δ�[�;μ, h]/
δ�(r)|�=�0 = 0. This gives a second-order differential equation for �0(r) as we
have seen. Solving this Euler-Lagrange equation, with the proper boundary condi-
tions in the center of the trap, gives a profile for �0 that is shown in the inset of
Fig. 13.4. This profile of the order parameter is much smoother than the discontin-
uous step one obtains within the LDA that is also shown in Fig. 13.4. Besides this,
there are two more aspects that deserve some attention. First, we notice that the value
of the gap at the original LDA-interface is decreased by almost a factor of three and,
second, the gap penetrates into the area originally seen as the normal phase. This
behavior makes the gap for a small region smaller than h′, giving locally rise to a
gapless superfluid, which implies a stabilization of the Sarma phase.

Before discussing this particular physics, we focus first on the density differ-
ence. To obtain the density profiles within our theory, the thermodynamic relation
nσ (r) = ∂ωBCS/∂μσ (r) is used, where nσ = Nσ /V is the density of particles in
state |σ 〉 and μσ (r) = μσ − V (r) the associated local chemical potential. It is
important that, because of the self-energy effects, we cannot use the standard BCS
formulas for the density, but really have to differentiate the thermodynamic poten-
tial. In BCS theory this would of course be equivalent. Given the density profiles, the
comparison between theory and experiment can be made and is ultimately shown in
Fig. 13.4. Overall the agreement is very good. Theoretically the interface appears to
be somewhat sharper than observed. This can be due to higher-order gradient terms,
that are neglected in the calculation and that would give an additional energy penalty
for a spatial variation of the order parameter. There are also experimental effects that
could make the interface appear broader, for instance, the spatial resolution of the
tomographic reconstruction or the accuracy of the elliptical averaging (Ketterle W.,
Shin Y., Private communication).

The Landau–Ginzburg-like approach presented here, shows some new features
compared to the LDA. One interesting feature is the kink, that is visible in the
majority density profile shown in Fig. 13.4. Notice that this kink appears before the
original (LDA) phase transition from the superfluid to the normal phase. This kink
signals a crossover to a new exotic phase, namely the gapless Sarma phase. Note
that at zero temperature this crossover becomes a true quantum phase transition. At
the crossover, the order parameter becomes smaller than the renormalized chemical
potential difference h′ and the unitarity limited attraction is no longer able to fully
overcome the frustration induced by the imbalance. As a result the gas becomes
a polarized superfluid. Because the gap � is smaller than h′ this corresponds to a
gapless superconductor. In a homogeneous situation this can, far below the tricritical
temperature, never be a stable state as shown in Fig. 13.1. However, because of the
inhomogeneity induced by the confinement of the gas, the gap is at the interface
forced to move away from the local minimum of the thermodynamic potential and
ultimately becomes smaller than h′. The Sarma state is now locally stabilized even at
these low temperatures. Notice that this is a feature of the smooth behavior of the gap
and that the presence of the Sarma phase thus does not depend on the quantitative
details of the energy functional �[�;μ, h].
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13.4.2 Deformation

When the surface tension is sufficiently small or when the aspect ratio of the external
potential of the system is close to one, the gap profile �0(x) will closely follow the
equipotential surfaces of the external trap and can be reasonably well approximated
by a function of a single variable only. This can be achieved by scaling away the
anisotropy of the external potential and introducing the effective radius

R2 = x2 + y2 +
( z

α

)2
, (13.27)

with α the aspect ratio of the trap. However, when the aspect ratio is large, this
might not always be valid. In the experiment of Partridge et al. [6], an aspect ratio of
about 45 is used, and dramatic deviations between the equipotential surfaces and the
shape of the superfluid core are observed. This can be explained by a large surface
tension [13], but as we have just seen the required large value of η cannot yet be
understood from a microscopic theory. Another possibility is that the gas has ended
up in a metastable state in which the shape of the gap parameter differs from the
equipotential surfaces of the external potential [14].

The latter possibility is something that can also be investigated using the ther-
modynamic potential that we have just derived. To do so, we first study the linear
response of the system when we also allow the gap profile to depend on more (angu-
lar) variables then the effective radius R. After that we also look at gap profiles with
a different aspect ratio than the external potential. It appears from our analysis that
our present Landau–Ginzburg-like approach gives indeed rise to small deviations in
the gap shape. However, it does not exhibit a metastable state with a deviation that
is as large as seen in the experiment of Partridge et al.

13.4.2.1 Linear Response

The harmonic potential used in the experiments has an elliptical symmetry, which
means that it can be written as a function of a single coordinate R as defined in
Eq. 13.27. As a consequence, the local thermodynamic potential also only depends
explicitly on this R. Therefore, in the local-density approximation, the gap parameter
can only depend on R as well. When we go beyond the LDA, by including gradient
terms in the theory, this symmetry is explicitly broken.

In this section we first perform the above-mentioned scaling of the axial coor-
dinate. After that we can treat the beyond-LDA corrections of the gap profile as
perturbations on the symmetric solution that can be expanded in the form of spheri-
cal harmonics as

�0(x) =
∑

l

Dl(R)

R
Yl0(θ, φ) . (13.28)
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Since the trap is rotationally symmetric around the z-axis, the gap profile does not
depend on the azimuthal angle φ and we are allowed to take m = 0 in the expansion
in Eq. 13.28. Also the mirror symmetry in the x–y plane causes all coefficients with
odd l to be zero. We will now assume that the elliptically symmetric part D0(R) is
much larger than the part with coefficients l > 0 and for simplicity only look at the
first anisotropic perturbation D2(R).

To describe the deformations we have thus chosen spherical coordinates, but with
the z-coordinate defined as z = αR cos θ. This coordinate system is not orthogonal
and gives rise to a coupling between the spherical harmonics due to the gradient
terms. The Jacobian is given by αR2 sin θ. The gradient terms in the thermodynamic
potential can be written in these coordinates as

�gr[�0] ≡
∫

dx
γ (x)

2
|∇�0(x)|2

� −α
2

∞∫
0

dR

{
γ0 D0(R)

d2

d R2 D0(R)+ γ2 D2(R)

(
d2

d R2 D2(R)− 6

R2 D2(R)

)

+ γ02 D0(R)

(
2

d2

d R2 D2(R)+ 6

R

d

d R
D2(R)+ 3

R2 D2(R)

)}
.

(13.29)
Here we suppressed for convenience the dependence on the chemical potentials and
approximated the stiffness γ (x) by its value at the location of the interface, that
we from now on denote simply by γ. The latter is a very good approximation in
practice, because for the traps of interest the width of the superfluid-normal interface
is much smaller that the typical length scale on which the trapping potential varies.
Furthermore, we defined the various different effective stiffnesses as

γ0 =
(

2

3
+ 1

3

1

α2

)
γ, γ2 =

(
10

21
+ 11

21

1

α2

)
γ, γ02 = − 2

3
√

5

(
1 − 1

α2

)
γ.

(13.30)
This can naturally be extended to general l, where every Dl is coupled to Dl+2, but
we do not need that extension here.

As indicated above, we want to treat D2 as a small perturbation in linear-response
theory. To achieve this we need to expand the local part of the thermodynamic
potential in terms of D2. This is straightforward and is given by,

�loc[�0] = α

∞∫
0

d R

{
4πR2ωBCS[�0(R); R] + 1

2

∂2ωBCS[�0(R); R]
∂�0

2 D2(R)
2 + . . .

}
.

(13.31)
We find the elliptical symmetric part�0(R) = D0(R)/R

√
4π of the gap by neglect-

ing the D2 contribution and minimizing the thermodynamic potential with respect
to �0(R). This gives a spherical symmetric equation similar to Eq. 13.24, but now
with a slightly smaller gradient coefficient, given by γ0 in Eq. 13.30. When we have
obtained a solution for D0 we can minimize the thermodynamic potential with respect
to D2, which gives the following linear-response equation
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L D2(R) = S (D0(R); R) , (13.32)

with the linear operator

L = 1

2

∂2ωBCS[�0(R); R]
∂�0

2 − γ2

2

(
d2

d R2 − 6

R2

)
(13.33)

and the inhomogeneous term that acts as a source for the quadrupole deformations

S (D0(R); R) = γ02

2

(
d2

d R2 D0(R)− 3

R

d

d R
D0(R)+ 3

2R2 D0(R)

)
. (13.34)

In Dirac notation the solution of this equation is formally given by
|D2〉 = L −1|S(D0)〉. Inverting the operator L can be accomplished by first diago-
nalizing this operator, which we can do by finding all its eigenfunctions and eigen-
values. Interestingly, these are determined by a Schrödinger equation

{
− �

2

2m∗
d2

d R2 + V eff(R)

}
φn(R) = Enφn(R) , (13.35)

with an effective mass given by m∗ = �
2/γ2 and an effective potential V eff(R)

V eff(R) = 1

2

∂2ωBCS[�0(R); R]
∂�0

2 + �
2

2m∗
6

R2 . (13.36)

A typical example of this effective potential with its eigenstates and energies is shown
in Fig. 13.6. Given these eigenfunctions the solution for D2 can in Dirac notation
finally be written as |D2〉 = ∑

n(1/En)|φn〉〈φn|S(D0)〉, which amounts to

D2(R) =
∑

n

φn(R)

En

∞∫
0

d R′ φn(R
′)S

(
D0(R

′); R′) . (13.37)

In Fig. 13.6 also the corresponding solution for D2 is shown. This solution is centered
around the interface and is also roughly of the same width as the interface. This is
as expected, since the terms in the thermodynamic potential that do not obey the
elliptical symmetry and are the source for the quadrupole deformations, are most
significant near the interface. Formally, this comes about because the sum in the
right-hand side of Eq. 13.37 is, due to the energy denominator, dominated by the
eigenstates with low energies that are localized in the dimple of the effective potential
V eff(R).

The outcome of our linear-response analysis gives only rise to small deformations
from the elliptical symmetry. In fact, this a posteriori makes this approach self-
consistent and confirms the assumption that the gap can be well described with
a solution that has the same symmetry as the trap. While this symmetric solution
gives roughly speaking the average shape of the interface, the small quadrupole
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Fig. 13.6 The left panel shows the solutions for the eigenfunctions (thin lines) and eigenvalues
(line height) of Eq. 13.36. The thick line is the effective potential in Eq. 13.36, which shows a
pronounced dimple at the location of the interface. The right panel shows the elliptically symmetric
solution�0(R) (dashed line) and the quadrupole correction D2(R) (solid line). Here we have taken
α = 45 and P = 0.4, which are typical values for the experiments of Partridge et al. [6]

deformations correct for this and widen the interface in the radial direction and
shrink it in axial direction. This effect becomes bigger for larger aspect ratios, but
never gives rise to such large deformations as is seen in the experiments of Partridge
et al. For an aspect ratio of one, the deformation disappears, because the source term
S (�0(R), R) is proportional to γ02, which becomes zero at α = 1. In principle, a
deformation could then occur spontaneously, if one or more eigenvalues En become
negative. However, for typical experimental parameters, this never happens.

In this section we discussed the linear response of the superfluid-normal inter-
face shape. This is a nice application for our Landau–Ginzburg-like thermodynamic
potential functional that can be used to study in detail the effect of the aspect ratio
of the trap on the experiment of Shin et al. However, we cannot use it to describe the
large deformations observed by Partridge et al. A possible way to handle this situation
requires beyond linear-response methods that are covered in the next section.

