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Abstract. Side Channel Analysis (SCA) is a class of attacks that ex-
ploit leakage of information from a cryptographic implementation dur-
ing execution. To thwart it, masking is a common strategy that aims at
hiding correlation between the manipulated secret key and the physical
measures. Even though the soundness of masking has often been argued,
its application is very time consuming, especially when so-called higher-
order SCA (HO-SCA) are considered. Reducing this overhead at the cost
of limited RAM consumption increase is a hot topic for the embedded se-
curity industry. In this paper, we introduce such an improvement in the
particular case of the AES. Our approach consists in adapting a trick
introduced by Montgomery to efficiently compute several inversions in a
multiplicative group. For such a purpose, and to achieve security against
HO-SCA, recent works published at CHES 2010 and ACNS 2010 are
involved. In particular, the secure dirac computation scheme introduced
by Genelle et al. at ACNS is extended to achieve security against SCA at
any order. As argued in the second part of this paper, our approach im-
proves in time complexity all previous masking methods requiring little
RAM .

Keywords: Montgomery’s Trick, Side Channel Analysis, Secret Sharing,
AES.

1 Introduction

In the nineties, a new family of attacks against implementations of cryptographic
algorithms in embedded devices has been introduced. The idea of those attacks,
called Side Channel Analysis, is to take advantage of the correlation between
the manipulated secret data (e.g. secret keys) and physical measures such as the
power consumption of the device. During the last two decades, the development
of the smart card industry has urged the cryptographic research community
to carry on with SCA and many papers describing either countermeasures or
attacks developments have been published. In particular, the original attacks in
[2, 9] have been improved and the concept of higher-order SCA (HO-SCA) has
been introduced [11]. It consists in targeting the manipulation of several (and
not only one) intermediate values at different times or different locations during
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the algorithm processing to reveal information on secret-dependent data called
sensitive data. A HO-SCA targeting d intermediate values is usually named dth-
order SCA.

A common countermeasure against SCA is to randomize any sensitive variable
appearing during the algorithm processing by masking techniques (also known
as secret sharing)[1, 5, 7, 10, 17, 18, 22]. The principle is to randomly split each
sensitive variable into several shares which will be manipulated separately. The
shares propagate throughout the algorithm in such a way that no intermediate
variable is sensitive. An advantage of dth-order masking schemes, for which the
number of shares per sensitive variable is d + 1, is that they perfectly thwart
dth-order SCA. Moreover, whatever the kind of attacks (HO-SCA of any order
or template attacks [15]), their soundness as a countermeasure has been argued
for realistic leakage models in [3], where it is proved that the difficulty of recover-
ing information on a variable shared into several parts grows exponentially with
the number of shares. Resistance against HO-SCA is of importance since their
effectiveness has been demonstrated against some family of devices [11, 16, 25].
Nowadays it must therefore be possible to easily scale the security of an imple-
mentation, starting from a resistance against 1st-order SCA and possibly going
to resistance against dth-order SCA for any d. In the case of block ciphers such as
AES, the most critical part to protect when applying masking is the non-linear
layer. The latter one involves 16 times a same non-linear function, called s-box.
Several methods have been proposed in the literature to deal with this issue. We
list in the next section those that are privileged, to the best of our knowledge,
by the embedded device industry.

1.1 Related Work

State-of-the-art methods to protect the AES non-linear layer can be split into
two categories. In one part we have methods that involve pre-computed look-up
tables in RAM1 to achieve good timing performances [5, 10, 19]. They are moreover
particularly dedicated to 1st-order SCA. A few attempts have been done to
extend these methods to deal with HO-SCA [22, 24]. However the approach
did not permit to thwart SCA at order 3 or higher. Moreover, security against
2nd-order SCA is only achieved at the cost of a prohibitive memory overhead
which excludes its use in low-cost devices. In brief, countermeasures that use
pre-computed tables cannot be used to protect algorithms at order d > 1 in a
RAM constrained environment. In a second part, we have methods that achieve
SCA security at the cost of a limited amount of RAM memory (e.g. less than 100
bytes), which is particularly relevant for the smart cards industry [1, 17, 18, 20].
They have in common to exploit the simple algebraic structure of the AES s-box,
which is affinely equivalent to a field inversion extended in 0 by setting 0−1 = 0.
They are less efficient in terms of timing than the methods in the first category,
but can be embedded in constrained devices. Moreover, in contrast with the

1 RAM is a volatile memory. It can be accessed in read/write mode and is usually used
to store local or global variables used by the programs.
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schemes in the first category, they are more suitable for the extension of the
security at order d, since they do not rely on the table re-computation principle.
Actually a scheme has been proposed in this category that achieves dth-order
SCA resistance whatever d [23]. It moreover turns out that even for d = 2 this
scheme is much more efficient (around 3 times) than the methods based on table
re-computations [22, 24].

