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Preface

AFRICACRYPT 2011, the 4th International Conference on the Theory and
Application of Cryptographic Techniques in Africa took place July 5–7, 2011
in Dakar, Senegal. The conference was organized by the LACGAA team of
Université Cheikh Anta Diop de Dakar and the STCC team of “Présidence
de la République – Service Technique Central des Chiffres et de la Sécurité
des Télécommunications” in cooperation with the International Association for
Cryptologic Research.

The conference received 76 submissions, and all were reviewed by the Program
Committee. Each paper was assigned at least three reviewers, while submissions
co-authored by Program Committee members were reviewed by at least five
people. The Program Committee, aided by reports from 52 external reviewers,
produced a total of 240 reviews in all. After highly interactive discussions and a
careful deliberation, the Program Committee selected 23 papers for presentation.
The authors of accepted papers were given 3 weeks to prepare final versions for
these proceedings. We would like to note that the African paper entitled “On
Randomness Extraction in Elliptic Curves” written by Abdoul Aziz Ciss and
Djiby Sow was accepted as one of the best papers. The program was completed
with invited talks by Jens Groth, Tatsuaki Okamoto and Bart Preneel. We would
like to thank everyone who contributed to the success of AFRICACRYPT 2011.
We are deeply grateful to the Program Committee for their hard work, enthusi-
asm, and conscientious efforts to ensure that each paper received a thorough and
fair review. These thanks are of course extended to the external reviewers, listed
on the following pages, who took the time to help out during the evaluation pro-
cess. We would also like to thank Thomas Baignères and Matthieu Finiasz for
writing the iChair software and Springer for agreeing to an accelerated schedule
for printing the proceedings. We also wish to heartily thank Mamadou Sangharé,
the General Chair, and Djiby Sow, the General Co-chair, as well as the LAC-
GAA and STCC teams, for their efforts in the organization of the conference.
Last but not the least, we extend our sincere thanks to all those who contributed
to AFRICACRYPT 2011 and especially to the participants, submitters, authors,
presenters and invited speakers.

AFRICACRYPT has been emerging as a powerful forum for researchers to
interact, share their work and knowledge with others for the overall growth and
development of cryptology research in the world, and more specifically in Africa.

July 2011 Abderrahmane Nitaj
David Pointcheval
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Mamadou Sangharé Université Cheikh Anta Diop de Dakar, Senegal
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Elliptic Curves

Hashing into Hessian Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
Reza Rezaeian Farashahi

On Randomness Extraction in Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . 290
Abdoul Aziz Ciss and Djiby Sow

Fault Analysis

Fault Analysis of Grain-128 by Targeting NFSR . . . . . . . . . . . . . . . . . . . . . 298
Sandip Karmakar and Dipanwita Roy Chowdhury

Differential Fault Analysis of Sosemanuk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
Yaser Esmaeili Salehani, Aleksandar Kircanski, and Amr Youssef

An Improved Differential Fault Analysis on AES-256 . . . . . . . . . . . . . . . . . 332
Subidh Ali and Debdeep Mukhopadhyay



Table of Contents XI

Security Proofs

Benaloh’s Dense Probabilistic Encryption Revisited . . . . . . . . . . . . . . . . . . 348
Laurent Fousse, Pascal Lafourcade, and Mohamed Alnuaimi

On the Security of the Winternitz One-Time Signature Scheme . . . . . . . . 363
Johannes Buchmann, Erik Dahmen, Sarah Ereth,
Andreas Hülsing, and Markus Rückert

Invited Talks

Efficient Zero-Knowledge Proofs (Abstract) . . . . . . . . . . . . . . . . . . . . . . . . . 379
Jens Groth

Some Key Techniques on Pairing Vector Spaces . . . . . . . . . . . . . . . . . . . . . . 380
Tatsuaki Okamoto and Katsuyuki Takashima

The NIST SHA-3 Competition: A Perspective on the Final Year . . . . . . . 383
Bart Preneel

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387



Secure Outsourced Computation

Jake Loftus and Nigel P. Smart

Dept. Computer Science,
University of Bristol,

Bristol, United Kingdom
{loftus,nigel}@cs.bris.ac.uk

Abstract. The development of multi-party computation was one of the early
achievements of theoretical cryptography. Since that time a number of papers
have been published which look at specific application scenarios (e-voting,
e-auctions), different security guarantees (computational vs unconditional), dif-
ferent adversarial models (active vs passive, static vs adaptive), different com-
munication models (secure channels, broadcast) and different set-up assumptions
(CRS, trusted hardware etc). We examine an application scenario in the area of
cloud computing which we call Secure Outsourced Computation. We show that
this variant produces less of a restriction on the allowable adversary structures
than full multi-party computation. We also show that if one provides the set of
computation engines (or Cloud Computing providers) with a small piece of iso-
lated trusted hardware one can outsource any computation in a manner which
requires less security constraints on the underlying communication model and at
greater computational/communication efficiency than full multi-party computa-
tion. In addition our protocol is highly efficient and thus of greater practicality
than previous solutions, our required trusted hardware being particularly simple
and with minimal trust requirements.

1 Introduction

One of the crowning achievements in the early days of theoretical cryptography was
the result that a set of parties, each with their own secret input, can compute any com-
putable function of these inputs securely with polynomial overhead [4,9,20,29,33]. Of
course the above statement comes with some caveats, as to what we assume in terms of
abilities of any adversaries and what assumptions we make of the underlying infrastruc-
ture. However, the concept of general Secure Multi-Party Computation (SMPC) has had
considerable theoretical impact on cryptography and has even been deployed in practi-
cal applications [6]. One can consider any complex secure computation as an example
of SMPC, for example voting, auctions, payment systems etc. Indeed by specialising
the application domain one can often obtain protocols which considerably outperform
the general SMPC constructions.

CLOUD COMPUTING AND SECURE OUTSOURCED COMPUTATION. In this paper we
take a middle approach between general SMPC and specific applications. In particular
we examine a realistic application setting for SMPC which we call Secure Outsourced
Computation (SOC). Below we argue that this is a natural restriction and a practical

A. Nitaj and D. Pointcheval (Eds.): AFRICACRYPT 2011, LNCS 6737, pp. 1–20, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 J. Loftus and N.P. Smart

setting; being particularly suited to the new paradigm of Cloud Computing. We show
that by restricting the use of SMPC in this way we can avoid some of the restrictions
required for general unconditionally secure SMPC.

Consider the following problem: A data holder wishes to outsource their data storage
to a third party, i.e. a cloud computing provider. For example the data holder could be
a government health care provider and they wish to store the health records of their
population on a third party service. Clearly, there are significant privacy concerns with
such a situation and hence the data holder is likely to want to encrypt the data before
sending it to the service provider. However, this comes with a significant disadvantage;
namely one cannot do anything with the data without downloading it and decrypting it!

This application scenario is in fact close to the common instantiation of practical
proposed SMPC applications. Not only does this cover the problem of outsourced data
storage, but it also encompasses a number of other applications; for example e-voting
can be considered similarly, in that the data holders are now plural (the voters) and e-
voting protocols often consist of a number of third parties executing the tallying compu-
tation on behalf of the set of voters. As another example the Danish sugar beet auction,
in which SMPC was deployed for the first time [6], is also of this form. In the sugar beet
auction example the data providers (the buyers and sellers) outsourced the computation
of the market clearing price to a number of third party providers.

Essentially SOC consists of a set of entities I called the data providers which pro-
vide input, P the set of players which perform the computation and a set R of receivers
which obtain the output of the computation. We assume that I and R may intersect, but
we require that P does not intersect with I or R. The set of input players and receivers
are assumed to be honest-but-curious, whereas the set P may consist of adaptive and/or
active adversaries. In this paper we shall concentrate, to simplify the discussion, on the
case of where there is a single data provider and receiver, who is outsourcing compu-
tation and storage to a set of possibly untrusted third parties. The extension to multiple
data providers/receivers is obvious.

PRIOR WORK. This notion of SOC has been considered a number of times in the lit-
erature before. From a practical perspective the proposed architecture most closely re-
sembles the architecture behind the Sharemind [5] system. This has notions of “Miner”,
“Data Doner” and “Client” which have roughly the same functionality as our players,
data providers and data receivers. However, Sharemind implements standard SMPC
protocols between three players working over the ring Z232 , on the assumption of a
single passive adversary. We however use this special application scenario to extend the
applicability to different adversary structures and to allow smaller numbers of players.

Theoretically we are now able to perform SOC using only a single server by using the
recently discovered homomorphic encryption schemes [15,18,19,32]. However, these
are only theoretical solutions and it looks impossible to provide a practical solution
based on homomorphic encryption in the near future. In addition using a single server
does not on its own protect against active adversaries, unless one requires the server to
engage in expensive zero-knowledge proofs for each operation, which in turn will need
to be verified by the receiver. An alternative to this approach is given in [17] which
combines the use of homomorphic encryption (to obtain confidentiality) with Yao’s
garbled circuits to protect against malicious servers.
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Another (trivial) approach using a single server would be for the data provider to
provide the server with a trusted module. The data can then be held encrypted on the
server, and the trusted module could be used to perform the computation. (with the
server thereby just acting as a storage device). Clearly this means that the trusted module
would need to be quite powerful, and would in some sense defeat the objective of the
whole outsourcing process.

In [30] another approach using a single server and a trusted module is proposed.
Here the trusted module is used to compute a garbled circuit representing the function,
with the evaluation of the garbled circuit being computed by the server. Using prior
techniques the authors are able to compute the garbled circuit using a small amount of
memory. However, this approach requires that the database is itself re-garbled for every
query. The authors propose that this is also performed on the trusted module. Whilst this
approach is currently deployable, it is not practical and it also requires that the trusted
hardware module is relatively complex.

Another approach, and the one we take, to obtain an immediately practical solu-
tion to the problem of outsourcing computation, would for the data holder to share his
database between more than one cloud provider via a secret sharing scheme. Then to
perform some computation the data holder simply instructs the multiple cloud providers
to execute an SMPC protocol on the shared database.

OUR CONTRIBUTION. We show that with this restricted notion of SMPC we can re-
lax the necessary conditions for unconditional secure computation to be possible. This
essentially arises due to the fact that the people doing the computation have no input
to the protocol, and thus the usual impossibility result for general adversary structures
does not apply.

However, on its own SOC does not lead to more efficient and hence practical pro-
tocols; namely whilst we have relaxed the necessary conditions we have not relaxed
the (equivalent) sufficient conditions. To enable the latter we make an additional set up
assumption of the existence of small isolated secure trusted modules which are associ-
ated/attached to each player in P . This assumptions enables us to significantly improve
the performance of protocols compared to general SMPC, at the same time as simpli-
fying the assumptions we require of the underlying communication network. Using ad-
ditional hardware assumptions to enable SMPC is not new, indeed we discuss the prior
work below, but the novelty of our approach is that the additional assumed hardware
is relatively simple and cheap to produce. In particular the complexity of the hardware
compared to the above approach of [30] is orders of magnitude simpler.

Our work therefore makes two mild simplifying assumptions to the standard SMPC
model; this enables much more efficient protocols and reduced network assumptions.
Our protocol requires, apart from the isolated trusted modules, only reliable broadcast
between the set of players, and secure channels from the data providers to the set of
players doing the computation. We also require secure communication from the trusted
modules to their associated player, this can either be accomplished via encryption or
more probably in practice by physical locality. Before proceeding it is worth stating
that we do not claim to make any theoretical contributions or innovations, our methods
are to apply existing theoretical tools in a new and novel way so as to obtain greater
practically of what has up to now been a generally theoretical tool.
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PAPER OVERVIEW. In Section 2 we provide the background details on SMPC based on
secret sharing that we will be using. In Section 3 we describe our protocol in the sim-
plified setting where one has a single semi-trusted third party who provides the players
with various “random” numbers, giving a UC proof of security in Section 4. We then
turn in Section 5 to show how this semi-trusted third party can be implemented using
small pieces of trusted hardware. All the previous discussion is done in the context of
passive adversaries, so in Section 6 we discuss the case of active and covert adversaries.
Finally in Section 7 we briefly discuss two implementation aspects; namely how to per-
form the transfer of the data from the client to the servers, and we outline the benefits of
being able to work over the field F2 as opposed to having to work over Fp. A key point
is that using our trusted hardware, and restricted application domain, we can make use
of linear secret sharing schemes over F2 with a small number of players.

2 Background

We present the necessary background notation and historical notes on standard SMPC.

2.1 Secure Multi-Party Computation

In standard SMPC the goal is for a set of P = {1, . . . , n} to compute some function
f(x1, . . . , xn) of their individual inputs xi such that the players only learn the output
of the function and nothing else.

DEFINITIONS. It is perhaps worth presenting some definitions before we proceed. Ad-
versaries (who are assumed to be one or more of the players) can be given various
powers: a passive adversary (sometimes called honest-but-curious) is one which fol-
lows the protocol but who wishes to learn more than they should from the running of
the protocol; an active adversary (sometimes called malicious) is one which can devi-
ate from the protocol description, they also may wish to stop the honest players from
completing the computation, or to make the honest players compute the wrong output;
a covert adversary is one which can deviate from the protocol but they wish to avoid
detection when they deviate. We talk of a singular adversary although they may be a set
of actual players, such a single adversary can coordinate the operation of a set of adver-
sarial players; this single adversary is often called a monolithic adversary. Adversaries
can either have unbounded computing power or they can be computationally bounded.

As mentioned above, we also need to consider what communication infrastructure is
assumed to be given. In the secure channels model we assume perfectly secure channels
exist between each player; in the broadcast model we assume there exists a broadcast
channel linking all players. Use of the broadcast channel model has a minor caveat:
we assume not only that when an honest party broadcasts a message to all parties it is
received by all parties, but also that a dishonest party cannot send different values to
different honest parties as if it was a general broadcast. A broadcast model with both of
these properties will be called a consensus broadcast model, if only the first property
holds we will say we are in a reliable broadcast model.

An adversary structure Σ is a subset of 2P with the following property, if A ∈ Σ and
B ⊂ A then B ∈ Σ. The adversary structure defines which sets of parties the adversary
is allowed to corrupt. In early work the adversary structure was a threshold structure,
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i.e. Σ contained all subsets of P of size less than or equal to some threshold bound
t. The set of players which the adversary corrupts can be decided before the protocol
runs, in which case we call such an adversary static; or it can be decided as the protocol
proceeds, in which case we say the adversary is adaptive.

HISTORICAL BACKGROUND. The first results were for computationally bounded pas-
sive adversaries; the case n = 2 is provided by the classical result of Yao [33]. Protocols
that obtain security against active adversaries for the case n = 2 are feasible but ineffi-
cient, the best current proposal being that of [26]; protocols for covert adversaries have
only recently been presented [1] (for unbounded adversaries the first work on covert
security is even more recent [13]).

For more than two players the first result was for computationally bounded static,
active adversaries where [20] showed one could obtain SMPC as long as (for threshold
adversaries) we have t < n/2. The extension to adaptive adversaries was given in [7],
still with a bound of t < n/2. If we are prepared to only tolerate passive adversaries
then we can obtain a protocol with t < n.

It turns out, somewhat surprisingly, that the most efficient and practical protocols for
more than two parties are those that give security against unbounded adversaries. Here
we obtain (again for the threshold case)

– Passive security, assuming secure channels, if and only if t < n/2 [4,9].
– Active security, assuming secure channels, if and only if t < n/3 [4,9].
– Active security, assuming secure channels between players and a consensus broad-

cast channel, if and only if t < n/2 [29] (assuming we want statistical security) or
t < n/3 (if we want perfect security).

All these early protocols are based on the principle of using Shamir secret sharing [31]
to derive the underlying secret sharing scheme to implement the above protocols. For
general adversary structures we define the following two properties:

– The adversary structure Σ is said to be Q2 if for all A, B ∈ Σ we have A∪B �= P .
– The adversary structure Σ is said to be Q3 if for all A, B, C ∈ Σ we have A∪B ∪

C �= P .

We then have the following theorem

Theorem 1 (Hirt and Maurer [23]). SMPC is possible:

– Against adaptive passive adversaries if and only if Σ is Q2, assuming pairwise
secure channels.

– Adaptive active adversaries if and only if Σ is Q3, assuming pairwise secure chan-
nels and a consensus broadcast channel.

The proof of this theorem is via reduction to the threshold case, and is not practical. In
[11] the authors show how to perform SMPC by generalising the above constructions
using Shamir’s secret sharing scheme to an arbitrary Linear Secret Sharing Scheme
(LSSS). They define notions of what it means for a LSSS to be multiplicative, and
strongly multiplicative. A multiplicative LSSS allows SMPC for passive adversaries,
whereas a strongly multiplicative LSSS allows security against active adversaries.
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In this paper we shall mainly concentrate on the case of passive adversaries, leaving
active adversaries to a discussion at the end. We end this section by examining the above
theorem in the case of passive adversaries: That Σ being Q2 is sufficient to perform
unconditional SMPC follows from the work of [11], who show that one can construct
for any Q2 structure a multiplicative LSSS. The multiplicative property enables one
to write down a protocol to enable SMPC. That Σ being Q2 is a necessary condition
follows from a result first expressed in [4] (see [12] for an explicit proof) which says
that unconditional SMPC is impossible if one only has two parties; the non-Q2 case can
then be shown to be reducible to the case of two parties.

Our main result is that by using trusted hardware one can relax the sufficient con-
dition in the above discussion, and that the necessary condition can be relaxed by per-
forming Secure Outsourced Computation as opposed to general SMPC. At the same
time the protocol we present becomes more efficient and requires less constraints on
the overall network assumptions, indeed it is essentially equivalent to the second stage
of the asynchronous protocol of [14], which itself is based on Beaver’s idea of circuit
randomization [2].

2.2 Linear Secret Sharing Schemes

Before going any further it is perhaps instructive to introduce LSSS and how they can be
constructed. In this paper we shall be only interested in ideal LSSS, since these provide
the most efficient practical protocols with no increase in storage requirements. Note that
since our presentation is focused on ideal schemes, to produce non-ideal schemes one
needs to slightly adapt the following.

GENERAL LSSS. An ideal LSSS M over a field Fq on n-players of dimension k is
given by a pair (M,p) where M is a k × n matrix over Fq and p is a k-dimensional
column vector over Fq. We write m1, . . . ,mn for the columns of M . Note that any
non-zero vector p ∈ SpanFq

(m1, . . . ,mn) (the vector space over Fq spanned by
m1, . . . ,mn) can be selected; so one might as well select M and p such that p =
(1, . . . , 1)T; wgere xT denotes the vector-transpose operation. If A is a set of players
we let MA denote the matrix M restricted to the columns in A, and we letMA denote
the associated LSSS.

To share a secret s one generates a vector t ∈ Fk
q at random such that t · p = s and

then one computes the shares as (s1, . . . , sn) = s = t ·M . Given a set of shares there
is also a vector r such that s = r · (s1, . . . , sn)T, this vector is called the recombination
vector. If we set P = {1, . . . , n} then the access structure Γ (M) for the ideal LSSS is
given by {

A = {a1, . . . , at} ⊂ P : p ∈ SpanFq
(ma1 , . . . ,mat)

}
.

Since we have assumed that p ∈ SpanFq
(m1, . . . ,mn) we have that P ∈ Γ (M), i.e.

it is possible for all players to reconstruct the secret. The adversary structure is defined
by Σ(M) = 2P \ Γ (M). We sometimes write [s] for the sharing of s, [s]i = si for
the ith component of the sharing of s, and if A ⊂ P we write [s]A for the vector of
shares of s held by the set of players A. We have H(s|[s]A) = H(s) if A ∈ Σ(M) and
H(s|[s]A) = 0 if A ∈ Γ (M).
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MULTIPLICATIVE LSSS. The Schur (or Hadamard) product a ⊗ b of two vectors is
defined to be their componentwise product. The LSSS M is said to be multiplicative
if there exists a vector rM ∈ Fk

q such that for two shared values s and s′ we have
s · s′ = rM · ([s]⊗ [s′]). Note that we may have r = rM , which is the case for Shamir
secret sharing when t < n/2.

A LSSS M is said to be strongly multiplicative if for all A ∈ Γ (M) we have
that MA is multiplicative. Intuitively multiplicative means that the Schur product of
sharings from all players is enough to determine the product of two secrets, whereas
strongly multiplicative means that this holds even if you only have access to shares
from a qualifying set of honest players.

In general SMPC it is not known how to construct ideal LSSS for all possible ac-
cess structures; the construction in [11] which produces a multiplicative LSSS, from an
LSSS with a Q2 structure, results in a possible doubling of the share sizes and hence
results in a non-ideal scheme. In our application we will not need to restrict to Q2 struc-
tures, and so our restriction to ideal LSSS is without loss of generality. This solves a
problem with SMPC in that one would prefer to use circuits over F2, and a reasonably
small number of players. Yet no ideal multiplicative LSSS exists over F2 with less than
six players. One can construct schemes with three players but then one loses the ideal
nature of the LSSS.

2.3 Trusted Hardware in SMPC

The first mention of the use of trusted modules in the context of secure multiparty
computation seems to be [3]. In this paper they assume each party is equipped with a
trusted module and each persons trusted module is connected by a secure channel. The
set of all trusted modules form what they call a “trusted system”. They then reduce the
problem of secure MPC to the UIC problem (Uniform Interactive Consistency). The
final solution requires O(n) rounds of computation and O(n3) messages, to compute
any function as long as at most t < n/2 parties are corrupted. The model is such that
parties may block communication to and from their trusted modules. Essentially the
trusted modules swap their respective inputs and compute the function in the normal
way. This solution has a number of major problems, the modules are not simple, they
are highly complex, they need to be highly trusted and they need to be able to securely
communicate with each other. On the other hand there is a proposed embodiment of
this protocol using Java cards in [16]. The question as to who produces and distributes
the cards is not addressed.

Most of the recent work on secure hardware modules in SMPC is based on the
following observation. We have already remarked that unconditionally secure general
SMPC is impossible in the case of Q2 structures, which includes the case of only
two players. However, if we assume oracle access to an ideal functionality such as
Oblivious Transfer than unconditionally secure SMPC becomes possible even for two
players. Thus the question becomes one of implementing the oracle access to an OT
functionality.

Katz [24] looks at how the introduction of tamper proof hardware would enable one
to get around various impossibility results in the UC framework. He uses tamper proof
hardware to replace standard “set-up” assumptions, such as types of channels, a CRS
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or a public key infrastructure etc. He assumes that a set of parties want to compute the
output of some function which depends on their inputs, and that each player can pro-
duce their own tamper proof hardware. In addition this hardware when given to another
player may not be trusted by the receiving player. Once a player has handed over a token
he is unable to send this token any messages. Using this trusted hardware Katz is able
to produce a UC commitment functionality which enables him to perform secure MPC.
This is very different from our own setup, in particular Katz assumes that each player
can produce trusted hardware and that we are in the “standard” MPC setting where
parties have inputs. In our setting we will have a single data owner who produces (or
trusts) a single piece (essentially) of trusted hardware, the players are then computing
on behalf of the data owner. This results in our trusted hardware being considerably
simpler than the hardware envisaged in Katz’s model. However, the restriction on the
communication with the trusted module is preserved in our approach.

In [8] Katz’s work is extended to include modules for which players do not necessar-
ily “know” the code within the token. This allows for modules to be resettable, and in
particular stateless. Again the model of application use is very different from ours, and
the modules have a much more complicated functionality (enhanced trapdoor permuta-
tions). In [28] the model is extended further, here again one is constructing general UC
commitment functionality, but now it is assumed that only one party (Goliath) is able to
produce tamper proof modules, where as the other (David) has to ensure that this does
not give Goliath an advantage. Again the underlying application is of the parties com-
puting a function of their own inputs, and not ours of the parties computing a function
on behalf of someone else.

Katz’s work is again extended in [21] where each player constructs a secure token
and transmits it to the other player at the start of the protocol. Example protocols requir-
ing both statefull and stateless modules are presented. In the case of statefull modules
the authors obtain unconditionally secure protocols, and in the case of stateless mod-
ules they require the existence of one-way functions. For statefull modules the trusted
modules are use once only modules. In [25] another protocol for performing OT using
tamper proof cards is presented.

In [22] the authors examine how standard smart cards can be used to accomplish a
number of cryptographic tasks, including ones related to what we discuss. Using their
approach they manage to produce protocols which are simulation secure, and they pro-
vide some estimated run-times.

Our approach is very different, we do not try to obtain a general OT functionality and
do not reduce to the relatively expensive garbled circuit approaches to secure compu-
tation. In addition our trusted modules are reusable from one computation to the next,
they are only bound to one particular data provider and not to a function or dataset. Our
focus is on practicality as opposed to theoretical interest, and so our aim is to use simple
trusted modules to enable more efficient and practical protocols.

3 Our Protocol

Focusing on SOC as opposed to general SMPC provides a number of advantages. In
this section we present our protocol assuming a semi-trusted third party. The role of
this semi-trusted third party is to produce “correlated randomness” to the players who
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are computing the function, but otherwise takes no part in the protocol. We will then,
later on, replace this single semi-trusted third party with multiple simple isolated trusted
modules.

Q2 IS NOT A NECESSARY CONDITION. We first note that our division of players into
players who compute P , and players I and R who input data and receive output, re-
moves a major stumbling block to unconditionally secure computation. The standard
argument which shows that Q2 is a necessary condition is that if we did not have a
Q2 access structure, then we could reduce this to the problem of two player secure
computation. However, any protocol between two players which was unconditionally
secure, and for which the two players were trying to compute a function of their own
inputs could not securely compute the AND functionality of two input bits. This nega-
tive result relies crucially on the fact that the function being computed is on two inputs;
where one player knows one input and one player the other. In our application this does
not hold, the players P doing the computation only know shares of the inputs to the
function and not the inputs themselves. Thus SOC might be possible for an arbitrary
adversary structure.

REMOVING Q2 AS A SUFFICIENT CONDITION. Although the above observation might
remove the necessary condition of a Q2 adversary structure,, it does not remove the suf-
ficient condition. Using traditional protocols we still need a multiplicative LSSS to im-
plement the basic SMPC protocol. And since multiplicative LSSS must necessarily have
a Q2 access structure we do not seem to have gained anything. Our protocol gets around
this impasse by using an additional assumption, namely a semi-trusted third party.

This assumption might seem like “cheating” but it has a number of practical ad-
vantages. Firstly it enables the set of players P to be reduced to a set of size two if
desired (in the passive case). More importantly as we will no longer require multiplica-
tive LSSS, and only a simple LSSS with the required access structure. This enables us
to utilize functionality descriptions as arithmetic circuits over F2 with a small number
of players, whilst still using ideal LSSS. This provides greater efficiency and much re-
duced storage in the case of an application in which a large database is shared between
the computation providers. In addition, as we explain later, many practical database
operations are best described using F2-arithmetic (i.e. binary) circuits as opposed to
general Fp-arithmetic circuits for some prime p > 2.

COMMUNICATION MODEL AND THE SEMI-TRUSTED THIRD PARTY. Our protocol
will make use of reliable, but public, broadcast channels between the n servers, however
the connection from the data provider to the servers, and the servers to the recipients
must be implemented via secure channels. The servers may be adversarially controlled
with respect to an adversary structure Σ (which will be the adversary structure of our
underlying LSSS). In addition there is a special “server” T who is connected by secure
channels to the other servers, this is our semi-trusted third party. The server T is trusted
to validly follow its program, but it is assumed not to be trusted (or capable) to deal with
any actual data. That the computing players are connected to the semi-trusted third party
by secure channels is purely for exposition reasons; in the next section we will show
how to replace the global semi-trusted third party with local isolated security modules.
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The server T ’s job will be to perform the first stage of the asynchronous protocol of
[14], i.e. the production of the random multiplication triples, leaving the actual servers
to compute the second stage. With this set up T never takes any input and simply acts
as a source of “correlated” random shared triples to the compute servers. Since T is
trusted to come up with the random triples we no longer need a multiplicative LSSS to
generate the triples, hence any LSSS will work. Thus we can use a very simple LSSS
and cope (in the passive case over F2) with only two servers.

OUR PROTOCOL. The protocol then proceeds as follows, assuming some fixed ideal
LSSSM = (M,p) is chosen:

Share: Given an input value x the input client generates a vector t ∈ Fk
q such that

t ·p = x. Then the input client computes [x] = t ·M . The value [x]i is transmitted (via
a secure channel) to server i.

Add Gate: Here the servers can locally compute the addition of their shares, since we
are using a LSSS.

Multiplication Gate: The servers wish to compute the sharing of the multiplication of
the shares representing x and y. They first poll T who securely provides to each server
a random sharing [a], [b], [c] of three random field elements a, b and c such that c = a ·b.
The servers then locally compute the values

[d]i = [x]i + [a]i and [e]i = [y]i + [b]i.

This pair of values ([d]i, [e]i) is publicly broadcast to each server, so that all servers can
reconstruct

d = x + a and e = y + b.

Now each party locally computes

[z]i = [d · e]i − d · [b]i − e · [a]i + [c]i,

where [d · e]i is a trivial public sharing of the public product d · e.

Recombine: Here the servers send the shares [s]i of the value to be recombined to
the recipient. The recipient recovers the shared value by solving the linear equations
t ·M = [s] for t and then uses this to compute s = t · p.

We reiterate that the above protocol is simply the second stage of the the asynchronous
protocol of [14], with the trusted server providing the first stage, mapped over to our
SOC application scenario. We now turn to presenting the “code” for our semi-trusted
third party T . When T is polled it executes the following steps:

– t1, t2←Fk
q .

– a←t1 · p; b←t2 · p; c←a · b.
– t3←Fk

q such that t3 · p = c.
– [a]←t1 ·M ; [b]←t2 ·M ; [c]←t3 ·M .
– Send player i the tuple ([a]i, [b]i, [c]i).
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DISCUSSION. One should ask first what have we gained by introducing a semi-trusted
third party? After all we have assumed a semi-trusted third party T , so why do we not
just pass the data to T and get T to compute the function? However, this would mean
that T if fully trusted as it sees the inputs. In the above protocol the party T does not see
any inputs, indeed they do not see anything bar requests to produce random numbers.
Thus whilst T is trusted to produce the “correlated randomness” it is not trusted to do
anything else.

Note that the semi-trusted third party only needs to be trusted by the person in the
SOC who is receiving the data. Although in practice commercial concerns of theP who
are being paid to compute and store the data may require them to also trust the party T .
Various standard techniques can be used to provide such trust if needed, all of which
would however significantly degrade the performance of the protocol.

A more problematic issue is that T is a single point of failure and needs to com-
municate with the players via a secure channel. For static adversaries this is not a
problem, but could be an issue for adaptive adversaries as it would require a form of
non-committing encryption. So whilst we have simplified things somewhat the use of
a single semi-trusted third party is not ideal and produces problems of its own. This is
why in the next section we replace the centralised semi-trusted third party, with isolated
semi-trusted tamper proof modules; one for each server.

4 Security Model and Proof

Our security proof for our protocol is given in the UC framework, and follows from
standard arguments. However to emphasise the relationship between SOC and general
MPC we present the main details. In general MPC the ideal functionality is given as in
Figure 1(a) we have n+1 parties all of which have their own input x0, . . . , xn and each
of which obtain an output fi = Fi(x0, . . . , xn) for some agreed functions Fi.

FMPC

�
f0

�
f1 . . .

�
fn

�
x0

�
x1

. . .

�
xn

(a) MPC

FSOC

�
f

�
∅ . . .

�
∅

�
x

�
∅

. . .

�
∅

(b) SOC

Fig. 1. Ideal Functionalities

However for secure outsourced computation the ideal functionality FSOC is such
that there is only one player (the client) I who has any input to the computation, and
only they receive the output. The other players(the servers) P1, . . . , Pn have no input.
Clearly to obtain security only the players Pi can be corruptable, i.e. the special player
must be totally honest.

Recall, a protocol π UC-realises an ideal functionality F if for all real world adver-
saries A there exists a simulator S in the ideal world, such that no environment Z can
tell with a non-negligible probability whether it is interacting with A and parties in the
real world running π, or with S and F in the ideal world.
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We allow the adversary to select the function to be computed, and we also allow it to
corrupt a subset of the parties P1, . . . , Pn (a subset allowed by the adversary structure).
When a player is corrupted passively its past, current and future states are all passed
to the adversary; when corrupted actively control of this party passes to the adversary.
To describe the function to be computed we assume that the functionality maintains a
polynomial sized set of registers.

The ideal functionalityFSOC can then be formally described by the following com-
mands it will accept from the environment:

– Input(xi): On input of a value xi from I , FSOC stores the value in a register
registers and notifies the adversary that input has been received and the location of
where the element was stored.

– Output(r): On input of the register location r, FSOC sends the value stored at
position r to I .

– Linear combination(z, x, y, λ, μ): On input of register locations x, y, z and field
elements λ and μ, FSOC retrieves the values a and b stored in locations x and y
and computes c = λ · a + μ · b. The resulting value is stored in the location indexed
by z.

– Multiplication(z, x, y): On input of register locations x, y, z, FSOC retrieves the
values a and b stored in locations x and y and computes c = a · b. The resulting
value is stored in the location indexed by z.

– Corrupt(i): This command allows the adversary to corrupt player i, where i ∈
{1, . . . , n}. This can only be executed with respect to the allowable adversary struc-
ture.

The trivial protocol, in which the distinguished player, actually computes the func-
tion for itself is clearly secure in this model. The goal of SOC is to produce protocols in
which the only interaction that the distinguished player has in the real protocol is to pass
the inputs to the parties. In other words the inputting party performs no computation.
Clearly our protocol above has this property, hence all that remains is to show that it is
secure.

Theorem 2. The protocol described unconditionally UC-realises FSOC for any pas-
sive adaptive adversary A and linear secret sharing schemeM for which A corrupts
players according to the adversary structure ofM.

Proof. We show that for any adversaryA there exists a simulator S for which an envi-
ronment Z cannot tell the difference between interacting with A in the real world, or
S in the ideal world. To do this we show how to simulate the output received by the
adversary when it executes the above commands.

– Input(xi): The adversary (and the simulator) by definition do not know the value
of xi. The simulator simply stores a random secret sharing of a random element, the
environment is informed of the register location which has been used. In the case
of corrupt parties the simulator returns the shared values of any corrupt parties, and
stores them for uncorrupted parties in case the party is corrupted in the future.

– Output(r): The environment is informed that the value of the register at position r
has been returned to I .



Secure Outsourced Computation 13

– Linear combination(z, x, y, λ, μ): This is a local computation and so is easily
simulated.

– Multiplication(z, x, y): Here the simulator needs to simulate the multiplication
protocol. This is done by generating a random multiplication triple and executing
the real multiplication protocol with respect to the simulated values stored in the
locations x and y. Again internal values are returned for any corrupted parties, and
stored for later use if a party is corrupted.

– Corrupt(i): All prior data for party i is returned to the environment and the party
is marked as corrupted.

We need to show that the above simulation is indistinguishable from an execution
with an adversary in the real world. The key fact which implies this is that H(s|[s]A) =
H(s) if A ∈ Σ(M) and H(s|[s]A) = 0 if A ∈ Γ (M). This implies that by using shar-
ings of random values in our simulation the output of the simulator is indistinguishable
from a protocol run with real values, as long as the set of parties A which are corrupted
belongs to the set Γ (M)1.

5 Isolated Security Modules

We now notice that the functionality of the semi-trusted party T in our protocol can be
localised to each player performing the computation by the use of isolated tamper proof
trusted modules. In particular we assume a set of trusted modules Ti such that:

– The trusted modules Ti are produced by some third party and distributed to the
compute servers, possibly (in the data outsourcing scenario) by the data provider.

– The manufacturer has embedded in each Ti the same long term secret key kT ,
which is the index to some pseudorandom function family PRFkT (m).

– Each module is tamper proof, and will only supply data to its intended computation
server. One could either do this cryptographically (via encryption) or physically (by
locality) depending on the application scenario.

Our main protocol is now modified as follows: At the start of the protocol the servers
compute a shared one-time nonce N , to which they have all contributed entropy. For
example they could all commit to a value Ni, and then after all have committed, they
then reveal the Ni and compute N = N1 ⊕ · · · ⊕Nn. The nonce is used to make sure
each protocol run uses different randomness. Each multiplication gate is assumed to
have a unique number g associated to it.

Now when a server i requires the randomness for a particular gate g in a computation
associated with nonce N , it passes the values g and N to the trusted module Ti. As
before we write m1, . . . ,mn for the columns of M , we assume that trusted module Ti

has embedded into it mi only. The trusted module Ti now executes the following code,
where we have assumed that p = (1, . . . , 1)T for simplicity of exposition.

1 We note that we need to use sharings of random values rather than random shares due to the

following simple example. Consider the LSSS given by M =

(
1 1 0
0 0 1

)
and p = (1, 1). The

simulator must give an adversary who corrupts player one followed by player two the same
randomly generated share if it wishes to remain undetected by the environment.
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– u←PRFkT (g‖0‖N) where u ∈ Fk
q .

– v←PRFkT (g‖1‖N) where v ∈ Fk
q .

– a←u · p; b←v · p; c←a · b.
– w←PRFkT (g‖2‖N) where w ∈ Fk−1

q .

– wk←c−
∑k−1

i=1 wi

– [a]i←u ·mi; [b]i←v ·mi; [c]i←w ·mi.
– Output ([a]i, [b]i, [c]i).

Note the function PRF can be implemented in practice using any standardized key
generation function, for example one based on a cryptographic hash function or a block
cipher.

The key observation is that these modules are incredibly simple and easy to imple-
ment with only a few gates, especially if one takes Fq to be the binary field. One may
be concerned about protecting them against side channel attacks; for example an adver-
sarial server may try to learn the key kT embedded within the device. However, such
protection can be done using standard defences employed in banking cards etc.

Note that since our main protocol using isolated trusted modules no longer requires
secure channels (bar between each trusted modules and the player using it): thus the
need for, in the adaptive adversary setting, of using non-committing encryption is re-
moved. Although one would still need this when there is a single semi-trusted third
party to secure the channels from this party to the servers.

One caveat is perhaps worth noting at this stage. Whilst our security theorem in the
case of having a single semi-trusted third party was for unbounded adversaries we are
unable to achieve such security when the semi-trusted party is split into trusted modules
as above. This is because an unbounded adversary could simply “learn” the key kT for
the PRF after only a small amount of interaction with a single module. Hence, security
in this setting is only provided against computationally bounded adversaries who cannot
break the PRF.

6 Active and Covert Adversaries

To deal with active adversaries in the player set P one needs to have a method to re-
cover from errors introduced by the bad players. The only places where an honest play-
ers computation can be affected by a dishonest player are during the broadcast in the
multiplication protocol and the recombining step.

To enable the honest player to recover the underlying secret we hence require some
form of error correction. To a LSSS we can associate a linear [n, k, d]-code as follows,
each set of shares [s] becomes an element in the code C. We let Supp(x) for some
vector x denote the set Supp(x) = {i : xi �= 0}. Let Σ′ ⊂ Σ denote a subset of the
adversary structure.

We say that Σ′ is “error-decodable” if for all c ∈ Fn
q we have that, for all (e, e′) ∈ Fn

q

with Supp(e), Supp(e′) ∈ Σ′, and for all t, t′ ∈ Fk
q with c = e+t·M = e′+t′ ·M , we

have t·p = t′·p. Note a error-decodable subset Σ′ is one for which on receipt of a set of
shares c which may have errors introduced by parties in B for B ∈ Σ′, it is “possible”
to determine what the underlying secret should have been. For the small values of q and
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n we envisage in our application scenario, we can write down the correction algorithm
associated to the set Σ′ as a trivial enumeration, i.e. list-decoding.

We say that Σ′ is “error-detectable” if for all e ∈ Fn
q with Supp(e) ∈ Σ′ and e �= 0,

and for all t ∈ Fk
q then e + t ·M is not a code-word. Note a error-detectable subset

Σ′ is one for which if any errors are introduced by parties in B for B ∈ Σ′, we can
determine that errors have been introduced but possibly not what the error positions are.

If a set is Σ′ is error-detectable then this corresponds to a set of possible adversary
structures for which we can tolerate a form of covert corruption. Namely, we are unable
to identify exactly which parties are corrupt, but we are able to determine that some
parties are trying to interfere with the computation. Note, this is slightly weaker than
the standard notion of covert adversary, since we can detect that someone has cheated
but not who.

If a set Σ′ is error-decodable then in our main protocol, any error introduced by a
set parties B ∈ Σ′ can be corrected. Thus our protocol can tolerate active adversaries
lying in Σ′. For q = 2 and n = 2 however any error-decodable set must have Σ′ = ∅.
As a bigger example consider the LSSSM = (M,p) over F2 given by

M =
(

1 1 0 0
0 0 1 1

)
p =
(

1
1

)
.

This has adversary structure Σ(M) = {{1}, {2}, {3}, {4}, {1, 2}, {3, 4}}. The subset
Σ′ = {{1}, {2}, {3}, {4}} (and any subset thereof) is a error-detectable set, essen-
tially because the underlying code is the repetition code on two symbols. The following
subsets (and any subset thereof) is a error-decodable set

{{1}, {3}} or {{1}, {4}} or {{2}, {3}} or {{2}, {4}}.

A subset Σ′ which is either error-decodable or error-detectable therefore corresponds
to a mixed adversary structure.

We end this section with two remarks on how the above discussion differs from
prior notions in the literature. Firstly, the notion of error correction used above is not
the usual notion in coding theory. We do not require that there is an algorithm which
recovers the entire code-word, or equivalently recovers all of the shares, only that there
is an algorithm which recovers the underlying shared secret itself. This is a possibly
simpler error correction problem, and has been studied before in the context of secret
sharing schemes [27]. In [27] it is shown that Σ′ ⊂ Σ is error-decodable if and only if
for all W1, W2 ∈ Σ′ and all B ∈ Σ we have W1 ∪W2 ∪ B �= P , which is a natural
extension of the usual Q3 condition.

Secondly, we associate the secret sharing scheme with the [k, n, d] code consisting
of its shares. This is because the parties “see” a code word in this code. Usually in the
SMPC literature one associates a secret sharing scheme with the [k + 1, n, d] code in
which one also appends the secret to the code-word. In such a situation correction is
about recovering the one erased entry in the code word given some errors in the other
entries.
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7 Implementation Aspects

In this section we outline two implementation aspects which we feel are worth pointing
out. However first we discuss why our scheme is more efficient than applying standard
SMPC directly to the problem.

7.1 Efficiency Comparison

Our claimed improved efficiency and applicability comes from the following main
points:

– We dispense with the costly protocol used to produce multiplication triples in the
paper of Damgård et al [14]. This is done by giving each party access to a trusted
model. The set of trusted models produce the multiplication triples on behalf of the
parties.

– This in turn means our main protocol, in the passive case only, requires access to
public channels as opposed to secure channels. In addition requiring security for
a subset Σ′ of Σ which is error-decodable, in the active adversary case, we only
require reliable broadcast channels as opposed to consensus broadcast.

– The removal of the need for secure channels between the parties means that for
adaptive security we no longer require any notion of non-committing encryption
to secure these channels. Since all known non-committing encryption schemes are
not truly practical this provides a major benefit in terms of security analysis.

– Our trusted models are very simple, only requiring the secure evaluation of a PRF.
They thus are simpler than existing trusted hardware modules, such as TPMs or
Smart Cards. Indeed one could possibly implement our functionality using the APIs
on such existing modules, a topic which we leave to future work. One should com-
pare our modules to the modules used in [30], in which the token is used to compute
a Yao circuit on-the-fly. Whilst the latter such tokens are relatively inexpensive, they
are certainly more complicated than ours and less possible to realise using standard
components.

– Our protocol realises a secure system using weaker access structures and hence sim-
pler LSSS. For example we can use two parties and computations over F2, which is
a set of parameters which would be impossible with standard SMPC. Using arith-
metic circuits over F2 implies that existing SMPC protocols for comparison and
equality of integers, two common requirements, are significantly simpler than when
using SMPC over Fp for p > 2.

However, we should point out that our protocol has two major disadvantages in the
context of SOC in a cloud computing environment. Firstly, we require a multitude
of cloud providers as opposed to the usual one. Hence, our solution requires a major
change in the business model. Without access to practical fully homomorphic encryp-
tion, however, this seems unavoidable if we wish to provide some form of security for
data holders. Secondly, we require the cloud providers to install a piece of trusted hard-
ware with a shared symmetric key held commonly between the trusted modules. Thus,
the cloud model of using off the shelf commodity hardware is broken. This is done
however to enable improved efficiency, and the addition trusted hardware has been kept
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to a minimum. The method of [30] uses a different approach, requiring a single trusted
computation party, however this single party is augmented with a more complicated
module which implements a functionality less like the commodity functionality which
we propose. In addition the proposal of [30] requires a re-garbling of the database on
each query.

7.2 Data Transfer from Client to Servers

Up to now we have assumed that the data provider is connected to the servers by pair-
wise secure channels and that when the data is first transferred to the servers it needs
to be sent n times (one distinct transmission for each server). In this section we show a
standard trick which enables the data transfer to happen in one-shot, thereby reducing
the amount of work for the data provider. The method is a generalisation to arbitrary
LSSS of the threshold protocol described in [6], which itself relies on the transform
from replicated secret sharing schemes to LSSS schemes presented in [10]. We recap
on this technique here for completeness.

Suppose the data provider has input x1, . . . xt which he wishes to share between
the servers P1 . . . Pn with respect to the LSSSM = (M,p). Let U be the collection
of maximal unqualified sets U of M. For every set U ∈ U , let ωU be a row vector
satisfying ωU ·MU = 0 and ωU ·p = 1. The vector ωU is used to construct known valid
sharings of 1 which are zero for players in the unqualified set U . We set [tU ] = ωU ·M .

It is not clear that such an ωU always exists however observe that the setP\U is min-
imally qualified and therefore the system of equations ωU ·M = ωU · (MU‖MP\U ) =
(0‖v) has nontrivial solutions (else we would need an extra contribution from a player
Pi ∈ U so the set P \ U wouldn’t be minimally qualified).

To send the data to the servers the client now selects a key KU , for each U ∈ U ,
to a pseudorandom function F . These keys are then distributed such that Pi obtains
key KU if and only if i �∈ U . This distribution is done once, irrespective of how much
data needs to be transmitted, and can be performed in practice by encryption under the
public key of each server. The crucial point to observe is that this distribution of values
KT is identical to the distribution of shares with respect to the replicated secret sharing,
of the value

⊕
U∈U KU with respect to the access structure defined by our LSSSM.

We use an analogue of this fact to distribute the data in one go.
The data provider then computes for each value of xj

yj = xj −
∑
U∈U

FKU (j)

and broadcasts the values yj , for j = 1, . . . , t, to all servers. Player i computes his
sharing of xj , namely [xj ]i as

[xj ]i = yj · [tU ]i +
∑

U∈U ,i�∈U

FKU (j)

Note, due to the construction of the sharings [tU ], namely that [tU ]i = 0 if i ∈ U , we
have

[xj ]i =

(
yj +

∑
U∈U

FKU (j)

)
· [tU ]i,
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from which it follows, by linearity, that [xj ]i is a valid sharing of something with respect
to the LSSSM. That [xj ] is a sharing of the value [yj ] follows since [tU ] is a sharing
of one.

7.3 LSSS over F2

A major practical benefit of our combination of application scenario and protocol is
that one can use ideal LSSS over F2 with a small number of players. In most data
outsourcing scenarios the major computation is likely to be comparison and equality
checks between data as opposed to arithmetic operations. For example most simple
SQL queries are simple equality checks, auctions are performed by comparisons, etc.
Whilst arithmetic circuits over any finite field can accomplish these tasks, the overhead
is more than when using arithmetic circuits over F2.

For example consider a simple n-bit equality check between two integers x and y.
If one uses arithmetic circuits over Fp with p > 2n then one can perform this com-
parison by securely computing (x− y)p−1 and applying Fermat’s Little Theorem. This
requires O(log p) multiplications, and in particular (3/2) log p operations on average.
Alternatively using an arithmetic circuit over F2, we hold all the bits xi and yi of x and
y individually and then compute zi = ¬(xi ⊕ yi), which is a linear operation and then∏

zi, which requires n multiplications.
Further benefits occur with this representation when one needs to perform an opera-

tion such as x < y. Here when working over Fp one converts the integers to bits, and
then performs the standard comparison circuit. But not only is converting between bit
and normal representations expensive, the comparison circuit involves a large number
of multiplications (due to xor not being a linear operation over Fp). If we work on bits
all the time by working over F2, then both of these problems disappear.

In the following table we present a comparison of our approach of using semi-trusted
hardware modules with the approach of using SMPC “out-of-the-box”. We focus on the
case of honest-but-curious computing parties.

Property Our Solution MPC out-of-the-box
Setup Assumptions Each party has a semi-

trusted hardware module
None

Network Assumptions Between
Players

None Pairwise secure channels

Access Structure Any Q2

Production of Multiplication
Triples

Requires semi-trusted
hardware modules only

Requires an interactive
protocol

Assuming threshold LSSS, con-
ditions on q and n

None q < n
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Abstract. We propose a coin-flip protocol which yields a string of strong,
random coins and is fully simulatable against poly-sized quantum adver-
saries on both sides. It can be implemented with quantum-computational
security without any set-up assumptions, since our construction only as-
sumes mixed commitment schemes which we show how to construct in
the given setting. We then show that the interactive generation of random
coins at the beginning or during outer protocols allows for quantum-
secure realizations of classical schemes, again without any set-up as-
sumptions. As example applications we discuss quantum zero-knowledge
proofs of knowledge and quantum-secure two-party function evaluation.
Both applications assume only fully simulatable coin-flipping and mixed
commitments. Since our framework allows to construct fully simulat-
able coin-flipping from mixed commitments, this in particular shows that
mixed commitments are complete for quantum-secure two-party function
evaluation. This seems to be the first completeness result for quantum-
secure two-party function evaluation from a generic assumption.

1 Introduction

True randomness is a crucial ingredient in many cryptographic applications.
Therefore, secure coin-flipping is an essential primitive, which allows two parties
to agree on a uniformly random bit in a fair way, such that neither party can in-
fluence the value of the coin to his advantage. We investigate coin-flip protocols
with classicalmessages exchange but where the adversary is assumed to be capable
of quantum computing. Security of cryptographic protocols in the quantum world
means, of course, that quantum computation does not jeopardize the assumption,
underlying the protocol construction. However, we encounter additional setbacks
in the security proofs, which are mostly due to the fact that some well-known clas-
sical proof techniques cannot be applied in a quantum environment.

Our Contribution. We aim at establishing coin-flipping as a stand-alone tool
in a model without any setup assumptions. As such, our protocol can be used in
several contexts and different generic constructions. One notable application is
as subroutine for realizing the theoretical assumption of the common-random-
string-model (CRS-model)1. Since the generation of a CRS often significantly
1 In the CRS-model the parties are provided with a public common random string

CRS before communication, taken from the uniform distribution.
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simplifies the design of (quantum-secure) protocols, this then implies that var-
ious interesting applications can be implemented quantum-securely in a simple
manner from scratch.

In more detail, we first investigate different degrees of security that a coin-flip
protocol can acquire. Then, we propose and prove constructions that allow us
to amplify the respective degrees of security such that weaker coins are con-
verted into very strong ones2. The amplification only requires mixed commit-
ment schemes, which we know how to construct with quantum security under
reasonable assumptions—for instance, based on the quantum hardness of the
learning with error problem. Combining our amplification protocols allows to
take a very weak notion of coin-flipping and amplify it to a coin-flip protocol
which is fully simulatable against poly-sized quantum adversaries. By fully simu-
latable we mean that both sides can be simulated in quantum polynomial time.

Our amplification framework should also be understood as a step towards fully
simulatable constant-round coin-flipping. To the best of our knowledge, to date
there does not exist any fully simulatable protocol which is constant-round and
which allows to generate a long random bit-string. In particular, no fully simu-
latable constant-round coin-flip protocol is known to securely compose in paral-
lel. Since all our amplification protocols work in constant-round, we show that if
there exists a constant-round coin-flip protocol of long strings with weak security,
then there also exists a constant-round coin-flip protocol of long strings which is
fully simulatable. Even though our work leaves fully simulatable constant-round
coin-flipping of long strings as a fascinating open problem, we consider it a contri-
bution in itself to define a reasonably weak but sufficient security notion to realize
fully simulatable constant-round coin-flipping of long strings.

Related Work. The standard coin-flip protocol of [2] was proven secure in a
quantum environment in previous work [7]. In its basic form this protocol yields
one coin as output. Of greater importance, however, is flipping a string of coins
instead of a bit, in particular, when generating a CRS. The basic construction
composes in sequence with security classified as medium in our framework here.
Parallel composition is possible using an extended construction providing effi-
cient simulations on both sides. This extension, however, requires a CRS as initial
assumption, i.e. the CRS-model, and hence, violates our strong requirement of
applications, implementable quantum-securely without any set-up assumptions.

As an example application, we discussed in [7] the generation of a CRS in
the context of e.g. a quantum zero-knowledge proof. For an overview and more
details, see also [14]. To further show the implications of coin-flipping as an
implementation of the CRS-model in the quantum setting, we here add the
functionalities of a quantum zero-knowledge proof of knowledge and quantum-
secure function evaluation. We want to mention the following related work. First,
an alternative approach in the context of zero-knowledge was independently
investigated by Smith [18]. There, coin-flipping is implemented by a string
2 For clarity, we note that we use the intuitive interpretation of “weak” and “strong”

coins related to their security degrees, which differs from the definitions in the quan-
tum literature.
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commitment with special openings and validated in subsequent zero-knowledge
proofs in sequence, and which therefore has round complexity depending on the
security parameter, i.e. how many proofs must be completed to achieve a negli-
gible soundness error. The coin-string is used as key to encode the witness and
more zero-knowledge proofs are given to prove that. As encryption scheme, they
suggest a scheme with similar properties as in the standard construction for
mixed commitments [8,5,4]. To the best of our knowledge, the question of its ac-
tual secure implementation was left open, and a formal description and analysis
was never published. Second, we want to mention the concurrent and indepen-
dent work of Hallgren, Smith, and Song, as sketched in [12]. They also prove,
among other things, classical protocols for zero-knowledge proofs of knowledge
and function evaluation secure in the quantum setting by proposing a composi-
tion theorem that allows to use the basic coin-flipping protocol in [7] to generate
a CRS. In addition, they give a UC-secure protocol for said tasks in the CRS-
model.

Furthermore, the techniques used in our reductions are inspired by techniques
used by works in the UC framework (cf. [8]), where rewinding is also a problem.
But to the best of our knowledge, all our reductions are novel, and might be also
of classical interest.

Security in the Quantum World. It is well known that bit commitments
imply a single coin-flip—in the classical as in the quantum world [2, 7]—in a
straightforward way: Alice chooses a random bit a and commits to it, Bob then
sends his bit b in plain, then the commitment is opened, and the resulting coin
is a ⊕ b. However, even when basing the embedded commitment scheme on
a computational assumption that withstands quantum attacks (for the hiding
property), the security proof of the outer coin-flipping (and its integration into
other applications) cannot easily be translated from the classical to the quantum
world. Typically, security against a classical adversary is argued in this context
by rewinding the adversary in a simulation. In brief, it is shown that a run of a
protocol between a dishonest Bob and honest Alice can be efficiently simulated
without interacting with Alice but with a simulator instead. A simulator basically
prepares a valid conversation and tries it on dishonest Bob. Now, in case Bob
does not send the expected reply, we need the possibility to rewind him. Then
to conclude the proof, we have to show that the expected running time of the
simulation is polynomial.

Unfortunately, rewinding as a proof technique can generally not be directly ap-
plied in the quantum world, i.e., if the dishonest machine is a quantum computer.
First, we cannot trivially copy and store an intermediate state of a quantum sys-
tem, and second, quantum measurements are in general irreversible. In order to
produce a classical transcript, the simulator would have to partially measure
the quantum system without copying it beforehand, but then it would become
impossible to reconstruct all information necessary for correct rewinding [11]. It
is worth mentioning though that rewinding in the quantum world is possible in a
limited setting, as shown by Watrous [19]. This technique was also used for prov-
ing the quantum security of single coin-flipping based on bit commitments [7].
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However, the generation of a string of coin must be based on string commitments.
In this setting, the simulator cannot rewind in poly-time. A possible solutions
for simulating against a classical Bob is then to let him commit to his message
in a way which allows to extract the message in the simulation. Therewith, the
message is known to the simulator in any following iteration of rewinding. This
technique seems to be doomed to fail in the quantum realm, since it is neither
known how to rewind quantumly for string commitments nor can any interme-
diate status (such as Bob’s commitment) be preserved. Moreover, commitment
constructions providing flavors of extractability without rewinding require some
stronger set-up assumptions. Thus, other techniques such as our method based
on mixed commitments, are needed for solutions in this context.

Applications. Even though we establish coin-flipping as a stand-alone tool, we
highlight again that the generation of a CRS leads to a simple and quantum-
secure implementation of various interesting applications without any set-up
assumptions. We show two different example applications, in addition to the
functionalities already discussed in [7]. First, we propose a quantum-secure zero-
knowledge proof of knowledge based on a witness encoding scheme, which we
define such that it provides a certain degree of extractability and simulatabil-
ity in the quantum world. Our zero-knowledge construction only requires mixed
commitments, which can be implemented with quantum security. This is of par-
ticular interest, as the problems of rewinding in the quantum realm complicate
implementing proofs of knowledge from scratch. And second, we show that mixed
commitment schemes are sufficient for quantum-secure function evaluation of any
classical poly-time function f with security against active quantum adversaries.
In more detail, we first show that mixed commitments imply an oblivious trans-
fer protocol with passive security. From that it is straightforward to construct a
protocol for any classical poly-time function with security against passive quan-
tum adversaries [13]. As our main result in that context, we then propose a
quantum-secure implementation for evaluating any such function with security
against active quantum adversaries.

2 Preliminaries

Notation. We use negl (n) to denote the set of negligible functions (in n).
For a bit-string x ∈ {0, 1}n and a subset S ⊆ {1, . . . , n} of size s, we define
x|S ∈ {0, 1}s to be the restriction (xi)i∈S . The probability of event E is denoted
by Pr [E]. For a random variable X we use PX to denote the distribution of
X , and for an additional random variable Y we use PX|Y to denote the con-
ditional distribution of X given Y . Statistical indistinguishability of families of
classical random variables is denoted by

s≈, and
q≈ indicates quantum poly-time

indistinguishability of families of random variables, i.e., the families cannot be
distinguished by poly-sized families of quantum circuits.

Definition of Security. We are interested in classical two-party protocols se-
cure in a quantum world. We work in the security framework, introduced in [9]
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and extended in [4]. The definitions are proposed for quantum protocols that
implement classical non-reactive two-party functionalities, meaning that in- and
output must be classical. The framework allows functionalities which behave dif-
ferently in case of a dishonest player, and it is further shown that any protocol
in the framework composes sequentially in a classical environment, i.e. within an
outer classical protocol. For the sake of simplicity, the framework does not assume
additional entities such as e.g. an environment. The original security definitions
for unconditional security [9] are phrased in simple information-theoretic con-
ditions, depending on the functionality, which implies strong simulation-based
security. In [4], it is then shown that computational security (in the CRS-model)
can be defined similarly. In the following, we state the formalism essential for
this work3. For more details on the framework and notation, we refer to [4,6,9],
and to [14] for an overview.

Our protocols run between players Alice (A) and Bob (B) and all definitions
are given in the two-world paradigm of simulation-based proofs. The real world
captures the actual protocol Π , consisting of message exchange between the
parties and local computations. Real-world players are denoted by honest A, B
and are restricted to poly-time classical strategies. Dishonest players A′, B′ are
allowed any quantum poly-time strategy. Formally, let P denote the set of poly-
size quantum circuits, so we assume that A′, B′ ∈ P. The ideal functionality F
models the intended behavior of the protocol in the ideal world, where the players
interact using F . Honest and dishonest players in the ideal world (a.k.a. sim-
ulators) are denoted by Â, B̂ and Â′, B̂′, respectively. An honest player simply
forwards messages to and from F , dishonest players are allowed to change their
messages. Again Â′, B̂′ ∈ P. Now, the input-output behavior of F defines the
required input-output behavior of Π . Intuitively, if the executions are indistin-
guishable, security of the protocol in real life follows. In other words, a dishonest
real-world player that attacks protocol Π cannot achieve (significantly) more
than an ideal-world adversary that attacks the corresponding functionality F .

The common input state ρUV =
∑

u,v PUV (u, v)|u〉〈u| ⊗ |v〉〈v| for some prob-
ability distribution PUV is classical, and we understand U, V as random input
variables (for Alice and Bob, respectively). The same holds for the classical
output state ρXY with output X, Y for Alice respectively Bob. The input-
output behavior of the protocol is uniquely determined by PXY |UV , and we
write Π(U, V ) = (X, Y ). Then, a general classical ideal functionality F is given
by a conditional probability distribution PF(U,V )|UV with F(U, V ) denoting the
ideal-world execution, where the players forward their inputs U, V to F and
output whatever they obtain from F .

Definition 1 (Correctness). A protocol Π(U, V ) = (X, Y ) correctly imple-
ments an ideal classical functionality F , if for every distribution of the input
values U and V , the resulting common output (X, Y ) satisfies (U, V, X, Y )

s≈
(U, V,F(U, V )).

3 Note that we use a simplified joint output representation in comparison to [9].
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We now define computational security against dishonest Alice, the definitions
for dishonest Bob are analogue. Let Z and U ′ denote dishonest Alice’s classical
and quantum information. We consider a poly-size quantum circuit, called input
sampler, which takes as input the security parameter and produces the input
state ρU ′ZV . We require from the input sampler that any ρU ′ZV is restricted to
be of form ρU ′↔Z↔V =

∑
z,v PZV (z, v)|z〉〈z| ⊗ |v〉〈v| ⊗ ρz

U ′ (see [6] for notational
details), where it holds that4 ρz

U ′ = ρz,v
U ′ . This expresses conditional indepen-

dence, namely that Bob’s classical V is independent of Alice’s quantum part U ′

when given Z. In other words, Alice’s quantum part U ′ is correlated with Bob’s
part only via her classical Z.

Definition 2 (Computational security against dishonest Alice). A pro-
tocol Π implements an ideal classical functionality F computationally securely
against dishonest Alice, if for any real-world adversary A′ ∈ P, there exists an
ideal-world adversary Â′ ∈ P such that, for any efficient input sampler with
ρU ′ZV = ρU ′↔Z↔V , it holds that the outputs are quantum-computationally in-
distinguishable, i.e., outΠA′,B

q≈ outF
Â′,B̂

.

We state these output states explicitly as outΠA′,B = ρUX′ZY and outF
Â′,B̂

=
ρUX′↔Z↔Y , which shows that Alice’s possibilities in the ideal world are limited:
She can produce some classical input U for F from her quantum input state
U ′, and then she can obtain a quantum state X ′ by locally processing U and
possibly F ’s classical reply X .

3 Security Notions for Coin-Flipping

We denote a generic protocol with a λ-bit coin-string as output by Π λ−COIN
A,B ,

corresponding to an ideal functionality Fλ−COIN. The outcome of such a protocol
is c ∈ {0, 1}λ∪{⊥}, i.e., either an λ-bit-string or an error message. We use several
security parameters, indicating the length of coin-strings for different purposes;
the length of a coin-flip yielding a key or a challenge are denoted by κ or σ,
respectively. The ideal functionality for coin-flipping is defined symmetric such
that always the respective dishonest party has an option to abort. We state the
ideal functionalities in the case of both players being honest and in the case of
dishonest Alice and honest Bob (Fig. 1). Note that the latter then also applies
to honest Alice and dishonest Bob by simply switching sides and names.

Recall that the joint output representation of a protocol execution is denoted
by outΠA,B (with Π = Π λ−COIN

A,B ) and given here for the case of honest players. The
same notation with F = Fλ−COIN and Â, B̂ applies in the ideal world as outF

Â,B̂
,

where the players invoke the ideal functionality Fλ−COIN and output whatever

4 ρx
E denotes a state in register E, depending on value x ∈ X of random variable X

over X with distribution PX . Then, from the view of an observer, who holds register
E but does not know X, the system is in state ρE =

∑
x∈X PX(x)ρx

E, where ρE

depends on X in the sense that E is in state ρx
E exactly if X = x.
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Functionality Fλ−COIN with honest players:

Upon receiving requests start from both Alice and Bob, Fλ−COIN outputs
uniformly random h ∈R {0, 1}λ to Alice and Bob.

Functionality Fλ−COIN with dishonest Alice:

1. Upon receiving requests start from both Alice and Bob, Fλ−COIN outputs
uniformly random h ∈R {0, 1}λ to Alice.

2. It then waits to receive her second input � or ⊥ and outputs h or ⊥ to Bob,
respectively.

Fig. 1. The Ideal Functionality for λ-bit Coin-Flipping

they obtain from it. We need an additional notation here, describing the outcome
of a protocol run between e.g. honest A and B, namely c← Π λ−COIN

A,B .
We will define three flavors of security for coin-flip protocols, namely un-

controllable (uncont), random and enforceable (force). The two sides can have
different flavors. Then, if a protocol Π λ−COIN

A,B is, for instance, enforceable against
Alice and random against Bob, we write π(force,random), and similarly for the
eight other combinations of security. Note that for simplicity of notation, we will
then omit the indexed name as well as the length of the coin, as they are clear
from the context. Again, we define all three flavors for Alice’s side only, as the
definitions for Bob are analogue. Recall that U ′ and Z resp. V denote dishon-
est Alice’s quantum and classical input resp. honest Bob’s classical input. As
before, we assume a poly-size input sampler, which takes as input the security
parameter, and produces a valid input state ρU ′ZV = ρU ′↔Z↔V . Note that an
honest player’s input is empty but models the invocation start. We stress that
we require for all three security flavors and for all c ∈ {0, 1}λ that

Pr [c← Π λ−COIN
A,B ] = 2−λ ,

which implies that when both parties are honest, then the coin is unbiased.
Below we only define the extra properties required for each of the three flavors.

We call a coin-flip uncontrollable against Alice, if she cannot force the coin to
hit some negligible subset, except with negligible probability.

Definition 3 (Uncontrollability against dishonest Alice). We say that
protocol Π λ−COIN

A,B implements an uncontrollable coin-flip against dishonest Alice,
if it holds for any poly-sized adversary A′ ∈ P with inputs as specified above and
all negligible subsets Q ⊂ {0, 1}λ that

Pr [c← Π λ−COIN
A′,B : c ∈ Q] ∈ negl (κ) .

Note that we denote by Q ⊂ {0, 1}λ a family of subsets {Q(κ) ⊂ {0, 1}λ(κ)}κ∈N

for security parameter κ. Then we call Q negligible, if |Q(κ)|2−λ(κ) is negligible
in κ. In other words, we call a subset negligible, if it contains a negligible fraction
of the elements in the set in which it lives.



28 C. Lunemann and J.B. Nielsen

We call a coin-flip random against Alice, if she cannot enforce a non-uniformly
random output string in {0, 1}λ, except by making the protocol fail on some
chosen runs. That means she can at most lower the probability of certain output
strings compared to the uniform case.

Definition 4 (Randomness against dishonest Alice). We say that protocol
Π λ−COIN

A,B implements a random coin-flip against dishonest Alice, if it holds for
any poly-sized adversary A′ ∈ P with inputs as specified above that there exists
an event E such that Pr [E] ∈ negl (κ) and for all x ∈ {0, 1}λ it holds that

Pr [c← Π λ−COIN
A′,B : c = x | Ē] ≤ 2−λ .

It is obvious that if a coin-flip is random against Alice, then it is also an un-
controllable coin-flip against her. We will later discuss a generic transformation
going in the other direction from uncontrollable to random coin-flipping.

We call a coin-flip enforceable against Alice, if it is possible, given a uniformly
random c, to simulate a run of the protocol hitting exactly the outcome c, though
we still allow that the corrupted party forces abort on some outcomes5.

Definition 5 (Enforceability against dishonest Alice). We call protocol
Π λ−COIN

A,B enforceable against dishonest Alice, if it implements the ideal function-
ality Fλ−COIN against her.

That means that for any poly-sized adversary A′ ∈ P, there exists an ideal-world
adversary Â′ ∈ P that simulates the protocol with A′ as follows. Â′ requests
output h ∈ {0, 1}λ from Fλ−COIN. Then it simulates a run of the coin-flip protocol
with A′ and tries to enforce output h. If Â′ succeeds, it inputs � as A′’s second
input to Fλ−COIN. In that case, Fλ−COIN outputs h. Otherwise, Â′ inputs ⊥ to
Fλ−COIN as second input and Fλ−COIN outputs ⊥. In addition, the simulation is
such that the ideal output is quantum-computationally indistinguishable from
the output of an actual run of the protocol, i.e., outΠA′,B

q≈ outF
Â′,B̂

, where Π =

Π λ−COIN
A′,B and F = Fλ−COIN. Enforceability against dishonest Bob is analogously

defined. Corollary 1 follows.

Corollary 1. If Π λ−COIN
A,B ∈ π(force,force), i.e., it is enforceable against both dis-

honest Alice and dishonest Bob, then Π λ−COIN
A,B is a secure implementation of

Fλ−COIN, according to Definition 2.

4 Mixed Commitments

We use mixed commitment schemes throughout our constructions—they will
indeed be our only computational assumption. Mixed commitment are uncon-
ditionally hiding for some public keys and unconditionally binding for others.
5 Note that an enforceable coin-flip is not necessarily a random coin-flip, as it is

allowed that the outcome of an enforceable coin-flip is only quantum-computationally
indistinguishable from uniformly random, whereas a random coin-flip is required to
produce truly random outcomes on the non-aborting runs.
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In the following, we introduce mixed commitments, denoted by commitpk, more
formally. We also describe a construction of an interactive commitment protocol
COMMITpk with mixed-commitment-scheme-like properties. The reason for pre-
senting the protocol here is to simplify the description of the later protocol in
which it is used as a subprotocol.

4.1 Mixed Commitment Schemes

Mixed commitment schemes consists of four poly-time algorithms GH, GB, commit,
and xtr. The unconditionally hiding key generator GH outputs public keys pk ∈
{0, 1}κ6. The unconditionally binding key generator GB outputs key pairs (pk, sk),
where pk ∈ {0, 1}κ and where sk is the secret key. The commitment algorithm
takes as input a message m, a randomizer r and a public key pk and outputs a
commitment C = commit pk (m, r) . The extraction algorithm xtr takes as input
a commitment C and a secret key sk and outputs a message m′, meant to be
the message committed by C. We require the following properties:

Unconditionally hiding: For keys pk generated by GH it holds that commitpk

is statistically hiding, i.e. (pk, commit pk (m1, r1) )
s≈ (pk, commit pk (m2, r2) ) for

all m1, m2 when r1 and r2 are uniformly random and independent.

Extractability: It holds for all pairs (pk, sk) generated by GB and for all values
m, r that xtrsk(commit pk (m, r) ) = m.

Key indistinguishability: A random public key pk1 generated by GB and
a random public key pk2 generated by GH are indistinguishable by poly-sized
quantum circuits, i.e., pk1

q≈ pk2.
We additionally require that random public keys generated by GH are sta-

tistically close to uniform in {0, 1}κ, i.e., almost all keys are unconditionally
hiding7.

As a candidate for instantiating our definition we can, for instance, take
the lattice-based public-key encryption scheme of Regev [17] in its multi-bit
variant as given in the full version of [16]. Regev’s cryptosystem is based on
the hardness of the learning with error problem, which can be reduced from
worst-case (quantum) hardness of the shortest vector problem (in its decision ver-
sion). Thus, breaking the scheme implies an efficient algorithm for approximating
the lattice problem in the worst-case, which is assumed to be hard even with
quantum computing power. A regular public key for Regev’s scheme is proven
to be quantum-computationally indistinguishable from the case where a public
key is chosen from the uniform distribution. In this case, the ciphertext carries

6 For notational simplicity, the length of public keys is assumed to equal security
parameter κ.

7 The definition is a weakening of the original notion of mixed commitments from [8],
in that we do not require that unconditionally hiding keys are equipped with an
equivocation trapdoor. It is also a strengthening in that we require quantum indis-
tinguishability of the two key flavors.
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essentially no information about the message [17, Lemma 5.4]. This proof of
semantic security for Regev’s cryptosystem is in fact the property we require for
our commitment.

4.2 The Protocol COMMITpk

In one of our security amplifications of coin-flip protocols we will need a mixed
commitment scheme which also provides equivocability, i.e., a simulator can open
unconditionally hiding commitments to different values. We add equivocability
using an interactive protocol COMMITpk. Instead of equipping unconditionally hid-
ing keys with equivocation trapdoors, we will do it by letting the equivocation
trapdoor be the ability of the simulator to force the outcome of a coin-flip proto-
col in the simulation. The reason for this change, as compared to [8], is that the
notion of a mixed commitment scheme in [8] was developed for the CRS-model,
where the simulator is free to pick the CRS and hence could pick it to be a un-
conditionally hiding public key with known equivocation trapdoor. Here we are
interested in the bare (CRS devoid) model and hence have to add equivocation
in a different manner. This is one of the essential steps in bootstrapping fully
simulatable strong coin-flipping from weak coin-flipping.

The protocol COMMITpk uses a secret sharing scheme sss, described now. Let
σ be a secondary security parameter. Given message m = (m1, . . . , mσ) ∈ Fσ

and randomizer s = (s1, . . . , sσ) ∈ Fσ, let fm,s(X) denote the unique polynomial
of degree 2σ − 1, for which fm,s(−i + 1) = mi for i = 1, . . . , σ and fm,s(i) = si

for i = 1, . . . , σ. Furthermore, we “fill up” positions i = σ + 1, . . . , Σ, where
Σ = 4σ, by letting si = fm,s(i). The shares are now s = (s1, . . . , sΣ).

We stress two simple facts about sss. First, for any message m ∈ Fσ and any
subset S ⊂ {1, . . . , Σ} of size |S| = σ, the shares s|S are uniformly random in
Fσ, when S is chosen uniformly at random in Fσ and independent of m. This
aspect is trivial for S = {1, . . . , σ}, as we defined it that way, and it extends
to the other subsets using Lagrange interpolation. And second, if m1, m2 ∈ Fσ

are two distinct messages, then sss(m1; s1) and sss(m2; s2) have Hamming
distance at least Σ−2σ. Again, this follows by Lagrange interpolation, since the
polynomial fm1,s1(X) has degree at most 2σ−1, and hence, can be computed from
any 2σ shares si using Lagrange interpolation. The same holds for fm2,s2(X).
Thus, if 2σ shares are the same, then fm1,s1(X) and fm2,s2(X) are the same,
which implies that the messages m1 = fm1,s1(−σ + 1), . . . , fm1,s1(0) and m2 =
fm2,s2(−σ + 1), . . . , fm2,s2(0) are the same.

In addition to sss, the protocol COMMITpk uses a mixed commitment scheme
commitpk. The key generators for COMMITpk are the same as for commitpk. Fi-
nally, COMMITpk uses a coin-flip protocol π(random,force) which is random for the
committer and which is enforceable against the receiver of the commitment. The
details of COMMITpk are given in Fig. 2.

We first show that when (pk, sk) is generated using GB, then COMMITpk is ex-
tractable. Given any commitment M =

(
M1, . . . , MΣ

)
, we extract xtrsk(M) =(

xtrsk(M1), . . . , xtrsk(MΣ)
)

= (s1, . . . , sΣ) = s . Assume s′ = (s′1, . . . , s′Σ) is
the consistent sharing closest to s. That means that s′ is the vector which is
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Commitment Scheme COMMITpk:

Commitment Phase:

1. Let message m ∈ Fσ be the message. The committer samples uniformly
random s ∈ Fσ and computes the shares sss(m; s) = (s1, . . . , sΣ), where
si ∈ F.

2. He computes COMMIT pk

(
m, (s, r)

)
=
(
M1, . . . , MΣ

)
, where Mi =

commit pk (si, ri) for randomness r = (r1, . . . , rΣ).
3. The committer sends (M1, . . . , MΣ).

Opening Phase:

1. The committer sends the shares s = (s1, . . . , sΣ) to the receiver.
2. If the shares are not consistent with a polynomial of degree at most 2σ−1,

the receiver aborts.
3. The parties run π(random,force) to generate a uniformly random subset S ⊂

{1, . . . , Σ} of size |S| = σ.
4. The committer sends r|S .
5. The receiver verifies that Mi = commit pk (si, ri) for all i ∈ S. If the test

fails, he aborts. Otherwise, he computes the message m ∈ Fσ consistent
with s.

Fig. 2. The Commitment Scheme COMMITpk

Simulating COMMITpk with Trapdoor S:

1. Ŝ gets as input a uniformly random subset S ⊂ {1, . . . , Σ} of size σ and an
initial message m ∈ Fσ.

2. Ŝ commits honestly to m ∈ Fσ by M = COMMIT sk

(
m, (s, r)

)
, as specified in

the commitment phase.
3. Ŝ is given an alternative message m̃ ∈ Fσ, i.e., the aim is opening M to m̃.
4. Ŝ lets s|S be the σ messages committed to by M |S . Then it interpolates the

unique polynomial fm̃,s of degree at most 2σ − 1 for which fm̃,s(i) = si for
i ∈ S and for which fm̃,s(−i + 1) = m̃i for i = 1, . . . , σ. Note that this is
possible, as we have exactly 2σ points which restrict our choice of fm̃,s. Ŝ
sends s =

(
fm̃,s(1), . . . , fm̃,s(Σ)

)
to the receiver.

5. The parties run π(random,force) and Ŝ forces the outcome S.
6. For all i ∈ S, the sender opens Mi to fm̃,s(i). This is possible, since fm̃,s(i) = si

is exactly the message committed to by Mi when i ∈ S.

Fig. 3. The Ideal-World Simulation of COMMITpk

consistent with a polynomial fm′,s′(X) of degree at most 2σ − 1 and which at
the same time differs from s in the fewest positions. Note that we can find s′ in
poly-time when using a Reed Solomon code, which has efficient minimal distance
decoding. We then interpolate the polynomial fm′,s′(X), let m′ = fm′,s′(−σ +
1), . . . , fm′,s′(0), and let xtrsk(M) = m′. Any other sharing s′′ = (s′′1 , . . . , s′′Σ)
must have Hamming distance at least 2σ to s′. Now, since s is closer to s′ than
to any other consistent sharing, it must, in particular, be closer to s′ then to s′′.
This implies that s is at distance at least σ to s′′.
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We will use this observation for proving soundness of the opening phase. To
determine the soundness error, assume that COMMITpk does not open to the shares
s′ consistent with s. As observed, this implies that

(
xtrsk(M1), . . . , xtrsk(MΣ)

)
has Hamming distance at least σ to s′. However, when commitpk is uncondition-
ally binding, all Mi can only be opened to xtrsk(Mi). From the above two facts,
we have that there are at least σ values i ∈ {1, . . . , Σ} such that the receiver
cannot open Mi to si for i ∈ S. Since Σ = 4σ, these σ bad indices (bad for a
dishonest sender) account for a fraction of 1

4 of all points in {1, . . . , Σ}. Thus,
the probability that none of the σ points in S is a bad index is at most (3

4 )σ,
which is negligible. Setting σ = log 4

3
2 gives a negligible error of (1

2 )κ, where κ
is the security parameter.

We then analyze the equivocability of COMMITpk. We will use the ability of
the simulator for the committer to force the challenge S as the simulator’s trap-
door. It will simply pick S uniformly at random before the simulation and pre-
pare for this particular challenge. The details are given in Fig. 3. We omit an
analysis here but refer to Section 5.2, where the construction will be further
discussed.

5 Amplification Theorems for Strong Coin-Flipping

We now propose and prove theorems, which allow us to amplify the security
strength of coins. Ultimately, we aim at constructing a strong coin-flip protocol
π(force,force) with outcomes of any polynomial length � in λ from a weaker coin-
flip protocol π(force,uncont) of κ-bit-strings, where κ is the key length of the mixed
commitment scheme. We do this in two steps. We first show how to implement
π(force,random) for �-bit-strings (for any polynomial �) given π(force,uncont) for κ-bit-
strings, and we then show how to implement π(force,force) for poly-long bit-strings
given π(force,random) for poly-long bit-strings.

The ability to amplify π(force,uncont) for κ-bit-strings to π(force,force) for poly-
bit-string is of course only interesting, if there exists such a candidate. We do
not know of any protocol with flavor (force, uncont) but not (force, random).
However, we consider it as a contribution in itself to find the weakest security
notion for coin-flipping that allows to amplify to the final strong (force, force)
notion using a constant-round reduction.

A candidate for π(force,random) with one-bit outcomes is the protocol in [7],
which is—in terms of this context—enforceable against one side in poly-time
and random on the other side, with empty event E according to Definition 4,
and the randomness guarantee even withstanding an unbounded adversary8. The
protocol was shown to be sequentially composable [7,14]. Repeating the protocol
κ times in sequence gives a protocol π(force,random) for κ-bit-strings. Note that
this, in particular, gives a protocol π(force,uncont) for κ-bit-strings.

8 The protocol was described and proven as π(random,force), but due to the symmetric
coin-flip definitions here, we can easily switch sides between A and B.
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Protocol π(force,random):

1. A and B run π(force,uncont) to produce a public key pk ∈ {0, 1}κ.
2. A samples a ∈R {0, 1}�, commits to it with A = commit pk (a, r) and random-

izer r ∈R {0, 1}�, and sends A to B.
3. B samples b ∈R {0, 1}� and sends b to A.
4. A opens A towards B.
5. The outcome is c = a ⊕ b.

Fig. 4. Amplification from (force, uncont) to (force, random)

5.1 From (force, uncont) to (force, random)

Assume that we are given a protocol π(force,uncont), that only guarantees that Bob
cannot force the coin to hit a negligible subset (except with negligible probabil-
ity). We now amplify the security on Bob’s side from uncontrollable to random
and therewith obtain a protocol π(force,random), in which Bob cannot enforce a
non-uniformly random output string, except by letting the protocol fail on some
occasions. The stronger protocol π(force,random) is given in Fig. 4, where commitpk

is the basic mixed commitment scheme as described in Section 4.1. Correctness
of π(force,random) is obvious by inspection of the protocol.

Theorem 1. If π(force,uncont) is enforceable against Alice and uncontrollable
against Bob, then protocol π(force,random) is enforceable against Alice and random
for Bob.

We sketch the basic ideas behind the proof, which can be found in greater detail
in the full version of the paper [15]. Enforceability against A follows by forcing
pk to be a pk generated as (pk, sk)← GB. The simulator then uses sk to extract
a from A and then sends the b which makes a ⊕ b hit the desired outcome.
Randomness against B follows from the fact that only a negligible fraction of
the keys pk ∈ {0, 1}κ are not unconditionally hiding keys and the outcome of
π(force,uncont) is uncontrollable for B.

5.2 From (force, random) to (force, force)

We now show how to obtain a coin-flip protocol, which is enforceable against
both parties. Then, we can also claim by Corollary 1 that this protocol is a strong
coin-flip protocol, poly-time simulatable on both sides for the natural ideal func-
tionality F�−COIN. The protocol π(force,force) is described in Fig. 5 and uses the
extended commitment construction COMMITpk from Section 4.2. The protocol
makes two calls to a subprotocol with random flavor on one side and enforce-
ability on the other side, but where the sides are interchanged, i.e. π(force,random)

and π(random,force), so we simply switch the players’ roles. Again, correctness of
the protocol can be trivially checked.

Theorem 2. If π(force,random) is enforceable against Alice and random against
Bob, then protocol π(force,force) is enforceable against both Alice and Bob.



34 C. Lunemann and J.B. Nielsen

Protocol π(force,force):

1. A and B run π(force,random) to produce a random public key pk ∈ {0, 1}κ.
2. A computes and sends commitments COMMIT pk

(
a, (s, r)

)
= (A1, . . . , AΣ) to

B. In more detail, A samples uniformly random a, s ∈ Fσ. She then computes
sss(a; s) = (a1, . . . , aΣ) and Ai = commit pk (ai, ri) for i = 1, . . . , Σ.

3. B samples uniformly random b ∈ {0, 1}� and sends b to A.
4. A sends secret shares (a1, . . . , aΣ) to B. If (a1, . . . , aΣ) is not consistent with

a polynomial of degree at most (2σ − 1), B aborts.
5. A and B run π(random,force) to produce a challenge S ⊂ {1, . . . , Σ} of length

|S| = σ.
6. A sends r|S to B.
7. B checks if Ai = commit pk (ai, ri) for all i ∈ S. If that is the case, B computes

message a ∈ Fσ consistent with (a1, . . . , aΣ) and the outcome of the protocol
is c = a ⊕ b. Otherwise, B aborts and the outcome is c = ⊥ .

Fig. 5. Amplification from (force, random) to (force, force)

We sketch the main ideas behind the proof, which can be found in greater detail
in the full version of the paper [15]. Enforceability against A follows by forcing
pk to be a key pk generated as (pk, sk) ← GB. The simulator then uses sk
to extract a from (A1, . . . , AΣ). Then it sends the b that makes a ⊕ b hit the
desired outcome. Enforceability against B follows by letting the simulator sample
a uniformly random S and running COMMIT pk

(
a, (s, r)

)
= (A1, . . . , AΣ) in the

equivocal model with trapdoor S. Then the simulator waits for b and forces the
outcome of π(random,force) to be S, which allows it to open (A1, . . . , AΣ) to the a
that makes a⊕ b hit the desired outcome.

6 Application: Zero-Knowledge Proof of Knowledge

The purpose of a zero-knowledge proof of knowledge [10,1] is to verify in classical
poly-time in the length of the instance, whether the prover’s private input w is a
valid witness for the common instance x in relation R, i.e. (x, w) ∈ R. Here, we
propose a quantum-secure construction of a zero-knowledge proof of knowledge
based on witness encoding, which we define in the context of a simulation in
the quantum world. The protocol is constant-round if the coin-flip protocol is
constant-round.

6.1 Simulatable Witness Encodings of NP
We first specify a simulatable encoding scheme for binary relation R ⊂ {0, 1}∗×
{0, 1}∗, which consists of five classical poly-time algorithms (E, D, S, J, Ê). Then,
we define completeness, extractability and simulatability for such a scheme in
terms of the requirements of our zero-knowledge proof of knowledge.

Let E : R×{0, 1}m → {0, 1}n denote an encoder, such that for each (x, w) ∈
R, the n-bit output e ← E(x, w, r′) is a random encoding of w, with random-
ness r′ ∈ {0, 1}m and polynomials m(|x|) and n(|x|). The corresponding decoder
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D : {0, 1}∗ × {0, 1}n → {0, 1}∗ takes as input an instance x ∈ {0, 1}∗ and an
encoding e ∈ {0, 1}n and outputs w ← D(x, e) with w ∈ {0, 1}∗. Next, let S
denote a selector with input s ∈ {0, 1}σ (with polynomial σ(|x|)) specifying a
challenge, and output S(s) defining a poly-sized subset of {1, . . . , n} correspond-
ing to challenge s. We will use S(s) to select which bits of an encoding e to reveal
to the verifier. For simplicity, we use es to denote the collection of bits e|S(s). We
denote with J the judgment that checks a potential encoding e by inspecting
only bits es. In more detail, J takes as input instance x ∈ {0, 1}∗, challenge
s ∈ {0, 1}σ and the |S(s)| bits es, and outputs a judgment j ← J(x, s, es) with
j ∈ {abort, success}. Finally, the simulator is called Ê. It takes as input in-
stance x ∈ {0, 1}∗ and challenge s ∈ {0, 1}σ and outputs a random collection of
bits t|S(s) ← Ê(x, s). Again for simplicity, we let ts = t|S(s). Then, if this set has
the same distribution as bits of an encoding e in positions S(s), the bits needed
for the judgment to check an encoding e can be simulated given just instance x
(see Definition 8).

Definition 6 (Completeness). If an encoding e ← E(x, w, r) is generated
correctly, then success← J(x, s, es) for all s ∈ {0, 1}σ.

We will call an encoding e admissible for x, if there exist two distinct challenges
s, s′ ∈ {0, 1}σ for which success← J(x, s, es) and success← J(x, s′, es′).

Definition 7 (Extractability). If an encoding e is admissible for x, then(
x, D(x, e)

)
∈ R.

We stress that extractability is similarly defined to the special soundness prop-
erty of a classical Σ-protocol, which allows to extract w from two accepting
conversations with distinct challenges. Such a requirement would generally be
inapplicable in the quantum setting, as the usual rewinding technique is prob-
lematic and in particular in the context here, we cannot measure two accepting
conversations during rewinding in the quantum world. Therefore, we define the
stronger requirement that if there exist two distinct answerable challenges for
one encoding e, then w can be extracted given only e. This condition works
nicely in the quantum world, since we can obtain e without rewinding, as we
demonstrate below.

Definition 8 (Simulatability). For all (x, w) ∈ R and all s ∈R {0, 1}σ, the
distribution of e ← E(x, w, r′) restricted to positions S(s) is identical to the
distribution of ts ← Ê(x, s).

To construct a simulatable witness encoding one can, for instance, start from the
commit-and-open protocol for circuit satisfiability in [3], where the bits of the
randomized circuit committed to by the sender is easy to see as a simulatable
encoding of a witness being a consistent evaluation of the circuit to output 1. The
challenge in the protocol is one bit e and the prover replies by showing either the
bits corresponding to some positions S′(0) or positions S′(1). The details can be
found in [3]. This gives us a simulatable witness encoding for any NP-relation
R with σ = 1, using a Karp reduction from NP to circuit simulatability. By
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Functionality FZKPK(R):

1. On input (x,w) from Alice, FZKPK(R) sets j = success if (x,w) ∈ R. Otherwise,
it sets j = abort.

2. FZKPK(R) outputs (x, j) to Bob.

Fig. 6. The Ideal Functionality for a Zero-Knowledge Proof of Knowledge

Protocol ZKPK(R) :

1. A and B invoke Fκ−COIN to get a commitment key pk ∈ {0, 1}κ.
2. A samples e ← E(x,w, r′) with randomness r′ ∈ {0, 1}m and commits

position-wise to all ei for i = 1, . . . , n, by computing Ei = commit pk (ei, ri)
with randomness r ∈ {0, 1}n. She sends x and all Ei to B.

3. A and B invoke Fσ−COIN to flip a challenge s ∈R {0, 1}σ.
4. A opens her commitments to all es.
5. If any opening is incorrect, B outputs abort. Otherwise, he outputs j ←

J(x, s, es).

Fig. 7. Zero-Knowledge Proof of Knowledge

repeating it σ times in parallel we get a simulatable witness encoding for any σ.
For i = 1, . . . , σ, compute an encoding ei of w and let e = (e1, . . . , eσ). Then for
s ∈ {0, 1}σ, let S(s) specify that the bits S′(si) should be shown in ei and check
these bits. Note, in particular, that if two distinct s and s′ passes this judgment,
then there exists i such that si �= s′i, so ei passes the judgment for both si = 0
and si = 1, which by the properties of the protocol for circuit satisfiability allows
to compute a witness w for x from ei. One can find w from e simply by trying
to decode each ej for j = 1, . . . , σ and check if (x, wj) ∈ R.

6.2 The Protocol

We now construct a quantum-secure zero-knowledge proof of knowledge from
prover A to verifier B. We are interested in the NP-language
L(R) = {x ∈ {0, 1}∗ | ∃w s.t. (x, w) ∈ R}, where A has input x and w, and
both A and B receive positive or negative judgment of the validity of the proof
as output. We assume in the following that on input (x, w) /∈ R, honest A
aborts. Unlike zero-knowledge proofs, proofs of knowledge can be modeled by
an ideal functionality, given as FZKPK(R) in Fig. 6. FZKPK(R) can be thought of as
a channel which only allows to send messages in the language L(R). It models
zero-knowledge, as it only leaks instance x and judgment j but not witness w.
Furthermore, it models a proof of knowledge, since Alice has to know and input
a valid witness w to obtain output j = success.

Protocol ZKPK(R) is describe in Fig. 7. It is based on our fully simulat-
able coin-flip protocol π(force,force), which we analyze here in the hybrid model
by invoking the ideal functionality of sequential coin-flipping twice (but with
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different output lengths)9. One call to the ideal functionality Fκ−COIN with out-
put length κ is required to instantiate a mixed bit commitment scheme COMMITpk.
The second call to the functionality Fσ−COIN produces σ-bit challenges for a sim-
ulatable witness encoding scheme with (E, D, S, J, Ê) as specified in the previous
Section 6.1. The formal proof of Theorem 3 can be found in the full version of
the paper [15]. Corollary 2 follows immediately.

Theorem 3. For any simulatable witness encoding scheme (E, D, S, J, Ê), sat-
isfying completeness, extractability, and simulatability according to Definitions 6
- 8, and for negligible knowledge error 2−σ, protocol ZKPK(R) securely implements
FZKPK(R).

Corollary 2. If there exist mixed commitment schemes, then we can construct
a classical zero-knowledge proof of knowledge against any quantum adversary
P′ ∈ P without any set-up assumptions.

7 Application: Two-Party Function Evaluation

Here, we first show that mixed commitments imply a passively secure oblivi-
ous transfer protocol. From such a protocol it is straightforward to construct a
protocol for any classical poly-time function with security against passive quan-
tum adversaries [13]. We then propose a quantum-secure implementation for
evaluating any such function with security against active quantum adversaries.

7.1 Oblivious Transfer

In an oblivious transfer protocol (OT), the sender A sends two messages m0 and
m1 to the selector B. B can choose which message to receive, i.e. mc according
to his choice bit c. B does not learn anything about the other message m1−c,
and A does not learn B’s choice bit c (see Fig. 8). The protocol is correct, as
B knows skc and xtrskc(Cc) = xtrskc(commit pkc (mc, rc) ) = mc. Furthermore,
it hides the other message m1−c as commitpk1−c is unconditionally hiding for
random pk1−c, except with negligible probability. Last, the choice bit is hidden

Protocol OT :

1. B samples two keys pk0 and pk1 according to his choice bit c, i.e. he samples
pkc as (pkc, skc) ← GB and pk1−c as p1−c ← GH. He sends (pk0, pk1) to A.

2. A commits to her messages (m0, m1) by computing C0 = commit pk0 (m0, r0)
and C1 = commit pk1 (m1, r1) . She sends (C0, C1) to B.

3. B computes xtrskc (Cc).

Fig. 8. Oblivious Transfer based on Mixed Commitments

9 Note that in the hybrid model, a simulator can enforce a particular outcome to
hit also when invoking the ideal coin-flip functionality. We then use Definition 5 to
replace the ideal functionality by the actual protocol π(force,force).
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in the sense of quantum-computational indistinguishability between keys for the
outer commitments, namely a key produced by GB and a random key by GH.

Functionality Ff
SFE with honest players:

On input x1 from Alice and x2 from Bob, Ff
SFE outputs y = f(x1, x2) to Alice and

Bob.

Functionality Ff
SFE with dishonest Alice:

1. On input x1 from Alice and x2 from Bob, Ff
SFE outputs y = f(x1, x2) to Alice.

2. It then waits to receive her second input � or ⊥ and outputs y or ⊥ to Bob,
respectively.

Fig. 9. The Ideal Functionality for Secure Function Evaluation

Protocol Π
SFE(f)
A,B :

1. A and B invoke Fκ−COIN to get a commitment key pk ∈ {0, 1}κ.
2. A sends a random commitment X1 = commit pk (x1, r̃1) and B sends a ran-

dom commitment X2 = commit pk (x2, r̃2) . Both parties use FZKPK(R) to give
a zero-knowledge proof of knowledge that they know the plaintext xi inside
commitments Xi for i = 1, 2.

3. A sends random commitment S1 = commit pk (s1, r̂1) for uniformly random s1

of length |s1| = |r1|, where r1 is the randomness she intends to use in Πf
A,B.

Similarly, B sends random commitment S2 = commit pk (s2, r̂2) for uniformly
random s2 of length |s2| = |r2|. Again, they use FZKPK(R) to give a zero-
knowledge proof of knowledge of si in Si for i = 1, 2.

4. A and B invoke Fσ−COIN twice to get uniformly random s′1 and s′2 with |s′i| = |si|
for i = 1, 2.

5. A lets r1 = s1 ⊕ s′1 and B lets r2 = s2 ⊕ s′2.
6. A and B run Πf

A,B(x1, r1, x2, r2), i.e. they run the passively secure protocol on
inputs and randomness as defined in the previous steps.

7. Whenever A sends a message m in the execution of Πf
A,B(x1, r1, x2, r2), she

gives a zero-knowledge proof of knowledge of s1 in S1 and x1 in X1, such that
if Πf

A,B(x1, r1, x2, r2) is run on x1, r1 = s1 ⊕ s′1, and B’s messages sent to A
so far, then A would indeed send m. This is an NP-statement, so we can use
FZKPK(R) for this proof.

8. If Πf
A,B(x1, r1, x2, r2) terminates with output y, both parties output y.

Fig. 10. Procedure for Secure Function Evaluation

7.2 The Protocol

Based on protocol OT, we can construct a passively secure protocol for any classi-
cal poly-time function f . Let Πf

A,B(x1, r1, x2, r2) denote such a protocol between
parties A and B with inputs x1 and x2 and random strings r1 and r2, respectively.
We show an implementation of the ideal functionality Ff

SFE evaluating—with se-
curity against active quantum adversaries—any classical poly-time function f
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for which there exists a classical passively secure protocol as described above.
Functionality Ff

SFE is shown in Fig. 910. The implementation Π
SFE(f)
A,B of Ff

SFE is
shown in Fig. 10. Corollary 3 is proven in the full version of the paper [15].

Corollary 3. If there exist mixed commitment schemes, then there exists a clas-
sical implementation of Ff

SFE for all classical poly-time functions f secure, ac-
cording to Definitions 1 and 2.
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Efficient and Secure Generalized Pattern
Matching via Fast Fourier Transform

Damien Vergnaud
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Abstract. We present simple protocols for secure two-party computa-
tion of generalized pattern matching in the presence of malicious parties.
The problem is to determine all positions in a text T where a pattern
P occurs (or matches with few mismatches) allowing possibly both T
and P to contain single character wildcards. We propose constant-round
protocols that exhibit linear communication and quasilinear computa-
tional costs with simulation-based security. Our constructions rely on a
well-known technique for pattern matching proposed by Fischer and Pa-
terson in 1974 and based on the Fast Fourier Transform. The security
of the new schemes is reduced to the semantic security of the ElGamal
encryption scheme.

Keywords: Two-party secure computation, Pattern matching, Homo-
morphic encryption, Fast Fourier Transform.

1 Introduction

We present secure protocols for two-party computation of (exact or approxi-
mate) pattern matching which are more efficient and conceptually simpler than
previous approaches. Our proposals are constant-round and requires linear com-
munication and quasilinear computational costs.

Prior work. The pattern matching problem [9] is to find all the occurrences of
a given pattern P of length m in a text T of length n, both being sequences of
characters drawn from a finite character set Σ. It is an important problem for
many kinds of processes of strings, for instance in molecular biology, information
retrieval, pattern recognition, compiling, data compression, program analysis and
security. These applications often require more sophisticated forms of searching:

– approximate pattern matching [22], where the problem is to find the loca-
tions where the Hamming distance of T substrings and P is less than some
threshold k ≤ m;

– pattern matching with wildcards (or “don’t cares”) [11], where the problem is
to find all occurrences of a pattern P ∈ (Σ ∪{})m in a text T ∈ (Σ ∪{})n

where the wildcard character  /∈ Σ matches any character in Σ.

An intensive research effort since the 1970s has led to the design of several
efficient algorithms for generalized pattern matching (see [9]). In 1974, Fis-
cher and Paterson [11] solved the pattern matching with wildcards problem in

A. Nitaj and D. Pointcheval (Eds.): AFRICACRYPT 2011, LNCS 6737, pp. 41–58, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Table 1. Efficiency Comparison of Secure Generalized Pattern Matching Protocols

# of Rounds Communication Exponentiations
Basic Pattern Matching with alphabet Σ

Hazay & Toft [17, §3] O(1) O(n log |Σ|) O(n log |Σ|)
§3 O(1) O(n) O(nm)

Approximate Binary Pattern Matching with k Mismatches
Hazay & Toft [17, §5] O(1) O(nm) O(nm)

§5.1 O(1) O(nk) O(n(log m + k))

Binary Pattern Matching with Wildcards
Hazay & Toft [17, §4] O(1) O(nm) O(nm)

§5.2 O(1) O(n) O(n log m)

O(n log m log(#Σ)) time using convolution and Fast Fourier Transform (FFT).
After several improvements, Clifford and Clifford [6] proposed a simple deter-
ministic algorithm that also involves convolutions and runs in time O(n log m).
A more complex algorithm in optimal O(n) time was proposed in [20]. The FFT
was also used to propose fast algorithms for the approximate pattern matching
problem (e.g. [22]).

In the setting of secure two-party computation, introduced in 1982 by Yao
[25], two parties wish to jointly compute some function of their private inputs
while preserving a number of security properties. Troncoso-Pastoriza, Katzen-
beisser and Celik [23] were the first to consider (basic) pattern matching in the
context of secure computation (in the semi-honest setting). Their protocol im-
plements the well-known Knuth-Morris-Pratt algorithm [19] and is linear in the
input length. Hazay and Lindell [15] proposed later a protocol based on oblivious
pseudorandom function evaluation which achieves one-sided simulatability secu-
rity. The first construction for the (basic) pattern matching problem with full
simulation-based security in the malicious setting was developed by Gennaro,
Hazay and Sorensen in [12]. Their protocol relies on the Knuth-Morris-Pratt al-
gorithm but requires linear round complexity and quadratic communication and
computational cost. The first work which addresses the approximate pattern
matching problem is [18].

Very recently, Hazay and Toft [17] proposed constant-rounds and efficient
protocols for the (basic) pattern matching, the approximate pattern matching
and the pattern matching with wildcards problems. Their schemes achieve se-
curity against malicious adversaries with (optimal) linear computational cost
and bandwidth for the first problem but quadratic communication and compu-
tational complexity for the two extended problems.

Contributions of the paper. The main contribution of the paper is to provide
protocols for approximate pattern matching (permitting a constant number of
mismatches) and pattern matching with wildcards with constant-rounds, linear
communication and O(n log m) computational costs.
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The problem we address can be described as follows: let us assume that Alice
holds a text T ∈ (Σ ∪{})n, while Bob has a pattern P ∈ (Σ ∪{})m. The goal
is for Bob to learn where P occurs (or matches with few mismatches) in T while
Alice does not gain any information about P from the protocol execution and
Bob does not learn anything but the matched text locations. Our approach relies
on the classical homomorphic encryption paradigm (e.g. [16, § 7.2.2.]): Bob will
encrypt P bit by bit for an additively homomorphic encryption scheme and Alice
will then apply the deterministic algorithm from [6,22] under encryption (using
the homomorphic properties of the cryptosystem) and sends back the encrypted
result to Bob.

First, we present a protocol for the (basic) pattern matching problem (§
3) that is secure against malicious adversaries, but for the so-called one-sided
simulatability weaker security notion. The construction relies on a straightfor-
ward observation that permits to perform secure pattern matching independently
of the size of the alphabet Σ. Our main goal by presenting this scheme is to il-
lustrate the ideas we will use in the following sections.

The Fast Fourier Transform (FFT) [7] is an algorithm to compute the discrete
Fourier transform and its inverse. It leads notably to quasilinear polynomial
multiplication algorithms. In order to apply Fischer and Paterson technique to
secure two-party generalized pattern matching, one needs to construct a protocol
for two-party FFT with quasilinear computational complexity. The idea of using
FFT in secure two-party computation is probably not new1 but we have not
been able to locate a reference in the literature. We provide a description (§ 4)
in the hope that it may be of independent interest.

Using this tool we provide adaptation of the generalized pattern matching
algorithms from [6,22,2] and obtains schemes with overall efficiency summarized
in the table Tab. 1 (§ 5.1 and 5.2). As a by-product, we propose a protocol
that reports the Hamming distance at every position (irrespective of its value)
in O(n

√
m) time.

2 Preliminaries

2.1 Notation

For n ∈ N, the set of n-bit strings is denoted by {0, 1}n, the set of integers
{1, . . . , n} is denoted [[n]] and the symmetric group on [[n]] is denoted by Sn.
The Hamming distance dH(x, y) between two words x, y ∈ {0, 1}n is defined as
the number of coordinates in which they differ.

We denote the security parameter by κ and input lengths are always assumed
to be bounded by some polynomial in κ. A probabilistic algorithm is said to run
in polynomial-time (PPT) if it runs in time that is polynomial in κ. Let A be a
PPT algorithm and let x be an input for A. The probability space that assigns
to a string σ the probability that A, on input x, outputs σ is denoted by A(x).
1 An anonymous referee kindly informed us of the recent report [5] in which Cheon,

Jarecki and Seo use FFT to speed-up secure set intersection protocols.
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Given a probability space S, a PPT algorithm that samples a random element
according to S is denoted by x

R←− S. For a finite set X , x
R←− X denotes a PPT

algorithm that samples a random element uniformly at random from X .

2.2 ElGamal Encryption

For a security parameter κ, the ElGamal encryption scheme [10] operates on a
cyclic group G of κ-bits prime order q and identity element 1G. Let g denote a
generator of G. The ElGamal public and secret keys are (G, q, g, y) and (G, q, g, x)
(respectively) where x is picked uniformly at random in Zq and y = gx. A
message m ∈ G is encrypted by picking r uniformly at random in Zq and the
ciphertext is (gr, yr ·m). We will use the notation:

(gr, yr ·m) R←− Ency(m) or (gr, yr ·m)← Ency(m; r)

A ciphertext (α, β) is decrypted as m = β/αx ← Decx(α, β). The semantic
security of the ElGamal encryption scheme follows from the hardness of Decision
Diffie-Hellman (DDH) problem in G [24].

The ElGamal scheme is homomorphic relative to multiplication. In this pa-
per, we consider a modified version of ElGamal where the encryption is per-
formed in the exponents: one chooses r uniformly at random in Zq and computes
(gr, yr · gm). Decryption of a ciphertext c = (α, β) is performed by computing
gm = β/αx. The fact that m cannot be efficiently recovered is not problematic
for the way ElGamal is incorporated in our protocols. This variant of ElGamal
is additively homomorphic and can be used to perform oblivious linear compu-
tations in the exponent: it naturally allows for multiplication with a plaintext
constant using repeated doubling and adding.

2.3 Zero-Knowledge

Security in the presence of malicious behavior is usually achieved by forcing the
parties to demonstrate that they are well-behaved. In our protocols, we need
zero-knowledge proofs of knowledge that some algebraic statement R holds in a
group G = 〈g〉 of prime order q with 2κ−1 < q < 2κ. We will use Σ-protocols
made secure against malicious verifiers (using standard techniques) since they
are efficient and achieves constant communication complexity (see [17]):

πDL: due to Schnorr [21], this Σ-protocol allows a prover to demonstrate knowl-
edge of the solution to a discrete logarithm problem:

RDL = {[h, x] | h = gx}.

πeqDL: due to Chaum and Pedersen [4], this Σ-protocol demonstrates equality
of two discrete logarithm problems (as well as its knowledge):

ReqDL = {[(g1, g2, h1, h2), x] | h1 = gx
1 ∧ h2 = gx

2}.