13.4.2.2 Metastable States

In the previous section we assumed that the deviations from the elliptically symmetric
solution for the gap are small and therefore validates the use of linear response. But
since we have the full thermodynamic potential at our disposal we can also consider
large deviations by using a variational approach. In the experiment of Partridge et
al. the observed deformation of the superfluid core is indeed large. This deformation
can be modelled by giving the superfluid core a different aspect ratio than that of
the trap [13] and by letting the polarized normal shell follow the shape of the trap.
It is still unclear whether this represents the true energy minimum of the system or
corresponds to a metastable state [14]. We can use our thermodynamic potential to
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investigate this, and we will see that there appears to be no metastable state in the
Landau–Ginzburg-like theory presented in this chapter.

The superfluid core is described by a nonzero gap function, which is determined
by minimizing the thermodynamic potential. The case of a metastable state then
corresponds to a local, but not a global minimum of the thermodynamic potential.
We want to find such minima by using a variational approach. This implies that we
somehow have to parameterize a likely functional form of the gap, and then vary the
thermodynamic potential with respect to these parameters. To find a appropriate trial
function that describes the gap well, let us start with the following function that very
accurately describes the gap in the elliptically symmetric case

�0(R) = �0

(
1 − R2

ρR2
TF

)
tanh

(
R0−R
�R

)
+ 1

2
. (13.38)

Here ρ, R0 and �R are variational parameters. These parameters can be understood
as follows. In the homogeneous theory the gap is proportional to the chemical poten-
tial �0 = ζμ � 0.97μ, as discussed before, and in the trap the chemical potential
is given by μ− V (x) ≡ μ(1 − R2/R2

TF). This explains the first factor in the right-
hand side of Eq. 13.38, where the parameter ρ is needed to incorporate beyond-LDA
effects. The function [tanh((R0 − R)/�R) + 1]/2 with center R0 and width �R
describes the interface profile, since this is approximately equal to the usual soli-
ton solution for an interface in Landau–Ginzburg theory. For specific temperatures
and polarizations a minimum of the thermodynamic potential with respect to these
variational parameters can easily be found numerically.

Let us now also include the aspect ratio in this variational approach. We want to
see how the thermodynamic potential changes when the superfluid core has a smaller
aspect ratio than the normal shell. Since we consider this in a variational manner, we
need a proper function with a parameter to describe this. Let us first simply vary the
aspect ratio of the gap profile. This can be achieved by performing in Eq. 13.38 the
substitution R → Rsf , with Rsf the scaled coordinate of Eq. 13.27 with aspect ratio
αsf . This then results in

�(αsf) =
∫

dx
(

1

2
γ (x)|∇�0(Rsf)|2 + ωBCS[�0(Rsf); x]

)
. (13.39)

In Fig. 13.7 the solid line (curve A) shows the total thermodynamic potential as a
function ofαsf .For this plot, we choose the trap aspect ratio to beα = 45,because this
is a typical value for the experiments of Partridge et al. where deformation is clearly
visible. Also a polarization should be taken and we choose P = 0.4 in the elliptically
symmetric case for these figures. The thermodynamic potential, however, does not
show any signs of a dramatic metastable deformation. Yet the energy minimum is at
a slightly smaller aspect ratio for the superfluid core then the trap. We find that for
these parameters we have αsf � 0.99α. This very small deformation is consistent
with the linear-response result from the previous section.
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Fig. 13.7 The total thermodynamic potential of the system as a function of the deformation αsf/α

of the superfluid core. The different lines correspond to different choices for the deformation of
the superfluid core as discussed in the text. The solid line shows a simple change in aspect ratio
for the superfluid core only, as in Eq. 13.39. This corresponds to a change in the axial direction
only. For the dashed and dash-dotted line the gap profile also changes in the radial direction. For an
appropriate scaling of the thermodynamic potential we have introduced the radial trap frequency ω

In the experiment of Partridge et al., not only the superfluid-normal interface
deforms, but also the partially polarized shell appears to be absent. To some extent,
this can be reproduced with a gap parameter that is nonzero further to the outside of
the trap in a region where the LDA would predict it to be zero. Since a nonzero gap
forces the system to be balanced, the majority species will be forced to the outside,
and the gas resembles what is seen in the experiment. In order to look for a metastable
state that does exactly this, we can parameterize a gap function in different ways.
One possibility (option B) is to change the aspect ratio of the gap, not by shrinking
it in the axial direction, but by enlarging it in the radial direction. This means we
replace the radius Rsf in Eq. 13.39 by

(Rsf)
2 =

(αsf

α

)2
(x2 + y2)+

( z

α

)2
, (13.40)

with again αsf the variational parameter that we can change. An even better option
(option C) is to actually shift the location of the interface while changing the aspect
ratio simultaneously. This can be done by using again Rsf as in Eq. 13.39 and sub-
stituting R0 → R0α/αsf in Eq. 13.38.

The thermodynamic potential for both options is again plotted in Fig. 13.7, with
the same aspect ratioα and polarization as for option A. The thermodynamic potential
for option B has clearly no features and only one minimum near the elliptically
symmetric solution. The result for option C, however, seems to have a feature that
looks like a metastable point near αsf = 0.57α. A closer look reveals that it is
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not a local minimum but a saddle point. This point is a result of our choice of
parametrization, since this is exactly the point where the center of the interface in
Eq. 13.38 is equal to the point where the factor 1 − R2

sf/ρR2
TF becomes zero. At this

value of αsf the interface thus disappears.
For the different trial functions of the gap that we considered here, we can conclude

that there is no metastable solution with a dramatic deformation in this system.
There are of course many more possible trial functions conceivable, but at present
it appears unlikely that any of these contain a clear and deep enough metastable
solution that can explain the dramatic deformation of Partridge et al. [2]. Because
of the large deformations that we are looking for, higher-order gradient effects in
the gap, or even density gradient effects, may be very important. We can therefore
not conclude that we should reject metastability as the solution to this outstanding
problem, but it remains a challenge to find such metastable solutions in a theory that
is simultaneously also able to accurately describe the experiments of Shin et al.

13.5 Conclusions

In this chapter we discussed a Landau–Ginzburg-like approach to the unitarity Fermi
gas problem, that we believe is both simple and elegant. This approach is based on
the existence of an exact thermodynamic potential functional. By taking the most
important interaction contributions into account, we showed that in this way all
known thermodynamic properties of the homogeneous imbalanced Fermi mixture
can be accounted for. When also the gradient energy of the gap is incorporated,
the theory can be extended to describe inhomogeneity effects of a Fermi mixture
trapped in an external potential in a manner that goes beyond the usual local-density
approximation.

We showed in the first part of this chapter that the interactions can be incorporated
in two frequency and momentum independent self-energies. We showed that these
self-energies naturally depend on the superfluid gap. The topology of the phase
diagram of the unitary Fermi mixture is correctly captured by the mean-field BCS-
theory. The self-energy corrections do not change this topology, but change the critical
lines in the phase diagram quantitatively. The results from experiments and various
Monte-Carlo calculations uniquely determine the two parameters in the self-energy.
This results in a parameter free thermodynamic potential that contains all known
features and has the correct energies and equation of state for the homogeneous
Fermi mixture.

The homogeneous result can be used in a local-density approximation. To go
beyond this approximation, the energy cost of gradients in the gap needs to be taken
into account. With this additional contribution to the thermodynamic potential we can
describe the superfluid-normal interface in more detail. The experimental data from
Shin et al. [3], which shows a rather smooth interface, is very well explained in this
way. The smooth interface leads also to a local stabilization of a gapless superfluid,
the Sarma phase. This interesting prediction of the theory, however, still needs to
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be corroborated by further experiments. The surface tension of the interface can be
calculated and turns out to be rather small. This is consistent with the observation
of Shin et al., who see experimentally no deformation of the superfluid core, but it
is in sharp contrast with the observations of Partridge et al. [6], who see a dramatic
deformation. This deformation actually suggests a much larger surface tension, but
another explanation may be that in their case the system is in a metastable minimum
of the thermodynamic potential. In a variational approach we showed, however, that
the Landau-Ginzburg-like model derived in this chapter, most likely does not contains
such a local minimum. Because the deformation is large, higher-order gradient effects
in the gap, or even density gradient effects, may be very important. These effects
are more complicated to include in the thermodynamic potential, and are beyond the
scope of this chapter.

References

1. Zwierlein, M.W., Schirotzek, A., Schunck, C.H., Ketterle, W.: Science 311, 492 (2006)
2. Partridge, G.B., Li, W., Kamar, R.I., Liao, Y.a., Hulet, R.G.: Science 311, 503 (2006)
3. Shin, Y., Schunck, C., Schirotzek, A., Ketterle, W.: Nature 451, 689 (2008)
4. Fetter, A.L.: Phys. Rev. B 14, 2801 (1976)
5. Karlhede, A., Kivelson, S.A., Lejnell, K., Sondhi, S.L.: Phys. Rev. Lett. 77, 2061 (1996)
6. Partridge, G.B., Li, W., Liao, Y.A., Hulet, R.G., Haque, M., Stoof, H.T.C.: Phys. Rev. Lett. 97,

190407 (2006)
7. Sarma, G.: J. Phys. Chem. Solids 24, 1029 (1963)
8. Combescot, R., Mora, C.: Europhys. Lett. 68, 79 (2004)
9. Parish, M.M., Marchetti, F.M., Lamacraft, A., Simons, B.D.: Nat. Phys. 3, 124 (2007)

10. Gubbels, K.B., Romans, M.W.J., Stoof, H.T.C.: Phys. Rev. Lett. 97, 210402 (2006)
11. Gubbels, K.B., Stoof, H.T.C.: Phys. Rev. Lett. 100, 140407 (2008)
12. De Silva, T.N., Mueller, E.J.: Phys. Rev. Lett. 97, 070402 (2006)
13. Haque, M., Stoof, H.T.C.: Phys. Rev. Lett. 98, 260406 (2007)
14. Baksmaty, L.O., Hong Lu, H.P., Bolech, C.J.: Phys. Rev. A 83, 023604 (2011)
15. Stoof, H.T.C., Gubbels, K.B., Dickerscheid, D.B.M.: Ultracold quantum fields. Theoretical

and Mathematical Physics. Springer, Dordrecht (2009)
16. Burovski, E., Prokof’ev, N., Svistunov, B., Troyer, M.: Phys. Rev. Lett. 96, 160402 (2006)
17. Lobo, C., Recativ, A., Giorgini, S., Stringari, S.: Phys. Rev. Lett. 97, 200403 (2006)
18. Chevy, F.: Phys. Rev. A 74, 063628 (2006)
19. Combescot, R., Recati, A., Lobo, C., Chevy, F.v: Phys. Rev. Lett. 98, 180402 (2007)
20. Bulgac, A., Forbes, M.: Phys. Rev. Lett. 101, 215301 (2008)
21. Diederix, J.M., Gubbels, K.B., Stoof, H.T.C.: arXiv:0907.0127 (2009)
22. Carlson, J., Reddy, S.: Phys. Rev. Lett. 100, 150403 (2008)
23. Carlson, J., Reddy, S.: Phys. Rev. Lett. 95, 060401 (2005)
24. McMillan, W.L.: Phys. Rev. 175, 559 (1968)
25. Gubbels, K.B., Baarsma, J.E., Stoof, H.T.C.: Phys. Rev. Lett. 103, 195301 (2009)
26. Stoof, H.T.C.: Phys. Rev. B 47, 7979 (1993)
27. Baur, S.K., Basu, S., De Silva, T.N., Mueller, E.J.: Phys. Rev. A 79, 063628 (2009)