1.2 Our Results

State-of-the-art methods secure the overall AES non-linear layer by separately
securing each of the 16 s-boxes computation. Their complexity is hence merely
equal to that of securing the AES s-box processing, or equivalently the field in-
version over GF(28). In this paper a different approach is introduced, where the
masking of the whole non-linear layer is considered at once. This is accomplished
by applying Montgomery’s trick [13]. The latter one can be applied in any multi-
plicative group and enables to compute say n multiplicative inverses at the cost
of 3(n− 1) field multiplications and one single inversion. It is relevant when the
inversion processing is much more costly than that of a multiplication (i.e. at
least around 3 times more costly) which is often the case in the context where
the inversion includes SCA countermeasures. Even if the context of AES secure
implementation seems to be a natural outlet for Montgomery’s trick, its applica-
tion is not straightforward. First, the field multiplications must be secured such
that their use in the non-linear layer computation does not decrease the secu-
rity of the implementation against (HO-)SCA. In other terms, if the inversions
were resistant against dth-order SCA, then the multiplications replacing them in
the new process must also resist to those attacks. Secondly, since the elements
of the AES state are defined over GF(28) whereas Montgomery’s trick applies
on GF(28)�, a pre-processing must be defined to map the state elements up to
the multiplicative group without modifying the functional behavior of the AES.
Moreover, the mapping must not introduce any flaw w.r.t. dth-order SCA. This
paper deals with the two issues by using memory as little as possible for any
SCA resistance order d. First, we suggest to use the multiplication algorithm
proposed in [23] which can be specified to thwart HO-SCA of any order at the
cost of acceptable timings and without extra large RAM memory consumption. To
deal with the second issue, we base our approach on the technique suggested in
[5], that reduces the problematic to that of securing a Dirac function (which is a
function that maps zero values into non-zero ones). We improve the method to
use less RAM memory than in the original method and we extend it to get a Dirac
computation secure at any order d. The use of such solutions results in a secure
and efficient adaptation of Montgomery’s trick in the context of SCA-resistant
AES implementations. Since our approach is only relevant when the ratio be-
tween the cost of a secure inversion and that of secure multiplication is lower
than some threshold, it is not suitable when both functions are tabulated once
per algorithm execution. In the other cases (which include all the proposed coun-
termeasures against HO-SCA), our proposal improves the timing performance
at the cost of a small RAM overhead: 1st-order secure methods not based on table
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re-computation are improved by at least 21% and we have a timing gain of at
least 13% and 9% for 2nd-order and 3rd-order secure methods respectively.

1.3 Paper Organization

The paper is organized as follows. We briefly introduce in Sect. 2 some basics on
AES and SCA. Section 3 describes Montgomery’s trick in the context of a SCA-
resistant AES implementation. Section 4 presents the different tools required for
the new generic scheme. Section 5 reports on the efficiency of several implementa-
tions of our method in combination with state-of-the-art secure implementations
of AES. Eventually Sect. 6 concludes the paper.

2 Notations and Basics on AES and SCA

We briefly introduce here the AES algorithm, and we give some notations and
definitions used to describe our proposal and to analyze its security.

The AES block cipher algorithm is the composition of several rounds that
operate on an internal state denoted by s = (si)i≤15 and viewed in the following
either as a (16×1)-matrix over GF(28) or as a (16×8)-binary matrix (in this case
each si is considered as a vector in GF(2)8 whose bit-coordinates are denoted by
si[j]). Field multiplication will be denoted by ⊗, whereas field addition will be
denoted by ⊕. The latter exactly corresponds to the bitwise addition in GF(2)8.
Eventually the bitwise multiplication (AND) will be denoted by �. Each AES
round is the composition of a round-key addition, a linear layer and a non-linear
layer. The latter one consists in a single AES s-box that is applied to each state
element si separately. It is defined as the composition of an affine function with
the multiplicative inverse function in GF(28), i.e. s �→ s−1, extended in 0 by
setting 0−1 = 0. We call the latter function extended inversion and we denote it
Inv. The global transformation (si)i≤15 �→ (s−1

i )i≤15 is denoted by Inv-Layer.
In this paper, we focus on protecting the processing of Inv-Layer against (HO-
)SCA, the round-key addition, the linear layer and the affine transformation
being straightforward to secure (see for instance [10]). We moreover assume
that the masking strategy is followed to protect the overall AES. When such a
scheme is specified at order d, the state s is randomly split into d + 1 shares
(s0, · · · , sd) such that s =

⊕d
i=0 s i. We shall say that (s0, · · · , sd) is a (d + 1)-

sharing of s . After denoting by sj
i the ith line of the jth share, we can check that

(s0
i , ..., s

d
i ) is a (d + 1)-sharing of the state element si. In the following, we shall

say that a variable is sensitive if it can be expressed as a deterministic function
of the plaintext and the secret key and which is not constant with respect to
the secret key. Additionally, we shall say that an algorithm achieves dth-order
SCA security if every d-tuple of its intermediate variables is independent of any
sensitive variable.

In the next section we give the core principle of our proposal to improve the tim-
ing efficiency of the state-of-the-art dth-order SCA-secure AES implementations.
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3 Montgomery’s Trick to Secure the AES Inv-Layer: Core
Idea

This section is organized as follows: first we introduce the classical approach
when masking is involved, secondly we describe Montgomery’s trick as intro-
duced in [13] and eventually we show the adaption of the latter to SCA-secure
AES implementations.

