
Location Types for Safe Distributed

Object-Oriented Programming∗

Yannick Welsch and Jan Schäfer

University of Kaiserslautern, Germany
{welsch,jschaefer}@cs.uni-kl.de

Abstract. In distributed object-oriented systems, objects belong to dif-
ferent locations. For example, in Java RMI, objects can be distributed
over different JVM instances. Accessing a reference in RMI has crucial
different semantics depending on whether the referred object is local or
remote. Nevertheless, such references are not statically distinguished by
the type system.

This paper presents location types, which statically distinguish far
from near references. We present a formal type system for a minimal
core language. In addition, we present a type inference system that gives
optimal solutions. We implemented location types as a pluggable type
system for the ABS language, an object-oriented language with a concur-
rency model based on concurrent object groups. An important contribu-
tion of this paper is the combination of the type system with the flexible
inference system and a novel integration into an Eclipse-based IDE by
presenting the inference results as overlays. This drastically reduces the
annotation overhead while providing full static type information to the
user. The IDE integration is a general approach of its own and can be
applied to many other type system extensions.

1 Introduction

In distributed object-oriented systems, objects belong to different locations. A
location in this paper is regarded to be an abstract concept, but in practice it
may, for example, refer to a physical computation node, some process (like a JVM
instance in RMI [19]), or can even be a concept of a programming language. For
example, in object-languages with concurrency models based on communicating
groups of objects such as E [18], AmbientTalk/2 [24], JCoBox [22], or ABS [15],
the location of an object can be considered as the group it belongs to. In these
scenarios it often makes a difference whether a reference points to an object at
the current location, i.e., the location of the current executing object (in the
following called a near reference), or to an object at a different location (a far
reference). For example, in the E programming language [18], a far reference
can only be used for eventual sends, but not for immediate method calls. In
Java RMI accessing a remote reference may throw a RemoteException, where
∗ This research is funded by the EU project FP7-231620 HATS: Highly Adaptable and

Trustworthy Software using Formal Models.

J. Bishop and A. Vallecillo (Eds.): TOOLS 2011, LNCS 6705, pp. 194–210, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Location Types for Safe Distributed Object-Oriented Programming 195

accessing a normal reference cannot throw such an exception. It is thus desirable
to be able to statically distinguish these two kinds of references. This is useful
for documentation purposes, to reason about the code, and to statically prevent
runtime errors.

We present location types which statically distinguish far from near references.
Location types can be considered as a lightweight form of ownership types [4,
21] with the following two characteristics. The first is that location types only
describe a flat set of locations instead of a hierarchy of ownership contexts.
The second is that ownership types typically define the ownership context of
an object in a precise way. Location types abstract from these precise locations
by only stating whether an object belongs to the current location or some other
location. These two simplifications make location types very lightweight and easy
to use, while still being expressive enough to guarantee their desired properties.
Location types are not used to enforce encapsulation, which is the main goal of
many ownership type systems.

As with any type system extension, writing down the extended types can
become tiresome for programmers. Furthermore, these annotations may clutter
up the code and reduce readability, especially when several of such pluggable
type systems [2, 9] are used together. This reduces the acceptance of pluggable
type systems in practice. The first issue can be solved by automatically inferring
the type annotations and inserting them into the code. But this results again
in cluttered code with potentially many annotations. Our solution is to lever-
age the power of an IDE and present the inferred types to the programmer by
using unobtrusive overlays. They give the programmer full static type informa-
tion without cluttering the code with annotations nor reducing readability. The
overlays can be turned on and off according to the programmer’s need. Type
annotations are only needed to make the type checking and inference modular,
where the degree of modularity just depends on the interfaces where type anno-
tations appear. This way of integrating type inference into the IDE drastically
simplifies the usage of the proposed type system and is applicable to similar type
system extensions.

Contributions. The three main contributions of this paper are the following. (1)
We give the formalization of a type system for location types in a core object-
oriented language. (2) We describe a type inference system that gives optimal
solutions and helpful error messages. (3) We present an implementation of the
type and inference system for the ABS language and show how to integrate
such a system into an IDE by using a novel way of visualizing inferred type
information.

Outline. The remainder of this paper is structured as follows. In Sect. 2 we
give an informal introduction to location types and illustrate their usage by
an example. Section 3 presents the formalization of location types for a core
object-oriented language and the inference system. In Sect. 4 we explain how
we implemented and integrated location types into an IDE, and provide a short

196 Y. Welsch and J. Schäfer

evaluation. Section 5 discusses location types in the context of related work.
Section 6 concludes.

2 Location Types at Work

Location types statically distinguish far from near references. To do so, stan-
dard types are extended with additional type annotations, namely location types.
There are three different location types: Near, Far, and Somewhere. Location
types are always interpreted relatively to the current object. A variable typed as
Near means that it may only refer to objects that belong to the same location as
the current object. Accordingly, a Far typed variable may only refer to objects
that belong to a different location than the current object. Somewhere is the
super-type of Far and Near and means that the referred object may either be
Near or Far. Important to note is that only Near precisely describes a certain
location. A Far annotation only states that the location of the referred object is
not Near. This means that a Far typed variable may over time refer to different
locations which are not further defined, except that they are not the location
of the current object. What a location actually means is irrelevant to the type
system. So whether the location of an object refers to a JVM instance or has
some other form of object grouping does not matter. It is only important that
an object belongs to a unique location for its entire lifetime.