Chapter 14
BCS–BEC Crossover and Unconventional
Superfluid Order in One Dimension

A. E. Feiguin, F. Heidrich-Meisner, G. Orso and W. Zwerger

Abstract In this chapter we discuss the BCS–BEC crossover in one-dimensional
Fermi gases. We present exact results using the Bethe Ansatz as well as numerical
calculations of the correlation functions and the complete phase diagram. In a bal-
anced gas, a continuous crossover occurs from a BCS-type fermionic superfluid to
a BEC of pairs that are described by the Lieb-Liniger model. In the case of a finite
imbalance, superfluidity persists in the form of a Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state with finite-momentum pairs on the weak coupling side. For strong
attractive interactions, it is replaced by a Bose-Fermi mixture. The perspectives to
observe an FFLO-state with ultracold fermions in a harmonic trap are discussed.
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14.1 Introduction

Starting with the historic controversy between Bardeen and Schafroth about the
proper explanation of superconductivity, the crossover from a Bardeen–Cooper–
Schrieffer (BCS) superfluid with Cooper pairs, whose size is much larger than the
inter-particle spacing, to a Bose–Einstein Condensate (BEC) of molecules composed
of fermions tightly bound into pairs has been a fundamental issue in many-body
physics. The realization of fermionic superfluids with ultracold gases near a Feshbach
resonance has turned this more or less academic, fifty-year-old problem into one
that can be studied experimentally [1–3]. In the 3D situation, the crossover is well
understood for the balanced gas, despite the fact that no analytical results are available
for even the most basic quantities such as the ground-state energy or the critical
temperature of the superfluid to normal gas transition in the most interesting regime
near unitarity. In the situation with a finite imbalance, many questions are still open,
in particular, the issue of unconventional superfluids that are expected in some parts
of the phase diagram (see the chapters by Bulgac, Forbes and Magierski, by Diederix
and Stoof and by Recati and Stringari). It is therefore of considerable interest to have
an analytically solvable model of the BCS–BEC crossover that provides quantitative
results in a particular case and, moreover, a better understanding of the conditions
under which unconventional superfluid pairing may appear. Such an exact solution
of the problem is possible in one dimension (1D), both for the balanced [4, 5] and
the imbalanced gas [6, 7]. The importance of this solution goes beyond the generic
interest in solvable many-body problems because

1. 1D Fermi gases with a tunable attractive interaction and arbitrary values of the
imbalance have been realized experimentally [8, 9] and

2. the imbalanced 1D Fermi gas exhibits unconventional superfluid order of the
FFLO type [10, 11] in a wide range of the phase diagram [12–19].

In the FFLO state, the pairs that form the superfluid acquire a finite center-of-mass
momentum and thus lead to an order parameter that oscillates in real space. Such an
unconventional superfluid has been predicted by Fulde and Ferrell [10] and—in a
more general form—by Larkin and Ovchinnikov [11]. Despite intense research over
several decades, this state has never been seen unambiguously, neither in condensed
matter nor in the more exotic context of QCD at high densities, where FFLO-type
phases based on pairing of quarks are predicted [20]. There is only some indirect
evidence for an FFLO state from specific heat data on organic superconductors in a
very strong magnetic field parallel to the layer structure [21]. As will be shown below,
ultracold Fermi gases in 1D with a finite imbalance provide a rather simple realization
of a state with finite-momentum Cooper pairs and thus give rise to the hope that this
elusive unconventional superfluid can eventually be observed experimentally.

This chapter provides an introduction to FFLO-physics in one dimension and to
exactly solvable 1D Fermi gases with attractive interactions in general (see also the
recent reviews by Sheehy and Radzihovsky [22, 23]).
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14.2 BCS–BEC Crossover of a Balanced
One-Dimensional Fermi Gas

In a 3D gas, the BCS–BEC crossover is realized by changing the attractive contact
interaction between two different hyperfine states through a Feshbach resonance,
beyond which a bound state appears in the two-particle problem in free space. On
the BCS side of the crossover, pairs only exist in the many-body system due to the
Pauli blocking of states below the Fermi energy, which gives rise to a finite density
of states at effectively zero energy. In one and also in two dimensions, the situation
is quite different because any purely attractive interaction produces a bound state
already at the two particle level. In fact, the existence of a two-body bound state is
both a necessary and sufficient condition for a BCS instability [24]. At first sight,
this seems to exclude a crossover with a proper BCS-limit in 1D because a two-body
bound state is always present. Moreover, the BEC limit of tightly bound pairs is very
special in 1D, because the Pauli principle for the constituent fermions makes these
pairs behave like hard-core bosons. The bound pairs thus form a strongly interacting
Tonks–Girardeau gas, very different from the weakly interacting gas of dimers that
appears on the BEC side of the crossover in 3D. Remarkably, the situation in a real
physical context, where atoms are confined to individual ‘quantum wires’ of finite
width �⊥ by, e.g., a strong 2D optical lattice, is different. In this case, an analog of the
3D crossover can be achieved in 1D by exploiting a confinement induced resonance
(CIR) in a tight trap where the effective 1D scattering length exhibits a resonance
caused by the mixing with a closed-channel bound state in the trap [25].

The microscopic Hamiltonian that describes a Fermi gas with two different com-
ponents is the Gaudin–Yang (GY) model [26, 27]

H = − �
2

2m

⎛
⎝ N↑∑

i = 1

∂2

∂x2
i

+
N↓∑

j = 1

∂2

∂y2
j

⎞
⎠ + g1

N↑, N↓∑
i, j = 1

δ(xi − y j ). (14.1)

Here, xi and y j denote the coordinates of up- and down-spin fermions respectively,
whose total numbers N↑, N↓ are fixed but, in general, different. The interaction
between fermions of opposite spin is described by a contact potential g1δ(x − y).
Note that fermions of the same spin, which are never at the same point in space, have
no interaction whatsoever in this model. In a situation where the atoms are subject to a
transverse confinement, the strictly 1D model (14.1) is applicable provided that only
the lowest eigenstate of the quantized motion in the transverse direction is occupied.
For a harmonic confinement with radial frequency ω⊥/2π and associated oscillator
length �⊥ = √

�/mω⊥, this requires εF � �ω⊥ or—equivalently— n�⊥ � 1,
where n ≡ N/L is the 1D density at total particle number N = N↑ + N↓. In this low
density regime, the replacement of the actual interaction between ultracold atoms
by a 1D contact potential turns out to be valid over a rather wide range of coupling
constants. Indeed, the momenta for the scattering of two fermions are of the order of
the Fermi momentum kF =πn/2. The reflection amplitude
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f (k)= −1

1 + i cot(δ(k))
� −1

1 + ika1 + O
(
(k�⊥)3

) (14.2)

that describes two-particle scattering in 1D [1] can thus be replaced by its low-energy
limit −1/(1 + ika1) as long as k2

F � a1/�
3⊥. Here, a1 is the 1D scattering length,

which is the single parameter that describes low-energy scattering in 1D. For a δ-
function potential V (x)= g1δ(x), the low-energy expression −1/(1 + ika1) for the
reflection amplitude holds for arbitrary k, with scattering length a1 = − 2�

2/mg1,

which is positive for attractive interactions g1 < 0. The replacement of the actual
inter-atomic potential by an effective contact interaction in 1D thus requires the
density to be small enough such that the condition (n�⊥)2 � a1/�⊥ is obeyed.
Since n�⊥ � 1 in the single transverse mode limit, this condition is satisfied in a
rather wide range, except very close to the confinement induced resonance, where
a1 vanishes (see Eq. 14.4).

In the case of a uniform, balanced gas with total density n, the Hamiltonian (14.1) is
characterized by a single dimensionless coupling constant γ ≡ mg1/�

2n,which is
inversely proportional to the density. In 1D, the strong coupling limit |γ | 	 1
is therefore reached at low densities. This initially counterintuitive fact can be under-
stood by noting that low densities imply small momenta. Moreover, the 1D scattering
amplitude (14.2) has its maximum phase shift δ(0)=π/2 as k → 0 because 1D
potentials become impenetrable at zero energy, i.e. f (k → 0)= − 1. At low den-
sities, therefore, the interaction is strongest, quite in contrast to the 3D case where
the s-wave phase shift tan δ0(k)= − ka + . . . vanishes in the low-energy limit. The
dimensionless coupling constant γ = − π/(kF a1) is therefore large when the 1D
scattering length is much smaller than the Fermi wave-length.

For weak attractive interactions γ → 0−, the ground state of the Gaudin–Yang
model in the balanced case N↑ = N↓ is a BCS-like state with Cooper pairs, whose size
is much larger than the average inter-particle spacing. This is a direct consequence
of the fact that the binding energy of these pairs (or—more precisely—the so called
spin gap that separates the singlet ground state from the first triplet excited state) [4]

	= εF · 16

π

√ |γ |
π

e−π2/2|γ | (14.3)

is much smaller than the Fermi energy εF in the weak coupling limit kF a1 	 1.
At a given strength a1 of the attractive interaction, this gap decreases exponentially
as	 ∼ exp (−πkF a1/2)with increasing density n ∼ kF , in contrast to the 3D case,
where 	 ∼ exp (−π/2kF |a|) strongly increases as the density and therefore, kF

grows. This fundamental difference is the basic reason for the fact that the unbalanced
superfluid appears at the edge of a trapped gas with a finite overall imbalance and
not in its center, as in 3D (see Sect. 14.3.2). The origin of this can be understood as a
simple density-of-states effect. Indeed, the formation of pairs due to weak attractive
interactions in a Fermi gas is favored by a large density of states v(εF ) at the Fermi
energy. In 3D, v3D(εF ) ∼ √

εF ∼ kF increases linearly with kF while in 1D, due
to v1D(εF ) ∼ 1/

√
εF ∼ 1/kF , the situation is reversed and pairing is strong at low
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densities. In the strong coupling regime kF a1 � 1, the attractive interaction leads to
the formation of tightly bound molecules, whose binding energy coincides with the
binding energy of the two-body problem 	 ≡ εb. These pairs behave like a hard-
core Bose gas. In a strictly 1D situation, therefore, the BEC limit of the crossover
corresponds to a Tonks–Girardeau gas of dimers and one never reaches a weakly
interacting BEC as in 3D.