3.1 Classical Approach

Usual implementations of Inv-Layer are protected against dth-order SCA by
following a divide-and-conquer approach. The global security is deduced from
the local security of each of the sixteen processings of Inv. To achieve local
security, a scheme Sec-Inv(d, ·) is involved. It applies on the (d + 1)-sharing
(s0

i , · · · , sd
i ) of each state element si and outputs a (d+1)-sharing (r0

i , · · · , rd
i ) of

the inverse Inv(si). Eventually the secure version of Inv-Layer outputs a (d+1)-
sharing (r0, · · · , rd) of Inv-Layer(s). For d = 1, the secure inversion algorithm
Sec-Inv(d, ·) can be chosen among the numerous ones proposed in the literature
[1, 5, 7, 10, 17, 18, 22]. For d > 1, the choice is much more reduced and the
secure inversion algorithm must be one of those proposed in [22, 23, 24].

In the next section we introduce an alternative to the classical approach which
starts from a trick introduced by Montgomery[13].

3.2 Approach with Montgomery’s Trick

The principle of Montgomery’s trick is to reduce the total number of field in-
versions by using field multiplications. Let us consider n field elements si. With
Montgomery’s trick the n inverses (s−1

i )0≤i≤n−1 are computed by performing
two separate passes through the data. In the forward pass, a variable Prod0 is
initialized with s0 and then the following product is computed for i = 1, . . . , n−1:

Prodi = Prodi−1 ⊗ si .

The last product Prodn−1 satisfies Prodn−1 =
∏n−1

i=0 Prodi. Then a single field
inversion

I = (Prodn−1)−1

is computed. Next, in the backward pass, tn−1 is initialized by I and then for
i = n − 1, . . . , 1, the two following products are computed

s−1
i = ti ⊗ Prodi−1 and ti−1 = ti ⊗ si .

To finish s−1
0 is set to t0. In total the algorithm requires a single field inverse,

and 3(n − 1) field multiplications.
Montgomery’s trick has been applied in many contexts [6, 12, 14]. This paper

investigates its application to improve the secure AES Inv-Layer computation.
Clearly this application cannot be done directly and we have to deal with two
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main issues. The first issue is that the inverse I cannot be computed directly
from the product of the AES state elements since the latter ones may equal zero.
The second issue is that the application of the trick must be secure against SCA
of any order d. We propose hereafter a modification of Montgomery’s trick that
circumvents the first issue. Then, in Sect. 3.3, we explain how it can be efficiently
secured at any order.

To deal with the first issue we propose to first transform the elements of
the state in such way that their image is always non-zero and to keep track
of this transformation. More precisely, prior to the forward pass, we add each
state element si with its Dirac value δ0(si) defined by δ0(si) = 1 if si = 0
and δ0(si) = 0 otherwise. The computation of the products (Prodi)0≤i≤15 is
let unchanged except that it applies on (si ⊕ δ0(si))i≤15 instead of (si)i≤15.
Eventually the potential modification is corrected by adding δ0(si) to (si ⊕
δ0(si))−1

i≤15 after having computed (ti)i≤15. The completeness of this treatment
holds from (si ⊕ δ0(si))−1 = s−1

i ⊕ δ0(si). The sequence of those different steps
is presented in Alg. 1.

Algorithm 1. Montgomery’s Trick Applied on AES State Elements

Input(s): The AES state s = (si)i≤15 in GF(28)16

Output(s): (s−1
i )i≤15 = Inv-Layer(s)

∗∗ Mapping of the state elements from GF(28) to GF(28)
�
.

1. for i = 0 to 15 do

δ0(si)← Dirac(si)

si ← si ⊕ δ0(si)

∗∗ Computation of intermediate products used for the inverses extraction.

2. Prod0 ← s0

3. for i = 1 to 15 do

Prodi ← Prodi−1 ⊗ si

∗∗ Computation of the single inverse.

4. I ← (Prod15)
−1

∗∗ Extraction of s−1
i for every i ≤ 15.

5. from i = 15 down to 1 do

s−1
i ← I ⊗ Prodi−1

I ← I ⊗ si

6. s−1
0 ← I

∗∗ Mapping of the state elements from GF(28)
�

to GF(28).

7. for i = 0 to 15 do

s−1
i ← s−1

i ⊕ δ0(si)

8. return (s−1
0 , . . . , s−1

15 )
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The operation Dirac(si) computes the Dirac value of si. Algorithm 1 could
be optimized by doing the calls to Dirac(·) inside the loops in Steps 3, but for
a better comprehension of our proposal we described intentionally the different
steps separately.

3.3 Secure Computation

The application of Alg. 1 in a context where all the sensitive data are repre-
sented by a (d + 1)-sharing requires two modifications. First any intermediate
result (including the input and output) must be replaced by a (d + 1)-sharing
representing it. Additionally, operations Dirac(·) and ⊗ shall be replaced by
secure versions of them, called Secure-Dirac(d, ·) and Secure-MUL(d, ·, ·) and
satisfying the following properties:

- Secure-Dirac(d, ·) must output a (d + 1)-sharing (Δ0, · · · , Δd) of Δ =
(δ0(s0), · · · , δ0(s15)) from the (d + 1)-sharing (s0, · · · , sd) of s . The pro-
cessing must moreover be dth-order secure.

- Secure-MUL(d, ·, ·) must output the (d+1)-sharing (p0, . . . , pd) of p = si ⊗sj

from the (d + 1)-sharing (s0
i , · · · , sd

i ) and (s0
j , · · · , sd

j ) of si and sj .