We will use Σ-protocols for ElGamal ciphertexts for the public key (G, q, g, y):
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πMult: due to Abe, Cramer and Fehr [1], this Σ-protocol demonstrates that
a ciphertext is an encryption of the product of the plaintexts of two given
ciphertexts:

RMult = {[(c1, c2, c3), (m, r, s)] |c1 = Ency(gm; r) ∧ c3 = c2
m · Ency(1G; s)} .

πPerm: due to Groth [13], this Σ-protocol demonstrates that a set of ciphertexts
is a permutation and rerandomization of another set of ciphertexts:

RPerm =
{

[(ci, ci)i∈[[k]], (σ, (ri)i∈[[k]])]
∣∣∣∣ σ ∈ Sk

ci = cσ(i) ·Ency(1G; ri), ∀i ∈ [[k]]

}
.

πnze: this Σ-protocol demonstrates that a ciphertext is a rerandomization of
another ciphertext at some non-zero power:

Rnze =
{
[(c1, c2), (R, r)]

∣∣ c1 = cR
2 · Ency(1G; r) ∧R �= 0

}
.

πisBit: this Σ-protocol demonstrates that a ciphertext encrypts 0 or 1:

RisBit = {[c, (b, r)] | c = Ency(gb; r) ∧ b ∈ {0, 1}}.

πisTrit: this Σ-protocol demonstrates that a ciphertext encrypts 0, 1 or 2:

RisTrit = {[c, (b, r)] | c = Ency(gb; r) ∧ b ∈ {0, 1, 2}}.

The protocol πnze can be otained from πMult as described in [17] and the protocols
πisBit and πisTrit can be obtained from πEqDL using the technique of Cramer,
Gennaro and Schoenmakers [8].

We also need a protocol πKeyGen for generation of an ElGamal public key
such that two parties hold shares of the secret key and a protocol πDec for
shared decryption of a ciphertext encrypted using a key generated by πKeyGen.
We consider a protocol where only one party obtains the decrypted result (see
[17, §2.3]). We denote the associated ideal functionalities FKeyGen and FDec.

2.4 Secure Two-Party Computation

We only provide a brief review of two-party computation definitions and we refer
the reader to the recent book [16, Chapter 2] for more details. Let f be a two-
argument function and let Alice and Bob be two possibly malicious parties, the
first having an input x and the second having an input y. Securely computing f
means that Alice and Bob keep turns exchanging message strings so that:

- Bob learns z = f(x, y) but nothing about x (not already implied by y and z);
- Alice learns nothing about y (and nothing about z not already implied by x).
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In particular, Alice and Bob wish to ensure that nothing is revealed from the
protocol execution to an outsider or the other party (privacy) and that the
output is computed according to the specified function (correctness). In this
paper, we do not require the correctness to hold with probability 1 but instead
allow negligible probability of error in the value output by the protocol.

The simulation-based security definitions formalize the intuition that whatever
can be computed by a party can be computed based on its input and output
only. This is done by comparing a party’s view in a real protocol execution to
an “ideal execution”, where a trusted party computes the function and sends the
output to the parties. In this paper, we consider two flavors of simulation-based
security in the presence of malicious adversaries:

– Full simulation security [3]: it requires that for every PPT adversary A in
the real world, there exists a corresponding PPT simulator S in the ideal
world such that the view are computationally indistinguishable.

– One-sided simulation security: where full simulation is provided for only
one of the corruption cases and only privacy is achieved for the other case
(guaranteeing that the adversary does not learn anything but the output of
the computation).

3 Warm Up: (Basic) Pattern Matching Protocol

In this section, we address the question of how to securely compute the func-
tionality FPM defined by

((P , n), (T , m)) �→
{

({j ∈ [[n−m + 1]], Tj = P},⊥) if P ∈ Σm ∧ T ∈ Σn

(⊥,⊥) otherwise

where Tj denotes the substring of length m that begins at the j-th position in
T . Note that Alice learns nothing about P and the only thing Bob learns about
T is the locations where P appears. We assume that #Σ = poly(κ) and Σ ⊆ Zq.

Motivated by the task of constructing a simple protocol for FPM, we use the
straightforward observation that P = (p1, . . . , pm) occurs at the j-th position
in T = (t1, . . . , tn) if and only if pi − ti+j−1 = 0 for all i ∈ [[m]] and that
consequently for random (s1,j , . . . , sm,j) ∈ Zm

q , the equality

m∑
i=1

si,j(pi − ti+j−1) = 0 (1)

holds with probability 1 if P = Tj and with probability 1/q otherwise (where
the probability is taken over the random si,j for i ∈ [[m]]).

This observation results in a simple protocol for FPM that can be summarized
as follows:

1. Bob picks at random x ∈ Zq and sets y = gx. He sends y to Alice and proves
his knowledge of x by running πDL using x.
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2. Bob encrypts P character by character with his own public key y:

ci = (αi, βi)
R←− Ency(gpi) for i ∈ [[m]]

and sends ci to Alice for i ∈ [[m]].
3. Using the homomorphic property of ElGamal encryption, Alice computes,

for j ∈ [[n − m + 1]], a (uniformly distributed) encryption of the left-hand
side of (1) as

dj =

(
grj

m∏
i=1

α
si,j

i , yrj

m∏
i=1

(
βig

−tj+i−1
)si,j

)

= Ency(1G, rj) ·
m∏

i=1

(
ci · (1G, g−tj+i−1)

)si,j

for rj , s1,j , . . . , sm,j picked uniformly at random in Zq. Alice sends dj for
j ∈ [[n−m + 1]] to Bob.

4. Bob decrypts dj for j ∈ [[n−m+1]] thanks to his knowledge of x and outputs
the set of indices of ciphertexts that encrypt 1G.

Alice Bob

x
R←− Zq; y ← gx

y, πDL[y, x]
⇐==========⇒

ci
R←− Ency(gpi) ��� 1 ≤ i ≤ m

(ci)←−−−−−−−−−−−−
i∈[[m]]

rj , s1,j , . . . , sm,j
R←− Zq

dj ← Ency(1G, rj)

·
m∏

i=1

(
ci · (1G, g−tj+i−1)

)si,j

(��� j ∈ [[n − m + 1]])
(dj )−−−−−−−−−−−−→

j∈[[n−m+1]]
aj ← Decx(dj )

(��� 1 ≤ j ≤ n − m + 1)
S ← {j ∈ [[n − m + 1]], aj = 1G}

������ ⊥ ������ S

Fig. 1. Secure Basic Pattern Matching

The protocol flow is described in Fig. 1 (where simple arrows indicate data
transmission and double arrows stand for interactive protocols). The protocol is
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less efficient than the scheme from [17] since it exhibits linear communication2

but quadratic computation costs. However it is simpler and illustrates the ideas
we will use in the next sections. It achieves one-sided simulation security against
malicious adversaries.

Theorem 1. If πDL is a zero-knowledge proof of knowledge of a discrete loga-
rithm secure against malicious verifiers and if the ElGamal encryption scheme
is semantically secure, then the protocol described in Fig. 1 securely computes
FPM with one-sided simulation security against malicious adversaries.

Proof (Sketch). As in [17, Theorem 1], we separately prove the security in the
case that Alice is corrupted and the case that Bob is corrupted.

Alice is corrupted: Since Alice does not receive any output from the execu-
tion, and we are only proving one-sided simulation security here, all we need
to show is that privacy is preserved. This follows readily from the semantic
security of the ElGamal encryption scheme.

Bob is corrupted: Let A denote an adversary controlling Bob. We need to
prove that A does not learn anything but the matching text locations. We
construct a simulator S as follows:
1. S is given a pattern of length m, an integer n and A’s auxiliary input

and invokes A on these values.
2. S obtains A’s secret key x from the proof of knowledge extractor for

πDL.
3. S receives from the adversary A a vector of m ciphertexts ci for i ∈ [[m]].

Using x, it decrypts each ciphertext and try to compute the discrete log
of the corresponding plaintext zi.
(a) If zi = gσi where σi ∈ Σ for all i ∈ [[m]], S defines the pattern P

as P = (σ1, . . . , σm) and sends it to the trusted party for FPM and
obtains a subset I ⊆ [[n−m+1]]. The simulator S produces a vector
of ciphertexts:

dj
R←−
(
Ency(gbj )

)θj for j ∈ [[n−m + 1]]

where bj ∈ {0, 1} with bj = 0 ⇐⇒ j ∈ I and θj
R←− Zq.

(b) If there is an i ∈ [[m]] such zi �= gσi for all σi ∈ Σ, then S aborts
by sending ⊥ to the trusted party for FPM and produces a vector of
ciphertexts:

dj
R←− (Ency(g))θj for j ∈ [[n−m + 1]]

where θj
R←− Zq.

4. If at any point A sends an invalid message S aborts, sending ⊥ to the
trusted party for FPM . Otherwise, it outputs whatever A does.

2 The round complexity and the communication complexity of our scheme are however
smaller by a constant factor and independent of the size of the underlying alphabet.
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Since |Σ| = poly(κ), the simulator S runs in polynomial time (the running
time of the third step being upper-bounded by O(m

√
|Σ|) group operations

using generic technique for discrete logarithm computation in short inter-
vals). Our basic observation on (1) shows readily that the adversary’s view
is statistically close to its view in the real execution of the protocol. ��

Remark 1. Observe that the protocol from Fig. 1 does not achieve correctness
when Alice is corrupted. However, it is possible to achieve full simulation security
against malicious adversaries by enforcing Alice to use only text symbols ti in
Σ for i ∈ [[n]] (using for instance generalization of πisBit and πisTrit) and proving
consistency of the ciphertexts (δj , γj)1≤j≤n−m+1.

4 Secure Fast Fourier Transform and Polynomial
Multiplication

4.1 FFT and Polynomial Multiplication: A Brief Recall

Let q be a prime number, D a divisor of q − 1 and ω a primitive D-th root of 1
in Z∗

q (for simplicity, one can assume that D is a power of two). Suppose we are
given two polynomials in A, B ∈ Zq[X ] of degree less than d = D/2. The FFT
is a well-known method to compute the coefficients of C(X) = A(X)B(X) in
O(D log D) multiplications in Zq:

1. Evaluate A and B at the D points: 1, ω, ω2, . . . , ωD−1 using the Discrete
Fourier Transform (DFT):

Evaluation of P ∈ Zq[X ] at 1, ω, ω2, . . . , ωD−1

Write P (X) = P0(X2) + XP1(X2)
Evaluate (recursively) P0 and P1 at 1, ω2, ω4, . . . , ωD−1

Write P (ωi) = P0(ω2i) + ωiP1(ω2i) for i ∈ [[D]]

2. Compute the values of C(X) at these D points 1, ω, ω2, . . . , ωD−1.

3. Interpolate the polynomial C using the inverse DFT:

Interpolation of P ∈ Zq[X ] given values at 1, ω, ω2, . . . , ωD−1

Write P̃ (X) = P (1) + P (ω)X + · · ·+ P (ωD−1)XD−1

Evaluate (as in 1.) P̃ at 1, ω−1, ω−2, . . . , ω1−D

Output P (X) =
1
D

(
P̃ (1) + P̃ (ω−1)X + · · ·+ P̃ (ω1−D)XD−1

)
4.2 Secure Fast Polynomial Multiplication

We now outline a protocol to efficiently and securely compute the encryption of
the product of two polynomials (for a given public key y). Let us assume that
Alice holds a polynomial A(X) =

∑d−1
i=0 aiX

i ∈ Zq[X ] and that Bob holds a
polynomial B(X) =

∑d−1
i=0 biX

i ∈ Zq[X ] both of degree less than d.
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1. Alice encrypts the polynomial A coefficient by coefficient (in the exponents):

α0 = Ency(ga0), α1 = Ency(ga1), . . . , αd−1 = Ency(gad−1)

and sends the ciphertexts (α0, α1, . . . , αd−1) to Bob.
2. Bob encrypts the polynomial B coefficient by coefficient (in the exponents):

β0 = Ency(gb0), β1 = Ency(gb1), . . . , βd−1 = Ency(gbd−1)

and sends the ciphertexts (β0, β1, . . . , βd−1) to Alice.
3. Alice and Bob (simultaneously and independently) compute the encrypted

value of gA(ωi) and gB(ωi) for i ∈ [[D]] using the DFT (Step 1 in the FFT
method). Since the encryption scheme is additively homomorphic, it can be
used to perform deterministic oblivious linear computations in the exponent.
At this step of the protocol, Alice and Bob then share (identical) encryption
of gA(ωi) and gB(ωi) for i ∈ [[D]] and Alice3 knows the randomness corre-
sponding to the encryption of gA(ωi).

4. Alice computes the encryption of gA(ωi)B(ωi) for i ∈ [[D]] knowing A(ωi) and
the shared encryption of gB(ωi) (Step 2 in the FFT method). Alice sends the
resulting ciphertexts to Bob and, thanks to her knowledge of the randomness
in the shared encryption of gA(ωi) she can prove its validity by running the
protocol πMult.

5. Alice and Bob (simultaneously and independently) compute the encrypted
coefficients of AB (in the exponents) using the inverse DFT (Step 3 in the
FFT method).

The computational complexity of the protocol is O(D log D) exponentiations in
G and its communication complexity is O(D) (and therefore optimal). In order
to use this fast two-party polynomial multiplication protocol in our generalized
pattern matching schemes, we will need the encrypted computation to be done
under a public-key whose corresponding secret-key is shared between Alice and
Bob. The fact that intermediate values are encrypted under a key which neither
Alice or Bob know permits the zero-knowledge simulation.

We do not propose any specific application in the realm of polynomial arith-
metic for this protocol but we will rather provide applications to the generalized
pattern matching problem in the following section.

Remark 2. It is possible to enforce the polynomials coefficients to belong to a
specific subset of Zq (e.g. we will use the set {0, 1} or {0, 1, 2} in the following
and use the protocols πisBit and πisTrit to ensure these properties).

5 Fast Secure Generalized Pattern Matching

The main idea of the algorithm from [6] is to calculate the sum of squared dif-
ferences between the pattern and the text for every possible alignment. Suppose

3 Of course, Bob knows the randomness corresponding to the encryption of gB(ωi) and
in the rest of the protocol, one can exchange the role of Alice and Bob.
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without loss of generality that Σ ⊂ N. If there are no wildcards then for each
location i ∈ [[n−m + 1]], we can calculate

m∑
j=1

(pj − ti+j−1)2 =
m∑

j=1

(
pj

2 − 2pj · ti+j−1 + ti+j−1
2
)

(2)

in O(n log n) time using FFT. Wherever there is an exact match this sum will
be exactly 0. When wildcards are allowed in the pattern and the text we replace
the wildcard symbols by 0’s (and other symbols by non-negative integers) and
then consider the sum

m∑
j=1

pjti+j−1(pj − ti+j−1)2 =
m∑

j=1

(
pj

3ti+j−1 − 2pj
2 · ti+j−1

2 + pjti+j−1
3
)

(3)

which equals 0 if and only if there is an exact match with wildcards. The sum
(3) can be computed with three convolutions and therefore in O(n log n) time
using FFT.

In order to reduce the time complexity from O(n log n) to O(n log m), we
will use a standard trick which consists in partitioning T into n/m overlapping
substrings of length 2m with the first substring starting at the beginning of
the text and each subsequent substring having an overlap of length m with the
previous one. The matching algorithm is then performed separately on each sub-
string. Each iteration takes O(m log m) time giving an overall time complexity
of O((n/m)m log m) = O(n log m).

In the following, we will use this trick and for simplicity we will assume (with-
out loss of generality) that n = 2m and that 4m is a power of 2 dividing q − 1.
The protocol for (fast) secure polynomial multiplication can be used to securely
compute sums of the form (2) or (3) in time O(m log m). The figure Fig. 2
presents the common opening for our generalized pattern matching protocols.
At the end of this subprotocol, Alice and Bob hold

– shares (xa, xb) of the secret key corresponding to the public key y.
– encryption ai of the bit ti for i ∈ [[2m]].
– encryption bi of the bit pm−i+1 for i ∈ [[m]].
– encryption fi+m of the sum

∑m
j=1 pj · ti+j−1 for i ∈ [[m]].

Note that we modify the ordering of the pattern bits, in order to compute (2)
or (3) as an actual convolution and that we enforce ciphertexts ai and bi to
encrypt bits using the protocol πisBit (as mentioned above).

5.1 Pattern Matching with Mismatches

Our first algorithm is in fact independent of the bound k and report the Hamming
distance at every position irrespective of its value.
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Alice Bob

y ∈ G
πKeyGen[κ, κ]

⇐====================⇒ y ∈ G

xa ∈ Zq [���� y = gxa+xb ] xb ∈ Zq

σi
R←− Zq ρi

R←− Zq

ai ← Ency(gti ; σi) bi ← Ency(gpm−i+1 ; ρi)
(��� i ∈ [[2m]]) (��� i ∈ [[m]])

(ai)−−−−−−−−−−−−−−−−−−−−−−→
i∈[[2m]]

(bi)←−−−−−−−−−−−−−−−−−−−−−−
i∈[[m]]

πisBit [(ai , ti, σi)]⇐====================⇒
i∈[[2m]]

πisBit [(bi), pm−i+1, ρi)]⇐====================⇒
i∈[[m]]

ct ←
m∏

i=1

ai
wti

ct ←
m∏

i=1

ai
wti

dt ←
m∏

i=1

bi
wti

dt ←
m∏

i=1

bi
wti

τt ←
d∑

i=1

σiω
ti

ζt
R←− Zq

et ← bt
T (ωt)gζt

(��� t ∈ [[4m]]) (��� t ∈ [[4m]])
(et)−−−−−−−−−−−−−−−−−−−−−−→

t∈[[4m]]

πMult[(ct , dt , et), (T (ωt), τt, ζt)]⇐====================⇒
t∈[[4m]]

fi ←
(

2m∏
t=1

(et)
w−ti

)1/4m

fi ←
(

2m∏
t=1

(et)
w−ti

)1/4m

(��� i ∈ [[4m]]) (��� i ∈ [[4m]])

Fig. 2. Basic Protocol for Secure Generalized Pattern Matching

Secure Hamming Distance Computation. The paper [18] examined secure
two-party computation of functions which depend only on the Hamming distance
of the inputs of the two parties. We revisit this problem in this paragraph and
propose an efficient protocol for the following problem: given a binary text T of
length n and a binary pattern P of length m, compute the Hamming distance
between P and Ti for i ∈ [[n −m + 1]], i.e. we consider the question of how to
compute the functionality, denoted by FHD:
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((P , n), (T , m)) �→
((

dH(Ti,P)
)
i∈[[n−m+1]]

,⊥
)

Again Alice learns nothing about P and the only thing that Bob learns about T
is the number of matches of P and Ti for i ∈ [[n−m + 1]]. We denote HD(P , T )
the Hamming distance vector of P and T output by this functionality.

Over a binary alphabet, the sum (2) becomes:

dH(Ti,P) =
m∑

j=1

(
pj

2 − 2pj · ti+j + ti+j
2
)

=
m∑

j=1

(pj − 2pj · ti+j + ti+j) (4)

and therefore, with the previous notation, the product
∏m

j=1 ai+j · bj · fi+m
−2

encrypts the value dH(Ti,P) for i ∈ [[n −m + 1]]. It is therefore easy to extend
the opening of Fig. 2 in order to securely compute the functionality FHD. The
detailed protocol flow is given in Fig. 3.

�������� ��	 
������� 	�����	 �� ���� ��

Alice Bob

θi ←
∏m

j=1 ai+j · bj · fi+m
−2 θi ←

∏m
j=1 ai+j · bj · fi+m

−2

ψi
R←− Zq

θi ← θi · Ency(1G; ψi)
(��� i ∈ [[n − m + 1]]) (��� i ∈ [[n − m + 1]])

(θi)−−−−−−−−−−−−−−−−→
i∈[[n−m+1]]

πeqDL[(θi/θi , g, y), ψi]⇐===============⇒
i∈[[n−m+1]]

πDec[(θi , xa)]
⇐===============⇒

i∈[[n−m+1]]
(θ̃i)1≤i≤n−m+1

hi ← logg(Decxb(θ̃i))
(��� i ∈ [[n − m + 1]])

���
�� ⊥ ���
�� (h1, . . . , hn−m+1)

Fig. 3. Secure Computation of the Hamming distance vector HD(P , T )

The protocol is constant-round with linear communication complexity and
O(n
√

m) time complexity. We can prove that it achieves full simulation security
against malicious adversaries.

Theorem 2. If πeqDL, πMult, πisBit are zero-knowledge proofs of knowledge se-
cure against malicious verifiers for the languages ReqDL, RMult and RisBit, if
πKeyGen and πDec are protocols secure against malicious verifiers for the func-
tionality FKeyGen and FDec and if the ElGamal encryption scheme is semanti-
cally secure, then the protocol described in Fig. 3 securely computes FHD in the
presence of malicious adversaries.
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Proof (Sketch). We consider only the security in the case that Bob is corrupted
(the proof in the case that Alice is corrupted follows the same lines).

Bob is corrupted: Let A denote an adversary controlling Bob. We need to
prove that A does not learn anything but the matching text locations. We
construct a simulator S as follows:
1. S is given a pattern of length m, an integer n and A’s auxiliary input

and invokes A on these values.
2. S emulates the trusted party for πKeyGen as follows by choosing two

random elements xA and xB in Zq and hands A, its share xB and the
public key y = gxA+xB .

3. S receives from the adversary A a vector of m ciphertexts (αi, βi) for
i ∈ [[m]]. If the functionality FRisBit

ZK aborts, then S aborts, sending ⊥ to
the trusted party for FHW .

4. Otherwise S defines the pattern P using the witnesses for πisBit and
sends P to the ideal functionality FHW .

5. The simulator S sets T = 1n ∈ Σn.
6. S completes the execution as the honest Alice would on input T but

simulates the proof in order to be consistent with the vector output by
the ideal functionality FHW . If at any point A sends an invalid message
S aborts, sending ⊥ to the trusted party for FPM . Otherwise, it outputs
whatever A does.

Following the proof of [17, Theorem 1], it is easy to prove that if there exists
a distinguisher D for these executions, then there exist a PPT adversary
breaking the semantic security of ElGamal encryption. ��

Secure Pattern Matching with k Mismatches. We now propose an efficient
protocol for the following problem: given an integer k, a binary text T of length
n and a binary pattern P of length m, compute the functionality, denoted by
FPM−k:

((P , n), (T , m)) �→ ({i ∈ [[n−m + 1]], dH(Ti,P) ≤ k},⊥)

Again Alice learns nothing about P and the only thing that Bob learns about
T is the locations where P appears with less than k mismatches.

Let us recall that the protocol of Fig. 3 produces ciphertexts θi that encrypt
the value dH(Ti,P) for i ∈ [[n−m + 1]]. Therefore

[θi · (1G, g−�)]u · Ency(1G, v) (5)

for random u
R←− Z∗

q and v
R←− Zq is a uniformly distributed encryption of 1G if

dH(Ti,P) = � and of a random element from G otherwise.
It is therefore easy to extend the opening of Fig. 2 in order to securely compute

the functionality FPM−k: Alice pick, for all i ∈ [[n − m + 1]], a permutation
σ ∈ Sk and permute and rerandomize the ciphertexts from (5). She proves for
all i ∈ [[n − m + 1]] the correctness of this operation by running πPerm on k
ElGamal ciphertexts. As in the previous protocol, Alice then partially decrypts
the permuted ciphertexts for all i ∈ [[n−m + 1]] by running all πDec on private
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�������� ��	 
������� 	�����	 �� ���� ��

Alice Bob

S ← ∅

θi ←
∏m

j=1 ai+j · bj · fi+m
−2 θi ←

∏m
j=1 ai+j · bj · fi+m

−2

(��� i ∈ [[n − m + 1]]) (��� i ∈ [[n − m + 1]])

u1,i, . . . , uk,i
R←− Z∗

q

v1,i, . . . , vk,i
R←− Zq

(��� i ∈ [[n − m + 1]])

ζi,� ← [θi · (1G, g−�)]u�,i

· Ency(1G, v�,i)
(��� (i, ) ∈ [[n − m + 1]] × [[k]])

(ζi,�)−−−−−−−−−−−−−−−→
(i,�)∈[[n−m+1]]×[[k]]

πnze

[ (
ζi,�, θi ·(1G, g−�)

)
(u�,i, v�,i)

]
⇐=============⇒

(i,�)∈[[n−m+1]]×[[k]]

r1,i, . . . , rk,i
R←− Zq

πi
R←− Sk

(��� i ∈ [[n − m + 1]])
γi,� = ζi,πi(�) · Ency(1G, r�,i)

(��� (i, ) ∈ [[n − m + 1]] × [[k]])
(γi,�)−−−−−−−−−−−−−−−→

(i,�)∈[[n−m+1]]×[[k]]

πPerm

[
(ζi,�, γi,�)

(πi, r1,i, . . . , rk,i)

]
⇐=============⇒

i∈[[n−m+1]]

πDec[γi,�, xa, xb]⇐=============⇒
i∈[[n−m+1]]

h�,i ← Decxa+xb(γi,�)

(��� (i, ) ∈ [[n − m + 1]] × [[k]])

� i �� S �� 1G ∈ {h1,i, . . . , hk,i}
(i ∈ [[n − m + 1]])

���
�� ⊥ ���
�� S

Fig. 4. End of the Protocol for Secure Pattern Matching with Mismatches

input xA. Bob then finishes the decryption and outputs the set of i ∈ [[n−m+1]]
such that the vector of (permuted) at location i contains one (and only one)
encryption of 1G. The detailed protocol flow is given in Fig. 4.

We have the following theorem whose proof will be given in the full version
of the paper:
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Theorem 3. If πeqDL, πMult, πPerm, πnze and πisBit are zero-knowledge proofs
of knowledge secure against malicious verifiers for the languages ReqDL, RMult,
RPerm, Rnze and RisBit, if πKeyGen and πDec are protocols secure against mali-
cious verifiers for the functionality FKeyGen and FDec and if the ElGamal en-
cryption scheme is semantically secure, then the protocol described in Fig. 4
securely computes FPM−k in the presence of malicious adversaries.

5.2 Pattern Matching with Wildcards

Finally, we consider the secure computation of the functionality FPM
 that on
input ((P , n), (T , m)) computes⎧⎨⎩ ({j ∈ [[n−m + 1]] | ∀i ∈ [[m]], pi =  ∨ ti+j−1 =  ∨ pi = ti+j−1},⊥)

if P ∈ {, 0, 1}m ∧ T ∈ {, 0, 1}n
(⊥,⊥) otherwise

Again, Alice learns nothing about P and the only thing Bob learns about T is
the locations where P appears (with wildcards).

The protocol is similar to the previous ones and relies on the fact that the
sum (3) can be computed with three convolutions and therefore in O(n log n)
time using FFT. Due to space constraints, details will be given in the full version
of the paper.

We consider a shifted binary alphabet Σ′ = {1, 2} and identify the wildcard
 with the number 0. Obviously, one needs to replace in the protocol from Fig. 2
the protocol πisBit by πisTrit. In order to compute (3) via FFT, it is also necessary
for Alice to provide encryption of ti

2 and ti
3 for i ∈ [[n]] and for Bob to provide

encryption of pj
2 and pj

3 for j ∈ [[m]]. They have to prove the consistency of
these ciphertexts with ai for i ∈ [[n]] and bj for j ∈ [[m]] using πeqDL. The
algorithm then follows the protocol from Fig. 3 in order to get the Hamming
distance (with wildcards) between P and Ti for i ∈ [[n−m + 1]]. We finally use
the technique from Fig. 1 to only reveal to Bob whether this distance is equal
to 0 or not.

We can readily prove the security of this protocol (details will be given in the
full version of the paper):

Theorem 4. If πeqDL, πMult, πPerm, πnze and πisTrit are zero-knowledge proofs
of knowledge secure against malicious verifiers for the languages ReqDL, RMult,
RPerm, Rnze and RisTrit, if πKeyGen and πDec are protocols secure against mali-
cious verifiers for the functionality FKeyGen and FDec and if the ElGamal en-
cryption scheme is semantically secure, then the protocol outlined above securely
computes FPM
 in the presence of malicious adversaries.

6 Conclusion

We presented protocols for secure two-party computation of generalized pattern
matching. Our schemes can easily be combined in order to solve, for instance, the
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approximate pattern matching with wildcards problem. They can be extended in
various directions: they can handle larger alphabets, longer pattern, and variants
where the length of the pattern or the text remains hidden (as the schemes
from [17]). Our technique can also provide round-optimal protocols (with similar
efficiency) with universally composable security in the common reference string
model (using the Groth-Sahai proof system [14]). Details will be given in the full
version of the paper.
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Abstract. We propose a generic way for deriving an identification (ID) scheme
secure against concurrent man-in-the-middle attacks from a key encapsulation
mechanism (KEM) secure against chosen ciphertext attacks on one-wayness (one-
way-CCA). Then we give a concrete one-way-CCA secure KEM based on the
Computational Diffie-Hellman (CDH) assumption. In that construction, the Twin
Diffie-Hellman technique of Cash, Kiltz and Shoup is essentially employed. We
compare efficiency of the ID scheme derived from our KEM with previously
known ID schemes and KEMs. It turns out that our KEM-based ID scheme re-
duces the computation by one exponentiation than the currently most efficient one
derived from the Hanaoka-Kurosawa one-way-CCA secure KEM, whose security
is based on the same (CDH) assumption.

Keywords: identification scheme, key encapsulation mechanism, one-way-CCA
security, concurrent man-in-the-middle attack, the computational Diffie-Hellman
assumption.

1 Introduction

An identification (ID) scheme enables a prover to convince a verifier that the prover
is indeed itself by proving that it knows some secret information. In the public key
framework, a prover holds a secret key and a verifier refers to a matching public key.
They interact for some rounds doing necessary computations until the verifier feels
certain that the prover has the secret key. The secret key is never revealed directly but
hidden in messages through those computations.

Historically, there have been two types of ID schemes. One is challenge-and-response
type obtained in a natural way from encryption schemes or signature schemes, and the
other is the Σ-protocol type [7] which is a kind of proofs of knowledge [12,4] consist-
ing of 3-round interaction. Most of known traditional ID schemes, such as the Schnorr
scheme [24] and the Guillou-Quisquater (GQ) scheme [13], are the Σ-protocol type
because they are faster than challenge-and-response type.

Now in the Internet environment where everyone is involved, attacks on ID schemes
have become fairly strong. One of the strongest is concurrent man-in-the-middle attack.
In concurrent man-in-the-middle setting, an adversary stands between a verifier and
a prover, and the adversary invokes many instances of the prover application (prover
clones), which have independent states and random tapes. Interacting in some cheating

A. Nitaj and D. Pointcheval (Eds.): AFRICACRYPT 2011, LNCS 6737, pp. 59–76, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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way, the adversary collects information of the secret key from the prover clones. At the
same time, trying to impersonate the prover, the adversary interacts with the verifier.

Unfortunately, the Schnorr scheme and the GQ scheme are not secure against con-
current man-in-the-middle attacks, hence there have been significant efforts to make
ID schemes have tolerance against such concurrent man-in-the-middle attacks based on
the Σ-protocol. For example, Katz [16] made an ID scheme of non-malleable proof of
knowledge. But the security model is with timing constraint, not against full concur-
rent man-in-the-middle attacks. Moreover, the protocol utilizes the so-called OR-Proof
technique, so it is a little bit costly. Gennaro [11] constructed an ID scheme of (fully)
concurrently non-malleable proof of knowledge by employing a multi-trapdoor com-
mitment. But it is no longer so fast as a challenge-and-response ID scheme obtained,
for instance, from the Cramer-Shoup encryption scheme [8]. Moreover, the security is
based on a strong type of assumption (the Strong Diffie-Hellman (SDH) assumption or
the Strong RSA assumption).

One of the reason why it is so difficult to construct an ID scheme secure against
concurrent man-in-the-middle attacks seems that we are rooted in the category of Σ-
protocols. Let us remember that challenge-and-response ID schemes obtained from
IND-CCA secure encryption schemes (see [8] for example) and EUF-CMA secure sig-
nature schemes (see [2] for example) are already secure against concurrent man-in-the-
middle attacks.

1.1 Our Contribution

In the notion of encryption scheme, key encapsulation mechanism (KEM) is the foun-
dational concept for hybrid construction with data encryption mechanism. As a first
contribution in this paper, we propose to use KEM as ID scheme analogous to the us-
age of encryption scheme. That is, given a KEM, we derive a challenge-and-response
ID scheme as follows. A verifier of a KEM-based ID scheme makes a pair of random
string and its ciphertext using a public key, and send the ciphertext as a challenge to
the prover having the matching secret key. The prover decapsulates the ciphertext and
returns the result as a response. The verifier checks whether or not the response is equal
to the random string. Although this is a straightforward conversion, it has never been
mentioned in the literature, to the best of our knowledge.

As a generic property, KEM-based ID scheme has an advantage over (non-hybrid)
encryption-based ID scheme. That is, KEM only has to encapsulate random strings and
may generate them by itself, while encryption scheme has to encrypt any strings given
as input. Consequently, KEM-based ID scheme has a possibility to have simpler and
more efficient protocol than encryption-based ID scheme.

In addition, as we will show in Section 3, KEM only need to be one-way-CCA secure
for derived ID scheme to have security against concurrent man-in-the-middle attacks
(cMiM security). In other words, IND-CCA security, which is stronger than one-way-
CCA security, is rather excessive for deriving cMiM secure ID scheme. Nonetheless by
this time, most known encryption schemes and KEMs have been designed to possess
IND-CCA security (because the purpose is not to make up ID schemes, of course).

Hence there arises a need to provide one-way-CCA secure KEMs. As a second con-
tribution, we give a concrete, discrete logarithm-based one-way-CCA secure KEM. It
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is true that there have already been a few one-way-CCA secure KEMs in discrete log-
arithm setting. In contrast to those KEMs, the feature of our KEM is that it needs the
smallest amount of computational cost while its security is based on the Computational
Diffie-Hellman (CDH) assumption which is weaker than the Decisional Diffie-Hellman
(DDH) assumption or the Gap-CDH assumption (see [21] for these assumptions). That
feature is achieved by applying the Twin Diffie-Hellman technique [6] to Anada-Arita’s
scheme [1] to relax the Gap-CDH assumption on which their scheme is based1.

Finally, we point out a feature that the prover in our generic construction of ID
scheme is deterministic, and hence the derived ID scheme is prover-resettable [3].
Moreover, it is also verifier-resettable because it consists of 2-round interaction. This
is a remarkable property because, as is discussed by Yilek [27], resettable security is
crucially helpful for virtual machine service in the Cloud Computing, for example.

1.2 Related Works

Recently, independently of us, Fujisaki [10] pointed out a fact similar to our generic
construction above (that is, the conversion from one-way-CCA secure KEM to cMiM
secure ID scheme). We discuss the conversion more precisely than it.

As for concrete constructions, the IND-CCA secure KEM of Shoup [25], which
is naturally a one-way-CCA secure KEM, performs comparably efficiently even now,
while its security is based on the DDH assumption. Hanaoka-Kurosawa [15] gave a one-
way-CCA secure KEM whose assumption is the CDH assumption, which is weaker
than the DDH assumption. It is directly comparable with our KEM and our KEM
reduces the computation by one exponentiation for encapsulation than the Hanaoka-
Kurosawa KEM. While both the Shoup KEM and the Hanaoka-Kurosawa KEM are
intended for the hybrid encryption construction, the one-way-CCA secure KEM of
Anada-Arita [1] is intended directly for ID scheme. It performs better than Shoup’s
KEM and its security is based on the Gap-CDH assumption. The Twin Diffie-Hellman
technique enables us to relax that gap assumption to lead our one-way-CCA secure
KEM.

1.3 Organization of the Paper

In Section 2, we fix some notations and briefly review the notion of ID scheme, KEM
and computational hardness assumption. In Section 3, we propose a generic way for
deriving a cMiM secure ID scheme from a one-way-CCA secure KEM. In Section 4,
we construct a one-way-CCA secure KEM by the Twin Diffie-Hellman technique. In
Section 5, we compare our KEM or ID scheme with previously known KEMs or ID
schemes. In Section 6, we conclude our work.

2 Preliminaries

The security parameter is denoted k. On input 1k, a probabilistic polynomial-time (PPT,
for short) algorithm Grp runs and outputs (q, g), where q is a prime of length k and g is

1 The strategy to apply the Twin Diffie-Hellman technique was suggested to us by Prof. Kiltz
[18].
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a generator of a multiplicative cyclic group Gq of order q. Grp specifies elements and
group operations of Gq . The ring of exponent domain of Gq , which consists of integers
from 0 to q − 1 with modulo q operation, is denoted Zq .

When an algorithm A on input a outputs z, we denote it as z ← A(a). When A on
input a and B on input b interact and B outputs z, we denote it as z ← 〈A(a), B(b)〉.
When A has oracle-access to O, we denote it as AO . When A has concurrent oracle-
access to n oracles O1, . . . ,On, we denote it as AO1|···|On . Here “concurrent” means
that A accesses to oracles in arbitrarily interleaved order of messages.

A probability of an event X is denoted Pr[X]. A probability of an event X on condi-
tions Y1, . . . , Ym is denoted Pr[Y1; · · · ; Ym : X].

2.1 Identification Scheme

An identification scheme ID is a triple of PPT algorithms (K, P, V). K is a key generator
which outputs a pair of a public key and a matching secret key (pk,sk) on input 1k. P
and V implement a prover and a verifier strategy, respectively. We require ID to satisfy
the completeness condition that boolean decision by V(pk) after interaction with P(sk)
is TRUE with probability one. We say that V(pk) accepts if its boolean decision is
TRUE.

Concurrent Man-in-the-Middle Attack on Identification Scheme [3,5]. The aim of
an adversary A that attacks an ID scheme ID is impersonation. We say that A wins
whenA(pk) succeeds in making V(pk) accept.

An adversary A performs a concurrent man-in-the-middle (cMiM, for short) attack
in the following way.

Experimentimp-cmim
A,ID (1k)

(pk,sk)← K(1k), decision← 〈AP1(sk)|···|Pn(sk)(pk),V(pk)〉
If decision = 1 ∧ π∗ �∈ {πi}ni=1 then return WIN else return LOSE.

In the above experiment, we denoted a transcript of interaction between Pi(sk) and
A(pk) as πi and a transcript between A(pk) and V(pk) as π∗. As a rule, man-in-the-
middle adversaryA is prohibited from relaying a transcript of a whole interaction with
some prover clone to the verifier V(pk), as is described π∗ �∈ {πi}ni=1 in the experiment.
This is a standard and natural constraint to keep man-in-the-middle attack meaningful.

We defineA’s imp-cMiM advantage over ID as:

Advimp-cmim
A,ID (k) def=Pr[Experimentimp-cmim

A,ID (1k) returns WIN].

We say that an ID is secure against concurrent man-in-the-middle attacks (cMiM se-
cure, for short) if, for any PPT algorithmA, Advimp-cmim

A,ID (k) is negligible in k.
Suppose that an adversary A consists of two algorithms A1 and A2. The following

experiment is called a 2-phase concurrent attack.

Experimentimp-2pc
A,ID (1k)

(pk,sk)← K(1k), st← AP1(sk)|···|Pn(sk)
1 (pk), decision← 〈A2(st),V(pk)〉

If decision = 1 then return WIN else return LOSE.
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2-phase concurrent attack is a weaker model than cMiM attack because of the constraint
that the learning phase of A1 is limited to before the impersonation phase of A2.

2-phase concurrent attack and cMiM attack are classified to active attacks. On the
contrary, there is a passive attack described below. Let us denote a transcript of a whole
interaction between P(sk) and V(pk) as π = |〈P(sk),V(pk)〉|.

Experimentimp-pa
A,ID (1k)

(pk,sk)← K(1k)
If A1(pk) makes a query, reply πi ← |〈P(sk),V(pk)〉|
st← A1({πi}ni=1), decision← 〈A2(st),V(pk)〉
If decision = 1 then return WIN else return LOSE.

Passive attack is a weaker model than 2-phase concurrent attack because of the con-
straint that A cannot choose messages in the learning phase.

2.2 Key Encapsulation Mechanism

A key encapsulation mechanism (KEM) KEM is a triple of PPT algorithms (K, Enc,
Dec). K is a key generator which outputs a pair of a public key and a matching se-
cret key (pk,sk) on input 1k. Enc is an encapsulation algorithm which, on input pk,
outputs a pair (K, ψ), where K is a random string and ψ is a ciphertext of K . Dec
is a decapsulation algorithm which, on input (sk, ψ), outputs the decapsulation K̂ of
ψ. We require KEM to satisfy the completeness condition that the decapsulation K̂ of
a consistently generated ciphertext ψ by Enc is equal to the original random string K
with probability one.

Adaptive Chosen Ciphertext Attack on One-Wayness of KEM [22,15]. An adver-
sary A performs an adaptive chosen ciphertext attack on one-wayness of a KEM (one-
way-CCA, for short) in the following way.

Experimentow-cca
A,KEM(1

k)

(pk,sk)← K(1k), (K∗, ψ∗)← Enc(pk), K̂∗ ← ADEC(sk,·)(pk, ψ∗)

If K̂∗ = K∗ ∧ ψ∗ �∈ {ψi}qdec

i=1 then return WIN else return LOSE.

In the above experiment, ψi, i = 1, . . . , qdec mean ciphertexts for which A queries its
decapsulation oracle DEC(sk, ·) for the answers. Here the number qdec of queries is
polynomial in k. Note that the challenge ciphertext ψ∗ itself must not be queried to
DEC(sk, ·), as is described ψ∗ �∈ {ψi}qdec

i=1 in the experiment.
We defineA’s one-way-CCA advantage over KEM as:

Advow-cca
A,KEM(k) def=Pr[Experimentow-cca

A,KEM(1
k) returns WIN].

We say that a KEM is secure against adaptive chosen ciphertext attacks against one-
wayness (one-way-CCA secure, for short) if, for any PPT algorithm A, Advow-cca

A,KEM(k)
is negligible in k. Note that if a KEM is IND-CCA secure [8], then it is one-way-CCA
secure. So IND-CCA security is a stronger notion than one-way-CCA security.
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Suppose that an adversary A consists of two algorithms A1 and A2. The following
experiment is called a non-adaptive chosen ciphertext attack on one-wayness of a KEM.

Experimentow-cca1
A,KEM (1k)

(pk,sk)← K(1k), st← ADEC(sk,·)
1 (pk), (K∗, ψ∗)← Enc(pk), K̂∗ ← A2(st, ψ∗)

If K̂∗ = K∗ then return WIN else return LOSE.

Non-adaptive chosen ciphertext attack is a weaker model than adaptive one because of
the constraint that the learning phase ofA1 is limited to before the solving phase ofA2.

Adaptive and non-adaptive chosen ciphertext attacks are classified to active attacks.
On the contrary, there is a passive attack on one-wayness of a KEM described below.

Experimentow-pa
A,KEM(1

k)

(pk,sk)← K(1k)
If A1(pk) makes a query, reply (Ki, ψi)← Enc(pk)

st← A1({(Ki, ψi)}ni=1), (K
∗, ψ∗)← Enc(pk), K̂∗ ← A2(st, ψ∗)

If K̂∗ = K∗ then return WIN else return LOSE.

Passive attack is a weaker model than non-adaptive chosen ciphertext attack because of
the constraint that A cannot choose ciphertexts in the learning phase.

2.3 The Computational Diffie-Hellman Assumption and the Twin Diffie-Hellman
Technique

We say a solver S, a PPT algorithm, wins when S succeeds in solving a computational
problem instance.

A quadruple (g, X, Y, Z) of elements in Gq is called a Diffie-Hellman tuple (DH
tuple, for short) if the quadruple is written as (g, gx, gy, gxy) for some elements x, y in
Zq . A CDH problem instance is a triple (g, X = gx, Y = gy), where the exponents x, y
are uniformly random in Zq . A CDH problem solver is a PPT algorithm which, given a
CDH problem instance (g, X, Y ) as input, tries to return Z = gxy, whose experiment
is the following.

Experimentcdh
S,Grp(1

k)

(q, g)← Grp(1k), x, y ← Zq, X := gx, Y := gy, Z ← S(g, X, Y )
If Z = gxy then return WIN else return LOSE.

We define S’s CDH advantage over Grp as:

Advcdh
S,Grp(k) def= Pr[Experimentcdh

S,Grp(1
k) returns WIN].

We say that the CDH assumption [21] holds for Grp if, for any PPT algorithm S,
Advcdh

S,Grp(k) is negligible in k.
A 6-tuple (g, X1, X2, Y, Z1, Z2) of elements in Gq is called a twin Diffie-Hellman

tuple if the tuple is written as (g, gx1 , gx2 , gy, gx1y, gx2y) for some elements x1, x2, y
in Zq .
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The following lemma of Cash, Kiltz and Shoup is used in Section 4 to decide whether
or not a tuple is a twin DH tuple in the security proof for our concrete KEM.

Lemma (Cash, Kiltz and Shoup [6] Theorem 2, “Trap Door Test”). Let X1, r, s
be mutually independent random variables, where X1 takes values in Gq , and each
of r, s is uniformly distributed over Zq . Define the random variable X2 := X−r

1 gs.

Suppose that Ŷ , Ẑ1, Ẑ2 are random variables taking values in Gq , each of which is

defined independently of r. Then the probability that the truth value of Ẑ1

r
Ẑ2 = Ŷ s

does not agree with the truth value of (g, X1, X2, Ŷ , Ẑ1, Ẑ2) being a twin DH tuple is

at most 1/q. Moreover, if (g, X1, X2, Ŷ , Ẑ1, Ẑ2) is a twin DH tuple, then Ẑ1

r
Ẑ2 = Ŷ s

certainly holds.

3 Identification Scheme from Key Encapsulation Mechanism

In this section, we show a generic way for deriving an ID scheme secure against con-
current man-in-the-middle attacks from a one-way-CCA secure KEM.

3.1 Construction

Let KEM = (K,Enc,Dec) be a KEM. Then an ID scheme ID is derived in a natural
way as shown in the Fig.1. The key generation algorithm is the same as that of KEM.
The verifier V, given a public key pk as input, invokes the encapsulation algorithm Enc
on pk and gets its output (K, ψ). V sends ψ to P. The prover P, given a secret key sk
as input and receiving ψ as input message, invokes the decapsulation algorithm Dec
on (sk, ψ) and gets its output K̂. P sends K̂ to V. Finally the verifier V, receiving K̂

as input message, verifies whether or not K̂ is equal to K . If so, then V returns 1 and
otherwise, 0.

It is notable that, if we use an encryption scheme, which is not a KEM, as an ID
scheme in a similar way, then we need to input a random string into the encryption
algorithm. In contrast, in a KEM, an encapsulation algorithm does not need such an
input but only has to output a random string.

Theorem 1. If a key encapsulation mechanism KEM is one-way-CCA secure, then the
derived identification scheme ID is cMiM secure. More precisely, for any PPT adver-
sary A that attacks ID in cMiM setting, there exists an PPT adversary B that attacks
KEM in one-way-CCA setting satisfying the following inequality.

Advimp-cmim
A,ID (k) � Advow-cca

B,KEM(k).

3.2 Proof of Theorem 1

Let KEM be a one-way-CCA secure KEM and ID be the derived ID scheme by the
construction above. LetA be any given cMiM adversary on ID. UsingA as subroutine,
we construct a PPT one-way-CCA adversary B that attacks KEM as shown in the Fig.2.
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Key Generation
– K: the same as that of KEM

Interaction
– V: given pk as input;
• Invoke Enc on pk: (K,ψ)← Enc(pk)
• Send ψ to P
– P: given sk as input and receiving ψ as input message;
• Invoke Dec on (sk, ψ): ̂K ← Dec(sk, ψ)

• Send ̂K to V
– V: receiving ̂K as input message;
• If ̂K = K then return 1 else return 0

Fig. 1. An ID scheme ID=(K,P,V) derived from a KEM KEM=(K,Enc,Dec)

Given pk as input;
Initial Setting

– Initialize the inner state
– Invoke A on pk

Answering A’s Queries
– In case that A queries V(pk) for the challenge message
• Send ψ∗ to A
– In case that A sends ψ to a prover clone P(sk)
• If ψ = ψ∗, then put K :=⊥
• else Query DEC for the answer for ψ: K ← DEC(sk, ψ)
• Send K to A
– In case that A sends ̂K∗ to V(pk)
• Return ̂K∗ as the answer for ψ∗

Fig. 2. A one-way-CCA adversary B employing a cMiM adversary A for the proof of Theorem 1

On input pk and the challenge ciphertext ψ∗, B initializes its inner state and invokes
A on input pk. In case thatA queries V(pk) for the challenge message,B sends ψ∗ toA
as the challenge message. In case thatA sends a challenge message ψ to a prover clone
P(sk), B checks whether or not ψ is equal to ψ∗. If so, then B puts K =⊥. Otherwise,
B queries its decapsulation oracle DEC(sk, ·) for the answer for the ciphertext ψ and
gets K . B sends K to A as the response message.

In case thatA sends the response message K̂∗ to V(pk), B returns K̂∗ as the answer
for the challenge ciphertext ψ∗.

The view ofA in B is the same as the real view ofA. This is obvious except the case
that ψ is equal to ψ∗. When A sent ψ = ψ∗, the transcript of the interaction between
P(sk) and A(pk) would be wholly equal to that between A(pk) and V(pk), because
the prover P is deterministic. This is ruled out, so B’s response, K =⊥, is appropriate.

If A wins, then B wins. Hence the inequality in Theorem 1 follows. (Q.E.D.)

Remark 1. In analogous ways, we can show the following facts. If a KEM is secure
against non-adaptive chosen ciphertext attacks on one-wayness, then the derived ID
scheme ID is secure against 2-phase concurrent attacks. If a KEM is secure against
passive attacks on one-wayness, then the derived ID scheme ID is secure against passive
attacks.
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Remark 2. The proverP in the Fig.1 is deterministic. Therefore, the derived ID scheme
ID is prover-resettable [3]. Moreover, ID is also verifier-resettable because ID consists
of 2-round interaction.

4 A One-Way-CCA Secure KEM Based on the CDH Assumption

In this section, we propose a one-way-CCA secure KEM based on the CDH assumption.
The challenge-and-response ID scheme of Anada-Arita [1] can be viewed as a one-way-
CCA secure KEM based on the Gap-CDH assumption. Our strategy is to relax the gap
assumption by applying the Twin Diffie-Hellman technique of Cash, Kiltz and Shoup
[6,18].

In the construction, we employ a target collision resistant (TCR) hash function fam-
ily. The definition of a TCR hash function family Hfam(1k) = {Hμ}μ∈Hkey(1k) and
advantage Advtcr

CF ,Hfam(k) of a PPT collision finder CF over Hfam are in Appendix A.

4.1 Construction

The construction of a KEM KEM1 is shown in the Fig.3.
On input 1k, the key generator K runs as follows. A group generator Grp out-

puts (q, g) on input 1k. In addition, K chooses a hash key μ from a hash key space
Hkey(1k). The hash key μ indicates a specific hash function Hμ with values in Zq in
a hash function family Hfam(1k). Then K chooses x1, x2, y1, y2 ∈ Zq and computes
X1 = gx1 , X2 = gx2 , Y1 = gy1, Y2 = gy2 . K sets pk = (q, g, X1, X2, Y1, Y2, μ) and
sk = (q, g, x1, x2, y1, y2, μ). Then K returns (pk, sk).

On input pk, the encapsulation algorithm Enc runs as follows. Enc chooses a ∈ Zq

at random and computes h = ga and the hash value τ ← Hμ(h). Then Enc computes
d1 = (Xτ

1 Y1)a, d2 = (Xτ
2 Y2)a and K = Xa

1 . The random string is K and the cipher-
text is ψ = (h, d1, d2). Note here that (g, Xτ

1 Y1, X
τ
2 Y2, h, d1, d2) is a twin DH tuple.

Enc returns the pair (K, ψ).
On input sk and ψ = (h, d1, d2), the decapsulation algorithm Dec runs as follows.

Dec computes the hash value τ ← Hμ(h). Then Dec verifies whether ψ = (h, d1, d2)
is a consistent ciphertext, that is, whether (g, Xτ

1 Y1, X
τ
2 Y2, h, d1, d2) is a twin DH tuple

or not. For this sake, Dec checks whether hτx1+y1 = d1 and hτx2+y2 = d2 hold. If at
least one of them does not hold, then Dec puts K =⊥. Otherwise Dec computes the
decapsulation K = hx1 . Note that (g, X1, h, K) is a DH tuple. Finally, Dec returns K .

Theorem 2. The key encapsulation mechanism KEM1 is one-way-CCA secure based
on the CDH assumption and the target collision resistance of employed hash function
family. More precisely, for any PPT one-way-CCA adversary A on KEM1 that queries
decapsulation oracle at most qdec times, there exist a PPT CDH problem solver S on
Grp and a PPT collision-finder CF on Hfam which satisfy the following tight
reduction.

Advow-cca
A,KEM1(k) � qdec

q
+ Advcdh

S,Grp(k) + Advtcr
CF ,Hfam(k).
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Key Generation
– K: given 1k as input;
• (q, g)← Grp(1k), μ← Hkey(1k)
• x1, x2, y1, y2 ← Zq, X1 := gx1 , X2 := gx2 , Y1 := gy1 , Y2 := gy2

• pk := (q, g,X1, X2, Y1, Y2, μ),sk := (q, g, x1, x2, y1, y2, μ)
• Return (pk,sk)

Encapsulation
– Enc: given pk as input;
• a← Zq, h := ga, τ ← Hμ(h)
• d1 := (Xτ

1 Y1)
a, d2 := (Xτ

2 Y2)
a,K := Xa

1 , ψ = (h, d1, d2)
• Return (K,ψ)

Decapsulation
– Dec: given sk, ψ = (h, d1, d2) as input;
• τ ← Hμ(h)
• If hτx1+y1 �= d1 or hτx2+y2 �= d2 then K :=⊥ else K := hx1

• Return K

Fig. 3. A one-way-CCA secure KEM KEM1

4.2 Proof of Theorem 2

Let A be any given adversary that attacks KEM1 in one-way-CCA setting. Using A as
subroutine, we construct a PPT CDH problem solver S as shown in the Fig.4, where an
algebraic trick [17] and the Twin Diffie-Hellman technique [6] are essentially used.
S is given q, g, X = gx and Y = gy as input, where x and y are random.S initializes

its inner state. S chooses a∗ ∈ Zq at random and computes h∗ = Y ga∗
. Then S chooses

μ from Hkey(1k) and computes τ∗ ← Hμ(h∗). S chooses r, s ∈ Zq at random, and
puts X1 = X, X2 = X−r

1 gs. S chooses u1, u2 ∈ Zq at random, and computes W1 =
X−τ∗

1 gu1 , W2 = X−τ∗
2 gu2 . S computes d∗1 = (h∗)u1 , d∗2 = (h∗)u2 . S sets pk =

(q, g, X1, X2, W1, W2, μ), ψ∗ = (h∗, d∗1, d∗2) and invokes A on input pk and ψ∗. Note
that pk is correctly distributed. Note also that S does not know x1, x2, w1, w2 at all,
where x1, x2, w1, w2 are the discrete log of X1, X2, W1, W2, respectively. Especially
the followings hold.

wi = logg(Wi) = −τ∗xi + ui, i = 1, 2. (1)

S replies to A’s queries as follows.
In case that A queries its decapsulation oracle DEC(sk, ·) for the answer for ψ =
(h, d1, d2), S checks whether ψ is equal to ψ∗ or not. If ψ = ψ∗, then S puts K =⊥.
Otherwise, S computes τ ← Hμ(h) and verifies whether ψ = (h, d1, d2) is consistent
or not (call this case CONSISTENCY-CHECK).
That is, S verifies whether (g, Xτ

1 W1, X
τ
2 W2, h, d1, d2) is a twin DH tuple as follows.

Put Ŷ = hτ−τ∗
, Ẑ1 = d1/hu1 and Ẑ2 = d2/hu2 . If Ẑ1

r
Ẑ2 �= Ŷ s, then it is not a twin

DH tuple and S puts K =⊥. Otherwise, S decides that it is a twin DH tuple. Then, if

τ �= τ∗, S computes K = Ẑ1

1/(τ−τ∗)
(call this case SIMDEC). Otherwise (τ = τ∗), S

aborts (call this case ABORT). S replies K to A except the case ABORT.
In case that A replies K̂∗, S computes Z = K̂∗/Xa∗

and returns Z .
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Given q, g,X = gx, Y = gy as input;
Initial Setting

– Initialize the inner state
– a∗ ← Zq, h

∗ := Y ga
∗

– μ← Hkey(1k), τ∗ ← Hμ(h
∗)

– r, s← Zq, X1 := X,X2 := X−r
1 gs

– u1, u2 ← Zq,W1 := X−τ∗
1 gu1 ,W2 := X−τ∗

2 gu2

– d∗1 := (h∗)u1 , d∗2 := (h∗)u2

– pk := (q, g,X1, X2,W1,W2, μ), ψ
∗ := (h∗, d∗1, d

∗
2)

– Invoke A on pk and ψ∗

Answering A’s Queries
– In case that A queries DEC(sk, ·) for the answer for ψ = (h, d1, d2)
• If ψ = ψ∗, then put K :=⊥
• else (: the case CONSISTENCY-CHECK)
τ ← Hμ(h), ̂Y := hτ−τ∗

,̂Z1 := d1/h
u1 ,̂Z2 := d2/h

u2

If ̂Z1

r
̂Z2 �= ̂Y s, then K :=⊥

else
If τ �= τ∗, then K := ̂Z1

1/(τ−τ∗)
(: the case SIMDEC)

else abort (: the case ABORT)
• Reply K to A
– In case that A replies ̂K∗ as the answer for ψ∗

• Z := ̂K∗/Xa∗

• Return Z

Fig. 4. A CDH problem solver S employing a one-way-CCA adversary A for the proof of
Theorem 2

S is able to simulate the real view of A perfectly until the case ABORT happens
except a negligible case, as we see below.

Firstly, the challenge ciphertext ψ∗ = (h∗, d∗1, d
∗
2) is consistent and correctly dis-

tributed. This is because the distribution of (h∗, d∗1, d
∗
2) is equal to that of the real con-

sistent ciphertext ψ = (h, d1, d2). To see it, note that y + a∗ is substituted for a:

h∗ = gy+a∗
, d∗i = (gy+a∗

)ui = (gui)y+a∗
= (Xτ∗

i Wi)y+a∗
, i = 1, 2.

Secondly, S simulates the decapsulation oracle DEC(sk, ·) perfectly except a negli-
gible case. To see it, note that the consistency check really works though it may involve
a negligible error case, which is explained by the following two claims.

Claim 1. (g, Xτ
1 W1, X

τ
2 W2, h, d1, d2) is a twin DH tuple if and only if

(g, X1, X2, Ŷ , Ẑ1, Ẑ2) is a twin DH tuple for Ŷ = hτ−τ∗
, Ẑ1 = d1/hu1 and Ẑ2 =

d2/hu2 .
Claim 1 is proven by direct calculations and the proof is noted in Appendix B.

Claim 2. If Ẑ1

r
Ẑ2 = Ŷ s holds for Ŷ = hτ−τ∗

, Ẑ1 = d1/hu1 and Ẑ2 = d2/hu2 , then
(g, X1, X2, Ŷ , Ẑ1, Ẑ2) is a twin DH tuple except an error case that occurs at most 1/q

probability. Conversely, if (g, X1, X2, Ŷ , Ẑ1, Ẑ2) is a twin DH tuple, then Ẑ1

r
Ẑ2 = Ŷ s

certainly holds.
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Proof of Claim 2. We observe that each of Ŷ = hτ−τ∗
, Ẑ1 = d1/hu1 and Ẑ2 = d2/hu2

is given independently of r. So we can apply the Lemma in Section 2. (Q.E.D.)

Let us define the event OVERLOOK as:

OVERLOOK
def=

{
Ẑ1

r
Ẑ2 = Ŷ s holds

and (g, X1, X2, Ŷ , Ẑ1, Ẑ2) is not a twin DH tuple.

Then, by the Claim 2, the probability that OVERLOOK occurs is at most 1/q for each
consistency check. So for at most qdec consistency checks, CONSISTENCY-CHECKi, i =
1, . . . , qdec, the probability that at least one corresponding OVERLOOKi occurs is at
most qdec/q. That is;

Pr[
qdec∨
i=1

OVERLOOKi] � qdec

q
. (2)

qdec is polynomial and q is exponential in k, so the right hand side is negligible in k.
Suppose S has confirmed that a decapsulation query ψ = (h, d1, d2) passed the

consistency check. In that case, (g, Xτ
1 W1, X

τ
2 W2, h, d1, d2) is a twin DH tuple (except

a negligible case OVERLOOK), so d1 = hτx1+w1 holds. If, in addition, S is in the case

SIMDEC (that is, τ �= τ∗), then the answer K = Ẑ1

1/(τ−τ∗)
of S to A is correct. This

is because K = (d1/hu1)1/(τ−τ∗) is equal to hx1 by the following equality.

d1/hu1 = hτx1+w1−u1 = h(τ−τ∗)x1+(τ∗x1+w1−u1) = h(τ−τ∗)x1 ,

where we use the equality (1).
As a whole, S simulates the real view of A perfectly until the case ABORT happens

except the negligible case OVERLOOK.
Now we evaluate the advantage of S. When A wins, (g, X, h∗, K̂∗) is a DH tuple,

so the following holds.

K̂∗ = Xy+a∗
= gx(y+a∗) = gxy+xa∗

.

Hence the output Z is equal to K̂∗/Xa∗
= gxy, which is the correct answer for the input

(g, X, Y ). That is, S wins. Therefore, the probability that S wins is lower bounded by
the probability that A wins, OVERLOOKi never occurs for i = 1, . . . , qdec and ABORT

does not happen:

Pr[S wins] � Pr[A wins ∧ (
qdec∧
i=1

(¬OVERLOOKi)) ∧ (¬ABORT)]

� Pr[A wins]− Pr[(
qdec∨
i=1

OVERLOOKi) ∨ ABORT]

= Pr[A wins]− (Pr[
qdec∨
i=1

OVERLOOKi] + Pr[(
qdec∧
i=1

(¬OVERLOOKi)) ∧ ABORT]).
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Using the inequality (2), we get:

Advcdh
S,Grp(k) � Advow-cca

A,KEM1(k)− qdec

q
− Pr[(

qdec∧
i=1

(¬OVERLOOKi)) ∧ ABORT].

So our task being left is to show the following inequality.

Claim 3. Pr[(
qdec∧
i=1

(¬OVERLOOKi)) ∧ ABORT] � Advtcr
CF ,Hfam(k).

Proof of Claim 3. UsingA as subroutine, we construct a PPT target collision finder CF
on Hfam as follows. Given 1k as input, CF initializes its inner state. CF gets (q, g)
from Grp(1k). CF chooses a∗ ∈ Zq at random, computes h∗ = ga∗

and outputs
h∗. CF receives a random hash key μ and computes τ∗ ← Hμ(h∗). Then CF makes
a secret key and public key honestly by itself : sk = (q, g, x1, x2, y1, y2, μ),pk =
(q, g, X1, X2, Y1, Y2, μ). Finally, CF computes d∗1 = (Xτ∗

1 Y1)a∗
, d∗2 = (Xτ∗

2 Y2)a∗
and

puts ψ∗ = (h∗, d∗1, d∗2). CF invokesA on pk and ψ∗.
In case that A queries the decapsulation oracle DEC(sk, ·) for the answer for ψ =

(h, d1, d2), CF checks whether ψ is equal to ψ∗ or not. If ψ = ψ∗, then CF replies
K =⊥ to A. Otherwise (ψ �= ψ∗), CF computes τ ← Hμ(h) and verifies whether
ψ = (h, d1, d2) is consistent. CF can do it in the same way as the Dec does because
CF has the secret key sk. If it is not consistent, CF replies K =⊥ to A. Otherwise, if
τ �= τ∗, then CF replies K = hx1 to A. Else if τ = τ∗, then CF returns h and stops
(call this case COLLISION).

The view ofA in CF is the same as the real view until the case COLLISION happens.
Observe here the following. If OVERLOOK never occurs in S, then only consistent

queries (ψs) have the chance to cause a collision τ = τ∗ as is the case in CF . Hence we
have:

Pr[(
qdec∧
i=1

(¬OVERLOOKi)) ∧ ABORT] � Pr[COLLISION]. (3)

On the other hand, notice that COLLISION implies the following.⎧⎪⎨⎪⎩
(g, Xτ∗

1 Y1, X
τ∗
2 Y2, h

∗, d∗1, d∗2): a twin DH tuple

and ∃(g, Xτ
1 Y1, X

τ
2 Y2, h, d1, d2): a twin DH tuple

and τ = τ∗.

If, in addition to the above conditions, h were equal to h∗, then (d1, d2) would be equal
to (d∗1, d∗2). This means that ψ is equal to ψ∗, a contradiction. So it must hold that

h �= h∗.

Namely, in the case COLLISION, CF succeeds in making a target collision:

Pr[COLLISION] = Advtcr
CF ,Hfam(k). (4)

Combining (3) and (4), we get the inequality as claimed. (Q.E.D.)
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4.3 A Tuning for Efficiency and the Corresponding Identification Scheme

To reduce the length of ciphertext ψ = (h, d1, d2), we can replace the term d2 with
its hash value v2 := Hμ(d2). Let us call this KEM KEM2. In KEM2, the ciphertext
turns to ψ = (h, d1, v2), so the consistency check for index 2 in Dec(sk, ψ) becomes

Hμ(hτx2+y2) ?= v2. In addition, the trapdoor test in the security proof, Ẑ1

r
Ẑ2

?= Ŷ s, is
deformed as follows.

Ẑ1

r
Ẑ2 = Ŷ s ⇐⇒ (d1/hu1)r(d2/hu2) = (hτ−τ∗

)s

⇐⇒ d−r
1 hru1+u2+s(τ−τ∗) = d2

=⇒ Hμ(d−r
1 hru1+u2+s(τ−τ∗)) = v2.

The last equality may cause collision, so the security statement for KEM2 needs the
collision resistance assumption of employed hash function family Hfam (the name of
game “cr” in Advcr

CF ′,Hfam(k) below means collision resistance).

Corollary of Theorem 2. The key encapsulation mechanism KEM2 is one-way-CCA
secure based on the CDH assumption, the target collision resistance and the collision
resistance of employed hash function family. More precisely, for any PPT one-way-CCA
adversary A on KEM2 that queries decapsulation oracle at most qdec times, there exist
a PPT CDH problem solver S on Grp, a PPT collision-finder CF and CF ′ on Hfam
which satisfy the following tight reduction.

Advow-cca
A,KEM2(k) � qdec

q
+ Advcdh

S,Grp(k) + Advtcr
CF ,Hfam(k) + Advcr

CF ′,Hfam(k).

The ID scheme derived from KEM2 is shown in the Fig.5. The maximum message
length of the ID scheme derived from KEM1 (that is, the length of challenge message
of V) amounts to three elements in Grp. By the tuning above, the maximum message
length reduces to two elements in Grp plus one hash value of Hμ.

5 Efficiency Comparison

In this section, we evaluate the efficiency of our ID schemes comparing with other ID
schemes secure against concurrent man-in-the-middle attacks in the standard model.
Under the condition that security is based on the CDH assumption, our ID schemes
reduce the computation by one exponentiation than the currently most efficient one.

Comparable schemes are divided into four categories. The first category is Σ-
protocols, the second category is challenge-and-response ID schemes obtained from
EUF-CMA secure signature schemes, the third category is the ones obtained from IND-
CCA secure encryption schemes and the fourth category is the ones obtained from one-
way-CCA secure KEMs.

In the first category, to the best of our knowledge, the Gennaro scheme is the most
efficient but no more efficient than the ID scheme derived from Cramer-Shoup encryp-
tion [8,25,9] (the Cramer-Shoup ID scheme, for short). As for the second category, all
the known signature schemes in the standard model, including the Short Signature [2]
and the Waters Signature [26], are costly than the Cramer-Shoup ID scheme.
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Key Generation
– K: given 1k as input;
• (q, g)← Grp(1k), μ← Hkey(1k)
• x1, x2, y1, y2 ← Zq, X1 := gx1 , X2 := gx2 , Y1 := gy1 , Y2 := gy2

• pk := (q, g,X1, X2, Y1, Y2, μ),sk := (q, g, x1, x2, y1, y2, μ)
• Return (pk,sk)

Interaction
– V: given pk as input;
• a← Zq, h := ga, τ ← Hμ(h)
• d1 := (Xτ

1 Y1)
a, v2 := Hμ((X

τ
2 Y2)

a),K := Xa
1 , ψ = (h, d1, v2)

• Send ψ to P
– P: given sk as input and receiving ψ = (h, d1, v2) as input message;
• τ ← Hμ(h)

• If hτx1+y1 �= d1 or Hμ(h
τx2+y2) �= v2 then ̂K :=⊥ else ̂K := hx1

• Send ̂K to V
– V: receiving ̂K as input message;
• If ̂K = K then return 1 else return 0

Fig. 5. An ID scheme derived from KEM2

In the third category, the Cramer-Shoup ID scheme is the most efficient. Note that the
Cramer-Shoup KEM [25,9] (Sh00KEM) is also usable as a cMiM secure ID scheme,
because the KEM is IND-CCA secure and hence one-way-CCA secure. On the contrary,
we remark that the KEM part of Kurosawa-Desmedt encryption scheme [19] is not
comparable because the KEM is not one-way-CCA secure [14].

In the fourth category the one-way-CCA secure KEM of Hanaoka-Kurosawa [15]
(HK08KEM) is vary comparable, as its security is reduced to the CDH assumption. A
recently proposed ID scheme of Anada-Arita [1] is also comparable as it can be consid-
ered an ID scheme derived from a one-way-CCA secure KEM (AA10KEM)2.

Table 1 shows comparison of these KEMs with our KEMs KEM1 and KEM2. In the
table, we are comparing computational amount by counting the number of exponentia-
tions. We also compares the maximum message length. (For the DDH assumption and
the Gap-CDH assumption, see [21].)

Table 1. Efficiency comparison of KEM1 and KEM2 with previous KEMs. G and h mean an
element in Gq and a hash value in Zq, respectively. OW-CCA means one-way-CCA security.

KEM Security Security Security Exponentiation Max. Msg. Length
Assump. as KEM as ID scm. V(Enc) P(Dec) (Challenge Msg.)

Sh00KEM DDH IND-CCA cMiM 5 3 3G
HK08KEM CDH OW-CCA cMiM 7 3 3G
AA10KEM Gap-CDH OW-CCA cMiM 4 2 2G
Our KEM1 CDH OW-CCA cMiM 6 3 3G
Our KEM2 CDH OW-CCA cMiM 6 3 2G + 1h

2 We note that one-time signature in the ID scheme of [1] can be replaced by TCR hash function.
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As shown in Table 1, the ID schemes derived from KEM1 and KEM2 reduce the
computation by one exponentiation for verifier than the currently most efficient one
derived from the Hanaoka-Kurosawa one-way-CCA secure KEM [15], whose security
is based on the same (CDH) assumption, which is the weakest in the three assumptions
in the table. We can also look at the table as a trade off between strength of security
assumptions and computational amounts to execute protocols.

6 Conclusion

We showed a generic way for deriving a cMiM secure ID scheme from a one-way-CCA
secure KEM. Then we gave a concrete one-way-CCA secure KEM utilizing the Twin
Diffie-Hellman technique. The obtained ID scheme performs better than the currently
most efficient one whose security is based on the (same) CDH assumption.
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A Target Collision Resistant Hash Functions

Target collision resistant (TCR) hash functions [20,23] are treated as a family. Let us
denote a function family as Hfam(1k) = {Hμ}μ∈Hkey(1k). Here Hkey(1k) is a hash key
space, μ ∈ Hkey(1k) is a hash key and Hμ is a function from {0, 1}∗ to {0, 1}k. We
may assume that Hμ is from {0, 1}∗ to Zq , where q is a prime of length k.

Given a PPT algorithm CF , a collision finder, we consider the following experiment.

Experimenttcr
CF ,Hfam(1k)

m← CF(1k), μ← Hkey(1k), m′ ← CF(μ)
If Hμ(m) = Hμ(m′) and m �= m′, then return WIN else return LOSE.

We define CF’s advantage over Hfam in the game of target collision resistance as fol-
lows.

Advtcr
CF ,Hfam(k) def= Pr[Experimenttcr

CF ,Hfam(1k) returns WIN].

We say that Hfam is a TCR function family if, for any PPT algorithm CF , Advtcr
CF ,Hfam(k)

is negligible in k.
In theory, TCR hash function families can be constructed based on the existence of

a one-way function [20,23].

B Proof of Claim 1

Assume that (g, Xτ
1 W1, X

τ
2 W2, h, d1, d2) is a twin DH tuple and put

Xτ
i Wi =: gαi , h =: gβ, di =: gαiβ, i = 1, 2.

Then hτ−τ∗
= gβ(τ−τ∗). Note that we have set Wi := X−τ∗

i gui , i = 1, 2.

So Xτ
i Wi = Xτ

i X−τ∗
i gui = Xτ−τ∗

i gui and we have gαi−ui = Xτ−τ∗
i , i = 1, 2.

Hence

di/hui = gαiβ/gβui = g(αi−ui)β = X
β(τ−τ∗)
i , i = 1, 2.

This means (g, X1, X2, Ŷ , Ẑ1, Ẑ2) is a twin DH tuple for Ŷ = hτ−τ∗
, Ẑ1 = d1/hu1

and Ẑ2 = d2/hu2 .
The converse is also verified by setting the goal to be di = gαiβ, i = 1, 2 and

starting from the assumption that Ẑi = di/hui = X
β(τ−τ∗)
i , i = 1, 2. (Q.E.D.)
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Abstract. In this paper we utilize an algebraic method called the char-
acteristic set method to attack Bivium and Trivium in the guess-and-
determine way. Our attack focuses on recovering the internal states of
these two ciphers. We theoretically analyze the performance of differ-
ent guessing strategies in the guess-and-determine method and present
a good one. We show a large amount of experimental results about these
two problems with different parameters. From these experimental data
we obtain the following results. For Bivium, with 177-bit keystream the
expected attack time by the characteristic set method is about 231.81

seconds. And for Trivium, with 288-bit keystream the expected attack
time is about 2114.27 seconds.

Keywords: Stream cipher, Trivium, Bivium, algebraic attack, charac-
teristic set method.

1 Introduction

Trivium [2] is a stream cipher designed in 2005 by C. De Cannière and B. Pre-
neel and submitted to the Profile 2 (hardware) European project eSTREAM
[13]. It has an exceptionally simple structure, which leads to very good perfor-
mance in both hardware and software. Despite Trivium’s simplicity, there are
no substantial cryptanalytic results against it so far. Due to these outstanding
qualities, Trivium was chosen as part of the portfolio for Profile 2 by the eS-
TREAM project. In [11], Bivium, a reduced version of the cipher Trivium, has
been introduced. Our motivation is to find attacks on Bivium and then extend
them to Trivium.

Previous works: During the past 5 years, a lot of methods have been used to
attack Bivium and Trivium. Some of them focused on finding the 80-bit key[3,6],
while others focused on recovering the internal state[4,5,9,11]. In this paper our
goal is the second one. There are two reasons for us choosing the second one: 1)
The equations generated from the initial 80-bit key are too dense to be solved by
algebraic ways. 2) If the length of initial key is extended, the complexity of our
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attack will not increase. The results of previous attacks on Bivium and Trivium
for recovering the internal state are summarized below:

• Raddum[11] developed a new algorithm for solving sparse quadratic equations.
The results of this method are listed in the following table.

Bivium-A Bivium-B Trivium

time “about a day” 256 sec O(2164)

keystream 177 177 288

• By guessing some key bits and the products of some key bits , Maximov
and Biryukov [8] reduced Bivium and Trivium to linear equation systems and
obtained the following complexity results:

Bivium-B Trivium

time c · 236.1, where c ≈ 214 c · 283.5, where c ≈ 216

keystream 211.7 261.5

• By converting the polynomial system into logical expression and using the
guess-and-determine method, McDonald, Charnes, and Pieprzyk [9] attacked
Bivium with MiniSat. They obtained the following results:

Bivium-A Bivium-B Trivium

time 21 sec 242.7 sec unknown

keystream 177 177 unknown

• Also based on the guess-and-determine method, Tobias Eibach, Gunnar Völkel
and Enrico Pilz used the Gröbner Basis algorithm to attack Bivium-B [5]. They
got the best attack result on recovering the internal state of Bivium-B until now.

Bivium-B Trivium

time 235.49 sec unknown

keystream 200 unknown

Our work: We use the guess-and-determine way to recover the internal states
of Bivium-B and Trivium. This way is widely used in the previous attacks[4,5,9].
In this paper, we first theoretically analyze the properties of different guessing
strategies in this method, and we choose a good one based on our analysis.
Then we utilize an algebraic method which is called the characteristic set(CS)
method to solve the polynomial systems generated after guessing. In the field of
symbolic computation, the CS method is an important tool for studying poly-
nomial, algebraic differential, and algebraic difference equation systems. Its idea
is reducing equation systems in general form to equation systems in the form
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of triangular sets. This method was introduced by Ritt and the recent study of
it was inspired by Wu’s seminal work on automated geometry theorem proving
[12]. In [1], the CS method was firstly extended to solve polynomial equations
in boolean ring. In [7], it was further extended to solve polynomial equations
in general finite fields, and an efficient variant of the CS method called MFCS
algorithm was proposed and systematically analyzed. MFCS is an algorithm
for solving boolean polynomial equations, which has low space consumption and
needs small number of equations.

With our guessing strategy and MFCS algorithm, the expected attack time
for Bivium-B is about 231.81 seconds, which is 12.8 times faster than the best
known result for recovering the internal state in [5]. The expected attack time for
Trivium is about 2114.27 seconds. This is also a good result. It is only slower than
the result c · 283.5 (c ≈ 216) in [8]. Comparing to 261.5 bits in [8], the keystream
we need is much shorter. For Bivium-B and Trivium, the number is 177 and 288
bits respectively. Note that the result of Trivium is worst than O(280) which is
the complexity of exhaust searching the 80-bit initial key. However, as mentioned
before if the length of initial key is extended, the time complexity of exhaust
search will increase while our time complexity will not change.

The rest of this paper is organized as follows. In Section 2, we simply introduce
Trivium and Bivium. In Section 3, we propose some analysis about the guessing
strategies. In Section 4, we introduce MFCS algorithm. In Section 5 and 6,
experimental results are shown.

2 Trivium and Bivium

Trivium consists of a non-linear feedback shift register, which operates on a
288-bit state denoted by (s1, ..., s288), coupled with a linear filter function. The
initial state of Trivium is initialized by an 80-bit secret key and an 80-bit initial
value(IV) which are written into two of the shift registers. The cipher state
is updated 4 × 288 = 1152 times, and then obtain the initial state. Trivium
generates keystream from the initial state by the following pseudo-code:

For i = 1 to N Do
t1 ← s66 + s93

t2 ← s162 + s177

t3 ← s243 + s288

zi ← t1 + t2 + t3
t1 ← t1 + s91 · s92 + s171

t2 ← t2 + s175 · s176 + s264

t3 ← t3 + s286 · s287 + s69

(s1, s2, . . . , s93) ← (t3, s1, . . . , s92)
(s94, s95, . . . , s177) ← (t1, s94, . . . , s176)

(s178, s179, . . . , s288) ← (t2, s178, . . . , s287)

Bivium[11] is a reduced version of Trivium, which has two variants: Bivium-A
and Bivium-B. Its internal state is 177-bit which is operated by two registers of
length 93 and length 84. It generates keystream by the following pseudo-code:
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For i = 1 to N do

t1 ← s66 + s93

t2 ← s162 + s177

zi ← t1 + t2(Variant B) \ t2(Variant A)
t1 ← t1 + s91 · s92 + s171

t2 ← t2 + s175 · s176 + s69

(s1, s2, . . . , s93) ← (t2, s1, . . . , s92)
(s94, s95, . . . , s177) ← (t1, s94, . . . , s176)

For Trivium or Bivium, by setting every bit of an internal state to be a
variable, we can generate a boolean polynomial system from continuous known
keystream. Our purpose is solving this polynomial system in order to reconstruct
the internal state. Unless otherwise specified, in the following of this paper the
key means the internal state we want to solve, and the initial polynomial equation
system means the polynomial equations generated before.

Since directly solving the polynomial system is too hard, most existing attack
results are based on the guess-and-determine method. It means we first evaluate
some variables with some guessing values and obtain a new polynomial system,
then we try to solve this new system. In [4,5,9], the authors used SAT-solver or
Gröbner basis algorithm as the tools for solving the new system. By the guess-
and-determine method, if we guess k bits of the key and the average attack time
for one instant is t, the upper bound of the attack time is 2kt and the expected
attack time is 2k−1t.

3 Guessing Strategy

From the description of guess-and-determine method, we know that finding a
good guessing strategy is crucial for optimizing the attack results. In this section,
we will analyze some properties of a guessing strategy, and find a good one based
on our analysis. Here we are not concerned with the guessing strategy which
convert all initial polynomials into linear ones.

In the first phase of the guess-and-determine method, in order to reduce the
number of variables we can do the following pre-elimination process: That is after
evaluating the guessing values, we do Gauss elimination for the linear polynomi-
als in the new system. And then for every independent linear polynomial xc +L,
we substitute xc with L in other high degree polynomials. If we get new linear
ones after substitution, we do the previous operation again until no new linear
ones appear. Obviously, by this process we can eliminate variables and will not
increase the degree of the polynomial system. Moreover, replacing a variable by
a linear polynomial will not significantly increase the density of a polynomial.

After the pre-elimination mentioned before, we will obtain some independent
linear equations and some high degree equations. Suppose these high degree
equation only involves � variables. Obviously, � essentially influences the running
time for solving these high degree equations and also the total running time.
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Now let’s analyze the value of � for a guessing strategy about Bivium-B. In [8],
the authors present a good way to analyze the structure of the initial polynomi-
als. First, denote the key (s1, s2, . . . , s93) in the first register as (p1, p2, . . . , p93),
and denote the key (s94, s95, . . . , s177) in the second register as (q1, q2, . . . , q84).
Then sort them into three groups:

K0 = K1
0 ∪K2

0 = (p3, p6, . . . , p93) ∪ (q3, q6, . . . , q84)
K1 = K1

2 ∪K2
2 = (p2, p5, . . . , p92) ∪ (q2, q5, . . . , q83) (1)

K2 = K1
1 ∪K2

1 = (p1, p4, . . . , p91) ∪ (q1, q4, . . . , q82)

Actually, the classification we did above is coincident with the design of Trivium
and Bivium. In the design of Trivium(Bivium), the designer interleave three
sub-generator of length 288/3(177/3) together and interconnect them through
AND-gates. Here each Ki corresponds to each sub-generator.

In the initial polynomials equations there are 66 linear equations. 22 of them
only involve the variables of K0; another 22 ones only involve the variables of K1;
the last 22 ones involve the variables of K2. For the initial quadratic polynomials,
the number of them is 83, and the linear parts of them only involve the variables
in one Ki(i = 1, 2, 3). And for a quadratic polynomial, the part of degree two has
the form

∑
r kr

i+1k
r
i+2 where kr

i+1 ∈ K(i+1 mod 3) and kr
i+2 ∈ K(i+2 mod 3). Note

that, the first register outputs quadratic states after 66 clocks, and the second
register does it after 69 clocks. Hence there are three quadratic polynomials
separately only having one monomial with degree two: q82 · q83, q81 · q82, q80 · q81.
As mentioned in [8], if we know the values of two bits p82, q91 of some internal
state, the following two clocks of Bivium-B are linear. Precisely speaking, if we
know the values of k (k ≤ 28) continuous pairs of variables

(q82), (p91, q79), (p88, q76), . . . , (p91−3(k−2), q79−3(k−2)) ∈ K2, (2)

we can obtain 2k new linear equations with variables in K0, K1.
If we know the values of k (k ≤ 27) continuous pairs of variables

(q81), (p90, q78), (p87, q75), . . . , (p90−3(k−2), q78−3(k−2)) ∈ K0, (3)

we can obtain 2k new linear equations with variables in K1, K2.
If we know the values of k (k ≤ 28) continuous pairs

(q83), (p92, q80), (p89, q77), . . . , (p92−3(k−2), q80−3(k−2)) ∈ K1, (4)

we can obtain 2k − 1 new linear equations with variables in K0 and K2. In the
following of this article, when we say a pair we mean it is a variable pair in
(2),(3) or (4).

Remark 3.1. If we guess a large number of variables, some of polynomial with
degree≥ 3 will be converted into linear ones. And these cases are very complicated
to analyze. Fortunately, for most strategies in [4,5,9] and our choosing one, these
complicated cases will not happen. Only the quadratic equations and the first three
polynomial equations with degree 3 will be converted into linear ones.



82 Z. Huang and D. Lin

Here we present the value of � for some guessing strategies in [4,5].

Example 3.2. In [4], the author concluded that the best strategy for Minisat is
guessing the last 48 variables from the end of the second register. That is guessing
(q84, q83, . . . , q37). Note that every initial linear equation has only four variables.
Two of them are in K1

i , and the others are in K2
i , i = 0, 1, 2. Moreover, the

linear parts of the initial quadratic equations also involve variables both in K1
i

and K2
i . Since the variables guessed in this strategy are only from one register,

we will not generate 1 in pre-elimination, and can’t derive the value of any other
variable from the linear equations. For the pairs in (2) and (3), we just have the
values of (q83) and (q82). Note that q83 and q82 occur in a same quadratic term
q83q82. Hence, � = 177− 66− 48− 2 = 61.

Example 3.3. In [5], a strategy called“Ending-halved” is used in their experi-
ment. That is guessing the ends of both register. By this strategy, if we guess 48
variables (q84, q83, . . . , q61), (p93, p92, . . . , p70), we can get three groups of pairs:

{(q82), (p91, q79), . . . , (p73, q61)} ∈ K2,

{(q81), (p90, q78), . . . , (p75, q63)} ∈ K1,

{(q83), (p92, q80), . . . , (p74, q62)} ∈ K0.

From the first group, it is easy to see that 16 new linear equations are generated.
Now we consider the following two groups. When we evaluate the variables of the
second or third group in an initial quadratic equation, if the terms with degree
two of it have elements in K2, it has already been converted into a linear equation
by evaluating the pairs of the first group. We can conduct that from the pairs of
the second and third groups, we can only generate 7 new linear equations. Thus
we have � = 177− 66− 48− 16− 7 = 40.

Obviously for most guessing values, we can not obtain the solution. This means
a contradiction will occur in some phase of our algorithm. If the contradiction
occurs in the pre-elimination process, the running time will be very short. In
contrast, if the the contradiction occurs in the process of solving high degree
equations, the running time will be much longer. In order to obtain accurate total
running time, we expect the running time is smooth for different assignment.
Hence, we hope the guessing strategy have a good property that contradiction
will not occur in the pre-elimination process. And we say the guessing strategy
satisfying this property is stable. If we use an unstable strategy, in order to obtain
an accurate total running time we need to count how many times our assignment
can not pass the pre-elimination process.

Remark 3.4. Given an unstable strategy, sometimes we can find a correspond-
ing stable one which guesses less variables and has lower time complexity. For ex-
ample, suppose the contradiction occurs in a linear equation x1+x2+x3+x4 = 0
by guessing the values of all xi. We can change the strategy by only guessing
x1, x2, x3, and solve x4 easily. For the unstable strategy, we exhaust search the
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value of x4. In contrast, for the stable one we obtain the value of x4 by solv-
ing linear equation. Obviously, the stable one is better. For solving Bivium, the
problem are much more complicated than this trivial example. Sometimes in the
corresponding stable stretegy we need to solve some higher degree equation with
very simple form, and we think solving these equation by an algebraic way is
faster than exhaust search. Therefore, we think the corresponding stable strategy
is better, and we try to avoid using an unstable strategy.

From the previous research about solving Bivium with Satsolver or Gröbner
Basis, the number for guessing is about 35-55. In this range, we give a nontrivial
example which are not stable.

Example 3.5. For Bivium-B, suppose we guess (s177, s174, . . . , s96, s93, s90, . . .
, s72) and s176. we have an input polynomial s162 + s177 + s175 · s176 + s69 +
s27 + s96 + s111 + z67. We can easily get the values of s27 and s69 from linear
equations. If when we set s176 to be 0. It is possible that after substitution the
above polynomial becomes 1. Consequently, this is not a stable guessing strategy.

Based on above analysis, we want to find a strategy satisfying the following
properties:

– In order to obtain smaller � with less guessing variables, we wish to know
the values of continuous pairs in (2, 3, 4) as many as we can.

– From the analysis of Example 3.3, we know the following fact. Assume that
we have already obtained the values of k1 pairs in some Ki. If we know the
values of k2 pairs in K(i+1 mod 3) or K(i+2 mod 3), the number of new linear
ones generated by these k2 pairs may be less than 2k2. The reason is that
some quadratic polynomials with the form L +

∑
kj

i k
j
i+1 or L +

∑
kj

i k
j
i+2,

where kj
i ∈ Ki, have already been converted into linear ones by evaluating

the pairs in Ki. Thus, for getting smaller � with less guessing variables, we
need to avoid the above situation. This implies for same number of guessing
bits, it is better that all the guessing variables are in a same Ki, i = 1, 2, 3.

– It is better to keep the strategy stable.

Now we present a strategy which satisfying the above three properties. That
is we guess 37 variables (p93−i, p90−i, . . . , p69−i) and (q84−i, q81−i, . . . , q3−i), for
some i = 0, 1, 2. From the 22 initial linear equations, we can obtain the values
of (p66−i, p63−i, . . . , p3−i). Then we have the values of all the variables in some
Ki which containing all the pairs in Ki.

Since we only guess three elements in an initial linear polynomial, we will
not obtain contradiction from the initial linear polynomials. Moreover, the vari-
ables whose values can be obtained from these linear equations are still in the
same Ki. Thus, after we assign these values into quadratic equations, the new
linear equations we obtain are with variables in Ki+1 mod 3 and Ki+2 mod 3. And
these new linear equations are linear independent with the initial 44 linear ones.
Consequently, this strategy is stable.
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Here we show the value of � for different i:

1. If i = 0, � = 177− 66− 37− 2 · 27 = 20.
2. If i = 1, � = 177− 66− 37− (2 · 28− 1) = 19.
3. If i = 2, � = 177− 66− 37− 2 · 28 = 18.

Obviously it is better to guess the 37 variables in K2 since � is smallest. In [8],
this strategy was first mentioned. And in [5], the ”Every-3rd” strategy by which
they obtained best experimental results is same as our strategy in the case of
i = 0. However, in [5] the number of their guessing variables is greater than
37, which means they also guess some variables in K1. Actually if we guess the
above 37 variables in some Ki and some other variables in Ki+1 or Ki+2, the
strategy will be unstable. For example, let’s consider the quadratic polynomial
L0 +

∑
i ki

2k
i
1 where ki

1 ∈ K1, ki
1 ∈ K2 and L0 is a linear one with variables

in K0. If ki
1 are our guessing variables and we set them to be 0. Then we will

obtain linear equation L0 = 0. Suppose we already guess 37 variables in K0 and
know the values of all variables in K0 by solving initial linear equations. If these
values do not satisfy L0 = 0, a contradiction will occur in the pre-elimination
process. Thus “Every-3rd” is not stable.

4 The Characteristic Set Method

For Bivium-B and Trivium, after the guess and pre-elimination process, we use
MFCS algorithm to solve the new polynomial system. MFCS algorithm is an
improved characteristic set algorithm for solving boolean equations [7]. Here we
simply introduce it.

For a boolean polynomial P ∈ F2[x1, x2, . . . , xn]/(x2
1+x1, x

2
2+x2, . . . , x

2
n+xn),

the class of P , denoted as cls(P ), is the largest index c such that xc occurs in
P . If P is a constant, we set cls(P ) to be 0. If cls(P ) = c > 0, we call xc

the leading variable of P , denoted as lvar(P ). The leading coefficient of P as
a univariate polynomial in lvar(P ) is called the initial of P , and is denoted as
init(P ). Then P can be represented uniquely as the following form: P = Ixc +U ,
where I = init(P ) and U is a boolean polynomial without variable xc.

A sequence of nonzero polynomials

A : A1, A2, . . . , Ar (5)

is a triangular set if either r = 1 and A1 = 1 or 0 < cls(A1) < · · · < cls(Ar). A
boolean polynomial P is called monic, if init(P ) = 1. Moreover, if the elements
of a triangular set are all monic, we call it a monic triangular set.

With MFCS algorithm, we can decompose Zero(P), the common zero set
of a polynomial set P, as ∪iZero(Ai), the union of the common zero sets of
some monic triangular sets Ai. We first convert all polynomials with highest
class c in P into monic ones by the following decomposition formula: Zero(Ixc +
U) = Zero(Ixc + U, I + 1) ∪ Zero(I, U) = Zero(xc + U, I + 1) ∪ Zero(I, U).
Note that, with decomposition we will generate some new polynomial sets, we
call these new polynomial sets to be new components. Then we can choose one
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monic polynomial xc + R to eliminate the xc of other polynomials by doing
addition xc + R + xc + R1 = R + R1. Note that R + R1 is a polynomial with
lower class. Therefore, we obtain the following group of polynomial sets {xc +
R, P′}, P1, . . . , Pt, where P′ is a set of polynomials with class lower than c and
each Pi is a new generating polynomial set. Then we can recursively do the
above operations on the polynomials with highest class in P′. After dealing with
all classes, we will obtain a monic triangular set or constant 1, and generate
a group of new polynomial sets. Then we recursively do the above operations
on every new set. Finally, we will obtain the monic triangular sets we need.
Obviously, for a monic triangular set {x1+c1, x2+f1(x1), x3+f2(x2, x1), . . . , xn+
fn−1(xn−1, . . . , x1)}, we can easily solve it. The precise steps of MFCS are
shown in Algorithm 1. The proof of correctness and termination can be found
in [7]. MFCS algorithm has the following properties[7]:

Algorithm 1 — MFCS(P)

Input: A finite set of polynomials P.
Output: Monic triangular sets {A1,A2, . . . ,At} such that

Zero(P) = ∪t
i=1Zero(Ai) and Zero(Ai) ∩ Zero(Aj) = ∅

1 Set P∗ = {P}, A∗ = ∅ and C∗ = ∅.
2 While P∗ �= ∅ do

2.1 Choose a polynomial set Q from P∗.
2.2 While Q �= ∅ do

2.2.1 If 1 ∈ Q, Zero(Q) = ∅. Goto Step 2.1.
2.2.2 Let Q1 ⊂ Q be the polynomials with the highest class.
2.2.3 Let Qmonic = ∅, Q2 = Q \ Q1.
2.2.4 While Q1 �= ∅ do

Let P = Ixc + U ∈ Q1, Q1 = Q1 \ {P}.
P1 = Qmonic ∪ Q2 ∪ Q1 ∪ {I, U}.
P∗ = P∗ ∪ {P1}.
Qmonic = Qmonic ∪ {xc + U}, Q2 = Q2 ∪ {I + 1}.

2.2.5 Let Q = xc + U be a polynomial with lowest degree in Qmonic.
2.2.6 A = A ∪ {Q}.
2.2.7 Q = Q2 ∪ {R �= 0|R = Qi + Q, Qi ∈ Qmonic}.

2.3 if A �= ∅, set A∗ = A∗ ∪ {A}.
3 Return A∗

1. The size of polynomials occurring in the whole algorithm can be controlled by
that of the input ones. The expansion of the internal result will not happen.
Note that in different components most polynomials are same, and the same
ones can be shared in the memory with data structure SZDD[10]. For the
above reasons, the memory cost of MFCS is small.

2. In MFCS, solving one component is very fast. The bitsize complexity of
solving one component is O(LMnd+2), where L is the number of input poly-
nomials, n is the number of variables, d is the highest degree of the input
polynomials and M is the maximal number of terms for all input polynomi-
als. Obviously, when d is fixed, this is a polynomial about n.
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The reason we utilize MFCS algorithm is that the polynomials systems we
need to solve have block triangular structure. By block triangular structure, we
mean that the polynomial set can be divided into disjoint sets such that each set
consists of polynomials with the same leading variable and different sets have
different leading variables. Some good experimental results for solving this kind
of polynomial system by MFCS were presented in [7]. One of the results is that
the 177-bit internal state of Bivium-A can be solved in about 49.3 seconds with
700-bit keystream by MFCS.

5 Attack Bivium-B by MFCS Algorithm

Now we give our experimental results for attacking Bivium-B by MFCS. The
computer used in our experiments is a PC with i7 2.8Ghz CPU and 4G memory.
The CPU of this computer has four cores, but for our experiment only one was
used. All the running times in the following tables are given in seconds. And in
our experiments only 160 bits of keystream are needed.

Remark 5.1. For a polynomial system generated by a stream cipher with n
variables and m equations. We found that if m ≈ 1.1n, the running time for
MFCS is always optimal. In our experiments for Bivium-B, m = 160 < 177.
However, by guessing 37 variables the system can be seen as one with 197 input
polynomials and 177 variables. In our experiments, when our guess is wrong the
algorithm always returns no solution. And when our guess is correct, we always
obtain a unique solution. Actually, if we can count all 237 instants, the number
of solutions maybe greater than 1, since 160 bits of keystream cannot guarantee
a unique solution. This means for some wrong guessing values, MFCS may
return some solutions which are not the key. The number of these solutions is
so small that we can check their correctness extremely fast by the following bits
of keystream. Thus, we can ignore the influence of these redundant solutions to
the total running time.

First in Table 1 we present the results about the strategies of guessing the above
37 variables in different Ki. Here we set {p93, q84, p92, q83, p91, q82, . . .} to be
{x1, x2, x3, x4, x5, x6, . . .}. With this variable order, the experimental result is
best. The running time presented in the following table are from 1000 instants
with random keys and random guessing values.

From the results in Table 1, we know that as our analysis in Section 3 the
running time for K2 is shortest and it is quite stable for different instants. In
the following other experimental results, the guessing variables are all in K2.

Table 1. Random keys and random guessing values

Strategy Bits guessed Average Time Max Time Min Time

K0 37 0.118 0.302 0.066

K1 37 0.092 0.154 0.057

K2 37 0.075 0.156 0.049
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Table 2. Random keys and random guessing values

Bits guessed Average Time Max Time Min Time

37 0.075 0.156 0.049

36 0.129 0.254 0.086

35 0.219 0.558 0.120

34 1.114 2.702 0.565

Table 3. The results of different keys

Key Bits guessed Average Time Max Time Min Time

A fixed random key 35 0.215 0.582 0.120

Key= {1, 1 . . . , 1} 35 0.220 0.604 0.116

Key= {0, 0, . . . , 0} 35 0.218 0.500 0.117

Although the highest complexity bound of MFCS in worst case is exponential,
for some problem the experimental results of MFCS are much better. Thus we
attempt decreasing the number of guessing variables, and observe the results.

– If we guess 36 variables (p91, p88, . . . , p67) and (q82, q79, . . . , q4), we have � =
177− 66− 36− 2 · 27 = 21.

– If we guess 35 variables (p91, p88, . . . , p67) and (q82, q79, . . . , q7), we have � =
177− 66− 35− 2 · 26 = 24.

– If we guess 34 variables (p91, p88, . . . , p67) and (q82, q79, . . . , q10), we have
� = 177− 66− 34− 2 · 25 = 27.

For guessing the above 34, 35 and 36 variables, we also test 1000 instants with
random keys and random guessing values. The results are given in the following
table. From the results we know that, guessing the above 35 variables is best
since 235 · 0.219 < 236 · 0.129 < 237 · 0.075.

In order to observe the change of the running time for different keys, in Table 3
we fixed the key in three different cases and for each case randomly guessing the
above 35 variables for 1000 times. From the results, we know that the influence
of the key to the running time is extremely little.

Now let’s see the change of the running time for different guessing values. We
randomly generated 1000 groups of key, and for each one we test four kinds of
guessing values: (a) All the guessing values are 1; (b) All the guessing values are
0; (c) The Hamming-weight of the guessing values is 13. (d) The guessing values
are all correct.

From Table 4, we can conclude that the weight of guessing values does not
influence the results. However, when the guessing values are correct, the run-
ning time is slightly longer2. Thus, we think the Hamming distance between
the guessing values and the correct values of keys influences the running time.
2 Here we should explain that our comparison is about the average running times.

Actually, for a fixed key, the running time for a correct guessing value is not always
longer.
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Table 4. The results of different guessing values

Guessing values Bits guessed Average Time Max Time Min Time

{1, 1, . . . , 1} 35 0.218 0.519 0.123

{0, 0, . . . , 0} 35 0.211 0.515 0.116

Weight= 13 35 0.220 0.498 0.121

Correct values 35 0.247 0.618 0.130

Table 5. The results of different Hamming distances

D(g, k) 1 2 5 10 15 25 30 33 34 35

Average 0.229 0.224 0.219 0.217 0.218 0.221 0.218 0.224 0.230 0.241

Max 0.633 0.597 0.716 0.478 0.525 0.575 0.575 0.546 0.807 0.598

Min 0.124 0.117 0.118 0.120 0.115 0.124 0.123 0.114 0.125 0.120

For a group of guessing values g = {g1, g2, . . . , gm}, the Hamming distance
between g and the correct key values k = {k1, k2, . . . , km} is defined to be
D(g, k) =

∑m
i=1(gi + ki mod 2). In Table 5, we present our results for some

different distances, and for every one we test 1000 instances.
From the results we know that only when the Hamming distance is close to 0

or 35 the running time will be a little longer than 0.219. The influence of these

cases on the whole attack time can be ignored since
∑ 4

i=0(
35
i )+

∑35
j=31(35j )

235 ≈ 0. From
the above experimental results, we think choosing 0.219 second as our average
running time is suitable. Hence, we have the following attack result: with guessing
35 variables, Bivium-B can be solved by MFCS in about 235 · 0.219 = 232.81

seconds, and the expected running time is 231.81 seconds. Compared to the the
expected running time 235.49 seconds in [5] which is the best known result for
recovering the internal state, our result is about 12.8 times faster.

6 Attacking Trivium by MFCS

Now we extend our attack method to Trivium. We can denote the key of Trivium
in three different registers as {p1, p2, . . . , p93}, {q1, q2, . . . , q84}, {r1, r2, . . . , r111}.
Then we also sort them into three groups:

K0 = K1
0 ∪K2

0 ∪K3
0 = (p3, p6, . . . , p93) ∪ (q3, q6, . . . , q84) ∪ (r3, r6, . . . , r111)

K1 = K1
2 ∪K2

2 ∪K3
2 = (p2, p5, . . . , p92) ∪ (q2, q5, . . . , q83) ∪ (r2, r5, . . . , r110)

K2 = K1
1 ∪K2

1 ∪K3
1 = (p1, p4, . . . , p91) ∪ (q1, q4, . . . , q82) ∪ (r1, r4, . . . , r109)

The analysis about strategies in Section 3 is still valid. The difference is we
need to consider continuous triple-pairs to convert quadratic equations into linear
ones. More precisely, if we know k ≤ 28 continuous triple-pairs:

(q82, r109), (p91, q79, r107), . . . , (p97−3k, q85−3k, r112−3k) ∈ K2, (6)

we can obtain 2k new linear equations with variables in K0, K1.
If we know k ≤ 27 continuous triple-pairs:

(q81, r98), (p90, q78, r95), . . . , (p96−3k, q84−3k, r111−3k) ∈ K0, (7)
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we can obtain 2k new linear equations with variables in K1, K2.
If we know k ≤ 28 continuous triple-pairs:

(q83, r110), (p92, q80, r107), . . . , (p98−3k), q86−3k, r113−3k) ∈ K1, (8)

we can obtain 2k − 1 new linear equations with variables in K0, K2. In the
following, when we say a triple-pair, we mean a variable set in (6),(7) or (8).
We can follow the guessing strategy used in Bivium. That is guessing m =
(288− 66)/3 = 74 variables :

{p91, p88, . . . , p1}, {q82, q79, . . . , q1}, {r109, r106, . . . , r67},

here 66 is the number of initial linear equations. Then we can obtain the values
of all elements in K2 which contain 28 continuous triple-pairs. Hence, we have
� = 288− 66− 74− 2 · 28 = 92.

For Trivium, we need to guess more variables in K0, since � is still too large.
As analysis in Bivium, in this case the strategy is unstable. Since this strategy is
too complicated to find a corresponding stable one mentioned in Remark 3.4, we
have to adopt this unstable one. Hence, we need to count how many instances
can pass the pre-elimination process without contradictions.

Let w be the Hamming weight of the guessing values in K0. Here we call
the instance which can not pass the pre-elimination process a trivial one. We
found that when w increase the ratio of nontrivial instances will increase. This
can be explained as following. Let’s consider the initial quadratic polynomials
with form

∑
ki
2 +

∑
kj
1k

r
0 , where ki

2 ∈ K2, k
j
1 ∈ K1 and kr

0 ∈ K0. Since we
already known the values of all ki

2, if kr
0 are all 1, then after assignment these

quadratic polynomials will become linear ones with variables in K0. And they
are linear independent with the initial linear ones, so no contradiction will occur.
If the values of some kr

0 are 0, some of these new linear polynomials will become
constants, then contradiction may occur. When all kr

0 is 0, all these new linear
ones will become constants. If there are m ones, the probability of an evaluation
with all kr

0 = 0 passing the pre-elimination process is about 1/2m. When m is
big enough, this probability is approximate to 0.

Moreover, with w increasing, the average time for solving one nontrivial in-
stance increases too. The reason is that less linear equations will be generated
if the weight is bigger. Since we not only guess variables in K2 but also in K0,
some polynomials with degree ≥ 3 will also be converted into linear ones. It is
too complicated to show how many linear ones we can obtain for different w by
theoretical analysis. From our experiments, when w is maximal, the correspond-
ing � is also maximal. When w decrease, � will be strictly smaller than this value
in most time.

For Trivium, besides 74 variables in K2, we guess another 41 variables in
K0. In this case, the maximal value of � is 33. The following tables present the
experimental results with different w. For each evaluation of w, we test 1000
instances with different keys and guessing values. In order to get the optimal
running time, we need 190 bits of keystream. In the following tables, the first
row is about the number of nontrivial instances. The second row is about the
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Table 6. Results of Trivium with Random keys and Random Guessing values

w 0 5 10 15 20 25 31 36 41

Nontrivial 0 3 35 199 488 769 946 991 1000

Average � 3.29 1.01 0.76 1.06 1.87 5.50 16.26 50.79

Minimal � 2.88 0.28 0.14 0.18 0.35 1.40 4.59 28.17

Maximal � 3.88 3.90 8.69 18.61 19.82 30.88 80.27 336.34

Table 7. Results of Trivium with Random keys and Correct Guessing values

w 0 5 10 15 20 25 31 36 41

Nontrivial 0 3 55 223 520 793 949 993 1000

Average � 4.20 1.40 0.90 1.09 2.04 5.73 16.05 49.88

Minimal � 3.16 0.28 0.14 0.18 0.35 1.40 4.59 28.17

Maximal � 5.07 3.90 8.69 18.61 19.82 30.88 80.27 336.34

average running time over these nontrivial ones. The third and fourth rows are
respectively about the maximal and minimal running time.

Table 6 shows the results of Trivium with random guessing values in K2.
Table 7 shows the results when the guessing values in K2 are correct. We can
conclude that comparing to the random cases when the guessing values are
correct the running time is slight higher.