We illustrate the location type system by applying it to a small implemen-
tation of a chat application. For the description we use the abstract behavioral
specification language (ABS) [15], which we explain hand-in-hand with the ex-
ample.

ABS is an object-oriented language with a Java-like syntax. It has a con-
currency model that is based on so-called concurrent object groups (COGs).
COGs can be regarded as the unit of concurrency and distribution in ABS. Ev-
ery object in ABS belongs to exactly one unique COG for its entire lifetime.
This is similar to the Java RMI setting where objects belong to certain JVM
instances, which may run distributed on different machines. At creation time
of an object it is specified whether the object is created in the current COG
(using the standard new expression) or is created in a fresh COG (using the
new cog expression). Communication in ABS between different COGs happen
via asynchronous method calls which are indicated by an exclamation mark (!).
A reference in ABS is far when it targets an object of a different COG, otherwise
it is a near reference. Similar to the E programming language [18], ABS has the
restriction that synchronous method calls (indicated by the standard dot nota-
tion) are only allowed on near references. Using a far reference for a synchronous
method call results in a runtime exception. Our location type system can be
used to statically guarantee the absence of these runtime exceptions.

The chat application is a simple IRC-like application, which consists of a single
server and multiple clients. For simplicity, there is only a single chat room, so all
clients actually broadcast their messages to all other clients. The basic interfaces
of the chat application in the ABS language are given in Fig. 1. Note that only

Location Types for Safe Distributed Object-Oriented Programming 197

interface Server {

[Near] Session connect(

[Far] Client c, String name); }

interface Session {

Unit receive(ClientMsg m);

Unit close(); }

interface Client {

Unit connectTo([Far] Server s);

Unit receive(ServerMsg m); }

Fig. 1. The annotated interfaces
of the chat application

Client

Client

Server

Session

Session

COG object far reference near reference

Fig. 2. Runtime structure of the chat application

1 class ClientImpl(String name) implements Client {

2 [Far] Session session; ...

3 Unit connectTo([Far] Server server) {

4 Fut<[Far] Session> f = server!connect(this, name);

5 session = f.get; } }

Fig. 3. Fully annotated implementation of the ClientImpl class

Server, Client, and Session are actually reference types, the types Unit, ClientMsg,
and ServerMsg are data types and represent immutable data and not objects.

Figure 2 shows a possible runtime structure of the chat application. As the
clients and the server run independently of each other, they live in their own
COGs. This means that all references between clients and the server are far
references. The Session objects that handle the different connections with the
clients live in the same COG as the Server object. This means that references
between Session and Server are near references. In a typical scenario, the client
calls the connect method of the server and passes a reference to itself and a
user name as arguments. The server then returns a reference to a Session object,
which is used by the client to send messages to the server. The interfaces of
Fig. 1 are annotated accordingly, e.g., the connect method of the server returns
a reference to a Session object that is Near to the server.

Figure 3 shows the ClientImpl class, an implementation of the Client interface.
It has a field session which stores a reference to the Session object which is ob-
tained by the client when it connects to the server. Lines 3-5 show the connectTo
method. As specified in the interface, the Server parameter has type Far. In Line
4, the client asynchronously (using the ! operator) calls the connect method of
the server. The declared result type of the connect method is [Near] Session (see
Fig. 1). The crucial fact is that the type system now has to apply a viewpoint
adaptation [7]. As the target of the call (server) has location type Far, the return
type of connect (which is Near) is adapted to Far. Furthermore, as the call is
an asynchronous one, the value is not directly returned, but a future instead
(i.e. a placeholder for the value). In Line 5, the client waits for the future to be
resolved.

198 Y. Welsch and J. Schäfer

1 class ServerImpl implements Server {

2 List<[Near] Session> sessions = Nil;
3 [Near] Session connect(

4 [Far] Client c, String name) {

5 [Near] Session s =

6 new SessionImpl(this, c, name);

7 sessions = Cons(s,sessions);

8 this.publish(Connected(name));

9 return s; }

10 Unit publish(ServerMsg m) {

11 List<[Near] Session> sess =

12 sessions;

13 while (~isEmpty(sess)) {

14 [Near] Session s = head(sess);

15 sess = tail(sess);

16 s.send(m);

17 } } ...

18 }

Fig. 4. Fully annotated implementation of the ServerImpl class

Figure 4 shows the ServerImpl class, an implementation of the Server interface.
It has an internal field sessions to hold the sessions of the connected clients.
List is a polymorphic data type in ABS whose type parameter is instantiated
with [Near] Session, which means that it holds a list of near references to Session
objects. When a client connects to the server using the connect method, the server
creates a new SessionImpl object in its current COG (using the standard new
expression), which means that it is statically clear that this object is Near. It then
stores the reference in its internal list, publishes that a new client has connected,
and returns a reference to the session object. In the publish method at Line 16,
the send method is synchronously called. As ABS requires that synchronous calls
are only done on near objects, the type system guarantees that s always refers
to a near object.

3 Formalization

This section presents the formalization of the location type system in a core
calculus called LocJ. We first present the abstract syntax of the language and its
dynamic semantics. In Sect. 3.1 we introduce the basic type system for location
types as-well-as its soundness properties. In Sect. 3.2 we improve the precision
of the basic type system by introducing named Far types. In Sect. 3.3 we present
the location type inference system.