We shall moreover also need a function Add−Dirac(·, ·) that applies on the
(d + 1)-sharing of Δ and s and simply replaces the first column of each ma-
trix share s i by the bitwise addition of this column with the binary column
vector Δi. Its cost CA-D in terms of logical operations is therefore 16(d+1)×c⊕,
where c⊕ denotes the cost of a bitwise addition over GF(28).

We sum-up hereafter the main steps of our new proposal to implement the
AES Inv-Layer in a dth-order SCA-secure way.

Completeness. Step 1 computes the (d + 1)-sharing of the Dirac of each state
element si, the shares of same index being grouped to form the 16-bit vectors
Δ0, ..., Δd. It is viewed as a (16× (d + 1))-binary matrix whose bit-coordinates
are denoted by Δj [i]. The second step transforms the (d+1)-sharing (s0

i , · · · , sd
i )

of each state element si into a new one (s0
i ⊕Δ0[i], · · · , sd

i ⊕Δd[i]). Since the sum⊕
j Δj [i] (resp.

⊕
j sj

i ) equals δ0(si) (resp. si), this step outputs a (d+1)-sharing
of si ⊕ δ0(si). Steps 3 to 7 simply implement the SCA-secure Montgomery’s
Trick, where each elementary operation is performed thanks to a dth-order secure
algorithm. Eventually, the 8th step reverses the mapping (if it has occurred) of
a state element ri = 0 into 1. Namely, it processes in a secure way the (d + 1)-
sharing of (ri +δ0(si))−1⊕δ0(si) which equals r−1

i , since 1−1 = 1 and 0−1 equals
0 by assumption.

Algorithm 2 involves four procedures: Sec-Inv(d, ·), Add-Dirac(·, ·), Secure-
Dirac(d, ·) and Secure-MUL(d, ·, ·). The different ways how to choose the function
Sec-Inv(d, ·) have been presented in Sect. 3.1. Additionally, we have shown in
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Algorithm 2. Secure Inv-Layer with Montgomery’s Trick

Input(s): The AES state s split into d + 1 shares (s0, · · · , sd)
Output(s): A new (d +1)-sharing (r0, · · · , rd) of the AES state r such that r = Inv-
Layer(s)

∗∗ Mapping of the state elements from GF(28) to GF(28)
�
.

1. (Δ0, · · · , Δd)← Secure-Dirac(d, (s0, · · · , sd))

2. (s0, · · · , sd)← Add-Dirac((s0, · · · , sd), (Δ0, · · · , Δd))

∗∗ Computation of the (d+1)-sharing (Prod0
i , · · · , Prodd

i ) of the intermediate products

Prodi used for the inverses extraction.

3. (Prod0
0, · · · , Prodd

0)← (s0
0, · · · , sd

0)

4. for i = 1 to 15 do

(Prod0
i , · · · , Prodd

i )← Secure-MUL(d, (Prod0
i−1, · · · , Prodd

i−1), (s
0
i , · · · , sd

i ))

∗∗ Secure computation of the (d + 1)-sharing of (Prod15)
−1 from its sharing

(Prod0
15, · · · , Prodd

15).

5. (Inv0, · · · , Invd)← Sec-Inv(d, (Prod0
15, · · · , Prodd

15))

∗∗ Extraction of the (d + 1)-sharing (r0
i , · · · , rd

i )of s−1
i for every i ≤ 15.

6. from i = 15 down to 1 do

(r0
i , · · · , rd

i )← Secure-MUL(d, (Prod0
i−1, · · · , Prodd

i−1), (Inv0, · · · , Invd))

(Inv0, · · · , Invd)← Secure-MUL(d, (Inv0, · · · , Invd), (s0
i , · · · , sd

i ))

7. (r0
0, · · · , rd

0)← (Inv0, · · · , Invd)

∗∗ Mapping of the state elements from GF(28)
�

to GF(28).

8. (r0, · · · , rd)← Add-Dirac((r0, · · · , rd), (Δ0, · · · , Δd))

9. return (r0, · · · , rd)

this section how to simply process Add-Dirac(·, ·). For our presentation to be
consistent, procedures Secure-MUL(d, ·, ·) and Secure-Dirac(d, ·) still need to
be described and they are actually the most tricky parts of our proposal. The
purpose of the following section is to present them. Eventually, the analysis of
the complexity and security of the overall proposal (Alg. 2) is done in Sect. 4.3.

4 Secure and Efficient Implementations of the Primitives

4.1 Field and Logical Multiplications Secure at Any Order

Let � be a positive integer and let a and b be two elements of the field GF(2�)
with multiplication law ⊗. We denote by p the product a⊗b. In Sect. 3, we have
promoted the need for a secure multiplication Secure-MUL(d, ·, ·) that securely
constructs a (d+1)-sharing (p0, · · · , pd) of p from the (d+1)-sharings (a0, · · · , ad)
and (b0, · · · , bd) of a and b respectively. An algorithm to process such a secure
multiplication has been proposed in [23] as an extension of Ishäı et al. ’s work
[7]. The main steps of this algorithm are recalled hereafter.
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Algorithm 3. Secure-MUL(d, ·, ·)
Input(s): A masking order d and two (d + 1)-sharings (a0, · · · , ad) and (b0, · · · , bd) of
a and b respectively.