We can use the following way to estimate the total running time. For fixed
guessing values of variables in K2 , we set the total running time of solving all
instances satisfying w1 ≤ w ≤ w2 to be

∑w2
i=w1

(
44
i

)
(Nt/1000 + (1 −N/1000)t′)

sec. Here, N is the number of nontrivial instances when w = w2. t is the average
running time for these nontrivial ones. And t′ is the average running time for
solving trivial instances. For Trivium, t′ is 0.045 seconds. By this way of estimate,
we can induce the following results from the above experimental data:

– The total running time for solving Trivium is about 274 · 241.27 = 2115.27

seconds, and the expected running time is 2114.27 seconds.
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Abstract. In this paper we investigate the Multi-Prime Φ-Hiding Prob-
lem as introduced in a recent construction by Kiltz et al. from Crypto
2010. We are able to improve upon previous cryptanalytic results by
making use of the special structure of the polynomial that is derived
from the problem instance. Our attack is based on the method of Cop-
persmith for finding small solutions of modular equations. In particular,
we make use of a recent result from Herrmann and May to solve linear
equations modulo divisors.

Keywords: Φ-Hiding Assumption, lattices, Coppersmith’s algorithm,
small roots.

1 Introduction

The Φ-Hiding Assumption has been introduced by Cachin, Micali and Stadler
in the context of efficient single database private information retrieval [CMS99].
Since then, it has found a number of applications in various branches of modern
cryptography [GR05, HO08, GMR05, CMS99, Cac99]. In its basic form the Φ-
Hiding Assumption states that for a given RSA modulus N = pq and a prime e
it is hard to decide if e divides Φ(N) or not, where Φ(N) = (p−1)(q−1) denotes
Euler’s totient function. It is well known that by a result of Coppersmith [Cop96,
Cop97] the Φ-Hiding Problem is efficiently solvable if e ≥ N

1
4 . In detail, suppose e

divides p−1, then we can write ex(0)+1 = p or more generally ex(0)+1 = 0 mod p
for an unknown value x(0). Now, if we can find the root x(0) of the polynomial
f(x) := ex + 1 modulo p, then we in turn have solved the Φ-Hiding Problem.
A theorem of Howgrave-Graham [HG97] tells us that for such a polynomial we
can efficiently find all small modular roots x(0) if their absolute value is smaller
than N

β2
δ , where δ is the degree of the polynomial and β denotes the size of

the unknown divisor, i.e. p ≥ Nβ. In the basic Φ-Hiding Problem we have the
polynomial f(x) of degree δ = 1 and a divisor p ≥ N

1
2 . Thus, we can efficiently

find roots of f(x) modulo p that are smaller than N
1
4 . Note that since e divides

p− 1 we have x(0) < N
1
4 if e ≥ N

1
4 .
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Furthermore, at AsiaCrypt 2008 Schridde and Freisleben [SF08] showed that
the Φ-Hiding Assumption does not hold for special composite integers of the
form N = pq2k for k > 0. Such integers are often used in cryptography to speed
up certain operations [Tak98].

A particularly interesting application of the Φ-Hiding Assumption has been
presented at Crypto 2010 by Kiltz, O’Neill and Smith [KOS10]. In order show
the instantiability of RSA-OAEP they constructed a lossy trapdoor permutation
from RSA, based on the Φ-Hiding Assumption. To increase the efficiency of
their construction, they propose to use multi-prime RSA moduli of the form
N = p1 · · · pm. In that case, the prime e is chosen to divide p1− 1, . . . , pm−1− 1.
The lossy trapdoor permutation then relies on the so-called Multi-Prime Φ-
Hiding Assumption, which assumes that deciding whether a prime e is a divisor
of pi − 1 for all but one of the prime factors or not. Note that if e is chosen
such that it divides pi − 1 for all prime factors, then we have a distinguishing
algorithm because if e divides all pi−1 we have N = 1 mod e, whereas N mod e
is random if this is not the case.

Kiltz et al. present a cryptanalysis of the Multi-Prime Φ-Hiding Assumption
similar to the attack on the Φ-Hiding Assumption based on Coppersmith’s algo-
rithm. Say ex1+1 = 0 mod p1, . . . , exm−1+1 = 0 mod pm−1, then they construct
a polynomial equation

em−1 (x1 · · ·xm−1) + em−2 (· · · ) + . . . + e (· · · ) + 1 = 0 mod p1 · · · pm−1 (1)

by multiplying all given equations.
In the next step, they perform a linearization of the left-hand side polynomial,

i.e. they introduce one dedicated variable for each sum of monomials that share
a common coefficient. This results in a linear polynomial and, in order to solve
the Multi-Prime Φ-Hiding Problem the goal is to find a (small) solution modulo
the divisor p1 · · · pm−1 of N . From that point on, Kiltz et al. use a theorem
due to Herrmann and May [HM08] which gives upper bounds on the sizes of
the unknowns such that the problem can be solved efficiently, depending on the
number of variables and the size of the divisor.

Our contribution: We improve the attack of [KOS10] by exploiting the special
structure of Equation (1). Namely, the coefficients of the left-hand side poly-
nomial are far from arbitrary, but are all powers of the prime e. This implies
that they share a common divisor. This common divisor and the fact that e is
not too large allows us to perform different linearizations and thereby reduce
the number of variables. The benefit that we obtain comes from the observation
that the theorem of Herrmann and May gives much better bounds for a smaller
number of variables. Let us exemplify the approach for multi-prime RSA with
three prime factors and e that divides p1 − 1 and p2 − 1. Similar to [KOS10] we
derive the polynomial equation

(ex1 + 1)(ex2 + 1) = 0 mod p1p2

⇔ e2(x1x2) + e(x1 + x2) + 1 = 0 mod p1p2.
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Because e2 and e share a common divisor, we can apply a linearization as

e (e(x1x2) + (x1 + x2))︸ ︷︷ ︸
u

+1 = 0 mod p1p2,

which reduces the number of variables to one. On the negative side, the size of
the new variable u is increased by the factor e. Notice that it is sufficient to find
the solution u(0) because this reveals a non-trivial factor of the hard to factor
integer N . I.e. we do not have to explicitly compute the solutions x

(0)
1 , x

(0)
2 .

In general, it turns out that performing a linearization to obtain a bivariate
polynomial gives the best tradeoff between a decreased number of variables and
an increase in the variable size.

Apart from the improvement in the asymptotic bound, our attack also has a
great gain in performance. The theorem of Herrmann and May states a running
time that is exponential in the number of variables. Thus, limiting the number
n of variables to two gives a major speedup in the implementation of the actual
attack.

Our attack on the Multi-Prime Φ-Hiding Assumption gives a first approach
to make use of a polynomials’ coefficients in Coppersmith-type attacks. To the
best of our knowledge this topic has not been carefully analyzed before. It is a
very interesting task to further improve our result by making even better use of
the relations among the coefficients.

2 Preliminaries

In our analysis we will use a theorem of Herrmann and May [HM08] that gives
upper bounds on the sizes of the solutions of a linear equation modulo an un-
known divisor. As required by most multivariate applications of Coppersmith’s
algorithm, it relies on an assumption in order to extract the final solutions effi-
ciently.

Assumption 1. Let h1, . . . , hn ∈ Z[x1, . . . , xn] be the polynomials that are found
by Coppersmith’s algorithm. Then the ideal generated by the polynomial equa-
tions h1(x1, . . . , xn) = 0, . . . , hn(x1, . . . , xn) = 0 has dimension zero.

Theorem 1 (Herrmann-May). Let ε > 0 and let N be a sufficiently large
composite integer (of unknown factorization) with a divisor p ≥ Nβ. Further-
more, let f(x1, . . . , xn) ∈ Z[x1, . . . , xn] be a linear polynomial in n variables.
Under Assumption 1, we can find all solutions (x(0)

1 , . . . , x
(0)
n ) of the equation

f(x1, . . . , xn) = 0 mod p with |x(0)
1 | ≤ Nγ1 , . . . , |x(0)

n | ≤ Nγn if

n∑
i=1

γi ≤ 1− (1 − β)
n+1

n − (n + 1)(1− n
√

1− β)(1− β)− ε.

The time complexity of the algorithm is polynomial in log N and ( e
ε )n, where e

is Euler’s constant.
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For completeness we explicitly define the Multi-Prime Φ-Hiding Problem and
the Multi-Prime Φ-Hiding Assumption.

Problem 1 (Multi-Prime Φ-Hiding Problem). Let N = p1 · · · pm be a com-
posite integer (of unknown factorization) with m ≥ 2 prime factors of equal bit-
length. Given N and a prime e, decide whether e divides pi for 1 ≤ i < m or
not.

Assumption 2 (Multi-Prime Φ-Hiding Assumption). There is no efficient
algorithm that decides the Multi-Prime Φ-Hiding Problem with non-negligible
success probability.

3 Attacking the Multi-Prime Φ-Hiding Assumption

In this section we will present our new approach in attacking the Multi-Prime
Φ-Hiding Assumptionin detail.

To exemplify the benefit obtained by our new approach, consider a modulus
N consisting of four primes p1, . . . , p4 of equal bitsize. If e is Φ-hidden in N ,
then e fulfills the following system of equations.

ex1 + 1 = 0 mod p1

ex2 + 1 = 0 mod p2

ex3 + 1 = 0 mod p3

If we multiply all equations we obtain the single equation

(ex1 + 1) (ex2 + 1) (ex3 + 1) = 0 mod p1p2p3

⇔ e3x1x2x3 + e2 (x1x2 + x1x3 + x2x3) + e (x1 + x2 + x3) + 1 = 0 mod p1p2p3.
(2)

Let X = N δ be an upper bound on the solutions x
(0)
i , i.e. |x(0)

i | ≤ X for i =
1, 2, 3.

Recall that Kiltz et al. perform a linearization of Equation (2) to get the linear
equation e3u1+e2u2+eu3+1 = 0 mod p1p2p3, where u1 := x1x2x3, u2 := x1x2+
x2x3+x1x3 and u3 := x1+x2+x3. Then for f(u1, u2, u3) := e3u1+e2u2+eu3+1
they use Theorem 1 to find a small root of f(u1, u2, u3) modulo the divisor p1p2p3

of N . By the upper bounds on the xi we are able to derive upper bounds on the
ui, namely |u(0)

1 | ≤ N3δ, |u(0)
2 | ≤ N2δ, |u(0)

3 | ≤ N δ. Furthermore, since the primes
of the modulus are balanced, we can lower bound the size of the divisor p1p2p3

by 1
8N

3
4 . We use Theorem 1 with β = 3

4 and let the constant 1
8 contribute to

the error term ε to obtain

δ < 0.0787− ε.

For the prime e this means that we can efficiently solve the Multi-Prime Φ-Hiding
Problem if e ≥ N( 1

4−0.0787+ε) = N0.1713+ε.
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Our new approach to improve this result is based on two observations. First,
the coefficients of the left hand side of Equation (2) are strongly related to one
another. In particular, we will exploit the fact that the coefficient e2 is a divisor
of e3. The second observation is that the bound in Theorem 1 gets worse for
an increasing number of variables. Indeed, this degradation happens very fast.
Thus, our attack performs a further linearization to decrease the total number
of variables.

e2 (ex1x2x3 + x1x2 + x1x3 + x2x3)︸ ︷︷ ︸
u1

+e (x1 + x2 + x3)︸ ︷︷ ︸
u2

+1 = 0 mod p1p2p3.

This linearization has two effects. On the one hand, it reduces the number of
variables as desired from three to two. However, on the other hand, the variable
u1 is increased by a factor of e since the size of u1 is dominated by ex1x2x3. In
the current setting we can estimate the size of the factor e as N

1
4−δ. It turns

out that the reduced number of variables outweighs the additional cost of the
factor e. To be precise, we can upper bound the variables by |u(0)

1 | ≤ N
1
4+2δ and

|u(0)
2 | ≤ N δ, which yields by Theorem 1 with n = 2 and β = 3

4

δ <
1
12

− ε ≈ 0.0833− ε.

This means, we can efficiently solve the Multi-Prime Φ-Hiding Problem with
a modulus consisting of four balanced primes if e ≥ N( 1

4− 1
12 +ε) = N

1
6+ε =

N0.1667+ε.
The generalization to Multi-Prime RSA follows the same idea. Let N =

p1 · · · pm be an RSA modulus consisting of m primes of the same bitsize and
let e be a prime of size N

1
m−δ. To decide if e is Multi-Prime Φ-hidden in N we

aim to find a small solution of the system

ex1 + 1 = 0 mod p1

...
exm−1 + 1 = 0 mod pm−1,

where the solutions x
(0)
i for i = 1, . . . , m− 1 are upper bounded by X = N δ. We

multiply all equations together to obtain

(ex1 + 1) · · · (exm−1 + 1) = 0 mod p1 · · · pm−1. (3)

Similar to the example for m = 3 we expand Equation (3) and perform a lin-
earization of the m− 1 terms with coefficients em−1 to e2. Thus, we obtain the
bivariate equation

e2 `em−3x1 · · ·xm−1 + em−4 (x1 · · ·xm−2 + . . . + x2 · · ·xm−1) + . . . + (x1x2 + . . . + xm−2xm−1)
´

| {z }
u1

+ e (x1 + . . . + xm−1)| {z }
u2

+1 = 0 mod p1 · · · pm−1.
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Fig. 1. Comparison of attacks on the Multi-Prime Φ-Hiding Problem

The size of the unknown solution u
(0)
1 is dominated by the term em−3x1 · · ·xm−1

which can be upper bounded by

|u(0)
1 | ≤ N (m−3)( 1

m−δ)+(m−1)δ = N
m−3

m +2δ.

For the solution u
(0)
2 we have as before |u(0)

2 | ≤ N δ. Thus, with n = 2 and the
size β = m−1

m of the divisor p1 · · · pm−1 we obtain by Theorem 1

δ <
2

3
√

m3
− ε.

Let us compare this result with previous results on the Multi-Prime Φ-Hiding
Problem. As mentioned in [KOS10], a straightforward approach is to restrict
our attention to just one equation ex1 + 1 = 0 mod p1. This reveals with the
theorem of Howgrave-Graham the bound δ < 1

m2 . We will call this Howgrave-
Graham attack.

By expanding Equation (3) and introducing a dedicated variable for each
monomial with coefficient ei, Kiltz et al. end up with the bound1

δ <
2
(

1
m

1
m−1 − 1

m

m
m−1
)

m(m− 1)
− ε.

1 Notice that the version from the Crypto 2010 proceedings has a minor mistake in
the bound.
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Figure 1 compares the resulting values of e for which the Multi-Prime Φ-
Hiding Problem is efficiently solvable, i.e. logN e ≥ 1

m − δ for δ given by the
different attacks. Note that all values of e that lie above the respective lines
omit a polynomial time factorization attack. It is clearly visible that our new
attack solves the Multi-Prime Φ-Hiding Problem for more values of e than the
attack of [KOS10].

Thus, any concrete parameters given in [KOS10] for instantiating RSA-OAEP
that rely on the Multi-Prime Φ-Hiding Assumption should be appropriately ad-
justed to withstand our new attack.

Remark 1. The attack that we described performs a linearization to obtain a
bivariate polynomial. Also, the linearization introduces a large variable u1 and
a small variable u2. A straightforward calculation shows that balancing the vari-
ables as well as allowing for more variables worsens the bound.

4 Future Work and Open Problems

We are convinced that there is still room for improvement in attacking the
Multi-Prime Φ-Hiding Problem with Coppersmith-type attacks. One reason for
this conjecture is that Theorem 1 is specifically designed for balanced variables,
i.e. it is optimized to find solutions that are approximately of the same size.
As stated in [HM08] the bound of Theorem 1 can be improved for unbalanced
variables if the underlying lattice construction is properly adjusted. Thus, the
attack given by [KOS10] can probably be improved by considering this. For
an arbitrary number of variables, however, it is quite complicated to derive a
general bound including the sizes of the variables. Nevertheless, in the current
scenario the bounds on the solutions admit a particular structure. Namely, they
form a simple increasing sequence N δ, N2δ, . . .. It might be possible to exploit
this relation in the lattice construction in order to find an expression for δ as a
function of β and the number of variables n.

Another reason for conjecturing a possible improvement is the fact that the
current attack is does not fully exploit the relation between the coefficients of
the polynomial. Take for example Equation (2).

e2 (ex1x2x3 + x1x2 + x1x3 + x2x3)︸ ︷︷ ︸
u1

+e (x1 + x2 + x3)︸ ︷︷ ︸
u2

+1 = 0 mod p1p2p3.

Our attack is based on the observation that e3 and e2 share a large common
divisor, but we do not make use of the fact that they are actually both powers of
e. Furthermore, the term (x1 + x2 + x3) has also coefficient e which is not used
in our attack in any way. Note that the ability to exploit a relation between the
coefficients of a polynomial in a Coppersmith-type attack would give an answer
to an open question posed in [HM09] concerning RSA-based pseudo random
number generators.



Improved Cryptanalysis of the Multi-Prime Φ-Hiding Assumption 99

References

[Cac99] Cachin, C.: Efficient private bidding and auctions with an oblivious third
party. In: ACM Conference on Computer and Communications Security,
pp. 120–127 (1999)

[CMS99] Cachin, C., Micali, S., Stadler, M.: Computationally Private Information
Retrieval with Polylogarithmic Communication. In: Stern, J. (ed.) EURO-
CRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

[Cop96] Coppersmith, D.: Finding a small root of a bivariate integer equation; fac-
toring with high bits known. In: Maurer, U.M. (ed.) EUROCRYPT 1996.
LNCS, vol. 1070, pp. 178–189. Springer, Heidelberg (1996)

[Cop97] Coppersmith, D.: Small solutions to polynomial equations, and low expo-
nent rsa vulnerabilities. J. Cryptology 10(4), 233–260 (1997)

[GMR05] Gentry, C., MacKenzie, P.D., Ramzan, Z.: Password authenticated key ex-
change using hidden smooth subgroups. In: Atluri, V., Meadows, C., Juels,
A. (eds.) ACM Conference on Computer and Communications Security, pp.
299–309. ACM, New York (2005)

[GR05] Gentry, C., Ramzan, Z.: Single-database private information retrieval with
constant communication rate. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–
815. Springer, Heidelberg (2005)

[HG97] Howgrave-Graham, N.: Finding small roots of univariate modular equations
revisited. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS,
vol. 1355, pp. 131–142. Springer, Heidelberg (1997)

[HM08] Herrmann, M., May, A.: Solving linear equations modulo divisors: On fac-
toring given any bits. In: Pieprzyk (ed.) (Pie2008), pp. 406–424 (2008)

[HM09] Herrmann, M., May, A.: Attacking power generators using unravelled lin-
earization: When do we output too much? In: Matsui, M. (ed.) ASI-
ACRYPT 2009. LNCS, vol. 5912, pp. 487–504. Springer, Heidelberg (2009)

[HO08] Hemenway, B., Ostrovsky, R.: Public-key locally-decodable codes. In: Wag-
ner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 126–143. Springer, Hei-
delberg (2008)

[KOS10] Kiltz, E., O’Neill, A., Smith, A.: Instantiability of RSA-OAEP under
Chosen-Plaintext Attack. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 295–313. Springer, Heidelberg (2010)

[Pie08] Pieprzyk, J. (ed.): ASIACRYPT 2008. LNCS, vol. 5350. Springer, Heidel-
berg (2008)

[SF08] Schridde, C., Freisleben, B.: On the validity of the phi-hiding assumption in
cryptographic protocols. In: Pieprzyk (ed.) (Pie2008), pp. 344–354 (2008)

[Tak98] Takagi, T.: Fast RSA-type cryptosystem modulo pkq. In: Krawczyk, H.
(ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 318–326. Springer, Heidelberg
(1998)



FPGA Implementation of a Statistical

Saturation Attack against PRESENT
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Abstract. Statistical attacks against block ciphers usually exploit
“characteristics”. A characteristic essentially defines a relation between
(parts of) the block cipher’s inputs, outputs and intermediate values.
Intuitively, a good characteristic is one for which the relation between
the cipher’s inputs and outputs exhibit a significant deviation from the
uniform distribution. Due to its intensive computational complexity, the
search for good characteristics generally relies on heuristics, e.g. based
on a branch-and-bound algorithm. But the use of such heuristics directly
raises the question whether these good characteristics remain good, as
the number of cipher rounds increases. This question relates to the so-
called hull effect, expressing the idea that in a practically secure cipher,
only the combination of many characteristics can explain the statistical
deviations exploited in cryptanalysis. As characteristics are also a central
tool when estimating the data complexities of statistical attacks, deter-
mining whether a hull effect can be observed is essential in the security
evaluation of a block cipher. Unfortunately, this is again a computation-
ally intensive task, as it ideally requires to sample over the full input
space. In this paper, we consequently discuss the interest of hardware
assistance, in order to improve the understanding of statistical attacks
against block ciphers. More precisely, we propose an FPGA design that
allowed us to evaluate a statistical saturation attack against the block
cipher PRESENT, for overall complexities up to 250. Compared to pre-
vious software solutions, it corresponds to an increase of the maximum
data complexity experimentally reached up to now by a factor 214. Our
experiments confirm that up to 19 rounds of PRESENT can be broken
with 248 plaintext/ciphertext pairs. They also serve as a basis for dis-
cussing the statistical hull effect and suggest that 31-round PRESENT
should be safe against such statistical attacks.

1 Introduction

Since its publication in 2007, PRESENT has been one of the most carefully
investigated low cost ciphers. Several papers have analyzed its security against
different types of cryptanalysis. Starting in 2008, Wang presented a differential
cryptanalysis of reduced round PRESENT, allowing one to attack 16 rounds
(out of 31), with 264 chosen plaintexts [23] (these results have been recently re-
discussed in an IACR ePrint report [15]). The same year, Z’aba et al. presented a
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c© Springer-Verlag Berlin Heidelberg 2011



FPGA Implementation of a Statistical Saturation Attack against PRESENT 101

bit-pattern integral attack that was able to break up to 7 rounds of PRESENT-
128 (the 128-bit key version of the cipher), with 224 chosen plaintexts, and a
significant time complexity of 2100 partial decryptions [25]. This paper extended
previous works on square (aka integral, aka saturation) attacks to ciphers with
bit-oriented transforms. Different additional results appeared in 2009. In [19],
Nakahara et al. analyzed the security of PRESENT-128 against attacks based
on the linear hull effect, claiming to break 25-rounds of PRESENT-128 with the
full codebook (again with a time complexity of approximately 2100). They also
experimented a purely algebraic attack able to break 5 rounds of PRESENT
with 5 known plaintexts (and a few minutes of offline computations). In parallel,
Ohkuma presented another linear attack against 24 rounds of PRESENT (80-bit
version), with the full codebook, taking advantage of the linear hull effect for a
certain class of weak keys [21]. Related-key cryptanalysis of PRESENT was ad-
ditionally investigated in [22], for 17 rounds. And in a paper from FSE 2009 [1],
dedicated to the combination of algebraic and differential cryptanalysis, Albrecht
and Cid proposed various attacks against reduced versions of PRESENT. For
example, they described a 16-round attack with complexities similar to the ones
in [23]. More recently, Cho proposed a multidimensional linear attack, claiming
to recover the 80-bit secret key of PRESENT for 25 rounds, with the full code-
book [5]. Different empirical evaluations of reduced-round variants (with 6,7,8,9
rounds) were proposed in the paper, allowing to put forward the interest of the
multidimensional approach. One can also mention the experiments of Blondeau
and Gérard [3], used to confirm their theoretical analysis of differential crypt-
analysis. Finally, the statistical saturation attack we experiment in this work has
been introduced in [6] and then extended to multiple trails at ACNS 2010 [7].

As usual in cryptanalysis, one limitation shared by most of these previous
works is that their estimated data complexity strongly relies on assumptions
that may not be fulfilled, as the number of rounds in a block cipher increases.
For example, security evaluations against linear cryptanalyses usually exploit
Matsui’s piling up lemma [18], that simply multiplies the linear biases of single-
round linear approximations. A straightforward application of the lemma leads
to the counter-intuition that increasing the number of rounds in a cipher may
arbitrarily increase its security against linear attacks (as the bias can then be
arbitrarily close to zero). In fact, as first explained by Nyberg in 1994 [20], correct
estimations of the data complexity in a block cipher require to consider linear
hulls (i.e. sets of linear characteristics sharing the same input/output masks).
Yet, in practice, the number of characteristics in a hull increases exponentially
with the number of rounds, and is rapidly impossible to exploit. Hence, present
cipher designs, such as the AES Rijndael, are frequently based on the paradigm
of practical security. That is, one assumes that a cipher is secure against linear
cryptanalysis if the data complexity determined from the best characteristic in
a cipher is prohibitive [14]. And excepted for the investigations of Keliher et al.
in [12,13], and the investigations of small scale variants of block ciphers, in [8],
few experimental works tackled the problem of determining how many block
cipher rounds are actually needed for the linear hull effect to be significant.
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In other words, most experiments against real world ciphers consider number
of rounds for which the statistical deviations can still be explained by one (or
few) characteristics. Such a limitation is typically exemplified by the statistical
saturation attack against PRESENT, that can be viewed as a particular case
of the multidimensional cryptanalysis described in [11] (see the recent work of
Leander [17]). Hence, it is natural to question the validity of the data complexity
estimations for large number of rounds, as given in [6].

In this paper, we consequently provide two contributions to the cryptanal-
ysis of the block cipher PRESENT. First, starting from the observation that
experimental validation is still a useful step for increasing our understanding of
statistical attacks, we investigate the computational power that can be gained
by outsourcing parts of the computations to a dedicated hardware platform. For
this purpose, we developed a hardware-software co-design, based on an FPGA
board, allowing us to accelerate the most consuming tasks of a statistical satura-
tion attack against PRESENT, while keeping the communication rate between
the different parts of the system reasonable. We note that the design is generic,
and could easily be modified to investigate similar attacks, e.g. linear or differ-
ential. Our results include an investigation of different implementation tradeoffs
and technologies, together with one fully functional prototype, based on a Xilinx
Virtex-5 device. Second, we used our co-design to launch large-scale experimental
attacks against 15,16,17 and 18-round PRESENT, with data complexities of up
to 248 per attack. These experiments confirmed the previous analyzes from [6],
i.e. a data complexity increase by a factor of 23 per round, for up to 18 rounds
of PRESENT (up to 19 rounds, if a two-round partial decryption is used). By
providing a careful investigation of the statistical distributions exploited in the
attack, and their key-dependent behavior, our results also allow discussing the
apparition of a statistical hull effect in PRESENT on a concrete basis. They
suggest that 31 rounds of PRESENT should be safe against statistical attacks.
We finally conclude the paper by proposing directions for better selecting the
number of rounds in a block cipher.

2 Background

2.1 The Block Cipher PRESENT

PRESENT is an ultra-lightweight block cipher designed for hardware constrained
environments, such as RFID tags and sensor networks. It is a 31-round SPN
(Substitution Permutation Network), and it was introduced by Bogdanov et al.
at CHES 2007 [4]. The block length is 64 bits and the possible key lengths are 80
and 128 bits. Each of the 31 rounds is composed of a XOR operation, a nonlinear
substitution layer and a permutation layer, operating as follows. First, the 64-bit
input of the round is XORed with the round subkey. The result of that operation
is then passed through the substitution layer, which consists of 16 identical 4x4
S-boxes applied in parallel. Finally, the permutation layer performs a bit-by-bit
permutation.
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Fig. 1. Weakness of the diffusion property of the PRESENT

2.2 Statistical Saturation Attacks

The statistical saturation attack, originally described in [6], is based on a weak-
ness in the diffusion layer of PRESENT. This weakness can be observed in
Figure 1, where it is shown that only 8 out of the 16 output bits of S-boxes 5, 6,
9 and 10 are directed to other S-boxes. Hence, by fixing certain plaintext bits,
we are able to observe a non-uniform distribution at the output of the round.
Since the input and output bits of the bold trail highlighted in the figure are
the same, it is then possible to iterate this weakness for several rounds. In order
to turn this weakness into a key recovery attack, one finally assumes that the
distribution at the output of the trail remains significantly different from uni-
form as the number of rounds increases. Hence, by doing a partial decryption
through the last encryption round, one can select the key candidate that max-
imizes the Euclidean distance between the experimental distributions obtained
for all the key candidates and the uniform one. If the attack is successful, the
key maximizing this distance is the correct one. In the following of the paper, we
focus ourselves on two variations of the basic attack, denoted as Extension 1 and
Extension 2 in [6]. First, we enlarged the fixed part of the plaintext to 32 bits,
in order to increase the non-uniformness of the target distributions. Second, we
performed the analysis multiple times, using different values for the 32-bit fixed
part of the plaintexts. In other words, we carried out many sub-attacks obtained
from sets of 232 varying plaintexts, for different fixed input patterns. Then, for
each key candidate, we re-combined the results, by simply taking the sum of the
uniform vs. measured distances given by these different 32-bit sub-attacks.

3 Hardware Architecture

As described in the previous section, a statistical saturation attack is composed
of three phases. First, a large number of plaintexts are encrypted and the cor-
responding ciphertexts are collected. Then, a distribution is computed from the
resulting ciphertexts. Finally, given this experimental distribution, a partial de-
cryption is processed and the resulting R−1-round distributions are tested w.r.t.
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uniform. From these three phases, the encryption part is the most time consum-
ing one. On the contrary, the time needed by the partial decryption is not really
critical. Therefore, we first decided to implement the PRESENT encryption in
hardware, letting the partial decryption task to a software. Next, regarding the
distribution generation, we also chose to implement it in hardware, for data rate
reasons. As will be clear in section 3.2, our implementation of PRESENT has
a huge output bitrate. Implementing the distribution generation in hardware
allows us to reduce the output bitrate of our FPGA by a factor of 224 (see sec-
tion 3.3). Note finally that we did not implement the key schedule in hardware.
The keys are generated by a software and provided to the FPGA by an Ethernet
port. In the remaining of the section, we will first describe the FPGA technology
we used for our implementations. We will then detail the architecture choices we
made for the PRESENT encryption and distribution generation. We conclude
the section with an overview of the complete system and a description of its
performances.

3.1 Hardware Technology

The technologies we used to implement our architecture are Virtex-5 [24] and
Virtex-6 FPGAs from Xilinx. The main logic resources of those FPGAs are the
CLBs (Configurable Logic Bloc). Those CLBs are divided into two slices which
are themselves composed of four logic-function generators (or look-up tables),
four storage elements, wide-function multiplexers, and carry logic. These ele-
ments are used by all slices to provide logic, arithmetic, and ROM functions.
In addition to this, some slices support two additional functions: storing data
using distributed RAM and shifting data with 32-bit registers. Slices that sup-
port these additional functions are called SLICEM; others are called SLICEL.
Figure 2 illustrates a SLICEL. The function generators in Virtex-5 FPGAs are
implemented as 6-input look-up tables (LUTs). Each LUT possess 6 independent
inputs (A1 to A6) and 2 independent outputs (O5 and O6). It can either imple-
ment any arbitrarily defined six-input Boolean function (only O6 is used in this
case) or two arbitrarily defined five-input Boolean functions, as long as these two
functions share common inputs (both O5 and O6 are used in this case). Signals
from the function generators can exit the slice (through A, B, C, D output for
O6 or AMUX, BMUX, CMUX, DMUX output for O5), enter the XOR dedi-
cated gate from an O6 output, enter the carry-logic chain from an O5 output,
enter the select line of the carry-logic multiplexer from O6 output, feed the D
input of the storage element, or go to F7 multiplexers from O6 output. Slices
also contain three multiplexers (F7 and F8) that can be used to combine up to
four function generators and provide any function of seven or eight inputs in a
slice. The storage elements in a slice can be configured as either edge-triggered
D-type flip-flops or level-sensitive latches. The D input can be driven directly by
a LUT output or by the AX, BX, CX, or DX slice inputs bypassing the function
generators. The slices composing a Virtex-6 FPGA are quite similar to those of a
Virtex-5. The major difference comes from the possibility to register both LUTs
outputs (O5 and O6) in separate flip-flops. Finally, in addition to distributed
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Fig. 2. Diagram of a SLICEL

RAM, Virtex-5 and -6 FPGAs include a large number of 36 Kb block RAMs.
Each 36 Kb block RAM contains two independently controlled 18 Kb RAMs.

3.2 PRESENT Architecture

PRESENT was originally designed to be extremely low cost and easy to imple-
ment in hardware. Therefore, the resources needed by a round of PRESENT
are quite limited. In this section we will focus on the XOR and S-boxes layers,
the permutation layer resulting only in routing which is not resource consuming
from an FPGA implementation point of view. In order to determine the re-
sources needed by a round of PRESENT, we first detail the resources consumed
by the smallest relevant part of a round. This corresponds to one S-box and its
corresponding XORed inputs, as depicted in left part of Figure 3.

As previously described, Virtex-5 FPGAs are based on slices composed of four
6-bit LUTs and four 1-bit registers. Therefore, an optimal way to reduce the
LUTs used is to regroup all the logical operations in order to obtain a minimum
number of blocks that take 6-bit inputs and give 1-bit outputs. Furthermore, in
order to be speed efficient, it is also recommended to limit the number of logic
levels between two registers (a logic level corresponding to one LUT). The first
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Fig. 3. Diagram of an S-box with its XORed inputs (left), equivalent LUT represen-
tation (right)

Fig. 4. VIRTEX-5 (left) and VIRTEX-6 (right) LUT representations of a round part

possible way of implementing the combination of one S-box and four XOR oper-
ations in hardware is to limit our architecture to only one level of logic between
two registers. Here, one LUT is needed per XOR operation and four LUTs are
needed for the S-box (see right part of Figure 3). Even if, this architecture is the
most speed efficient, it is also the most resource consuming.

A second possibility is to combine some of the XOR operations with the S-
box, as illustrated in left part of Figure 4. The number of LUTs needed by this
architecture is decreased by two in comparison with the previous one. However,
it is now composed of two levels of logic between two consecutive registers.

Finally, Virtex-6 FPGAs have two times more registers than Virtex-5 ones.
This gives the possibility to store the two outputs of each LUT. Therefore, to
reduce the number of used LUTs, we now need to regroup all logic to either
form blocks that takes 6-bit input and 1-bit output, or blocks sharing 5 identical
input bits, with 2-bit output. As illustrated in the right part of Figure 4, the
number of needed LUTs to implement an S-box and four bitwise XOR is now
only four. We indeed combined two XOR operations in a single LUT and the
S-box in two of them.

To implement a round of PRESENT, the previous blocks must be repeated
16 times. 64-bit key registers are also needed for each round. In order to be
speed efficient, we decided to fully unroll PRESENT, which allows us to encrypt
a new plaintext every clock cycle. The implementation results for a 32-round
PRESENT are given in Table 1, where V5 - 64 stages is the Virtex-5 design
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Table 1. Implementation characteristics of 32-rounds PRESENT

V5 - 64 stages V5 - 32 stages V6 - 64 stages

LUTs 4077 3086 3130
Registers 6177 4162 6177

Slices 1561 1420 819

Max. Frequency 588 MHz 470 MHz 588 MHz
Bitrate 35 Gbps 28 Gbps 35 Gbps

having two levels of registers per round, and V5 - 32 stages is the design having
only one such level. These results confirm that the Virtex-5 architecture with 32
stages needs almost 2000 registers less than than the one with 64 stages. The
maximum frequency also decreases from one architecture to the other. However,
the frequency that can be reached by the 32-stages architecture is more than
sufficient as we will later choose to run our complete design at a frequency of 125
MHz (see section 3.4), corresponding to a bitrate of 7,5 Gbps. Results obtained
with Virtex-6 FPGAs are even better than those obtained with Virtex-5. The
number of slices needed with Virtex-6 is almost half the one needed by the V5 -
64 stages architecture, while the maximum frequency is the same. However, the
board on which the experimental tests were performed is a Virtex-5 one and we
have therefore decided to use the V5 - 32 stages architecture for our design.

Note finally that the bitrate reachable with these different architectures is
anyway far too high to be output by our FPGA interfaces. As previously said,
a solution to avoid this interface issue is to compute the distributions on board
in order to reduce the data rates, as it will be explained in next section.

3.3 Distribution Generator Architecture

The statistical saturation attack exploits the experimental distributions of a few
chosen ciphertext bits. In particular, the trail in Figure 1 involves 16 output bits
of which the distribution has to be partially decrypted. In order to decrease the
size of the distributions to store in our FPGA implementation, our experiments
are based on the analysis of two 8-bit distributions, corresponding to the output
of S-boxes 5 and 9 for the first one, and S-boxes 6 and 10 for the second one. This
is possible because the partial decryption needed in the key recovery phase can be
applied independently for the two sets of S-boxes. A distribution generator was
then used to compute those two distributions. Half of this generator is illustrated
in Figure 5. It is composed of Virtex RAM blocks of 18 kilobits, an adder, different
multiplexers, some additional logic, and essentially works as follows.

We first need 256 counters to compute each distribution and, because we chose
to implement Extension 1 of the statistical saturation attack, the distribution
has to be computed on 232 ciphertexts, which corresponds to at most 32 bits
per counter. Those counters are saved in a Virtex RAM block and are loaded
by using the 8-bit ciphertext value as a RAM address. The loaded counter is
then incremented and written back in memory. This whole process takes three
clock cycles to be performed from the moment a ciphertext is available as RAM
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Fig. 5. Hardware architecture of half of the distribution generator

Table 2. Implementation characteristics of two 8-bit distribution computation

Virtex-5 Virtex-6

LUTs 519 651
Registers 332 269

Slices 205 193
RAM (18 kb) 4 4

Max. Frequency 232 MHz 205 MHz

address to the moment the counter has been updated in RAM. However, to
have a continuous flow between PRESENT and the distribution computation,
we must be able to update the counters every clock cycle, which means that if
at least two out of three consecutive ciphertexts values are identical, the counter
in RAM must still be updated properly. For this reason, we added some logic
before the adder, which gives us the opportunity to choose between the RAM
output and the last incremented counter.

The 256 32-bit counters are exported once every 232 clock cycles which corre-
sponds to a decrease of PRESENT’s output bitrate by a factor of 224. To avoid a
loss of time during the exportation, we allocated two RAM blocks per distribu-
tion so that the second RAM is used for the computation of a new distribution
while the first is being emptied and reset.

The implementation results for the complete distribution generators (com-
posed of two of the illustrated parts) are given in Table 2. The maximum reach-
able frequency with the distribution generator is lower than the one we had with
PRESENT. This is due to a higher number of logic levels between two registers.
Indeed, we wanted to limit as much as possible the number of cycles needed to
update a counter resulting in longer critical paths.

3.4 Complete Design

The complete design has been implemented on a Xilinx XUPV5 board from
which we used the Ethernet port to communicate with a computer. It is
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Fig. 6. Block diagram of the complete design

illustrated in Figure 6 and works as follows. First, controls such as round key
values, destination MAC address and plaintext initial values are sent to the
FPGA board through the Ethernet port. The received Ethernet packets are pro-
cessed by the Ethernet Media Access Controller (MAC) and sent to an 8-bit
width FIFO. A packet parser parallelizes the FIFO’s output and sends the rele-
vant information to the statistical saturation attack (SSA) block. The SSA block
encrypts a large number of plaintexts and computes the corresponding distri-
butions. The distributions are then sent to the packet builder in order to form
Ethernet packets which are finally sent on an Ethernet link.

The FPGA available on our board is a Virtex-5 LX110T FPGA. The number
of PRESENT blocks those FPGAs can contain depends on the number of rounds
implemented per PRESENT block. For our experimentations, we used 18-round
PRESENT and, in order to obtain more experimental results, we computed the
distributions for four different rounds simultaneously. With this configuration,
we would be able to fit up to 16 PRESENT blocks, and the 64 corresponding dis-
tribution generators in a single FPGA. However, due to timing problems during
the synthesis of such a huge design, we decided to limit the final implementation
to 8 PRESENT blocks and 32 distribution generators. We also decided to have
an identical clock frequency for the complete design, which is the same as the one
needed by the Ethernet MAC: 125 MHz. At that frequency, the complete design
encrypts more than 229 plaintexts per second and outputs 64 distributions (8
per PRESENT block) every 34 seconds.
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4 Experimental Results

In this section, we take advantage of the previously described design in order
to launch large scale experimental attacks against PRESENT. The goal of these
experiments is twofold. First, we aim to challenge the theoretical data complex-
ity estimations of the statistical saturation attack given in [6]. In particular,
under some independence assumptions detailed in this previous work, it is ex-
pected that the data complexity of an attack exploiting the bold trail in Figure 1
increases by a factor of 23 per round. But as for linear cryptanalysis, this es-
timation should become incorrect as soon as a statistical hull effect starts to
have a significant impact on the distributions of the ciphertexts. Next, we note
that although the use of an FPGA board allows us to gain a significant com-
puting power compared to previous software-based experiments, our results are
still limited. Namely, we performed 5 attacks against 5 independent keys, and
each of these attacks was bounded to a data complexity of 248 (which is still
far away from the codebook). These limitations are naturally justified by time
constraints: each of our 5 attacks corresponds to 3.5 days of computations. It
implies a limited sampling, both in terms of keys and plaintexts, that has to be
considered in the interpretation of the results. Hence, we aim to take advantage
of our experiments to discuss the hull effect in general, and whether it can be
detected by experimentally sampling only a part of the plaintext space.

In the following, for each of the two 8-bit distributions exploited in the attack,
we consider two main evaluation metrics. We first estimate the gain1. That is, if
an attack is used to recover an n-bit key and is expected to return the correct key
after having checked on the average M candidates, then the gain of the attack,
expressed in bits, is defined as:

λ = − log2

2 ·M − 1
2n

(1)

We provide gains averaged over the 5 experimented keys, for the two 8-bit dis-
tributions taken independently (in the left part of Figure 7), and their average
(in the right part of the figure). Next, we provide estimates for the Euclidean
distance between the partially decrypted output distributions and the uniform
distributions. Distances are computed for the correct key candidate, and aver-
aged for all the wrong key candidates, hence allowing to observe if the correct
key candidate can be easily distinguished. These distances are again averaged
over our 5 experiments. We also plot these distances for each tested key inde-
pendently, in order to exhibit how their variance compares to the previous mean
values. This second metric, computed for data complexities from 232 to 248, and
number of rounds from 15 to 18, is given in Figures 8, 9, 10, 11. We now detail
some important observations that can be derived from these plots.

1 Alternative metrics, such as the advantage used by Gérard and Tillich in [10], would
allow deriving additional insights on the performances of the attacks, but are harder
to estimate in view of our very limited sampling.
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Fig. 7. Gains of the attacks

Fig. 8. Distance to uniform of the two distributions

First, regarding the gain pictures (Figure 7), one can see that the 23 multi-
plicative factor is quite accurately observed for up to 17 rounds. We also remark
that the two investigated distributions do not behave exactly in the same way
(this will be confirmed by the distance to uniform metric). As for the 18th round,
a non-negligible gain can still be observed, but more sampling data would be
required to analyze this setup with more confidence.
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Regarding the distance to uniform metric, we again analyzed the combination
of the two distributions (in Figure 8) and these distributions taken separately
(see Figures 10 and 11, in appendix). The general observation, also confirming
theoretical predictions, is that the distance between the average behavior of the
correct key candidate and the average behavior of the wrong key candidates de-
creases with the number of rounds. In addition, we plotted this metric for the five
correct key candidates of our experiments on the figures, for data complexities
between 242 and 248 (with blues crosses for distribution D1 and red circles for
distribution D2). One can notice that the scattering of these good key candidates
becomes more important compared to the distance between the average curves
on the plot, as the number of rounds increases. In other words, the problem of
recovering the keys by distinguishing these distributions becomes more difficult.
For round 18, this scattering even encompasses the two average curves2.

Eventually, the central question behind these experiments is to know whether
these plots indicate the apparition of a non-negligible hull effect for round 18. In
other words, is the closeness between the correct and wrong key candidates due
to such an effect or is it caused by a too small data complexity (the theoretical
data complexity for attacking 18 rounds is 251)? For answering this question, it
is most interesting to observe the zoomed pictures of Figure 9. On the left part
of the figure (i.e. for round 16), one can clearly see that the distributions D1
and D2 can be distinguished for all key candidates - even before the theoretical
data complexity of 245 is reached (this can be further observed from Figures 10
and 11 in appendix). By contrast, in the right part of the figure (i.e. for round
17), there is a significant overlap between the two distributions - in particular
when the theoretical data complexity of 248 is not reached. Referring to the
small scale experiments in [8], this plot consequently suggests the apparition of
a statistical hull effect, with distributions that become harder to distinguish and
key dependent. We note again that these observations have to be taken with
care, as they are based on visual inspection and not backed up with sufficient
statistical confidence (again, due to the computationally intensive nature of our
experiments).

5 Conclusion and Open Problems

This paper first highlights the interest of recent reconfigurable devices (FPGAs)
in the context of statistical cryptanalysis. Such hardware assistance allowed us
increasing the experimental data complexities reached in previous experiments3,
by a factor of 214. These important gains are due to the very convenient setting of
most statistical cryptanalyses, in which one needs huge computing powers, with
2 The average value of the distance to uniform metric is close to 232, independent

of the number of rounds. This directly relates to the use of Extension 2 in our
experiments. That is, we evaluate the combination of several sub-attacks of data
complexity 232, where the combination of sub-attacks is performed by a (heuristic)
sum of the average distances.

3 The experiments presented in [6] reached a data complexity of 235.6.



FPGA Implementation of a Statistical Saturation Attack against PRESENT 113

Fig. 9. Distance to uniform of the two distributions (zoom)

Fig. 10. Distance to uniform of distribution D1

limited connectivity between the hardware and software parts of the system. In
this respect, the design proposed in this paper could possibly be improved to
gain some (small) additional factors. Focusing our design on only one or two
target rounds (rather than four in the present case) and moving to the more re-
cent Virtex-6 technology are typical examples of such improvements. Exploiting
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Fig. 11. Distance to uniform of distribution D2

FPGA-based platforms such as COPACOBANA [16] would also be an interest-
ing direction of research. Note that although statistical attacks are well suited
for FPGA implementations, other computing platforms could lead to similar
speedups. As discussed, e.g. in [2] for the case of elliptic curves, cryptanalysis
applications generally benefit from hybrid infrastructures (e.g. based on FPGAs,
but also CPUs, GPUs, ASICs, . . . ). As far as PRESENT is concerned, optimized
implementations on these devices and cost comparisons with the FPGA design
we propose in this paper would be another interesting scope for further research.

Next, our experiments confirm the previous theoretical predictions for statisti-
cal saturation attacks in [6,7], for up to 18 rounds (and 19 rounds if a two-round
partial decryption process was considered). They also provide hints that a statis-
tical hull effect is appearing after 18 rounds of PRESENT. Confirming this effect
with more confidence would require analyzing a few more rounds and was not
possible within our current computational limits. In particular, extending our ex-
periments for 18 and 19 rounds, and complexities up to 251, would be interesting.
Nevertheless, the evaluations in this paper suggest that assumptions required to
theoretically estimate the data complexity of statistical saturation attacks may
not be respected beyond 24 rounds. Since the statistical hull effect we consider
in this paper is close to the linear hull effect considered in linear cryptanalysis,
one should probably question the validity of statistical attacks targeting more
than 24-round PRESENT in general. Note that this question also holds for
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differential cryptanalysis, although the combination of several characteristics
always increases the differential probability, because of the key dependencies
implied by such a combination.

Finally, in most current block ciphers, the number of rounds needed to resist
statistical cryptanalyses is determined based on Knudsen’s practical security
paradigm. But a more accurate technique would be to determine exactly when
the statistical hull effects start to be effective in a cipher. In general, solving this
problem is highly computationally intensive. The results in this paper lead to the
interesting question whether the hull effect could be detected by sampling less
than the full plaintext/key space. In case of a positive answer, a very interesting
scope for further research would be to quantify this observation with robust
statistics, in order to derive a new criteria for selecting the number of rounds
in block ciphers. Analyzing small-scale block ciphers that can be exhaustively
evaluated against different attacks could be a first useful step in this direction.
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Abstract. In this paper, we find collisions of MD5 in the Matyas-Meyer-
Oseas mode and Miyaguchi-Preneel mode with a complexity of 239 opera-
tions, which runs contrary to the cryptographer’s belief that these modes
are stronger against collision attacks than the Davies-Meyer mode due
to the impossibility of the message modification. We then show that,
our collision attack for the Matyas-Meyer-Oseas mode can give impact
to some collision properties of the Davies-Meyer mode, which we call
“free-start given-message collisions” and “NMAC colliding keys”. These
indicate that collisions of MMO-MD5 give some impacts on the origi-
nal MD5. The attack is implemented on a PC and we present generated
collisions of MMO-MD5.

Keywords: MD5, collision, Matyas-Meyer-Oseas, Davies-Meyer,
Miyaguchi-Preneel, PGV, given-message collision, NMAC colliding keys.

1 Introduction

Hash functions are basic symmetric-key primitives widely used to support the
security of various cryptographic systems such as digital signatures and digital
fingerprintings. One of the most widely used hash functions is MD5 [1], which
was designed by Rivest in 1991. There were two outstanding cryptanlayses of
MD5 in early days; a free-start collision attack by den Boer and Bosselaers
[2] and a semi-free-start collision attack by Dobbertin [3]. The most innovative
attack on MD5 was a collision attack by Wang et al. in 2005 [4], which showed
real collisions of MD5. Since then, many improved collision attacks have been
proposed [5,6,7,8,9,10,11,12,13,14]. As far as we know, the most efficient attack
by Xie and Feng [13] reports that the complexity for generating a collision is
now within 210 MD5 compressions. Xie and Feng also discovered the 1-block
collision of MD5 [15,16]. On the other hand, there are many researches that
explore other weaknesses of MD5 in applications e.g. attacks on NMAC and
HMAC [17,18,19,20,21,22,23], on Challenge-and-Response protocols [24,25], on
Certificate Authority in PKI [26,27], on cascaded combiners [28], and so on. In
addition, preimage attacks have also been proposed recently [29,30,31,32]. As
you can see, although MD5 has already been broken seriously, cryptanalysis of
MD5 is still an active research topic even these days. In fact, investigating the
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security of MD5 more is important in order to be prepared for the situation
where SHA-1 and SHA-2 [33] suddenly become vulnerable in the future.

Most of hash functions widely used in practice such as MD5, SHA-1, and
SHA-2 are composed of block-ciphers. For example, the internal block-cipher of
SHA-2 is called SHACAL-2 and was selected as a recommended block-cipher by
NESSIE. These block-ciphers are then used to construct compression functions
through the PGV mode-of-operations [34]. In PGV, twelve modes were shown to
be secure, and which mode we should select is an important issue for the design
of hash functions. (Twelve modes are listed in Fig. 2 in Appendix B.)

Among twelve secure PGV modes, three modes have specific names; Davies-
Meyer (DM) mode [35, Algorithm 9.42], Matyas-Meyer-Oseas (MMO) mode [35,
Algorithm 9.41], and Miyaguchi-Preneel mode [35, Algorithm 9.43]. Let us de-
note the encryption algorithm by using a block cipher E with a key K by EK .
Each mode constructs the compression function as follows1.

DM mode: CF(HN−1, MN−1) = EMN−1(HN−1)⊕HN−1,
MMO mode: CF(HN−1, MN−1) = EHN−1(MN−1)⊕MN−1,

Miyaguchi-Preneel: CF(HN−1, MN−1) = EHN−1(MN−1)⊕MN−1⊕HN−1.

Many hash functions in practice, including MD5, adopt the DM mode. On
the other hand, recently designed hash functions tend to adopt the MMO mode
(e.g. Skein [36] and Lesamnta [37]) or Miyaguchi-Preneel mode (e.g. Whirlpool
[38]). The followings are examples of the reasons to select the MMO mode or
Miyaguchi-Preneel mode rather than the DM mode.

– The DM mode is known to be weak against message modification techniques
proposed by Wang et al. [4,39], which adjust message values so that a part
of differential path can be satisfied deterministically or with a high proba-
bility. In particular, block-ciphers with a weak key-schedule such as internal
block-ciphers of the MD-family are weak against the message modification
techniques. The MMO and Miyaguchi-Preneel modes can prevent the mes-
sage modification because there is no input to intermediate steps which is
under the full control by attackers.

– In the design of block-ciphers, designers often consider the security against
attackers with the access to the plaintext and ciphertext but without the
access to the key. Therefore, it is natural to regard a message to be hashed
(chosen by attackers) as a plaintext and to regard a chaining variable (un-
controlled by attackers) as a key. Hence, it is natural to use the MMO mode
or Miyaguchi-Preneel mode.

From the above discussion, changing the mode-of-operation from the DM mode
to the MMO or Miyaguchi-Preneel modes may be a possible countermeasure
against the previous collision attacks on the DM mode.

1 In practice, if E is designed to use the modular addition, the feed-forward operation
tends to be modular addition instead of XOR. The MD-family is an example of this
case.



Collisions of MMO-MD5 and Their Impact on Original MD5 119

Our contributions. In this research, firstly, we present collision attacks on
variants of MD5 whose mode-of-operation is replaced with the MMO mode and
Miyaguchi-Preneel mode. Note that this attack can be performed with a com-
plexity of the birthday attack in generic, hence it takes 264 for MD5. However,
for MD5, we observe that it can be performed with a complexity of 248 with a
free-start collision attack proposed by den Boer and Bosselaers [2]. We then fur-
ther improve this complexity by applying a variant of the message modification
technique.

In our approach, we first fix 4 consecutive intermediate chaining variables
where sufficient conditions for the differential path are most condensed. Then,
we compute the other steps, where the conditions are relatively sparse, and
check whether all conditions are probabilistically satisfied or not2. Moreover,
because flipping one bit of a chaining variable only impacts to limited num-
ber of bits in other variables within a few steps, we can adjust the values so
that conditions in a few steps more are always satisfied. By optimizing the
attack by hand, the complexity is reduced to approximately 239 MD5 com-
putations, and real collision values can be generated within a day by a
standard PC.

In this research, secondly, we show that our collision attack in the MMO-mode
gives some impacts on the security of the DM-mode using the same internal
block-cipher. This indicates that the original MD5, which adopts the DM-mode,
is also affected by our collision attack on MMO-MD5. The impacts are summa-
rized below.

1. Free-Start Given-Message Collisions on MD5: For a given message M ,
we find a pair of initial values H1 and H2 such that CF(H1, M) = CF(H2, M),
where CF is a compression function of MD5. In other words, for a given mes-
sage, we find a colliding pair by using the freedom of the initial value. Col-
lisions starting from two different initial values are often called free-start
collisions, and we thus call this attack free-start given-message collision
attack.

2. Given-Message Colliding Keys for NMAC-MD5: NMAC [41] is a hash
function based MAC algorithm using a pair of keys K1 and K2. If MD5 (with
the DM-mode) is instantiated in NMAC, for any given message M , attackers
can generate paired keys K = (K1, K2) and K ′ = (K ′

1, K2) which cause a
collision of the NMAC Tag.

Organization. In Section 2, we describe the specification of MD5. In Sec-
tion 3, we introduce related work. In Section 4, we give details of our colli-
sion attack on MD5 in the MMO and Miyaguchi-Preneel modes and the results
of the machine experiment. In Section 5, we explain the impact of collisions
in the MMO mode to the DM mode. Finally, in Section 6, we conclude this
paper.

2 The approach determining the values to satisfy the lowest probability part of the
differential path has been taken by the rebound attack proposed by Mendel et al. [40].
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2 Specifications and Notations

2.1 Description of MD5

MD5 [1] is a 128-bit hash function which adopts the Merkle-Damg̊ard domain
extension. At the first, an input message M is padded by the following procedure.

– Append a bit ‘1’ to the end of M .
– Append a necessary number of ‘0’s until the length becomes 448 mod 512.
– Append the 64-bit binary representation of the original length of M .

After that the padded message is divided into 512-bit blocks, Mi (i = 0, 1, . . . , N−
1). Then, the hash value is computed as follows:{

H0 ← IV,
Hi+1 ← CF(Hi, Mi) for i = 0, 1, . . . , N − 1,

where IV is the initial value defined in the specification, CF: {0, 1}128×{0, 1}512 →
{0, 1}128 is a compression function of MD5 and HN is the hash value of M .

Compression function CF. The compression function of MD5 adopts the
DM-mode of the block-cipher. In the DM-mode, the chaining variable Hi and
the message Mi are used as a plaintext and a key of the block-cipher, respectively.
Then, CF outputs a combination of a ciphertext and Hi. Let the internal block-
cipher of MD5 be md5. In case of MD5, CF(Hi, Mi) is defined as follows:

CF(Hi, Mi) = Hi + md5Mi(Hi),

where ‘+’ denotes an word-wise addition on modulo 232.

Block-cipher md5. md5 takes a 128-bit value Hi as a plaintext input and a
512-bit value Mi as a key input. At the first, the key Mi is divided into sixteen
32-bit values m0‖m1‖ · · · ‖m15. Then, by using 32-bit variables Qj,−3 ≤ j ≤ 64,
the ciphertext is computed as follows.

Q−3‖Q0‖Q−1‖Q−2 ← Hi,

Qj+1 ← Rj(Qj−3‖Qj‖Qj−1‖Qj−2, mπ(j)) for j = 0, 1, . . . , 63,
md5Mi(Hi) ← Q61‖Q64‖Q63‖Q62.

Rj is the step function for Step j which computes Qj+1 as follows:

Qj+1 ← Qj + (Qj−3 + Φj(Qj , Qj−1, Qj−2) + mπ(j) + kj) ≪ sj

where Φj , kj , and ≪ sj are the bitwise Boolean function, constant number,
and left rotation by sj-bits defined in the specification, respectively. π(j) is
a key expansion function. Details of Φj , sj , and π(j) are shown in Table 1.
Note that, for a fixed message, R−1

j (Qj−2‖Qj+1‖Qj‖Qj−1, mπ(j)) is computed
by Qj−3 ← ((Qj+1 −Qj) ≫ sj) − Φj(Qj , Qj−1, Qj−2) −mπ(j) − kj , where ‘−’
denotes a word-wise subtraction on modulo 232.
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Table 1. Boolean functions, rotation numbers, and key expansion of MD5

Φ0, Φ1, . . . , Φ15 Φj(X, Y, Z) = (X ∧ Y ) ∨ (¬X ∧ Z)
Φ16, Φ17, . . . , Φ31 Φj(X, Y, Z) = (X ∧ Z) ∨ (Y ∧ ¬Z)
Φ32, Φ33, . . . , Φ47 Φj(X, Y, Z) = X ⊕ Y ⊕ Z
Φ48, Φ49, . . . , Φ63 Φj(X, Y, Z) = Y ⊕ (X ∨ ¬Z)

s0, s1, . . . , s15 7 12 17 22 7 12 17 22 7 12 17 22 7 12 17 22
s16, s17, . . . , s31 5 9 14 20 5 9 14 20 5 9 14 20 5 9 14 20
s32, s33, . . . , s47 4 11 16 23 4 11 16 23 4 11 16 23 4 11 16 23
s48, s49, . . . , s63 6 10 15 21 6 10 15 21 6 10 15 21 6 10 15 21

π(0), π(1), . . . , π(15) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π(16), π(17), . . . , π(31) 1 6 11 0 5 10 15 4 9 14 3 8 13 2 7 12
π(32), π(33), . . . , π(47) 5 8 11 14 1 4 7 10 13 0 3 6 9 12 15 2
π(48), π(49), . . . , π(63) 0 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9

2.2 MMO-MD5, Miyaguchi-Preneel-MD5, and Other PGV Modes

The PGV modes are ones for building a compression function. Hence, to define a
hash function, we need to define a domain extension. In this research, we assume
that the Merkle-Damg̊ard domain extension is used as well as the original MD5.

In the MMO-mode, a chaining variable Hi is used as a key and a message Mi

is used as a plaintext. The output is computed by EHi(Mi)⊕Mi. Note that in the
MD-family, the feed-forward operation is often performed in modular addition
instead of XOR. To follow the convention, in this research, we assume that the
modular addition is used for the feed-forward operation.

To use md5 in the MMO-mode, we need to adjust the length of the compres-
sion function’s output and the key because the compression function’s output
is used as the key for the next block. The simplest way is to apply a padding
procedure. In this research, we assume the zero-padding, which appends the
necessary number of zeros in the end of the compression function’s output. For
example, the 128-bit IV is padded to the 512-bit message block IV‖00 · · ·0, and
is used as the key for the first block. Similarly, compression functions based on
the Miyaguchi-Preneel mode and the other PGV modes can be defined. In Fig. 2
in Appendix B, we list the all 12 secure PGV constructions.

3 Related Work

3.1 Free-Start Collision Attack on MD5

In 1993, den Boer and Bosselaers [2] showed an example of paired values (Hi, Mi)
and (H ′

i, Mi) such that CF(Hi, Mi) = CF(H ′
i, Mi). In this attack, Hi and H ′

i

have the following difference:

ΔHi = Hi ⊕H ′
i = (0x80000000, 0x80000000, 0x80000000, 0x80000000).

Hereafter, we denote this difference by ΔMSB . To satisfy the differential path,
48 conditions on intermediate chaining variables shown below must be satisfied.
(Hereafter, we use the notation Qj,k, 0 ≤ k ≤ 31 to represent the k-th bit of Qj.)
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Qj−1,31 = Qj−2,31 for 0 ≤ j ≤ 15,
Qj,31 = Qj−1,31 for 16 ≤ j ≤ 31, (1)
Qj,31 = Qj−2,31 for 48 ≤ j ≤ 63.

den Boer and Bosselaers chose a message so that the first 16 conditions can be
always satisfied, and succeeded in finding colliding pairs in practice.

3.2 Collision Attack on MD5

In 2005, Wang et al. proposed a collision attack on MD5 [4]. The overall strategy
of their attack is as follows.

1. Identify a good differential path.
2. Identify sufficient conditions on the intermediate variables to satisfy the path.
3. Locate a message that satisfies all conditions by randomly generating mes-

sages and adjusting the message by the message modification (MM) so that
a part of conditions are always satisfied.

In collision attacks, attackers can select the message of their choice, and thus,
they can satisfy many sufficient conditions. On the other hand, for given-message
collision attacks, attackers cannot choose or modify the message. Hence, MM
cannot be used.

4 Collisions of MMO-MD5 and Miyaguchi-Preneel-MD5

In this section, we present collision attacks on variants of MD5 whose mode-of-
operation is replaced with the MMO mode and Miyaguchi-Preneel mode. Namely,
for a given initial value IV, find a pair ofmessagesM1 and M2 such thatmd5h1(M1)�
M1 = md5h1(M2) � M2 for the MMO mode and md5h1(M1) � M1 � h1 =
md5h1(M2) � M2 � h1 for the Miyaguchi-Preneel mode. It is obvious that if colli-
sions in the MMO-mode is obtained, collisions in the Miyaguchi-Preneel mode is
also obtained. Hence, in this section, we mainly explain how to obtain collisions in
the MMO-mode. A generic attack requires 2

n
2 for an n-bit hash function, which

is 264 for MD5. Because computing 264 is hard, we need to reduce the complexity.
In this section, we explain how to efficiently obtain this collision.

4.1 Overall Strategy

At the first, we observe that the free-start-collision attack proposed by den Boer
and Bosselaers (dBB-attack) [2] can be used to find collisions of MMO-MD5
faster than the brute force attack. Because the differential path of the dBB-
attack contains 48 sufficient conditions and each condition is satisfied with a
probability of 2−1, the näıve search will require 248 MD5 computations.

Moreover, we can choose the values of 4 consecutive intermediate chaining
variables. We call these steps Ini-steps. Unfortunately, conditions for the dBB-
attack are sparse, and we thus can satisfy up to 3 conditions. After we determine
the values in Ini-steps, we compute the other steps in both forward and backward
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directions and check whether all conditions are satisfied or not. Therefore, at this
stage, the complexity is reduced to 245 MD5 computations.

Furthermore, if conditions are not satisfied within a few steps from Ini-steps,
we can modify the values in Ini-steps so that these conditions will be satisfied.
This idea is principally the same as the original message modification, but we use
the freedom degrees of chaining variables and keep the given message unmodified.
To make the difference clear, we call this modification chaining variable modifi-
cation (CVM). Due to CVM, we can guarantee that additional 5 conditions are
satisfied with a probability close to 1, and one more condition is satisfied with
a probability of 87.5%. In the end, in total 9 conditions can be satisfied with a
probability of 87.5%. Because 39 conditions are left, the rough estimation of the
attack complexity is 239 MD5 computations.

Note that this is a rough estimation. De Cannière and Rechberger [42] intro-
duced a method to precisely count the work factor of the differential path search
algorithm. Briefly speaking, they consider the weight of conditions. Checking the
conditions close to Ini-steps is cheaper than the ones far from Ini-steps. Because
this evaluation can also be applied to our attack, the complexity of our attack
is in fact less than 239 MD5 computations.

4.2 Attack Procedure

In this attack, IV is a 128-bit fixed constant and given to the attacker. As was
discussed in Sect. 2.2, IV is padded to be 512 bits, namely, 384-bit ‘0’s are
appended to IV. Inside the compression function, this padded IV is divided into
sixteen message words m0‖m1‖ · · · ‖m15. The goal of the attack is to find a pair
of messages M1 = Q−3‖Q0‖Q−1‖Q−2 and M2 = Q′

−3‖Q′
0‖Q′

−1‖Q′
−2.

In our attack, we choose Q5, Q6, Q7, and Q8 as chaining variables fixed in
the Ini-step. This strategy is briefly explained in Sect 4.5. The entire attack
procedure is described in Algorithm 1. We will explain details of CVM in Sect 4.3.

4.3 Chaining Variable Modification

The goal of CVM is to guarantee that conditions located within a few steps
forward or backward from Ini-steps are satisfied with probability 1 or close to 1.

Wang et al.’s collision attack [4] can take an advantage of the freedom degrees
in the message. Hence, attackers apply the MM, which modifies a few bits of a
message so that the impact of the modification can propagate to the target bits and
flip its value while other conditions are guaranteed not to be broken. On the other
hand, in the given-message attack, attackers cannot modify the given message.
Therefore, attackers modify a few bits of the values of Ini-steps and control the
propagation of its impact so that only the target bit is flipped but other conditions
are not broken. In the following sections, we explain examples of CVM.

Examples of simple CVM. At Step 1 of Algorithm 1, we choose the
values of Q5, Q6, Q7, and Q8. According to the conditions in equation 1,
Q5,31 = Q6,31 = Q7,31 = Q8,31. Therefore, we always choose the values which
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Algorithm 1. Collision Attack on MMO-MD5

Input: an initial value IV, which also fixes m0, m1, . . . , m15.
Output: messages M1 = Q−3‖Q0‖Q−1‖Q−2 and M2 = Q′

−3‖Q′
0‖Q′

−1‖Q′
−2

1. Randomly choose Q5, . . . , Q8 but satisfy all sufficient and extra conditions.
2. Compute Q4 ← R−1

7 (Q5‖Q8‖Q7‖Q6, mπ(7)).
3. IF (a condition on Q4 is not satisfied) { Do the CVM for Q4.}
4. Compute Q9 ← R8(Q5‖Q8‖Q7‖Q6, mπ(8)).
5. IF (a condition on Q9 is not satisfied) { Do the CVM for Q9.}
6. Compute Q3 ← R−1

6 (Q4‖Q7‖Q6|Q5, mπ(6)).
7. IF (a condition on Q3 is not satisfied) { Do the CVM for Q3.}
8. Compute Q10 ← R9(Q6‖Q9‖Q8‖Q7, mπ(9)).
9. IF (a condition on Q10 is not satisfied) { Do the CVM for Q10.}

10. Compute Q2 ← R−1
5 (Q3‖Q6‖Q5‖Q4, mπ(5)).

11. IF (a condition on Q2 is not satisfied) { Do the CVM for Q2.}
12. Compute Q1 ← R−1

4 (Q2‖Q5‖Q4‖Q3, mπ(4)).
13. IF (a condition on Q1 is not satisfied) { Do the CVM for Q1.}
14. FOR (N = 0 to −3) DO {
15. Compute QN ← R−1

N+3(QN+1‖QN+4‖QN+3‖QN+2, mπ(N+3)).
16. IF (a condition on QN is not satisfied) { GOTO Step 1.}
17. } END FOR

18. FOR (N = 10 to 63) DO {
19. Compute QN+1 ← RN (QN−3‖QN‖QN−1‖QN−2, mπ(N)).
20. IF (a condition on QN+1 is not satisfied) { GOTO Step 1.}
21. } END FOR

22. Output M1 = (Q−3‖Q0‖Q−1‖Q−2) and M2 = M1 ⊕ ΔMSB.

Modification 1.

Target bit: Q4,31

Modifying bit: Q7,21

Extra Condition: Q6,21 = Q5,21

1. IF (Q4,31 �= Q5,31) {
2. Q7 ← Q7 ⊕ 0x00200000

3. Q4 ← R−1
7 (Q5‖Q8‖Q7‖Q6, mπ(7))

4. } END IF

Modification 2.

Target bit: Q9,31

Modifying bit: Q5,24

Extra Condition: Q7,24 = 1

1. IF (Q9,31 �= Q8,31) {
2. Q5 ← Q5 ⊕ 0x01000000

3. Q9 ← R8(Q5‖Q8‖Q7‖Q6, mπ(8))
4. } END IF

satisfy these conditions. Besides, later on, we set extra conditions on these vari-
ables. Hence, we choose values so that extra conditions are also satisfied.

Then, at Step 3 of Algorithm 1, we apply CVM if the condition Q4,31 = Q5,31

is not satisfied. Hence, we need to flip the value of Q4,31. The procedure to
modify Q4,31 is described in Modification 1.

In Modification 1, the goal is flipping the value of Q4,31. The equation to
compute Q4 is as follows.

Q4 = R−1
7 (Q5‖Q8‖Q7‖Q6, mπ(7))

= ((Q8 −Q7) ≫ 22)− Φ7(Q7, Q6, Q5)−mπ(7) − k7 (2)
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If the value of Q7,21 is modified, the MSB of ((Q8−Q7) ≫ 22) will change, and
this will flip the value of Q4,31. However, it is necessary to consider the possibility
where other changes caused by the modification of Q7,21 will also propagate to
Q4,31 and thus the impact of two changes cancel each other. In equation 2, Q7

also appears inside the function Φ7. If the modification of Q7,21 also changes the
21st bit of Φ7, it will propagate to Q4,31 with a probability of 2−10. To avoid this,
we set an extra condition as done in [4]. The property that the change of one
input is ignored in Φ is called “absorption property.” Refer to [31,4] for details of
the absorption property of MD5. By considering this property, we set an extra
condition Q6,21 = Q5,21.

There is another possibility to cancel the impact to Q4,31. If Q7,21 is modified,
the carry (borrow) may occur in the computation of Q8 − Q7, and thus, 22nd
or upper bits of Q8 −Q7 may change. If so, the changed bits move to the LSB
or several upper bits after the right rotation by 22 bits. The change in LSB
can propagate Q4,31 with a probability of 2−31. In fact, we can prevent this
propagation by setting more extra conditions. However, because the probability
that the modification succeeds is 1− 2−31 ≈ 1, we ignore this incident.

We show another example of the CVM in Modification 2, which makes the
condition on Q9,31 be satisfied. The overall concept is the same. A different
point is that when we flip the value of Q9,31, we need to take care that the
already set conditions are not broken. This will increase the number of extra
conditions needed. In fact, in Modification 2, the extra condition Q7,24 = 1 is set
to ignore the change of the modifying bit in the computation for Q4. However,
how we set extra conditions is exactly the same as Modification 1, and this is
straight-forward unless a contradiction occurs in the same bit position.

An example of complicated CVM. Due to the redundancy, we show the
details of similar modifications in Appendix A. Here, we explain the CVM for
Q1,31, which succeeds only probabilistically. The procedure is shown in Modifi-
cation 6. The impact of modifying Q5,6 is as follows.

Q1 = ((Q5 −Q4) ≫ 7)− Φ(Q4, Q3, Q2)−mπ(4) − k4 (3)

Q2 = ((Q6 −Q5) ≫ 12)− Φ(Q5, Q4, Q3)−mπ(5) − k5 (4)

Q3 = ((Q7 −Q6) ≫ 17)− Φ(Q6, Q5, Q4)−mπ(6) − k6 (5)

Q4 = ((Q8 −Q7) ≫ 22)− Φ(Q7, Q6, Q5)−mπ(7) − k7 (6)

Q9 = (Q5 + Φ(Q8, Q7, Q6) + mπ(8)) + k8) ≪ 7 + Q8 (7)

Q10 = (Q6 + Φ(Q9, Q8, Q7) + mπ(9)) + k9) ≪ 12 + Q9 (8)

In equations 3–8, the underlined variables are the ones influenced by modifying
Q5,6. For equations 6 and 5, the impact of the change is absorbed in Φ by setting
extra conditions Q7,6 = 1 and Q6,6 = 0, respectively. In equation 4, modification
of Q5,6 will cause the change in 26-th or upper bits of Q2 and may cause the
change in 6-th or upper bits through Φ. The latter is not a serious problem
because it is far from the MSB. However, the former will cancel the influence to
Q1,31 if the carry reaches the MSB. This probability is not negligible. On the
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Modification 6.

Target bit: Q1,31

Modifying bit: Q5,6

Extra Condition: Q6,6 = 0, Q7,6 = 1

1. IF (Q1,31 �= Q2,31) {
2. Q5 ← Q5 ⊕ 0x00000040

3. Q2 ← R−1
5 (Q3‖Q6‖Q5‖Q4, mπ(5))

4. Q1 ← R−1
4 (Q2‖Q5‖Q4‖Q3, mπ(4))

5. Q9 ← R8(Q5‖Q8‖Q7‖Q6, mπ(8))
6. Q10 ← R9(Q6‖Q9‖Q8‖Q7, mπ(9))
4. } END IF

other hand, modification of Q5,6 will also cause the change in 13-th or upper
bits of Q9 and this may cause changes in 25-th or upper bits of Q10 through Φ.
Hence, if the carry reaches the MSB, this will break the condition on Q10,31.

We experimentally confirmed the success probability of this modification by
running it 10,000 times. As a result, we confirmed that the success probability
is almost 87.5% = 7

8 .

4.4 Experiment

We implemented our collision attack on MMO-MD5. The used language is the
C-language and the used machine is Intel(R) Core2 CPU 6600 @ 2.40GHz. (2
cores are used for the experiment.) As an initial value IV, we chose 128-bit
MD5-IV appended by 384-bit 0 for the first experiment and all 0 for the second
experiment. The running time for obtaining a collision was 79589 and 2841
seconds for the first and second experiment, respectively. We show generated
collisions in Table 2.

Table 2. Examples of generated collisions (Values with differences are underlined.)

Given IV m0=0x67452301 m1=0xefcdab89 m2=0x98badcfe m3=0x10325476

m4 = m5 = · · · = m15 = 0x00000000

M1 0x48ea2fc4 0x8fcad55d 0xc31bb985 0xaafc131c

M2 0xc8ea2fc4 0x0fcad55d 0x431bb985 0x2afc131c

Hash value 0x633672cc 0xd7e09040 0x0a377ac5 0xed7365bc

Given IV m0 = m1 = · · · = m15 = 0x00000000

M1 0x51aa8f55 0x87cca7e8 0xc5fcf975 0xea8b93b4

M2 0xd1aa8f55 0x07cca7e8 0x45fcf975 0x6a8b93b4

Hash value 0x026e1ddc 0x8f6acd69 0xbd691aab 0x57af28f4
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4.5 Remarks

The position of Ini-steps can be chosen from any 4 consecutive steps. Because
the conditions close to the Ini-steps can be satisfied with a probability of 1, one
of the best strategies is choosing the steps where conditions are most condensed,
and leave a sparse part for the probabilistic search. This is not important for
the dBB differential path because these exists at most 1 condition in every
steps. However, this strategy will be useful for other differential paths in generic.
Another strategy is choosing a round where the Φ is easy to control. The last
strategy is choosing intermediate 4 steps, not the first or last 4 steps, so that
CVM can be applied in both forward and backward directions. Based on our
hand-analysis, applying CVM in only one direction is harder than applying it in
both directions.

4.6 Collisions in Miyaguchi-Preneel and Other PGV Modes

In this section, we consider attacks in other hashing modes. (We consider secure
12 PGV constructions depicted in Fig 2 in Appendix B.)

In the Miyaguchi-Preneel-mode, chaining variables Hi are used as the key
input and messages Mi are used as the plaintext input. Hash values is computed
as follows:

EHi(Mi)⊕Mi ⊕Hi,

where only the last feed-forward is different from the MMO-mode. In addition,
there are two other PGV constructions, where the message input is not used as
a key-input and used in the feed-forward;

Hi+1 ← Ehi(Mi ⊕ hi)⊕Mi ⊕ hi,

Hi+1 ← Ehi(Mi ⊕ hi)⊕Mi.

Because XORing/adding a fixed value to the plaintext and ciphertext does not
give any impact to our collision attack, similarly to the MMO-mode, collisions
in these three modes can also be generated.

Let us consider using md5 in the Miyaguchi-Preneel-mode. We assume the
same length adjustment with the MMO-case. Because the difference of the
MMO- and Miyaguchi-Preneel-mode is only the feed-forward of Hi, the exam-
ples in Table 2 replacing the hash value with the sum (or XOR) of the hash
value and m0‖m1‖m2‖m3 is a collision of Miyaguchi-Preneel-md5.

5 Impact of Collisions in MMO Mode to DM Mode

In this section, we show that the collision attack in the MMO-mode explained
in Section 4 gives some impacts on the security of the DM-mode using the same
internal block-cipher. This indicates that the original MD5, which adopts the
DM-mode, is also affected by our collision attack on MMO-MD5.



128 Y. Sasaki

=

EK

M

IV1 Hash

(a) (b)
(given)

EK

M

IV2 Hash

(given)

EK

M

K1

(given)

EK
K2 Tag

collide
EK

M (given)

EK
K2 Tag

collide
K1’

(given) (given)

Fig. 1. (a) Given-message free-start collision on Davies-Meyer mode. (b) Given-
message colliding keys for NMAC with Davies-Meyer mode.

5.1 Free-Start Given-Message Collisions

The following attack against the MD5 compression function CF with the DM
mode is possible:

For a given message M , find a pair of initial values H1 and H2 such that
CF(H1, M) = CF(H2, M).

The attack is also depicted in the left side of Fig. 1. In this attack, for a given
message, we find a colliding pair by using the freedom of the initial value. As
far as we know, this attack is the first case which can break a collision property
of (compression function of) MD5 for a given message. This is because most
of previous attacks used the message modification techniques to efficiently find
colliding pairs, while we use CVM and do not modify a message.

The application of free-start given-message collisions is not well-understood.
Colliding keys for NMAC in the next section is a possible application.

5.2 Given-Message Colliding Keys for NMAC

In NMAC with the DM-mode, a tag is computed by replacing the initial value
H0 with two secret keys K1 and K2 as follows: EEM (K1)�K1(K2) � K2. The
computation of NMAC and the attack are illustrated in the right side of Fig. 1.
By using the collision attack on the MMO-mode, for any fixed message M ,
attackers can find a pair of K1 and K ′

1 that will collide in the NMAC tag.
Hence, for any given message, attackers can find colliding key pairs that result
in the same tag regardless of the value of K2. The attack is different from the
forgery attack, but should be avoided. Note that MD5 adopts the DM-mode
with md5, and thus, this attack is an application for the original NMAC-MD5.

6 Conclusions and Future Work

In this paper, firstly, we presented a collision attack on MMO-MD5. We used
the differential path proposed by den Boer and Bosselaers and applied chaining
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variable modification CVM to reduce the attack complexity. As a result, the
complexity was reduced to 239 MD5 computations, and we found real collisions
in practice by implementing the attack on a standard PC. Secondly, we showed
that our collision attack on the MMO mode would give some impacts on the DM
mode such as the free-start given-message collisions for MD5 and given-message
colliding keys for NMAC-MD5.

A possible future direction is finding this type of collisions in other hash
functions. For example, in MD4, Yu et al. showed a differential path which can
be satisfied with a probability of 2−62 for a randomly given h1, h2, m1, m2 [43].
Because this attack requires a difference of the message, the attack will be free-
start given-related -message collisions. The attack complexity can be reduced by
CVM. There are 62 conditions in total [43, Table 4]. Assume that attackers can
satisfy conditions on 8 consecutive chaining variables by using CVM. Because
the most condition-condensed part contains 22 conditions, 22 conditions can be
satisfied and the complexity becomes roughly 240, which can be generated in
practice.
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A Details of Chaining Variable Modifications

Modification 3.

Target bit: Q3,31

Modifying bit: Q6,16

Extra Condition: Q7,16 = 0, Q8,16 = 1

1. IF (Q3,31 �= Q4,31) {
2. Q6 ← Q6 ⊕ 0x00010000

3. Q3 ← R−1
6 (Q4‖Q7‖Q6|Q5, mπ(6))

4. } END IF

Modification 4.

Target bit: Q10,31

Modifying bit: Q6,19

Extra Condition: Q8,19 = 1, Q7,19 = 0

1. IF (Q10,31 �= Q9,31) {
2. Q6 ← Q6 ⊕ 0x00080000

3. Q10 ← R9(Q6‖Q9‖Q8‖Q7, mπ(9))
4. Q3 ← R−1

6 (Q4‖Q7‖Q6|Q5, mπ(6))
5. } END IF

Modification 5.
Target bit: Q2,31

Initialization: Q5,11 = 0, Q5,12 = 1
Modifying bit: Q5,11 (Q5,12 may also change.)
Extra Condition: Q6,11 = 0, Q6,12 = 0, Q7,11 = 1, Q7,12 = 1, Q8,18 = Q7,18

1. IF (Q2,31 = Q3,31) {
2. IF (Q9,18 = 1) {
3. Q5 ← Q5 − 0x00000800
4. }ELSE IF (Q9,18 = 0) {
5. Q5 ← Q5 + 0x00000800
6. } END IF
7. Q2 ← R−1

5 (Q3‖Q6‖Q5‖Q4, mπ(5))
8. Q9 ← R8(Q5‖Q8‖Q7‖Q6, mπ(8))
9. Q10 ← R9(Q6‖Q9‖Q8‖Q7, mπ(9))

10. } END IF

Modification 5 is complicated. To flip the value of Q2,31, we modify Q5,11. If we
modify Q5,11, the impact can propagate to Q9,19 with a probability of 2−1 by
Eq. (9). Then in Eq. (10), this impact always propagates to Q10,31 because Q8,19

and Q7,19 are set to different values by extra conditions for Modification 4.

Q9 = (Q5 + Φ(Q8, Q7, Q6) + mπ(8)) + k8) ≪ 7 + Q8 (9)

Q10 = (Q6 + Φ(Q9, Q8, Q7) + mπ(9)) + k9) ≪ 12 + Q9 (10)

Hence, we must guarantee that modifying Q5,11 never makes carry on Q9,18.
Therefore, we do not apply XOR on Q5,11, but apply addition or subtraction by
looking the value of Q9,18. If we set Q5,11 = 0 and Q5,12 = 1 in advance, we can
guarantee that at most 2 bits of Q5 are influenced either addition or subtraction
on Q5,11. Finally, we set extra conditions on Q6 and Q7 for the case where both
Q5,11 and Q5,12 change.
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B A List of Twelve Secure PGV Constructions
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Abstract. The FSB (fast syndrome-based) hash function was submit-
ted to the SHA-3 competition by Augot, Finiasz, Gaborit, Manuel, and
Sendrier in 2008, after preliminary designs proposed in 2003, 2005, and
2007. Many FSB parameter choices were broken by Coron and Joux in
2004, Saarinen in 2007, and Fouque and Leurent in 2008, but the basic
FSB idea appears to be secure, and the FSB submission remains unbro-
ken. On the other hand, the FSB submission is also quite slow, and was
not selected for the second round of the competition.

This paper introduces RFSB, an enhancement to FSB. In particular,
this paper introduces the RFSB-509 compression function, RFSB with
a particular set of parameters. RFSB-509, like the FSB-256 compression
function, is designed to be used inside a 256-bit collision-resistant hash
function: all known attack strategies cost more than 2128 to find collisions
in RFSB-509. However, RFSB-509 is an order of magnitude faster than
FSB-256. On a single core of a Core 2 Quad CPU, RFSB-509 runs at
13.62 cycles/byte: faster than SHA-256, faster than 6 of the 14 second-
round SHA-3 candidates, and faster than 2 of the 5 SHA-3 finalists.

Keywords: compression functions, collision resistance, linearization,
generalized birthday attacks, information-set decoding, tight reduction
to L1 cache.

1 Introduction

Finding collisions in a very simple compression function of the form
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turns out to be surprisingly difficult. As an illustration of this difficulty we
challenge the reader to break the following parameters:

– w, the weight of the sum, is 112. (Sum here means exclusive-or; we do not
bother saying “modulo 2” everywhere.)

– The input chunks m1, m2, . . . , m112 range over {0, 1, . . . , 255}. The compres-
sion function therefore has 896 bits of input.

– Each of the 28672 constants c1[0], . . . , c1[255], . . . , c112[0], . . . , c112[255] is an
independent uniform random 509-bit vector. The compression function there-
fore has 509 bits of output.

At first one might think that linear algebra instantaneously finds preimages in
this function, with collisions as a trivial side effect. Select 509 of these 28672
constants; there is a good chance that those 509 are linearly independent, guar-
anteeing that linear algebra modulo 2 will reveal a subset adding up to the
target. The reason that this attack does not work is that the resulting subset is
extraordinarily unlikely to have the form c1[m1], c2[m2], . . . , c112[m112]: in par-
ticular, the subset will normally have size close to 509/2, much larger than 112.
In other words, linear algebra easily finds random codewords in the linear code
defined by the matrix of constants, but it does not find low-weight codewords,
a classic problem in coding theory.

One can also try to find collisions directly, without a detour through preim-
ages. Select, for example, the 510 constants ci[j] with j ∈ {0, 1, 2, 3} for 1 ≤
i ≤ 50 and ci[j] with j ∈ {0, 1, 2, 3, 4} for 51 ≤ i ≤ 112. Use linear algebra
to find a nonempty subset adding up to 0, and try to split the subset into 224
constants c1[m1], c2[m2], . . . , c112[m112] and c1[m′

1], c2[m′
2], . . . , c112[m′

112]. Low
weight is no longer an obstacle: the subset has about a 2−10 chance of having
size exactly 224. The reason that this attack does not work is that the subset has
chance only about (6/16)50(10/32)62 ≈ 2−175 of containing exactly two c1[· · · ],
exactly two c2[· · · ], etc.

There is a long history of proposals of compression functions of this type
(see Section 2) and also a long history of attacks (see Section 4). Many of
the proposals are motivated by speed: the additions are very fast; the struc-
ture c1[m1] ⊕ c2[m2] ⊕ · · · ⊕ cw[mw] also has obvious virtues of incremental-
ity and parallelizability. However, the large matrix of random constants makes
small hardware implementations impossible, and software implementations end
up spending far longer waiting for memory access than actually performing use-
ful computations. This problem was already highlighted five years ago by Augot,
Finiasz, and Sendrier in [2, Section 6].

Obtaining very high speed requires reducing memory-access costs, which in
turn requires compressing the matrix. This is impossible for a uniform random
matrix, but security does not seem to require a uniform random matrix. Finiasz,
Gaborit, and Sendrier in [25] proposed using a quasi-cyclic matrix: each block
of the matrix is a block of rotations of a single vector. In [25, Section 4.2] they
suggested choosing the vector length r so that the polynomial (xr − 1)/(x −
1) is irreducible in F2[x]. They argued, under this assumption on the vector
length, that finding a low-weight codeword for a random quasi-cyclic matrix is
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a well-known hard problem in coding theory, as hard as the generic low-weight-
codeword problem.

Most of the specific parameters proposed in [25] were promptly broken in
two different ways, showing two mistakes in the parameter selection. The first
mistake, exploited by Saarinen in [40], is that [25] chose w too large compared to
the vector length r; security against linearization requires w to be considerably
smaller than r/2. The second mistake, exploited by Fouque and Leurent in [26], is
that [25, Section 6] ignored [25, Section 4.2] and chose powers of 2 for r, violating
the irreducibility of (xr− 1)/(x− 1) and allowing the attacker to concentrate on
small factors of (xr − 1)/(x− 1).

Both of these mistakes were fixed in FSB [3], a first-round SHA-3 submis-
sion by Augot, Finiasz, Gaborit, Manuel, and Sendrier. FSB resists the previous
attack strategies and remains unbroken today. Bernstein, Lange, Niederhagen,
Peters, and Schwabe in [9] needed days on an 8-computer cluster (using 64GB of
RAM and 5.5TB of disk) to find collisions in the scaled-down FSB-48 compres-
sion function by a streamlined generalized birthday attack; for comparison, an
unoptimized attack on the FSB-48 hash function finds collisions in about a
minute on just one core on one of these computers with negligible memory usage.
The compression function has vector length r = 197 (subsequently truncated to
192 bits, but the rotations are of 197-bit vectors), weight w = 24, and 14 bits in
each mi. Scaling the same attack to the 1024-bit FSB-256 compression function
would cost far more than 2128, and other attacks also do not seem to pose a
threat.

However, FSB is quite slow, and was not selected for the second round of
the SHA-3 competition. The best speed reported in eBASH [8] for FSB-256 on
an Intel Core 2 Quad Q9550 (10677) (berlekamp) is 95.53 cycles/byte (using
an assembly-language implementation by Schwabe). SHA-256 takes just 15.26
cycles/byte on the same computer.

Contents of this paper. We introduce the RFSB (“really fast syndrome-
based”) compression function, an improved version of FSB. In particular, we
introduce RFSB-509, a compression function that reaches higher speeds than
SHA-256 on a Core 2 Quad CPU, while maintaining higher collision security
than SHA-256 against every known attack. See Section 2 for the definitions of
RFSB and RFSB-509.

The FSB-to-RFSB improvements come from two sources. First, the design
of RFSB pays much closer attention to the efficiency of the computation of
c1[m1] ⊕ c2[m2] ⊕ · · · ⊕ cw[mw]. The most important result of this analysis is
that RFSB permutes the vectors in the FSB matrix. This permutation has no
effect on the best attacks known, and might also seem irrelevant to speed, but we
show that it eliminates a critical inefficiency in FSB. See Section 3 for a detailed
explanation of our algorithm for computing RFSB.

Second, the design of RFSB pays much closer attention to the cost of attacks.
This allows the RFSB parameters to be tuned much more tightly than the FSB
parameters were, while still keeping all known attacks safely above our 2128
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security target. Our attack survey in Section 4 corrects several algorithm-analysis
errors in the literature, and incorporates some new improvements that we found.

Like FSB and earlier designs of this type, RFSB offers incremental hashing
and parallelizable hashing. Unlike FSB, RFSB allows fast on-demand matrix
generation, making it implementable in very small hardware.

Building a hash function from a compression function. We emphasize
that our goal in this paper is the traditional goal of building a collision-resistant
compression function F for fixed-length messages. RFSB, specifically RFSB-
509, is our proposal for F . Merkle–Damg̊ard iteration then produces a collision-
resistant compression function F for longer messages; see, e.g., [21, Theorem
3.1]. Our discussion of speed focuses on the speed of this iterated function F for
long messages.

Many, perhaps most, papers on hash-function design use the iteration mode
as an argument for weakening their collision-resistance goals. If the compression
function F has input (v, m), where v is the previous chaining value (or initial-
ization vector) and m is an attacker-controlled block, then these papers say that
F (v, m) = F (v′, m′) with (v, m) �= (v′, m′) is merely a “pseudo-collision” and
that it qualifies as a “collision” only if v = v′. However, many papers on hash-
function cryptanalysis say that finding a pseudo-collision is a “certificational
attack” even if v �= v′. To avoid this debate we have designed RFSB to stop all
pseudo-collisions.

One interesting consequence of incrementality is that RFSB can precompute
the v-dependent part of its output before m is available. The preliminary FSB
designs in [1], [2], and [25] had the same feature, but the FSB SHA-3 submission
does not, because it permutes the bits of (v, m). According to [24], this permu-
tation was added in reaction to [26, Section 3], in which Fouque and Leurent
object to the following “IV weakness” in the preliminary FSB designs: a collision
of the form F (m) = F (m′), where m and m′ are distinct single-block messages,
implies F (p, m) = F (p, m′) for every prefix p. We do not see why this is any more
troubling than the following “weakness” in the compression functions of SHA-
1, SHA-2, and every SHA-3 candidate: a collision of the form F (m) = F (m′),
where m and m′ are distinct identical-length block-aligned messages, implies
F (m, q) = F (m′, q) for every suffix q. Our goal is to prevent these collisions
from occurring in the first place.

To build a full-fledged cryptographic hash function, suitable for use in mes-
sage authentication, commitment protocols, etc., we can add any reasonably
strong output filter to RFSB-509. One reasonable choice of output filter is SHA-
256; of course, the 256-bit output length of SHA-256 then reduces collision re-
sistance to 2128. We emphasize that an output filter adds only a small constant
overhead to the cost of hashing; the speed of hashing a long message is the speed
of our compression function.

To allow public benchmarking of the RFSB-509 compression function, we
implemented a hash function that uses RFSB-509 with Merkle–Damg̊ard itera-
tion, an all-zero initialization vector, and SHA-256 as output filter. The original
message is padded to a multiple of 48 bytes as follows: first zero-pad to 40 bytes
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plus a multiple of 48 bytes; then append 8 bytes contaning, in little-endian form,
the number of bytes of the message before padding. We have placed the software
into the public domain to maximize reusability, and are submitting it to eBASH
for benchmarking.

2 Design of RFSB

This section defines the RFSB family of compression functions. In particular, this
section defines the RFSB-509 compression function. This section then reviews
the literature, showing in particular how RFSB differs from FSB and explaining
why we introduced these differences.

Specification of RFSB. There are four RFSB parameters: an odd prime num-
ber r, a positive integer b, a positive integer w, and a 2b × r-bit compressed
matrix. The prime r is chosen so that 2 has order r − 1 in the unit group F∗

r ;
i.e., so that the cyclotomic polynomial (xr − 1)/(x− 1) in F2[x] is irreducible.

The RFSB output is an r-bit string, represented as a sequence of 	r/8
 bytes
in little-endian form. The string (s0, s1, . . . , sr−1) represents the polynomial s0+
s1x+ · · ·+sr−1x

r−1 in the ring F2[x]/(xr−1). For example, for r = 13, the byte
string (12, 16) represents the bit string (0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1), which in
turn represents the polynomial x2 + x3 + x12 in F2[x]/(x13 − 1).

The RFSB input is a bw-bit string, represented as a sequence of 	bw/8
 bytes
in little-endian form. This string represents a sequence (m1, m2, . . . , mw), where
each mi is an element of {0, 1, . . . , 2b − 1}.

The compressed RFSB matrix is a sequence of r-bit strings c[0], c[1], . . . , c[2b−
1]. We define ci[j] = c[j]x128(w−i) in the ring F2[x]/(xr−1); in other words, ci[j]
is a 128(w− i)-bit rotation of c[j]. This matrix specifies the relationship between
the RFSB input and the RFSB output: RFSB is the function

(m1, m2, . . . , mw) �→ c1[m1]⊕ c2[m2]⊕ · · · ⊕ cw[mw],

i.e., the function that maps an input (m1, m2, . . . , mw−1, mw) to the output
x128(w−1)c[m1]⊕ x128(w−2)c[m2]⊕ · · · ⊕ x128c[mw−1]⊕ c[mw] in F2[x]/(xr − 1).

Sometimes we refer to the uncompressed RFSB matrix. This is a 2bw × r-bit
matrix containing the strings ci[j], for i ∈ {1, 2, . . . , w} and j ∈ {0, 1, . . . , 2b − 1}.
We do not mean to suggest that implementations are required to compute this
matrix.

Specification of RFSB-509. Our RFSB-509 proposal has r = 509, b = 8, and
w = 112. In other words, RFSB-509 maps (m1, m2, . . . , m112), where each mi is
an 8-bit string, to

x128(112−1)c[m1]⊕ x128(112−2)c[m2]⊕ · · · ⊕ x128c[m111]⊕ c[m112]

in F2[x]/(x509 − 1). We chose the parameters (509, 8, 112) to maximize the soft-
ware speed of RFSB (see Section 3) while keeping the cost of all known attacks
above 2128 (see Section 4).
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The compressed RFSB-509 matrix is defined as a concatenation of AES out-
puts. Specifically, each 509-bit c[j] is obtained by encrypting the four 16-byte
strings (0, j, 0, . . . , 0, 0), (1, j, 0, . . . , 0, 0), (2, j, 0, . . . , 0, 0), (3, j, 0, . . . , 0, 0) with
AES, concatenating the 128-bit outputs into a 512-bit string, and reducing mod-
ulo x509 − 1 (i.e., folding the last three bits onto the first three bits). The AES
key is a 128-bit all-0 key.

We comment that implementors can trade space for time by computing each
c[j] when it is used, rather than precomputing and storing the AES outputs.
The hardware area required for RFSB-509 (and an AES-based output filter)
is then not much larger than the hardware area required for AES. The regular
input structure also allows “counter-mode caching”, a sharing of work in the first
two rounds of AES; see [11]. We also comment that varying the AES key is a
natural way to “salt” RFSB-509, converting RFSB-509 into a keyed compression
function.
History and credits.. In a 1970 technical report [46], Zobrist introduced the
compression function (m1, m2, . . . , mw) �→ c1[m1]⊕ c2[m2]⊕ · · · ⊕ cw[mw], with
random choices of matrix entries ci[j], as a non-cryptographic hash function.
Zobrist’s parameter choices were much too small to be of any cryptographic
interest.

The same compression function was reintroduced and discarded in a Euro-
crypt 1997 paper [6] by Bellare and Micciancio. The only difference between
Zobrist’s hash and “XHASH” in [6, Section 1] is that ci[mi] is replaced by
H(i, mi), allowing much longer input chunks mi while raising security questions
and efficiency questions for the underlying function H . Bellare and Micciancio
described “XHASH” as insecure, independently of H , because they were able to
find collisions by linearization for large w. They instead proposed various slower
alternatives to ⊕, such as modular multiplication. They did not consider small
values of w.

A very similar compression function with limited w had been introduced a
decade earlier by Damg̊ard at Crypto 1989 [21, Section 4.3]. Damg̊ard used
addition rather than ⊕, took w = 256 for 128-bit output (or more generally
w ≈ 2r for r-bit output), and took mi ∈ {0, 1}. Camion and Patarin introduced
generalized birthday attacks (without giving them that name) at Eurocrypt 1991
[16] and showed that Damg̊ard’s function is breakable in subexponential time.

As far as we know, the first proposal with limited w and several bits in each mi

was the preliminary version of FSB by Augot, Finiasz, and Sendrier appearing in
[1] and [2]. The larger range of mi appears to allow a security level exponential
in r with a polynomial-size matrix, specifically a matrix containing Θ(r2) bits.
However, the implicit constant in Θ(r2) is quite large, and the time to access
the matrix is quite troublesome.

FSB with a quasi-cyclic matrix was introduced by Finiasz, Gaborit, and
Sendrier in [25]. FSB with a truncated quasi-cyclic matrix was introduced by
Augot, Finiasz, Gaborit, Manuel, and Sendrier in [3] and submitted to the SHA-
3 competition. These proposals appear to allow a security level exponential in r
with a compressed matrix containing Θ(r) bits, although the implicit constant
in Θ(r) is still quite large.
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Comparison between FSB and RFSB. The FSB-256 proposal from [3] fol-
lows Zobrist’s formula (m1, m2, . . . , mw) �→ c1[m1]⊕ c2[m2]⊕ · · · ⊕ cw[mw] with
r = 1061 bits of output (truncated to 1024 bits), weight w = 128 in the sum, and
b = 14 bits in each input chunk mi. The uncompressed FSB-256 matrix entries
ci[0], ci[1], . . . , ci[16383] are generated modulo x1061 − 1 as

ci[0], ci[0]x, ci[0]x2, . . . , ci[0]x1023,

ci[1024], ci[1024]x, ci[1024]x2, . . . , ci[1024]x1023,

...

ci[15360], ci[15360]x, ci[15360]x2, . . . , ci[15360]x1023,

where ci[0], ci[1024], . . . , ci[15360] are generated from digits of π.
FSB-256 handles 14− 1024/128 = 6 bits of new input for each 1024-bit ad-

dition, while RFSB-509 handles 8 − 512/112 ≈ 3.43 bits of new input for each
512-bit addition. We are comfortable with a smaller r = 509, and a larger ratio
w/r, because of our tighter security analysis; see Section 4. These changes allow
the compressed RFSB-509 matrix to fit into just 16384 bytes, comfortably inside
L1 cache on typical CPUs.

FSB-256 uses almost r rotations of each vector, while RFSB-509 uses only
w ≈ r/4.5 rotations of each vector. The number of rotations is important be-
cause it is the compression factor for the matrix. We could have allowed further
compression as an option in RFSB-509 by modifying the definition of the ma-
trix to use 2w or 3w or 4w rotations of each vector; but this option would not
help fast software implementations such as ours, and it would slightly complicate
implementations that generate matrix entries on the fly.

The most important difference between FSB and RFSB is the order of matrix
entries: FSB defines ci[j] as ci[0]xj (at least for a wide range of j), while RFSB
defines ci[j] as c[j]xi (or rather c[j]x128(w−i)), exchanging the roles of i and j.
This change is important because j is unpredictable, a chunk of input, while i is a
constant, the position of the chunk. The rotation distances in FSB are therefore
input-dependent, making them quite expensive. The rotation distances in RFSB
are constant, allowing several optimizations that are not available to FSB.

3 Speed of RFSB-509

We implemented RFSB-509 (with Merkle–Damg̊ard iteration) in assembly lan-
guage, targeting the popular Intel Core 2 Quad line of CPUs. We measured
RFSB-509 running at 13.62 cycles/byte on an Intel Core 2 Quad Q9550 (10677)
for compressing a 4096-byte message to 64 bytes.

For comparison, eBASH [8] reports SHA-256 running at 15.26 cycles/byte on
an Intel Core 2 Quad Q9550 (10677) (berlekamp), using the assembly-language
implementation of SHA-256 from Wei Dai’s Crypto++ library, and reports that
the SPHlib and OpenSSL implementations of SHA-256 are slower.
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The algorithm that we use to compute RFSB is explained in this section.
This algorithm relies critically on the predictable rotation distances in RFSB;
we would not be able to achieve similar speeds for FSB.

This section also describes two additional algorithmic improvements that
provide even higher speed for some applications. One improvement, incremental
hashing, is well known, while the other improvement, fast batch verification, is
less well known. We have not implemented these improvements; we emphasize
that RFSB-509 is already quite fast without these improvements. This section
concludes by discussing ways to compute RFSB without variable-index table
lookups.

How to compute RFSB. Horner’s rule computes

x128(112−1)c[m1]⊕ x128(112−2)c[m2]⊕ · · · ⊕ x128c[m111]⊕ c[m112]

by starting with c[m1], multiplying by x128 in F2[x]/(x509 − 1), adding c[m2],
multiplying by x128, etc.

We instead use a 4-way parallel version of Horner’s rule. The first step com-
putes the polynomial x384c[m1] ⊕ x256c[m2] ⊕ x128c[m3] ⊕ c[m4]. The second
step multiplies by x512, reduces modulo x509 − 1, and adds the polynomial
x384c[m5]⊕ x256c[m6]⊕ x128c[m7]⊕ c[m8]. Overall there are 28 steps, each step
processing 4 bytes of input.

Each 509-bit vector is represented on the Core 2 Quad as a sequence of 4
128-bit XMM registers in radix x128: for example, the matrix entry c[mi] is
loaded as a sequence of 4 128-bit values (c[mi]0, c[mi]1, c[mi]2, c[mi]3), represent-
ing c[mi]0 + x128c[mi]1 + x256c[mi]2 + x384c[mi]3. We use polynomials as large
as 893 bits, represented in 7 128-bit registers, before reducing modulo x509 − 1.
This representation allows the arithmetic stated above to be decomposed into a
small number of 128-bit instructions, as explained in the following paragraphs.

The first step of the compression does the following: Load the matrix col-
umn c[m4] into 4 128-bit XMM register variables r0, . . . , r3; load and xor the
matrix column c[m3] into registers r1, . . . , r4; load and xor the matrix column
c[m2] into registers r2, . . . , r5; and load and xor the matrix column c[m1] into
registers r3, . . . , r6. This takes 16 instructions (7 loads and 9 combined xor-load
instructions) and results in the following values in registers r0, . . . , r6:

r0 = c[m4]0
r1 = c[m4]1 ⊕ c[m3]0
r2 = c[m4]2 ⊕ c[m3]1 ⊕ c[m2]0
r3 = c[m4]3 ⊕ c[m3]2 ⊕ c[m2]1 ⊕ c[m1]0
r4 = c[m3]3 ⊕ c[m2]2 ⊕ c[m1]1
r5 = c[m2]3 ⊕ c[m1]2
r6 = c[m1]3

We then apply a reduction step. We xor the 125 bits of r6 into the 125 highest
bits of r2; xor the 3 highest bits of r5 into the 3 lowest bits of r2 and the 125



142 D.J. Bernstein et al.

lowest bits of r5 into the 125 highest bits of r1; and finally xor the 3 highest bits
of r4 into the 3 lowest bits of r1 and the 125 lowest bits of r4 into the 125 highest
bits of r0. We then rename ri to ri+4 for i = 0, . . . , 3. This does not actually
consume any instructions; it just means using different registers for the variables
r0, . . . , r3 in the next step.

The second step loads column c[m8] into r0, . . . , r3; loads and xors c[m7] into
r1, . . . , r4; loads and xors c[m6] into r2, . . . , r5; and loads and xors c[m5] into
r3, . . . , r6. Then it reduces r4, . . . , r7 and again renames ri to ri+4 for i = 1, . . . , 3.
Each of the remaining 26 steps proceeds in the same way as the second step.

The reductions described above modulo x509− 1 are lazy: they produce poly-
nomials of degree below 512 but not necessarily the unique remainder of degree
below 509. At the end of the computation we obtain the unique RFSB output
by reducing the highest 3 bits of the highest register, i.e., xoring them into the
lowest 3 bits of the lowest register and then setting them to 0.

All but the first step involve 4 128-bit load instructions and 12 128-bit load-
and-xor instructions. The reduction of each of the 4 high registers takes an-
other 8 instructions, specifically 1 128-bit register move instruction, 2 packed-
64-bit-quadword-shift instructions (psrlq and psllq), 1 128-bit shift instruction
(psrldq), 1 128-bit doubleword-shuffle instruction (pshufd), and 3 128-bit xor
instructions.

Aside from loading and xoring matrix columns and performing reduction
steps we need to load the input bytes and multiply their values by 64 to make
them usable offsets for loads from the matrix. The AMD64 architecture allows
offsets to be multiplied by a constant as part of the load operation, but this
constant must not be larger than 8, which is not enough for 16-byte load oper-
ations. We load the input in chunks of 8 bytes into a 64-bit integer register and
then extract 8 matrix offsets from these eight bytes using 8 move, 8 shift, and 8
mask instructions.

In total each step (except the first) consists of 60.5 instructions: 16 load and
load-xor instructions for the matrix columns, 1 load instruction every second
step to retrieve 8 bytes of input, 12 arithmetic instructions to construct matrix
offsets from 4 bytes of input, and 32 arithmetic instructions for the reduction.