Notations. We use the overbar notation x to denote a list. The empty list is
denoted by • and the concatenation of list x and y is denoted by x · y. Single
elements are implicitly treated as lists when needed. M[x �→ y] yields the map
M where the entry with key x is updated with the value y, or, if no such key
exists, the entry is added. The empty map is denoted by [] and dom(M) and
rng(M) denote the domain and range of the map M.

Abstract Syntax. LocJ models a core sequential object-oriented Java-like lan-
guage, formalized in a similar fashion to Welterweight Java [20]. The abstract
syntax is shown in Fig. 5. The main difference is that objects in LocJ can be

Location Types for Safe Distributed Object-Oriented Programming 199

P ::= C

C ::= class c { V M }
V ::= T x

M ::= T m(V) { V S }
S ::= x← E | x.f ← y

E ::= new c in fresh

| new c in x | x
| x.m(y) | x.f

T ::= c

Fig. 5. Abstract syntax of LocJ. c ranges
over class names, m over method names and
x, y, z, f over field and variable names (in-
cluding this and result)

ζ ::= F ,H runtime config.
H ::= ι �→ (l, c,D) heap

F ::= (S,D)c,m stack frame
D ::= x �→ v variable-value map
v ::= ι | null value

Fig. 6. Runtime entities of LocJ. ι
ranges over object identifiers and l over
locations

created at different locations. For this, the new-expression has an additional ar-
gument, given by the in part, that specifies the target location. The target can
either be fresh to create the object in a new (fresh) location, or a variable x to
create the object in the same location as the object that is referenced by x1. We
do not introduce locations as first class citizens as they can be encoded using
objects, i.e., objects can be simply used to denote locations. To keep the pre-
sentation short, LocJ does not include inheritance and subtyping. However, the
formalization can be straightforwardly extended to support these features.

Dynamic Semantics. The dynamic semantics of our language is defined as a small-
step operational semantics. The main difference to standard object-oriented lan-
guages is that we explicitly model locations to partition the heap. The runtime
entities are shown in Fig. 6. Runtime configurations ζ consist of a stack, which is a
list of stack frames, and a heap. The heap maps object identifiers to object states
(l, c,D), consisting of a location l, a class name c, and a mapping from field names
to valuesD. A stack frame consists of a list of statements and a mapping from local
variable names to values. Furthermore the stack frame records with which class c
and method m it is associated, which we sometimes omit for brevity.

The reduction rules are shown in Fig. 7. They are of the form ζ� ζ′ and
reduce runtime configurations. The rules use the helper functions initO and initF
to initialize objects and stack frames. The function initO(l, c) creates a new
heap entry (l, c,D) where D = [][f �→ null] and f are the field names of class
c. Similarly, initF(m, c, ι, v) creates a new stack frame (S,D)c,m where S are
the statements in the method body of method m in class c and D = [][this �→
ι][result �→ null][x �→ v][y �→ null] and x are the variable names of the formal
parameters of method m in class c and y are the local variable names.

3.1 Basic Location Type System

In this subsection, we present the basic location type system and its soundness
properties. To incorporate location types into LocJ programs, we extend types

1 In ABS, new cog C() creates a new location (i.e., corresponds to ”new c in fresh” in
LocJ) whereas new C() creates a new object in the same location as the current
object (i.e., corresponds to ”new c in this” in LocJ).

200 Y. Welsch and J. Schäfer

ι /∈ dom(H) l is fresh
H′ =H[ι �→ initO(l, c)] D′ = D[x �→ ι]

(x ← new c in fresh · S,D) ·F ,H� (S,D′) ·F ,H′

ι /∈ dom(H) (l, _, _) =H(D(y))
H′ =H[ι �→ initO(l, c)] D′ = D[x �→ ι]
(x ← new c in y · S,D) ·F ,H� (S,D′) ·F ,H′

ι = D(x) (l, c,D′) =H(ι)
D′′ = D′[f �→ D(y)] H′ =H[ι �→ (l, c,D′′)]

(x . f ← y · S,D) ·F ,H� (S,D) ·F ,H′

(_, _,D′′) =H(D(y)) D′ = D[x �→ D′′(f)]
(x ← y. f · S,D) ·F ,H� (S,D′) ·F ,H

D′ = D[x �→ D(y)]
(x ← y · S,D) ·F ,H� (S,D′) ·F ,H

F = (x ← y.m(z) · S,D)
(_, c, _) =H(D(y))

F ′ = initF(c, m,D(y),D(z))
F ·F ,H� F ′ ·F ·F ,H

F = (x ← y.m(z) · S,D′)
D′′ = D′[x �→ D(result)]

(•,D) ·F ·F ,H� (S,D′′) ·F ,H

Fig. 7. Operational semantics of LocJ

T ::= · · · | L c annotated type
L ::= Near | Far | Somewhere location type

Fig. 8. Basic location types

T with location types L (see Fig. 8), where a location type can either be Near, Far,
or Somewhere. We assume that a given program is already well-typed using a
standard Java-like type system and we only provide the typing rules for typing
the location type extension. The typing rules are shown in Fig. 9. Statements
and expressions are typed under a type environment V , which defines the types
of local variables. The typing judgment for expressions is of the form V � e : L
to denote that expression e has location type L. The helper functions anno(c, f)
and anno(c, m, x) return the declared location type of field f or variable x of
method m in class c and params(c, m) returns the formal parameter variables of
method m in class c.