Output(s): A (d + 1)-sharing (p0, · · · , pd) such that p = a⊗ b.

1. Compute the ((d + 1)× (d + 1))-matrix M = (a0, · · · , ad)ᵀ × (b0, · · · , bd), where ×
denotes the matrix product and where the matrix coordinates are multiplied with
the law ⊗.

2. Split M into an upper triangular matrix M1 and a strictly lower triangular matrix
M2 such that M = M1 ⊕M2.

3. Generate a strictly upper triangular random matrix R1 = (rij)i,j (i.e. j ≤ i implies
rij = 0).

4. Compute U = M1 ⊕R⊕Mᵀ
2 from left to right, where R denotes R1 ⊕Rᵀ

1 .

5. Return (p0, · · · , pd) = 1×U, where 1 denotes the line vector whose d+1 coordinates
are all equal to 1.

In the three following paragraphs we discuss the completeness, the security
and the complexity of Alg. 3.

Completeness. By construction, the sum p of the output shares pi satisfies⊕
i≤d pi = 1× U × 1ᵀ. On the other hand, we have:

1× U × 1ᵀ = 1× (M1 ⊕ R ⊕ M2
ᵀ) × 1ᵀ ,

= 1× (M1 ⊕ R1 ⊕ M2
ᵀ ⊕ R1

ᵀ) × 1ᵀ ,

= 1× (M1 ⊕ R1 ⊕ (M2 ⊕ R1)ᵀ) × 1ᵀ ,

= 1× (M1 ⊕ R1) × 1ᵀ ⊕ 1× (M2 ⊕ R1) × 1ᵀ ,

= 1× (M1) × 1ᵀ ⊕ 1× (M2) × 1ᵀ ⊕ 1× (R1) × 1ᵀ ⊕ 1× (R1) × 1ᵀ,

= 1× M × 1ᵀ = 1× (a0, · · · , ad)ᵀ × (b0, · · · , bd) × 1ᵀ .

Since (a0, · · · , ad) and (b0, · · · , bd) are respectively a (d + 1)-sharing of a and b,
we have a = 1 × (a0, · · · , ad)ᵀ and b = 1 × (b0, · · · , bd)ᵀ. We thus deduce that
1× U × 1ᵀ equals p = a ⊗ b which states the completeness of Alg. ??.

Security. The security of Secure-MUL(d, ·, ·) against dth-order SCA has been
proved in [23].

Complexity. Let us denote by c⊗ (resp. c⊕) the cost of a field multiplication ⊗
(resp. bitwise addition ⊕) in terms of logical operations. In [23], it is argued that
Secure-MUL(d, ·, ·) algorithm can be processed with (d+1)2 field multiplications
⊗ and 2d(d+1) bitwise additions ⊕. Its cost, denoted by CS-M, therefore satisfies:

CS-M = (d + 1)2 × c⊗ + 2d(d + 1) × c⊕ . (1)
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It moreover requires the generation of d(d + 1)/2 random bytes. As an illustra-
tion, securing a field multiplication ⊗ over GF(28) thanks to Secure-MUL(d, ·, ·)
requires CS-M = 4 × c⊗ + 4 × c⊕ for d = 1, and CS-M = 9 × c⊗ + 12 × c⊕ for
d = 2, and CS-M = 16 × c⊗ + 24 × c⊕ for d = 3.

In the following, we shall also need a slightly modified version of Secure-
MUL(d, ·, ·) called Secure-AND(d, �, ·, ·) and enabling to securely process the bitwise
multiplication �� of two �-bit vectors a and b (i.e. a bitwise AND). It applies
exactly the same steps as Secure-MUL(d, ·, ·) algorithm except that the operation
⊗ is replaced by ��. It moreover obviously inherits its dth-order SCA security
and its complexity from that of Secure-MUL(d, ·, ·). To be absolutely clear in our
argument in the next sections, we shall denote by �

sec

� the operation �� when it

is processed by applying Secure-AND(d, �, ·, ·).

4.2 Dirac Computation Secure at Any Order

In [5], a 1st-order secure implementation of the Dirac function is proposed. It
involves a look-up table in RAM whose size (32 or 256 bytes) is chosen according
to an expected timing/memory trade-off. This method has two drawbacks in
our context. First, it consumes RAM whereas we are looking for a secure AES
implementation that uses memory as little as possible. Secondly, the method is
only resistant to 1st-order SCA and its extension to achieve higher-order security
seems to be an issue. Indeed, it inherits from the same drawbacks w.r.t higher-
order SCA than all the methods based on table re-computations techniques [4].

In order to define a Dirac implementation secure at any order, we chose to
start from the description of this function in terms of logical instructions.

Dirac Computation. Let x denote the bitwise complement of a word (or a matrix)
x and let � be the logical binary AND. The Dirac δ0(s) of a �-bit vector s =
(s[0], · · · , s[� − 1]) satisfies:

δ0(s) = (s[0]) � (s[1]) � · · · � (s[� − 1]) . (2)

The computation of the Dirac of � elements s0,..., s�−1 in GF(2)� can be
performed by using a bit-slicing approach (see e.g. [8])2. The elements are first
represented as a (� × �)-binary matrix s whose lines are the si. Denoting by t
the transpose of s , the line tj of t satisfies tj = (s0[j], · · · , s�−1[j])).