A rather different situation, however, is encountered for the physically relevant
case of 3D fermions that are confined in a quasi-1D geometry, such that their trans-
verse degrees of freedom are completely frozen. For simplicity, we assume the atoms
to be trapped in a harmonic waveguide with radial frequency ω⊥/2π and oscillator
length �⊥. As shown by Bergeman et al. [28], the exact solution of the two-body
scattering problem in such a waveguide always exhibits one and only one two-body
bound state with energy ε̃b, whatever the 3D scattering length a. Apart from this
bound state, the low energy scattering properties can be described by an effective 1D
delta potential g1δ(x) with strength [25]

g1(a)= 2�ω⊥a

1 − Aa/�⊥
↔ a1(a)

�⊥
= − �⊥

a
+ A. (14.4)

Here, A = − ζ(1/2)/√2 � 1.0326 is a numerical constant. As naively expected, an
attractive 3D interaction a < 0 implies a negative value of g1. The associated two-
particle bound state has energy εb = mg2

1/4�
2 and coincides with the exact bound

state energy ε̃b in the limit a/�⊥ → 0. Remarkably, g1 and also the binding energy
ε̃b = 0.606�ω⊥ remain finite at a Feshbach resonance a = ± ∞, a prediction that
has been verified experimentally [9]. Entering the positive side a > 0, the vanishing
of the 1D scattering length a1 at �⊥/a = A � 1.0326 leads to a CIR, where g1 jumps
from −∞ to +∞ just as in a standard 3D Feshbach resonance. For g1 > 0, the
short-range potential g1δ(x) no longer has a bound state. It is still present, however,
in the quasi-1D problem and its energy ε̃b is always larger than its value 2�ω⊥ at the
CIR [28].

For a 1D gas with a finite density, the condition that only the lowest eigenstate
of the transverse motion is occupied requires �ω⊥ to be much larger than the Fermi
energy εF . Beyond the CIR at 1/γ = 0, the true bound-state energy ε̃b ≥ 2�ω⊥ is
therefore the largest energy scale in the problem and the dimers in this regime are
essentially unbreakable bosons. In order to describe the resulting 1D Bose gas, one
needs to know the effective interaction between these composite bosons. This has
been studied by Mora et al. [29], who have solved the four-body scattering prob-
lem in 1D with delta-function interactions between the particles in the presence of
a harmonic, transverse confinement. It turns out that the effective interaction of the
dimers can again be described by a pseudo-potential gddδ(x),with a repulsive inter-
action constant gdd > 0. Far away from the CIR, were the dimer size a � �⊥ is
much smaller than the scale �⊥ of the transverse confinement, this interaction coin-
cides with that expected from the free space result for the dimer-dimer scattering
length add � 0.6a in 3D, which has been derived by Petrov et al. [30]. As a result,
gdd → 2�ω⊥add vanishes in the deep BEC limit a → 0 and one recovers—as in
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3D—a weakly interacting Bose gas of dimers. Close to the resonance, the effec-
tive gdd diverges, consistent with the expectation that the dimers near the CIR form
a Tonks–Girardeau gas of hard-core bosons. In a waveguide geometry, therefore,
there is a full BCS–BEC crossover in one dimension [4, 5] that is described by
a Gaudin–Yang model of attractively interacting fermions up to the CIR and
a Lieb–Liniger model [31] of repulsive bosons beyond the CIR. On a formal level, the
continuous evolution from an attractive Fermi to a repulsive Bose gas in one dimen-
sion is implicit in the Bethe-ansatz equations of these models, as noted already by
Gaudin [26]. Indeed, the ground-state energy per particle

E0

N
= εb

2
+ 2

B∫
−B

dλ

n
σ(λ)

�
2λ2

2m
(14.5)

of the attractive Fermi gas is obtained from the solution of the Bethe-ansatz integral
equation

πσ(λ)= 1 +
B∫

−B

dq

n

γ σ(q)

γ 2 + [(λ− q)/n]2 . (14.6)

Here,σ(λ) is the distribution function of the quasi-momenta (rapidities). They appear
in complex conjugate pairs k± = λ ± i/a1 and describe the N/2 bound states of
the balanced gas. The value of B is fixed by the normalization

∫ B
−B dλσ(λ)= n/2.

For the fermionic Gaudin–Yang problem, γ is negative. Remarkably, the identical
equation applies for the Lieb–Liniger gas of dimers, where γ is positive. Since
one is now dealing with dimers of mass 2m and density n/2, the dimensionless
parameter γ = 4mgdd/�

2n = − 4/(na1,dd) depends on the coupling constant gdd or
the associated scattering length a1,dd of the dimer-dimer interaction. Its dependence
on the experimentally accessible parameters a and �⊥ is determined by the exact
solution of the 1D dimer-dimer scattering problem in the presence of a transverse
confinement by Mora et al. [29]. As a function of the experimentally tunable ratio
�⊥/a, the resulting parameter 1/γ, which replaces the standard inverse coupling
constant 1/kF a for the 3D crossover problem, smoothly grows from 1/γ = 0 at the
CIR a � �⊥ to 1/γ 	 1 in the BEC limit a � �⊥, where the size of the dimers is
much smaller than the transverse confinement length. More precisely, the effective
dimer-dimer interaction gdd that determines the dimensionless coupling constant
γ > 0 on the BEC-side, does not diverge at the CIR of the atoms but close to the
3D Feshbach resonance, where the exact two-particle binding energy is close to
ε̃b � 0.6�ω⊥, see Fig. 1 in [29].

The qualitative physics of the BCS–BEC crossover in a balanced 1D Fermi gas
is now easy to understand: in the high-density, BCS limit −π/γ = kF a1 	 1, the
system consists of weakly bound Cooper pairs. In this regime, there is a gap between
the singlet ground state and the first excited triplet state that increases strongly with
decreasing density. In addition, there are gapless density fluctuations, describing
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Fig. 14.1 Velocity of the
Bogoliubov sound mode
along the 1D BCS–BEC
crossover

the Bogoliubov-Anderson mode of a neutral superfluid. The attractive Fermi gas
is thus a so called Luther-Emery liquid [32, 33]. At the confinement induced reso-
nance, when kF a1 = 0, the system is a Tonks–Girardeau gas of tightly bound dimers.
It still exhibits sound modes with a linear spectrum, however, the spin excitations
have disappeared because the spin gap is effectively infinite. For positive 3D scat-
tering lengths 0 < a � �⊥, the system is an interacting Bose gas of tightly bound
molecules. Its excitations are the standard Bogoliubov sound modes, whose velocity
vanishes asymptotically in the weak coupling (BEC) limit 1/γ 	 1, as shown in
Fig. 14.1. The possibility of separating the BCS–BEC crossover into a purely fermi-
onic problem on one side of the CIR and a purely bosonic one on the other side of the
resonance is a peculiar property of one dimension. It relies on the assumption of a
dilute system n�⊥ � 1,whose Fermi energy is much smaller than the binding energy
at resonance. Defining a characteristic length scale r by the two-particle binding
energy ε = �

2/m(r)2 at resonance, the low density condition kFr � 1 in 1D is
completely equivalent to the condition kFr � 1 of a broad Feshbach resonance in
3D [1]. In this form, the condition applies more generally also for a two-channel,
Bose-Fermi resonance model [34]. In the opposite, narrow Feshbach resonance limit
kFr 	 1, the physics near the CIR becomes more complicated. In particular, a new
phase appears where atoms and dimers, both in a superfluid state with algebraically
decaying correlations, coexist [35, 36].

14.3 Spin-Imbalanced Fermi Gas in One Dimension

In this section we discuss the extension of the Gaudin–Yang solution for a balanced
attractive Fermi gas to the situation with a finite imbalance, as presented in [6, 7].
We first discuss the quantum phase diagram for the homogeneous system, where
the underlying model is integrable by means of the Bethe ansatz. We then include
a longitudinal trapping potential via the local density approximation and derive the
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shell-structure of the density profiles of the two components. Effects of finite tem-
perature have been investigated using the Bethe ansatz in [37, 38] and will not be
covered here. A similar behavior at zero temperature is found for the case of optical
lattices at filling factors below one. This case is covered in [39].

14.3.1 Bethe-Ansatz Solution for the Homogeneous Gas

The Hamiltonian (14.1) can be diagonalized exactly also in the presence of a finite
spin polarization. For fixed values of the linear number densities n↑ = N↑/L and
n↓ = N↓/L , where L is the size of the system, the ground state energy E is given by

E

L
= 4�

2

ma3
1

⎡
⎢⎣

B∫
−B

(
2λ2 − 1

2

)
σ(λ)dλ+

Q∫
−Q

k2ρ(k)dk

⎤
⎥⎦, (14.7)

where a1 = − 2�
2/mg1 is the effective 1D scattering length, and B and Q are

non-negative numbers related to the particle densities by n↓a1 = 2
∫ B
−B σ(λ)dλ and

n↑a1 − n↓a1 = 2
∫ Q
−Q ρ(k)dk. The spectral functions σ(λ) and ρ(k) appearing in

Eq. 14.7 are solutions of two coupled integral equations [26]

σ(λ)= 1

π
−

B∫
−B

K1(λ, λ
′)σ (λ′)dλ′ −

Q∫
−Q

K2(λ, k)ρ(k)dk,

ρ(k)= 1

2π
−

B∫
−B

K2(λ, k)σ (λ)dλ, (14.8)

where the kernels are given by πK1(λ, λ
′)= 1/[1 + (λ′ − λ)2] and πK2(λ, k) =

2/[1 + 4(k − λ)2]. The need for a second distribution function ρ(k) beyond the
function σ(λ) introduced in Sect. 14.1 for the balanced gas is due to the presence
of uncompensated spins in the imbalanced case n↑ �= n↓. These uncompensated
spins are not bound in pairs and are thus described by real rapidities k j . In the
thermodynamic limit, this gives rise to a distribution function ρ(k). It is only for
n↑ = n↓ that no uncompensated spins exist. In this case, we have Q = 0 and the
coupled set of equations (14.8) reduces to a single integral equation for σ(λ) which
is identical to Eq. 14.6 discussed in Sect. 14.1 by a trivial rescaling.

For a fixed value of the total density n ≡ n↑ + n↓, the density difference
s ≡ n↑ − n↓ can vary in the range 0 ≤ s ≤ n. For s = 0, the ground state of the
Hamiltonian (14.1) is fully paired with a spin gap 	, corresponding to the energy
needed to break a pair in the many-body system, whereas in the opposite limit s = n,
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Fig. 14.2 Quantum phase diagram of attractively interacting fermions obtained from the Bethe-
ansatz solution of the Gaudin model. Here μ, h = (μ↑ ± μ↓)/2, where μ↑,↓ are the chemical
potentials of the two components, and εb is the binding energy of the pair. Reproduced from [7]

the system is a fully polarized gas of ↑ fermions. For 0 < s < n, the gas is partially
polarized and is a superfluid of the FFLO type [12–19].

Using the mean chemical potential μ and the effective magnetic field h,
defined as

μ= ∂(E/L)

∂n
, h = ∂(E/L)

∂s
(14.9)

as new independent variables, one obtains the universal phase diagram shown in
Fig. 14.2, where εb = �

2/ma2
1 is the binding energy of the molecule.

The phase boundary h = hc(μ) between the partially polarized and the fully paired
regions is calculated by setting s = 0 in Eq. 14.9. We see that hc is a decreasing
function of the chemical potential, being exponentially small at large particle density
and reaching its maximum value hc = εb/2 in the zero density limit. This behavior
can be understood by noticing that the critical magnetic field is related to the spin gap
	 of the unpolarized gas by hc =	/2, and therefore, it increases when one enters
into the low density regime (μ decreases), where interaction effects become stronger.
We emphasize that in higher dimensions the situation is completely reversed [40]
(see also the discussion in the previous section).