There are two obvious bottlenecks in this computation. First, each step in-
volves 16.5 load instructions, so each step uses at least 16.5 cycles on all Intel
Core 2 and Core i7 processors. Second, each step involves 56 arithmetic instruc-
tions, so each step uses at least 18.66 cycles. The second bottleneck implies a
lower bound of 522 cycles for 28 steps. With Merkle–Damg̊ard iteration each
call to the compression function processes 48 bytes of input (together with the
previous output), so these 522 cycles yield a lower bound of 10.89 cycles per
byte.

There is enough parallelism in the computation to overcome most latency
problems and come close to the lower bound, if instructions are scheduled care-
fully. Our software actually uses 11.99 cycles per byte on a Xeon X5650 (equiv-
alent to a Core i7), and 13.62 cycles per byte on a Core 2 Quad Q9550.
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Extra speed: incremental hashing. Zobrist in [46, page 6] emphasized the
incremental nature of his hash, i.e., the ability to quickly update the hash output
for a small change to the input: “moves will typically involve two XOR oper-
ations.” For example, changing m2 to m′

2 simply adds c2[m2] ⊕ c2[m′
2] to the

output. Bellare and Micciancio in [6] advertised the same feature, with various
generalizations of ⊕ and without credit to Zobrist; their paper title was “A new
paradigm for collision-free hashing: incrementality at reduced cost.”

Chaining an incremental compression function such as RFSB produces a
somewhat incremental hash function for long messages. (We say “somewhat”
to emphasize, as in [6, Section 1.1], that this requires storage of all intermedi-
ate compression-function outputs, not merely the final output.) The block that
changes can be recomputed incrementally at very high speed. Each subsequent
block must be recomputed, but RFSB allows some of this computation to be
skipped, since the only change to the input is in the chaining value. Note that
Damg̊ard’s tree hash [21, Theorem 3.2] has only a logarithmic number of subse-
quent blocks for long messages.

Extra speed: fast batch verification. One can compute the sum of many
RFSB outputs at higher speed than computing each output separately. The
idea is very simple: the number of copies of ci[j] in the sum is the number
of occurrences of j as mi in the inputs; one can first count this number of
occurrences, and then add ci[j] once if the number is odd. There are 2bw separate
counters, and computing all of them requires just one fast pass through all of
the inputs. Each b bits require one counter update, which is faster than an r-
bit xor for large r. All other steps become negligible as the number of inputs
increases, but we nevertheless point out a speedup in those steps for large r: one
can combine the ci[j] additions across i into a convolution, which in turn can be
performed in subquadratic time by fast-multiplication techniques.

One can, at almost twice that speed, perform the following simple statistical
check of a batch of alleged RFSB outputs: select 50% of the inputs, compute
the sum of the RFSB outputs, and see whether the sum matches the sum of
alleged outputs. This check cannot be fooled with probability above 50%. This
is an example of what Bellare, Garay, and Rabin in [5] call the “atomic random
subset test.”

To achieve a much higher security level one can compute many indepen-
dent sums. The cost of this computation grows sublinearly with the number
of sums, and therefore sublinearly with the security level, because the sums have
large overlaps that can be shared; see generally [5]. For comparison, the cost of
separately computing each RFSB output grows linearly with the security level.

Extra security: avoiding variable-index table lookups. Our RFSB soft-
ware performs a variable-index table lookup c[mi] for each input chunk mi. This
could be a problem for applications that hash secret data, such as HMAC: table
lookups can leak index information through cache-timing attacks, hyperthread-
ing attacks, etc., the same way that conditional branches can leak condition
information. See generally [43].
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One way to hide indices is to look up all table entries, using arithmetic
operations to combine the results into each desired c[mi]. RFSB has many table
lookups to perform in parallel, and for large tables one can reduce the amount
of arithmetic by batching these lookups into a sorting computation, as described
in the following two paragraphs.

The inputs to this sorting computation are w vectors (mi, 1, i) together with
2b vectors (j, 0, c[j]). Sorting brings each j next to all mi’s that are equal to
j: first (0, 0, c[0]) is followed by all (mi, 1, i) with mi = 0, then (1, 0, c[0]) is
followed by all (mi, 1, i) with mi = 1, etc. A linear-time pass from left to right
then replaces each (mi, 1, i) with (c[mi], 1, i). A second sorting computation then
puts (c[mi], 1, i) back into order of i.

It is well known that essentially-linear-time sorting does not require vari-
able array indexing, and does not require conditional branches. For example,
the Batcher sorting network sorts n items using approximately (1/2)n(lgn)2

compare-exchange steps, and one can do even better for large n. See [30, Section
5.3.4] for a survey of the extensive literature on sorting networks.

Another way to avoid variable-index table lookups is to compute c[mi] di-
rectly from mi. The Käsper–Schwabe bitsliced implementation of AES [29] takes
only about 7 cycles per byte, and new Intel CPUs support AES instructions tak-
ing only about 1.4 cycles per byte in parallelizable modes, i.e., about 90 cycles to
compute c[mi]. This is an order of magnitude slower than our software.

We have two suggestions for improving speed in this situation. One suggestion
is to replace AES with something much simpler and faster. The full security of
AES is certainly not required for RFSB: all that we need is a function generating
a few elements of F2[x]/(xr−1) without any obvious linear structure. The design
of such functions is outside the scope of this paper.

The other suggestion, specific to HMAC, is to eliminate the initial keying in
HMAC. Normally the HMAC input is public (such as a packet sent through the
network), and if no secret key is inserted then RFSB with fast table lookups can
be applied to this public input. The second stage of HMAC needs a key but is
applied only to a short message; this stage can simply be SHA-256. Eliminating
the initial keying allows MAC forgery via offline collision attacks, but we have
designed RFSB precisely to make those collision attacks fail.

4 Attacks against RFSB

This section reviews and analyzes three different strategies to find collisions in
FSB-type hash functions, including some new attack improvements. All of the
strategies cost more than 2128 to find collisions in RFSB-509. This section also
reviews reducibility, an attack tool that converts many FSB-type hash functions
into smaller hash functions that are easier to break, and shows that this tool is
inapplicable to RFSB.

We describe each attack for general RFSB parameters r, b, w. We illustrate
the scalability of the attacks by considering the special case b = 8, w ≈ r/4.
In this case RFSB compresses ≈ 2r bits to r bits, using r/4 additions of r-bit
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vectors, i.e., 2 additions of r-bit vectors per byte of input; the compressed RFSB
matrix fits into 32r bytes; and the cost of each attack is exponential in r.

We make some comments about preimage attacks as a stepping-stone to
collision attacks, but we do not systematically analyze preimage attacks. Several
modern hash-function designs, such as Keccak [12] and Quark [4], drop the
traditional goal of having a preimage exponent twice as large as the best collision
exponent; the question of whether RFSB reaches this goal is outside the scope
of this paper. We are satisfied knowing that first preimages require breaking an
output filter, and that second preimages are even more difficult to find than
collisions.

Cost of computation. In this paper, cost means price/performance ratio: the
size of the attack machine, multiplied by the time taken by the attack machine.
For example, a brute-force k-bit key search can be carried out in time 2kt by a
small attack machine, or in time 2kt/100 by an attack machine 100 times larger,
where t is the time to test a single key; these machines have the same cost.

In a classic paper thirty years ago, Brent and Kung proved that every n-bit
multiplication circuit costs at least n3/2. Here cost has a precise definition as the
circuit area, multiplied by the time taken by the circuit, scaled by a particular
constant reflecting the circuit speed, wire size, etc.; see [14, Theorem 3.1]. The
same bound applies to other computations such as sorting; what matters is that
the computations include n different shifts of one input, where the shift distance
depends on the other input. The model of computation in [14] is a very broad
class of two-dimensional circuits, including all of the most efficient computer
technologies available today.

We use the same definition of cost in this paper. There are some future
technologies, notably quantum computers, that cannot be efficiently simulated
in this model, but we explicitly disregard those technologies.

We caution the reader that a naive operation count, as used in many crypt-
analytic papers, is a poor predictor of cost when the allowed operations include
random access to an arbitrarily large array. For example, sorting n keys uses
fewer operations than performing n separate hash-function evaluations, even if
the hash function is quite fast; but the cost of sorting n keys becomes vastly
larger than the cost of n separate hash-function evaluations as n grows.

In the real world, sorting 250 keys is a major engineering challenge, while
250 hash-function evaluations are a rather easy computation. The current public
sorting record is merely 246.5 bytes, sorted by Yahoo’s Hadoop in 10380 sec-
onds on 3452 nodes with 13808 disks and 27616 cores. For comparison, readily
available software performs 247 separate evaluations of SHA-1 in 10380 seconds
on just 20 PCs, each equipped with two GTX 295 graphics cards. We see over-
whelming evidence that naive operation counts exaggerate the threat posed by
communication-intensive cryptanalytic algorithms, and that this exaggeration
grows with the size of the problem being solved. We see no evidence of similar
problems with the cost model in [14].

Linearization. The following preimage attack was introduced by Bellare and
Micciancio in [6, Appendix A]. First choose m1, m2, . . . , mw and compute the
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difference Δ = h ⊕ c1[m1] ⊕ c2[m2] ⊕ · · · ⊕ cw[mw], where h is the target hash.
Then, for each i, choose m′

i �= mi and compute the difference δi = ci[mi]⊕ci[m′
i].

Use linear algebra to find a subset of δ1, . . . , δw with sum Δ, i.e., a linear relation
ε1δ1 ⊕ · · · ⊕ εwδw = Δ, if a linear relation exists. Then c1[m1 ⊕ ε1(m′

1 ⊕m1)]⊕
. . .⊕cw[mw⊕εw(m′

w⊕mw)] = h as desired. If no linear relation exists, try again
with new choices of mi and m′

i.
The main obstacle to this attack is that if w < r then δ1, . . . , δw generate

a linear space of dimension at most w (and sometimes less), so under suitable
randomness assumptions the desired linear relation exists with probability at
most 2w/2r. The expected number of iterations is therefore at least 2r/2w; e.g.,
approximately 20.75r if w ≈ r/4.

Saarinen in [40, Section 5] suggested doubling the number of generators for
w ≤ r/2 by computing two differences for each i, say δi = ci[mi] ⊕ ci[m′

i] and
δ′i = ci[mi] ⊕ ci[m′′

i ]. There are two obstacles to this attack: first, if 2w < r
then a linear relation exists with probability at most 22w/2r; second, a relation
is useful with probability only (3/4)w, since a relation involving both δi and δ′i
is useless. The expected number of iterations is therefore at least 2r/3w; e.g.,
approximately 20.60r if w ≈ r/4.

More generally, for k ≥ 1 and w ≤ r/k, Saarinen suggested computing k
differences ci[mi]⊕ ci[m′

i], ci[mi]⊕ ci[m′′
i ], . . . for each i. Then there are kw gen-

erators, so a linear relation exists with probability at most 2kw/2r. A relation
is useful with probability ((k + 1)/2k)w, so the expected number of iterations is
slightly above 2r/(k + 1)w; e.g., approximately 20.42r if w ≈ r/4 and k = 4.

Saarinen in [40, Section 4] suggested a different way to double the number of
generators for collision attacks: compute δi = ci[mi] ⊕ ci[m′

i] and δ′i = ci[ni] ⊕
ci[n′

i], and use linear algebra to find a subset of δ1, δ
′
1, . . . , δw, δ′w with sum Δ =

c1[m1]⊕ c1[n1]⊕ c2[m2]⊕ c2[n2]⊕ · · · ⊕ cw[mw]⊕ cw[nw]. The expected number
of iterations here is at least 2r/4w; e.g., approximately 20.50r if w ≈ r/4.

More generally, for w ≤ r/(2k), one can take 2k generators for each i, with the
first k generators of the form ci[mi]⊕ ci[m′

i], ci[mi]⊕ ci[m′′
i ], . . . and the second

k generators of the form ci[ni] ⊕ ci[n′
i], ci[ni] ⊕ ci[n′′

i ], . . .. A subset of these
generators has sum Δ = c1[m1]⊕ c1[n1]⊕ c2[m2]⊕ c2[n2]⊕· · ·⊕ cw[mw]⊕ cw[nw]
with probability at most 22kw/2r. This subset is useful, revealing a collision,
with probability ((k + 1)2/4k)w, so the expected number of iterations is slightly
above 2r/(k + 1)2w; e.g., approximately 20.21r if w ≈ r/4 and k = 2.

A hybrid approach is to take 2k + 2 generators for v values of i and 2k
generators for w−v values of i, assuming that 2kw+2v ≤ r and 0 ≤ v ≤ w. The
expected number of iterations is then slightly above 2r/((k + 1)2w((k + 2)/(k +
1))2v). For k = 1 this approach appears in [40, Section 5.2].

For RFSB-509 the optimal attack parameters are k = 2 and v = 30, and the
expected number of iterations is slightly above 2509/(9112(16/9)30) > 2129. Since
our security target is 2128, we do not need to assess the cost of each iteration,
but we make one comment on this cost: namely, taking more than r generators
allows the cost of linear algebra to be amortized across several relations.



Really Fast Syndrome-Based Hashing 147

Note that [26, page 2] claims a simpler formula for the number of iterations
for linearization, namely (4/3)r−2w whenever w ≤ r/2. This claim is correct for
r/4 ≤ w ≤ r/2 (take k = 1 in the hybrid approach above), but understates the
number of iterations for w < r/4. The problem is that for r/4 ≤ w ≤ r/2 one
can reach r generators by taking at most 4 generators for each i, but for w < r/4
this is no longer true. For the same reason, we disagree with the comment in [40,
Section 5] that large values of k do not have “cryptanalytic advantages.”

In the opposite direction, [24, Section 3.3] states that linearization is appli-
cable only for w ≥ r/4. Our RFSB-509 example disproves this statement. As
a more extreme example, for the case w = r/8 used in [3], linearization finds
collisions in time approximately 20.41r. The time grows rapidly as w/r drops.

Generalized birthday attacks. The k-sum problem is to find x1 ∈ L1, . . . , xk ∈
Lk such that x1⊕x2⊕· · ·⊕xk = 0, given k lists L1, . . . , Lk of r-bit strings drawn
uniformly and independently at random.

If k = 2i−1 and each list has 2r/i elements then generalized birthday attacks
solve this problem using O(k · 2r/i) operations. In the next three paragraphs we
review Wagner’s single-modulus generalized birthday attack from [44], which is
slightly simpler and faster than the original multiple-modulus generalized birth-
day attack introduced by Camion and Patarin in [16].

Merge lists L1 and L2 to find all sums of elements u ⊕ v with u ∈ L1 and
v ∈ L2 that are 0 on their first r/i bits. Store these sums in a new list L1,2.
The expected number of elements in L1,2 is again 2r/i. In the same way build a
list L3,4 from lists L3 and L4 and so on and a list Lk−1,k from lists Lk−1 and
Lk. This first level of operations thus generates 2i−2 lists of expected length 2r/i

containing r-bit strings with their first r/i bits zero.
On the next level merge lists L1,2 and lists L3,4 to find all sums of elements

u ⊕ v with u ∈ L1,2 and v ∈ L3,4 that are 0 on their first 2r/i bits. Store
these sums in a new list L1,2,3,4. As r/i bits are already known to be zero, the
expected size of this list is again 2r/i. Similarly build lists L5,6,7,8 and so on to
list Lk−3,k−2,k−1,k.

Continue for i − 2 levels to build lists in the same way to obtain two lists
L1,...,k/2 and Lk/2+1,...,k, each containing an expected number of 2r/i strings
that are 0 on their first (i−2)r/i bits. Compute all sums u⊕v with u ∈ L1,...,k/2

and v ∈ Lk/2+1,...,k to see, on average, one element with all r bits zero.
Applying this attack to an FSB-type hash function, and taking k = w, runs

into an obstacle: there are only 2b entries in each of the w input lists. The
attack needs 2r/(1+�lg k�) entries. Usually b is much smaller than r/(1 + �lg k),
drastically reducing the success probability of the attack.

However, Coron and Joux in [20] used generalized birthday attacks to break
many instances of the preliminary version of FSB presented in [1]. The idea is to
take k smaller than w and to build the starting lists L1, . . . , Lk by considering
all possible xors of columns from one block. To build fewer but larger lists one
can also consider xors of columns from multiple blocks, two columns per block.
The solution of Wagner’s tree algorithm is then the xor of 2w columns, exactly
2 per block. For extensions see [2], [7], and [36].
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In the case of RFSB-509 the number of operations is minimized for k = 16.
There are

(
256
2

)
≈ 215 possible 2-column combinations c1[m1] ⊕ c1[m′

1], and
therefore 2105 possible 14-column combinations involving c1, c1, c2, c2, . . . , c7, c7.
Generate all of these combinations, and build a list containing the combinations
that have their first 4 bits equal to 0, leaving 505 bits uncontrolled; this list
has approximately 2101 elements. Build 16 lists from c1, c2, . . . , c112 by repeating
this procedure. Then apply the generalized birthday attack, zeroing 5 ·101 = 505
bits. Overall this takes 15 merging steps on lists of size 2101.

The cost of a single merging step is more than 2150 by [14, Theorem 3.1];
see the “Cost of computation” subsection above. Reducing the list size to 282

would bring the merging cost down to approximately 2128; but then 5 rounds
clear only 410 bits, leaving 99 bits uncontrolled. At most 105 − 82 = 23 bits
can be controlled through precomputation, so the algorithm must be repeated
276 times on average, bringing the cost above 2200. We have considered several
further variants of Wagner’s attack, including the “Pollard” variant in [9, Section
2.2], and all of them cost far more than 2128.

Information-set decoding. Augot, Finiasz, and Sendrier in [1, Section 4.2]
presented an algorithm that uses roughly

min

{
2r

/((
r/w0

2

)
+ 1
)w0

: w0 ∈ {1, 2, . . . , w}
}

iterations to find a collision c1[m1]⊕ · · · ⊕ cw[mw] = c1[m′
1]⊕ · · · ⊕ cw[m′

w]. For
w ≈ r/4 this number of iterations is roughly 20.3r. Each iteration uses some
linear algebra, inverting an r × r matrix.

The second attack stated in Section 1 is a simplified version of the attack from
[1]; the main difference is that their algorithm also allows having 0 columns in
one block. For RFSB-509, with r = 509 and w = 112, the expected number of
iterations is (2510/((

(
4
2

)
+
(
4
0

)
)50(

(
5
2

)
+
(
5
0

)
)62) ≈ 2155.

Our new paper [10] presents a generalized version of the attack from [1]. The
generalization combines ideas from various improved versions of information-set
decoding, and restructures those ideas to fit the more complicated context of
useful codewords having exactly two c1[· · · ], exactly two c2[· · · ], etc. In partic-
ular, the attack uses the ideas of Lee-Brickell [31], Leon [32], and Stern [42] to
increase the chance of success per iteration at the expense of more effort, and
more memory, per iteration. These generalized attack parameters allow the num-
ber of bit operations to be reduced below 2145; but this is still far above 2128,
and the cost is even larger than the number of bit operations.

Reducibility. As mentioned in Section 1, the preliminary quasi-cyclic FSB pro-
posals in [25] used powers of 2 for r, specifically r = 512 and r = 1024. Fouque
and Leurent broke these proposals in [26].

To understand the Fouque–Leurent idea, consider transforming RFSB-509
into a smaller compression function f that works as follows. Take a string
(m1, m2, m3, m4, m5) as input. Apply RFSB-509 to the repeated input

(m1, m2, m3, m4, m5, . . . , m1, m2, m3, m4, m5, 0, 0).
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Note that the output in F2[x]/(x509 − 1) is a constant (for the (0, 0)) plus a
multiple of ϕ = 1 + x128·5 + x128·10 + · · · + x128·105. Subtract the constant and
divide by g = gcd

{
x509 − 1, ϕ

}
, obtaining an element of F2[x]/((x509 − 1)/g).

The output of f is this element.
Observe that f is another Zobrist-type hash: f(m1, m2, m3, m4, m5) has the

shape f1[m1]⊕f2[m2]⊕f3[m3]⊕f4[m4]⊕f5[m5]. The difficulty of finding collisions
in this hash depends on how long its output is, i.e., on the degree of (x509−1)/g.
If this output is short then one can easily find collisions in f , and therefore
collisions in RFSB-509.

This attack does not work because the output is actually very long: g turns
out to be x−1, so (x509−1)/g has degree 508. Attacks might marginally benefit
from this change in degree, but not enough to compensate for the restricted set
of inputs to f .

Modifying the attack to construct multiples of other polynomials ϕ also cannot
work. The only divisors of x509 − 1 are x509 − 1, (x509 − 1)/(x − 1), x − 1,
and 1, corresponding to finding multiples of 1, x − 1, (x509 − 1)/(x − 1), and
x509 − 1 respectively. Finding multiples of 1 or x − 1 is trivial but useless, as
in the (m1, m2, m3, m4, m5) example. Finding multiples of (x509 − 1)/(x − 1)
or x509 − 1 is a very hard preimage problem, preventing the attack from even
getting started; an attacker able to solve that preimage problem would not have
any need to transform RFSB-509 into a smaller function.

All RFSB parameters, and all parameters in the FSB SHA-3 submission [3],
are protected in the same way against the Fouque–Leurent attack: r is chosen so
that (xr−1)/(x−1) is irreducible. We are not aware of attacks against primes r
with reducible (xr − 1)/(x− 1), but insisting on irreducibility does not severely
restrict the choice of r.
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Abstract. Side Channel Analysis (SCA) is a class of attacks that ex-
ploit leakage of information from a cryptographic implementation dur-
ing execution. To thwart it, masking is a common strategy that aims at
hiding correlation between the manipulated secret key and the physical
measures. Even though the soundness of masking has often been argued,
its application is very time consuming, especially when so-called higher-
order SCA (HO-SCA) are considered. Reducing this overhead at the cost
of limited RAM consumption increase is a hot topic for the embedded se-
curity industry. In this paper, we introduce such an improvement in the
particular case of the AES. Our approach consists in adapting a trick
introduced by Montgomery to efficiently compute several inversions in a
multiplicative group. For such a purpose, and to achieve security against
HO-SCA, recent works published at CHES 2010 and ACNS 2010 are
involved. In particular, the secure dirac computation scheme introduced
by Genelle et al. at ACNS is extended to achieve security against SCA at
any order. As argued in the second part of this paper, our approach im-
proves in time complexity all previous masking methods requiring little
RAM .

Keywords: Montgomery’s Trick, Side Channel Analysis, Secret Sharing,
AES.

1 Introduction

In the nineties, a new family of attacks against implementations of cryptographic
algorithms in embedded devices has been introduced. The idea of those attacks,
called Side Channel Analysis, is to take advantage of the correlation between
the manipulated secret data (e.g. secret keys) and physical measures such as the
power consumption of the device. During the last two decades, the development
of the smart card industry has urged the cryptographic research community
to carry on with SCA and many papers describing either countermeasures or
attacks developments have been published. In particular, the original attacks in
[2, 9] have been improved and the concept of higher-order SCA (HO-SCA) has
been introduced [11]. It consists in targeting the manipulation of several (and
not only one) intermediate values at different times or different locations during
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the algorithm processing to reveal information on secret-dependent data called
sensitive data. A HO-SCA targeting d intermediate values is usually named dth-
order SCA.

A common countermeasure against SCA is to randomize any sensitive variable
appearing during the algorithm processing by masking techniques (also known
as secret sharing)[1, 5, 7, 10, 17, 18, 22]. The principle is to randomly split each
sensitive variable into several shares which will be manipulated separately. The
shares propagate throughout the algorithm in such a way that no intermediate
variable is sensitive. An advantage of dth-order masking schemes, for which the
number of shares per sensitive variable is d + 1, is that they perfectly thwart
dth-order SCA. Moreover, whatever the kind of attacks (HO-SCA of any order
or template attacks [15]), their soundness as a countermeasure has been argued
for realistic leakage models in [3], where it is proved that the difficulty of recover-
ing information on a variable shared into several parts grows exponentially with
the number of shares. Resistance against HO-SCA is of importance since their
effectiveness has been demonstrated against some family of devices [11, 16, 25].
Nowadays it must therefore be possible to easily scale the security of an imple-
mentation, starting from a resistance against 1st-order SCA and possibly going
to resistance against dth-order SCA for any d. In the case of block ciphers such as
AES, the most critical part to protect when applying masking is the non-linear
layer. The latter one involves 16 times a same non-linear function, called s-box.
Several methods have been proposed in the literature to deal with this issue. We
list in the next section those that are privileged, to the best of our knowledge,
by the embedded device industry.

1.1 Related Work

State-of-the-art methods to protect the AES non-linear layer can be split into
two categories. In one part we have methods that involve pre-computed look-up
tables in RAM1 to achieve good timing performances [5, 10, 19]. They are moreover
particularly dedicated to 1st-order SCA. A few attempts have been done to
extend these methods to deal with HO-SCA [22, 24]. However the approach
did not permit to thwart SCA at order 3 or higher. Moreover, security against
2nd-order SCA is only achieved at the cost of a prohibitive memory overhead
which excludes its use in low-cost devices. In brief, countermeasures that use
pre-computed tables cannot be used to protect algorithms at order d > 1 in a
RAM constrained environment. In a second part, we have methods that achieve
SCA security at the cost of a limited amount of RAM memory (e.g. less than 100
bytes), which is particularly relevant for the smart cards industry [1, 17, 18, 20].
They have in common to exploit the simple algebraic structure of the AES s-box,
which is affinely equivalent to a field inversion extended in 0 by setting 0−1 = 0.
They are less efficient in terms of timing than the methods in the first category,
but can be embedded in constrained devices. Moreover, in contrast with the

1 RAM is a volatile memory. It can be accessed in read/write mode and is usually used
to store local or global variables used by the programs.
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schemes in the first category, they are more suitable for the extension of the
security at order d, since they do not rely on the table re-computation principle.
Actually a scheme has been proposed in this category that achieves dth-order
SCA resistance whatever d [23]. It moreover turns out that even for d = 2 this
scheme is much more efficient (around 3 times) than the methods based on table
re-computations [22, 24].

1.2 Our Results

State-of-the-art methods secure the overall AES non-linear layer by separately
securing each of the 16 s-boxes computation. Their complexity is hence merely
equal to that of securing the AES s-box processing, or equivalently the field in-
version over GF(28). In this paper a different approach is introduced, where the
masking of the whole non-linear layer is considered at once. This is accomplished
by applying Montgomery’s trick [13]. The latter one can be applied in any multi-
plicative group and enables to compute say n multiplicative inverses at the cost
of 3(n− 1) field multiplications and one single inversion. It is relevant when the
inversion processing is much more costly than that of a multiplication (i.e. at
least around 3 times more costly) which is often the case in the context where
the inversion includes SCA countermeasures. Even if the context of AES secure
implementation seems to be a natural outlet for Montgomery’s trick, its applica-
tion is not straightforward. First, the field multiplications must be secured such
that their use in the non-linear layer computation does not decrease the secu-
rity of the implementation against (HO-)SCA. In other terms, if the inversions
were resistant against dth-order SCA, then the multiplications replacing them in
the new process must also resist to those attacks. Secondly, since the elements
of the AES state are defined over GF(28) whereas Montgomery’s trick applies
on GF(28)�, a pre-processing must be defined to map the state elements up to
the multiplicative group without modifying the functional behavior of the AES.
Moreover, the mapping must not introduce any flaw w.r.t. dth-order SCA. This
paper deals with the two issues by using memory as little as possible for any
SCA resistance order d. First, we suggest to use the multiplication algorithm
proposed in [23] which can be specified to thwart HO-SCA of any order at the
cost of acceptable timings and without extra large RAM memory consumption. To
deal with the second issue, we base our approach on the technique suggested in
[5], that reduces the problematic to that of securing a Dirac function (which is a
function that maps zero values into non-zero ones). We improve the method to
use less RAM memory than in the original method and we extend it to get a Dirac
computation secure at any order d. The use of such solutions results in a secure
and efficient adaptation of Montgomery’s trick in the context of SCA-resistant
AES implementations. Since our approach is only relevant when the ratio be-
tween the cost of a secure inversion and that of secure multiplication is lower
than some threshold, it is not suitable when both functions are tabulated once
per algorithm execution. In the other cases (which include all the proposed coun-
termeasures against HO-SCA), our proposal improves the timing performance
at the cost of a small RAM overhead: 1st-order secure methods not based on table
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re-computation are improved by at least 21% and we have a timing gain of at
least 13% and 9% for 2nd-order and 3rd-order secure methods respectively.

1.3 Paper Organization

The paper is organized as follows. We briefly introduce in Sect. 2 some basics on
AES and SCA. Section 3 describes Montgomery’s trick in the context of a SCA-
resistant AES implementation. Section 4 presents the different tools required for
the new generic scheme. Section 5 reports on the efficiency of several implementa-
tions of our method in combination with state-of-the-art secure implementations
of AES. Eventually Sect. 6 concludes the paper.

2 Notations and Basics on AES and SCA

We briefly introduce here the AES algorithm, and we give some notations and
definitions used to describe our proposal and to analyze its security.

The AES block cipher algorithm is the composition of several rounds that
operate on an internal state denoted by s = (si)i≤15 and viewed in the following
either as a (16×1)-matrix over GF(28) or as a (16×8)-binary matrix (in this case
each si is considered as a vector in GF(2)8 whose bit-coordinates are denoted by
si[j]). Field multiplication will be denoted by ⊗, whereas field addition will be
denoted by ⊕. The latter exactly corresponds to the bitwise addition in GF(2)8.
Eventually the bitwise multiplication (AND) will be denoted by �. Each AES
round is the composition of a round-key addition, a linear layer and a non-linear
layer. The latter one consists in a single AES s-box that is applied to each state
element si separately. It is defined as the composition of an affine function with
the multiplicative inverse function in GF(28), i.e. s �→ s−1, extended in 0 by
setting 0−1 = 0. We call the latter function extended inversion and we denote it
Inv. The global transformation (si)i≤15 �→ (s−1

i )i≤15 is denoted by Inv-Layer.
In this paper, we focus on protecting the processing of Inv-Layer against (HO-
)SCA, the round-key addition, the linear layer and the affine transformation
being straightforward to secure (see for instance [10]). We moreover assume
that the masking strategy is followed to protect the overall AES. When such a
scheme is specified at order d, the state s is randomly split into d + 1 shares
(s0, · · · , sd) such that s =

⊕d
i=0 s i. We shall say that (s0, · · · , sd) is a (d + 1)-

sharing of s . After denoting by sj
i the ith line of the jth share, we can check that

(s0
i , ..., s

d
i ) is a (d + 1)-sharing of the state element si. In the following, we shall

say that a variable is sensitive if it can be expressed as a deterministic function
of the plaintext and the secret key and which is not constant with respect to
the secret key. Additionally, we shall say that an algorithm achieves dth-order
SCA security if every d-tuple of its intermediate variables is independent of any
sensitive variable.

In the next section we give the core principle of our proposal to improve the tim-
ing efficiency of the state-of-the-art dth-order SCA-secure AES implementations.
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3 Montgomery’s Trick to Secure the AES Inv-Layer: Core
Idea

This section is organized as follows: first we introduce the classical approach
when masking is involved, secondly we describe Montgomery’s trick as intro-
duced in [13] and eventually we show the adaption of the latter to SCA-secure
AES implementations.

3.1 Classical Approach

Usual implementations of Inv-Layer are protected against dth-order SCA by
following a divide-and-conquer approach. The global security is deduced from
the local security of each of the sixteen processings of Inv. To achieve local
security, a scheme Sec-Inv(d, ·) is involved. It applies on the (d + 1)-sharing
(s0

i , · · · , sd
i ) of each state element si and outputs a (d+1)-sharing (r0

i , · · · , rd
i ) of

the inverse Inv(si). Eventually the secure version of Inv-Layer outputs a (d+1)-
sharing (r0, · · · , rd) of Inv-Layer(s). For d = 1, the secure inversion algorithm
Sec-Inv(d, ·) can be chosen among the numerous ones proposed in the literature
[1, 5, 7, 10, 17, 18, 22]. For d > 1, the choice is much more reduced and the
secure inversion algorithm must be one of those proposed in [22, 23, 24].

In the next section we introduce an alternative to the classical approach which
starts from a trick introduced by Montgomery[13].

3.2 Approach with Montgomery’s Trick

The principle of Montgomery’s trick is to reduce the total number of field in-
versions by using field multiplications. Let us consider n field elements si. With
Montgomery’s trick the n inverses (s−1

i )0≤i≤n−1 are computed by performing
two separate passes through the data. In the forward pass, a variable Prod0 is
initialized with s0 and then the following product is computed for i = 1, . . . , n−1:

Prodi = Prodi−1 ⊗ si .

The last product Prodn−1 satisfies Prodn−1 =
∏n−1

i=0 Prodi. Then a single field
inversion

I = (Prodn−1)−1

is computed. Next, in the backward pass, tn−1 is initialized by I and then for
i = n− 1, . . . , 1, the two following products are computed

s−1
i = ti ⊗ Prodi−1 and ti−1 = ti ⊗ si .

To finish s−1
0 is set to t0. In total the algorithm requires a single field inverse,

and 3(n− 1) field multiplications.
Montgomery’s trick has been applied in many contexts [6, 12, 14]. This paper

investigates its application to improve the secure AES Inv-Layer computation.
Clearly this application cannot be done directly and we have to deal with two
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main issues. The first issue is that the inverse I cannot be computed directly
from the product of the AES state elements since the latter ones may equal zero.
The second issue is that the application of the trick must be secure against SCA
of any order d. We propose hereafter a modification of Montgomery’s trick that
circumvents the first issue. Then, in Sect. 3.3, we explain how it can be efficiently
secured at any order.

To deal with the first issue we propose to first transform the elements of
the state in such way that their image is always non-zero and to keep track
of this transformation. More precisely, prior to the forward pass, we add each
state element si with its Dirac value δ0(si) defined by δ0(si) = 1 if si = 0
and δ0(si) = 0 otherwise. The computation of the products (Prodi)0≤i≤15 is
let unchanged except that it applies on (si ⊕ δ0(si))i≤15 instead of (si)i≤15.
Eventually the potential modification is corrected by adding δ0(si) to (si ⊕
δ0(si))−1

i≤15 after having computed (ti)i≤15. The completeness of this treatment
holds from (si ⊕ δ0(si))−1 = s−1

i ⊕ δ0(si). The sequence of those different steps
is presented in Alg. 1.

Algorithm 1. Montgomery’s Trick Applied on AES State Elements

Input(s): The AES state s = (si)i≤15 in GF(28)16

Output(s): (s−1
i )i≤15 = Inv-Layer(s)

∗∗ Mapping of the state elements from GF(28) to GF(28)
�
.

1. for i = 0 to 15 do

δ0(si) ← Dirac(si)

si ← si ⊕ δ0(si)

∗∗ Computation of intermediate products used for the inverses extraction.

2. Prod0 ← s0

3. for i = 1 to 15 do

Prodi ← Prodi−1 ⊗ si

∗∗ Computation of the single inverse.

4. I ← (Prod15)
−1

∗∗ Extraction of s−1
i for every i ≤ 15.

5. from i = 15 down to 1 do

s−1
i ← I ⊗ Prodi−1

I ← I ⊗ si

6. s−1
0 ← I

∗∗ Mapping of the state elements from GF(28)
�

to GF(28).

7. for i = 0 to 15 do

s−1
i ← s−1

i ⊕ δ0(si)

8. return (s−1
0 , . . . , s−1

15 )
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The operation Dirac(si) computes the Dirac value of si. Algorithm 1 could
be optimized by doing the calls to Dirac(·) inside the loops in Steps 3, but for
a better comprehension of our proposal we described intentionally the different
steps separately.

3.3 Secure Computation

The application of Alg. 1 in a context where all the sensitive data are repre-
sented by a (d + 1)-sharing requires two modifications. First any intermediate
result (including the input and output) must be replaced by a (d + 1)-sharing
representing it. Additionally, operations Dirac(·) and ⊗ shall be replaced by
secure versions of them, called Secure-Dirac(d, ·) and Secure-MUL(d, ·, ·) and
satisfying the following properties:

- Secure-Dirac(d, ·) must output a (d + 1)-sharing (Δ0, · · · , Δd) of Δ =
(δ0(s0), · · · , δ0(s15)) from the (d + 1)-sharing (s0, · · · , sd) of s . The pro-
cessing must moreover be dth-order secure.

- Secure-MUL(d, ·, ·) must output the (d+1)-sharing (p0, . . . , pd) of p = si⊗sj

from the (d + 1)-sharing (s0
i , · · · , sd

i ) and (s0
j , · · · , sd

j ) of si and sj .

We shall moreover also need a function Add−Dirac(·, ·) that applies on the
(d + 1)-sharing of Δ and s and simply replaces the first column of each ma-
trix share s i by the bitwise addition of this column with the binary column
vector Δi. Its cost CA-D in terms of logical operations is therefore 16(d+1)×c⊕,
where c⊕ denotes the cost of a bitwise addition over GF(28).

We sum-up hereafter the main steps of our new proposal to implement the
AES Inv-Layer in a dth-order SCA-secure way.

Completeness. Step 1 computes the (d + 1)-sharing of the Dirac of each state
element si, the shares of same index being grouped to form the 16-bit vectors
Δ0, ..., Δd. It is viewed as a (16× (d + 1))-binary matrix whose bit-coordinates
are denoted by Δj [i]. The second step transforms the (d+1)-sharing (s0

i , · · · , sd
i )

of each state element si into a new one (s0
i ⊕Δ0[i], · · · , sd

i ⊕Δd[i]). Since the sum⊕
j Δj [i] (resp.

⊕
j sj

i ) equals δ0(si) (resp. si), this step outputs a (d+1)-sharing
of si ⊕ δ0(si). Steps 3 to 7 simply implement the SCA-secure Montgomery’s
Trick, where each elementary operation is performed thanks to a dth-order secure
algorithm. Eventually, the 8th step reverses the mapping (if it has occurred) of
a state element ri = 0 into 1. Namely, it processes in a secure way the (d + 1)-
sharing of (ri +δ0(si))−1⊕δ0(si) which equals r−1

i , since 1−1 = 1 and 0−1 equals
0 by assumption.

Algorithm 2 involves four procedures: Sec-Inv(d, ·), Add-Dirac(·, ·), Secure-
Dirac(d, ·) and Secure-MUL(d, ·, ·). The different ways how to choose the function
Sec-Inv(d, ·) have been presented in Sect. 3.1. Additionally, we have shown in
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Algorithm 2. Secure Inv-Layer with Montgomery’s Trick

Input(s): The AES state s split into d + 1 shares (s0, · · · , sd)
Output(s): A new (d +1)-sharing (r0, · · · , rd) of the AES state r such that r = Inv-
Layer(s)

∗∗ Mapping of the state elements from GF(28) to GF(28)
�
.

1. (Δ0, · · · , Δd) ← Secure-Dirac(d, (s0, · · · , sd))

2. (s0, · · · , sd) ← Add-Dirac((s0, · · · , sd), (Δ0, · · · , Δd))

∗∗ Computation of the (d+1)-sharing (Prod0
i , · · · , Prodd

i ) of the intermediate products

Prodi used for the inverses extraction.

3. (Prod0
0, · · · , Prodd

0) ← (s0
0, · · · , sd

0)

4. for i = 1 to 15 do

(Prod0
i , · · · , Prodd

i ) ← Secure-MUL(d, (Prod0
i−1, · · · , Prodd

i−1), (s
0
i , · · · , sd

i ))

∗∗ Secure computation of the (d + 1)-sharing of (Prod15)
−1 from its sharing

(Prod0
15, · · · , Prodd

15).

5. (Inv0, · · · , Invd) ← Sec-Inv(d, (Prod0
15, · · · , Prodd

15))

∗∗ Extraction of the (d + 1)-sharing (r0
i , · · · , rd

i )of s−1
i for every i ≤ 15.

6. from i = 15 down to 1 do

(r0
i , · · · , rd

i ) ← Secure-MUL(d, (Prod0
i−1, · · · , Prodd

i−1), (Inv0, · · · , Invd))

(Inv0, · · · , Invd) ← Secure-MUL(d, (Inv0, · · · , Invd), (s0
i , · · · , sd

i ))

7. (r0
0, · · · , rd

0) ← (Inv0, · · · , Invd)

∗∗ Mapping of the state elements from GF(28)
�

to GF(28).

8. (r0, · · · , rd) ← Add-Dirac((r0, · · · , rd), (Δ0, · · · , Δd))

9. return (r0, · · · , rd)

this section how to simply process Add-Dirac(·, ·). For our presentation to be
consistent, procedures Secure-MUL(d, ·, ·) and Secure-Dirac(d, ·) still need to
be described and they are actually the most tricky parts of our proposal. The
purpose of the following section is to present them. Eventually, the analysis of
the complexity and security of the overall proposal (Alg. 2) is done in Sect. 4.3.

4 Secure and Efficient Implementations of the Primitives

4.1 Field and Logical Multiplications Secure at Any Order

Let � be a positive integer and let a and b be two elements of the field GF(2�)
with multiplication law ⊗. We denote by p the product a⊗b. In Sect. 3, we have
promoted the need for a secure multiplication Secure-MUL(d, ·, ·) that securely
constructs a (d+1)-sharing (p0, · · · , pd) of p from the (d+1)-sharings (a0, · · · , ad)
and (b0, · · · , bd) of a and b respectively. An algorithm to process such a secure
multiplication has been proposed in [23] as an extension of Ishäı et al. ’s work
[7]. The main steps of this algorithm are recalled hereafter.
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Algorithm 3. Secure-MUL(d, ·, ·)
Input(s): A masking order d and two (d + 1)-sharings (a0, · · · , ad) and (b0, · · · , bd) of
a and b respectively.

Output(s): A (d + 1)-sharing (p0, · · · , pd) such that p = a ⊗ b.

1. Compute the ((d + 1) × (d + 1))-matrix M = (a0, · · · , ad)ᵀ × (b0, · · · , bd), where ×
denotes the matrix product and where the matrix coordinates are multiplied with
the law ⊗.

2. Split M into an upper triangular matrix M1 and a strictly lower triangular matrix
M2 such that M = M1 ⊕ M2.

3. Generate a strictly upper triangular random matrix R1 = (rij)i,j (i.e. j ≤ i implies
rij = 0).

4. Compute U = M1 ⊕ R ⊕ Mᵀ
2 from left to right, where R denotes R1 ⊕ Rᵀ

1 .

5. Return (p0, · · · , pd) = 1×U, where 1 denotes the line vector whose d+1 coordinates
are all equal to 1.

In the three following paragraphs we discuss the completeness, the security
and the complexity of Alg. 3.

Completeness. By construction, the sum p of the output shares pi satisfies⊕
i≤d pi = 1×U× 1ᵀ. On the other hand, we have:

1×U× 1ᵀ = 1× (M1 ⊕R⊕M2
ᵀ)× 1ᵀ ,

= 1× (M1 ⊕R1 ⊕M2
ᵀ ⊕R1

ᵀ)× 1ᵀ ,

= 1× (M1 ⊕R1 ⊕ (M2 ⊕R1)ᵀ)× 1ᵀ ,

= 1× (M1 ⊕R1)× 1ᵀ ⊕ 1× (M2 ⊕R1)× 1ᵀ ,

= 1× (M1)× 1ᵀ ⊕ 1× (M2)× 1ᵀ ⊕ 1× (R1)× 1ᵀ ⊕ 1× (R1)× 1ᵀ,

= 1×M× 1ᵀ = 1× (a0, · · · , ad)ᵀ × (b0, · · · , bd)× 1ᵀ .

Since (a0, · · · , ad) and (b0, · · · , bd) are respectively a (d + 1)-sharing of a and b,
we have a = 1 × (a0, · · · , ad)ᵀ and b = 1 × (b0, · · · , bd)ᵀ. We thus deduce that
1×U× 1ᵀ equals p = a⊗ b which states the completeness of Alg. ??.

Security. The security of Secure-MUL(d, ·, ·) against dth-order SCA has been
proved in [23].

Complexity. Let us denote by c⊗ (resp. c⊕) the cost of a field multiplication ⊗
(resp. bitwise addition ⊕) in terms of logical operations. In [23], it is argued that
Secure-MUL(d, ·, ·) algorithm can be processed with (d+1)2 field multiplications
⊗ and 2d(d+1) bitwise additions ⊕. Its cost, denoted by CS-M, therefore satisfies:

CS-M = (d + 1)2 × c⊗ + 2d(d + 1)× c⊕ . (1)
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It moreover requires the generation of d(d + 1)/2 random bytes. As an illustra-
tion, securing a field multiplication ⊗ over GF(28) thanks to Secure-MUL(d, ·, ·)
requires CS-M = 4 × c⊗ + 4 × c⊕ for d = 1, and CS-M = 9 × c⊗ + 12 × c⊕ for
d = 2, and CS-M = 16× c⊗ + 24× c⊕ for d = 3.

In the following, we shall also need a slightly modified version of Secure-
MUL(d, ·, ·) called Secure-AND(d, �, ·, ·) and enabling to securely process the bitwise
multiplication �� of two �-bit vectors a and b (i.e. a bitwise AND). It applies
exactly the same steps as Secure-MUL(d, ·, ·) algorithm except that the operation
⊗ is replaced by ��. It moreover obviously inherits its dth-order SCA security
and its complexity from that of Secure-MUL(d, ·, ·). To be absolutely clear in our
argument in the next sections, we shall denote by �

sec

� the operation �� when it

is processed by applying Secure-AND(d, �, ·, ·).

4.2 Dirac Computation Secure at Any Order

In [5], a 1st-order secure implementation of the Dirac function is proposed. It
involves a look-up table in RAM whose size (32 or 256 bytes) is chosen according
to an expected timing/memory trade-off. This method has two drawbacks in
our context. First, it consumes RAM whereas we are looking for a secure AES
implementation that uses memory as little as possible. Secondly, the method is
only resistant to 1st-order SCA and its extension to achieve higher-order security
seems to be an issue. Indeed, it inherits from the same drawbacks w.r.t higher-
order SCA than all the methods based on table re-computations techniques [4].

In order to define a Dirac implementation secure at any order, we chose to
start from the description of this function in terms of logical instructions.

Dirac Computation. Let x denote the bitwise complement of a word (or a matrix)
x and let � be the logical binary AND. The Dirac δ0(s) of a �-bit vector s =
(s[0], · · · , s[�− 1]) satisfies:

δ0(s) = (s[0])� (s[1])� · · · � (s[�− 1]) . (2)

The computation of the Dirac of � elements s0,..., s�−1 in GF(2)� can be
performed by using a bit-slicing approach (see e.g. [8])2. The elements are first
represented as a (� × �)-binary matrix s whose lines are the si. Denoting by t
the transpose of s , the line tj of t satisfies tj = (s0[j], · · · , s�−1[j])).

The Dirac values of the si are then computed by applying the operation ��

on the bitwise complement of the tj , leading to the following analogous of (2):

Δ = (δ0(s0), · · · , δ0(s�−1)) = t0 �� t1 �� · · · �� t�−1 . (3)

The cost of the Dirac computation (3) per �-bit vector si is around (�− 1)/�
computation of �� plus 1 bitwise complement, to which we have to add the cost
of a (�× �)-matrix transposition over GF(2) (to get t from s).
2 To easy the description of the method we assume that there are � elements si of size

�. This is needed to have a square matrix in the following. The generalization of the
method for n > � is given at the end of the section.
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Secure Dirac Computation. In the context of a dth-order masking scheme, (3)
must be modified to no longer operate on t but on a (d + 1)-sharing (t0, . . . , td)
of it (each share ti being a binary (�× �)-matrix). Moreover the computations of
the operation �� must be secured thanks to the algorithm Secure-AND(d, �, ·, ·)
introduced in Sect. 4.1. By applying the latter algorithm to the lines of the ti,
we can construct a (d + 1)-sharing (Δ0, · · · , Δd) of the �-bit vector Δ defined in
(3). Actually, if we denote by tij the jth line of ti, the algorithm we present in
this section aims at processing the following computation:

(Δ0, · · · , Δd) = (t0
0, · · · , td

0) �
sec

� (t0
1, · · · , td

1) �
sec

� · · · �
sec

� (t0
�−1, · · · , td

�−1) . (4)

Comparing (3) and (4), we can observe that each ti has been replaced by its
(d+1)-sharing, and that the operation �� has been replaced by its secure version
�
sec

�. We give hereafter a formal description of Secure-Dirac(d, ·).

Algorithm 4. Secure-Dirac(d, ·)
Input(s): An order d, a length � and a (d + 1)-sharing (s0, · · · , sd) of a binary (�× �)-
matrix s whose lines are the si.
Output(s): A (d+1)-sharing (Δ0, · · · , Δd) of the �-bit vector Δ = (δ0(s0), · · · , δ0(s�−1))

** Compute the bitwise complement s0 of the (� × �)-matrix s0.

1. s0 ←− s0.

** Transpose the (� × �) matrices si for every i ≤ d.

2. for i = 0 to d

do ti ←−
(
si
)ᵀ

.

** Process the Dirac computations.

3. (Δ0, · · · , Δd) ←− (t00, · · · , td
0)

4. for i = 1 to � − 1

do (Δ0, · · · , Δd) ←− Secure-AND(d, �, (Δ0, · · · , Δd), (t0i , · · · , td
i ))

5. return (Δ0, · · · , Δd)

The ith call to Secure-AND(d, �, ·, ·) outputs t0��t1�� · · ·��ti−1, the operation
being performed in a secure way from the (d + 1)-sharings (Δ0, · · · , Δd) and
(t0i−1, · · · , tdi−1) which represent Δ and ti−1 respectively.

Security (Sketch of Proof). The dth-order security of Secure-AND(d, �, ·, ·) im-
plies that of each iteration of the loop. Moreover, the d random values used to
construct the (d+1)-sharing of the Secure-AND(d, �, ·, ·) output are randomly re-
generated at each call. We thus deduce that the local dth-order security implies
that of the overall algorithm.

Complexity. Let us denote by cᵀ (resp. c�) the cost of a (�×�)-matrix transposi-
tion (resp. bitwise multiplication�). The dth-order secure processing of the Dirac
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of � elements in GF(2)� costs (d+1)×cᵀ+(�−1)(d+1)2×c�+2(�−1)d(d+1)×c⊕
(which corresponds to d + 1 matrix transpositions and � − 1 calls to Secure-
AND(d, �, ·, ·)). We experimented that the cost cᵀ is of around 150 logical opera-
tions on a �-bit architecture with bit-addressable memory (see Sect. 5)3.

Let n be a multiple of �. Algorithm 4 can be simply extended to compute the
(d + 1)-sharings of the Dirac’s of n elements s0, ..., sn−1 in GF(2�). In this case,
the matrix s is a binary (n×�)-matrix and its (d+1)-sharing is also composed of
binary (n× �)-matrices. Thus, before applying Alg. 4 the elements of the (d+1)-
sharing (s0, · · · , sd) of s are split into n/� sub-matrices of � lines and � columns.
This results in the definition of a splitting of (s0, · · · , sd) into n/� sharings
(s0

j(�), · · · , sd
j(�)), each corresponding to the sub-matrix s j(�) composed of the

jth block of � lines of s . Once this splitting has been done, Alg. 4 is applied to
each (d + 1)-sharing (s0

j(�), · · · , sd
j(�)) separately to output a (d + 1)-sharing

of the Dirac values corresponding to the state elements sj�, ..., s(j+1)�−1. The
overall procedure is denoted by Secure-Dirac(d, (s0, · · · , sd)) in the following.
It inherits its dth-order security from that of Secure-AND(d, �, ·, ·) and its cost in
terms of elementary operations, denoted by CS-D, is exactly n/� times that of
Alg. 4. For instance, in the case of the AES (n = 16 and � = 8) we have:

CS-D = 2(d + 1)× cᵀ + 14(d + 1)2 × c� + 28d(d + 1)× c⊕ . (5)

4.3 Security and Complexity Analysis of the Proposal

Based on the analysis conducted in the two previous sections, we study hereafter
the security and the complexity of our proposal presented in Alg. 2 to secure the
AES Inv-Layer.

Security (Sketch of Proof). Add-Dirac(·, ·) is a linear function operating on
two data masked with independent d-tuples of masks. It operates on each share
independently. For those two reasons it is dth-order secure. Except the mem-
ory allocations (Steps 3 and 7) which are obviously dth-order secure since they
always manipulate the shares separately, the other steps process operations
(Secure-Dirac(d, ·), Sec-MUL(d, ·, ·) and Sec-Inv(d, ·)) that have been proved to
be dth-order secure either in previous works [23] or in the present paper (see Sect.
4.2). The fact that all operations in Alg. 2 are dth-order SCA-secure straightfor-
wardly implies that Alg. 2 is at least 1st-order SCA secure. Actually, we claim
here that it is also dth-order SCA-secure. The precise formalization of the dth-
order security of Alg. 2 can be done by following the outlines of the proof of [23,
Theorem 2] and may possibly require some mask-refreshing procedure (such as
involved in [23]) to change the (d + 1)-sharing of an internal state into a new
one.

Complexity. Algorithm 2 involves 2 calls to the function Add-Dirac(·, ·), 3×(16−
1) calls to Secure-MUL(d, ·, ·), 1 call to Sec-Dirac(d, ·) and 1 call to Sec-Inv(d, ·).
3 Note that we did not took into account the cost of the bitwise complement which is

negligible compared to the other costs.
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Its complexity CS-L therefore satisfies:

CS-L = 2× CA-D + 45× CS-M + CS-D + CInv .

From the complexity analysis conducted in previous sections we hence deduce
that the cost CS-L of our proposal in terms of elementary operations satisfies:

CS-L = (d+1)[2×cᵀ +(32+118d)×c⊕+14(d+1)×c�+45(d+1)×c⊗]+CInv .

The cost of a classical processing of Inv-layer is around 16 times the cost
CInv of the secure processing of a field inversion. Hence, our method improves
the classical approach if and only if CInv satisfies:

CInv ≥
(d + 1)[2× cᵀ + (32 + 118d)× c⊕ + 14(d + 1)× c� + 45(d + 1)× c⊗]

15
.

(6)
For our implementations reported in Sect. 5, we experimented c⊕ = c� = 1, cᵀ =
148 and c⊗ = 22. In this particular case, (6) becomes CInv ≥ 1122d2+2454d+1332

15 .
For d = 1, d = 2 and d = 3 the lower bound respectively equals 328, 717 and
1256.

5 Experimentations

The purpose of this section is twofold. First, we experimentally validate the rel-
evance of the SCA-secure Montgomery’s trick by improving many methods of
literature. Secondly, we quantify in practice the efficiency gain provided by our
proposal. Even if this section reports on AES implementation in mode 128, the
main conclusions stay valid in all the other modus operandi. Our AES imple-
mentations involve the same code to process the round-key addition and the
linear/affine steps. Actually, they only differ in the code part dedicated to the
processing of Inv-Layer. To protect the linear/affine AES steps against (HO-)
SCA, the masking scheme (a.k.a secret sharing scheme) presented in [11] for
order 1 and extended in [23] to any order has been applied. To secure the AES
Inv-Layer, we first implemented some 1st-order SCA-secure methods, then all
the existing 2nd-order SCA-secure methods, and eventually the single 3rd-order
SCA-secure method existing in the literature (see Sect. 1.1 for an argumentation
of the choices). In what follows, we give more details about the methods we chose
in each category.

For d = 1, we chose to only consider methods requiring a limited amount of
RAM memory, which excludes the methods proposed in [11] and [19]. Indeed, as
mentioned in the introduction, our purpose is to improve the timing efficiency
of 1st-order SCA-secure implementations in contexts where a limited amount
of RAM is available. Moreover, we experimented that usually our proposal does
not improve 1st-order methods optimized by involving RAM look-up tables pre-
computed with part of (or all) the masking material (as e.g. in [11] and [19]).
In this case indeed, CInv does not satisfy (6). Eventually, we chose to implement
the methods in [17, 18, 20, 21, 23].
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– In [17, 18], the field GF(28) is represented as an extension of GF(22). Thanks
to linear isomorphisms, the AES s-box is evaluated with operations in GF(22)
where the extended inversion is linear.

– In [20], the extended inversion over GF(28) is essentially performed by going
down to GF(24)2 and by computing a Fourier transform on GF(24).

– In [21], the authors perform the extended inversionby going down to (GF(24))2

and by bitwisely adding 15 elements of a ROM look-up table representing a per-
mutation over GF(24).

– In [23], the extended inversion is represented as the power function x �→ x254

and the evaluation of this function is essentially secured against SCA by
decomposing the exponentiation into a minimum number of multiplications
which are not squaring and by securing those multiplications. The latter step
is done by calling the function Secure-MUL(1, ·, ·) recalled in Sect. 4.

For d = 2, only a few methods exist that are perfectly SCA-secure. Actually, only
the works [24], [22] and [23] propose such kind of schemes (the two first ones
working for any s-box and the third one being dedicated to the AES s-box).
The method in [24] can be viewed as a generalization of the re-computation
table method proposed in [10]. Each time a s-box must be evaluated, a new
pair of input/output masks is generated and two new look-up tables in RAM are
generated from both those masks and a ROM look-up table representing the AES
s-box. The method [22] is a generalization of [21]. Eventually, the method [23]
applied for d = 2 protects the evaluation of the power function x �→ x254 by
securing the linear steps in a straightforward way (by applying the computations
on each share separately) and by securing the multiplications thanks to Secure-
MUL(2, ·, ·).

For d = 3, only [23] proposes a solution. It involves Secure-MUL(3, ·, ·) to secure
the non-linear steps of the exponentiation x �→ x254.

Table 1 lists the timing/memory performances of the different implemen-
tations. Memory performances correspond to the number of bytes allocations
and cycles numbers correspond to multiple of 103. The right-hand column gives
the performance gain achieved by applying the SCA-secure Montgomery’s trick
(e.g. a gain of 60% signifies that the new timing equals 40% of the timings of
the original code). Codes have been written in assembly language for a 8051-
based 8-bit architecture with bit-addressable memory. RAM consumption related
to implementation choices (e.g. use of some local variables, use of pre-computed
values to speed-up some computations, etc.) are not taken into account in the
performances reporting. Also, ROM consumptions (i.e. code sizes) are not listed
since they always were lower than 5 K-bytes which is acceptable in almost all
current embedded devices (for comparison a software secure implementation of
RSA usually uses more than 10 K-bytes). Eventually, for d = 1 (Implementations
2 to 5) improvements have been added to the original proposals. They essentially
amount to preprocess a part of the masking material, which is possible since the
latter one does not need to be changed during the algorithm processing when
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Table 1. Comparison of AES implementations

Method to secure the s-box Without trick With trick Timing Gain

Cycles RAM Cycles RAM

Unprotected Implementation

1. No Masking 2 0 Na. Na. Na.

First-Order SCA

2. Tower Field in GF(24) [17, 18] 77 0 55 56 29%

3. Masking on-the-fly [21] 82 0 55 56 33%

4. Fourier Transform [20] 122 0 58 56 52%

5. Secure Exponentiation [23] 73 24 58 24 + 32 21%

Second-Order SCA

6. Double Recomputations [24] 594 512 190 512 + 96 68%

7. Single Recomputation [22] 672 256 195 256 + 96 70%

8. Secure Exponentiation [23] 189 48 165 48 + 48 13%

Third-Order SCA

9. Secure Exponentiation [23] 326 72 292 72 + 64 9%

only first-order SCA are considered (e.g. the same input/output mask can be
used for all the s-box evaluations).

As it can be seen in the last column of Table 1, SCA-secure Montgomery’s trick
always improves the timing efficiency of the method on which it is applied to. At
every order, this gain has been obtained at the cost of a small RAM overhead: 24d
bytes to implement Secure-MUL(d, ·, ·) and 14(d + 1) + 2(d + 1) bytes dedicated
to Montgomery’s trick. For d = 1, this overhead is acceptable, even in a very
constrained context (we indeed still have a consumption lower than 100 bytes).
For d > 1, the RAM overhead is either negligible for methods which already
consumed a lot of RAM [22, 24] or acceptable for [23] since the total amount of
RAM allocation (96 bytes) is not prohibitive in view of the security level (d = 2, 3).

For d = 1, it can be observed that the timing performances of the methods
become very close when the SCA-secure Montgomery’s trick is applied. In view
of (6), this result was expected since the performances of the inversion method
has a small impact on performances of the global algorithm when the trick is
involved. Indeed, in this case only 10 secure inversions for the overall AES-128
calculation are performed instead of 160. So, when the trick is involved the
timings performances essentially correspond to the cost of 10 applications of
Alg. 2 and the cost of Step 5 (the secure inversion) is negligible. For d = 2, this
remark is less pertinent. This is a consequence of the huge difference between
the timings of the secure inversion methods proposed in [22, 24] and in [23] (the
latter one being at least 2.2 times faster). In this case, the impact of the method
used to protect the inversion (Step 5 in Alg. 2) is still measurable. For d = 3,
the SCA-secure Montgomery’s trick continues to improve the efficiency of the
inner method but its impact is less significative than for d = 1, 2. Actually, the
method used in [23] to secure the inversion involves 4 calls to Secure-MUL(d, ·, ·)
and when d grows the timing efficiency of the method essentially corresponds
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to the cost of those 4 calls. When applied, the SCA-secure Montgomery’s trick
merely replaces 4 calls to Secure-MUL(d, ·, ·) by 3 calls to Secure-MUL(d, ·, ·) plus a
dth-order secure Dirac computation. The gain in efficiency thus essentially relies
on the difference of performances between one execution of Secure-MUL(d, ·, ·)
and the cost per byte of the dth-order secure Dirac computation described in
Alg. 4.

6 Conclusion

In this paper, we have proposed a different approach for the masking of the non-
linear layer of the AES. Instead of sequentially computing the image of masked
data through each s-box, we have proposed to evaluate them globally. Our ap-
proach is based on Montgomery’s trick combined with the use of masked Dirac
functions. Our solution allows us to improve significantly in time complexity all
previous masking methods requiring a small amount of RAM at the cost of a little
memory overhead.
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Abstract. It has been recently shown that sharing a common coordi-
nate in elliptic curve cryptography implementations improves the per-
formance of scalar multiplication. This paper presents new formulæ for
elliptic curves over prime fields that provide efficient point addition and
doubling using the Montgomery ladder. All computations are performed
in a common projective Z-coordinate representation to reduce the mem-
ory requirements of low-resource implementations. In addition, all given
formulæ make only use of out-of-place operations therefore insuring that
it requires no additional memory for any implementation of the under-
lying finite-field operations whatsoever. Our results outperform existing
solutions in terms of memory and speed and allow a fast and secure im-
plementation suitable for low-resource devices and embedded systems.

Keywords: Public-key cryptography, elliptic curves, co-Z coordinates,
out-of-place formulæ, Montgomery ladder, embedded systems.

1 Introduction

Elliptic curve cryptography (ECC) [17,27] has gained much importance in the
field of low-resource devices such as smart cards and Radio Frequency Identifi-
cation (RFID) devices. The main benefits of ECC compared to traditional cryp-
tographic primitives like RSA [30] are the significant improvements in terms of
speed and memory. In fact, memory is one of the most expensive resources in the
design of embedded systems which encourages the use of ECC on such platforms.
In this paper, we present new formulæ for ECC implementations that allow very
efficient (speed-wise and memory-wise) computations especially applicable to
resource-constrained devices.

Among the most resource-consuming operation in ECC implementations is
the scalar multiplication. A secret scalar k is multiplied with a point PPP on an
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elliptic curve E(Fq) resulting in the point QQQ. This operation is used in many
cryptographic primitives which rely on the intractability of solving the elliptic
curve discrete logarithm problem (ECDLP), i.e. finding the discrete logarithm
for QQQ with respect to the elliptic curve point PPP .

In view of embedded systems, where memory and computational power are
scarce resources, there exist many proposals to improve the scalar multiplica-
tion. One of the most prominent methods is the so-called Montgomery lad-
der [28]. First, it allows one to omit the y-coordinate of the involved elliptic curve
points which lowers the memory requirements for low-resource designs. Second,
it implicitly provides resistance against certain implementation attacks [16,20,24]
which encourages its use in security-related applications.

Another improvement was proposed by Meloni [25] in 2007. He showed that
points on an elliptic curve can be added quickly when they share a common co-
ordinate, e.g. the projective Z-coordinate. Meloni applied the formula to specific
Euclid addition chains to perform a scalar multiplication. However, the obser-
vation not only improves the speed of ECC implementations but reduces even
the memory requirements by one coordinate as practically shown by Lee and
Verbauwhede [22] over binary fields.

Recently, Goundar et al. [10] extended the idea of Meloni and provided
formulæ over prime fields that can be even applied to classical binary scalar
multiplication methods. They introduced a new operation (conjugate co-Z addi-
tion) that can be used together with the addition formula of Meloni to perform
fast computations with points sharing the same Z-coordinate (co-Z arithmetic).
However, the method has not been applied to the x-coordinate only version of
the Montgomery ladder so far.

In this paper, we present new formulæ for elliptic curves over finite fields of
characteristic q = 2, 3 that apply the co-Z method to the Montgomery ladder
scalar multiplication. The given formulæ perform a differential addition-and-
doubling operation of elliptic curve points using x-coordinates only, i.e. two
projective X-coordinates of the involved points and a common Z-coordinate.
It shows that the formulæ lead to very efficient scalar multiplications especially
suitable to low-resource devices. In addition, we consider the practical constraint
imposed by the implementations of both the modular multiplication and the
modular squaring which may not support the result to be written in-place, that
is overwriting one of the operands. This constraint is common in practice since it
allows to save memory with many efficient implementations of those operations
as discussed later and it can be imposed by the hardware accelerator when one
is available. Unfortunately this typically implies the need of more memory than
claimed in order to implement formulæ which have been designed with in-place
operations. To our best knowledge, it is indeed the first paper that provides
formulæ that use out-of-place operations guaranteing that no additional memory
is necessary even when the finite-field arithmetic computations do not support
in-place results. Our outcomes improve the state of the art in low-resource ECC
implementations in terms of both memory and speed.
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The rest of this paper is organized as follows. In Section 2, we briefly introduce
elliptic curve cryptography. Section 3 describes different scalar-multiplication
methods including the Montgomery ladder. Section 4 presents new formulæ for
(differential) addition-and-doubling and projective coordinate recovery in co-Z
coordinates. Section 5 discusses the difference between in-place versus out-of-
place formulæ for ECC. In Section 6, the results are discussed in terms of security
and performance. Conclusions are drawn in Section 7.

2 Preliminaries

This section introduces some elementary background on elliptic curves. We refer
the reader to e.g. [11] for further details.

An elliptic curve E over a finite field Fq of characteristic = 2, 3 can be defined
by the short Weierstraß equation

E : y2 = x3 + ax + b ,

where a, b ∈ Fq are curve parameters satisfying 4a3+27b2 = 0 and (x, y) ∈ Fq×Fq

represents a point on the elliptic curve. The set of all points on the elliptic curve
together with the point at infinity OOO is denoted by E(Fq). It forms an (additively
written) abelian group with the point at infinity OOO as the identity element.

Scalar multiplication. The main operation in elliptic curve cryptography
(ECC) is the scalar multiplication, QQQ = kPPP , where PPP and QQQ are points on
the curve E and k is a scalar such that 0 ≤ k < ordE(PPP ). The security of ECC
primitives relies on the intractability to solve the elliptic curve discrete logarithm
problem (ECDLP), i.e. determining k from PPP and QQQ.

Point representation. The scalar multiplication uses two basic operations that
are addition and doubling of points. The points can be represented in several
coordinate systems. Points in affine coordinates are represented by two coordi-
nates x and y but involve the computation of inversions in Fq which are relatively
expensive operations. Due to these reasons, most implementations represent the
points in projective coordinates. In homogeneous projective coordinates, each
affine point (x, y) is represented by three coordinates (X, Y, Z) where x = X/Z
and y = Y/Z. Another coordinate system that is widely used in practice is
the Jacobian projective coordinate system. There, the relation x = X/Z2 and
y = Y/Z3 is used to represent the points. The curve equation in Jacobian coor-
dinates becomes E : Y 2 = X3 + aXZ4 + bZ6.

Point addition. Let P1P1P1 = (X1, Y1, Z1) and P2P2P2 = (X2, Y2, 1) be two points
represented in Jacobian projective coordinates on the curve. Then the sum P1P1P1 +
P2P2P2 = (X3, Y3, Z3) (also known as mixed sum since Z2 = 1), is given by⎧⎪⎨⎪⎩

X3 = (Y2Z1
3 − Y1)2 − (X2Z1

2 −X1)2(X1 + X2Z
2
1 )

Y3 = (Y2Z1
3 − Y1)(X1(X2Z1

2 −X1)2 −X3)− Y1(X2Z1
2 −X1)3

Z3 = (X2Z1
2 −X1)Z1

. (1)
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The formula for point doubling, 2P1P1P1 = (X4, Y4, Z4), is given by⎧⎪⎨⎪⎩
X4 = (3X1

2 + aZ1
4)2 − 8X1Y1

2

Y4 = (3X1
2 + aZ1

4)(4X1Y1
2 −X3)− 8Y1

4

Z4 = 2Y1Z1

. (2)

To evaluate the costs of the given formulæ we denote by M the cost of a field
multiplication and by S the cost of a field squaring. For multiplications with
fixed parameters such as the curve parameters, we use the notation M� (e.g. Ma,
Mb). Additions and subtractions are later assumed to have the same complexity
and are represented by add.

Evaluating formulæ (1) and (2) in terms of computational cost shows that
a point addition needs 7M + 4S if Z2 = 1 [11]. Point doubling can be per-
formed with 4M + 4S or 1M + 8S + 1Ma. For comparability reasons, we use the
same performance metric as in the dedicated website Explicit Formulas Database
(EFD) [6].

Co-Z arithmetic. In 2007, Meloni proposed new point addition and doubling
formulæ in Jacobian coordinates where the two involved points share the same
Z-coordinate [25]. We refer to this coordinate system as the co-Z coordinate
system. When the two points satisfy this condition, the addition of two points can
be evaluated much faster than an addition in Jacobian coordinates (actually even
faster than a doubling operation in Jacobian coordinates). Let P1P1P1 = (X1, Y1, Z)
and P2P2P2 = (X2, Y2, Z) the two points that share the same Z-coordinate, then the
sum of the two points, P1P1P1 + P2P2P2 = P3P3P3 = (X3, Y3, Z3), is given by⎧⎪⎨⎪⎩

X3 = (Y2 − Y1)2 −X2(X2 −X1)2 −X1(X2 −X1)2

Y3 = (Y2 − Y1)[X1(X2 −X1)2 −X3]− Y1(X2 −X1)3

Z3 = Z(X2 −X1)
. (3)

This addition only requires 5M + 2S. As observed in [25], the given formulæ
have the advantage of providing an equivalent representation P ′

1P ′
1P ′
1 of the point

P1P1P1 = (X1, Y1, Z) such that the points P1′P1′P1′ and P3P3P3 have the same Z-coordinate
value. Namely P ′

1P ′
1P ′
1 = (X1λ

2, Y1λ
3, Zλ) with λ = (X2−X1), is calculated without

any additional cost since the coordinates are already computed as intermediate
values in the addition formula (cf. Eq. (3)).

3 Scalar Multiplication Methods

There exist several algorithms to perform the scalar multiplication.
One of the most common methods is the double-and-add algorithm (a.k.a. left-

to-right binary method), shown in Algorithm 1. It takes the binary representation
of the scalar k as an input and processes the bits from left to right. A point
doubling operation is performed at every iteration whereas point addition is
only performed if the bit value, ki, is 1.
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Algorithm 1. Double-and-add
Input: PPP ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N, with kn−1 �= 0
Output: QQQ = kPPP

1: R0R0R0 ← PPP
2: for i = n − 2 downto 0 do
3: R0R0R0 ← 2R0R0R0

4: if (ki = 1) then R0R0R0 ← R0R0R0 + PPP

5: end for
6: return R0R0R0

The method has the advantage that it provides a very efficient point multi-
plication but suffers from that it may leak information about the secret scalar
k via physical side-channels [20,24]. In Simple Power Analysis (SPA) attacks,
an adversary tries to recover the scalar k by measuring the power-consumption
traces during scalar multiplication. If a difference between the operations of point
addition and point doubling can be observed in the traces, then the scalar k is
revealed bit-by-bit.

In [4], Coron proposes a simple countermeasure that involves a dummy point
addition operation if the scalar bit is set to 0. The so-called double-and-add al-
ways method actually prevents SPA attacks but becomes vulnerable to safe-error
attacks, as shown in [35]. A fault can be induced during the computation and an
adversary can check whether the final result is correct or not. If the fault is in-
jected during a dummy addition, the result is still correct and the corresponding
bit of the scalar is 0. If the result is incorrect, the scalar bit is 1.

Another scalar-multiplication method that is commonly used is known as the
Montgomery ladder [28] and is depicted in Algorithm 2. The method presents
several advantages for cryptographic applications.

Algorithm 2. Montgomery ladder
Input: PPP ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N, with kn−1 �= 0
Output: QQQ = kPPP

1: R0R0R0 ← PPP ; R1R1R1 ← 2PPP
2: for i = n − 2 downto 0 do
3: b ← ki; R1−bR1−bR1−b ← R1−bR1−bR1−b + RbRbRb

4: RbRbRb ← 2RbRbRb

5: end for
6: return R0R0R0

First, the Montgomery ladder implicitly offers security against implementa-
tion attacks [16]. Since it performs the same curve operations in every loop
iteration, an attacker cannot distinguish individual bits of the secret scalar by
simply observing a side-channel trace and so prevents SPA-type attacks. Fur-
thermore, the Montgomery ladder has a very regular structure and does not use
dummy operations. This prevents fault-injection based safe-error attacks.
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Second, group operations can be performed without the need of y-coordinates.
Montgomery originally applied the technique to special (Montgomery form) el-
liptic curves as a way to speed up the elliptic curve factoring method. The
technique was subsequently generalized to Weierstraß form curves [2,7,15,14].

Let P1P1P1 = (x1, y1) and P2P2P2 = (x2, y2) be two points on the elliptic curve E :
y2 = x3 + ax + b and xD the x-coordinate of their difference DDD = P2P2P2−P1P1P1. Then
the x-coordinate of the sum P1P1P1 + P2P2P2, say x3, is given by

x3 =
2(x1 + x2)(x1x2 + a) + 4b

(x1 − x2)2
− xD . (4)

Alternatively, the x-coordinate of P1P1P1 + P2P2P2 can be obtained in a multiplicative
way as

x3 =
−4b(x1 + x2)(x1x2 − a)2

xD(x1 − x2)2
. (4’)

The x-coordinate of 2P2P2P2, say x4, can be expressed from the x-coordinate of
P2P2P2 as

x4 =
(x2

2 − a)2 − 8bx2

4(x2
3 + ax2 + b)

. (5)

It is worth noticing that the Montgomery ladder keeps invariant the difference
of the involved points throughout the entire scalar multiplication. Indeed, from
the description in Algorithm 2, it is easily seen that R1R1R1−R0R0R0 = (R1R1R1 +R0R0R0)− 2R0R0R0

when b = 0, and R1R1R1 − R0R0R0 = 2R1R1R1 − (R0R0R0 + R1R1R1) when b = 1. Hence, DDD :=
R1R1R1 −R0R0R0 = PPP . Consequently, R1R1R1 will contain the value of (k + 1)PPP at the end of
the algorithm. When the calculation is performed using x-coordinates only, this
allows one to recover the y-coordinate of kPPP . Letting (x1, y1) the coordinates of
QQQ = kPPP , (xD, yD) the coordinates of PPP and x2 the x-coordinate of (k +1)PPP , one
has

y1 =
2b + (a + xDx1)(xD + x1)− x2(xD − x1)2

2yD
. (6)

This is useful for cryptographic schemes needing the y-coordinate of the resulting
point; for example, in the verification of an ECDSA digital signature [29].

4 New x-Coordinate Only Formulæ

This section presents new x-coordinate only formulæ for Weierstraß elliptic
curves. We first provide the formulæ for addition and doubling of points in the
co-Z coordinate representation. Second, we give formulæ for efficient differential
addition-and-doubling in the same coordinate representation. Third, we discuss
optimizations when applying dynamic ECC parameters and give appropriate
formulæ to recover the full coordinates of the output point.

Let P1P1P1 = (X1, Y1, Z) and P2P2P2 = (X2, Y2, Z) be two points on the Weier-
straß elliptic curve E : Y 2Z = X3 + aXZ2 + bZ3 in homogeneous1 projective

1 Previous works considered Jacobian coordinates when applying co-Z arithmetic on
elliptic curves over fields of characteristic �= 2, 3.
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coordinates that share the same Z-coordinate. Then, the x-coordinate of the
addition of the two points, x(P1P1P1 + P2P2P2) = (X3, Z3), can be evaluated as{

X3 = 2(X1 + X2)(X1X2 + aZ2) + 4bZ3 − xDZ(X1 −X2)2

Z3 = Z(X1 −X2)2
, (7)

where DDD = P2P2P2 − P1P1P1 = (xD, yD) is the difference of the points P1P1P1 and P2P2P2 in
affine coordinates. Note that the formula performs the point addition with
x-coordinates only, thus no Y -coordinate is used. The point addition needs
5M + 2S + 1Ma + 1M4b to get the resulting x-coordinate x(P1P1P1 + P2P2P2).

The x-coordinate of a point doubling operation, x(2P2P2P2) = (X4, Z4), needs
4M + 3S + 1Ma + 1M4b and can be evaluated as{

X4 = (X2
2 − aZ2)2 − 8bZ3X2

Z4 = Z[4X2(X2
2 + aZ2) + 4bZ3]

. (8)

Applying formulæ (7) and (8) to the Montgomery ladder needs three addi-
tional multiplications to project the resulting x-coordinates x(R0R0R0) = (X3, Z3)
and x(R1R1R1) = (X4, Z4) to a common Z-coordinate. An equivalent representation
for R0R0R0 and R1R1R1 can be obtained by evaluating

X ′
1 = X3Z4 , X ′

2 = X4Z3 , and Z ′ = Z3Z4 ,

resulting in R0R0R0
∼= (X ′

1, Z
′) and R1R1R1

∼= (X ′
2, Z

′) sharing the same Z-coordinate.
The total complexity for one Montgomery ladder loop iteration is therefore 12M+
5S + 2Ma + 2M4b. In the following, we show how to reduce the complexity for
differential addition-and-doubling to only 9M + 5S + 1Ma + 1M4b.

4.1 Differential Addition-And-Doubling

By combining the projective formulæ given by Eqs. (7) and (8) and class equiv-
alences to have the same Z-coordinate, we obtain⎧⎪⎨⎪⎩

X ′
1 = V [2(X1 + X2)(X1X2 + aZ2) + 4bZ3 − xDZU ]

X ′
2 = U [(X2

2 − aZ2)2 − 8bZ3X2]
Z ′ = UV Z

, (9)

where U = (X1 −X2)2 and V = 4X2(X2
2 + aZ2) + 4bZ3. The points x(R0R0R0) =

(X1, Z) and x(R1R1R1) = (X2, Z) get added and doubled resulting in the points
x(R′

0R′
0R′
0) = (X ′

1, Z
′) and x(R′

1R′
1R′
1) = (X ′

2, Z
′). The formula reduces the complexity to

10M + 4S + 1Ma + 1M4b.
This can be further optimized by replacing the multiplication X1X2 involved

in the previous formula with the equivalent expression (X1
2 + X2

2 − (X1 −
X2)2)/2. The term can be multiplied with the leading factor 2 so that we finally
obtain⎧⎪⎨⎪⎩

X ′
1 = V [(X1 + X2)(X1

2 + X2
2 − U + 2aZ2) + 4bZ3 − xDZU ]

X ′
2 = U [(X2

2 − aZ2)2 − 8bZ3X2]
Z ′ = UV Z

. (10)
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This latter formula can be evaluated with 9M + 5S + 1Ma + 1M4b. Note that
the formula overwrites the input coordinates X1, X2, and Z with the output
variables X ′

1, X ′
2, and Z ′. This avoids additional memory allocations for the

output variables and avoids variable copying since the output variables serve as
input variables for the next Montgomery loop iteration. Furthermore, the result-
ing points x(R0R0R0) = (X ′

1, Z
′) and x(R1R1R1) = (X ′

2, Z
′) share the same Z-coordinate

and do not need any further updates. A detailed implementation is provided in
Algorithm 5 (Appendix A).

4.2 (X, Y, Z) Recovery

We now give the formula for the recovery of the full projective coordinates for
output point QQQ = kPPP , from the x-coordinates R0R0R0 = (X1, Z) and R1R1R1 = (X2, Z) in
co-Z representation available in memory at the end of the Montgomery ladder.
First, we transform Eq. (6) from affine to projective coordinates and set xi =
Xi/Z and yi = Yi/Z (i ∈ {1, 2}). Then, we can calculate the representation of
output point QQQ in the projective coordinates QQQ ∼= (X ′

1, Y
′
1 , Z ′

1) with⎧⎪⎨⎪⎩
X ′

1 = DX1A

Y ′
1 = 2[(CX1 + aA)(C + X1)−X2(C −X1)2] + 4bB

Z ′
1 = DB

, (11)

where A = Z2, B = ZA, C = xDZ, D = 4yD. X1, X2, and Z are the coordi-
nates of the elliptic curve points after scalar multiplication and DDD = (xD, yD)
represents the invariant of the Montgomery ladder in affine coordinates (namely,
input point PPP ). The given formula needs 8M + 2S + 1Ma + 1M4b. The affine co-
ordinates of output point QQQ can then be calculated by one inversion and two
multiplications, i.e., QQQ = (x1, y1) = (X ′

1 · Z ′
1
−1

, Y ′
1 · Z ′

1
−1). See Algorithm 7

(Appendix A) for a detailed implementation.

4.3 Optimizations for Dynamic ECC Parameters

If the curve parameters such as a, b are not fixed by the implementation and are
chosen dynamically, the formula given in Eq. (10) can be optimized. In this case,
the curve parameters have to be handled in RAM and their memory allocation
can therefore be re-used as working space as soon as they are not needed. The
following formulæ allows to save one register compared to the implementation
of Eq. (10) with a and b permanently occupying a full register in RAM. By
initializing three additional coordinates Ta = aZ2, Tb = 4bZ3, and TD = xDZ,
we can evaluate⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

T ′
D = TDW

T ′
a = TaW 2

T ′
b = TbW

3

X ′
1 = V [(X1 + X2)(X1

2 + X2
2 − U + 2Ta) + Tb]− T ′

D

X ′
2 = U [(X2

2 − Ta)2 − 2X2Tb]

(12)
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to perform a differential addition-and-doubling operation, where U = (X1−X2)2,
V = 4X2(X2

2 +Ta)+Tb, and W = UV . The given formula reduces the memory
requirements by one working register and increases the performance by 1M if
the relation Ma = Mb = 1M is given (however, in practice, one has usually the
relation Ma +Mb = 1M; see § 6.2) . Note that the formula does not involve either
a, b, or xD nor an explicit Z-coordinate throughout the scalar multiplication.
See Algorithm 6 (Appendix A) for a detailed implementation.

The full coordinates (X ′
1, Y

′
1 , Z ′

1) can be recovered with 10M+3S by evaluating⎧⎪⎨⎪⎩
X ′

1 = 4yDxDTD
2X1

Y ′
1 = xD

3[Tb + 2(TDX1 + Ta)(X1 + TD)− 2X2(X1 − TD)2]
Z ′

1 = 4yDTD
3

. (13)

See Algorithm 8 (Appendix A) for a detailed implementation.

5 In-Place vs. Out-of-Place Formulæ

Most descriptions of the elliptic-curve operations presented in the literature have
claims of memory requirements and performances that assume that the finite-
field operations can be performed in-place. That means that one source operand
of the operation may be overwritten by the resulting value during the execution,
e.g.

R1 ← R1 ◦R2 ,

where R1 ∈ Fp and R2 ∈ Fp are variables that store the source operands and
R1 is overwritten by the resulting value after execution of an operation ◦. In
contrast, operations that do not overwrite the input operands are referred to as
out-of-place operations, e.g.

R3 ← R1 ◦R2 ,

where R3 ∈ Fp is an additional variable that stores the result of the operation.
In general, there exist several ways to implement modular operations in soft-

ware and hardware. Most implementations use multi-precision arithmetic to pro-
cess the large integer operands. That means that each operand is represented as a
multiple-word data structure, i.e. a = (at−1, . . . , a1, a0) and b = (bt−1, . . . , b1, b0),
where t denotes the number of words. A 160-bit addition operation, for instance,
that runs on a 16-bit processor, performs therefore ten additions by loading the
input operands from memory, adding the two operands, and storing the result
back to the memory. A subtraction is done in the same way, performing ma-
chine word subtractions instead of additions. However, during the computation
both operations process each word of the operands sequentially and can thus
perform the operation in-place at no cost in terms of memory or computational
efficiency [11].

In contrast, modular multiplication (and squaring) can be implemented in
several ways. Basically, we can distinguish between separated and integrated
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modular multiplication [19,18]. Separated modular multiplications perform the
multiplication first and apply the reduction afterwards. In this approach, the
result of the multiplication is stored in a temporary variable Rm which is then
reduced in a separated step, e.g.

Rm ← R1 ×R2,

R1 ← Rm (mod p).

This approach needs additional memory to store the temporary variable Rm ∈
[0, 22Wt), where W denotes the number of bits of a word (i.e. typically 8, 16, 32,
or 64 bits).

The integrated (or interleaved) modular multiplication approach alternates
between multiplication and reduction. There, partial products get reduced dur-
ing the multiplication which avoids storing the double-sized result Rm and thus
reduces the memory requirements significantly to the size of about the modulus
p ∈ [0, 2Wt) [1,33,34,19,12,21]. However, for both multiplication types, the input
operands cannot be overwritten with the resulting words because they are used
not only once but multiple times throughout the algorithm. Therefore, imple-
mentations that allow in-place multiplications (and squarings) may need either
an extra buffer to store the intermediate result 2Wt ≤ Rm < 22Wt or save the
input operand to be overwritten during the computation. Formulæ for point op-
erations in elliptic curves that involve in-place operations are thus very likely to
require more memory in practice than claimed.

In this work, we propose out-of-place formulæ that use different source and
destination variables to perform the modular multiplication and squaring op-
erations. This guarantees that no additional memory is needed to perform the
computation neither for software nor hardware implementations and that our
formulæ will therefore meet our claims in all contexts.

6 Discussion

6.1 Security Analysis

The resistance to side-channel attacks and fault attacks is essential for the imple-
mentation of cryptographic applications in embedded device. The given formulæ
allow the use of traditional countermeasures against such attacks without disad-
vantages. As described in Section 3, the Montgomery ladder is well suited to the
implementation of the scalar-multiplication method since it is resistant against
SPA attacks [20,24] as well as safe-error attacks [35].

In addition, there exist several proposals to protect the Montgomery ladder
against statistical attacks such as Differential Power Analysis (DPA) [20,24]. One
cheap but effective countermeasure against these attacks is the use of Random-
ized Projective Coordinates (RPC) as proposed by Coron [4]. In our context, this
countermeasure can be implemented by randomizing the intermediate points of
the Montgomery ladder since they are represented in projective-coordinate repre-
sentation as seen in Section 4. This can be done in Algorithm 2 at the cost of only



180 M. Hutter, M. Joye, and Y. Sierra

two multiplications by randomizing the initial coordinates of the points R0R0R0 and
R1R1R1 which are represented by the triplet {X1, X2, Z} such that x(R0R0R0) = (X1, Z)
and x(R1R1R1) = (X2, Z). Then, given a random value λ, the point x(PPP ) = (xP , 1)
is randomized to x(PPP ′) = (λxP , λ) for the initialization of x(R0R0R0) and x(R1R1R1) as
follows: ⎧⎪⎨⎪⎩

x(R1R1R1) ← (λxP , λ) = x(PPP ′)
x(R1R1R1) ← doubling(R1R1R1) = x(2PPP ′)
x(R0R0R0) ← (ZxP , Z) = x(PPP ′)

. (14)

This effectively randomizes every intermediate value during scalar multipli-
cation and makes therefore DPA attacks ineffective. Note that the doubling can
computed using the differential algorithms 4, 5, and 6 to save the need for a
dedicated function.

In order to thwart fault injections during the scalar multiplication [32,31] a
countermeasure that checks the resulting point can be applied. Checking that
x3 +ax+ b is a square may seem conceivable, unfortunately that may not detect
if the point belongs to the twist curve instead of the original curve and would
leave the implementation vulnerable to attacks such as the one introduced by
Fouque et al. [8]. Another check consists in verifying that the coordinates of
the resulting point satisfy the curve equation, in which case the recovery of
the y-coordinate is required. However that can be done in an efficient way with
projective coordinates i.e. Z(Y 2−bZ2) = X(X2+aZ2) [5]. This countermeasure
effectively protects against fault attacks on the Montgomery ladder even when
implemented with x-coordinate only formulæ [8].

Algorithm 3 shows the proposed Montgomery ladder in projective co-Z coordi-
nate system using RPC [4] and Point-Validity Check [5]. AddDblCoZ denotes the
implemented differential addition-and-doubling operation using Algorithms 4, 5,
or 6. RecoverFullCoordinatesCoZ recovers the coordinates using Algorithm 7
or 8.

Algorithm 3. Montgomery ladder in projective co-Z coordinate system using
RPC [4] and Point-Validity Check [5].
Input: PPP ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N, with kn−1 �= 0
Output: QQQ = kPPP

1: {X1, X2, Z} ← AddDblCoZ({0, λxP , λ})
2: X1 ← xP · Z
3: for i = n − 2 downto 0 do
4: b ← ki;
5: {X2−b, X1+b, Z} ← AddDblCoZ({X2−b, X1+b, Z})
6: end for
7: {X, Y, Z} ← RecoverFullCoordinatesCoZ({X1, X2, Z})
8: Z(Y 2 − bZ2)

?
= X(X2 + aZ2)

9: return {X, Y, Z}
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Table 1. Complexity of scalar multiplications per bit of scalar

Method Costsa M/bitb M/bitc

Algorithm 6 10M + 5S + 13add 14 17.9
Algorithm5 9M + 5S + 1Ma + 1M4b + 14add 14 18.8
Izu et al. [14] 10M + 4S + 2Ma + 1Mb + 18add 14.2 20.8
Goundar et al. [10] 8M + 7S + 3Ma + 1Mb + 18add 14.6 21.8
Algorithm 4 11M + 4S + 1Ma + 1M4b + 14add 15.2 20.0
Fischer et al. [7] 10M + 5S + 2Ma + 2Mb + 14add 16 21.4

a The explicit formulæ are given in AppendixA.
b Mb = 1M ; S = 0.8M ; 1Ma � 0 ; 1add � 0 (negligible)
c Mb = 1M ; S = 0.8M ; 1Ma = 2add ; 1add = 0.3M

6.2 Performance Analysis

We now compare our formulæ with existing differential addition-and-doubling
formulæ. Comparing one formula with another is not straightforward because the
complexity ratio of the field-arithmetic operations involved may vary according
to the underlying implementation as well as the usage context. Hence we provide
the global complexity of each algorithm along with figures corresponding to some
assumptions that are made based on on-the-field experience and previous works.

Thus, we first adopt the common assumption that the squaring operation is
faster than a multiplication with the weighting 1S = 0.8M [11,6]. The cost of
additions and subtractions are usually neglected when evaluating the complexity
of the formulæ. However, according to several previous works [23,26,9] it may
be relevant to take these operations into account since in practice they have re-
ported ratios from 1add = 0.1M up to 1add = 0.3M. Hence, in the following we
will consider both cases, by first considering additions negligible and then the
worst case where 1add = 0.3M. Besides, a special case can also be made for the
multiplications involving the curve parameters and especially the parameter a
because several standardized curves have a set to −3. In any case, this assump-
tion can be applied without loss of generality because a curve isomorphism can
be used to reduce a to a small relative integer [13, §§A.9.5 and A.10.4] (see also
[3]). Subsequently, we will assume that a multiplication with a takes 2 additions,
i.e. 1Ma = 2add. Rescaling a curve to reduce the value of a also modifies the
value b in a way that it is unlikely in the general case to have both a and b
small. Therefore a multiplication with b (or any fixed pre-computed multiple
e.g. 4b denoted M4b) is considered as a regular modular multiplication of cost
Mb = 1M.

In the following, we compare different low-memory scalar multiplication for-
mulæ first sorted by performances in Table 1 and then sorted by memory re-
quirements in Table 2.

Table 1 shows the efficiency of the formulæ we proposed in Section 4. Al-
gorithm 5 is more efficient than any previous works found in literature since
1S ≥ 0.5M [26, §§ 14.18]. In practice, Algorithm 6 is also more efficient because
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Table 2. Memory requirements of scalar multiplications

Method
Working In-placea

Constants Total
registers memory

Algorithm 4 7 reg. - {xD , a, 4b} 10 reg.
Izu et al. [14] 7 reg. +1 reg. {xD, a, b} 11 reg.
Goundar et al. [10] 7 reg. +1 reg. {xD, a, b} 11 reg.

Algorithm 5 8 reg. - {xD , a, 4b} 11 reg.
Fischer et al. [7] 8 reg. +1 reg. {xD, a, 4b} 12 reg.

Algorithm 6 10 reg. - - 10 reg.

a In-place operations require additional memory to perform multiple-precision arith-
metic operations (see Section 5).

rescaling general curves implies at best 1Ma + 1Mb ≥ 1M. The performance im-
provement is significant (up to 14% less multiplications per bit) when adopting
the usual assumption that 1S ≥ 0.8M (cf [11,6]) and 1Mb = 1M. One can also re-
mark that the benefits of our approach increases when the squaring is performed
using the multiplication instead of a dedicated implementation (for program or
hardware saving) as well as when the secondary operations such as additions
and subtractions are not negligible (as observed in practice).

Table 2 lists the memory requirements of the scalar multiplication methods.
For constrained devices where the elliptic-curve parameters xD, a, b or 4b are
hard-coded or stored in read-only memory, Algorithm 4 provides the lowest mem-
ory requirements. It allows to implement the scalar multiplication with only 7
working registers combined with the memory gain offered by the implementation
of out-of-place field operations as described in Section 5.

In a context where the curve parameters cannot be set during the design-time
of the device or if they can not be processed directly from the read-only memory
as it is in the case with most cryptographic accelerators, Algorithm 6 becomes
equivalent in terms of memory requirement to Algorithm 4 while being faster as
shown in Table 1.

7 Conclusion

In this paper, we presented new formulæ for fast and memory-wise scalar multipli-
cation on elliptic curves over prime fields. The proposed formulæ use out-of-place
operations, namely the source and destination variables of finite-field
multiplications are always different. This guarantees that neither additional mem-
ory is needed nor additional operations have to be executed to perform multiple-
precision arithmetic operations in both software or hardware implementations.
Furthermore, the given formulæ outperform existing solutions by using a co-Z
coordinate representation. The formulæ can be applied on general elliptic curves
and allow the integration of conventional countermeasures against implementa-
tion attacks. They can be efficiently applied in low-resource implementations of
RFIDs, smart cards, and other embedded systems.
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14. Izu, T., Möller, B., Takagi, T.: Improved elliptic curve multiplication methods resis-
tant against side channel attacks. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT
2002. LNCS, vol. 2551, pp. 296–313. Springer, Heidelberg (2002)

15. Izu, T., Takagi, T.: A fast parallel elliptic curve multiplication resistant against side
channel attacks. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274,
pp. 280–296. Springer, Heidelberg (2002)

16. Joye, M., Yen, S.-M.: The Montgomery powering ladder. In: Kaliski Jr., B.S., Koç,
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18. Koç, Ç.K.: RSA Hardware Implementation. Technical report, RSA Laboratories,
RSA Data Security, Inc. 100 Marine Parkway, Suite 500 Redwood City, CA 94065-
1031 (1995)
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A Appendix

In the following, the explicit formulæ for differential addition-and-doubling and
full projective coordinate recovery in co-Z coordinates are given. Algorithm4
gives the formulæ for differential addition-and-doubling using 11M+4S+14add+
1Ma + 1M4b and 7 + {xD, a, 4b} registers. Algorithm5 show the formulæ using
9M+5S+14add+1Ma+1M4b and 8+{xD, a, 4b} registers. Algorithm 6 gives the
formulae using 10M + 5S + 13add and 10 registers (without involving curve pa-
rameters). The recovery of the full projective coordinates is given in Algorithm7
and Algorithm 8. All given formulæ provide the out-of-place property so that
input operands are not overwritten by output operands of squaring and multi-
plication operations. Furthermore, the elliptic curve parameter b is always used
in a quadruple representation so that it can be pre-computed and pre-stored
as 4b. In addition, all formulae update the input variables with the resulting
values using the same memory location. This avoids memory copies or pointer
manipulations in hardware or software implementations. Finite field operations
are denoted by × for multiplication, ·2 for squaring, + for addition, and − for
subtraction.

Algorithm 4. Out-of-place differential addition-and-doubling in projective co-
Z coordinate system using 11M + 4S + 14add + 1Ma + 1M4b and 7 + {xD, a, 4b}
registers.
Require: X1, X2, Z, xD, a, 4b
Ensure: X1, X2, Z

1:

1. R1 ← X1 × X2

2. R3 ← Z2

3. R4 ← Z × R3

4. R2 ← a × R3

5. R1 ← R1 + R2

6. X1 ← X1 + X2

7. R3 ← X1 × R1

8. X1 ← X1 − X2

9. X1 ← X1 − X2

10. R1 ← 4b × R4

11. R4 ← X1
2

12. X1 ← R4 × Z
13. R3 ← R3 + R3

14. R3 ← R3 + R1

15. Z ← X2 × R4

16. R4 ← R1 × X2

17. R1 ← X2
2

18. R2 ← R1 + R2

19. R1 ← R1 + R1

20. X2 ← xD × X1

21. R3 ← R3 − X2

22. X2 ← R1 × R2

23. X2 ← X2 + X2

24. R2 ← R2 − R1

25. R1 ← R4 + R4

26. R4 ← X2 + R4

27. X2 ← R2
2

28. R1 ← X2 − R1

29. X2 ← R1 × Z
30. Z ← X1 × R4

31. X1 ← R3 × R4

2: return (X1, X2, Z)
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Algorithm 5. Out-of-place differential addition-and-doubling in projective co-
Z coordinate system using 9M + 5S + 14add + 1Ma + 1M4b and 8 + {xD, a, 4b}
registers.
Require: X1, X2, Z, xD, a, 4b
Ensure: X1, X2, Z

1:

1. R2 ← Z2

2. R3 ← a × R2

3. R1 ← Z × R2

4. R2 ← 4b × R1

5. R1 ← X2
2

6. R5 ← R1 − R3

7. R4 ← R5
2

8. R1 ← R1 + R3

9. R5 ← X2 × R1

10. R5 ← R5 + R5

11. R5 ← R5 + R5

12. R5 ← R5 + R2

13. R1 ← R1 + R3

14. R3 ← X1
2

15. R1 ← R1 + R3

16. X1 ← X1 − X2

17. X2 ← X2 + X2

18. R3 ← X2 × R2

19. R4 ← R4 − R3

20. R3 ← X1
2

21. R1 ← R1 − R3

22. X1 ← X1 + X2

23. X2 ← X1 × R1

24. X2 ← X2 + R2

25. R2 ← Z × R3

26. Z ← xD × R2

27. X2 ← X2 − Z
28. X1 ← R5 × X2

29. X2 ← R3 × R4

30. Z ← R2 × R5

2: return (X1, X2, Z)

Algorithm 6. Out-of-place differential addition-and-doubling in projective co-Z
coordinate system using 10M + 5S + 13add and 10 registers.
Require: X1, X2, TD = xDZ, Ta = aZ2, Tb = 4bZ3

Ensure: X1, X2, TD, Ta, Tb

1:

1. R2 ← X1 − X2

2. R1 ← R2
2

3. R2 ← X2
2

4. R3 ← R2 − Ta

5. R4 ← R2
3

6. R5 ← X2 + X2

7. R3 ← R5 × Tb

8. R4 ← R4 − R3

9. R5 ← R5 + R5

10. R2 ← R2 + Ta

11. R3 ← R5 × R2

12. R3 ← R3 + Tb

13. R5 ← X1 + X2

14. R2 ← R2 + Ta

15. R2 ← R2 − R1

16. X2 ← X1
2

17. R2 ← R2 + X2

18. X2 ← R5 × R2

19. X2 ← X2 + Tb

20. X1 ← R3 × X2

21. X ′
2 ← R1 × R4

22. R2 ← R1 × R3

23. R3 ← R2 × Tb

24. R4 ← R2
2

25. R1 ← TD × R2

26. R2 ← Ta × R4

27. Tb ← R3 × R4

28. X1 ← X1 − R1

29. TD ← R1

30. Ta ← R2

2: return (X1, X2, TD, Ta, Tb)
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Algorithm 7. Out-of-place (X, Y, Z)-recovery in projective co-Z coordinate sys-
tem using 8M + 2S + 8add + 1Ma + 1M4b and 7 + {xD, yD, a, 4b} registers.
Require: X1, X2, Z, xD, yD, a, 4b
Ensure: X1, X2, Z

1:

1. R1 ← xD × Z
2. R2 ← X1 − R1

3. R3 ← R2
2

4. R4 ← R3 × X2

5. R2 ← R1 × X1

6. R1 ← X1 + R1

7. X2 ← Z2

8. R3 ← a × X2

9. R2 ← R2 + R3

10. R3 ← R2 × R1

11. R3 ← R3 − R4

12. R3 ← R3 + R3

13. R1 ← yD + yD

14. R1 ← R1 + R1

15. R2 ← R1 × X1

16. X1 ← R2 × X2

17. R2 ← X2 × Z
18. Z ← R2 × R1

19. R4 ← 4b × R2

20. X2 ← R4 + R3

2: return (X1, X2, Z)

Algorithm 8. Out-of-place (X, Y, Z)-recovery in projective co-Z coordinate sys-
tem using 10M + 3S + 8add and 9 + {xD, yD, a, 4b} registers.
Require: X1, X2, TD = xDZ, Ta = aZ2, Tb = 4bZ3, xD, yD

Ensure: X1, X2, Z

1:

1. R1 ← TD × X1

2. R2 ← R1 + Ta

3. R3 ← X1 + TD

4. R4 ← R2 × R3

5. R3 ← X1 − TD

6. R2 ← R2
3

7. R3 ← R2 × X2

8. R4 ← R4 − R3
9. R4 ← R4 + R4

10. R4 ← R4 + Tb

11. R2 ← T 2
D

12. R3 ← X1 × R2

13. R1 ← xD × R3

14. R3 ← yD + yD

15. R3 ← R3 + R3

16. X1 ← R3 × R1

17. R1 ← R2 × TD

18. Z ← R3 × R1

19. R2 ← x2
D

20. R3 ← R2 × xD

21. X2 ← R3 × R4

2: return (X1, X2, Z)
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Abstract. Small degree extensions of finite fields are commonly used
for cryptographic purposes. For extension fields of degree 2 and 3, the
Karatsuba and Toom Cook formulæ perform a multiplication in the ex-
tension field using 3 and 5 multiplications in the base field, respectively.
For degree 5 extensions, Montgomery has given a method to multiply
two elements in the extension field with 13 base field multiplications.
We propose a faster algorithm, which requires only 9 base field multi-
plications. Our method, based on Newton’s interpolation, uses a larger
number of additions than Montgomery’s one but our implementation of
the two methods shows that for cryptographic sizes, our algorithm is
much faster.

Keywords: finite field arithmetic, implementation, interpolation.

1 Introduction

Efficient implementation of a cryptosystem often relies on high performance
arithmetic in a finite field Fq or over some extension field of small degree. In view
of recent proposals for torus-based cryptography [6] and pairing-based cryptog-
raphy [7], we propose a method to implement the arithmetic of the finite field
Fq5 , if the characteristic of Fq is greater than 11. Our method, based on Newton’s
interpolation method for multiplying two polynomials, is faster than previously
known methods to perform multiplication in such fields.

We begin by enumerating several uses of degree five extension fields in cryptog-
raphy. Firstly, Rubin and Silverberg [16] considered the problem of compression
(i.e. representing elements in a finite field subgroup with fewer bits than classical
algorithms) for extension fields in terms of algebraic tori Tn(Fq) (i.e. the elements
of F∗

qn whose norm is one down to every proper subfield of Fqn/Fq). Rubin and
Silverberg developed the CEILIDH cryptosystem based on T6(Fq). In [6], van
Dijk et al. gave applications based on T30(Fq), such as El Gamal encryption,
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El Gamal signatures and voting schemes. Van Dijk et al. proposed an imple-
mentation of T30(Fq), based on some techniques used to implement CEILIDH.
More precisely, they implemented Fq5 by using a degree 5 subfield of the degree
10 extension Fq[X ]/Φ11(X), with Φ11(X) the eleventh cyclotomic polynomial.
Their operation count shows that multiplication in Fq5 requires 15Mq + 75Aq,
where Mq and Aq denote the costs of multiplication and addition in Fq.

Secondly, we note that several families of elliptic curves having embedding
degree 10, 15, 30 or 35 have been proposed for pairing-based cryptography [7,8].
These families are recommended for implementations at high security levels,
i.e. 192 and 256. On such curves, we need an efficient implementation of an
extension field whose degree is divisible by 5. This is generally done by using
tower fields and thus requires an efficient arithmetic of Fq5 . Moreover, note that
the pairing values can be represented in compressed form by using algebraic tori.
Up to the present, such implementations were done for supersingular curves in
characteristic 3 (see [9]) and for Barreto-Naehrig curves (see [15]). The arithmetic
of T30(Fq) may be used for compressible pairings on curves with embedding
degree 30, for example.

Bodrato [4] proposed a method to speed up the Toom Cook algorithm for
degree 5 extension fields with characteristic 2. In [2], the multiplication in Fq5 is
computed with two applications of the Karatsuba method and requires
14Mq + 34Aq. To the best of our knowledge, the fastest known formula for
computing multiplication over Fq5 with char(Fq) > 5 can be derived from
Montgomery’s method to multiply two five-term polynomials [14]. The
complexity of his method is 13Mq + 62Aq.