The crucial parts of the type system are the subtyping (L <: L′) and the
viewpoint adaptation (L�KL′) relations which are shown in Fig. 10. The location
types Near and Far are both subtypes of Somewhere but are unrelated otherwise.
Viewpoint adaption is always applied when a type is used in a different context.
There are two different directions (K ∈ {From, To}) to consider. (1) Adapting a
type L from another viewpoint L′ to the current viewpoint, written as L�From L′.
(2) Adapting a type L from the current viewpoint to another viewpoint L′,
written as L�To L′.2 In typing rule wf-FieldGet we adapt the type of the field
from the viewpoint of y to the current viewpoint, whereas in rule wf-FieldSet
we adapt the type of y from the current viewpoint to the viewpoint of x.

2 Whereas in other ownership type systems (e.g. [7]), only one direction is considered,
we chose to explicitly state the direction in order to achieve a simple and intuitive
encoding.

Location Types for Safe Distributed Object-Oriented Programming 201

As an example for the viewpoint adaptation, assume a method is called on
a Far target and the argument is of type Near. Then the adapted type is Far,
because the parameter is Near in relation to the caller, but from the perspective
of the callee, it is actually Far in that case. Important is also the case where
we pass a Far typed variable x to a Far target. In that case we have to take
Somewhere as the adapted type, because it is not statically clear whether the
object referred to by x is in a location that is different from the location of the
target object.

(wf-P)

P = C � Ci

� P

(wf-C)

c �Mi

� class c { V M }

(wf-M)

Near c this · T result · V · V ′ � Si

c � T m(V) { V ′ S }

(wf-Assign)

V � E : L L′ x ∈ V L <: L′

V � x← E

(wf-FieldSet)

L c x ∈ V L′ = anno(c, f)

L′′ y ∈ V (L′′ �To L) <: L′

V � x.f ← y

(wf-NewFresh)

V � new c in fresh : Far

(wf-NewSame)

L x ∈ V

V � new c in x : L

(wf-Var)

L x ∈ V

V � x : L

(wf-FieldGet)

L c y ∈ V L′ = anno(c, f)

V � y.f : L′ �From L

(wf-Call)

L c y ∈ V

Li zi ∈ V x = params(c, m)
(Li �To L) <: anno(c, m, xi)

V � y.m(z) : anno(c, m, result) �From L

Fig. 9. Typing rules of LocJ. Note that indices are implicitly all-quantified

Type Soundness. The location type system guarantees that variables of type Near
only reference objects that are in the same location as the current
object and that variables of type Far only reference objects that are in a dif-
ferent location to the current object. We formalize this by defining a well-
formed runtime configuration. As helper functions, we define the location of
a heap entry as loc((l, c,D)) = l and the dynamically computed location type as
dtype(l, l′) = Near if l = l′, and Far otherwise.

Definition 1 (Well-formed runtime configuration). Let ζ = F ,H be a
runtime configuration. ζ is well-formed iff all heap entries (l, c,D) ∈ rng(H) and
all stack frames F ∈ F are well-formed under H and the configuration satisfies
all the standard conditions of a class-based language.

Definition 2 (Well-formed heap entry). (l, ,D) is well-formed under H iff
for all f with D(f) = ι and (l′, c,) = H(ι), we have dtype(l, l′) <: anno(c, f).

202 Y. Welsch and J. Schäfer

Somewhere

Near Far

Original �K Viewpoint = Adapted

L �K Near = L
Near �K Far = Far
Far �K Far = Somewhere
Somewhere �K Far = Somewhere
L �K Somewhere = Somewhere

Fig. 10. Subtyping and viewpoint adaptation (where K ∈ {From, To}). Note that the
direction K does not influence basic location types, but is important for our extension
in Sect. 3.2

1 [Far] Server server = new cog ServerImpl();
2 [Far] Client client1 = new cog ClientImpl(”Alice”);
3 [Far] Client client2 = new cog ClientImpl(”Bob”);
4 client1 ! connectTo(server);
5 client2 ! connectTo(server);

Fig. 11. The code of the main block of the chat application, annotated with location
types

Definition 3 (Well-formed stack frame). (S,D)c,m is well-formed under
H iff for all x with D(x) = ι, we have dtype(loc(H(D(this))), loc(H(ι))) <:
anno(c, m, x).

Theorem 1 (Preservation for location types). Let ζ be a well-formed run-
time configuration. If ζ� ζ′, then ζ′ is well-formed as well.

Proof. The proof proceeds by a standard case analysis on the reduction rule used
and is available in the accompanying report [25].

3.2 Named Far Location Types

The location type system so far can only distinguish near from far references.
The type system knows that a near reference always points to a different location
than a far reference. But whether two far references point to the same location
or different ones is not statically known. This makes the type system often too
weak in practice. As an example, let us consider the main block3 of the ABS
chat application in Fig. 11, annotated with location types. The server and both
clients are created by using the new cog expression. This means that all these
objects live in their own, fresh COG and thus they can be typed to Far, because
these locations are different to the current COG (the Main COG). However, for
the method call client1!connectTo(server) to successfully type-check, the formal
parameter of the connectTo method would need to be typed as Somewhere be-
cause the actual (adapted) parameter type is of type Somewhere (= Far �To Far).
This issue arises because the type system cannot distinguish that client1 and
server point to different locations. The example shows that in its basic form,
the location type system often has to conservatively use the Somewhere type to
3 A main block in ABS corresponds to a main method in Java.