The boundary h = hs(μ) between the partially polarized and the fully polarized
phases in Fig. 14.2 is obtained by setting s = n in Eq. 14.9. This yields the implicit
formula hs = 2εb[Q2(1 − arctan(2Q)/π) + (2Q − arctan(2Q) + π)/4π ], with
Q = √

(μ+ hs)/2εb.The fully paired and fully polarized phases correspond, respec-
tively, to the paramagnetic and ferromagnetic states of a superconductor in a magnetic
field [41, 42].

The presence of a two-body bound state leads to a direct boundary μ= − εB/2
between the fully paired phase and the vacuum. In the fully polarized phase the atom
density vanishes in correspondence to μ↑ = (μ+ h)/2 = 0, as for the 3D case [40].
We stress that the partially polarized phase has no direct boundary with the vacuum,
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implying the absence of n-body bound states with n > 2. This feature will change
in the presence of a mass asymmetry, as we shall discuss in Sect. 14.5.

We see from Fig. 14.2 that the fully paired and fully polarized phases cannot
coexist for a fixed value of the magnetic field. In particular, for h < εb/2, only the
fully paired phase is allowed, whereas for h > εb/2, only the fully polarized phase
can occur. This property determines the shell structure of a trapped gas, as we shall
see next.

14.3.2 Phase Separation in a Trap

We now assume that particles are trapped longitudinally by a shallow harmonic poten-
tial Vho(z)= mω2

z z2/2,whereωz is the trapping frequency, and we calculate the den-
sity profiles of the two components via the local density approximation (LDA). This is
done by imposing the local equilibrium condition μσ [n↑(z), n↓(z)] + Vho(z)=μ0

σ ,

where μσ [n↑, n↓] are the corresponding chemical potentials of the homogeneous
system and μ0

σ are constants fixed by the normalization Nσ = ∫
nσ (z)dz. Taking

into account that μ, h = (μ↑ ± μ↓)/2, this reduces to

μ[n↑(z), n↓(z)] =μ0 − Vho(z),

h[n↑(z), n↓(z)] = h0,
(14.10)

where μ0, h0 = (μ0↑ ± μ0↓)/2. Equation 14.10 shows that the LDA trajectories cor-
respond to vertical lines in the phase diagram of Fig. 14.2, implying that the trapped
one-dimensional gas phase-separates into two shells: a partially polarized core and
either fully paired or fully polarized wings. This is a key difference with respect to
three-dimensional systems, where the trap induces a three-shell structure [40].

In Fig. 14.3 we show the calculated Thomas–Fermi radii Rin and R↑ of the inner
and outer shells, respectively. These are plotted as a function of the spin polarization
P ≡ (N↑ − N↓)/N ,where N = N↑ + N↓ is the total number of particles, and for dif-
ferent values of the interaction parameter λ= Na2

1/a
2
z . In the absence of interactions,

we find R↑, Rin =√
1 ± Paz N 1/2 which are monotonic functions of P (top curves).

For finite attractive interactions, the two radii show instead a non-monotonic behavior
as a function of P, signaling the appearance of fully paired wings at low polarizations.
In particular, the cloud size (R↑) first decreases as P increases because the density
profiles of majority and minority components must match at the edge of the cloud.
Beyond a critical value P = Pc of the spin polarization, the outer shell becomes fully
polarized, implying that the cloud size must increase steadily for P > Pc, as shown
in Fig. 14.3. The critical spin polarization Pc increases going towards the strongly
interacting dilute regime, where it eventually saturates at Pc(λ= 0)= 1/5 (see [6, 7]
for details).
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Fig. 14.3 Thomas–Fermi radii of the outer (R↑) and of the inner (Rin) shell computed via LDA
from the exact solution for the homogeneous system. Radii versus P for values of the interaction
parameter λ=∞, 10, 1, 0.1, 0 (bottom to top). The non-monotonic behavior is a signature of the
fully paired wings at low spin polarization. Reproduced from [7] with permission of the author

14.4 FFLO Correlations in the Partially Polarized Phase

14.4.1 Predictions From Bosonization

So far, we have only discussed the thermodynamics of attractive 1D fermions at
zero temperature. As shown in the previous section, this allows one to determine the
density profiles of trapped gases within LDA. A detailed understanding of the order
that is present in the balanced and imbalanced attractive Fermi gas, however, requires
to calculate correlation functions. Of particular interest is the nature of superfluid
order in the ground state. It follows from the pair correlation

ρ
pair
i j =

〈
c†

i,↑c†
i,↓c j,↑c j,↓

〉
, (14.11)

which describes the tendency for singlet pairing as a function of separation x = i − j
(we use a continuum or discrete notation interchangeably, in particular since quantita-
tive results for correlation functions at arbitrary distances require using a lattice model
with discrete sites i, see the following section). In a standard singlet superconductor,
the pair correlation function approaches a finite constant at large separation x → ∞,

which is proportional to the square of the gap parameter in weak coupling. In one
dimension, long-range order is destroyed by quantum fluctuations even in the ground
state and at most algebraically decaying correlations may exist. For the balanced gas,
the correlation exponent 	SS for singlet pairing, defined by ρpair

i j ∼ |i − j |−	SS ,

turns out to be the inverse 	SS = 1/Kc of the (charge) Luttinger exponent Kc [32].
For attractive interactions, this implies 	SS < 1. The singlet pairing correlations
thus decay very slowly. They are, in fact, the dominant correlations in the system,
i.e., those with the smallest value of the correlation exponent 	 in the two-particle



514 A. E. Feiguin et al.

channel. In the case with a finite imbalance P �= 0, superfluid pairing still persists
in the ground state, however it changes both its nature and also decays more quickly
with distance. The fact that the nature of pairing is different can be understood most
easily from a mean-field description of pairing in the weak coupling limit. At finite
imbalance P = (n↑ − n↓)/n > 0, the two components have different Fermi wave
vectors kF,σ =πnσ .A BCS-instability of the free Fermi gas, which pairs an up-spin
fermion with a down-spin one at opposite sides of the respective Fermi ‘surfaces’
will thus lead to pairs with a finite total momentum

Q = kF↑ − kF↓ =πn P. (14.12)

This results in an oscillating superfluid correlation function of the form

|ρpair
i j | ∝ | cos(Qx)|/x	(p) (14.13)

which is characteristic of states of the FFLO-type (sometimes also denoted LOFF
in the literature) order. Fermionic superfluids with pairs that have a finite momentum
in the ground state were initially suggested for superconductors in the presence
of strong internal magnetic fields [10, 11]. In the present context of imbalanced
Fermi gases, the Hamiltonian is time-reversal invariant. The ground state therefore
necessarily has a vanishing net current. Pairs with net momentum Q and −Q are thus
equally probable and the superfluid order parameter is a real function ∼ cos(Qx),
up to an arbitrary overall phase. A peculiar feature of the situation in one dimension
is the fact that FFLO-type order is the dominant correlation (i.e. the one with the
smallest value of the correlation exponent 	) at arbitrary polarizations P > 0, up
to P = 1 where the system is a trivial fully polarized and non-interacting Fermi gas
[13, 16, 17]. (for early mean-field studies, see [43, 44]).

A convenient method to calculate the long-distance behavior of correlations in
1D quantum liquids is bosonization [32]. The attractive Fermi gas in the presence
of a finite effective field h that couples to the imbalance in a Zeeman-like form
H ′ = − h(N↑ − N↓) can thus be reduced to a sine-Gordon model for the spin-
density field φs(x) that determines the imbalance via p(x) ∼ ∂xφs(x) [12]. The
imbalance remains zero up to a critical value hc =	/2 of the effective field that is
determined by the spin gap 	 of the balanced gas. Beyond this critical field, a finite
density nsol = n↑ − n↓ = Q/π of solitons arises in φs(x) where the superfluid order
parameter changes by π at each soliton. The associated pair correlation function has
the form given in Eq. 14.13 with a correlation exponent 	SS(p)=	SS(p = 0) +
1/2. It is larger than the one of the balanced gas by an additional contribution 1/2
that arises from the fluctuations around the average periodic order of the soliton
lattice [12]. The appearance of an order parameter that is periodic in space can be
understood in simple physical terms by noting that the additional up-spins in the
imbalanced gas prefer to sit at the zeroes of the order parameter (naively associated
with a locally vanishing pairing gap), which are 1/nsol apart on average. These
results are supported by detailed numerical investigations of correlation functions in
the attractive Hubbard model on a 1D lattice, using density matrix renormalization
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Fig. 14.4 Exponents of
density-density correlations
and (s-wave) pair-pair
correlations functions,
calculated numerically from
the Bethe-ansatz, as a
function of polarization and
for several densities [16]

group (DMRG) or Quantum Monte Carlo (QMC) methods [12–19]. In particular,
the values of the correlation exponents for density-density correlations (denoted
by 	C DW ) which are dominant for repulsive interactions and those for superfluid
pairing of the FFLO-type are shown in Fig. 14.4. These results were obtained in [16]
by numerically solving the respective Bethe-ansatz equations [45, 46]. It is evident
that for attractive interactions, FFLO is the dominant instability at arbitrary values of
the polarization, also compared to other algebraically decaying correlation functions
such as, e.g., triplet superfluidity [16]. It is favored by small filling fractions on the
lattice. Moreover, there is hardly any dependence of the exponents on polarization
P beyond the initial jump by 1/2, in agreement with the predictions of bosonization.
There is one major caveat, however, of this method, which will be discussed in the
following.

The exact Bethe-ansatz solution of the imbalanced gas shows that the finite polar-
ization P(h) ∼ (h − hc) which appears beyond the critical field hc =	/2 starts
linearly with the deviation from the critical field. By contrast, bosonization predicts
a square root behavior P(h) ∼ √

h − hc of the polarization near the critical field [12].
This behavior is characteristic for the appearance of solitons in a Sine-Gordon model
with a finite tilt, as was found by Pokrovsky and Talapov [47] in the context of 2D
commensurate-incommensurate transitions. The failure of bosonization in this con-
text has been discussed by a number of authors [48–51] and is due to a breakdown of
spin-charge separation in this problem. To understand the physics behind this effect,
it is convenient to consider the strong coupling limit kF a1 → 0+ of the attractive
Fermi gas at given values of the total density n and density difference s = n↑ − n↓.
The ground-state is effectively a gas of dimers with density nd = n↓ = (n − s)/2
that coexists with a gas of unpaired fermions with density s. Since the dimers are
hard-core bosons, the ground-state energy density is of the form [7]

e0(n, s)= − εbnd + eT G
0 + eF

0 = − εbnd + �
2π2

12m

1

8
(n − s)3 + �

2π2

6m
s3. (14.14)

Here eT G
0 is the energy density of the Tonks–Girardeau gas of dimers with mass 2m

while eF
0 is that of a free Fermi gas. Note that there is no contribution gadnds from the
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atom-dimer repulsion here, because in one dimension the effective coupling constant
gad turns out to vanish like s2 [52]. Using h = ∂e0/∂s and the strong coupling result
2hc(n)= εb − εF/2 + . . . for the critical field, Eq. 14.14 leads to

h − hc = εF

2
P − εF

4
P2 + 4εF P2 + . . . . (14.15)

As a result, the dimensionless polarization P = 2(h −hc)/εF + . . . vanishes linearly
with h − hc, consistent with the Bethe-ansatz solution (see also [50, 53]). The linear
behavior is a result of a contribution εF P2/4 to the ground-state energy density
eT G

0 of the Tonks–Girardeau gas in Eq. 14.14. For small polarization P → 0, this
term dominates the kinetic energy eF

0 ∼ P3 of the Fermi gas of unpaired atoms that
gives rise to the last, irrelevant contribution on the rhs of Eq. 14.15. The failure of
bosonization is that it does not account for the change in the energy density eT G

0
that is associated with the creation of unpaired fermions from the gas of bound
pairs. Bosonization pretends they are created out of a vacuum state whose energy is
unaffected by a finite polarization. Only the kinetic energy ∼ P3 due to the filling
of an initially empty band in the spin sector is included. A different way to see that
bosonization cannot describe the correct linear dependence P(h)= 2(h − hc)/εF +
. . . is that it does not account for an energy scale of order εF , ‘knowing’ only about
the Fermi momentum, which is proportional to

√
εF . Also note that the coupling

between spin and charge that results from the nontrivial dependence of eT G
0 on n and

s changes the effective interaction between individual unpaired fermions (i.e., the
solitons of the Sine-Gordon theory) from the standard 1/x3-behavior discussed in
the context of 2D commensurate-incommensurate transitions [47] to a longer range
1/x2-dependence.