We propose a method to perform multiplication over Fq5 which relies on
Newton’s interpolation method. Interpolation methods require performing a
certain number of divisions. Divisions are generally expensive, but we show that
with Newton’s interpolation, it is possible to choose the interpolation values such
that we only need to perform a small number of divisions by small constants.
Our operation count gives a total cost of 9Mq + 137Aq for a multiplication in
Fq5 . In order to apply Montgomery’s method to multiplication in Fq5 , some
extra additions are needed. Even though our algorithm performs a great number
of additions, our method is faster than Montgomery’s one if Mq > 18Aq. Our
method can be adapted for degree 6 and 7 extension fields. Our operation count
shows that we need 11Mq +196Aq for a multiplication in Fq6 and 13Mq +271Aq

for a multiplication in Fq7 .
This paper is organized as follows: in Sect. 2 we describe Montgomery’s

method and estimate the number of additions in Fq that this method performs.
In Sect. 3 we describe an efficient multiplication based on the interpolation for
the field Fp5 . Section 4 describes our implementation and gives experimental re-
sults. In Sect. 5 we show that our idea can be used to optimize the arithmetic of
degree 6 and 7 extension fields. Finally, Sect. 6 shows that our method applies for
implementations in pairing-based and torus-based cryptography, for high levels
of security. In Appendix A we display the complete formula for inversion in Fq5 .
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2 Montgomery’s Approach

Let Fq be a finite field of characteristic greater than 5. Usually, an extension of
degree k of Fq is defined by Fqk = Fq[X ]/ (P (X)Fq[X ]) where P (X) ∈ Fq[X ]
is an irreducible polynomial of degree k. Consequently, elements of Fqk are rep-
resented by polynomials in X , of degree at most k − 1 and with coefficients in
Fq. Montgomery [14] proposed a Karatsuba-like formula for 5-term polynomi-
als. We recall here his method. Let A = a0 + a1X + a2X

2 + a3X
3 + a4X

4 and
B = b0 + b1X + b2X

2 + b3X
3 + b4X

4 in Fq5 with coefficients over Fq.
Montgomery constructs the polynomial C(X) = A(X) · B(X) using the

following formula
C = (a0 + a1X + a2X

2 + a3X
3 + a4X

4)(b0 + b1X + b2X
2 + b3X

3 + b4X
4)

= (a0 + a1 + a2 + a3 + a4)(b0 + b1 + b2 + b3 + b4)(X5 −X4 + X3)
+(a0 − a2 − a3 − a4)(b0 − b2 − b3 − b4)(X6 − 2X5 + 2X4 −X3)
+(a0 + a1 + a2 − a4)(b0 + b1 + b2 − b4)(−X5 + 2X4 − 2X3 + X2)
+(a0 + a1 − a3 − a4)(b0 + b1 − b3 − b4)(X5 − 2X4 + X3)
+(a0 − a2 − a3)(b0 − b2 − b3)(−X6 + 2X5 −X4)
+(a1 + a2 − a4)(b1 + b2 − b4)(−X4 + 2X3 −X2)
+(a3 + a4)(b3 + b4)(X7 −X6 + X4 −X3)
+(a0 + a1)(b0 + b1)(−X5 + X4 −X2 + X)
+(a0 − a4)(b0 − b4)(−X6 + 3X5 − 4X4 + 3X3 −X2)
+a4b4(X8 −X7 + X6 − 2X5 + 3X4 − 3X3 + X2)
+a3b3(−X7 + 2X6 − 2X5 + X4)
+a1b1(X4 − 2X3 + 2X2 −X)
+a0b0(X6 − 3X5 + 3X4 − 2X3 + X2 −X + 1).

The cost of these computations is 13Mq +22Aq. Note that in order to recover
the final expression of the polynomial of degree 8, we have to re-organize the
13 lines to find its coefficients. We denote the products on each of the 13 lines
by ui, 0 ≤ i ≤ 12 (i.e. u12 = (a0 + a1 + a2 + a3 + a4)(b0 + b1 + b2 + b3 + b4),
u11 = (a0 − a2 − a3 − a4)(b0 − b2 − b3 − b4) etc.) By re-arranging the formula in
function of the degree of X , we obtain the following expression for C

C = u3X
8

+ (−u2 − u3 + u6)X7

+ (u0 + 2u2 + u3 − u4 − u6 − u8 + u11)X6

+ (−3u0 − 2u2 − 2u3 + 3u4 − u5 + 2u8 + u9 − u10 − 2u11 + u12)X5

+ (3u0 + u1 + u2 + 3u3 − 4u4 + u5 + u6 − u7 − u8 − 2u9 + 2u10 + 2u11 − u12)X4

+ (−2u0 − 2u1 − 3u3 + 3u4 − u6 + 2u7 + u9 − 2u10 − u11 + u12)X3

+ (u0 + 2u1 + u3 − u4 − u5 − u7 + u10)X2

+ (−u0 − u1 + u5)X
+ u0.

Considering this expression, we can easily count hidden additions in
Montgomery’s formula. We have taken into account that some operations are
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repetitive and simplified the expression of C very carefully by hand. We obtain
the following formula
C = u3X

8

+ (−u2 + u6 − u3)X7

+ ((u0 + u3 − u4)− (u6 − u2) + (u2 − u8 + u11))X6

+ (u3 − u5 + u9 − u10 + u12 − 2(u2 − u8 + u11)− 3(u0 + u3 − u4))X5

+(u1 +u2−u4 +u5 +u6−u7−u8−u12−2(u9−u10−u11)+3(u0 + u3 − u4))X4

+ (u0 − u6 + u9 − u11 + u12 − 2(u1 − u7 + u10)− 3(u0 + u3 − u4))X3

+ ((u0 + u3 − u4) + u1 − u5 + (u1 − u7 + u10))X2

+ (−u0 − u1 + u5)X
+ u0

We consider that a multiplication by 3 costs one addition. This is due to
the fact that 3U = 2U + U and that the product by 2 is only a shift in the
binary decomposition (see Sect. 4.2). Our operation count shows that we need
to perform 40 extra additions in order to get C. To sum up, Montgomery’s
method costs 13Mq +62Aq. Finally, in order to compute C mod P (X), we need
some extra operations. Since the reduction technique is similar to the one for
the multiplication method we propose, we detail it in Sect. 3.

3 Our Approach

In extensions of degree 2 and 3 Karatsuba and Toom Cook multiplications are
the most efficient known. For composite degree extensions (i.e. 2i3j , for i, j > 0)
one can use tower field extensions [11] and apply Karatsuba and Toom Cook
methods [18]. If the degree of the extension is not composite, one may use the
FFT method [18].

In this paper, we are interested in efficiently computing multiplications in
extension fields of degree 5. Note that the use of FFT is not interesting in this
case. Indeed, during a FFT multiplication, we have to multiply by roots of unity.
In the general case, q is a large random prime number and the roots of unity over
Fq do not necessarily have a sparse representation, even after recoding. Hence
multiplications by these roots are expensive.

Finally, we may use Lagrange or Newton’s interpolation method to implement
the multiplication in Fq5 . Generally, interpolation methods have the drawback to
increase the number of additions during a multiplication. Moreover, with interpo-
lation methods we need to perform several divisions. Bajard et al. [3] study these
methods and replace divisions by multiplications by large numbers. In this pa-
per, we study Newton’s interpolation and by carefully choosing our interpolation
points, we perform divisions by small constants. While multiplication by large con-
stants uses a general multiplier, we explain that divisions by small constants can
be handled as 2 additions.

Note that Karatsuba and Toom Cook’s formulæ can be found using Newton’s
interpolation by applying Newton’s forward difference formula. We use the same
approach for a degree five extension, and we show that the number of extra
additions is not large.
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3.1 Newton’s Interpolation

We denote by A(X) = a0 + a1X + . . .+ ak−1X
k−1 and B(X) = b0 + b1X + . . .+

bk−1X
k−1 the expressions of A and B in Fqk . The interpolation method for the

multiplication follows this steps

• Find 2k − 1 different values in Fq {α0, α1, . . . , α2k−2}.
• Evaluate the polynomials A(X) and B(X) at these 2k − 1 values:

A(α0), . . . , A(α2k−2), B(α0), . . . , B(α2k−2).
• Compute C(X) = A(X)×B(X) at these 2k−1 values C(αi) = A(αi)B(αi).
• Interpolate the polynomial C(X) of degree 2k− 2 (with Newton’s method).

Newton’s interpolation constructs the polynomial C(X) in the following way

c′0 = C(α0)

c′1 = (C(α1)− c′0)
1

(α1 − α0)

c′2 =
(

(C(α2)− c′0)
1

(α2 − α0)
− c′1

)
1

(α2 − α1)
...

The reconstruction of C(X) is done by

C(X) = c′0 + c′1(X − α0) + c′2(X − α0)(X − α1) + · · ·
+c′2k−2(X − α0)(X − α1) . . . (X − α2k−2).

This can be computed using Horner’s scheme

C(X) = c′0 + (X − α0) [c′1 + (X − α1) (c′2 + (X − α2) 〈. . .〉)] .

The global complexity of Newton’s interpolation is the sum of the following
operations:

1. the evaluations at αi of A(X) and B(X)
2. the 2k − 1 multiplications in Fq ( A(αi)×B(αi) )
3. the computation of the c′i
4. Horner’s scheme to find the expression of C(X) = A(X) × B(X) of degree

2k − 2.

3.2 Simplifying Operations in Newton’s Interpolation

Since we want to multiply two polynomials of degree 4, we choose 9 values for
the interpolation

α0 = 0, α1 = 1, α2 = −1, α3 = 2, α4 = −2, α5 = 4, α6 = −4, α7 = 3, α8 = ∞.

These values were chosen in order to minimize both the number of additions
during the evaluation step and the costs of divisions by constants.
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Complexity of the evaluations in αi of A and B. For the first step, we have
to evaluate A(X) and B(X) in the αi. With the chosen values, evaluations of
A(X) and B(X) are done using only additions and shifts in Fq. Indeed, a product
by a power of 2 is composed of shifts in binary base. In order to evaluate A(X) at
2j, we compute the products ai × (2j)i which are shifts, and then the additions∑ k−1

i=0 ai(2j)i using a FFT scheme. For example, we describe the FFT scheme
for the evaluation of A(2) and A(−2). First, we compute evaluations for even
indices and odd indices, separately. Let Ae = a0 + a2 × 22 + (a4 × 22)× 22 and
Ao = a1 × 2 + (a3 × 22) × 2. The evaluations are then A(2) = Ae + Ao and
A(−2) = Ae −Ao.

As explained in [3], by writing down 3 = 2+1 and 32 = 23 +1, the evaluation
at 3 of A(X) and B(X) is composed only of shifts and additions. In practice, it
is more efficient to design a direct procedure to multiply by 3 which is equivalent
to one addition. This will be detailed in Sect. 4.

Adding the different costs, the evaluations of A(X) and B(X) have a total
complexity of 48Aq. Once we have performed the evaluations, we are able to
compute the 9 multiplications A(αi)×B(αi), which are obtained with 9Mq.
The complexity of steps 1 and 2 is then 9Mq + 48Aq.

Complexity of the computations of c′
j. The complete formulæ for comput-

ing the c′j are

c0 = u0

c1 = u1 − c0

c2 = (u2 − c0 + c1)/2
c3 = ((u3 − c0)/2− c1 − c2)/3
c4 = (((u4 − c0)/2 + c1)/3− c2 + c3)/4
c5 = (((((u5 − c0)/4− c1)/3− c2)/5− c3)/2− c4)/6
c6 = ((((((u6 − c0)/4 + c1)/5− c2)/3 + c3)/6− c4)/2 + c5)/8
c7 = (((((−u7 + c0)/3 + c1)/2 + c2)/4 + c3 + c4)/5 + c5 − c6)/7.

In order to compute the coefficients c′j during Newton’s interpolation, one
has to compute divisions by differences of αi. In a binary basis, divisions by a
power of 2 are rather simple, since they are equivalent to shifts to the right, plus
sometimes an addition (see below). We approximate a division by a power of 2
by 1Aq. Among all the differences of the αi we choose, eleven are not a power
of 2. They are given in Table 1. In Sect. 4.2, our analysis of divisions by 3, 5,
7 shows that the complexity of these divisions is equivalent to 2Aq. In order to
compute the c′j , we need 28Aq, 11 divisions by 2, 4 or 8, and 11 divisions by 3,
5 or 7. Consequently, the complexity of computing the c′j is 61Aq.

Cost of the polynomial interpolation. We use Horner’s scheme to find the
expression of the product polynomial C = A × B. More precisely, we have to
compute
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Table 1. The problematic differences

α3 − α2 = 3 α4 − α1 = −3 α5 − α1 = 3 α5 − α2 = 5
α5 − α4 = 6 α6 − α1 = −5 α6 − α2 = −3 α6 − α3 = −6
α7 − α0 = 3 α7 − α4 = 5 α7 − α6 = 7

C(X) = ((((c′8(X − α7) + c′7)(X − α6) + c′6)(X − α5) + c′5) . . .

+c′1)(X − α0) + c′0.

We begin to compute from the inside to the outside. First, we compute the
parenthesis (c′8(X −α7)+ c′7), next ((c′8(X −α7)+ c′7)(X −α6)+ c′6), and so on.

Horner’s scheme for the chosen values of αis is composed only of shifts and
additions. The total complexity of the polynomial reconstruction is 28Aq.

Complexity of the polynomial reduction. We may use the same technique
for polynomial reduction in both Montgomery’s method and our interpolation
method. Indeed, we may represent the finite field Fq5 using an irreducible reduc-
tion polynomial of the form X5 − α.

We consider q such that q ≡ 1 mod 5. Then the following result [12, Theorem
3.75] guarantees that such polynomials exist over Fq.

Theorem 1. [12, Theorem 3.75] Let Fq5 be a finite field, and let α be an element
of Fq. Then the binomial X5 − α is irreducible in Fq[X ] if and only if 5 divides
the order e of α ∈ Fq, but not (q − 1)/e.

Moreover, in practice we may take α a small integer (such as 2 or 3). The
reduction step needs 4 operations which are multiplications by α, but in practice
they are computed as shifts and additions.

Table 2. Details of the operation count

Operation Complexity
evaluation 9Mq + 48Aq

computation of c′j 61Aq

interpolation 28Aq

Total 9Mq + 137Aq

3.3 Results and Comparison

Table 3 gives the complexity of a multiplication with Montgomery’s formulæ
and with our interpolation formulæ.
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Table 3. Cost of multiplication in Fq5

Montgomery This work
13Mq + 62Aq 9Mq + 137Aq

We save 4 multiplications in Fq using interpolation whereas we add 75 addi-
tions considering Montgomery’s formula. The method we propose is more effi-
cient if a multiplication in Fq has a cost greater than 18 additions in Fq. The
benchmarks of the library we used show that for q prime, the ratio Mq/Aq

depends on the size of q. Consequently, our method is more efficient than Mont-
gomery’s formula if log q > 512. Our benchmarks are given in Sect. 4.

4 Technical Details and Implementation

If q is a prime power, then a ∈ Fq can be represented as a polynomial of degree
k with coefficients a0, a1, . . . , ak−1 ∈ Fp such that pk = q. Then additions and
divisions by small constants are performed on every coefficient. Hence in the
remainder of this section, we assume that q is prime.

4.1 Cost of Additions and Shifts in C Language

Our implementation is written in the C language. Over Fq with a and b of w
32-bit words, at each word addition, a carry must be taken into account. Indeed
in C, an assembly instruction such as Add With Carry is not available. Algorithm
1 explains the processor behavior when performing an addition.

When computing a shift to the left written as a � s in C, no carry appears.
Hence this procedure is cheaper than an addition in Fq. At each 32-bit word
state �, the instruction r� ← (a� � s)Xor(a�−1 � (32− s)) is enough. It needs 1
reading because a�−1 was already loaded in a register at the preceding state, 3
instructions and 1 writing, plus 2 counter imcrementations for the word a� and
r� memory address. The total count is then about 8w instructions. To conclude,
with a C implementation, the ratio Shift/Add = 8/12 ≈ 0.66 is obtained. To
improve the performance, a function which computes a + (b � s) is provided.
See details in Algorithm 2.

For the procedure in Algorithm 2 the ratio (Add with Shift)/Add is about
15/12 ≈ 1.25.

Finally, a direct multiplication by 3 is also used. As 3a = a + 2a, this is
performed as an Add with Shift, but neither the memory access for b� nor the
counter incrementation for its address is needed. Hence the ratio Mult By 3 /
Add is 13/12 ≈ 1.08. Practical results are given in Table 4. The benchmarks are
close to the theoretical results. The compiler and processor type do not influence
too much the timing results.
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Algorithm 1. Addition in a prime field Fq

Input : a = aw−1aw−2 . . . a0 ∈ Fq and b = bw−1bw−2 . . . b0 ∈ Fq of w 32-bit words
Output : r = a + b = rwrw−1rw−2 . . . r0 not reduced mod q

1: r0 ← a0 + b0

2: set carry
3: for � ← 1, . . . , w − 1 do
4: tmp ← a� + b� 	 2 readings, 1 instruction
5: r� ← tmp + carry 	 1 instruction, 1 writing
6: carry update 	 3 instructions
7: 	 3 counter imcrementations for memory address of a�, b�, r�

8: end for 	 1 instruction
9: aw ← carry 	 overflow bit

10: return r 	 ≈ 12w instructions

Algorithm 2. Shift to the left with addition in a prime field Fq

Input : a = aw−1aw−2 . . . a0 ∈ Fq and b = bw−1bw−2 . . . b0 ∈ Fq of w 32-bit words,
0 < s < 32
Output : r = a + b2s = a + (b � s) = rwrw−1rw−2 . . . r0 not reduced mod q

1: r0 ← a0 + (b0 � s)
2: set carry
3: for � ← 1, . . . , w − 1 do
4: tmp ← a� + (b� � s)Xor(b�−1 � (32 − s)) 	 2 readings, 4 instructions
5: r� ← tmp + carry 	 1 instruction, 1 writing
6: carry update 	 3 instructions
7: 	 3 counter incrementations
8: end for 	 1 instruction
9: aw ← carry + (bw−1 � (32 − s)) 	 overflow bit

10: return r 	 ≈ 15w instructions

4.2 Division by Small Constants

Division by 2, 4 and 8 in a prime field Fq. Let a ∈ Fq. If the last significant
bit of a is 0, a is even and computing a/2 is just a shift to the right. Otherwise, a
is odd but as q is a large prime, q is odd; hence a+ q is even and a/2 = (a+ q)/2
with a shift. There remains a slight detail : a + q may induce a bit overflow.
Indeed, the modular integers are normally smaller than q. If q is of 32w bits,
a+q may be of 32w+1 bits. To avoid that, we shift a and q before adding them.
To finish we add the carry loss in the shift. Writing a = 2a′ + 1, q = 2q′ + 1, a′

is a shifted of one bit to the right, q′ is the same for q. The result is obtained as
a/2 = (a + q)/2 = a′ + q′ + 1.

Following the same idea, division by 4 or 8 is a shift with sometimes an
addition. We write a = 4a′ + ra, ra ∈ {0, 1, 2, 3} and q = 4q′ + rq, rq ∈ {1, 3}. If
ra = 0, then the shift of two bits is enough; otherwise the value of a/4 is given
in Table 5.

Note that a′, q′ are just shifts of two bits of a and q, respectively. Moreover,
q′, 2q′ and 3q′ can be precomputed. For division by 8, we follow the same method,
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Table 4. Theoretical and practical ratio Operation/Addition without modular
reduction

Operation Ratio Operation/Add
Theoretical Our implementation in a prime field Fq

log q 160 192 256 384 512 768 1024 1536
Shift to the left 0.66 0.50 0.50 0.50 0.48 0.46 0.42 0.47 0.42
Shift and Add 1.25 1.11 1.13 1.18 1.32 1.23 1.26 1.34 1.33

Multiplication by 3 1.08 0.88 0.89 1.02 0.97 1.00 1.00 1.08 1.09

Table 5. Division by 4

ra = 1 ra = 2 ra = 3

rq = 1 a′ + 3q′ + 1 a′ + 2q′ + 1 a′ + q′ + 1

rq = 3 a′ + q′ + 1 a′ + 2q′ + 2 a′ + 3q′ + 3

considering that a = 8a′+ra, ra ∈ {0, 1, . . . , 7} and q = 8q′+rq, rq ∈ {1, 3, 5, 7}.
Benchmarks are given in Table 7.

Divisions by 3, 5 and 7 in a prime field Fq. For these cases, shifts are not
possible. We present a detailed division by 3, and give the main idea for 5 and
7.

We write a basic division of a by 3, considering that a is composed of 32-bit
words. For each word, the possible remainders are 0, 1 or 2 (10 in binary base).
This leads to a 33 or 34 bit word to the next state if the remainder is not zero.
Fortunately, we know that 232 = 3·0x55555555+1 and 2·232 = 3·0xaaaaaaaa+2.
This leads to Algorithm 3.

Now a = 3a′+ra. If ra = 0 then a/3 = a′. If not, write q = 3q′+rq (which can
be precomputed). The result of the division is computed as explained in Table 6.

Table 6. Division by 3

ra = 1 ra = 2

rq = 1 a′ + 2q′ + 1 a′ + q′ + 1

rq = 2 a′ + q′ + 1 a′ + 2q′ + 2

Cost of the divisions by small constants. Division by 3 is is carefully
detailed in Algorithm 3. Our counting shows that in Algorithm 3 we perform
around 15w processor instructions. Since in 2

3 of cases we have to add p′ (as
explained in Table 6), we have on average the ratio

Divq/Aq � 2.

where Divq denotes the cost of division by 3, 5 or 7. However, this number is
just an approximation since the exact costs depends on
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Algorithm 3. Division by 3 in a prime field Fq

Input : a = aw−1aw−2 . . . a0 ∈ Fq of w 32-bit words
Output : a′ = a/3 = a′

w−1a
′
w−2 . . . a′

0 and r such that a = 3a′ + r

1: a′
w−1 ← aw−1 div 3; carry ← aw−1 mod 3

2: for � ← w − 2, . . . , 0 do
3: if carry = 0 then 	 1
4: a′

� ← a� div 3; carry ← a� mod 3 	 1
3

3
5: else 	 1
6: if carry = 1 then 	 2

3
1

7: a′
� ← 0x55555555 + (a� div 3) 	 1

3
4

8: carry ← carry + (a� mod 3) 	 1
3
2

9: else 	 2
3
1

10: a′
� ← 0xaaaaaaaa + (a� div 3) 	 1

3
4

11: carry ← carry + (a� mod 3) 	 1
3
2

12: end if
13: if carry � 3 then 	 2

3
1

14: carry ← carry −3; a′
� ← a′

� + 1 	 2
3
4

15: end if
16: end if
17: end for 	 2 counter imcrementations + 1
18: return (a′, carry) 	 ≈ 15w instructions

• the type of the compiler,
• the compiler directives,
• the number of cycles required for each processor instruction,
• the pipeline depth into the processor,
• the cache memory, etc.

Moreover, there are some conditional jumps in Algorithm 3. In an implemen-
tation, they may be replaced by access to a table indexed by the remainder’s
value. Table 7 gives a practical estimation of the ratio division/addition.

Table 7. Theoretical and practical ratio Division by a small constant/Add

Operation Ratio Operation/Add
Theoretical Our implementation in a prime field Fq

log q 160 192 256 384 512 768 1024
Division by 2 1 1.00 0.82 0.85 0.84 1.01 0.62 0.76
Division by 3 2 1.57 1.10 1.37 1.42 1.44 1.60 1.59
Division by 4 1 1.00 1.00 0.79 0.92 0.88 1.03 1.07
Division by 5 2 1.69 1.41 1.47 1.58 1.74 1.62 2.01
Division by 6 2 2.76 2.15 2.00 2.14 2.34 2.14 2.36
Division by 7 2 2.15 1.52 1.89 1.62 1.76 1.88 1.96
Division by 8 1 1.36 1.05 1.04 1.01 1.04 0.89 1.21
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The idea for division by 5 or 7 is the same, except that computing a′
� needs

different values (see Table 8).

Table 8. Constants for division by 5 and 7

division by 5 division by 7
232 = 5 · 0x33333333 + 1 232 = 7 · 0x24924924 + 4

2 · 232 = 5 · 0x66666666 + 2 2 · 232 = 7 · 0x49249249 + 1
3 · 232 = 5 · 0x99999999 + 3 3 · 232 = 7 · 0x6db6db6d + 5
4 · 232 = 5 · 0xcccccccc + 4 4 · 232 = 7 · 0x92492492 + 2

5 · 232 = 7 · 0xb6db6db6 + 6
6 · 232 = 7 · 0xdb6db6db + 3

4.3 Implementation Results

We implemented Montgomery’s formula and our multiplication in C in order to
compare them. The subfield Fq is simply built with q ≡ 1 mod 5 a large random
prime number of cryptographic size, from 160 to 1536 bits. Our benchmarks on
Montgomery’s algorithm and our method use the same prime numbers q. The
modular library implementing the arithmetic of Fq is LibCryptoLCH [17] and
uses the Montgomery representation to perform a modular multiplication (see
chapter 14 of [13]). This library is also written in C. Parameters such as maximum
moduli size and size of words are set at compilation. We used a gcc compiler
with -O2 optimization directive. The code was running on a Pentium 64 bits
3GHz under Linux, Ubuntu 10.10. The reduction step (mod X5 − α) is done at
each multiplication. Degree 5 extensions Fq[X ]/(X5−α) with very small α such
as α = 2 were found.

Depending on the size of q, the cost of a Mq in terms of Aq increases as shown
in Table 9.

Table 9. Ratio Mq/Aq for different sizes of q

log q 160 256 384 512 768 1024 1536
32 bits 5.2 7.1 12.1 16.1 26.6 36.3 50.0
64 bits 3.9 5.7 6.9 9.3 16.6 19.4 32.1

On this 64 bit processor, our formula is better than Montgomery’s one for
log q greater than 512, as shown in Figure 1. Implementation of additions in the
base field library is not optimized, so the ratio Mq/Aq takes quite small values
for small sizes of q. The timing ratio between Montgomery’s method and our
algorithm is shown in Table 10.
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Fig. 1. Implementation results

Table 10. Timing ratio: Montgomery’s formula results/ our’s

log q 160 256 384 512 768 1024 1536
32-bit words, theory 0.70 0.76 0.89 0.96 1.08 1.15 1.21
32-bit words, practice 0.64 0.75 0.88 0.93 1.05 1.13 1.21
64 bit words, theory 0.65 0.72 0.76 0.82 1.00 1.01 1.12
64 bit words, practice 0.49 0.31 0.73 0.77 0.90 1.00 1.09

5 Results and Comparison for Quintic and Sextic
Polynomials

We use the same approach by interpolation to compute multiplication in exten-
sion fields of degree 6 and 7. Our results for an extension of degree 6 are the
following

• the complexity of the evaluation step is 11Mq + 80Aq,
• the complexity of the computation of the c′i is 36Aq + 22Divq, where Divq

denotes the cost of division by 3, 5 or 7,
• the complexity of the Horner’s scheme is 39Aq.

As explained in Sect. 3.2, we count a division by 3, 5, 7 and 11 as 2Aq. We
perform 21 divisions by 2, 13 by 3, 6 by 5 and 3 by 7. Thus the total complexity
of our multiplication is 11Mq + 199Aq. We compare our results to Devegili et
al. [5] most efficient result, and to Montgomery’s one. The comparison is given
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in Table 11, where MZ denotes the cost of multiplication by a small constant.
Our method needs a smaller number of additions than Devegili et al.’s one.

Our results for an extension of degree 7 are the following

• the complexity of the evaluation step is 13Mq + 89Aq,
• the complexity of the computation of the c′i is 55Aq + 36Divq,
• the complexity of the Horner’s scheme is 65Aq.

Estimating the cost of a division by 3, 5, 7 and 11 by 2Aq, the total complexity
of our multiplication is 13Mq + 281Aq. We perform here 31 divisions by 2 or
power of 2, 21 divisions by 3, 9 by 5, 5 by 7 and one by 11. The comparison is
given in Table 11. Our method is more efficient than Mongomery’s one if the
ratio Mq/Aq is greater than 8.5.

Table 11. Complexity of different method of 6-term and 7-term multiplications

Method Devegili et al. [5] Montgomery this work
6-term 11Mq + 93MZ + 236Aq 17Mq + 161Aq 11Mq + 199Aq

7-term − 22Mq + 205Aq 13Mq + 281Aq

6 Cryptographic Use

We claim that our method is useful for cryptographic use in pairing-based
cryptography and torus-based cryptography. We give in Tables 12 and 13
recommended security levels and the corresponding sizes of the field Fq for these
applications.

Table 12. Pairing-based cryptography

Embedding degree ρ-value Security level Size of q Extension field
10 1.5 192 800 Fq10 (8000 bits)
15 1.5 192 576 Fq15 (8640 bits)
15 1.5 256 768 Fq15 (11520 bits)
20 1.375 256 704 Fq20 (14080 bits)
30 1.5 256 768 Fq30 (23040 bits)

Note that in order to achieve the 192 and 256 bit security levels, the size of
the extension field Fqk has to be within the range 8000-10000 and 14000-18000,
respectively. The parameters given in Table 12 correspond to known families of
pairing-friendly elliptic curves and the choices were made taking into account
recommendations in [8]. Since our method is faster than Montgomery’s formula
if log q > 512, our algorithm is interesting for implementations on these curves.

For torus-based cryptography, our method may be interesting for example
when implementing T30(Fq) for applications suggested in [6]. The choice of pa-
rameters in Table 13 is done according to recommendations [1,6]. We suppose
that the following tower of extensions is chosen when implementing Fq30

Fq2 ⊂ Fq6 ⊂ Fq30 .
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Table 13. Torus-based cryptography

Security level Torus Size of Fq Size of extension field
128 T30(Fq) 102 Fq30 (3072 bits)
256 T30(Fq) 512 Fq30 (15360 bits)

Then the cost of a multiplication in Fq6 is 15Mq + 72Aq using Karatsuba and
Toom Cook algorithms, while the cost of an addition is 6Aq. Our method is
efficient if Mq6/Aq6 > 18. This ratio depends on the value of Mq/Aq, which
obviously depends on the type of the processor chosen. For example, using data
in Table 9, we obtain Mq6/Aq6 � 53.66 for an implementation at 256 bit security
level using a 32 bit architecture.

Finally, note that the arithmetic of T30(Fq) ⊂ Fq30 may be used to compress
pairing values for curves with embedding degree 30. The size of q for such curves
is given in Table 12.

7 Conclusion

We proposed an efficient arithmetic for the field Fq5 , using a multiplication by
interpolation. Our idea to use Newton’s method of interpolation requires some
divisions by small constants which are not a power of two but we have shown
that these divisions have a slight cost. Our method can be applied to 6 and
7 degree extensions. In each case, the number of multiplications over the base
field is smaller than the one in other known methods. The number of additions
is larger but for cryptographic sizes of q, as shown in our implementation, our
method is faster.
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Appendix: Details for Inversion

We have also counted the number of Mq for and inversion in Fq5 . We consider
that 5 | q − 1 and Fp5 is built as Fq[X ]/(X5 − α). Following the idea of T. Itoh
and S. Tsujii [10] we perform an inversion in Fq5 as

a−1 =
aq aq2

aq3
aq4

a aq aq2aq3aq4
=

ā

NormFq5/Fq
(a)

In order to compute aqi

, we need the values of Xqi

, 1 � i � 4. We have Xqi

=

Xqi−1X = X5 qi−1
5 X = X5 q−1

5 (1+q+...+qi−1)X = α
q−1
5 (1+q+...+qi−1)X . Let μ =

α(q−1)/5. Note that μ5 = 1 and that μ = 1. Hence μ is a root of the polynomial
1 + T + T 2 + T 3 + T 4. Since μ ∈ Fq, we have μqi

= μ and μ1+q+...+qi−1
= μi. So

Xqi

= μiX . Finally, for 1 � j � 4, we have (Xqi

)j = μij mod 5Xj. By writing
a = a0 + a1X + a2X

2 + a3X
3 + a4X

4, we obtain

aqi

= a0+a1μX +a2μ
2i mod 5X2+a3μ

3i mod 5X3+a4μ
4i mod 5X4, 1 � i � 4

Then we compute the numerator of the expression a−1 above.
aq aq2

aq3
aq4

mod 1 + μ + μ2 + μ3 + μ4 =
a4
4X

16

− a3a
3
4X

15

+ (−a2a
3
4 + a2

3a
2
4)X14

+ (−a1a
3
4 + 2a2a3a

2
4 − a3

3a4)X13

+ (−a0a
3
4 + 2a1a3a

2
4 + a2

2a
2
4 − 3a2a

2
3a4 + a4

3)X
12

+ (−3a0a3a
2
4 − 3a1a2a

2
4 + 2a1a

2
3a4 + 2a2

2a3a4 − a2a
3
3)X11

+ (2a0a2a
2
4 + 2a0a

2
3a4 + a2

1a
2
4 − a1a2a3a4 − a1a

3
3 − a3

2a4 + a2
2a

2
3)X

10

+ (2a0a1a
2
4 − a0a2a3a4 − a0a

3
3 − 3a2

1a3a4 + 2a1a
2
2a4 + 2a1a2a

2
3 − a3

2a3)X9

+ (a2
0a

2
4 − a0a1a3a4 − 3a0a

2
2a4 + 2a0a2a

2
3 + 2a2

1a2a4 + a2
1a

2
3 − 3a1a

2
2a3 + a4

2)X
8

+ (2a2
0a3a4 − a0a1a2a4 − 3a0a1a

2
3 + 2a0a

2
2a3 − a3

1a4 + 2a2
1a2a3 − a1a

3
2)X

7

+ (2a2
0a2a4 + a2

0a
2
3 + 2a0a

2
1a4 − a0a1a2a3 − a0a

3
2 − a3

1a3 + a2
1a

2
2)X6

+ (−3a2
0a1a4 − 3a2

0a2a3 + 2a0a
2
1a3 + 2a0a1a

2
2 − a3

1a2)X5

+ (−a3
0a4 + 2a2

0a1a3 + a2
0a

2
2 − 3a0a

2
1a2 + a4

1)X
4

+ (−a3
0a3 + 2a2

0a1a2 − a0a
3
1)X3

+ (−a3
0a2 + a2

0a
2
1)X

2

− a3
0a1X

+ a4
0
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We simplify this formula as follows

ā = (a2
0(2a1a3 − a0a4 + a2

2) + a2
1(a

2
1 − 3a0a2 − 3a3a4α) + a2

2(2a1a4 − a2a3)α

+a2
3(2a1a2 − a0a3)α + a2

4(2a0a1 + α(a2
3 − a2a4))α − a0a2a3a4α)X4

+ (a2
0(2a1a2 − a0a3) + a2

1(−a0a1 + 2a2a4α) + a2
2(a

2
2 − 3a0a4 − 3a1a3)α

+a2
3(a

2
1 + 2a0a2 − a3a4α)α + a2

4(a
2
0 + (2a2a3 − a1a4)α)α − a0a1a3a4α)X3

+ (a2
0(a

2
1 − a0a2 + 2a3a4α) + a2

1(2a2a3 − a1a4)α + a2
2(2a0a3 − a1a2)α

+a2
3(−3a0a1 + (a2

3 − 3a2a4α)α) + a2
4(a

2
2 − a0a4 + 2a1a3)α

2 − a0a1a2a4α)X2

+ (a2
0(−a0a1 + (2a2a4 + a2

3)α) + a2
1(2a0a4 − a1a3 + a2

2)α + a2
2(−a0a2 + 2a3a4α)α

+a2
3(2a1a4 − a2a3)α

2 + a2
4(−3a0a3 − 3a1a2 + a2

4α)α2 − a0a1a2a3α)X

+ (a2
0(a

2
0 + (−3a1a4 − 3a2a3)α) + a2

1(2a0a3 − a1a2)α + a2
2(2a0a1 − a2a4α)α

+a2
3(2a0a4 − a1a3 + a2

2)α
2 + a2

4(2a0a2 + a2
1 − a3a4α)α2 − a1a2a3a4α

2)

We precompute a2
0, a

2
1, a

2
2, a

2
3, a

2
4 and a0a1, a0a2, a0a3, a0a4, a1a2, a1a3, a1a4,

a2a3, a2a4, a3a4. This leads to 5Sq+10Mq. With this method, computing ā needs
6Mq for each coefficient, hence 30Mq altogether. To compute the norm as a·ā, we
need an extra cost of 5Mq. Indeed, by writing ā = ā0+ā1X+ā2X

2+ā3X
3+ā4X

4,
we have a · ā = a0ā0 + α(a1ā4 + a2ā3 + a3ā2 + a4ā1). The total count is Iq5 =
45Mq + 5Sq + Iq. In [2], Avanzi and Cesena report a cost of 50Mq + Iq.
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Aline Gouget4, Hervé Sibert5, and Jacques Traoré2
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Abstract. Electronic cash (e-cash) refers to money exchanged elec-
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particular, it should not be possible for adversaries who receive a coin to
decide whether they have owned that coin before. Our proposal is based
on two recent cryptographic primitives: the proof system by Groth and
Sahai, whose randomizability enables strong anonymity, and the com-
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are only given as encryptions.
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transferability of digital money. The desired security properties for e-cash are
today well-known and for transferable e-cash systems anonymity is a particularly
delicate issue.

Anonymity properties in transferable e-cash. The traditional properties
of anonymous electronic cash are called weak anonymity and strong anonymity.
The former means that it is infeasible for an attacker to identify the spender or
the recipient in a transaction, and the latter states that it is infeasible for an
attacker to decide whether two transactions are done by the same user or not.
In [4] Canard and Gouget give a complete taxonomy of anonymity properties
for transferable e-cash systems. They observe that in the transferability setting
the attacker may recognize a coin that he has already observed during previous
transfers. Thus, in addition to the two above traditional properties, they intro-
duce full anonymity (FA), which means that an attacker is not able to recognize
a coin he has already observed during a transaction between two honest users
(“observe then receive”). They also introduce perfect anonymity (PA), defined
as an attacker’s inability to decide whether he has already owned a coin he is
receiving.

Chaum and Pedersen [6] showed that a payer with unlimited computing
power can always recognize his own money if he sees it later being spent; thus,
the PA property cannot be achieved against unbounded adversaries. But even
when his power is limited, an adversary impersonating the bank can still win
the anonymity game, as shown in [4]. Perfect anonymity can therefore not be
achieved by a transferable e-cash scheme. Due to this impossibility result, Ca-
nard and Gouget [4] introduce two additional anonymity notions called PA1

and PA2. In order to break PA1, the adversary is given a coin and must decide
whether he has already (passively) seen it in a past transaction (“spend then
observe”). For PA2, the bank is trusted and the adversary should not be able to
decide whether or not he has already owned a coin he is receiving (“spend then
receive”). It is shown in [4] that both properties PA1 and PA2 are satisfiable and
that a transferable e-cash scheme should satisfy full anonymity, PA1 and PA2

in order to achieve“optimal” anonymity guarantees. In this paper we maintain
these anonymity notions but slightly modify the used terminologies to improve
readability.

Related work. Many transferable e-cash schemes have been proposed, but
most of them only provide weak [10,11] or strong anonymity [13,6,5,3]. A generic
construction of a transferable e-cash system with FA and PA1 security from a
one satisfying strongly anonymity is shown in [4]. PA2 remains thus the property
that is hardest to achieve.

The first proposal of a transferable e-cash scheme satisfying PA2 is a theoret-
ical scheme in [4] that cannot be implemented effectively. This is due to its use
of complex meta-proofs [12] which allow the blinding of previous transfers of a
coin, even w.r.t. a previous owner of that coin.

Subsequently, Fuchsbauer et al. [8] proposed the first practical PA2-secure
scheme. However, their scheme has the important drawbacks that (i) each user



208 O. Blazy et al.

has to keep in memory the data associated to all past transactions to prove her
innocence in case of a fraud and (ii) the anonymity of all subsequent owners
of a double-spent coin must be revoked in order to trace the defrauder, which
constitutes a serous breach of anonymity.

In conclusion, the remaining open problem is an efficient transferable e-cash
scheme that satisfies all anonymity properties including PA2.

Our contribution. In this paper, we propose such a scheme. More precisely,
we describe a new transferable e-cash scheme based on the work on random-
ization of Groth-Sahai proofs [9,2] and on the recent primitive of commuting
signatures [7] based on them. This yields a new way to efficiently blind previous
transfers of a coin and permits to achieve the PA2 property, without requiring the
users to store anything. We moreover believe that the use of Groth-Sahai proofs
and commuting signatures in concrete cryptographic applications is technically
interesting.

There is a lot of concern regarding anonymity for electronic cash with re-
spect to illegal activities, such as money laundering or financing of terrorism. A
possible compromise between user privacy and the prevention of its abuse is to
provide the opportunity to appeal to a judge either in case of double-spending
or in a court case. In our proposal we introduce a trusted authority called judge,
which retrieves the identity of the defrauder after detection of a double-spending
(while detection can be performed locally by the bank). Although we do not
consider this explicitly, the judge could additionally trace coins and users, as re-
quired for fair e-cash [14]. We argue that the use of Groth-Sahai proofs—which,
besides not relying on the random-oracle heuristic and being efficient, are the
only randomizable proofs known to date—requires a common reference string
(CRS). Therefore, instead of assuming the existence of a trusted CRS “in the
sky”, we entrust the judge with its setup and let him use the contained trapdoor
constructively rather than “forgetting” it.

The paper is now organized as follows. In Section 2 we present the procedures
constituting a transferable e-cash scheme with a judge, and we detail its security
properties in Section 3. In Section 4 we give the main cryptographic tools used
to instantiate our scheme, which we describe in Section 5.

2 Definitions for Transferable E-Cash with Judge

In this section, we first describe the algorithms for transferable e-cash, involving
a bank B, users U and a judge J . We extend the model given in [4] to include the
judge authority. Moreover, in accordance with [4], the bank B may be divided
into two entities: W for the withdrawal phase and D for the deposit phase.

2.1 Algorithms

For simplicity and contrary to [4], we represent a coin simply as a value c, while
its identifier Id is the value that the bank retrieves during a deposit to check
for double-spending. Formally, a transferable e-cash system with judge, denoted
Π , is composed of the following procedures, where λ is a security parameter.
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– ParamGen(1λ) is a probabilistic algorithm that outputs the parameters of
the system par. In the following, we assume that par contains λ and that it
is a default input of all the other algorithms.

– BKeyGen(), JKeyGen() and UKeyGen() are probabilistic algorithms executed
respectively by B, J or U , that output a key pair. When BKeyGen() is
executed by B, the output is (skB, pkB). The secret key skB may be divided
into two parts: skW for the withdrawal phase and skD for the deposit phase.
Consequently, we define separate algorithms WKeyGen() and DKeyGen() for
the bank’s key generation. The output of JKeyGen() is a keypair (skJ , pkJ )
for the judge, and UKeyGen() outputs (skU , pkU ).
As a convention, we assume that each secret key contains the corresponding
public key.

– Withdraw(W [skW , pkU ],U [skU , pkB]) is an interactive protocol where U with-
draws one transferable coin from B. At the end, U either gets a coin c and
outputs ok, or it outputs ⊥. The output of B is either its view VW

B of the
protocol (including pkU ), or ⊥ in case of error.

– Spend(U1[c, skU1 , pkB, pkJ ],U2[skU2 , pkB, pkJ ]) is an interactive protocol in
which U1 spends/transfers the coin c to U2. At the end, U2 outputs either
a coin c′ or ⊥, and U1 either tags the coin c as spent and outputs ok, or
outputs ⊥.

– Deposit(U [c, skU , pkB],D[skD, pkU ,L]) is an interactive protocol where U de-
posits a coin c at the bank B. If c is not consistent, then B outputs ⊥1. Else,
B computes the identifier Id of the deposited coin. If L, the list of spent
coins, contains an entry (Id, c′), for some c′, then B outputs (⊥2, Id, c, c′).
Else, B adds (Id, c) to its list L, credits U ’s account, and returns L. U ’s
output is ok or ⊥.

– Identify(Id, c, c′, skJ ) is a deterministic algorithm executed by the judge J
that outputs a key pkU and a proof τG. If the users who had submitted c
and c′ are not malicious, then τG is a proof that pkU is the registered key
of a user that double-spent a coin. If Id = 0, this signifies that the judge
cannot conclude.

– VerifyGuilt(pkU , τG) is a deterministic algorithm that can be executed by
anyone. It outputs 1 if τG is correct and 0 otherwise.

The main differences between these algorithms and those described in [4] is
the additional key generation algorithm JKeyGen() and the modification of the
procedure to identify a defrauder in case of a double-spending detection.

2.2 Global Variables and Oracles

Before formalizing the security properties, we first define the adversary’s means
of interaction with his challenger in the security experiments of a transferable
e-cash system: we introduce global variables (in accordance with to [4]) and
oracles1.
1 By convention, the name of an oracle corresponds to the action done by this oracle.
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Global variables. The set of public (resp. secret) user keys is denoted by
PK = {(i, pki) : i ∈ N} (resp. SK = {(i, ski) : i ∈ N} with ski =⊥ if user
i is corrupted). The set of views by the bank of the withdrawals done by the
adversary is denoted by SC (for supplied coins) and the set of all coins owned by
the oracles is denoted by OC (for obtained coins). The set of deposited electronic
cash (corresponding to L) is denoted by DC (for deposited coins). In addition,
we define the set of users who have received a coin from the adversary, denoted
by RU ; and the set of users who have spent a coin to the adversary, denoted
by SU . These modifications should improve the understanding of the original
description of oracles provided in [4].

Creation and corruption of users. The oracle Create(i) executes (ski, pki) ←
UKeyGen(), defines PK[i] = pki and SK[i] = ski, and outputs pki. The oracle
Corrupt(i, pki) defines PK[i] = pki and SK[i] =⊥, and outputs ok. If the adver-
sary calls Corrupt(i,⊥) then the oracle outputs SK[i] and then sets SK[i] =⊥.
In all cases, the coins belonging to user i, stored in OC, are also given to A.

Withdrawal protocol. We define three oracles relating to withdrawal.

– The oracle BWith() plays the bank side of a Withdraw protocol. It updates
SC by adding VW

B with bit 1 to flag it as a corrupted coin.
– The oracle UWith(i) plays the user i in a Withdraw protocol. It updates OC

by adding the value (i, j, c) with flag 1, where j is the first empty entry of
OC (independently of the user i to which it belongs).

– The oracle With(i) simulates a complete Withdraw protocol, playing the role
of both B and user i, updates OC as for UWith(i) and updates SC by adding
VW

B both with flag 0. It outputs the communications between B and U .

Spending protocol. Here we take into account that during a Spend protocol
the adversary can play the role of the payer, the receiver, or can only be a passive
observer. This will be relevant for the anonymity experiments in Section 3.4.

– The oracle Rcv(i) allows A to spend a coin to user i. The oracle plays the
role of U2 with the secret key of user i in the Spend protocol. It updates the
set OC by adding a new entry (i, j, c) and adds i to the set RU .

– The oracle Spd(i, j) enablesA to receive either the coin j or a coin transferred
from user i. Either i or j can be undetermined (equal to ⊥). The owner i of
the spent coin j is then added to SU . The oracle plays the role of user U1 in
the Spend protocol with the secret key of the owner i of the coin j in OC.
It uses the entry (i, j, c) of OC as the Spend protocol describes it. It finally
updates this entry by changing the flag to 1.

– The oracle S&R (spend-and-receive) permits A to observe the spending of a
coin j between users i1 (in the role of U1) and i2 (in the role of U2), who are
both played by the oracle. It updates OC by adding (i2, j′, c) and by flagging
the coin j as spent by i1. It outputs all the (external) communications of the
spending.
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Deposit protocol. Depending on who the adversary impersonates there are
several oracles for deposit.2

– The oracle BDepo() plays the role of the bank during a Deposit protocol
and interacts with the adversary. The oracle gives the output of a Deposit
procedure and updates the set DC.

– The oracle UDepo(i, c) plays the role of the user i during a Deposit protocol
for the coin c. The adversary is in this case the bank. If c =⊥ then the oracle
randomly chooses one coin belonging to user i and deposits it.

– The oracle Depo(i, c) plays the role of both the bank and the user i in the
Deposit protocol of the coin c. If c =⊥, then the oracle randomly chooses the
coin to be deposited.

– The oracle Idt(Id, c, c′) plays the role of the judge in the Identify procedure,
with the same outputs.

A consequence of the result by Chaum and Pedersen [6], who showed that a
transferred coin necessarily grows in size, is that an adversary may easily break
anonymity by checking the number of times a given coin has been transferred.
In the following, we say that two users i0 and i1 are compatible, and write
comp(i0, i1) = 1, if they both own at least one coin with the same size.

3 Security Properties

In this section, we define the security notions for an e-cash system with a judge,
adapting those from Canard and Gouget [4]. In every security game the chal-
lenger first generates the parameters and the keys for the bank and the judge;
we denote this by AllGen. The challenger then gives the adversary the keys cor-
responding to the parties he is allowed to impersonate.

3.1 Unforgeability

Unforgeability is a notion protecting the bank, meaning that no collection of
users can ever spend more coins than they withdrew, even by corrupting the
judge. Formally, we have the following definition based on the experiment given
below.

Definition 1 (Unforgeability). Let Π be a transferable e-cash system with a
judge. For an adversary A and λ ∈ N, we let Succunfor

Π,A(λ) = Pr[Expunfor
Π,A(λ) = 1].

Π is said to be unforgeable if the function Succunfor
Π,A(·) is negligible for any poly-

nomial-time adversary A.

2 The main difference between these oracles and those described in [4] is the mod-
ification of the oracle BDepo() and the definition of the new oracle Idt(Id, c, c′).
In [4] there is a single oracle CreditAccount(), which executes both BDepo() and
Ident(Id, c, c′). This modification is necessitated by the inclusion of the judge.
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Expunfor
Π,A(λ)

– (par, skB, pkB, skJ , pkJ ) ← AllGen(1λ); cont ← true; st ← ∅;
– While (cont = true) do {

− (cont, st)

← ACreate,Corrupt,BWith,With,Rcv,Spd,S&R,BDepo,Depo(st, par, skJ , pkB);
Let qW be the number of successful calls to BWith and With;
let qD denote the number of successful calls to BDepo and Depo;

− If qW < qD then return 1; }
– Return ⊥.

3.2 Identification of Double-Spenders

This notion guarantees the bank that no collection of users, collaborating with
the judge, can spend a coin twice (double-spend) without revealing one of their
identities. Formally, we have the following experiment and definition.

Expident
Π,A(λ)

– (par, skB, pkB, skJ , pkJ ) ← AllGen(1λ); cont ← true; st ← ∅;
– While (cont = true) do {

− st ← ACreate,Corrupt,BWith,With,Rcv,Spd,S&R,BDepo,Depo,Idt(st, par, skJ , pkB);
− If a call to BDepo outputs (⊥2, Id, c, c′) then cont ← false; }

– (i∗, τG) ← Identify(Id, c, c′, skJ );
– If VerifyGuilt(pki∗ , τG) = 0 or i∗ = 0 then return 1;
– Return ⊥.

Definition 2 (Double-Spender Identification). Let Π be a transferable e-
cash system with a judge. For any adversary A and λ ∈ N, we let Succident

Π,A(λ) =
Pr[Expident

Π,A(λ) = 1]. Π identifies double spenders if the function Succident
Π,A(·) is

negligible for any polynomial-time adversary A.

3.3 Exculpability

This notion protects honest users in that the bank, even when colluding with
a collection of malicious users and possibly the judge, cannot falsely accuse
(with a proof) honest users of having double-spent a coin. Formally, we have the
following experiment and definition.

Expexcul
Π,A(λ)

– (par, skB, pkB, skJ , pkJ ) ← AllGen(1λ);
– (Id∗, c∗1, c∗2, i∗, τ∗)

← ACreate,Corrupt,UWith,Rcv,Spd,S&R,UDepo,Idt(st, par, skJ , skB);
– If VerifyGuilt(pki∗ , τ

∗) = 1 and ski∗ =⊥, return 1;
– Return ⊥.
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Definition 3 (Exculpability). Let Π be a transferable e-cash system with
judge. For an adversary A and λ ∈ N, we let Succexcul

Π,A(λ) = Pr[Expexcul
Π,A(λ) = 1].

Π is said to be exculpable if the function Succexcul
Π,A(·) is negligible for any poly-

nomial-time adversary A.

3.4 Anonymity Properties in Transferable E-Cash

Regarding anonymity, Canard and Gouget [4] distinguish between five different
notions: weak anonymity (WA), strong anonymity (SA), full anonymity (FA),
and two types of restricted perfect anonymity (PA1 and PA2). They show that FA
implies SA, which implies WA, and that FA, PA1 and PA2 are all incomparable.
We say the anonymity for a transferable e-cash scheme is optimal when it satisfies
the latter 3 properties. We work with the formal definitions of [4] but slightly
modify the terminology3.

– Observe-then-Receive Full Anonymity (OtR-FA, previously FA): the adver-
sary, impersonating the bank, cannot link a coin he receives as “legitimate”
user to a previously (passively) observed transfer between honest users.

– Spend-then-Observe Full Anonymity (StO-FA, previously PA1): the adver-
sary, impersonating the bank, cannot link a (passively) observed coin trans-
ferred between two honest users to a coin he has already owned as a “legiti-
mate” user.

– Spend-then-Receive Full Anonymity (StR-FA, previously PA2): when the
bank is honest, the adversary cannot link two transactions involving the
same coin, i.e. make the link between two coins he has received.

In the following, we say that a transferable e-cash scheme achieves optimal
anonymity if it satisfies at the same time OtR-FA, StO-FA and StR-FA, which
are incomparable, according to [4]. These anonymity notions are formally defined
below, based on the corresponding experiments given in Figure 1.

Definition 4 (Anonymity Properties). Let Π be a transferable e-cash sys-
tem with judge and let c ∈ {otr-fa, sto-fa, str-fa}. For an adversary A and λ ∈ N,
we let Advc

Π,A(λ) = Pr[Expc-1
Π,A(λ) = 1] − Pr[Expc-0

Π,A(λ) = 1]. Π is said to be
Observe-then-Receive fully anonymous (resp. Spend-then-Observe fully anony-
mous, Spend-then-Receive fully anonymous) if the function Advotr-fa

Π,A (·) (resp.
Advsto-fa

Π,A (·), Advstr-fa
Π,A (·)) is negligible for any polynomial-time adversary A.

4 Cryptographic Tools

In this section we give the main tools we need to construct our new transferable
e-cash system with judge. For each of them, we introduce the concept, give the
underlying procedures and formally describe the main security characteristics.
3 In particular, the notion of “perfect” anonymity in [4] is not based on the indistin-

guishability of distributions, which may be confusing as we only achieve computa-
tional security.
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Expotr-fa-b
Π,A (λ) // b ∈ {0, 1}, A = (Ach,Ac,Agu)

– (par, skB, pkB, skJ , pkJ ) ← AllGen(1λ);
– (i∗0, i

∗
1, st) ← ACreate,Corrupt,UWith,Rcv,Spd,S&R,UDepo,Idt

ch (par, skB, pkJ );
– If ski∗0 =⊥ ∨ ski∗1 =⊥ ∨ comp(i∗0, i∗1) = 0 ∨ i∗0 ∈ RU ∨ i∗1 ∈ RU

then return ⊥;
– Choose j∗ such that coin number j∗ belongs to i∗b and i∗1−b owns a

coin of equal size. Simulate Spd(i∗b , j
∗) to Ac, which outputs stc;

– b∗ ← ACreate,Corrupt,UWith,Rcv,Spd,S&R,UDepo,Idt
gu (stc);

– Return b∗.

Expsto-fa-b
Π,A (λ) // b ∈ {0, 1}, A = (Ach,Agu)

– (par, skB, pkB, skJ , pkJ ) ← AllGen(1λ);
– (i∗0, i

∗
1, i

∗
2, st) ← ACreate,Corrupt,UWith,Rcv,Spd,S&R,UDepo,Idt

ch (par, skB, pkJ );
– If ski∗0 =⊥ ∨ ski∗1 =⊥ ∨ ski∗2 =⊥ ∨ comp(i∗0, i

∗
1) = 0, return ⊥;

– Choose j∗ such that coin number j∗ belongs to i∗b , and i∗1−b owns a
coin of equal size; run out ← S&R(j∗, i∗b , i

∗
2);

– b∗ ← ACreate,Corrupt,UWith,Rcv,Spd,S&R,UDepo,Idt
gu (out, stc);

– If an oracle call involved the coin used in S&R then return ⊥;
– Return b∗.

Expstr-fa-b
Π,A (λ) // b ∈ {0, 1}, A = (Ach,Ac,Agu)

– (par, skB = (skW , skD), pkB = (pkW , pkD), skJ , pkJ ) ← AllGen(1λ);
– (i∗0, i∗1, st)

← ACreate,Corrupt,UWith,Rcv,Spd,S&R,Depo,Idt
ch (par, skW , pkD, pkJ );

– If ski∗0 =⊥ ∨ ski∗1 =⊥ ∨ comp(i∗0, i∗1) = 0 then return ⊥;
– Choose j∗ such that coin number j∗ belongs to i∗b , and i∗1−b owns a

coin of equal size. Simulate Spd(i∗b , j
∗) to Ac, which outputs stc;

– b∗ ← ACreate,Corrupt,UWith,Rcv,Spd,S&R,Depo,Idt
gu (stc);

– If the oracle Depo is called on input either i∗0 or i∗1, return ⊥;
– Return b∗.

Fig. 1. Experiments for full-anonymity notions

4.1 Assumptions

Our construction will rely on two cryptographic assumptions: the symmetric
external Diffie-Hellman (DH) assumption and the asymmetric double hidden
strong DH assumption, a “q-type” assumption introduced in [1].

Definition 5 ((SXDH)). Let G1, G2 be cyclic groups of prime order generated
by g1 and g2, respectively, and let e : G1 × G2 → GT be a bilinear map. The



Achieving Optimal Anonymity in Transferable E-Cash with a Judge 215

SXDH assumption states that for i = 1, 2, given gi, g
a
i , gb

i , for random a, b, it is
hard to distinguish gab

i from a random element from Gi.

Definition 6 (q-ADHSDH). Given (g, f, k, gξ, h, hξ) ∈ G4
1 ×G2

2 and(
ai = (k · gνi)

1
ξ+γi , bi = fγi , vi = gνi , di = hγi , wi = hνi

)q−1

i=1

for random g, f, k ← G1, h ← G2, ξ, γi, νi ← Zp, it is hard to output a new such
tuple (a, b, v, d, w) ∈ G3

1 ×G2
2, i.e., one that satisfies

e(a, hξ · d) = e(k · v, h) e(b, h) = e(f, d) e(v, h) = e(g, w)

4.2 Groth-Sahai Proofs

Groth and Sahai [9] proposed the first efficient non-interactive proof system for
a large class of statements over bilinear groups in the standard model. Those
proofs fit our purpose perfectly: their witness indistinguishability guarantees
the anonymity of the users that withdraw, transfer and spend coins, and their
randomizability provides unlinkability of transferred coins.

We use SXDH-based Groth-Sahai commitments and proofs in a pairing-friendly
setting in order to commit to elements and prove relations satisfied by the as-
sociated plaintexts. The commitment key is: u ∈ G 2×2

1 , v =∈ G 2×2
2 . Depending

on whether the commitments should be perfectly binding or perfectly hiding
(for simulations in security proofs), the initialization of the parameters will vary
between: u1 = (g1, u) with u = gμ

1 and u2 = uν
1 with μ, ν

$← Z∗
p (which makes u

a Diffie-Hellman tuple in G1) for the binding setting, and for the hiding setting
u2 = uν

1 � (1, g1)−1 = (gν
1 , gμν−1

1 ). Similarly, we define key pairs v1 and v2 in
G2

2 with independent randomness.

Commitments to group elements. To commit to X ∈ G1 with random
values s1, s2 ∈ Zp, we set C(X) = (1, X)�us1

1 �us2
2 = (us1

1,1 ·us2
2,1, X ·us1

1,2 ·us2
2,2).

– Perfectly binding setting: We have C(X) = (ga
1 , X ·ua), with a = s1 + νs2. A

simulator that knows μ can extract X as this is an ElGamal encryption of X
under (g1, g

μ
1 ). The key μ is called the extraction key for such an extractable

commitment.
– Perfectly hiding setting: We have C(X) = (ga

1 , X · gb
1 · ua), for a = s1 + νs2

and b = −s2, two independent random values. C(X) is thus an encryption
of X · gb

1, for a random b, so it blinds X .

Analogously, one commits to elements from G2 by replacing u by v and g1 by
g2 in the above.

Proofs. Under the SXDH assumption, the two initializations of the commitment
key are indistinguishable. Groth and Sahai [9] show how to construct proofs that
a set of committed values satisfies an equation of a certain type. A proof is in
G2×2

2 × G2×2
1 ; it can be constructed using the committed values satisfying the

equation and their randomness, and it is verified w.r.t. the commitments and
the commitment key. If the key is set up as perfectly hiding then the proof does
not reveal more than the fact that the values satisfy the equation.



216 O. Blazy et al.

Randomization. The commitments can easily be randomized. Given, e.g., a
commitment c ∈ G2

1, one chooses two random values s′1, s
′
2 and computes the

randomization as c′ = (c1 · us′
1

1,1 · u
s′
2

2,1, c2 · us′
1

1,2 · u
s′
2

2,2). In [2] it is shown how to
randomize and adapt a proof (π, θ) for a vector of commitments (ci)i to their
randomizations (c′i)i.

4.3 Commuting Signatures

Commuting signatures and verifiable encryption [7] is a primitive combining a
signature scheme (the automorphic signature from [1], whose messages are group
elements) with Groth-Sahai (GS) proofs. This allows one to commit to a message,
a verification key, or a corresponding signature (or arbitrary combinations of
them), and prove that the committed values are valid (i.e. the signature is valid
on the message under the key), via the GS methodology.

Commuting signatures provide several additional functionalities, of which we
use the following two.

SigCom: This allows a signer, who is given a commitment C to a message, to
make a commitment cΣ to a signature (under his secret key) on that message
(without knowing it though) and a proof that cΣ contains a valid signature
on the value committed in C.

AdCK: Given a commitment to a message, a commitment to a signature and
a proof of validity w.r.t. to a verification key, this algorithm allows anyone
to commit to that key and adapt the proof; more precisely, AdCK outputs a
proof asserting that a commitment contains a valid signature on a committed
message under a committed verification key.

Security states that the output of SigCom is the same as if the signer had known
the message, signed it, made commitments to the message and the signature and
had given a GS proof of validity w.r.t. his signature-verification key. Analogously,
the output of AdCK is the same as a proof constructed for the known committed
values.

In our e-cash scheme commuting signatures will enable users to produce sig-
natures on values that are only available as commitments and make a proof of
validity under their verification key, which is also given as a commitment.

5 A Tranferable E-Cash System with Judge

Based on the cryptographic building blocks introduced in the last section, we
are now in a position to describe our transferable e-cash system with judge.
In our solution the withdrawer is anonymous towards the bank, a feature that
previous schemes do not offer. This is motivated by the fact that our withdrawal
is very similar to the spending protocol and it is easy to make the withdrawer
non-anonymous, should one wish to. A possible application of our scheme is the
anonymous purchase of tickets which can then be transferred to other users.
Another scenario could be e-cash which can be purchased in exchange for actual
cash.
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5.1 Overview of Our Solution

A coin is represented by a unique chain of nonces n = n0‖n1‖n2‖ · · · , where each
ni is randomly chosen by a consecutive owner of the coin. Thus, n0 is chosen by
the bank, n1 by the withdrawer, n2 by the one who receives this coin from the
withdrawer, and so on.

A double-spending has occurred when two coins n and n′ are deposited which
both begin with n0 = n′

0. Note that the minimum value i such that ni = n′
i cor-

responds to the transfer of the coin where it was double-spent. If we oblige every
user to commit to her identity during a transfer and include this commitment
in the coin then a judge holding an extraction key can trace the defrauder.

When a coin is transferred from Ui to Ui+1, the spender Ui signs the fol-
lowing: (i) the nonce she chose when receiving the coin (during a spending or
withdrawal), (ii) the nonce chosen by the receiver Ui+1, and (iii) Ui+1’s verifica-
tion key. The latter binds this transfer to the next one, where Ui+1 will use her
signing key. In fact, since only Ui+1 knows the secret key corresponding to the
signed public key, she is the only one able to spend the coin.

However, to remain anonymous, Ui+1 cannot let the spender know her verifi-
cation key. This is where commuting signatures come into play: they allow the
signer to make (a commitment to) a signature on the receiver’s key, even when it
is only given to the signer as a commitment. Since SigCom additionally outputs
a proof, validity of the committed signature is publicly verifiable.

When a coin is spent, its entire history (i.e. committed nonces, keys, signatures
and proofs of their validity from previous transfers) is transmitted. This will
guarantee unforgeability, identification of double-spending and non-frameabili-
ty, without requiring data to be stored by the user and provided later on demand
to prove innocence (as was the case in the relaxed model in [8]). Every time a coin
is transferred, its history (consisting of commitments and Groth-Sahai proofs)
can be completely randomized. Thus, a previous owner of a coin cannot recognize
it at a later moment; this is how our scheme achieves strong anonymity notions.

5.2 Key-Generation Algorithms

During the generation phase, the judge J generates two pairs of commitment/ex-
traction keys, which will enable identification of double spenders. Similarly, the
double-spending detector D also generates such a key pair.

We denote a commitment under J ’s keys by either c (first key) or c̃ (second
key) and a commitment under D’s key by d. Using their secret extraction keys,
the judge and the detector can open commitments under their respective keys
using OpenJ and OpenD.

The judge also generates a key pair for a commuting signature scheme; in the
following, a signature on m from J is denoted SignJ (m). Moreover, the bank B
and each user U generate key pairs (bsk, bpk) and (usk, upk) for the commuting
signature scheme. When registering, a user U obtains from the judge J a signa-
ture on her verification key as membership certificate: cert = SignJ (upk). In the
following, we differentiate the users by different indices: U1, U2, etc.
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5.3 Withdrawal Protocol

The withdrawal protocol involves a user U1 and the bank B. In a nutshell, the
bank B generates a random nonce n0 and the user a random nonce n1, which
together will be the beginning of the serial number of the coin. The bank then
signs these nonces and the user’s public key upk1, which will bind the user’s
identity to the coin and enable tracing in case of double spending.

However, to guarantee anonymity, rather than sending these values in the
clear, the user sends commitments to them. She also adds a commitment to her
certificate and a proof of validity, which convinces the bank that she is registered.
This can be done since the certificate is an automorphic signature [1], for which
GS proofs can be used to prove that a committed value is a signature on another
committed value, in this case upk1, valid under the judge’s verification key.

The bank now has to construct a committed signature on the values n0, n1

and upk1, which are only given in the form of commitments. This is where we
take advantage of the functionality SigCom of the commuting-signature scheme
introduced in Section 4.3: given commitments, a signer can produce a commit-
ment to a signature on the values contained in them, together with a proof of
validity of the signature.

All these commitments will be done w.r.t. the judge’s commitment key. To
enable the double-spending detector D to detect a double-spending (however
without breaking the user’s anonymity), we do the following: in addition to
committing to the nonces w.r.t. the judge’s key, the user and the bank make
another commitment dni to ni under D’s key. In order to show that this was
done correctly, we require a proof that two commitments w.r.t. different keys
contain the same value. This can be done by using two instances of Groth-
Sahai proofs on top of each other, as was done in [8]. The outer layer is the
one corresponding to c, which will enable us to simulate such a proof when the
commitment key for c is set up as hiding, but the key for d is still binding.

We formalize the above in the following protocol:
U1 picks at random a nonce n1 and makes two extractable commitments (for J

and D) to n1 denoted respectively by cn1 and dn1 , and a proof πn1 that the
two committed values are equal.

Moreover, U1 makes commitments cu1 , c̃u1 and cc1 to its public key upk1

and its certificate cert1, respectively, together with a proof πc1 that the value
in cc1 is a valid signature on the value in cu1 , i.e. cert1 = SignJ (upk1), and
a proof π̃u1 that the committed values on cu1 and c̃u1 are equal.

U1 sends the following values to the bank: (cn1 , cu1 , cc1 , πc1).
B after verifying πc1 now also generates a random nonce n0 and makes two

commitments (for J and D) to n0 denoted by cn0 and dn0 , and a proof πn0

that the two committed values are equal.
B produces a committed signature cs1 on the values n0, n1 and upk1 by

running SigCom on cn0 , cn1 and cu1 ; this also outputs a proof πs1 of validity
of cs1 w.r.t. cn0 , cn1 and cu1 and the bank’s verification key (which is public).
The bank sends all these values, from which the user forms the coin

coin1 = (cn0 , dn0 , πn0 , cn1 , dn1 , πn1 , cu1 , c̃u1 , π̃u1 , cc1 , πc1 , cs1 , πs1) . (1)
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In the sequel, this coin will be randomized before being spent. The result of ran-
domizing coin1 is denoted coin

(1)
1 and consists of randomizing all its components,

i.e. commitments and proofs, as described in [2]. After randomization, we have
thus coin

(1)
1 = (c(1)

n0 , d
(1)
n0 , π

(1)
n0 , c

(1)
n1 , d

(1)
n1 , π

(1)
n1 , c

(1)
u1 , c̃

(1)
u1 , π̃

(1)
u1 , c

(1)
c1 , π

(1)
c1 , c

(1)
s1 , π

(1)
s1 ).

5.4 Spending Protocol

This is a protocol between a user U1 holding a coin as in (1) and a user U2 playing
the role of the receiver. The protocol is very similar to the withdrawal protocol,
except for two points. First, U1 has to randomize the coin, which prevents a later
linking of the coin. Note that, due to the contained proofs, the validity of a coin
is publicly verifiable.

Second, while the bank’s verification key is public, U1’s key must remain
hidden. Thus, after U1 produces a commitment to a signature on the values
n1, n2 (the nonce chosen by U2), and U2’s public key upk2, and a proof that
verifies w.r.t. her public key upk1, U1 does the following: using the functionality
AdCK (described in Section 4.3), she converts the proof into one asserting that
the committed signature is valid under the value committed in c

(1)
u1 (i.e. the

randomization of the commitment to upk1).

U2 picks at random a nonce n2 and commits to it as cn2 and dn2 (for J and D)
and makes a proof πn2 of equality of the committed values.
U2 makes further commitments cu2 , c̃u2 and cc2 to her public key upk2

and her certificate cert2, together with a proof πc2 that cc2 contains a valid
certificate and a proof π̃u2 that the committed values in cu2 and c̃u2 are
equal. She sends (cn2 , cu2 , cc2 , πc2) to U1

U1 checks the proof sent by U2 and randomizes coin1 to coin
(1)
1 . U1 then produces

a committed signature on the values committed in c
(1)
n1 , cn2 and cu2 using

SigCom: this generates a commitment cs2 to a signature on the values n1, n2

and upk2, as well as a proof π′
s2

of validity of cs2 on cn1 , cn2 , cu2 w.r.t.
upk1. Running AdCK, U1 converts π′

s2
to a proof πs2 asserting validity w.r.t.

the key committed in c
(1)
u2 . Note that this works since cu1 was produced and

randomized to c
(1)
u1 by U1, who therefore knows its randomness. Finally, U1

sends U2 the following: (coin
(1)
1 , cs2 , πs2).

U2 checks the proofs contained in coin
(1)
1 and πs2 and defines the trans-

ferred coin as
coin2 := (coin

(1)
1 , cn2 , dn2 , πn2 , cu2 , c̃u2 , π̃u2 , cc2 , πc2 , cs2 , πs2) .

5.5 Deposit and Identify Procedures

To deposit a coin, a user spends it to the bank, that is, she runs the proto-
col from the last section with the bank playing the role of U2. In order to de-
tect a double-spending given a coin, the detector D opens all the commitments
d
(�)
n0 , d

(�)
n1 , d

(�−1)
n2 , · · · , d

(1)
n� contained in it, using her extraction key. She thus ob-

tains the serial number n = n0‖n1‖ · · · ‖n� of this coin, which allows her to check
whether the coin was double-spent.
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To do so, D checks whether n0 already exists in her database. If this is not
the case then the Deposit is validated and the list L is updated by adding n =
n0‖n1‖ · · · ‖n�. Otherwise, if a serial number ñ beginning with n0 already exists
in her database then with overwhelming probability the coin was double-spent
and D outputs ⊥1. She compares the two serial numbers n = n0‖n1‖n2‖ · · · ‖n�

and ñ = n0‖ñ1‖ñ2‖ · · · ‖ñ� and stops at the last i0 such that ni0 = ñi0 . She
finally asks for the execution of the Identify procedure by the Judge on input the
two related spendings and i0.

To identify the double spender, the judge extracts the value committed in cui0

using her extraction key, which reveals the public key upki0 of the defrauder. The
proof τG of identification is a proof of correct opening of the commitment, as
done in [8].

5.6 Security Considerations

We now sketch how to prove that our scheme is secure. We have to show that it
fulfills all the security requirements given in Section 3.

Claim 1. Our transferable e-cash system with a judge is secure under the follow-
ing assumptions: unforgeability of the commuting signature scheme and sound-
ness and witness indistinguishability of Groth-Sahai proofs.

Unforgeability. Let us assume that an adversary is able to break the unforge-
ability of our transferable e-cash scheme. We use it as a black box to design
a machine which breaks commuting signatures, i.e. their unforgeability under
chosen-message attacks.

Given a challenge public key by our challenger, we use it as the bank’s public
key and generate the remaining parameters as described in our e-cash scheme
(without any modifications), and send it to the adversary. We answer all oracle
queries by the adversary either by using the appropriate key or by querying the
signing oracle provided by our challenger (for BWith and With calls).

Suppose the adversary wins the game. For each of the qD successfully de-
posited coins, using the judge’s extraction key we open the commitments cs1 ,
cn0 , cn1 and cu1 . By soundness of πs1 , the extracted signature s1 is valid on
(n0, n1, upk1), the other extracted values, under the bank’s public key. Since ev-
ery deposit was successful, none of the qD coins was double-spent, which means
that their n0 components are all different. We have thus qD signatures on dif-
ferent triples (n0, n1, upk1). On the other hand, there were fewer calls (qW ) to
withdraw oracles, and thus fewer calls to our signing oracle. There must thus be
a signature on a message which was not queried to the signing oracle. We output
that signature/message pair as a forgery and win thus the unforgeability game
with the same probability as the adversary.

Identification of double-spender. As for unforgeability, we use a successful
adversary to break unforgeability of the commuting signature scheme. This time
we use the public key given by our challenger as the judge’s public key and set up
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the remaining parameters as described in our scheme. We can therefore answer
any oracle call by the adversary, except for the certification of a new user in the
system (oracle Create), for which we use our signing oracle.

At some point the adversary makes a call to the BDepot oracle that is an-
swered as (⊥2, Id, c, c′), i.e. a double-spending is detected. If the adversary is
successful then Identify outputs (i∗, τG) such that either VerifyGuilt(pki∗ , τG) = 0
or i∗ = 0. Since each valid coin must contain a valid certificate for the public key
corresponding to each transfer, by soundness of the proofs, the adversary must
have forged the certificate. Otherwise Identify would have output an existing user
key.

Exculpability. This is shown similarly to unforgeability, except that here we
focus on signatures issued by an honest user rather than the bank.

A user with public key upk is accused of double-spending when there are two
coins c and c′ with serial numbers n and n′, such that for some index i, we have
n0 = n′

0, . . . , ni = n′
i and ni+1 = n′

i+1, and moreover cui contains the user’s
public key upk. Since both coins are valid, by the soundness of the proofs, they
contain signatures on (ni, ni+1, upki+1) and (ni, n

′
i+1, upk′i+1), respectively.

Since an honest user does not transfer or spend one of his coins twice, and it
only happens with negligible probability that she chooses twice the same nonce
ni when receiving two different coins, one of the signatures must be a forgery.

The adversary we build against unforgeability of the commuting signature
scheme receives the challenge public key and sets it as the public key of a ran-
domly chosen user. It uses the signing oracle to simulate this user, whenever the
adversary asks her to spend/transfer a coin. If the probability that the e-cash
adversary wins the exculpability game is non-negligible then so is the probabil-
ity that he wins by framing the user chosen by the simulator. We break thus
unforgeability of the commuting signature.

Anonymity properties

– To achieve Spend-the-Observe Full Anonymity, it suffices to encrypt the
messages sent between the users when transferring a coin; this was shown
in [4].

– Spend-then-Receive Full Anonymity (formerly known as PA2) is harder to
achieve, since the adversary is given the challenge coin, which he could al-
ready have owned before; the adversary therefore must not know the key to
detect double-spendings.

Groth-Sahai proofs are witness indistinguishable in the following sense: if
the commitment key is set up as perfectly hiding then the commitments are
random values independent of the committed values and the proofs are dis-
tributed equally for any such values—as long as they satisfy the equations.
Thus, if we set up all commitment keys (the two for the judge and one for
the double-spending detector), a coin would not reveal anything about the
chosen nonces, the public keys and certificates of its owners and their signa-
tures. Moreover, after being transferred, the coins are perfectly unlinkable,
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since a randomization transforms one set of random values into an indepen-
dent set of random values (conditioned on the fact that the values that could
have been committed satisfy the equations).

However, if the coins do not contain any information, we cannot correctly
simulate the experiment for StR-FA. In particular, we cannot simulate the
deposit and identification oracles, which rely on the detector’s and the judge’s
extraction keys. This is the reason why we introduced the commitments d
and c̃, which double some of the values committed in the c’s, namely the
nonces and the user public keys.

The anonymity properties are shown by a sequence of game hops. The
first game is the original game, and in the second we extract from the com-
mitments d and c̃ to detect and trace double-spendings. In a third game,
we set up the judge’s key for the commitments c as perfectly hiding. Un-
der SXDH this changes the adversary’s behavior only negligibly. In a forth
game we simulate the proofs πni and π̃ui of equality of commitments under
different keys. This can be done using the trapdoor information for the key
for the c-commitments.

Finally, we mentioned in Section 4.2 that commitments under binding keys
are actually ElGamal encryptions of the committed value. Under SXDH we
can thus replace such encryptions by random pairs of elements from the
corresponding group. When we perform the challenge spending via Spd in
the experiment, we replace the commitments/encryptions dni and c̃ui by
random values. This is done by a sequence of hybrid games, replacing one
value after the other.

In the final game now the challenge coin is perfectly random, and does
thus not contain any information about the bit b. The adversary’s probability
of winning the game is thus 1

2 . This concludes the proof for StR-FA as the
final game is indistinguishable from the original game.

– The remaining notion, OtR-FA, is proved similarly, but here we cannot re-
place values d by random ones, as the adversary gets the corresponding
extraction key, contained in skB. However, we can simply leave the values
d in the challenge coin unchanged, as the adversary has never seen them
before: he has never owned the coin and does not get the value dn1 when
impersonating the bank during a withdraw.
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Abstract. An attribute-based signature with respect to a signing pol-
icy, chosen ad-hoc by the signer, convinces the verifier that the signer
holds a subset of attributes satisfying that signing policy. The verifier
must obtain no other information about the identity of the signer or the
attributes he holds. This primitive has many applications in real scenar-
ios requiring both authentication and anonymity/privacy properties.

We propose in this paper the first attribute-based signature scheme
satisfying at the same time the following properties: (1) it admits general
signing policies, (2) it is proved secure against fully adaptive adversaries,
in the standard model, and (3) the number of elements in a signature de-
pends only on the size of the signing policy. Furthermore, our scheme en-
joys the additional property of revocability: an external judge can break
the anonymity of a signature, when necessary. This property may be very
interesting in real applications where authorities are unwilling to allow
full anonymity of users.

Keywords: attribute-based signatures, Groth-Sahai proofs, unforgeabil-
ity, non-linkability, revocability.

1 Introduction

Attribute-based cryptography has emerged in the last years as a very interesting
and powerful paradigm [3,2,8]. In an attribute-based cryptosystem, the secret
operation (signing or decrypting) can be performed only by users who hold a
subset of attributes that satisfy some policy. A successful execution of the se-
cret operation should leak no information about the identity of the user or the
attributes he holds, other than the fact that these attributes satisfy the given
policy. Thanks to that property, attribute-based cryptography has a lot of appli-
cations in real-life scenarios where users want to preserve some level of privacy.
Attribute-based cryptosystems must satisfy a collusion-resistance property: if a
set of users, each of them holding attributes that do not satisfy the given policy,
collude and try to perform the secret operation, they must fail to do so, even if
the union of all their attributes satisfies the policy.
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Attribute-based signatures were introduced explicitly in the first version of
[12]. In an attribute-based signature (we will use sometimes ABS, for short)
scheme, users receive from a master entity a secret key which depends on the
attributes that they hold. Later, a user can choose a signing policy (a monotone
increasing family of subsets of attributes) satisfied by his attributes, and use
his secret key to compute a signature on a message, for this signing policy. The
verifier of the signature is convinced that some user holding a set of attributes
satisfying the signing policy is the author of the signature, but does not obtain
any other information about the actual identity of the signer or the attributes
he holds. Besides the general applications of any attribute-based cryptosystem
(such as private access control), this kind of signatures have many applications in
specific scenarios where both authentication and privacy properties are desired.
A typical example is the leakage of secrets; see [12] for other applications.

All the attribute-based signature schemes that have been proposed up to
date have some drawback in their efficiency, functionality or security analysis
[12,14,9]. We propose in this paper a new attribute-based signature scheme which
overcomes these drawbacks. Namely, our scheme is the first one1 enjoying at the
same time the following properties: (1) it admits general signing policies, (2) its
security against adaptive adversaries is proved in the standard model, (3) the
number of elements in a signature depends linearly on the size of the signing
policy.

Table 1 summarizes the state of the art in attribute-based signatures, and the
contribution of our new scheme. In the table, λ denotes a security parameter
(the size of the underlying mathematical groups), and |Γ | denotes the size of
the mathematical object used to represent the signing policy. For example, in
the case of (�, n)-threshold signing policies, containing all subsets of at least �
attributes among a set of n attributes, we have |Γ | = n. Note that the difference
between λ and |Γ | can be quite significant; for example, in typical threshold
scenarios the number of involved attributes can be |Γ | = n ≈ 20, whereas
λ ≥ 160. Selective adversaries are those who choose the signing policy they want
to attack at the very beginning, before having access to secret key or signing
queries. In contrast, adaptive adversaries are more powerful: they can choose the
attacked signing policy much later. Proving security against adaptive adversaries
is obviously much better than proving security against selective adversaries.

Table 1. Comparison between existing attribute-based signature schemes

ABS scheme #elements admitted considered model for the
in a signature policies adversaries security proof

Instantiations 1,2 in [12] O(λ) general adaptive standard

Instantiation 3 in [12] O(|Γ |) general adaptive generic group

[14,9] O(|Γ |) threshold selective standard

Our scheme, [11] O(|Γ |) general adaptive standard

1 A scheme with the same properties has been independently proposed, in [11].
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We construct our scheme in different steps. First we concentrate on the case
of threshold signing policies, and we start with a basic scheme which produces
linkable signatures. The design of this first scheme is inspired by the ring sig-
nature scheme of Shacham-Waters [13]. Then we add more technical tools to
provide non-linkability and anonymity to the signatures. Specifically, we use
Groth-Ostrovsky-Sahai [5] and Groth-Sahai [6] proofs. Such proofs have been
proved very useful in the design of signature schemes with some anonymity
properties, such as ring signatures [13] and group signatures [4]. Our second
scheme can be proved secure in the random oracle model. Finally, we explain
which modifications have to be applied to this second scheme in order to admit
more general signing policies (possibly at the cost of an increase in the length of
the signatures) and to achieve provable security in the standard model (at the
cost of an increase in the length of the public parameters).

Interestingly, our schemes enjoy the additional property of revocability: the
master entity can send some secret information to some special user, for example
a judge. This user may then revoke the anonymity of an attribute-based signa-
ture, when needed, by tracing this signature to the user who computed it. To
the best of our knowledge, previous attribute-based signature schemes do not
satisfy this property. Revocability can be really useful when implementing the
primitive of attribute-based signatures in real-life scenarios, because authorities
do not usually like the idea of full anonymity.

2 Preliminaries

In this section we review some concepts, hardness assumptions and cryptographic
primitives that will appear in the description and analysis of our schemes.

2.1 Symmetric Bilinear Groups and Hardness Assumptions

A symmetric bilinear group is a tuple (n, G, GT , e, g) where G and GT are cyclic
groups of order n (which can be prime or composite), g generates G and e :
G×G → GT is a pairing, i.e., an efficiently computable non-degenerate bilinear
map.

The security of our schemes is based on different assumptions. Given a prime
order symmetric bilinear group (p, G, GT , e, g), the CDH assumption states that
any probabilistic polynomial time algorithm that takes as input (g, ga, gb) ∈
G3 outputs gab ∈ G only with negligible probability. We will use the CDH
assumption in the subgroup of order p of a composite order symmetric bilinear
group G to prove the unforgeability of our scheme.

Given a composite order symmetric bilinear group (n, G, GT , e, g) with n = pq
the product of two large primes, the subgroup decision assumption states that
it is hard to distinguish an element in G from an element in Gq, the subgroup
of order q of G. This assumption is needed to construct non-interactive witness
indistinguishable proofs to provide anonymity to our scheme.

Finally, an automorphic signature scheme will be used in the design of the
schemes, and the hardness assumptions ensuring the security of such automor-
phic signature scheme will be inherited by our scheme.
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2.2 Automorphic Signatures

An automorphic signature scheme is a signature scheme that satisfies the fol-
lowing properties: the verification keys lie in the message space, messages and
signatures consist of elements of a bilinear group, and verification is done by eval-
uating a set of pairing-product equations. We will use an automorphic signature
in the design of our scheme, essentially as a black-box.

Instantiations of automorphic signature schemes can be found in [1]. Therein,
automorphic signature schemes using either symmetric or asymmetric bilinear
groups are presented. For the symmetric case (the one that we consider here), the
security of the scheme is based on the q-DHSDH (q-Double Hidden Symmetric
Diffie-Hellman) and WFCDH (Weak Flexible Computational Diffie-Hellman)
assumptions. These are non-standard but reasonable assumptions: under the
Knowledge of the Exponent Assumption, the first assumption is equivalent to
the q-SDH-III (q-Strong Diffie-Hellman III) assumption, which is a bit weaker
than the quite standard q-SDH assumption. Under the same Knowledge of the
Exponent Assumption, the asymmetric version of the WFCDH assumption is
equivalent to the standard discrete logarithm assumption.

2.3 NIWI Proofs for Pairing Product Equations

Groth, Ostrovsky and Sahai [5] and Groth and Sahai [6] propose two differ-
ent methodologies to construct non-interactive witness indistinguishable (NIWI)
proofs for different statements. In our scheme we will use both kinds of proofs.

First, Groth,Ostrovsky and Sahai [5] propose a construction of NIWI proofs
for all NP languages. More specifically, they constructed proofs for circuit satis-
fiability. We are just interested in a particular step of the construction: a NIWI
proof that a commitment contains 0 or 1. The setup algorithm outputs a bilinear
group (n, G, GT , e, g), where g is a generator of G and n = pq is the product of
two large primes, and also an element h ∈ G of order q. The commitment to
m ∈ {0, 1} is c = gmhr, the NIWI proof is computed as π = (g2m−1hr)r and the
verifier must check if e(c, c/g) = e(h, π). As proved in [5], this proof is correct,
sound and witness indistinguishable. Instead of using a unique value g, we will
use different values (the hash of some attributes).

Groth and Sahai [6] propose a construction of NIWI proofs of the satisfiability
of equations in bilinear groups. They give three instantiations of their method-
ology based on three different assumptions. In our scheme, we will mainly use
the instantiation based on the subgroup decision assumption. The methodology
of Groth-Sahai applies to different kinds of equations, but we are only interested
in pairing product equations, that is, those of the form

r∏
i=1

e(gi, Xi) ·
r∏

i=1

s∏
j=1

e(Xi, Xj)γij = tT

where gi, tT and γij are public constants in G, GT and Zn respectively, and Xi

are secret variables in G.
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The setup algorithm outputs a bilinear group (n, G, GT , e, g), where g is a
generator of G and n = pq is the product of two large primes, and an element
h of order q. To construct a NIWI proof, first all secret variables should be
committed computing Com(Xi, ρi) = Xih

ρi . After that, the proof π is computed
using a protocol Proof(ck, E, {Xi, ρi}), where E is the equation to be satisfied
and ck is the commitment key. Finally, the verifier must check that

r∏
i=1

e(gi, Com(Xi)) ·
r∏

i=1

s∏
j=1

e(Com(Xi), Com(Xj))γij = tT e(h, π).

The correctness, soundness and witness indistinguishability of these proof
systems are proved in [6].

3 Revocable Attribute-Based Signatures: Protocols and
Security

In this section we describe the protocols that form an attribute-based signature
scheme, as well as the security properties that must be required to such a scheme.
A difference with respect to previous definitions for this primitive (such as the
one in [12]) is that we deal explicitly with the identity of the users, because of
the revocability property of our scheme. An attribute-based signature is linked
to a determined signing policy (P , Γ ): a set P of attributes and a monotone
increasing family Γ ⊂ 2P of subsets of P . A valid signature means that a signer
possessing all the attributes of some of the subsets in Γ is the author of the
signature. The monotonicity property ensures that A1 ⊂ A2, A1 ∈ Γ ⇒ A2 ∈ Γ .
The most common and simple example of such a monotone increasing family
of subsets is the threshold case: in a (�, n)-threshold signing policy, the set P
contains n attributes, and Γ = {A ⊂ P : |A| ≥ �}. That is, by verifying a
threshold attribute-based signature, the verifier is convinced that the author of
the signature holds at least � of the attributes included in the set P .

3.1 Syntactic Definition

A revocable attribute-based signature scheme consists of four probabilistic
polynomial-time algorithms:

– Setup(1λ). The setup algorithm takes as input a security parameter λ and
outputs some public parameters params, a master secret key msk and a re-
vocation key rk. The public parameters contain the possible universe of at-
tributes P̃ = {at1, . . . , atm}.

– KeyGen(id, A, msk, params). The key generation algorithm takes as input the
master secret key msk, the public parameters params and then an identity
id and a set of attributes A ⊂ P̃ satisfied by the user with identity id. The
output is a private key skid,A. The master entity may store some informa-
tion (for example, a table) relating the executions of this protocol with the
identities id of the users. We refer to this information as st.
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– Sign(M,P , Γ, skid,A, params). The signing algorithm takes as input a message
M , a signing policy (P , Γ ) where P ⊂ P̃ and Γ ⊂ 2P , a secret key skid,A and
the public parameters params, and outputs a signature σ.

– Verify(σ, M,P , Γ, params). The verification algorithm takes as input the sig-
nature σ, the message M , the signing policy (P , Γ ) and the public param-
eters params, and outputs accept or reject, depending on the validity of the
signature.

– Revoke(σ, rk, params, st). The revocation algorithm takes as input a signature
σ, the revocation key rk, the public parameters params and possibly the
information st stored by the master entity during the executions of KeyGen,
and outputs an identity id or the special symbol ⊥.

Of course, the usual properties of correctness for the verification and revo-
cation algorithms must be required. Intuitively, a signature for a signing policy
(P , Γ ) that is computed by using skid,A such that A ∈ Γ must be always accepted
by the verification protocol and must be always revoked to identity id.

We stress that we have chosen the expression revocable to denote the property
of opening the anonymity of an attribute-based signature, instead of traceable,
to avoid confusion with the (different) notion of traceable signature [10].

3.2 Security Definitions

Unforgeability. An attribute-based signature scheme must satisfy the property
of existential unforgeability against chosen message and signing policy attacks.
Such property is defined by the following game between a challenger C and an
adversary F .

Setup. C runs the setup algorithm and keeps the master secret key msk and
the revocation key rk to itself, then gives the public parameters params to F .

Queries. Adaptively, F can request any queries described below.

– Secret key query: F requests a private key on an identity id and a set of
attributes B ⊂ P̃ .

– Signature query: F requests a signature for a message M and a signing policy
(P , Γ ), where P ⊂ P̃ and Γ ⊂ 2P .

– Revocation query: F sends a tuple (M, σ,P , Γ ). If the signature is valid, then
F expects to receive as answer an identity id for the author of the signature
σ.

Output. Finally, F outputs a tuple (σ∗, M∗,P∗, Γ ∗) and wins the game if
(1) the signature is valid, (2) F has not made any secret key query for a set
of attributes A ⊂ P̃ such that A ∈ Γ ∗, and (3) F has not made any signature
query for the tuple (M∗,P∗, Γ ∗).

Definition 1. An attribute-based signature scheme is unforgeable if, for any
adversary F that runs in polynomial time, the probability that F wins the above
game is negligible in the security parameter λ.
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The above definition of unforgeability guarantees collusion resistance: a group
of colluding users that pull their secret keys together will not be able to sign
messages for a signing policy that none of the attribute sets of these users sat-
isfies. The definition is in the adaptive setting where the attacker chooses the
target signing policy (P∗, Γ ∗) after making some queries. This is in contrast to
the selective setting where the attacker must choose the target signing policy at
the very beginning of the attack.

Non-Linkability and Anonymity. Intuitively, non-linkability means that an ob-
server cannot distinguish if two valid signatures for the same signing policy have
been computed by the same user. Non-linkability is defined via the following
game between a challenger C and an adversary A.

Setup. The setup is the same as the setup of the unforgeability game.
Queries. A can make the same queries as F in the unforgeability game.
Challenge. A submits a challenge tuple (id0, M0, σ0, M1,P , Γ ). If some of

the following conditions fails, the challenger aborts:

– A has asked for a secret key for (id0, A0) such that A0 ∩ P ∈ Γ ,
– Verify(σ0, M0,P , Γ, params) = accept,
– Revoke(σ0, rk, params) = id0.

Otherwise, the challenger C recovers the secret key skid0,A0 that has been de-
livered to A, chooses at random a different identity id1 = id0 and a subset of
attributes A1 ∈ Γ and runs skid1,A1 ←KeyGen(id1, A1, msk, params). Then C flips
a random coin b ∈ {0, 1} and computes σ1 ←Sign(M1,P , Γ, skidb,Ab

, params). The
values σ1, id1, A1, skid1,A1 are returned to A.

Queries. A can make more queries, with the restriction that the signature
σ1 cannot be queried to the revocation oracle.

Output. Finally, A outputs a guess b′ of b and wins the game if b = b′.

Definition 2. An attribute-based signature scheme is non-linkable if, for any
adversary A that runs in polynomial time, the difference between the probability
that A wins the above game and 1/2 is negligible in the security parameter λ.

The more standard property of signer’s anonymity can be defined in a very
similar way. Since in both definitions the adversary can obtain secret keys for
all identities of his choice, it is easy to see that non-linkability implies signer’s
anonymity.

Non-Frameability. Our schemes will enjoy the interesting property of revocabil-
ity, which means that there exists an authority that can break the anonymity of
a signature, when needed. This property brings new possibilities for an adversary
to cheat the system, that must be dealt with by our security model. Specifically,
we must consider framing attacks where an adversary tries to produce a sig-
nature that is later revoked to the identity of some honest user. This intuition
is formalized by considering the following game, between a challenger C and a
framing attacker T .
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Setup. The setup is similar to the setup of the unforgeability game, but now
even the revocation key rk is given to the adversary T .

Queries. A can make the same queries as F in the unforgeability game. Note
that revocation queries make no sense now, since T knows the revocation key.
Let M = {M s.t. (M,P , Γ ) is a signing query} be the set of messages queried
to the signing oracle, and let ID = {id s.t. (id, B) is a secret key query} be the
set of identities for which T obtains secret keys.

Output. At some point, T outputs a tuple (σ∗, M∗,P∗, Γ ∗) and wins the
game if (1) the signature is valid, (2) M∗ /∈M, and (3) Revoke(σ∗, rk, params) /∈
ID.

Definition 3. A revocable attribute-based signature scheme is non-frameable if,
for any adversary T that runs in polynomial time, the probability that T wins
the above game is negligible in the security parameter λ.

4 The New Scheme

In this section, we construct our attribute-based signature scheme. We proceed
in different steps. First, we construct a linkable scheme which works for threshold
signing policies. Then we will introduce some changes in order to achieve non-
linkability. The security of the resulting scheme will be proved in the random
oracle model. After that, we will modify the scheme to admit more general sign-
ing policies. And finally, we will explain how to achieve security in the standard
model.

4.1 The Intuition: A Linkable Scheme

Our basic construction is inspired by the ring signature scheme of Shacham-
Waters [13].

Setup(1λ). The setup algorithm first generates a symmetric bilinear group
(n, G, GT , e, g) of composite order n = pq, where p and q are primes of bit size
Θ(λ). Next, it chooses random w ∈ G, h ∈ Gq, where Gq is the subgroup of G

of order q, s ∈ Zn and cryptographic hash functions H1, H2 : {0, 1}∗ → G. It
also generates a value δp ∈ Zn such that δp = 0 mod q and δp = 1 mod p. An
automorphic signature scheme is chosen, with public key pkaut and secret key
skaut. Finally, a universe of attributes P̃ is chosen. Then, the public parameters
params, the master secret key msk and the revocation key rk are defined as

params = (n, G, GT , e, g, g1 = gs, h, h1 = hs, w, H1, H2, pkaut, P̃)

msk = (s, skaut) rk = δp

The master entity can erase the values (p, q, δp), because they are not needed to
answer key generation queries.

KeyGen(id, A, msk, params). The key generation algorithm takes as input an
identity id, a subset of attributes A ⊂ P̃ satisfied by id, the master secret key msk
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and the public parameters params. The master entity chooses a random element
Kid ∈ G and signs this value with the automorphic signature, obtaining σKid

. For
each attribute ati ∈ A, the algorithm chooses a random ri ∈ Zn and defines the
attribute secret key as ski = (Ei, Gi) = (H1(ati)sKri

id , gri). Finally, the global
secret key is skid,A = (Kid, σKid

, {ski}ati∈A). The master entity secretly stores
the relation between id and Kid in a table st, that can be sent to the revocation
judge.

Sign(M,P , �, skid,A, params). The signing algorithm takes as input a message
M , a set of attributes P ⊂ P̃, a threshold �, a secret key skid,A and the public
parameters params. The algorithm selects a minimal authorized set A′, this is, a
subset of A ∩ P of cardinality exactly �. To generate the signature, it proceeds
as follows:

1. First, for each ati ∈ P it chooses a random zi ∈ Zn and computes the
commitment Ci of fi and the corresponding proof πi as

Ci = (H1(ati)/w)fihzi and πi = ((H1(ati)/w)2fi−1hzi)zi

where fi = 1 if ati ∈ A′ and fi = 0 otherwise.
2. Then, it computes Hm = H2(M,P , �). It also chooses a random t ∈ Zn

and computes σ1 =

( ∏
ati∈A′

Ei

)
Ht

mhz
1 , σ2 = gt and σ3 =

∏
ati∈A′

Gi, where

z =
∑

ati∈P
zi.

3. Finally, the signature is σ = (σ1, σ2, σ3, {(Ci, πi)}ati∈P , Kid, σKid
).

Verify(σ, M,P , �, params). The verification algorithm takes as input a message
M , the signature σ on M , the threshold signing policy (P , �) and the public
parameters params. It proceeds as follows:

1. For all ati ∈ P , check if e(Ci, Ci/(H1(ati)/w)) ?= e(h, πi).
2. Compute Hm = H2(M,P , �) and check if e(σ1, g) ?=

e(w�
∏

ati∈P
Ci, g1)e(Hm, σ2)e(K, σ3).

3. Check that σKid
is a valid automorphic signature on Kid.

4. Output accept if all the tests are successful, and reject otherwise.

Revoke(σ, rk, params, st). Since the value Kid is included in the signature σ,
the judge only needs to recover the relation (id, Kid) from the secret table st.

4.2 Achieving Non-linkability

It is easy to see that the scheme described in the previous section works correctly.
However, the values σ3, Kid and σKid

allow any verifier to link two signatures
issued by the same signer, even if the relation between Kid and the identity of
the signer is unknown. To solve this drawback, we will use Groth-Sahai proofs
to commit to Kid and σKid

, and we will randomize σ3.
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Let Com(Kid) and Com(σKid
) be the commitments to Kid and σKid

respectively.
Let πσ be the NIWI proof of the satisfiability of the second verification equation,
and πKid

the NIWI proof of the satisfiability of the verification equation of the
automorphic signature of Kid. We remind the reader that the verification of an
automorphic signature is done by evaluating a set of pairing-product equations,
so we can build Groth-Sahai proofs of satisfiability for these equations.

In addition, we randomize the value σ3 by choosing a random r′ ∈ Zn and
multiplying σ3 with gr′

. We will also need to multiply σ1 with Kr′
id in order

to satisfy the verification equation. So, we redefine σ3 =
∏

ati∈A′
Gig

r′
and σ1 =( ∏

ati∈A′
Ei

)
Kr′

id Ht
mhz

1.

Now, the signature will be the tuple σ = (σ1, σ2, σ3, {(Ci, πi)}ati∈P , Com(Kid),
Com(σKid

), πKid
, πσ). The verification algorithm Verify(σ, M,P , �, params) pro-

ceeds now as follows:

1. For all ati ∈ P , check if e(Ci, Ci/(H1(ati)/w)) ?= e(h, πi).
2. Check if e(σ1, g) ?= e(wl

∏
ati∈P

Ci, g1)e(Hm, σ2)e(Com(Kid), σ3)e(h, πσ)

3. Checks that σKid
is a valid signature on Kid using the proof πKid

and the
commitments Com(Kid), Com(σKid

).
4. Outputs accept if all the tests are successful, and reject otherwise.

Finally, the revocation algorithm must be modified in the following way.
Revoke(σ, rk, params, st). The revocation algorithm takes as input the revoca-

tion key rk = δp, a valid signature σ, the public parameters params and the table
st. It computes Com(Kid)δp = K

δp

id . This value K
δp

id can be detected in the secret
table st, in order to obtain the identity id of the signer. Note that this process
can be made more efficient if a third value K

δp

id is added to each entry (id, Kid)
in the table st.

Security Analysis. Now we prove that the scheme described in this section
achieves the properties of non-linkability, non-frameability and unforgeability.
The proofs for the first two property are just sketched.

Theorem 1. If the subgroup decision assumption holds in G, then our threshold
attribute-based signature scheme is non-linkable.

Proof (sketch). The challenger can use the Setup algorithm to choose the param-
eters of the security game. As he knows the secret and revocation keys, he can
answer all the queries made by the adversary using the algorithms KeyGen, Sign
and Revoke.

The advantage of A is negligible because σ1, σ2 and σ3 are randomized
elements. All the commitments and proofs to the attributes {(Ci, πi)} and the
commitments Com(Kid), Com(σKid

), and the proofs πKid
, πσ do not reveal any in-

formation about fi or Kid because they are commitments and NIWI proofs.  !
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It is easy to see that our scheme also enjoys non-linkability (and anonymity)
with respect to the subset of attributes employed to compute a signature.

Theorem 2. Assuming that the underlying automorphic signature scheme is
secure, our threshold attribute-based signature scheme is non-frameable.

Proof (sketch). The challenger can use the knowledge of all the elements in msk
and rk, excepting skaut, and also its access to a signing oracle for the automorphic
signature scheme, to answer the different queries that a framing adversary T
makes.

If T succeeds in forging a signature σ∗ for which Com(K∗)δp = K
δp

id for all the
values Kid that have been generated in the secret key queries, then the values
in the forged attribute-based signature can be used to obtain a valid forgery
against the automorphic signature scheme.  !

Theorem 3. If the CDH assumption holds in Gp and the subgroup decision
assumption holds in G, then our threshold attribute-based signature scheme is
existentially unforgeable under chosen message and signing policy attacks.

Proof. We construct an algorithm B that solves the CDH problem in Gp running
an adversary F attacking the unforgeability of our scheme. Note that each proof
(Ci, πi) in a forged signature (σ∗, M∗,P∗, �∗) generated by F must pass the
verification equation e(Ci, Ci/(H(ati))/w)) = e(h, πi). This implies that Ci has
the form (H1(ati)/w)fihzi for some fi ∈ {0, 1} and zi ∈ Zn. According to the
value of

∑
ati∈P∗ fi, we consider two types of adversaries as follows.

1. A type-1 adversary F1 is one such that
∑

ati∈P∗ fi = �∗, where �∗ is the
threshold defining the signing policy of the forged signature.

2. A type-2 adversary F2 is one such that
∑

ati∈P∗ fi = �∗.

For each type of adversary F1 and F2, we will construct algorithms B1 and
B2, respectively, to solve the CDH problem in Gp. We do this in the following
two lemmas, which complete the proof of the theorem.

Lemma 1. Assume that the inherent automorphic signature scheme is secure. If
there exists a type-1 adversary F1 against our threshold attribute-based signature
scheme, then there exists an algorithm B1 that solves the CDH problem in Gp.

Proof. Suppose there exists a type-1 adversary F1 that breaks unforgeability of
our scheme. Let us construct an algorithm B1 that solves the CDH problem in
Gp. B1 is given the description of the bilinear group G, the factorization p, q of n,
which is the order of G, and a random CDH challenge (gp, g

α
p , gβ

p ) ∈ G3
p, where

gp is a generator of Gp. Its goal is to compute gαβ
p . The algorithm B1 interacts

with F1 as follows:
Setup. B1 selects a generator h ∈ Gq and chooses random values r1 ∈ Z∗

q , r2, r3

∈ Zq. It also chooses the keys (skaut, pkaut) of an automorphic signature scheme
and a universe of attributes P̃ . Next it defines the public parameters as params =
(n, G, GT , e, g = gph

r1 , g1 = gα
p hr2 , h, h1 = hr2/r1 , w = gβ

p hr3 , H1, H2, pkaut, P̃)
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and gives params to A1. The public parameters are correctly distributed because
e(g1, h) = e(gα

p hr2 , h) = e(hr1 , hr2/r1) = e(gph
r1 , hr2/r1) = e(g, h1). This is be-

cause gp ∈ Gp and h ∈ Gq imply that e(gα
p , h) = 1.

Queries. Adaptively, F1 can make H1-hash queries, H2-hash queries, secret
key queries, signature queries or revocation queries at any time. For hash queries,
B1 creates and maintains two lists H1-list and H2-list storing the information
of all the queries; these lists are consulted before answering any new query, for
consistency.

For a H1-hash query on ati, B1 generates a random ci ∈ Zn and responds with
H1(ati) = gci . For a H2-hash query on a message M , a set of attributes P and a
threshold �, B1 generates a random d ∈ Zn and responds with H2(M,P , �) = gd.
For a secret key query for an identity id and attribute set A ⊂ P̃ , B1 generates a
random ej ∈ Zn, computes Kid = gej and the signature σKid

and for each ati ∈ A
computes ski = (gci

1 Kri

id , gri), where ri is chosen at random in Zn. It responds
with skid,A = (Kid, {ski}ati∈A). Using these secret keys, B1 can answer signature
queries properly, as well. Since B1 knows p, q, it can easily answer revocation
queries, as well.

Output. Finally, F1 outputs a signature (σ∗, M∗,P∗, �∗), where

σ∗ = (σ1, σ2, σ3, {(Ci, πi)}ati∈P∗ , Com(Kid∗), Com(σKid∗ ), πKid∗ , πσ).

If (1) F1 did request a private key skid,A such that A ∩ P∗ has cardinality at
least �∗, or (2) F1 did request a signature on the tuple (M∗,P∗, �∗), or (3) if the
forged signature is not valid; then B1 stops the simulation because F1 has not
been successful.