The Dirac values of the si are then computed by applying the operation ��

on the bitwise complement of the tj , leading to the following analogous of (2):

Δ = (δ0(s0), · · · , δ0(s�−1)) = t0 �� t1 �� · · · �� t�−1 . (3)

The cost of the Dirac computation (3) per �-bit vector si is around (� − 1)/�
computation of �� plus 1 bitwise complement, to which we have to add the cost
of a (� × �)-matrix transposition over GF(2) (to get t from s).
2 To easy the description of the method we assume that there are � elements si of size

�. This is needed to have a square matrix in the following. The generalization of the
method for n > � is given at the end of the section.
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Secure Dirac Computation. In the context of a dth-order masking scheme, (3)
must be modified to no longer operate on t but on a (d + 1)-sharing (t0, . . . , td)
of it (each share ti being a binary (�× �)-matrix). Moreover the computations of
the operation �� must be secured thanks to the algorithm Secure-AND(d, �, ·, ·)
introduced in Sect. 4.1. By applying the latter algorithm to the lines of the ti,
we can construct a (d + 1)-sharing (Δ0, · · · , Δd) of the �-bit vector Δ defined in
(3). Actually, if we denote by tij the jth line of ti, the algorithm we present in
this section aims at processing the following computation:

(Δ0, · · · , Δd) = (t0
0, · · · , td

0) �
sec

� (t0
1, · · · , td

1) �
sec

� · · · �
sec

� (t0
�−1, · · · , td

�−1) . (4)

Comparing (3) and (4), we can observe that each ti has been replaced by its
(d+1)-sharing, and that the operation �� has been replaced by its secure version
�
sec

�. We give hereafter a formal description of Secure-Dirac(d, ·).

Algorithm 4. Secure-Dirac(d, ·)
Input(s): An order d, a length � and a (d + 1)-sharing (s0, · · · , sd) of a binary (�× �)-
matrix s whose lines are the si.
Output(s): A (d+1)-sharing (Δ0, · · · , Δd) of the �-bit vector Δ = (δ0(s0), · · · , δ0(s�−1))

** Compute the bitwise complement s0 of the (�× �)-matrix s0.

1. s0 ←− s0.

** Transpose the (�× �) matrices si for every i ≤ d.

2. for i = 0 to d

do ti ←− (
si

)ᵀ
.

** Process the Dirac computations.

3. (Δ0, · · · , Δd)←− (t00, · · · , td
0)

4. for i = 1 to �− 1

do (Δ0, · · · , Δd)←− Secure-AND(d, �, (Δ0, · · · , Δd), (t0i , · · · , td
i ))

5. return (Δ0, · · · , Δd)

The ith call to Secure-AND(d, �, ·, ·) outputs t0��t1�� · · ·��ti−1, the operation
being performed in a secure way from the (d + 1)-sharings (Δ0, · · · , Δd) and
(t0i−1, · · · , tdi−1) which represent Δ and ti−1 respectively.

Security (Sketch of Proof). The dth-order security of Secure-AND(d, �, ·, ·) im-
plies that of each iteration of the loop. Moreover, the d random values used to
construct the (d+1)-sharing of the Secure-AND(d, �, ·, ·) output are randomly re-
generated at each call. We thus deduce that the local dth-order security implies
that of the overall algorithm.

Complexity. Let us denote by cᵀ (resp. c�) the cost of a (�×�)-matrix transposi-
tion (resp. bitwise multiplication �). The dth-order secure processing of the Dirac
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of � elements in GF(2)� costs (d+1)×cᵀ+(�−1)(d+1)2×c�+2(�−1)d(d+1)×c⊕
(which corresponds to d + 1 matrix transpositions and � − 1 calls to Secure-
AND(d, �, ·, ·)). We experimented that the cost cᵀ is of around 150 logical opera-
tions on a �-bit architecture with bit-addressable memory (see Sect. 5)3.

Let n be a multiple of �. Algorithm 4 can be simply extended to compute the
(d + 1)-sharings of the Dirac’s of n elements s0, ..., sn−1 in GF(2�). In this case,
the matrix s is a binary (n×�)-matrix and its (d+1)-sharing is also composed of
binary (n× �)-matrices. Thus, before applying Alg. 4 the elements of the (d+1)-
sharing (s0, · · · , sd) of s are split into n/� sub-matrices of � lines and � columns.
This results in the definition of a splitting of (s0, · · · , sd) into n/� sharings
(s0

j(�), · · · , sd
j(�)), each corresponding to the sub-matrix s j(�) composed of the

jth block of � lines of s . Once this splitting has been done, Alg. 4 is applied to
each (d + 1)-sharing (s0

j(�), · · · , sd
j(�)) separately to output a (d + 1)-sharing

of the Dirac values corresponding to the state elements sj�, ..., s(j+1)�−1. The
overall procedure is denoted by Secure-Dirac(d, (s0, · · · , sd)) in the following.
It inherits its dth-order security from that of Secure-AND(d, �, ·, ·) and its cost in
terms of elementary operations, denoted by CS-D, is exactly n/� times that of
Alg. 4. For instance, in the case of the AES (n = 16 and � = 8) we have:

CS-D = 2(d + 1) × cᵀ + 14(d + 1)2 × c� + 28d(d + 1) × c⊕ . (5)

4.3 Security and Complexity Analysis of the Proposal

Based on the analysis conducted in the two previous sections, we study hereafter
the security and the complexity of our proposal presented in Alg. 2 to secure the
AES Inv-Layer.