14.4.2 Exact Numerical Results

In this section we wish to demonstrate that the FFLO correlations predicted from
bosonization [12] indeed exist in the partially polarized phase of 1D systems of
attractively interacting fermions. While both the Gaudin–Yang and the 1D Hubbard
model, the lattice version, are integrable models, the calculation of correlation func-
tions is notoriously difficult, and one therefore has to resort to numerically exact
methods such as DMRG or QMC.

For concreteness, we consider the 1D attractive Hubbard model:

H0 = − t
L−1∑

i = 1, σ

(
c†

iσ ci+1σ + h.c.
)

+ U
L∑

i = 1

ni↑ni↓ (14.16)

with an attractive onsite interaction U and open boundary conditions. Here ciσ anni-
hilates a fermion with spin σ at site i and niσ is the local density of the fermions with
spin σ. The phase diagram for the 1D attractive Hubbard model for n ≤ 1 has the
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Fig. 14.5 Momentum distribution function of pairs in the 1D Hubbard model with U = − 8t
and n = 0.5. In Eq. 14.18, i0 = L/2. Inset: the position of the maximum in npair

k shows the expected
scaling with Q = kF↑ − kF↓ =πn P. Compare also [14, 17] for the case of optical lattices and [15]
for the case of the continuum

same phases as the continuum model: vacuum, partially polarized phase, fully paired
phase, fully polarized phase [39, 54]. Additional phases emerge at larger densities
that, however, are related to the aforementioned ones by means of a particle-hole
transformation.

We use DMRG [55, 56] to compute the pair-pair correlation functions Eq. 14.11
[13, 17, 18]. Similar results can be obtained with QMC for both optical lattices [14]
(there, the particle numbers are smaller than what can be accessed with DMRG [39],
though) and the continuum case [15].

It is illustrative to go to momentum space by computing the associated momentum
distribution function:

npair
k = (1/L)

∑
lm

exp[ik(l − m)]ρpair
lm . (14.17)

Typical results for a homogeneous system with open boundary conditions are
shown in the main panel of Fig. 14.5. At zero polarization P = 0, the MDF has a
maximum at zero momentum, which, upon polarizing the system, shifts to finite
momenta. The smoking gun for the presence of FFLO correlations is the scaling of
the position Q of the finite-momentum maximum with polarization: in the case of
1D we expect Eq. 14.12 to hold. This is verified in the inset of Fig. 14.5, where we
find Q =πn P, as expected (compare [13–15, 17, 18]). Note that this behavior is
seen up to full polarization.

The next questions to address are the actual functional form of the spatial decay of
pair correlations and the stability of FFLO correlations in the presence of a harmonic
trap. We address both points by considering a trapped system

H = H0 + V
∑

i

ni (i − i0)
2, (14.18)

summarizing key results from [13, 39] (see also [15, 18, 57]).
In Sect. 14.3, we emphasized that in the case of one dimension, the partially

polarized phase always (i.e., at all U and P > 0) sits in the core of a trapped two-
component Fermi gas, which can be predicted by applying LDA to the exactly known
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phase diagram of either the continuum [6, 7] or the lattice case [39]. This prediction
was verified by exact numerical DMRG results in the case of an optical lattice
[13, 18] and QMC simulations for the continuum [15] case. For illustration, we
show DMRG results for the particle and the spin density profiles of a trapped Fermi
gas at small polarizations P < Pc and large polarizations P > Pc in Fig. 14.6 [39],
for which we have numerically obtained the ground-state of Eq. 14.18 with H0 from
Eq. 14.16 and realistic particle numbers of N = 160. Note that we display the spatial
coordinate in units of the oscillator length ξ = 1/

√
V . Figure 14.6 clearly shows that

the core is partially polarized and that the wings are fully paired for P < Pc and fully
polarized for P > Pc. Furthermore, for this particle number, the corresponding LDA
result obtained from the exact Bethe-ansatz solution for the 1D attractive Hubbard
model agrees quantitatively with the exact DMRG results (see [39] for a discussion
and [15] for a similar analysis of the continuum case).

Turning now to the question of pair correlations in the trapped system, Fig. 14.8
shows the pairs’ MDF for a trapped Fermi gas: similar to the homogeneous case, a
finite-momentum instability emerges upon polarizing the system. In order to verify
the relation Eq. 14.12 in the trapped case, one has to take into account that for P > Pc,

part of the total polarization goes into the fully polarized wings. In other words, the
FFLO correlations are driven by a smaller effective polarization Peff < P. In order
to extract Peff < P, we explain the strategy of [13]: the spatial extension Leff of the
quasi-condensate can be extracted by computing the highest occupied natural orbital
φ0 of the matrix ρpair

i j Eq. 14.11 (i.e., the eigenvector corresponding to the largest

eigenvalue). An example for the spatial form of |φ0|2, taken from [13], is shown in
Fig. 14.7, which yields an illustration of the node structure in the 1D FFLO state.
Note that the spin density takes maxima in the nodes of the quasi-condensate [44]
(an analogous result for the spin density was obtained with QMC for the continuum
case [15]).
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The effective polarization is then obtained by integrating 〈si 〉 = 〈ni↑ − ni↓〉 over

the spatial extent of |φ0.| By plotting the position Q of the maximum in npair
k vs

neff Peff , one recovers the expected linear dependence in agreement with Eq. 14.12
(see Fig. 14.8c). Finally, the spatial decay of pair correlations at large |U | indeed
follows the prediction from bosonization, Eq. 14.13 [12], as we show in Fig. 14.8b.

Using DMRG, a variety of other correlation functions can be obtained as well
in the partially polarized phase, including spin-spin correlations [17, 58], density-
density correlations [17], and noise correlations [16]. The FFLO state leaves distinct
fingerprints in these correlations and their respective Fourier transforms. For instance,
the 2kF peak/kink present in the structure factor for density-density correlations in
the unpolarized case splits into two peaks at 2kF↑ and 2kF↓ [17]. The spin structure
factor, as a consequence of the 2Q spin density wave that accompanies the FFLO
state (see Fig. 14.7) has a pronounced kink at 2Q = 2(kF↑ − kF↓) [58]. A proposal
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for the experimental measurement of spin correlations in a spin-polarized Fermi gas
has been put forward in [58]. Finally, the FFLO correlations induce the presence of
peaks in noise correlations whose distance is given by Q (for a detailed discussion,
see [16]).

14.5 Spin- and Mass-Imbalanced Fermi Mixtures

So far we have discussed situations in which up and down fermions have the same
mass (or effective mass) and are described by integrable models. In this section
we address the more general problem in which pairing occurs between particles of
different species, for example 6 Li and 40 K atoms [59–61]. In this case the masses
of spin up and down fermions are different and the underlying Hamiltonian is no
longer integrable. For lattice systems, the simplest model is the 1D asymmetric
Fermi-Hubbard:

H = −
∑
iσ

tσ
(

c†
i,σ ci+1,σ + h.c.

)
+ U

∑
i

ni↑ni↓, (14.19)

where tσ are spin-dependent tunneling rates. The model (14.19) has been studied
recently by the bosonization method in [62], assuming equal densities of the two
components, n↑ = n↓. The extension to spin-imbalanced gases was first investigated
numerically in [63, 64].

For equal masses, t↓ = t↑, the exact solution of the Hubbard model shows that
fermions can bind in pairs, but n-body bound states with n > 2 are generally forbid-
den. For unequal masses, it has recently been shown [65, 66] that three-body bound
states, hereafter called trimers, exist and can considerably affect the many-body
picture. Here we outline the key results of [65, 66].

The trimer gap, namely the energy needed to break a single trimer at finite density,
is defined as

	tr = − lim
L→∞

[
EL(N↑ + 1, N↓ + 2)+ EL(N↑, N↓)

−EL(N↑ + 1, N↓ + 1)− EL(N↑, N↓ + 1)
]
, (14.20)

where EL(N↑, N↓) is the ground state energy of a system with atom numbers N↑, N↓
in a chain of size L. The limit in Eq. 14.20 is taken assuming Nσ → ∞ with
nσ ≡ Nσ /L being fixed. Equation 14.20 has been evaluated by DMRG on lattices
of up to L = 160 sites and the thermodynamic limit was extrapolated via finite-size
scaling.

For equal masses, t↓ = t↑, no trimers exist and therefore, 	tr = 0. For t↓ < t↑,
the trimer gap (14.20) is finite only when the two concentrations are commensurate,
i.e., n↓ = 2n↑. It is plotted in Fig. 14.9 as a function of n↓ and for different values of
the interaction strength. We see that the gap is a decreasing function of the density



14 BCS–BEC Crossover and Unconventional Superfluid Order in One Dimension 521

Fig. 14.9 Trimer energy gap (20) in unit of t↑ plotted versus density n↓ and different values of
U = − 2t↑ (bottom) and U = − 4t↑. The mass anisotropy is t↓ = 0.3. Inset: superconducting
correlations as a function of the distance from the center of the chain for different values of the
density n↓ = 0.7 (upper curve), where	tr = 0, and n↓ = 0.3,where	tr > 0.The parameters used
are U = − 4t↑, t↓ = 0.3t↑ and L = 200 and the densities are commensurate, n↑ = n↓/2. Notice
the change from an algebraic to an exponential decay. Reproduced from [66]

and vanishes at a critical concentration n↓ = ncr↓ —in sharp contrast with the case of
equal densities, n↑ = n↓,where the associated pairing gap is always positive for any
filling. This result is consistent with the bosonization analysis performed in [65]. In
particular, for densities satisfying the constraint pn↑ − qn↓ = 0, with p, q integer
numbers, the bosonized action includes the following interaction term

Hint = A
∫

cos 2(pφ↑(z)− qφ↓(z)), (14.21)

where A is an amplitude and φσ (z) the phase operator of each component. For
p = q = 1, the operator (14.21) describes pair superconductivity and is a relevant
perturbation, implying that the pairing gap opens at any U < 0. For trimers, corre-
sponding to p = 1, q = 2, the perturbation (14.21) is instead irrelevant, and the trimer
gap only opens beyond a critical interaction strength, U < Uc < 0 or, equivalently,
only at sufficiently low density.