Otherwise, B1 solves the given instance of the CDH problem as follows: let
δp be such that δp = 0 mod q and δp = 1 mod p. We have uδp = 1 if,
and only if, u ∈ Gq. We obtain C

δp

i = (H1(ati)δp/wδp)fi = (gci
p /gβ

p )fi for all
ati ∈ P∗, and so Cδp =

∏
ati∈P∗ C

δp

i = gc
p/(gβ

p )f , where c =
∑

ati∈P∗ cifi and
f =

∑
ati∈P∗ fi. From the second verification equation of the scheme (see Sec-

tion 4.2), we obtain e(gp, σ
δp

1 ) = e(gα
p , (gβ

p )�∗gc
p/(gβ

p )f )e(σδp

2 , gd
p)e(σδp

3 , ge
p), where

H2(M∗,P∗, �∗)δp = gd
p and Kδp = ge

p. This equation comes from the fact that
Com(Kid∗)δp = K

δp

id∗ and e(h, πσ)δp = 1. By rewriting this equation, we have
e(gα

p , gβ
p )�∗−f = e(gp, σ

δp

1 (σδp

2 )−d(σδp

3 )−e(gα
p )−c). B1 recovers from H1-list the

values ci corresponding to all the attributes in P∗ and the value d corresponding
to the H2-query (M∗,P∗, �∗). It also recovers the value e corresponding to Kid∗ .
As the automorphic signature scheme is secure, we can be sure that the value
of Kid∗ used in the forgery comes from a query, so it is known to B1. Finally,
B1 recovers {fi}i∈P∗ using that C

δp

i = 1 if, and only if, fi = 0. By assumption
f =

∑
ati∈P∗ fi = �∗, and so the value (�∗ − f)−1 mod p exists. Therefore, B1

can solve the CDH problem as gαβ
p =

[
(σ1σ

−d
2 σ−e

3 )δpg−αc
p

] 1
�∗−f .  !

Lemma 2. If there exists a type-2 adversary F2 against our threshold attribute-
based signature scheme, then there exists an algorithm B2 that solves the CDH
problem in Gp.
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Proof. Suppose there exists a type-2 adversary F2 that breaks the unforgeability
of our scheme. We construct an algorithm B2 that solves the CDH problem in
Gp. B2 is given the description of the bilinear group G, the factorization p, q of n,
which is the order of G, and a random CDH challenge (gp, g

α
p , gβ

p ) ∈ G3
p, where

gp is a generator of Gp. Its goal is to compute gαβ
p . The algorithm B2 interacts

with F2 as follows:
Setup. B2 selects a generator h ∈ Gq and chooses random values r1 ∈

Z∗
q , r2, r3, r4 ∈ Zq, r5 ∈ Zp. It also chooses keys (skaut, pkaut) of an automor-

phic signature scheme and a universe of attributes P̃ . Next it sets the public
parameters params = (n, G, GT , e, g = gph

r1 , g1 = gα
p hr2 , h, h1 = hr2/r1 , w =

gr5
p hr3 , H1, H2, pkaut, P̃), defines g2 = gβ

p hr4 and gives params to F2. The public
parameters are correctly distributed because e(g1, h)=e(gα

p hr2 , h)=e(hr1 , hr2/r1)
= e(gph

r1 , hr2/r1)= e(g, h1). These equalities hold because gp ∈ Gp and h ∈ Gq

imply that e(gα
p , h) = 1. With these parameters, s = logg g1 is implicitly defined.

Queries. Adaptively, F1 can make H1-hash queries, H2-hash queries, secret
key queries, signature queries or revocation queries at any time. B2 creates and
maintains lists H1-list, H2-list and K-list, for consistency. Again, since B2 knows
p, q, it can easily answer revocation queries.

For a H1-hash query on ati, B2 responds as follows: if ati was in a previous H1-
hash query, it recovers (ati, H1-coini, ci) from H1-list; otherwise, it generates a
random H1-coini ∈ {0, 1} so that Pr[H1-coini = 1] = ρ1, for ρ1 to be determined
later. It generates a random ci ∈ Z∗

n and stores (ati, H1-coini, ci) in H1-list. If
H1-coini = 0, then it responds with H1(ati) = gci ; otherwise, it responds with
H1(ati) = gci

2 .
For a H2-hash query on a tuple (M,P , �), B2 responds as follows: if (M,P , �)

already exists in H2-list, B2 recovers (M,P , �, d) from its H2-list; otherwise, it
generates a random d ∈ Zn, stores (M,P , �, d) in H2-list and responds with
H2(M,P , �) = gd.

For a secret key query for an identity id and a set of attributes A ⊂ P̃, B2

responds as follows: it generates a random Kid-coin ∈ {0, 1} so that Pr[Kid-
coin = 1] = ρ2, for ρ2 to be determined later. If Kid-coin = 0, B2 generates a
random e ∈ Zn and sets e′ = 0; otherwise, it generates two random elements
e, e′ ∈ Z∗

n. It defines Kid = gege′
1 and stores (Kid-coin, e, e′, Kid) in K-list. Next,

for each attribute ati ∈ A, it recovers (ati, H1-coini, ci) from H1-list.

– If H1-coini = 0, then it generates a random ri ∈ Zn and defines ski =
(gci

1 Kri

id , gri).
– If H1-coini = 1 and K-coin = 1, it generates a random ri ∈ Zn and sets

ski = ((gci
2 )−

e
e′ (gege′

1 )ri , grig
− ci

e′
2 ). The secret key is correctly distributed

(we denote by β∗ the value logg g2) because: Ei = (gci
2 )−

e
e′ (gege′

1 )ri =

(gci
2 )s(gege′

1 )(ri− ci
e′ β∗) = H(ati)sK

r′
i

id and, on the other hand, Gi = grig
− ci

e′
2 =

g(ri− ci
e′ β∗) = gr′

i .
– Otherwise, if H1-coini = 1 and Kid-coinj = 0, then B2 cannot create ski.
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If B2 can create ski for all ati ∈ A, then it uses skaut to compute an au-
tomorphic signature σKid

on Kid and responds to F2’s query with skid,A =
(Kid, σKid

, {ski}ati∈A). Otherwise, it aborts.
For a signature query for the tuple (M,P , �), B2 acts as follows. It recovers

(M,P , �, d) from H2-list and recovers (H(ati), H1-coini, ci) from H1-list, for all
the attributes ati ∈ P . B2 creates a K value by generating at random e, e′ ∈ Zn

and computing K = gege′
1 . With this value of K, B2 can create secret keys for any

attribute at, so a secret key skP can be generated and used to sign the message
M , by following the algorithm Sign of the scheme. Note that the adversary F2

cannot distinguish which value of K has been used in the signature (due to the
anonymity properties of the scheme).

Output. Finally, F2 outputs a signature (σ∗, M∗,P∗, �∗) where

σ∗ = (σ1, σ2, σ3, {(Ci, πi)}ati∈P∗ , Com(Kid∗), Com(σKid∗ ), πKid∗ , πσ).

If (1) F2 did request a private key skid,A such that A ∩ P∗ has cardinality at
least �∗, or (2) F2 did request a signature for the tuple (M∗,P∗, �∗), or (3) if the
forged signature is not valid; then B2 stops the simulation because F2 has not
been successful.

Otherwise, B2 solves the given instance of the CDH problem as follows: let δp

be such that δp = 0 mod q and δp = 1 mod p. Computing C
δp

i for all ati ∈ P∗,
B2 recovers {fi}ati∈P∗ , so it recovers the subset A′ of attributes that has been
used in the forged signature. Next it recovers (M∗,P∗, �∗, d∗) from H2-list and
(ati, H1-coini, ci) from H1-list, for every attribute ati ∈ A′. On the other hand, it
computes Com(Kid∗)δp = K

δp

id∗ . Since the automorphic signature scheme is secure,
we can be sure that the value of Kid∗ used in the forgery has been obtained in a
secret key query, so Kid∗ is known to B2, that can recover (Kid∗-coin, e, e′, Kid∗)
from K-list. If Kid∗ -coin = 1, then B2 aborts. Otherwise, let B0 be the set of
indices i ∈ A′ such that H1-coini = 0 and let B1 be the set of indices i such that
H1-coini = 1. We have A′ = B0 ∪B1. Due to the non-malleability properties of
the employed hash functions, σ1 must be of the form

σ1 =

⎛⎝ ∏
ati∈A′

(H(ati))
s

⎞⎠Kr
id∗Ht

mhz
1 =

(∏
i∈B0

(H(ati))
s
∏

i∈B1

(H(ati))
s

)
(ge)r(gd∗

)thz
1

=

( ∏
i∈B0

(gci)s
∏

i∈B1

(gci
2 )s

)
σe

3σ
d∗
2 hz

1 = g

∑
i∈B0

ci

1 (gs
2)

∑
i∈B1

ci

σe
3σ

d∗
2 hz

1

Let cB0 =
∑

i∈B0

ci and cB1 =
∑

i∈B1

ci. If cB1 mod p = 0, B2 aborts because it can-

not solve the CDH problem. Otherwise, we have gs
2 = (σ1σ

−d∗
2 σ−e

3 g
−cB0
1 h−z

1 )1/cB1 .
We also have (gs

2)
δp = gαβ

p , that comes from the fact that gα
p = g

δp

1 = (gs)δp . Using
that Com(σ3)δp = σ

δp

3 , we have that B2 can solve the CDH problem as follows:

gαβ
p = (gs

2)
δp =

[
σ

δp

1 (σδp

2 )−d∗
(σδp

3 )−e(gα
p )−cB0

] 1
cB1
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Analysis. Let abort be the event that B2 aborts during the simulation and let
forge be the event that F2 produces a valid forgery according to the definition
of the unforgeability game. We have

AdvCDH
B2

≥ Pr[forge ∧ ¬abort] = Pr[forge|¬abort] Pr[¬abort] = AdvABS
F2

Pr[¬abort]

The last equality comes from the fact that, if abort does not occur, then
B2 simulates perfectly the environment of F2. Let abortE be the event that B2

aborts at a secret key query, let abortK be the event that Kid∗ -coin = 1 when F2

outputs a forgery, and let abortC be the event that cB1 mod p = 0.

Pr[¬abort] = Pr[¬abortE ∧ ¬abortK ∧ ¬abortC ]
= Pr[¬abortE ] Pr[¬abortK ∧ ¬abortC |¬abortE ]
= Pr[¬abortE ] Pr[¬abortK |¬abortE ] Pr[¬abortC |¬abortE ]

≥
[
((1 − ρ2)(1 − ρ1)qE + ρ2)

]
·
[
(1− ρ2)(1 − ρ1)qE

]
·

·
[
(1− 1/p)(1− (1− ρ1)qE )ρ2

]
The third equality follows from the fact that the events abortK and abortC

are independent. We note that F (ρ1, ρ2) = ((1− ρ2)(1− ρ1)qE + ρ2)(1− ρ2)(1−
ρ1)qE (1 − 1/p)(1 − (1 − ρ1)qE )ρ2 is greater than 0 except when ρ1 = 0, ρ1 =
1, ρ2 = 0 or ρ2 = 1. Therefore, by choosing appropriate values for ρ1 and ρ2, we
obtain AdvCDH

B2
≥ AdvABS

F2
·Ω(1), as desired.  !

4.3 Admitting more General Signing Policies

The previous scheme admits only threshold signing policies. Let us consider
now more general signing policies, not necessarily defined by any threshold.
We consider Zn-monotone span programs [7]. A signing policy (P , Γ ) is a Zn-
monotone span program if there exist a m1 ×m2 matrix Ψ with entries in Zn,
being m1 ≥ |P|, and a function τ : {1, . . . , m1} → {1, . . . , |P|} that associates
each row of Ψ to an attribute in P , such that

A ∈ Γ ⇐⇒
(
∃λ ∈ (Zn)

m1 : λΨ = (1, 0, . . . , 0)
)
and

(
∀j = 1, . . . ,m1, atτ(j) /∈ A⇒ λj = 0

)

An �-threshold policy can be represented as a Zn-monotone span program if
� < p, � < q, by considering Vandermonde-type matrices. We have to modify the
Sign and Verify protocols of our threshold scheme in order to admit Zn-monotone
span program signing policies. The signer has to convince the verifier that he
possesses a secret key for a set A of authorized attributes, i.e., that there exists
a vector λ ∈ (Zn)m1 such that λΨ = (1, 0, . . . , 0) and such that λj = 0 for any
index j ∈ {1, . . . , m1} for which atτ(j) /∈ A. In order to guarantee the anonymity
of the attributes, the signer will commit to the components λj of this vector λ.
In addition, NIWI proofs will be added in the signature to convince the verifier
that the commitments are well-formed.
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Namely, the signer will prove for all ati ∈ P that there exist a value λ̃i = 0
and an index j ∈ τ−1(i) satisfying the equality λj = λ̃ifi. Remember that fi = 1
if ati ∈ A and fi = 0 otherwise, being A the authorized subset of attributes held
by the signer. On the one hand, if fi = 1, then λj = 0 for some j ∈ τ−1(i)
(we can assume this without loss of generality; otherwise, the attribute ati ∈ A
would be useless, and A−{ati} ∈ Γ ). In this case, λ̃i = λj satisfies the previous
equality. On the other hand, if fi = 0 then λj = 0 for all j ∈ τ−1(i), and any
value λ̃i ∈ Z∗

n satisfies the desired equality. Note that commitments Com(fi) to
the values fi will have to be added to the signature, as well.

To prove that these values λ̃i are different to 0, the signer will prove that
they are invertible. That is, he will prove that there exists μi ∈ Z∗

n such that
μiλ̃i = 1, for all ati ∈ P . The probability that λ̃i is different to zero but is not
invertible is very small because n is the product of two large primes. Note that
it would be more efficient to prove and check that the product of all the values
λ̃i is invertible; this is not possible to do by using Groth-Sahai proofs, because
they only apply to quadratic equations.

Summing up, given the monotone span program (Ψ, τ) defining the signing
policy (P , Γ ), and given the commitments Ci = (H1(ati))fihzi and Com(fi), for
each ati ∈ P , the signer makes NIWI proofs to convince the verifier that:

1. ∃λ ∈ (Zn)m1 such that λΨ = (1, 0, . . . , 0). Note that this means m2 NIWI
proofs, one for each component in this vector equality. We denote such proofs
as {πλ,k}m2

k=1.
2. ∃λ̃i ∈ Zn, ∃j ∈ τ−1(i) such that λj = λ̃ifi for all ati ∈ P . We denote such

proofs as {πλ̃i
}ati∈P , whose global length is linear in m1.

3. ∃μi ∈ Z∗
n such that μiλ̃i = 1 mod n, for all ati ∈ P . We denote such proofs

as {πμi}ati∈P .
4. The commitment Com(fi) and Ci commit to the same value, for all ati ∈ P .

We denote such proofs as {πfi}ati∈P .

The signatures that result from this process have the form

σ =
(
{Ci, πi, Com(fi), Com(λ̃i), Com(λi), πfi , πλi , πμi}ati∈P ,

{πλ,k}m2
k=1, σ1, σ2, σ3, Com(Kid), Com(σKid

), πKid
, πσ

)
Therefore, the length of the signature depends linearly on the size m1 + m2

of the monotone span program Ψ . Using analogous arguments to those used for
the threshold case, one can prove that the resulting attribute-based signature
scheme enjoys the properties of unforgeability and non-linkability.

4.4 Security in the Standard Model

We have proved the security properties of our schemes in the random oracle
model, but there are well-known techniques that can be applied to our schemes
so that security can be proved in the standard model. The hash function H1 is



240 A. Escala, J. Herranz, and P. Morillo

used to transform attributes into elements in G. Since the universe of attributes
P̃ is chosen in the Setup algorithm, a different element Qi ∈ G can be chosen at
random and associated to each attribute ati ∈ P̃. These elements will be included
in the public parameters params. In the security proofs, we would define Qi = gci

with some probability ρ and Qi = gci
2 with probability 1 − ρ, for some random

value ci ∈ Zn (as it is done in the proof of Lemma 2). The other hash function,
H2, is used to transform tuples (M,P , Γ ) into elements of G. A well-known
solution to avoid the random oracle in this case, proposed by Waters in [15],
is to consider a collusion resistant hash function H : {0, 1}∗ → {0, 1}m and
elements v1, v2, . . . , vm ∈ G, which are included in params. Then the value of

H2(M,P , Γ ) is replaced with
m∏

j=1

v
H(M,P,Γ )j

j , where H(M,P , Γ )j denotes the j-

th bit of H(M,P , Γ ). In the security proof the elements v1, v2, . . . , vm are chosen
by algorithm B so that B knows their discrete logarithm with respect to g.

4.5 Prime Order Bilinear Groups

Our scheme uses composite order groups and the security is based (among others)
on the subgroup decision assumption. Alternatively, we can consider a prime
order symmetric bilinear group (p, G, GT , e, g), because Groth-Sahai proofs can
be implemented there and revocation keys rk can be defined in this case, as well.
The underlying hardness assumption is then the decisional linear assumption:
given (gα, gβ, grα, gsβ, gt) for random α, β, r, s ∈ Zp it is hard to tell whether
t = r + s or t is random. However, whereas in the composite order group setting
both commitments and proofs consist of a single element, in the prime order
group setting commitments and proofs consist of multiple elements (1 element
for each variable, and 6 or 9 elements for each equation). Anyway, considering
that computing a pairing has complexity of O(n3) in time, and that the size of
composite order groups is about ten times larger than the size of prime order
groups, the scheme in the prime order group setting might be more efficient.
We have described our constructions in the setting of composite order groups,
though, because this simplifies notation and understandability.
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Abstract. We introduce the Inhomogeneous Simultaneous Approxima-
tion Problem (ISAP), an old problem from the field of analytic number
theory. Although the Simultaneous Approximation Problem (SAP) is
already known in cryptography, it has mainly been considered in its ho-

mogeneous instantiation for attacking schemes. We take a look at the
hardness and applicability of ISAP, i. e., the inhomogeneous variant, for
designing schemes.

More precisely, we define a decisional problem related to ISAP, called
DISAP, and show that it is NP-complete. With respect to its hardness,
we review existing approaches for solving related problems and give sug-
gestions for the efficient generation of hard instances. Regarding the ap-
plicability, we describe as a proof of concept a bit commitment scheme
where the hiding property is directly reducible to DISAP. An implemen-
tation confirms its usability in principle (e. g., size of one commitment is
6273 bits and execution time is in the milliseconds).

1 Introduction

Motivation. The concept of provable security is one cornerstone of modern
cryptography. The approach is to prove the security of a cryptographic scheme
by reducing its security (in the sense of complexity theory) to another presum-
ably hard problem. Consequently, there is a huge interest on finding appropriate
problems. Although a variety of problems1 have been considered in the recent
decades, only few of them turned out to be useful for cryptographic design and to
allow for an easy generation of hard instances. Mainly these are connected to fac-
torization, discrete logarithm, lattices, pairings, or error-correcting codes. Here,
we would like to advert to analytic number theory, more precisely to the field of
diophantine analysis. The adjective ”diophantine” means that one is interested
in integral or rational solutions. This field emerged around 250 A. D. and had
1 See the website
www.ecrypt.eu.org/wiki/index.php/Hard_Problems_in_Cryptography for an
overview.

A. Nitaj and D. Pointcheval (Eds.): AFRICACRYPT 2011, LNCS 6737, pp. 242–259, 2011.
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since then attracted the interest of many important and influential mathemati-
cians like Gauss or the Fields medal winners Roth, Baker, and Faltings. Despite
the enormous progress, diophantine analysis is still full of open (computational)
problems. As a representative, we investigate the Simultaneous Approximation
Problem or more precisely its inhomogeneous variant: Given rational numbers
αi and ηi, i = 1, . . . , n, find integer values q and pi such that |qαi − pi− ηi| < ε.
The most common variant is the homogeneous one, i. e., ηi = 0 for all i, whereas
our contribution is to consider for the first time the inhomogeneous variant, i. e.,
ηi = 0, for cryptographic design. To be in compliance with established notation,
we refer to the homogenous Simultaneous Approximation Problem simply by
SAP and denote the inhomogenous variant by ISAP.

Related Work. SAP is known in cryptography, but has mainly been considered
for attacking cryptosystems, e. g., knapsack systems (e. g., Shamir [28], Estes
et al. [12]), factorization and discrete logarithm (e. g., see Schnorr [23], Seifert
[27]), and RSA (e. g., see Wiener [32]).

Regarding the design of cryptosystems, we are only aware of very few works
that base their security on SAP or related problems. Isselhorst [9] presented a
public-key scheme based on fractions. He showed that the scheme could be broken
in principle by solving an appropriate simultaneous approximation problem. He
proposed parameters for which he suspected that the algorithm of Lagarias [13]
is not capable of finding a solution. Nonetheless, the scheme was broken soon
after by Stern and Toffin [29] using the LLL algorithm [14] instead. Elsner and
Schmidt [4] used continued fractions to design new S-boxes. In both cases, there
was no direct reduction of the security of the scheme to the hardness of solving
(I)SAP.

Regev [19] presented a public key cryptosystem where the public key contains
rational numbers ai that are close to integer multiples of N/h where N and h are
some integers and h is the secret key. Obviously, the ability of solving SAP would
allow for breaking the scheme. Indeed, it seems that the scheme uses special SAP
instances: the public key includes explicitly an index i0 such that ai0 is an odd
multiple of N/h.

Van Dijk et al. [31] used the Approximate Greatest Common Divisor (approx-
imate GCD) Problem for constructing a fully homomorphic encryption scheme.
This problem is related to SAP in the following sense. In SAP, a set of rational
numbers αi and some bound B < 1 is given and the task is to find integers q
and pi such that |q ·αi − pi| < B for all i. In approximate GCD, a set of integer
values αi and some integer bound 1 ≤ B is given and the task is to find integers
q and pi such that |αi − q · pi| < B for all i. The authors pointed out that their
scheme could be attacked by solving an appropriate SAP instance.

Both works seem to be related to (probably special instances) of SAP, that is
the homogenous approximation problem. To the best of our knowledge the usage
of ISAP, i. e., the inhomogeneous variant, for cryptographic design has not been
considered so far. Here, we have to stress that our contribution is not the design
of a specific scheme but rather to show up the general hardness and applicability
of ISAP.
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Contribution. In this paper, we put for the first time ISAP into the heart of a
cryptosystem. Our contributions are as follows:

Problem Description: We formalize the Decisional Inhomogeneous Simulta-
neous Approximation Problem (DISAP) and show that it is NP-complete. Fur-
thermore, we explain that while SAP represents in principle the shortest vector
problem (SVP) in certain lattices, the inhomogeneous variant ISAP is equivalent
to the closest vector problem (CVP).

Instance Generation: We investigate a related computational problem and de-
duce the conjecture that increasing/decreasing certain parameters will probably
increase the hardness of the problem and formulate an accordant assumption.
With respect to the connection to lattices, a possibly interesting fact is that
besides the dimension another parameter exists for adjusting the hardness. In
certain cases, this might provide a higher flexibility for creating hard instances
and eventually more efficient solutions. Furthermore, we derive suggestions for
concrete parameter ranges.

Cryptographic Application: We demonstrate the usefulness of DISAP for cryp-
tographic applications by constructing a bit commitment scheme on it. The
scheme is perfectly binding and computationally hiding if hard DISAP instances
are used. An implementation confirms its usability in principle (e. g., size of one
commitment is 6273 bits and execution time is in the milliseconds).

Summing up, we demonstrate that DISAP might be a valuable addition to
the existing set of established problems in cryptography and hope to encourage
further research on problems from analytic number theory in general and DISAP
in particular.
Organization. In Sec. 2, we present DISAP and discuss its hardness. In addi-
tion, we define and motivate an appropriate hardness assumption, named DISAP
hardness assumption. In Sec. 3, we describe a bit commitment scheme based on
DISAP. The binding property is proven in Sec. 4 and the hiding property is
proven in Sec. 5 under the DISAP hardness assumption. In Sec. 6, we present
a concrete instantiation and give implementation results. Sec. 7 concludes the
paper.

2 The (Inhomogeneous) Simultaneous Approximation
Problem

2.1 Motivation

In this section we give a short introduction to the main terms of rational diophan-
tine approximation and motivate and define the Inhomogeneous Simultaneous
Approximation Problem (ISAP) and variants.

In the following, N will denote the set of positive integers, Z the ring of
integers, Q the field of rational numbers, and R the field of real numbers. We
will distinguish between single values and vectors by putting the latter in bold.
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In diophantine analysis the approximation of numbers α ∈ R by rationals
p/q ∈ Q is a main topic.2 One of the most basic results is the approximation
theorem of Dirichlet (1805–1859) [8, Theorem 185], which states that for any
α ∈ R \Q there exist infinitely many co-prime numbers p and q such that∣∣∣∣α− p

q

∣∣∣∣ < 1
q2

⇐⇒ |qα− p| < 1
q

. (1)

If α ∈ Q, the number of solutions might be finite only. A theorem of Hurwitz
(1859–1919) [8, Theorem 193] states that for every α ∈ R\Q there exist infinitely
many co-prime numbers p and q such that∣∣∣∣α− p

q

∣∣∣∣ < 1√
5q2

(2)

holds and that for any stronger approximation quality, the number of solutions
might be finite only. Interestingly, such approximations can be efficiently com-
puted, using continued fractions

a0 +
1

a1 +
1

a2 +
1

· · ·+
1

aN

(3)

where the leading coefficient a0 is an integer and all partial quotients ai (i =
1, . . . , N) are positive integers. It can be shown that for N →∞ the above given
expression converges to some real number α depending on all partial quotients
ai. In that case we call the expression an infinite continued fraction, or simply
continued fraction. For α ∈ Q, the corresponding continued fraction is finite like
in (3).

An important term is a convergent, which is a rational number. Given the
partial quotients of the continued fraction, the corresponding convergents can
easily be computed using the recurrence formulas (see [8, Theorem 149])

p0 = a0 , p1 = a1a0 + 1 , pn = anpn−1 + pn−2 (n ≥ 2) , (4)
q0 = 1 , q1 = a1 , qn = anqn−1 + qn−2 (n ≥ 2) . (5)

pn/qn is called the n-th convergent of the continued fraction. Observe that com-
puting the n-th convergent requires 2n additions and multiplications of integers.
It can be shown that (for irrational α or, if α ∈ Q, n < N)

1
qn(qn + qn+1)

≤
∣∣∣∣α− pn

qn

∣∣∣∣ ≤ 1
qnqn+1

≤ 1
q2
n

(6)

holds (see [16, Chapter 10.2]). We note that from (6) it follows that the con-
vergents satisfy inequality (1) of Dirichlet’s theorem. Furthermore, it is proven
2 Nice introductions to this discipline can be found in [8,16].
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that the convergents are the best rational approximations with a bounded de-
nominator, e. g., for α ∈ R, n > 1, 0 < q ≤ qn and pn/qn = p/q it holds (see [8,
Theorem 181]) ∣∣∣∣α− pn

qn

∣∣∣∣ < ∣∣∣∣α− p

q

∣∣∣∣ . (7)

It is useful to know that pn and qn are co-prime for all convergents.
The type of approximation in (1) is called homogeneous in contrast to the

inhomogeneous case, for which Kronecker (1823–1891) proved the following the-
orem (see [20, Chapter 10, Theorem 2.6]).

Theorem 1 (Kronecker’s Approximation Theorem). For each α ∈ R\Q,
η ∈ R, n > 0 and δ ∈ R with δ > 0 there are integers p, q with q > n such that

|qα− p− η| <
(

1
2

+
1√
5

+ δ

)
1
q

. (8)

Thereby η is called the inhomogeneity.
In the field of simultaneous diophantine approximation one considers more

than one diophantine inequality at once and tries to approximate the given
numbers αi with fractions pi/q sharing a common denominator. Again, the most
basic result was proved by Dirichlet (see [8, Theorem 200]): There are infinitely
many solutions (q, p1, . . . , pn) to the system∣∣∣∣αi −

pi

q

∣∣∣∣ < 1
q1+1/n

, ∀i ∈ {1, . . . , n} , (9)

in positive integers q and integers p1, . . . , pn if at least one of the real numbers
α1, . . . , αn is irrational. An inhomogeneous generalization about the existence
of simultaneous approximations was also proved by Kronecker (see [8, Theorem
442]):

Theorem 2 (Kronecker’s Simultaneous Approximation Theorem). Let
1, α1, . . ., αn be real numbers that are linearly independent over Q. Furthermore,
let η1, . . . , ηn be arbitrary real numbers, ε > 0 and N ∈ N. Then there exists
integers p1, . . . , pn and a natural number q with q > N and

|qαi − pi − ηi| < ε ∀i ∈ {1, . . . , n} . (10)

2.2 Definition

We remark that the one-dimensional theorems from the previous subsection can
all be proved in a constructive manner by using continued fractions and conver-
gents. However, as opposed to the one-dimensional case, no constructive proofs
are known for the multi-dimensional versions. This has lead to the formulation
of a variety of related problems, e. g. [13], for some it has been proven that
they are NP-complete. Nevertheless, some of them have never been successfully
used for cryptographic applications. The main goal of this paper is to actu-
ally remind of these and to choose one concrete problem formulation, termed
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decisional inhomogenous approximation problem (DISAP), and demonstrate a
possible cryptographic application.

Next, we make DISAP (and variants) precise. Although our focus will be on
DISAP, the consideration of other variants is helpful for assessing the hardness
and generation of DISAP instances.

Definition 1 ((Inhomogeneous) SimultaneousApproximation Problem).
An instance I of the Inhomogeneous Simultaneous Approximation Problem
(ISAP) consists of a vector α := (α1, . . . , αn) ∈ (Q∗)n of non-zero rational
values, a vector η := (η1, . . . , ηn) ∈ Qn, a positive real value ε ∈ R>0, and a
positive integer N ∈ N.

A tuple (q, p) where q ∈ N>0 and p = (p1, . . . , pn) ∈ Zn is a solution to I if

|qαi − pi − ηi| < ε ∀i ∈ {1, . . . , n} and q ≤ N . (11)

The value n is called the dimension, and ε the approximation quality. In the
case that ηi = 0 for all i, that is in the homogeneous case, we call the problem
simply the Simultaneous Approximation Problem (SAP).

A variant of (I)SAP is where the approximation quality is not fixed but depends
on the solution q. To distinguish these variants, we refer to the latter by (I)SAP*.
More precisely, an instance I of ISAP* consists of a vector α := (α1, . . . , αn) ∈
(Q∗)n of non-zero rational values, a vector η := (η1, . . . , ηn) ∈ Qn, a positive
real value Δ ∈ R>0, and a positive integer N ∈ N.

A tuple (q, p) where q ∈ N>0 and p = (p1, . . . , pn) ∈ Zn is a solution to I if∣∣∣∣αi −
pi + ηi

q

∣∣∣∣ < 1
qΔ

∀i ∈ {1, . . . , n} and q ≤ N . (12)

The value Δ is called the approximation order.
As customary, we will consider computational and decisional variants of the

above problems. In the computational variant, the goal is to compute a solution
while in the decisional variant, the task is to decide whether at least one so-
lution does exist. We indicate these problems by prepending the letter ”C” or
”D”, respectively. For example, CISAP and DISAP refer to the computational
and decisional variants of ISAP, respectively. Analoguesly, we will define CSAP,
DSAP, CISAP*,DISAP*, CSAP*, and DSAP*.

Although the dimension n is implicitly given by the dimension of the vectors
α and η, we note it explicitly for reasons of clarity. Observe that we restrict
to rational and integer values on purpose: Working in practice with irrational
numbers effectively means in most cases to approximate them anyway by rational
numbers.

Before we formulate and investigate an appropriate hardness assumption, we
point out some similarities between the (inhomogeneous) approximation problem
and known problems from lattice theory. Recall that a lattice L is a discrete
subgroup of Rn which can be expressed by

L =

{
d∑

i=1

λi · bi | {λ1, . . . , λd} ⊂ Z

}
(13)
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for an appropriate (non-unique) basis {b1, . . . , bd} ⊂ Rn. Consider the ‖·‖∞
norm, that is ‖x‖∞ = maxi |xi| for a vector x = (x1, . . . , xn) ∈ Rn. Two famous
problems in the context of a lattice L are the shortest vector problem (SVP) and
the closest vector problem (CVP). Informally, the SVP is to find a vector v ∈ L
such that ‖v‖∞ is minimal (or beyond a certain bound). Similarly, for the CVP
a target vector w ∈ Rn is given and the task is to find a vector v ∈ L such that
‖w − v‖∞ is minimal (or beyond a certain bound). Goldreich, Micciancio, Safra
and Seifert [7] showed that any algorithm to efficiently approximate CVP can be
used to efficiently approximate SVP within the same approximation factor and
with essentially the same computational effort, formalizing the intuition that
CVP is not an easier (and is a possibly harder) problem than SVP.

Now let an ISAP instance I := (α, η, N, n, ε) be given. We define the vectors
b1 := (ε/N, α1, . . . , αn)t ∈ Rn+1 and for i = 2, . . . , n + 1 the vector bi to be the
i-th negative unit vector which is zero everywhere except of position i where the
entry is equal to −1. As ε = 0, the vectors bi are linearly independent. Let L be
the lattice defined from b1, . . . , bn+1 as specified in Eq. (13).

Furthermore, we define a matrix M := (b1| . . . |bn+1) ∈ Rn+1×n+1. Let s :=
(q, p1, . . . , pn) ∈ Zn+1 where q ∈ N>0 and (p1, . . . , pn) ∈ Zn and define v := Ms.
Obviously, it holds that v ∈ L.

Consider first the homogeneous case, that is η = 0. One can easily compute
that ‖v‖∞ < ε if and only if s is a solution to SAP. In other words, solving the
SAP is equivalent to solving the SVP with a fixed bound ε in L. Similar holds for
the imhomogeneous case, i. e., η = 0. At this end, we define w := (0, η1, . . . , ηn).
Then it holds that s is a solution to ISAP if and only if it is a solution to the
CVP within L with respect to the target vector w.

Summing up, SAP resp. ISAP can be interpreted as the SVP resp. CVP in
specific lattices. As CVP seems to be harder than SVP and as generating ISAP
instances allows for a higher degree of freedom than generating SAP instances
(because of the ηi values), it is a natural question if and how ISAP can be used
for constructing cryptographic schemes.

2.3 Hardness Assumption

Next, we show that the problem class of DISAP contains indeed hard instances,
i. e., instances where no efficient solving algorithms are known so far.

Theorem 3 (NP-Completeness). DISAP is NP-complete.

Proof. We have to show that (i) DISAP is in NP, and (ii) every problem in NP
is reducible to DISAP in polynomial time. The first claim is trivial. Given an
DISAP instance (α, η, N, n, ε) and a possible solution (q, p), one can check in
polynomial time (i. e., polynomial in the length of the input) whether (11) is
fulfilled. For the second claim, we make use of Lagarias’ result [13]. He showed
that DSAP is NP-complete (the problem was named ”Good Simultaneous Ap-
proximation Problem (GSA)” there). That is, any NP problem can be reduced
(in polynomial time) to an instance of DSAP. As any instance of DSAP is an
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instance of DISAP as well, it follows directly that any NP problem can be re-
duced in polynomial time to an instance of DISAP.  !

Still, it remains to clarify how to generate hard instances. For this purpose,
we review existing work on one problem variant: CSAP*. There are several
algorithms in the literature to solve CSAP*. In the case of real algebraic and over
Q linear independent numbers 1, α1, . . . , αn and δ∗ > 0 arbitrary, W. Schmidt
shows in [22] that there are at most finitely many (q, p) ∈ N× Zn with∣∣∣∣αi −

pi

q

∣∣∣∣ < 1
q1+1/n+δ∗ ∀i ∈ {1, . . . , n} . (14)

Furthermore, with δ∗ = 0, under these conditions the approximation order Δ =
1 + 1/n is the best possible.

There are a lot of generalizations of continued fractions for the simultaneous
case, starting with the work of Jacobi [10] which lead to the Jacobi-Perron-
Algorithm (JPA) [18,26,24,2,6]. However, the JPA is not able to compute solu-
tions to such approximation quality as we will require in our proposed commit-
ment scheme (cf. Sec. 3). For example, in the case n = 2 only a system with an
approximation quality of 2/q3/2 is attackable with the JPA (cf. [26]). In [26] it
is also mentioned that the JPA is only able to solve systems with significantly
larger ε in the arbitrary case (n ≥ 3). In particular, the best affordable ap-
proximation quality ε increases with the dimension n. Additionally, we want to
mention Baldwin’s numerical experiments [1] in which he computes the approx-
imation order of the JPA in two dimensions – with Δ = 1.374 it is significantly
below the upper bound 1 + 1/2 = 1.5 from theory.

There are some other relevant algorithms based on continued fraction gener-
alizations, namely the ones of Güting, Brun, and Selmer (cf. [26]), and Just [11].
The first three ones have comparable properties like the JPA (see [26,3,25,30]).
Just’s algorithm is much more worse concerning the approximation order (Δ =
1+1/(2n(n+1))) [11]. Thus, the above given considerations about the JPA can
also be applied to these algorithms.

Another well known algorithm for solving simultaneous diophantine approxi-
mation problems is the lattice-based LLL algorithm presented by Lenstra, Lens-
tra Jr. and Lovasz in [14]. The LLL algorithm is able to find solutions nearly as
good as the best possible. Indeed, they can compute solutions (q, p) such that∣∣∣∣αi −

pi

q

∣∣∣∣ ≤ c(n)
q1+1/n

∀i ∈ {1, . . . , n} , (15)

whereas the αi have to be rationals and c(n) ∈ O (2n) (see [14], [17, Chapter 6,
Theorem 8]). Thus, by choosing small enumerators for the upper bound, e. g.,
= 1 in our construction, one can construct instances that fall outside of the
parameter ranges that can be solved by LLL.

We conclude with the theoretical work of Lagarias. In [13] he proved that the
problem of computing a denominator q such that

|qαi − pi| ≤ s1/s2 , 1 ≤ q ≤ N , ∀i ∈ {1, . . . , n} , (16)
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for given positive integers N, s1, s2 and rational numbers αi = ai/bi is in P for
fixed dimension n. We remark that this technique has an exponential runtime
in the dimension n. Thus, increasing n is a simple method for excluding the
applicability of Lagarias’ algorithm.

Summing up, no efficient algorithms are known for solving CSAP* with an
approximation order of Δ ≥ 1 + 1/n if the dimension is high enough. Motivated
by this observation, we introduce the according assumption: increasing the di-
mension n and/or chosing a sharper approximation quality ε, i. e., decreasing
this value, can make the problem only harder:

Definition 2 (P Hardness Assumption). Let P denote one of the problems
defined in Def. 1. W.l.o.g., we focus on a problem with a fixed approximation
quality.3 Consider a probabilistic polynomial-time (PPT) algorithm Gen that on
input N ∈ N>0, n ∈ N>0, and ε ∈ R>0 generates a P instance I.

Let I denote the set of all possible P instances that can be generated by Gen
and let A denote a PPT algorithm that on input of I ∈ I outputs a solution.
We define by AdvGen,A(N, n, ε) the advantage of A, being the difference between
the probabilities that A outputs a correct solution and that it outputs a wrong
solution.4

The P hardness assumption (with respect to Gen) states that for any positive
integer s ∈ N>0, being the security parameter, there exist thresholds N∗ = N∗(s) ∈
N>0, n∗ = n∗(s) ∈ N>0 and ε∗ = ε∗(s) ∈ R>0 such that AdvGen,A(N, n, ε) is
negligible in s for all PPT A if N ≥ N∗, n ≥ n∗, and 0 < ε ≤ ε∗.

Remark 1. Observe that most strategies for creating hard lattice instances in-
volve only one parameter for increasing the hardness: the dimension n. Here,
the situation is different as the hardness can be increased by increasing the di-
mension and/or the approximation quality/order. This gives more freedom in
selecting suitable instances and possibly allows for more efficient implementa-
tions. Indeed, we will show later that it is in fact possible to generate problem
instances with an arbitrary approximation quality where the solution is known
to the generator. At this end, we will make use of the inhomogenous variant.

3 A Bit Commitment Scheme Based on DISAP

In this section, we present a bit commitment scheme based on DISAP. In the
commitment phase, the committer generates an instance of DISAP with a given
dimension and approximation quality. The crucial aspect here is that the prob-
lem instance is constructed backwards. That is the committer first starts with
3 The adaptation of the hardness assumption for the variant using an approximation

order is straightforward.
4 More precisely, in the case of a computational problem P , A outputs a possible

solution, while in the case of a decision problem the output is one bit. For the sake
of brevity, we omit a full-formal definition here as these notions are standard by
now.
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the solution (q, p) that is connected to the message and then generates a prob-
lem instance (α, η) from it where (q, p) is the unique solution. For this purpose,
we strongly make use of the inhomogeneity η. Observe that the generation pro-
cedure allows for choosing the parameters outside the range that is feasible for
the algorithms described in Sec. 2.3 in the normal direction and ensures that
the instances are of the form as required in the security proofs in Sec. 4 and
5. Regarding the security, as only one solution exists, the scheme is perfectly
binding. Furthermore, the commitment scheme is computationally hiding if the
DISAP assumption holds.

Setup Phase. In the setup phase, an algorithm

P := (N, ε, n, μ) ← Setup(s) (17)

is executed. The purpose of this algorithm is to fix in dependence of a security
parameter s the bound N , the approximation quality ε, the dimension n, and
an upper bound5 μ on the denominators of η for DISAP instances that will be
used in the other phases of the commitment scheme. Starting from the DISAP
assumption (Def. 2), these are chosen such that N ≥ N∗(s), ε ≤ ε∗(s) and
n ≥ n∗(s) where N∗(s), ε∗(s), and n∗(s) are the thresholds conjectured in the
DISAP assumption. We will discuss concrete parameter choices later in Sec. 6.
For example, we will fix N := 2s to avoid brute force guessing attacks.

Commitment Phase. In this phase, the committer generates a commitment
for a message m ∈ {0, 1}. The commitment algorithm has the following format:

((α, η) , (q, p)) ← CommitP (m) (18)

where (α, η, N, n, ε) specifies an instance of DISAP as defined in Def. 1 and
(q, p) is a solution to this instance. The tuple (α, η) represents the commitment
to the message m which is made public. The tuple (q, p) represents the opening
information and is kept secret. The value q is constructed in such a way that its
least significant bit (LSB) is equal to the message m.

The commitment algorithm is depicted in Alg. 1. During an execution, a
series of values are generated that have to fulfill certain conditions. For the sake
of clarity, we separated in the description of Alg. 1 the value generation and the
testing of the parameters. In real implementations, one would group this steps
together to reduce the number of trials. For example, if parameter generation
fails for one index i, one could retry other values for this index but still use
the values generated for indices j < i. We have to point out that it is not
mathematically guaranteed that all conditions can be met. However, this was
straightaway the case in almost all of our simulations (see Sec. 6 for details).
Furthermore, in all other cases a small number of repetitions was sufficient to
find values that fulfill the conditions.
5 The reason for the upper bound on the denominators will be explained later in the

context of the security proofs.
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Finally, some words on the conditions themselves. The condition 1√
ε

< di

(Eq. (19)) is introduced to achieve the claimed approximation quality with the
given solution. The other part of the same inequality, di < bi, is used to guarantee
that the approximation ci/di does not give q · ai/bi again. The last conditions,
given in Eq. (20), ensures that the value q is uniquely determined, making the
scheme perfectly binding.

Opening Phase. To open the commitment, the committer sends the solution
(q, p) to the verifier. The verifier runs the algorithm

out ← VerifyP ((α, η) , (q, p)) (21)

where out ∈ {accept,⊥}. The verifier accepts if out = accept and rejects other-
wise. The algorithm VerifyP outputs accept if and only if

1. q ≤ N
2. |qαi − pi − ηi| < ε for all i ∈ {1, . . . , n}
3. There exists an index i∗ ∈ {1, . . . , n} such that N < bi∗ and

√
2bi∗ < di∗

(see Eq. (20)). Observe that the values bi are part of the commitment and
the values di can be computed from ηi and pi by using that ci and di are
co-prime (see Sec. 2.1).

Correctness. The correctness of the scheme follows directly from condition
1√
ε

< di (see Eq. (19)) given in Alg. 1. For any i ∈ {1, . . . , n}, it holds that

|qαi − pi − ηi| =
∣∣∣∣qαi − pi −

(
ci

di
− pi

)∣∣∣∣ = ∣∣∣∣qαi −
ci

di

∣∣∣∣ (6)

≤ 1
d2

i

(19)
< ε . (22)

4 Binding Property

In this section, we prove that q is uniquely determined by the commitment (α, η).
Thus, the scheme is perfectly binding.

Theorem 4 (Binding). The commitment scheme is perfectly binding.

Proof. Assume two solutions (q, p) and (q′, p′). (20) ensures the existence of
an index i∗ such that N < bi∗ and

√
2bi∗ < di∗ . We omit the index i∗ in the

following. By definition it holds that η = c
d − p and η = c′

d′ − p′ for some
appropriate integers c, d, c′, d′ and in particular c

d −
c′
d′ ∈ Z. Therefore, there

exists an integer z ∈ Z such that

c

d
− c′

d′
= z ⇐⇒ cd′ − c′d = zdd′ . (23)

It follows that cd′− c′d ≡ 0 (mod d), cd′ ≡ 0 (mod d), and d′ ≡ 0 (mod d). The
latter holds as c and d are co-prime (see Sec. 2.1). Analogously, one shows that
d ≡ 0 (mod d′). As both d and d′ are positive, we get d = d′. Now recall that
the fractions c

d and c′
d are both approximations of q · a

b and q′ · a
b , respectively,

stemming from continued fractions. With (6) we have
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Algorithm 1. The commitment algorithm CommitP
Input: P = (N, ε, n, μ) with approximation quality ε, dimension n, and upper bound

μ; a message m ∈ {0, 1}
Output: A commitment on m

1: //Map the message

2: Extend m ∈ {0, 1} to a s-bit value q, that is [q]2 = (rs−1, . . . , r1, m) with ri
$←

{0, 1}. [q]2 denotes the bit representation of q. This implies 0 ≤ q < 2s =: N .

3: //Generate rational numbers αi := ai
bi

4: for i = 1, . . . , n do
5: Choose co-prime integers ai and bi where bi is odd, co-prime to q, and less than

or equal to μ.
6: Set αi := ai

bi
.

7: end for

8: //Generate approximations ci
di

of q · ai
bi

9: for i = 1, . . . , n do
10: Use continued fractions to find an approximation of ci

di
of q · ai

bi
such that

1√
ε

< di < bi . (19)

11: If (19) is not satisfiable, restart at line 3.
12: end for

13: //Check additional condition
14: Beside the conditions given above, we require the existence of an index i∗ ∈

{1, . . . , n} with
N < bi∗ and

√
2bi∗ < di∗ . (20)

15: If (20) is not satisfiable, restart at line 3.

16: //Generate p and η
17: for i = 1, . . . , n do
18: Choose pi ∈ Z arbitrary
19: Set ηi := ci

di
− pi

20: end for

21: return A (public) commitment (α, η) to m and (secret) opening information
(q, p)
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∣∣∣q · a

b
− c

d

∣∣∣ < 1
d2

and
∣∣∣∣q′ · a

b
− c′

d

∣∣∣∣ < 1
d2

(24)

and in particular∣∣∣(q − q′)
a

b
− z
∣∣∣ < 2

d2
⇐⇒ |(q − q′) a− z · b| < 2b

d2
. (25)

Recall that
√

2b < d by Eq. (20). Thus, the right hand side of (25) is strictly
less than 1 while the left hand side is an integer value. This immediately implies
that (q − q′)a− z · b = 0. As a and b are co-prime, it follows that

q − q′ ≡ 0 (mod b) . (26)

With 0 ≤ q, q′ < N , we have −N < q−q′ < N . By Eq. (20), it holds that b > N .
Thus, (26) actually implies q − q′ = 0 ⇔ q = q′.  !

5 Hiding Property

5.1 Proof

In this section, we prove that the commitment scheme is computationally hiding.
Recall that this means that no efficient algorithm exists that can decide for a
given commitment (α, η) if it commits to m = 0 or to m = 1.

Theorem 5 (Hiding). Let Gen denote the algorithm that generates DISAP
instances as explained in Alg. 1 and let Gen∗ denote the algorithm that first
invokes Gen and then replaces α by 2α. If the DISAP hardness assumption
(Def. 2) holds with respect to Gen∗, the commitment scheme is computationally
hiding.

Proof. Recall that the DISAP assumption tells that it is hard to decide whether
a given instance has a solution or not. Furthermore, by definition the commit-
ted message equals to the least significant bit of q, for short: LSB(q). Thus,
breaking the hiding property is equivalent to deciding the LSB of q. Let I∗ :=
(2α, η, N, n, ε) where I := (α, η, N, n, ε) is the instance generated by Gen. We
show now that the LSB of q is equal to 0 if and only if I∗ has a solution.

Assume that LSB of q is zero. That is we can write q = 2q∗ and one sees
easily that it holds for all i = 1, . . . , n:

|q ·αi− pi− ηi| < ε ⇔ |(2q∗) ·αi− pi− ηi| < ε ⇔ |q∗ · (2αi)− pi− ηi| < ε . (27)

Thus, if q is a solution to I with LSB(q) = 0, then there exists a solution to I∗.
Contrariwise, assume that I∗ has a solution q∗. Then, with (27) it follows that

q′ = 2q∗ is a solution to I. Moreover, as we have shown in Theorem 4, I has
one unique solution q. Thus, q′ = q. Thus, the existence of a solution q∗ for I∗

implies that the LSB of the solution of I is equal to zero.
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Summing up, we showed that LSB(q) = 0 if and only if I∗ has a solution.
This implies that the advantage of a hiding attacker is upper bounded by the
advantage of a DISAP attacker. Thus, if the DISAP hardness assumption holds,
the advantage of a hiding attacker is negligible, showing the hiding property of
the scheme.  !

Remark 2. It may occur that the fraction ηi = ci/di − pi cannot be cancelled
down. In this case, ηi has denominator di and ci is known up to an integer
multiple of pi. This may be used to mount a naive attack running over all
possible ci using the fact that αi = ai/bi as well ci/di are known. However, by
choosing pi from the same range as qi it can be seen that this attack has the
same complexity as a brute force attack on q.

5.2 On the Underlying Assumption

In this section, we investigate the assumption the security proof is based on. Re-
call that according to the overview given in Sec. 2.3, the current state of knowl-
edge states that the hardness assumption holds for multidimensional CSAP*,
i. e., the computational homogenous problem with a non-fixed approximation or-
der and n ≥ 2, is hard for an approximation order of Δ ≥ 1+1/n. We will argue
how and to what extent this indicates that certain instances of DISAP, i. e., the
decisional imhomogenous problem with a fixed approximation quality, are hard
as well.

The first step is to relate the CSAP* hardness assumption to a special set of
CISAP instances, that is the computational variant of DISAP:

Theorem 6. Assume an algorithm A that is able to efficiently compute so-
lutions (if existent) to CISAP-instances (α, η, N, n, N−δ) where ηi = λi

μi
with

0 < μi ≤ N δ′
and 0 < δ′ ≤ δ. Then, there exists another algorithm B with

the following property: Given (β, N, n) with β ∈ Qn, invoke A such that any
solution (q, p) returned by A implies values q̃ ∈ N>0 and p̃ = (p̃1, . . . , p̃n) ∈ Qn

such that ∣∣∣∣βi −
p̃i

q̃

∣∣∣∣ < 1
q̃1+(δ−δ′) ∀i ∈ {1, . . . , n} . (28)

That is, B solves a CSAP* instance for an approximation order of 1 + (δ − δ′).

Proof. Let (β, N, n) be given as defined above. At first, B chooses some values
0 < μi ≤ N δ′

and sets αi := βi/μi ∈ Q. Furthermore, some positive integers
λi ∈ N>0 are sampled according to some arbitrary distribution and ηi := λi/μi

are defined. Then, B hands the ISAP-instance (α, η, N, n, N−δ) to A. Assume
that A returns a solution (q, p). B sets q̃ := q and p̃i := pi · μi + λi and outputs
(q̃, p̃).

We show now that (q̃, p̃) meets condition (28). By assumption, the response
(q, p) of A is a solution to the ISAP instance, i. e., |qαi − pi − ηi| < N−δ for
i = 1, . . . , n. Because of μi ≤ N δ′

and q ≤ N , we have 1
Nδ = 1

Nδ−δ′ ·Nδ′ ≤ 1
qδ−δ′ ·μi

.
Thus, one can show that
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p̃i

μi

∣∣∣∣ = |qαi − pi − ηi| <
1

N δ
≤ 1

q(δ−δ′) · μi

q̃=q
=⇒

∣∣∣∣βi −
p̃i

q̃

∣∣∣∣ < 1
q̃1+δ−δ′ .

Therefore, the output of B represents a solution to (28).  !
Remark that the ISAP instances generated according to Gen∗ as explained in
Th. 5 meet the conditions given in Th. 6. Thus, if the CSAP* assumption holds
(as we conjecture in Sec. 2.3), then choosing CISAP instances such that δ− δ′ ≥
1/n is a sufficient condition for getting hard CISAP instances. We will make use
of this observation for choosing concrete parameters in Sec. 6.

We have to stress that our analysis leaves a gap between CISAP and DISAP,
that is the computational and the decisional variant. Unfortunately, as for most
mathematical problems, only the computational variant has been investigated.
Therefore, we have to leave the analysis of the decisional variant as an open
problem. Observe that the proof of Th. 5 tells in principle that in certain cases,
the decisional and computational problem are equally hard. More precisely, given
an algorithmA that decides for certain DISAP instances with success probability
1 whether a solution exists or not, one can construct another algorithm B that
actually computes the solution for related CISAP instances. The idea is that once
the LSB of a DISAP solution is known, it is easy to transfrom the instance into
a new one which shares almost the same solution but where the LSB is removed.
That is, by iteratively applying this technique, one can eventually compute the
solution.

6 A Concrete Instantiation and Implementation

The hardness assumption states that a promising strategy for creating hard in-
stances is to choose values N , n and ε which are beyond certain thresholds. In
this section, we will construct instances as explained in Th. 6 where the approx-
imation quality and the dimension are too high for all algorithms mentioned
in Sec. 2.3. Regarding the upper bound N , one has to take care that it is big
enough for excluding brute force approaches. We will set N := 2s in our con-
struction where s represents the security parameter. Observe that in our scheme,
we construct instances that have only one unique solution. Hence, it will not be
possible to look for other solutions that might be easier to find. In this context
we would like to refer to the results by Rössner and Seifert [21]: They showed
that approximating the best solution is almost NP-hard. Thus, approximating
the unique solution q seems to be not an option either.

In this section we want to fix some values for the thresholds ε∗ and n∗. Due to
our discussion of the algorithmic landscape in Sec. 2.3 and because of q−(1+1/2)

≤ q−(1+1/n) for all n ≥ 2, we know that there exists no algorithm with a runtime
polynomial in n that given (β, N, n), finds integers q̃ and p̃ such that∣∣∣∣βi −

p̃i

q̃

∣∣∣∣ < 1
q̃1+δ−δ′ (29)

with δ − δ′ = 1/2. We set ε∗ := N−δ = 2−δs and mention the upper bound on μi

of μ∗ := N δ′
= 2δ′s. In [13] it is stated that the used algorithm of Lenstra Jr. [15]
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has a runtime that grows exponentially in the dimension. This motivates us to set
n∗ := log (s) . Observe that the effort of the commitment scheme grows linearly
with n. Thus, increasing n in the case of need induces only a linear overhead.

Looking back to Alg. 1, we set ε := ε∗ and n := n∗ in the following as concrete
parameters. Next, we compute the size of a commitment and thereby get a hint
how to choose δ′. Due to the fact that the sizes of ai and pi do not effect the
proofs of binding and hiding we are free in the choice of their bounds. Thus, we
choose ai and pi equally distributed from the same interval as q, namely [0, 2s).
Only for the bi we have to pay attention that bi ≤ μ holds.

The commitment consists of the quantities α and η. The αi := ai/bi require
s + δ′s bits because ai ∈ [0, 2s) and bi ∈ [0, μ) =

[
0, 2δ′s

)
. Moreover, the de-

nominators di of the second part η of the commitment require δ′s bits due to
0 < di < bi < 2δ′s (see condition (19) in Alg. 1). Finally we consider the ex-
panded numerators ci − pidi ∈ [−pidi, ci] and note that we need s + δ′s bits
for the negative range because pidi < 2sbi < 2s+δ′s and 2s bits for the positive
range (ci < qai < 22s). Subsuming ηi requires 3s+2δ′s bits leading to a complete
commitment size of

|(α, η)|2 = n (s + δ′s) + n (3s + 2δ′s) = ns (4 + 3δ′) .

Because of δ′ > 1 we have the lower bound of 7ns bits for the commitment size.
We see that we minimize the commitment size by minimizing δ′ with respect
to δ′ > 1. By setting δ′ := 1 + δ′′ with δ′′ > 0 we get |(α, η)|2 = 7ns + 3nsδ′′,
leading to (3ns)−1 as a minimal choice for δ′′.

We implemented the scheme6 and made about 106 test runs on a AMD Athlon
X2 Dual-Core QL-62 with 2GHz per core with n = 7, s = 128 and minimal
δ′′ = (3 · 128 · 7)−1. This gives a commitment size of 6273 bit. The algorithm
restarts the computation of the commitment on an average of 3.0579 times in
order to satisfy (20) (cf. line 15 in Alg. 1). The maximal number of restarts
to compute a single commitment was 23. Condition (19) was always fulfilled.
Furthermore, all operations are really cheap in software – leading to running
times in the milliseconds not measurable in seconds.

7 Future Work and Conclusions

In this work, we focused on one particular problem from analytic number theory,
namely the Decisional Inhomogeneous Simultaneous Approximation Problem
(DISAP). The problem is NP-complete and one can efficiently generate presum-
ably hard instances. Observe that the difficulty can be easily increased, e. g., by
raising the dimension n. As a proof of concept, we constructed a bit commitment
scheme on DISAP.

However, other schemes could have been imaginable. For example, it might be
possible to construct DISAP instances in such a way that the addition or multi-
plication of several instances yield a new instance. In the positive case, it would
6 We used the GNU MP (http://gmplib.org/) and MPFR [5] library for arbitrary

large integers and arbitrary precise floating point arithmetic. Our C++ implemen-
tation can be downloaded from http://www.ifam.uni-hannover.de/~mschmidt/

http://gmplib.org/
http://www.ifam.uni-hannover.de/~mschmidt/
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be interesting to explore whether one can adapt the approach by Van Dijk et al.
[31] for constructing a full-homomorphic encryption scheme. Also with respect
to DISAP itself, several questions remain open. To begin with the gap between
the decisional and computational variants needs to be examined further. More-
over, the connection to lattices might turn out to be very fruitful. In the best case,
DISAP (and variants) might give an alternative approach for constructing hard
lattice instances.

Despite DISAP, other problems and results from analytic number theory might
be worth to be investigated as well. For example, one can easily transform a ratio-
nal number from its binary representation to continued fractions and vice versa.
But only little is known on the relations between changes in one representation
and the corresponding changes in the other representation. This ”fragility” might
be used to construct a collision-resistant compression function. Furthermore, sev-
eral results exist on the periodicity of certain representations. The construction
of bitstream generators based on these might be an interesting question.

Concluding, we think that the established discipline of analytic number the-
ory contains many interesting open problems and results that only wait to be
(re-)discovered for cryptographic applications. We hope to encourage further
research into this direction.
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Abstract. The key-generation algorithm for the RSA cryptosystem is specified
in several standards, such as PKCS#1, IEEE 1363-2000, FIPS 186-3, ANSI X9.44,
or ISO/IEC 18033-2. All of them substantially differ in their requirements. This
indicates that for computing a “secure” RSA modulus it does not matter how
exactly one generates RSA integers. In this work we show that this is indeed the
case to a large extend: First, we give a theoretical framework that will enable us to
easily compute the entropy of the output distribution of the considered standards
and show that it is comparatively high. To do so, we compute for each standard
the number of integers they define (up to an error of very small order) and dis-
cuss different methods of generating integers of a specific form. Second, we show
that factoring such integers is hard, provided factoring a product of two primes of
similar size is hard.

Keywords: RSA integer, output entropy, reduction. ANSI X9.44, FIPS 186-3,
IEEE 1363-2000, ISO/IEC 18033-2, NESSIE, PKCS#1.

1 Introduction

An RSA integer is an integer that is suitable as a modulus for the RSA cryptosystem as
proposed by Rivest, Shamir & Adleman (1977, 1978):

“You first compute n as the product of two primes p and q:

n = p · q.

These primes are very large, ’random’ primes. Although you will make n pub-
lic, the factors p and q will be effectively hidden from everyone else due to the
enormous difficulty of factoring n.”

Also in earlier literature such as Ellis (1970) or Cocks (1973) one does not
find any further restrictions. In subsequent literature people define RSA integers sim-
ilarly to Rivest, Shamir & Adleman, while sometimes additional safety tests are per-
formed. Real world implementations, however, require concrete algorithms
that specify in detail how to generate RSA integers. This has led to a variety of stan-
dards, notably the standards PKCS#1 (Jonsson & Kaliski 2003), ISO 18033-2
(International Organization for Standards 2006), IEEE 1363-2000 (IEEE working group
2000), ANSI X9.44 (Accredited Standards Committee X9 2007), FIPS 186-3
(Information Technology Laboratory 2009), the standard of the RSA foundation
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(RSA Laboratories 2000), the standard set by the German Bundesnetzagentur
(Wohlmacher 2009), and the standard resulting from the European NESSIE project
(NESSIE working group 2003). All of those standards define more or less precisely
how to generate RSA integers and all of them have substantially different requirements.
This reflects the intuition that it does not really matter how one selects the prime factors
in detail, the resulting RSA modulus will do its job. But what is needed to show that
this is really the case?

Following Brandt & Damgård (1993) a quality measure of a generator is the entropy
of its output distribution. In abuse of language we will most of the time talk about the
output entropy of an algorithm. To compute it, we need estimates of the probability
that a certain outcome is produced. This in turn needs a thorough analysis of how one
generates RSA integers of a specific form. If we can show that the outcome of the
algorithm is roughly uniformly distributed, the output entropy is closely related to the
count of RSA integers it can produce. It will turn out that in all reasonable setups this
count is essentially determined by the desired length of the output. For primality tests
there are several results in this direction (see for example Joye & Paillier 2006) but
we are not aware of any related work analyzing the output entropy of algorithms for
generating RSA integers.

Another requirement for the algorithm is that the output should be ‘hard to factor’.
Since this statement does not even make sense for a single integer, this means that one
has to show that the restrictions on the shape of the integers the algorithm produces do
not introduce any further possibilities for an attacker. To prove this, a reduction has to
be given that reduces the problem of factoring the output to the problem of factoring a
product of two primes of similar size, see Section 7. Also there it is necessary to have
results on the count of RSA integers of a specific form to make the reduction work. As
for the entropy estimations, we do not know any related work on this.

In the following section we will develop a formal framework that can handle all
possible definitions for RSA integers. After discussing the necessary number theoretic
tools in Section 3, we give explicit formulæ for the count of such integers which will be
used later for entropy estimations of the various standards for RSA integers. In Section
4 we show how our general framework can be instantiated, yielding natural definitions
for several types of RSA integers (as used later in the standards). Section 5 gives a short
overview on generic constructions for fast algorithms that generate such integers almost
uniformly. At this point we will have described all necessary techniques to compute
the output entropy, which we discuss in Section 6. The following section resolves the
second question described above by giving a reduction from factoring special types of
RSA integers to factoring a product of two primes of similar size. We finish by applying
our results to various standards for RSA integers in Section 8.

We omitted here most of the number theoretic details. For the proofs of those the-
orems see Loebenberger & Nüsken (2011). Note that for ease of comparison, we have
retained the numbering of the extended version.

2 RSA Integers in General

If one generates an RSA integer it is necessary to select for each choice of the security
parameter the prime factors from a certain region. This security parameter is typically an
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integer k that specifies (roughly) the size of the output. We use a more general definition
by asking for integers from the interval ]x/r, x], given a real bound x and a parameter r
(possibly depending on x). Clearly, this can also be used to model the former selection
process by setting x = 2k − 1 and r = 2. Let us in general introduce a notion of RSA
integers with tolerance r as a family

A := 〈Ax〉x∈R>1

ln y

ln z

ln
x

ln
x

ln
x

r

ln
x

r
(ln

A
)
x

of subsets of the positive quadrant R2
>1, where for every

x ∈ R>1

Ax ⊆
{

(y, z) ∈ R2
>1

x

r
< yz ≤ x

}
.

The tolerance r shall always be larger than 1. We allow
here that r varies (slightly) with x, which of course in-
cludes the case that r is a constant. Typical values used for RSA are r = 2 or r = 4
which fix the bit-length of the modulus more or less. We can — for a fixed choice of pa-
rameters — easily visualize any notion of RSA integers by the corresponding regionAx

in the (y, z)-plane. It is favorable to look at these regions in logarithmic scale. We write
y = eυ and z = eζ and denote by (lnA)x the region in the (υ, ζ)-plane corresponding
to the region Ax in the (y, z)-plane, formally (υ, ζ) ∈ (lnA)x :⇔ (y, z) ∈ Ax. Now
an A-integer n of size x — for use as a modulus in RSA — is a product n = pq of a
prime pair (p, q) ∈ Ax ∩ (P× P), where P denotes the set of primes. They are counted
by the associated prime pair counting function #A for the notion A:

#A :
R>1 −→ N,

x �−→ # {(p, q) ∈ P× P (p, q) ∈ Ax} .

Thus everyA-integer n = pq is counted once or twice in #A (x) depending on whether
only (p, q) ∈ Ax or also (q, p) ∈ Ax, respectively. We call a notion symmetric if for all
choices of the parameters the corresponding area in the (y, z)-plane is symmetric with
respect to the main diagonal, i.e. that (y, z) ∈ Ax implies also (z, y) ∈ Ax. If to the
contrary (y, z) ∈ Ax implies (z, y) /∈ Ax we call the notion antisymmetric. If we are
only interested in RSA integers we can always require symmetry or antisymmetry, yet
many algorithms proceed in an asymmetric way.

Certainly, we will also need restrictions on the shape of the area we are analyzing:
If one considers any notion of RSA integers and throws out exactly the prime pairs
one would be left with a prime-pair-free region and any approximation for the count of
such a notion based on the area would necessarily have a tremendously large error term.
However, for practical applications it turns out that it is enough to consider regions of a
very specific form. Actually, we will most of the time have regions whose boundary can
be described by graphs of certain smooth functions. In the following, we call notions
having such boundaries monotone. A more detailed explanation of the restrictions we
have to impose to make the number-theoretic work sound can be found in the extended
version Loebenberger & Nüsken (2011).

For RSA, people usually prefer two prime factors of roughly the same size, where
size is understood as bit length. Accordingly, we call a notion of RSA integers [c1, c2]-
balanced iff additionally for every x ∈ R>1
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Ax ⊆
{
(y, z) ∈ R2

>1 y, z ∈ [xc1 , xc2 ]
}

,

where 0 < c1 ≤ c2 can be thought of as constants or — more generally — as smooth
functions in x defining the amount of allowed divergence subject to the side condition
that xc1 tends to infinity when x grows. If c1 > 1

2 then Ax is empty, so we will usually
assume c1 ≤ 1

2 . In order to prevent trial division from being a successful attacker it

would be sufficient to require y, z ∈ Ω
(

lnk x
)

for every k ∈ N. Our stronger require-

ment still seems reasonable and indeed equals the condition Maurer (1995) required for
secure RSA moduli, as the supposedly most difficult factoring challenges stay within
the range of our attention. As a side-effect this greatly simplifies our approximations
later. The German Bundesnetzagentur (see Wohlmacher 2009) uses a very similar re-
striction in their algorithm catalog. There it is additionally required that the primes p
and q are not too close to each other. We ignore this issue here, since the probability that
two primes are very close to each other would be tiny if the notion from which (p, q)
was selected is sufficiently large. If necessary, we are able to modify our notions such
that also this requirement is met.

Often the considered integers n = pq are also subject to further side conditions,
like gcd((p − 1)(q − 1), e) = 1 for some fixed public RSA exponent e. Most of the
number theoretic work below can easily be adapted, but for simplicity of exposition we
will often present our results without those further restrictions and just point out when
necessary how to incorporate such additional properties.

As we usually deal with balanced notions the considered regions are somewhat cen-
tered around the main diagonal. We will show in Section 7 that if factoring products of
two primes is hard then it is also hard to factor integers generated from such notions.

3 Toolbox

We will now develop the necessary number theoretic concepts to obtain formulæ for
the count of RSA integers that will later help us to estimate the output entropy of the
various standards for RSA integers. In related articles, like Decker & Moree (2008) one
finds counts for one particular definition of RSA integers. We believe that in the work
presented here for the first time a sufficiently general theorem is established that allows
to compute the number of RSA integers for all reasonable definitions.

We assume the Riemann hypothesis throughout the entire paper. The main terms
are the same without this assumption, but the error bounds one obtains are then much
weaker. We skip intermediate results here and just summarize the number theoretic
work (to ease later comparison we have retained the numbering of the extended version
Loebenberger & Nüsken 2011). The following lemma covers all the estimation work.

Lemma 3.6 (Two-dimensional prime sum approximation for monotone notions).
Assume that we have a monotone [c1, c2]-balanced notion A of RSA integers with tol-
erance r, where 0 < c1 ≤ c2. (The values r, c1, c2 are allowed to vary with x.) Then

under the Riemann hypothesis there is a value ã(x) ∈
[

1
4c2

2
, 1

4c2
1

]
such that

#A (x) ∈ ã(x) · 4 area(Ax)
ln2 x

+O
(
c−1
1 x

3+c
4

)
,
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where c = max (2c2 − 1, 1− 2c1).  !

Note that the omitted proof gives a precise expression for ã(x), namely

ã(x) =

∫∫
Ax

1
ln p ln q dp dq

4
∫∫

Ax

1
ln2 x

dp dq
.

It turns out that we can only evaluate ã(x) numerically in our case and so we tend
to estimate also this term. Then we often obtain ã(x) ∈ 1 + o(1). Admittedly, this
mostly eats up the advantage obtained by using the Riemann hypothesis. However, we
accept this because it still leaves the option of going through that difficult evaluation
and obtain a much more precise answer. If we do not use the Riemann hypothesis we

need to replace O
(
c−1
1 x

3+c
4

)
with O

(
x

lnk x

)
for any k > 2 of your choice.

As mentioned before, in many standards the selection of the primes p and q is ad-
ditionally subject to the side condition that gcd((p − 1)(q − 1), e) = 1 for some fixed
public exponent e of the RSA cryptosystem. To handle these restrictions, we state a
theorem from the extended version.

Theorem 3.11. Let e ∈ N>2 be a public RSA exponent and x ∈ R. Then we have for
the number πe(x) of primes p ≤ x with gcd(p− 1, e) = 1 that

πe(x) ∈ ϕ1(e)
ϕ(e)

· Li(x) +O
(√

x ln x
)
,

where Li(x) =
∫ x

2
1

ln t dt is the integral logarithm, ϕ(e) is Euler’s totient function and

ϕ1(e)
ϕ(e)

=
∏
�|e

� prime

(
1− 1

�− 1

)
. (3.12)

 !
This theorem shows that the prime pair approximation in Lemma 3.6 can be easily

adapted to RSA integers whose prime factors satisfy the conditions of Theorem 3.11,
since the density of such primes differs for every fixed e just by a constant.

4 Some Common Definitions for RSA Integers

We will now give formal definitions of two specific notions of RSA integers. In partic-
ular, we consider the following example definitions within our framework:

– The simple construction given by just choosing two primes in given intervals. This
construction occurs in several standards, like the standard of the RSA foundation
(RSA Laboratories 2000), the standard resulting from the European
NESSIE project (NESSIE working group 2003) and the FIPS 186-3 standard
(Information Technology Laboratory 2009). Also open source implementations of
OpenSSL (Cox et al. 2009), GnuPG (Skala et al. 2009) and the GNU crypto li-
brary GNU Crypto (Free Software Foundation 2009) use some variant of this
construction.
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– An algorithmically inspired construction which allows one prime being chosen ar-
bitrarily and the second is chosen such that the product is in the desired interval.
This was for example specified as the IEEE standard 1363 (IEEE working group
2000), Annex A.16.11. However, we could not find any implementations following
this standard.

4.1 A Fixed Bound Notion

We consider the number of integers smaller than a real positive bound x that have
exactly two prime factors p and q, both lying in a fixed interval ]B, C], in formulæ:

π2
B,C (x) := #

{
n ∈ N

∃p, q ∈ P ∩ ]B, C] :
n = pq ∧ n ≤ x

}
.

To avoid problems with rare prime squares, which are also not interesting when talking
about RSA integers, we instead count

κ2
B,C (x) := #

{
(p, q) ∈ (P ∩ ]B, C])2 pq ≤ x

}
.

Such functions are treated in Loebenberger & Nüsken (2010) . In the context of RSA
integers we consider the notion

AFB(r,σ) :=
〈{

(y, z) ∈ R2
>1

√
x

r
< y, z ≤

√
rσx ∧ yz ≤ x

}〉
x∈R>1

with σ ∈ [0, 1]. The parameter σ describes the (relative) distance of the restriction
yz ≤ x to the center of the rectangle in which y and z are allowed. The next theorem
follows directly from Loebenberger & Nüsken (2010) but we can also derive it from
Lemma 3.6:

Theorem 4.6. We have for ln r ∈ o(ln x) under the Riemann hypothesis

#AFB(r,σ) (x) ∈ ã(x)
4x

ln2 x

(
σ ln r + 1− 2

r
1−σ

2

+
1
r

)
+O

(
x

3
4 r

1
4

)
with ã(x) ∈

[(
1− σ ln r

ln x+σ ln r

)2

,
(
1 + ln r

ln x−ln r

)2
]
⊆ 1 + o(1).

 !

4.2 An Algorithmically Inspired Notion

A second option to define RSA integers is the following notion: Assume you wish to
generate an RSA integer between x

r and x, which has two prime factors of roughly equal
size. Then algorithmically we might first generate the prime p and afterward select
the prime q such that the product is in the correct interval. As we will see later, this
procedure does — however — not produce every number with the same probability, see
Section 5. Formally, we consider the notion
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AALG(r,σ)(x) :=
〈{

(y, z) ∈ R2
>1

rσ−1√x < y ≤ rσ√x ∧ x
ry < z ≤ x

y
x
r < yz ≤ x

}〉
x∈R>1

,

with σ ∈ [0, 1]. The parameter σ describes here the (relative) position of the defining
area of the notion with respect to the diagonal. Write σ′ := max(σ, 1 − σ). Similar to
the theorem above we obtain

Theorem 4.11. Assuming ln r ∈ o(ln x) we have under the Riemann hypothesis

#AALG(r,σ) (x) ∈ ã(x)
4x

ln2 x

(
ln r − ln r

r

)
+O

(
x

3
4 r

1
4

)
,

with ã(x) ∈
[(

1− 2σ′ ln r
ln x+2σ′ ln r

)2

,
(
1 + 2(1+σ) ln r

ln x−2(1+σ) ln r

)2
]
⊆ 1 + o(1).  !

As we see both notions open a slightly different view. However the outcome is not
that different, at least the numbers of described RSA integers are quite close to each
other. The proof that this is the case for all reasonable notions can be found in the
extended version Loebenberger & Nüsken (2011).

Current standards and implementations of various crypto packages mostly use the
notionsAFB(4,0), AFB(4,1), AFB(2,0) or AALG(2,1/2). For details see Section 8.

5 Generating RSA Integers Properly

In this section we analyze how to generate RSA integers properly. It completes the
picture and we found several implementations overlooking this kind of arguments.
We wish that all the algorithms generate integers with the following properties:

– If we fix x we should with overwhelming probability generate integers that are a
product of a prime pair in Ax.

– These integers (not the pairs) should be selected roughly uniformly at random.
– The algorithm should be efficient. In particular, it should need only few primality

tests.

5.1 Rejection Sampling

Assume that A is a [c1, c2]-balanced notion of RSA integers with tolerance r. The eas-
iest approach for generating a pair from A is based on von Neumann’s rejection sam-
pling method. Let Bx := x[c1,c2] × x[c1,c2]. There may be better ways for choosing
Bx ⊇ Ax, but we skip this here. We obtain the following straightforward Las Vegas
algorithm:

Algorithm 5.2. Generating an RSA integer (Las Vegas version).
Input: A notion A, a bound x ∈ R>1.
Output: An integer n = pq with (p, q) ∈ Ax.

1. Repeat 2–4
2. Repeat
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3. Select (y, z) at random from Bx ∩ N2.
4. Until (y, z) ∈ Ax.
5. Until y prime and z prime.
6. p ← y, q ← z.
7. Return pq.

The expected repetition count of the inner loop is roughly area(Bx)
area(Ax) . The expected num-

ber of primality tests is about area(Ax)
#A(x) . This is for many notions in O

(
ln2 x

)
. We have

seen implementations (for example the one of GnuPG) where the inner and outer loop
have been exchanged. This increases the number of primality tests by the repetition
count of the inner loop. Also easily checkable additional conditions, like gcd((p−1)(q−
1), e) = 1, should be checked before the primality tests to improve the efficiency.

5.2 Inverse Transform Sampling

Actually we would like to avoid generating out-of-bound pairs completely. To retain
uniform selection, we need to select the primes p non-uniformly with the following
distribution:

Definition 5.4. LetA be a notion of RSA integers with tolerance r. For every x ∈ R>1

the associated cumulative distribution function of Ax is defined as

FAx :
R −→ [0, 1],
y �−→ area(Ax∩([1,y]×R))

area(Ax) .

In fact we should use the function GAx : R → [0, 1], y �→ #(Ax∩(([1,y]∩P)×P))
#Ax

, in order
to compute the density but computing GAx (or its inverse) is tremendously expensive.
Fortunately, by virtue of Lemma 3.6 we know that FAx approximates GAx for mono-
tone, [c1, c2]-balanced notionsA quite well. So we use the function FAx to capture the
distribution properties of a given notion of RSA integers. As can be seen by inspection,
in practically relevant examples this function is sufficiently easy to handle. We obtain
the following algorithm:

Algorithm 5.5. Generating an RSA integer.
Input: A notion A, a bound x ∈ R>1.
Output: An integer n = pq with (p, q) ∈ Ax.

1. Repeat
2. Select y with distribution FAx from {y ∈ R ∃z : (y, z) ∈ Ax} ∩N.
3. Until y prime.
4. p ← y.
5. Repeat
6. Select z uniformly at random from {z ∈ R (p, z) ∈ Ax} ∩ N.
7. Until z prime.
8. q ← z.
9. Return pq.
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As desired, this algorithm generates any pair (p, q) ∈ Ax ∩ (P× P) with almost the
same probability. In order to generate y with distribution FAx one can use inverse trans-
form sampling, see for example Knuth (1998). The expected number of primality tests
now is in O (ln x). Of course we have to take into account that for each trial y the in-
verse F−1

Ax
(y) has to be computed — at least approximately —, yet this cost is usually

negligible compared to a primality test.

5.3 Other Constructions

There are variants around, where the primes are selected differently: Take an integer
randomly from a suitable interval and increase the result until the first prime is found.
This has the advantage that the amount of randomness needed is considerably lower
and by optimizing the resulting algorithm can also be made much faster. The price one
has to pay is that the produced primes will not be selected uniformly at random: Primes
p for which p − 2 is also prime will be selected with a much lower probability than
randomly selected primes of a given length. As shown in Brandt & Damgård (1993) the
output entropy of such algorithms is still almost maximal and also generators based on
these kind of prime-generators might be used in practice.

5.4 Summary

We have seen that Algorithm 5.2 and Algorithm 5.5 are practical uniform generators
for any symmetric or antisymmetric notion.

Note that Algorithm 5.2 and Algorithm 5.5 may, however, still produce numbers in
a non-uniform fashion: In the last step of both algorithms a product is computed that
corresponds to either one pair or two pairs in Ax. To solve this problem we have two
choices: Either we replace A by its symmetric version S which we define as Sx :={
(y, z) ∈ R2

>1 (y, z) ∈ Ax ∨ (z, y) ∈ Ax

}
, or by its, say, top half T given by Tx :=

{(y, z) ∈ Sx z ≥ y} before anything else.

6 Output Entropy

The entropy of the output distribution is one important quality measure of a
generator. For primality tests several analyses where performed, see for example
Brandt & Damgård (1993) or Joye & Paillier (2006). For generators of RSA integers
we are not aware of any work in this direction.

Let Ax be any monotone notion. Consider a generator G� that produces a pair of
primes (p, q) ∈ Ax with distribution �. Seen as random variables, G� induces two
random variables P and Q by its first and the second coordinate, respectively. The
entropy of the generator G� is given by

H(G�) = H(P ×Q) = H(P ) + H (Q P ) ,

where H denotes the binary entropy and H (Q P ) denotes the conditional entropy. If
� is the uniform distribution U we obtain by Lemma 3.6 maximal entropy

H(GU ) = log2(#A (x)) ≈ log2(area(Ax))− log2(ln x) + 1,
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with an error of very small order. The algorithms from Section 5, however, return the
product P ·Q. The entropy of this random variable can be estimated as

H(P ·Q) = −
∑

n=pq∈N

(p,q)∈Ax

prob(P ·Q = n) log2(prob(P ·Q = n))

≥ −
∑

(p,q)∈Ax

prob(P ×Q = (p, q)) log2(2 prob(P ×Q = (p, q)))

= H(P ×Q)− 1.

Some of the standards and implementations in Section 8 (like the standard IEEE
1363-2000 or the implementation of GNU Crypto) do not generate every possible
outcome with the same probability. All of them have in common that the prime p is se-
lected uniformly at random and afterwards the prime q is selected uniformly at random
from an appropriate interval. This is a non-uniform selection process since for some
choices of p there might be less choices for q.

If in general the probability distribution � is close to the uniform distribution, say
�(p, q) ∈ [2−ε, 2ε] 1

#A(x) for some fixed ε ∈ R>0, then the entropy of the resulting
generator G� can be estimated as

H(GU )− ε ≤ H(G�).

7 Complexity Theoretic Considerations

We are about to reduce factoring products of two comparatively equally sized primes to
the problem of factoring integers generated from a sufficiently large notion. As far as
we know there are no similar reductions in the literature.

We consider finite sets M ⊂ N × N, in our situation we actually have only prime
pairs. The multiplication map μM is defined on M and merely multiplies, that is,
μM : M → N, (y, z) �→ y · z. The random variable UM outputs uniformly distributed
values from M . An attacking algorithm F gets a natural number μM (UM ) and attempts
to find factors inside M . Its success probability

succF (M) = prob
(

F (μM (UM )) ∈ μ−1
M (μM (UM ))

)
(7.1)

measures its quality in any fixed-size scenario. Integers generated from a notion A are
hard to factor iff for all probabilistic polynomial time machines F , all s ∈ N, there
exists a value x0 ∈ R>1 such that for any x > x0 we have succF (Ax) ≤ ln−s x.

For any polynomial f we define the set Rf = {(m, n) ∈ N m ≤ f(n) ∧ n ≤ f(m)}
of f -related positive integer pairs. Denote by P(m) the set of m-bit primes. We can now
formulate the basic assumption:

Assumption 7.2 (Intractability of factoring). For any unbounded positive polynomial f
integers from the f -related prime pair family (P(m)×P(n))(m,n)∈Rf

are hard to factor.

This is exactly the definition given by Goldreich (2001). Note that this assumption
implies that factoring in general is hard, and it covers the supposedly hardest factoring
instances. Now we are ready to state that integers from all relevant notions are hard to
factor.
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Theorem 7.3. Let ln r ∈ Ω
(

1−2c1
ln� x

)
andA be a monotone, [c1, c2]-balanced notion for

RSA integers of tolerance r with large area, namely, for some k and large x we have
areaAx ≥ x

lnk x
. Assume that factoring is difficult in the sense of Assumption 7.2 (or

if only integers from the family of linearly related prime pairs are hard to factor). Then
integers from the notion A are hard to factor.  !

Proof. Assume that we have an algorithm F that factors integers generated uniformly
from the notion A. Our goal is to prove that this algorithm also factors polynomially
related prime pairs successfully. In other words: its existence contradicts the assumption
that factoring in the form of Assumption 7.2 is difficult.

By assumption, there is an exponent s so that for any x0 there is x > x0 such
that the assumed algorithm F has success probability succF (Ax) ≥ ln−s x on inputs
from Ax. We are going to prove that for each such x there exists a pair (m0, n0),
both in the interval [c1 ln x − ln 2, c2 ln x + ln 2], such that F executed with an input
from image μPm0 ,Pn0 still has success probability at least ln−(s+k) x. By the interval
restriction, m0 and n0 are polynomially (even linearly) related, namely m0 < 2c2

c1
n0

and n0 < 2c2
c1

m0 for large x. So that contradicts Assumption 7.2.

First, we cover the set Ax with small rectangles. Let Sm,n := P(m) × P(n) and
Ix :=

{
(m, n) ∈ N2 Sm,n ∩ Ax = ∅

}
then

Ax ∩ P2 ⊆
⊎

(m,n)∈Ix

Sm,n =: Sx. (7.4)

Next we give an upper bound on the number #Sx of prime pairs in the set Sx in terms
of the number #A (x) of prime pairs in the original notion: First, since each rectangle
Sm,n extends by a factor 2 along each axis we overshoot by at most that factor in each
direction, that is, we have for c′1 = c1 − (1 + 2c1) ln 2

ln x and all x ∈ R>1

Sx ⊂M16r,c′1
4x =

{
(y, z) ∈ R2 y, z ≥ 1

2
xc1 ∧ x

4r
< yz ≤ 4x

}
.

Provided x is large enough we can guarantee by Theorem 5.2 from the extended version
(similar to Lemma 3.6) that

#Sx ≤ #M16r,c′1 (4x) ≤ 8x

c′21 ln x
.

On the other hand side we apply Lemma 3.6 for the notion Ax and use that Ax is large
by assumption. Let c = max (2c2 − 1, 1− 2c1). Then we obtain for large x with some

eA(x) ∈ O
(
x

3+c
4

)
.

#A (x) ≥ area(Ax)
c2
2 ln2 x

− eA(x) ≥ x

2c2
2 lnk+2 x

.

Together we obtain

#A (x)
#Sx

≥ c′21
16c2

2 lnk+1 x
≥ ln−(k+2) x (7.5)
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By assumption we have succF (Ax) ≥ ln−s x for infinitely many values x. Thus F
on an input from Sx still has large success even if we ignore that F might be successful
for elements on Sx \ Ax,

succF (Sx) ≥ succF (Ax)
#A (x)
#Sx

≥ ln−(k+s+2) x.

Finally choose (m0, n0) ∈ Ix for which the success of F on Sm0,n0 is maximal. Then
succF (Sm0,n0) ≥ succF (Sx). Combining with the previous we obtain that for infinitely
many x there is a pair (m0, n0) where the success succF (Sm0,n0) of F on inputs from
Sm0,n0 is still larger than inverse polynomial: succF (Sm0,n0) ≥ ln−(k+s+2) x.

For these infinitely many pairs (m0, n0) the success probability of the algorithm F

on Sm0,n0 is at least ln−(k+s+2) x contradicting the hypothesis. ��

All the specific notions that we have found in the literature fulfill the criterion of
Theorem 7.3. Thus if factoring is difficult in the stated sense then each of them is in-
vulnerable to factoring attacks. Note that the above reduction still works if the primes
p, q are due to the side condition gcd((p − 1)(q − 1), e) = 1 for a fixed integer e (see
Theorem 3.11). We suspect that this is also the case if p and q are strong primes. Yet,
this needs further investigation.

8 Impact on Standards and Implementations

In order to get an understanding of the common implementations, it is necessary
to consult the main standard on RSA integers, namely the standard PKCS#1
(Jonsson & Kaliski 2003). However, one cannot find any requirements on the shape
of RSA integers. Interestingly, they even allow more than two factors for an RSA mod-
ulus. Also the standard ISO 18033-2 (International Organization for Standards 2006)
does not give any details besides the fact that it requires the RSA integer to be a product
of two different primes of similar length.

8.1 RSA-OAEP

The RSA Laboratories (2000) describe the following variant:

ln y

ln z

Algorithm 8.1. Generating an RSA number for RSA-OAEP and variants.
Input: A number of bits k, the public exponent e.
Output: A number n = pq.

1. Pick p from
[⌊

2(k−1)/2
⌋

+ 1,
⌈
2k/2

⌉
− 1

]
∩P such that

gcd(e, p− 1) = 1.
2. Pick q from

[⌊
2(k−1)/2

⌋
+ 1,

⌈
2k/2

⌉
− 1

]
∩P such that

gcd(e, q − 1) = 1.
3. Return pq.

This will produce uniformly at random a number from the interval [2k−1 + 1, 2k − 1]
and no cutting off. The output entropy is thus maximal. So this corresponds to the no-
tion AFB(2,0) generated by Algorithm 5.5. The standard requires an expected number
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of k ln 2 primality tests if the gcd condition is checked first. Otherwise the expected
number of primality tests increases to ϕ(e)

ϕ1(e)
· k ln 2 (see 3.12). We will in the follow-

ing always mean by the above notation that the second condition is checked first and
afterwards the number is tested for primality. For the security Theorem 7.3 applies.

8.2 IEEE

IEEE standard 1363-2000, Annex A.16.11 (IEEE working group 2000) introduces our
algorithmic proposal:

ln y

ln z

Algorithm 8.2. Generating an RSA number, IEEE 1363-2000.
Input: A number of bits k, the odd public exponent e.
Output: A number n = pq.

1. Pick p from
[
2�

k−1
2 �, 2�

k+1
2 � − 1

]
∩ P such that

gcd(e, p− 1) = 1.

2. Pick q from
[⌊

2k−1

p + 1
⌋

,
⌊
2k

p

⌋]
∩ P such that

gcd(e, q − 1) = 1.
3. Return pq.

Since the resulting integers are in the interval [2k−1, 2k − 1] this standard follows
AALG(2,1/2) generated by a corrupted variant of Algorithm 5.5 using an expected num-
ber of k ln 2 primality tests like the RSA-OAEP standard. The notion it implements is
neither symmetric nor antisymmetric. The selection of the integers is not done in a uni-
form way, since the number of possible q for the largest possible p is roughly half of the
corresponding number for the smallest possible p. Since the distribution of the outputs
is close to uniform, we can use the techniques from Section 6 to estimate the output en-
tropy to find that the entropy-loss is less than 0.69 bit. The (numerically approximated)
values in Table 8.1 gave an actual entropy-loss of approximately 0.03 bit.

8.3 NIST

We will now analyze the standard FIPS 186-3 Information Technology Laboratory (2009).
In Appendix B.3.1 of the standard one finds the following algorithm:

ln y

ln z

Algorithm 8.3. Generating an RSA number, FIPS186-3.
Input: A number of bits k, a number of bits � < k, the odd

public exponent 216 < e < 2256.
Output: A number n = pq.

1. Pick p from
[√

22k/2−1, 2k/2 − 1
]
∩ P such that

gcd(e, p− 1) = 1 and p± 1 has a prime factor with at
least � bits.

2. Pick q from
[√

22k/2−1, 2k/2 − 1
]
∩ P such that

gcd(e, p− 1) = 1 and q ± 1 has a prime factor with at
least � bits and |p− q| > 2k/2−100.

3. Return pq.
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In the standard it is required that the primes p and q shall be either provable prime or at
least probable primes. The (at least �-bit) prime factors of p ± 1 and q ± 1 have to be
provable primes. We observe that also in this standard a variant of the notion AFB(2,0)

generated by Algorithm 5.5 is used. The output entropy is thus maximal. However, we
do not have any restriction on the parity of k, such that the value k/2 is not necessarily
an integer. Another interesting point is the restriction on the prime factors of p±1, q±1.
Our notions cannot directly handle such requirements, but we are confident that this can
be achieved by appropriately modifying the densities in Lemma 3.6.

The standard requires an expected number of slightly more than k ln 2 primality tests.
It is thus slightly less efficient than the RSA-OAEP standard. For the security the re-
marks from the end of Section 7 apply.

8.4 ANSI

The ANSI X9.44 standard (Accredited Standards Committee X9 2007), formerly part
of ANSI X9.31, requires strong primes for an RSA modulus. Unfortunately, we could
not access ANSI X9.44 directly and are therefore referring to ANSI X9.31-1998. Sec-
tion 4.1.2 of the standard requires that

– p − 1, p + 1, q − 1, q + 1 each should have prime factors p1, p2, q1, q2 that are
randomly selected primes in the range 2100 to 2120,

– p and q shall be the first primes that meet the above, found in an appropriate interval,
starting from a random point,

– p and q shall be different in at least one of their first 100 bits.

The additional restrictions are similar to the ones required by NIST. This procedure will
have an output entropy that is close to maximal (see Section 6).

8.5 OpenSSL

We now turn to implementations: For OpenSSL (Cox et al. 2009), we refer to the file
rsa_gen.c. Note that in the configuration the routine used for RSA integer genera-
tion can be changed, while the algorithm given below is the standard one. OpenSSH
(de Raadt et al. 2009) uses the same library. Refer to the file rsa.c. We have the fol-
lowing algorithm:

ln y

ln z

Algorithm 8.5. Generating an RSA number in OpenSSL.

Input: A number of bits k.
Output: A number n = pq.

1. Pick p from
[
2�

k−1
2 �, 2�

k+1
2 � − 1

]
∩ P.

2. Pick q from
[
2�

k−3
2 �, 2�

k−1
2 � − 1

]
∩ P.

3. Return pq.

This is nothing but a rejection-sampling method of a notion similar to the fixed-bound
notion AFB(4,0) generated by Algorithm 5.2. The output entropy is thus maximal. The

rsa_gen.c
rsa.c
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result the algorithm produces is always in [2k−2, 2k − 1]. It is clear that this notion is
antisymmetric and the factors are on average a factor 2 apart of each other. The imple-
mentation runs in an expected number of k ln 2 primality tests. The public exponent e
is afterwards selected such that gcd((p − 1)(q − 1), e) = 1. It is thus slightly more
efficient than the RSA-OAEP standard. For the security Theorem 7.3 applies.

8.6 GnuPG

Also GnuPG (Skala et al. 2009) uses rejection-sampling of the fixed-bound notion
AFB(2,1) generated by a variant of Algorithm 5.2, implying that the entropy of its output
distribution is maximal.

ln y

ln z

Algorithm 8.7. Generating an RSA number in GnuPG.

Input: A number of bits k.
Output: A number n = pq.

1. Repeat 2–3

2. Pick p from
[
2�

k−1
2 �, 2�

k+1
2 � − 1

]
∩ P.

3. Pick q from
[
2�

k−1
2 �, 2�

k+1
2 � − 1

]
∩ P.

4. Until len(pq) = 2 �k/2�
5. Return pq.

The hatched region in the picture above shows the possible outcomes that are discarded.
We refer here to the file rsa.c. The algorithm is given in the function generate_
std and produces always numbers with either k or k + 1 bits depending on the parity
of k. Note that the generation procedure indeed first selects primes before checking the
validity of the range. This is of course a waste of resources, see Section 5.

The implementation runs in an expected number of roughly 2.589 · (k + 1) ln 2 pri-
mality tests. It is thus less efficient than the RSA OAEP standards. Like in the other so
far considered implementations, the public exponent e is afterwards selected such that
gcd((p− 1)(q − 1), e) = 1. For the security Theorem 7.3 applies.

8.7 GNU Crypto

The GNU Crypto library (Free Software Foundation 2009) generates RSA integers
the following way. Refer here in the file RSAKeyPairGenerator.java to the
function generate.

ln y

ln z

Algorithm 8.8. Generating an RSA number in GNU Crypto.

Input: A number of bits k.
Output: A number n = pq.

1. Pick p from
[
2�

k−1
2 �, 2�

k+1
2 � − 1

]
∩ P.

2. Repeat

3. Pick q from
[
2�

k−1
2 �, 2�

k+1
2 � − 1

]
.

rsa.c
generate_std
generate_std
RSAKeyPairGenerator.java
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Table 8.1. Overview of various standards and implementations. The entropies given there are al-
ways above 99.89% of the maximal entropy. As explained in the text, the entropy of the standards
is sightly smaller than the values given due to the fixed public exponent e. Additionally there is a
small entropy loss for the standard FIPS 186-3 due to the fact that it requires strong primes.

Standard
Notion

Entropy for specific k
Remarks

Implementation 768 1024 2048
PKCS#1

Undefined — — — −−−ISO 18033-2
ANSI X9.44
FIPS 186-3 AFB(2,0) � 747.34 � 1002.51 � 2024.51 strong primes
RSA-OAEP AFB(2,0) 747.34 1002.51 2024.51 —

IEEE 1363-2000 AALG(2, 12 ) 749.33 1004.50 2026.50 non-uniform
GNU Crypto AFB(2,1) 747.89 1003.06 2025.06 non-uniform

GnuPG AFB(2,1) 748.52 1003.69 2025.69 —
OpenSSL ∼= AFB(4,0) 749.89 1005.06 2027.06 —

4. Until len(pq) = k and q ∈ P.
5. Return pq.

The arrow in the picture above points to the results that will occur with higher prob-
ability. Also here the notion AFB(2,1) is used, but the generated numbers will not be
uniformly distributed, since for a larger p we have much less choices for q. Since the
distribution of the outputs is not close to uniform, we could only compute the entropy
for real-world parameter choices numerically (see Table 8.1). For all choices the loss
was less than 0.63 bit. The implementation is as efficient as the RSA-OAEP standard.

9 Conclusion

We have seen that there are various definitions for RSA integers, which result in sub-
stantially differing standards. We have shown that the concrete specification does not
essentially affect the (cryptographic) properties of the generated integers: The entropy
of the output distribution is always almost maximal, generating those integers can be
done efficiently, and the outputs are hard to factor if factoring in general is hard. It
remains open to incorporate strong primes into our model. Also a tight bound for the
entropy of non-uniform selection is missing if the distribution is not close to uniform.
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Abstract. We describe a hashing function from the elements of the fi-
nite field Fq into points on a Hessian curve. Our function features the
uniform and smaller size for the cardinalities of almost all fibers com-
pared with the other known hashing functions for elliptic curves. For
ordinary Hessian curves, this function is 2 : 1 for almost all points. More
precisely, for odd q, the cardinality of the image set of the function is
exactly given by (q + i + 2)/2 for some i = −1, 1.

Next, we present an injective hashing function from the elements of
Zm into points on a Hessian curve over Fq with odd q and m = (q + i)/2
for some i = −1, 1, 3.

Keywords: Elliptic curve cryptography, Hessian curve, hashing.

1 Introduction

It is well-known that many cryptographic schemes based on elliptic curves (espe-
cially pairing-based) require efficient hashing of finite field elements into points
on a given elliptic curve. Examples are the Boneh- Franklin identity based en-
cryption scheme [1], the SPEKE (Simple Password Exponential Key Exchange)
[16] and the PAK (Password Authenticated Key exchange) [3].

For instance, in the Boneh- Franklin identity based encryption scheme [1],
they use a particular supersingular elliptic curve over the finite field Fp endowed
with a one-to-one mapping f from elements of Fp into the points on the curve.
This enables to hash using f(h(m)) where h is a classical hash function.

For hashing into an ordinary elliptic curve, the classical approach is the prob-
abilistic try and increment method. We note that designing a deterministic effi-
cient hash function from field elements to points on an elliptic curve has been an
open problem for quite a long time. Recently, two constructions have appeared.
The first one is that of Shallue and van de Woestijne [20] which has been later
simplified and extended to hyperelliptic curves by Ulas in [24]. The second one
is by Icart [15]. Furthermore, the properties of the Icart’s function have been
studied in [9,10]. Also, several new ones have been presented recently [4,18] both
for elliptic and hyperelliptic curves.

Moreover, designing an efficient injective hashing from the elements of Zm,
for some integer m, into the points of a given elliptic curve is a challenging open
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problem. Such functions will have several applications in many cryptographic
schemes based on elliptic curves and in designing cryptographically secure pseu-
dorandom generators with elliptic curves.

In this paper, we describe a function from fields element into the points on a
Hessian curve. The use of Hessian curves in cryptography has been studied in
[5,17,21,13,14]. Moreover, recently very efficient and fast unified addition formu-
las for Hessian curves have provided, see [8,2]. Our technique to obtain a hash
function for Hessian curves is similar to that of Icart’s technique [15] which is
based on computing the cubic root of a field element. Moreover, for ordinary
Hessian curves, our function is 2 : 1 at almost all points, which gives the uniform
and small size 2 for the cardinalities of the fibers. Furthermore, the cardinality
of the image set of the function is exactly given by m = (q + i + 2)/2, for some
i = −1, 1, if q is odd.

We also describe how to extract random integers in Zm from the elements of
the image set of the Hessian hash function. This leads us to describe an injective
hashing function from Zm into points of the Hessian curve. This perfect hashing
function is the first known injective hashing into points of ordinary elliptic curves
over finite fields.

Throughout the paper, we use

N� = {1, 2, . . . , �} and Zm = {0, 1, . . . , m− 1} .

The cardinality of a finite set S is denoted by #S.
For a field F, we denote its algebraic closure by F and its multiplicative sub-

group by F∗. The letter p always denotes an odd prime number and the letter
q always denotes a prime power. As usual, Fq is a finite field of size q. We note
that the Fq is of odd characteristic p.

For the odd prime p, let χ be the quadratic character in Fq. So, for x ∈ Fq,
we have χ(x) = 0, 1 or −1, if x = 0, x = w2 for some w �= 0 or x �= w2 for all
w ∈ Fq, respectively.

2 Background on Hessian Curves

A Hessian curve Hd over a finite field Fq is given by the equation

Hd : x3 + y3 + 1 = 3dxy, (1)

where d ∈ Fq with d3 �= 1, see [12].
We recall that the set of Fq-rational points of Hd denoted by Hd(Fq) forms

an Abelian group. For q ≡ 2 (mod 3), the Hessian curve Hd has one Fq-rational
point at infinity O which is the neutral element of the group. For an affine point
P of Hd, the x-coordinate of P is denoted by x(P ).

Let πd be the projection map

πd : Hd(Fq) −→ Fq

⋃
{∞} (2)

defined by πd(P ) = x(P ) if P �= O and πd(P ) =∞ if P = O.
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For i = 1, 2, let Xi,d be the subset of Fq given by

Xi,d =
{
x ∈ Fq : #π−1

d (x) = i
}

(3)

and let
Xd = X1,d ∪ X2,d. (4)

In other words, Xd is the the set of elements x ∈ Fq so that there exist only one
or two affine points P in Hd(Fq) with x(P ) = x.

For an element x ∈ Fq, let gx be the polynomial in Fq[Y ] given by

gx = Y 3 − 3dxY + x3 + 1.

Then, the number of distinct roots of gx in Fq is equal to #π−1
d (x). For x ∈ Fq,

let Δx be the discriminant of gx, that is

Δx = −27(x6 + 2(1− 2d3)x3 + 1). (5)

Remark 1. For all d ∈ Fq with d4 − d �= 0 and p > 3, we have

X2,d = {x ∈ Fq : Δx = 0} .

Proposition 1. Let q ≡ 2 (mod 3) and let Hd be a Hessian curve over Fq

defined by the equation (1) with d �= 1. For the cardinality of the set Xd, given
by equation (4), we have

#Xd =

{
q, if d = 0,(
q + χ(d4 − d)

)
/2, if d �= 0.

Proof. We note that the map κ : Fq → Fq by κ(x) = x3 is a bijection, since
q ≡ 2 (mod 3). For an element x ∈ Fq, let Δx be the discriminant of the
polynomial gx given by (5).

If d = 0, for all x ∈ Fq the polynomial gx has only one root in Fq, since κ is
a bijection over Fq. So, Xd = Fq.

Next, we assume that d �= 0. If Δx �= 0, then the number of irreducible factors
of gx over Fq equals 2 if and only if Δx is a quadratic non-residue element of Fq

(see [6,22] or [23, Corollary 1]). Therefore, we have

X1,d = {x ∈ Fq : χ(Δx) = −1} .

Recall from Remark 1 that X2,d = {x ∈ Fq : χ(Δx) = 0} . Hence,

Xd = {x ∈ Fq : χ(Δx) �= 1} ,

and
#Xd =

∑
x∈Fq,χ(Δx) �=1

1.

We recall that the map κ is a bijection over Fq. For x ∈ Fq, let

Dx = x2 + 2(1− 2d3)x + 1.
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For q ≡ 2 (mod 3), we have χ(−3) = −1. Therefore, we obtain

#Xd =
∑

x∈Fq,χ(Dx) �=−1

1 =
∑
x∈Fq

1 + χ(Dx)
2

+
∑

x∈Fq,Dx=0

1
2
.

We note that
∑

x∈Fq
χ(Dx) = −1 if d4−d �= 0 (see [19, Theorem 5.48]). Moreover,

there are two distinct values of x ∈ Fq with Dx = 0 if and only if χ(d4 − d) = 1.
Hence, for d �= 0, we have

#Xd =
q − 1

2
+

1 + χ(d4 − d)
2

=
q + χ(d4 − d)

2
.

So, the proof of Proposition 1 is complete. �

3 The Encoding Map

Let Fq be the finite field with q ≡ 2 (mod 3) and let Hd be the Hessian curve
over Fq defined by the equation (1), with d �= 1. In this section, we define an
encoding map from the elements of Fq to the Fq-rational points of Hd. We also
describe a bijection between the set of affine points of the image set of this map
and the set Xd, given by equation (4). Then, we obtain the cardinality of the
image set of the map.

3.1 The Encoding Map from Fq to Hd(Fq)

For q ≡ 2 (mod 3), we consider the map

hd : Fq −→ Hd(Fq) (6)

defined by hd(u) = (x, y) if u �= −1, where

x = −u

(
d3u3 + 1
u3 + 1

)1/3

, y = −
(

d3u3 + 1
u3 + 1

)1/3

+ du (7)

and hd(u) = O if u = −1.
We note that the map κ : Fq → Fq by κ(x) = x3 is a bijection, since q ≡

2 (mod 3). Moreover, for u ∈ Fq, the point (x, y) = hd(u) satisfies the equation
(1). So, the map hd is well defined. We let

Hd = hd(Fq), (8)

that is the image set of the map hd. We also note that, for a point P = (x, y) ∈
Hd(Fq), we have P ∈ Hd if and only if there exists an element u ∈ Fq satisfying

du2 − uy + x = 0. (9)

Notice that if d = 0, the Hessian curve Hd is a supersingular elliptic curve with
q + 1 Fq-rational points. Furthermore, the corresponding map hd is injective.
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3.2 Size of the Image Set Hd

The following theorem gives the explicit formulas for the cardinality of the image
set Hd = hd(Fq).

Theorem 1. Let q ≡ 2 (mod 3) and let Hd be a Hessian curve over Fq defined
by the equation (1) with d �= 1. Let hd be the map defined by the equation (6).
For the cardinality of the image set Hd = hd(Fq), we have

#Hd =

{
q, if d = 0,(
q + χ(d4 − d) + 2

)
/2, if d �= 0.

Proof. Let

Nk = #
{
P : P ∈ Hd, #h−1

d (P ) = k
}

, k = 1, 2, . . . .

From the definition of the map hd, we have #h−1
d (P ) = 1 if P = O. Moreover,

from equation (9), for a point P = (x, y) ∈ Hd(Fq), we have P ∈ Hd if and only
if the equation

dU2 − yU + x = 0 (10)

has a solution u ∈ Fq. Furthermore, the number of distinct roots of the equa-
tion (10) equals #h−1

d (P ). We see that, for P ∈ Hd, #h−1
d (P ) = 1 or 2. There-

fore, Nk = 0 for k > 2. Notice that N1 + 2N2 = q. So, we have

#Hd =
2∑

k=1

Nk =
q + N1

2
. (11)

As we noticed before, the value N1 − 1 is equal to the number of points
P = (x, y) ∈ Hd(Fq) where the equation (10) has exactly one root in Fq. To
compute the value of N1, we distinguish the following possibilities for d.