Location Types for Safe Distributed Object-Oriented Programming 203

remain sound, which in fact means that the type system cannot say anything
about the location.

To improve the precision of the location type system we introduce named far
types:

L ::= · · · | Far(i)

A named far type is a far type parametrized with an arbitrary name4. Far types
with different names represent disjoint sets of far locations and are incompatible
to each other. The following typing rule wf-NewFreshP is added, which allows
new locations to be more precisely described.

(wf-NewFreshP)

V � new c in fresh : Far(i)

The subtyping and viewpoint adaptation relations are extended accordingly in
Fig. 12. Adapting a Far(i) to a Far(j) for i �= j yields a Far(i), as they denote
different sets of locations. Adapting a Far(i) to a Far(i) does not yield Near, how-
ever, as two variables with the same Far(i) type can refer to objects of different
locations.

In practice the user does not explicitly provide the names. Instead the infer-
ence system automatically infers them when possible. These refined far types
are then used to improve the viewpoint adaptation. In the chat example our
type system is now able to infer that the server and the client variables actually
refer to different far locations. This means that the argument of the connectTo
method call can be typed to Far instead of Somewhere.

Our experience with case studies shows that this extension is expressive enough
for our purposes (cf. Sect. 4). However, other extensions to improve the expres-
siveness and precision of the location type system are imaginable, e.g. location
type polymorphism similar to owner polymorphism in ownership type systems
[4, 3, 17].

Type Soundness. Similar as for Thm. 1, a proof of type soundness for the named
far location type system extension is available in the accompanying report [25].

3.3 Location Type Inference

The type system presented in the previous section requires the programmer to
annotate all type occurrences with location types. In this subsection we present
an inference system for location types. We first present a sound and complete
inference system, which makes it possible to use the location type system with-
out writing any type annotations and only use type annotations for achieving
modular type checking. The second part then presents an inference system that
can deal with type-incorrect programs and that finds not only some solution but
an optimal solution.

4 Note that these are not object identifiers.

204 Y. Welsch and J. Schäfer

Somewhere

Near Far

Far(i1) . . . Far(in)

Original �K Viewpoint = Adapted

. . . (extension of Fig. 10)
Near �To Far(i) = Far
Near �From Far(i) = Far(i)
Far �K Far(i) = Somewhere
Somewhere �K Far(i) = Somewhere
Far(i) �To Far(j) = Far(i) if i �= j
Far(i) �From Far(j) = Somewhere if i �= j
Far(i) �K Far(i) = Somewhere
Far(i) �K Far = Somewhere

Fig. 12. Subtyping and viewpoint adaptation for extended location types

Q ::= α �K β = γ adaptation constraint
| α <: β subtype constraint
| α = L | α �= L constant constraint

Fig. 13. Location type constraints

Sound and Complete Inference. The formal model for inferring location
types follows the formalization of other type system extensions [8]. The idea
is to introduce location type variables at places in the program where location
types occur in our typing rules. Type inference then consists of two steps. First,
generating constraints for the location type variables. Second, checking whether
a substitution for the location type variables exists such that all constraints are
satisfied.

To introduce location type variables into programs we extend the syntax of
location types accordingly:

L ::= · · · | α location type variables (also β, γ, and δ)

In the following we consider P as a program which is fully annotated with
pairwise distinct location type variables. The constraints which are generated
by the inference system are shown in Fig. 13. We use the judgment � P : Q,
defined in Fig. 14, to denote the generation of the constraints Q from program
P . Note that additional fresh location type variables are introduced during the
constraint generation.

Soundness and Completeness. Let σ be a mapping function from location type
variables to location types, i.e., α to {Near, Far, Somewhere, Far(i1), ..., Far(in)}.
Then σ � Q if the constraints Q are satisfiable under σ. We write σP to de-
note that all location type variables in P have been replaced by location types
according to the substitution function σ.

Conjecture 1 (Soundness and Completeness of the Inference). The inference is
sound and complete in the sense that every typing inferred can be successfully
type-checked and every typing which type-checks can also be inferred.

Location Types for Safe Distributed Object-Oriented Programming 205

P = C � Ci : Qi

� P : Q1 · . . . · Qn

c �Mi : Qi

� class c { V M } : Q1 · . . . · Qn

V � E : β,Q α x ∈ V

V � x← E : β <: α · Q

δ is fresh

V � new c in fresh : δ, δ �= Near

α y ∈ V

V � new c in y : α, •
α x ∈ V

V � x : α, •

δ c this · T result · V · V ′ � Si : Qi δ is fresh

c � T m(V) { V ′ S } : δ = Near · Q1 · . . . · Qn

α c x ∈ V

β = anno(c, f) γ y ∈ V δ is fresh

V � x.f ← y : δ <: β · γ �To α = δ

α c y ∈ V β = anno(c, f) γ is fresh

V � y.f : γ, β �From α = γ

α c y ∈ V αi zi ∈ V x = params(c, m)
βi = anno(c, m, xi) β = anno(c, m, result)

Qi = αi �To α = γi · γi <: βi

γi is fresh γ is fresh

V � y.m(z) : γ, β �From α = γ · Q1 · . . . · Qn

Fig. 14. Constraint generation rules

– Soundness : If � P : Q and σ � Q , then � σP .
– Completeness : If � σP for some minimal σ, then ∃Q such that � P : Q and

∃σ′ such that σ′ is an extension of σ and σ � Q . Note that σ′ is an extension
of σ iff σ′(α) = σ(α) for all α ∈ dom(σ).