The phase with 	tr �= 0 corresponds to a Luttinger liquid of trimers. Since pairs
are bound into these composite objects and cannot propagate freely, the long dis-
tance behavior of the superconducting FFLO correlations changes from algebraic to
exponential decay, as shown in the inset of Fig. 14.9.

Next, we discuss the grand-canonical phase diagram of the asymmetric Hubbard
model, which is obtained by replacing the densities n↑ and n↓ by two new variables,
corresponding to the mean chemical potential μ= ∂E/∂(N↑ + N↓) and the effective
magnetic field h = ∂E/∂(N↑−N↓),where E is the ground state energy calculated by
DMRG. This is shown in Fig. 14.10, for fixed parameters t↓/t↑ = 0.3 and U = −4t↑.
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Fig. 14.10 Phase diagram of the asymmetric Hubbard model for t↓ = 0.3t↑ and U = − 4t↑. The
novel line boundary between partially polarized phase and vacuum is a consequence of the existence
of n-body bound states with n > 2. Inset: a zoom-in of the low density region of the PP phase. The
locus of commensurate densities n↑ = n↓/2 is shown by the shaded area. Reproduced from [66]

For clarity, only the h < 0 part of the phase diagram is displayed, corresponding to
a majority of heavy (↓) fermions.

The evolution of the overall shape of the phase diagram with changing t↓ has
been presented in [64]. Here we concentrate on the topological changes induced by
trimers. In particular, the boundary with the vacuum is given by the formula

μvac = minp,q
E(p, q)− (p − q)h

p + q
, (14.22)

where p, q are non negative integers and the size of the chain is sufficiently large.
At the integrable point, where no trimer exists, the boundary (14.22) reduces to two
lines, E(0, 1)−μ+h = 0 and E(1, 1)−2μ= 0, separating the vacuum from the fully
polarized (FP) and fully paired (ED) phases, respectively. The existence of additional
bound states in the asymmetric Hubbard model implies that the partially polarized
phase (PP) has a direct line boundary with the vacuum, as shown in Fig. 14.10. In
particular, trimers are represented by the line E(1, 2)− 3μ+ h = 0.

It is also instructive to consider the locus of n↑ = n↓/2 on the phase diagram.
At low density (n↓ < ncr↓ ), the trimer gap is non-zero and the locus corresponds to
the shaded area in the inset of Fig. 14.10. At higher density (n↓ > ncr↓ ), the energy
gap closes and the locus shrinks to a single line.

Finally, we would like to mention that trimers, though of a different origin, appear
also in three-component Fermi gases [67–70] and in Bose gases [71, 72], leading to
equally interesting many-body effects.



14 BCS–BEC Crossover and Unconventional Superfluid Order in One Dimension 523

14.6 A Two-Channel Model: The Bose-Fermi
Resonance Model

The previous sections focussed on one-channel models, i.e., attractively interact-
ing fermions described by either the Gaudin–Yang model Eq. 14.1 or the 1D Hub-
bard model Eq. 14.16. Several aspects of the one-dimensional BCS–BEC crossover,
though, cannot be captured by one-channel models. First, in the BEC limit, such
models result in a Tonks–Girardeau gas of dimers. Therefore, the regime of weakly
interacting bosons, which is reached when the characteristic length scale of the
two-body bound state is smaller than the transverse oscillator length, is not cap-
tured. Second, models of attractively interacting fermions, in the case of a population
imbalance, always feature the 1D FFLO state, for any interaction strength. In reality,
both close to and beyond resonance, i.e., upon entering the BEC regime, minority
fermions get bound into closed-channel molecules, and are thus not available any-
more for pairing that would result in the FFLO state. Therefore, one expects a com-
petition between the FFLO phase, stable on the BCS side, with a Bose-Fermi mixture
in which the bosons are composite molecules in the closed channel, immersed into
a fully polarized gas of fermions.

This second aspect can be incorporated in the framework of the so-called Bose-
Fermi resonance (BFRM) model [73, 74]:

Ĥ ′ = Ĥ − μN̂ =
∫

dx

( ∑
σ = ↑,↓

ψ̂†
σ

[
− �

2

2m
∂2

x − μ
]
ψ̂σ

+ ψ̂
†
B

[
− �

2

4m
∂2

x − 2μ+ v
]
ψ̂B + g

(
ψ̂

†
Bψ̂↑ψ̂↓ + h.c.

))
(14.23)

where ψ̂σ (x) (resp. ψ̂B(x)) are fermionic (resp. bosonic) field operators describing
atoms (resp. the bound state in the closed channel, i.e., bare dimers),μ is the chemical
potential, m (resp. 2m) is the mass of the atoms (resp. of the bare dimers), v is the
detuning in energy of one bare dimer with respect to two atoms and g is the coupling
constant for the conversion of two atoms into a bare dimer and vice-versa. In principle,
there is also a direct background interaction between fermions of opposite spin. Our
key interest here is in the behavior close to resonance, where the interactions mediated
by the Feshbach coupling g dominate any background interaction. For a negative
detuning v < 0 of the molecular level, g gives rise to an attractive two-particle
interaction g2/v < 0 between the fermions [34].

An important insight into the properties of the BCS–BEC crossover of a spin
imbalanced gas in 1D was gained by Baur et al. [75], who studied the associated
three-body problem. In the Sec. 14.2, we pointed out that the BCS–BEC crossover
of a balanced Fermi gas is smooth. This changes once one goes to a finite imbal-
ance, which can be captured already on the three-body level, as pointed out by Baur
et al. [75]. By writing the wave function as
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|ψ〉=
⎛
⎝∑

K

fK b†
K c†

−K +
∑
k,K

gk,K c†
K↓ck−K/2↑c−k−K/2↑|0〉

⎞
⎠ (14.24)

where b†
K creates a molecule with momentum K, one can show that the function fK

is either symmetric, namely on the BEC side, or antisymmetric, namely on the BCS
side, upon exchanging the position of the molecule and the fermion [75]. This change
in the symmetry of the wave-function occurs at v′ = v/g4/3 ≈ 0.635, i.e., on the BEC
side of the resonance, and can be traced back to a level-crossing of the symmetric
and anti-symmetric wave-functions [75]. Baur et al. further used Quantum Monto
Carlo simulations to compute the thermal density matrix on the three-body level,
finding results consistent with their analytical predictions.

14.6.1 Phase Diagram of the Bose-Fermi Resonance Model
at Finite Imbalance

The analytical results by Baur et al. suggest that a phase transition could be present
in the many-body case at a finite imbalance, separating the FFLO phase from a
Bose-Fermi mixture. Such a transition would eventually be characterized by a com-
plete depletion of the minority fermions and consequently, the corresponding Fermi
volume vanishes. A general discussion of the possible phases along the crossover
depending on the number of Fermi surfaces is given in [76].

The BFRM, unlike the one-channel model discussed before, does not allow for
an analytically exact solution. One therefore has to resort to numerical approaches,
which in one dimension can still provide us with exact results. In the present case,
DMRG can be applied, yet it requires a discretization of the model (14.23). Thus,
we rewrite the Hamiltonian in a real-space version:

H = − t
L−1∑
i = 1

(c†
i,σ ci+1,σ + h.c.)

− tmol

L−1∑
i = 1

(m†
i mi+1 + h.c.)− (v + 3t)

L∑
i = 1

m†
i mi

+ g
L∑

i = 1

(m†
i ci,↑ci,↓ + h.c.).

(14.25)

Here, m†
i creates a composite boson on site i. The boson energy is shifted with respect

to that of single fermions by an effective detuning v + 3t. It is chosen such that the
energies for adding two fermions or one boson, each at zero momentum, coincide
at resonance v = 0. The hopping matrix elements for fermions and molecules are
denoted by t and tmol = t/2, respectively. The only conserved particle number is
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N = N f + 2Nmol, where Nmol = ∑
i 〈nmol

i 〉; nmol
i = m†

i mi and N f = N↑ + N↓.We
use n = N/L to denote the filling factor. Note that at maximum one molecule can sit
on a single site, i.e., the molecules behave as hard-core bosons.

The phase diagram can be obtained by calculating various quantities, including
the MDF of pairs, molecules and the fermionic components, as well as polarization
curves and the density in the molecular channel as a function of polarization P and
detuning v. While details on such calculations are given in [19], we here wish to
focus on the discussion of the emergent phases. A typical phase diagram is shown in
Fig. 14.11a as magnetic field h′ = h/ε∗ versus dimensionless detuning v′ = v/ε∗. h
is defined as the difference in chemical potential for spin up and down while ε∗ is the
binding energy at resonance v = 0 [19]. For h′ < hc, the system remains balanced,
and we thus recover the BCS–BEC crossover of a balanced mixture, discussed in
Sec. 14.2. For h′ > hsat, the system is fully polarized with n↑ = n. As expected, the
FFLO phase is stable on the BCS side in the imbalanced case hc < h′. The system
then undergoes two consecutive phase transitions, either at a fixed polarization P > 0
or at a fixed detuning in the vicinity of the resonance v′ � 0, at two critical fields
h1 and h2. The phase boundary of the FFLO phase is given by h′ = h1(v′) [19], or
by P = P ′

1(v
′), respectively. The intermediate phase, labeled BEC + PP LL (BEC

plus partially polarized Luttinger liquid), still has oscillatory correlations, yet there
are instabilities in the pairs’ MDF at both finite and zero momentum [19]. While in
the FFLO and in the BEC + PP LL phase, n↓ > 0, the transition into the Bose-Fermi
mixture phase BEC + FP FG (BEC plus fully polarized Fermi gas) occurs at the point
at which n↓ = 0 [19]. The BEC + FP FG has smooth algebraically decaying dimer-
dimer correlations (and consequently, pair-pair correlations), with no oscillatory
component. Note that in a one-channel model, in contrast to the BFRM, the line with
n↓ = 0 is equivalent to full polarization n = n↑. Therefore, the upper limit for the
stability of the FFLO state is the maximum polarization possible, suggesting that
FFLO is more stable in one-channel models (compare the discussion in Sect. 14.4).

In the example shown here (g = t, filling n = 0.6), the FFLO phase breaks down
before resonance v′ < 0 on the BCS side and the phase boundary exhibits a significant
dependence on polarization. In general, the critical detuning, which is the detuning
at which FFLO correlations disappear in the P → 0 limit, depends on both the
filling and the Feshbach coupling g. For instance, at a fixed value of g, sending the
density to zero moves the phase boundary towards larger v′. In the example shown
in the figure, the critical detuning, approaches v′ ≈ 0.97 as n → 0 [19], which is
beyond resonance on the BEC side, consistent with the results by Baur et al. for the
associated three-body problem in the continuum [75].