– If d = 0, then for all points P ∈ Hd we have #h−1
d (P ) = 1. In other words,

the map hd is injective. So, N1 = q.
– If d �= 0, for a point (x, y) ∈ Hd(Fq), the equation (10) has only one root in

Fq if and only if y2− 4dx = 0. This implies that z2 + 16d3z + 64d3 = 0 with
z = y3. The discriminant of the latter quadratic equation is 44d3(d3 − 1).
Since q ≡ 2 (mod 3), we have N1 = 1 if χ(d4 − d) = −1 and N1 = 3 if
χ(d4 − d) = 1.

So, we have N1 = q if d = 0 and N1 = 2 + χ(d4 − d) if d �= 0. Then, using (11),
we obtain the explicit formulas for the cardinality of Hd. �

3.3 Correspondence between the Sets Xd and Hd

Here, we show the correspondence between the sets Xd and Hd, given by (4)
and (8) respectively.
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We consider the restriction of the projection map πd, given by (2), to the set
Hd, that is the map

πd : Hd −→ Xd

⋃
{∞} (12)

defined by πd(P ) = x(P ) if P �= O and πd(P ) = ∞ if P = O. In the following
lemma we shall show the map πd is well defined.

For d = 0, we have Xd = Fq. Furthermore, the map πd is injective and

πd(Hd) = (Xd \ {−1})
⋃
{∞} .

Moreover, in the following Proposition we will see the map πd, for d �= 0, 1, is
bijective.

Lemma 1. Let q ≡ 2 (mod 3) and let Hd be a Hessian curve over Fq defined
by the equation (1) with d �= 0, 1. Let πd be the map defined by (12). Then, the
map πd is well defined.

Proof. We note only the point O is mapped to∞. Then, let P be an affine point
of Hd. We have

x(P ) = −u

(
d3u3 + 1
u3 + 1

)1/3

for some u ∈ Fq.
Recall from the proof of Proposition 1 that x(P ) ∈ Xd if and only if χ(Δx(P ))

�= 1, where Δx, for x ∈ Fq, is given by (5). We have,

Δx(P ) = −27
(
x(P )6 + 2

(
1− 2d3

)
x(P )3 + 1

)
.

Then, we obtain

Δx(P ) = −27
(

d3u6 + 2d3u3 + 1
u3 + 1

)2

.

Therefore, we have χ(Δx(P )) �= 1, since χ(−3) �= 1. Hence, x(P ) ∈ Xd, which
shows that the map πd is well defined. �

Here, we describe the inverse image of the set X2,d, given by (3), under the map
πd. Let H2,d be the subset of Hd given by

H2,d = #π−1
d (X2,d). (13)

Lemma 2. Let q ≡ 2 (mod 3). For the set H2,d, given by (13), we have

H2,d =
{
(x, y) : x = (2d3 − 1 + 2ds)1/3, y = 2(s− d2)x2, s2 = d4 − d

}
if χ(d4 − d) = 1 and H2,d = {} if χ(d4 − d) �= 1.

Proof. Let x ∈ X2,d. Recall from the Remark 1 that Δx = 0. Then, x3 =
2d3 − 1 + 2ds, where s is a square root of d4 − d in Fq. Next, the points (x, y1),
(x, y2) with y1 = (d2 − s)x2, y2 = 2(s − d2)x2 are the only points of Hd(Fq)
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with the x-coordinate equal to x. Moreover, from equation (9), for a point P =
(x, y) ∈ Hd(Fq), we have P ∈ Hd if and only if χ(y2 − 4dx) �= −1. We have

y2
1 − 4dx = −3dx = −3y2

1.

Since χ(−3) = −1 and d �= 0, we see that (x, y1) /∈ Hd. But, we have y2
2−4dx = 0.

So, (x, y2) is a point of Hd and #π−1
d (x) = 1. �

Proposition 2. Let q ≡ 2 (mod 3) and let Hd be a Hessian curve over Fq

defined by the equation (1) with d �= 0, 1. Let πd be the map defined by (12).
Then, the map πd is a bijection.

Proof. Lemma 1 shows that the map πd is well defined. Next, we shall prove
that the map πd is injective, i.e., for all elements x in Xd, we have #π−1

d (x) ≤ 1.
Let x ∈ Xd. By the definition of the set Xd, given by (4), we have x ∈

X1,d ∪ X2,d. Recall from the proof of Proposition 1 that x ∈ X1,d if and only if
Δx �= 0 and x ∈ X2,d if and only if Δx = 0. So, we have the following cases.

– If x ∈ X1,d then from the definition of X1,d, given by (3), there is only one
point on Hd(Fq) with x(P ) = x. Hence, #π−1

d (x) ≤ 1.
– If x ∈ X2,d, then form Lemma 2 we see that #π−1

d (x) = 1.

Therefore for all x ∈ Xd, we have #π−1
d (x) ≤ 1, i.e., the map πd is injective. We

note that the point O is mapped to ∞. From Proposition 1 and Theorem 1, we
have #Hd = 1 + #Xd. Hence, the map πd is a bijection, which completes the
proof of this lemma. �

4 Randomness of the Encoding Map hd

Here, we study how to extract random bits from the point hd(u) of Hd(Fq) where
u is chosen uniformly at random in Fq.

Let num be a bijective encoding map

num : Fq −→ {−(q − 1)/2, · · · ,−1, 0, 1, · · · , (q − 1)/2} , (14)

with num(−x) = −num(x). Moreover, let

sgn : Fq → {−1, 1}

be the sign function given by sgn(x) = −1, 1, if num(x) is a negative or non-
negative integer, respectively.

Let q = 2� + 1 and let extd be the map defined by

extd : Xd −→ N�

extd(x) = |num(s)| ,
(15)

where s = x3 + w + 1− 2d3 with w2 = x6 + 2(1− 2d3)x3 + 1, sgn(w) = 1.
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Lemma 3. For q ≡ 2 (mod 3) and for all d in Fq with d �= 0, 1, the function
extd, given by (15), is well defined and surjective.

Proof. Recall from Proposition 1 that, for x ∈ Fq, we have x ∈ Xd if and only if
χ(Δx) �= 1, where Δx is given by (5). So, we have x ∈ Xd if and only if

χ
(
−27

(
x6 + 2

(
1− 2d3

)
x3 + 1

))
�= 1.

Since χ(−3) = −1, we have x ∈ Xd if and only if

x6 + 2
(
1− 2d3

)
x3 + 1 = w2

for some element w in Fq. Therefore, x is a point of Xd if and only if

z2 − w2 = 4d3(d3 − 1),

where z = x3 + 1 − 2d3. Then, by the definition of the function extd given
by (15), for x ∈ Xd, we have

extd(x) = |num(s)| ,

where s = z + w and num(w) ≥ 0. Clearly extd(x) �= 0, since d �= 0, 1. Also, we
have extd(x) ∈ N�, so the function extd is well defined.

Next, we shall prove that extd is a surjective map. Let n ∈ N�. Then, there
exist z1, w1 in Fq such that num−1(n) = z1 + w1 and z2

1 −w2
1 = 4d3(d3 − 1). Let

s = num−1(sgn(w1)n). Then,

s = sgn(w1)num−1(n) = sgn(w1)z1 + sgn(w1)w1.

Let z = sgn(w1)z1 and w = sgn(w1)w1. So, we have s = z + w and sgn(w) = 1.
Next, let x = (z + 2d3 − 1)1/3. Then, one can easily see that extd(x) = n. �

Remark 2. We note that the function extd, for d �= 0, 1, is 2 : 1 at the points of
X2,d. We recall from Remark 1 that for d �= 0, 1, we have x ∈ X2,d if and only if
Δx = 0. From Proposition 1, we have #Xd =

(
q + χ(d4 − d)

)
/2 if d �= 0, 1. By

Lemma 3, the function extd is surjective. So, the function extd is 1 : 1 at all
points except at the points of X2,d. Therefore, the function extd is a bijection if
and only if χ(d4 − d) = −1.

Remark 3. Recall the setH2,d from (13) that isH2,d = π−1
d (X2,d). From Lemma 2,

we have H2,d = {P1, P2} if χ(d4 − d) = 1, where

P1 =
((

2d3 − 1 + z
)1/3

,
(
z − 2d3

)
x2/d

)
,

P2 =
((

2d3 − 1− z
)1/3

,
(
−z − 2d3

)
x2/d

)
,

and z2 = 4d3(d3 − 1) with sgn(z) = 1.
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Now, we extend the function extd to the image set Hd and also make it bijective
by small modification.

Let m = #Hd. Let Extd be the function defined by

Extd : Hd −→ Zm

Extd(P ) =

⎧⎪⎨⎪⎩
0, if P = O
extd(x), if P = (x, y), P �= P2

m− 1 if P = P2,

(16)

Corollary 1. For q ≡ 2 (mod 3) and for all d ∈ Fq with d �= 0, 1, the function
Extd, given by (16), is a bijection.

Proof. The proof is a direct consequence of Lemma 3 and Remarks 2, 3. �

5 An Injective Encoding Map

Here, we define an injective map from the set Zm with

m = (q + χ(d4 − d) + 2)/2

into the set of Fq-rational points of the Hessian curve Hd over Fq.
Let q = 2� + 1. We recall the definition of the functions num and sgn, see §4.

Let elt be the injective function defined by

elt : N� −→ F∗
q ,

elt(n) = num−1(n).

In other words, the function elt represent uniquely each positive integer n ≤ �
by an element of Fq.

For q ≡ 2 (mod 3), we define the map

id : N� −→ Hd(Fq) (17)

by id(n) = (x, y), where

x = duv and y = d(u + v)

with

u = −
(

1 +
2(d3 − 1)
μelt(n)

)1/3

, v = −
(

1 +
μelt(n)

2d3

)1/3

,

μ = sgn

(
elt(n)2 − 4d3(d3 − 1)

2elt(n)

)
.

(18)

Proposition 3. For q ≡ 2 (mod 3) and for all d in Fq with d �= 0, 1, the map
id, defined by (17), is well defined and injective.
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Proof. Let n ∈ N� and let u, v be given by the equation (18). We note that u, v
are well defined, since q ≡ 2 (mod 3). Let x = duv and y = d(u + v). By the
definition of the map hd, given by (7), we can see that (x, y) = hd(u) = hd(v).
So, the map id is well defined.

Next, we prove that id is an injective map. Let ι : N� −→ N�, be the composite
function defined by ι = extd ◦ πd ◦ id, where the functions extd, πd and id are
given by (15), (2), and (17), respectively. We have πd(id(n)) = x, where x = duv.
We note that x ∈ Xd, so the function ι is well defined. Then,

ι(n) = extd(πd(id(n))) = extd(x).

We have x6 + 2(1− 2d3)x3 + 1 = w2, where

w =

(
elt(n)2 − 4d3(d3 − 1)

2elt(n)

)
.

By the equation (18), we also have μ = sgn(w). So, sgn(μw) = 1. Let s =
x3 + μw + 1− 2d3. We see that s = elt(n)/μ and from equation (15), we obtain
extd(x) = n. Therefore, the function ι is the identity function. Hence, the map
id is an injective map, which completes the proof of this proposition. �

Remark 4. We recall the set H2,d from (13). From Lemma 2 and Remark 3 we
have H2,d = {P1, P2} if χ(d4 − d) = 1. Recall from Remark 3 that x(P1) =(
2d3 − 1 + z

)1/3 where z ∈ Fq with z2 = 4d3(d3 − 1) and sgn(z) = 1. For
n = |num(z)|, we have id(n) = P1. Furthermore, the point P2 is not in the image
set of the map id. Actually, this is the only point of Hd which is not in the image
set of id.

Now, we extend the definition of the map id to the set Zm, where

m = #Hd =
(
q + 2 + χ(d4 − d)

)
/2.

Let Id be the function defined by

Id : Zm −→ Hd(Fq)

Id(n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O, if n = 0,

id(n), if 1 ≤ n ≤ m− 2,

id(n), if n = m− 1, χ(d4 − d) = −1,

P2, if n = m− 1, χ(d4 − d) = 1,

(19)

where P2 =
((

2d3 − 1 + z
)1/3

,
(
z − 2d3

)
x2/d

)
with z2 = 4d3(d3 − 1) and

sgn(z) = −1.

Corollary 2. For q ≡ 2 (mod 3) and for all d ∈ Fq with d �= 0, 1, the function
Id, given by (19), is injective.

Proof. The proof is a direct consequence of Proposition 3 and Remark 4. �
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6 Concluding Remarks

In this paper, we gave an efficient hashing of the elements of Fq into the Fq-
rational points of the Hessian curve Hd. The size of the image set of this func-
tion is about q/2 if d �= 0 and q if d = 0. We remark that the case d = 0 is
corresponded to the supersingular Hessian curve.

For ordinary Hessian curves, our encoding map hd, given by (6), is a 2 : 1 map
at all points except at one or three points, depending on the value of χ(d4 − 4),
that is 1 : 1. So, in comparison with Icart’s map, [15], our map have the uniform
size 2 for the size of almost all preimages. We recall that the size of the preimages
of Icart’s map is varied between 1 and 4.

Moreover, we observed a bijection between the image set hd(Fq), denoted by
Hd, and the set Xd ∪ {∞}, given by (4). This observation leads us to extract
random bits from the points in the image set Hd by extracting random bits from
the elements of Xd. Next, we defined an injective map from the set Zm into
the set of points of Hd over Fq, where m is the size of the image set Hd. This
function can be used for several application in many cryptographic scheme and
pseudorandom generators based on elliptic curves.

We note that our map hd is not surjective. Moreover, using the general con-
struction of the well behaved hash functions into the points of elliptic curves,
studied in [7], we can obtain indifferentiable hash functions into the points of
Hessian curves with very tight regularity bounds.

In the full version of this paper, the similar results will be presented for Hessian
curve over the binary finite field F2k . In particular, we will present an injective
hashing function from the bit strings of length k − 1 into points on a Hessian
curve over F2k .

Acknowledgment. The author would like to thank anonymous reviewers for
their useful comments.
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12. Hesse, O.: Über die Elimination der Variabeln aus drei algebraischen Gleichungen
vom zweiten Grade mit zwei Variabeln. Journal Für Die Reine und Angewandte
Mathematik 10, 68–96 (1844)

13. Hisil, H., Carter, G., Dawson, E.: New formulæ for efficient elliptic curve arith-
metic. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS,
vol. 4859, pp. 138–151. Springer, Heidelberg (2007)

14. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Faster group operations on
elliptic curves. In: Brankovic, L., Susilo, W. (eds.) AISC 2009, vol. 98, pp. 7–19
(2009)

15. Icart, T.: How to hash into elliptic curves. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 303–316. Springer, Heidelberg (2009)

16. Jablon, D.P.: Strong password-only authenticated key exchange. SIGCOMM Com-
put. Commun. Rev. 26(5), 5–26 (1996)

17. Joye, M., Quisquater, J.-J.: Hessian elliptic curves and side-channel attacks. In:
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Abstract. A deterministic extractor for an elliptic curve, that converts
a uniformly random point on the curve to a random k-bit-string with a
distribution close to uniform, is an important tool in cryptography. Such
extractors can be used for example in key derivation functions, in key
exchange protocols and to design cryptographically secure pseudorandom
number generator.

In this paper, we present a simple and efficient deterministic extractor
for an elliptic curve E defined over Fqn , where q is prime and n is a
positive integer. Our extractor, denoted by Dk, for a given random point
P on E, outputs the k-first Fq-coordinates of the abscissa of the point P .
This extractor confirms the two conjectures stated by R. R. Farashahi
and R. Pellikaan in [6] and by R. R. Farashahi, A. Sidorenko and R.
Pellikaan in [7], related to the extraction of bits from coordinates of a
point of an elliptic curve.

Keywords: Elliptic curves, Randomness extraction, character sums.

1 Introduction

The problem of randomness extraction from a point of an elliptic curve has
several cryptographic applications. For example, it can be used in key deriva-
tion functions, in key exchange protocols and to design cryptographically secure
pseudorandom number generator. For instance, by the end of Diffie-Hellman key
exchange protocol [3], Alice and Bob agree on a common secret KAB ∈ G, where
G is a cryptographic cyclic group, which is indistinguishable from another ele-
ment of G under the decisional Diffie-Hellman assumption [1]. The secret key
used for encryption or authentication of data has to be indistinguishable from a
uniformly random bit-string. Hence, the common secret KAB cannot be directly
used as a session key.

A classical solution is the use of a hash function to map an element of the
group G onto a uniformly random bit-string of fixed length. However, the indis-
tinguishability cannot be proved under the decisional Diffie-Hellman assumption.
In this case, it is necessary to appeal to the Random Oracle or to other technics.
Many results in this direction can be found in [4,10]. An alternative to hash
function is to use a deterministic extractor when G is the group of points of an
elliptic curve.

A. Nitaj and D. Pointcheval (Eds.): AFRICACRYPT 2011, LNCS 6737, pp. 290–297, 2011.
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A deterministic extractor for an elliptic curve is a function that converts a
uniformly random point on the curve to a random l-bit-string with a distribution
close to uniform.

Several deterministic extractors for elliptic curves were proposed. One of them
is Gürel’s extractor [8]. This extractor, for a given point P on E(Fq2), where q
is some power of an odd prime, outputs half of the bits of the abscissa of P .
If the point P is taken uniformly at random, the bits extracted from P are
indistinguishable from a uniformly random bit-string of the same length [8]. He
proposed in the same paper an extractor for an elliptic curve defined over a
prime field but this one extracts less than the half of the bits of the abscissa of
a random point on the curve.

In 2007, R. R. Farashahi and R. Pellikaan [6] proposed a good deterministic
extractor for (hyper)elliptic curves defined over the quadratic extension of a
prime field Fq2 , q �= 2 and improved at the same time Gürel’s extractor. In their
work, they stated a conjecture on the randomness of an extractor over a curve
C (absolutely irreducible nonsingular affine) that is defined over a field Fqn (non
necessary quadratic) by ym = f(x). They left the proof of this conjecture as an
open problem.

In 2008, R. R. Farashahi, R. Pellikaan and A. Sidorenko [7] studied the binary
case by working over a quadratic extension of binary field. In fact, they present
two deterministic and efficient extractors for the binary elliptic curve E(F2N ),
where N = 2l and l is a positive integer. For a given point P on E(F2N ), they
extract the first or the second F2l-coefficient of the abscissa of the point P . In
the paper [7], they state the corresponding of the above conjecture for binary
elliptic curve defined by y2 +xy = f(x). They leave also the proof of this second
conjecture as an open problem.

In this paper, we prove that these two conjectures in [6] and [7] are true for
elliptic curves. To our knowledge, these two conjectures have not been resolved
yet.

In fact, we propose a quite simple deterministic extractor, denoted Dk for the
elliptic curve E defined over Fqn (where q is a prime integer and n is an integer
without restriction) by y2 + (a1x + a3)y = x3 + a2x

2 + a4x + a6. Dk extract the
k first Fq-coefficients of the abscissa of the point P (where the abscissa x of P
is an element of Fqn considered as a n-dimensional vector space over Fq).

We show that Dk is a good extractor for E(Fqn). Our approach is somewhat
similar to the technic developed by C. Chevalier, P. Fouque, D. Pointcheval and
S. Zimmer in [2] at Eurocrypt 2009, where they proposed a quite simple de-
terministic randomness extractor from a random Diffie-Hellman element defined
over a group of points of an elliptic curve. We use also results from [13] published
by D. Kohel and I. Shparlinski in 2000.

We organize the paper as follows:
Section 1: We recall some basic definitions related to collision probability,

statistical distance and randomness extractors.
In section 2: we review some notations, definitions and fundamentals theorems

on character sums on elliptic curves.
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In section 3: we describe our new extractor which solves the two problems in
[6] and [7] .

2 Preliminaries

2.1 Deterministic Extractor

Definition 1. (Collision probability): Let S be a finite set and X be an S-
valued random variable. The collision probability of X, denoted by Col(X), is
the probability

Col(X) =
∑
s∈S

Pr[X = s]2.

If X and X ′ are identically distributed random variables on S, the collision
probability of X is interpreted as Col(X) = Pr[X = X ′].

Definition 2. (Statistical distance): Let X and Y be S-valued random vari-
ables, where S is a finite set. The statistical distance Δ(X, Y ) between X and Y
is

Δ(X, Y ) = 1
2

∑
s∈S

|Pr[X = s]− Pr[Y = s]|.

Let US be a random variable uniformly distributed on S. Then a random variable
X on S is said to be δ-uniform if

Δ(X, US) ≤ δ.

Lemma 1. Let X be a random variable over a finite set S of size |S| and ε =
Δ(X, US) be the statistical distance between X and US, the uniformly distributed
random variable over S. Then,

Col(X) ≥ 1 + 4ε2

|S| .

Proof. The proof of this lemma is given in [2].

Definition 3. Let S and T be two finite sets. Let Ext be a function Ext :
S −→ T . We say that Ext is a deterministic (T, δ)-extractor for S if Ext(US)
is δ-uniform on T . That is

Δ(Ext(US), UT ) ≤ δ.

For more information on extractors, see [14,15].

3 Character Sums and Elliptic Curves

In this section we recall some notions and results that we will use later.
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3.1 On Character Sums

In the following, we denote by eq the character on Fq such that, for all x ∈ Fq

eq(x) = e
2iπx

q ∈ C∗.

and by Ψ =Hom(Fqn , C∗), the group of additive characters on Fqn that can be
described by the set

Ψ = {ψ, ψ(z) = eq(Tr(αz)), for α ∈ Fqn}

where Tr(x) is the trace of x ∈ Fqn to Fq (see [13]).

Lemma 2. For any interval I of Fqn , the bound

∑
ψ∈Ψ

∣∣∣∣∣∣
∑
β∈I

ψ(β)

∣∣∣∣∣∣ ≤ qn(1 + log(q))

holds.

Proof. See [13] for the proof.

3.2 Elliptic Curves

Let E be an elliptic curve [9,11] over Fqn given by the Weierstrass equation

y2 + (a1x + a3)y = x3 + a2x
2 + a4x + a6.

We denote by E(Fqn) the group of elements of E over Fqn . The cardinality of
E(Fqn) is N , where N satisfies

|N − (qn + 1)| ≤ 2
√

qn.

We denote by Fqn [E] the coordinate ring of E over Fqn and by Fqn(E) the
function field of E over Fqn . Fqn [E] = Fqn [x, y]/(h(x, y)), where h(x, y) = y2 +
(a1x + a3)y − x3 − a2x

2 − a4x− a6 is irreducible.
We denote also by Fqn(E) the field of fractions of Fqn [E]. For any point

P ∈ E(Fqn)− {∞}, we denote P = (x(P ), y(P )), where x(P ) and y(P ) are the
coordinates of the point P .

If f ∈ Fqn(E), we denote by deg(f) its degree, that is
s∑

i=1

ni deg(Pi) if
s∑

i=1

niPi

is the divisor of poles of f . We denote by Ω =Hom(E(Fqn), C∗), the group of
characters on E(Fqn), and by ω0 the trivial character, that is ω0(P ) = 1 for each
P ∈ E(Fqn).

For a subgroup G of E(Fqn), we define

S(ω, ψ, f, E(Fqn)) =
∑

P∈E(Fqn )

ω(P )ψ(f(P ))

S(ω, ψ, f, G) =
∑
P∈G

ω(P )ψ(f(P ))
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and

S(ψ, f, E(Fqn)) = S(ω0, ψ, f, E(Fqn)) =
∑

P∈E(Fqn )

ψ(f(P ))

S(ψ, f, G) = S(ω0, ψ, f, G) =
∑
P∈G

ψ(f(P ))

where ω ∈ Ω, ψ ∈ Ψ and f ∈ Fqn(E). In particular, we will be interested in the
sum with f = x.

In [13], D. R. Kohel and I. E. Shparlinski presented the following theorem and
corollary which give a bound for S(ω, ψ, f, E(Fqn)).

Theorem 1. (see [13]) Let E be an elliptic curve over Fqn and f ∈ Fqn(E),
ω ∈ Ω and ψ ∈ Ψ be non trivial characters. Then

S(ω, ψ, f, E(Fqn)) ≤ 2 deg(f)
√

qn

and, in particular, if f = x, deg(f) = 2 and

S(ψ, f, E(Fqn)) ≤ 4
√

qn.

Corollary 1. Let E be an elliptic curve over Fqn and G a subgroup of E(Fqn),
ω ∈ Ω and ψ ∈ Ψ be non trivial characters. Then

S(ω, ψ, f, G) ≤ 2 deg(f)
√

qn

and, in particular, if f = x, deg(f) = 2 and

S(ψ, f, G) ≤ 4
√

qn.

In the following section, we use the bound of the sums S(ω, ψ, f, E(Fqn)) to show
that Dk is a good randomness extractor for E(Fqn).

4 Randomness Extraction in E(Fqn)

Consider the finite field Fqn , where q is prime and n is a positive integer. Then
Fqn is a n-dimensional vector space over Fq. Let {α1, α2, . . . , αn} be a basis of
Fqn over Fq. That means, every element x of Fqn can be represented in the form
x = x1α1 + x2α2 + . . . + xnαn, where xi ∈ Fqn . Let E be the elliptic curve over
Fqn defined by the Weierstrass equation

y2 + (a1x + a3)y = x3 + a2x
2 + a4x + a6.

The extractor Dk, where k is a positive integer less than n, for a given point P
on E(Fqn), outputs the k first Fq-coordinates of the abscissa of the point P .

Definition 4. Let G be a subgroup of E(Fqn) and k a positive integer less than
n. The extractor Dk is defined as a function

Dk : G −→ Fk
q

P = (x, y) �−→ (x1, x2, . . . , xk)

where x ∈ Fqn is represented as x = x1α1 + x2α2 + . . . + xnαn, and xi ∈ Fqn .
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Theorem 2. Let E be an elliptic curve defined over Fqn and G a subgroup of
E(Fqn). Then

Δ(Dk(UG), UFk
q
) ≤ 2

√
qn+k

√
1 + log(q)
|G|

where UG is uniformly distributed in G and UFk
q

is the uniform distribution in
Fk

q .

Proof. Let f = x ∈ Fqn(E) and consider the sets

M = {(xk+1αk+1 + xk+2αk+2 + . . . + xnαn), xi ∈ Fq} ⊂ Fqn

and

A = {(P, Q) ∈ G2, ∃m ∈M : f(P )− f(Q) = m}.
Since

1
qn

∑
ψ∈Ψ

ψ(f(P )− f(Q)−m) = 1(P,Q,m)

where 1(P,Q,m) is the characteristic function which is equal to 1 if f(P )−f(Q) =
m and 0 otherwise, we have

|A| = 1
qn

∑
P∈G

∑
Q∈G

∑
m∈M

∑
ψ∈Ψ

ψ(f(P )− f(Q)−m)

and

Col(Dk(UG)) =
1
|G|2 |A|

Col(Dk(UG)) =
1

|G|2 × qn

∑
P∈G

∑
Q∈G

∑
m∈M

∑
ψ∈Ψ

ψ(f(P ) − f(Q) − m)

=
1

|G|2qn
qn−k|G|2 +

1

|G|2qn

∑
P∈G

∑
Q∈G

∑
m∈M

∑
ψ �=ψ0

ψ(f(P ) − f(Q) − m)

=
1

qk
+

1

|G|2qn

∑
ψ �=ψ0

(∑
P∈G

ψ(f(P ))

)(∑
Q∈G

ψ(−f(Q))

)(∑
m∈M

ψ(−m)

)

=
1

qk
+

1

|G|2qn

∑
ψ �=ψ0

S(ψ, f, G)S(ψ,−f, G)

( ∑
m∈M

ψ(−m)

)

≤ 1

qk
+

R2

|G|2qn

∑
ψ �=ψ0

∣∣∣∣∣ ∑
m∈M

ψ(−m)

∣∣∣∣∣
≤ 1

qk
+

R2qn(1 + log(q))

|G|2qn

≤ 1

qk
+

R2(1 + log(q))

|G|2
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where R = maxψ(|S(ψ, f, G)|)
By Lemma 1, we have

1 + 4Δ2(Dk(UG), UFk
q
)

qk
≤ Col(Dk(UG)) ≤ 1

qk
+

R2(1 + log(q))
|G|2

Since R ≤ 4
√

qn by Corollary 1, we have

Δ(Dk(UG), UFk
q
) ≤ R

√
qk
√

1 + log(q)
2|G| ≤ 2

√
qn+k

√
1 + log(q)
|G|

�

The following theorem confirms the conjecture of Farashahi et al. in [6,7] in the
case of elliptic curves.

Theorem 3. Let E be an elliptic curve defined over Fqn , then

Δ(Dk(UE), UFk
q
) ≤ c√

qn−k

where UE is the uniform distribution in E(Fqn) and c is a constant depending
on n.

Proof. Using the fact that ||E(Fqn)| − (qn + 1)| ≤ 2
√

qn, we have

Δ(Dk(UE), UFk
q
) ≤ 2

√
qn+k

√
1 + log(q)

|E(Fqn)| ≤ 2
√

qn+k
√

1 + log(q)
qn − 2

√
qn + 1

Put c = 2
√

1+log(q)

1−2q−n/2+q−n to obtain the desired result.
�

Remark 1. Since for cryptographic use, qn is very large then we have c ≈
2
√

1 + log(q). For example, for any n we can assume that |q| ≤ 1024, then
c ≤ 65

For the binary case, as stated by Farashahi et al. in [7], we have the following
theorem.

Theorem 4. If q = 2 and n ≥ 11 then

Δ(Dk(UE), UFk
2
) ≤ 3√

2n−k

Proof. Follows from the above theorem and remarks.

This theorem confirms the second conjecture of Farashahi et al. in [7].

5 Conclusion

We constructed a simple and efficient deterministic extractor Dk, where k is a
positive integer, for the elliptic curves defined over Fqn . The extractor Dk, for a
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given point P on E outputs the k-first Fq-coordinate of the abscissa of the point
P . The main part of the paper is the analysis of the extractor which shows that
Dk is a good randomness extractor. This extractor can be used in any elliptic
curve protocol.

At the same time, we resolve the two different conjectures of Farashahi and
al. stated in [6] and [7].

As further work, our aim is to generalize this extractor to hyperelliptic [12]
and Edwards curves [5] and also on curve C (absolutely irreducible nonsingular
affine) that is defined over a field Fqn by ym = f(x) as stated by Farashahi et
al. in [7] .
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Abstract. Fault attack is one of the most efficient form of side channel
attack against implementations of cryptographic algorithms. This kind
of attacks have been shown to be extremely successful against stream
ciphers. The eStream cipher Grain-128 has already been shown to be
weak against fault attack, when faults are injected in the LFSR. In this
paper, we show that Grain-128 can also be attacked by inducing faults in
the NFSR. The attack requires about 56 fault injections for NFSR and
a computational complexity of about 221.

Keywords: Stream Cipher, Grain-128, Side Channel Attack, Fault At-
tack, NFSR Fault Attack.

1 Introduction

The eStream [1] project was an effort to study and standardize stream ciphers.
The final eStream portfolio lists three hardware based stream ciphers and four
software based stream ciphers. Those ciphers are vulnerable against a number
of side channel attacks ([9], [10], [11], [2]).

Fault attacks are one of the most efficient side channel attacks known till
date. In this kind of attack, faults are injected during cipher operations. The
attacker then analyzes the fault free and faulty cipher-texts or key-streams to
deduce partial or full value of the secret key. The literature shows that both the
block ciphers ([5], [6]) and stream ciphers ([9], [10], [11]) are vulnerable against
fault attack. A number of recent works ([9], [10], [11]) have been carried out
successfully on fault attacks against stream ciphers. Recent research shows that
stream ciphers are extremely susceptible to fault attacks. Although, injecting
faults in a cipher is a challenging task, most of the related research on stream
ciphers work by inducing faults at only one bit position of the cipher. Methods
like clock glitch, laser shots ([12], [13]) have been shown to be a practical way of
inducing faults in a crypto-system.

Grain-128 [8] proposed by Martin Hell et al. is one of the three hardware
based ciphers enlisted in the eStream portfolio. According to the final report on
eStream project [3], Grain-128 is only the second best stream cipher in hard-
ware domain. Till date only few cryptanalysis are reported against Grain-128. A
cryptanalysis based on dynamic cube attack [7] and a fault based attack [4] are
the only known weaknesses of Grain-128. The fault based attack [4] works on
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inducing faults in the LFSR register of a Grain-128 implementation. It exploits
the fault to obtain the full internal state of the cipher and consequently obtains
the full secret key due to the reversibility of Grain-128 round operations. The
work presented in [4] is a strong attack which employed a realistic fault model.
It [4] needs an average of 24 consecutive faults and consumes couple of minutes
of off-line computation to recover the secret key of the cipher. In [4], the authors
also present a countermeasure which considers only the LFSR as a fault target.
However, in this work we show that the NFSR of Grain-128 is also not protected
against fault attack. Unlike [4], we inject faults in the NFSR and show that se-
cret key of the cipher can be recovered. Complexity of the attack is comparable
to that of [4].

In this work, we assume that faults can be injected into Grain-128 through
some conventional techniques. Faults are induced at the NFSR of the cipher.
We analyze Grain-128 under this fault injection. Once we have determined the
fault location, internal state of the cipher at a given cycle of operation can be
found out. It is seen that about 56 single bit faults can reveal the full internal
NFSR state of the cipher and about 128 faults can reveal full LFSR state. Once,
the full internal state of Grain-128 is known, due to reversibility of Grain-128
operation, we can obtain the full secret key of the cipher. The whole process
requires an online computational complexity of at most 221.

This paper is organized as follows. Following this introduction, section 2 briefly
discusses the specification of Grain-128. We present the fault model of our anal-
ysis in section 3. The proposed fault attack is presented in section 4. Section 5
estimates the overall complexity of the attack. We mention limitations of our
attack and its possible extensions in that section, as well. Finally, section 6
concludes the paper.

2 Specification of the Grain-128 Stream Cipher

Grain-128 is a hardware based stream cipher enlisted in the final list of the
eStream [1] project. We briefly describe the specification of this stream cipher
here. A detailed description may be found in [8].

Grain-128 stream cipher consists of three main building blocks, namely, an
NFSR, an LFSR and a nonlinear filter function, h(x)(Fig. 1). The contents of
the NFSR are denoted by bi, bi+1, . . . , bi+127 and the contents of the LFSR are
denoted by, si, si+1, . . . , si+127. The update function of the LFSR is given by,

si+128 = si + si+7 + si+38 + si+70 + si+81 + si+96

The NFSR is updated by,

bi+128 = si + bi + bi+26 + bi+56 + bi+91 + bi+96 + bi+3bi+67 + bi+11bi+13

+bi+17bi+18 + bi+27bi+59 + bi+40bi+48 + bi+61bi+65 + bi+68bi+84
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Fig. 1. Operation of Grain-128

Fig. 2. Initialization of Grain-128

The NFSR and the LFSR together represent the internal state of the cipher.
The nonlinear filter function h is defined with 2 input bits from the NFSR and
7 input bits from the LFSR and is described by,

h = bi+12si+8 + si+13si+20 + bi+95si+42 + si+60si+79 + bi+12bi+95si+95.

The output bit zi is given as,

zi = bi+2 + bi+15 + bi+36 + bi+45 + bi+64 + bi+73 + bi+89 + h + si+93

An initialization phase is carried out before the cipher generates keystream bits.
The 128 bit key, k = (k0, k2, . . . , k127) and the 96 bit initialization vector IV =
(IV0, IV2, . . . , IV95) are loaded in the NFSR and the LFSR respectively as, bi =
ki, 0 ≤ i ≤ 127 and si = IVi, 0 ≤ i ≤ 95, rest of the LFSR bits, (s96, s98, . . . , s127)
are loaded with 1. During initialization, the cipher is run for 256 rounds without
producing any keystream, and the output bit, zi is fed back and XOR-ed with
both the LFSR and the NFSR (Fig. 2).
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In the following sections, we propose a fault attack on Grain-128 stream ci-
pher. The proposed attack induces fault in the NFSR (b-bits) of the stream
cipher and obtains equations of the state bits in both NFSR and LFSR using
output differential.

3 Fault Analysis Model of Grain-128

In this section, we describe the fault analysis model of Grain-128 assumed in
our attack. The NFSR i.e. nonlinearity of Grain-128 provides the security to the
cipher. As already mentioned, an earlier work [4] has demonstrated that inducing
faults in the LFSR of Grain-128 can break the cipher. In this paper, we show
that even inducing faults in the NFSR can reveal both the NFSR and the LFSR
bits at an instance of operation. As a result, the full internal state of Grain-128
can be found out.

3.1 Assumptions of the Fault Model

Our fault model creates faults in the NFSR. Single bit faults are injected in the
NFSR and the difference of the faulty and fault-free keystreams are exploited to
analyze the system. We assume the following controllability in order to perform
this attack.

1. The attacker is able to induce faults at random positions of the NFSR of
the Grain-128 implementation (hardware or software). Hence, exact fault
position is not known beforehand.

2. The fault affects exactly one bit of the NFSR at any cycle of operation.
So, the fault amounts to flipping exactly one bit of the NFSR of Grain-128
implementation.

3. A fault to an NFSR bit can be reproduced at any cycle of operation, once,
it is created.

4. The attacker is able to determine and control the cycles of operation of the
implementation, i.e., the timing of the implementation is under control of
the attacker.

5. The attacker can reset the implementation to its original state.
6. The attacker can run the implementation with different IV, without changing

the key. This is an reasonable assumption as IV bits are public.

Flipping exactly one bit of the NFSR is a strong assumption, but can be achieved
practically by triggering laser shots through the I/O signal for hardware imple-
mentations ([12], [13]).

4 Proposed Fault Analysis of Grain-128

The fault attack on Grain-128 will induce faults at random locations of the im-
plementation and exploit the differences in normal (znormal)and faulty (zfaulty)
keystreams to obtain full internal state of the cipher (i.e. b0, b1, . . . , b127, s0, s1,
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. . . , s127) at a target cycle T of operation after the initialization phase. The al-
gorithm we present next, will obtain b0, b1, . . . , b127, s0, s1, . . . , s127, which is the
internal state of Grain-128 after cycle T of operation following initialization. We
will refer to this point as the base point. Further, we denote the output difference
of faulty and fault-free keystream at iteration t after the base point by δt, i.e.,
zt

normal + zt
faulty = δt, where, + refers to modulo 2 addition.

Our attack will follow the following five steps.

1. Determining fault position in the NFSR.
2. Pre-computation of fault traces.
3. Determining NFSR bits, b0, b1, . . . , b127.
4. Determining LFSR bits, s0, s1, . . . , s127.
5. Invert states from cycle T to obtain the key.

In the following five subsections we describe the methodology carried out in the
above steps.

4.1 Determining the Fault Location in the NFSR

Once, a random single bit fault is induced in the NFSR of the Grain-128 imple-
mentation, the first objective is to determine the location of this fault.

Algorithm 1. FormδPattern(f)
N = 100000;
for i = 1 to N do

set random key and IV to Grain-128;
run fault free for T cycles after initialization;
induce fault at NFSR[f ];
run fault free for 128 cycles;
run faulty for 128 cycles;
determine δt, t = 0, 1, 2, . . . , 127;

end for
σf = {};
for t = 0 to 128 do

if δt is 1 ∀ N then
σf = σf ∪ {t};

end if
end for

Basic Idea: The basic idea for obtaining the location of the fault is the
following observation. The output z is given by,

zi = bi+2 + bi+15 + bi+36 + bi+45 + bi+64 + bi+73 + bi+89

+bi+12si+8 + si+13si+20 + bi+95si+42

+si+60si+79 + bi+12bi+95si+95 + si+93.

Also, it can be noted that after the initialization phase is over, a fault induced
in the NFSR can not propagate to the LFSR. So, a fault induced in the NFSR,
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according to the output equation given above will produce different δt depending
on the fault location at cycle T for different t. For example, a fault at b89 must
have δt = 1 for t = 0, 16, 25 etc., if we try over a large number of key and IV .
This is due to the fact that, over a large random number of key and/or IV
the nonlinear b-bits will not show distinct δt, but the linear terms will always
produce distinct δt. We note that, δ(zi) = 1 for linear terms, and δ(zi) = bk or
higher degree monomial for nonlinear terms, after fault is moved to an NFSR
bit, corresponding to linear or nonlinear b-bits. For the constant term we always
get 1 in δt, but we get different δt for other cases, when fault is moved to
nonlinear b-bits, for different key and/or IV. Now due to the positioning of the
linear terms in zi, we expect to obtain different patterns δt for different fault
locations. Because of this reason, we can identify exact fault positions in the
NFSR.

The δt = 1, (t = 0, 1, . . . , 128) pattern for faults at different NFSR positions
is shown in tables 3 and 4 in the appendix.

Algorithm 1 generates a pattern of δt for fault at location f , which generates
δt for a large number of random key and IV . Here, σf stores the set of cycles
for which δt = 1 for single bit fault at location f . It is seen after execution of
algorithm 1, that all fault locations give unique σf . Therefore, fault locations
can be obtained simply by running the faulty and fault-free implementations for
128 more cycles from the instance of fault injection and matching with the above
pattern table σ.

Algorithm 2 presents the procedure for determining the fault location. In
algorithm 2 we vary IV randomly sufficient number of times till we pin-point the
exact fault location. Throughout this process, key is kept fixed. In this algorithm,
size(FaultLocation) refers to the size of the FaultLocation set, while NumIV s
is the number of random IVs tried for a fixed key to determine exact fault
location (identified by, size(FaultLocation) == 1). Until unique fault location
is identified we increase number of random IVs to try by inc, which is taken to
be 10, here.

4.2 Pre-computation of Fault Traces

In this pre-computation phase, we generate a table that stores the corrupted
b-bits after t cycles of operations (t = 0, 1, 2, . . . , 256) following fault induction
at location f .

Basic Idea: The basic idea is based on the observation that the b-bit posi-
tions, 0, 3, 11, 13, 17, 18, 26, 27,40, 48, 56, 59, 61, 65, 67, 68, 84, 91, 96 determine the
feedback bit.

bi+128 = si + bi + bi+26 + bi+56 + bi+91 + bi+96 + bi+3bi+67 + bi+11bi+13

+bi+17bi+18 + bi+27bi+59 + bi+40bi+48 + bi+61bi+65 + bi+68bi+84

So, a fault at those positions may produce a fault at the feedback bit b127

during the following cycle. Also, currently corrupted b-bit positions will shift in
the following cycle. All other b-bits will remain uncorrupted. s0 will not have
any effect on feedback as no fault can propagate to the LFSR.
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Algorithm 2. DetermineFaultlocation()
FaultLocation ← {};
NumIV s ← 0;
inc ← 10;
while size(FaultLocation) != 1 do

NumIV s ← NumIV s + inc;
for i = 0 to NumIV s do

initialize Grain with random IV, with that fixed key;
form δt, t = 0, 1, 2, . . . , 127;

end for
for i = 0 to 127 do

FaultLocation ← {}
if all positions of δt = 1 ∀ j = 0, 1, 2, . . . , NumIV s is in σi then

FaultLocation ← FaultLocation ∪ {i}
end if

end for
end while
return FaultLocation

Algorithm 3. FaultTrace(f)
FeedbackPositions ← {0, 3, 11, 13, 17, 18, 26, 27, 40, 48, 56, 59, 61, 65, 67, 68, 84,
91, 96};
FaultTrace[0] ← {f};
for i = 0 to 127 do

FaultT race[i] ← {};
for element ∈ FaultT race[i − 1] do

FaultT race[i] ← FaultT race[i] ∪ {element - 1}
if element ∈ FeedbackPositions then

FaultT race[i] ← FaultT race[i] ∪ {127}
end if

end for
end for

Algorithm 3, stores fault traces after t cycles of fault induction at location f .
After the execution of algorithm 3, we know that a fault at location f after its
injection, may induce faults to locations FaultT races(f)[t] of the NFSR after t
cycles of operation. Therefore, all other locations of the NFSR will be fault-free
after t cycles of operation. Algorithm 3 is run for all possible fault locations, i.e.,
0 ≤ i ≤ 127. We construct a table of fault traces for all possible f , 0 ≤ f ≤ 127
and t, 0 ≤ t ≤ 256 using this algorithm.

4.3 Determining the NFSR Bits

At this phase, we use the difference of fault-free and faulty output to obtain
the NFSR bit values. We use both the feedback and output bit equations for
this purpose. It can be seen that, the output bit equation, z has monomials of
degree higher than 1 having b-bits that also always contain s-bits (b12s8, b95s42
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and b12b95s95). So, it is not possible to single out equations involving b-bits only.
Therefore, we will use this nonlinear b-bit monomials of z to obtain values of s
register, once all the b-bit values are known. At this phase, instead, we use the
linear b terms of z in connection with the feedback equation b128 to ascertain
values of b-bits. In this paper, we concentrate on linear equations containing
single b-bit only.

Basic Idea: The feedback equation b128 has 7 degree-2 monomials containing
b-bits only (b3b67, b11b13, b17b18, b27b59, b40b48, b61b65, b68b84).

bi+128 = si + bi + bi+26 + bi+56 + bi+91 + bi+96 + bi+3bi+67 + bi+11bi+13

+bi+17bi+18 + bi+27bi+59 + bi+40bi+48 + bi+61bi+65 + bi+68bi+84

The idea is to move the induced fault to any of these 14 locations, i.e., we move
fault to bm and/or bn if bmbn is a degree 2 monomial in the feedback function.
So, if fault has not propagated to b128 through any other feedback taps, at T
+ movement cycle, the feedback difference of normal and this faulty executions
will have a difference of the other bit, i.e. if fault moves to bm, the difference will
be bn and if fault moves to bn, the difference will be bm. Similarly, if fault into
the feedback bit comes through other linear or nonlinear taps of the feedback
function as well, we will have a feedback difference containing multiple b-bits.
Again this difference will be linear as the algebraic degree of the feedback function
is, 2. Since, the least index of degree-2 b terms in the feedback function is 3, faults
induced at positions ≥ 3 only can yield equations.

Next, we use the linear b terms of z to obtain equations involving linear
b terms. It will be the same as the feedback difference obtained earlier. This
is done by moving the feedback fault to one of the single b-bit output taps,
2, 15, 36, 45, 64, 73, 89. Again, if at this point the fault has not corrupted the
output bit in no other way than at that particular output tap, we get the value
of bm or bn from the δt at that point in case of linear equations of single b-bit,
i.e., we get value of a single b-bit. In case of linear equations containing multiple
b-bits, we have one linear equation, but, to solve for all those b-bits we need more
linear equations.

Therefore, we consult the FaultT races table twice, once at the time of feed-
back through degree-2 monomial and the other at the time of output through
linear b terms, to construct LHS of equations. The expression obtained earlier
will equal the difference of output bits (δt) after the movement to the linear b
term. Since, the b value we obtained is actually moved from another location,
the corresponding value will be the value of a b-bit at a later location. So, if we
need to move the fault c cycles from the original location to effect bm of b128,
we obtained bn+c at the base point. This process can be carried out for each 2
degree monomials of b128 and each 1 degree monomial of z.

Algorithm 4 presents the method in pseudo-code for obtaining b values from
fault at f .

Algorithm 5 constructs LHS of feedback linear equations, when faults are
moved from f , through movement shifts, to feedbacklocation b bit. The idea
is that, if during movement steps, fault has not corrupted any other feedback
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Algorithm 4. DetermineNFSRBits(f)
feedBack b[] ← {0, 26, 56, 91, 96, 3, 11, 13, 17, 18, 27, 40, 48, 59, 61, 65, 67, 68, 84}
Double feedBack b[] ← {3, 11, 13, 17, 18, 27, 40, 48, 59, 61, 65, 67, 68, 84}
Double feedBack b corr[] ← {67, 13, 11, 18, 17, 59, 48, 40, 27, 65, 61, 3, 84, 68}
Single output b[] ← {2, 15, 36, 45, 64, 73, 89}
movement ← 0
for i = 0 to length(Double feedBack b) do

if f ≥ Double feedBack b[i] then
movement ← (f − Double feedBack b[i])
eqnLHS ← ConstructFeedbackDiffEqn(f, Double feedBack b[i] − f,
Double feedBack b[i])
for j = 0 to length(Single output b) do

movement ← movement + 127 − Single output b[j];
if OnlyCorrupt(feedBack b, movement, Single output b[j], f)
&& (Double feedBack b corr[i] + movement ≤ 127) then

obtained eqnLHS = δmovement

end if
end for

end if
end for

Algorithm 5. ConstructFeedbackDiffEqn(f, movement, feedbacklocation)
linearTerms = {};
for element ∈ FaultT race(f)[movement] do

for i = 0 to length(feedBack b) do
if element == feedBack b[i] then

if element == Double feedBack b[k] for some k then
linearTerms = linearTerms ∪ {Double feedBack b corr[k]};

else
linearTerms = linearTerms ∪ {1};

end if
end if

end for
end for
return XOR of linearTerms;

taps than the feedbacklocation tap, we get LHS as bm or bn explained ear-
lier, otherwise we need to accumulate all corresponding linear or constant terms
corresponding to those taps.

The function, OnlyCorrupt(array, movement, location, f) returns true if only
location is corrupt after movement cycles of operation, among the elements of
array for fault at f at base point. Algorithm 6 describes the procedure.

After the experiment is carried out, we could obtain 0 to 5 b-bits from single
bit fault involving single bit linear equations. The base point fault locations and
number of bits obtained from that location in single b-bit is tabulated in table
1. 125 faults at the identifiable positions can give linear equations. The single
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bit equations that we can obtain are, b3, b4, . . . , b127. Other 3 bits, b0, b1, b2 can
not be obtained. An average of 0×3+1×8+2×23+3×31+4×26+5×37

128 = 3.40 b-bits can
be obtained from a single fault at the NFSR from equations involving single b-
bit. It is seen experimentally that on an average about 56 faults are required to
determine state bits, b0, b1, . . . , b127 of the NFSR, which may be explained by the
pattern of obtained b-bits from faults as shown in 1. We can also reduce number
of induced faults by inducing faults at consecutive cycles. So, if for example,
from the fault at b67 at base point, we can obtain value of bit b3. A fault at the
previous cycle at b67 will give value of b3 at that cycle, which is the value of b2

at base point. Continuing this way, we can gather values of b-bits, b0 to b127, at
the base point.

Algorithm 6. OnlyCorrupt(array, movement, location, f)
for element ∈ FaultT race(f)[movement] do

for i = 0 to length(array) do
if element != location && element == array[i] then

return false;
end if

end for
end for
return true;

4.4 Determining the LFSR Bits

Once, the NFSR bits are known, the next objective is to obtain the LFSR (s)
bits.

Basic Idea: The three monomials of degree more than 1 in z involving both
b and s-bits are, b12s8, b95s42 and b12b95s95.

zi = bi+2 + bi+15 + bi+36 + bi+45 + bi+64 + bi+73 + bi+89

+bi+12si+8 + si+13si+20 + bi+95si+42

+si+60si+79 + bi+12bi+95si+95 + si+93.

So, if the induced fault propagates to any of the locations b12 or b95 without
corrupting other b-bits of zi, we obtain an equation involving s and b-bits. This
will be one equation of the form, sp + sqbr = δ. So, if this br bit is 0, we
immediately have the value of the other s-bit, sp. If however, br is 1, we have a
linear equation in s-bits. Again, the list of corrupt b-bits can be seen by consulting
FaultT races table.

Algorithm 7 describes the determination algorithm for LFSR bits. The func-
tion OnlyContains(outputPos, movement, Output b double s[i], f) checks
whether due to fault at f and after movement cycles following the induction
of fault at f , only fault passing through feedback is, Output b double s[i]. This
function is similar to the OnlyCorrupt function and is not listed here.

66 faults (at locations 12, 13, . . . , 44, 95, 96, . . . , 127) in the NFSR gives equa-
tions following above algorithm. Of these 66 equations, 33 on an average will
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Table 1. Fault location vs. NFSR Bits Obtained

Fault NFSR Bits Obtained Fault NFSR Bits Obtained Fault NFSR Bits Obtained

Location Location Location

b0 b43 b41, b44, b45, b51, b75 b86 b54, b70, b82, b102

b1 b44 b42, b45, b46, b52, b76 b87 b55, b71, b83, b103

b2 b45 b43, b46, b47, b53, b77 b88 b56, b72, b84, b104

b3 b67 b46 b44, b47, b48, b54, b78 b89 b57, b73, b85, b105

b4 b68 b47 b45, b48, b49, b55, b79 b90 b58, b74, b86, b106

b5 b69 b48 b40, b46, b49, b56, b80 b91 b75, b87, b107

b6 b70 b49 b41, b47, b50, b57, b81 b92 b76, b88, b108

b7 b71 b50 b42, b48, b51, b58, b82 b93 b77, b89, b109

b8 b72 b51 b43, b49, b52, b59, b83 b94 b78, b90, b110

b9 b73 b52 b44, b50, b53, b60, b84 b95 b79, b91, b111

b10 b74 b53 b45, b51, b54, b61, b85 b96 b80, b92, b112

b11 b13, b75 b54 b46, b52, b55, b62, b86 b97 b81, b93, b113

b12 b14, b76 b55 b47, b53, b56, b63, b87 b98 b82, b94, b114

b13 b11, b15, b77 b56 b48, b88 b99 b83, b95, b115

b14 b12, b16, b78 b57 b49, b89 b100 b84, b96, b116

b15 b13, b17, b79 b58 b50, b90 b101 b85, b97, b117

b16 b14, b18, b80 b59 b27, b51 b102 b86, b98, b118

b17 b15, b18, b19, b81 b60 b28, b52 b103 b87, b99, b119

b18 b16, b17, b19, b20, b82 b61 b29, b53, b65 b104 b88, b100, b120

b19 b17, b18, b20, b21, b83 b62 b30, b54, b66 b105 b89, b101, b121

b20 b18, b19, b21, b22, b84 b63 b31, b55, b67 b106 b90, b102, b122

b21 b19, b20, b22, b23, b85 b64 b32, b56, b68 b107 b91, b103, b123

b22 b20, b21, b23, b24, b86 b65 b33, b61, b69 b108 b92, b104, b124

b23 b21, b22, b24, b25, b87 b66 b34, b62, b70 b109 b93, b105, b125

b24 b22, b23, b25, b26, b88 b67 b3, b35, b63, b71 b110 b94, b106, b126

b25 b23, b24, b26, b27, b89 b68 b4, b36, b64, b84 b111 b95, b107, b127

b26 b24, b27, b28, b90 b69 b5, b37, b65, b85 b112 b96, b108

b27 b25, b28, b29, b59, b91 b70 b6, b38, b66, b86 b113 b97, b109

b28 b26, b29, b30, b60, b92 b71 b7, b39, b67, b87 b114 b98, b110

b29 b27, b30, b31, b61, b93 b72 b8, b40, b68, b88 b115 b99, b111

b30 b28, b31, b32, b62, b94 b73 b9, b41, b69, b89 b116 b100, b112

b31 b29, b32, b33, b63, b95 b74 b10, b42, b70, b90 b117 b101, b113

b32 b30, b33, b34, b64, b96 b75 b11, b43, b71, b91 b118 b102, b114

b33 b31, b34, b35, b65, b97 b76 b12, b44, b72, b92 b119 b103, b115

b34 b32, b35, b36, b66, b98 b77 b13, b45, b73, b93 b120 b104, b116

b35 b33, b36, b37, b67, b99 b78 b14, b46, b74, b94 b121 b105, b117

b36 b34, b37, b38, b68, b100 b79 b15, b47, b75, b95 b122 b106, b118

b37 b35, b38, b39, b69, b101 b80 b16, b48, b76, b96 b123 b107, b119

b38 b36, b39, b40, b70, b102 b81 b17, b49, b77, b97 b124 b108, b120

b39 b37, b40, b41, b71, b103 b82 b18, b50, b78, b98 b125 b109, b121

b40 b38, b41, b42, b48, b72 b83 b19, b51, b79, b99 b126 b110, b122

b41 b39, b42, b43, b49, b73 b84 b52, b68, b80, b100 b127 b111, b123

b42 b40, b43, b44, b50, b74 b85 b53, b69, b81, b101
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Algorithm 7. DetermineLFSRBits(f)
Output b double s[] = {12, 95};
Output s double b[] = {8, 42};
outputPos[] = {12, 95, 2, 15, 36, 45, 64, 73, 89};
movement ← 0;
for i = 0 to 1 do

movement ← f − Output b double s[i];
if OnlyContains(outputPos, movement,Output b double s[i], f) &&
(Output s double b[i] + movement <= 127) &&
(Output b double s[1 − i] + movement) <= 127 &&
(95 + movement) <= 127 then

obtained equation,
sOutput s double b[i]+movement + bOutput b double s[1−i]+movement.s95+movement

= δmovement

end if
end for

involve a single s-bit and can be solved immediately. Other linear equations are
to be stored till we get sufficient number of independent linear equations. The
equations obtained from faults in the NFSR are tabulated in table 2. Since, the
LFSR bits are updated according to a linear feedback relation,

si+128 = si + si+7 + si+38 + si+70 + si+81 + si+96

all the s-bits at any cycle t after/before the base point can be written as linear
combinations of the base point LFSR bits s0, s1, . . . , s127. So, essentially we need
128 linearly independent equations from faults at different cycles after/before the
base point. Hence, we obtain equations involving LFSR bits using algorithm 7
after inducing faults at later/earlier cycles of operation. This process is continued
till we obtain 128 linearly independent equations involving 128 s-bits at the base
point. Hence, on an average, (128/33) ∗ 66 = 256 faults need to be injected to
obtain all LFSR bits, from single variable linear equations and 128 faults need to
be injected in NFSR to obtain all s-bits at base point. 128 linearly independent
equations can be solved through Gaussian elimination in time 1283 = O(221).
Note that, most of the equations will involve only one or two s variables at base
point, si as only s127 is updated by a linear feedback, while other bits get simple
shifts from previous cycles.

4.5 Inverting Internal States

The earlier phases of the attack successfully obtain the value of full internal
state of Grain-128 at base point. So, we essentially have the full internal state
of Grain-128 after cycle, T , (sT

0 , sT
1 , . . . , sT

127, b
T
0 , bT

1 , . . . , bT
127). We describe below

the procedure of obtaining key from this known full internal state. This technique
is similar to that of [4].
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Table 2. Fault location vs. LFSR, NFSR Equations Obtained

Fault Location Equations Fault Location Equations

b12 s8 + b95.s95 b95 s42 + b12.s95

b13 s9 + b96.s96 b96 s43 + b13.s96

b14 s10 + b97.s97 b97 s44 + b14.s97

b15 s11 + b98.s98 b98 s45 + b15.s98

b16 s12 + b99.s99 b99 s46 + b16.s99

b17 s13 + b100.s100 b100 s47 + b17.s100

b18 s14 + b101.s101 b101 s48 + b18.s101

b19 s15 + b102.s102 b102 s49 + b19.s102

b20 s16 + b103.s103 b103 s50 + b20.s103

b21 s17 + b104.s104 b104 s51 + b21.s104

b22 s18 + b105.s105 b105 s52 + b22.s105

b23 s19 + b106.s106 b106 s53 + b23.s106

b24 s20 + b107.s107 b107 s54 + b24.s107

b25 s21 + b108.s108 b108 s55 + b25.s108

b26 s22 + b109.s109 b109 s56 + b26.s109

b27 s23 + b110.s110 b110 s57 + b27.s110

b28 s24 + b111.s111 b111 s58 + b28.s111

b29 s25 + b112.s112 b112 s59 + b29.s112

b30 s26 + b113.s113 b113 s60 + b30.s113

b31 s27 + b114.s114 b114 s61 + b31.s114

b32 s28 + b115.s115 b115 s62 + b32.s115

b33 s29 + b116.s116 b116 s63 + b33.s116

b34 s30 + b117.s117 b117 s64 + b34.s117

b35 s31 + b118.s118 b118 s65 + b35.s118

b36 s32 + b119.s119 b119 s66 + b36.s119

b37 s33 + b120.s120 b120 s67 + b37.s120

b38 s34 + b121.s121 b121 s68 + b38.s121

b39 s35 + b122.s122 b122 s69 + b39.s122

b40 s36 + b123.s123 b123 s70 + b40.s123

b41 s37 + b124.s124 b124 s71 + b41.s124

b42 s38 + b125.s125 b125 s72 + b42.s125

b43 s39 + b126.s126 b126 s73 + b43.s126

b44 s40 + b127.s127 b127 s74 + b44.s127

Step 1: When, t > 256, let, (st+1
0 , st+1

1 , . . . , st+1
127 , bt+1

0 , bt+1
1 , . . . , bt+1

127 ) be the full
internal state of Grain-128 after (t + 1) cycles of operation. Then, according to
Grain specification (refer to section 2),

st+1
i = st

i+1; i = 0, 1, . . . , 126; (1)

st+1
127 = st

0 + st
7 + st

38 + st
70 + st

81 + st
96; (2)

bt+1
i = bt

i+1; i = 0, 1, . . . , 126; (3)

bt+1
127 = st

0 + bt
0 + bt

26 + bt
56 + bt

91 + bt
96

+bt
3.b

t
67 + bt

11.b
t
13 + bt

17.b
t
18 + bt

27.b
t
59

+bt
40.b

t
48 + bt

61.b
t
65 + bt

68.b
t
84; (4)
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The above equations can be rewritten as follows.

st
i+1 = st+1

i ; i = 0, 1, . . . , 126; (5)

st
0 = st+1

127 + st
7 + st

38 + st
70 + st

81 + st
96; (6)

bt
i+1 = bt+1

i ; i = 0, 1, . . . , 126; (7)

bt
0 = st

0 + bt+1
127 + bt

26 + bt
56 + bt

91 + bt
96

+bt
3.b

t
67 + bt

11.b
t
13 + bt

17.b
t
18 + bt

27.b
t
59

+bt
40.b

t
48 + bt

61.b
t
65 + bt

68.b
t
84; (8)

Equation (5) straightaway gives the bit values of st
i, i.e., (st

0, s
t
1, . . . , s

t
127) except

st
0. st

0 can be obtained from equation (6), since all the values in RHS are known.
In a similar way, bt

i’s can be obtained from equations, (7) and (8).
Step 2: When, t <= 256, the output bits zt is also fed back at st+1

127 and bt+1
127 .

Now,

zt = bt
26 + bt

26 + bt
26 + bt

26 + bt
26 + bt

26 +
bt
26 + st

93 + bt
12.s

t
8 + st

13.s
t
20 + bt

95.b
t
42

+st
60.s

t
79 + bt

12.b
t
95.s

t
95, (9)

which can be written using variables,
st+1

i , i = 0, 1, . . . , 127 and
bt+1
i , i = 0, 1, . . . , 127. For example, st

20 = st+1
21 and bt

26 = bt+1
27 . Hence, once zt is

computed,

st
0 = st+1

127 + st
7 + st

38 + st
70 + st

81 + st
96 + zt. (10)

Thus in both the cases, the previous cycles internal state can be found. Hence,
after, (t+1) such inversions, we obtain in {b0, b1, . . . , b127}, the Key used in the
encryption.

5 Complexity, Limitations and Extensions

In this section, we measure the overall complexity of our proposed attack de-
scribed in the previous section. The complexity is estimated by the operations
used in the analysis process. We also discuss the limitations and extensions of
our attack.

1. Fault Location Determination: This phase requires the formation of a σ table
in off-line mode and later a fault location determination method in online
mode. The off-line mode requires a space overhead of 128 ∗ 128 = 214. It
is experimentally verified over a large number of random key and IV that
maximum 220 Grain round operations are needed to determine exact fault
location per fault following algorithm 2.

2. Pre-computation of Fault Traces: This phase stores pre-computed traces for
all 128 faults for the following 256 cycles. Hence, space required in 128∗256∗
128 = 222. Time complexity of this phase is 128 ∗ 256 = 215 Grain round
operations. This is an off-line operation.
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3. Determining NFSR Bits : In this phase we determined NFSR bits from single
bit faults at NFSR. As we obtained single variable linear equations only,
almost constant computation is required to solve for these variables. Also,
we only needed to store values of the obtained single bit linear equations.
Hence, space complexity is also constant. We required about 56 faults to
determine all NFSR bits on average.

4. Determining LFSR Bits : In this phase we deduced LFSR bits. Again of the
three variable equations, we concentrated on equations where only single
LFSR bit remains. Hence, again constant space is required to store the values.
When we deduced LFSR bits by inducing faults at different cycles, we tried to
obtain 128 linearly independent equations, which can be solved in time 221.
However, since most of equations will be sparse, the complexity is expected
to be much lower. The number of faults required at this step is at most 256.

5. Inverting States : This phase inverts Grain states from a known full state
value. For inversion operation per cycle, we need constant computational
complexity and a storage of 256 = 28. Hence, for inverting till the first round,
we need linear computation in terms of rounds of operation and space of 28.

To sum up, the total space complexity of the attack is, O(222), time complexity
is O(221) and faults required to perform an attack is at most 256.

The attack may be extended to Grain-like ciphers with higher degree feedback
functions and output functions. However, determining fault locations can be a
challenging task if linear terms are removed from output bit expression. Higher
degree feedback functions and output functions will however certainly increase
the attack complexity as mostly nonlinear equations will be obtained.

In this work, we have considered linear equations involving only one unknown
state bit. The attack can be improved by including other linear/nonlinear equa-
tions to reduce requirements of number of faults at the cost of more computation.
Faults affecting multiple b register bits per fault injection, can be studied. This
assumption is less strict compared to a single bit fault, which may be difficult to
administer. Also, multi-bit faults will certainly reduce number of fault require-
ments. But, determination of fault positions may be difficult.

6 Conclusion

In this paper, we have described a fault analysis on the eStream finalist Grain-
128. The earlier fault attack on Grain-128 induced faults at the LFSR of the
implementation. In this paper, we have demonstrated that even injecting faults
at the NFSR can break the cipher. The experimental result shows that about
56 faults at different cycles are needed for determining the NFSR bits and at
most 256 faults at different cycles are needed to obtain the full LFSR state
of the cipher at any particular time T of execution. A system of 128 linearly
independent equations need to be solved to obtain all LFSR state bits. Hence,
the complexity of our attack is O(221). Both the number of fault injections and
equation solving can be carried out in practical scenario.
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Appendix

Due to faults at different locations of the NFSR, we obtain δt = 1 at various
cycles of operation following fault induction. The corresponding mappings are
given in tables 3 and 4.

Table 3. Fault location vs. δt∗ = 1 (σ), Fault Locations 0 to 61

Fault t = Fault t =
Location Location

0 1 39,55,70,75,86,91,106,110,111,122,127

2 0,40,56,71,76,87,92,107,111,112,123,128 3 1,41,57,72,77,88,93,108,112,113,124

4 2,42,58,73,78,89,94,109 5 3,43,59,74,79,90,95,110

6 4,44,60,75,80,91,96,111 7 5,45,61,76,81,92,97,112

8 6,46,62,77,82,93,98,113 9 7,47,63,78,83,94,99,114

10 8,48,64,79,84,95,100,115 11 9,49,65,80,85,96,101,116

12 10,50,66,81,97,102 13 11,51,67,82,98,103

14 12,52,68,83 15 0,13,53,69,84

16 1,14,54,70,85 17 2,15,55,71,86

18 3,16,56,72,87 19 4,17,57,73,88

20 5,18,58,74,89 21 6,19,59,75,90

22 7,20,60,76,91 23 8,21,61,77,92

24 9,22,62,78,93 25 10,23,63,79,94

26 11,24,64,80,95 27 12,25,39,55,65,75,81,86,96

28 13,26,40,56,66,87,97 29 14,27,41,57,67,88,98

30 15,28,42,58,68,89,99 31 16,29,43,59,69,90,100

32 17,30,44,60,70,91,101 33 18,31,45,61,71,92,102

34 19,32,46,62,72,93,103 35 20,33,47,63,73,94,104

36 0,21,34,48,64,74,95,105 37 1,22,35,49,65,75,96,106

38 2,23,36,50,66,76,97,107 39 3,24,37,51,67,77,98,108

40 4,25,38,52,68,78,99,109 41 5,26,53,79

42 6,27,54,80 43 7,28,55,81

44 8,29,56,82 45 9,30,57,83

46 10,31,58,84 47 11,32,59,85

48 12,33,60,86 49 13,34,61,87

50 14,35,62,88 51 15,36,63,89

52 16,37,64,90 53 17,38,65,91

54 18,39,66,92 55 19,40,67,93

56 20,41,68,94 57 21,39,42,70,75,110

58 22,40,43,71,76,111 59 23,41,44,72,77,112

60 24,42,45,73,78 61 25,43,46,74,79

*δt : output difference between faulty and fault-free keystreams at tth instant
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Table 4. Fault location vs. δt∗ = 1 (σ), Fault Locations 62 to 127

Fault t = Fault t =
Location Location

62 26,44,47,80 63 27,45,48,81

64 0,28,46,49,82 65 1,29,47,50,83

66 2,30,48,51,84 67 3,31,49,52,85

68 4,32,50,53 69 5,51,54

70 6,52,55 71 7,53,56

72 8,54,57 73 0,9,55,58

74 1,10,56,59 75 2,11,57,60

76 3,12,58,61 77 4,13,59,62

78 5,14,60,63 79 6,15,61,64

80 7,16,62,65 81 8,17,63,66

82 9,18,64,67 83 10,19,65,68

84 11,20,66,69 85 12,21,67

86 13,22,68 87 14,23,69

88 15,24,70 89 0,16,25,71

90 1,17,26,72 91 2,18,27,73

92 3,19,28,39,55,70,74,75,86,91 93 4,20,29,40,56,71,75,76,87,92

94 5,21,30,41,57,72,76,77,88,93 95 6,22,31,42,58,73,77,78,89,94

96 7,23,32,43,59,74,78,79,90,95 97 8,24,39,44,55,60,75,79,80,91,96

98 9,25,40,45,56,61,76,80,81,92,97 99 10,26,41,46,57,62,77,81,82,93,98

100 11,27,42,47,58,63,78,82,83,94,99 101 12,28,43,48,59,64,79,83,84,95,100

102 13,29,44,49,60,65,80,84,85,96,101 103 14,30,45,50,61,66,81,85,86,97,102

104 15,31,46,51,62,67,82,86,87,98,103 105 16,32,47,52,63,68,83,87,88,99,104

106 17,33,48,53,64,69,84,88,89,100,105 107 18,34,49,54,65,70,85,89,90,101,106

108 19,35,50,55,66,71,86,90,91,102,107 109 20,36,51,56,67,72,87,91,92,103,108

110 21,37,52,57,68,73,88,92,93,104,109 111 22,38,53,58,69,74,89,93,94,105,110

112 23,39,54,59,70,75,90,94,95,106,111 113 24,40,55,60,71,76,91,95,96,107,112

114 25,41,56,61,72,77,92,96,97,108,113 115 26,42,57,62,73,78,93,97,98,109,114

116 27,43,58,63,74,79,94,98,99,110,115 117 28,44,59,64,75,80,95,99,100,111,116

118 29,45,60,65,76,81,96,100,101,112,117 119 30,46,61,66,77,82,97,101,102,113,118

120 31,47,62,67,78,83,98,102,103,114,119 121 32,48,63,68,79,84,99,103,104,115,120

122 33,49,64,69,80,85,100,104,105,116,121 123 34,50,65,70,81,86,101,105,106,117,122

124 35,51,66,71,82,87,102,106,107,118,123 125 36,52,67,72,83,88,103,107,108,119,124

126 37,53,68,73,84,89,104,108,109,120,125 127 38,54,69,74,85,90,105,109,110,121,126

*δt : output difference between faulty and fault-free keystreams at tth instant
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Abstract. Sosemanuk is a software-based stream cipher which sup-
ports a variable key length of either 128 or 256 bits and 128-bit initial
values. It has passed all three stages of the ECRYPT stream cipher
project and is a member of the eSTREAM software portfolio. In this pa-
per, we present a fault analysis attack on Sosemanuk. The fault model in
which we analyze the cipher is the one in which the attacker is assumed
to be able to fault a random inner state word but cannot control the
exact location of injected faults. Our attack, which recovers the secret
inner state of the cipher, requires around 6144 faults, work equivalent to
around 248

Sosemanuk iterations and a storage of around 238.17 bytes.

1 Introduction

The European Network of Excellence of Cryptology (ECRYPT) [12] stream ci-
pher project, also known as eSTREAM [14], is a project that aimed to identify
new promising stream ciphers. Sosemanuk [4] is a fast software-oriented stream
cipher that has passed all the three phases of the ECRYPT eSTREAM competi-
tion and is currently a member of the eSTREAM Profile 1 (software portfolio).
It uses a 128-bit initialization vector and allows keys of either 128-bit or 256-
bits, whereas the claimed security is always 128-bits. The design of Sosemanuk

(See Fig. 1) is based on the SNOW2.0 stream cipher [13] and utilizes elements of
the Serpent block cipher [2]. Sosemanuk aims to fix weaknesses of the SNOW
2.0 design and achieves better performance, notably in the ciphers initialization
phase. Also, the secret inner state of Sosemanuk is reduced when compared to
SNOW 2.0 and amounts to 384 bits.

The preliminary analysis [4], conducted during the Sosemanuk design pro-
cess, includes the assessment of the cipher with respect to different cryptana-
lytic attacks such as correlation attacks, distinguishing attacks and algebraic
attacks. Public analysis followed and Sosemanuk was assessed in [1] by Ah-
madi et al. where a guess-and-determine attack requiring 2226 operations and 24

keystream words was provided. Another improved guess-and-determine attack
was presented by Tsunoo et al. in [24]. A correlation attack on Sosemanuk

was presented by Jung-Keun Lee et al. [20] with a computational complexity
of 2147.88 and success probability 99% to recover the initial secret inner state.
The data requirement for the attack was relaxed by Cho et al. [9]. In 2009, Lin
et al. [21] improved the guess-and-determine attack, achieving complexity of 24

A. Nitaj and D. Pointcheval (Eds.): AFRICACRYPT 2011, LNCS 6737, pp. 316–331, 2011.
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word keystream using 2192 steps. Another guess-and-determine attack with time
complexity 2176 was recently presented by Feng et al. in Asiacrypt 2010 [15].

In this paper, we present a fault analysis attack on Sosemanuk. The fault
analysis model adopted in the paper is the one in which the attacker is assumed
to be able corrupt a random inner state register in between the iterations of
the cipher but the attacker has no control or knowledge over which inner state
register has been corrupted. Also, the attacker is assumed to be able to reinitial-
ize the cipher with the same key and IV arbitrary number of times. The attack
recovers the secret inner state without recovering the key and requires about
6144 faults, 248 operations each equivalent to one Sosemanuk iteration and the
storage of about 238.17 bytes.

The rest of the paper is organized as follows. In the next section, we pro-
vide a brief overview of fault analysis attacks. In Section 3, relevant details of
Sosemanuk are reviewed. An overview of the proposed attack is provided in
Section 4. Details of the attack are described in Section 5 and Section 6. Finally,
the conclusion is given in Section 7.

2 Fault Analysis Attacks

In fault analysis attacks, the cryptanalyst applies some kind of physical influ-
ence, such as ionizing radiation, on the internal state of the cryptosystem which
influence the crypto-primitive execution or memory. By carefully studying the
results of computations performed under such faults, an attacker can retrieve in-
formation about the secret key. In 1996, Boneh et al. [8] introduced fault analysis
by describing an attack that targets the RSA public key cryptosystem and ex-
ploits a faulty Chinese Remainder Theorem computation to factor the modulus
n. Subsequently, fault analysis attacks were extended to symmetric systems such
as DES [7] and later to AES [11]. Fault analysis attacks became a more serious
threat after cheap and low-tech methods of applying faults were presented [23].

Fault attacks against stream ciphers were introduced by Hoch et al [16], where
attacks against LILI-128 and SOBER-t32 and RC4 were described. Other stream
ciphers that have been analyzed in the fault analysis model include SNOW 3G
[10], Trivium [17], HC-128 [19] and Rabbit [18,5]. The number of required faults
in the above attacks varies depending on the assumed fault analysis model. In
general, all models follow the one given in Armknecht et al. [3], which assumes
that the attacker has access to the physical device, and that the attacker is able to
reset the device to the same unknown initial settings as often as needed. However,
different assumptions with respect to the amount of control the attacker has
over the induced faults are utilized. For example, the attacker may have control
over the location of the faulted memory register, or may be able to restrict to
Hamming weight of the induced faults. For instance, Biham et al. [6] assumed a
model in which the attacker can choose the exact location (register) of the fault
which causes RC4 to enter a special inner state and makes its recovery a trivial
task. Similarly, Armknecht et al. [3] described a fault analysis attack gainst
SNOW 2.0 where they assumed that the fault occurs exactly in a particular
register of the cipher. On the other hand, in the fault analysis of Trivium [17], it
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Fig. 1. Overview of the Sosemanuk stream cipher

is assumed that the attacker has no control or knowledge over the fault position.
Different assumptions also exist regarding the Hamming weight of induced faults.
For instance, in [19] it is assumed that the fault causes a 1-bit flip in the inner
state of the cipher, whereas in [6] it is assumed that the fault is localized in one
byte of the inner state.

3 The Sosemanuk Specification

The following notation will be utilized throughout the rest of the paper:

- xi: i-th bit of an n-bit word x
- �,× : addition and multiplication modulo 232, respectively
- ⊕ : bit-wise XOR
- <<< : left rotation defined on 32 bit values
- | : concatenation
- Xi = f i

t+3|f i
t+2|f i

t+1|f i
t : input value for i-th S-box applied in the Serpent1

function at some step t (the t value will be clear from the context). The
Serpent1 function, shown in Fig. 2, is defined by 32 applications of S in the
bit-slice mode, where

S = [8, 6, 7, 9, 3, 12, 10, 15, 13, 1, 14, 4, 0, 11, 5, 2]

is the S-box used in the third S-box layer of the Serpent block cipher [2].
- ´ : Sign for denoting faulty cipher registers or output. For example s′0 will

denote the LFSR register s0 in the faulty instance of the cipher.
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Fig. 2. The Serpent1 function

While the claimed security level of Sosemanuk is 128 bits, it supports a
variable key length of 128 or 256 bits and 128 bit initialization value. As de-
picted in Fig. 1, the secret inner state of Sosemanuk consists of 12 32-bit
words (s0, . . . , s9, R1, R2) and utilizes three main components to generate the
keystream output: a linear feedback shift register (LFSR), a finite state machine
(FSM) and an S-box-like function, Serpent1. To update the LFSR, the following
recurrent relation is applied:

st+10 = st+9 ⊕ α−1st+3 ⊕ αst (1)

where α is a root of the primitive polynomial P (X) = X4 + β23X3 + β245X2 +
β48X + β239 over GF(28) and β ia a root of the primitive polynomial Q(X) =
X8 + X7 + X5 + X3 + 1 over GF(2).

The FSM update procedure is defined as follows:

R1t+1 = (R2t � mux(lsb(R1t), st+1, st+1 ⊕ st+8)) (2)
R2t+1 = (Trans(R1t)) (3)

where mux(c, x, y) =
{

x if c = 0
y if c = 1 , Trans(x )=(M× x ) <<< 7 and M =0x54655307.

The FSM output at each step is defined by

ft = (st+9 � R1t+1)⊕R2t+1 (4)

The inner state right after the initialization is denoted by (s0, . . . , s9, R10, R20).
At each step, first the FSM is updated and the ft and st values are preserved in



320 Y. Esmaeili Salehani, A. Kircanski, and A. Youssef

the internal buffer, then the LFSR is updated. Once every four steps, a 128-bit
word is generated by

zt|zt+1|zt+2|zt+3 = Serpent1(ft|ft+1|ft+2|ft+3)⊕ st|st+1|st+2|st+3. (5)

For a more detailed description of Sosemanuk, the reader is referred to [4].

4 The Attack Overview

In this section, we provide a high level overview of the proposed attack. Accord-
ing to our fault analysis model, the attacker is assumed to be able to re-initialize
the cipher an arbitrary number of times. Furthermore, while we assume that
each induced fault corrupts only one of the 12 inner state registers, the attacker
does not know, and cannot control the position or the new value of the faulted
register.

4.1 The Main Idea

The main idea of the attack can be explained as follows. In every Sosemanuk

iteration, 32 S-boxes are applied in the bit-slice mode as a part of the Serpent1
function. The first part of the attack restricts the input for each of the S-boxes by
considering faults that occur at s5 and s4. Consider the case where the fault has
been injected right after the Sosemanuk initialization step and that it occurred
in the register s5. During the next cipher iteration in which the z0|z1|z2|z3 128-
bit keystream word is produced, the fault moves in the right-hand direction as
the LFSR is clocked for 4 times. In particular, no faulty values participate in
generation of f0. Furthermore, since in every step, first the FSM is updated and
then the ft value is computed and finally the LFSR is clocked, f1 and f2 are
computed without error and the fault affects only f3. Now the non-faulty f0,
f1, f2 and the faulty f3 enter the Serpent1 function. In the bit-slice mode, the
Serpent1 function applies 32 S-boxes 4-bit inputs, where i-th bit comes from
register fi, i = 0, . . . 3 (See Fig. 2). Thus, the input difference of all activated
S-boxes will be equal to 0x8 (1000 in binary). The attacker can then retrieve
the corresponding S-box output difference and restrict the set of candidates for
the S-box input-output values. When the fault occurs at register s5, each S-box
output will be faulted with probability 1

2 , which allows us to establish a criterion
to recognize faults in register s5. Similarly, in the case where the fault occurs
at s4, it propagates as shown in Figure 3 potentially affecting only f2 and f3.
In other words, only the two most significant bits of every S-box input might
be affected. Since a criterion for recognizing faults at s4 can also be established,
observing the output S-box differences for such faults also reduces the set of
candidates for the S-box input-output values.

After the candidates for the S-box input-output values have been restricted,
equation (5) is used to provide a restriction on the LFSR registers. From (1),
it follows that the LFSR registers are not independent and restrictions on the
LFSR registers can be coupled with the dependence of the LFSR registers to
further prune the candidates for the st values. Finally, a guess and determine
attack is used to find the rest of the inner state.



Differential Fault Analysis of Sosemanuk 321

⊕
S
e
rp
e
n
t1

1−α α

0s3s9s

1R 2R

⊕

⊕

0 0fΔ =

1s

⊕ ⊕

1−α α

1s4s10s

1R 2R

⊕

⊕
2s

⊕ ⊕

1−α α

2s5s11s

1R 2R

⊕

⊕
3s

⊕ ⊕

1−α α

3s6s12s

1R 2R

⊕

⊕
4s

⊕ ⊕

1 0fΔ =

2fΔ

3fΔ

4s

4s

11s

Fig. 3. The Δf values corresponding to the case where s4 is faulted



322 Y. Esmaeili Salehani, A. Kircanski, and A. Youssef

4.2 The Steps of the Attack

The attack can be divided into two phases. The first phase collects faulty output
in four different steps of the cipher execution and can be summarized as follows:

- For l ∈ {0, 1, 2, 4}
- Repeat the steps below for m times

- Reinitialize the cipher
- Iterate for l times
- Induce a fault, corrupting a random inner state register
- Collect and store the keystream output word z′4l|z′4l+1|z′4l+2|z′4l+3

The second phase, which uses the collected information to uniquely determine
the secret inner state, can be summarized as follows:

(1) Use the faulty outputs gathered in the first phase of the attack for l ∈ {0, 2, 4}
to reduce the number of candidates for (s0, s1, s2, s3), (s8, s9, s10, s11) and
(s16, s17, s18, s19) to 232 each. Then, use dependencies between the three four-
plets imposed by relation (1) to further reduce the corresponding numbers
of candidates (details are explained in Section 5)

(2) Similar to the previous step, using the information collected in the first phase
of the attack for l = 1, reduce the number of candidates for (s4, s5, s6, s7) to
232 (details are explained in Section 5)

(3) Apply the guess-and-determine strategy through the space reduced sets of
candidates obtained by previous two steps to recover the complete inner
state (details are explained in Section 6)

In the first phase of attack, data is collected for l = 4 and not for l = 3 since
the LFSR registers candidate sets due to l = 0, l = 2 and l = 4 are correlated
and allow further reduction. The reduction due to l = 1 is used later in the
guess-and-determine attack.

5 Reducing the Number of Candidates for LFSR
Registers (s0, s1, s2, s3) and (s8, s9, s10, s11)

The starting number of candidates for the LFSR registers (s0, s1, s2, s3) and
(s8, s9, s10, s11) is 2128 each. In this section, first we show how to reduce this
number to 232 and then, by exploiting the fact that the two register components
are linked by relation (1), reduce it further to 216, each.

5.1 Recovering the S-Box Differences

Let Sosemanuk be in state t = 0. From (5) and since z0|z1|z2|z3 is accessible to
the attacker, it is evident that reducing the uncertainty for f0|f1|f2|f3 leads to
reducing the uncertainty of s0|s1|s2|s3. In this subsection, the f0|f1|f2|f3 value
is constrained by calculating the S-box input-output differences using the faulty
information. Since the algorithms below are also applied to constraint f4|f5|f6|f7,
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f8|f9|f10|f11 and f16|f17|f18|f19, these algorithms are specified for general time
t and will be used for t ∈ {0, 4, 8, 16}.

Define δi and Δi by

δi = S(Xi ⊕ 0x8)⊕ S(Xi),
Δi = {S(Xi ⊕ 0x4)⊕ S(Xi), S(Xi ⊕ 0xc)⊕ S(Xi)}

for every i = 0, . . . 31. Algorithm 1 and Algorithm 2, described below, are used
to recover δi and Δi, respectively, for each i = 0, . . . 31.

In what follows, the probability distribution of the number of non-activated
S-boxes in the Sosemanuk output is analyzed. In particular, probabilities of
the event that there will be more than 16 non-activated S-boxes are estimated
under different assumptions about the location of the fault. For that purpose,
let 0 ≤ n ≤ 32 be a random variable which denotes the number of S-boxes
that are not active in the application of the 32 S-boxes of Serpent1 in some
steps of a faulty Sosemanuk instance. Consider for example the probability
that a particular S-box will not be activated given that the fault has occurred
at s0. In that case, only the 3 most significant bits of the S-box input may be
corrupted. Note that, due to (5) by which the corrupted s0 is XOR-ed to the
least significant bits of each S-box, it may also happen that the difference in the
S-box output caused by the S-box input cancels out. However, such a possibility
has been ruled out by exhaustively checking that for each S-box input value
it is not possible to cause a difference only in the least significant bit of the
S-box output by any of the differences in the 3 most significant bits of the
input. Thus, the probability that the particular S-box has not been activated
is 2−3. Now, it is clear that variable n ∼ B(2−3, 32), i.e., n follows binomial
distribution with parameters p = 2−3 and n = 32. According to the binomial
distribution, P [16 ≤ n ≤ 31] =

∑31
i=16

(
32
i

)
pi(1 − p)32−i ≈ 2−21. More generally,

the distribution of n in terms of the fault position is given follows:

- {s0} : P [16 ≤ n ≤ 31] ≈ 2−21 as explained above.
- {s1, s9, R1, R2}: all four S-box input bits may be corrupted. Hence, n ∼

B(2−4, 32). For the fault position s1, the possibility of cancelling out the S-
box output difference has been ruled out the same way as in the case of s0.
Using the binomial distribution, it follows that P [16 ≤ n ≤ 31] is negligible

- {s8}: if R10
0 = 0, then, n = 0 with probability 1. Otherwise, all four S-box

input bits may be corrupted and n ∼ B(2−4, 32) and as for the previous
case, P [16 ≤ n ≤ 31] is negligible.

- {s2, s3}: only the least significant bit will certainly not be corrupted. For s3,
the cancellation of the S-box output difference is ruled out as in the case of
s0. In case of s2, there exists one S-box input such that the S-box output
difference can be cancelled out by inverting the second most significant bit
(S(1111) = S(1111 ⊕ 1110) ⊕ 0100). Approximating n ∼ B(2−3, 32) gives
P [16 ≤ n ≤ 31] ≈ 2−21.

- {s4}: the most significant two bits may be corrupted, from which it follows
that n ∼ B(2−2, 32). So, P [16 ≤ n ≤ 31] ≈ 0.002
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- {s6, s7}: no S-box input bits can be corrupted and thus n = 32 with proba-
bility 1

- {s5}: Only the most significant bit of every S-box input may be corrupted.
Thus n ∼ B(1

2 , 32) and P [16 ≤ n ≤ 31] =
∑31

i=16

(
32
i

)
1
2i

1
2(32−i) = 0.569

From the above reasoning, it follows that when the fault does not occur at s5,
P [16 ≤ n ≤ 31] ≈ 1

11 × 0.02 ≈ 0.0018, where 1
11 is the probability that the fault

occurred at s4, given that it did not occur at s5. On the other hand, if the fault
occurred at s5, the probability of event 16 ≤ n ≤ 31 is equal to 0.569. This
analysis indicates that one can decide whether the fault occurred at s5 or not
by verifying whether 16 ≤ n ≤ 31, or not, respectively.

In Algorithm 1, keystream words for which 16 ≤ n ≤ 31 are considered.
Namely, once such a keystream word have been found, the values of activated
S-boxes are used to learn about the corresponding δi values. According to the
discussion above, if the fault indeed occurred at s5, such differences necessarily
represent the S-box output difference for the input difference equal to 0x8. To
diminish the possibility of false positives (event 16 ≤ n ≤ 31 takes place, but
the fault does not occur at s5), the final output difference value is taken as the
most frequent difference candidate taken over different faulty keystream words
at the (fixed) Sosemanuk step in question, for which 16 ≤ n ≤ 31 holds.

Algorithm 1

- Initialize 32 multisets: Cand1(k) = ∅, k = 0, . . . , 31.
- For each faulty keystream word z′t|z′t+1|z′t+2|z′t+3, such that

16 ≤ #{z′i
t |z

′i
t+1|z

′i
t+2|z

′i
t+3 = zi

t|zi
t+1|zi

t+2|zi
t+3 : i = 0, . . . 31} ≤ 31 (6)

do:
- For each 0 ≤ k ≤ 31, if d = z

′k
t |z

′k
t+1|z

′k
t+2|z

′k
t+3 ⊕ zk

t |zk
t+1|zk

t+2|zk
t+3 is

different than 0, add d to Cand1(k).
- Return the most frequent element in the multiset Cand1(i) as δi = S(Xi ⊕

0x8)⊕ S(Xi), for each 0 ≤ i ≤ 31.

The overall number of required fault injections m = 1536 has been deter-
mined by incrementing m in steps of 128 and experimentally verifying that
Algorithm 1 always recovers the correct δi = S(Xi ⊕ 0x8)⊕ S(Xi), i = 0, . . . 31
for 1000 randomly initialized instants of Sosemanuk.

Algorithm 2 uses δi recovered by Algorithm 1 to find the sets Δi, i = 0, . . . 31.
In particular, the algorithm recognizes faulty keystream words that correspond
to an error in register s4 and then uses the S-box output differences in such
keystream words to deduce Δi for i = 0, . . . 31.

The criterion for recognizing faults in register s4 is similar to the previously
stated criterion for recognizing faults in s5. However, instead of asking for 16 or
more unactivated S-boxes, we expect to have more than 16 S-boxes which are
either unactivated or with output difference equals to δi. Namely, let v be the
number of S-boxes in one step of Sosemanuk which are either not activated,
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or activated by an input difference of 0x8. The probability of the event that one
S-box is either not activated, or activated by an input difference of 0x8 depends
on the location where the fault occurred. In case the error is in register s4, the
probability in question will be 1

2 since in that case only the 2 most significant
bits of the S-box input may be faulted and the input difference has to among
0x0, 0x8, 0xc and 0x4 values. Thus, if the fault is in s4, v ∼ B(1

2 , 32), and
P [16 ≤ v ≤ 31] = 0.569. On the other hand, if the fault occurs at some other
register, say at R1, all four S-box input bits may be corrupted and the proba-
bility that the input difference will be either 0x8 or 0x0 is significantly smaller.
Again, this gives a methodology to decided whether the fault occurred at s4 or
not by counting the number of S-boxes which reacted with difference of either
δi (using the corresponding i) or 0. Once the faults due to an error in register
s4 are recognized, finding the sets Δi proceeds with the following logic. When
a keystream word for which the event 16 ≤ v ≤ 31 took place has been found,
the output S-box differences which are not due to input difference of 0x8 or 0x0
have to be due to difference 0xc or 0x4. Again, to diminish the possibility of
false positives (i.e., 16 ≤ v ≤ 31 but the fault does not occur at s4), the final
output set is taken as the set with two most frequent difference candidates for
the difference taken over different faulty keystream words at the Sosemanuk

step in question for which 16 ≤ v ≤ 31 holds.

Algorithm 2

- Initialize 32 multisets: Cand2,3(k) = ∅, k = 0, . . . , 31.
- For each faulty keystream output word z′t|z′t+1|z′t+2|z′t+3, such that

16 ≤ #{z′i
t |z

′i
t+1|z

′i
t+2|z

′i
t+3 = zi

t|zi
t+1|zi

t+2|zi
t+3|i = 0, . . . 31}+

#{z′i
t |z

′i
t+1|z

′i
t+2|z

′i
t+3 ⊕ zi

t|zi
t+1|zi

t+2|zi
t+3 = δi|i = 0, . . . 31} ≤ 31

(7)

where δi, 0 ≤ i ≤ 31 has been recovered by Algorithm 1, do:
- For each 0 ≤ k ≤ 31, add each d = z

′k
t |z

′k
t+1|z

′k
t+2|z

′k
t+3⊕ zk

t |zk
t+1|zk

t+2|zk
t+3

such that d /∈ {0, δk} to the multiset Cand2,3(k).
- Return the two highest occurring elements in the multiset Cand2,3(i) as the

required two-element set Δi, for each i.

For the above choice of total number of faults m = 1536, Algorithm 2 always
succeeded in recovering the sets Δi, i = 0, . . . 31, for 1000 randomly initialized
instants of Sosemanuk.

5.2 Restricting the Number of Candidates for the LFSR Registers

In each Sosemanuk step, in which a 128-bit keystream word is produced, ac-
cording to (5), 32 4 × 4 S-boxes are applied. In the previous subsection, it has
been shown how to use the faulty information to deduce the S-box output differ-
ences for certain input S-box differences. Naturally, these evaluated input-output
differences impose a constraint on the actual input-output values. In this subsec-
tion, the sets of possible S-box input-output values are deduced and the effect of
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Table 1. Determining the S-box input-output values based on sets δi and Δi

δi,Δi i-th S-box input i-th S-box output

5,{8,B} 0 8

9, {2,D} 2 7

3,{B,E} 4 3

F,{4,D} 6 A

5,{D,E} 8 D

9,{4,B} A E

3,{8,D} C 0

F,{2,B} E 5

7,{A,D} {1,5,9,D} {6,C,1,B}
D,{6,B} {3,7,B,F} {9,F,4,2}

the deduced input-output S-box values constraints on the number of candidates
for the LFSR registers (s0, s1, s2, s3) is presented.

Having determined the δi value and the two-element set Δi by Algorithms
1 and 2, for each 0 ≤ i ≤ 31, the actual input-output values for the S-box are
deduced according to Table 1. As can be noted from the table, in case the S-box
input is even, the input-output value can be deduced uniquely. On the other
hand, in case when the S-box input value is odd, there exist four candidates for
the S-box input-output.

Assuming a uniform distribution on the S-box input values, it is expected that
the attacker will deduce 64 out of 128 output bits. For the remaining 64 bits,
it will be composed out of 16 4-bit values, each restricted to 4 candidates. The
overall number of candidates for the 128-bit value Serpent1(f0|f1|f2|f3) is then
416 = 232. Since we have

z0|z1|z2|z3 = Serpent1(f0|f1|f2|f3)⊕ s0|s1|s2|s3 (8)

and z0|z1|z2|z3 is known, it follows that there will be 232 candidates for s0|s1|s2|s3.
The number of candidates for s4|s5|s6|s7, s8|s9|s10|s11 and s16|s17|s18|s19 can

be restricted in a similar way. Namely, for that purpose, Algorithms 1 and 2 need
to be applied using z4|z5|z6|z7, z8|z9|z10|z11 and z16|z17|z18|z19 and the faulty
values obtained by the first phase of the attack described in Section 4 for l = 1,
l = 2 and l = 4, respectively. Then, Table 1 is utilized to restrict the S-box
input-output values occurring in steps t = 1, t = 2 and t = 4. Following the
procedure explained in this section, it follows that s4|s5|s6|s7, s8|s9|s10|s11 and
s16|s17|s18|s19 are expected to be restricted to 232 candidates each.

5.3 Further Pruning of the LFSR Registers Candidates

In the previous subsection, the uncertainty for (s0, s1,s2, s3), (s8, s9,s10, s11) and
(s16, s17,s18, s19) values has been reduced. In this subsection, we note that these
three four-tuples of 32-bit values are not independent. Namely, according to (1),
we have s10 = s9⊕α−1s3⊕αs0 and s18 = s17⊕α−1s11⊕αs8. These two relations
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are used to further prune candidates for (s0, s1, s2, s3) and (s8, s9, s10, s11). More
precisely, after the end of the process, the attacker is left with 216 candidates for

(f0, f1, f2, f3, s0, s1, s2, s3, f8, f9, f10, f11, s8, s9, s10, s11) (9)

The two relations from the previous paragraph can be rewritten as

α−1s3 ⊕ αs0 = s10 ⊕ s9 (10)
α−1s11 ⊕ αs8 = s18 ⊕ s17 (11)

Before stating the candidate reduction procedure, we note that the candidates
for (s0, s1, s2, s3) are specified in a way which allows listing them in a table
efficiently. In particular, the candidate set for (s0, s1, s2, s3) is specified by sets
Bi, i = 0, . . . 31, such that si

0|si
1|si

2|si
3 ∈ Bi. Then, each element of the set

B0×B1× . . .×B31 specifies one (s0, s1, s2, s3) value. The sets of candidates for
(s8, s9,s10, s11) and (s16, s17, s18, s19) can be transformed to a list in the same
way and this property is used in step (1) and step (5) of the procedure below.

1. List all of the (s0, s1, s2, s3) and (s16, s17, s18, s19) candidates and call the two
generated tables T1 and T3, respectively. Include also the columns containing
(f0, f1, f2, f3) and (f16, f17, f18, f19) in T1 and T3, respectively. Create an
empty table T .

2. Extend T1 by adding a column with the left-hand side of equation (10).
3. Extend T3 by adding a column with the right-hand side of equation (11).
4. Sort T1 and T3 by columns added in steps (2) and (3).
5. For each candidate for (s8, s9, s10, s11)

5.1. Calculate the left-hand side of equation (11). If there does not exists
an element in T3 such that (11) holds, go to the next (s8, s9, s10, s11)
candidate (step (5)).

5.2. Otherwise, calculate the right-hand side of equation (10) and find rows
of T1 for which (10) holds. For each such row, add the complete row of
the form (9) to table T .

To find the expected size of table T , note that it is expected that 16 bits of the T3

table column containing s18⊕s17 value are constant, due to the fact that 16 out of
32 S-box inputs corresponding to (si

16, si
17, s

i
18, s

i
19) have been recovered uniquely

by the procedure in the previous subsection. On the other hand, no constant bits
are expected to exist in α−1s11⊕αs8 values due to randomization resulting from
multiplying by α and α−1. Thus, about 216 candidates for (s8, s9, s10, s11), with
the corresponding (f8, f9, f10, f11), will pass the elimination step (5.1).

In step (5.2), the remaining 216 candidates are joined with T1, which contains
232 rows, according to (10). Since there exists no fixed bits in the α−1s3 ⊕ αs0

column of T1, it is expected that around 216 will be present in the output of the
join step, i.e., in table T . Since both T1 and T3 contain 9 32-bit words in each row
and table T contains 16 32-bit words in each row, the required memory space
for the previous procedure is 2× 232 × 9 × 4 + 216 × 16× 4 = 238.17 bytes. The
computational cost is equal to sorting two tables of 232 rows, executing a search
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in a sorted table of length 232 for 232 times and finally executing a search for 216

times in the sorted table of 232 entries. By noting that sorting tables of length
n takes O(nlog(n)) steps and that a binary search in the sorted table requires
O(log(n)) steps, the overall cost is about 232×32×2+232×32+216×32 = 238.585

operations.

6 Recovering the Rest of the Inner State

In the previous subsections, we have reduced the LFSR complexity to 232 can-
didates for (s4, s5, s6, s7) and 216 candidates for the registers present in (9). In
this subsection, a guess-and-determine like procedure that completes the secret
inner state recovery is provided.

Let R10
t denote the least significant bit of register R1t. To recover s4, s5, R10

and R20, the following steps are applied:

- Pick a row from table T as a guess for (9)
- Determine s4 from s4 = α(αs1)⊕ α(s10 ⊕ s11) which holds due to (1) since

s1, s10 and s11 are known
- Guess R10 by fixing the register to one of the 232 possible values.
- Determine:

- R20, from f0 = (R10 � s9)⊕R20

- R21, from R21 = Trans(R10)
- R11, from R11 = R20�(s2⊕R10

0 ·s9), which is another way to formulate
(2)

- R22, from R22 = Trans(R11)
- R12, from R12 = R21 � (s3 ⊕ R10

1 · s10), which follows from (2)
- R23, from R23 = Trans(R12)
- R13, from R13 = R22 � (s4 ⊕ R10

2 · s11), which follows from (2)
- s12, from f3 = (R13 � s12)⊕R23

- s5, from s12 = s11 ⊕ α−1s5 ⊕ αs2

With a guess for (9) from the first step of the procedure above and having
recovered s4, s5, R10 and R20, the only left unknown inner state registers are
s6 and s7. To recover the remaining two registers, the table of 232 candidates
for (s4, s5, s6, s7) obtained in Section 5.2 is matched with newly found value for
s4, s5, as follows. Consider the S-box input-output in the second iteration of
Sosemanuk, for which the input-output has not been recovered uniquely. For
some 0 ≤ i ≤ 31, f i

7|f i
6|f i

5|f i
4 and consequently, S(f i

7|f i
6|f i

5|f i
4) can take 4 values

as specified by Table 1. More precisely, rewriting (5) while isolating i-th S-box

zi
7|zi

6|zi
5|zi

4 = S(f i
7|f i

6|f i
5|f i

4)⊕ si
7|si

6|si
5|si

4, (12)

we have two options regarding the possible candidates. In other words, from the
last two rows of Table 1, we have either
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S(f i
7|f i

6|f i
5|f i

4) ∈ {0110, 1100, 0001, 1011} (13)

or
S(f i

7|f i
6|f i

5|f i
4) ∈ {1001, 1111, 0100, 0010}. (14)

Moreover, according to the procedure given in this subsection, the value of bits
si
4, si

5 has been determined uniquely. Since si
4 and si

5 are known, according to
(12), the two least significant bits of S(f i

7|f i
6|f i

5|f i
4) can be determined uniquely.

Finally, due to the structure of sets (13) or (14), given information on the two
least significant bits, all the 4 bits of S(f i

7|f i
6|f i

5|f i
4) are uniquely determined.

Presented reasoning uniquely determines the input-output for every S-box, from
which, according to (12), s7 and s6 are determined uniquely, which completes
the recovery of the whole secret inner state.

Now, the found secret inner state can be verified by comparing the actual
Sosemanuk output with the output produced by the recovered inner state. If a
difference registered, the next guess for (9) and R10 is made and the procedure
is repeated.

7 Summary and Conclusions

In this paper, a differential fault analysis attack on Sosemanuk has been pre-
sented. The overall attack complexity can be summarized as follows:

- The average number of faults required to perform the attack is 4 × 1536 =
6144. These 1536 transient faults are introduced in steps t = 0, t = 1, t = 2
and t = 4. This fault injection phase requires the attacker to reinitialize the
cipher for 6144 times

- The number of operations required for the attack is dominated by the guess-
and-determine part of the analysis. Namely, as concluded in Section 5.3,
table T has 216 rows and thus there exists 216 possible guesses for (9). Since
register R10 is a 32-bit value, the number of guesses that need to be checked
is 216×232 = 248. Verifying each guess according to the procedure in Section
6 is equivalent to one Sosemanuk iteration and thus the attack requires
work equivalent to around 248 iterations.

- The storage amount required for the attack is equal to the size of the tables
T1, T3 and T which amounts to 238.17 bytes.

It should be noted that, when compared to other stream ciphers in the equivalent
fault analysis model, DFA of Sosemanuk requires a relatively smaller number
of faults. For example, the DFA attack on RC4 given in [16] requires 216 faults
in random locations of the RC4 inner state. Another DFA attack on HC-128
[19] requires around 213 faults in random locations. In future work, it will be
interesting to see whether the number of faults for the DFA of Sosemanuk and
other stream ciphers can be drastically decreased in the assumed fault model.

A naive approach to prevent our attack is to use algorithm level redundancy
and disable the device output if the two produced key stream values do not
match. Another more efficient approach, which partially protects against fault
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attacks, is to add parity bits to all the inner state registers and disable the device
output if any of these parity checks is violated. Efficient fault analysis resistant
implementations for Sosemanuk, as well as for other stream ciphers, need to
be addressed in future research.
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Abstract. In this paper we present an improved differential fault at-
tack on the Advanced Encryption Standard (AES) with 256-bit key. We
show an improved attack which retrieves the AES-256 key using two
pairs of fault free and faulty ciphertexts and a brute-force search of 216

with a time complexity 232. The attack retrieves the secret key within
approximately 45 minutes, running on desktop Intel CoreTM2 Duo pro-
cessor of 3GHz speed. To the best of the knowledge of the authors, this
is the most optimized fault attack on AES-256 among reported results
requiring only two faulty ciphertexts.

Keywords: Differential Fault Analysis, Fault Attack, Advanced En-
cryption Standard.

1 Introduction

The modern ciphers implemented in embedded device such as smart cards, are
shown to be extremely vulnerable to the fault based cryptanalysis. An attacker
can deliberately induce fault into a crypto-device by means of external noise like
electromagnetic radiation, voltage variation , glitch in the input clock line [3].
Then by analysing the faulty and fault free output ciphertexts she can retrieve
the entire secret key of the cryptosystem. Fault attack was introduced by Boneh
et al. [7] in 1997. Subsequently, a more lethal form of the attack was proposed
by Adi Shamir and Biham which is known as the Differential Fault Analysis
(DFA) [5]. They retrieved the secret key of DES cryptosystem by analysing the
differences between the faulty and fault free ciphertexts.

In 2001, NIST introduced AES [1] as the next generation symmetric key block
cipher. Since then there were many DFA attack on AES-128 [6, 9, 11]. Most
efficient among them was the attack proposed by Piret and Quisquater [19].
They, for the first time showed that a DFA analysis on AES-128 is possible
with only two faulty ciphertexts by injecting a fault at the eighth round input.
In 2009, D. Mukhopadhyay proposed an improved version of the Piret’s attack
in [18], which required only one faulty ciphertext and a brute-force search of 232.
The same result was also shown by Fukunaga et al. in [10]. In 2010, Michael
Tunstall et al. in [21] showed that the attack on AES-128 using single faulty
ciphertext can further be improved by reducing the brute-force search to 28
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from 232. Subsequently, there were two more works [2,13] proposed which made
the attack proposed in [21] four times faster by reducing the time complexity of
the attack to 230, which was earlier 232.