Security (Sketch of Proof). Add-Dirac(·, ·) is a linear function operating on
two data masked with independent d-tuples of masks. It operates on each share
independently. For those two reasons it is dth-order secure. Except the mem-
ory allocations (Steps 3 and 7) which are obviously dth-order secure since they
always manipulate the shares separately, the other steps process operations
(Secure-Dirac(d, ·), Sec-MUL(d, ·, ·) and Sec-Inv(d, ·)) that have been proved to
be dth-order secure either in previous works [23] or in the present paper (see Sect.
4.2). The fact that all operations in Alg. 2 are dth-order SCA-secure straightfor-
wardly implies that Alg. 2 is at least 1st-order SCA secure. Actually, we claim
here that it is also dth-order SCA-secure. The precise formalization of the dth-
order security of Alg. 2 can be done by following the outlines of the proof of [23,
Theorem 2] and may possibly require some mask-refreshing procedure (such as
involved in [23]) to change the (d + 1)-sharing of an internal state into a new
one.

Complexity. Algorithm 2 involves 2 calls to the function Add-Dirac(·, ·), 3×(16−
1) calls to Secure-MUL(d, ·, ·), 1 call to Sec-Dirac(d, ·) and 1 call to Sec-Inv(d, ·).
3 Note that we did not took into account the cost of the bitwise complement which is

negligible compared to the other costs.
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Its complexity CS-L therefore satisfies:

CS-L = 2 × CA-D + 45 × CS-M + CS-D + CInv .

From the complexity analysis conducted in previous sections we hence deduce
that the cost CS-L of our proposal in terms of elementary operations satisfies:

CS-L = (d+1)[2×cᵀ +(32+118d)×c⊕+14(d+1)×c�+45(d+1)×c⊗]+CInv .

The cost of a classical processing of Inv-layer is around 16 times the cost
CInv of the secure processing of a field inversion. Hence, our method improves
the classical approach if and only if CInv satisfies:

CInv ≥ (d + 1)[2 × cᵀ + (32 + 118d)× c⊕ + 14(d + 1) × c� + 45(d + 1) × c⊗]
15

.

(6)
For our implementations reported in Sect. 5, we experimented c⊕ = c� = 1, cᵀ =
148 and c⊗ = 22. In this particular case, (6) becomes CInv ≥ 1122d2+2454d+1332

15 .
For d = 1, d = 2 and d = 3 the lower bound respectively equals 328, 717 and
1256.

5 Experimentations

The purpose of this section is twofold. First, we experimentally validate the rel-
evance of the SCA-secure Montgomery’s trick by improving many methods of
literature. Secondly, we quantify in practice the efficiency gain provided by our
proposal. Even if this section reports on AES implementation in mode 128, the
main conclusions stay valid in all the other modus operandi. Our AES imple-
mentations involve the same code to process the round-key addition and the
linear/affine steps. Actually, they only differ in the code part dedicated to the
processing of Inv-Layer. To protect the linear/affine AES steps against (HO-)
SCA, the masking scheme (a.k.a secret sharing scheme) presented in [11] for
order 1 and extended in [23] to any order has been applied. To secure the AES
Inv-Layer, we first implemented some 1st-order SCA-secure methods, then all
the existing 2nd-order SCA-secure methods, and eventually the single 3rd-order
SCA-secure method existing in the literature (see Sect. 1.1 for an argumentation
of the choices). In what follows, we give more details about the methods we chose
in each category.

For d = 1, we chose to only consider methods requiring a limited amount of
RAM memory, which excludes the methods proposed in [11] and [19]. Indeed, as
mentioned in the introduction, our purpose is to improve the timing efficiency
of 1st-order SCA-secure implementations in contexts where a limited amount
of RAM is available. Moreover, we experimented that usually our proposal does
not improve 1st-order methods optimized by involving RAM look-up tables pre-
computed with part of (or all) the masking material (as e.g. in [11] and [19]).
In this case indeed, CInv does not satisfy (6). Eventually, we chose to implement
the methods in [17, 18, 20, 21, 23].
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– In [17, 18], the field GF(28) is represented as an extension of GF(22). Thanks
to linear isomorphisms, the AES s-box is evaluated with operations in GF(22)
where the extended inversion is linear.

– In [20], the extended inversion over GF(28) is essentially performed by going
down to GF(24)2 and by computing a Fourier transform on GF(24).

– In [21], the authors perform the extended inversionby going down to (GF(24))2

and by bitwisely adding 15 elements of a ROM look-up table representing a per-
mutation over GF(24).

– In [23], the extended inversion is represented as the power function x �→ x254

and the evaluation of this function is essentially secured against SCA by
decomposing the exponentiation into a minimum number of multiplications
which are not squaring and by securing those multiplications. The latter step
is done by calling the function Secure-MUL(1, ·, ·) recalled in Sect. 4.