Optimal and Partial Inference. Whereas soundness and completeness is
important, it is not sufficient for an inference system to be usable in practice.
Two additional properties are required, namely:

1. If multiple inference solutions exist, an optimal solution should be taken.
This is important, because the user in general wants to have the most precise
solution, i.e., with the least amount of Somewhere annotations.

2. If no typable solution can be inferred, at least a partially typable solution
should be provided. It is otherwise nearly impossible to use the inference
system if one only gets a “No solution can be found” result. In addition, this
partially typable solution should lead to the least amount of type errors.

To support these two properties, we extend our formal model in the follow-
ing way. We introduce three constraint categories: must-have, should-have, and
nice-to-have. The must-have constraints must always be satisfied. These are for
example in Fig. 14 the adaptation constraints (α �K β = γ) and the constant
constraints (α = L, α �= L), characterizing the types of subexpressions. They
also encompass the constant constraints which result from user annotations (not
considered in the formalization of Fig. 14, but present in the implementation).
Note that there is always a solution to these constraints in our inference system
as they are based on freshly allocated location type variables. The should-have
constraints, e.g. the subtype constraints (α <: β) in Fig. 14, should always be

206 Y. Welsch and J. Schäfer

satisfied in order to get a valid typing, but can be unsatisfied for partially correct
solutions. The nice-to-have constraints are those that give us a nice (optimal)
solution, i.e., with the least amount of Somewhere annotations or with Far types
at the places where the precision of Far(i) types is not needed.

Inferring an optimal solution consists of solving the following problem. First,
all must-have constraints, then the most amount of should-have constraints,
and finally the most amount of nice-to-have constraints should be satisfied. The
problem can be encoded as a partially weighted MaxSAT problem by assigning
appropriate weights to the constraints. This means that must-have constraints
are hard clauses (maximum weight) and should-have constraints correspond to
soft clauses whose weight is greater than the sum of all weighted nice-to-have
clauses. Solving such a problem can be efficiently done using specialized SAT
solvers.

As an example for partial inference, consider the ServerImpl class in Fig. 4.
Assume that there are no annotations on the signature and the body of the
connect method except for the return type which has been wrongly annotated
by the programmer as Far. The inference system then still gives a solution where
all constraints are satisfied except one should-have constraint, namely s <: result
which is generated at the last line of the connect method. The inference system
assigns the type Near to variable s because if it were to assign Far to s, more
should-have constraints would be unsatisfied (i.e. those resulting from lines 5
to 7).

4 Implementation and IDE Integration

We have implemented the type and inference system for location types, including
named far location types and optimal and partial inference, as an extension of
the ABS compiler suite. The type and inference system is integrated into an
Eclipse-based IDE, but can also be used from the command line.

Inference System. The inference system internally uses the Max-SAT solver
SAT4J [16] to solve the generated inference constraints. As the inference sys-
tem may return a solution that is not fully typable, we use the type checker for
location types to give user-friendly error messages.

The alias analysis for named Far locations (cf. Sect. 3.2) can be configured to
use scopes of different granularity: basic (no alias analysis), method-local, class-
local, module-local, and global analysis. This allows the user to choose the best
tradeoff between precision and modularity. For the inference, an upper bound
on the number of possible named Far(i) locations is needed. This is calculated
based on the number of new c in fresh expressions in the current scope.

IDE Integration. ABS features an Eclipse-based IDE5 for developing ABS
projects. The interesting part of the IDE for this paper is that we have in-
corporated visual overlays which display the location type inference results. For
5 http://tools.hats-project.eu/eclipseplugin/installation.html

http://tools.hats-project.eu/eclipseplugin/installation.html

Location Types for Safe Distributed Object-Oriented Programming 207

each location type there is a small overlay symbol, e.g., for Near and for Far,
which are shown as superscripts of the type name. For example, a Far Client
appears as Client . Whenever the user saves a changed program, the inference
is triggered and the overlays are updated. They give the user complete location
type information of all reference types, without cluttering the code. In addition,
the overlays can easily be toggled on or off. It is also possible to write the infer-
ence results back as annotations into the source code, with user-specified levels
of granularity, e.g., method signatures in interfaces.

Evaluation. We evaluated the location type system by applying it to three case
studies. The Trading System (1164 LOC, 150 types to annotate) and Replication
System (702 LOC, 62 types to annotate) case studies are ABS programs devel-
oped as parts of the case studies in the HATS project. The Chat Application
(251 LOC, 55 types to annotate) is an extended version of the one presented in
Sect. 2.

The evaluation results are presented in Fig. 15. They show how precise the
case studies can be typed and how fast the inference works. We also restricted the
alias analysis by various scopes to see the impact on performance and precision.
First of all, all case studies can be fully typed using our type system. The chart
on the left shows the precision (percentage of near and far annotations) of the
type inference. As can be seen, the basic type system already has a good precision
(> 60%) in all three case studies. As expected, the precision increased with a
broader analysis scope. Using a global aliasing analysis, the inference achieved
a precision of 100% in the Chat as well as the Trading System case studies. In
the Replication Server case study, the best precision was already achieved with
a method-local scope.