All these previous attacks only targeted AES-128. There are two more versions
of AES, AES-192 and AES-256 which was subsequently analyzed by fault at-
tacks. It was assumed that the proposed attack of Piret et al. in [19] on AES-128
can be extended to AES-192 and AES-256 with little modifications. However,
later that assumption was proved to be wrong. It was only in 2009, Li et al.
first proposed a DFA on AES-192 and AES-256. They were motivated by the
work of M. Amir et al. [17]. The proposed attack on AES-256 was based on two
different fault models which requires 6 and 3000 pairs of fault free and faulty
ciphertexts. Takahashi and Fukunaga in [20] first time exploited the relations
between the round keys of the key scheduling algorithm. They proposed an at-
tack on AES-192 and AES-256. The attack on AES-192 required three pairs of
correct and faulty ciphertexts and the attack on AES-256 required two pairs of
correct and faulty ciphertext and two pairs of correct and faulty plaintexts. The
attack was further improved by Chong Hee Kim in [14,15]. The author proposed
a new attack on AES-192 and AES-256. The attack on AES-192 required two
pairs of fault free and faulty ciphertexts, and the attack on AES-256 required
three pairs of fault free and faulty ciphertexts. A Similar attack was proposed by
Christophe Giraud et al. in [12], which reduced the AES 256-bit key space to 218

choices using three faulty ciphertexts and a fault free ciphertext. The author also
proposed a DFA using two faulty ciphertexts with attack complexity 284 which
is not in practical limit. Recently a DFA on AES-256 was proposed in [16], which
required two faulty ciphertexts, but still had a high time complexity of 248.

In this paper we propose an improved DFA on AES-256. Our attack uses two
pairs of correct and faulty ciphertexts. We show that the AES-256 key space
reduces to 216 using an attacking algorithm which has a time complexity of 232.
We present experimental results to show that such an attack can be done on
desktop Intel CoreTM2 Duo processor of 3GHz speed, in around 45 minutes.

Organization

The paper is organized as follows: In Section 2 we describe the Preliminaries to
this paper. In Section 3 we describe the existing attack. In Section 4 we describe
the attack improvement techniques. In Section 5 we explain the proposed attack.
In Section 6 we describe some experimental results. In Section 7 we compare
the work presented in this paper with the previous works, and we conclude in
Section 8.

2 Preliminaries

2.1 The AES Algorithm

AES [1] is a 128-bit symmetric key block cipher which has three different ver-
sions AES-128, AES-192, and AES-256 with key length 128, 192, and 256 bits
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respectively. A 128-bit block is represented as a 4×4 matrix, known as the state
matrix. The elements of the matrix are represented by a variable, bi,j , where
0 ≤ i, j ≤ 3 and i, j refers to the ith row and jth column of the state matrix.
The entire AES algorithm is a repetition of the round operation, which consist
of four basic transformations namely SubBytes, ShiftRows, MixColumns and
AddRoundKey. AES-128 has 10 rounds, AES-192 has 12 rounds, and AES-256
has 14 rounds. The last round of each of the three version of AES does not have
MixColumns operation. The four basic transformations are described as follows:

SubBytes : It is the only non-linear transformation in AES. Each element of
the state matrix is replaced by its inverse and followed by an affine mapping.
All the operations are under F28 .

ShiftRows : In this transformation the last three rows of the state matrix are
circularly rotated towards left. The second row is rotated by one bytes, the
third row is rotated by two bytes and the last row is rotated by three bytes.

MixColumns : It is a column level linear transformation of the state matrix.
Each column of the state matrix is considered as a polynomial of degree 3
with coefficient in F28 and multiplied with the polynomial {03}x3+{01}x2+
{01}x + {02}.

AddRoundKey: In this transformation the 128-bit round key is bit-wise xor-ed
with the 128-bit state.

From now onwards we denote the SubBytes, ShiftRows,and MixColumns as
SB, SR and MC respectively and the corresponding inverse functions as SB−1,
SR−1 and MC−1.

2.2 Fault Model Used

The fault model of an attack defines the type of the fault i.e. single byte fault
or multi byte fault and the location where the fault is being induced.

In this work we assume that the attacker has the ability to induce a single
byte arbitrary fault in any particular round of AES. The assumption is based on
the iterative implementation of AES, where the attacker can precisely calculate
the timing of a particular round and induce a fault by means of a glitch in the
clock input line or power supply line [10].

In the next section we describe the existing DFA on AES-256 developed by
Kim [14, 15], which takes three faulty ciphertexts and uniquely determines the
key.

3 Existing Fault Analysis

The existing attack [14,15] on AES-256 took its motivation from the attacks [18]
and it’s improved version [21] on AES-128 . The attack requires three faulty
ciphertexts: Ĉ1, Ĉ2, and Ĉ3. The first two ciphertexts are obtained by inducing
fault in between 11th and 12th round MixColumns and the third ciphertext is
obtained by inducing fault in between the 10th and 11th round MixColumns.
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Fig. 1. Fault induced in between 11th and 12th round MixColumns

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����

����
����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
������
���
���
���

���
���
���
���

SRMC

MC SB SR MC

SB

SBSR

K13

D1

K14

D3D4

X

D2D0

K11
K12

Fig. 2. Fault induced in between 10th and 11th round MixColumns
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Fig. 3. AES-256 Key scheduling algorithm for last three round key K12, K13 and K14

The attack analysis can be divided into three phases. In the first phase of the
attack requires two pairs of fault free and faulty ciphertexts (C, Ĉ1) and (C, Ĉ2)
to retrieve the final round key K14 of the AES-256. In the second phase of
the attack a third pair (C, Ĉ3) is used to get the possible candidates of the
penultimate round key K13. In the final phase, the 256-bit AES key is uniquely
determined.

We describe the three phases in brief.
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3.1 First Phase of the Attack

The first phase of the attack is direct application of the attack proposed in [18].
The two faulty ciphertext Ĉ1 and Ĉ2 are used to uniquely determined the final
round key K14. Figure 1 shows the propagation of a single byte fault induced
in between the 11th and 12th round MixColumns. The state matrix D0, D1, D2,
and D3 show the xor differences of corresponding faulty and fault free states.
The differences in the first column of D2 will produce the following system of
equations as in [18]:

2F1 = SB−1(C0,0 ⊕K14
0,0)⊕ SB−1(Ĉ1(0,0) ⊕K14

0,0)

F1 = SB−1(C1,3 ⊕K14
1,3)⊕ SB−1(Ĉ1(1,3) ⊕K14

1,3)

F1 = SB−1(C2,2 ⊕K14
2,2)⊕ SB−1(Ĉ1(2,2) ⊕K14

2,2)

3F1 = SB−1(C3,1 ⊕K14
3,1)⊕ SB−1(Ĉ1(3,1) ⊕K14

3,1)

(1)

Using this system of equations the attacker reduces the number of choices of
quadruples 〈K14

0,0, K
14
1,3, K

14
2,2, K

14
3,1〉 to 28 from 232. Similarly, from the other three

columns of D2 three more systems of equations are deduced, which reduce the
search space of the quadruples 〈K14

0,1, K
14
1,0, K

14
2,3, K

14
3,2〉, 〈K14

0,2, K
14
1,1, K

14
2,0, K

14
3,3〉,

and 〈K14
0,3, K

14
1,2, K

14
2,1, K

14
3,0〉 to 28 choices each. Combining all four quadruple we

have 232 choices of K14. Therefore, this technique filters 232 candidates out of
2128 possible candidate of K14. So, repeating this technique once again with
another pair of fault free and faulty ciphertexts and the 232 candidates of K14,
the attacker uniquely determines the key. Now the attacker gets the 13th round
faulty and fault free output values by performing one round inverse operation
with the help of the ascertained K14.

In the second phase of the attack, the attacker uses the last round key K14

to deduce the 13th round key K13.

3.2 Second Phase of the Attack

In the second phase of the attack, another pair of fault free and faulty ciphertexts
(C, Ĉ3) is used by inducing a single byte fault in between the 10th and 11th

round MixColumns. Figure 2 depicts the flow of fault corresponding to the faulty
ciphertext Ĉ3. Now the differences in each columns of D2 produce four differential
equations. For example the first column produces the following set of equations:

2α = SB−1(X0,0)⊕ SB−1(X0,0 ⊕ ε0,0)

α = SB−1(X1,0)⊕ SB−1(X1,0 ⊕ ε1,3)

α = SB−1(X2,0)⊕ SB−1(X2,0 ⊕ ε2,2)

3α = SB−1(X3,0)⊕ SB−1(X3,0 ⊕ ε3,1)

(2)

where X is the 13th round SubBytes output and ε = MC−1
(
SR−1

(
SB−1(C ⊕

K14)
)
⊕ SR−1

(
SB−1(Ĉ3 ⊕ K14)

))
. The 14th round key K14 and the faulty
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and fault free ciphertexts C and Ĉ3 are known to the attacker. Therefore, the
unknown in the system of equations (2) are the values of X . The above system of
equations reduce the number of candidates of quadruple 〈X0,0, X1,0, X2,0, X3,0〉
to 28 from 232. Similarly, from the other three columns of D2, three more systems
of equations are deduced and subsequently the number of possible candidates of
quadruples 〈X0,1, X1,1, X2,1, X3,1〉, 〈X0,2, X1,2, X2,2, X3,2〉 and 〈X0,3, X1,3, X2,3,
X3,3〉 are reduced to 28 each. Similar equations can also be deduced from the
differences in the first column of D1 in Figure 1, which corresponds to faulty
ciphertext Ĉ1 and Ĉ2. These equations, further reduce the possible candidates of
〈X0,0, X1,0, X2,0, X3,0〉 to one choice from 28 choices. Therefore, finally there are
224 possible candidates of X . Each of these candidates of X is then transformed
into the 13th round key K13 by using the relation K13 = MC(SR(X)) ⊕ C13,
where C13 is 13th round output ciphertext value, which is known to the attacker
from the output ciphertext and K14 ascertained previously.

The third phase of the attack uniquely determines the master key from one
choice of K14 and 224 choice of K13.

3.3 Third Phase of the Attack

The third phase of the attack employs the key reduction technique proposed
in [21]. Using the key scheduling algorithm of AES-256 the 12th round key K12

is deduced from K13 and K14. Each candidate of K12 is tested by the four sets
of equations deduced from the differences in the first column of the state matrix
D1 in Figure 2. These four equations reduce the 224 possible candidates of K12

to one candidate. Therefore, finally there is only one candidate of K12, K13,
and K14.

3.4 Analysis

The above three phase attack reduces the number of possible 256-bit key of
AES-256 to one choice. However, the attack’s worst case time complexity is 224.
It is when the faulty ciphertexts Ĉ1 and Ĉ2 are affected in the same column
by the induced fault. It may be observed that the existing attack can also be
done using two faulty ciphertexts, for example using faulty ciphertext C1 and
C3. In that case the attacker can deduce 232 possible candidates of K14 using
faulty ciphertext Ĉ1, following the method proposed in [18]. Then the attacker
can apply the existing attack on each candidates of K14. However, the time
complexity of the attack will be 232 × 224 = 256 which is not in practical limits.

In the next section we explain two observations based on which the existing
attack’s time complexity can be reduced further.

4 Attack Time and Search Space Complexity Reduction
Techniques

There are two main observations we discuss in this section. The first observation
is in the second phase of the attack which is already used in existing attack
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[14,15] as well as in the attack proposed in [12], to reduce the number of possible
candidates of K13 to 224 (or 216 if the byte faults in Ĉ1 and Ĉ2 are induced in
two different columns) from 232. However, we used the first observation with
two different purposes: first for reducing the possible candidates of final round
key and secondly to reduce the possible candidates of 13th round keys. The
second observation is in the third phase of the attack. We observed that the
time complexity of the existing attack is based on the third phase which is
currently 224. This time complexity of the third phase can be reduced to 216

based on the second observation. We show that these two observations lead to
an improved DFA on AES-256 with two faulty ciphertexts.

In the remaining part of the section we elaborate our observations.

4.1 The First Observation

In the second phase of the attack we have four sets of equations from the dif-
ferences in the four different columns of the state matrix D2 (as depicted in
Figure 2), which corresponds to the faulty ciphertexts Ĉ3 . The first column
produces the set of equations (2) with unknown 〈X0,0, X1,0, X2,0, X3,0〉. Simi-
larly, from the first column of D1 (as depicted in Figure 1), which corresponds
to faulty ciphertext Ĉ1 we have following set of equations with same unknowns
〈X0,0, X1,0, X2,0, X3,0〉:

2α′ = SB−1(X0,0)⊕ SB−1(X0,0 ⊕ ρ0,0)

α′ = SB−1(X1,0)⊕ SB−1(X1,0 ⊕ ρ1,3)

α′ = SB−1(X2,0)⊕ SB−1(X2,0 ⊕ ρ2,2)

3α′ = SB−1(X3,0)⊕ SB−1(X3,0 ⊕ ρ3,1)

(3)

where ρ = MC−1
(
SR−1

(
SB−1(C ⊕ K14)

)
⊕ SR−1

(
SB−1(Ĉ1 ⊕ K14)

))
. The

fault free and faulty ciphertexts C and Ĉ1 are fixed. If the final round key K14

is fixed then the values of ρ and ε also gets fixed. For a given value of α and α′,
one choice of 〈X0,0, X1,0, X2,0, X3,0〉 satisfies the two sets of equations (2) and
(3) with a probability ( 1

28 )8 = 1
264 . We have to consider all possible 256 values

of α and α′. Therefore, the probability of satisfying both the sets of equations
is (28)

2

264 = 1
248 . There are 232 candidates of 〈X0,0, X1,0, X2,0, X3,0〉 out of which

232

248 = 1
216 candidate satisfy both the sets of equations. This implies that only the

actual candidate of 〈X0,0, X1,0, X2,0, X3,0〉 will satisfy both the sets of equations,
rest will be discarded with very high probability (1− 1

216 ).
However, if K14 is not fixed, in that case each value of K14 and the correspond-

ing value of ρ and ε will have 232 possible candidates of 〈X0,0, X1,0, X2,0, X3,0〉.
For example say K14 has 2M candidates which implies 2M × 232 = 2M+32 can-
didates of K14 and 〈X0,0, X1,0, X2,0, X3,0〉 out of which 2M+32

248 = 2M−16 can-
didates satisfy both the sets of equations (2) and (3). This means, out 2M

candidates of K14 in an average 2M−16 candidates will have one choice of
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〈X0,0, X1,0, X2,0, X3,0〉 satisfying both the sets of equations (2) and (3). There-
fore, the two sets of equations (2) and (3) can be used as a filter to reduce the
possible candidates of K14 by considering only those candidates of K14 which
returns at least one candidate of 〈X0,0, X1,0, X2,0, X3,0〉. Therefore, the first ob-
servation can be used to reduce the space complexity of the final round key
K14.

4.2 The Second Observation

This observation is based on the third phase of the attack as described in Sec-
tion 3.3. In the third phase of the attack each of the 224 possible candidates of
K13 is converted to 12th round key K12, using the key scheduling algorithm.
Then three rounds of inverse operations are performed on the fault free and
faulty ciphertexts C and Ĉ3 using unique value of K14 and one choice of K13

and the corresponding candidate of K12 to get the differences {2δ, δ, δ, 3δ} in the
first column of D1 as depicted in Figure 2, where δ is a non-zero arbitrary byte.
Then using the relation {2δ, δ, δ, 3δ}, the number of possible candidates of K12

are reduced. However, this requires a huge execution overhead which is equiva-
lent to seven round operations: one round inverse operation for getting K14, two
round inverse operations for getting X , one round operation for deducing K13

from X , and finally three round inverse operations for getting the differences at
the first column of D1. We can reduce these execution overhead by reusing the
intermediate results. First, we can save the 13th round outputs while calculating
K14 and use it in calculating X . Similarly, we can save the 12th round fault free
and faulty output SB−1(Xi,j) and SB−1(Xi,j ⊕ εp,q) while calculating X and
can directly use it to get the differences in the first column of D1 as follows:

2δ =SB−1
(
14(SB−1(X0,0) ⊕ K12

0,0) ⊕ 11(SB−1(X1,0) ⊕ K12
1,0)

⊕ 13(SB−1(X2,0) ⊕ K12
2,0) ⊕ 9(SB−1(X3,0) ⊕ K12

3,0)
)

⊕ SB−1
(
14(SB−1(X0,0 ⊕ ε0,0) ⊕ K12

0,0) ⊕ 11(SB−1(X1,0 ⊕ ε1,3) ⊕ K12
1,0)⊕

13(SB−1(X2,0 ⊕ ε2,2) ⊕ K12
2,0) ⊕ 9(SB−1(X3,0 ⊕ ε3,1) ⊕ K12

3,0)
) (4)

δ =SB−1(9(SB−1(X0,3) ⊕ K12
0,3) ⊕ 14(SB−1(X1,3) ⊕ K12

1,3)⊕
11(SB−1(X2,3) ⊕ K12

2,3) ⊕ 13(SB−1(X3,3) ⊕ K12
3,3)
)

⊕ SB−1(9(SB−1(X0,3 ⊕ ε0,3) ⊕ K12
0,3) ⊕ 14(SB−1(X1,3 ⊕ ε1,2) ⊕ K12

1,3)⊕
11(SB−1(X2,3 ⊕ ε2,1) ⊕ K12

2,3) ⊕ 13(SB−1(X3,3 ⊕ ε3,0) ⊕ K12
3,3)
) (5)

δ =SB−1
(
13(SB−1(X0,2) ⊕ K12

0,2) ⊕ 9(SB−1(X1,2) ⊕ K12
1,2)⊕

14(SB−1(X2,2) ⊕ K12
2,2) ⊕ 11(SB−1(X3,2) ⊕ K12

3,2)
)

⊕ SB−1(13(SB−1(X0,2 ⊕ ε0,2) ⊕ K12
0,2) ⊕ 9(SB−1(X1,2 ⊕ ε1,1) ⊕ K12

1,2)⊕
14(SB−1(X2,2 ⊕ ε2,0) ⊕ K12

2,2) ⊕ 11(SB−1(X3,2 ⊕ ε3,3) ⊕ K12
3,2)
) (6)
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Fig. 4. Propagation of fault when the single byte fault is injected in between 11th and
12th round MixColumns
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Fig. 5. Propagation of fault when the single byte fault is injected in between 10th and
11th round MixColumns

3δ =SB−1
(
11(SB−1(X0,1) ⊕ K12

0,1) ⊕ 13(SB−1(X1,1) ⊕ K12
1,1)⊕

9(SB−1(X2,1) ⊕ K12
2,1) ⊕ 14(SB−1(X3,1) ⊕ K12

3,1)
)

⊕ SB−1(11(SB−1(X0,1 ⊕ ε0,1) ⊕ K12
0,1) ⊕ 13(SB−1(X1,1 ⊕ ε1,0) ⊕ K12

1,1)⊕
9(SB−1(X2,1 ⊕ ε2,3) ⊕ K12

2,1) ⊕ 14(SB−1(X3,1 ⊕ ε3,2) ⊕ K12
3,1)
) (7)

Each of the above equations consist of one column of X and one column of K12.
It may be noted that the last three columns of K12 are solely dependent on K14.
Figure 3 depicts the relation between the last three round keys K12, K13 and
K14 as per the AES-256 key scheduling algorithm. Therefore, now the execution
overhead is reduced to almost three rounds of inverse operation which was seven
rounds earlier.

Now if we observe the above four equations we can see that only the first
equation required all the four columns of X , as the first column of K12 depends
on K13. The remaining three equations are independent of each others as each
of them consist of one column of X and one column of K12 which can indepen-
dently be calculated from K14. Therefore, we can choose any two equations of
the last three equations and reduce the corresponding X values [2]. After that we
can choose the third equation to further reduce the values of X . For example we
can first select equations (5) and (6) which will reduce the possible candidates
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of quartet pair 〈X0,3, X1,3, X2,3, X3,3〉 and 〈X0,2, X1,2, X2,2, X3,2〉 to 28×28

28 = 28

from 216. Then we can choose the equation (7) which will finally reduce the
possible choices of three quartets 〈X0,1, X1,1, X2,1, X3,1〉, 〈X0,2, X1,2, X2,2, X3,2〉
and 〈X0,3, X1,3, X2,3, X3,31〉 to 28×28

28 = 28. After that if we choose the first equa-
tion (4), where the number of possible candidates of quartet 〈X0,0, X1,0, X2,0,

X3,0〉 is 1, then the possible candidates of X reduce to 1×28

28 = 1. Therefore,
through out the third phase of the attack the time complexity remain 216. This
observation serves two purpose: first it reduces the required operation from 7
rounds to 3 rounds and secondly it reduces the time complexity of the third
phase of the attack to 216.

Note : It may be noted that if the fault occurs in any one of the last three
columns of the state matrix, the same observation gives better result. As Figure 4
and Figure 5 show, the fault induced at the second column. In that case the
number of possible candidates of the third column of X will reduce to one choice
and rest of the columns possible choices remain 28 each. Therefore, the possible
candidates of last three column will reduce to one choice by following the above
technique. Finally, the time complexity will reduced to 28.

In the next section we propose an improved DFA on AES-256 based on ob-
servation one and two which requires two faulty ciphertexts.

5 Improved Attack on AES-256 Using Two Faulty
Ciphertexts

The second observation stated above (Section 4.2) shows that the existing at-
tack’s time complexity can be reduce to 216 which implies that the same attack
can be done using two faulty ciphertexts with a time complexity of 232 × 216 =
248. This is shown in [16]. However, this complexity is quite high in terms of
actual execution time of the attack. We implemented the attack using the opti-
mization technique mentioned in observation two as well as using sbox difference
table and found that the attack still consumes on an average 10 million CPU
cycles on Intel CoreTM2 Duo processor of 3GHz speed for one choice of K14.
Therefore, 232 such choices will take a huge execution time which is not feasible
in terms of side-channel attacks. We proposed an improved attack using two
faulty ciphertexts Ĉ1 and Ĉ2 with time complexity 224 when the fault is induced
in last three columns of the state matrix and 232 when the fault is induced in
the first column of the state matrix.

The faulty ciphertext Ĉ1 is generated by inducing a single byte fault in be-
tween 11th and 12th round MixColumns whereas the faulty ciphertext Ĉ2 is
generated by inducing a single byte fault in between 10th and 11th round Mix-
Columns. The attack is divided into two phases. The first phase of the attack
reduces the possible candidates of K14 to 216 choices. In the second phase, the
attack deduces the corresponding 216 candidates of penultimate round key K13.

In the next section we describe the first phase of the attack.
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5.1 First Phase of the Proposed Attack

In the first phase of the attack we first use the faulty ciphertext Ĉ1 which cor-
responds to Figure 1. Therefore, as per the Figure 1, the differences in the four
columns of the state matrix D2 produce four quartets of key bytes 〈K14

0,0, K
14
1,3,

K14
2,2, K14

3,1〉, 〈K14
0,1, K

14
1,0, K

14
2,3, K

14
3,2〉, 〈K14

0,2, K
14
1,1, K

14
2,0, K

14
3,3〉, and 〈K14

0,3, K
14
1,2, K

14
2,1,

K14
3,0〉, each of size 28. Using these four quartets we first deduce the values of the

four faulty bytes 〈ρ0,0, ρ1,3, ρ2,2, ρ3,1〉 at the first column of the state matrix X .
Each of these four faulty bytes require one of the four quartets of key bytes. For
example the first byte is given by:

ρ0,0 =
(
14(SB−1(C0,0 ⊕K14

0,0)⊕ SB−1(Ĉ1(0,0) ⊕K14
0,0))⊕

11(SB−1(C1,3 ⊕K14
1,3)⊕ SB−1(Ĉ1(1,3) ⊕K14

1,3))⊕

13(SB−1(C2,2 ⊕K14
2,2)⊕ SB−1(Ĉ1(2,2) ⊕K14

2,2))⊕

9(SB−1(C3,1 ⊕K14
3,1)⊕ SB−1(Ĉ1(3,1) ⊕K14

3,1))
)

(8)

If we observe the above equation (8) and the set of equations (1) carefully we
can see that the equation (8) consists of only the differences (2F1, F1, F1, 3F1)
of the set of equations (1). Therefore, to speed up the execution we can reuse
the differences from the equation (1) to calculate the values of ρ as follows:

ρ0,0 =14(2F1)⊕ 11(F1)⊕ 13(F1)⊕ 9(3F1) (9)

Similarly, we calculate the values of the other three faulty bytes ρ1,3, ρ2,2 and
ρ3,1 of the first column of state matrix X corresponding to the faulty cipher-
text Ĉ1. It may be noted that each of these faulty bytes corresponds to one
quartet of key byte of K14. Using the same method we calculate the differences
〈ε0,0, ε1,3, ε2,2, ε3,1〉 at the first column of X (as depicted in Figure 2), which
corresponds to the second faulty ciphertext Ĉ2.

Now we apply the observation one as described in Section 4.1 to reduce the
possible candidates of K14. In order to reduce the time complexity of the first
phase we rewrite the system of equations (2) and (3) as follows:

2α′ = SB−1(X0,0)⊕ SB−1(X0,0 ⊕ ρ0,0) (10a)

2α = SB−1(X0,0)⊕ SB−1(X0,0 ⊕ ε0,0) (10b)

α′ = SB−1(X1,0)⊕ SB−1(X1,0 ⊕ ρ1,3) (11a)

α = SB−1(X1,0)⊕ SB−1(X1,0 ⊕ ε1,3) (11b)

α′ = SB−1(X2,0)⊕ SB−1(X2,0 ⊕ ρ2,2) (12a)

α = SB−1(X2,0)⊕ SB−1(X2,0 ⊕ ε2,2) (12b)
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3α′ = SB−1(X3,0)⊕ SB−1(X3,0 ⊕ ρ3,1) (13a)

3α = SB−1(X3,0)⊕ SB−1(X3,0 ⊕ ε3,1) (13b)

The above four pairs of equations are independent of each others because each
pair of equations require one of the four quartets of K14. Therefore, instead of
considering all the four pairs of equations at a time we consider two pairs of
equations at a time. For example we first choose the pairs of equations (10) and
(11), those who satisfy these two pairs of equations are tested by the third pair of
equations (12). Those who satisfy the third pairs of equations are tested by the
fourth pair of equations (13). These four pairs of equations reduce the possible
candidates of K14 to 216 each having one candidate of 〈X0,0, X1,0, X2,0, X3,0〉.

Analysis. To get the values of 〈X0,0, X1,0, X2,0, X3,0〉 for a given value of
α, α′, ρ, and ε, we use sbox difference table. Therefore, for the two equations
(10a) and (11a), we guess the values of α′ for each value of the pair (ρ0,0, ρ1,3)
and then we get the corresponding values of ε0,0, ε1,3, X0,0, and X1,0 and are
tested by the equations (10b) and (11b). Therefore, in equation (10a) and (11a),
we have 28× 28× 28 = 224 possible choices of α′, ρ0,0, and ρ1,3, which is reduced
to 216 by the equations (10b) and (11b). Each of these 216 values combined
with 28 values of ρ2,2 and tested by the third pair of equations (12), which is
again reduced to 216. Each of these values again combined with 28 values of
ρ3,1 and tested by the fourth pair of equations (13), which is finally reduced to
216. Therefore, through out the process we test only 224 values. Hence, the time
complexity of the first phase of the attack is 224.

The total probability of above eight equations ( four pairs (10),(11), (12) and
(13) ) is 2−48. There are total 232 possible candidates of K14, each having 232 pos-
sible candidates of 〈X0,0X1,0, X2,0, X3,0〉. Therefore, only 232×232

248 = 216 candi-
dates will satisfy the above eight equations. Which means out of 232 candidates of
K14 only 216 candidates will have one candidate of 〈X0,0, X1,0, X2,0, X3,0〉 each,
rest of the 216 candidates of K14 will produce no candidate of 〈X0,0, X1,0, X2,0,
X3,0〉.

5.2 Second Phase of the Proposed Attack

In the second phase, we deduce the penultimate round key K13 correspond-
ing to each of the 216 candidates of K14 generated from the first phase of the
attack. For one choice of K14 we first deduce the possible candidates of the
last three columns of X , i.e. 〈X0,1, X1,1, X2,1, X3,1〉, 〈X0,2, X1,2, X2,2, X3,2〉 and
〈X0,3, X1,3, X2,3, X3,3〉, corresponding to the second faulty ciphertext Ĉ2. As per
the AES-256 key scheduling algorithm which is depicted in Figure 3, the last
three columns of 12th round key K12 are directly deduced from the candidate of
K14 as K12

i,j = K14
i,j ⊕K14

i,j−1 where 0 ≤ i ≤ 3 and 1 ≤ j ≤ 3.
Now, we can apply the observation two (Section 4) to reduce the time com-

plexity of the attack. We first consider equation (5) and (6) and reduce the
possible candidates of 〈X0,3, X1,3, X2,3, X3,3〉, and 〈X0,2, X1,2, X2,2, X3,2〉 to 28



344 Sk. Subidh Ali and D. Mukhopadhyay

from 216 choices. Then each of these candidates are combined with 28 candidates
of 〈X0,1, X1,1, X2,1, X3,1〉 and tested by equation (7) which further reduces the
possible candidates of three quartets to 28 and then each of these candidates of
three quartets are combined with one candidate of 〈X0,0, X1,0, X2,0, X3,0〉 and
tested by equation (4) which actually reduces the possible choices of four quartets
of X to one choice. Therefore, for each candidates of K14 we get one candidate
of X which corresponds to one candidate of K13. Therefore, 216 candidates of
K14 will produce on an average 216 candidates of K13. So, finally we get 216

possible pairs of candidates (K13, K14).
The attack procedure is summarized in Algorithm 1.

Algorithm 1. Fault Attack on AES-256 using two Faulty Ciphertexts

Input: C, Ĉ1, Ĉ2
Output: List of 256-bit key Lk

/* Xi,j = 〈X0,j , X1,j , X2,j , X3,j〉*/
/* K12

i,j = 〈K12
0,j , K12

1,j , K12
2,j , K12

3,j〉*/
Get the 216 candidates of K14 by applying first phase of the proposed attack
for each candidates of K14 do

Guess the possible candidates of Xi,1, Xi,2, and Xi,3

Get the values of K12
i,1, K12

i,2, and K12
i,3 from K14

for each candidates of Xi,3 do
for Each candidates of Xi,2 do

Test equations (5) and (6)
if Satisfied then

for Each candidates of Xi,1 do
Test equation (7)
if Satisfied then

for Each candidates of Xi,0 do
Get K12

i,0 from K14 and Xi,1, Xi,2, Xi,3

Test equation (4)
if Satisfied then

Get K13 from X
Get 256-bit key from AES-256 Key Scheduling algorithm
save the 256-bit key to Lk

end

end

end

end

end

end

end

end

Analysis. For one candidates of K14 the time complexity of the second phase
of the attack is 216. Therefore, for 216 candidates the time complexity is 232.
The probability of the four equations (4),(5),(6) and (7) is 2−24. There are 216

candidates of K14 each of which have 224 possible candidates of X . Therefore,
finally 216×224

224 = 216 candidates satisfy the four equations in the second phase
of the attack. Hence, the entire two phase attack’s complexity is 232.

Note : It may be noted that if the single byte fault induced in any one of the
last three columns of the state matrix as shown in Figure 4 and Figure 5, in that
case the time complexity of the second phase of the proposed attack will reduce
to 28. This implies, over all two-phase attack time complexity will reduce to 224.
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6 Experimental Results

We evaluated the program for fault analysis on several test cases where the two
byte faults were induced in between 11th and 12th round MixColumns and in
between 10th and 11th round MixColumns separately. On an average, on 3GHz
Intel CoreTM2 Duo platform with 2GB RAM, the attack required nearly 45
minutes to reduce the key space of AES-256 to 216 values. Such a byte fault
is indeed practical and can be achieved on actual hardware through even less
costly techniques like clock glitch [10] or voltage fluctuation [4]. We also devel-
oped a laboratory setup to induce faults in an FPGA implementation of AES
using glitches in the clock input line created by an arbitrary clock generator.
Furthermore, due to the note mentioned in Section 4, if the fault is induced in
any one of the last three columns of the AES state matrix, the time required by
the attack is even less, i.e. around 40 minutes. Over 100 tests were conducted
with different random keys. Table 1 shows some of the keys which were attacked.
We tested both the cases when the fault is induced in first column as well as
when the fault is induced in any one of the last three columns. In both the cases,
the key space is reduced to 216.

Table 1. Experimental Results

Random 256-bit Key
Fault in first column Fault in any one of the last three columns

Number of Keys Running Time Number of Keys Running Time

(minutes) (minutes)

226156432112475303294a5bc2326a96 43048 ≈ 215 45.697 59964 ≈ 216 41.242

19345421476b4e2b72191a845d30942a

12325456678995279083279465237316 35202 ≈ 215 44.994 52231 ≈ 215 40.426

1753157371851623827632153ba5b384

f23246d39882375602c9684ba2266273 31685 ≈ 215 43.994 53544 ≈ 216 40.147

17da5b421c6b2e2632181adc642725b2

603deb1015ca71be2b73aef0857d7781 27636 ≈ 215 43.68 32284 ≈ 215 41.07

1f352c073b6108d72d9810a30914dff4

34322233445699778899aa9434ca3c4d 37265 ≈ 215 46.103 41527 ≈ 215 40.763

1f352c073b6108d72d9810a30914dff4

7 Comparison

The method proposed in [14, 15] requires three faulty ciphertexts and a time
complexity of 224. The attack requires three faulty byte inductions, two in be-
tween 11th and 12th round MixColumns and one in between 10th and 11th round
MixColumns. However, the objective of a more optimized fault attack is to make
it more practical by reducing the number of faults and still keeping a practical
space and time complexity. In these lines there has been recent research to de-
velop DFA on AES-128 with reduced number of faults [18]. Recently in [16], it
was mentioned that AES-256 also can be subjected to a DFA with two faulty
ciphertexts with time complexity of 248 as it iterates the entire attack for 232

time using all the possible candidates of the final round key K14, which incurs
a huge attack execution time. However, ideally we would want to optimize the
attack to a practical time complexity which is lesser then 240.
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Table 2. Comparison with existing attack on AES-256

Reference Fault Model Number of Faults Exhaustive Search Time Complexity

[14,15] 1 byte random fault 3 1 224

[16] 1 byte random fault 2 216 248

Our attack 1 byte random fault 2 216 232

The proposed attack requires two faulty ciphertexts with time complexity of
232 and the final search space of AES-256 key is 216, which is also within practical
limits. The optimization is a resultant of two improvements: first, reduction
of possible key space of K14 to 216 values, with a time complexity of 224, as
opposed to 232 values in [16]. Secondly, using acceleration methods to compute
216 corresponding values of K13 for 216 possible values of K14 using a time
complexity of 232 as opposed to 248 values in [16]. It may also be noted that
when the fault is induced in any one of the last three columns, our attack time
complexity reduce to 224 as opposed to 240 in [16]. In short, our attack reduces
the search space of K10 to 216 from 232 at the beginning of the attack, so that
the rest of the attack is iterated for 216 times. Where as in case of attack in [16],
almost the entire attack is repeated for all the possible 232 candidates of K10,
which increases the attack time complexity. The summary of the comparison is
given in Table 2.

8 Conclusions

In this paper we proposed an improved differential fault attack on AES-256
using two faulty ciphertexts with time complexity of 232. The final search space
of AES-256 key is reduced to 216. We present extensive simulation results on
the proposed DFA to demonstrate that the attack is indeed successful within
practical time limits. To the best of our knowledge, the present attack improves
existing differential fault analysis of AES-256 by reducing the time complexity
of the attack from 248 to 232 using only two faulty ciphertexts.
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Abstract. In 1994, Josh Benaloh proposed a probabilistic homomor-
phic encryption scheme, enhancing the poor expansion factor provided by
Goldwasser and Micali’s scheme. Since then, numerous papers have taken
advantage of Benaloh’s homomorphic encryption function, including vot-
ing schemes, private multi-party trust computation, non-interactive veri-
fiable secret sharing, online poker. In this paper we show that the original
description of the scheme is incorrect, because it can result in ambiguous
decryption of ciphertexts. Then we show on several applications that a
bad choice in the key generation phase of Benaloh’s scheme has a real
impact on the behaviour of the application. For instance in an e-voting
protocol, it can inverse the result of an election. Our main contribution
is a corrected description of the scheme (we provide a complete proof of
correctness). Moreover we also compute the probability of failure of the
original scheme. Finally we show how to formulate the security of the
corrected scheme in a generic setting suitable for several homomorphic
encryptions.

Keywords: public-key encryption, probabilistic encryption, homomor-
phic encryption scheme, Benaloh’s scheme.

1 Introduction

An encryption scheme is homomorphic when it preserves some algebraic
structure (usually group, sometimes ring) between the cleartext space and the ci-
phertext space, allowing computations on data encrypted with the same key. Ex-
amples of such encryptions are RSA [37] or ElGamal [19] which have the property
that E(m1) × E(m2) = E(m1 ×m2). In 1982 Goldwasser-Micali [25] introduced
an encryption scheme with the different property E(b1) × E(b2) = E(b1 ⊕ b2).
Several homomorphic encryption schemes have followed: Benaloh [3], Naccache
and Stern [32], Okamoto and Uchiyama [33], Paillier [34] and its generaliza-
tion proposed by Damg̊ard and Jurik [17], Sander, Young and Yung [40], Boneh
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et al [6]. All these schemes are partially homomorphic, meaning they allow homo-
morphic computation of only one operation (either addition or multiplication) on
plaintexts. A cryptosystem allowing for homomorphic computation of two opera-
tions is called fully homomorphic. In 2009, Craig Gentry [21] found the first fully
homomorphic encryption scheme, using lattice-based cryptography. However his
scheme, while revolutionary, is not really practical and several recent works focus
on concrete realizations of a fully homomorphic encryption scheme [41,45,22,23].
Practitioners rely therefore on already existing partially homomorphic encryp-
tion. A survey of such cryptosystems can be found in [7] for non specialists, or
in [2] with a complexity analysis. In [36], Rappe considers homomorphic cryp-
tosystems and their applications, such as multiparty computation [12,29,18,16],
electronic voting [4,9,39,38,10,3,11,15,13,28], key exchange using a server [44],
non-interactive zero-knowledge [14], e-auction [1,43,8], non-interactive verifiable
secret sharing [10], and others [27,26,20,31].

Motivations and contributions: In 1994, Benaloh [3] proposed a homomorphic en-
cryption which has a better expansion factor than Goldwasser-Micali’s scheme [25].
This leads to a more practical scheme which has found several applications, such
as voting schemes [4,38,10], private multi-party trust computation [12,29,18], non-
interactive verifiable secret sharing [10], online poker [26]. Given all these appli-
cations of Benaloh’s scheme, we were surprised to discover that its key generation
process may in some cases lead to an ambiguous encryption.

Our first contribution is to show that the original scheme proposed by Be-
naloh in [3] does not give a unique decryption for all ciphertexts. We exhibit a
simple example and characterize when this can happen and how to produce such
counter-examples. The problem comes from the condition in public key gener-
ation: the original condition is not strong enough and allows to generate such
keys that will compute ambiguous ciphertexts for some plaintexts.

Our second contribution is to describe how this error in key generation can
have dramatic consequences in the applications of Benaloh’s scheme. In each
case we briefly explain how the application works on a simple example and show
that a wrong key generation can have important consequences. In the case of the
e-voting protocol it can change the result of an election; for private multi-party
trust computation it can completely modify the computed trust value.

Our last contribution is a new condition (suitable for implementations) for the
key generation which avoids such problems. We also compute the probability of
failure of the original scheme, in order to understand why nobody discovered
the problem before us. Moreover we discuss some schemes related to Benaloh’s
encryption. We also put the semantic security of the corrected encryption in
the context of Kristian Gjøsteen’s work [24]. Indeed revisited Benaloh’s scheme
can be seen as an instance of the general framework proposed for homomorphic
cryptosystem based on subgroup membership problem.

Outline: In Section 2 we recall the original Benaloh scheme. In Section 3 we give
a small example of parameters following the initial description and where we
have ambiguous decryption. In the next section, we discuss the (possibly serious)
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consequences of the problem we discovered in some applications. In Section 5
we give a corrected description of the scheme, with a proof of correctness. Then
in Section 6, we analyze the probability of choosing incorrect parameters in the
initial scheme. In Section 7 we discuss some schemes related to Benaloh’s scheme.
Finally before concluding, a semantic security analysis of the corrected scheme
is given in Section 8.

2 Original Description of Benaloh’s Scheme

Benaloh’s “Dense Probabilistic Encryption” [3] describes a homomorphic en-
cryption scheme with a significant improvement in terms of expansion factor
compared to Goldwasser-Micali [25]. For the same security parameter (the size
of the RSA modulus n), the ciphertext is in both cases an integer mod n, but
the cleartext in Benaloh’s scheme is an integer mod r for some parameter r de-
pending on the key, whereas the cleartext in Goldwasser-Micali is only a bit.
When computing the expansion factor for random keys, we found that it is most
of the times close to 2 while it is �log2(n)� for Goldwasser-Micali. We now recall
the three steps of the original scheme given in Benaloh’s paper [3].

Key Generation: The public and private key are generated as follows:

– Choose a block size r and two large primes p and q such that:
• r divides (p− 1).
• r and (p− 1)/r are relatively prime.
• r and q − 1 are relatively prime.
• n = pq.

– Select y ∈ (Zn)∗ = {x ∈ Zn : gcd(x, n) = 1} such that

yϕ/r 	= 1 mod n (1)

where ϕ denotes (p− 1)(q − 1).

The public key is (y, r, n), and the private key is the two primes p and q.

Encryption: If m is an element in Zr and u a random number in (Zn)∗ then we
compute the randomized encryption of m using the following formula:

Er(m) = {ymur mod n : u ∈ (Zn)∗}.

It is easily verified that:

Er(m1)× Er(m2) = Er(m1 + m2).

Decryption: We first notice that for any m, u we have:

(ymur)(p−1)(q−1)/r = ym(p−1)(q−1)/ru(p−1)(q−1) = ym(p−1)(q−1)/r mod n.
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Since m < r and y(p−1)(q−1)/r 	= 1 mod n, Benaloh concludes that m =
0 mod r if and only if (ymur)(p−1)(q−1)/r = 1 mod n. So if z = ymur mod n is an
encryption of m, given the secret key (p, q) we can determine whether m = 0 mod
r. If r is small, we can decrypt z by doing an exhaustive search of the smallest
non-negative integer m such that (y−mz mod n) ∈ Er(0). By precomputing
values and using the baby-step giant-step algorithm it is possible to perform
the decryption in time O(

√
r). Finally if r is smooth we can use classical index-

calculus techniques. More details about these optimization of decryption are
discussed in the original paper [3].

We remark that there is a balance to find between three parameters in this
cryptosystem:

– ease of decryption, which requires that r is a product of small prime powers,
– a small expansion factor, defined as the ratio between the size of the cipher-

texts and the size of the cleartexts. Because p and q have the same size and
r | p− 1, this expansion factor is at least 2,

– strength of the private key, meaning that n should be hard to factorize. In
the context of the P-1 factorization method [35], a large smooth factor of
p− 1 is a definite weakness.

We notice that the cryptosystem proposed by Naccache-Stern [32] four years
after Benaloh’s scheme and based on the same approach addresses this issue and
does not produce ambiguous encryption.

3 A Small Counter-Example

We start by picking a secret key n = pq = 241× 179 = 43139, for which we can
set r = 15. Algorithm 1 may be used to compute the maximal suitable value of
the r parameter if you start by picking p and q at random, but a smaller and
smoother value may be used instead, for an easier decryption.

Algorithm 1. Compute r from p and q.
r ← p − 1;
while gcd(q − 1, r) �= 1 do

r ← r/ gcd(r, q − 1);
end while

We verify that r = 15 divides p− 1 = 240 = 16× 15, r and (p− 1)/r = 16 are
relatively prime, r = 15 = 3× 5 and q − 1 = 178 = 2× 89 are coprime. Assume
we pick y = 27, then gcd(y, n) = 1 and y(p−1)(q−1)/r = 40097 	= 1 mod n so
according to Benaloh’s key generation procedure all the original conditions are
satisfied.

By definition, y112r = 24187 mod n is a valid encryption of m1 = 1, while
y64r = 24187 mod n is also a valid encryption of m2 = 6. In fact we can verify
that with this choice of y, the true cleartext space is now Z5 instead of Z15 (hence
the ambiguity in decryption): first notice that in Zp, y5 = 275 = 8 = 4115 = 41r.
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This means that a valid encryption of 5 is also a valid encryption of 0. For any
message m, the set of encryptions of m is the same as the set of encryptions of
m+5, hence the collapse in message space size. The fact that the message space
size does not collapse further can be checked by brute force with this small set
of parameters.

For this specific choice of p and q, there are r−1
r ϕ(n) = 39872 possible values of

y according to the original paper, but 17088 of them would lead to an ambiguity
in decryption (that’s a ratio of 3/7), decreasing the cleartext space to either Z3

or Z5. Details are provided in Section 6.

4 Applications

In this section, we present some applications which explicitly use Benaloh’s en-
cryption scheme. We analyze the consequences of using a bad y parameter pro-
duced during the key generation for each application.

4.1 Receipt-Free Elections

In [4], Benaloh and Tuinstra propose an application of homomorphic encryption
for designing new receipt-free secret-ballot elections. They describe two protocols
which use a homomorphic encryption scheme and verify a list of properties. They
also give in the appendix of the paper a precise description of an encryption
scheme which satisfies their properties. Its relation with [3] is given in Section 7.

The new voting protocol uses the fact that the encryption is homomorphic and
probabilistic. If we have two candidates Nicolas and Ségolène then the system
associates for instance the ballot 0 for Nicolas and the ballot 1 for Ségolène. The
main idea is that the server collects the m authenticated encrypted ballots {vi}k
corresponding to the choices vi of the m voters. Then the server performs the
multiplication of the ciphertexts to sum the votes and decrypts the product once
to obtain the result. The number obtained corresponds to the number of votes
nS for Ségolène and the difference m−nS gives the number of votes for Nicolas.

We construct a basic application of the first protocol proposed in [4] and
based on the example described in Section 3. In this example we consider only
12 voters. Suppose when the encryption is correctly done the final result is {11}k.
It means that after decryption Ségolène has 11 votes and Nicolas has 1 vote. But
if as we explain in Section 3 instead of computing the result 11 mod 15 we are
taking the result modulo 5, then we obtain a result of 11 mod 5 = 1. This time
the server concludes that Nicolas obtains 11 votes and Ségolène only 1. This
example clearly shows that the flaw in the parameters generation process can
have important consequences.

4.2 Private Multi-party Trust Computation

In [18], Dolev et al give a multiple private key protocol for private multi-party
computation of a trust value: an initiating user wants to know the (possibly
weighted) average trust the network of nodes has in some user. In a first phase
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of the protocol, each of the n nodes splits its trust value t in n − 1 shares (si)
such that

t = s1 + s2 + . . . + sn−1 mod r.

Here r is a common modulus chosen large enough with respect to the maximum
possible global trust value, and in order to ensure the privacy of its trust value the
shares should be taken as random number mod r, except for the last one. The
shares are then sent encrypted (using Benaloh’s scheme) to each other user, to
be later recombined. If we assume that one of the users has chosen a faulty value
for his public parameter y, then his contribution to the recombined value will
be computed mod r′ instead of mod r for some divisor r′ of r. As an extreme
example, assume

– that the queried user is a newcomer, untrusted by anyone (hence the private
value of t for every node is 0),

– that the true recombined value contributed by the faulty user should have
been r − 1,

– that r′ = r/3.

Due to his miscalculation, the faulty node will contribute the value r′ − 1 in-
stead of −1, causing the apparent calculated trust value to be quite high (about
1/3 of the maximum possible trust value, instead of 0). This can have dramatic
consequences if the trust value is used later on to grant access to some resource.
These assumptions are not entirely unlikely: remember that r = 3k is an ex-
plicitly suggested choice of parameter of the cryptosystem (chosen for instance
in [29]) in which we will find that the failure probability (ρ) is close to 1/3 and
faulty nodes occur with high probability even with moderate-sized networks (see
Section 6). We also note that the description from [3] is given in extenso, with
its incorrect condition. One reason for choosing Benaloh’s cryptosystem in this
application is because the cleartext space can be common among several private
keys, a feature unfortunately not achieved e.g. by Paillier’s cryptosystem [34]
but also possible with Naccache-Stern’s [32].

4.3 Secure Cards Dealing

Another application of this encryption scheme is given in [26]: securely dealing
cards in poker (or similar games). Here again the author gives the complete
description of the original scheme, with a choice of parameter r = 53 (which
is prime). Because r is prime, this application does not suffer from the flaw
explained here, but this choice of a prime number is done for reasons purely
internal to the cards dealing protocol, namely testing the equality of dealt cards.

Given two ciphertext E(m1) and E(m2), the players need to test if m1 = m2

without revealing anything more about the cards m1 and m2. The protocol is
as follows:

1. Let m = m1−m2, each player can compute E(m) = E(m1)/E(m2) because
of the homomorphic property of the encryption.
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2. Each player Pi secretly picks a value 0 < αi < 53, computes E(m)αi and
discloses it to everyone.

3. Each player can compute
∏

i E(m)αi = E(m)α with α =
∑

i αi. The players
jointly decrypt E(m)α to get the value mα mod r.

Now because for each player the value of α is unknown and random, if mα 	=
0 mod r then the players learn nothing about m. Otherwise they conclude that
the cards are equal.

We claim that this protocol fails to account for two problems:

– there is no guarantee that α 	= 0 mod r. When this happens, two distinct
cards will be incorrectly considered equal. One possible fix is to repeat the
protocol to decrease the probability of false positive to an acceptable level.

– knowing the value of E(m) and E(m)αi , it is easy to recover αi because
of the small search space for αi. This means the protocol leaks information
when m1 	= m2. The fix here is to multiply by some random encryption of
0.

It should be noted that these problems are unrelated to the incorrect parameter
generation flaw discussed in this paper.

5 Corrected Version of Benaloh’s Scheme

Let g be a generator of the group (Zp)∗, and since y is coprime with n, let α be
the value in Zp−1 such that y = gα mod p. We will now state in Theorem 1 our
main contribution:

Theorem 1. The following properties are equivalent:

a) α and r are coprime;
b) decryption works unambiguously;
c) for all prime factors s of r, we have y(ϕ/s) 	= 1 mod n.

Of course property (b) is what we expect of the scheme, while (a) is useful
to analyze the proportion of invalid y’s and (c) is more efficient to verify in
practice than (a), especially considering that in order to decrypt efficiently the
factorization of r is assumed to be known. In the following proof we interpret
statement (b) to mean that two different cleartexts cannot be encrypted to the
same value:

∀m1, m2 ∈ Zr , ∀u1, u2 ∈ (Zn)∗, ym1ur
1 = ym2ur

2 mod n⇒ m1 = m2 mod r.

Another way to interpret (b) is that, for a given z mod n, there is at most
one value m mod r such that y−mz is an r-th power mod n. In fact these two
interpretations are equivalent (the proof is easy and omitted here).

Proof. We prove first (a)⇔ (b) then we show (a)⇔ (c).
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– We start by showing (a) ⇒ (b). Assume two messages m1 and m2 are en-
crypted to the same element using nonce u1 and u2:

ym1ur
1 = ym2ur

2 mod n.

Reducing mod p we get:

gα(m1−m2) = (u2/u1)r mod p

and using the fact that g is a generator of (Zp)∗, there exists some β such
that

gα(m1−m2) = gβr mod p

which in turns implies

α(m1 −m2) = βr mod p− 1.

By construction r divides (p− 1), we can further reduce mod r and get

α(m1 −m2) = 0 mod r

and since r and α are coprime, we can deduce m1 = m2 mod r, which means
that decryption works unambiguously since the cleartexts are defined mod
r.

– We now prove (b) ⇒ (a). Assume α and r are not coprime and let s =
gcd(α, r), r = sr′, α = sα′. Then

yr′
= gαr′

mod p

= (gα′
)r mod p.

Since r and q − 1 are coprime, every invertible number mod q is an r-th
power. Therefore yr′

is an r-th power mod n and is a valid encryption of 0
as well as a valid encryption of r′.

– We now prove that (a)⇒ (c). Assume that there exists some prime factor s
of r such that

y(ϕ/s) = 1 mod n.

As above, by reducing mod p and using the generator g of (Zp)∗ we get

α
ϕ

s
= 0 mod p− 1.

So

α
ϕ

s
= (p− 1)

α(q − 1)
s

is a multiple of p− 1 and s divides α(q− 1). Since s does not divide q− 1, s
divides α and α and r are not coprime.
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– We now prove (c)⇒ (a). Assume α and r are not coprime and denote by s
some common prime factor. Then

y(ϕ/s) = gαϕ/s mod p

= g(α/s)ϕ mod p = 1 mod p.

And by construction of r, s � q − 1 so y(ϕ/s) = 1 mod q. ��

Notice than in the example of Section 3 we have y(p−1)(q−1)/3 = 1 mod n so
condition (c) is not satisfied. We claimed that the real ciphertext space is now
Z5, and we gave a precise analysis of the cleartext space reduction at the end of
Section 6.

6 Probability of Failure of Benaloh’s Scheme

We now estimate the probability of failure in the scheme as originally described.
For this we need to count the numbers y that satisfy Equation (1) in Section 2
and not property (c) of Theorem 1. We call these values of y “faulty”.

Lemma 1. Equation (1) is equivalent to the statement: r � α.

Proof. Assume that r divides α: α = rα′. So

yϕ/r = gαϕ/r mod p

= (gα′
)ϕ mod p

= 1 mod p.

Since r divides p− 1, yϕ/r = 1 mod q hence yϕ/r = 1 mod n.
Conversely, if yϕ/r = 1 mod n, then

gαϕ/r = 1 mod p

α
ϕ

r
= 0 mod p− 1.

Since r divides p− 1 and is coprime with ϕ
r (by definition), we have r | α. ��

Since picking y ∈ (Zp)∗ at random is the same when seen mod p as picking
α ∈ {0, . . . , p− 2} at random, we can therefore conclude that the proportion ρ
of faulty y’s is exactly the proportion of non-invertible numbers mod r among
the non-zero mod r. So ρ = 1− ϕ(r)

r−1 . We notice that this proportion depends on
r only, and it is non-zero when r is not a prime. Since decryption in Benaloh’s
scheme is essentially solving a discrete logarithm in the subgroup of (Zp)∗ of
order r, the original scheme recommends to use r as a product of small primes’
powers, which tends to increase ρ. In fact, denoting by (pi) the prime divisors
of r we have:
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ρ = 1− ϕ(r)
r − 1

= 1− r

r − 1
ϕ(r)

r

= 1− r

r − 1

∏
i

pi − 1
pi

≈ 1−
∏

i

pi − 1
pi

which shows that the situation where decryption is easy also increases the
proportion of invalid y’s when using the initial description of the encryption
scheme.

As a practical example, assume we pick two 512 bits primes p and q as

p = 2× (3× 5× 7× 11× 13)× p′ + 1
p′ = 4464804505475390309548459872862419622870251688508955\

5037374496982090456310601222033972275385171173585381\
3914691524677018107022404660225439441679953592

q = 1005585594745694782468051874865438459560952436544429\
5033292671082791323022555160232601405723625177570767\
523893639864538140315412108959927459825236754568279.

Then

gcd(q − 1, p− 1) = 2
r = (3× 5× 7× 11× 13)× p′

ρ = 1− r

r − 1
× 2

3
× 4

5
× 6

7
× 10

11
× 12

13
× p′

p′ − 1
ρ > 61%.

This example was constructed quite easily: first we take p′ of suitable size, and
multiply its value until p = k×p′+1 is prime. Then we generate random primes
q of suitable size until the condition gcd(p− 1, q− 1) = 2 is verified; it took less
than a second on a current laptop using Sage [42].

Putting it all together, we can also characterize the faulty values of y, together
with the actual value r′ of the cleartext space size (compared to the expected
value r):

Lemma 2. Let u = gcd(α, r). Then r′ = r
u . Moreover if r′ 	= r, this faulty value

of y goes undetected by the initial condition as long as u 	= r.

The proof of the first implication in Theorem 1 is easily extended to a proof of
the first point of this lemma, while the second point is a mere rephrasing of the
previous lemma.
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This result can be used to craft counter-examples as we did in Section 3:
for a valid value y of the parameter and u a proper divisor of r, the value
y′ = yu mod n is an undetected faulty value with actual cleartext space size
r′ = r/u. It can also be used to determine precisely, for every proper divisor
r′ of r the probability of picking an undetected faulty parameter y of actual
cleartext space size r′. Such an extensive study was not deemed necessary in the
examples of Section 4, but it confirms that ambiguous parameters can happen
more frequently than expected.

7 Related Schemes

We briefly discuss in this section some schemes related to that of [3].
In [4], Benaloh and Tuinstra describe a cryptosystem which closely resembles

that of [3], but the conditions given on r are less strict. Let us recall briefly the
parameters of the cryptosystem as described in [4]:

– r | p− 1 but r2 � p− 1.
– r � q − 1.
– y is coprime with n and y(p−1)(q−1)/r 	= 1 mod n.

It is clear that r2 � p− 1 is weaker than gcd((p− 1)/r, r) = 1, and that r � q − 1
is weaker than gcd(q − 1, r) = 1. Therefore any set of parameters satisfying [3]
are also valid parameters as defined in [4].

Unfortunately the condition imposed on y is the same and still insufficient,
and finding counter-examples is again a matter of picking α not coprime with
r. Our theorem still stands for this cryptosystem if you replace condition (c) by
the following condition:

For all prime factors s of r, we have y(p−1)/s 	= 1 mod p. (2)

Going back in time, the scheme of Goldwasser and Micali [25] can be seen as a
precursor of [4] with a fixed choice of r = 2. The choice of y in [25] as a quadratic
non-residue mod n is clearly an equivalent formulation of condition (2).

Before [3] and [4], the scheme was defined by Benaloh in [5], with the parame-
ter r being a prime. In this case our condition (c) is the same as the one proposed
by Benaloh, and the scheme in this thesis is indeed correct. The main difference
between the different versions proposed afterwards and this one is that it is not
required for r to be prime, which leads in some cases to ambiguous ciphers. This
remark clearly shows that all details are important in cryptography and that the
problem we discovered is subtle because even Benaloh himself did not notice it.

Finally the scheme proposed by Naccache and Stern [32] is quite close to the
one proposed in [5] but with a parameterization of p and q. It makes decryption
correct, efficient, and leaves the expansion factor as an explicit function of the
desired security level with respect to methods of factoring taking advantage of
this specific form of n, like the P−1 method [35] (the expansion is essentially the
added size of the big cofactors of p−1 and q−1). If we drop this requirement that
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p−1 and q−1 have big cofactors, their scheme becomes a corrected generalization
of Benaloh’s, so application writers should probably use Naccache-Stern’s scheme
directly. We note that a modulus size of 768 bits was considered secure at the
time, a fact disproved twelve years later [30] only!

8 Semantic Security of the Corrected Scheme

In [24], Kristian Gjøsteen formulates the security of several homomorphic en-
cryption schemes in a common setting and relates the semantic security of the
schemes to a generic problem (the Decisional Subgroup Membership Problem)
which we recall here:

Problem 1 (DSMP). Let G be an abelian group with subgroups K, H such that
G = KH and K ∩H = {1}. The Decisional Subgroup Membership Problem is
to decide whether a given g ∈ G is in K or not.

The cryptosystems by Goldwasser-Micali, Naccache-Stern, Okamoto-Uchiyama
and Paillier respectively are shown to fit in this setting, with a proper definition
for G (the ciphertexts space), H (coding the cleartexts) and K (the “cloak”
space used to randomize encryptions). For example for Paillier’s encryption, the
ciphertext space is G = (Zn2)∗ � (Zn)∗ × Zn, the cleartexts coding subgroup
H is the subgroup of order n (generated by g = 1 + n) and K is the set of the
invertible n-th powers mod n2. This is consistent with the probabilistic encryp-
tion function

Eu(m) = (1 + n)mun mod n2.

It can be verified quite easily that the following choices make the corrected
version of Benaloh’s scheme fit in this setting:

– G = (Zn)∗

– H the cyclic subgroup of order r of G
– K the set of invertible r-th powers in G
– the public element y must generate H .

Using the result in [24], the semantic security of our corrected scheme is therefore
equivalent to the DSMP for K, that is, being able to distinguish r-th powers
modulo n.

Although several homomorphic encryption schemes are analyzed in [24], Be-
naloh’s is not. Our correction ensures that the last condition is met, otherwise
y could generate a strict subgroup of the intended group H .

9 Conclusion

We have shown that the original definition of Benaloh’s homomorphic encryp-
tion does not give sufficient conditions in the choice of public key to get an
unambiguous encryption scheme. We also explain on some examples what can



360 L. Fousse, P. Lafourcade, and M. Alnuaimi

be the consequences of the use of the original Benaloh scheme. Our discussion
on the probability of choosing an incorrect public key shows that this proba-
bility is non negligible for parameters where decryption is efficient: for example
using the suggested value of the form r = 3k, this probability is already close
to 1/3. Our main contribution is to propose a necessary and sufficient condition
which fixes the scheme. In fact, it is surprising this result was not found before,
considering the number of applications built on the homomorphic property of
Benaloh’s scheme. This strongly suggests this scheme was rarely implemented
or even worse, implementations were rarely well tested.
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Abstract. We show that the Winternitz one-time signature scheme is
existentially unforgeable under adaptive chosen message attacks when
instantiated with a family of pseudo random functions. Compared to pre-
vious results, which require a collision resistant hash function, our result
provides significantly smaller signatures at the same security level. We
also consider security in the strong sense and show that the Winternitz
one-time signature scheme is strongly unforgeable assuming additional
properties of the pseudo random function. In this context we formally
define several key-based security notions for function families and inves-
tigate their relation to pseudorandomness. All our reductions are exact
and in the standard model and can directly be used to estimate the
output length of the hash function required to meet a certain security
level.

Keywords: Hash-based signatures, post-quantum signatures, pseudo-
random functions, security reductions.

1 Introduction

Digital signatures are ubiquitous in our computer dominated society. They are
basic building blocks of eGovernment and eCommerce. They are used to guar-
antee the integrity and authenticity of software updates and enable secure In-
ternet connections. The security of currently used signature schemes – RSA and
ECDSA – relies on the hardness of certain number theoretic problems, whereas
the actual hardness of these problems remains unclear. In 1994 Shor presented a
quantum algorithm that can be used to solve the factorization and discrete loga-
rithm problems in polynomial time, thus completely breaking RSA and ECDSA
[24]. Given the importance of digital signatures, the search for alternative sig-
nature schemes that resist attacks arising from algorithmic and technological
advances is an important research goal.
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One promising alternative are hash-based signatures. Their sole security re-
quirement is the existence of hash function families with certain properties.
Current research suggests, that the security of hash-based signatures will not
be significantly harmed by quantum computer supported attacks [13]. Another
benefit of hash-based signature schemes is that they are provably secure in the
standard model [7,8,9,14]. A hash-based signature scheme or Merkle signature
scheme (MSS) consists of the combination of a one-time signature scheme (OTS)
to sign the data and Merkle’s tree authentication scheme [18] which reduces the
authenticity of many one-time verification keys to the authenticity of a single
public key. Examples for one-time signature schemes are the Lamport-Diffie OTS
[15], the Merkle OTS [18], the Winternitz OTS [18,9], the Bleichenbacher-Maurer
OTS [3], the BiBa OTS [19] and HORS [21]. The Winternitz OTS (W-OTS) is
most suitable for combining it with Merkle’s tree authentication scheme because
of the small verification key size and the flexible trade-off between signature
size and signature generation time. Further it is possible to compute the corre-
sponding verification key given a W-OTS signature. So a MSS signature does
not need to contain the verification key. This is not the case for all of the above
mentioned schemes besides the Bleichenbacher-Maurer OTS but it reduces the
MSS signature size significantly. Hence efficient variants of the Merkle signature
scheme rely on W-OTS [5]. W-OTS is also used for authentication in sensor
networks [17].

The size of a Winternitz signature is roughly mn/w bits and signing roughly
requires 2wm/w hash operations, where m is the bit length of the hash value to
be signed, n is the output length of the hash function used in the scheme, and w
is the Winternitz parameter determining the trade-off between signature size and
signature generation time. In [9,14], the authors provide security reductions for
graph based one-time signature schemes, a general class of OTS which includes
W-OTS. Due to the generality of graph based OTS, these security reductions
require the used hash function to be collision resistant. Collision resistance is one
of the strongest security notions of hash functions and admits effective generic
attacks using the birthday paradox. Following these reductions, to achieve b bits
of security one must use n = 2b and m = 2b which yields W-OTS signatures of
size roughly 4b2/w bits.

Our results. In this paper we show that weaker assumptions are sufficient for
the security of W-OTS. We show that W-OTS is existentially unforgeable under
adaptive chosen message attacks [12] when instantiated with a family of pseu-
dorandom functions (PRF). Since the PRF property is not affected by birthday
attacks, hash functions with shorter output length can be used which in turn
reduces the signature size. This result is especially meaningful because the main
issue with hash-based signatures is the signature size. Also, it has been shown
that PRF exist if one way functions (OWF) exist [25,16,11] and further, that
OWF exist if secure digital signature schemes exist [23]. So our result shows
that a secure instance of W-OTS exists, as long as there exists any secure signa-
ture scheme. For collision resistant hash function families it is unknown if their
existence can be based on the existence of OWF.
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We also consider unforgeability in the strong sense by reducing the strong un-
forgeability of W-OTS to the intractability of finding key collisions (given x, find
k, k′ such that k 	= k′ and fk(x) = fk′(x)) or second keys (given x and key k, find
k′ such that k 	= k′ and fk(x) = fk′(x)). The notion of key collision resistance
was used before by the authors of [20] in the security analysis of the TESLA pro-
tocol. In [10], the author uses this notion as property of pseudorandom function
tribe ensembles to construct a committing and key-hiding private-key encryption
scheme. The authors of [6] provide a construction for perfectly one-way functions
assuming key collision resistance. We provide a thorough treatment of these key
based notions and pseudo randomness. We define them formally and investigate
implications and separations among them.

Our results are exact and in the standard model. Such reductions are of enor-
mous practical value compared to asymptotic results or the random oracle model.
Exact reductions allow the security level of the scheme to be estimated for fixed
security parameters. The standard model uses only security notions which can be
efficiently realized in practice. Exact reductions are also of theoretical interest,
because they indicate the quality of a reduction and allow an easy comparison
of the hardness of the problems.

Notation. Throughout the paper we stick to the following notation. We use n as
the main security parameter. Efficient algorithms require only polynomial time
and space in n. The statement x

$←− X means x is chosen uniformly at random
from X . The concatenation of strings is done via ||. We also write log for log2.
During the paper we measure the runtime of an algorithm in terms of the number
of evaluations of the function family used.

Organization. We prove the existential unforgeability of W-OTS using pseu-
dorandom functions in Section 2. We prove the strong unforgeability of W-
OTS using second key resistant or key collision resistant functions in Section 3.
We examine implications and separations between the introduced security no-
tions in Section 4. We interpret our results and provide concluding remarks in
Section 5.

2 Existential Unforgeability of the Winternitz One-Time
Signature Scheme

In this section we prove that the Winternitz one-time signature scheme (W-
OTS) is existentially unforgeable under adaptive chosen message attacks (EU-
CMA) when instantiated with a family of pseudo-random functions. We begin
by reviewing W-OTS and introduce a little tweak required by the reduction.
Then we introduce the required security notions. Finally we state the reduction
and use it to estimate the security level.

2.1 The Winternitz One-Time Signature Scheme

The Winternitz one-time signature scheme was first mentioned in [18] as a gen-
eralization of Merkle’s OTS also proposed in [18]. A complete description can
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be found in [9]. The core idea of W-OTS is to iteratively apply a function on
a secret input, whereas the number of iterations depends on the message to be
signed. The used functions are members of the function family

F (n) = {fk : {0, 1}n → {0, 1}n|k ∈ {0, 1}n} (1)

parameterized by key k ∈ {0, 1}n and the security parameter n. For our purposes
iteratively applying a function is defined as follows. We use the output of the
function fk as key for the next iteration. The function is always evaluated on the
same input x. This is in contrast to the original construction, where the output
of the function is used as input for the next iteration and the key remains fixed.
We use the notation f i

k(x) to denote that the function is iterated i times on
input x using key k for the first iteration and the output of the function as key
for the next iteration, e.g. f2

k (x) = ffk(x)(x) and f0
k (x) = x.

In the following, we only describe the generation of signatures for m-bit mes-
sages. The generalization to arbitrary sized messages is straight forward by uti-
lizing a collision resistant hash function.

Key pair generation (Algorithm Kg). First we choose the Winternitz parameter
w ∈ N, w > 1, defining the compression level. Next we choose a random value
x

$←− {0, 1}n. The signature key consists of 	 bit strings of length n chosen
uniformly with the random distribution,

sk = (sk1, . . . , sk�)
$←− {0, 1}(n,�),

where 	 is computed as follows.

	1 =
⌈

m

log(w)

⌉
, 	2 =

⌊
log(	1(w − 1))

log(w)

⌋
+ 1, 	 = 	1 + 	2.

The verification key is computed using functions from the family F (n). The bit
strings in the signature key are used as key for the function f and the function
is iterated w − 1 times on input x.

pk = (pk0, pk1, . . . , pk�) = (x, fw−1
sk1

(x), . . . , fw−1
sk�

(x))

Signature generation (Algorithm Sign.) We describe how to sign an m-bit mes-
sage M = (M1, . . . , M�1) given in base-w representation, i.e. Mi ∈ {0, . . . , w−1}
for i = 1, . . . , 	1. We begin by computing the checksum

C =
�1∑

i=1

(w − 1−Mi) (2)

and represent it to base w as C = (C1, . . . , C�2). The length of the base-w repre-
sentation of C is at most 	2 since C ≤ 	1(w− 1). Then we set B = (b1, . . . , b�) =
M ‖ C. The signature of message M is computed as

σ = (σ1, . . . , σ�) = (f b1
sk1

(x), . . . , f b�

sk�
(x)). (3)
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Signature verification (Algorithm Vf.) The verifier first computes the base-w
string B = (b1, . . . , b�) as described above. Then he checks whether

(fw−1−b1
σ1

(pk0), . . . , f
w−1−b�
σ�

(pk0))
?= (pk1, . . . , pk�). (4)

The signature is accepted iff the comparison holds.

2.2 Security Notions for Signature Schemes and Function Families

We begin by reviewing the standard definition of digital signature schemes and
the security notion existential unforgeability under adaptive chosen message at-
tacks (EU-CMA) [12]. We then define two security notions for function families
required for our reduction. The first is the well known pseudo-randomness prop-
erty. The second is key one-wayness which states that it is hard to find a key
k such that the function fk maps a given input x to a given output y. We also
state two lemmas about these notions which will be useful for the reduction of
W-OTS.

Definition 1 (Digital signature schemes). A digital signature scheme Sig =
(Kg, Sign, Vf) is a triple of PPT algorithms:

– Kg(1n) on input of a security parameter 1n outputs a private signing key sk
and a public verification key pk;

– Sign(sk, M) outputs a signature σ under sk for the message M ;
– Vf(pk, σ, M) outputs 1 iff σ is a valid signature on M under pk.

Definition 2 (Existential unforgeability (EU-CMA)). EU-CMA is de-
fined by the following experiment.

Experiment ExpEU-CMA
A,Sig (n)

(sk, pk)← Kg(1n)
(M�, σ�)← ASign(sk,·)(pk)
Let {(Mi, σi)}qSign

1 be the query-answer pairs of Sign(sk, ·).
Return 1 iff Vf(pk, M�, σ�) = 1 and M� 	∈ {Mi}qSign

1 .

Sig is (t, ε, q)-existentially unforgeable if there is no t-time adversary that succeeds
with probability ≥ ε after making ≤ q signature oracle queries.

A (t, ε, 1)-EU-CMA secure signature scheme is called one-time signature scheme.

Definition 3 (Pseudorandom functions (PRF)). A family of functions F (n)
is pseudorandom, if no efficient algorithm Dis is able to distinguish a randomly
chosen function fk ∈ F (n) from a randomly chosen function from the set G(n)
of all functions with same domain and range as F (n). The formal definition is
taken from [2]. Dis gets access to an oracle Box(·) implementing a function ran-
domly chosen from F (n) or G(n) in a black box manner. The distinguisher may
adaptively query Box(·) as often as he likes. Finally, the distinguisher outputs 1
if he thinks that Box models a function from F (n) and 0 otherwise.
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Let F (n) be a family of functions as in (1) and G(n) = {g : {0, 1}n → {0, 1}n}
the family of all functions with domain and range {0, 1}n. We call F (n) (t, ε)-
PRF, if the advantage

AdvPRF
F (n)(Dis) =

∣∣∣Pr[Box
$←− F (n) : DisBox(·) = 1]

− Pr[Box
$←− G(n) : DisBox(·) = 1]

∣∣∣ (5)

of any distinguisher Dis that runs in time t is at most ε.

Definition 4 (Key one-wayness (KOW)). Let F (n) be a family of functions
as in (1). We call F (n) (t, ε)-KOW, if the success probability

AdvKOW
A = Pr[(x, k) $←− {0, 1}n × {0, 1}n, y ← fk(x),

k′ ←− A(x, y) : y = fk′(x)] (6)

of any adversary A that runs in time t is at most ε.

Please recall, that the time t is counted in terms of evaluations of f . We assume,
that a call to Box takes the same time as an evaluation of f . The security level or
bit security b the family F (n) or a signature scheme Sig provides against attacks
on the respective notion is computed as b = log(t/ε).

A key collision of F (n) is defined as a pair of distinct keys (k, k′) such that
fk(x) = fk′(x) holds for some x ∈ {0, 1}n. We define an upper (κ) and lower
(κ′) bound on the number of key collisions that occur in the family F (n).

Definition 5. The upper bound κ is defined as follows: For each pair (x, k),
there exist at most κ − 1 different keys k1, . . . , kκ−1, which are also different
from k, such that fk(x) = fki(x) for i = 1, . . . , κ − 1. Equivalently we define
the lower bound κ′: For each pair (x, k), there exist at least κ′ − 1 different
keys k1, . . . , kκ′−1, which are also different from k, such that fk(x) = fki(x) for
i = 1, . . . , κ′ − 1.

The values κ and κ′ restrict the number of different images y some preimage x
can be mapped to by functions in F (n), i.e.

2n

κ
≤
∣∣ {fk(x) : k ∈ {0, 1}n}

∣∣ ≤ 2n

κ′ (7)

for all x ∈ {0, 1}n. Also, given y
$←− {0, 1}n the probability that there exists a

key k and preimage x such that fk(x) = y holds is at least 1/κ.
The following lemma describes an interesting relation between the security

level of pseudorandom functions and the value κ defined above.

Lemma 1. Let F (n) be (t, ε)-PRF with security level b = log(t/ε) and κ as in
Definition 5. Then κ ≤ 2n−b + 1.
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Proof. Assume κ > 2n−b + 1 and let (x, y) be a pair where there exist κ keys
mapping x to y. The distinguisher Dis queries Box with x. If Box(x) = y then
Dis returns 1 and 0 otherwise. Clearly Dis runs in time t′ = 1. Further we
have Pr[Box

$←− F (n) : DisBox(·) = 1] = κ/2n > 2−b + 2−n and Pr[Box
$←−

G : DisBox(·) = 1] = 2−n and therefore ε′ = AdvPRF
F (n)(Dis) > 2−b which is a

contradiction. �

The following lemma states that the KOW property is implied by the PRF
property. In other words, an efficient attacker against the KOW property leads
to an efficient distinguisher.

Proposition 1 (PRF ⇒ KOW). Let F (n) be (t, ε)-PRF. Then F (n) is
(t− 2, ε/(1/κ− 1/2n)-KOW.

Proof. Assume there exists an adversary AKOW(x, y) who finds a key k satisfying
y = fk(x) in time tKOW with probability εKOW. Then we can construct a distin-
guisher Dis using AKOW the following way: Dis queries Box(·) with x ∈ {0, 1}n.
After receiving the answer y, Dis runs AKOW(x, y) to obtain key k. Then Dis
queries Box with a second value x′ ∈ {0, 1}n. If Box(x′) = fk(x′) = y′ Dis returns

1 and 0 otherwise. In case Box
$←− F (n), the probability that AKOW outputs

a key k such that fk(x) = y holds is εKOW. The probability that fk(x′) = y′

holds is at least 1/κ, because at least one of the κ functions in F (n) mapping x

to y also maps x′ to y′. In case Box
$←− G(n), the probability that AKOW out-

puts a key k such that fk(x) = y holds is at most εKOW. The probability that
fk(x′) = y′ holds is 1/2n, because from the 2n(2n−1) functions in G mapping x to
y, only 2n(2n−2) also map x′ to y′. In summary we get ε ≥ AdvPRF

F (n)(Dis) ≥ εKOW

(1/κ− 1/2n) . ��

2.3 Security Reduction

We now state the main result of this section.

Theorem 1. Let F (n) be a family of functions as in Equation (1) and κ as in
Definition 5. If F (n) is (tPRF, εPRF)-PRF then W-OTS is (t, ε, 1) EU-CMA with

t = tPRF − tKg − tVf − 2 (8)

ε ≤ εPRF	2w2κw−1 1(
1
κ −

1
2n

) (9)

Proof. The proof works as follows: First we use a forger for W-OTS to construct
an adversary on the key one wayness of F (n). This adversary is then used to
construct a distinguisher using Proposition 1. Algorithm 1 shows how a forger
ForSign(sk,·)(pk) for W-OTS can be used to construct an adversary AKOW on the
key one-wayness of F (n). The signing oracle Sign is simulated by the adversary.

The goal of the adversary AKOW is to produce a key k′ such that fk′(x) = y for
x, y provided as input. AKOW begins by generating a regular W-OTS signature
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Algorithm 1. AKOW

Input: Security parameters n, m, Winternitz parameter w, description of F (n), KOW
challenge (x, y) as in Definition 4
Output: k′, such that fk′(x) = y or fail

1. generate W-OTS signature key sk
2. choose indices α ∈ {1, ..., �}, β ∈ {1, . . . , w − 1} uniformly at random
3. compute verification key as pk0 = x, pki = fw−1

ski
(x) for i = 1, . . . , l, i �= α and

pkα = fw−1−β
y (x)

4. run ForSign(sk,·)(pk)
5. when ForSign(sk,·)(pk) queries Sign with message M then compute B = (b1, ..., b�)
6. if bα < β return fail
7. generate signature σ of M and respond to ForSign(sk,·)(pk)
8. when ForSign(sk,·)(pk) returns valid (σ′, M ′) then compute B′ = (b′1, ..., b

′
�)

9. if b′α ≥ β return fail

10. compute k′ ← f
β−1−b′α
σ′

α
(x)

11. if fk′(x) �= y return fail
12. return k′

key pair and choosing random positions α and β (Lines 1,2). Then he computes
the W-OTS verification key using value x. The bit string at position α in the
verification key (pkα) is computed by inserting y at position β in the hash chain
used to compute pkα (Line 3). Next, AKOW calls the forger and waits for it to
ask an oracle query. The forgers query can only be answered if bα ≥ β holds,
because AKOW doesn’t know the first β entries in the corresponding hash chain
(Line 6). The forgery produced by the forger is only meaningful to AKOW if
b′α < β holds (Line 9). Only then the bit string σα in the forged signature
might yield a key k′ such that y = fk′(x) holds (Lines 10,11). We now compute
the success probability of AKOW. W.l.o.g we assume that the forger queries the
signing oracle. The probability of bα ≥ β in Line 6 is at least (	w)−1. This
is because of the checksum which guarantees that not all of the bi are zero
simultaneously. The probability that the forger succeeds in Line 8 is at least ε
by definition. This probability holds under the condition that the verification
key pk computed in Line 3 resembles a regular verification key which is the case
if there exists a key k such that fβ

k (x) = y. This happens with probability at
least 1/κβ according to Definition 5. The probability of b′α < β in Line 9 is at
least (	w)−1. This is because of M 	= M ′ and the checksum which guarantees
that bi > b′i for some i ∈ {1, . . . , 	}. The probability that y = fk′(x) holds in
Line 11 is at least 1/κw−1−β. This is because there exist κw−1 keys mapping
x to pkα after w − 1 iterations and only κβ of these keys map x to y after β
iterations.

In summary we have εKOW ≥ ε/(	2w2κβκw−1−β) and tKOW = t + tKg +
tVf as the time for the signature query is already taken into account at the
runtime of the forger. Combining this with Proposition 1 yields εPRF ≥ ε(1/κ−
1/2n)/(	2w2κw−1) and tPRF = t + tKg + tVf + 2 which concludes the proof. ��
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2.4 Security Level

We now compute the security level of W-OTS for the case that only generic
attacks against the PRF property of the function family F (n) exist.

Corollary 1. Let b = log(t/ε) denote the security level and use 	w as upper
bound for tKg and tVf , respectively. Let F (n) be (2n−1−log κ, 1/2(1/κ− 1/2n))-
PRF with κ = 2. Then the security level of W-OTS is

b ≥ n− w − 1− 2 log(	w) (10)

Proof. We use a (tPRF, εPRF)-PRF family F (n) and assume that the best at-
tack on the pseudorandomness of F (n) is a brute-force key recovery attack. An
attacker that searches through tKOW = 2n−1−log κ keys has success probabil-
ity εKOW = 1/2 for recovering the correct key. By Proposition 1 this yields an
tPRF = 2n−1−log κ + 2, εPRF = 1/2(1/κ− 1/2n) distinguisher for the pseudoran-
domness of F (n). The security level of the PRF property of F (n) in presence of
this distinguisher is b = n which in turn implies κ ≤ 2 according to Lemma 1.
The security level of W-OTS using F (n) is computed as follows

2b =
t

ε
≥ tPRF − tKg − tVf − 2

εPRF	2w2κw−1

(
1
κ
− 1

2n

)
≥ 2n−log κ − 4	w

	2w2κw−1

≥ 2n−w−2 log(�w) − 4
	w2w−1

Since 4/(	w2w−2) ≤ 2n−w−1−2 log(�w) for all reasonable choices of w and m we
finally obtain b ≥ n− w − 1− 2 log(	w) as security level of W-OTS. ��

3 Strong Unforgeability of the Winternitz One-Time
Signature Scheme

While the reduction of the last section shows that W-OTS is EU-CMA assuming
a standard security notion for hash functions, it does not provide security in the
strong sense. This is accomplished by two reductions presented in this section.
We show that W-OTS is strongly unforgeable under adaptive chosen message
attacks (SU-CMA), if the used function family is either second key resistant or
key collision resistant. The difference between EU-CMA and SU-CMA is, that
in SU-CMA the adversary also wins if he returns a new signature for an already
queried message. While these reductions provide stronger security guarantees,
they do not rely on standard security notions of hash functions. One is there-
fore confronted with a trade-off between security and requirements on the hash
function. Again we begin by introducing the required security notions and then
continue with the reductions and the computation of the security levels.
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3.1 Security Notions for Signature Schemes and Function Families
II

We begin by reviewing the definition of strong unforgeability under adaptive
chosen message attacks. Then, we define two security notions for function families
required for our reductions. The first is second key resistance which states that
given key k and preimage x, it is hard to find a key k′ 	= k such that fk(x) =
fk′(x). The second is key collision resistance which states that given preimage
x, it is hard to find two distinct keys k, k′ such that fk(x) = fk′(x).

Definition 6 (Strong unforgeability (SU-CMA)). SU-CMA is defined by
the following experiment.

Experiment ExpSU-CMA
A,Sig (n)

(sk, pk)← Kg(1n)
(M∗, σ∗)← ASign(sk,·)(pk)
Let {(Mi, σi)}qSign

1 be the query-answer pairs of Sign(sk, ·).
Return 1 iff Vf(pk, M�, σ�) = 1 and (M�, σ�) 	∈ {(Mi, σi)}qSign

1 .

The signature scheme Sig is (t, ε, q)-SU-CMA if there is no t-time adversary that
succeeds with probability ≥ ε after making ≤ q signature oracle queries.

Definition 7 (Second key resistance (SKR)). Let F (n) be a family of func-
tions as in (1). We call F (n) (t, ε)-SKR, if the success probability

AdvSKR
A = Pr[(x, k) $←− {0, 1}n × {0, 1}n,

k′ ← A(x, k) : k′ 	= k, fk′(x) = fk(x)] (11)

of any adversary A that runs in time t is at most ε.

Definition 8 (Key collision resistance (KCR)). Let F (n) be a a family of
functions as in (1). We call F (n) (t, ε)-KCR, if the success probability

AdvKCR
A = Pr[x $←− {0, 1}n, (k, k′)← A(x) :

k 	= k′, fk(x) = fk′(x)] (12)

of any adversary A that runs in time t is at most ε.

Proposition 2 (SKR ⇒ KOW). Let F (n) be (t, ε)-SKR with κ′ > 1. Then
F (n) is (t− 1, ε/(1− 1/κ′))-KOW.

Proof. Towards contradiction, let us assume a successful adversary A that breaks
KOW for F (n). We show how to use A as a black-box in an algorithm B to break
SKR. On input (x, k) from the SKR experiment, the algorithm B computes
y ← fk(x) and runs A(x, y). The subroutine returns k′ such that fk(x) = fk′(x)
with probability at least ε. Then, B returns k′. Since κ′(F (n)) > 1, the algorithm
A returns a key that is different from k with probability at least 1− 1/κ′ ≥ 1/2.
Thus, B is successful with probability ε(1−1/κ′). κ′ > 1 is required to guarantee
that a different key actually exists. ��
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3.2 Security Reductions

We now state the main result of this section.

Theorem 2. Let F (n) be a family of functions as in Equation (1) and κ, κ′ as
in Definition 5.
a) If F (n) is (tSKR, εSKR)-SKR then W-OTS is (t, ε, 1) SU-CMA with

t ≥ tSKR − tKg − tVf − 1 (13)

ε ≤ εSKR	2w2κw−2 κ′

κ′ − 1
(14)

b) If F (n) is (tKCR, εKCR)-KCR then W-OTS is (t, ε, 1) SU-CMA with

t ≥ tKCR − tKg − tVf (15)

ε ≤ εKCR
κ′

κ′ − 1
(16)

The proof of this theorem can be found in the full version[4].

3.3 Security Level

We now compute the security level of W-OTS for the case that only generic
attacks against the SKR or KCR property of the function family F (n) exist.

Note, that in case of κ = 1 it is impossible to find two signatures for the same
message by construction. Therefore W-OTS is SU-CMA secure if it is EU-CMA
secure and κ = 1. For the computation of the security level in this section we
therefore assume κ, κ′ ≥ 2, such that there exists at least one key collision for
each preimage.

Corollary 2. Let b = log(t/ε) denote the security level and use 	w as upper
bound for tKg and tVf , respectively.
a) Let F (n) be (2n−1−log κ + 1, (κ′ − 1)/(2κ′))-SKR and (tPRF, εPRF)-PRF with
log(tPRF/εPRF) = n and κ′ = κ = 2. Then the security level of W-OTS is

b ≥ n− w − 2 log(	w) (17)

b) Let F (n) be (2(n−log κ′)/2, 1/2)-KCR and (tPRF, εPRF)-PRF with
log(tPRF/εPRF) = n and κ′ = κ = 2. Then the security level of W-OTS is

b ≥ (n− 1)/2− 1 (18)

Proof. a) We use a (tSKR, εSKR)-SKR family F (n) and assume that the best at-
tack on the second key resistance of F (n) is a brute-force key recovery attack. An
attacker that searches through tKOW = 2n−1−log κ keys has success probability
εKOW = 1/2 for recovering the correct key. By Proposition 2 this yields an

tSKR = 2n−1−log κ + 1, εSKR =
1
2
· κ

′ − 1
κ′
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adversary on the second key resistance of F (n). The security level of the SKR
property of F (n) in presence of this adversary is b = n− log(κ−1), assuming κ =
κ′. We further assume that F (n) is (tPRF, εPRF)-PRF with log(tPRF/εPRF) = n.
This justifies using κ′ = κ = 2 since κ′ ≥ 2 is required to ensure that second
keys actually exist. The security level of W-OTS is computed as follows

2b =
t

ε
≥ tSKR − tKg − tVf − 1

εSKR	2w2κw−2
· κ

′ − 1
κ′

=
2n−log κ − 4	w

	2w2κw−2
· κ

′ − 1
κ′ · κ

κ− 1

≥ 2n−w+1−2 log(�w) − 4
	w2w−2

Since 4/(	w2w−2) ≤ 2n−w−2 log(�w) for all reasonable choices of w and m we
finally obtain b ≥ n− w − 2 log(	w) as security level of W-OTS.

b) We use a (tKCR, εKCR)-KCR family F (n) and assume that the best attack
on the key collision resistance of F (n) is a birthday attack, i.e. an adversary that
searches through tKCR = 2(n−log κ′)/2 keys has success probability εKCR = 1/2
for finding a key collision. The security level of the KCR property of F (n) in
presence of this adversary is b = (n− log κ′)/2− 1. Again we assume that F (n)
is (tPRF, εPRF)-PRF with log(tSKR/εSKR) = n and use κ′ = κ = 2. The security
level of W-OTS is computed as follows

2b =
t

ε
≥ tKCR − tKg − tVf

εKCR
· κ

′ − 1
κ′ ≥ 2(n−1)/2 − 2	w

Since 2	w ≤ 2(n−1)/2−1 for reasonable choices of w and m we finally obtain
b ≥ (n− 1)/2− 1 as security level of W-OTS.

4 Relation between Security Notions

In this section we complete the analysis of implications and separations be-
tween key one-wayness (KOW), second key resistance (SKR), key collision resis-
tance (KCR), and pseudorandomness (PRF) started with Propositions 1 and 2,
whereas the suspected separation PRF � SKR is left as an open problem. The
proofs of this section can be found in the full version [4]. Figure 1 summarizes
our findings.

Proposition 3 (KOW � PRF). Let g : {0, 1}n → {0, 1}n be a one-way func-
tion. Then there exists a family F (n) that is KOW but not PRF.

Proposition 4 (KOW � SKR). Let F (n) be (t, ε)-KOW. Then, there is a
family F ′(n) that is (t, 2ε)-KOW but not SKR.

Proposition 5 (KOW � KCR). Let F (n) be (t, ε)-KOW. Then, there is a
family F ′(n) of functions that is (t, ε + 2/2n)-KOW but not KCR.
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Fig. 1. Implications among PRF, KOW, SKR, and KCR. A straight arrow A → B
means that property A implies property B and a dashed line means that the implication
is conditional. When there is no arrow, it means that we show a separation. The
suspected separation between PRF and SKR is an open problem.

Proposition 6 (KCR ⇒ SKR). Let F (n) be (t, ε)-KCR. Then F (n) is (t, ε)-
SKR.

Proposition 7 (SKR � KCR). Let F (n) be (t, ε)-SKR. Then, there is a family
F ′(n) of functions that is (t, ε + 2/2n)-SKR but not KCR.

Proposition 8 (PRF � KCR). Let F (n) be (t, ε)-PRF. Then, there is a family
F ′(n) of functions that is (t, ε + 2/2n)-PRF but not KCR.

The following corollaries can be proven in analogy to Proposition 3.

Corollary 3 (SKR � PRF). If second preimage resistant functions exist, there
is a family F (n) that is SKR but not PRF.

Corollary 4 (KCR � PRF). If collision resistant functions exist, there is a
family F (n) that is KCR but not PRF.

5 Conclusion

We have provided three security reductions for W-OTS. The first one shows that
W-OTS provides a security level of at least n−w− 1− 2 log(	w), if the security
level of the PRF property of the used function family is at least n. When using
n = 128 and w = 16 the security level of W-OTS is at least 91 while the size of a
signature is 560 Bytes. The more conservative approach of using n = 160 yields
a security level of at least 129, which guarantees long-term security but results
in larger signatures of 860 Bytes. This reduction is especially appealing because
it only assumes a standard security notion of hash functions. SHA-1 and SHA-2
being PRFs is required when using them in the HMAC construction and SHA-3
will be specifically designed to be a PRF. Furthermore, this reduction also works
for the special class of pseudorandom permutations (PRP). PRP is the standard
model for block ciphers, so it is possible to replace the hash function family



376 J. Buchmann et al.

with a block cipher. As a block cipher with n bit keys is normally assumed to
provide n bit security against distinguishing attacks this justifies our assumption
of κ ≤ 2 given Lemma 1. Since several of today’s CPUs are equipped with an
AES co-processor, this might also lead significant speed-ups in practice.

However, this reduction does not guarantee strong unforgeability, except in
case of κ = 1 meaning that no key collisions exist. If no key collisions exist, each
message has a unique signature and the scheme is trivially SU-CMA when it is
EU-CMA. Showing SU-CMA in general requires that the underlying functions
are either SKR or KCR. This has been shown in the second and third reduction.
The security level of W-OTS is at least n−w− 1− 2 log(	w) if the security level
of the SKR property of the used PRF is at least n − log(κ − 1). When using
KCR, the security level of W-OTS is at least (n−1)/2−1 if the security level of
the KCR property of the used PRF is at least (n− log κ)/2− 1. We remark that
the last reduction also works with the original Winternitz construction using a
family of collision resistant hash functions. In other words, W-OTS is SU-CMA
if the used function is collision resistant. However, using a PRF with additional
KCR property has the benefit that an exact value for the maximum number κ
of key collisions that occur within the family is known. This is required for the
estimation of the exact security level.

As a by-product we have defined three key-based security notions for function
families: key one-wayness (KOW), second key resistance (SKR), and key colli-
sion resistance (KCR). We have analyzed implications and separations among
these properties and pseudorandomness. Although, these relations have not been
analyzed before, they support the common intuition. In fact, key-based and non-
key-based notions share an analoguous hierarchy of implications and separations
with respect to preimage resistance, second preimage resistance, and collision re-
sistance. We refer the reader to [22] for a discussion on non-key-based notions.

We would like to point out that KCR functions fk can easily be obtained
from collision resistant functions gk by defining fk(x) = gx(k). If we require
f to inherit the PRF property of g, we have to assume that the compression
function of g is dual-PRF, meaning that it is a PRF regardless of which input
it is keyed with. This is also a requirement of the security proof of HMAC
[1]. SKR functions can be constructed equivalently while the KOW property is
immediately implied by the PRF property. While we have shown the separation
of PRF and KCR, we leave the suspected separation of PRF and SKR as an
open problem. Moreover, we have studied the relation between the security level
of a PRF and the maximum number of key collisions that can occur.
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Abstract. Recently we have introduced a new concept on bilinear pair-
ing groups, dual pairing vector spaces (DPVS). Although we have already
enjoyed the merits of DPVS in our results [1,2,3,4,5], we here explain
them more explicitly, especially some key techniques on DPVS.

We firstly briefly explain DPVS constructed on symmetric pairing groups
(q, G, GT , G, e), where q is a prime, G and GT are cyclic groups of order q,
G is a generator of G, e : G × G→ GT is a non-degenerate bilinear pairing op-
eration, and e(G, G) 	= 1. Here we denote the group operation of G by addition
and GT by multiplication, respectively. Note that this construction also works
on asymmetric pairing groups.

Vector space V: V :=

N︷ ︸︸ ︷
G× · · · ×G, whose element is expressed by N -

dimensional vector, x := (x1G, . . . , xNG) (xi ∈ Fq for i = 1, . . . , N).
Canonical base A: A := (a1, . . . , aN ) of V, where a1 := (G, 0, . . . , 0), a2 :=

(0, G, 0, . . . , 0), . . . , aN := (0, . . . , 0, G).
Pairing operation: e(x, y) :=

∏N
i=1 e(xiG, yiG) = e(G, G)

∑N
i=1 xiyi =

e(G, G)
−→x ·−→y ∈ GT , where x := (x1G, . . . , xNG) = x1a1 + · · · + xNaN ∈ V,

y := (y1G, . . . , yNG) = y1a1+ · · ·+yNaN ∈ V, −→x := (x1, . . . , xN ) and −→y :=
(y1, . . . , yN). Here, x and y can be expressed by coefficient vector over basis
A such that (x1, . . . , xN )A = (−→x )A := x and (y1, . . . , yN)A = (−→y )A := y.

Base change: Canonical basis A is changed to basis B := (b1, . . . , bN ) of V

using a uniformly chosen (regular) linear transformation, X := (χi,j)
U←

GL(N, Fq), such that bi =
∑N

j=1 χi,jaj , (i = 1, . . . , N). A is also changed to
basis B∗ := (b∗1, . . . , b

∗
N ) of V, such that (ϑi,j) := (XT )−1, b∗i =

∑N
j=1 ϑi,jaj ,

(i = 1, . . . , N). We see that e(bi, b
∗
j ) = e(G, G)δi,j , (δi,j = 1 if i = j, and

δi,j = 0 if i 	= j) i.e., B and B∗ are dual orthonormal bases of V.
Here, x := x1b1 + · · · + xNbN ∈ V and y := y1b

∗
1 + · · · + yNb∗N ∈

V can be expressed by coefficient vectors over B and B∗ such that
(x1, . . . , xN )B = (−→x )B := x and (y1, . . . , yN)B∗ = (−→y )B∗ := y, and
e(x, y) = e(G, G)

∑N
i=1 xiyi = e(G, G)

−→x ·−→y ∈ GT .
Intractable problem: One of the most natural decisional problems in this ap-

proach is the decisional subspace problem [2]. It is to tell v := vN2+1bN2+1 +
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· · ·+ vN1bN1 (= (0, . . . , 0, vN2+1, . . . , vN1)B), from u := v1b1 + · · ·+ vN1bN1

(= (v1, . . . , vN1)B), where (v1, . . . , vN1)
U← F N1

q and N2 + 1 < N1.
Trapdoor: Although the decisional subspace problem is assumed to be in-

tractable, it can be efficiently solved by using some trapdoor, from top level
to lower levels. The top level trapdoor is X , which can decompose u to v,
and a lower level is t∗ ∈ span〈b∗1, . . . , b∗N2

〉, where we can tell v from u using
t∗ since e(v, t∗) = 1 and e(u, t∗) 	= 1 with high probability.

Higher dimensional vector treatment of bilinear pairing groups have been already
employed in literature especially in the areas of IBE, ABE and BE. For exam-
ple, in a typical vector treatment, two vector forms of P := (gx1 , . . . , gxn) and
Q := (gy1 , . . . , gyn) are set and pairing for P and Q is operated as e(P, Q) :=∏n

i=1 e(gxi, gyi). Such treatment can be rephrased in this approach such that
P = x1a1 + · · · + xnan (= (x1, . . . , xn)A), and Q = y1a1 + · · · + ynan (=
(y1, . . . , yn)A) over canonical basis A. The major drawback of this approach is
the easily decomposable property over A (i.e., the decisional subspace problem
is easily solved). That is, it is easy to decompose xiai = (1, . . . , 1, gxi, 1, . . . , 1)
from P := x1a1 + · · ·xnan = (gx1 , . . . , gxn).

In contrast, our approach, DPVS, employs basis B, which is linearly trans-
formed from A using a secret random matrix X ∈ F n×n

q . A remarkable property
over B is that it seems hard to decompose xibi from P ′ := x1b1 + · · ·xnbn (and
the decisional subspace problem seems intractable). In addition, the secret ma-
trix X (and the dual orthonormal basis B∗ of V) can be used as a source of
the trapdoors to the decomposability (and distinguishability for the decisional
subspace problem through the pairing operation over B and B∗ as mentioned
above). The hard decomposability (and indistinguishability) and its trapdoors
are ones of the key tricks in our approach.

Composite order pairing groups are often employed with similar tricks such
as hard decomposability (and indistinguishability) of a composite order group
to the prime order subgroups and its trapdoors through factoring.

The DPVS approach has, however, the following several advantages over the
composite order pairing group approach.

Efficiency. In the DPVS approach, the construction is based on prime or-
der pairing groups and more efficient than that on composite order pairing
groups.

Flexibility. In the DPVS approach it is easy to realize a higher (e.g., 1000
or 10000) dimensional space, while it is hard to extend it to such a higher
dimensional space in the composite order pairing groups approach (e.g., using
composite n = p1 · · · p10000).

Public Parameters. In some setting, the parameters of pairing groups should
be publicly set up. In the DPVS approach, such a setting is easy, e.g., it
can be from public or standard documents, since the parameters are on
prime order pairing groups and there is no trapdoor. In contrast, in the
composite order pairing groups approach, a trusted party should generate
the parameters of composite order pairing groups since there is a trapdoor,
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where if the party is corrupted (or the trapdoor is compromised), the system
should be totally broken down.

Hierarchical Trapdoors. The trapdoors in the DPVS approach are hierar-
chical, from the top level to lower levels. The top level trapdoor is X , the
next top level is B∗, and there are variously lower level trapdoors such as
t∗ ∈ span〈b∗1, . . . , b∗N2

〉, mentioned above. There are many applications of the
hierarchical trapdoors. The trapdoor of the composite order pairing groups
approach is much simpler and there is no such hierarchical trapdoor, only
prime factorization of n or prime order subgroup generators,

Information Theoretic Techniques. The most important advantage of the
DPVS approach over the composite order pairing groups approach is that it
has information theoretic properties or techniques. As mentioned above, there
are dual orthonormal bases (B, B∗), where B is basically a public key and B∗

is a secret key. In our approach, however, we often use a part of B, B̂, instead
of the whole of B, as a public key, and the remaining part of B is information
theoretically secret. That is, even an infinite power adversary has no idea on
the secret part of B. We have essentially employed this information theoretic
property in [1,3,4,5], while there is no such information theoretic property in
the composite order pairing groups approach since an infinite power adversary
can obtain the whole trapdoor, factorization of composite n.
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Abstract. Cryptographic hash functions map input strings of arbitrary
length to fixed length output strings. They are expected to satisfy sev-
eral security properties that include preimage resistance, second preim-
age resistance, and collision resistance. The free availability of efficient
software-oriented hash functions such as MD4, MD5 and SHA-1 has re-
sulted in a very broad deployment of hash functions, way beyond their
initial design purposes. In spite of the importance for applications, until
2005 the amount of theoretical research and cryptanalysis invested in this
topic was rather limited. Moreover, cryptanalysts had been winning the
battle from designers: about 4 of every 5 designs were broken. In 2004
Wang et al. made a breakthrough in the cryptanalysis of MD4, MD5
and SHA-1. Around the same time, serious shortcomings were identi-
fied in the theoretical foundations of existing designs. In response to this
hash function crisis, in the last five years a substantial number of papers
has been published with theoretical results and novel designs. Moreover,
NIST announced in November 2007 the start of the SHA-3 competition,
with as goal to select a new hash function family by 2012. We present
a brief outline of the state of the art of hash functions in the last year
of the competition and attempt to identify the lessons learned and some
open research problems.

1 Background

Cryptographic hash functions first appeared in the cryptographic literature in
the 1976 seminal paper of Diffie and Hellman on public-key cryptography [8].
Today, hash functions are used in a broad range of applications: to compute
a short unique identifier of a string (e.g. for a digital signature), as one-way
function to hide a string (e.g. for password protection), to commit to a string
in a protocol, for key derivation and for entropy extraction. In addition, they
have been deployed to instantiate random oracles and as building block for other
cryptographic primitives.

Most of the first hash function designs were broken very quickly; in the late
1980s there was a clear understanding that there was a need for more secure and
more efficient hash functions. The first theoretical result was the construction
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of a collision-resistance hash function based on a collision-resistant compres-
sion function, proposed independently by Damg̊ard [7] and Merkle [15] in 1989.
Around the same time, the first cryptographic algorithms were proposed that
were intended to be fast in software; the hash functions MD4 [19] and MD5 [20]
fall in this category. Both functions were picked up quickly by application de-
velopers as they were ten times faster than DES; in addition they were not
patent-encumbered and they posed less export problems than an encryption
algorithm such as DES. As a consequence, hash functions were also used to con-
struct MAC algorithms (e.g., HMAC as analyzed by Bellare et al. [4,3]) and even
block ciphers and stream ciphers.

During the 1990s, a growing number of hash functions were proposed [18], but
unfortunately very few of these designs have withstood cryptanalysis. Notable
results were obtained by Dobbertin, who found collisions for MD4 in 1995 [9] and
collisions for the compression function of MD5 in 1996 [10]. Very few theoretical
results were available in the area. At the same time however, MD5 and SHA-1,
the latter introduced in 1995 by NIST (National Institute for Standards and
Technology, US) [12], were deployed in an ever growing number of applications,
resulting in the name “Swiss army knifes” of cryptography.

In 2004, Wang et al. made substantial progress on the cryptanalysis of the
MD4 family: by introducing a sophisticated variant of differential cryptanalysis
they found collisions for MD4 by hand and for MD5 in a few minutes [22]. They
managed to reduce the cost of collisions for SHA-1 by three orders of magni-
tude [21], which undermined the confidence in this widely used standard. As a
consequence, the interest in hash functions surged: many new theoretical results
were obtained, new designs were proposed and the cryptanalytic techniques of
Wang et al. were further developed. Today RIPEMD-160 [11] seems to be one
of the few older 160-bit hash functions for which no shortcut attacks are known.
NIST introduced in 2002 the SHA-2 family of hash functions [13] with as goal
to match the security levels provided by 3-DES and AES (output results of 224
to 512 bits). There is a concern that the attacks of Wang et al. would also apply
to these functions, which have design principles that are quite similar to those
of SHA-1; however, it should be pointed out that the more complex diffusion
and the nonlinear message expansion of SHA-2 have held up against the current
attack techniques.

2 The SHA-3 Competition

In November 2007, NIST announced that it would organize an open competi-
tion to select the SHA-3 algorithm [16]. In October 2008, 64 candidates were
submitted; 51 of these were selected for the first round and in July 2009, 14
were admitted to the second round. In December 2010, NIST has announced 5
finalists: Blake, Grøstl, JH, Keccak, and Skein. The final winner will be selected
by mid 2012.

Some preliminary conclusions can be drawn. A first observation is that during
the SHA-3 competition many new designs have broken and many of the (strong)
designs been tweaked; this clearly shows that designing a secure hash function
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is very delicate. The largest design innovation is the introduction by Bertoni
et al. [5] of sponge functions, that are very different from the Merkle-Damg̊ard
design; the idea of a sponge function is not to start from a strong compression
function, but to use a larger intermediate state and to obtain security from the
iteration. Keccak [6] is an instantiation of a sponge function, while JH is a gener-
alization of a sponge function that has been studied under the name parazoa [2].
The most powerful attack that has emerged right before and during the com-
petition has been the rebound attack [14]; it has been applied successfully to
many designs (or to reduced-round versions). The five finalists represent a large
diversity: JH and Keccak use small S-boxes or Boolean functions only, Grøstl
uses an 8-bit S-box as found in AES, while Blake and Skein use ARX (addi-
tion/rotation/xor) operations on larger words of 32/64 bits. From a theoretical
perspective, substantial progress has been made with security reductions, but
major gaps still remain as explained in [1]. The performance of all finalists is
very good; Keccack seems to offer the best hardware performance, while Blake
and Skein (that use CPU arithmetic) have some advantage in software on high
end CPUs.

3 Conclusions

Based on the five finalists, it seems safe to predict that SHA-3 will be a robust
and efficient hash function. The design itself will be very different from SHA-2,
and it will likely co-exist for an extended period with SHA-2. One can expect
that NIST will standardize a tree mode for hash functions to obtain improved
performance on multi-core processors (see [7,17] and several SHA-3 submissions).
For the long term, we face the challenging problem to design an efficient hash
function for which the security can be reduced to a mathematical problem that
is elegant and for which we have a convincing security reduction.
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