For d = 2, only a few methods exist that are perfectly SCA-secure. Actually, only
the works [24], [22] and [23] propose such kind of schemes (the two first ones
working for any s-box and the third one being dedicated to the AES s-box).
The method in [24] can be viewed as a generalization of the re-computation
table method proposed in [10]. Each time a s-box must be evaluated, a new
pair of input/output masks is generated and two new look-up tables in RAM are
generated from both those masks and a ROM look-up table representing the AES
s-box. The method [22] is a generalization of [21]. Eventually, the method [23]
applied for d = 2 protects the evaluation of the power function x �→ x254 by
securing the linear steps in a straightforward way (by applying the computations
on each share separately) and by securing the multiplications thanks to Secure-
MUL(2, ·, ·).

For d = 3, only [23] proposes a solution. It involves Secure-MUL(3, ·, ·) to secure
the non-linear steps of the exponentiation x �→ x254.

Table 1 lists the timing/memory performances of the different implemen-
tations. Memory performances correspond to the number of bytes allocations
and cycles numbers correspond to multiple of 103. The right-hand column gives
the performance gain achieved by applying the SCA-secure Montgomery’s trick
(e.g. a gain of 60% signifies that the new timing equals 40% of the timings of
the original code). Codes have been written in assembly language for a 8051-
based 8-bit architecture with bit-addressable memory. RAM consumption related
to implementation choices (e.g. use of some local variables, use of pre-computed
values to speed-up some computations, etc.) are not taken into account in the
performances reporting. Also, ROM consumptions (i.e. code sizes) are not listed
since they always were lower than 5 K-bytes which is acceptable in almost all
current embedded devices (for comparison a software secure implementation of
RSA usually uses more than 10 K-bytes). Eventually, for d = 1 (Implementations
2 to 5) improvements have been added to the original proposals. They essentially
amount to preprocess a part of the masking material, which is possible since the
latter one does not need to be changed during the algorithm processing when
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Table 1. Comparison of AES implementations

Method to secure the s-box Without trick With trick Timing Gain

Cycles RAM Cycles RAM

Unprotected Implementation

1. No Masking 2 0 Na. Na. Na.

First-Order SCA

2. Tower Field in GF(24) [17, 18] 77 0 55 56 29%

3. Masking on-the-fly [21] 82 0 55 56 33%

4. Fourier Transform [20] 122 0 58 56 52%

5. Secure Exponentiation [23] 73 24 58 24 + 32 21%

Second-Order SCA

6. Double Recomputations [24] 594 512 190 512 + 96 68%

7. Single Recomputation [22] 672 256 195 256 + 96 70%

8. Secure Exponentiation [23] 189 48 165 48 + 48 13%

Third-Order SCA

9. Secure Exponentiation [23] 326 72 292 72 + 64 9%

only first-order SCA are considered (e.g. the same input/output mask can be
used for all the s-box evaluations).

As it can be seen in the last column of Table 1, SCA-secure Montgomery’s trick
always improves the timing efficiency of the method on which it is applied to. At
every order, this gain has been obtained at the cost of a small RAM overhead: 24d
bytes to implement Secure-MUL(d, ·, ·) and 14(d + 1) + 2(d + 1) bytes dedicated
to Montgomery’s trick. For d = 1, this overhead is acceptable, even in a very
constrained context (we indeed still have a consumption lower than 100 bytes).
For d > 1, the RAM overhead is either negligible for methods which already
consumed a lot of RAM [22, 24] or acceptable for [23] since the total amount of
RAM allocation (96 bytes) is not prohibitive in view of the security level (d = 2, 3).

For d = 1, it can be observed that the timing performances of the methods
become very close when the SCA-secure Montgomery’s trick is applied. In view
of (6), this result was expected since the performances of the inversion method
has a small impact on performances of the global algorithm when the trick is
involved. Indeed, in this case only 10 secure inversions for the overall AES-128
calculation are performed instead of 160. So, when the trick is involved the
timings performances essentially correspond to the cost of 10 applications of
Alg. 2 and the cost of Step 5 (the secure inversion) is negligible. For d = 2, this
remark is less pertinent. This is a consequence of the huge difference between
the timings of the secure inversion methods proposed in [22, 24] and in [23] (the
latter one being at least 2.2 times faster). In this case, the impact of the method
used to protect the inversion (Step 5 in Alg. 2) is still measurable. For d = 3,
the SCA-secure Montgomery’s trick continues to improve the efficiency of the
inner method but its impact is less significative than for d = 1, 2. Actually, the
method used in [23] to secure the inversion involves 4 calls to Secure-MUL(d, ·, ·)
and when d grows the timing efficiency of the method essentially corresponds
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to the cost of those 4 calls. When applied, the SCA-secure Montgomery’s trick
merely replaces 4 calls to Secure-MUL(d, ·, ·) by 3 calls to Secure-MUL(d, ·, ·) plus a
dth-order secure Dirac computation. The gain in efficiency thus essentially relies
on the difference of performances between one execution of Secure-MUL(d, ·, ·)
and the cost per byte of the dth-order secure Dirac computation described in
Alg. 4.

6 Conclusion

In this paper, we have proposed a different approach for the masking of the non-
linear layer of the AES. Instead of sequentially computing the image of masked
data through each s-box, we have proposed to evaluate them globally. Our ap-
proach is based on Montgomery’s trick combined with the use of masked Dirac
functions. Our solution allows us to improve significantly in time complexity all
previous masking methods requiring a small amount of RAM at the cost of a little
memory overhead.
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