So far we have not specified a specific realization of the model (14.23) since we
have treated v and g as model parameters. It could, for instance, model a resonance due
to photoassociation or a confinement-induced resonance (see the discussion in [34]).
To allow a discussion of the phase diagram in terms of experimentally accessible
parameters, it is useful to replace the detuning v′ by the parameter γ = √

εb(v′)/εF

where εb(v) is the two-body binding energy and εF = 2t (1 − cos(kF )) is the Fermi
energy of a noninteracting gas at the same density. In the continuum limit, this
yields the usual definition of the interaction parameter γ.The corresponding behavior
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Fig. 14.11 Phase diagram of the Bose-Fermi resonance model Eq. 14.25 for g = t : a Dimensionless
field h′ vs dimensionless detuning v′. b Critical polarization P1 vs detuning v′ for n = 0.1, 0.2, 0.6.
c Critical polarization P1 vs ratio of binding energy over Fermi energy γ = √

εb/εF . Figures repro-
duced from [19]

is displayed in Fig. 14.11c as a polarization vs. γ phase diagram. We only show
the phase boundary P = P1 (corresponding to h′ = h1) of the 1D FFLO phase, for
different densities n. Obviously, for a given n, the ratio of binding energy over Fermi
energy determines the range of stability for FFLO. By decreasing n at a fixed g,
FFLO becomes stable at arbitrarily large values of γ.

Finally, we emphasize that the limit of a broad resonance, characterized by nr∗�1
(compare the discussion of Sec. 14.2) can be reached by either decreasing density or
by increasing g such that the binding energy at resonance ε∗b = εb(v = 0) increases.
For the parameters of Fig. 14.11a (g = t, n = 0.6), the system is not in this regime
since nr∗ ≈ 1.21, yet enters into this limit as n decreases (compare Fig. 14.11b, c).

14.7 Beyond 1D, Other Variations

The FFLO phase occupies a tiny sliver of the T = 0 phase diagram in three dimensions
and this region shrinks with increasing temperature, making it very difficult for the
experimentalist to detect it. In one dimension, on the contrary, nesting effects are
pervasive at all fillings and polarization, the FFLO instability becomes enhanced,
and the phase more robust. In experiments with cold atoms, low dimensions are now
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within reach [1, 8, 9], paving the way to its realization. Strictly in one dimension,
the FFLO phase occupies large regions of the phase diagram as we have illustrated
in this chapter.

Even though the FFLO phase is more robust in 1D, long-range order is not present,
and one can only describe a quasi long-range order with algebraically decaying cor-
relations. Moreover, in order to realize this physics one should effectively be able
to reach zero temperature. However, this obstacle can be remedied in part by turn-
ing on a weak coupling between 1D chains. Cold atoms experiments are carried
out by loading the fermions onto 1D tubes, formed by the interference pattern of
sets of counter-propagating lasers. By tuning the intensity of the lasers one could
adiabatically turn on the coupling between the tubes, allowing one to study the
dimensional crossover from 1D to 3D (or 2D) [51, 77]. Unfortunately, this scenario
is out of reach for DMRG (at least as far as the crossover from 1D to 3D is con-
cerned) and has so far only been studied within an effective field theory [51], by
a mean-field treatment [77], or by feeding in the exactly known instabilities of the
1D system into an RPA analysis [16]. Both approaches [16, 51] show that depending
on polarization, interaction strength, and inter-tube coupling, the system is either
in the FFLO phase or becomes a polarized Fermi liquid. In [77] the authors raised
the possibility of finding two distinct FFLO phases as one increases the tunneling
between chains: In a 1D system and within a mean-field description, the order para-
meter possesses nodes, or domain walls, resembling a soliton-like structure, with the
excess fermions concentrated at these nodes. One can imagine coupling chains into
a higher dimensional array. The excess Fermions would feel the soliton structure as
a superimposed lattice and will form a band of Andreev bound states that is filled,
similar to a band insulator. This phase is called a commensurate FFLO phase in [77].
A plausible scenario is that at intermediate inter-chain couplings, the system could
undergo a transition to an incommensurate FFLO phase where the band of Andreev
bound states is partially filled. This is a mean-field scenario that has not been further
explored.

An alternative path was taken in [78]. A “poor man’s” version of the dimensional
crossover could be achieved by arranging the tubes into a super-lattice, coupling
pairs of them into ladders (basically two one-dimensional chains coupled in the
transverse direction). Interestingly enough, most of the two-dimensional physics
already manifests itself in these systems: At low densities only one band is occu-
pied for each flavor of spin, and the physics reduces to the that of one dimension.
This in turn can be associated to the rotational symmetric situation in higher dimen-
sions, in which the Fermi surfaces are spheres, and the order parameter can be
described by a single wave vector |Q|. As the density is increased, more bands
start being occupied, and multiple Fermi points contribute to pairing. As a conse-
quence, a multi-nodal FFLO order parameter is required to describe the new scenario.
The ladder geometry is still highly nested, making the FFLO phase very robust.
However, in two dimensions, particularly at high densities or magnetic fields, the
nesting between bands with opposite spin is weak, with Fermi surfaces with differ-
ent shapes, and large mismatch in Fermi velocities. This makes pairing—and the
FFLO state—unfavorable, giving room for a normal polarized phase.
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As discussed in earlier sections, in a trapped gas in 3D and also in 2D [79],
the partially polarized phase and thus the FFLO phase is in the core of the trapped
cloud, according to mean-field calculations. This behavior can already be seen on
the two-leg geometry at small polarizations [78], suggesting this one as a useful toy
system to understand aspects of the dimensional crossover in a model that allows for
a numerically exact solution.

An additional motivation for studying the attractive Hubbard model comes from
the fact that the knowledge on the phases of the spin-imbalanced, attractive model
also gives information on the ground states of the repulsive model via a particle-
hole transformation. This could become relevant for 2D systems where in general,
the ground states are not known, calling for experiments in this direction (see the
discussion in [80, 81]).

Interesting possibilities arise when multi-band pairing is considered [82]. Con-
sider a setup with anisotropic Fermi surfaces, in which the tunnelling along the x
direction is much weaker than the other two (transverse) directions. This leads to
a multi-band scenario in which one spin species populates only the s-band, while
the other partially occupies the px band directly above, with Fermi surfaces lying
on different bands. This gives rise to a new unconventional FFLO-like paired state,
with the main difference that the pairs have p-wave center-of-mass momenta, and an
order parameter modulated by a wave-vector Q = k↑

F + k↓
F .

Remarkably, optical lattices can potentially be tuned independently for both hyper-
fine species [83]. This technique could provide another knob for tuning their relative
masses, or changing the shape and relative orientation of the Fermi surfaces. For
instance, in [84], the authors proposed rotating the Fermi surfaces for each spin
flavor by 90 degrees with respect to one another. Then, FFLO-like physics with a
modulated order parameter can be realized in unpolarized mixtures. A similar idea
has been discussed to realize exotic unpolarized phases in 1D, using a multi-band
setup [85].

Other authors [70, 86–90] have also considered multi-flavor systems, in which
three hyperfine species are present, interacting via attractive interactions. This gives
rise to a rich variety of possibilities beyond FFLO, such as molecules (trions),
and a competition between three pairing tendencies with different center-of-mass
momenta. Moreover, the BCS–BEC crossover of a balanced mixture of a four-
component gas has recently been discussed in [91]. Finally, FFLO-like phases can
also be stable in the case of repulsive interactions on the ladder geometry [92, 93].

14.8 Proposals for the Experimental Observation
of FFLO Correlations

One of the main open experimental challenges is the actual characterization of the
partially polarized phase as the FFLO phase. While the phase-separated profiles
observed in the Rice experiment [8] show a remarkable agreement with the theoretical
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predictions obtained from the Bethe ansatz combined with LDA [6, 7], experiments
have not unambiguously demonstrated that the phase indeed corresponds to a paired
state with a finite center-of-mass momentum. This is not a trivial task, since the num-
ber of available techniques to probe cold atomic systems remains limited. However,
the quest for the FFLO state has certainly presented an extraordinary motivation and
the breeding ground for novel and clever ideas. The most straightforward possibil-
ity is to take snapshots trying to resolve the spin density modulations [13, 15, 44].
Another possibility is to probe the spin–spin correlations using spatially resolved
quantum polarization spectroscopy [58]. While the spin modulations are character-
istic of the FFLO state, they are no direct evidence of pairing. One way to identify
pairing may be using a time-of-flight (TOF) measurement to observe the velocity
distribution of the condensate. Since the pairs have finite center-of-mass momenta,
they would imprint a characteristic signature [94].

The latter work also has proposed to use noise correlations, and mean-field [95]
and DMRG studies [16] show that this technique would indeed produce a clear
and unambiguous signal. Although spectroscopic techniques to probe cold atomic
systems are under development and are not widely available [96], FFLO signatures
should also be evident in the rf-spectra [97, 98] and angle resolved photo-emission
spectra [84]. An interesting recent proposal consists of studying the response of
the system to time-dependent potentials [99], which would excite the spin-dipole
modes. When the oscillation of the potential is in resonance with the excitations, a
dramatic response at the proper momenta would indicate FFLO physics. Another
idea exploiting time-dependent perturbations using modulation spectroscopy [100]
consists of measuring the response of the double occupancy [101]. At present, the
only relevant experiment is the one by Yiao et al. [8], which realizes 1D tubes
in the continuum. Therefore, for this particular system, proposals that assume the
presence of an optical lattice along the 1D direction may not be applicable [101]. It
should further be stressed that some of the ideas put forward here have only been
substantiated by mean-field theory [95, 97, 99]. While one may argue that mean-field
theory gives qualitatively reasonable results for the phase diagram of attractively
interacting fermions in 1D [22, 102], there are considerable quantitative deficiencies
already on the level of density profiles [98] and it is by no means obvious that
mean-field theory is valid for the description of time-dependent detection schemes
[97, 99].

Finally, for the question of whether FFLO can be observed in an actual experiment,
the accessible temperatures may play a crucial role [15, 37, 103, 104]. The effect
of temperature on density profiles in traps was studied with Bethe-ansatz methods
in [37] and numerically using QMC in [15, 104]. In [104], the visibility of the finite-
momentum peak in the pairs’ MDF was also discussed as a function of temperature.

In conclusion, while all these ideas can potentially provide the smoking gun that
would signal the presence of the FFLO phase in experiments, their implementation
still remains challenging, and some have shortcomings. However, it is very likely
that some of these techniques may routinely be used in the future.
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14.9 Summary

The recent realization of 1D Fermi gases with ultracold atoms in the vicinity of a
Feshbach resonance [8] opens the possibility to investigate the physics of strongly
correlated fermions in a situation, where exact analytical or numerical results are
available. As shown above, this makes accessible the physics of solvable models
such as those of Gaudin, Yang, Lieb and Wu and others. It also provides a means to
study unconventional pairing of the FFLO-type in a simple example. Compared to
the BCS–BEC crossover in 3D, where a number of open questions still exists for the
imbalanced gas, the 1D case is rather well understood, at least as far as equilibrium
quantities are concerned. Issues such as equilibration or the expansion dynamics,
or the effects of finite temperature are, however, still open and topics of ongoing
research. The physics of 1D fermions will thus remain of interest for some time to
come, in particular, because ultracold atoms provide an experimental realization that
allows one to investigate physics in one dimension over a wide range of parameters.
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