The chart on the right shows the performance results of the inference. It shows
that the performance of the inference is fast enough for the inference system
to be used interactively. It also shows that the performance depends on the
chosen scope for the aliasing analysis. Note that the examples where completely
unannotated, so that all types had to be inferred. In practice, programs are
often partially annotated, which additionally improves the performance of the
type inference. Our implementation of the inference focused more on correctness
than performance, which means that many improvements in the encoding, and
thus in the solving time are still possible.

5 Discussion and Related Work

Location types are a variant of ownership types that concentrate on flat own-
ership contexts. We presented the type system in the context of distributed
object-oriented systems, but it can be applied to any context where flat owner-
ship contexts are sufficient. Ownership types [4, 3, 17] and similar type systems
[1, 6] typically describe a hierarchical heap structure. On one hand this makes
these systems more general than location types, because ownership types could
be used for the same purpose as location types; on the other hand this makes

208 Y. Welsch and J. Schäfer

Chat TS RS
0

20

40

60

80

100

Case Studies

Pr
ec

is
io

n
(%

)

Chat TS RS
0

25

50

75

100

125

150

Case Studies

So
lv

in
g

ti
m

e
(m

s) Basic

Method

Class

Global

Fig. 15. Precision and solving time of the location type inference for the three case
studies, using four different scopes for the aliasing analysis. The measurements where
done on a MacBook Pro laptop (Intel Core 2 Duo T7400 2.16GHz CPU, 2GB RAM,
Ubuntu 10.04, Sun JDK 1.6.16). We used the -Xms1024 parameter to avoid garbage
collection. As working in an IDE usually consists of an edit-compile-run cycle, we
provide the performance results (the mean of 20 complete runs) after warming up the
JVM with 5 dry runs. We measured the time that the SAT-solver required for finding
a solution using the System.nanoTime() method.

these systems more complex. An ownership type system which is close to loca-
tion types in nature is that by Clarke et al. [5], which applies ownership types to
active objects. In their system ownership contexts are also flat, but ownership is
used to ensure encapsulation of objects with support for a safe object transfer
using unique references and cloning. Haller and Odersky [13] use a capability-
based type system to restrict aliasing in concurrent programs and achieve full
encapsulation. As these systems are based on encapsulation they do not have
the concept of far references. Places [12] also partition the heap. However, the
set of places is fixed at the time the program is started. Similar, but less expres-
sive than our type system, is Loci [26], which only distinguishes references to be
either thread-local or shared. Loci only uses defaults to reduce the annotation
overhead. Loci is also realized as an Eclipse plug-in. Regions are also considered
in region-based memory management [23], but for another purpose. They give
the guarantee that objects inside a region do not refer to objects inside another
region to ensure safe deallocation.

Using a Max-SAT solver with weighted constraints was also used in [11] to
infer types that prevent data-races and in [8] to find good inference solutions for
universe types. A crucial aspect of our work is the integration of type inference
results into the IDE by using overlays. To the best of our knowledge there is
no comparable approach. A widely used type system extension is the non-null
type system [10]. For variations of this type system, there exist built-in inference
mechanisms in Eclipse6 and IntelliJ IDEA7 as well as additional plug-ins such as
[14]. None of these IDE integrations provide type information by using overlays,

6 http://wiki.eclipse.org/JDT_Core/Null_Analysis
7 http://www.jetbrains.com/idea/webhelp/inferring-nullity.html

http://wiki.eclipse.org/JDT_Core/Null_Analysis
http://www.jetbrains.com/idea/webhelp/inferring-nullity.html

Location Types for Safe Distributed Object-Oriented Programming 209

but only give warnings in cases of type errors, which makes it difficult for the
user to find the root of the problem.

6 Conclusion and Future Work

We have presented a type system for distributed object-oriented programming
languages to distinguish near from far references. We applied the type system to
the context of the ABS language to guarantee that far references are not used as
targets for synchronous method calls. A complete type inference implementation
allows the programmer to make use of the type system without making any anno-
tations. The type inference results are visualized as overlay annotations directly
in the development environment. Application of the type system to several case
studies shows that the type system is expressive enough to type realistic code.
The type inference implementation is fast enough to provide inference results
within fractions of a second, so that interactive use of the system is possible.

We see two directions for future work. First, the type system could be applied
to other settings where the location of an object is important, e.g., Java RMI
[19]. Second, it would be interesting to investigate the visual overlay technique
for other (pluggable) type systems, e.g., the nullness type system [14].

Acknowledgements. We thank our Master’s students Thomas Fischer, Chris-
tian Seise, Florian Strauß, and Mathias Weber for implementing most parts of
the ABS-Eclipse integration. We also thank Peter Wong for applying the location
type system to the Replication System case study, and Arnd Poetzsch-Heffter
and Patrick Michel for proof-reading earlier drafts of this paper. Finally, we
thank the anonymous reviewers of TOOLS Europe 2011 for their constructive
feedback.

References

1. Aldrich, J.: Ownership Domains: Separating Aliasing Policy from Mechanism. In:
Vetta, A. (ed.) ECOOP 2004. LNCS, vol. 3086, pp. 1–25. Springer, Heidelberg
(2004)

2. Andreae, C., Noble, J., Markstrum, S., Millstein, T.: A framework for implementing
pluggable type systems. In: Tarr, P.L., Cook, W.R. (eds.) OOPSLA, pp. 57–74.
ACM Press, New York (2006)

3. Boyapati, C., Liskov, B., Shrira, L.: Ownership types for object encapsulation. In:
POPL, pp. 213–223. ACM Press, New York (2003)

4. Clarke, D., Potter, J., Noble, J.: Ownership Types for Flexible Alias Protection.
In: OOPSLA, pp. 48–64. ACM Press, New York (1998)

5. Clarke, D., Wrigstad, T., Östlund, J., Johnsen, E.B.: Minimal Ownership for Active
Objects. In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 139–154.
Springer, Heidelberg (2008)

6. Dietl, W.: Universe Types: Topology, Encapsulation, Genericity, and Tools. PhD
thesis. ETH Zurich, Switzerland (2009)

210 Y. Welsch and J. Schäfer

7. Dietl, W., Gairing, M., Müller, P.: Generic Universe Types. In: Bateni, M. (ed.)
ECOOP 2007. LNCS, vol. 4609, pp. 28–53. Springer, Heidelberg (2007)

8. Dietl, W., Ernst, M., Müller, P.: Tunable Universe Type Inference. Tech. rep. 659.
Department of Computer Science, ETH Zurich (December 2009)

9. Ernst, M.D.: Type Annotations Specification (JSR 308) and The Checker Frame-
work: Custom pluggable types for Java, http://types.cs.washington.edu/

jsr308/

10. Fähndrich, M., Leino, K.R.M.: Declaring and checking non-null types in an object-
oriented language. In: OOPSLA 2003, pp. 302–312. ACM Press, New York (2003)

11. Flanagan, C., Freund, S.N.: Type inference against races. Sci. Comput. Pro-
gram. 64, 140–165 (2007)

12. Grothoff, C.: Expressive Type Systems for Object-Oriented Languages. PhD thesis.
University of California, Los Angeles (2006)

13. Haller, P., Odersky, M.: Capabilities for Uniqueness and Borrowing. In: D’Hondt,
T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 354–378. Springer, Heidelberg (2010)

14. Hubert, L., Jensen, T., Pichardie, D.: Semantic Foundations and Inference of Non-
null Annotations. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS,
vol. 5051, pp. 132–149. Springer, Heidelberg (2008)

15. Hähnle, R., et al.: Report on the Core ABS Language and Methodology: Part A.
Report. The HATS Consortium (March 2010), http://www.hats-project.eu/

16. Le Berre, D., Parrain, A.: The SAT4J library, Release 2.2, System Description.
Journal on Satisfiability, Boolean Modeling and Computation 7, 59–64 (2010)

17. Lu, Y.: On Ownership and Accessibility. In: Hu, Q. (ed.) ECOOP 2006. LNCS,
vol. 4067, pp. 99–123. Springer, Heidelberg (2006)

18. Miller, M.S., Tribble, E.D., Shapiro, J.S.: Concurrency Among Strangers. In:
De Nicola, R., Sangiorgi, D. (eds.) TGC 2005. LNCS, vol. 3705, pp. 195–229.
Springer, Heidelberg (2005)

19. Oracle Corporation: Java SE 6 RMI documentation , http://download.oracle.
com/javase/6/docs/technotes/guides/rmi/index.html

20. Östlund, J., Wrigstad, T.: Welterweight Java. In: Vitek, J. (ed.) TOOLS 2010.
LNCS, vol. 6141, pp. 97–116. Springer, Heidelberg (2010)

21. Potanin, A., Noble, J., Clarke, D., Biddle, R.: Generic Ownership for Generic Java.
In: Tarr, P.L., Cook, W.R. (eds.) OOPSLA, ACM Press, New York (2006)

22. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: Generalizing Active Objects to
Concurrent Components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 275–299. Springer, Heidelberg (2010)

23. Tofte, M., Talpin, J.-P.: Region-based Memory Management. Inf. Comput. 2, 109–
176 (1997)

24. Van Cutsem, T., Mostinckx, S., Boix, E.G., Dedecker, J., Meuter, W.D.: Ambi-
entTalk: Object-oriented Event-driven Programming in Mobile Ad hoc Networks.
In: SCCC, pp. 3–12. IEEE Computer Society Press, Los Alamitos (2007)

25. Welsch, Y., Schäfer, J.: Location Types for Safe Distributed Object-Oriented Pro-
gramming. Tech. rep. 383/11. University of Kaiserslautern (April 2011)

26. Wrigstad, T., Pizlo, F., Meawad, F., Zhao, L., Vitek, J.: Loci: Simple Thread-
Locality for Java. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp.
445–469. Springer, Heidelberg (2009)

http://types.cs.washington.edu/jsr308/
http://types.cs.washington.edu/jsr308/
http://www.hats-project.eu/
http://download.oracle.com/javase/6/docs/technotes/guides/rmi/index.html
http://download.oracle.com/javase/6/docs/technotes/guides/rmi/index.html

	Location Types for Safe Distributed Object-Oriented Programming
	Introduction
	Location Types at Work
	Formalization
	Basic Location Type System
	Named Far Location Types
	Location Type Inference

	Implementation and IDE Integration
	Discussion and Related Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

